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ABSTRACT
Title of Thesis: The Settling of an Arbitrary Number of Spherical
Particles Arranged on the Corners of a Regular
Polygon in a Viscous Fluid

Eric R. Bixon, Doctor of Engineering Science, 1983

o s ()7
Thesis directed by: ZErnest N. Bart, Assistant Professor ﬁf %/

The creeping motion equation has been solved for the case of
planar arrays of spheres settling under the influence of gravity
in a viscous fluid. The solution is a general solution which applies
to an arbitrary number of spheres. All particles will lie at the
corners of a regular polygon. Thus, two particles side by side,
three particles in an equilateral triangular array, or four spheres
in a square array will be special cases of the general solutionm.

The solution has been obtained by a unique application of the
method of reflections. Only a first correction to the drag has
been obtained which puts an additional constraint on the solution
since the higher order terms have been neglected. As a result, the
solution is most accurate when the spheres are far apart.

In order to verify the general solution for the case of two
spheres, the result has been compared with the literature value
which exists for the case of two spheres falling perpendicular to
their line of centers. The solution obtained in this work for
two spheres is in exact agreement with the literature solution for
the two sphere case. The results of the general solution indicate
that as the number of spheres in the array is increased, the

terminal settling velocity increases rapidly.
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1. Background

The slow settling of spherical particles has been a subject of
investigation for many years. The method of reflections is a
technique which was first developed by Stokes(g) in 1845. It is a
technique which is often used to solve the creeping motion equation
and the equation of continuity for various boundary conditions.
Application of the method involves "reflection" of the motion of a
sphere from another boundary surface, and back again to the original
sphere. Essentially, what the technique does is to find the
influence of the other bounding surface on the motion of the sphere.
The boundary surfaces which have been investigated in the
literature include a plane wall, the inside of a square or
cylindrical duct, and many others including another adjacent sphere.
A number of solutions which use this technique have been obtained
for the case of two identical spheres settling slowly in a viscous
fluid. A complete review of the literature involving the method
of reflections including a summary of the work that has been done
involving the two sphere case is given in Happel and Brenner(s).
The two sphere situation has also been solved by Goldman, Cox, and
Brenner(4) by using a system of bipolar coordinates.

The problem of a single sphere settling in a wedge space has

(8)

been solved by Sano and Hasimoto . The problem has also been
solved in an unpublished work by Bart(l) which confirms the results
of Sano and Hasimoto. In these solutions the effect of the wedge
walls on the motion of the sphere is evaluated. In Bart's solution
the method of reflections is used to satisfy a Dirichlet type
boundary condition on the wedge wall. The solution of the single
sphere in the wedge space is closely related to the solution obtained
in the present work. Both solutions (The sclution obtained in this
work and the solution obtained for a sphere in a wedge by Bart)

use the same mathematlcal expression for the second reflection
solution. (Note that the same general form of the mathematical
expression is used. The actual constants are different, of course,

for each problem.)



Another related problem has been solved by Bart and Horwat(z).

This problem involves heat or mass transfer occuring between
identical spheres arranged on the corners of a regular polygon.

The solution satisfies Laplace's equation. The method of reflections
is used to gemerate a solution which satisfies a Neumann type boundary
condition on the plane(s) of symmetry.

In the present work a general solution has been obtained for the
case of N spheres arranged on the corners of a regular polygon
settling slowly in a viscous fluid. The solution satisfies the
creeping motion equation and the equation of continuity. The
method of reflections is used to generate a solution which obeys

a Neumann type boundary condition on the plane(s) of symmetry.



2.

Description of the Problem

A.

Geometrical Description

(1)

(2)

3

(4)

5)

(6)

The system consists of N identical spheres settling at a velocity
such that the fluid velocity field obeys the Creeping Motion equation.
The spheres are arranged in a planar array such that the center of
each sphere is located on the cormers of a regular polygon. Thus,
three spheres are on triangular centers; four spheres are on square
centers, and so on. The center of each sphere is displaced a
distance X from the centroid of the array. This situation is shown
in Figure 2-1 for the case of three spheres.

Let a cylindrical coordinate system (p, ¢, 2) be superimposed on the
array so that the N spheres are falling parallel to the z axis, and
the origin of the coordinate system is at the centrcid of the array.
Also, define the origin in such a way that the plane.at ¢ = 0, which
is parallel to the z axis, divides one of the spheres in the array
into two equal hemispheres.

The dihedral angle formed by the intersection of two planes parallel
to the z axis which pass through the origin and the centers of

two adjacent spheres is 2¢o, where ¢0 =g /N

A plane of symmetry exists along the plane which bisects the
dihedral angle at ¢ = ¢o. Thus, between any two adjacent spheres

in the array there is a plane of symmetry. This situation is shown
in Figure 2-2 for the case of two, three, and four spheres.

A geometrical relationship exists between the sphere radius, a,

and the distance from the origin to the sphere center, X

This distance is fixed by the fact that for a given sphere radius,
the distance X, can only be decreased until the point where the
spheres touch. Such a situation is shown in Figure 2-3. The

geometrical relationship is given by:
sin ¢ = (a/xo) 2-1

where the X in Equation 2-1 is the minimum value for a fixed

value of the sphere radius, a.



B. Statement of the Partial Differential Equations
If the spheres are settling very slowly such that the Reymolds
Number 1s less than .1, then the Equation of Motion reduces to the

Creeping Motion equation.
w2 V=vp (2-2)

The velocity field must also satisfy the Equation of Continuity:
vy =0 (2-3)

C. Statement of the Boundary Conditions
The boundary conditions that Equations (2-2) and (2-3) are to
be solved with arise naturally from the symmetry of the problem.
They may be summarized by noting that a minimum occurs in the
velocity field on the surface of the plane(s) of symmetry, and
that the net fluild velocity accross the plane(s) of symmetry is

zero. These statements are expressed mathematically below:

(BV/8¢)¢=¢O= 0 (2-4)
and

Vy=0 até = ¢ (2-5)

It should be noted that Equation (2-4) is a vector equation

representing the three scalar equations given below:

av¢/a¢ =0 at ¢=¢ (2-6)
v /e =0 at ¢=¢, (2-7)
V,/39 =0 at ¢=¢_ (2-8)



FIGURE 2-1: Top and Side Views of Three Spheres Arranged on
Triangular Centers Settling in a Viscous Fluid
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Figure 2-2:

Planar Arrays of 2, 3, and 4, particles

Planes of Symmetry for Each Array
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Note:

Planes of Symmetry are
indicated by dotted lines



Figure 2-3: Sphere tangent to an adjacent sphere
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It can be argued on physical grounds that if Equation (2-5) is
satisfied, then Equation (2-7) 1s automatically satisfied. The
rationale for this statement follows:

(1) Assume that Equation (2-5) is satisfied and that the ¢
component of the velocity is zero on the plane ¢ = ¢0

(2) The ¢ component of the velocity is nonzero at points
not on the plane ¢ = ¢o. That is, it is either positive
or negative on all planes where ¢ # ¢0 . (Far from the
spheres, the fluid velocity will be zero on all points.
This statement pertains to points in the fluid where the
velocity is still non-zero)

(3) 1If statements (1) and (2) are true, then the component of
velocity in the ¢ direction is either a minimum or a
maximum with respect to ¢ along the plane ¢ = ¢°.

The preceeding rationale implies that Equation (2-6) is redundant
and that the boundary conditions at ¢ = ¢° will be satisfied by using
only Equations (2-5), (2-7), and (2-8).

In order to fully describe the problem it is not enough to
satisfy only those boundary conditions which exist on the plane of
s&mmetry. It is also necessary to satisfy the boundary condition
which exists on the surface of the sphere. Since the spheres are
settling at a constant velocity, U, the additional requirement
imposed on the solution is that the f£luid velocity must be equal to U
on the surface of the sphere. This last boundary condition may be

expressed mathematically as:

V = -ku (2-9)

An illustration showing the boundary conditions which must be
satisfied on the sphere surface and on the planes of symmetry 1is
shown for the case of N = 6 spheres in Figure 2-4. ©Note that the
boundary conditions must be satisfied simultaneously on all six
spheres and on all six planes of symmetry.

The planes of symmetry in Figure 2-4 divide the velocity field
into six cells. Since all the spheres are identical, the fluid

velocity fields within each cell are also identical. Thus, the



FIGURE 2-4: Boundary Conditions Which Must Be Satisfied On the
Sphere Surface and on the Planes of Symmetry

On the Planes of Symmetry: On the Sphere Surface:

V. =0 V = —kU
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Note: Planes of Symmetry are
indicated by dotted lines



10

multisphere problem reduces down to solving the problem for a single
sphere in the array with the appropriate boundary conditions.
D. Method of Solution

It is evident that no single coordinate system can simultaneously
satisfy boundary conditions on the sphere surface and on the plane(s)
of symmetry. For this reason the Method of Reflections is used
(Happel and Brenner (5)).

The method of reflections uses the principle of superposition
of solutions. The fluid velocity field and the drag force may be

expressed as the sum of the reflected solutions:

F=9D 4, 5@ L5, L= (2-10)
(3)
F=FD 45D o5 4, L4 F® (2-11)

When written in this form, the odd numbered solutions satisfy
boundary conditions on the sphere surface, and the even numbered
solutions satisfy boundary conditions on the plane(s) of symmetry.
Since the even numbered velocity fields satisfy boundary
conditions on the plane(s) of symmetry, these solutions exist in
the interior of the sphere (i.e., they satisfy boundary conditions
which imply the absence of the sphere). As a result, the even
numbered velocity fields make no contribution to the drag force,

and Equation (2~11) becomes:

o7 L0 L@+ D (2-12)

Only a second reflection will be obtained in this solution,

therefore, Equations (2-10) and (2-12) become:
7= 4532 (2-13)

-7 L 5 (2-14)

=l
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E. Mathematical forms of the First and Second Reflections
The first reflection solution, V(l), is the well known Stokes
solution for a siﬁgle sphere settling in an unbounded medium, such
that the fluid velocity field cbeys the Creeping Motion Equation and
the Equation of Continuity. This solution, when written for a
cartesian coordinate system with origin at the sphere center, yields

the following expressions for the fluid velocities in the x, y, and z

directions:

V(l) = E-Uaxz{ a’ - L 1 (2-15)

X 4 = (E? + y2 + z2)5/2 (52 + y2 + z2)3/2
2

(1) 3 a 1 (2-16)

A = = Uayz{ - }

y 4 2+ 32 22572 2+ 2+ 502

LC) I 32222 _ 322 + a° 3 y o (2-17
z 4 2 2,.3/2

2 2)5/2

(E? + 9%+ 2 2 2)1/2

(52 +y 4+ 27) (E? +y + =z

In order to obtain the second reflection it is necessary to

find an independent solution to the Creeping Motion Equation and

@,

the Equation of Continuity. Such a solution has been shown to be

0 o’

f (B + %g cos ¢) KiT(Ap) cosht¢ siniz di drt (2-18)
0

@
X

O

V§2) = f f (C sinh 1¢ + %— sin ¢ cosh 1¢ ) KiT(Ap) sin Az dX dz (2-19)
00



V:Z) aKiT(Ap)

= [ [ {(B cos ¢ cosh ¢ + C sin ¢ sinh T¢) 3
P

00

K, (Ap)
+ (C cos ¢ cosh 1¢ ~ B sin ¢ sinh 1¢) it

Ap 3KiT(Xp)

+ 5 ——35—————-cosh To + A KiT(Ap) cosh ¢ } cos Az di dt (2-20)

It can readily be shown that the above equations satisfy the creeping
motion equation and the equation of continuity and are indepeﬁdent of
the first reflection solution since the solution remains finite at the
sphere centers. Note that in Equations (2-18) through (2-20), the
coordinates p, ¢, and z, are measured with respect to an origin which

would be at the centroid of the array of spheres in this problem,

Equations (2-18) through (2-20) are integral transform
expressions for the x, y, and z components of the fluid velocity.
The integrations involving sin Az dA are Fourier transforms and

6)

the integrations involving KiT(Ap) are Lebedev transforms.
The function KiT(Ap) is a K Bessel function of imaginary
order (it), and real argument, (Ap). It has the integral

representation given below:

- ® -Ap cosh t -
KiT(Ae) £ e cos tt dt (2-21)

The three constants of integration given in Equations (2-18)
through (2-20) (i.e., the constants A, B, and C) will be functions
of ¢o, a, and xo, and the dummy variables T and A, but will be
independent of p, ¢, and z.

In order to satisfy the boundary conditions on the plane(s) of
symmetry both the first reflection (Stokes solution) and the
second reflection (integral transform expressions) must be expressed
relative to the origin located at the centroid of the array of spheres.
This is accomplished by translating the Stokes solution a distance

xo from the sphere center to the centroid of the array.
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The relationship between the coordinates of a point P, (x, y, z),
based on a sphere centered origin, and the coordinates of the

same point P, (x, y, 2), based on an origin located at the centroid
of the array is a simple linear translation of the sphere centered

origin given by the equation:

X+x =X (2-22)
or,
X=x-x (2-23)
Note that the 'y' and 'z' values remain the same with respect
to both origins.
The square of the distance from the sphere centered origin
to the point P is given by the Pythagorean Theorem:

2 = §? + y2 + 22 (2-24)

Combination of Equations (2-23) and (2-24) yields an expression
for r2 based on an origin located at the centroid of the array:

2

r = (x - x0)2 + y2 + z2

(2-25)

The relationship between a cylindrical coordinate system,
and a rectangular coordinate system (both in relation to a
common origin located at the centroid of the array) is given

by the following equations:

pcos ¢ (2-26)

»
i

psin ¢ (2-27)

«
Il

z =z (2-28)
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Substitution of Equations (2-26) through (2-28) into Equation (2-25)

yields:
r2 = p2cosz¢ - 2 X, cosd + xg + pzsin2¢ + z2 (2-29)
Simplifying,
2 = p2 =2p x, cosp + xg + 2 (2-30)

Noting that the term r2 appears implicitly in Equations (2-15)
through (2-17), and substitution of Equations (2-23), (2-26)
through (2-28), and (2-30) into Equations (2-15) through (2-17)

yields the translated Stokes" solutions:

2
a

(1) 3
v = > Uaz (pcos ¢ — x ){
x 4 ° (p2- 2pxo cos ¢ + xi + 22)5/2

1
- } (2-31)
(p2- 2pxo cos ¢ + xi + z2)3/2

2
a

V(l) = é-Uaz (psin ¢){

y 4 (p2- 2pxo cosp + xg + 22)5/2

1 } (2-32)

(p? - 2pxocos¢ + xi + 22)3/2



15

(1) 1 3azz2
v, = gual 2 . 3.5/2
(p2- 2px_ cos ¢ + x° + 2°)
o o
322+a2 3

5177 !

2 2)3/2 (p? - 20x  cosp + xi + 29)

2 -
(p 2pxo cos ¢ + X + z

(2-33)
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Evaluation of Constants

Since the boundary conditions stated in Equations (2-5) through (2-8)
are given in cylindrical coordinates, it is desirable to transform the

expressions given for V(l) and V(z) from rectangular coordinates to

cylindrical coordinates. The relationship between the velocity components

in the two coordinate systems is given below:

Vp= cos ¢ Vx + sin ¢ Vy (3-1)
V¢=—sin ) Vx + cos ¢ Vy (3-2)
Vz= Vz (3-3)

Application of Equations (3-1) and (3-2) to the expressions for Vx and V

y
given in Equations (2-15), (2-16), (2-18), and (2-19) yields the following
expressions:

2
Vgl) =-% Uaz(p - X, cosd ){ a

(p2 - 2px0 cos¢ + xi + 22)5/2

1

} (3-4)
(pz - 2pxo cos¢d + xi + z2)3/2

2
Vél) = %-Uaz(xo sing ) { a

(p2 - 2pxo cos ¢ + xi + 22)5/2

1
- } (3-5)
(p2 - 2pxo cos¢p + xi + z2)3/2
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«© o
Véz) = f f (B cos¢ cosht¢ + C sing¢ sinhtd + %ﬁ-cosh T¢)AKiT(Ap)sinlz didt
00

(3-6)

V;z) = f f (C cos ¢ sinh T¢ — B sin ¢ cosh T¢')AKiT(Ap) sin Az dAdrt
00

(3-7)

In order to satisfy the boundary conditions given in Equations (2-5),
(2-7), and (2-8), it is necessary for the second reflection to cancel off
the effect of the first reflection on the surface of the plane of
symmetry. With this line of reasoning, Equations (2-5), (2-7), and (2-8)

will be satisfied by the following system of equations:

@ _ (D) 3 _
V¢ V¢ at ¢ ¢o (3-8)
av(?) -avgl) |
3¢ = 3¢ at ¢ = ¢O (3—9)
aviz) —avil)
e at ¢ = ¢_ (3-10)

Substitution of Equations (3-4) and (3-6) into Equation (3-8)

yields the following result:



w00
{ £ (C cos ¢° sinh T¢O - B sin ¢° cosh T¢° ) AKiT(Ap) sin Az dXx dt

3 z
=="Uax_ sin ¢ {

4 o o 2 _ 2 2,.3/2

(p 2pxo cos ¢o + X + z7)
azz
- } (3-11)
2 _ 2 2.5/2
(p 2px0 cos ¢0 + X + z7)

Substitution of Equations (3-4) and (3-6) into the boundary condition
given by Equation (3-9) and evaluation at ¢ = ¢o yields the following

result:

«© o

f f {B(tcos ¢ sinh T¢ =~ sin ¢ _ cosh T¢ )
) o o )
00
+ C(tsin ¢o cosh T¢° + cos ¢o sinh T¢o)

Ap ; .
+ 5 T sinh T¢o} AKiT(Ap) sin Az dx dt

a z

3 )
==Ua—{(x cos ¢ - p){
4 0 (p2 - 2pxo cos ¢ + xi + 22)5/2

2 (3-12)

o
(p2 - 2pxo cos ¢ + xg + 22)3/2 ¢—¢o

18



Substitution of Equations (2-20) and (2-33) into the boundary
condition given by Equation (3-10), and evaluation at ¢ = b6 yields

the following result:

o o

£ £ ({c(cos ¢, sinh ¢ _ 47 sin ¢_ cosh T¢o)

BKiT(Ap)
+B(tcos ¢o sinh T¢o - sin ¢o cosh T¢o) }———a;————
+ { C(tcos ¢ sinh t$¢ - sin ¢ _cosh ¢ )
o] o (o] [o]
R, (Ap)
- B(cos ¢o sinh T¢1 + Tsin ¢o cosh T¢o) 1 —
3K, (Ap)
Ap it .
+ 5 T T sinh T¢o + ArKiT(Ap) sinh T¢o )cos Az dr dT
1 9 3
=—-Ua——— (
4 ¢ (02 - 2px0 cos ¢ + xi + zz)l/2
+ 322 + a2
(p2 - 2px_ cos ¢ + x2 + 22)3/2
o o
3a2z2

) e (3-13)
(92, - pro cos ¢ + xg + 22 )5/2 q)—(bo

19
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Equations (3-11), (3-12), and (3-13) may be simplified by performing
the following operations (Details are shown in Appendix A):
(1) 1Inversion of the Fourier Transforms
(2) Differentiation with respect to ¢ (as indicated in Equations
(3~12) and (3-13))
(3) Separation of the constants A, B, and C into two parts as

given by the equations below:

A= A1 + A2 (3-14)
B = B1 + B2 (3-15)
Cc = C1 + 02 (3-16)

In Equations (3-14) through (3-16), the constants A Bl’ and C

s s
satisfy the portion of the solution containing a, tﬁe sphere raéius,
raised to the first power; the constants AZ’ BZ’ and CZ’ satisfy
the portion of the solution containing a, the sphere radius, raised
to the third power.

The simplified expressions containing the constants Al’ Bl’ and

C1 then become:

[
{ ( C, cos ¢ sinh 9 - B

, sin ¢ cosh T¢O) KiT(lp) dt

= 382 x sin ¢_ K_(2) (3-17)



{ ( Bl(Tcos ¢0 sinh T¢o - sin ¢0 cosh T¢o)

+ C1(151n ¢0 cosh T¢O + cos ¢o sinh T¢°)

Ao
+ —— T sinh T¢o) KiT(Ap) dt

K, (2)
_ _3JUa _ 2 . 1
> ( (xo cos ¢O p) A px  sin ¢°

. + x sin ¢ K, (2))

{ ({Cl(rsin by cosh t¢_ + cos ¢, sinh $,)

BK.T(Ap)

. . i
+ Bl(rcos ¢o sinh ¢, - sin ¢0 cosh T¢0)}—7i;—-__

+ {Cl(Tcos ¢o sinh T¢0 - sin ¢o coshT¢o)

TKiT(kp)

———

- Bl(Tsin ¢o cosh T¢o + cos ¢o sinh r¢o)} 5

Alp aKiT(lp)
+ 5 %0 T sinh T¢o + A1 KiT(Ap)'r51nh T¢o) dt

K, (2)

E] 3—U§- — 2 s 2 .
o ( 2 px sin ¢O + A px  sin ¢o KO(Z) )

Z
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(3-18)

(3-19)

Note that the variable Z which appears in Equations (3-17) through (3-19)

is given by the expression:

1
2
Z = r(p? - 2pxo cos ¢o + xi)

(3-20)
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Equations (3-17), (3-18), and (3-19) can be manipulated through the
use of identities and by inversion of the Lebedev transforms (Details
of this process are given in Appendix B). This results in the following

expressions for Al’ Bl’ and Cl:

30a

Cp = = 7 % K (%) o (3-21)
. 2 2
where a; = (sin ¢, cos ¢ sinh tn)/(cos ¢0 - cosh T¢o)
- 3Ua
Bl 4 xo Kir(lxo) &2 (3-22)
sin2¢ cosh t¢ cosh 1(1-¢ ) - cosz¢ sinh T¢ sinh T(w=¢ )
0 0 0 0 0 0
where ay = 5 3
- ht¢
cos ¢° cos o
_ 6Ua B
Al = -z KiT(}\xO) a3 (3-23)

where ag = (sinh T(w~¢o))/sinh T¢0
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4, Evaluation of the Drag
Faxen's law is used to obtain the drag, F(S):

2(3) _ 52

oma @2 + 2 27D (4-1)
where the subscript, o, indicates the functions are to be evaluated
at the sphere center (x =y = z = 0). When these conditions are
substituted into Equations (2-18), (2-19), and (2-20), the expression

for Véz) becones:

=(2) _= ¢ Ax, aKiT(Axo) Ct
VR =k [ f (B+—2) + G+ (x) ) a4 dr
0 0 on a

(4-2)

If only the terms of the order of a to the first power are retained,

Equations (4~-1) and (4-2) may be combined and expressed in terms of

the constants Al’ Bl’ and Clz
_ L ® A.x K, (Ax)
F(3) = 6muak f f [ (B1 + ; 2y &L .9
0 0 Sxo
C T
+ (-—-+ A K, (Ax ) ) drdr (4-3)
%5

Substitution of the expressions for Al, Bl’ and Cl’ given in
Equations (3-21) through (3-23) into Equation (4-3), and
integration with respect to A yields (See Appendix D for the

details of this operation):

f(B) dt

cosh tm (4-4)

= 6mavk (- 5— f (0 + 270 + 303)
%0 0
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or,

7 < gruavk ¢ 2 £,6) (4-5)
o

In most cases it is necessary to perform the integration
indicated in Equation (4-4) numerically in order to obtain the
value of f1(¢°) defined in Equation (4-5). However, for the
case of two spheres (i.e., ¢o = 1/2 ), Equation (4-4) may be
integrated analytically (See Appendix D for details). The
value of f1(¢0) for the case ¢o = 7n/2 is (-3/8). This result is
in exact agreement with the value given in Happel and Brenner.(s)
The value of the function f1(¢o) for various values of ¢0 is
presented in Table 1.

The total drag force on the sphere is given by Equation

(2-14) repeated, below:
F=50 4§ (2-14)

(D

The first reflection solution, F , is the well known

Stoke's law for the drag force on a single sphere:
§<l) = gmualk (4-6)

Substitution of Equations (4-3) and (4-6) into Equation (2-14)
gives an expression for the total drag force on a sphere in the

array:

F = 6mualk (1 + f1(¢o){§;—}) (4=7)



TABLE 1

VALUES OF THE COEFFICIENT fl(¢o) FOR VARIOUS VALUES OF N

N ¢, = /N
2 w/2

3 /3

4 w/4

5 m/5

10 /10
100 w/100
1000 w/1000

- f1(¢0)

.375
. 866

1.436
2.065
5.794
112.939

1292.584
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5. Evaluation of the Terminal Settling Velocity

The terminal settling velocity of a sphere settling in the
array may be expressed in terms of the Stokes' velocity
for a single identical sphere settling in the same type of fluid
in an unbounded situation.

It should be noted that the drag force experienced by a
sphere is independent of the presence of the other spheres and
is equal to the difference between the force of gravity, and the

buoyant force exerted by the fluid:

F=(p'~- pf)g'% ﬂa3 (5-1)

where,

mean density of the sphere

and

P density of the surrounding fluid

The drag force on a single sphere in an unbounded medium is given by
Stokes' law: 4

F = éﬂuaUSE (5-2)

where the subscript S is used to denote the Stokes' velocity.
The drag force on a sphere in the array is given by Equation
(4=7):
- a
F = 6malk (1+ £ () (=D (4-7)
o
Since the spheres are identical, the drag force on the single

sphere and the sphere in the array are equal and Equations

(5-2) and (4-7) may be set equal to one another .
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6mrualk(l + f1(¢o){—i:}) = 6nuaUSE (5-3)
or,
£ L (5-4)
S a
(1+ fl(¢o){;§;—})

Note that the ratio U/US given in Equation (5~4) is always greater
than 1, since the presence of additional spheres increases the

velocity of the array.
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APPENDIX A-1

£ £ [Ccos ¢o sinh T¢o - B sin ¢o cosh T¢0) AkiT(Ap) dt sin Az dx =

Z

3
0 2%, sin ¢ 3 2.3/2

° (52 =
(o 20x  cos ¢+ x +z°)

2
a'z

- £(z2) (3-11)
(02 - 2pxo cos ¢o + xi + 22)5/2

Examination of Equation (3-11) reveals that the inner integral is

a function of A alone, g(A):

f(z) = f ( f {C cos ¢o sinh T¢o - B sin ¢0 cosh T¢°}AKiT(Ap) dT) sin Az dA
0 0

The functions f£(z) and g()) may be regarded as a non symmetrical pair

of inversion formulas for the Fourier sin transform, thus

[ g(A) sin Az dA (A-1.1)
0

£(z)

=]

%’f £(z) sin Az d=z (A-1.2)
0

g(2)

Inversion of Equation (3-11) according to Equation (A-1.2) yields:

g ( C cos ¢o sinh T¢O - B sin ¢O cosh T¢O ) AKiT(Ap) dt =



3U0Uax sin¢ o
0 0

(

2T 0

Z

2 _
€] 20x

5 3. 5/2 ) sin Az

cos ¢0 + X+ z )

2 _ 2 2,3/2
(p 2px0 cos ¢o + X + z7)

dz (A-1.3)

The right hand side of Equation (A-1.3) is easily evaluated using

the formula given below from the table of Fourier sin transforms

given in Magnus and Oberhettinger

f(x)

Case l: m=0 n=1

x/(b2+ x2)3/2

il

f(x)

1
2

gly) = (-1) 27

€7) (page 414):

e = &7 [ £x)
0

sin (xy) dx

(-1 120 (r ) )

b~ (r(1.5))7" g-}; (yx, (by))

1 d2m+1
P A L)

29
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G 09 = G (YK, (b)) = - by K Oy

r(1.5) = v n/2

8 = L (by) & )
2% (bvw /2)
Y
g(y) = (2/m)* y K_(by)
22 2% vy K_(by)
X . y y
or, (=} [——7 n xy dx = |(—
) g(b2+ 2372 st G 7 e

The following identities are useful in changing from the nomenclature

of Magnus and Oberhettinger to the nomenclature used in this paper:

2 _ 9 2
b” =p 2pxo cos ¢o + X,

<]

Z
sin Az dz = AKX (AY p%=2 px cos ¢ + p% )
(p% - 20x_cos ¢ + % + 22)3/2 ° ° ° °
0 o 0 ()

(A-1.4)



Case 2: m=0 n=2
£(x) = x/(b2+ x2)3/2
g = DY 2572 (st L Pk, y))
4
SO By = ~o? & by)
2
d , 2 __14d 2 -~y
FOR ) = - & G (BT Ky (b)) = T2 &, (by)
1
_ 3n?
sy =GR L4 =om®
23/2 b2 3"1 b 1
. 5 1,2
g(y) = (2/m) — /b) K, (by)

(2/m)* f (b2+ :2)5/2 sin xy dy = (2/m) 2 (y2/3b) Kl (by)

or in the nomenclature of this paper:

=) 3
Z sin \z dz _ A chz)

o (p% - 20xO cos ¢+ xg + 22)5/2 3z

= /o2 - ¥ 22
where 2 Avp 2pxocos¢o xo

(A-1.5)
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Substitution of Equations (A-~1l.4) and (A-1.5) into Equation
(A-1.3) yields:

£ (C cos ¢o sinh T¢° - B sin ¢O cosh T¢O) AKiT(Ap) dt =

2,3 K,(2)
123_Ua_ x sin ¢ ()\K (Z) - .é)‘__]'__
T [o] o o 3z

Eliminating the higher order terms:

{ (Cl cos ¢o sinh T¢O - B1 sin ¢0 cosh T¢°] ‘Kir(xp) dt =

3Ua .
> X, Sin ¢o KO(Z)

(A-1.6)

(3-17)
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APPENDIX A-2

o 0o

f f ( B(tcos ¢ sinh t¢ - sin ¢ cosh T¢ )
0 ) ) 0
00
+ C(tsin ¢° cosh T¢o + cos ¢O sinh T¢o)
+ Ao . -
2 Tsinh T¢o) lKiT(Ap) sin Az d) dz

3Ua a2z

9 ((x cos ¢
T a3 -0
4 3¢ © (p2 - 2pxo cos ¢ -+ xi + z

z
5 )) =
(p% - 2o £ cos¢o + X+ z‘?)3/2 ¢ ¢o

Inversion of the Fourier sin transform yields:

B inh - si
£ (B(rcos ¢, sinh t¢_ - sin ¢ cosh T¢o)

+ C(tsin ¢0 cosh r¢o + cos ¢° sinh T¢O) + %RTsinh T¢O) lKiT(Ap ) drt

2

)

5/2

(3-12)

3Ua a( * azz2
==— —( { (x_ cos ¢- p){

2 3¢ 0 ° (p? - 2pxo cos ¢ + xi + z2)5/2
- 2 )sin Az dz)

(p? - 2px° cos ¢ + x§ + z2)3/2 ¢_¢o

(A-2.1)
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£ ( B(tcos ¢osinh r¢o - sin ¢o cosh 1¢0)

+ C(rsin ¢o cosh T¢0 + cos ¢o sinh r¢o)

+ %Q-Tsinh T¢O) AKiT(Ap) dt =
2 .3k, (2)
3Ua 3 (a” A7)1
5o —a¢((xo cos ¢ - p) - - )\KO(Z)])¢=¢O

Eliminate higher order terms:

@

f (Bl(Tcos ¢o sinh T¢o - sin ¢o cosh T¢O)

0
Alp
+ Cl(rsin ¢o cosh T¢O + cos ¢0 sinh T¢o) + E——.rsinh r¢o] KiT(Ap) dt
- 3Ua 3_ - 0) (=
= 5 [(xo cos ¢ - p)( KO(Z)))
= 302 ((x_ cos ¢ - p f—g(-K (2)) - K _(2)(~x_ sin ¢)) (A-2.2)
2% [o} ’ ad) [e] (o] e} ¢=¢0
3K _(Z)
] = _0 2z
5 K (Z) 7 36
YA )



2 .
3z _ A px, sin ¢

¢ AVpé - 2pxo cos ¢ + xg

3Ky (Z) _
e - T K@

5 Azp xo sin ¢
3% KO(Z) = - , Kl(Z)

(A-2.3)

Substitution of Equation (A-~2.3) into Equation (A 2.2) yields:

o«
f (Bl(rcos ¢o sinh T¢o ~ sin ¢O cosh T¢O)

0

+ C1(1s1n ¢o cosh T¢o + cos ¢o sinh T¢o)

Alp
+ =T sinh T¢O)Ki1(lp) dr
A2px  sing :
3Ua o o .
K;(2) + x sin ¢_ K (2))

= 5= [(xo cos ¢ - p) Z

(3-13)
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APPENDIX A-3

Invert the Fourier Transform given in Equation (3-13):

[

{((C(Tsin ¢o cosh t¢o + cos ¢O sinh T¢O)

oK, . (Ap)
+ B(tcos ¢ sinh ¢ - sin ¢ cosh 1¢ )]—————————
o ) ) 0 30
+ [C(Tcos ¢0 sinh T¢o - sin ¢o cosh T¢o)
K, . (A0)
- B(tsin ¢ cosh 1¢ + cos ¢ sinh T¢ ))————————
) 0 0 ) 0
3K, (Ap)

Ap it . . -
+ 3 . T sinh T¢o + AT KiT(Ap) sinh T¢O)dT
Ua d 3
2w 3% o (p2% - pro cos ¢ + xi + z2)1/2
+ 3z2 + a

(p2 - 2pxo cos ¢ + xi + 22)3/2

3azz2
- 2 5 3572 )_cos Az dz
(p~ - 2pxo cos ¢ + x_ + z ) ¢—¢o

(A-3.1)
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Note that for this inversion, the following pair of inversion

formulae for the Fourier Cosine transform hawve been used:

0

£(z) = [ g(A) cos Az dA (A-3.2)
0
g =2 [ £(2) sin Az dz (A-3.3)
0

Use is made of the formulae in Magnus and Oberhettinger (pg. 400)

£(z) g(y) =E%)%f f(x) cos zy dx
0
2 2. ~v=l5 b=y 7V 1 -1
b + x%) 2 (b) (r¢s + v) ) X, (by)
Real v > -
Case 1l: v =20
g(y) = 2% (r())t K (by) r(.5) =/ n

gly) =

|
~
CR LN
A
X
~
N
Ca
«
A



® 1
— 51— cos xy dx = K _(by)
5 (b2 + x2)6 0

1

cos Az dz = K (Z) (A-3.4)
0 (p? - 2pxo cos ¢0 + xi + 22)1/2 0

Using the same general formula from Magnus and Oberhettinger:

Case 2: v =1
1
f(x) =
(b2 + x2)3/2
gy) = 272 (y/v) (r(1.5))7" &, (by) r(1.5) = (/7 /2)
g(y) = (1/V2) (y/b) (2//m)k (by)

g(y) = (2/m™> (y/b) K, (by)
g & % 1 2 3

()] cos xy dx = (=) (y/b) K, (by)
T ) . (bZ + x2)3/2 T ) 1

A2 Kl(Z)

1
2 - + X+ z
o (p 20 x_ cos 0, * X, *+ 2

38

5375~ 08 Az dz = ————m (A-3.5)
)
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Use is made of the Fourier cosine table in Ditkin and

Prudnikov(3), page 173:
g(y) = f £(t) cos yt dt
£(t) 0
1 n -V 1 =1 d2n v
(20 p2y 29V D (2) (¢ + V) == (o K (bw)

du

= 1.5(/n/2)

£(t) = —— r(5/2) = 1.5(/7

(b2+ t2)5/2

2

gn) = C_ (1(5/2))7 £ (o &, 6w)

(2b) du

2 2 2

d 2 d 2 d 2
L= (uK, (bu)) = S——((ub)* K, (bu)) = == (Z°K,(2))
duz 2 d(ub)z 2 dzz 2

(N

Magnus and Oberhettinger » Pg. 67:
ldym v _ v-m _
GH" Ex,@) =02k @) (A-3.6)
Lebedev(6), page 110:
d (v - _ oV -
E(z chz)) =-2z K,_,(@) (A-3.7)
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FTorm =2 and v = 2, Equation (A~3.6) becomes:

2
GL) @k,@) = -n?

0
7 az Z

K, (2) (A-3.8)

Also,
1 dqy2 1d (1d
& - 78 &
2
1 1 d d -2
Ll 4y

Z “Z de dz
Lay?_ L & 1 .4 (4-3.9)
Z dz ZZ d22 Z3 dz

For v = 2 in Equation (A-3.7):

d 2 2 -
A (z Kz(z)) = -Z Kl(Z) (A-3.10)

From Equation (A-3.9),

2 2
1d 2 1 d 2 _1.d .2 _
7 @) 2K, @) = s —dzzcz K, (2)) 3 5@k, (2)) (A-3.11)
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Combination of Equations (A-3.8) and (A-3.11) yields:
1 2
- (Z K, (2)) -

2

7 (Z K (Z)) = K (2) (A-3.12)
Z dZ

3 d

Substitution of Equation (A-3.10) into Equation (A-3.12) yields:

& 2%k (2)) = 2%k (2) - ZK. (Z) (A-3.13)
dZ2 2 - o 1 :

These identities must be substituted into the expression for g(y):

gly) = =0 ”‘/_ (/)™ &5 WPk, (bu))
(2b) du
_ DV 2

2
Z°K (Z2) - Z K. (2)
(> (1.5) /7 (%, 1)

= D2 -
=5~ (Z°K_(2) - Z K, (2))

3b

Substitution for b in terms of the nomenclature of this paper:

g =15 (2% @ - 2k @)

z2 cos Az dz

g(y)

2 /2

o (% - 2p X cos ¢ + x tz )5

® A2 Kl(z) A2 KO(Z)

z2 cos Az dz - - (A-3.14)

0 (p2 - 2p X cos ¢O + xi + 22)5/2 3z 3
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a2 a? d?
——5-(uKl(bu)) =b _—_——§(UbK1(bu)) = Vp¢ - 2pxocos ¢0 + xg —5 (ZKl(Z))

du d(bu) dz

Evaluation of the identity given in Equation (A-3.7) for the case

of v=1 yields:

d 1
EE(ZKI(Z)) =-Z K ()
Therefore,
.2 = & (o Ho® (
£ (K (2) =% (2K (7)) = -~z —°%— -k (2)
dZZ 1 dz o az o
d2 dKo(Z)
——7-(uKl(bu)) = /pZA;Zon cos ¢o + xg ( -2 - KO(Z))
du dz

dk (2)
but ——— = - K, (2)

dz ’

therefore,
d2
) (K, (bu)) = Vo ~Jpx_“cos ¢+ x2 (z x,(2) - KO(Z)) (A-3.15)

Again, use the formula from Ditkin and Prudnikov, pg 173 .
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£(t) = tz/(b2+ t2)-3/2
1 -1 142 1 .
g(y) = (<17 /r ()7 T+ 1) )T =5 (R, (bw)
du
T(1.5) = /7 /2

g(y) = (—‘ﬁ—/ifr_— (V67 = Zox, cos b, * %3 (2K, (2) - K (2)))

Note that the nomenclature is somewhat mixed in this expression,

however, it should be noted that "b" from Ditkin and Prudnikov is

the same as vp? - 2pxo cos ¢+ igV . Therefore, the above

expression reduces to:

g(y) = K (2) - 2 K,(2)
: o

and the following identity has been shown:

™ 2 Az d
r z__cos Az dz = Ko(z) -7 Kl(z) (A-3.16)

/ 2 2.3/2
2 .
o (p 2pxo cos ¢0 + X + z7)
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Summary

Az d
i cos Az de o =K (D) (A-3.4)
0 (p2 - 20x  cos ¢ + X +z)

o 2

f cos Az dz - A KI(Z) (A-3.5)

(p2 - 2px_cos ¢ + x2 + 22 )3/2 Z ‘

0 P o fo) o O

=) | 2 2

f 22 cos Az dz - . Kl(Z) - a KO(Z) (A-3.14)

" 2 . 2.5/2 )

o (p? - 2px cos ¢_+ x_ + 2°) 3z 3

- 22 cos Az dz
f 5 53T = Ko(z) -2 Kl(Z) (A-3.16)

o (0% - 20x_ cos ¢_+ x +z°)
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Substitution of Equations (A~3.4), (A-3.5), (A-3.14) and (A-3.16) into

the right hand side of Equation (A-3.1) yields:

Ua 9 ( 3
0 (p2 - 2px0 cos ¢ + xi + 22)1/2

3 z2 + a2

(p?2 - 2px0 cos ¢ -+ xi + 22)3/2

33222
- 572 ) cos Az dz

2 _ 2 2 -
(o 2pxo cos ¢ ++ x + 27) ¢—¢o

2 .2
a® A KI(Z)

= = — | 3K _(z) + 3K_(2) -32K,(2) + -

2 2
5 A2 K (2) A2 K (2)
- 3a - -
3z 3 =d,

Ua 2

27 A Ko(z))¢=¢

P
5o (61{0(2) - 32K (2) + a .

Take the derivative with respect to ¢ of Equation (A-3.17)

(A~3.17)



From Lebedev,

v

d v - _
2K (2) = -2k _,(2)

)

2px0 sin ¢

which for = 1 becomes:
4 (zx,(2)) = - 2 K _(2)
dz 1 o
Also,
4 g (2) = - K (2)
dZ "o 1
%%'= gg ( AY p% - Zon cos ¢ + xﬁ
= ACs) (02 - 20% cos ¢ + ¥ ) 2
2) \P P o °
3z } kszo sin ¢
36 .
9 9 dKo(Z) 2 .
SE{KO(Z)} T . = A%px sin ¢ (-Kl(Z)/Z)
2 _zd
SE'{ZKI(Z)} = %6 & (ZKl(Z))

)
SE{ZKI(Z)}

Aszo sin
= (-ZK _(2))
7 o

-2 ;
A px  sin ¢ KO(Z)

(A-3.18)

(A-3.19)
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Substitution of Equation (A-3.18) and (A-3.19) into Equation

(A-3.17) yields:

f ({ C (tsin ¢° cosh T¢° + cos ¢0 sinh T¢°)

0
K. _(Ap)
+ B (tcos ¢ sinh t¢ =~ sin ¢ cosh 1¢ )} =
o o ) )
ap
+{ C (tcos ¢o sinh T¢o - sin ¢0 cosh T¢O)
TKiT(lp)
- B (tsin ¢ cosh ¢ + cos ¢ sinh 1¢ ) }—————ro
o o ) ) 0
3K, (Ap)
+ Ap 1T T sinh ¢ + AK, (Ap) T sinh 719 )dT =
2 50 0 it 0
K, (2) K. (Z)
Ua [ ¢y2 . 2 : = 223252 ; 1
o ( 6 px sin ¢° . 4+ 3A px  sin ¢0 KO(Z) a“Acx px031n¢o . )

(A-3.20)

Separate the constants A, B, and C into two parts as given by
Equations (3-14) through (3-16) and drop the higher order term
from the right hand side of Equation (A-3.20). The result is

Equation (3-19).



APPENDIX B

Equation (3-17) may be subtracted from (3-18) to yield:

£ [(B1 cos ¢° sinh T¢o + C1 sin ¢o cosh T¢o) TKiT(Ap)

Ap
1 . -
+ > TKiT(Ap) sinh T¢o) dt =
K. (2)
3U0a _ 2 . 1
T ((xo cos ¢o p) A px_ sin ¢O .

The derivative of Equation (B-1) with respect to p is:

® oK, (Ap)
f ((B1 cos ¢ sinh 19 + C; sin ¢_ cosh 14 ) T —=—
0 ap
A p3K, _(Ap)
1 . it _
+ 5 (Kir(kp) + ) T sinh T, )} dr =
ap .
K. (2)
3U0a 2 . 1
5 ( (xo cos ¢0 2p) A X 51n¢0 .
> 5 Kl(Z)
+ (x0 cos ¢o - p)A px_ sin ¢o 55-( 7 )
where —2-( Kl(Z) = 3_ fjffz-Y 2z
op Z Y/ Z 7 dp
a Z _ Z _ 9oZ
5 (Avp pro cos ¢+ x y = o

(8-1)

(B-2)
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2 _ 2 _ 2 =% -
% L) (p 2p X, cos ¢0 + e ) (2p 2x0 cos ¢0)

3Z _ A% (p = x5 cos_¢,)
op 7

Kl(Z)
Evaluate 3z {—)
z
4@k () =-2"% , (@
dz Vv v+1
d
Z (Kl(z)/z) = - KZ(Z)/Z

A2(x_ cos & - p) K_(2)
P o o} 2
55'(K1(Z)/Z) = 22

Substitution of Equation (B-4) into Equation (B-2) and

combining similar terms leads to:

® K, (Ap)
f ( (B1 cos ¢o sinh T¢o + C1 sin ¢o cosh T¢o) T —
0 ap

A 3K, _(Ap)
=2 (&, Op) + p—E—) © sinh w0 ) dt

2 3p

(B-3)

(B-4)
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Ky (2)

_ 3Ua _ 2 .
= ((xo cos ¢o 20) A x  sin ¢o .

(Az(xo cos ¢° - p) KZ(Z))

- 2 i
+ (xo cos ¢o p) A px  sin ¢O >

Z

Rearrangement of this expression yields:

o oK, (A0)
f [ (B1 cos ¢0 sinh T¢o + Cl sin ¢o cosh T¢o) T ——
0 ap
A 9K, (Ap)
+ —=— (K (Ap) +p—"——) 7 sinh ¢ ) dr =
2 ap
K. (2)
3u . 1
= —E%-( (xo cos ¢° - 2p) A2 x  sin ¢0 .
X, (2)
2_ 2 .2 2y A4 . 2
+ (zc x_ sin ¢d 2pxo cos ¢o + p%) A px, sin ¢o zz

(B~-5)
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Subtract Equation (B~5) from Equation (3-19)

g ({ Cl(r sin ¢  cosh t$ + cos ¢ sinh"nbo)

aKiT(Ap)
+ Bl('rcos ¢0 sinh 1:¢o - sin ¢o cosh Tq)o) 1 T_

+ { Cl('r cos ¢o sinh 'r¢o - sin q)o cosh cho)

™R, (A0)
- Bl(*r sin ¢o cosh 'rq)o + cos ¢° sinh Tq)o) } _.._p__._
Ao 3K, (Ap)
+ ) T sinh 14)0 + Al KiT(Ap) T sinh 'rd>o) dr
ap
o TBKiT(Ap)
- f ( (B, cos ¢_ sinh t¢_ + C, sin ¢5 cosh 1 ) ——
1 0 0 1 o)
0 e
_A K. _(Ap)
- X. (dp) + 0 —l-—T——) T sinh Tt¢ ) dr
it o)
2 op
K. (2)
_ 3U0a y .3 .3 2 _ a2 .
= o ()\ px_ sin d)o zz A px  sin 4)0 K2(Z)
2.2 Kl(z) 2
- A x_ sin ¢ocos ¢o —e + A x _psin ¢o KO(Z))

Z



but Aszo sin ¢0 (KO(Z) - KZ(Z)) = Aszo sin ¢o (—ZKI(Z)/Z)

since, Ko(Z) - K2(Z) = —2K1(Z)/Z
therefore,
[ aKiT(}\D)
£ ( { C1 cos ¢o sinh T¢o - B1 sin ¢o cosh T¢° } ———;;____

+ { Cl(Tcos ¢0 sinh T¢o - sin ¢o cosh T¢o)

TKiT(J\p)
- 31(131n ¢o cosh r¢0 + cos ¢o sinh T¢o) } ——_;____.
Ay
+-—; KiT(Ap) T sinh T¢o) dt

_ 3Ua w3 .3 2, _ .2 .
TS (2 px_ sin” ¢ (KZ(Z)/Z ) - 2x px, sin ¢ (Kl(z)/z)

- Azxi sin ¢ cos ¢ (Kl(Z)/Z)] (B-6)

From Equation (B-6), subtract Equation (B-1) divided by p:
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{ ( (C1 cos ¢o sinh T¢o - B

1

sin ¢° cosh T¢0)

9K, - (Xp)

ap

+ { Cl(r cos ¢° sinh T¢o - 2 sin ¢o cosh T¢o)

- BI(T sin ¢o cosh T¢o + 2 cos ¢o sinh T¢o) }

- 3Ua
27

TKiT(Ap) ) dt

[o]

[.A”pxg sin3 ¢O (KZ(Z)/ZZ) - Aszo sin ¢0 (Kl(Z)/Z)

2.2 n
- 2A°x_ sin ¢ _ cos ¢_ (Kl(Z)/Z)) (38-7)
The derivative of Equation (3-17) with respect top is:
w 9K, (Ap)
f (C1 cos ¢o sinh T$, = B, sin ¢, cosh T¢0) —— d1
0 op
= 30a a_ -
7. %, Sin 9 % (K (2)) (B-8)
dk (2)
9 _9Z —©
where 35 KO(Z) = 3% iz
2 -
and g_g _A(p - x5 cos ¢.) (B-9)

Z
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(& _(2)/dz) = - K, (2) (B-10)

Substitution of Equations (B-9) and (B-10) into Equation (B-8)
yields:

> . . 3Kir()\p)
{ {Cl cos ¢o sinh ¢ - B, sin ¢_ cosh T¢o } ——;;———— dr

K, (2)
- 30a 2 - ) —E -
= X, sin ¢° A (x0 cos ¢0 p) , (B-11)
Substitution of Equation (B-11) into Equation (B-7) and
rearrangement of the result yields:
w 2K, (Ae)
f ( (C1 cos ¢o sinh T¢°— B1 sin ¢o cosh T¢o) —_——
0 p
X, (30)
- 2(C1 sin ¢0 cosh T¢o + B1 cos ¢O sinh T¢o)———;————— ) dr
, K, (2) K, (Z)
_3Ua (4.3 . 3 2 2 2 . 1
== (x px_ sin ¢ — - 32°x_ sin ¢ cos ¢_ .
(B-12)

Substitution of Equation (C-21) from Appendix C into Equation
(B-12) results in:
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> 2K, (Ap)
g ({ C1 cos ¢o sinh TH, - B1 sin ¢ocosh T¢°} ————7;————

Kir(ko)

2 (C1 sin ¢O cosh 1¢o + B1 cos ¢° sinh T¢o) ) dr

p

. o +2
30a Zxo sin ¢_ T KiT(Ap)

2%

KiT(Axo) cosh (1 - ¢o) dt
u 0 p

K. (2) 9 K. (2Z)
- 3>\2x0 sin ¢ cos ¢
z ° °  z

2 .2
+ A X, sin ¢o cos ¢°

(B-13)

A basic identity for cylindrical functions (See Lebedev) is:

KO(Z) = %{ KiT(Ap) Kir(kxo) cosh t(m - ¢o) dt (B=14)

Substitution of Equation (B-~14) into Equation (3-17) results in:

£ (C1 cos ¢° sinh r¢o - B

1 sin ¢o cosh T¢o) KiT(Ap) dt

2 (=]
= =- %, sin ¢O( —;—{ KiT(Axo) KiT(Xp) cosh t(r - ¢o) dr)

(B-15)
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Equation (B~15) will be satisfied if

Cl cos ¢o sinh T¢° - B1 sin ¢o cosh T¢°

_ 3Ua _
=3 X sin ¢O KiT(lp) cosh t(w ¢0) (B-16)

Substitution of Equation (B-16) into Equation (B-13) yields:

2
” K, (Ap)
30a . Ky .
f ( GTFZ x sin ¢o KiT(Axo) cosh t(m - ¢o)) _—t
0 P
™, (Ap)
- 2(C1 sin ¢o cosh 1¢o + B1 sin ¢0 sinh T¢o) ———;————-) dt
2
> 12K, (Ap)
= [ ( %gi x, sin ¢ K. (Ax ) cosh t(m - 9,) ) —2— 4t
0 P
K, (Z)
- _3_U_a_ }\ZXZ sin ¢ cos ¢ 1 (B_17)
m [e] o o z
Simplifying,
- _ K, (hp)
-2 ( (C1 sin ¢_ cosh 6, + B, cos ¢, sinh T¢o)———————— ) dr
0 p
K, (2Z)
- 3Ua 2 2 R 1 _
=-=, A°x, sin ¢ cos ¢_ (B-18)

Z
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Substitution of Equation (C-~22) into Equation (B-18) yields:

© ™, (A0)
-2f ((C1 sin ¢g cosh T¢y + B, cos $, sinh ) ————— ) dr
0 P
=-32,2.2 oin ¢ cos ¢ 2 f?K (M)XK, (Ax ) tsinht(m-¢ ) drt
Ll o o} 0 it it o o}

A2 i 0
m px051n ¢O

(B-19)
or
oo TK, . (Ap)
- f (C1 sin ¢° cosh T¢o + B1 cos ¢o sinh T¢0) ——dr
0 p
w K. _(Ap)
3Ua . T
= - 7% cos ¢o f (KiT(Axo) sinh t(m - ¢o) —r 4
0 0
(B-20)

Equation (B-20) will be satisfied if

C. sin ¢o cosh T¢o + B

1

1 cos ¢o sinh T¢o =

3Ua .
7 X cos ¢0 Kit(lxo) sinh t(w - ¢0) (B-21)
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Substitution of Equation (B-21) into Equation (B~1) yields:

[+ A o]
30a . 1 .
£ ( ) x cos ¢o KiT(Axo)131nh wo(r - ¢o) KiT(Xp) + ) KiT(Ap)751nhr¢o)dr
K, (Z)
_ 3Ua _ 2 . 1 _
-5 [(xo cos ¢o P A px  sin ¢o . ) (B-22)

Substitution of Equation (B-19) into Equation (B-22) results in:

[ %gé X cos ¢ KiT(Axo) sinh t(r - ¢o) TKiT(Ap)

0
A1p . 3
+-—;—-TK1T(XQ) sinh T¢o) dt
_ 3Ua - 2 . 2
=5 ( (xo cos ¢O p)A%p X sin ¢o )

2 .
mA px, sin ¢0

.( { KiT(Ap) KiT(Axo) T sinh T(w - ¢O) dt (B-23)

Simplifying Equation (B-23):

-] Alp
g - T sinh T¢O KiT(Ap) dt

=~ %gé K, (Ax ) K, (Ap) T sinh t(m - ¢ ) dt (B-24)
0
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Equation (B-24) will be satisfied if

- _ 6Ua sinh t(m - ¢5) _
A %  sinh T, Ky (A%,) (B-25)

The expressions for B1 and Cl may be obtained by simultaneous
solution of Equations (B~16) and (B-21).

Using Kramer's rule, C1 may be written in terms of determinants:

sin ¢ cosh 1(w - ¢o) -sin ¢ cosh T¢

) o )
_ 30a cos ¢, sinh t(m - ¢,) cos ¢, sinh to,
Cl 7z %o KiT(Axb) cos ¢ sinh 1 -sin ¢ cosh 1¢
) 0 ) 0
sin ¢o cosh T¢o cos ¢o sinh r¢o

(B-26)

Expanding the determinants in the numerator and the denominator of

Equation (B-26):

3Ua .
Cp =77 %Ki %)

31n¢0cos¢051nht¢ocosh1(n—¢o) + 51n¢0cosht¢ocos¢051nhT(w—¢0)

2 . .2 . 2 2
cos ¢0 sinh r¢o+ sin ¢o cosh T¢O

(B-27)
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In a similar fashion, the constant B1 may be solved for explicitly

using Kramer's rule and written in terms of determinants:

cos ¢° sinh T¢o sin ¢0 cosh t(m - ¢0)
. 3Ua f K O sin ¢o cosh T¢o cos ¢o sinh t(r - ¢o)
1 72 %o Tit "o’ [cos ¢ sinh T¢ ~ sin ¢ cosh 1¢
o ) 0 0
sin ¢o cosh t¢o cos ¢o sinh T¢0
(B-28)

Expanding the determinants in the numerator and the denominator of

Equation (B-28):

_ 30a
B1 ez oniT(Axo)

2 . , 2
cos ¢osinh1¢051nhr(w-¢o) - sin ¢ocoshT¢ocoshT(n-¢o)

2 ., 2 . 2 2
cos ¢o' sinh T¢o + sin ¢o cosh T¢°

(B-29)

The numerator of Equation (B-27) can be simplified:
sinh t(r - ¢ ) cosh t¢ + cosh 1(r - ¢ ) sinh 1¢ =
o o} o o}

(sinh tw cosh t¢ = cosh tr sinh T¢o)cosh T
o )
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+ (cosh T¢ocosh ™ = sinh tr sinh T¢o) sinh T¢o

cosh2T¢o sinh T7m - sinh T¢o cosh T¢o cosh 1w

+ sinh T¢o cosh t¢° cosh t7m - sinh2 T¢o sinh T

(cosh2 T¢o - sinh2 T¢o ) sinh tm

sinh T

Therefore,

_ 3ua ; . 2 2 . 2 2
¢, = ;7—-oniT(Axo)31n ¢o cos ¢O sinh tn/(cos ¢Osinh T¢, + sin ¢ocosh T¢o)

(B-30)

Note that it is also possible to simplify the denominator of Bl

and C, for a more concise expression:

1

2 2 . 2 2 _
cos ¢o sinh T¢o + sin ¢O cosh 1¢o =

2 2 2 2
cos ¢o sinh T¢O + (1 - cos ¢o) cosh T¢o



cos2 ¢° sinh2 T¢° + sin2 ¢o cosh21'¢o
= c032 ¢o (sinh2 T¢o - cosh2 T¢o) + cosh2 T¢0
cos2 ¢0 sinh2 T¢o + sin2 ¢0 cosh2 T¢° = - cosszo + cosh2 T¢o
(B~31)

Substitution of Equation (B-31) into Equations (B-30) and
(B-29) vyields:

_ 3U0a s . 2 2
1= 72 %, KiT(Xxo) sin ¢o cos ¢° sinh tn/(cosh T¢O - cos ¢O)

@]
|

(B-32)

3U0a
1 e oniT(Axo)

(o]
il

2 . . . 2
cos ¢051nhr¢051nhr(ﬂ-¢o) - sin ¢0coshr¢ocoshr(n ¢O)

2 2
(cosh T¢° - cos ¢o )

(B-33)
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APPENDIX C DERIVATION OF IDENTITIES

The following identity may be found in Lebedev

<]

KO(Z) =% f Ki_l_(lxo) KiT(Ap) cosh +t(r - 4)0) dt
0

where, Z = Avpé - Zon cos d)o + xg
HE (D) & @)
3p %p dz
2¢5 -

oz _ r<(p x cos ¢o)

3p 7

K (2)

dz

9K (Z) Kl(Z)
—2 — = - A2(p - x_cos ¢)

op ° ° A

Take the derivative of Equation (C-1) with respect to p:

BKO(Z) o 3K, _(Ap)

AN

ap ap

it
f KiT(Axo) ——— cosh 1(m - ¢O) dt
0

63

(c-1)

(c-2)

(3-9)

(c-3)

(C-4)
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Substitute Equation (C-3) into Equation (C-4):

K, (2) @ K. (Ap)
1 ~-2 it -
o { KiT(Axo) ———;;———- cosh T(w ¢o) dt

2 (p —
A% (p - x_ cos ¢O) .

(C-5)

Take the derivative with respect top of Equation (C-5).

The left hand side becomes:

K. (2) K. (Z) K. (2)

3 1 3 1 1

5;—[ 22 (p - xo cos ¢o) . ) = AZ((p— xocos ¢°) 5;( . ) + ;
(C-6)

K. (2) A (p - x_cos ¢ )

5 (L. 0 o’ & (x _(2)/2) (c-7)

ap 7 7 dZ 1

d -1 _ -1

37 (2 Kl(Z)) =-2 KZ(Z) (C-8)

Substitution of Equation (C-8) into (C-7) results in:

3 A2(p - X cos ¢O)

Ty (Kl(Z)/Z) = (—KZ(Z)/Z) (C-9)

Z

Combination of Equations (C-6) and (C-9) results in:
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K,(2)

3¢ \2¢p = -
%% { 2% (p X cos ¢o) }

Z

A2 (p - x_ cos ¢°) (_KZ(Z))+ Kl(Z)

2 - 3\
A ( (p x cos ¢o’
Z YA Z

(c-10)

The derivative with respect to p of Equation (C-5) is:

K, (2) © 32K, _(Ap)

3 [ 32¢(q = -
50 ( A< (p X cos ¢0) cosht(mw ¢0) dt

Z 0 ° 8p2

Substitution of Equation (C-~10) into (C-11) results in:

A2 (A2(p - x_ cos 6)° (Ky(2)/2) + K, (2)/2 ) =

w BZK.T(Xp)
—2 — cosh T(m - ¢o) dr
sz

(C-12)

The left hand side of Equation (C-12) may be simplified:

1l

2. 2 _ .2, .2 2 2
x<(p X cos ¢ ) A=(p 2px  cos by + x_ cos ¢o)

Il

2 2
2(A2 - - 1
A2 (p 2pxo cos ¢° + X (1 - sin ¢o))
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2 _ 2 - 12(n2 _ 2 2 .2
A< (p X cos ¢o) A<(p 2pxo cos ¢o + X x_sin ¢o)

2 2 2
2 — — 1 —
A< (p X cos ¢ ) Z A% sin ¢ (c-13)

From Lebedev (page 110):

KZ(Z) = KO(Z) + 2K1(Z)/Z (C-14)

Substitution of Equations (C-13) and (C-14) into Equation (C-12)

results in:

A2( {2 xi sin® 9, K2(Z)/Zz} - R (2) -k, (2)/Z ) =

® 32K, _(Ap)

~2 it
;~£ KiT(Axo) 207 cosh t(m - ¢o) dt (c-15)

Substitution of Equation (C~l) into (C-15) results in:



K, (Z) K.(Z)
22{A2 xg sin2¢o 22 - 1 } =
Z VA
o 32K, (Ap)
2 2 R D -
= /] (» KiT(Ap) " ) KiT(Axo) cosh t(w ¢o) dt
0 9p
(C-16)
Bessel's Equation of order it may be written
32K, _(Ap) 3K, _(Ap) 2
it - + 1 it "7 + (EZ' - )\Z)Kit(xp) = 0
(Cc-17)
Rearrangement of Equation (C-17) yields:
32K, (Ap) 2 K, _(Ap)
it T 1 it
MK, (Ap) = ———— = K. (dp) + = —F—nu
it 302 p it p 3o
(C-18)

Substitution of Equation (C-18) into (C-16) and multiplication by

p yields:
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Az(kszz sin?

2 = 12
;{ [B—Kir(kp) +

¢0

KZ(Z) o KI(Z) )
Z2 V/
3K, _(Ap)
it ) K, _(Ax))
ap T °

68

cosh t(T - ¢o) dT

(c-19)

Substitution of Equation (C-5) into Equation (C~19) yields:

AZ(Aszi sin

2z - - A2(p -
- { ( 5 KiT(Ap)KiT(AXO) cosh t(nw ¢°) dt A (p .xocos ¢O)

K, (2)

K,(2)

¢O

Z

2

-p
vA

X, (2)

Z

(C-20)

Multiplication of Equation (C-20) by xosin ¢o and rearrangement

yields:

2. .3
A CESS sin ¢O

K, (2)

2

=

2% sin
o

d)0

Z

2

™

0

2
+ 32
A X, sin ¢° cos ¢,

© rZKiT(Xo)

P

Kir(lxo) cosh t(nw - ¢o) dt

K,(2)
z

(c-21)



Starting with Equation (C-1) another useful identity may be derived.

Take the derivative with respect to ¢o of both sides:

BKb(Z) 2 o
—_—_— = - ;—-f KiT(Xp) Kir(lxo) T sinh (v - ¢0) dt
3, 0
BKO(Z) _ dKO(Z) 9Z
8¢o dz 3¢0
aZ  _ 3 _ v Y
5. = 9% (AY p 2pxo cos ¢° + xo)
) )
=% (2 in ¢ )(p% - 2px_ cos ¢ + xz)-l/2
% Leex, sin 9,04p PXo ) o
) lpxo sin ¢o
2 _ 2%
(p 2pxo cos ¢° + xo)
2 .
87 _ A px_ sin ¢o
8q)o Z
dKo(Z)
dz
3K (2) A2px  sin 9,
2 = - K, (2)
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Therefore,

2
A PxX sin ¢°

ERLS)
o =

= igf KiT(Ap) KiT(Axb) 17 sinh (7w - ¢o) dt

K, (2)

z

KiT(Ap) Kit(kxo) T ginh t(mr - ¢0) dr

(c-22)
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APPENDIX D - ANALYTIC SOLUTION OF THE PROBLEM FOR THE TWO SPHERE CASE

_ e Ax K, (hx)
PO = ompak [ (B, + 1O AT
00 on
Clr
+ (37— +ADK _(Ox)) dr dr (4-3)

(o]

Substitution of the expressions for Al’ Bl’ and C, into Equation

1
(4-3) results in:

© o BK. ()\X )
3 - 3Ua ;
F( ) - 6mpak f f ( { -z (ap - a3) X ——lI———Q—-KiT(Axo) }
00 ax
o
3Ua 2
+{ =7 (=103 = 203) K] _(Ax ) ) d) dr (D-1)

Since oy, o3, and o), are not functions of A, the integrations with
respect to A may be carried out by evaluating the following two

integrals:

f Kﬁr(xxo) da (D-2)
0
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0 BKiT(lx )

o
f X KiT(Axo) da (D-3)
0 3}{0

The following identity is available from Magnus, Oberhettinger, and

Soni (page 96):

o]

K, (2) Ku(z) = 2 { Kviu(ZZcosht) cosh ((u F v)t) dt

Re Z >0 (D-4)

Substitution of Equation (D-4) for the case v=p=it, into the integral

given in (D-2) yields:

xR o _ [oe] 2
{ { KZiT(ZAxocosh t) dt dr = { K7 (Ax ) dA (D-5)

Again, from Magnus, Oberhettinger, and Soni:

{7 (ar) de = 2"72 a7l + )T Can - ) (D-6)
0

Re (utv) >0



Substitution of Equation (D-6) (for the case a = 2xocosht, v =1irT,

t =X, and u = 1) into Equation (D-5) results in:

[=+] o

2 = 1___ 1 . Lo s
{Ki_r()\xo) =2 { 7 T cosh T (s + it) (s - i1) dt (D-7)
but r¢s +2) I'(s -2) = 24— (D-8)

cos w2

Substitution of Equation (D-8) into (D-7) results in:

<] (=]
2 - 1 T
g Kir(kxo) ar 2 f 4xocosh t cos 1tr OF
(D-9)
- v fm dt
2xocosh T cosh t
_ T
" 2x cosh 17 (7/2)
o
o]
2 _ 72
£ Ki'c(xxo) dA= 4xocosh T (D-10)

Differentiation of both sides of Equation (D-10) with respect to

xo yields an identity for the integral given in Equation (D-3):

73
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S 3K, _(Ax ) o
[ &, _Ox) ——2 @ = T (D-11)
T 0 2
0 X 4x_ cosh 1w
o o
or
o oK ()\X ) 2
[ xK, _(Ax) ——%4) = m (D-12)
oit o
0 on 8xo cosh tw

Substitution of Equations (D-10) and (D-12) into Equation (D-1)

results in:

(3) = 7 . 3Ua - w2
_ - f———
F 6mpak f ( P—FZ— (ap ~ a3) 8x° cosh 17
0
3Ua }___-in———— D
+{ =7 (-tay - a3) ) R

4xo cosh 1w

Simplifying, and combining similar terms results in:

F(3) = 61maE{:g— 'i—} f (ap + 2T0y + 30L3)E§lclr—a; (4-4)
o ¢



75

The values a1, ap, and o3, are defined in Equations (3-21), (3-22),

and (3-23). For the value ¢o = (w/2), these constants become:

a; =0 (D-14)
oy = -1 (D-15)

Substitution of Equations (D-14) through (D-16) into Equation (4-4)

yields:
(3) 3 ® (=1 + 3)
- 1 _ a -
F*0 = 6muak (—5- )(———xo ) ,g Py m— dt (D-17)
*  dr _ 1

but, £ cosh ©n 2 (D-18)
Substitution of Equation (D-18) into Equation (D-17) results
in:

3 _ - ¢ =3 a
F = 6muak (T{—x— }) (D-19)
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APPENDIX E: NUMERICAL INTEGRATION PROCEDURE

Degree of Accuracy Obtainable

The degree of accuracy which is obtained in the numerical evaluation

of an infinite integral depends, in general, on three factors:

(1)

(2)

(3)

The degree to which the numerical quadrature formula

approximates the contours of the actual function during the

integration process. For example, if the area to be integrated

is actually a trapezoid, then either the midpoint rule, or

the trapezoidal rule will give an exact value for the area

under the curve. If the function to be integrated is not linear,
then the curvilinear sections of the curve must be approximated
by straight lines. In this case the midpoint or trapezoidal rule
would only give an approximation to the area.

The Slit Width. Once an approximating quadrature formula is

selected, the degree of accuracy obtained using the particular
procedure is simply a function of the slit width. (This assumes
t%at the number of iterations is held constant. Note that the
slit width is simply the value of delta x, which is being used

to represent the differential, dx. In general the smaller the
slit width, the better is the approximation obtained by using the
particular quadrature formula.

The number of iterations. The accuracy of the numerical

integration procedure depends on the number of iterations which
are performed. This is true, strictly speaking, only when the value
of the integrand is large enough to make a significant contribution

to the area. Since the value of the function (or integrand) must
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tend towards zero as x approaches infinity, there exists a
definite value of x for which further number of iterations
does not increase the accuracy of the resulting answer.
When this occurs, the value of x which corresponds to
"infinity" has been reached for all practical purposes.

Comparison of the Results Obtained Numerically with the Analytical Results

for the Case of Two Spheres.

In order to evaluate the accuracy of the numerical integration procedure
the most logical place to start is for the case of two spheres, since for
this case the analytical solution is already known. A computer program
was designed perform the numerical integration using the midpoint rule.

A listing of the program is shown as Figure E-1. Note that the variable of
integration used prior to this in the body of the text (i.e.,T ) has been
replaced by x.

The program is basically very simple. It calculates the value of the
integrand at the midpoint of the interval. It then assumes that the area
under the curve for that interval may be approximated by a rectangle of
width delta x, and of height the value of the function (or integrand) at
the midpoint of the interval. Initially a value of delta x equal to .0125
was chosen. After the computer has performed 500 such iterations, it
then prints out the x coordinate which has been reached, the value of
the function f;(¢y) which has been calculated so far, and the value
of the function (or integrand) at the particular x coordinate which has
been reached. A typical print-out for the case of two spheres is shown
in Figure E-2. These print-outs are referred to as "integration profiles"
since they show the process of the integration as it proceeds along the

x coordinate.
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Note that in Figure E-2,the integration profile for the case of
fwo spheres,»the value of the integrand (i.e, the third column entitled
"WALUE OF FUNC") decreases very rapidly. This indicates that only a
small number of iterations are required before a significant result
for the value of f1(¢o) is obtained. This is due to the fact that
since the functional value becomes very small as x increases, the
contribution of the "tail" of the function to the actual area under the
curve becomes negligible very quickly. This can be seen by noting that
after the first five hundred iterations the value of f1(¢o) is already the
same as after 17,500 iterations.

Note that the final value reached for the function f1(¢o) is
.37500002. Since the value obtained analytically is actually .375,
the error brought about by using a numerical quadrature procedure is

about 2 x 10~°,

Calculation of the function f1(¢o) for other values of N

The largest value of N for which the function f1(¢o) may be
evaluated by this procedure is based on the limitation of the computer
and the accuracy desired in computing fl(¢o). In computing the value
of the integrand for use in the numerical integration procedure, one of
the terms which appears is cosh tw. As 1 becomes very large, this
number approaches infinity. Since the largest possible number which

322

can be processed on the computer system where this work was done is 10 ,

this is the maximum number which can be used in the computation of f1(¢o).
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The value of 10322 for cosh tT corresponds to carrying out the

integration to a value of about 225 for 1. Thus all the integration
profiles (for various values of N) were carried out to this value of
T. In order to determine the largest value of N which could be reliably
handled by this technique, computer print-outs (similar to that shown
in Figure E-2) were studied to determine the effect of the magnitude
of the integrand on the value of the function f1(¢o).
The following conclusions were reached by studying a number of these
integration profiles for various values of N:
(1) Generally, when the functional value of the integrand reaches
a value of from 10_6 to 10-9, the value of the function f1(¢0)
remains unchanged to eight significant figures.
(2) A similar rule-of-thumb was deduced for the case of five
significant figures in the value of the function f1(¢o). In order
to obtain five significant figures in f1(¢o), the value of the
integrand must be in the range of from 10—3 to 10—6.
A typical print-out for an integration profile which exhibits these
general tendencies is shown for the case of N=50 spheres in Figure E-3.
In order to determine where to terminate this procedure (i.e., determine
how large a value of N can be handled by this technique), it is useful
to look at some borderline cases. The integration profiles for N=100
and N=125 spheres are shown in Figures E-~4 and E-5, respectively.
Note that in the integration profile for 100 spheres, the value of

f1(¢o) appears to be changing in the sixth significant figure at the
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"end" of the integration profile. This is even more evident for the case of
N=125 spheres shown in Figure E-5. For this reason the value of N=100
spheres was chosen as the largest value of N which could be reliably
handled by this procedure. A summary of the values of f1(¢o) for

various wvalues of N as obtained by this procedure is given in Table

E-1.

Calculation of the function f1(¢0) for large values of N

Substitution of the expressions for o;, oy, and a3 given in
Equations (3-21) through (3-23) into Equation (4-4) results in:

6mualk (-:%— Y { -f%— } f {(sin2¢o cosh ¢~ cosh o(mw - ¢°)

o 0

f

F(3)
- cos2 ¢o sinh T¢O sinh t(w - ¢o)

+ 21sin ¢o cos ¢o sinh TTr)(l/(cos2 ¢o - cosh2 T¢0))

. . dt
+ 3 sinh (W =~ ¢o)/51nh T¢o }{ Py — } (E-1)
This may be expressed as
=(3) _ - . -3 a e
F = 6mualk ( 3 = ) f h(t) dt (E-2)

o 0

where the function h(r) defined implicitly by Equations (E-1) and (E-2),



TABLE E-1

VALUES OF THE FUNCTION f1(¢°) FOR VALUES OF N UP TO 100

N £,00.)
2 . 3750
3 . 8660
4 1.436
5 2.065
6 2.741
10 5.794
15 10. 145
25 19.960
30 25.258
35 30.756
40 36.425
50 48.195
60 60. 446
75 79.553

100 112.939
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is just the integrand of Equation (E-1).
By definition,
cosh T¢y= (eT¢o + e ™ )/2
sinh T¢,= (eT¢o - T )/2
For large values of t:

T /2 (E-3)

cosh T¢o

1]
o
[¢)

" /2 (E-4)

13
0]
(o]

sinh T
4)o

Substitution of the relationships given by Equations (E-3) and
(E-4) into Equation (E-1), and combination of similar terms results
in the following expression for the function h(t), for large values

of T:

2+ 4 T sin ¢o cos ¢O

h(t) = (E-5)

4 cosz¢o' - e2T¢o

The computer program listed in Figure E-1 was extended so that for
values of 1 greater than 225, the integrand of Equation (E-1) gets
replaced by the expression given in Equation (E-5). Thus, the
computer can now integrate to as large a value of T as is necessary to

get the desired accuracy in the function f1(¢o) for larger values of N.
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A summary of the values of f1(¢o) for various values of N as obtained
by this procedure is given in Table E-2. Note that the entries in
Tables (E-1) and (E-2) have been combined in Table 1 in Chapter 4 of the

main body of the text.

Numerical Evaluation of the function f1(¢0) Using Various Formulae

A number of numerical quadrature formulae were evaluated as
possible alternatives to the midpoint rule. The results obtained
using the midpoint rule, Simpson's Rule, and a six-~point Newton-—
Coates formula were compared at a number of different slit widths
for the case of N=2 spheres. These results are summarized in
Table E-3. As can be seen from the results, for an equal number
of iterations and slit width, the best performing quadrature

procedure is the simple mid-point rule.



TABLE E-2

VALUES OF THE FUNCTION f1(¢o) FOR LARGER VALUES OF N

X £,0o.)
300 416.334
500 740.990

1000 1292.584

90
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TABLE E-3

COMPARISON OF THE RESULTS OBTAINED USING VARIOUS NUMERICAL INTEGRATION
FORMULAE FOR THE EVALUATION OF THE FUNCTION f1(¢o) FOR THE CASE OF
N = 2 SPHERES

Type of Quadrature Method Used Slit Width Value of fl(¢o)
Simpson's Rule .0125 .375000016742165
Simpson's Rule .00125 .375000016739470
Simpson's Rule .000125 .375000016717381
Six Point Newton-Coates .0125 .37500001674239
Six Point Newton-Coates .00125 .37500001674154
Six Point Newton-Coates .000125 .37500001673591
Midpoint Rule .0125 .375000016741783
Midpoint Rule .00125 .375000016735898

Midpoint Rule .000125 .375000016687387



ADDENDUM

In a recent verbal communication with Professor T. Greenstein,
a member of the doctoral committee formed for this dissertation,
Professor Greenstein verified the results which were obtained for
f1(¢0) in this dissertation for the cases of three, four, five and
six spheres. It should be noted that the solutlons obtained by
Dr. Greenstein were obtained by using a technique different from

the one used in this dissertation.
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Nomenclature

sphere radius

One of the three constants of integration in the Fourier
Lebedev transform solutions (or second reflection solution)

a constant from the nomenclature of Ditkin and Prudnikov.
This constant appears in Appendix A.

A second constant of integration appearing in the second reflection
solution

A third constant of integration appearing in the second reflection
solution

Coefficient which estimates the first order effect on the drag
force due to the presence of the other spheres

drag force
Unit vector in the z direction
A modified Bessel function of the second kind of real argument,

Ap, and imaginary order, it. This real function has the integral
representation given below:

]
KiT(Ao) = e AP cOSh B o 1t at
0

Number of spheres in the array

Spherical coordinates of a point in space with respect to an
origin at a sphere center. (This origin is displaced from
the apex located origin by a distance x, measured in the x
direction.)

Velocity of a sphere in the array

Velocity of a single sphere settling under conditions where
Stokes' Law holds. The Stoke's velocity

Distance of the sphere center from the wedge apex
measured in the x direction. (For an array of particles
this is the distance between the sphere centers and the
centroid of the array.)

Cartesian coordinates of a point in space with respect to an
origin located at the centroid of the array

Cartesian coordinates of a point in space with respect to an
origin located at the sphere center. (This origin is displaced
from the origin which is located at the centroid of the array
by the distance X,
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Nomenclature (continued)

A combination of variables which appears as the argument
of K Bessel functions (K (2), K,(Z), KZ(Z)), and as a
term in the numerator and denominator Gf many expressions
in the Appendices. Mathematically, Z is given by:

= Z . . v
z AYp 20xo cos ¢o + x5

These three constants represent the trigonometric and
hyperbolic functions portion of the constants Al’ Bl’

and Cl'

A dummy variable. Also, this is the separation constant
in the transform solution to the Creeping Motion Equation
in cylindrical coordinates.

Cylindrical coordinates of a point in space with respect
to an origin located at the centroid of an array.

A dummy variable. Also, this is a separation constant
which appears in the transform solution to the Creeping
Motion Equation in cylindrical coordinates.

One half the dihedral angle formed by the intersection of
two planes which pass through the origin (located at the
centroid of the array) and the centers of two adjacent
spheres. Also ¢o is numerically equal to w/N.
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