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ABSTRACT

A mathematical model describing the flow characteristics
and mass transfer has been developed for the hollow fiber

dialyzer in countercurrent dialysis.

The theoretical exXpressions are developed from a typical
Graetz problem for the stream side, and a first order
differential equation for the dialyzate side. The solution
of the dimensionless concentration profile is obtained as
a summation of orthogonal eigenfunctions in closed form,
which are given as product of an exponential function

and a confluent hypergeometric function.

The analytical soclution of the model has been examined
by adjusting system parameters, like Sherwood number, Peclet
number and the geometry of the system. As expected, at
higher Peclet number the bulk concentration in the stream
outlet decreases, where as at higher Sherwood number and
higher L/R ratio the bulk concentration increases. This

can be used to optimize dialyzer performance.
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CHAPTER ONE

INTRODUCTION

Liquid-phase membrane seperation process (such as
dialysis, reverse osmosis and ultrafiltration) utilize
the difference in the membrane permeability of molecules
as a basis for seperation. In dialysis, the flux of sloutes
across a membrane is mainly controlled by diffusional
transport. Large surface area membrane modulus such as
hollow fibers unit are often used to compensate for the
slow diffusion-controlled flux. Hollow fiber dialyzer
has been successfully used, for example, in artificial
kidney hemodialysis to remove membrane-permeable waste
materials from the blood.

It has been found that the major technical problem
of dialysis 1s to provide a large effective mass transfer
surface with adequate mechanical support and uniform flow
distribution at acceptable pressure drops and costs.
Before these problem can be investigated in a meaningful
way, a semiguantitative description of the convection
mass transfer taking place will be provided.

The objective of this investigation is to present an
analytical solutions which describe the flow characteristics

and the mass transfer of a boundle of hollow fibers in



countercurrent dialysis.

In this thesis, a general analytical solution of a
mathematical model of hollow fiber dialyzer is presented.
The concentration profile of the inside hollow fiber
stream is function of two dimensions of the flow system.

The concentration of the dialyzate is function of axial
direction of the dialyzer only. In the end, the solution

is examined by evaluating defferent system parameter.



CHAPTER TWO

REVIEW OF LITERATURE

Concept and Description of A Hollow Fiber Dialvzer Unit

The concept of dialysis is based on the semi-permeable
membrane. In contrast, water and species of low and medium
molecular weight can freely permeate the membranes, which allow
the solutes in the stream to pass through the membrene into
the dialyzing fluid, until an equilibrium is achieved between

the stream and the dialyzate.

It is assume that the group of molecules whose dimensions
are relatively small are permitted to pass from the blood stream
through the membrane into the dialyzate fluid. As a result of
this, there is a net movement of waste product solutes from
a region of higher concentration to a region of lower concentretion

(dialyzate).

The rate of transfer is governed by the concentration
difference across the membrane, the molecular size and the

permeability characteristics of the membrane.

The hollow fiber dialyzer system consists of a shell which
houses the hollow fiber boundle. The fiber are grouped together
in a parallel array with one end sealed and the other open (exposed

to atmospheric pressure). Both ends terminate in tube sheet. the



length to diameter ratio of a typical channel in a well-packed

hollow fiber dialyzer often has a value as large a&s 105 to 104

The entry region effect, which is important in ordinary heat
exchangers, becomes practically negligible for this kind of

unit is at the range of 10'2 - 104 tubes. The Reynolds number

for a well-packed hollow fiber dialyzer is very low, that is,

the dialysis is carried out with laminar flow.

The typical hollow fibers dialysis unit is shown as Figure 1
below :

_ ] A

4

1]
h=3

L~

F

Figure 1. Hollow Fiber Dialyzer Unit Scheme

A: Jacket B: Hollow fibers

C: Stream inlet D: Stream outlet

E: Dialyzate inlet F: Dialyzate outlet



Review Studies of The Hollow Fiber Dialyzer

To date, very little work on hollow fiber has been
reported in the literature.

In 1973, Gill and Bansal introduced the design and
analysis of hollow fiber reverse systems. A predicted model
is developed using the equivalent annulus assumption. The
effects of pressure, temperature, flow rate, concentration,
viscosity of the feed, system length, membrane rejection

parameter, and number of fibers are studied.

Dandavati and Gill (1975) introduced the experimental
work of hollow fiber reverse osmosis. The performance of
a hollow fiber reverse osmosis system was determined by
measuring the fraction of feed recovered as product, and

the concentration reduction ratio.

Noda and Gryte (1979) introduced a mass transfer
theoretical investigation of hollow fibers in countercurrent

dialysis. In which, mass transfer coefficient are obtained
as a function of fiber packing density, membrane thickness,

membrane material and solute type.

Papenfuse and Thorson (1979) presented a theoretical
investigation of ultrafiltr tion through hollow fibers used

in artificial kidney applications.



CHAPTER THREE

Derivation of Mathematical Model

Mathematical analysis

The mathematical model to be considered in this analysis is

illustrated in the Figure 2. below. For simplicity following

assumption are made here.

1)
2)

3)
L)

5)
6)

7)

Steady state conditions.

Laminar flow in stream side provides a fully developed
parabolic velocity profile.

The diffusion process can be described by Fick's law.
Physical properties with in the system such as density,
diffusivity and overall mass transfer coefficient are
contants and independent of concentration.

Axial diffusion is insignificant.

The dialyzate-side mass transfer resistance is position
independent.

Plug flow in dialyzate-side.

WIPPP PP P02l sl Al R ALl dds

D:a!yﬁs “—

. e =
?{ S‘trcan —_—> )

—————

Dialys is P

/777 7l r7 7 77/ 77T

Figure 2. Flow model of hollow fiber dialyzer.



By refering to Figure 2. and the assumptions above govering
equations for a counterflow situation can be formalated for two

sub-systems. One for stream-side and another for dialyzate-side.

Stream-side:
3CA oCa
s I |
@rar (r3+) (1)
with boundary condltlons

(1) B.C. 1. at 2=0, Cap =Capp at allr
o(a
=0

o
= k(CA,rw CD)

where Cp is the concentration of spceiles A in the dialyzate

(2) B.C. 2. at r=0, Ca finite or
_ 30

B.C' ] t "R' ——
(3) 3. at r éa Y

stream.
Base on the assumption (2), we can substitute
v \/max[’ )Qa]
to equation (1), which becomes
CA L2 /,2C
Vinax (1 - & = % ar(rar) ()
Dialyzate-side:
dlo
QD ==2TRN-K (Cﬁlrzn‘CD) (3
with boundary condltlon
(4) B.C. 4. at z=L, Cp = CpL

Total mass balance of A between two stream

B (Con- Cou) = AIBVmr (0 L[|, (- RIrdY |

4)



Here: N: number of capillary tubes
CAa: f(z,r) :+ local solute concentration in the stream
Cap: inlet solute concentration of stream
Cp: f(z) : solute concentration in the dialyzate stream
CpL: inlet solute concentration in the dialyzate stream
Cpo: outlet solute concentration in the dialyzate stream

: binary mass diffusivity

K : the overall mass transfer coefficient
Qp : volumetric flow rate of the dlalyzate stream
R : fadius of capillary tubes
Vg : the velocity in the axial direction

Vmax: the maximum axial velocity at r = 0O

Dimensionless Forms of the Model

Introducing the following dimensionless variables,

ez_Cﬂ;C_Z&
Cao -Gy

6%‘ Cho'C3L 65)

f th/?:‘

therefore equation (2) can be written as

(1-£3)-25- ), éai(z 3



with boundary conditions:
(1) B.C. 1'. at f=0, =1 at all

(2) B.C. 2'. at &=0, O= finite or —g—%= 0 at all

(3) B.C. 3'. at €= 1, "’Z’%Ie::’/\/s‘h (6]gs1 164 -l)

and equation (3) can be formulated as

dé NTI R Vmax
-a-};i-—‘-.Z' i%( ‘ {G?o (Glg‘;*ed")

d6d

T L-NshRi(Blesr 64 - 1) (7)

with boundary condition
(4) B.C. 4'. at o -
f= R B4 =1

Here:

R I
/\/Sh = "";9_ : sherwood mumber

_Pe_ = \/may L/@ : the length Peclet number

a
[Q NTR Vimax . volumetric flow rate of stream
! 28&p volumetric flow rate of dialyzate

p3= "—‘Z:—' ¢t the ratio of dimensions of the flow system



Solution by Seperation and Transformation of variables

We can solve equation (6) with boundary conditions. By the

method of seperation of variables, we let

65, 2)= Z(¢p) K (€)

Equation (6) may be decomposed to the following two ordinary

differential equations,

| dz _ 2
z df = P ()
d’R dR e piR =
Eqgi tgg tEU-EIP K0 (@)
There are three cases to be considered:
(1) when §3<0,
It is not valid for the system.
(2) when ﬁar 0,
Z(f)= Con (10)
R(£)=Ca € t Cos ()

where Cp1, Cpz, Co3 are arbitrary constant

(3) when ﬁa >0

d; 1z = (12)

eLR 4+ 4 g (1e)fR=0 13)

- 10 =



To solve the ordinary differential equation of the equation (12)
y, We can obtain

2(f)=C € 7 (/4 )

where C1 is arbitrary constant.

To solve the second order differential equation of equation (13)

y the following transformation of both dependent and independent

variable are performed:

(1) Let ([ = pgz

endu=2@za’£
drR__dr_, _dU =2ﬁ3 _dR_
de¢ ~du de du

<R . ddg
Jer “dzlae) s dz (Q@f

_ ~pdR du d
'Qﬁd Qéidu ge 4%

= Jé__ 2 Ci‘?
Bau T4PE g

Therefore equation (13) becomes
2 R S 2
spes SR 4 upe Sy e u-epR =0

y AR ARy B g

U-quF ™ au (15)

- 11 -



Then
dR 1 U -u/
Sr=-Te e St
d’R _d (dr,_.d U/ ~U/> S
du® 'du(du)'du z€".ste 22&')
=L o™ L SYRdS 1 sWad
46 S -Ze du Qe di
‘U/)d.Z
+€ _—é—du*
Then equation (15) becomes
US4 (1-w)dS 4 (G4 4 - 4E)S =0
2 S
32 s (- S -(4-2)s =0 (&)

Equation (16) is in the form of confluent hypergemetric function
¥knows as Kummer's equation (Slater, 1960). The standard form

of the Kummer's equation and its solution are given in Appendix A.
For the case as equation (16) with (= 1/2 -6/4 and b = 1, the

S Z\F(é—-%r’,b()
Sz"‘E('zL'%;/;U)/nC(‘*ZBéU&

- 12 -



Reverse the two solutions of Sq and Sy above by using the

transformation of W and R(u) which were previously used before

that 3 R(U)= € R.S(uU)

and (l - ﬁizi

As the result, the following two solutions of in equation (13)

can be obtained
Rey= P2 F(2-§, 1) ()
Re©r= EPALE (-, 1) (82 + S Balee] (1)

Since equation (17) and (18) are the solutions of equation (13),

we can obtain
Ris)=G e ™ F (4-&. 1 8¢
+ (s 6-#/1}:?. (-5, I;ﬁiz)ﬁn (pg) Z%B& (Fia)&_] (19)
where Cp, , C3 are arbitrary constant.

sinee (g, P)= 2(PIR(E)

we combine the solutions of the cases discussed before, then

0(6.7)=Cu(Crng+Cs) 4 G ]GEM (48, 1.627)
16 PR Lnpbe  Zaeet] (20

In order for the solution of equation (13) satisfies the
boundary condition B.C. 2'., namely at &= 0, @= finite,

oréﬂ2=o, Coz and C3 have to be zero. So equation (20)

o€

becomes

0Er)=CtCetl 6™ R F -8, 1 p8") (2)

- 13 -



where -Cé is a arbitrary constant.

Since the other two boundary condition cannot be used to solve
equation (21) right away, so we solve equation (7) first

Let H = 4'NghR1

then equation (7) becomes

%%—H94=H(912=1”) (22)

where B, Blg. are function of f only, so equation (22) is a
typical first order linearly ordinary differential equation, and
its solution are given as below

The solution of equation (22) is
-Hf -Hf
fae " =(1-Ge™ tCs a
- -Bf (BHH)
+p,f,’HC4€P/‘€P TE(-50:p) 23

where Cg 1s a arbitrary constant.

: . L 1 _
Equation (23) must satisfy B.C. 4'., ie, at :-—F-i-- e 9d ..I

s . e B
GG e™ g GeTeR® FEhe

Then substitute C5 into equation (23), we can obtain
2 +HP)
Qd()?)=Cs[€(kR’ T ,
y ~(B'+H)
H B (Fers *Hf) gy
+—;,;;—;,7C4€ .E(:'%;’I;P)e -e
(4)

Then we combine it with equation (21), use boundary condition

B.C. 3'.,namely at E=l, - fg [£=’=N5h(9{£=l+9d "l)

- 14 -



we can find Cé has to be zero, and

(PR E (48 1) -2pn €A (3 8 ) F (2801 2]
:’-A/Shépﬂ/ll'ﬁ (SL’% [ Ph f’_'_ ,,+H f'*l'l)(f hﬂ‘) I)J (_25)
Since boundary condition B.C. 3'. is satisfied for all

‘f , then equation (25) becomes |
(€™ F(d-8:1:-2pePe(4-B), F(i-%” (2:P)] e &
=Nen €PF (81 b)) g (1-€ PSE}”)] (26)
The eigenvalues ﬂhcan be evaluated from equation (26). The
secant method was employed to compute the eigenvalues via
UNIVAC Computer. The computer program is given in Appendix

C.

After we sclve for eigenvalues, the equation (21) becomes

o] -Bng’, . 2 ’P; '
B(e5) = S Cne A (28 1) €7 (27)
which must satisfy boundary condition B.C. 1°' f.-_-o‘ 6=]
that is
T , 2
2 6P E (81 pEY) (28)
An equation of the form of equation (9) with the boundary
conditions constitutes a Strum-Liouville system (Mickley et al"
1957). The cofficients of solution, Cyn,, may be obtained by

making use of the orthogonal properties of the eigenfunctions.

Which shown in Appendix B.

4P LE (-8 1:40)-t- BIE -85 2: )]
]£=D (£-8) ePELE(L-£2, 1 e ] dE (29)

Cyn=

- 15 -



The integrals in the denomiantor of equation (29) can be
evaluated by numerical integration . The Newton-Coates
Trapezoidal rule combined with Romberg extrapolation technigue
was employed to hasten the convergence (Carnahan, 1969). The
numerical value of the first thirty Pn and Cupn are tabulated
in Table 1.

The final solution of dialyzate stream concentration becomes

P2 ) B
@d(f) P+H“='C4"€ /F(-L oy f)[e f_EP{Z_H
(30)

Calculation of stream outlet dimensionless bulk concentration

From equation (4), the total mass balance of A between

two stream is

o Cou-Gor) = XIE I 10, - B] (31

Where B is the bulk concentration of A at the stream outlet.

and UL /,MG fa=t\f ¥dY
= /r Ve Ydr

Also from egquation (5) we know

Coo = CAo - (CAo— CDL) 64 {f:p

:_(En*/fz

<~ CDO ZCAO"(CM-QL)[E%%QH IF(_Z Q. ,‘ﬁ,) (e Fers )
+ 1] (32)

- 16 -



Substitute equation (32) into equation (31), then rearrange

we can obtain

_B—--H [’HHMC‘" MF(’[% /le)ekh l) (33)

In conclusion, the outgoing bulk concentration of the
stream can be calculated from equation (33). The computer

program for this problem is given in Appendix C.

- 17 =



TABLE 1

at Ry= 1.0, Pg= 5 x 106 R3= 1.33 x 10™%, Nsh =0.4

BETA (1) = 0.55731 CN (1) = 1.00280
BETA ( 2) = 5.24396 CN ( 2) = -0.13455
BETA ( 3) =  9.27607 CN ( 3) = 0.06419
BETA ( 4) = 13.28912 CN (4) = -0.03985
BETA ( 5) = 17.29657 CN ( 5) = 0.02804
BETA ( 6) = 21.30147 CN ( 6) = -0.02123
BETA ( 7) = 25.30502 CN (7)) = 0.01686
BETA ( 8) = 29.30772 CN ( 8) = -0.01385
BETA ( 9) = 33.30983 CN ( 9) = 0.01168
BETA (10) = 37.31159 CN (10) = -0.01003
BETA (11) = 41.31303 CN (11) = 0.00875
BETA (12) = L45.31426 CN (12) = -0.00773
BETA (13) = 49.31532 CN (13) = 0.00691
BETA (14) = 53.31624 CN (14) = -0.00622
BETA (15) = 57.31705 CN (15) = 0.00565
BETA (16) = 61.31777 CN (16) = -0.00516
BETA (17) = 65.31842 CN (17) = 0.00474
BETA (18) = 69.31900 CN (18) = -0.00438
BETA (19) = 73.31953 CN (19) = 0.00406
BETA (20) = 77.32001 CN (20) = -0.00378
BETA (21) = B81.32046 CN (21) = 0.00354
BETA (22) = B85.32086 CN (22) = -0.,00332

- 18 -



BETA
BETA
BETA
BETA
BETA
BETA
BETA

BETA

(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)

It

n

89.
93.
97.
101.
105.
109.
113.
117.

32124
32163
32196
32222
32250
32277
32302
32325

CN
CN
CN
CN
CN
CN
CN
CN

- 19 -

(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)

.00312
.00294
.00278
.0026k4
.00250
.00238
.00227
.00217



Dimensionless bulk concentration B/Cpg
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Figure. 3. Dimensionless bulk concentration .vs. The ratio of the dimensions

of the flow system (Peclet number varies, R1=1.0, Nsh=1.6)
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Dimensionless bulk concentration B/Cpq
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(1/R3=1/R, x10~1)
Figure 4. Dimensionless bulk concentration .vs. The ratio of the dimensions
of the flow system ( Sherwood number varies, R1=1.0, Pe= 5 x10 )
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CHAPTER FOUR

DISCUSSION

The results of this analytical solution have been
examined by adjusting different system parameters, such as
Sherwood number, Peclet number and the ratio of dimensions

of the flow system.

In Figure 3, the dimensionless bulk concentration of
the stream outlet, B/Cpp ,» is plotted as a function of the
ratio of dimensions of the flow system, L/R , at different
Peclet number. It shows that the outlet bulk concentration
decreases when the ratio of the dimensions of the flow
system increases, but the bulk concentration increases when
the Peclet number increases. It means that at higher
Peclet number the efficiency of the system is lower. On
the other hand, when the L/R ratio is higher (or the length
of hollow fiber tube is bigger)then the efficlency is
relatively higher. From this figure we can easily determine
the Peclet number for a given efficiency at a certain
hollow fiber length. For example, 1f we want to control
the outlet efficiency larger than 0.85 at L/R=2000, then
we have to control the Peclet number less than 1 x 106

when R1=1.0 and Nsh=1.6 .

In Figure 4, the dimensionless bulk concentration of

the stream outlet, B/Cap , is plotted as a function of the

- 22 -



ratio of dimensions of the flow system, L/R , at different
Sherwood number. It shows that the outlet bulk concentration
decreases when the Sherwood number increases for a given
length of fiber. That is, at higher Sherwood number the
efficiency of the system is higher. For example, if we

would like to have the efficiency larger than 0.70 at
L/R=#OOO, then we have to control the Sherwood number at

larger than 0.4 when R1=1.0 and Pe=5 x 106.

This mathematical model can be used to predict the
concentration profile of the solution and dialyzate in

a hollow fiber dialyzer flow system.

For different diffusivity of the stream solution,
we have to declde what kind of material should be used
for the fiber, what is the most optimal length of the fiber, and
how many fibers are needed to achieve the highest efficiency.
To solve this kind of problem we can simply use this
mathematical model and optimization technigues to design
the hollow fiber dialyzer flow system. The Sherwood
number, Peclet number and the ratio of the dimensions of
the flow system will be the controlling parameters in the
design. Once the best range of these parameters are found,

a most economical and efficient hollow fiber dialyzer

can be designed for dialysis operation.

_23_



CONCLUSION

A mathematical model describing the flow characteristics
and mass transfer has been developed for the hollow fiber

dialyzer in countercurrent dialysis.

‘The theoretical expressions are developed from a typical
Graetz problem for the stream side, and a first order
differential equation for the dialyzate side. The solution
of the dimensionless concentration profile is obtained as
a summation of orthogonal eigenfunctions in closed form,
which are given as product of an exponential function

and a confluent hypergeometric function.

The analytical solution of the model has been examined
by adjusting system parameters, like Sherwood number, Peclet
number and the geometry of the system. As expected, at
higher Sherwood number and higher L/R ratio the bulk
concentration in the stream outlet increases, where as at
higher Peclet number the bulk concentration in the stream
outlet decreases. This can be used to optimize dialyzer

performance.
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TABLE OF NOMENCLATURE

B : bulk concentration of outlet product

Ca : fq1(r,z) + local stream concentration

Cp : fy(z) : dialyzate concentration

Vs ¢+ local velocity in the inside stream

Vpax ¢ maximum velocity of the stream

D :  diffusivity

K : mass transfer coefficient

R : Radius of hollow fiber

QD : dialyzate flow rate

L : length of hollow fiber

Cp;, ¢ inlet solute concentration in dialyzate stream

Cao ¢t inlet solute concentration of the stream

N ¢+ number of hollow fibers

Cpo : outlet solute concentration of dialyzate stream

R4 ¢ dimensionless ratio of volumetric flow rate of both stream
R3 : dimensionless ratio of Radius and length of hollow fibers
Pe : the length peclet number defined below equation (7)

Ngh : sherwood number defined below equation (7)

H : dimensionless value difined below equation (22)

Greek Letters

() t dimensionless stream concentration

E}; : dimensionless dialyzate concentration
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o M

En, B

dimensionless r direction in Hollow Fibers
dimensionless 2z direction in dialyzer

eigenvalues defined in equation (26)
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APPENDIX A

A standard form of the confluent hypergeometric differen-

tial equation (Slater, 1960) or the Kummer's equation is

AV = 4-
dxﬂr(b X) ay =0 A-1)

In the case of b 1, the two linearly independent

i}

solutions are

Y=F{a:1,;x%) (A-2)
e SV X+ = BeXE (A-3)

where 1Fl(a;b;x) is the general confluent hypergeometric

function defined as

2 (Wn X"
) _F(a b X) v UD) ni (A-4)
Be= e (4-5)
k-1 /[ 2
Hi= 2 (G ™ o7 ) (A-6)
()=S0 = gay - tadk) - (ASD

The numerical values of confluent hypergeometric
function are tabulated in a book (Slater, 1960). These

values may also be calculated from equation (A-4),
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APPENDIX B

A standard form of Sturm-Liouville differential equation
is [Pu L1+ (30 4+ v (0]dY =0 (D-1)
A second order differential equation of the form

g<x d><‘ ,(x)‘g—;';’-‘* (.04 A8]Y=0 (©D-2)

may be transformed into equation (D-1) by means of the

relations

Pty = exp alﬁcx))
&0 )
10X)= g g PO (D-3)
_ &)
rX) =g ) PX)

from which

g+ nroily dx= - dE] (b-4)
compare equation (9) with (D-1), we can obtain
PX)=¢
2(x)=0
Y(X)=€(-e7)

s§0 the weighing function for equation(28) is

-£2) €M F (2015 pas?)
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from (D-4), we know
['g(x-z*) e, F(é-f;é’; I gnz') de
€ 4, e e
I P}é bn 3 Ay
=5 € LEG-G 1 p)- (- ),7?(;-%;2;(9»,)]

It is the numerator of equation (29).
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