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ABSTRACT

A mathematical model describing the flow characteristics

and mass transfer has been developed for the hollow fiber

dialyzer in countercurrent dialysis.

The theoretical expressions are developed from a typical

Graetz problem for the stream side, and a first order

differential equation for the dialyzate side. The solution

of the dimensionless concentration profile is obtained as

a summation of orthogonal eigenfunctions in closed form,

which are given as product of an exponential function

and a confluent hypergeometric function.

The analytical solution of the model has been examined

by adjusting system parameters, like Sherwood number, Peclet

number and the geometry of the system. As expected, at

higher Peclet number the bulk concentration in the stream

outlet decreases, where as at higher Sherwood number and

higher L/R ratio the bulk concentration increases. This

can be used to optimize dialyzer performance.
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CHAPTER ONE 

INTRODUCTION

Liquid-phase membrane seperation process (such as

dialysis, reverse osmosis and ultrafiltration) utilize

the difference in the membrane permeability of molecules

as a basis for seperation. In dialysis, the flux of sloutes

across a membrane is mainly controlled by diffusional

transport. Large surface area membrane modulus such as

hollow fibers unit are often used to compensate for the

slow diffusion-controlled flux. Hollow fiber dialyzer

has been successfully used, for example, in artificial

kidney hemodialysis to remove membrane-permeable waste

materials from the blood.

It has been found that the major technical problem

of dialysis is to provide a large effective mass transfer

surface with adequate mechanical support and uniform flow

distribution at acceptable pressure drops and costs.

Before these problem can be investigated in a meaningful

way, a semiquantitative description of the convection

mass transfer taking place will be provided.

The objective of this investigation is to present an

analytical solutions which describe the flow characteristics

and the mass transfer of a boundle of hollow fibers in



countercurrent dialysis.

In this thesis, a general analytical solution of a

mathematical model of hollow fiber dialyzer is presented.

The concentration profile of the inside hollow fiber

stream is function of two dimensions of the flow system.

The concentration of the dialyzate is function of axial

direction of the dialyzer only. In the end, the solution

is examined by evaluating defferent system parameter.



CHAPTER TWO

REVIEW OF LITERATURE

Concept and Description of A Hollow Fiber Dialyzer Unit

The concept of dialysis is based on the semi-permeable

membrane. In contrast, water and species of low and medium

molecular weight can freely permeate the membranes, which allow

the solutes in the stream to pass through the membrene into

the dialyzing fluid, until an equilibrium is achieved between

the stream and the dialyzate.

It is assume that the group of molecules whose dimensions

are relatively small are permitted to pass from the blood stream

through the membrane into the dialyzate fluid. As a result of

this, there is a net movement of waste product solutes from

a region of higher concentration to a region of lower concentretion

(dialyzate).

The rate of transfer is governed by the concentration

difference across the membrane, the molecular size and the

permeability characteristics of the membrane.

The hollow fiber dialyzer system consists of a shell which

houses the hollow fiber boundle. The fiber are grouped together

in a parallel array with one end sealed and the other open (exposed

to atmospheric pressure). Both ends terminate in tube sheet. the



length to diameter ratio of a typical channel in a well-packed

hollow fiber dialyzer often has a value as large as 10
3 

to 164 .

The entry region effect, which is important in ordinary heat

exchangers, becomes practically negligible for this kind of

unit is at the range of 102 - 10
4 
tubes. The Reynolds number

for a well-packed hollow fiber dialyzer is very low, that is,

the dialysis is carried out with laminar flow.

The typical hollow fibers dialysis unit is shown as Figure 1

below :

Figure 1. Hollow Fiber Dialyzer Unit Scheme

A: Jacket B: Hollow fibers

C: Stream inlet D: Stream outlet

E: Dialyzate inlet F: Dialyzate outlet



Review Studies of The Hollow Fiber Dialyzer

To date, very little work on hollow fiber has been

reported in the literature.

In 1973, Gill and Bansal introduced the design and

analysis of hollow fiber reverse systems. A predicted model

is developed using the equivalent annulus assumption. The

effects of pressure, temperature, flow rate, concentration,

viscosity of the feed, system length, membrane rejection

parameter, and number of fibers are studied.

Dandavati and Gill (1975) introduced the experimental

work of hollow fiber reverse osmosis. The performance of

a hollow fiber reverse osmosis system was determined by

measuring the fraction of feed recovered as product, and

the concentration reduction ratio.

Noda and Gryte (1979) introduced a mass transfer

theoretical investigation of hollow fibers in countercurrent

dialysis. In which, mass transfer coefficient are obtained

as a function of fiber packing density, membrane thickness,

membrane material and solute type.

Papenfuse and Thorson (1979) presented a theoretical

investigation of ultrafiltr tion through hollow fibers used

in artificial kidney applications.

5



CHAPTER THREE

Derivation of Mathematical Model

Mathematical analysis

The mathematical model to be considered in this analysis is

illustrated in the Figure 2. below. For simplicity following

assumption are made here.

1) 	 Steady state conditions.

2) 	 Laminar flow in stream side provides a fully developed

parabolic velocity profile.

3) 	 The diffusion process can be described by Fick's law.

4) 	 Physical properties with in the system such as density,

diffusivity and overall mass transfer coefficient are

contants and independent of concentration.

5) 	 Axial diffusion is insignificant.

6) 	 The dialyzate-side mass transfer resistance is position

independent.

7) 

	

Plug flow in dialyzate-side.

Figure 2. Flow model of hollow fiber dialyzer.



By refering to Figure 2. and the assumptions above govering

equations for a counterflow situation can be formalated for two

sub-systems. One for stream-side and another for dialyzate-side.

Stream-side:

with boundary conditions:

(1) B.C. 1. at Z=0, CA = CAOA 	at all r

(2) B.C. 2. at r=0, CA finite or δCA/δφ = 0

(3) B.C. 3. at r=R, -D δCA/δY|δ=R = K(CA|δ=R - CD)

where CD is the concentration of spceies A in the dialyzate

stream.

Base on the assumption (2), we can substitute

to equation (1), which becomes

Dialyzate-side:

with boundary condition

(1) B.C. 4. at Z=L, CD = CDL

Total mass balance of A between two stream

7



Here: N: number of capillary tubes

	

CA : f(z,r) : local solute concentration in the stream

	

CAO: inlet solute concentration of stream

	

CD 	: f(z) : solute concentration in the dialyzate stream

	

CDL 	 : inlet solute concentration in the dialyzate stream

	

CDO 	 : outlet solute concentration in the dialyzate stream

		

: binary mass diffusivity

	

K 

	

: the overall mass transfer coefficient

	

QD 

	

: volumetric flow rate of the dialyzate stream

	

R 

	

: fadius of capillary tubes

	

V

Z 

	

: the velocity in the axial direction

	

Vmax : the maximum axial velocity at r = 0

Dimensionless Forms of the Model 

Introducing the following dimensionless variables,

therefore equation (2) can be written as



with boundary conditions:

(1) B.C. 1'. at φ= 0, θ= 1 at all

(2) B.C. 2'. at ε =0, θ= finite or δθ/δε = 0 at all

(3) B.C. 3'. at ε= 1, -δθ/δε|ε=1 = Nsh(θ|ε=1 + θ -1)

and equation (3) can be formulated as

with boundary condition

(L) B.C. 4'. at φ = 1/Pe - 1/R32, θd=1

Here:

Nsh = RK/D: sherwood mumber

Pe = Vmax L/D : the length Peclet number

R1 = NπR2Vmax/2QD : volumetric flow rate of stream

/volumetric flow rate of dialyzate

R3 = R/L 	 : the ratio of dimensions of the flow system

9



Solution b Seperation and Transformation of variables

We can solve equation (6) with boundary conditions. By the

method of seperation of variables, we let

Equation (6) may be decomposed to the following two ordinary

differential equations,

There are three cases to be considered:

(1) when

It is not valid for the system.

(2) when

where CDL , C02, C03 are arbitrary constant

(3) when



To solve the ordinary differential equation of the equation (12)

we can obtain

where C 1 is arbitrary constant.

To solve the second order differential equation of equation (13)

, the following transformation of both dependent and independent

variable are performed:

(I) Let

then

Therefore equation (13) becomes



(II) Let

Then

Then equation (15) becomes

Equation (16) is in the form of confluent hypergemetric function

knows as Kummer's equation (Slater, 1960). The standard form

of the Kummer's equation and its solution are given in Appendix A.

For the case as equation (16) with a = 1/2 -β/4 and b = 1, the

solution are



Reverse the two solutions of S1 and S2 above by using the

transformation of U and R(u) which were previously used before

that is

and

As the result, the following two solutions of in equation (13)

can be obtained

Since equation (17) and (18) are the solutions of equation (13),

we can obtain

where C2, C3 are arbitrary constant.

Since

we combine the solutions of the cases discussed before, then

In order for the solution of equation (13) satisfies the

boundary condition B.C. 2'., namely at ε = 0, θ = finite,

or 	 CO2 and C3 have to be zero. So equation (20)

becomes



where C 6 is a arbitrary constant.

Since the other two boundary condition cannot be used to solve

equation (21) right away, so we solve equation (7) first

Let H = 4NshR1

then equation (7) becomes

where θd, θ E=1 are function off only, so equation (22) is a

typical first order linearly ordinary differential equation, and

its solution are given as below

The solution of equation (22) is

where C5 is a arbitrary constant.

Equation (23) must satisfy B.C. 4'., ie, at

SO

Then substitute C 5 into equation (23), we can obtain

	

Then we combine it with equation (21), use boundary condition

B.C. 3'.,namely at



we can find C6 has to be zero, and

Since boundary condition B.C. 3'. is satisfied for all

Jr , then equation (25) becomes

The eigenvalues βn can be evaluated from equation (26). The

secant method was employed to compute the eigenvalues via

UNIVAC Computer. The computer program is given in Appendix

C.

After we solve for eigenvalues, the equation (21) becomes

which must satisfy boundary condition B.C. 1'

that is

An equation of the form of equation (9) with the boundary

conditions constitutes a Strum-Liouville system (Mickley et al

., 1957). The cofficients of solution, C4n, may be obtained by

making use of the orthogonal properties of the eigenfunctions.

Which shown in Appendix B.

15



The integrals in the denominator of equation (29) can be

evaluated by numerical integration . The Newton-Coates

Trapezoidal rule combined with Romberg extrapolation technique

was employed to hasten the convergence (Carnahan, 1969). The

numerical value of the first thirty βn and C4n are tabulated

in Table 1.

The final solution of dialyzate stream concentration becomes

Calculation of stream outlet dimensionless bulk concentration

From equation (4), the total mass balance of A between

two stream is

QD(CDO - CDL) = NπRV2/2[CAO - B)

Where B is the bulk concentration of A at the stream outlet.

and

Also from equation (5) we know

- 16-



Substitute equation (32) into equation (31), then rearrange

we can obtain

In conclusion, the outgoing bulk concentration of the

stream can be calculated from equation (33). The computer

program for this problem is given in Appendix C.



TABLE 1 

at R1= 1.0, Pe= 5 x 10 6 , R3= 1.33 x 10
-4

, Nsh =0.4

BETA ( 	 1) = 0.55731 CN ( 	 1) = 1.00280

BETA ( 	 2) = 5.24396 CN ( 	 2) = -0.13455

BETA ( 	 3) = 9.27607 CN ( 	 3) = 0.06419

BETA ( 	 4) = 13.28912 CN ( 	 4) = -0.03985

BETA ( 	 5) = 17.29657 CN ( 	 5) = 0.02804

BETA ( 	 6) = 21.30147 CN ( 	 6) = -0.02123

BETA ( 	 7) = 25.30502 CN ( 	 7) = 0.01686

BETA ( 	 8) = 29.30772 CN ( 	 8) = -0.01385

BETA ( 	 9) = 33.30983 CN ( 	 9) = 0.01168

BETA (10) = 37.31159 CN (10) = -0.01003

BETA (11) = 41.31303 CN (11) = 0.00875

BETA (12) = 45.31426 CN (12) = -0.00773

BETA (13) = 49.31532 CN (13) = 0.00691

BETA (14) = 53.31624 CN (14) = -0.00622

BETA (15) = 57.31705 CN (15) = 0.00565

BETA (16) = 61.31777 CN (16) = -0.00516

BETA (17) = 65.31842 CN (17) = 0.00474

BETA (18) = 69.31900 CN (18) = -0.0043E

BETA (19) = 73.31953 CN (19) = 0.00406

BETA (20) = 77.32001 CN (20) = -0.0037E

BETA (21) = 81.32046 ON (21) = 0.00354

BETA (22) = 85.32086 CN (22) = -0.00332



BETA (23) = 89.32124 CN (23) = 0.00312

BETA (24) = 93.32163 CN (24) = -0.00294

BETA (25) = 97.32196 CN (25) = 0.00278

BETA (26) = 101.32222 CN (26) = -0.00264

BETA (27) = 105.32250 CN (27) = 0.00250

BETA (28) = 109.32277 CN (28) = -0.00238

BETA (29) = 113.32302 CN (29) = 0.00227

BETA (30) = 117.32325 CN (30) = -0.00217



Figure. 3. Dimensionless bulk concentration .vs. The ratio of the dimensions

of the flow system (Peclet number varies, R1=1.0, Nsh=1.6)



Figure 4. Dimensionless bulk concentration .vs. The ratio of the dimensions

of the flow system ( Sherwood number varies, R1=1.0, Pe= 5 x10
6

)



CHAPTER FOUR

DISCUSSION

The results of this analytical solution have been

examined by adjusting different system parameters, such as

Sherwood number, Peclet number and the ratio of dimensions

of the flow system.

In Figure 3, the dimensionless bulk concentration of

the stream outlet, B/CAO , is plotted as a function of the

ratio of dimensions of the flow system, L/R , at different

Peclet number. It shows that the outlet bulk concentration

decreases when the ratio of the dimensions of the flow

system increases, but the bulk concentration increases when

the Peclet number increases. It means that at higher

Peclet number the efficiency of the system is lower. On

the other hand, when the L/R ratio is higher (or the length

of hollow fiber tube is bigger)then the efficiency is

relatively higher. From this figure we can easily determine

the Peclet number for a given efficiency at a certain

hollow fiber length. For example, if we want to control

the outlet efficiency larger than 0.85 at L/R=2000, then

we have to control the Peclet number less than 1 x 10 6

when R1=1.0 and Nsh=1.6 .

In Figure 4, the dimensionless bulk concentration of

the stream outlet, B/CAO , is plotted as a function of the



ratio of dimensions of the flow system, L/R , at different

Sherwood number. It shows that the outlet bulk concentration

decreases when the Sherwood number increases for a given

length of fiber. That is, at higher Sherwood number the

efficiency of the system is higher. For example, if we

would like to have the efficiency larger than 0.70 at

L/R=4000, then we have to control the Sherwood number at

larger than 0.4 when R1=1.0 and Pe=5 x 10 6 .

This mathematical model can be used to predict the

concentration profile of the solution and dialyzate in

a hollow fiber dialyzer flow system.

For different diffusivity of the stream solution,

we have to decide what kind of material should be used

for the fiber, what is the most optimal length of the fiber, and

how many fibers are needed to achieve the highest efficiency.

To solve this kind of problem we can simply use this

mathematical model and optimization techniques to design

the hollow fiber dialyzer flow system. The Sherwood

number, Peclet number and the ratio of the dimensions of

the flow system will be the controlling parameters in the

design. Once the best range of these parameters are found,

a most economical and efficient hollow fiber dialyzer

can be designed for dialysis operation.



CONCLUSION

A mathematical model describing the flow characteristics

and mass transfer has been developed for the hollow fiber

dialyzer in countercurrent dialysis.

The theoretical expressions are developed from a typical

Graetz problem for the stream side, and a first order

differential equation for the dialyzate side. The solution

of the dimensionless concentration profile is obtained as

a summation of orthogonal eigenfunctions in closed form,

which are given as product of an exponential function

and a confluent hypergeometric function.

The analytical solution of the model has been examined

by adjusting system parameters, like Sherwood number, Peclet

number and the geometry of the system. As expected, at

higher Sherwood number and higher L/R ratio the bulk

concentration in the stream outlet increases, where as at

higher Peclet number the bulk concentration in the stream

outlet decreases. This can be used to optimize dialyzer

performance.
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TABLE OF NOMENCLATURE

B: 

	

bulk concentration of outlet product

CA 	: f1(r,z) : local stream concentration

CD 	: f2(z) : dialyzate concentration

VZ 	: local velocity in the inside stream

Vmax 

	

: maximum velocity of the stream

D 	 : diffusivity

K 	 : mass transfer coefficient

R 	 : Radius of hollow fiber

QD 	: dialyzate flow rate

L 	 : length of hollow fiber

CDL 	: inlet solute concentration in dialyzate stream

CAO 	: inlet solute concentration of the stream

N 	 : number of hollow fibers

CDO 	: outlet solute concentration of dialyzate stream

R1 	: dimensionless ratio of volumetric flow rate of both stream

R3 	: dimensionless ratio of Radius and length of hollow fibers

Pe 	: the length peclet number defined below equation (7)

Nsh 	: sherwood number defined below equation (7)

H 	 : dimensionless value difined below equation (22)

Greek Letters

θ 	 : dimensionless stream concentration

θd 	: dimensionless dialyzate concentration



ε 	: dimensionless r direction in Hollow Fibers

φ 	 : dimensionless z direction in dialyzer

βn, β 	 : eigenvalues defined in equation (26)



APPENDIX A

A standard form of the confluent hypergeometric differen-

tial equation (Slater, 1960) or the Kummer's equation is

In the case of b = 1, the two linearly independent

solutions are

and

where 1 F1(a;b;x) is the general confluent hypergeometric

function defined as

• , •
and

The numerical values of confluent hypergeometric

function are tabulated in a book (Slater, 1960). These

values may also be calculated from equation (A-4).



APPENDIX B

A standard form of Sturm-Liouville differential equation

is

A second order differential equation of the form

may be transformed into equation (D-1) by means of the

relations

from which

compare equation (9) with (D-1), we can obtain

so the weighing function for equation(28) is



from (D-4), we know

It is the numerator of equation (29).
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