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ABSTRACT

Title of Thesis : Computer Simulation of Cavity Filling

During Injection Molding Process

Sumit Banerjee, Master of Science in Mechanical Engineering, 1983

Thesis directed by : Dr. Richard C. Progelhof

Professor, Department of Mechanical Engineering

A numerical technique is proposed for the simulation of cavity filling

process during injection molding of glass-bead filled polypropylene.

The mold cavity is of cylindrical shape.. Marker And Cell (MAC) method

is utilized for solving the transient flow phenomena, after a

mathematical simulation of the flow model is carried out by using the

relevant continuity and momentum equations governing the system. The

complexity of the equations involved, results in the simplifying

assumption of incompressible and isothermal flow process. A computer

program is written on the basis of finite-difference equations

developed during the application of MAC method under the prevailing

conditions.

The numerical results yield significant data on the progression of the

melt front, the velocity profiles in both axial and transverse directions

and the pressure distributions at different times and positions in the

cavity.
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CHAPTER I

INTRODUCTION

Injection molding is considered to be a very important industrial

process for the manufacturing of plastics objects. The molding cycle

is composed of three stages : filling, packing and cooling. During

filling, the molten polymer, which is produced by the shearing action

of a rotating screw combined with external heating, is introduced into

the mold. After filling, extra material is packed under high pressure

to compensate for shrinkage as the material cools. After the injection

pressure is removed, cooling continues, and the pressure decreases.

Fig. 1.1 shows an injection molding pressure-time cycle schematically

Experimental studies suggest that mold filling process determines the

final product properties to a very great extent. Manzione2, in a very

recent study of simulation of cavity filling in Reaction Injection

Molding, suggests that such simulation of reactive cavity filling is

important in the determination of moldability because it allows

prediction of the viscosity and temperature rise.

Flow visualization studies of cavity filling have been reported in the

literature. The first reported study was made by Spencer and Gilmore 4

, who have studied visually the filling of the mold and derived an

empirical equation for the determination of filling time. Huang

6 simulated cavity filling by highly viscous thermoplast melt flowing

between two rigid parallel plate boundaries with the gate at one edge.

Kamal and Lafleur5, in their report last year, used semicircular and

rectangular mold geometries.

1



Figure 1.1

Variation of Pressure With Time in Injection Molding

2

1. Filling

2. Packing

3. Cooling
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The present study involves a thermoplast melt flowing through a mold

of cylindrical shape. The front region has a free fluid boundary and

time dependent velocity components.

Cavity filling is simulated by using a modification of simplified
7

marker and cell method developed by researchers at Los Alamos Scientific

Laboratory. This method can be applied for numerical solution of problems

concerning the time-dependent, viscous flow of an incompressible fluid

in several space dimensions. The cells are characterized according to

whether they are solid-fluid boundaries, free-slip or no-slip

boundaries, inflow or outflow surfaces.

An interlaced grid system is used where the velocity components are

centered at the cell sides and pressures placed at cell centers. This

minimizes the involvement of neighboring cells for rigorous momentum

conservation. At the same time it also decreases the amount of

averaging usually required to provide variable values at grid points

where the variables are not explicitly defined. The unique exact form

of continuity equation can only be achieved by such a grid.

The first step in the setup of 'Marker And Cell (MAC) method is to

provide the informations regarding the number of cells, viscosity,

time step, marker particles density and other parameters pertaining to

to the problem.The next step is to build up the cells. Here the input

informations concerning the system boundaries include the shape of the

cells and types of boundaries represented. Such informations are used
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to identify all cells in the system. If there are no particles in the

system, all interior cells are flagged as EMP cells (Empty Cells). The

final step is to set up the marker particles which will represent the

fluid flow. The coordinates of these particles are stored for future

reference. The velocity field of the fluid flow is calculated and stored

into the appropriate cells in the system. Consequently, the cells that

contain particles are flagged as FUL or SUR cells (Full or Surface cell).

The fluid flow is then advanced through a series of time cycles, each

of finite length St. During each time cycle the output information is

taken from the previous cycle and then the time is advanced by an

increment of St. Then the cells are checked to see if any of the

previously EMP cells now contain fluid, or if any of the earlier SUR

cells are now EMP or FUL. Flagging and changing of variables are done

accordingly.The next step is to calculate the new velocity field from

previously known velocities or input conditions. Finally, the marker

particles are moved with a weighted average of the four nearest cell

velocities. These time cycles are repeated as long as the problem is

of any interest.

The following chapters describe the mathematical simulation of the

problem,which involves writing the relevant continuity and momentum

equations governing the system with appropriate boundary and initial

conditions representing the prevailing conditions in the cavity, as

well as the essential solution techniques utilizing MAC method.



CHAPTER II

MATHEMATICAL SIMULATION

To illustrate the Marker And Cell method for solving free-surface

problems, we restrict ourselves to two-dimensional motions in a plane.

A cylindrical coordinate system (r,θ,z) is chosen with r measured in

the radial direction and z taken normal to the r-axis. The effects in

the θ-direction are assumed to be negligible.

2.1 	 Equation Of Continuity

Assuming the fluid to be non-Newtonian and incompressible in an

isothermal flow process, we have

where D should vanish everywhere during the finite-difference

calculation for the conservation of mass for an incompressible

fluid.

2.2 	 Equation Of Momentum

For two-dimensional motion we can write

r- component

- z -component

5
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2.3	 Constitutive Equation

In order to solve the equations of change, a Theological constitutive

equation, which relates the stress tensor to the velocity field, is

required.For a non-Newtonian fluid we can write

in which the non-Newtonian viscosity 	 η scalar quantity, is a

function of rate of deformation or strain tensor, Δ. A large amount

of data available in the literature indicate that the Ostwald-de Waele

or the Power Law Model is successful in describing the stress-rate of

strain relationship for polymer melts, especially within narrow ranges

of shear rate.Thus, we can represent this particular situation by :

in which m, n are empirical fluid parameters. The rate of strain

tensor is expressed as below :
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consequently 	
11141

It is evident from equation (6) that the injection molding process

is not a steady process dominated by either shear flow or extensional

flow, but clearly a dynamic process with some combination of both

types of flows ( represented by a rate of deformation tensor with both

non-zero diagonal and off-diagonal components )

The choice of the fluid parameters, in and n in equation (7) may show

the shear viscosity data from the viscometry measurement.

The two dimensional flow model in the front region is only a small

part in the total flow compared with the fully developed region which

is mostly shear flow in essence. The motivation for this choice is due

to its success in describing experimentally measured material function

for bulk polymers in simple shearing flows. The applicability of

equation (7) to extensional viscosities both uniaxial and biaxial is
9

proved experimentally by Denson , to be suitable for a low rate of

extension where the fluid behavior approaches Newtonian viscosity.

Equation (4) may then be rewritten as



With the help of equations (1), (8), (9), (10), (11) we can now

develop equations (2) and (3) as

8

Like any other specific problem, it is necessary here to provide an

appropriate set of initial and boundary conditions. We are particularly

concerned with a prescribed set of rigid walls that may be no-slip or

free-slip, and with inflow and outflow boundaries.
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In addition to the prescribed boundary specifications, there will be

boundary conditions to apply at the free surface, whose position varies

with time in a previously unknown manner.

The rigid wall boundary conditions follow directly from momentum

equations. For a free-slip boundary, the normal velocity component

must vanish; for a no-slip boundary,the tangential components must, in

addition, vanish. Consequently, boundary conditions on pressure are

obtained through equations (12) and (13). However, we do not write

these differential boundary conditions in detail here, as, for the

numerical calculations, it is necessary to derive the finite-difference

analogies to the boundary conditions directly from the

finite-difference momentum equations.

Conditions along an inflow boundary are similarly derived; the only

difference is that the velocity components are prescribed in the

following arbitrary manner, rather than forced to vanish.

Here, for the sake of simplicity, the inlet velocity profile at the

entrance of the mold is assumed to be that of a steady one dimensional

fully developed flow model. This can be derived from equation (2).

Consequently, the equation of motion becomes

Thus, the velocity profile becomes
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where H= diameter of the cylindrical mold

r = 0 represents the centerline

r = H/2 represents at wall

V = Average velocity

Volumetric flow rate

Area of the entrance of mold

Pressure boundary conditions then follow from equations (12) and (13)

in such a way as to again insure consistency with the momentum balance.

The following principles form the basis for the free-surface boundary

conditions :

i) Stress tangential to the surface must vanish.

ii) Stress normal to the surface must exactly balance any

externally applied normal stress.

The detailed application of the boundary condition to the finite

difference form of the Marker And Cell method will be discussed in

the next chapter.



CHAPTER III

THE SOLUTION TECHNIQUE

In the preceding chapter we utilized the momentum equation to describe

the dynamics of non-Newtonian melt through the cylindrical flow region.

The complexity of the equations involved results in simplifying

assumptions of incompressible isothermal flow and the resort to

computer simulation and numerical solutions of these equations. The

principal method we use here to solve this particular problem is the

adaptation of a numerical technique based on the Marker And Cell (MAC)

method. The preference for this particular numerical solution technique

has been essentially governed by the presence of a free surface, at the

front fluid boundaries, whose position varies with time and also by the

nature of the two dimensional flow at the front flow region.

11
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3.1 	 Representation of The Fluid Flow Field

In the development of any computing method for fluid dynamics

problems, there are two interacting considerations that must be taken

into account :

i) How are the fluid and its environment to be represented ?

ii) How are changes through time to be calculated ?

Many representations can be visualized for calculating the flow of an

incompressible fluid with a free surface. The MAC arrangement appears

to be one of very few approaches which enable us to achieve rigorous

mass and momentum conservation.

There are, in effect, two coordinate systems used in MAC-method

calculations : The primary one covers the entire domain of interest

with rectangular grid of cells, each of dimensions (δr by δz. The cells

are numbered by indices i and j, with i counting the columns in the

r-direction and j counting the rows in the z-direction. The field

variable values describing the flow field are directly associated

with these cells. Their point of definition, relative to a cell, are

shown in Fig. 3.1 .

Actually the true field would, in general, have different set of

field-variable values for every infinitesimal point in the fluid. The

representation used for computing, however, must be restricted to a

finite number of values, each approximating an average through the



Figure 3.1

Field Variable Layout

13
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immediately adjacent region. It follows that the accuracy of the

representation depends strongly upon the fineness of the mesh compared

to the macroscopic structure of the flow.

The placement of the field-variable quantities relative to the mesh

is of considerable importance to the matter of conservation. It has

been observed,by the developers of MAC-method at Los Alamos Scientific
3

laboratory , that if the field-variables are placed at the cell centers

the following complication is introduced : To attain rigorous finite

difference mass conservation, the finite difference equation for

pressure would require the involvement of the next layer of cells

beyond that which immediately surrounds any central cell. Such an

involvement adds enormously to the complexity and inaccuracy of the

solution technique.

Apart from the primary-coordinate system of finite-difference cells,

there is also a coordinate system of particles whose motions describe

the trajectories of fluid elements. These particles serve two

purposes : First, they show which cells are surface cells, into which

the surface boundary conditions should be applied. Secondly, they show

the motion of the fluid and all its distortions as it passes through

the computing region. Thus, these particles delineate the fluid surface

location and orientation. They move through a network of Eulerian cells,

each cell is flagged to denote whether it is an empty cell (E)

containing no fluid (hence no particles), a surface cell (S), which

contains fluid but is adjacent to an empty cell, or a full cell (F),
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which contains fluid and is not next to an empty cell. In addition,

the cell network is surrounded by a frame of boundary cells (B). These

may also contain particles, in which case they are either inflow or

outflow boundaries, or, they may be empty representing rigid walls

that may be ' free-slip ' or ' no-slip '. Fig. 3.2 illustrates this

labeling. However, it should be noted here that these particles do not

contribute anything to the dynamics of the flow. They enter the

calculations only when determining the location and orientation of the

free-surface. The solution of all the finite-difference approximations

is carried out only in the region or regions of the mesh that contain

particles.

3.2 	 Outline Of The Computing Method

The cell-and-particle system enables an instantaneous representation

of the fluid for any particular time during the evolution of the

dynamics. In addition, it is necessary to have a means of actually

calculating the changes with time of the fluid representation.With the

help of this computing technique the prescribed initial conditions can

develop, within the limitations imposed by the boundary conditions,

into that subsequent set of configurations that most nearly represent

the behavior of a real fluid.

Like most other fluid dynamics computing techniques for transient

problems, the MAC method works with a time cycle, or ' movie frame '

point of view. This means that the calculation proceeds through a



Figure 3.2

Cell Labels and Computing Mesh
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B = Boundary (Inflow,Outflow, Free-slip ,or No-slip)

E = Empty (No Marker Particles)

F = Full(Contains particles and is not adjacent to an Empty cell)

S = Surface(Contain particles but is exposed on one or more sides)
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sequence of cycles, each advancing the entire fluid configuration

through a small, but finite, increment of time, δt. The results of

each cycle act as initial conditions for the next one, and the

calculation continues for as many cycles as the investigator wishes.

Each cycle itself is subdivided into phases :

i) The pressure for each cell is obtained by solving a finite

difference Poisson's equation, whose source term is a function of

the velocities. This equation was derived subject to the requirement

that the resulting momentum equations should produce a new velocity

field that satisfies the incompressibility condition.

ii) The full finite-difference Navier-Stokes equations are used to

find the new velocities throughout the mesh.

iii) The marker particles are moved to their new positions, using for

their velocities simple interpolated values from the nearby cells.

iv) Bookkeeping processes are accomplished related to the creation or

destruction of surface cells, the input or output of particles, the

advancement of a time counter, printing or plotting results, and

numerous similar matters.

By the end of the cycle, the results have been arranged in the computer

memory in such a way that the next cycle can immediately begin.
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3.3 	 The Finite Difference Equations

The finite-difference for equation (1), the discrepancy term, is :

Thus, the incompressibility condition becomes

which we require for every cell at every time step.

The finite -difference forms of equations (12) and (13) can be

written as :



where

19

The superscript α or α+1 refer to a value at time α δ t or (α+i) δt,

so that α counts the number of time cycles, where the superscript is

omitted, α is implied, i.e., the value of the quantity at the beginning



of the cycle.

The finite difference approximation for calculating the viscosity,

equation (7),is given by

20

and

In the above finite difference equations ( eqs. (15), (16), (17) and

(18) ) , some of the primary cell variables, such as velocities, appear

at positions other than those assigned in the Fig.3.1 . In such a case,

a special differencing code, referred to as ZIP type, is used.
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A description of this technique and a discussion of its advantages are

presented by Hirt10 . The following are some examples of the ZIP code :

It may be noticed that as soon as the pressures are known for all the

cells, the equations (15) and (16) become appropriate for the calculation

of new velocities, a process accomplished by simple algebraic

substitution. To find an equation for the pressures, it is only

necessary to manipulate equations (15) and (16) into an expression

for the rate of change Dij . Let us define :

Then, by substituting equations (15) and (16) into equation (14) we

have :
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where

The equation obtained by setting D
α+1
i,j = 0 in equation (19) is used

for finding the pressures.

3.4 	 Pressure Field Calculation

Equation (20) is now applied iteratively over all the points concerned

until the φ
i,j

 computed at each point shows little further change.

We can rewrite equation (20) as
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where λ is an overrelaxation parameter between 0 and 1. If λ =0 ,

overrelaxation is eliminated completely. The old values of φ

(iteration No. s) may be used on the right hand side until a complete

set of new values φ (iteration No. s+1) are computed. The Gauss-Seidel

Method11, where the most recent values of φ are used on the right hand

side, is however preferred.

The iteration is considered to have converged when

has been satisfied for all the concerned points.(Where ε =2x10 -4 usually)

Computation of pressure in the boundary cells and at the free surface

requires certain special considerations which will be discussed later.

3.5	 The Particle Movement

The marker particles,which enter into the solutions of the cell

quantity equations, serve only the purpose of showing where the moving,

free surface is located, and accordingly which cells should have

free-surface boundary conditions imposed in them. In order to keep this

information on free-surface position current, it is necessary to move

the marker particles each cycle in such a way that they accurately

represent the fluid motion.
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The technique used by the researchers at the Los Alamos Scientific

Laboratory
3
 is essentially to find a velocity for the movement of each

particle by using a simple area-weighted interpolation method among

the nearby cell velocities. Huang
6
 used the same area-weighting scheme

for the simulation of flow through parallel plates. With reference to

Fig.3.3 , the reference cell is shown as the cell lying between the

lower pair of V
r velocities when calculating the Vr 

of the Kth particle

(Vrk ).

Similarly, the reference cell will be considered as the one lying

between the left-most pair of V
z 
velocities when calculating the V

z 
of

the Kth particle (V Zk). The reference cells provide an indexing base

for referencing the four V r s and four Vz s. The donor cell is, on the

otherhand, defined as the cell containing the particle before it is

moved. Evidently, there is a fifty-percent chance of the reference cell

being the donor cell for either V
rk 

or V
zk 

. The reference cell is

indexed as (IR,JR) and the donor cell as (ID,JD) . A particle cell of

the same dimensions as the computational cell, is constructed around

the marker particle of interest and is positioned so that the particle

lies at its center. The fractional area of the cell segments A 1 ,A2 ,A3

and A4 ,generated by the intersection of a grid line with a line passing

through a reference cell center, are used for weighting the nearest

velocities. From Fig.3.3 it is evident that V rk and VZk can be calculated

for any of the four possible cases (i,ii,iii and iv) by using the

equation on the following page
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Figure 3.3

Area Weighting Scheme For The Particle Velocities V rk and Vzk. The Shaded
Cell Is The Reference Cell In Each Case.



or

or

After Vrk and Vzk have been determined, the particles are moved by

adjusting its position co-ordinates (r k ,zk) as follows :

and

It should be noted here that the particle co-ordinates are calculated

in units of cell distance rather than distance on the basis of mold

size. Particles are created from the inflow boundary at the prescribed

rate. If a particle moves to an Empty Cell, the receiving cell becomes

a Surface Cell. Alternately, if all particles move out of a Full or

Surface Cell, it is labelled empty. However, the time interval is

normally set in such a fashion that the particle movement per increment

never exceeds half a cell. Thus a transition from Full to Empty or

Empty to Full can only take place over several time steps during which

26
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time a cell becomes a Surface Cell before turning Empty or Full.

3.6 	 Boundary Conditions

The type of boundary conditions to be applied depend entirely on the

kind of boundary under consideration. Based on the mold geometry involved

in this study, we describe the following conditions :

i) 

	

At The Center Line (Figure 3.4)

This is a free-slip boundary which has a line of symmetry. The

transverse velocity component vanishes at the centerline, and there

is no gradient in either the flow direction velocity component or

the pressure function P. It is noted that the particle which happens

to be at the intersection of the centerline and the front free

surface should move to the wall due to the fountain effect.

Physically, the particles which originate from the center of the

entrance will decelerate along the centerline toward the front

surface. Once the particle reaches the intersection of the

centerline and the front free surface, it should continue to move

ahead, otherwise, there is no room for the next coming particle to

move to this point. Consequently, we assign the transverse velocity

component at this particular point to be approximately equal to

that of the next grid point. Thus,



Figure 3.4

Boundary at the centerline

28
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ii) 	 At The Wall (Top And Bottom Side) (Figure 3.5)

Before proceeding to describe the boundary conditions, it should

noted here that the present applications of the MAC-method

restrict the rigid walls,as well as influx and outflux walls, to

follow the cell boundaries. This is inevitable as Eulerian fluid

dynamics calculation precludes any other form of representation.

In this case we have a no-slip rigid boundary. The velocity

components both normal and tangential to the wall are forced to

vanish.



Figure 3.5

Boundary at the bottom wall
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iii) At The Entrance 	 (Figure 3.6)

An input wall or an inflow wall at the entrance allows the fluid

to move into the system at a prescribed rate. The flow direction

velocity field is a function of z and kept constant throughout

the run. Marker particles are inserted through the wall to

represent the incoming fluid.



Figure 3.6

Boundary at the Entrance

32
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iv) At The Right Side Wall 	 ( Figure 3.7 )

Here the boundary condition is analoguous to top and bottom side

wall where a no-slip rigid wall exists. Consequently,



Figure 3.7

Boundary at the right side wall
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v) Boundary Condition At The Free Surface

The free surface boundary conditions necessitates the condition

that no momentum flux may pass through the free surface of the fluid

In this connection, the stress tensor, τ
i,j

 , is defined as the

amount of i-th component momentum flowing per unit time through

unit area normal to the j-th direction. To satisfy the above,free

fluid surface condition may then be expressed by

where, Pe is the external pressure applied to the fluid surface,

assuming zero stress on the air side.

	

nj is the unit normal to the surface

and, 	 τi,j  , the stress tensor for an incompressible fluid,

	

is given by :

and P is the internal pressure at the surface.

In the equation (24) above the external pressure term, P e ,

consists of two pressures, one being atmospheric and the other due
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to surface tension effects at the fluid surface. Thus,

where, σ is the surface tension coefficient ( stress/ unit length )

and, R1 and R2 are the principal radii of curvature at the surface.

It has been observed that, even with high surface tension coefficients,

the surface tension is very small compared to the viscous stresses

generated by the high viscous polymer fluid flow. Consequently, the

external pressures P e are represented by the atmospheric pressure

Pa in this study.

The trace of the free fluid surface can be represented by

Let nr and nz be the components of a unit outward vector, normal to

the surface. Using equation (27) these components are given by

Also, let mr and mz 
be the corresponding components of a unit

tangential vectors so that
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Thus, within the fluid at its surface, the boundary condition

equation (24) may be separated into two components, the tangential

stress condition :

and the normal stress condition :

If the curvature is small, the (δs/ δr) 2 term in equations (28) and

(29) may be neglected and equations (30) and (31) may be approximated

by :

and

where n refers to the local outward normal direction of the free

surface and m to the tangential direction.
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3.7

	

Application Of Normal Stress Condition

Equation (33) shows that the application of the normal stress

condition requires the determination of both the surface slope

and the location within the surface cell at which the internal

and external normal stresses must balance. The exact surface

slope may be determined at the expense of a considerable amount

of calculation. Instead, an approximation, based on the cell

flagging scheme in Fig.3.2 , is used.

Thus, if the cell above the surface cell is the only adjacent

empty cell, then the surface is considered to be horizontal. If

both the cell to the left and the one above the surface cell

are empty, then the surface is considered to be oriented 45

°to the horizontal. Similarly, orientations at 90° and 135°,

as well as the equivalent cases with the surface exposed from

below, may be also determined. The appropriate normal stress,

which depends on the slope,is then derived from equation (33) .

Fig.3.8 shows the fifteen possible arrangements of empty cells

(E) about a surface cell (S).

By satisfying the continuity equation, given by eq.(14), for all

free surface cells the surface velocities (indicated by x

in Fig.3.8) are calculated. For one empty face ( configurations

1, 2, 4 and 8 ) or two adjacent faces ( 3, 6, 9, 12 ) the



Figure 3.8

Fifteen Possible Arrangements of Empty Cells

About a Surface Cell.
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appropriate Vr and/or V z may be calculated precisely. In the

remaining cases ( 5, 7, 10, 11, 13, 14 and 15 ) more than one V r and/or

Vz are involved and the treatment can only be approximate. Here one

velocity is adjusted to assure that at least D = 0 in the surface cell

Accordingly, the appropriate forms of equation (14) , labelled (a to h)

in equation (34) are used in the following arrangement for each of the

fifteen configurations :



Configuration No.

In Figure 	 3.8

Form of Equation (14)

Used

1, 	 5, 	 11, 	 13, 	 15 a

2, 	 7, 	 10, 	 14 b

3 c and f

4 d

6 e and f

8 g

9 c and h

12 e and h

41
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Once the surface cell velocities on empty cell faces are known, the

normal stress condition given by equation (33) may now be applied.The

cell arrangements in Fig. 3.8 can be classified into three groups :

Group (i) : Surface cells with one empty side (1, 2, 4 and 8)

The free surface orientation is either horizontal (2 and 8) ,

or vertical (1 and 4)

Group (ii) : Surface cells with two diagonally adjacent empty

cells (3, 6, 9 and 12)

The outward normal direction is assumed to be at 45° between the

exposed sides of the cell. In this case the normal stress condition,

given by equation (33) reduces to

where the sign is chosen equal to the sign of nrnz12 .

For example, if the open sides are at (i, j+1/2) and (i+1/2, j) , then nr

and nz are positive.

Group (iii) : Surface cells with three open sides or with two open

sides that are opposite one another (5,7,10,11,13,14 and 15). The pressure

for the cell is set equal to the external pressure P e .
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The velocity partial derivatives in the equations (35) through (37)

can easily be approximated by local finite differences and these eight

approximations are listed below :

Configuration No. 	 Finite Difference Approximation

in Fig. 3.8 	 For Surface Pressure P i,j.
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3.8 Application Of Tangential Stress Condition

The tangential stress condition is given by the equation (32).

The position and shape of the surface have to be known before

this condition can be applied. From the arrangement of

neighboring empty cells the surface slope can be roughly

estimated, as was done in the application of normal stress

condition, although these can be calculated from the location

of marker particles. This estimation is sufficiently accurate

for our purpose because of other inherent approximations in the

MAC method itself. Consequently, for a two-dimensional surface,

if the surface is nearly horizontal or vertical,which is the

case when the surface cell is open at one end to the empty cell

only, the tangential stress condition of equation (32) becomes :

If, however, the surface slope is at 45 0 to the horizontal, i.e.

when there are two adjacent empty cells contiguous to the surface

cell, the tangential stress condition reduces to

From these two forms of the tangential stress condition, the

just outside tangential velocities may be calculated with the

help of finite difference approximations. There are only four
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basic arrangements of surface (S) to empty (E) cells that must be

checked to satisfy equation (39). These are illustrated in Fig. 3.9 .

The equation (40) can not be easily formulated in the same fashion.

Instead, it is satisfied by making (δV r/δr) and (δV z/δz) each equal

to zero.This was done in equation (34). The appropriate Finite

Difference Approximations of the equation (39) are given below for

each of the four arrangements shown in Fig. 3.9 .



Figure 3.9

Four Arrangements of Surface (S) to Empty (E) Cells For

Tangential Stress Condition.

( The surface cell in each case has the indices i,j

and the velocity to be determined (x) is a function

of three other velocities(*) . )
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3.9 	 Stability And Accuracy

The solution of initial value problems by finite-difference

approximations is almost always plagued by potential difficulties with

numerical instability. There are unique numerical instabilities

associated with each of the iteration sequences in MAC calculations,

i.e., with the pressure iteration at a given time step and with the

successive steps of time advancement. In the original MAC method3 the

condition necessary to insure stability through successive time steps

was

However, this condition must be modified to suit the present

non-Newtonian problem. This is done by setting the viscosity η to be

at the zero shear rate for the least value of δt. For this particular

high viscosity case, the time increment per cycle is quite small which

necessitates a long consumption of computation time.

The obvious requirements, as far as the accuracy is concerned, include

the necessity for cells fine enough to resolve the features of interest

and for time steps small enough to prevent instability. However, it

should be noted here that a precise statement concerning cellwise

resolution appears impossible to give. In general, it may be stated

that the cells must be so small that no field variable changes

appreciably across any cell.
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Experience with many different types of computing techniques has shown

that one of the most important contributors to accuracy is the degree

of conservation of the finite-difference equations. For incompressible

flow calculations of the type discussed here, the primary quantities to

conserve are mass and momentum. Mass conservation is assured if, at

every cycle, D = 0 for every cell.

Momentum conservation is also strongly required for accuracy of

calculations. Consequently, the terms in the transport part of the

momentum equations of the form

are transformed (using the incompressibility condition) to

The difference form of such an expression can then be written as pure

differences, so that the flux of momentum out of one side of a cell

exactly equals the flux into that same side of the adjacent cell.



CHAPTER IV

COMPUTATIONAL DETAILS

4.1 	 Sequency Of Computation

Based on the solution technique described in the last chapter,we are

now in a position to set up a computer program to solve this particular

problem. The computer logic flow diagram in Fig. 4.1 explains how this

simulation of the filling process can be carried out. Each box in the

flow diagram is now discussed in detail in the order in which it

appears.

1) Input Information

i) material parameters

a) density δ

b) Rheological parameters n, m

ii) Geometrical parameters

a) dimension of gate

b) dimension of mold

iii) Process operating condition

specify volumetric flow rate, Q

iv) Specify inflow velocity profile

v) 	 Specify the number of particles per cell.

2) Ref lagging

Ref lagging is performed by making,first, a sweep through all the

particles to determine which cells contain particles and which

cells do not. Then, all SUR cells that no longer contain particles

49



Figure 4.1

Computer Logic Flow Diagram
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become EMP cells, and velocities are zeroed on any faces of such cells

that are adjacent to other EMP cells. Next step is to make a check on

the FUL cells. If FUL cell has any EMP neighbors, it becomes a SUR cell

Finally, the SUR cells with no EMP neighbors become FUL cells.

3) SUR Cell Velocities On EMP Cell Faces

These velocities are forced to satisfy the equation of continuity

( equation (34) ).

4) Just-outside And Across-The-Wall Tangential Velocities

The velocities outside the free surface are adjusted to satisfy the

tangential stress condition, equation (41). The wall boundary

conditions are used to set the tangential velocities across the

walls.

5) Calculate The Pressure Field At The Surface Cells

The pressure field is adjusted to satisfy the normal stress condition

at the- fluid surface, equation (38) .

6) Calculate The Viscosity Field

This is done with the help of equations (17) and (18).

7) Iteration Of The Pressure Field

The iteration of the equation (20) among all FUL cells leads to

the proper pressure field for each cell.
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8) Final Velocity Field

The pressure field obtained from can now be applied to equations

(15) and (16) to calculate the final velocities field.

9) SUR Cell Velocities On EMP Cell Faces

Same as in step 3

10) Just-outside And Across-The-Wall Tangential Velocities

Same as in step 4

11) Is The Cavity Full ?

As long as there is any EMP cell remaining, the cycle is kept

running. Otherwise the program can be stopped.

12) Time Increment δt

The size of time increment δt must consider the stability

criterion and consequently equation (42) has to be checked.

13) Particle Movement

The marker particles are moved according to the velocity components

in their vicinity as described in equations (22) and (23). After

all the particles have been moved, particles are created at the

inflow boundary at the prescribed rate.

The control is now passed back to the reflagging step to begin the

next cycle.
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4.2 	 Input Of Parameters In The Computer Program

A computer program in FORTRAN code, which is a modification of the

original program written by Huang 6, has been used to find a numerical

solution of the finite-difference equations developed in the preceding

chapter. The rheological properties of glass-bead-filled polypropylene

used by Huang6 were originally investigated by Schmidt8. The same

values for the parameters of the power law constitutive equation have

been used in the present study :

n 	 m

Glass-bead-filled polypropylene 	 0.71 	 20000

(φ = 0.05 )

The melt density is considered to be approximately equal to 0.735gm/cm 3

at a constant temperature of 240 ° C.

A listing of the computer program, which had to be modified for

compatibility with New Jersey Institute Of Technology UNIVAC Computer,

is given in Appendix A.

The input of geometrical parameters to the program includes the

dimension of the mold and gate entrance. As discussed earlier, the

mold under consideration is of cylindrical shape with a diameter of

1/4" and a length of 2.5" .The gate entrance to the mold is taken as

1/8" x 1/8".

A constant volumetric flow rate of 2.21 in
3 /min (0.603 cc/sec) is
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used for the purpose of calculation.

Exactly one half of the flow field in r-z plane is considered for

computation due to the presence of a line of symmetry along the center

line of the cylindrical mold. Consequently, a 7 x 72 grid system, with

a total number of cells equalling 504, is used for our purpose. Thus,

the dimension of r-z plane becomes 1/8" x 2.5" (0.3175cm x 6.35cm) and

the grid size equals 6z = 0.0907 cm by Sr = 0.03175 cm. An average

of 10 particles per cell is maintained to represent the fluid flow and

approximately 50 minutes of computation time is necessary for a complete

run of the program.



Figure 4.2

Schematic Diagram of The 7 x 72 Grid System

ip2 = 72 	 ipl = 71 	 jp2 = 7 	 jp1 = 6

Δr = 0,03175 cm 	 Δz = 0.0907 cm



CHAPTER V

ANALYSIS OF COMPUTATIONAL RESULTS

In this chapter we will be trying to present and analyze the massive

amount of data generated by the computer program in our simulation

studies. Since the purpose of the present study is to visualize the

flow phenomena as the glass-bead-filled polypropylene melt enters the

cylindrical cavity, we will be particularly interested in the velocity

and pressure distribution along the cavity as the flow front advances.

Srictly speaking, the flow in the specific mold is a three-dimensional

flow. However, as mentioned earlier, because of the inherent

mathematical difficulty in solving a three-dimensional flow we are

compelled to use the two-dimensional flow model. Consequently, the

velocity distributions can be plotted in the axial and transverse

directions only.

A quantitative information of the flow details is provided by Figures

5,1 through 5.8. These plots are velocity profiles in the axial

direction at different times. The value of z d indicates the distance

from the entrance of the mold. The velocity profiles show how the front

surface moves with time and also the fact that the velocity decelerates

in the flow direction. This is evident from the curves which show a

gradual tendency of flattening out as we move further away from the

entrance. The velocity at the wall is zero in each case and it
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registers a pattern of sharp deceleration as we come near the

wall.
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Velocity Profile In The Axial Direction, V z

For Various Position From The Entrance, z d

Time = 0.107 seconds 	 z d = z/Δz

Δz = 0.0907 cm 	 Δr = 0.03175 cm
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Figure 5.1



Velocity Profile In The Axial Direction, V z

For Various Position From The Entrance, z d

Time = 0.322 seconds 	 zd = z/Δz

Δz= 0.0907 cm 	 Δr = 0.03175 cm
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Figure 5.2



Velocity Profile In The Axial Direction, V z

For Various Position From The Entrance, zd

Time = 0.742 seconds 	 z d = z/Δz

Δz = 0.0907 cm 	 Δr = 0.03175 cm
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Figure 5.3



Velocity Profile In The Axial Direction, V z

For Various Position From Entrance, z d

Time = 1.393 seconds 	 zd = z/Az

= 0.0907 cm 	 Ar = 0.03175 cm
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Figure 5.4



Velocity Profile In The Axial Direction, V z

For Various Position From The Entrance, zd

Time = 2.49 seconds 	 zd = z/Δz

Δz = 0.0907 cm 	 Δr = 0.03175 cm
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Figure 5.5



Velocity Profile In The Axial Direction, V z

For Various Position From Entrance
, 

z
d

Time = 3.797 seconds 	 zd = z/Δz

Δz = 0.0907 cm 	 Δr= 0.03175 cm
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Figure 5.6



Velocity Profile In The Axial Direction, Vz

For Various Position From The Entrance, zd

Time = 5.91 seconds 	 z
d 
= z/Δz

Δz = 0.0907 cm 	 Δr = 0.03175 cm
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Figure 5.7



Velocity Profile In The Axial Direction, Vz

For Various Position From The Entrance, z d

Time = 8.39 seconds 	 zd = z/Δz

Δz = 0.0907 cm 	 Δr = 0.03175 cm
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Figure 5.8
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The transverse velocity profiles are plotted in Figures 5.9 through

5.16 .It can be observed from these diagrams that the velocity in the

transverse direction is comparatively small in the region near the

entrance and reaches a significant value as we move closer to the

front surface region. This indicates an intensification of two-dimensional

flow phenomena near the front region. The transverse velocity, as should

be expected in this case, is observed to be zero both at the wall and

the centerline. However, the velocity of the front surface at the

centerline has a non-zero magnitude.



Transverse Velocity Profile, V r

For Various Position From The Entrance, z d

Time = 0.107 seconds 	 zd = z/Δz

Δz = 0.0907 cm 	 Δr = 0.03175 cm
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Figure 5.9



Transverse Velocity Profile, V r

For Various Position From The Entrance, z d

Time = 0.322 seconds 	 z d = z/Δz

Δz = 0.0907 cm 	 Δr = 0.03175 cm
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Figure 5.10



Transverse Velocity Profile, V r

For Various Position From The Entrance
, 

z
d

Time = 0.742 seconds 	 zd = z/Δz

Δz = 0.0907 cm 	 Δr = 0.03175 cm
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Figure 5.11
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Transverse Velocity Profile, V
r

For Various Positions From The Entrance, zd

Time = 1.393 seconds 	 zd = z/ΔZ

Δz = 0.0907 cm 	 Δr = 0.03175 cm

Figure 5.12



Transverse Velocity Profile, V
r

For Various Positions From The Entrance, zd

Time = 2.489 seconds

		

z d = z/Δz

Δz = 0.0907 cm 	 	 	 Δr= 0.03175 cm
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Figure 5.13



Transverse Velocity Profile, V r

For Various Positions From The Entrance, z d

Time = 3.797 seconds 	

	

zd = z/Δz

Δz= 0.0907 cm 	 	 	 Δr = 0.03175 cm
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Figure 5.14



Transverse Velocity Profile, V r

For Various Positions From The Entrance, Zd

Time = 5.909 seconds

	 	

z
d
= z/Δz

Δz = 0.0907 cm 	 	 	 Δr = 0.03175 cm
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Figure 5.15



Transverse Velocity Profile, V
r

For Various Positions From The Entrance, z d

Time = 8.39 seconds 	

	

zd = z/Δz

Δz = 0.0907 cm 	 	 	 Δr = 0.03175 cm
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Figure 5.16
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Based on the velocity profiles plotted earlier, we are now in a

position to draw the flow front progression in r-z plane at various

times. The plot, as shown in Fig. 5.17 , is drawn over half of the

symmetrical mold cavity. The values of r/Δr equal to 0 and 5 represent

the centerline and bottom wall respectively.

Except for the initial time of 0.107 seconds, the shape of the flow

front becomes flatter and flatter as the time progresses.In each case

it reaches a maximum value at the centerline and falls off to zero

as we approach the bottom wall.



Figure 5.17

Flow Front Progression in r-z plane at various times.

t l = 0.107 sec 	 t2 = 0.322 sec 	 t3 = 0.742 sec 	 t4 = 1.393 sec

t
5 
= 2.489 sec 	 t

6 
= 3.797 sec	 t7 = 5 . 909 sec 	 t8 = 8 . 39 sec
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Figures 5.18 through 5.25 show the pressure distribution across the

mold at different times. A dimensionless form is utilized by taking the

ratio of local and maximum pressure in each case. From the figures it is

observed that the pressure falls off to zero at the wall,as was expected

in the case of velocity profiles discussed earlier. We can also observe

from the distribution plots that, at each indicated time, over half of

the filled cavity has reached a pressure of 50% of the maximum pressure

or higher.

Finally, we can conclude this investigation by saying that such

simulation of the mold filling process with Marker And Cell numerical

technique is indeed a powerful tool for the detailed study of the

velocity profiles and pressure distribution in two dimensional isothermal

problems. Although such simulation works have already been reported in

the literature, the present study purports to be an extension of the
1

earlier work done by Kamal and Kenig (using semi-circular mold
6

geometries) and Huang who used a flow region between two rigid

parallel plate boundaries.
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Pressure Distribution At Various Positions From The Entrance

Time = 0.107 seconds 	 	 	 zd = z/Δz

Δz = 0.0907 cm 	 	 	 	 Δr = 0.03175 cm

Figure 5.18
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Pressure Distribution At Various Positions From The Entrance

Time = 0.322 seconds 	 zd = z/Δz

Δz = 0.0907 cm 	 Δr = 0.03175 cm

Figure 5.19
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Pressure Distribution At Various Positions From The Entrance

Time = 0.742 seconds 	 z
d 
= z/Δz

Δz = 0.0907 cm 	 Δr = 0.03175 cm

Figure 5.20
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Pressure Distribution At Various Positions From The Entrance

Time = 1.393 seconds 	 zd = z/Δz

Δz = 0.0907 cm 	 Δr = 0.03175 cm

Figure 5.21
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Pressure Distribution At Various Positions From The Entrance

Time = 2.489 seconds 	 zd = 
z/ Az

Az = 0.0907 cm 	 ar = 0.03175 cm

Figure 5.22
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Pressure Distribution At Various Positions From The Entrance

Time = 3.797 seconds 	 z
d
 = z/Δz

Δz = 0.0907 cm 	 Δr = 0.03175 cm

Figure 5.23
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Pressure Distribution At Various Positions From The Entrance

Time = 5.909 seconds 	 z
d 
= z/Δz

Δz = 0.0907 cm 	 Δr = 0.03175 cm

Figure 5.24
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Pressure Distribution At Various Positions From The Entrance

Time = 8.39 seconds 	 zd 
= Z/ΔZ

Δz = 0.0907 cm 	 Δr = 0.03175 cm

Figure 5.25



Appendix A

A Listing of The Computer Program
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C Program For Simulation of Cavity Filling in Injection Molding
DIMENSION F(72,7),V(72,17),UNEW(72,7),U(72,7)
%,THETA(72,7),S(72,7),KF(22,7),VNEW(72,7)
DIMENSION RIp(72),PRI(72),RMORP(72),R(72),RRP(72)
DIMENSION BCLT(7),BCRT(7),ROS(7),RPORM(72)
DIMENSION XP(8000),VISS(7)
VI1=0

INTEGER CYCLE
C********'****************************************
C*********************************************
C**********************************************

Input
C 	 Flag

C*****************************************************C******************************************
C************************************************

WRITE(6,3037)
FORMAT(2X,'Remark 	 Front Vel',/2X,'ALP=0.9

%',/2X,'VI1=U(I,2) 	 ITWO=I')
BND=1.0

FUL=2.0

EMP=4.0

C********************************************
C*******************************************
C******************************************

Geometric
C*****************************************
C*******************************************
C*********************************************

PI=3,1416
IBAR=70
JBAR=5

RDIS=(2.5)*2.54
H=0.125*2.54
ZDIS=H/2

WIDTH=RDIS
GH=0.125*2.54

GH2=GH/2
ZB=PI*WIDTH/2
DR=RDIS/IBAR

DZ=ZDIS/JBAR
HWID =WIDTH/2
ITT=0
L1=0
L2=JBAR
L3=0

L5=IBAR



L6=IBARL7=0H=2*DZ*JBAR

RO=BR*IBARRI=DR*L@

C************************************************************C************************************************************C************************************************************

C 	 	 	 Program ControlC************************************************************C************************************************************

C************************************************************

PC=0.0ALP=0.9ITYPE=1
NCLCO=1NSPA=20NXB=2NYB=2ITIC=50DTC=10VTIC=1.0SXE=0.1*DRSXE=VI1C*DZ

C************************************************************C************************************************************C************************************************************

C 	 	 Boundary Conditions

C************************************************************C************************************************************C************************************************************

BCB=1.0
BCR=-1.0BCT=-1.0BCL=-1.0

C************************************************************C************************************************************C************************************************************

C 	 Material Parameters
C************************************************************C************************************************************C************************************************************

GR=0
GZ=0VIS=35000

DT1=(DR**2*DZ**2)/(4*VIS*(DR**2+DZ**2))
DT=DT1

RHO=0.735

CP=0^65



RHOCP=RHO*CP

THCON=8.3E -04
HTC=5.0/360
HTCA=HTC/10

GASC=1.927E -03
ACE=6.0

AA=1.85E -00EN=1.0+(ALOG10(9000.)-ALOG10(32000.))/(ALOG10(8.)-ALOG1

10(0,1))
EM=20000/(1.0(EN -1))

C*******:*********.********************************
C*************************************************

C***************************************************
C 	 Operating Parameters
C*********************************************************

C*****.*******************************************
C************************************************

TIME=0
QFLOW=(2.21/60)*2.54*2.54*2.54
VMAXR=((3*EN+1)/(EN+.1))*QFLOW/(PI*(0.1875*2.54)**2)TFILL=2.5*2.5*0.125*60/2.21

QIN=H*RO/TFILL
UL=QIN/H

ULI=QFLOW/(PI*GH2*H)
ULSR=ULI

UR=0

TIN=190
TW=30

TA=30
DPDX=-(EM/RHO)*(ULI*(1/EN+2)/((H/2)**(1/EN+1)))**EN

WRITE(6,3035) DR,DZ,DT1,UL,H,RI,RO,QIN,TFILL,RHO,VIS,
%CP,THCON,HTC,ACE,=AA,TIN,TA,TW,EN,EM

3035 FORMAT(2X,'DR=',F12.9,/2X,'DZ=',F12.9,/2X,'DT1=',F12.9,/2X%,'UL=F12.3,/2X,'H=',F12,5,/2X,'RI=',F12.5,/2X,'RO=',F12.5
%,/2X,'QIN=',F12.5,/2X,'TFILL=',F12.5,/2X,'RHO=',F12.5,/
%2X,'VIS=',F12.5/2X,'CP=',F12,5,/2X,'THCON=',F12.9,/2X
%,'HTC=',F12.9,/2X,'ACE=',F12.5,/2X,'AA=',F12.9,/2X,

%'TIN=',F12.5,/2X,'TA='F12.5,/2X,'TW=',F12.05,/2X,%'EN=',F12.5,/2X,'EM=',F12.5)
C***Parameters Listing ************************************IP2=IBAR+2

JP2=JBAR+2IP1=IBAR+1
JP1=JBAR+1
IALL=IP2*JP2

IF(PC.EQ.0) BCL=1.0
X=PC

Y=DR*(1.0 -PC)
RIP(1)=PCRRP(1)=PC



R(1)=RIP(1)-0.5*Y

DO 29 1=2,)1P2
RIP(I)=X+YRRP(I)=1.0/RIP(I)

R(I)=RIP(I)-0.5*Y

RPI(I)=1./R(I)
Z=4.0*R(I)
RMORP(1)=(Z-Y)/(Z+Y)
RPORM(I)=1.0/RMORP(I)

29 X=X+Y
RDR=1.0/DRRDR2=RDR*RDR

RDZ=1.0/DZRDZ2=PDZ*RDZ
DROD2=DR*RDZ
DZODR=DZ*RDR

RDRDZ=RDR*RDZ
W=(10+ALP)/(2.0*(RDR2+RDZ2))DTODR=DT*RDRDTODD=DT*RDZ

XR=IBAR*DR
YT=JBAR*DZ
XL=0

YB=0

CYCLE.°
C**************************************************
C**************************************************
C**************************************************
C. 	 Initial Cell Fla
C**************************************************
C**************************************************
C**************************************************

DO 37 J=2,JP1
DO 37 I=2,IP1

F(I,J)=EMP

IF(I.EQ.2) F(I-l,J)=BND
IF(J.EQ.2) F(I,J-1)=BND
IF(I.EQ.IP1) F(I+1,J)=BND

IF(J.EQ.JP1) F(I,J+1)=BND
37 CONTINUE

DO 38 J=1,JP2
BCLT(J)=BCLROS(J)=1.0

38 BCRT(J)=BCR
NP=0
IST=1

XDIS=SXE/DRYDIS=1.0/NYB

YFIR=0
NIN=NYB*(L2-L1)



COLS=0.0

	

C*************************************************************

	

C*************************************************************

	

C*************************************************************

C 	 	 Inflows Velocity

	

C*************************************************************

	

C*************************************************************

	

C*************************************************************

DO 110J=1,JP2
IF (J,GE.(L1+2).AND.J.LE.(L2+1)) GO TO 107

106 IF 	 (J,GE.(L3+2).AND.J.LE.(L4+1)) GO TO 	 109
GO TO 110

	

107 U(1,J)=((2*EN+1)/(E 	 N+1))*ULI*(1-((J-1.5)*DZ/(H/2))**(1/E
1N+1))UNEW(1,J)=U(1,J)

BCLT(J)=-1
	 GO TO 106

109 	 U(IP1,J)=UR

	 BCRT(J)=-1

	

IF(UR.NE.0) GO TO 110

	 ROS(J)=1	 BCRT(J)=1

110 	 CONTINUE

	 UMAX=((2*EN+1)/(EN+1))*ULI*(1-((1.5-1.5)*DZ/H/2))**(1/E1N+1))

	 U(1,1)=U(1,2)
	 U(1,JP2)=-U(1,JP1)

	

DO 111 0 J=2,JP1

	

JPLUS=J+1

	

JMINUS=J-1
	 SRA=(U(1,JPLUS)-U(1,JMINUS))/(2*DZ)

	

VISS(J)=EM*((SRA)**2)**((EN-1)/2)

	

1110WRITE(6,1111) SRA,J,VISS(J)

	

1111 	 FORMAT(2X,'SR=',E11.3.2X,'VIS(',I1,')=',E11.3)

C*************************************************************

	

C*************************************************************

	

C*************************************************************

C 	 	 Reflagging

C*************************************************************

	

C*************************************************************

	

C*************************************************************

	 ICELL=11250 CONTINUE	 IF(ICELL,EQ.1) GO TO 250

TIME=TIME+DT
GO TO 1251

250 	 DO 255J=2,JP1
DO 255 I=2,IP1

255 KF(I,J)=0

	



NPT=0

K=1
260 I=XPK)+2

J=XP(K+1)+2

KF(P,J)=KF(I,J)+1
K=K+2

NPT=NPT+1

IF(NPT.LT.NP) GO TO 260
DO 265 J=2,JP1
DO 265 I=2Y,IP1

5 IF (F(I,J).NE.SUR) GO TO 265
IF (KF(I,J),NE,0) GO TO 265

F(1,J)=EMP

IF (F(I+1,J).EQ.EMP) U(I,J)=0
IF (F(I-1,J).EQ.EMP) U(I-1,J)=0
IF (F(I,J+1).EQ.EMP) V(I,J)=0
IF (F(I,J-1)EQ,EMP) V(I,J-1)=0

265 CONTINUE
DO 270 J=2,JP1

DO 270 I=2,IP1
IF(KF(I,J).EQ.0) GO TO 267

IF (F(I,J).NE.FUL) GO TO 267IF(F(I+1,J).EQ.EMP.OR.F(I-1,J).EQ.EMP.OR.F(I,J+1).EQ.EM

1P.OR.F(I,J-1).EQ.EMP) F(I,J)=SUR
GO TO 270

267 IF(F(I+1,J).EQ.EMP.OR,F(I-1,J).EQ.EMP.OR.F(I,J.+1).EQ.
%EMP.OR.F(1,J-1).EQ.EMP) GO TO 270

F(I,J)=FUL
270 CONTINUE

ITWO=2
IPMINU=IP1-JP2

DO 2270 I=2,IPMINU
IF(F(I+JP2,JP1).EQ.SUR) ITWO=2
IF(F(I,JP1).EQ.SUR) IFSW=I

IF (F(I,2).EQ.EMP.AND.F(I,3).EQ.SUR) F(I,2)=SUR
IF(F(I,2).EQ.SUR.AND.F(I-1,2),EQ,SUR) F(I-1,2)=FUL

2270 CONTINUE
DO ....2.20 I=2,IP1

J=JP1

2281 TF(F(I,J).EQ.SUR.AND.F(I,J-1)*EQ.EMP) GO TO 2282
GO TO 2283

2282 F(IJ-1)=SURF(I-1,J-1)=FUL

2283 IF(J.EQ.3) GO TO 2280
J=J-1
GO TO 2281

2280 CONTINUE
ASSIGN 280 TO KRET
GO TO 650

C



Theta

280 IF(CYCLE.NE.0) GO TO 300
300 CONTINUE

DO 320 J=2,JP1
DO 320
I 	 111 	 , 	 UP) GO TO 31
SNB=KF(I,J)N=0

IF(F(I+1,J).EQ.EMP) N=N+1
IF(F(I,J+1).EQ.EMP) N=N+2

IF(F(I-1,J).EQ.EMP) N=N+4
IF(F(I,J-1).EQ.EMP) N=N+8

GO TO (305,310,306,308,309,320,312,313,320,320,314,320
,

305 I1=I-1
GO TO 307

308 I1= I-1
307 FNB=KF(I1,J)

IF(VISS(J),EQ.0) 	 VISS(J)-VIS
THETA(I,J)=2*(VISS(J)/RHO)*(U(I-1,J)-U(I-2,J))/DR
GO TO 316

310 J1=J-1
GO TO 317

312 J1=J+1
317 FNB=KF(I,J1)

IF(VISS(J).EQ.0) VISS(J)=VIS
	 THETA(I,J)=2*(VISS(J)/RHO)*(V(I-1,J)-V(I-1,J-1))/DZ

GO TO 316
306 I1=I-1J1=J-1

GO TO 311
309 I1=I+1J1=J-1

GO TO 311
314 I1=I+1

J1=J+1
GO TO 311
313 I1=I+1
J 	 1=J+1

311 FRCN=0.5
IF(F(I1 	 ,J),EQ.SUR.OR.F(I,J1).EQ.SUR) FRCN=1.0
FNB=FRCN*(KF(I1,J)VISS(I,J1))
IF(VISS(I,J).EQ.0) VISS(J) = VIS

THETA(I,J)=0.5*(VISS(J)/RHO)*(RDZ*(U 	(I1-1,J)-U(I1-1,J1)+U(I-1,J)
%-U(I-1,J1))+RDR*(V(I-1,J)+V(I-1,J)-V(I1-1,J)-V(I1-1,J1)))



316 CONTINUE
C 	 IF(ETA.LT.0,6667) ETA=0.6667
C 	 IF(ETA.GT,2,0) ETA=2.0

IF(THETA(I,J),LT.0.0) THETA(I,J)=-THETA(I,J)
315 CONTINUE
320 CONTINUE

PPP=0
J=JP1

1322 I=IP1
1321 IF(F(I,J).NE.SUR) GO TO 1320

IF(THETA(I-,J).EQ.0) THETA(I,J)=THETA(I,J+1)THETA(I,1)=THETA(I,J)+PPP

PPP=THETA(I,J)
1320 I=I-1

IE(I.GT.1) GO TO 1321
J=J-1

IF(J.GT,1) GO TO 1322
ASSIGN 370 TO KRET

C
C
C
C*** Just Outside And Across  The Wall Tangential Velocities
C
C
C
C*** just Outside Tangential Velocity
C
C
C

DO 1330 I=2,IP1
IF(F(I,2) .EQ. SOR.AND.IFSW.LT.JP2) VI1=V(I,2)

IF(F(I,2) .EQ.SUR) VI1C=0.5*SXE*(V(I,2)/(U(1,2)-UL))/DZ
IF(VI1C,EQ.0) VI1C=SXE/DZ

1330 CONTINUE
330 DO 340 J=2,JP1

DO 340 I=ITWO,IP1
IF(F(I,J) ,NE.SUR) GO TO 340IF(F(I+1,J).EQ.EMP.AND.F(I+1,J+1)EQ.EMP.AND.F(I,J+1).

%LT.EMP) V(I+1,J)=V(I,J)-DRODZ*(U(I,J+1)-U(I,J))IF(F(I,J+1)EQ*EMP.AND.F(I+1,J+1).EQ.EMP.AND.F(I+1,J).

%LT.EMP) U(I,J+1)=U(I,J)-DZODR*(V(I+1,J)-V(I,J))IF(F(I-1,J).EQ.EMP.AND.F(I-1,J+1)*EQ.EMP.AND.F(I,J+1).

%LT.EMP) V(I-1,J)=V(I-,J)+DRODZ*(U(I-1,J+1)-U(I-1,J))
IF(F(I,J-1).EQ,EMP.AND.F(I+1,J-1).EQ.EMP.AND.F(I+1,J)
%.LT.EMP) U(I,J-1)=U(I,J)+DZODR*(V(I+1,J-1) -V(I,J -1))

340 CONTINUE
C
C
C
C*** Across The Wadi Tangential Velocity



C
C
C

DO 350 I=l,IBAR
V(I,1)=0

IF(F(I,2).EQ,SUR) V(I,1)=VI1
V(I,JP1)=0

IF(F(l,JP1-1).EQ.SUR) VJP1S=V(I,JP1 -1)
IF(F(I,JP1).EQ.SUR) V(I,JP1)=V(I,JP1-1)

U(I,1)=U(I,2)
U(I,JP2)=-U(I,JP1)

350 CONTINUE
DO 360 J=2,JBAR

U(IPl,J)=0
V(1,J)=0
V(2,J)=V(2,J)/2.

360 V(IP2j)=-V(TP1,J)
GO TO KRET ,(280,370,640,630)

370 CONTINUE
IF(CYCLE,EE.0) GO TO 415

DT=DT1
TIME=TIME+DT

415 CONTINUE
CYCLE=CYCLE+1

IF(ITWO.EQ.2) GO TO 1500
ITWO1=ITWO-1
DO 1501 I=2,ITWO1
DO 1501 J=2,JP1

UNEW(I,J)=UNEW(1,J)
1501 VNEW(I,J)=0
1500 CONTINUE

C
C
C
C*****Momentum Eon *********************************
C
C
C

500 DO 1520 J=2,JP1
DO 1520 I=ITWO,IP1

IF(F(I,J).GE.SUR) GO TO 1522
VX2=U(I,J)*U(I-1,J)
IF(I.EQ.IP1) VX2IP=0
IF(I.NE.IP1) VX2IP=U(I4-1,J)*U(I,J)
IF(I.EQ.ITWO) VX2IM=U(I-1,J)**2

IF(I.NE.ITWO) VX2IM=U(I-1,J)*U(I-2,J)
VY2=V(I,J)*V(I,J-1)
IF(J+EQ.JP1) VY2JP=0
IF(J.NE.JP1) VY2JP=V(I,J+1)*V(I,J)
IF(J,EQ.2) VY2JM=0



IF(J.NE.2) 	 VY2JM=V(I-1)*V(I,J-2)
VXYPP=0.25*(U(I,J+1)+1U(I,J))*(V(I+1,J)+V(I,J))
VXYMM=0.25*(U(I-1,J)+U(I-1,J-1)*(V(I,J-1)+V(I-i,J-1))
VXYPM=0.25*(U(I,J)+U(I,J-1))*(V(I+1,J-1)4-V(I,J-1))
VXYMP=0.25*(V(I-1,J+1)+U(I-1,J))*(V(I,J)+V(I-1,J))

IF(J.EQ.2) VXYMM=0
IF(J.EQ.2) VXYPM=0
IF(J.EQ.JP1) VXYPP=0
IF(J.EQ.JP1) 	 VXYMP=0
IF(I.EQ,ITWO) VXYMP=0IF(I.EQ.ITWO) VXYMM=0

QIJ=(R(I+1)*VX2IP+R(I-1)*VX2IM-2*R(I)*VX2)/(R(I)*DR**2)
%+(VY2JP+VY2JM-2*VY2)/DZ**2+2*(RIP(I)*VXYPP+RIP(I-1)
%*VXYMM-RIP(I)*VXYPM-RIP(I-1)*VXYMP)/(R(I)*DR*DZ)DIJ=(RIP(I)*U(I,J)-RIP(I-1)*U(I-1,j))/(R(I)*DR)

%+(V(I,J)-VI,J-1)/DZDVXX1-(U(I,J)-U(I-1,J)/D

IF(I.EQ.ITWO) DVXX2=0
IF(I.NE.ITWO) DVXX2=(U(I-1,J)-U(I-2,J))/DR
IF(J.EQ.JP1) 	 DVXX3=0
IF(J.NE.JP1) DVXX3=((U(I,J+1)+U(I,J))-(U(I-1,J+1)+U(I-1

%,J)))/(2*DR)
DVXX4=((U(I,J)+U(I,J-1))-(U(I-1,J)+U(I-1,J-1)))/(2*DR)
DVXY1=(U(I,J+1)-U(I,J-1))/(DZ*2)

DVXY2=(U1(I-1,J+1)-U(I-1,J-1))/(DZ*2)DVXY3=((U(I,J+1)+U(I-1,J+1))-(U(I,J)+U(I-1,J)))/(2*DZ)

IF(J.EQ.JP1) DVXY3=0.5*(U(I,J)+U(I-1,J))/(DZ/2)
D DVXY4=(U(I,J)+U(I-1,J))-(U(I,J-1)+U(I-1,J-1)))/(2*DZ)

DVYX1=((V)(I+1,J)+V(I+1,J-I))-(V(I,J)+V(I,J-1)))/(2*DR)
IF(I.EQ.ITWO) DVYX2=0

IF(I.NE.ITWO) DVYX2=((V(I,J)+V(I,J-1)+V(I,J-1))-(V(1 -1,J)+V(I-1,
%J-1)))/(2*DR)

DVYX3=(V(I,J)-V(I-1,J))/DR

IF(I.EQ.ITWO) DVYX3=V(I,J)/(DR/2)
DVYX4=(V(I,J-1)-V(I-1,J-1))/DR
IF(I.EQ.ITWO) DVYX4=V(I,J-1)/(DR/2)

D DVYY1=((V(I+1,J)+V(I,J))-V(I+1,J-1)+V(I,J-1)))/(2*DZ)
IF(I.EQ.ITWO) DYYY2=0

IF(I.NE.ITWO) DVYY2=((V(I,J)+V(I-1,J))-(V(I,J-1)+V(I-1,
%J-1)))/(2*DZ)

IF(J.EQ,JP1) DVYY3=(V(I,J)-V(I,J-1))/DZ
IF(J.NE.JP1) DVYY3=(V(p,J+1)-V(1,J-1))/(2*DZ)
IF(J.EQ.2) DVYY4=0
IF(J.NE.2) DVYY4=(V(I,J)-V(I,J-2))/(2*DZ)RV1=2*(U(l,J)/RIP(I))*2

IF(I.NE.2) RV2=2*(U(I-1,J)/RIP(I-1))**2
IF(I.EQ.2) RV2=2*(U(I-1,J)/R(I))**2RV3=2*((U(I,J)+U(I,J+1)+U(I-1,J)+U(I-1,J+1))/(4*R(I)))**2
RV4=2*((U(I,J)+U(I,J-1)+U(I-1,J)+U(I-1,J-1))/(4*R(I)))**2

VISI=EM*(2*DVXX1**2+(DVXVIJDVYX1)**24.RV14-2*DVYY1V4:2)**((EN-



%1)/2)VIS2=FM*(2DVXX2**2+(DVXY2+DVYX2)**2+RV2+2*DVYY2**2)**((EN

%-1)/2
VIS3=EM*(2*DVXX3**2+(DVXY3+DVYX3)**2+RV3+2*DVYY3**2)**((EN -

Z1)/2)
VIS4=EM*(2*DVXX4**2+(DVXY4+DVYX4)**2+RV4+2*DVYY4**2)
%**((EN -1)/2)
IF(F(I+1,J),EQ.SUR) VISS(J)=(VIS1+VIS2+VIS3+VIS4

%)/4
DVIX1=(VIS1-VIS2)/DR

DVIX2=(VIS1-VIS2)/DR

DVIX3=(VIS1-VIS3)/(DR/2)
DVIX4=(VIS1-YIS4)/(DR/2)
DVIY1=(VIS3-VIS1)/(DZ/2)

DVIY2=(VIS2-VIS2)/(DZ/2)
DVIY3=(VIS3-VIS3)/DZ
DVIY4=(VIS3-VIS4)/D2

IF(I,NE,IP1) D2VXX1=(U(I+1=,J)+U(I-1,J)-2*U(I,J))/TR**2
IF(I,EQ,IP1) D2VXX1=(U(I,J)+U(I-2./J)-2*U(I-1,J))/DR**2
IF(I.EQ.ITWO) D2VXX2=0
IF(I.NE.ITWO) D2VXX2=U(I,J)+U(I-2,J)-2*U(I-1,J))/DR**2
D2VXY1=(U(T,J+1)+U(I,J-1) -2*U(I,J))/DZ**2
D2VXY2=(U(I-1J+1)+U(I-1,J-1) -2*U(I-1,J))/DZ**2D2VYX3=(V(I+1,J)+V(I-1,J)-2*V(I,J))/DR**2

D2VY4=(V(I+1,J-1)+V(I-1,J-1)-2*V(I,J-1))/DR**2
IF(J.EQ.JP1) D2VYY3=(V(I,J)+V(I,J-2)-2*V(I,J-1))/DZ**2
IF(J.NE.JP1) D2VYY3=(V(I,J+1)+V(l,J-1)-2*V(I,J))/DZ**2
IF(J.EQ.2) D2VYY4=(V(I,J+1)+V(I,J-1)-2*V(I,J))/DZ**2
IF(J.NE.2) D2VYY4=(V(I,J)+V((I,J-2)-2*V(I,J-I))/DZ**2
RB1=(U(I+1,J)-U(I-1,J))/(2*DR*RIP(I))-U(I,J)/RIP(I)**2
IF(I.NE.2) RB2=(U(I,J)-U(I-2,J))/(2*DR*RIP(I-1))-U(I-1,J)/

%RIP(I-1)**2
IF(I.EQ.2) RB2=U(I,J)-U(I-1,J))/(QR*R(I))-U(I-1,J)/

%R(I)**2
RB3=(V(I,J)-V(1-1,J))/(R(I)*DR)
RB4=(V(I,J-1)-V(I-1,J-1))/(R(I)*DR)B1=(VIS1+D2VXX1+RB1+D2VXY1)+2*DVXX1*DYIX1+(DVXY1+DVYX1)*D

%VIYI)/RHOB2=(VIS2*(D2VXX2+RB2+D2VXY2)+2*DVXX2*DVIX2+(DVXY2+DVYX2)*DV

%VIYI)/RHOB3=(VIS3*(D2VYX+RB3+D2VYY3)+2*DYYY3*DVIY3+(DVXY3+DYYX3)*DV

%IX3)/RHOB4=(VIS4*(D2VY4+RB4+D2VYY4)+2*DYYY4*DVIY4+(DYXY4+DYYX4)*D

%VIX4)/RHOS(I,J)=QIJ-DIJ/DT-((RIP(I)*B1-RIP(I-1)*B2)/(R(I)DR)

%+(B3-B4)/DZ)
1522 CONTINUE
1520 CONTINUE

ITER=0
IND=1



C
C
C
C**** Pressure Field Calculation ************************

C
C
C

	

DO 1550J=2,JP1

	

I=IP1
1549 IF(THETA(I,J).LT.THETA(I+1,J)) THETA(I,J)=THETA(I+1,J)

DPDX*DR
IF(I.EQ.2) GO TO 1550

I=I-1
GO TO 1549

1550 CONTINUE
550 DO 555 I=2,IP1

THETA(I,1)=THETA(I,2)

555 THETA(I,JP2)=THETA(I,JP1)
DO 560 J=2,JP1

VISE=EM*((U(ITWO-1,J+1)-U(ITWO-1,J-1))/(2*DZ))**2

%)**((EN -1)/2)
THETA(ITWO-1,J)=THETA(ITWO,J)-DPDX*DR

560 THETA(IP2,J)=THETA(IP1,J)
IF(IND.EQ.0) GO TO 600

IND=0
ITER=ITFR+1
DO 570 J=2,JP1
DO 570 I=ITWO,IP1

571 IF(F(I,J).NE.FUL) GO TO 570
PSIT=THETA(I,J+1)

PSIR=THETA(I+l,J)
PSID=THETA(I,J-1)
PSIL=THETA(I-l,J)

X=W*(RIP(I)*PSIR.RIP(I-1)*PSIL)/(R(I)*DR**2)+(PSIT-PSIB)/DZ**2+
XS(I,J))-ALP*THETA(1,J)

Y=ABS(X)-ABS(THETA(I,J))
Z=ABS(S)+ABS(THETA(I,J))

THETA(I,J)=X
IF(Z.EQ.0) GO TO 570

IF(ABS(Y/Z)GT.EPS) IND=1
570 CONTINUE

GO TO 550
600 DO 1551 j=2,JP1

I=IP1

	

1552 IF(THETA(I,J).LT.THETA(I+1,J)) THETA(I,J)=THETA(I+1,J)-
%DPDX*DR

IF(I.EQ.2) GO TO 1551
I=I-1
GO TO 1552

1551 CONTINUE



C**** Final Velocity ***********************************
C
C
C

DO 620 J=2,JP1
DO 620 I=ITWO,IP1

IF(I.EQ.IP1.DR.F(I,J),GE,EMP) GO TO 620
D DVXX1=(U(I,J)-U(I-1,J))/DR

IF(I.EQ.TWO) DVXX2=0
IF(I.NE.ITWO) DYXX2=(U(I -1,J)-U(I-2,J))/DR
IF(J.EQ.JP1) DVXX3=0

IF(J.NE.JP1) DVXXX3=(U(I,J+1)+U(I,J))-(U(I-1,J+1)+U(I-1,J)))/%(2*DR)

DVXX4=(U(I,J)+U(T,J-1))-(U(I-1,J)+U(I-1,J-1)))/(2*DR)
DVXY1=(U(I,J+1)-U(I,J-1))/(DZ*2)
DVXY2=(U(I1,J+1)-U(I-1,J-1))/(DZ*2)
DVXY3=((U(I,J+1)+U(I-1,J+1))-(U(I,J)+U(I-1,J)))/(2*DZ)
IF(J.EQ.JP1) DVXY3=0.5*(U(I,J)+U(I-1,J))/(DZ/2)
DVXY4=((U(I,J)+U(I-1,J))-(U(I,J-1)+U(I-1,J-1)))/(2*DZ)
DVYX1=((V(I+1,J)+V(I+1,J-1))-(V(I,J)+V(IvJ-1)))/(2*DR)
IF(I.EQ.ITWO) DVYX2=0

IF(I.NE.ITWO) DVYX2=((V(I,J)+V(I,J-1))-(V(I-1,J)+V(I-1,J-1) -1)%))/(2*DP)

DVYX3=(V(I,J)-V(I-1,J))/DR

IF(I.EQ.ITWO) DVYX3=V(L,J)/(DR/2)
DVYX4=(V(I,J -1)-V(I-1,J-1))/DR
IF(I.EQ.ITWO) DVYX4=V(I,J-1)/(DR/2)DVYY1=((V(I+1,J)+V(I,J))+V(I+1,J-1)+V(I,J-1)))/(2*DZ)

IF(I.EQ.ITWO) DVYY2=2
IF(I.NE.ITWO) DVYY2=(0)(I,J)+V(I-1,J))-(V(I,J-1)+V(I-1,J-1)%))/(2*DZ)

IF(J.EQ.JP1) DVYY3=(V(I,J)-V(I,J-1))/DZ
IF(J.NE.JP1) DVYY3=(V(I,J+1)-V(I,J-1))/(2*DZ)
IF(J.EQ.2) DVYY4=0

IF(J.NE.2) DVYY4=(V(I,J)-V(I,J-2))/(2*DZ)RV1=2*(U(I,J)/RIP(I))**2

IF(I.NE.2) RV2=2*(U(I-1,J)/RIP(I-1))**2
IF(I.EQ.2) RV2=2*(U(I-1,J)/R(I))**2

RV3=2*(U(I,J)+U(I,J+1)+U(I-1,J)+U(I-1,J+1))/(4*R(I)))**2RV4=2*(U(I,J)+U(I,J-1)+U(I-1,J)+U(I-1,J-1))/(4*R(I)))**2

VIS1=EM*(2*DVXX1**2+(DVXY1+DVYX1)**2+RV1+2*DVYY1**2)**((EN-1)/2)

VIS2=EM*(2*DVXX2**2+(DVXY2+DVYX2)**2+RV2+2*DVYY2**2)**((EN-1)/2)
VIS3=EM*(2*DVXX3**2+(DVXY3+DVYX3)**2+RV3+2*DVYY3**2)**((EN-1)/2)
VIS4=EM*(2*DVXX4**2+(DVXY4+DYYX4)**2+RV4+2*DVYY4**2)**((EN-1)/2)

DVIX1=(VIS1-VIS2)/DR
DVIY1=(VIS3-VIS1)/(DZ/2)
DVIY3=(VIS3-VIS4)/DZ



DVIX3=(VIS3-VIS2)/(DP/2)
IF(F(I+1,J),GE,EMP) GO TO 610
RB1=(U(I+1,J)-U(I-1,J))/(2*DR*RIP(I))-U(I,J)/RIP(I)**2
RB3=(U(I,J)-V(I-1,J)/(R(I)*DR)

UNEW(I,J)=U(I,j)+DT*(-(R(I+1)*U(I+1,J)*U(1,J)-R(I)*U(I,J)*U(I-1,J)
%)/(DR*RIP(I))

%-0.25*(U(I,J+1)+U(I,J))*(V(I+1,J)+V(I,J))-((I,J)+U(I,J-1))*
%V(I+1,J-1)+V(I,J-1)))/DZ-(THETA(I+1,J)-THETA(I,J))/DR%+(VIS1/RHO)*((U(I+1,J)+U(I-1,J)-2*U(I,J))/DR**21+RB1

%+(U(I,J+1)+U(I,J-1)-2*U(I,J))/DZ**2)+2*DVXX1*DVIX1+(DVXY1+DVYX1)
%*DVTY1)

IF(I.EQ.ITWO) UNEW(I,J)=UNEW(1,J)
610 IF(J.EQ.JP1 .OR,F(I,J+1).EQ.EMP) GO TO 620VNEW(I,J)=V(I,J)+DT*(-V(I,J+1)*V(I,J)-V(I,J)*I(I,J-1))/DZ

%-0.25*(RIP(I)*(U(I,J+1)+U(I,J))*(V(I+1,J)+V(I,J))-RIP(I-1)*(
%V(I-1,J+1)+U(I-1,J))*(V(I,J)+V(I1,J)))/(R(I)*DR)-(THETA(I,J+1)-%THETA(I,J))/DZ+(VIS3/RHO)*((V(I,J+1)+V(I,J-1)-2*V(I,J))/DZ**2

%+RB3+(V(I+l,J)+V(I-1,J) -2*V(I,J))/DR**2)+2*DYYT3*DVIY3+(DVXY3+
%DVYX7)*DVIX3)

IF(VNEW(I,J).LT.O) VNEW(I,1)=VNEW(I-1,J)
620 CONTINUE

IF(ITWO,EQ.2.) GO TO 1600
DO 1620 I=2,ITWO1
DO 1620 J=2,JP1

UNEW(I,J)=UNEW(1,J)
1620 VNEW(T,J)=0
1600 CONTINUE

DO 1521 J=2,JP1
DO 1521 I=2,IP1

U(I,J)=UNEW(I,J)
1521 V(I,J)=VNEW(I,J)

	

DO 1331 I=2,IP1

	

.E0.SUR.AND.TES14,,LTJP2) VI1=V(Iy2)
1331 CONTINUE

f=ITWO -1
1297 IF(T,EO,,l) GO TO 1298

DO 1296 j=2,,:iP1
1296 THETA (Uj)::::THETA(I4.1,J)-DPDS*DR

I=I-1
GO TO 1297

1293 CONTINUE
DO 1621 I=2,TP1
JP1M=JP1 -1
DO 1621 j=23,JP1M

1621 IF(U(1.,J),.LTU(I,J4-1)) U(ImJ)=U(T-1,J)
ASSIGN 630 TO KRET
GO TO 650

630 ASSIGN 640 TO KRET
GO TO 3.30

640 	 GO TO 1251



CCCC*** Calculate SUR Cell Velocity on EMP Cell Faces:**********

C CC

650

	

DO 670 J=2,IP1

	

DO 670 I=ITWO,IP1
IF(F(I,J).NE.SUR) GO TO 670

N=0
IF(F(I+1,J) .EQ.EMP) N=N+1
IF(F(I.J+1) .EQ.EMP) N=N+2
IF(F(I-1,J) .EQ.EMP ) N=N+4
IF(F(I,J-1).EQ,EMP) N=N+8

GO TO (651,652,653,654,651,55,652,657,658,652,651,659,651,6%52,651),N

651 IF(R(I),GT.GH2) ULS=QFLOWZ(PI*R(I)*H)
	 IF(R(I).LE.GH2) ULS=QFLOW/(PI*GH2*H)
	 IF(J.EQ.2) ULSR=ULS

UMAXS=((2*EN+1)/(EN+1))*ULS

ROP=(RIP(I) -DP)/RIP(I)
IF(I.EQ.2) ROP=RMORP(I)
U(I,J)=ROP*U(I-1,J)*(UMAX/(UMAX+VI1))+ULS*(VI1/(UMAX+VI1))

GO TO 670
652 V(I,J)=V(I,U-1)-DZODR*PRI(I)*(U(I,J)*RIP(I)-U(I-1,J)*RIP(I-1))

	

GO TO 670
653 IF(R(I).GT,GH2) ULS=QFLOW/(PI*R(I)*H)

IF(R(I).LE.GH2) ULS=QFLOW/(PI*GH2*H)
ROP=(RIP(I)-DR)/RIP(I)

ROP=RMORP(I)
U(I,J)=ROP*U(I-1,J)*(UMAX/(UMAX+WI1))+ULS*(VI1/(UMAX+VI1))

GO TO 656
654 U(I-1,J)=U(I,J)*RIP(I)+R(I)*DRODZ*(V(I,J))-V(I,J-1)))*RRP(I-1)

GO TO 670
655 U(I-1,J)=U(I,J)*RPORM(I)
656 V(I,J)=V(I,J-1)-0.25*DZ*(U(I,J)+U(I-1,J))*RRI(T)*(10-PC)

GO TO 670
657 V(I,J-1)=V(I,J)+DZODR*RRI(I)*(U(I,J)*RIP(I)-U(I-1,J)*RIP(I-1))

	

GO TO 670
658 U(I,J)=U(I-1,J)*RMORP(I)

GO TO 660
659 U(I-1,J)=U(I,J)*RPORM(I)
660 V(I,J-1)=V(I,J)+0.25*DZ*RRI(I)*(U(I,J)+U(I-1,J))*(1.0-PC)
670 CONTINUE

GO TO KRET,(280,370,640,630)
1251 CONTINUE

C

C

C



C**** Energy Equation *********************************************
C
C
C

IF(ITT,EQ,ITTC) GO TO 1270
GO TO 1.26

1270 ITT=0
WRITE(6,1269) ITWO

1269 	 FORMAT(/,2X,'ITWO=',15)
WRITE(6,1254) TIME

1254 FORMAT(5X,'TIME=F9.5,//,2X,'FLAG')
DO 1252 J=2,JP1

1252 WRITE(6,1253) (F(I,J),I=2,36)
DO 1152 J=2,JP1

1152 	 WRITE(6,1253) (F(I,J) ,I=37,IP1)
1253 FORMAT(2X,35F2.0

WRITE(6,1285)
1285 	 FORMAT(2X,'SRES=(CM)',2X,'NPC=',2X,'XS=',4X

%,'X=',5X,'Y=')
NN=1

MCONT=0

NPC=NN
SRES=0,0

1401 NPCKN=2*NPC-1 NPCKN1=NPCKN+1

IF(XP(NPCKN1).EQ.0) GO TO 1405
RXS=XP(NPCKN)*DR

SPX=RXS
WRITE(6,1280) SRES,NPC,XPX,XP(NPCKN),XP(NPCKN1)

1405 CONTINUE
IF(MCONT.EQ.0) NPC=NPC+NIN
IF(MCONT.NE.0) NPC=NPC+1
IF(NPC.GT.NPN) GO TO 1402
SRES=SRES+SXE*VMAXR/UMAX
MCONT=MCONT+1

IF(MCONT.EQ.NSPA) MCONT=0
GO TO 1401

1402 CONTINUE
DO 1282 NN=1,NYB

IF(NN.EQ.1) GO TO 1202
NCO=0
NPC=NN

SRES=0
1281 NPCKN=2*NCC*(NIN+NSPA-1)+2*NN-1

NPCKN1=NPCKN+1RXS=XP(NPCKN)*DR

S XPX=RXS

WRITE(6,1280) SRES,NPC,XPX,XP(NPCKM),XP(NPCKN1) 	
1280 FORMAT(2X,F8,4,2X,I5,2X,F8,2,2X,F8.2)

NPC=NPC+NIN+NSPA-1



SRES=SRES+SXE*(VMAX/UMAX)NSPA

IF(NPC.LT.NPN)GO TO 1281
1282 CONTINUE

WRITE(6,1255)
1255 	 FORMAT(//,2X,'UXR)

DO 1256 I=1,72
1256 	 WRITE(6,1257) 	 (U(I,J)),J=1,7)
1257 FORMAT(2X,10E10,2)
WRITE(6,1258)
1258 FORMAT(//,2X,'VYZ')

DO 1259 1,,1!,72
1259 	 WRITE(6,1257 (V(I,J),J=1,7)

WRITE(6,1260)
1260 FORMAT(//,2X,'PRESSURE PST')

DO 2260 I=2,IPT
DO 2260 J=2,JP1

2260 	 THETA(I,J)=THETA(I,J)/68947
DO 1261 I=1,72

1261 	 WRITE(6,1255) (THETA(I,J),J=1,7)
DO 2261 I=2,IP1

DO 2261 J=2,JP1
2261 	 THETA(I,J)=THETA(I,J)*68947

GOTO 1263
1263 CONTINUE

IF( IFILI,EQ.1) 	 GO TO9999

IFULL=1

.1:10 	 1274 	 ....1,:::2!,....1E'1
DO 1274 I=2,IP1

IF(F(I,J).EQ.EMP) IFULL=0
1274 CONTINUE

IF(IFULL.EQ.0) GO TO 1271
WRITE(6,1272)

1272 FORMAT(///2X,'FULL')
13(7j TO 1270

1271 CONTINUE
IST=IST+1

CC
C

C**** 	 Move, Pack, Input Particles  ****************************
C
C
C

700 NPT=0
NPN=0

K=1

KN=1

ICELL=0



	

710 	 IF (NPT.GF.NP) GO TO 735	 	 ID=XP(K)+2

	 	 HPX=ID-1,-XP(K)

	 	 HMX=1.-HPX

		

JR=XP(K+1)+1.5

	 	 UDR1=U(ID,JR+1)	 	 UK=HPX*HMY*U(ID-1,JR+1)+HMX*HMY*UDR1+HPX*HPY*U(ID-1,JR)+HMX

	 %*HPY*UDR	 	 IR=XP(K)+1.5	 	 HPX=IR-0.5-XP(K)

		

HMX=1.0-HPX

		

JD=XP(K+1)+2

	 	 HPY=JD-1.0-XP(K+1)

	 	 MHY=1.0-HPY	 	 VK=HPX*HMY*V(IR,JD)+HMX*HMY*V(IR+1,JD)+HPX*HPY*V(IR,JD-1)+HM

	 %X*HPY*V(IR+1,JD-1)
IF(XP(K+1).NE.0) GO TO 1710
IF(K.EQ.0) GO TO 1710

NIN2=NIN*2SJBAR=JBAR-1IF(XP(K-1).BE.SJBAR) KNIN=K-NIN2IF(XP(K-1).LT.SJBAR) KNIN=K-2IXPK=XP(K)+2

IF(ITWO.GT.2) GO TO 1721
DD=(UMAX**@+VI1**2)**0.5

RRR=XP(K)*DR
UMAS=((2*EN+1)/(EN+1))*ULSR

IF(UMAXS.GE.UMAX) UMAXS=UMAX
DD=0.5*(UMAX+UMAXS)+VI1

DD=(UMAXS**2+VI1**2)**0.5
1721 UK=DD

VK=0
STEST=XP(KN)+(DT/DR)*UK
IF(STEST.LT.XP(KNIN)) 	 GO TO 1711
XP(KN+1)=0.5*XP(KNIN+1)
XP(KN)	=XP(KNIN)
GO TO 1713

	

1710 CONTINUE
IF(F(ID,JD).EQ.SUR) UK=U(ID,JD)

1711 CONTINUE

DPAR=NIN/(NIN+NSPA-1)
RNNN=K/(2*(NIN+NSPA-1))
NNN=K/(2*(NIN+NSPA-1))DRNNN=RNNN-NNN

IF(DRNNN.LT.DPAR) GO TO 1714
JW=XP(K+1)+2



IW=XP(K)+2

IF(JW.EQ,JP1) VK=VJP1S
1714 CONTINUE

XP(KN+1)=XP(K-1)+VK*DT/DZ
1713 CONTINUE

IF(XP(KN+1).GT,JBAR) XP(KN+1)=JBAR-0.00001
IF(XP(KN).GT.IBAR) XP(KN)=IBAR –0.00001

I=XP(KN)+2
J=SP(KN+1)+2

IF(I.LT.2,OR.I.GT.IP1) GO TO 730

IF(ITYPE.EQ.0) GO TO 715
IF(XP(KN) ,GE.IBAR) GO TO 720

715 KN=KN+2	 NPN=NPN+1

720  IF(F(I,J 	 ).EQ.EMP) GO TO 760
730 K=K+2

NPT=NPT+1
GO TO

C****Input Particles *************************************

735 NP=NPN
IF(ITYPE.EQ.0) GO TO 1250

740   X=UMAX**RDR*( 	 TIME+DT)-XDIS*COLS
IF(X.LT.0) GO TO 1250

COLS=COLS+1

Y=YFIR
IF(NPN.GE,NIN) GO TO 1750
NPN=NP+NIN
GO TO 750

GO TO 750

1750   IF(NCLCO.NE.NSPA) NPN=NP+1

IF(NCLCO.EQ.NSPA) NPN = NP+NIN
IF(NCLCO.EQ.NPA) NCLC0=0
NCLCO=NCLCO+1

750  XP(KN)=XXP(KN+1)=YKN=KN+2I=X+2J=U+2

NP=NP+1

Y=Y+YDIS

IF(F(I,J).NE.EMP)  GO TO 755

F(I,J)-SUR

ICELL=1 



U(I,J)=U(I,J)

755 IF(NP.LT.NPN) GO TO 750
GOTO 740

760 F(I,J)=SUR	 ICELL=1

U(I,J)=U(I-1,J)V(I,J)=V(I-1,J)V(I,J-1)=V(I-1,J)=V(I-2,J)

IF(I.GT.3) V(I-1,J)=V(I-2,J)
THETA(I,J)=THETA(I-1,J)

	

IF(I.GE.3) THETA(I-1,J)=THETA(I-2,J)
GO TO730

9999  STOP
END
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