
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



OPTIMIZATION OF A NEW LINEAR FM DETECTOR
USING DIGITAL SIGNAL PROCESSING TECHNIQUES

EDWARD J. A. KRATT III

THESIS FOR DOCTOR OF ENGINEERING SCIENCE DEGREE
ELECTRICAL ENGINEERING DEPARTMENT
NEW JERSEY INSTITUTE OF TECHNOLOGY

MAY 26r 1983
JACOB KLAPPER, Advisor

ABSTRACT 

This dissertation describes and synthesizes a new member

of the family of FM detectors introduced earlier by Klapper

and Kratt. A salient property of these detectors is low delay

with excellent sensitivity. The emphasis in the new detector

is on the ease of digital implementation. In addition, the

new detector is also extremely linear. In congruence with the

other Klapper-Kratt detectors, it makes use of zero group

delay elements, balance at RF, quasi-synchronous detection and

carrier cancellation. The performance of the detector is

mathematically analyzed under the conditions of a modulated

input wave, sinewave interference, and noise. The results

indicate improved performance over other members of the family

in terms of linearity, threshold, and ease of digital

implementation. Realization of the detector using FIR digital

signal processing methods is discussed, including linearity

optimization. Substantial algorithm simplification was

achieved. High center frequencies with low sampling

frequencies are obtainable due to the frequency foldover

effect. Narrowband predetection filtering can be included in

the detector provided a wider predetection filter is present.

Results of a working model are shown,
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CHAPTER I

INTRODUCTION 

1.1 Background 

The FM detector described in this paper is one of a

family of FM detectors (Ref. 1) that originally resulted from

the need to discriminate a frequency modulated signal with

extremely low delay and excellent sensitivity.

Up to that time, all FM detectors used low-pass filters

to remove the undesired carrier frequency components and their

harmonics Venerated in the detection process, and usually a

tuned circuit for the FM to AM conversion. These circuits

would normally not be low delay circuits. Components such as

integrators, differeritiators, summers, and multipliers on the

other hand, are low delay (zero group delay) elements.

However, even previous FM detectors using integrators and

differentiators still incorporated low-pass filters in their

output circuitry (Refs. 2, 3, and 4).

The solution to this problem utilized an integrators,

differentiator and summer to perform the FM to AM conversion.

A synchronous demodulator was used to detect the amplitude

modulation. This circuitry has theoretically zero delay, and

the only undesirable product produced is the second harmonic

of the carrier frequency, which was eliminated by adding an

additional integrator and multiplier to generate a cancelling

signal. The resulting detector is shown in Figure 1-1.
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Figure 1-1, Block Diagram of the Original Detector
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Slight variations of this circuit are possible by using the

differentiator output or the difference between the integrator

and differentiator outputs for the reference signal in the

synchronous detector.

Although the detector Performs well under narrow-band

conditions, there are some problems when used under wide-band

conditions. First, the non- linearity of the output causes

distortion products that are no longer negligible, as

indicated in Figure 1-2. Secondly, an integrator problem

exists if the input frequency to the detector is changed

instantaneously. This situation as shown in Figure 1-37

causes a de component to appear at the integrator output due

to the effective initial condition of the integrator at the

time of the frequency change. This dc component at the input

of the multiplier causes a considerable component of the

fundamental carrier frequency to appear at the output.

A form of the detector that does riot require integrators

in the discrimination section and therefore is riot subject to

the initial condition Problem is shown in Figure 1-4+ An

integrator is still needed in the carrier cancellation

section, and the output is still non-linear+ Another basic

form of the detector is shown in Figure 1-5. However, all

these forms required integrators and produced outputs that

were not ideally linear.
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Fi gure 1-2, Output Characteristic of the Ori ginal Detector
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Figure 1-3. Integrator Problem under Wide-Band Conditions
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Figure 1-4* Block Diagram of Another Form of the Detector
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Figure 1-5. Block Diagram of a Third Form of the Detector
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1.2 Investigation of an Improved Detector

At present, all work done with this family of detectors

assumed analog realization, using operational amplifiers and

analog multipliers. With the recent advancement of the

digital signal processing technology, however, digital

implementation of systems is becoming quite attractive.

Therefore, an investigation was made to utilize the advantages

of digital signal processing techniques to develop a new

version of detector that had optimal wide-band performance.

Research into digital realizations of the basic

functional blocks showed that differentiators could be readily

realized, but integrators still had problems. However,

realization of the Hilbert transformer was found to be

comparable to that of the differentiator with good accuracy,

even though an accurate Hilbert transform analog realization

is usually rather complex. The Hilbert transformer is another

zero delay element with a 90 degree phase shift for all

frequencies. B, replacing the integrators in the detector of

Figure 1-1 with Hilbert transformers, the resulting detector

was found to have theoretically perfect linearity and

excellent wide-band potential.

REFERENCES - Chapter I

1. J. Klapper and E. Kratt, 'A New Family of Low-Delay FM

.Detectors," IEEE Transactions on Communications, Vol.

COM-27, No. 2, Feb. 1979.
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1970,

4. E. T. Patronise 'A Frequency Modulation Detector using

Operational Amplifiers," Audio Ma., Feb. 1970.
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CHAPTER II

FUNCTIONAL DESCRIPTION

2.1 Introduction 

A block diagram of one form of the new detector is given

in Figure 2-14 It is comprised of a differentiator, two

Hilbert transformers, two summers, and two multipliers -- all

compatible with FIR discrete time signal processing

techniques. The detector may be divided into two basic

functions: 1) wide-band quasi-coherent discriminator, and 2)

low-delay carrier supression.

2.2 Wide-Band Quasi-Coherent FM Discriminator 

This function is performed by the Portion of the detector

in the dashed box. The _input signal is fed simultaneously

into differentiated Di and Hilbert transformer Hi. The output

'of the differentiator leads the input wave by 90 degrees, and

its amplitude varies directly with frequency. For simplicity,

the time constant is selected to give unity gain at some

radian freouency ω o . The output of the Hilbert transformer,

on the other hand, also leads the input wave by 90 degrees,

but its amplitude is constant with frequency and has a gain of

unity. The result is that the outputs of D1 and Hi are always

in Phase, and their difference vanishes at ωo . Thus a balance

is achieved at the carrier frequency. Above and below ω o the

output of the summer Si has an increasing amplitude

proportional to the frequency difference. There is, however,
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Figure 2-1, Block Diagram of the New Detector
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a phase reversal when going through ωo  because below oω the

Hilbert transformer output dominates, while above ωo the

differentiator output dominates. The wave thus lends itself

to coherent detection.

The coherent detection is performed by the multiplier Ml.

One input of M1 receives the output of Si, while the other

input receives the output of the Hilbert transformer H1. The

output of M1 is a wave containing the demodulated output and a

carrier of twice the frequency and modulation index.

On a steady-state frequency-offset basis, the Pertinent

wave equations at each stage are shown in Figure 2-1. An

input of sin t is assumed, where the frequency is normalized

with respect to the center frequency (i.e. ω o = 1). The

output of the discriminator thus consists of a dc component

and a second harmonic component, both of which are

proportional to (ω  - 1). The output thus exhibits perfect

arithmetic symmetry about the center frequency, a property

which the other discriminators in the same family can only

approximate.

As with the other discriminators, however, all of the

components in Figure 2-1 are still capable of very wide-band

operation and are instantaneous (introduce no group delay).

2.3 Cancellation of RF

The output of M1 is Proportional to cos2ωt. Observe in

Figure 2-1 that the Hilbert transformer H2 and multiplier M2
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receive inputs that are in quadrature with the corresponding

components in the discriminator portion and generate a wave

proportional to sin2ωt with the same proportionality factor.

The outputs of the two multipliers are combined in summer 82.

Since cos 2ωt + sin2ωt = 1, the RF is fulls cancelled

instantaneously, introducing no delay, As is shown later,

this characteristic also holds for a modulated input wave

because of the perfect linearity of the detector. The

cancellation is not perfect for the Previous versions due to

their nonlinear characteristics.
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CHAPTER III

THEORETICAL PERFORMANCE

3.1 Modulated Input Wave 

Consider a narrow-band FM waves as in the case of a sine

wave modulation of a small modulation index or the case in

which a time-modulated FM wave was Passed through a

narrow-band filter which attenuated all sidebands except the

first pair, 'The input to the detector may then be considered

as an FM wave comprised of three components -- the center

frequency and a pair of sidebands. It may be written as

where A and k are constants related to the amplitude of the

wave and the modulation index (k =Δω/Δωm), while ωo and ωm are

the center and modulation frequencies, respectively.

It can be shown (see Appendix I) that the output of the

detected is then given by

where R is the ratio of the modulating frequency to the center

frequency (R = ω m/ωo). Thus the output consists only of a

undistorted baseband.

The outputs of two other versions of the detector as

computed in Ref. 1 and Ref. 2 are shown in Table 3-1. In

addition to the undistorted baseband, these outputs also
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TABLE 3-1

Modulated Input Wave
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contain a low-level signal of twice the baseband freaquency, a

low-level component of first order sidebands about twice the

center frequency, and low-level components of de and twice the

center frequency. These results also assume that the

modulating frequency is much smaller than the carrier

frequency (R << 1) . These terms result from the non-linearity

characteristics of these other forms.

Expressions for the amount of rms distortion d at the

various detector _outputs are also shown in Table 3-1. These

were obtained by taking the ratio of the distortion terms to

the desired signal on an rms basis. The value of d for the

new detector is zero, since there are no distortion terms.

The values of d for the other two detectors are in the order

of several percent for k = 0.1 and R = 0.1, and vary

proportionally with R. Thus, the distortion terms may be

neglected for small values of R.

Removing the restriction of narrow-band operation,

consideration will now be given to the performance of the

detector with wide-band modulated input signals, where the

input frequency to the detector could theoretically change

instantaneously.

Referring back to Figure 2-1, no de components should be

Present at the inputs of the multipliers if the detector is to

perform as previously described. If this condition is

violated, a considerable component of the fundamental carrier

frequency will appear at the output. By investigating the
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sources for the multipliers, no components theoretically

produce any de components under these conditions. The

detector should therefore Perform equally as well under

wide-band conditions.

As shown in Ref. 1, this does not hold for other versions

of the detector that use integrators, since de components are

generated as a result of the effective initial conditions of

the integrators at the time of a rapid frequency change. This

was one of the original Purposes for generating a version of

the detector without using integrators.

3,2 Sine Wave Interference 

Consider the case where the input wave consists of a

desired carrier of a frequency ‘4.) 4, and an interference carrier

of a frequency r such as

where ωd = ωo + Δωd and ωi = ωo + Δωi.

It can be shown (see Appendix II) that the baseband

output of the detector shown, in Figure 2-1 is then given by

For the case where 	 -id- O the normalized output of the

detector reduces to
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and the rms value of the normalized output is given by

Curves of <eo (t)> for various values of B/A and Δωi/ωo

are shown in Figure 3-1. Since the output is symmetric about

0, only positive values of Δωi/ωo, are graphed.

Corrington (Ref. 3) has derived the equivalent output of

a conventional wide-band limiter-discriminator for Δω d = 0 as

The equivalent rms output for A/B < 1 is given by

Curves of- <e 0 "):> n 4.44for various values of B/A ad Δωi/ωo

are also shown in Figure 3-1. In comparing these curves with

those of the detector of Figure 2-1, one observes that the two

curves are almost identical for small values of B/A. However,

as B/A approaches 1? the output of the ideal

limiter-discriminator approaches infinity, while the output of

the new detector remains finite. This may also be observed by

comparing Equation 3-5 and Equation 3-7. Therefore, as the

interference increases, the detector of Figure 2-1 has a much

better output purity both in terms of rms and peak-to-peak

values, and this improvement increases without bound.
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Figure 3-1. <e 0 (t)> vs.Δωi /ωo, for Various Values of B/A
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In comparison, similar results for the detectors of

Figure 1-1 and Figure 1-4 as given by Ref. 1 and Ref. 2,

respectively, are shown in Table 3-2. The expressions for

<e (t)> are identical to Equation 3-6 if the frequency

deviations are small compared to the carrier frequency (Δωi/ωo,

<< 1 and Δω d/ω o << 1) . These assumptions were not needed in

the derivation of Equation 3-6, which therefore describes the

detector of Figure 2-1 also under wide-band sinusoidal

interference conditions.

3.3 Noise Performance 

Consideration will now he given to the performance of the

detector of Figure 2-1 in the presence of narrow-band noise.

The complete detector, including the pre-detection and

post-detection filters, is shown in Figure 3-2. The

definition of output SNR used in this derivation is taken to

be the ratio of mean output signal Power to mean output noise

power, where the signal power is measured in the absence of

noise and the noise power in, the absence of signal (i.e. the

carrier is unmodulated). This definition is valid for high

SNR, where the mean signal and noise powers may be assumed to

add linearly, and the signal power measured in the absence of

noise does not differ substantially from that measured with

noise present. Signal suppression occurs as the values of CNR

drop below 0 dB (Ref. 4).

The noise is assumed to be of a bandwidth no wider than

twice the carrier center frequency, and therefore may be
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TABLE 3-2

Sine Wave Interference
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Figure 3-3. PSD of x(t) and y(t)
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represented by.

which consists of a carrier at the center freouencY 60e ,

modulated by two random variables, x(t) and y(t). The noise

is also assumed to have a zero mean and a Gaussian

distribution. The random variables x(t) and y(t) thus have

the following properties: a) Lowpass, 'rectangular power

spectral density of bandwidth B/2 and amplitude n as shown in

Figure 3-3, b) Equal variances for n(t), x(t), and y(t), and

c) x(t) and y(t) are independent.

Therefore, consider an input signal given, by

which consists of an 	 unmodulated 	 carrier 	 with 	 added

narrow-band noise. 	 It- may be shown (see Appendix III) that

the baseband output of the detector is then given by

The output power spectral density may then be obtained by

taking the Fourier Transform of the autocorrelation function

of e o (t). By integrating this result over the

post-discrimination, bandwidth and dividing by 27r, the detector

output noise power is shown to be given by
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Next, the output signal Power may be obtained using a

modulated input signal given by

where A is the carrier amplitude, β is the modulation index,

and ωm  is the modulation frequency. The corresponding output

power is then shown to be given by

The output SNR is obtained by taking the ratio of the

output signal power to the noise power. In terms of the CNR

at the input, the SNR is given by

where x = B/ωb . The only assumptions made were that ωb, < B/2

and that the signal and noise terms are additive.

For the special case of high CNR, the denominator in

Equation 3-15 becomes unite. Letting ωm  = ωb for optimum

performance, and using the relationship CNR = (CNR) AM (2ωb/B),

then the SNR for high CNR conditions is given by

which 	 is 	 identical 	 to 	 the 	 expression 	 for 	 a

limiter-discriminator well above threshold (Ref. 5). 	 The

performance of the detector is therefore identical to a
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limiter-discriminator well above threshold, but without using

a limiter.

As indicated in Figure 3-4, the threshold Point for an FM

system is usually defined as the point where the SNR has

dropped 1 dB more than that predicted by the 	 linear

improvement region. 	 Referring to Equation 3-15, this occurs

where the denominator increases an amount above unity

equivalent to i dB. The result may be written as

In comparison, the SNR relationship for the detector of

Figure 1-4 is given by Tarbell (Ref. 6) as

The corresponding equation for the threshold CNR is

The results of Equation 3-16 and Equation 3-18 are shown

in Figure 3-5 for various values of B/2/4)43 , along with data for

a conventional limiter-discriminator (Ref. 7) for comparison.

The new detector has a 3 dB improvement in threshold

performance over the detector of Figure 1-4, but still no

improvement over the limiter-discriminator.
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Figure 3-5, Threshold (CNR)AM Characteristics
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CHAPTER IV

DIGITAL IMPLEMENTATION 

4.1 Introduction 

A direct approach to digitally implementing the detector

was performed first by generating algorithms that will closely

resemble the differentiator and Hilbert transformer over the

frequency band of interest. The corresponding samples were

also added and multiplied as required to perform the functions

shown in Figure 2-1.

The differentiator and Hilbert transformer were realized

using a finite impulse response (FIR), or non-recursive,

design method. Such designs exhibit no phase errors, and have

delays of approximately N/2 sampling periods, where N is the

order of the. network. They are also unconditionally stable,

since they are synthesized using only zeros.

Obviously the 	 digital 	 system 	 cannot 	 still 	 have

theoretically zero delay due to the discrete time samples and

the delays in generating the functional blocks. However, if

actual delay is riot of major importance then the detector

should offer much improved performance in other areas.

4.2 Linear-Phase Realizations 

A computer program called EOFIR (Ref. 1) was used to

generate 	 the coefficients for FIR realizations of both

differentiators and Hilbert 	 transformers. 	 The 	 program
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optimizes the results over a prescribed frequency range, which

was selected as 0.15 fs to 0.35 fswhere fsis the sampling

frequency. These values will then generate a detector that is

centered at half the Nyquist frequency with a relatively wide

linear bandwidth of two-fifths the Nyquist frequency.

Using these requirements, the coefficients were computed

for differentiators with N= 5, 7, and 9, Only odd values of N

were selected so that the delayed output of the function be an,

exact number of sample periods for proper configuration of the

total network. The delay of the FIR block is (N-1)/2 sampling

periods, which for odd values of N causes the delayed outputs

to fall on exact sample times: allowing the results to be

combined with other equally delayed values to perform the

additional functions, Each output is generated by multiplying

the N successive samples by the corresponding coefficients,

and then summing the results.

The equations giving the frequency response of a general

FIR configuration were derived (see Appendix IV) and used to

evaluate each set of differentiator coefficients, The results

are shown in Figure 4-1, Reasonable results were obtained for

N=7: with N=9 giving very good results.

In a similar manner: coefficients for Hilbert

transformers were computed and evaluated for N= 5, 7, 9 and

11. The results are shown in Figure 4-2. The response for

N=7 and 9 are the same and Provide a relatively close

approximation.
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Figure 4-1. Frequency Response of Differentiators
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Figure 4-2. Frequency Response of Hilbert Transformers
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At first, it might seem strange that two values of N give

identical results. However, the frequency response equation

for a FIR network is based on a Fourier structure, and an

Particular component that is not symmetrical with respect to

the desired response has a value of zero. For example, all

even 	 harmonics of. a square wave are zero. 	 Therefore,

increasing the order does not necessarily add useful terms.

Selection of a value of N was based on finding the

minimum value __that gave approximate results, with the

assumption that later optimization of the total detector would

greatly improve the response of the detector. A lower value

of N also means a simpler algorithm for easier implementation

and smaller values of delay. As a result, N=7 was chosen for

both the differentiator and Hilbert transformer.

The equation for the frequency response of the detector

was derived (see Appendix V), and is given by

where F is the frequency normalized to the sampling frequency,

c is the ith coefficient (or impulse response) of the

differentiator and cHi is the ith coefficient of the Hilbert

transformer. The detector response was then computed using

the coefficients for N=7, as given in Table 4-i. The results

are shown in Figure 4-3, which indicates an almost sinusoidal

response with much greater linearity error than indicated by
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TABLE 4-1
Original Detector Coefficients

(Impulse Response)

H(i) DIFF. BLOCK H. T. BLOCK

H(1) = - H(7) 0.08223 0.08510

H(2) = - H(6) - 0.19502 0.00240

H(3) = - H(5) 0.57944 0.58080

H(4) 0 0
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Figure 4-3. Detector Output
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any of the individual components+ 	 This is because the

particular errors of each block get multiplied when combined

in the total detector, resulting in a much larger error+

Also observe that the detector output reduces to zero at

both zero frequency and the Nyquist frequency, since the

outputs of both the differentiator and Hilbert transformer go

to zero at these frequencies. Therefore, the detector also

provides an equivalent inherent linear Phase bandpass filter

characteristic+ For higher order realizations, this internal

bandpass property may be utilized with other bandwidths and

center frequencies to eliminate undesired signals within the

Nyquist hand.

4.3 Linearity Optimization

Consideration was now given to optimizing the detector

coefficients for linearity over the frequency range of

interest (0+15 < F < 0.35). Constraints had to be placed on

the coefficients in order to retain certain necessary

properties. First, the negative symmetry of the coefficients

is required to preserve the linear-phase (actually a constant

90 degree phase) characteristic of the FIR blocks. This

requires that c i = -cN+1-i , and c(N+1)/2 = 0 since N is odd.

The 90 degree phase properties of the components is required

- to maintain the quadrature relationships for carrier

cancellation+ As a result, only three values are required to

define the seven general coefficients of each FIR block+
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Next, the amplitude requirements need to be determined.

This maw be accomplished by assuming that each FIR block is

multiplied by a corresponding amplitude function of frequency

FP as shown in Figure 4-4. These amplitude functions

represent the non-ideal amplitude variations in the

realization of each function. Assuming an input e i (t) =

sinωt , and solving in a manner similar to that used in

Appendix Ir the corresponding output is found to be given by

Therefore, the carrier component will cancel exactly only if

A3 (ω)) = A 2 (ω)). This means that the coefficients of the two

Hilbert transformers must be identical. Linearity of the

detector is then controlled by A 1 (ω ) and A2 (ω ), which may

vary from units and still give the desired result of (4 - 1)

as long as they are related by the expression

In the implementation, computer routines were generated

 (See Appendix VII) to minimize a least squares linearity error

function using the Fletcher-Powell algorithm (Ref. 2). The

error function was generated by summing the squares of the

differences between the actual and desired detector outputs

using a number of frequency points over the interval

0.15 < F < 0.35.
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Figure 4-4* Non-Ideal Block Representations
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Upon convergence, the optimized coefficients shown in

Table 4-2 were obtained. The corresponding optimized detector

output is shown in Figure 4-5, where it is compared with both

the original detector output and the ideal output. Over the

frequency range of optimization, the output is found to be

extremely linear, with substantial improvement over the

original response.

The internal bandpass characteristic of the detector is

also improved. An equivalent gain response of the detector

was generated by taking the ratio of the actual output to the

ideal output of a theoretical wide-band detector. The results

are shown in Figure 4-6.

REFERENCES - Chapter IV

1, J. H. McClellan, T. W. Parks and L. R. Rabiner, 'FIR

Linear Phase Filter Design Program," Programs for Digital

Signal Processing, Chap. 5.1, IEEE Press, New York, 1979,

2. R. Fletcher and M. J. D. Powell, 'A rapidly convergent

descent method for minimization,' Computer J., Vol. 6,

No. 2, July 1963.
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TABLE 4-2

Optimized Detector Coefficients
(Impulse Response)

H(i) DIFF. BLOCK H. T. BLOCK

H(1) = — H(7) 0.19019 0.19071

H(2) = — H(6) — 0.21116 — 0.00157

H(3) 	 = — H(5) 0.54117 0.54175

H(4) 0 0
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Figure 4-5. Detector Output with Linearity Optimization
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Figure 4-6+ Equivalent Gain Response of the Detector



Page 43

CHAPTER V

REALIZATION

5.1 Introduction

The optimized detector was realized using 11 bit A/D and

D/A converters, and a DEC LSI-11 processor with an extended

arithmetic chip* Even though this processor is relatively

fast, it still takes approximately 60 ,is for a multiplication

and 8 μs for an addition or subtraction. Since a direct

approach to realizing the detector of Figure 2-1 using the

coefficients given in Table 4-2 would require eleven

multiplications, six additions and ten subtractions,

considerable time will be used in performing the functions of

the algorithm alone, without even including time to perfedm

other related functions that are necessary to input, output,

or internally shift data during each cycle. The longer the

computing time, the lower the maximum sampling frequency, and

therefore, also the maximum operating frequency. However, by

investigating the values of the coefficients and the structure

of the basic detector algorithm, substantial simplifications

to the algorithm were discovered, which greatly increased the

maximum frequency of operation.

5.2 Algoritm Simplification

Observing the coefficients shown in Table 4-2, the

coefficients for the differentiator and Hilbert transformer

blocks are found to be practically identical for both the
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first and third values. 	 Referring back to Figure 2-1, the

outputs of Dl and H1 are subtracted in summer Si. 	 Since

multiplying an input sample by two different coefficients and

then taking the difference of the results is equivalent to

multiplying the input sample b, the difference of the two

coefficients, then the functions of D1, H1 and S1 may be

replaced by a single block, as shown in Figure 5-1, with

coefficients equal to cDi - cHjTherefore the first and

third coefficients would be zero, while the second coefficient

is -0.20959.

The fact that two of the coefficients of this new block

are zero did not occur by accident. Recall that the output of

Si is actually the output of the discriminator before

synchronous detection. The frequency response should

therefore be zero at the center frequency (F = 0.25), and have

odd symmetry around this point. A negative value, in this

case, means a reversal of phase. Comparing this with the

theoretical frequency response of a FIR block, which was

derived (see Appendix IV) as

only the term for n = 2 produces odd symmetry about F = 0.25.

The other two terms have even symmetry, and must therefore be

zero.

B 	 observing Equation 5-1 for larger values of NP

alternate terms will be seen to have even symmetry and
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Figure 5-1, Simplified Detector Block Diagram
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therefore must be equal to zero. As a result, similar

simplifications maw also be made for higher order detectors of

different bandwidths, as long as Fo 0.25. Larger

bandwidths, however, will require higher values of N in order

to retain good linearity. Other values of F, do not allow

such simplifications since the response is not symmetrical and

therefore generally requires all terms.

Since the D-H block has only one non-zero coefficient,

then only one subtraction and one multiplication, is needed to

realize the function. The Hilbert transformer, however,

require three times as much. We would therefore like to

reduce the number of Hilbert transformers, which would also

reduce the computation time.

This was accomplished by taking the dual of the detector

of Figure 5-1, which resulted in the configuration shown in

Figure 5-2. The two detectors are equivalent in performance

since the multiplier inputs are still identical. This

simplified configuration, however, requires only six

multiplications, one addition, and five subtractions, which is

about half the complexity of the original realization.

5.3 System Configuration

The detector of Figure 5-3 was realized in a system based

on an LSI-11 processor, which was used basically as a

convenient laboratory tool for the experimental verification

of the theoretical detector. However, the principles used
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Figure 5-2. Equivalent Simplified Detector Block Diagram
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Figure 5-3, Detector System Block Diagram
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here may readily be applied to other digital (or discrete-time

analog) signal processing hardware being used in the industry.

As shown in Figure 5-3, sampled data to and from the

Processor is accomplished using a DRV-11 Parallel Interface

card, which has two sixteen-bit ports, one in each direction.

The input data is obtained from a 11-bit A/D converter, where

one of the bits is polarity. The converter was designed to

generate 1000 samples per second, with the end of conversion

pulse being used to synchronize the processor, An optional

BPF may be used Prior to the A/D converter to remove undesired

signals, or limit the noise bandwidth, A seventh order active

transitional BPF, with a bandwidth of approximately 270 Hz,

was used when making noise performance tests. The response of

the filter is shown in Figure 5-4.

The output samples from the processor drive a 11-bit D/A

converter, with one bit again being polarity. The processor

outputs the previous result when it receives new input from

the A/D converter, An active, 5th order Butterwedth LPF using

Sallen and Key sections (Ref. 1) was used to filter the output

of the D/A converter. A cutoff frequency of 200 Hz was used

for normal operation. The cutoff was changed to 30 Hz for

noise tests.

5.4 Software Description

A flow diagram showing the algorithm for the detector in

Figure 5-2 is given in Figure 5-5. Two arrays of numbers must



REALIZATION 	 Page 50

Figure 5-44 Pre-Detection BPF Frequency Response



Figure 5-5. Detector Algorithm Flow Diagram
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be held in memory. One array holds ten consecutive input

voltage samples, while the other contains seven outputs of the

Hilbert transformer. The previous samples appear to the

right.

Following the diagram, the value of H3 is generated using

which is possible due to the symmetry of the coefficients.

The output of the second D-H block, called R2, is obtained

from

The delay of three sample periods for each block realization,

or six for the total detector, maw be seen by observing the

subscripts.

In a similar manner, the output of the first D-H block is

given by

and the output of the detector is found using

The values in the arrays are then shifted to the right by one,

with a new sample entering at the left, and the procedure is

repeated.
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The above procedure has been kept general, even though

the delay could have been reduced by one sampling period since

the first coefficient of R2 (c sz ) is zero. This would allow

the calculations of the D-H blocks to be shifted left one time

slot, putting the output at only five delay units.

Also observe that only three different values of

coefficients are required to perform the algorithm. The

values of these coefficients are c H1= 0.19045r cH2= 0.54146

and cS2 = -0.20959.

These results were incorporated into the program

RTDET.MAC, which was used to perform the algorithm in real

time. The program is shown in Figure 5-6. The beginning of

the program handles data I/O, which is followed by the

algorithm computations. The latter portion of the program

shifts the arrays in preparation for the next sample.

Approximately 800 μs of computing time are required for each

1000 )JS cycle.

REFERENCES - Chapter V

1. R. P. Sallen and E. L. Key, 'A Practical Method of Designing

RC Active Filters,', IRE_ Trans. Circuit THeory, vol. CT-2,

no. 1, March 1955.
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*TITLE RTDET.MAC
LOOP: 	 TST 	 @#167770 	 ;TEST FOR NEW DATA

BMI 	 LOOP 	 ;LOOP IF NONE
MOV 	 @#167774,R1 	 ;GET NEW SAMPLE
MOV 	 ROr@#167772 	 ;OUTPUT PREVIOUS RESULTS
CMP 	 #176000,R1 	 ;CHECK FOR -0 INPUT
BNE 	 NEXT
CLR 	 R1

NEXT: 	 MUL 	 #40,R1 	 ;SHIFT DATA 5 BITS
MOV 	 R1,ESIG 	 ;STORE SAMPLE
SUB 	 ESIG+14,R1 	 ;CALC HTMP
MOV 	 R1,R0
MUL 	 #14141,R0 	 ;HTMP IN R0
MOV 	 ESIG+4,R2 	 ;CALC HSIG(1)
SUB 	 ESIG+10,R2
MUL 	 #42517,R2
ADD 	 R2,R0
MOV 	 R0,HSIG 	 ;STORE RESULTS
MOV 	 ESIG+10,R0 	 ;CALC S1SIGP*HSIG(4)
SUB 	 ESIG+20,R0
MUL 	 HSIG+6,R0 	 ;RESULT IN RO
MOV 	 HSIG+2,R2 	 ;CALC S2SIGP*ESIG(7)
SUB 	 HSIG+12,R2
MUL 	 ESIG+14,R2 	 ;RESULT IN R2
SUB 	 R2,R0 	 ;CALC OUTPUT
MUL 	 #162455,R0 	 ;OUTPUT IN RO
MOV 	 #10,R3 	 ;SHIFT ESIG DATA
MOV 	 #ESIG+20,R4
MOV 	 *ESIG+22,R5

LOOP1: MOV 	 -(R4),-(R5)
DEC 	 R3

- BGT 	 LOOP1
MOV 	 #5,R3 	 ;SHIFT HSIG DATA
MOV 	 #HSIG+12,R4
MOV 	 #HSIG+14,R5

LOOP2: MOV 	 -(R4),-(R5)
DEC 	 R3
BGT 	 LOOP2
JMP 	 LOOP

ESIG: 	 .BLKW 	 9. 	 ;ESIG(9) ARRAY
HSIG: 	 .BLKW 	 6. 	 ;HSIG(6) ARRAY

.END 	 1000

Figure 5-6. Real-Time Algorithm Computations
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CHAPTER VI

ACTUAL PERFORMANCE 

6.1 Introduction

The response of the detector was first measured under

steady-state conditions, the results of which are shown in

Figure 6-1. Compared with the theoretical response shown in

Figure 4-5, the two curves are found to be almost identical.

There were no noticeable carrier components on the dc output

of the detector.

As predicted by the foldover theory of sampled systems, a

mirror image of the detector output was found to result for

frequencies immediately above the Nyquist frequency (500 to

1000 Hz), where the Nyquist frequency (or aliasing frequency)

is one-half the sampling frequency (Ref. 1). At the sampling

frequency of 1000 Hz, the detector repeated its baseband

response. Actually the baseband response is duplicated

starting at multiples o1- the sampling frequency, while an

inverted baseband response occurs just below each of these

frequencies. Therefore, as shown in Figure 6-2, a frequency

translation may also be incorporated into the detector as long

as the A/D converter has a good sample-and-hold circuit.

Recall that the sampling frequency is based on the modulation

information and not the carrier.

The performance of the detector using a modulated input

was next observed under both narrow- and wide-band conditions.
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Figure 6-1+ Actual Detector Response
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Figure 6-2, Multi-Band Detector Response
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This was then followed by an evaluation of the detector under

sinusoidal and noise interference conditions.

6.2 Narrow-Band Performance

The signal source was derived from a voltage controlled

oscillator, which was modulated by a 50 Hz square wave output

of a waveform generator. A 270 .Hz bandwidth pre-detection

bandpass filter was used in series with the signal source to

remove higher frequency sidebands of the original wide-band

signal. The source was adjusted for a center frequency of

1250 Hz (the first shifted band of the detector) and a peak

shift of 50 Hz, A 200 Hz post-discriminator lowpass filter

was used to remove frequencies above the Nyquist frequency

(500 Hz).

	 Figure 6-3a presents the waveform at the input to the

detector. 	 The received carrier is square wave modulated but

the narrow-band filter before the detector eliminated all

sidebands beyond the first, reducing the modulation to that of

a sine-wave and introducing amplitude variations on the

carrier. The output of the detector prior to the filter is

shown in Figure 673b, and-, after filtering in Figure 6-3c.

Observe that since the algorithm completely balances out all

carrier components, no rile components appear at the

detector output.
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Figure 6-3, Narrow-Band Performance
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Figure 6-3. Narrow-Band Performance (contd)
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6.3 Wide-Band Performance

In order to demonstrate the wide-band performance of the

detector, the bandpass filter was removed from the test

configuration. The output of the detector was then compared

with the modulating signal, using, four different modulating

waveforms, as shown in Figure 6-4. The modulation frequency

was 20 Hz for all waveforms.

Figure 6-4a compares the two waveforms for sine-wave

modulation, with the outputs of the detector being the lower

waveforms+ The performance is essentially identical to that

of the narrow-band case. B comparing the phases of the

waveforms, a total delay of approximately 10.5 ms is observed.

This consists of one sampling period (1 ms) delay for the A/D

conversion, a six sampling Period (6 ms) delay for the FIR

realization, and approximately a 3.5 ins delay for the 200 Hz

Butterworth lowpass filter. Figure 6-4b presents the

Performance using triangular modulation and is again found to

be relatively ideal. However, the output of the detector when

receiving a sawtooth modulating waveform shows some ringing

and sloped transitions, as shown in Figure 6-4c. The ringing

occurs only when there is a rapid frequency change in the

input signal to the detector. A similar situation occurs when

receiving a square wave modulated carrier, as shown in Figure

6-4d. The rounding of the waveforms is due to the equivalent

internal bandwidth of the detector, as shown in Figure 4-6.

The resulting sloped transitions of approximately 4 ms in
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a) Sine wave modulation
(vert: 200 mV/cm horiz: 10 ms/cm)

b) Triangular modulation
(vert: 200 mv/cm, horiz 10 ms/cm)

Fiure 6-4. Wide-Band Performance
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c) Saw-tooth modulation
(vert: 200 mV/cm, horiz: 10 ms/cm)

d) Square wave modulation
(vert:200 mV/cm, horiz 10 ms/cm)

Figure 6-4. Wide-Band Performance (contd)
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Figure 6-4d are equivalent to those predicted by computer

simulation (see Appendix VI - Example), which shows four

sampling periods (4 ms at a 1000 Hz sampling frequency) for a

transition under steady state conditions. The

Post-discriminator filter has almost twice the bandwidth, and

therefore only smoothens the output of the D/A converter

without disturbing the waveform.

6.4 Sine-Wave Interference

Using the same test configuration as for the wide-band

performance, an unmodulated carrier at 1250 Hz and another

sine-wave of variable amplitude and frequency were used for

the input to the detector. The waveform shown in Figure 6-5

is the output of the detector when the two carriers are equal

in amplitude and the undesired signal is 50 Hz higher. As

predicted by Equation 3-5, only a dc term and a beat frequency

sine-wave appear at the output of the detector. Results for

various other conditions of the interfering tone were obtained

using an rms voltmeter, and are shown in Figure 6-6.

Comparing these results with the theoretical results in Figure

3-1, the two are found to be almost identical.

6.5 Noise Performance 

The SNR-CNR relationship was obtained by measuring the

rms noise power in the absence of modulation and the signal

power in the absence of noise, and then computing the

resulting ratio. As with the analytical derivation, the



ACTUAL PERFORMANCE 	 Page 65

Figure 6-5. Sine Wave Interference
(vert: 50 mV/cm, horiz: 10 ms/cm)
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Figure 6-6. Actual <e o (t)> vs. Δωi/ωo for Various B/A
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effect of modulation on threshold is ignored.

Following this technique, an rms Power meter was used to

measure the noise output at different values of CNR (with no

modulation). A reference signal output, from which the SNR

calculations are made, is then obtained by removingthe noise

and addining tone modulation to the carrier at some specified

deviation.

The measured SNR verses CNR characteristic for the

detector is shown in Figure 6-7. Recall that the term (CNR) AM

is the carrier to noise power ratio with the noise measured in

a filter bandwidth of twice the base bandwidth, or

The results show that the threshold occurs at (CNR), 	 = 24.6

dB. The SNR improvement above threshold is 9.0 dB.

For reference, the theoretical performance 	 of 	 the

detector, as given by Equation 3-15 is also shown in Fiure

6-7. 	 In these calculations, the following 	 experimental

parameters were used: B = 2π(266), ωb = 2π(28.5), and ω d =

27r(50).

A limiter was then added between the output of the

pre-detection filter and the input to the detector. The

limiter also included a lowpass filter to remove the harmonics

generated in the limiting process. The same procedure was

then performed, with the results also shown in Figure 6-7.
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Figure 6-7. Experimental Noise Performance of the Detector
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Observe that this curve has a much sharper break at threshold,

which was found to occur at (CNR)AM = 22.0 dB, 	 The SNR

improvement above threshold is 9.5 dB. Therefore, the

addition of a limiter improves threshold performance by 2.6

dB. The linear improvement region is not sufficiently

changed, with the difference being due to experimental error.

REFERENCES - Chapter VI

1. S. D. Stearns, Digital Signal Analysis, Chap. 4, Hayden,

1975.
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CHAPTER VII

CONCLUSIONS

7.1 Conclusions

We have described a new extremely linear version of a

family 	 of detectors having a wide bandwidth, excellent

sensitivity, and theoretically low delay. 	 The low-delay

feature is obtained in a two-fold manner 1) through the use

of networks having zero group delay, and 2) through an RF

cancellation technique for the carrier. The detector exhibits

excellent linearity due to its inherent structure.

The theoretical performance of the detector was analyzed

for 	 modulated 	 input 	 signals, 	 unmodulated interference

carriers, and narrow-band noise conditions. Theoretically,

the detector has no distortion, due to the perfect linearity.

For interference signal levels approaching the desired signal

'level, the new detector was shown to offer a considerable

improvement over the limiter-discriminator. Noise performance

was shown to be equal to the limiter-discriminator well above

threshold, but had a higher threshold. These results were

also compared with those of other forms of the detector,

showing improved performance in the areas of linearity and

noise threshold.

The detector of Figure 2-1 was realized using FIR digital

signal processing methods, and was then optimized for

linearity, resulting in substantial improvement. The digital
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implementation of the detector was found to exhibit a useful

inherent bandpass filter characteristic with delay Properties

comparable to the algorithm Processing delay. After several

algorithm simplifications that resulted in a 35% reduction of

total computing time, the detector of Figure 5-2 was

implemented using laboratory digital processing hardware and

used to detect a modulated ,carrier above the Nyquist

frequency, 	 demonstrating 	 the	 bandpass 	 characteristics

resulting 	 from 	 frequency 	 foldback in sampled systems.

Experimental results were shown. Total system delays were

associated mainly to filtering functions, and were found to be

comparable with those of conventional FM detection methods.

7.2 Suggestions for Future Efforts

It is worthwhile to mention areas where future work

should be performed. Several of these are given below:

(1) An investigation into the 	 properties 	 of 	 the

coefficients for other orders, center frequencies,

and bandwidths of the detector.

(2) A general, efficient computer program to obtain the

optimized coefficients of the detector using other

techniques, such as a 	 Chebychev 	 approximation

(Ref. 1), instead of a least squares approximation.

(3) Incorporation of the bandpass and lowpass filters

into the same digital hardware, using a higher

sampling rate for the filter functions and the

frequency foldover property for the detector
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portion,

(4) Detection of a series of equally spaced FM channels

using the same lowpass equivalent detector algorithm

and the frequency foldover characteristics,

including time sharing of common hardware.

REFERENCES - Chapter VII 

1. T. W. Parks and J. H. McClellan, 'Chebyshev Approximation

for Nonrecursive Digital Filters with Linear Phase," IEEE

Trans. Circuit Theory, Vol. CT-19, No. 2, March 1972.
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APPENDIX I

DETECTOR OUTPUT FOR NARROW-BAND FM WAVE 

This Appendix derives the expression of the output of the

detector shown in Figure 2-1 when the input is a narrow-band

FM wave, comprised of a component at the center frequency and

one pair of sidebands. At the same time, we present the

voltage expressions at the various Points of the circuit,

Reference is made to Figure 2-1. 	 Without loss of

generality, we let the gains of the, summers, multipliers, and

Hilbert transformers be unity 	 and 	 the 	 gain 	 of 	 the

differentiator 	 be D. 	 The input signal, being a small

modulation index tone-modulated FM wave, is given by El as

where k is the modulation index. We further assume that the

various blocks do not cause Phase inversions, Then the output

of differentiator Dl is given by

Proceeding further, we have the output of the 	 Hilbert

transformer H1 as
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while the output of the summer Si is

For carrier balance at center freauency ω o, we require that

Due to Equation A1-5, the first term of Equation A1-4 vanishes

and partial cancellation occurs in the other two terms. We

mass then, rewrite Equation A1-4 as

where R =60,,,//4)0 .

Now, the output of the multiplier M1 is

where B = A
2
k/4.

Equation A1-7 is obtained by collating terms of the same

freeuency after- using appropriate trigonmetric identities.

Note that E5 is the output of the discriminator portion.

In a similar manner, we find the expressions for the RF
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cancellation circuit. The output of Hilbert transformer H2 is

while the output of multiplier M2 is

Finally, the output of the detector is E8 = ES 	 E7:

which is equivalent to Equation 3-2*
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APPENDIX II

BASEBAND OUTPUT FOR SINE WAVE INTERFERENCE 

This Appendix derives the expressions for the detector

output when the input consists of a desired and an interfering

carrier, with the modulation of both the desired and the

interfering carriers limited to dc (freauencw offset).

Proceeding as in Appendix I, and referring again to

Figure 2-1, we have a desired carrier at freauencw 6,34 and an

interfering carrier at freauencw a. The input to the

detector is

where A and B are the amplitudes of the desired and

interfering carriers, resPectivelv. Let co d = co. +.Acod and Wi

=W +4)1, where 44),/ and Aevi are the deviations of the desired

and interfering carriers, resPectivelw, from the center

freauencw of the detector. After differentiation

The output of Hilbert transformer Hi is

After summing and using the center freauencw balance condition

Eauation A1-5, we get
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At the output of the discriminator portion (output of Ml), we

have

Finding the expressions for the RF cancellation circuit,

the output of Hilbert transformer H2 is given by

while the output of M2 is

Finally, the output of the detected is given by

which is the same as Equation 3-4*
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APPENDIX III

DERIVATION OF CNR 	 SNR RELATIONSHIP

This Appendix computes the Performance of the detector in

the presence of noise, The SNR is derived by finding the

ratio of the detector output signal power for a sinusoidal

modulated input wave and the detector output power spectral

density (PSD) for an unmodulated carrier with added

narrow-band noise. This result is then compared with the CNR

at the input of the detector.

Proceeding as in Appendix I, and again referring to

Figure 2-1, we first derive the detector output for an

unmodulated carrier with added narrow-band noise as

represented by Figure 3-2. The input to the detector is then

given by

After differentiating, and using the center frequency balance

condition Equation A1-5, we get

The output of Hilbert transformer H I is

The summer output is then
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At the output of the discriminator portion (output of M I ), we

Finding the expressions for the RF cancellation portion, the

output of H2 is given by

while the output of N. is

Finally, the output of the detector is 	 -

To determine the PSD of Z(t) we must first find R zz (τ),

which is the autocorrelation function of Z(t) and is defined

as

Let C = A/ωo and 0 = -1/ωo, then
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Substituting into Equation A3-9 and solving by making use of

the expected value identities

and

we obtain

after returning to the original equivalents for C and D*

The Fourier Transform of Rzz (τ) will produce the output

power spectral density Szz (τ) in watts/Hz. Therefore,

where the noise spectral density S(ω) is given in Figure 3-3*

The second term of Equation A3-14 may be reduced by using the

convolution of S yy and Sxx, where Syy = S(ω) and Sxx= w2S(ω)

over the same bandwidth (-B/2 < ω < E/2), or

Op.BLANK 1 Substituting the functions, this becomes

which after solving and changing back to the 	 original

variables, results in the expression
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Therefore,

Finally, the total noise power at the detector output is equal

to the integral of (1/2π) S zz (ω)) over the post detection

filter bandwidth, or

which is equivalent to

The 1/27r factor is necessary when integrating over ω

(radians/sec) since the units of Szz (ω) are watts/Hz.

Solving, the total noise power at the detector output is given

by

The signal output Power of the detector is obtained in a

similar manner. Assume a modulated input signal given by



APPENDIX III 	 Page 82

where A is the carrier amplitude, β is the modulation index

and ωm is the frequency of the cosinusoidal modulating signal.

Again referring to Figure 2-1, the output of D I is

while the output of H 1 is

After summing,

The output of the discriminator portion (output of M I ) is then

given by

Obtaining the expressions for the cancellation section, the

output of H, is

while the output of M.2. is

The detector output voltage is then given by
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which has a signal output power of

The SNR for the detector output may now be determined from

Substitutin and dividing both numerator and denominator by

A2ηω 63/12τ , we obtain

Since the CNR at the input to the detector is given by

then the SNR may be rewritten in terms of the CNR. 	 This

results in the expression

where x = B/Wb. This is equivalent to equation Equation

3-15.

A computer program called DETSNR.BAS was written usin

the results of Equation A3-34. The program lists values of

SNR over a 20 dB rare of CNR centered around the threshold
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value, which is also Printed+ A listing of the program and an

output example for the working model of the detector are given

below+
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PROGRAM DETSNR.BAS

10 C010' ,1
20 C1=C0-1
30 C=1/(2*C1)
40 PRINT
50 PRINT 'ENTER PRE-DETECTION BW: ";
60 INPUT F1
70 PRINT 'ENTER POST-DETECTOR CUTOFF FREQ.: 1;
80 INPUT F2
90 PRINT 'ENTER MODULATION FREQUENCY: ";
100 INPUT F3
110 PRINT "ENTER PEAK FREQ. DEVIATION: m;
120 INPUT F4
130 X=F1/F2
140 B=2*PI*F1
150 W1=2*PI*F2
160 B0=F4/F3
170 V=C*(-.254.X/2-.375*X2+.25*X^3)
180 A0=10*LOG10(V)
190 T0=10*LOG10(V*2/X)
200 I9=10*LOG10(3*(BO*F3/F2)^2)
210 PRINT
220 PRINT 'THRESHOLD CNR IS ';T0;' DB'
230 PRINT 'THRESHOLD (CNR)AM IS ";A0;' DB'
240 PRINT "SNR IMPROVEMENT ABOVE (CNR)AM FOR HIGH CNR IS
';19;* DB'

250 PRINT
260 T1=INT(T0-10)
270 PRINT "CNR',"(CNR)AM','SNR","SNR DEGRADATION"
280 S0=1.5*B0-2*X*(F3/F2)-2
290 FOR J=0 TO 20
300 T9=T1+J
310 T=10-(T9/10)
320 A=T*X/2
330 A9=10*LOG10(A)
340 S=S0*T/(1-(.25/X-.5+3*X/8-()r2)/4)/T)
350 S9=10*LOG10(S)
360 PRINT T9,A9,S9,S9-(A9+I9)
370 NEXT J
380 END
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DETSNR.BAS EXAMPLE
(Working Model of the Detector)

DETSNR 	 28-JUL-82 18:30:39

ENTER PRE-DETECTION BW: ? 266
ENTER POST-DETECTOR CUTOFF FREQ.: ? 28.5.
ENTER MODULATION FREQUENCY ? 25
ENTER PEAK FREQ. DEVIATION: ? 50

THRESHOLD CNR IS 18.5985 DB
THRESHOLD (CNR)AM IS 25.2886 LIB
SNR IMPROVEMENT ABOVE (CNR)AM FOR HIGH CNR IS 9.65372 DB

CNR (CNR)AM SNR SNR DEGRADATION
8 14.6901 18.3539 -5.98991
9 15.6901 20.0796 -5.26418
10 16.6901 21.7573 -4.58653
11 17.6901 23.3828 -3.96102
12 18.6901 24.953 -3.39075
13 19.6901 26.4663 -2.87752
14 20.6901 27.9221 -2.42166
15 21.6901 29.3217 -2.02204
16 22.6901 30.6676 -1.67614
17 23.6901 31.9635 -1.38029
18 24.6901 33.2138 -1.13002
19 25.6901 34.4234 -.920399
20 26.6901 35.5974 -.746372
21 27.6901 36.7408 -.602989
22 28.6901 37.8582 -.485619
23 29.6901 38.9537 -.390083
24 30.6901 40.0311 -.312664
25 31.6901 41.0936 -.250168
26 32.6901 42.1439 -.199886
27 33.6901 43.1843 -.159515
28 34.6901 44.2166 -.127182

READY
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APPENDIX IV

FREQUENCY RESPONSE OF A LINEAR-PHASE FIR NETWORK

This Appendix derives the frequency response, including

both amplitude and phase, of a linear-Phase FIR filter network

given the coefficients (which are identical to the impulse

response). The results are used to generate the responses of

the differentiators and Hilbert transformers used in the

detector.

The delay of a linear-phase FIR network is (N - 1)T/2,

where T is the sampling interval and N is the order of the

network. Assuming an input of e (t) = exp (jω), the delayed

output is then given by definition (Ref. 1) as

where ci is the i th coefficient,, ω is the input radian

frequency, and T is the sampling interval. Define a

normalized frequency F (relative to the sampling frequency)

given by

Substituting,
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where H(F) is the transfer function, which determines the

amplitude and phase of the result.

The transfer function may then be written as

or in trigometric terms,

Then,

and

The amplitude response is then given Lei

and the phase b,

Now consider the special case of a linear-phase

configuration with a constant 90 degree phase characteristic,

as exists for differentiators and Hilbert transformers. The

coefficients are then related (Ref. 1) by
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Then, is N is odds the terms of H(F) may be taken in pairs,

resulting in the expression

Since (eJX 	e-4)() = 2j sin x, then H(F) may be written as

where the j indicates the 90 degree phase response. The

frequency response may therefore be evaluated in a Fourier

manner, consisting of a fundamental component of 2 sin 2πF and

a number of harmonics, each multiplied by a corresponding

coefficient. Note that the first coefficient represents the

amplitude of the highest frequency component.

Coefficients with even symmetry will obviously produce

similar results, except the output will be the sum of cosine

terms and have a zero phase characteristic.

These results were used in a computer program called

FIRTST.BAS, which was used to analyze the individual

differentiators and Hilbert transformers. A Program listing

and output examples for the differentiator. and Hilbert

transformer used in the original detector are given below.

REFERENCES 

1, A. Antoniou, Digital Filters: Analysis and Design, Chap.

9, McGraw-Hill, 1979.
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PROGRAM FIRTST.BAS

10 DIM C(20)
20 PRINT 'ENTER # COEFFIC 6
30 INPUT N
40 PRINT 'ENTER COEF (H(1) TO H(N))
50 FOR I=1 TO N
60 INPUT C(I)
70 NEXT I
80 FOR J=1 TO 20
90 F=.025*J
100 H1=0
110 H2=0
120 W=PI*F
130 FOR I=1 TO N
140 W2=(N+1-2*I)*W
150 X2=(N+1-2*I)*J/40
160 X1=X2+.5
170 IF ABS(X1-INT(X1))<1.00000E-07 GO TO 190
180 H1=H1+C(I)*COS(W2)
190 IF ABS(X2-INT(X2))<1.00000E-07 GO TO 210
200 H2=H2+C(I)*SIN(W2)
210 NEXT I
220 A=SQR(H1*H1+H2*H2)
230 P=.5*PI*SGN(H2)
240 IF H1=0 GO TO 290
250 H3=H2/H1
260 P=ATN(H3)
270 IF H1<0 THEN P=P+PI
280 IF P>PI THEN P=P-2*PI
290 PRINT F,A,P
300 NEXT J
310 PRINT
320 GO TO 20
330 END
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FIRTST.BAS EXAMPLE
(Original Differentiator)

FIRTST 	 28-JUL-82 18:32:31

ENTER 1 COEFFIC
? 7
ENTER COEF (H(1) TO H(N))
? 0.08223
? -0.19502
? 0.57944
10
? -0.57944
? 0.19502
? -0.08223

FREQ AMPL PHASE
.025 .135423 1.5708
.05 .261905 1.5708
.075 .373007 1.5708
.1 .466633 1.5708
.125 .545703 1.5708
.15 .617424 1.5708
.175 .691293 1.5708
.2 .776234 1.5708
.225 .877548 1.5708
.25 .99442 1.5708
.275 1.11861 1.5708
.3 1.23475 1.5708
.325 1.32239 1.5708
.35 1.35932 1.5708
.375 1.32578 1.5708
.4 1.20853 1.5708
.425 1.00411 1.5708
.45 .720425 1.5708
.475 .376482 1.5708
.5 7.45058E-09 3.14159
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FIRTST.BAS EXAMPLE
(Original Hilbert Transformer)

FIRTST 	 28-JUL-82 18:34:01

ENTER # COEFFIC
? 7
ENTER COEF (H(1) TO H(N))
? 0.08510
? 0.00240
? 0.5808
? 0
T -0.58080
? -0.00240

-0.0R910

FREQ AMPL PHASE
.025 .260467 1.5708
.05 .49947 1.5708
.075 .699343 1.5708
.1 .849206 1.5708
.125 .946525 1.5708
.15 .996914 1.5708
.175 1.01225 1.5708
.2 1.00753 1.5708
.225 .997133 1.5708
.25 .9914 1.5708
.275 .994166 1.5708
.3 1.00188 1.5708
.325 1.00448 1.5708
.35 .987784 1.5708
.375 .936925 1.5708
.4 .840076 1.5708
.425 .691577 1.5708
.45 .493828 1.5708
.475 .257501 1.5708
.5 2.23517E-08 3.14159
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APPENDIX V

FREQUENCY RESPONSE OF THE DETECTOR

This Appendix derives the output response of the detector

from the coefficients of the differentiator and Hilbert

transformer blocks, which are of a linear-phase design. 	 As

such,. 	 block bas a delay of (N - 1)1/2, where T is the

sampling interval. For an input of ej (t) = sinωt, the output

of the FIR block is then given by

where c m is the n th coefficient and N is the order of the

block.

Referring to Figure 2-1, the output of the differentiator

is given by

while the output of Hilbert transformer Hi is

The output of summer Si is then

Then the output of multiplier Ml is given bs
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Determining the equations for the RF cancellation circuit, the

output of H2 is

while the output of multiplier M2 is

The output of the detector is therefore given by

In terms of the normalized frequency F (relative to the

sampling freauency), which is defined by F =ωT/2π, the

detector output may he written as

which is the same as Equation 4-1,

This result was incorporated into a computer program

called GENDET.BAS, which calculates the complete frequency
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response of the linear-Phase FIR detector network from the

coefficients. A listing of the program and output examples

for the original and optimized detector are given below.
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PROGRAM GENDET.BAS

10 A=TTYSET(255%,133%)
20 DIM C1(9),C2(9),C3(9),E0(20),F(20)
30 PRINT 'INPUT C1(1) TO C1(3):'
40 FOR I=1 TO 3 \ INPUT C1(I) \ NEXT I
50 PRINT "INPUT C2(1) TO C2(3):"
60 FOR I=1 TO 3 \ INPUT C2(I) \ NEXT I
70 PRINT \ PRINT 	 # 	 FRED 	 OUTPUT"
80 C1(4)=0
90 C2(4)=0
100 C3(4)=0
110 F0=.25
120 FOR I=1 TO 3
130 C3(I)=C2(I)
140 C1(8-I)=-C1(I)
150 C2(8-I)=-C2(I)
160 C3(8-I)=-C3(I)
170 NEXT I
180 FOR I=1 TO 19
190 F(I)=.025*I
200 W=2*PI*F(I)
210 E0(I)=0
220 FOR M=1 TO 7
230 FOR N=1 TO 7
240 X=COS((M-N)*W)-COS((8-N-M)*W)
250 E0(I)=E0(I)+.5*(C1(N)-C2(N))*C3(M)*X
260 NEXT N
270 NEXT M
280 GO TO 310
290 M1=M1+(F(I)-F0)*E0(I)
300 M2=M2+(F(I)-F0)^2
310 PRINT I,F(I),E0(I)
320 NEXT I
330 STOP
340 E=0
350 M0=M1/M2
360 FOR I=1 TO 9
370 E=E4.(E0(I)-M0*(F(I)-FO) )'"2
380 NEXT I
390 PRINT E
400 END
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GENDET.BAS EXAMPLE
(Original Detector)

GENDET 	 28-JUL-82 18:35:47

INPUT C1(1) TO C1(3):
? 0.08223
? -0.19502
? 0.57944
INPUT C2(1) TO C2(3):
? 0.08510
? 0.00240
? 0.58080

I FREQ OUTPUT
1 .025 -.0325697
2 .05 -.118657
3 .075 -.228221
4 .1 -.324883
5 .125 -.379388
6 .15 -.378318
7- .175 -.32489
8 .2 -.233035
9 .225 -.119242
10 .25 2.99392E-03
11 .275 .123714
12 .3 .233307
13 .325 .319332
14 .35 .367002
15 .375 .364331
16 .4 .309532
17 .425 .216137
18 .45 .1119
19 .475 .0306378

STOP AT LINE 330

READY
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GENDET.BAS EXAMPLE
(Optimized Detector)

GENDET 	 28-JUL-82 1813738

INPUT C1(1) TO C1(3):
? 0.19019
? -0.21116
? 0.54117
INPUT C2(1) TO C2(3):
? 0.19071
? -0.00157
? 0.54175

FREQ	OUTPUT
1 	 .025 	 -.0444834
2	 .05 	 -.15884
3 	 .075 	 -.295055
4 	 .1 	 -.398986
5 	 .125 	 -.4345
6 	 .15 	 -.396504
7	 .175 	 -.307082
8 	 .2 	 -.198598
9 	 -.0946343
10 	 -8.43114E-05
11 	 .275 	 .0945655
12 	 .198714
13 	 .325 	 .307228
14 	 .35 	 .396379
15 	 .375 	 .433909
16 	 .4 	 .398027
17 	 .425 	 .294079
18 	 .45 	 .158205
19 	 .475 	 .0442871

STOP AT LINE 330

READY
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APPENDIX VI

TIME RESPONSE OF THE DETECTOR 

The purpose of this Appendix is to develop the

requirements for simulating the detector in the time domain,

including the generation of both sine wave and square wave

modulated FM signals as sources for the detector.

In generating a computer model of a source generator,

consider a general FM wave defined by

where, g(τ) is the modulation signal and ms is the modulation

magnitude.

For sinusoidal modulation, assume that

Then, the output is given by

where (a is the modulation index (maximum frequency deviation

divided by the modulation frequency).

For square wave modulation (FSK), the modulation signal

maY be written as
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and

where the inverse sine is limited by ±1772. 	 The generator

output is then given by

where sin-1 (sin ωmt) is limited to ±π/2.

Simulation of the detector follows implementing the

algorithms previously described.

A computer program called GENSIM.BAS was written using

the above results. For each sample time, the program shows

the outputs at each point in, the detector. A listing of the

Program and a typical example of an FSK signal are given

below.
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PROGRAM GENSIM.BAS

10 DIM C1(10),C2(10),C3(10)
20 DIM V1(20),D1(20),H1(20),S1(20),M1(20)
30 A9=TTYSET(255%,133%)
40 PRINT °ENTER ORDER OF SECTIONS (N 00D): 1 ;
50 INPUT N
60 PRINT 'ENTER COEFFIC (SLOPE=1/F0) FOR DIFFERENTIATOR
((N-1)/2):'

70 M=(N-1)/2
80 FOR I=1 TO M
90 INPUT C1(1)
100 NEXT I
110 PRINT 'ENTER COEFFIC (AMPL=1) FOR HILBERT TRANSF.
((N-1)/2):'

120 FOR I=1 TO M
130 INPUT C2(I)
140 NEXT I
150 PRINT 'ENTER COEFFIC (AMPL=1) FOR HILBERT TRANSF. #2
((N-1)/2):'

160 FOR I=1 TO M
170 INPUT C3(I)
180 NEXT I
190 PRINT ' ENTER DETECTOR CENTER FREQ. (0-.5): 1 ;
200 INPUT F0
210 PRINT 'ENTER DESIRED CARRIER FRED. (0-.5) & AMPL:";
220 INPUT F,A
230 PRINT 'ENTER DESIRED MODULATION FREQ (0-.5):';
240 INPUT Fl
250 PRINT 'ENTER MAX CARRIER FREQ SHIFT FROM FC:';
260 INPUT F2
270 IF F1=0 THEN K=0 GO TO 310
280 K=F2/F1
290 PRINT 'ENTER MODULATION TYPE (0=SINE,1=FSK):";
300 INPUT M9
310 W=2*PI*F
320 PRINT 'ENTER OUTPUT LINES: ";
330 INPUT L1
340 T=-N
350 FOR I=0 TO N
360 T9=T-I 19=1
370 GOSUB 810
380 NEXT I
390 PRINT
400 PRINT 'TIME";TAB(10);'* 	 INPUT 	 * 	 OUTPUT 	 *";

TAB(66);'OUTPUTS OF INTERNAL BLOCKS';TAB(125);"*"
410 PRINT
420 PRINT ' T','V1(0)','V2(N-1)','D1(M)I,H1(M)',
'S1(M)','M1(M)','H2(N-1)','M2(N-1)'

430 PRINT
440 REM CALCULATE BLOCKS
450 D1 (M)=0
460 H1(M)=0



APPENDIX VI 	 Page 102

470 FOR I=1 TO M
480 D1(M)=D1(M)+Cl(I)*(V1(I-1)-V1(N-I))
490 H1(M)=H1(M)+C2(I)*(V1(I-1)-V1(N-I))
500 NEXT I
510 S1(M)=H1(M)-D1(M)
520 M1(M)=S1(M)*H1(M)
530 H2=0
540 FOR I=1 TO M
550 H2=H2+C3(I)*(S1(I+M-1)-S1(N+M-I))
560 NEXT I
570 M2=H2*V1(N-1)
580 82=M2-M1(N-1)
590 V2=S2
600 REM V2 DELAYED N-1 SAMPLES
610 IF T<0 GO TO 630
620 PRINT T,V1(0),V2,D1(M),H1(M),S1(M),M1(M),H2,M2
630 T=T+1
640 FOR 1=1 TO N-1
650 J=N-I
660 V1(J)=V1(J-1)
670 NEXT I
680 FOR I=M+1 TO N+M-1
690 J=2*N-I-1
700 D1(J)=D1(J-1)
710 H1(J)=H1(J-1)
720 S1(J)=S1(J-1)
730 M1(J)=M1(J-1)
740 NEXT I
750 T9=T
760 19=0
770 GOSUB 810
780 IF T<L1 GO TO 440
790 PRINT
800 GO TO 210
810 REM INPUT SIGNAL SUBROUTINE
820 S9=0
830 X=2*F1*T9
840 IF ABS(X-INT(X))K1.00000E-06 GO TO 860
850 S9=SIN(PI*X)
860 S8=S9
870 IF M9=0 GO TO 910
_880 IF ABS(S9)=1 THEN S8=PI*S9/2 GO TO 910
890 Y=SOR(1-89*S9)
900 S8=ATN(S9/Y)
910 X=W*T9+K*S8
920 X1=X/PI
930 IF ABS(Xl-INT(X1))<1.00000E-06 THEN V1(19)=0 GO TO 950
940 V1(19)=A*SIN(X)
950 RETURN



GENSIM 	 05-SEP-82 23:01:15

ENTER ORDER OF SECTIONS (N 0(10):7 7
ENTER COEFFIC (SLOPE=1/F0) FOR DIFFERENTIATOR ((N-1)/2):
► 0.19019
• -0,21116
▪ 0.54117

ENTER COEFFIC (AMPL=1) FOR HILBERT TRANSF. ((N-1)/2):
• 0.19071
7 -0.00157
▪ 0.54175

ENTER COEFFIC (AMPL=1) FOR HILBERT TRANSF. $2 ((N-1)/2):
• 0.19071

• -0.00157

7 0.541/5

ENTER DETECTOR CENTER FRED. (0-.5):? 0.25

ENTER DESIRED CARRIER FRED. (0-.5) I AMPL:? 0.25,1.0

ENTER DESIRED MODULATION FRED (0-.5):? 0.030

ENTER MAX CARRIER FRED SHIFT FROM FC:? 0.075
ENTER MODULATION TYPE (0=SINE,1=FSK):? 1
ENTER  OUTPUT LINES: 	 80

TIME $	 INPUT 	 * OUTPUT 	 * OUTPUTS OF INTERNAL BLOCKS

T V1(0) V2(N-1) 01(M) H1(M) S1(M) H1(M) .H2(N-1) M2(N-1)

0 0 .27991 1.23118 .897096 -.334088 -.299709 .0907246 .0280355
1 .891007 .335416 -.732693 -.533873 .19882, -.106145 .257107 .181802
2 -,809017 .290521 -.565913. -.41235 .153564 -.0633219 	 4 -.274624 .261183
3 -.156435 .307235 1.24653 .908279 -.338253 -.307228 .0481044 7.52520E-03
4 .951057 .307220 -.565913 -.41235 ,153564 -.0633219 	 4 .248552 .201083
5 -.707106 .307228 -.732693 -.533873 .19882 -.106145 -..273742 .243906
6 -.309017 .307228 1.23118 ,897096 -.334088 -.299709 0 0
7 .987688 .307228 -.385199i -.280673 .104526 -.0293376 .273742 .243906
a -.587782 ,307228 -.881431 -,64225 .239181 -.153614 ^.248552 .201083
9 -.891007 .307235 1.10241 .780481 -.321924 -.251256 -,0401044 7,52520E-03
10 0 .290521 -.292908 -.332108 -.0392 .0130186 .274624 .261183
11 .891006 ,335416 -.778001 -.713492 .0645083 -.0460262 -.257107 .181802
12 .809016 .279291 .551144 .531803 -,0193413 -,0102858 -.0907246 ,0280355

13 -.156434 .229693 .451824 ,745017 .293194 .218434 	 .245737 .242711

14 -.951056 ..0497918 .213612 .367851 .15424 ,0567372 -6.40645E-03 3,76560E-03

15 -.707108  -.120575 -.331042' -.530806 -.199844 .106094 .146869 -.130861

16 .309015 -.218434 -.556269 -,892078 -.335809 ,299560 .03781562 0

17 .987688 -.323099 -.17404 -.279105 -.105064 .0293239 -.298945 ^$266362

18 .587787 -.280292 ,398244 .638657 .240412 .153541 -.215321 -.174198

19 -,453989 -.308479 ,535639 .858993 .323354 .277759 .0569634 -8.91098E-03

20 -1 -.307103 .0881059 .141293 .0531073 7.51501E-03 .292075 -.277779

21 -.453992 -.307083 -.455641 "-.730702 -.275061 ,200988 .21714 -.153542

22 .587782 -.307083 -.501819 -.804757 -.302938 .243791 -.0948933 -,0293235
23 .987688 -.307083 -4.15927E-07 -1.42936E-06 -1.01343E-06 1.44856E-12 -.303302 ...299568

24 .309015 -.307083 .501816 .804753 .302937 ..24379 -.180499 -.106095
25 -.707105 -.307082 .455642 .730704 .275061 .200988 ,139412 -.0632914
26 -,309021 -.307146 .0340042 -.0188481 -.0528522 9.96162E04 .307146 -.307146
27 .987689 -.318784 -.453609 -.641803 -.188194 .120784 .165189 -.0749943
28 -.587702 -,280259 -.558043 -.559013 -9.69648E-04 5.42046E-04 ..41134865 -.0792714
29 -.453995 -.283764 .832346 .644619 -,187727 -.121012 •-$286293 -.282768
30 1 -.126588 -.0728856 -.0196387 .0532469 -1.04570E-03 -.0187845 -5.80469E-03
31 -.453984 -4.13604E-04 -1.00847 -.734815 ,273653 -.201084 -1.81646E-04 1.28443E-04

32 -.58779 .126806 1.11066 .809281 -.301384 -.243904 -.0187508 5.79440E-03

33 .987688 .283835 7.06352E-06 5.55745E-06 -1,50607E-06 -8.36992E-12 .286314 .28279
34 -.309012 .28029 -1.11067 -,809284 ,301386 -.243907 -.134754 .079206



35 -.707111 .318827 1.00846 .734809 -.273651 -.201082 -.165029 .0749222

36 .951054 .307164 .195007 .142091 -.0529166 -7.51895E-03 .307164 .307164

37 -.156426 .307228 -1.18552 -.863826 .321698 -.277891 -.139477 .0633205

30 -.809023 .307228 .801425 .642246 -.239179 -.153612 -.180585 .106146

39 .891004 .307228 .385208 .28068 -.104528 -.0293389 .303445 .299709

40 0 .307228 -1.23119 -.897099 .334089 -.299711 -.0949365 .0293366

41 -.891007 .307228 .732687 .533868 -.19882 -.106143 -.217244 .153616

42 .587782 .307207 .523842 .370162 -.15368 -.0568866 .292168 .277868

43 .90769 .308599 -1.04172 -.749403 .292318 -.219064 -.0568198 8.88810E-03

44 .309018 .280259 .510314 .531501 .0211865 .0112607 -.215218 .174116

45 -.707103 .323208 	 .647498 .712524 .0650257 .0463324 .2989 .266322

46 -.951058 .219064 -.370574 -.332606 .0378883 -.0126049 .0378315 0
47 -.156438 .119845 -.452521 -.775648 -.323127 .250632• 	 I -.147143 .131105
48 .809019 -.0501685 -.398244 .-.638658 -.240414 .153542 -6.52642E-03 -3.83612E-03
49 .891007 -.229954 .174035 .279099 .105064 .0293234 -.245582 -.242559

50 0 -.278701 .556272 .89208 .335808 .299568 -.0908314 -.0280686

51 -.891004 -.33542 .331044 .530888 .199844 .106095 .257216 -.181878

52 -.809019 -.290564 -.255691 -.410045 -.154353 .0632917 .274685 ..-.261241

53 .156438 -.307076 -.5632 -.903196 -.339996 .307083 .0479948 .•.7.50821E-03

54 .91054 -.307082  -.255692 -.410045 -.154354 .063292 -.248434 .•4200987

55 .707111 -..307083 .331045 6530E188 .199843 .106094 -.273613 -.243791

56 -.309012 -.307083 .55627 .892079 .335809 .299568 -7.81554E-08 0

57 ....987688 -.307082 .174038 .279104 .105066 .0293242 .273613 -.24379

50 -.587782 -.307083 -.39824 -.638653 -.240413 .15354 .240434 -.200988

;9 .891004 -.307076 -.452526 -.775652 -.323126 .250633 -.0479936 -7.50802E-03

40 1.19042E-05 -.290565 -.370572 -.332686 .037886 -.0126041 -.274685 -.261241

61 -.89101 -.335421 .647492 .712519 .0650271 .046333 -.257216 -.18188

62 .809009 -.278701 .510319 .531504 .021185 .0112599 •.0908294 -.0280674

63 .156444 -.229954 -1.04172 -.749402 .292315 -.219061 .245581 -.242558

64 -.95106 -.0501698 .523823 .370146 -.153676 -.0568827 6.52762E03 -3.83682E-03

65 .707090 .119042 .732702 .533879 -.198823 -.106147 .14714 .131102

66 .309024 .219061 -1,23118 -.897094 .334087 -.299708 -.0378283 -4.53343E-07

67 -.987691 .323206 .385187 .280664 -.104523 -.0293350 -.2989 .266323

68 .587778 .280257 .881439 .642256 -.239183 -.153617 .215214 .17411

69 .453995 .308598 -1.185S2 -.863822 .321697 -.277889 .0568249 8.88992E-03

70 -1 .307207 .194991 .142079 -.0529117 -7.51763E-03 -.29217 .277871

71 .453984 .307228 1.00847 .734817 -.273654 -.201085 .217241 .153611

72 .587797 .307228 -1.11066 -.809277 '6301385 -.243904 .0949414 .0293392

73 -.987687 .307228 -9.15497E-06 -5.09911E-06 4.05585E-06 -2.06813E-11 -.303445 .29971

74 .309001 .307228 1.11067 .809287 -.301386 -.243908 .180582 .106142

75 .707115 .307227 -1.00846 -.734808 .273649 -.201079 .1394E31 .0633237

76 -.309012 .307161 -.0729082 -.0196568 .0532514 -1.04675E-03 -.307164 .307164

77 -.987687 .318826 .B32355 .644626 -.187729 -.121015 .165023 .074918

78 -.587707 .280289 -.558035 -.559004 -9.69768E-04 5.42104E-04 .134758 .0792101

79 .453904 .203835 -.453619 -.64181 -.180191 .120783 -.286314 .282788

ENTER DESIRED CARRIER FREQ. (0-.5) I AMPL:7 ^C

STOP AT LINE 220

READY
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APPENDIX VII

LINEARITY OPTIMIZATION OF THE DETECTOR 

The parameters of the detector were optimized using the

subroutine FMFP,FOR, which is now included in most Fortran

scientific subroutine packages, It is based on an algorithm

developed by Fletcher and Powell to minimize a function of a

number of variables by varying the value of the variables.

The subroutine must be given an initial set of values, which

it then modifies by successive approximations in order to

reduce the value of the function, To accomplish this, the

routine requires that the value of the function and the

gradient vector of the function with respect to each variable

be calculated for each new approximation.

Therefore, in order to optimize the linearity of the

detected in Figure 2-1 using the Fletcher-Powell algorithm, we

must first generate the expressions for both the error

function to be minimized and the corresponding gradient

vector,

As shown in Equation A5-9, the output of the detector for

the normalized frequency F is given by

Using the least squares method, with the constraint that the

ideal detector output be zero at F„ and have a slope of M, the
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error function is then given by

where P is the number of frequency points used to represent

the function and M is the slope of the detector output. Due

to the structure of the ideal detector, the slope M is a

constant given by

The gradient vector is defined as

where

The expression for the partial derivatives of the output with

respect to the coefficient cj  depends on which block the

coefficient is associated. 	 For the coefficients of the

differentiator 	 Dj , we have cs = cDn , and the partial

derivative ma be written as

where
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Then for Hilbert transformer H1, we have cj = cHn and

Arid finally, for H2 we have cj = cHHM and

These results were then incorporated into subroutine

FUNCT.FOR, which is called b the Fletcher-Powell routine.

The main program DETLN.FOR is needed to handle the input and

output data for the subroutines.

Listings of these computer programs are riven below.
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PROGRAM DETLIN. FOR

PROGRAM DETLIN
DIMENSION X(21),G(21),H(378),ARG(21),GRAD(21)
BYTE ANS
EXTERNAL FUNCT
WRITE(7,10)

10 FORMAT('$ENTER ORDER (ODD it <16):')
READ(5,*) NC
NC2=(NC-1)/2
N=2*NC2
M=NC2
F0=0.25
WRITE(7,15)

15 FORMAT('$DIFF COEF NORMALIZED? ')
READ(7,16) ANS

16 FORMAT(A1)
WRITE(7,20)

20 FORMAT(' ENTER RIFF COEF ((N-1)/2):')
READ(5,*) (X(I),I=1,M)
IF(ANS.EQ.'N') GO TO 26
DO 25 I=1,M
X(I)=X(I)/F0

25 CONTINUE
26 WRITE(7,30)
30 FORMAT(' ENTER HILB. TRANS. COEF ((N-1)/2):')MS=NC2+1

MF=2*NC2
READ(5,*) (X(D,I=MS,MF)
EST=0.01
EPS=1.E-6
LIMIT=100
WRITE(7,46)
46 FORMAT(' ENTER 1ST, EPS & LIMIT FOR FMFP.FOR: ')
READ(5,*) EST,EPS,LIMIT
CALL FMFP(FUNCT,N,X,F,G,EST,EPS,LIMIT,IER,H)
CALL RCTRLO
WRITE(7,50) F,IER

50 FORMAT(/5X,'VALUE=',F12.5,10X,'IER=',I3/)
WRITE(7,60)

60 FORMAT(5X,'COEF OF D,H & GRAD OF COEF:')
DO 80 I=1,NC2
12=I+NC2
WRITE(7,70) I,X(I),X(I2),G(I),G(I2),

70 FORMAT(5X,I2,4F15.5)
80 CONTINUE

CALL EXIT
END
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PROGRAM FUNCT,FOR

C SUBROUTINE FOR "FMFP.FOR' THAT CALCULATES A LINEARITY
C 	 ERROR. FUNCTION FOR A DETECTOR WITH ZERO OUTPUT AT CENTER
C 	 FREQ. USING LINEAR PHASE COEFFIC. UP TO 15TH ORDER, AND
C	 COMMON HILB. TRANS. COEFFIC. FOR ZERO CARRIER RIPPLE.
C

SUBROUTINE FUNCT (N,ARG,VAL,GRAD)
DIMENSION ARG(1),GRAD(1)
DIMENSION EO(21),DM(3,7),DEO(30,9)
DIMENSION CD(15),CH(15)
DIMENSION ES(15)
PI=3.1415926

C 	 DEFINE FREQ. POINTS (FUNCTION)
FREQ(I)=0.125+0.025*I
F0=0.25
NFREQ=9

C 	 CALCULATE ORDER OF SECTIONS = NC
NC=N+1
NC2=N/2

C 	 OBTAIN COMPLETE SET OF COEFFIC (NC ODD)
DO 10 I=1,NC2
CD(I)=ARG(I)
CH(I)=ARG(I+NC2)
CD(NC-I+1)=-CD(I)
CH(NC-I+1)=-CH(I)

10 CONTINUE
NCM=NC2+1
CD(NCM)=0.

- 	 CH(NCM)=0.
81=0.
S2=0.

C 	 CALCULATE ERROR
DO 30 K=1,NFREQ
F=FREQ(K)
W=2.*PI*F
E=0.
DO 25 I=1,NC
DO 20 J=1,NC

XCOS((I-J)*W)-COS((NC+1-I-J)*W)
EADD=((CD(J)-CH(J))*CH(I))*X
E=E+EADD
ES(J)=EADD

20 CONTINUE
25 CONTINUE

EO(K)=0.5*E
FD=F-F0

S1=S1+-FD*EO(K)
S2=S2+FD*FD

30 CONTINUE
VM=S1/S2
VMD=1./F0
VAL=0.



APPENDIX VII 	 Page 110

DO 40 K=1,NFREQ
F=FREQ(K)VAL=VAL+(EO(K)-VMD*(F-FO))**2

40 CONTINUE
C 	 ITERATION FOR GRADIENT CALL

DO 50 I=1,N
GRAD(I)=0,

50 CONTINUE
DO 70 I=1,NC2
DO 70 M=1,2
DO 60 K=1,NFREQ
DEO(M,I,K)=0.

60 CONTINUE
DM(M,I)=0.

70 CONTINUE
D=S2

C 	 COMPUTE PARTIAL DERIVATIVES
DO 100 K=1,NFREQ
F=FREQ(K)
W=2**PI*F
DO 90 I=1,NC
DO 90 J=1,NC

X=COS((I-J)*W-COS((NC+1-I-J)*W)
DO 80 L=1,NC2

IF(J.EQ.L) GO TO 72
IF(J.EQ+NC+1-L) GO TO 72

GO TO 74
72 P5=0.5*CH(I)*X

IF(J.GT.NCM) P5=-P5DEO(1,L,K)=DEO(1,L,K)+P5

74 VCM=1.
IF(I.EQ.L) GO TO 75

IF(I.EQ.NC+1-L) GO TO 75
GO TO 76

75 IF(I.EQ.J) VCM=2.
P5=0.5*(CD(J)-VCM*CH(J))*X
IF(I.GT.NCM) P5=-PS
GO TO 79

76 IF(J.EQ.L) GO TO 77
IF(J.EQ.NC+1-L) GO TO 77
GO TO 80

77 P5=-0.5*CH(I)*X
IF(J.GT.NCM) P5=-P5

79 DEO(2,L,K)=DEO(2,L.K)+PS
80 CONTINUE
90 CONTINUE

DO 95 L=1,NC2
DO 95 M=1,2

DM(M,L)=DM(M,L)+(F-FO)*DEO(M,L,K)/D

95 CONTINUE
100 CONTINUE

C 	 COMPUTE GRADIENT VECTORS
DO 120 K=1,NFREQ
F=FREQ(K)
W=2.*PI*F
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DO 110 M=1,2
DO 110 L=1,NC2
I=3*(M-1)+L
DM(MrL)=0+
ORAD(I)=GRAD(I)+2.*(E00 .0-VMDVF-F0))*(DEO(MrLrK)

1-DM(M,L)*(F-F0))
110 CONTINUE
120 CONTINUE

WRITE(7,150) VAL
150 FORMAT(IE15.6)

DO 170 J=1,2
WRITE(7 , 160)(ARG(3*(J - 1)44),I=1r3),(GRAD(3*(J-1)+I)/

1I=1,3)
160 FORMAT(15X,3E1748,6X,3E17.8)
170 CONTINUE

RETURN
END
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PROGRAM FMFP.FOR

C
***********************************************************

C
C 	 SUBROUTINE FMFP
C
C 	 PURPOSE
C 	 TO FIND A LOCAL MINIMUM OF A FUNCTION OF SEVERAL
C 	 VARIABLES BY THE METHOD OF FLETCHER AND POWELL
C
C 	 USAGE
C 	 CALL FMFP(FUNCT,N,X,F,G,EST,EPS,LIMIT,IER,H)
C
C 	 DESCRIPTION OF PARAMETERS
C 	 FUNCT - USER-WRITTEN SUBROUTINE CONCERNING THE

FUNCTION TO BE MINIMIZED. IT MUST BE OF
C

	

	 THE FORM SUBROUTINE FUNCT(N,ARG,VAL,GRAD)
AND MUST SERVE THE FOLLOWING PURPOSE

C 	 FOR EACH N-DIMENSIONAL ARGUMENT VECTOR
C 	 ARG, FUNCTION VALUE AND GRADIENT VECTOR
C 	 MUST BE COMPUTED AND, ON RETURN, STORED
C 	 IN VAL AND GRAD RESPECTIVLY
C 	 N 	 - NUMBER OF VARIABLES
C 	 X 	 - VECTOR OF DIMENSION N CONTAINING THE

INITIAL ARGUMENT WHERE THE ITERATION
C 	 STARTS. ON RETURN, X HOLDS THE ARGUMENT
C	 CORRESPONDING TO THE COMPUTED MINIMUM
C 	 FUNCTION VALUE

- SINGLE VARIABLE CONTAINING THE MINIMUM
C 	 FUNCTION VALUE ON RETURN, I.E. F=F(X).

- VECTOR OF DIMENSION N CONTAINING THE
C	 GRADIENT VECTOR CORRESPONDING TO THE
C 	 MINIMUM ON RETURN, I.E. G=G(X).
C 	 EST 	 - IS AN ESTIMATE OF THE MINIMUM FUNCTION
C 	 VALUE.
C 	 EPS 	 - TESTVALUE REPRESENTING THE EXPECTED
C 	 ABSOLUTE ERROR* A REASONABLE CHOICE IS
C                        10**(-6),I.E. SOMEWHAT GREATER THAN
C                        10**(-D), WHERE D IS THE NUMBER OF
C 	 SIGNIFICANT DIGITS IN FLOATING POINT
C 	 REPRESENTATION.
C 	 LIMIT - MAXIMUM NUMBER OF ITERATIONS.
C 	 IER - ERROR PARAMETER
C 	 IER = ()-MEANS CONVERGENCE WAS OBTAINED
C 	 IER = 1 MEANS NO CONVERGENCE IN LIMIT
C 	 ITERATIONS
C 	 IER =-1 MEANS ERRORS IN GRADIENT
C 	 CALCULATION
C 	 IER = 2 MEANS LINEAR SEARCH TECHNIQUE
C 	 - 	 INDICATES IT IS LIKELY THAT THERE
C 	 EXISTS NO MINIMUM.
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C 	 H 	 - WORKING STORAGE OF DEMENSION N*(N+7)/2.
C
C 	 REMARKS
C 	 I) THE SUBROUTINE NAME REPLACING THE DUMMY
C	 ARGUMENT FUNCT MUST BE DECLARED AS EXTERNAL IN
C	 THE CALLING PROGRAM.

II) IER IS SET TO 2 IF , STEPPING IN ONE OF THE
C 	 COMPUTED DIRECTIONS, THE FUNCTION WILL NEVER
C 	 INCREASE WITHIN A TOLERABLE RANGE OF ARGUMENT.
C 	 IER = 2 MAY OCCUR ALSO IF THE INTERVAL WHERE F
C	 INCREASES IS SMALL AND THE INITIAL ARGUMENT
C 	 WAS RELATIVELY FAR AWAY FROM THE MINIMUM SUCH
C 	 THAT THE MINIMUM WAS OVERLEAPED. THIS IS DUE
C 	 TO THE SEARCH TECHNIQUE WHICH DOUBLES THE
C 	 STEPSIZE UNTIL A POINT IS FOUND WHERE THE
C 	 FUNCTION INCREASES.
C
C 	 SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C 	 FUNCT
C
C 	 METHOD
C	 THE METHOD IS DESCRIBED IN THE FOLLOWING ARTICLE
C 	 R. FLETCHER AND M.J.D. POWELL, A RAPID DESCENT

METHOD FOR MINIMIZATION.
C 	 COMPUTER JOURNAL VOL.6, ISS. 2, 1963/ PP.163-168.
C
C
.......,.................,..................................

C
SUBROUTINE FMFP(FUNCT,N,X,F,G,EST,EPS,LIMIT,IER,H)

C
C 	 DIMENSIONED DUMMY VARIABLES

DIMENSION H(1),X(1),G(1)

C	 COMPUTE FUNCTION VALUE AND GRADIENT VECTOR FOR
INITIAL ARGUMENT

CALL FUNCT(N,X,F,G)
C
C 	 RESET ITERATION COUNTER AND GENERATE IDENTITY MATRIX

IER=0
KOUNT=0
N2=N+N
N3=N2+N
N31=N3+1

1 K=N31
DO 4 J=1,N
H(K)=1.
NJ=N-J
IF(NJ)5,5,2

2 DO 3 L=1,NJ
KL=K+L

3 H(KL)=0.
4 K=KL+1

C
C 	 START ITERATION LOOP
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5 KOUNT=KOUNT+1
C
C 	 SAVE FUNCTION VALUE, ARGUMENT VECTOR AND GRADIENT
C 	 VECTOR

OLDF=F
DO 9 J=1,N
K=N+J
H(K)=G(J)
K=K+N
H(K)=X(J)

C
C 	 DETERMINE DIRECTION VECTOR H

K=„1443
T=0.
DO 8 L=1,N
T=T-G(L)*H(K)
IF(L-J)6,7,7

6 K=K+N-L
GO TO 8

7 K=K+1
8 CONTINUE
9 H(J)=T

C
C 	 CHECK WHETHER FUNCTION WILL DECREASE STEPPING
C 	 ALONG H.

DY=0.
HNRM=0.
GNRM=0.

C
CALCULATE DIRECTIONAL DERIVATIVE AND TESTVALUES FOR

C 	 DIRECTION VECTOR H AND GRADIENT VECTOR G.
DO 10 J=1,N
HNRM=HNRM+ABS(H(J))
GNRM=GNRM+ABS(G(J))

10 DY=DY+H(J)*G(J)
C
C 	 REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF
C 	 DIRECTIONAL DEREIVATIVE APPEARS TO BE POSITIVE OR
C 	 ZERO.

IF(DY)11,51,51
C

REPEAT SEARCH :IN DIRECTION OF STEEPEST DECENT IF
C 	 DIRECTION VECTOR H IS SMALL COMPARED TO GRADIENT
C 	 VECTOR G.

11 IF(HNRM/GNRM-EPS)51,51,12
C
C 	 SEARCH MINIMUM ALONG H
C
C 	 SEARCH ALONG H FOR POSITIVE DIRECTIONAL DERIVATIVE

12 FY=F
ALFA=2.*(EST-F)/DY
AMEDA=1.

C
C 	 USE ESTIMATE FOR STEPSIZE ONLY IF IT IS POSITIVE AND
C 	 LESS THAN 1. OTHERWISE TAKE 1. AS STEPSIZE
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IF(ALFA)15,15,13
13 IF(ALFA-AMEDA)14,15,15
14 AMEDA=ALFA
15 ALFA=0.

C
C 	 SAVE FUNCTION AND DERIVATIVE VALUES FOR OLD ARGUMENT

16 FX=FY
DX=DY

C
C	 STEP ARGUMENT ALONG H

DO 17 I=1,N
17 X(I)=X(I)+AMEDA*H(I)

C
C

	

	 COMPUTE FUNCTION VALUE AND GRADIENT FOR NEW ARGUMENT
CALL FUNCT(NIX,F,G)
FY=F

C
C 	 COMPUTE DIRECTIONAL DERIVATIVE DY FOR NEW ARGUMENT.
C 	 TERMINATE SEARCH, IF DY IS POSITIVE. IF DY IS ZERO
C 	 THE MINIMUM IF FOUND

DY=0.
DO 18 I=1,N

18 DY=DY+G(I)*H(I)
IF(DY)19,36,22

C
C 	 TERMINATE SEARCH ALSO IF THE FUNCTION VALUE
C 	 INDICATES THAT A MINIMUM HAS BEEN PASSED

19 IF(FY-FX)20,22,22
C
C	 REPEAT SEARCH AND DOUBLE STEPSIZE FOR FURTHER
C 	 SEARCHES

20 AMEDA=AMEDA+ALFA
ALFA=AMEDA

C 	 END OF SEARCH LOOP
C
C

	

	 -TERMINATE IF THE CHARGE IN ARGUMENT GETS VERY LARGE
IF(HNRM*AMEDA-1.E10)16,16,21

C
C 	 LINIAR SEARCH TECHNIQUE INDICATES THAT NO MINIMUM
C 	 EXISTS

21 IER=2
RETURN

C
C 	 INTERPOLATE CUBICALLY IN THE INTERVAL DEFINED BY THE

SEARCH ABOVE AND COMPUTE THE ARGUMENT X FOR WHICH THE
C 	 INTERPOLATION POLYNOMIAL IS MINIMIZED.

22 T=0.
23 IF(AMEDA)24,36,24
24 Z=3.*(FX-FY)/AMEDA+DX+DY

ALFA=AMAX1(ABS(Z),ABS(DX),ABS(DY))
DALFA=Z/ALFA
DALFA=DALFA*DALFA-DX/ALFA*DY/ALFA
IF(DALFA)51,25,25

25 W=ALFA*SQRT(DALFA)ALFA=DY-DX-W+W
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IF(ALFA)250,251,250
250 ALFA=(DY-Z+W)/ALFA

GO TO 252
251 ALFA=(Z+DY-W)/(Z+DX+Z+DY)
252 ALFA=ALFA*AMEDA

DO 26 I=1,N
26 X(I)=X(IMT-ALFA)*H(I)

C
C 	 TERMINATE, IF THE VALUE OF THE ACTUAL FUNCTION AT X
C 	 IS LESS THAN THE FUNCTION VALUES AT THE INTERVAL
C 	 ENDS. OTHERWISE REDUCE THE INTERVAL BY CHOOSING ONE

END-POINT EQUAL TO X AND REPEAT THE INTERPOLATION.
C 	 WHICH END-POINT IS CHOOSEN DEPENDS ON THE VALUE OF
C 	 THE FUNCTION AND ITS GRADIENT AT X.
C

CALL FUNCT(N,X,F,G)
IF(F-FX)27,27,28

27 IF(F-FY)36,36,28
28 DALFA=0.

DO 29 I=1,N
29 DALFA=DALFA+G(I)*H(I)

IF(DALFA)30,33,33
30 IF(F-FX)32,31,33
31 IF(DX-DALFA)32,36,32
32 FX=F

DX=DALFA
T=ALFA
AMEDA=ALFA
GO TO 23

33 IF(FY-F)35,34,35
34 IF(DY-DALFA)35,36,35
35 FY=F

DY=DALFA
AMEDA=AMEDA-ALFA
GO TO 22

TERMINATE, IF FUNCTION HAS NOT DECREASED DURING LAST
C 	 ITERATION

36 IF(OLDF-F+EPS)51,38,38
C
C 	 COMPUTE DIFFERENCE VECTORS OF ARGUMENT AND GRADIENT
C 	 FROM TWO CONSECUTIVE ITERATIONS

38 DO 37 J=1,N
K=N+J
H(K)=G(J)-H(K)
K=N+K

37 H(K)=X(J)-H(K)
C

TEST LENGTH OF ARGUMENT DIFFERENCE VECTOR AND
C 	 DIRECTION VECTOR IF AT LEAST N ITERATIONS HAVE BEEN
C 	 EXECUTED. TERMINATE, IF BOTH ARE LESS THAN EPS.

IER=0
IF(KOUNT-N)42,39,39

39 T=0.
z=0.
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DO 40 J=1,14
K=N+J
W=H(K)
K=K+N
T=T+ABS(H(K))

40 Z=Z+W*H(K)
IF(HNRM-EPS)41,41,42

41 IF(T-EPS)56,56,42
C
C 	 TERMINATE, IF NUMBER OF ITERATIONS WOULD EXCEED LIMIT

42 IF(KOUNT-LIMIT)43,50,50
C
C 	 PREPARE UPDATING OF MATRIX H

43 ALFA=0,
DO 47 J=1,N

K=J+N3
W=0.
DO 46 L=1,N
KL=K+L
W=W+H(KL)*H(K)
IF(L-J)44,45,45

44 K=K+N-L
GO TO 46

45 K=K+1
46 CONTINUE

K=N+J
ALFA=ALFA+W*H(K)

47 H(J)=W
C
C 	 REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF
C 	 RESULTS ARE NOT SATISFACTORY

IF(Z*ALFA)48,1,48
C
C 	 UPDATE MATRIX H

48 K=K31
DO 49 L=1,N
KL=N2+L
DO 49 J=L,N
NJ=N2+JH(K)=H(K)+H(KL)*H(NJ)/Z-H(L)*H(J)/ALFA

49 K=K+1
GO TO 5

C 	 END OF ITERATION LOOP
C
C 	 NO CONVERGENCE AFTER LIMIT ITERATIONS

50 ERR=1
RETURN

C
C	 RESTORE OLD VALUES OF FUNCTION AND ARGUMENTS

51 DO 52 J=1,N
K=N2+J

52 X(J)=H(K)
CALL FUNCT(N,X,F,G)

C
C 	 REPEAT SEARCH IN DIRECTION OF STEEPEST DECENT IF
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C 	 DERIVATIVE FAILS TO BE SUFFICIENTLY SMALL
IF(GNRM-EPS)55,55,53

C
C 	 TEST REPEATED FAILURE OF ITERATION

53 IF(IER)56,54,54
54 IER=-1

GO TO 1
55 IER=0
56 RETURN

END
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APPENDIX VIII

SYSTEM SCHEMATIC DIAGRAMS

This Appendix gives the schematic diagrams for those

system components used in the experimental evaluation of the

detector that had to be designed and constructed. The

following schematics are included:

1) AID Converter

2) D/A Converter

3) Pre-detection BPF

4) Limiter with LPF

5) 30 Hz Post-discriminator LPF

6) 200 Hz Post-discriminator LPF
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A/D CONVERTER
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D/A CONVERTER
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PRE-DETECTION BPF
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LIMITER WITH LPF
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30 HZ POST-DISCRIMINATOR LPF
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200 HZ POST-DISCRIMINATOR LPF
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