Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

> Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

Title of Thesis: Prediction of Vapor-Liquid Equilibrium From Ternary Liquid-Liquid Equilibrium Data

David Kim Yee, Master of Science, 1982
Thesis directed by: Dimitrios Tassios, Professor of Chemical Engineering

Reasonable estimates of ternary vapor-liquid equilibrium can be obtained by using the corresponding liquid-liquid equilibrium (LLE) data with the NRTL, IEMF and UNIQUAC models. The overall average absolute deviation in vapor phase concentration for seven such systems is 0.028 . Use of the UNIFAC method gives erratic predictions suggesting caution when applied to such systems. Combination, however, of the LLE data and the UNIFAC method gives the best results with a deviation of 0.020 Prediction of binary VLE behavior from LLE data yields also reasonably good results.

PREDICTION OF VAPOR-IIQUID EQUILIBRIUM FROM

TERNARY LIQUID-IIQUID EQUIIIBRIUM DATA

by
David Kim Yee

Thesis submitted to the faculty of the Graduate School of the New Jersey Institute of Technology in partial fulfillment of the requirements for the degree of
Master of Science in Chemical Engineering
1982

APPROVAL SHEET

Title of Thesis: Prediction of Vapor-Liquid Equilibrium from Ternary Liquid-Liquid Equilibrium Data

Name of Candidate: David Kim Yee
Master of Science, 1982
Thesis and Abstract Approved: $\frac{-4 / 13 / 62}{\begin{array}{l}\text { Dimitrios Tassios } \\ \text { Professor }\end{array}} \frac{4 / 8}{\text { Date }}$
Chemical Engineering

Name: David Kim Yee
Permanent address:

Degree and date to be conferred: MS, 1982
Date of birth:
Place of birth:
Secondary education: Verona High School, 1975.
Collegiate institutions attended Dates Degree Date of Degree

Major: Chemical Engineering
Publications: Prediction of Vapor-Liquid Equilibrium from Ternary Liquid-Liquid Equilibrium Data,
Ind. Eng. Chem. Process Des. Dev. (submitted for publication, 1982).

Prediction and Correlation of Liquid-Liquid Equilibria, Ind. Eng. Chem. Process Des. Dev., 1982.

This thesis is dedicated to my parents for their love and support.

I would like to thank Dr. Dimitrios Tassios for the many hours we spent in the preparation of this work. I am also grateful to John Ordaz for the use of some of his computer programs and Jose Simonetty for his assistance in some of the calculations. Finally I would like to thank the Department of Chemical Engineering and Chemistry for awarding me financial support.

TABLE OF CONTENTSSectionPage

1. Introduction 1
2. Theory 4
3. The Expressions for the Activity Coefficient. 8
4. Procedure 10
5. Results and Discussion. 21
6. Conclusions 27
APPENDIX A. THE FIGURES 29
APPENDIX B. THE TABLES 68
APPENDIX C. THE COMPUTER PROGRAMS 109
NOMENCLATURE 138
LITERATURE CITED 141

LIST OF TABLES

Table Page
I. Ternary LJE Systems 69
II. Ternary VLE Systems 70
III. Non-randomness Parameter Values for the NRTL Model 71
IV. Pure Component Constants for the UNIQUAC Model 72
V. Parameters from method I for system 73
VI. Parameters from method I for system 2. 75
VII. Parameters from method I for system 3. 76
VIII. Parameters from method I for system 4. 77
IX. Parameters from method I for system 5. 78
X. Parameters from method I for system 6. 79
XI. Parameters from method I for system 7. 80
XII. Binary Systems. 81
XIII. Main groups and Subgroups for the UNIFAC Model 83
XIV. Group Parameters for UNIFAC Model 84
XV. Methods Used for the Prediction of VLE Behavior. 85
XVI. Consistency Index (C.I.) and Values of |C. I. - J| for the Miscible Binary Systems. 86
XVII. NRTL Parameters from method II. 87
XVIII. LEMF Parameters from method II 88
XIX. UNIQUAC Parameters from method II 89
XX. NRTL Parameters from method III 90
XXI. LEMF Parameters from method III 91
XXII. UNIQUAC Parameters from method III. 92
XXIII. NRTL Parameters from method IV. 93

IIST OF TABLES (continued)

Table Page
XXIV. LEMF Parameters from method IV. 94
XXV. UNIQUAC Parameters from method IV. 95
XXVI. NRTL Parameters from method V 96
XXVII. LEMF Parameters from method V. 97
XXVIII. UNIQUAC Parameters from method V. 98
XXIX. Prediction of Ternary Vapor Liquid Equilibrium 99
XXX. Prediction of Ternary Vapor Liquid
Equilibrium: Overall Performance 101
XXXI. Relation Between Ternary $\Delta \bar{Y}$ and Fit ofTernary LLE for model which Obtained TwoSets of Parameters from method II102
XXXII. Prediction of Ternary Vapor Liquid
Equilibrium from the Two Liquid Phases in Equilibrium with method II. 103
XXXIII. Prediction of Binary VEE for the Completely Miscible Binaries: method I 104
XXXIV. Prediction of Binary VIE for the CompletelyMiscible Binaries: Method II and UNIFAC.... 105
XXXV. Prediction of Binary VLE for the CompletelyMiscible Binaries: Overall Results.......... 106
XXXVI. Prediction of Vapor Phase Compositions for Partially Miscible Binary Systems 107
XXXVII. Prediction of Ternary VLE using Parametersfrom method II for the $1-3$ Miscible Binarywith Parameters from method V for the OtherBinaries108
Figure Page

1. Block diagram for Bubblepoint Calculation 30
2. Predicted Activity Coefficients for the System Water(1) - Methanol(3) Using Parameters Obtained from System-2 with Method 31
3. Predicted Activity Coefficients for the System Water(1) - Methanol(3) Using Parameters obtained from System-2 with Method II 32
4. Hand's test for system 33
5. Hand's test for system 4 34
6. Hand's test for system 6 35
7. Prediction of Vapor Phase Compositions for system 1 with method II and the LEMF Model 36
8. Prediction of Vapor Phase Compositions for system 2 with method II and the UNIQUAC Model 37
9. Prediction of Vapor Phase Compositions for system 3 with method II and the NRTL model 38
10. Prediction of Vapor Phase Compositions for system 4 with method II and the UNIQUAC model 39
11. Prediction of Vapor Phase Compositions for system 5 with method II and the LEMF model 40
12. Prediction of Vapor Phase Compositions for system 6 with method II and the UNIQUAC model 41
13. Prediction of Vapor Phase Compositions for system 7 with method II and the LEMF model. 42
14. Plot of $\Delta \bar{Y}$ versus ΔX for system 1 using the NRTL (method II) 43
15. Plot of $\Delta \bar{Y}$ versus ΔX for system 1 using the LEMF (method II) 44
16. Plot of $\Delta \bar{Y}$ versus ΔX for system 1 using the UNIQUAC (method II) 45
17. Plot of $\Delta \bar{Y}$ versus ΔX for system 2 using the NRTL (method II) 46

LIST OF FIGURES (continued)

Figure
Page
18. Plot of $\Delta \bar{Y}$ versus ΔX for system 2 using the LEMF (method II)... 47
19. Plot of $\Delta \bar{Y}$ versus ΔX for system 2 using the UNIQUAC (method II)

48
20. Plot of $\Delta \bar{Y}$ versus ΔX for system 3 using the NRTL (method II)... 49
21. Plot of $\Delta \bar{Y}$ versus ΔX for system 3 using the LEMF (method II)... 50
22. Plot of $\Delta \bar{Y}$ versus ΔX for system 3 using the UNIQUAC (method II)... 51

24. Plot of $\Delta \bar{Y}$ versus ΔX for system 4 using the 53
25. Plot of $\Delta \bar{Y}$ versus ΔX for system 4 using the 54
26. Plot of $\Delta \hat{Y}$ versus ΔX for system 5 using the 5

28. Plot of $\Delta \bar{Y}$ versus ΔX for system 5 using the 57
29. Plot of $\Delta \bar{Y}$ versus ΔX for system 6 using the 58
30. Plot of $\Delta \bar{Y}$ versus ΔX for system 6 using the 59
31. Plot of $\Delta \bar{Y}$ versus ΔX for system 6 using the 60
32. Plot of $\Delta \vec{Y}$ versus ΔX for system 7 using the 61
33. Plot of $\Delta \bar{Y}$ versus ΔX for system 7 using the 62

LIST OF FIGURES (continued)
Figure Page
34. Plot of $\Delta \bar{Y}$ versus ΔX for system 7 using the UNIQUAC (method II)...................................... 63
35. Procedure for Determining the Quantity ΔX 64
36. Vapor Phase Prediction for the System
Acetonitrile(1) - Benzene(3) 65
37. Prediction of Vapor Phase Compositions forsystem 1 by combining methods II and V (UNIQUAC) 66
38. Prediction of Vapor Phase Compositions for system 7 by combining methods II and V (NRTL)... 67

LIST OF COMPUTER PROGRAMS

Program Name Page
REG-2EQN. 109

1. Introduction

Vapor-Liquid equilibrium (VLE) data are essential in process design calculations, especially distillation. Since such data is not often available, prediction schemes are employed. For binary systems, group contribution techniques, especially the UNIFAC model (Fredenslund et al., 1975), can be used if the necessary interaction parameters are available. For multicomponent systems, good predictions can be achieved if VIE data for the corresponding binary systems are available. If not, the UNIFAC model can be used, with less confidence however, provided again that the appropriate interaction parameters are known.

Another possible prediction scheme involves the use of multicomponent liquid-liquid equilibrium (LLE) data for, in principle at least, one can correlate this data with an appropriate expression for the excess Gibbs free energy to evaluate the parameters for the corresponding binary systems. These parameters can then be used in the prediction of the VLE behavior of the same system; or, combined with parameters obtained from VIE data for other binaries, in the prediction of multicomponent VLE behavior. Since LLE data are plentiful (see for example Stephen and Stephen, 1963; Sorensen and Arlt, 1979) such an approach, if successful, could provide a very helpful scheme for the prediction of vapor-liquid equilibrium.

Joy and Kyle (1970) predicted binary and ternary VLE behavior using binary parameters obtained from the correlation of LLE data for four systems with the NRTL equation. Good results were obtained for three systems while for the fourth one their method failed to provide a set of NRTL parameters capable of approximating either the binodal curve or the solvent selectivity. Newsham and Vahdat (1975) obtained reasonable predictions of ternary VLE behavior from the corresponding LLE data using the Black and NRTL equations. Their data base, however, was limited to systems where one binary is nearly ideal (n-butanol-water with methanol, ethanol and n-propanol).

These two studies are of somewhat limited scope, however, because of the number and type of systems used and, more important, because they have not sufficiently addressed the major problem encountered in evaluating binary parameters from LLE data: how to identify the proper parameter values for, in the typical case, several sets of values can be obtained from different starting values in the regression routine (see for example: Sorensen et al. (1979); DeFre and Verhoeye (1976), Mattelin and Verhoeye (1974); etc.).

In this thesis, a more comprehensive study of the prediction of binary and ternary VIE behavior from LIE data is presented. First, it involves a larger and broader data base of eight systems, all of type I, i.e. containing only one partially miscible binary (Tables I and II), because of their industrial importance.

Furthermore, and for the purpose of evaluating the effect of the binary miscibility gap on the quality of the obtained predictions, they are classified into Type IA, with a small solubility gap between 0.1 and 0.85 , and Type IB, with a large solubility gap, outside the aforementioned range. Second, to assist in the determination of the proper binary parameters, three local composition models capable of describing partial miscibility: NRTL (Renon and Prausnitz, 1968), LEMF (Marina and Tassios, 1973) and UNIQUAC (Anderson and Prausnitz, 1978), are considered. Finally the effect of using along with the ILE data binary activity coefficients-experimental or obtained from the UNIFAC model-is examined.

2. Theory

From thermodynamics, it is known that when two phases are in equilibrium, then:

$$
\begin{equation*}
\hat{f}_{i}^{\alpha}=\hat{\mathrm{f}}_{i}^{\beta} \tag{1}
\end{equation*}
$$

where \hat{f}_{i}^{α} and \hat{f}_{i}^{β} are the fugacities of component i in phases α and β, respectively.

For the case of vapor-liquid equilibrium, equation (1) becomes:

$$
\begin{equation*}
\hat{\mathrm{f}}_{i}^{I}=\hat{\mathrm{f}}_{i}^{V} \tag{2}
\end{equation*}
$$

where $\hat{\mathbf{f}}_{i}^{L}$ and $\hat{\mathbf{f}}_{i}^{V}$ are the fugacities of component i in the liquid phase and vapor phase, respectively. The liquid phase fugacity is defined as:

$$
\hat{f}_{i}^{I}=X_{i} \gamma_{i} \phi_{i}^{s} p_{i}^{s} \exp \int_{i}^{P} V_{i}^{L} \frac{d P}{R T}
$$

where

$$
\begin{aligned}
X_{i} & =\text { liquid mole fraction of component } i \\
\gamma_{i} & =\text { activity coefficient of component } i \\
V_{i}^{L} & =\text { molar liquid volume of component } i \\
P & =\text { total pressure } \\
P_{i}^{s} & =\text { saturated vapor pressure of component } i
\end{aligned}
$$

$$
\begin{aligned}
T & =\text { system temperature } \\
\phi_{i}^{s} & =\text { fugacity coefficient of pure vapor } i \text { at } T \\
& \text { and saturation pressure } P_{i}^{S} .
\end{aligned}
$$

The vapor phase fugacity is defined as:

$$
\begin{equation*}
\hat{\mathrm{f}}_{i}^{V}=\hat{\phi}_{i} Y_{i} P \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
\hat{\phi}_{i}= & \text { the vapor phase fugacity coefficient } \\
& \text { of component } i
\end{aligned}
$$

When equations (3) and (4) are substituted into equation (2), we obtain:

$$
\begin{equation*}
\hat{\phi}_{i} Y_{i} P=\gamma_{i} X_{i} \phi_{i}^{s} P_{i}^{s} \exp \int_{P_{i}^{s}}^{P} V_{i}^{I} \frac{d P}{R T} \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
Y_{i}=\frac{\gamma_{i} X_{i} \phi_{i}^{s} P_{i}^{s} \exp \frac{V_{i}^{I}\left(P-P_{i}^{S}\right)}{\hat{\phi}_{i} P}}{R T} \tag{6}
\end{equation*}
$$

The vapor fugacity coefficient is given by the virial equation truncated after the second term:

$$
\begin{equation*}
\ln \hat{\phi}_{i}=\frac{2}{V} \sum_{j=1}^{n} Y_{j} B_{i j}-\ln (Z) \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{n}=\text { number of components } \\
& \mathrm{B}_{\mathrm{ij}}=\text { second virial coefficient } \\
& \mathrm{V}=\text { molar volume of the vapor mixture } \\
& \mathrm{Z}=\text { compressibility factor }
\end{aligned}
$$

The compressibility factor and the molar volume of the vapor mixture are calculated by:

$$
\begin{equation*}
Z=\frac{P V}{R T}=1+\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} Y_{i} Y_{j} B_{i j}}{V} \tag{8}
\end{equation*}
$$

The second virial coefficients are obtained from the correlation of Tsonopoulos (1974). The saturated vapor pressures are calculated from Antoines's equation with Antoine's constants obtained from Reid et al. (1977). The fugacity coefficient of pure vapor i at saturation , pressure, ϕ_{i}^{s}, is also calculated with equations (7) and (8). In this case, $Y_{i}=1$ and $P=P_{i}^{S}$. The activity coefficients are calculated from an activity coefficient equation. In this study, the following equations are used to represent the activity coefficient: NRTL, LEMF and UNIQUAC. For the case of ternary VLE, there are three equations similar to equation (6). In addition to those
equations, a fourth relationship exists:

$$
\begin{equation*}
Y_{1}+Y_{2}+Y_{3}=1 \tag{9}
\end{equation*}
$$

By using these four equations, we can solve for the four unknowns, Y_{1}, Y_{2}, Y_{3}, and T or P. The procedure for performing this bubble point calculation is outlined in Figure 1. A more detailed description of this bubble point calculation is given in Prausnitz et al. (1967).

For the case of liquid-liquid equilibrium, equation (1) becomes:

$$
\begin{equation*}
\hat{f}_{i}^{I}=\hat{f}_{i}^{I I} \tag{10}
\end{equation*}
$$

where \hat{f}_{i}^{I} and $\hat{f}_{i}^{I I}$ are the fugacities of component i in the liquid phases I and II, respectively. When equation (3) is substituted into equation (10), we obtain:

$$
\begin{equation*}
\left(x_{i} \gamma_{i}\right)^{I}=\left(x_{i} \gamma_{i}\right)^{I I} \tag{11}
\end{equation*}
$$

In this study, the binary parameters for the NRTL, LEMF and UNIQUAC equations will be determined from LLE data by using equation (11).

3. The Expressions for the Activity Coefficient

The multicomponent expressions for the activity coefficient $\left(\gamma_{i}\right)$ for the NRTL and LEMF equations are given by:
where $n=$ number of components

$$
\begin{aligned}
& T_{j i}=\left(g_{j i}-g_{i i}\right) / R T \\
& G_{j i}=\exp \left(-\alpha_{j i} T_{j i}\right) \\
& \alpha_{i j}=\alpha_{j i} \text { and } g_{i j}=g_{j i} \\
& \left(g_{i j}-g_{j j}\right)=\text { binary parameter } \\
& X=\text { mole fraction }
\end{aligned}
$$

$$
\begin{equation*}
\text { NRTL: } \alpha_{i j}=0.2,0.3,0.4,0.47 \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\text { LEMP: } \quad \alpha_{i j}=-1.0 \tag{13a}
\end{equation*}
$$

The choice of $\alpha_{i j}$ in the NRNL equation is accomplished according to the rules of Reno and Prausnitz (1968). Table III gives the values of $\alpha_{i j}$
for the systems under investigation.

For the UNIQUAC equation:

$$
\begin{aligned}
& \ln \left(\gamma_{i}\right)=\ln \left(\Phi_{i} / x_{i}\right)+(z / 2) q_{i} \ln \left(\theta_{i} / \Phi_{i}\right)+1_{i}- \\
& \left(\Phi_{i} / x_{i}\right) \sum_{j} x_{j} 1_{j}-q_{i}^{\prime} \ln \left(\sum_{j} \theta_{j}^{\prime} \tau_{j i}\right)+q_{i}^{\prime}-q_{i}^{\prime} \sum_{j} \frac{\theta_{j}^{\prime} \tau_{i j}}{\sum_{k} \theta_{k}^{\prime} \tau_{k j}}
\end{aligned}
$$

$$
\begin{aligned}
\text { where } I_{j} & =(z / 2)\left(r_{j}-q_{j}\right)-\left(r_{j}-1\right) \\
z & =10 \\
\Delta u_{i j} & =\left(u_{i j}-u_{j j}\right), \text { binary parameter } \\
\tau_{i j} & =\exp \left(-\Delta u_{i j} / R T\right) \\
\Phi_{i} & =\frac{r_{i} x_{i}}{\sum_{j} r_{j} x_{j}} \\
\theta_{i} & =\frac{\sum_{i} q_{j} x_{j}}{j} \\
\theta_{i}^{\prime} & =\frac{q_{i} x_{i}}{q_{j}^{\prime} x_{j}}
\end{aligned}
$$

and r, q, and q^{\prime} are pure component constants (Prausnitz et al. (1980)).

Table IV gives the values of r, q and q ' for the components under investigation. Notice that for components other than water and alcohols, $q=q^{\prime}$. The original UNIQUAC model as developed by Abrams and Prausnitz (1975) did not perform as well for systems containing water or alcohols, as compared to systems containing only hydrocarbons or where the OH group is not present. To improve the performance of the UNIQUAC model for systems containing water or alcohols, Anderson and Prausnitz (1978) decided to empirically determine the value of q, which is now q^{\prime}, in the residual part of the model.

In all these models, only binary parameters are included which can be evaluated-in principle at least-from multicomponent such as LLE, data.

Activity coefficients from the UNIFAC model were calculated using the interaction parameters of Skjold-Jorgensen et al. (1979).

4. Procedure

Four methods are used for the evaluation of the six binary parameters from the ternary LLE data. In method I, they are obtained by regressing the LIE data with the following
minimization function:

$$
F=\frac{1}{N} \sum_{i=1}^{N}\left[\frac{K_{1}^{E}-K_{1}^{C}}{K_{1}^{E}}\right]_{i}^{2}+\left[\frac{K_{2}^{E}-K_{2}^{C}}{K_{2}^{E}}\right]_{i}^{2}+\left[\frac{K_{3}^{E}-K_{3}^{C}}{K_{3}^{E}}\right]_{i}^{2}
$$

where $\quad \begin{aligned} K_{i}= & x_{i}^{I I} / x_{i}^{I}, \text { the distribution coefficient } \\ & \text { of component } i\end{aligned}$

$$
X_{i}^{I}, X_{i}^{I I}=\text { mole fractions in liquid phases } I
$$ and II, respectively

I, II $=$ component 1 -rich phase and component 2 rich phase, respectively
$N=$ number of tie lines
$\mathrm{E}, \mathrm{C}=$ experimental and calculated values, respectively

The computer program which performs this regression can be found in the master thesis of Simonetty (1981). The starting values in the regression subroutine for the partially miscible binary, $1-2$, are the parameters obtained from the binary mutual solubility data by solving the following two equations of phase equilibrium which were derived in the theory section:

$$
\begin{equation*}
\left(x_{1} \gamma_{1}\right)^{I}=\left(x_{1} \gamma_{1}\right)^{I I} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\left(x_{2} \gamma_{2}\right)^{I}=\left(x_{2} \gamma_{2}\right)^{I I} \tag{16a}
\end{equation*}
$$

For the NRTL and LEMF equations, these starting values were evaluated with the program found in the Phd Thesis of Marina (1973). For the UNIQUAC model, the parameters were determined with the program found in the Master Thesis of Simonetty (1981).

Our preliminary calculations with method I indicated that inspite of the use of a large number of starting values in the regression subroutine covering the range from -2000 to +2000 , in the typical case reasonable parameters were obtained for only one-but not always the same-model. For the remaining two models the parameters for one, or both miscible binaries were unacceptable for they predicted: partial miscibility for one of the completely miscible binaries; or negative deviation from Raoult's Law where they could not be reasonably expected; or positive and negative deviations from Raoult's Law. Consider for example, the activity coefficients for the system watermethanol shown in Figure 2 and predicted from LLE data for the system: water-ethyl acetate-methanol at 70 C by using values of zero as starting parameters in the regression subroutine. The γ values generated from the NRTL and UNIQUAC parameters are obviously incompatible with such a binary system while the LEMF γ 's can be considered reasonable. Regression of the LLE data for four parameters
by setting the two parameters equal to those obtained from the binary solubility data, was not generally helpfull in ameliorating this problem of converging to unreasonable parameters. The binary parameters and the corresponding predicted binary γ^{\prime} 's obtained from method I are shown in Tables V through XI for each model for the following starting values which were found to be the most effective according to our preliminary calculations: zero, +500 , -500 and the parameters corresponding to γ values of 1.3 at $\mathrm{X}=0.50$ for both components of a binary mixture. Close examination of these tables reveals that the majority of these parameters are unreasonable.

It became apparent, therefore, that if reasonable parameters are to be obtained for all models, some additional information must be utilized along with the LLE data. A similar observation was made by Nicolaides and Eckert (1978).

In method II, the additional information is considered to be the binary γ^{\prime} 's generated by the model for which acceptable binary parameters were obtained. If we refer to this as model A, for example the LEMF for the aforementioned water-ethyl acetate-methanol system, the binary parameters for the other two models, B and C, are obtained from the following minimization function:

$$
D=\frac{1}{M} \sum_{i=1}^{M}\left[\frac{\gamma_{1}^{\mathrm{E}}-\gamma_{1}^{\mathrm{C}}}{\gamma_{1}^{\mathrm{E}}}\right]_{i}^{2}+\left[\frac{\gamma_{3}^{\mathrm{E}}-\gamma_{3}^{\mathrm{C}}}{\gamma_{3}^{\mathrm{E}}}\right]_{i}^{2}
$$

$$
+\frac{1}{\mathrm{~L}} \sum_{i=1}^{\mathrm{L}}\left[\frac{\gamma_{2}^{\mathrm{E}}-\gamma_{2}^{\mathrm{C}}}{\gamma_{2}^{\mathrm{E}}}\right]_{i}^{2}+\left[\frac{\gamma_{3}^{\mathrm{E}}-\gamma_{3}^{\mathrm{C}}}{\gamma_{3}^{\mathrm{E}}}\right]_{i}^{2}
$$

+ equation (15)
where $M, L=$ number of VLE data points for the $1-3$ and $2-3$ binary systems, respectively

The superscripts E and C stand for experimental and calculated. In this case, experimental γ^{\prime} s are those generated by model A. Binary γ^{\prime} s were generated at the concentrations where actual binary VIE data are available for comparison purposes.

Since this approach always yielded acceptable parameters for the other models B and C, the possibility of further refinement of the parameters was considered. To this purpose, binary γ^{\prime} 's generated by models B and C were regressed along with the LLE data to obtain a new set of parameters for model A. This iteration between models A and B and between A and C was continued until the obtained $\boldsymbol{\gamma}$'s for two successive iterations and for a given model were to within 0.20%. It should be mentioned that the regressed parameters for a given model and iteration are used as starting values in the following iteration for the same model. This iteration calculation was performed
with the program REG-2EQN given in appendix C. This procedure leads often to two sets of parameters for model A. The set that provides the best fit of the ternary LLE data is adopted. An example of the improved parameters thus obtained is presented in Figure 3 for the watermethanol system again. The LEMP γ 's are evaluated by using the parameters obtained from the LEMF-NRTL iteration for they provide a better fit of the ternary LLE data.

In method III, the additional information is provided by the binary γ^{\prime} 's for the two completely miscible binaries estimated from UNIFAC method whenever the necessary interaction parameters are available (for seven systems in this study). The minimization function given by equation (17) is used again with the γ^{\prime} 's from UNIFAC considered as the experimental values.

In method IV, the additional information is the activity coefficients calculated from experimental binary VLE data using the method of Prausnitz et al. (1967) with second virial coefficients obtained from the Tsonopoulos correlation (1974). To facilitate the convergence to reasonable parameters, the starting values for the completely miscible binaries in methods III and IV are those obtained by regressing the binary γ 's, UNIFAC or experimental, by using the following minimization function:

The starting values for the NRTL and LEMF models were determined with the computer program provided by Ordaz (1978). For the UNIQUAC model, the starting values were evaluated with the computer program found in the Master Thesis of Simonetty (1981). The starting values for the partially miscible binary for methods II, III and IV are, as was the case with method I, the parameters obtained from the mutual solubility data. For both methods III and IV, the six final parameters were obtained with the computer program found in the Master Thesis of Simonetty (1981).

The ternary VLE predictions obtained from these methods are compared to those obtained from the two conventional schemes: from experimental binary data alone (method V); and from the UNIFAC model, if the appropriate interaction parameters are available (method VI). In the former method, the four parameters for the two miscible binaries are obtained from the corresponding VLE data using the minimization function given by equation (18), and the partially miscible binary parameters are evaluated from
the binary mutual solubility data. The binary systems used are presented in Table XII. In the latter method, the main groups, subgroups, group volume and area parameters for the components under investigation are shown in Tables XIII and XIV. A summary of the six methods is presented in Table XV.

The quality of the binary VLE data was checked by the "area test" for isothermal systems and by the test of Herington (Herington, 1951) for isobaric systems. The "area test" entails making a plot of $\ln \gamma 1 / \gamma 2$ versus X_{1} and then calculating the consistency index (C. I.) which is defined as:

$$
\begin{equation*}
\text { C. } I_{0}=\left|\frac{\left|A_{p}\right|-\left|A_{n}\right|}{\left|A_{p}\right|+\left|A_{n}\right|}\right| \tag{19}
\end{equation*}
$$

where A_{p} and A_{n} are the positive and negative areas, respectively. The consistency index values for the isothermal binary VIE systems used in this study are given in Table XVI. If the consistency index is equal to or less than a specified limit then the binary VLE data is considered to be "good". In this work, the specified limit has been arbitrarily assumed to be 0.04 . The reason for choosing this particular value is now discussed. For isothermal data, the Gibbs-Duhem equation takes the form of:

$$
\begin{equation*}
\int_{0}^{1} \ln \left(y_{1} / y_{2}\right) d x_{1}=-\int_{x_{1}=0}^{x_{1}=1} \frac{v^{e}}{R T} d P \tag{20}
\end{equation*}
$$

where v^{e} is the excess volume of the liquid mixture. Since at low pressures, well removed from the critical point, the right-hand side of equation (20) is close to zero, one would expect then that $\left|A_{p}\right|=\left|A_{n}\right|$ However, since there are experimental uncertainties inherent in the data, one must arbitrarily choose some criterion by which to judge the quality of the data. Prausnitz (1969) recommends that if C. I. ≤ 0.02, then it is very likely that the data is "good". In addition, he states that for some systems the value of 0.02 is probably too small. For this reason, the value of 0.04 has been chosen here.

For isobaric data, the Gibbs-Duhem equation takes the form of:

$$
\begin{equation*}
\int_{0}^{1} \ln (\gamma 1 / \gamma 2) d x_{1}=\int_{x_{1}=0}^{x_{1}=1} \frac{n^{e}}{R T^{2}} d T \tag{21}
\end{equation*}
$$

where h^{e} is the excess enthalpy of the liquid mixture. In general, one cannot assume that the right-hand side of equation (21) is zero. Thus $\left|A_{p}\right|$ is not equal to $\left|A_{n}\right|$ and the C.I. is not zero. As a result, one has the problem of making a good estimate of what C. I. should be in a
typical situation where no data on the heat of mixing is available. Herington suggests that the C. I. should be compared with the quantity J which is defined as:

$$
\begin{equation*}
\mathcal{J} \equiv 150\left(T / T_{\min }\right) \tag{22}
\end{equation*}
$$

where $T_{\min }$ is the lowest boiling point observed in degrees kelvin
τ is the total boiling point range

The quantity \mathcal{T} is calculated as follows:

$$
\begin{equation*}
\tau=\left|T_{1}-T_{2}\right| \tag{23}
\end{equation*}
$$

where T_{1} and T_{2} are the boiling points of pure components 1 and 2 in degrees centigrade, respectively

If an azeotrope is formed in the binary mixture, then \mathcal{T} is defined as the absolute difference between the azeotrope temperature and the highest pure component boiling point, for a mixture with a minimum azeotrope; and between the azeotrope temperature and the lowest pure component boiling point,for a mixture with a maximum azeotrope. Herington suggests that a set of isobaric binary VLE data is considered to be consistent if:

$$
\mid \text { C. I. }-J \mid \leq 10
$$

The above procedure for checking the quality of a set of isobaric binary VLE data is called the Herington test.

The values of \mid C. I. - J \mid for the isobaric binary VLE systems used in this study are tabulated in Table XVI. Close examination of this Table reveals that the binary VLE data for all the isothermal systems passed the "area test" and the binary VLE data for all the isobaric systems passed the Herington test. Consequently, all of the binary VLE data was considered to be thermodynamically consistent. For the binary systems, n-pentane-benzene and sulfur-dioxide-benzene, consistency index values are not given because these systems have data points only at liquid benzene concentrations greater than $X=0.50$. Consequently, a complete curve could not be drawn for those two cases.

The quality of the ternary LLE data was checked with the test of Hand (Hand, 1930) which involves making a plot of $\log _{10}\left(X_{3}^{I I} / X_{2}^{I I}\right)$ versus $\log _{10}\left(X_{3}^{I} / X_{1}^{I}\right)$. If this plot is linear, then the data is considered to be "good".

The Hand plots for systems 2, 4 and 6 are shown in Figures 4 through 6. A Hand plot for system 8 was not possible because only 1 ternary LLE data point was available. The Hand plots for the other ternary systems can be found in the Master Thesis of Simonetty (1981). Close examination of these plots reveals that in every case, the points seem to lie near a straight line. Consequently, it was not necessary to eliminate any LLE data points.

5. Results and Discussion

The binary parameters from methods I through V for each model are given in Tables V through XI and XVII through XXVIII. These parameters were used along with the bubble point computer program provided by

Ordaz (1978) to obtain the binary and ternary vapor phase compositions. For the UNIFAC method, the same bubble point program was used. Average absolute deviations in the vapor phase mole fraction:
$\Delta \bar{Y}=\frac{1}{3 Q} \sum_{i=1}^{Q}\left\{\left|Y_{1}^{E}-Y_{1}^{C}\right|+\left|Y_{2}^{E}-Y_{2}^{C}\right|+\left|Y_{3}^{E}-Y_{3}^{C}\right|\right\}_{i}$ (24)
where Q is the number of experimental data points for each ternary system, are presented in Table XXIX for all six methods. Overall results are presented in Table XXX. The poor results obtained with method I are expected since "unacceptable parameters" were often used. Of the several starting values in the regression calculation, the ones that lead the most often to reasonable parameters are zero and those that correspond to a value of 1.3 for the activity coefficient of both components at $X_{1}=0.50$ of a binary system. Of the three models used, the LEMF yielded acceptable parameters more often than the other models, in
four of the seven systems (1, 2, 6 and 7). For systems 3 and 4, the UNIQUAC model produced acceptable parameters. For system 5, the NRTL model yielded acceptable parameters. These results suggest that the LEMF model has less difficulty obtaining acceptable parameters from ILE data than the other equations. It is worth noticing in Table XXIX that for systems 3 and 5, the LEMF model gave better results than the NRTL model, even though the parameters were unacceptable. Compensating errors are probably responsible for this occurence.

Noticeable improvement is accomplished with method II which uses the same data as method I, but it involves the three models for the excess Gibbs free energy in helping each other towards the evaluation of reasonable binary parameters. As previously mentioned, in method II, iteration calculations are done for two pairs of models. When the iteration calculation is performed for each pair of equations, the quality of the predicted γ^{\prime} 's for both binaries improves but not always by the same amount. In some cases, the $1-3$ miscible binary experiences a bigger improvement than the $2-3$ binary, and in other cases, the 2-3 binary experiences the greater improvement. When the iteration calculation converges for both pairs of equations, we obtain two sets of parameters for the model which yielded acceptable parameters in method I. The parameter set which gave the best fit of the ternary LLE data is used. This criterion is determined by the percentage error in the distribution coefficient. In the typical case, both
sets of parameters are similar to each other and predict the VLE with approximately the same quality. For each ternary system, Table XXXI shows both sets of parameters and the corresponding $\Delta \bar{Y} ' s$ and average percentage errors in distribution coefficient.

For the seven systems where the comparison is possible, method II gave an overall deviation in Y of 0.028 with significantly better results in four of them (systems 1, 2, 5 and 6) and slight improvement for the other three (systems 3, 4 and 7). And it is worth noticing in Table XXIX that improvement is realized over the results obtained by both types of method I parameters, acceptable and unacceptable. This suggests that the iteration among the three models is desirable even for the model where acceptable parameters were obtained with method I. For method II, plots of Y^{E} versus Y^{C} are shown in Figures 7 through 13 for seven ternary systems using the models which gave the best $\Delta \bar{Y}$. It should be mentioned that for the systems which have a large number of ternary VLE data points, the plots of Y^{E} versus Y^{C} were made by using only 16 carefully chosen data points which cover the entire liquid composition region.

Use of binary γ 's generated from the UNIFAC model along with the LIE data, method III, gives still better predictions. The overall average deviation in predicted vapor phase composition, with the three models, is 0.020. On the other hand, the results for method VI suggests that the UNIFAC model may not always provide reliable vapor phase
predictions in partially miscible systems.
Combination of binary VLE and ternary LLE data, method IV, and straight predictions from binary data, method V, provide the best results with overall deviations in Y of 0.016 and 0.017, respectively. The overall performance of method V, however is somewhat inferior to that observed in the case of completely miscible ternary systems (see for example Hudson and Van Winkle (1970)), probably because of the uncertainty in the parameter values for the partially miscible binary, obtained from one, and sometimes not very accurate, datum point. And as suggested by the results for method IV, inclusion of the LLE data does not seem to rectify this uncertainty.

For system 7, poor results were obtained with all methods, including methods IV and V which normally give good results. One possible reason for these poor results is that the ternary VLE data is bad since the correlation of that data by Gmehling and Onken (1977) was poor and the quality of the other data (binary VLE and ternary ILE) was found to be good.

A comparison of the results for type IA and IB systems does not suggest the improved performance for type IA systems that was observed in the prediction of ternary LIE behavior from binary data for these type of systems (Simonetty et al. (1982)). And as shown in Table XXX, all models for the excess Gibbs free energy provide similar results. The LEMF model, however, gives somewhat better results with methods II and V and it also has the advantage of using a single value of $\boldsymbol{\alpha}=-1.0$.

In the case of three-phase distillation, it is important that the two sets of predicted vapor phase concentrations resulting from the two liquid phases in equilibrium, are the same or at least very close to each other. The results for the three systems, where such data are available, are presented in Table XXXII and indicate that this is successfully done with parameters obtained from method II. In addition the quality of the predictions as compared to those in the completely miscible region (Table XXIX), suggest that accuracy increases as the binodal curve is approached which is in agreement with the observation of Joy and Kyle (1970) with the NRTL model for the system n-pentane(1)-sulfur dioxide(2)-benzene(3) at $O \mathrm{~F}$. In order to determine more accurately if this type of behavior is present for all seven ternary systems, plots of $\Delta \bar{Y}$ versus the distance between the binodal curve and a ternary VLE data point (ΔX) were made for each model and system for method II and are shown in Figures 14 through 34. The quantity ΔX was determined in the manner shown in Figure 35. Examination of these plots for all seven systems indicate that while accuracy improves as the binodal curve is approached for systems 3, 6 and 7, no clear trend can be established for the remaining ones. In the typical case, however, best predictions are realized close to the binodal curve.

We turn now to the prediction of binary VLE behavior for the completely miscible binaries. Detailed results for
methods I, II and VI are presented in Tables XXXIII and XXXIV and typical ones in Figure 36. A summary of all applicable methods is presented in Table XXXV. As with the prediction of ternary VLE, method I parameters yield poor results and improved performance is realized with method II, with an overall deviation in Y for 14 systems of 0.024 . And a comparison of the predictions with method I (Table XXXIII) and method II (Table XXXIV) suggests again that the iteration among models yields better results even for the models where acceptable parameters were obtained with method I. The UNIFAC method, and the combination of LLE data and UNIFAC give the best results with deviations in Y of 0.017 and 0.015 , respectively. Finally, of the three models for the activity coefficient, the LEMF gives again somewhat better results.

Prediction of VLE in partially miscible binary systems, however, is less certain, as demonstrated in Table XXXVI for three systems where such data were available. Method V, in this case, involves just the binary mutual solubility data. The LEMF model gives very good results for two of them but not for the third one. Good predictions are also obtained with the UNIFAC model, but not for the waterethyl acetate system where the results are extremely poor. This observation, combined with the poor ternary predictions for the systems: water-ethyl acetate with methanol and with ethanol, suggests that the interaction parameters for the $\mathrm{H}_{2} \mathrm{O}$ - COOC pair are probably unreliable.

The most important use of binary information is, of course, in the prediction of multicomponent VLE behavior such as ternary VLE. For this purpose, in Table XXXVII, we present the prediction results for systems 1, 3, 4 and 7. In this prediction, the parameters for the $1-3$ miscible binary was obtained from method II. The parameters for the other two binaries, one completely and the other partially miscible, were obtained from the corresponding binary data. The results are of acceptable quality, but inferior to those obtained by straight prediction from binary data (method V). Plots of Y^{E} versus Y^{C} are presented in Figures 37 and 38 for a couple of typical cases.

6. Conclusions

Ternary liquid-liquid equilibrium data can be effectively used in the prediction of vapor-liquid equilibrium.

For ternary predictions, reasonable estimates of vapor phase compositions are obtained by using the LLE data alone. The overall deviation in Y for seven systems is 0.028 but better results are obtained close to the binodal curve, a region important in three phase distillation. If the necessary UNIFAC interaction parameter values are available, improved results are realized by combining the LLE data with the UNIFAC method. The overall deviation in Y for seven such systems is 0.020 . Use of the UNIFAC method alone, however, gives erratic predictions suggesting caution when it is applied to such systems.

For the completely miscible binary systems, reasonable estimates of the vapor phase concentrations are again obtained from the LLE data alone. The overall deviation in Y for 14 systems is 0.024 . The UNIFAC method, and the LLE data-UNIFAC combination, give the best results with deviations of 0.017 and 0.015 , respectively. For the partially miscible binaries, however, predictions are less certain.

Finally, of the three models for the exdess Gibbs free energy, the LEMF appears to give somewhat better results for both binary and ternary VLE predictions.

APPENDIX A

THE FIGURES

This appendix contains Figures 1 through 38.

Figure 1: Block diagram for Bubblepoint Calculation.

Figure 2: Predicted Activity Coefficients for the System Water(1) - Methanol (3) Using Parameters Obtained from System-2 with Method I. L: LEMF N: NRTL U: UNIQUAC

Figure 3: Predicted Activity Coefficients for the System Water(1) - Methanol(3) Using Parameters obtained from System-2 with Method II.

0 : experimental at 65 C (McGlashan, 1976)
L: LEMF
N: NRTL
U: UNIQUAC

Figure 4: Hand's test for system 2.

Figure 5: Hand's test for system 4.

Figure 6: Hand's test for system 6.

Figure 7: Prediction of Vapor Phase Compositions for system 1 with method II and the LEMF Model.

0 component 1
\square component 2
Δ component 3

Figure 8: Prediction of Vapor Phase Compositions for system 2 with method II and the UNIQUAC Model.

0	component 1
\square	component 2
Δ	component 3

Figure 9: Prediction of Vapor Phase Compositions for system 3 with method II and the NRTL model.

0	component 1
\square	component 2
Δ	component 3

Figure 10: Prediction of Vapor Phase Compositions for system 4 with method II and the UNIQUAC model.

$$
\begin{array}{ll}
0 & \text { component } 1 \\
\square & \text { component } 2 \\
\Delta & \text { component } 3
\end{array}
$$

Figure 11: Prediction of Vapor Phase Compositions for system 5 with method II and the LEMF model.

- component 1

ㅁ. component 2
Δ component 3

Figure 12: Predictions of Vapor Phase Compositions for system 6 with method II and the UNIQUAC model.

0	component 1
\square	component 2
Δ	component 3

Figure 13: Predictions of Vapor Phase Compositions for system 7 with method II and the LEMF model.

$$
\begin{array}{ll}
\circ & \text { component 1 } \\
\square & \text { component 2 } \\
\Delta & \text { component } 3
\end{array}
$$


```
Figure 14: Plot of \(\Delta \bar{Y}\) versus \(\Delta X\) for system 1 using the NRTL (method II).
```


Figure 15: Plot of $\Delta \bar{Y}$ versus ΔX for system 1 using the LEMF (method II).

Figure 16: Plot of $\Delta \bar{Y}$ versus ΔX for system 1 using the UNIQUAC (method II).

Figure 17: Plot of $\Delta \bar{Y}$ versus ΔX for system 2 using the NRTL (method II).

Figure 18: Plot of $\Delta \bar{Y}$ versus ΔX for system 2 using the LEMF (method II).


```
Figure 19: Plot of \(\Delta \bar{Y}\) versus \(\Delta X\) for system 2 using the UNIQUAC (method II).
```


Figure 20: Plot of $\Delta \bar{Y}$ versus ΔX for system 3 using the NRTL (method II).

Figure 21: Plot of $\Delta \bar{Y}$ versus ΔX for system 3 using the LEMF (method II).


```
Figure 22: Plot of \(\overline{\Delta Y}\) versus \(\Delta X\) for system 3 using the UNIQUAC (method II).
```


Figure 23: Plot of $\Delta \bar{Y}$ versus ΔX for system 4 using the NRTL (method II).

Figure 24: Plot of $\Delta \bar{Y}$ versus ΔX for system 4 using the LEMF (method II).

Figure 25: Plot of $\Delta \bar{Y}$ versus ΔX for system 4 using the UNIQUAC (method II).

Figure 26: Plot of $\Delta \bar{Y}$ versus ΔX for system 5 using the NRTL (method II).

Figure 27: Plot of $\Delta \bar{Y}$ versus ΔX for system 5 using the LEMF (method II).

Figure 28: Plot of $\Delta \bar{Y}$ versus ΔX for system 5 using the UNIQUAC (method II).


```
Figure 29: Plot of }\Delta\vec{Y}\mathrm{ versus }\DeltaX\mathrm{ for system }6\mathrm{ using the NRTI (method II).
```


Figure 30: Plot of $\Delta \bar{Y}$ versus ΔX for system 6 using the LEMF (method II).

Figure 31: Plot of $\Delta \bar{Y}$ versus ΔX for system 6 using the UNIQUAC (method II).

Figure 32: Plot of $\Delta \bar{Y}$ versus ΔX for system 7 using the NRTL (method II).

Figure 33: Plot of $\overline{\mathrm{Y}}$ versus ΔX for system 7 using the LEMF (method II).

Figure 34: Plot of $\Delta \bar{Y}$ versus ΔX for system 7 using the UNIQUAC (method II).

Figure 36: Vapor Phase Prediction for the System Acetonitrile(1) - Benzene(3).
—— Method II (NRTL)

- - UNIFAC

O Experimental

Figure 37: Prediction of Vapor Phase Compositions for system 1 by combining methods II and V (UNIQUAC).

- component 1

ㅁ component 2
Δ component 3

Figure 38: Prediction of Vapor Phase Compositions for system 7 by combining methods II and V (NRTL).

0	component 1
\square	component 2
Δ	component 3

APPENDIX B

THE TABLES

This appendix contains Tables I through XXXVII.

Table I: Ternary LIE Systems.

Systems	Number \quad T, $C \quad$ Reference
	$\&$ Type


```water(1) ethyl acetate(2) ethanol(3)```	1 A	70	Griswold and Chu (1949)
```water(1) ethyl acetate(2) methanol(3)```	2 A	70	Akita and Yoshida (1963)
```water(1) acrylonitrile(2) acetonitrile(3)```	3A	60	$\begin{aligned} & \text { Volpicelli } \\ & (1968) \end{aligned}$
```water(1) n-butanol(2) n-propanol(3)```	4A	$\begin{aligned} & 90- \\ & 92 \end{aligned}$	Newsham and Vahdat (1977)
$\begin{aligned} & \text { acetonitrile(1) } \\ & \text { n-heptane(2) } \\ & \text { benzene(3) } \end{aligned}$	$5 B$	45	Palmer and Smith (1972)
$\begin{aligned} & \text { n-pentane(1) } \\ & \text { sulfur dioxide(2) } \\ & \text { benzene(3) } \end{aligned}$	$6 B$	-17.8	Bowden et al. (1966)
$\begin{aligned} & \text { water(1) } \\ & \text { benzene (2) } \\ & 1 \text {-propanol (3) } \end{aligned}$	7 B	37.7	McCants et al. (1953)
$\begin{aligned} & \text { water(1) } \\ & \text { hexane(2) } \\ & \text { tetrahydrofuran(3) } \end{aligned}$	8B	50	Lampa et al. (1980)

Table II: Ternary VLE Systems.

System \#	P or T	\# of Points	Reference
1	706	9	Griswold and Chu (1949)
2	760 mmHg	65	Akita and Yoshida (1963)
3	760 mmHg	87	$\begin{aligned} & \text { Volpicelli } \\ & (1968) \end{aligned}$
4	739 mmHg	9	Newsham and Vahdat (1977)
5	45 C	34	Palmer and Smith (1972)
6	$-17.8 c$	41	Bowden et al. (1966)
7	30 C	22	Udovenko and Mazanko (1975)
8	760 mmHg	21	Lampa et al. (1980)

Table III: Non-randomness Parameter Values for the NRTL model.

system \#	α_{12}	α_{13}	α_{23}
1	0.20	0.30	0.30
2	0.20	0.30	0.30
3	0.20	0.30	0.30
4	0.20	0.30	0.30
5	0.20	0.30	0.30
6	0.20	0.30	0.30
7	0.20	0.30	0.47
8	0.20	0.30	0.30

Table IV: Pure Component Constants ${ }^{\mathrm{h}}$ for the UNIQUAC model.

Component	r	q	q^{\prime}
water	0.92	1.4	1.0
acetonitrile	0.87	1.72	-
benzene	3.19	2.40	-
ethyl acetate	3.48	3.12	-
acrylonitrile	2.09	1.64	-
1-butanol	3.45	3.05	0.88
n-heptane	5.17	4.4	-
n-pentane	3.82	3.31	-
hexane	4.50	3.86	-
ethanol	2.11	1.97	0.92
methanol	1.43	1.43	0.96
1-propanol	2.78	2.51	0.89
sulfur dioxide	1.55	1.45	-
tetrahydrofuran	2.94	2.40	-

h
Obtained from Prausnitz et al. (1980).

Table V: Parameters from method I for system 1.
Starting

Value $\quad \frac{\Delta g_{13}}{\Delta g_{31}} \quad \frac{\Delta g_{23}}{\Delta g_{32}} \quad \frac{\Delta g_{12}}{\Delta g_{21}} \quad$| Calc. Binary Y Range |
| :--- |
| Binary 1-3: $\gamma 1 / \gamma 3$ |
| Binary $2-3: \gamma 2 / \gamma 3$ |

NRTL

$345 \quad \frac{2520}{-1206} \frac{2130}{-978} \frac{3074}{-3}$| $1.0-1.1-0.8 / 1.2-0.8-0.98$ |
| :--- |
| $1.0-1.1-0.9 / 1.1-0.9-0.99$ |

zero b $\frac{-390}{693} \quad \frac{2886}{-838} \quad \frac{2977}{77} \quad$| $1.0-1.261 .2-1.0$ |
| :--- |
| $1.1-1.3-1.0 / 1.6-0.9-0.99$ |\quad a

$+500 \quad \frac{872}{-461} \quad \frac{2320}{-1000} \quad \frac{3063}{16} \quad \begin{aligned} & 0.1-1.2 / 1.4-0.4 \\ & 1.1-0.9 / 1.1-0.99\end{aligned}$
$-500 \quad \frac{2000}{-1500} \frac{-4000}{850} \frac{5000}{100} \begin{aligned} & 1.0-2.0 / 5.0-1.0 \\ & 1.0-0.05 / 1.0-1000\end{aligned}$
LEMF ${ }^{C}$
$240^{\mathrm{b}} \quad \frac{-478}{697} \quad \frac{278}{622} \quad \frac{431}{812} \quad \begin{aligned} & 1.0-1.7 / 3 \cdot 7-1.0 \\ & 1.1-3 \cdot 7 / 4.0-1.0\end{aligned}$
zero $\frac{-461}{725} \quad \frac{404}{638} \quad \frac{434}{812} \quad \begin{aligned} & 1.0-0.8 / 0.5-1.0 \\ & 1.1-5.0 / 4.8-1.0\end{aligned}$
$+500 \quad \frac{-106}{788} \quad \frac{903}{718} \quad \frac{443}{813} \quad \begin{aligned} & 1.0-2.4 / 8.6-1.0 \\ & 1.1-42612-1.0\end{aligned}$
$\begin{array}{llll}-500 & \frac{3686}{388} \quad \frac{-2050}{-4797} \quad \frac{452}{786} \quad \begin{array}{l}1.0-2.4 / 354-160 \\ 0.9-0.86 / 0.86-0.99\end{array}\end{array}$

UNIQUAC

Table V, continued

UNIQUAC
$+500 \quad \frac{-1800}{500} \quad \frac{4000}{-1500} \quad \frac{200}{1500} \quad 1.0-0.1 / 0.1-0.9$
-500

$$
\frac{400}{-960} \quad \frac{-904}{-244} \quad \frac{273}{820}
$$

0.99-0.7/0.44-0.99
0.99-0.02/0.2-0.8
a: Calculated binary γ range exhibits a maximum or minimum.
b: Starting value which gave the best parameters for each model.
c: Model which gave reasonable parameters.

Table VI: Parameters from method I for system 2.
$\underset{\text { Starting }}{\text { Value }} \quad \frac{\Delta g_{13}}{\Delta g_{31}} \quad \frac{\Delta g_{23}}{\Delta g_{32}} \quad \frac{\Delta g_{12}}{\Delta g_{21}}$
Calc. Binary γ Range Binary 1-3: $\gamma 1 / \gamma 3$ Binary 2-3: $\gamma 2 / \gamma 3$
NRTI

$345^{\mathrm{b}} \quad \frac{484}{-371} \quad \frac{416}{-117} \quad \frac{3222}{-104} \quad$| $1.0-1.05 / 1.06-1.0$ |
| :--- |
| $1.0-1.37 / 1.5-1.0$ |

zero	$\frac{-627}{408}$	$\frac{146}{-116}$	$\frac{3210}{-77}$	
+500	$\frac{373}{-283}$	$\frac{436}{-124}$	$\frac{3230}{-106}$	$0.9-0.6 / 0.4-0.9$ -500
	$\frac{-660}{467}$	$\frac{153}{-110}$	$\frac{3207}{-75}$	$1.0-1.05 / 1.06-1.0$

LEMF ${ }^{\circ}$
240
zero b

$$
\frac{-896}{827} \quad \frac{550}{800} \quad \frac{492}{817}
$$

$$
\begin{aligned}
& 1.0-2.3 / 5.0-1.0 \\
& 1.0-12 / 56-1.0
\end{aligned}
$$

$$
\begin{aligned}
& 1.0-2.5 / 1.0-3.0 \\
& 1.0-2.2 / 4.0-1.0
\end{aligned}
$$

$+500$

$$
1.0-16 / 14-1.0
$$

-500

$$
\frac{-451}{484} \quad \frac{90}{481} \quad \frac{397}{830}
$$

$$
1.0-2.5 / 4.0-1.0
$$

$$
0.99-1.3 / 1.3-1.0
$$

$$
1.0-1.16 / 1.14-0.98
$$

UNIQUAC

$24 \quad 1237$	-8060	6603	209	1.0-0.001/0.0-0.0
397-239	451	-562	1047	1.0-1.2/12-0.99
zero	1146	50	280	0.99-0.9260.77-1.0
	-898	220	878	1.0-0.95/0.80-1.0
+500	2790	2381	211	1.0-1.3/1.6-1.0
	-783	-514	967	0.3-1.4/5.5-0.2
$-500{ }^{\text {b }}$	566	$\underline{1398}$	210	1.0-1.15/1.13-1.0
	-575	-509	930	1.0-1.2/1.8-0.99

Table VII: Parameters from method I for system 3.

Starting Value	$\frac{\Delta g_{13}}{\Delta g_{31}}$	$\frac{\Delta g_{23}}{\Delta g_{32}}$	$\frac{\Delta g_{12}}{\Delta g_{21}}$	Calc. Binary γ Ran Binary 1-3: $\gamma 1 /$ Binary 2-3: $\gamma 2 /$
	NRTL			
345 b	1868	-610	2030	1.0-2.6/7.9-1.0
	-168	1058	454	0.9-1.3/1.1-0.9
zero	1885	-700	2047	1.0-2.8/8.8-1.0
	-110	1610	421	0.99-0.5/0.7-0.8
$+500$	1824	2203	1940	1.0-2.1/6.0-1.0
	-314	-1093	634	1.0-0.8/1.2-0.99
-500	1595	-754	2005	1.0-2.3/5.3-1.0
	-225	560	464	0.99-0.6/0.7-0.99

LEMF

Table VIII: Parameters from method I for system 4.

Starting Value	Δg_{31}	$\frac{\Delta g_{23}}{\Delta g_{32}}$	$\frac{\Delta g_{12}}{\Delta g_{21}}$	Calc. Binary γ Range Binary 1-3: $\gamma 1 / \gamma 3$ Binary 2-3: $\gamma_{2} / \gamma 3$
		NRTI		
345	1998	-381	2425	1.0-0.8/1.9-0.99
	-763	-227	-647	0.99-0.7/0.5-0.9
zero	2395	2573	3646	1.0-0.6/1.0-0.7
	-994	-1466	-806	1.0-0.7/0.7-0.9
$+500$	1426	-790	3260	1.0-1.4/3.1-1.0
	-333	66	-526	0.99-0.62/0.44-0.85
$-500{ }^{\text {b }}$	1313	-470	3121	1.0-2.6/6.0-1.2
	5410	116	-390	0.99-0.8/0.7-0.9
		LEME		
240	-596	-3767	176	1.0-1.9/5.6-1.0
	750	-794	814	0.97-0.8/0.7-0.9
zero b	-630	-511	180	1.0-1.9/5.1-1.0
	744	11	812	0.99-0.8/0.64-0.98
$+500$	584	-346	162	1.0-6.7/15-1.0
	657	1066	812	1.1-2.6/11-1.0
-500	-475	-977	175	1.0-1.8/5.4-1.0
	720	-1228	802	0.97-0.66/0.4-0.8
	UNIQUAC ${ }^{\text {c }}$			
-384 545	3113	1538	1866	1.0-1.1/3.0-0.99
1433571	-925	552	150	1.0-2.0/4.0-1.1
zero	4478	1176	2640	1.0-1.4/5.7-0.99
	-732	564	145	1.0-1.9/3.5-1.1
$+500$	836	-134	1848	1.0-5.7/12-1.0
	1018	$\frac{-256}{}$	141	0.99-0.8/0.7-0.95
-500	977	114	1844	1.0-3.4/9.7-1.0
	273	-348	138	0.99-0.95/0.94-0.97

Table IX: Parameters from method I for system 5.

| Starting | |
| :--- | :--- | :--- | :--- | :--- |
| Value | $\frac{\Delta \mathrm{g}_{13}}{\Delta \mathrm{~g}_{31}} \quad \frac{\Delta \mathrm{~g}_{23}}{\Delta \mathrm{~g}_{32}} \quad \frac{\Delta \mathrm{~g}_{12}}{\Delta \mathrm{~g}_{21}} \quad$Calc. Binary γ Range
 Binary 1-3: $\gamma 1 / \gamma_{3}$
 Binary 2-3: $\gamma 2 / \gamma 3$ |

345	$\frac{1114}{-462}$	$\frac{-238}{436}$	$\frac{1378}{840}$	$1.0-1.3 / 1.9-1.0$ $1.0-1.2 / 1.1-1.0$ zero
	$\frac{1392}{-447}$	$\frac{510}{-80}$	$\frac{1360}{835}$	$1.0-1.5 / 3.0-1.0$
+500	$\frac{1252}{1.0-1.6 / 1.8-1.0}$			
	$\frac{350}{-450}$	$\frac{304}{-19}$	$\frac{1390}{820}$	$0.6-1.4 / 2.5-0.7$
-500	$\frac{-364}{196}$	$\frac{-37}{-512}$	$\frac{1390}{807}$	$1.0-1.5 / 1.5-1.0$
				$0.99-0.4 / 0.76-0.99$

LEMF

240 b	$\frac{11}{210}$	$\frac{-103}{-144}$	$\frac{558}{519}$	$1.0-1.4 / 1.6-1.0$ $0.99-0.7 / 0.7-1.0$		
zero	b	$\frac{14}{215}$	$\frac{-72}{-184}$	$\frac{557}{620}$		$1.0-1.4 / 1.6-1.0$
:---						

-57 527	-320	209	47	0.99-0.6/0.6-0.99
$434-209$	207	-382	1108	0.99-0.3/0.3-0.99
zero	775	926	40	1.0-3.5/11-1.0
	17	-223	1131	1.0-6.0/8.0-1.0
$+500{ }^{\text {b }}$	525	638	40	1.0-2.7/6.0-1.0
	14	-200	1131	1.0-4.0/3.7-1.0
-500	-753	-438	42	0.99-0.04/1.0-0.98
	92	-304	$\overline{1119}$	0.99-0.003/0.05-0.99

Table X: Parameters from method I for system 6.

| Starting | |
| :--- | :--- | :--- | :--- |
| Value | $\frac{\Delta g_{13}}{\Delta g_{31}} \quad \frac{\Delta g_{23}}{\Delta g_{32}} \quad \frac{\Delta g_{12}}{\Delta g_{21}} \quad$Calc. Binary γ Range
 Binary 1-3: $\gamma 1 / \gamma 3$
 Binary 2-3: $\gamma 2 / \gamma 3$ |

345^{b}	$\frac{2216}{-365}$	$\frac{2356}{-546}$	$\frac{221}{1500}$
zero	$\frac{1834}{438}$	$\frac{1926}{218}$	$\frac{203}{1418}$
+500	$\frac{2204}{-297}$	$\frac{2320}{-471}$	$\frac{220}{1491}$
-500	$\frac{-259}{-30}$	$\frac{-981}{740}$	$\frac{190}{1500}$

$$
\begin{aligned}
& 1.0-1.7 / 12-1.0 \\
& 1.0-1.4 / 9.0-0.95 \\
& 1.0-2.5 / 33-1.4 \\
& 1.0-3.0 / 30-1.1 \\
& 1.0-1.8 / 14-1.0 \\
& 1.0-1.5 / 11-0.97 \\
& 0.99-0.85 / 0.58-0.87 \\
& 0.99-0.60 / 0.38-0.77
\end{aligned}
$$

LEMF ${ }^{C}$

240	$\frac{646}{585}$	$\frac{-911}{596}$	$\frac{501}{448}$	$1.0-2.7 / 60-2.4$
zero	$\frac{862}{611}$	$\frac{-678}{613}$	$\frac{497}{466}$	$1.0-1.9 / 6.0-1.0$
-500	b	$\frac{454}{-3647}$	$\frac{588}{-796}$	$\frac{493}{386}$
	$\frac{4261}{626}$	$\frac{2913}{630}$	$\frac{502}{462}$	$1.0-1.9 / 8.7-1.0$
+500		$1.0-1.5 / 2.3-1.3$		
			$1.0-2.2 / 5000-10000$	

UNIQUAC
$\begin{array}{llll}\frac{282}{-76} & \frac{-73}{469} & \frac{1181}{-185} & \frac{797}{170} \\ \text { zero } & \frac{1181}{-185} & \frac{680}{233} \\ +500 & \frac{1120}{6} & \frac{676}{1234} & \frac{680}{233} \\ -500 & \frac{1172}{-20} & \frac{632}{25600} & \frac{522}{280}\end{array}$

$$
\begin{aligned}
& 1.0-2.6 / 38-1.4 \\
& 1.0-3.0 / 33-1.1 \\
& 2.6-1.0 / 1.4-38 \\
& 1.0-3.0 / 33-1.1 \\
& 1.0-3.4 / 88-1.8 \\
& 1.0-5.0 / 95-1.6 \\
& 1.0-3.4 / 76-1.8 \\
& 1.0-5.0 / 81-1.9
\end{aligned}
$$

Table XI: Parameters from method I for system 7.
Starting
Value $\quad \frac{\Delta g_{13}}{\Delta g_{31}} \quad \frac{\Delta g_{23}}{\Delta g_{32}} \quad \frac{\Delta g_{12}}{\Delta g_{21}}$

Calc. Binary γ Range Binary 1-3: $\gamma_{1 /} \gamma_{3}$ Binary 2-3: γ_{2} / γ_{3}

NRTL

345 b	$\frac{2844}{-801}$	$\frac{1745}{-342}$	$\frac{3403}{1884}$	$1.1-1.3 / 2.8-0.99$ zero
	$\frac{2815}{-783}$	$\frac{1674}{-315}$	$\frac{3392}{1870}$	$1.1-1.3 / 4.3-0.98$ $1.0-1.4 / 4.4-0.99$
+500	$\frac{2700}{-900}$	$\frac{1500}{-550}$	$\frac{3100}{1600}$	$1.0-2.0 / 2.0-1.0$
	$\frac{-3551}{-942}$	$\frac{-5666}{7428}$	$\frac{3778}{1944}$	$0.9-0.9 / 0.6-0.8$
-500		$1.0-0.5 / 0.0-0.0$		

240 b	$\frac{-577}{728}$	$\frac{136}{492}$	$\frac{722}{895}$	$1.0-2.1 / 5.3-1.0$
zero	$\frac{-476}{828}$	$\frac{851}{494}$	$\frac{726}{878}$	$1.0-1.9 / 5.3-1.1$
	$\frac{503}{577}$	$\frac{560}{445}$	$\frac{711}{883}$	$1.0-3.9 / 17-1.8$
+500	$\frac{101}{580}$	$\frac{-536}{645}$	$\frac{737}{880}$	$1.0-7.4 / 10-1.0$
			$1.0-2.7 / 8.3-1.3$	
-500			$0.7-1.7 / 5.1-0.6$	

UNIQUAC

-331	$940{ }^{\text {b }}$	2833	5168	497	1.1-1.8/4.2-1.0
1236	-264	-465	-432	3660	1.0-2.0/9.0-1.1
zero		2836	5891	497	1.1-1.8/4.2-1.0
		-466	-432	3665	1.0-2.0/9.0-1.1
$+500$		$\underline{-5520}$	-7200	684	0.99-0.001/0.0-0.006
		-593	15000	9935	1.0-0.6/0.0-0.0
-500		$\underline{-6306}$	-8054	684	0.99-0.001/0.0-0.002
		-593	17400	76200	1.0-0.6/0.0-0.0

Table XII: Binary Systems.

System	P or T	Data	References
Points			

Table XII, continued

System	P or T	Data Points	References
sulfur dioxide- benzene	-17.78	19	Bowden et al. (1966)
$\begin{aligned} & \text { n-pentane- } \\ & \text { sulfur dioxide } \end{aligned}$	-17.78	1	Bowden et al. (1966)
$\begin{aligned} & \text { water- } \\ & \text { 1-propanol } \end{aligned}$	40 C	12	$\begin{aligned} & \text { Hala et al. } \\ & (1968) \end{aligned}$
benzene-1-propanol	40 C	10	$\begin{aligned} & \text { Hala et al. } \\ & (1968) \end{aligned}$
waterbenzene	37.7 C	1	Stephen and Stephen (1963)
```water- tetrahydrofuran```	760 mmHg	8	$\underset{(1980)}{\text { Lampa }} \text { et al. }$
hexane-   tetrahydrofuran	760 mmHg	18	Lampa et al. (1980)
waterhexane	40 C	1	Black et al. (1948)

Table XIII: Main groups and subgroups for UNIFAC model.

Component
water
acetonitrile
benzene
ethyl acetate
acrylonitrile
1-butanol
n-heptane
n-pentane
hexane
ethanol
methanol
1-propanol
tetrahydrofuran

Group Assignment
$1 \mathrm{H}_{2} \mathrm{O}$
1 MCCN
6 ACH
$1 \mathrm{CH}_{3}, 1 \mathrm{CH}_{2}, 1 \mathrm{CH}_{3} \mathrm{COO}$
$1 \mathrm{CCN}, 1 \mathrm{CH}$
$1 \mathrm{CCOH}, 1 \mathrm{CH}_{2}, 1 \mathrm{CH}_{3}$
$2 \mathrm{CH}_{3}, 5 \mathrm{CH}_{3}$
$2 \mathrm{CH}_{3}, 3 \mathrm{CH}_{2}$
$2 \mathrm{CH}_{3}, 4 \mathrm{CH}_{2}$
$1 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
$1 \mathrm{CH}_{3} \mathrm{OH}$
$1 \mathrm{CCOH}, 1 \mathrm{CH}_{3}$
$1 \mathrm{CH}_{2} \mathrm{O}, 3 \mathrm{CH}_{2}$

Table XIV: Group Parameters for UNIFAC model

Main group	Group Area	Group Volume
or subgroup	$\mathrm{R}_{\mathrm{k}}$	$Q_{k}$
$\mathrm{CH}_{3}$	0.9011	0.848
$\mathrm{CH}_{2}$	0.6744	0.540
CH	0.4469	0.228
ACH	0.5313	0.4
CCOH	2.1055	1.972
$\mathrm{CH}_{3} \mathrm{OH}$	1.4311	1.432
$\mathrm{H}_{2} \mathrm{O}$	0.9200	1.40
$\mathrm{CH}_{2} \mathrm{O}$	0.9183	0.780
CCN	1.6434	1.416
MCCN	1.8701	1.724
COOC	1.9031	1.728

Table XV: Methods Used for the Prediction of VLE Behavior.

> Method Information Used

I

II

III

IV

V Binary VIE and binary mutual

VI
solubility data
LLE data

LLE data plus iteration between the expressions for $\gamma$

LIE data plus UNIFAC interaction parameters

LLE data plus binary VLE data

UNIPAC interaction parameters

Table XVI: Consistency Index (C. I.) and Values of $\mid$ C. I. $-J \mid$ for the Miscible Binary Systems

Binary Systems
water-ethanol at 760 mmHg 8.1
ethyl acetate-ethanol at 760 mmHg water-methanol at 65 C ethyl acetate-methanol at 760 mmHg water-acetonitrile at $760 \mathrm{mmHg} \quad 3.5$ acrylonitrile-acetonitrile at 760 mmHg - 5.2 water-n-propanol at 90 C 0.01
n-butanol-n-propanol at 760 mmHg - 6.7
benzene-n-heptane at 45 C
benzene-acetonitrile at 45 C
n-pentane-benzene at -17.8 C
sulfur dioxide-benzene at -17.8 C water-n-propanol at 40 C
0.01 -
benzene-n-propanol at 40 C
0.04 -
water-tetrahydrofuran at 760 mmHg - 9.2
hexane-tetrahydrofuran at 760 mmHg - 7.5

Table XVII: NRTL Parameters From method II

System \# $\quad \Delta g_{12} \quad \Delta g_{21} \quad \Delta g_{13} \quad \Delta g_{31} \quad \Delta g_{23} \quad \Delta g_{32}$


Table XVIII: LEMF Parameters From method II.

System \# $\quad \Delta g_{12} \quad \Delta g_{21} \quad \Delta g_{13} \quad \Delta g_{31} \quad \Delta g_{23} \quad \Delta g_{32}$

1	378	816	-811	640	-311	568
2	354	830	-377	470	158	413
3	560	704	154	628	184	-131
4	172	825	263	668	-333	10
5	575	612	-880	596	315	-62
6	523	371	336	182	88	215
7	720	892	-236	670	182	470
8	$j$	-	-	-	-	-

j: Method II is not possible because only 1 ternary LLE tie line is available.

Table XIX: UNIQUAC Parameters From method II.

System \# $\quad \Delta u_{12} \quad \Delta u_{21} \quad \Delta u_{13} \quad \Delta u_{31} \quad \Delta u_{23} \quad \Delta u_{32}$

1	123	1158	2480	-614	2688	-382
2	170	1028	-405	606	1771	-362
3	320	750	570	16	-457	750
4	2110	132	1100	198	267	-448
5	45	1140	348	-62	442	-241
6	668	218	160	61	11	224
7	494	2218	1644	-283	1590	-314

$8^{j} \quad-\quad-\quad-\quad-\quad$ -
j: Method II is not possible because only 1 ternary LLE tie line is available.

Table XX: NRTL Parameters From method III

System \# $\quad \Delta \mathrm{g}_{12} \quad \Delta \mathrm{~g}_{21} \quad \Delta \mathrm{~g}_{13} \quad \Delta \mathrm{~g}_{31} \quad \Delta \mathrm{~g}_{23} \quad \Delta \mathrm{~g}_{32}$

1	2950	-62	1297	-200	1028	-165
2	3145	-136	945	-317	555	185
3	1705	400	1410	300	-400	800
4	3162	-405	1672	298	-670	958
5	1359	718	415	307	-120	485
6	$k$	-	-	-	-	-
7	3221	1630	2064	-258	1030	242
8	3600	-620	990	820	-11	700

k: Method III is not possible because UNIFAC parameters are not available.

Table XXI: LEMF Parameters From method III

System \# $\Delta g_{12} \quad \Delta g_{21} \quad \Delta g_{13} \quad \Delta g_{31} \quad \Delta g_{23} \quad \Delta g_{32}$

1	380	802	110	462	150	404
2	338	820	-54	354	275	297
3	700	756	359	790	125	-210
4	171	835	102	692	-31	36
5	567	624	270	282	303	-95
6	-	-	-	-	-	-
7	722	888	40	625	212	485
8	-310	750	510	580	210	60

k: Method III is not possible because UNIFAC parameters are not available.

Table XXII: UNIQUAC Parameters From method III
system \# $\quad \Delta u_{12} \quad \Delta u_{21} \quad \Delta u_{13} \quad \Delta u_{31} \quad \Delta u_{23} \quad \Delta u_{32}$

1	120	1140	753	-225	1567	-425
2	162	976	760	-430	1260	-263
3	200	425	300	750	-800	700
4	2135	152	1226	-22	122	-86
5	35	1070	-56	435	300	-164
6	$k$	-	-	-	-	-
7	484	2432	1629	-227	1840	-320
8	420	115	-300	1200	210	-31

k: Method III is not possible because UNIFAC parameters are not available.

Table XXIII: NRTL Parameters From method IV.

System \# $\quad \Delta g_{12} \quad \Delta g_{21} \quad \Delta g_{13} \quad \Delta g_{31} \quad \Delta g_{23} \quad \Delta g_{32}$

1	3016	-108	1116	-60	1097	-260
2	3146	-121	907	-310	618	125
3	2001	351	1279	452	-582	920
4	3140	-394	1688	333	-792	1237
5	1325	740	432	266	-300	803
6	203	1433	86	616	796	-338
7	3222	1594	1904	-120	1142	241
8	3750	-595	1234	695	-178	628

Table XXIV: LEMF Parameters From method IV.

System \# $\quad \Delta \mathrm{g}_{12} \quad \Delta \mathrm{~g}_{21} \quad \Delta \mathrm{~g}_{13} \quad \Delta \mathrm{~g}_{31} \quad \Delta \mathrm{~g}_{23} \quad \Delta \mathrm{~g}_{32}$

1	327	807	184	448	17	437
2	351	818	-72	354	252	313
3	540	697	443	566	145	-67
4	180	837	109	702	170	-222
5	573	620	260	286	331	-115
6	515	393	304	164	35	197
7	730	886	171	605	181	528
8	-285	900	450	603	260	47

Table XXV: UNIQUAC Parameters From method IV.

System \# $\quad \Delta u_{12} \quad \Delta u_{21} \quad \Delta u_{13} \quad \Delta u_{31} \quad \Delta u_{23} \quad \Delta u_{32}$

1	144	1024	573	-72	1580	-463
2	151	1020	490	-310	1254	-270
3	285	636	113	724	-530	900
4	2160	155	1483	-72	323	-257
5	30	1072	-26	373	95	13
6	664	226	157	40	93	68
7	486	2313	1552	-141	2063	-313
8	408	171	-240	1303	195	-46

Table XXVI: NRTL Parameters From Method V
system \# $\quad \Delta g_{12} \quad \Delta g_{21} \quad \Delta g_{13} \quad \Delta g_{31} \quad \Delta g_{23} \quad \Delta g_{32}$

1	2938	20	1388	-174	218	360
2	2938	20	693	-177	448	292
3	2103	366	891	748	-446	688
4	3166	-400	1865	314	178	-168
5	1345	860	388	318	-363	911
6	538	1347	116	562	385	-68
7	3651	2237	1608	54	1316	274
8	6775	3303	1310	673	-140	577

Table XXVII: LEMF Parameters From method V

System \#	$\Delta g_{12}$	$\Delta g_{21}$	$\Delta g_{13}$	$\Delta g_{31}$	$\Delta g_{23}$	$\Delta g_{32}$
1	413	805	67	544	240	223
2	413	805	30	303	263	296
3	517	705	470	531	230	-193
4	174	830	78	719	-308	218
5	568	615	256	275	391	-231
6	515	395	303	163	58	181
7	743	913	173	600	138	562
8	805	1140	430	647	262	44

Table XXVIII: UNIQUAC Parameters From method V.

System \# $\Delta u_{12} \quad \Delta u_{21} \quad \Delta u_{13} \quad \Delta u_{31} \quad \Delta u_{23} \quad \Delta u_{32}$

1	170	1050	830	-192	1106	-348
2	170	1050	509	-323	1227	-252
3	383	547	-168	1304	-374	545
4	2148	147	1555	-90	-519	864
5	35	1135	-80	457	-9	118
6	701	228	135	62	-47	233
7	687	2492	1153	63	2184	-332
8	600	1161	-228	1278	178	-31

Table XXIX: Prediction of Ternary Vapor Liquid Equilibrium

Avg. Abs. Dev. in $Y$

Method	Type A Systems			Type B Systems		
	NRTL	LEMF	UNIQUAC	NRTL	LEMF	UNIQUAC
	System 1			System 5		
I	0.050	$0.052^{\text {d }}$	0.076	0.032	d 0.020	0.034
II	0.040	0.040	0.055	0.023	0.015	0.027
III	0.017	0.014	0.023	0.010	0.005	0.009
IV	0.010	0.012	0.015	0.010	0.006	0.009
V	0.016	0.012	0.017	0.007	0.007	0.006
VI		0.060			0.008	
	System 2			System 6		
I	0.036	$0.023^{\text {d }}$	0.034	0.035	$0.027^{\text {d }}$	0.030
II	0.020	0.017	0.017	0.014	0.016	0.011
III	0.015	0.012	0.014	-	e	$\theta$
IV	0.016	0.012	0.013	0.009	0.006	0.008
V	0.015	0.012	0.016	0.018	0.007	0.011
VI		0.062			e	
	System 3			System 7		
I	0.032	d 0.027	0.028	0.061	$0.035^{\text {d }}$	0.038
II	0.027	0.028	0.028	0.038	0.033	0.034
III	0.020	0.021	0.021	0.039	0.035	0.033
IV	0.018	0.017	0.017	0.040	0.041	0.033
V	0.020	0.016	0.020	0.050	0.038	0.038
VI		0.040			0.029	
	System 4			System 8		
$I$	0.040	0.042	0.034	f	- ${ }^{\text {P }}$	- ${ }^{\text {P }}$
II	0.035	0.035	0.034	f	f	f
III	0.009	0.010	0.010	0.031	0.030	0.034
IV	0.006	0.006	0.009	0.025	0.026	0.025
V	0.009	0.007	0.010	0.005	0.005	0.007
VI		0.030			0.040	

d : Equation which gave acceptable parameters.

Table XXIX, continued
e: Methods III and VI are not possible because UNIFAC parameters are not available.
f: Methods I and II are not possible because only 1 ternary LLE tie line is available.

Table XXX: Prediction of Ternary Vapor Liquid Equilibrium: Overall Performance

	Overall Avg. Abs. Dev. in Y			
Method	NRTL	LEMF	UNIQUAC	AVERAGE
I	0.037	0.033	0.039	0.036
II	0.029	0.025	0.030	0.028
III	0.020	0.018	0.021	0.020
IV	0.017	0.016	0.016	0.016
V	0.018	0.013	0.016	0.017

Table XXXI: Relation Between Ternary $\triangle \bar{Y}$ and Fit of Ternary LLE for Model which Obtained Two Sets of Parameters From method II

Avg. \% error $\quad \Delta g_{12} \quad \Delta g_{21} \quad \Delta g_{13} \quad \Delta g_{31} \quad \Delta g_{23} \quad \Delta g_{32} \quad \Delta \bar{Y}$ in Dist. Coif.


Table XXXII: Prediction of Ternary Vapor Liquid Equilibrium From the Two Liquid Phases in Equilibrium with method II.

		Avg. Abs. Dev. in Y	
System	Model	Phase I	Phase II
4	NRTL	0.011	0.011
	LEMF	0.013	0.016
	UNIQUAC	0.015	0.017
	NRTL	0.009	0.009
	LEMF	0.004	0.006
	UNIQUAC	0.011	0.012
		0.007	0.005
	NRTL	0.006	0.005

Table XXXIII: Prediction of Binary VLE for the Completely Miscible Binaries: method I

System	Equation	$\Delta \bar{Y}$	
		binary 1-3	binary 2-3
1	N	0.072	0.094
	I	0.06	0.08
	U	0.12	0.13
2	N	0.058	0.045
	L	0.020	0.028
	U	0.065	0.046
3	N	0.052	0.02
	L	0.045	0.016
	U	0.031	0.018
4	N	0.053	0.043
	L	0.072	0.035
	U	0.03	0.033
5	N	0.033	0.017
	L	0.032	0.038
	U	0.05	0.084
6	N	0.029	0.025
	$\pm$	0.0095	0.0034
	U	0.07	0.02
7	N	0.09	0.06
	L	0.04	0.04
	U	0.07	0.05
N: NRML		U:	

Table XXXIV: Prediction of Binary VLE for the Completely Miscible Binaries: Method II and UNIFAC

System	Model	Avg. Abs. Dev. in $Y$	
		Binary 1-3	Binary 2-3
1	N	0.050	0.028
	L	0.047	0.028
	U	0.063	0.050
	UF	0.013	0.011
2	N	0.011	0.018
	L	0.007	0.018
	U	0.015	0.025
	UF	0.005	0.007
3	N	0.043	0.025
	L	0.041	0.027
	U	0.030	0.027
	UF	0.030	0.045
4	N	0.028	0.030
	I	0.024	0.028
	U	0.030	0.032
	UF	0.011	0.035
5	N	0.024	0.004
	I	0.023	0.003
	U	0.024	0.010
	UF	0.009	0.005
6	N	0.004	0.002
	I	0.005	0.001
	U	0.004	0.001
	UF	-	-
7	N	0.055	0.027
	I	0.038	0.037
	U	0.050	0.043
	UF	0.018	0.026
8	N	-	-
	L	-	-
	U	-	-
	UF	0.013	0.011
N	L:	U: UNIQ	: UNIFAC

Table XXXV: Prediction of Binary VIE for the Completely Miscible Binaries: Overall Results

	Overall Avg. Abs. Dev. in $Y$			
Method	NRTL	LEMF	UNIQUAC	AVERAGE
I	0.049	0.037	0.058	0.048
II	0.025	0.023	0.025	0.024
III	0.015	0.014	0.016	0.015
VI				0.017

Table XXXVI: Prediction of Vapor Phase Composition for Partially Miscible Binary System.

System	T ( $)$	Data   Points	Avg. Abs. Dev. in $Y$			
			Method	NRTL	LEMF	UNIQUAC
water-	74.1-	3	II	0.027	0.007	0.027
ethyl acetate	75.8		V	0.023	0.006	0.025
			VI		0.47	


acetonitrile- 45	9	II	0.013	0.006	0.014
n-heptane		V	0.010	0.004	0.012
		VI		0.010	


water-	$93.0-$	12	II	0.070	0.039	0.061
n-butanol	111.5		$V$	0.060	0.033	0.054
						0.020

Table XXXVII: Prediction of Ternary VLE using Parameters from Method II for the $1-3$ Miscible Binary with Parameters from Method V for the Other Binaries.

System	Model	$\Delta \bar{Y}$
1	N	0.025
	L	0.020
	U	0.020
3	N	0.027
	L	0.027
	U	0.027
4	N	0.009
	L	0.009
	U	0.007
7	N	0.058
	I	0.032
	U	0.040
* N:	LEMF	IIQUAC

## APPENDIX C

THE COMPUTER PROGRAMS

This appendix contains the computer program REG-2EQN (in FORTRAN). This program performs the iteration calculation (method II) for a pair of models for any combination of the following models: NRTL, LEMF and UNIQUAC.

The pages that follow contain, for the program REG-2EQN, the instructions to use it, a sample input, a listing, the information contained in the output, and a glossary.

The Program REG-2EQN

The computer program REG-2EQN performs the iteration calculation (method II) for a pair of models for any combination of the following models: NRTL, LEMF and UNIQUAC. In this calculation, the model which obtained reasonable parameters from method I will be known as model A and the other model will be known as model B; and an iteration is defined as regressing the ternary LLE data and calculated binary $\boldsymbol{\gamma}^{\prime}$ 's from one model to obtain the six binary parameters for the other model. The procedure for using this program is now discussed.

## 1. System title

Here the title of the system is typed. The title should not be longer than 60 spaces. The 1-2 binary must be the partially miscible binary.
2. How many iterations and how many tie-lines?

If one is interested in using NTIMES iterations for a system that has NTIE tie-lines then type the following (Format 2I2):

> NTIMES NTIE

```
where NTIMES = number of iterations
NTIE = number of tie-lines
```

3. Temperature of the LLE system

To read in the temperature of the LLE system, type the following (Format F10.3):

TEMP3
where $\operatorname{TEMP} 3$ = temperature of the LLE system, (C)
4. How many binary VLE data points?

To specify the number of binary VLE data points for the $1-3$ and $2-3$ binaries, type the following (Format 212):

IN1 IN2
where IN1 and IN2 = number of VLE data points for the $1-3$ binary and 2-3 binary, respectively
5. VLE data for the $1-3$ binary

To read in the VLE data for the $1-3$ binary, type the following (Format 4F10.3):

X 1 GAMA1E GAMA2E TEMP1
where $X_{1}=X_{1}$
GAMA1E and GAMA2E = experimental activity coefficient of component 1 and component 3 , respectively TEMP1 $=$ temperature of the binary system, (C)

The binary $1-3$ system here is the same as the binary $1-3$ in the title.
6. VLE data for the $2-3$ binary

To read in the VLE data for the $2-3$ binary system, type the following (Format 4F10.3):
X3 GAMA3E GAMA4E TEMP2
where $\mathrm{X} 3=\mathrm{X}_{2}$
GAMA3E and GAMA4E = experimental activity coefficient of component 2 and component 3 , respectively TEMP2 = temperature of the binary system, (C)

The binary $2-3$ system here is the same as the binary $2-3$ in the title.
7. Gammas for 1-3 binary system predicted from model A

To read in the predicted gammas for the $1-3$ binary system, type the following (Format 2F10.3):

$$
\begin{array}{ll}
\text { GAMMA1 } & \text { GAMMA2 }
\end{array}
$$

where GAMMA1 and GAMMA2 = calculated activity coefficients of component 1 and component 3, respectively
8. Gammas for $2-3$ binary system predicted from model A

To read in the predicted gammas for the $2-3$ binary system, type the following (Format 2F10.3):

$$
\text { GAMMA } 3 \quad \text { GAMMA4 }
$$

where GAMMA3 and GAMMA 4 = calculated activity coefficients of component 2 and component 3, respectively

## 9. The LLE data

To type in the LLE data, type the following (Format 7F10.4):
$\begin{array}{llllll}\mathrm{X} 11 & \mathrm{X} 12 & \mathrm{X} 21 & \mathrm{X} 22 & \mathrm{DC1} & \mathrm{DC2} \\ \mathrm{DC}\end{array}$
where $\mathrm{X} 11=\mathrm{X}_{1}^{\mathrm{I}}$
$\mathrm{X} 12=\mathrm{X}_{1}^{\mathrm{II}}$
$x 21=x_{2}^{I}$
$\mathrm{X} 22=\mathrm{X}_{2}^{\mathrm{II}}$
DC1, DC2 and DC are the experimental distribution coefficients of components 1, 2 and 3, respectively

This is typed beginning on column 1. Do not include the mutual solubility data.
10. Starting values for the miscible binaries for model B

Here it is necessary to specify a starting value for each parameter in the $1-3$ and $2-3$ binaries. This is done by typing the following (Format 4 F 10.2 ) starting at column 1:

XST1 XST2 XST3 XST4
where

$$
\begin{aligned}
& \text { XST1 }=\text { starting value for } \Delta g_{13} \text { or } \Delta u_{13} \\
& \text { XST2 }=\text { starting value for } \Delta g_{31} \text { or } \Delta u_{31} \\
& \text { XST3 }=\text { starting value for } \Delta g_{23} \text { or } \Delta u_{23}
\end{aligned}
$$

$$
\text { XST4 }=\text { starting value for } \Delta g_{32} \text { or } \Delta u_{32}
$$

11. Starting values for the partially miscible binary for model B

To specify a starting value for each parameter in the 1-2 binary, type the following (Format 2F10.2):

$$
\text { G12 } \quad \text { G21 }
$$

where $\quad \mathrm{G} 12=\Delta \mathrm{g}_{12}$ or $\Delta \mathrm{u}_{12}$

$$
\mathrm{G} 21=\Delta \mathrm{g}_{21} \text { or } \quad \Delta \mathrm{u}_{21}
$$

12. Starting values for the miscible binaries for model A

Follow the instructions given in step 10.
13. Starting values for the partially miscible binary for model A

Follow the instructions given in step 11.
14. Specify Model B

If model B is the NRTL or LEMF equation then let IEQN $=01$ (Format I2). If model $B$ is the UNIQUAC equation then let IEQN $=02$ (Format I2).
15. $\alpha_{13}, \alpha_{23}$ and $\alpha_{12}$ for model $B$

If model $B$ is the NRTL or LEMF equation, then the value of $\alpha_{13}, \alpha_{23}$ and $\alpha_{12}$ must be specified. This is done
by typing the following (Format 3F10.4):
ALFA13 ALFA23 ALFA12
16. $r, q$ and $q^{\prime}$ for model $B$

If model $B$ is the UNIQUAC equation, then the value of $r$, $q$ and $q^{\prime}$ must be specified for each component. The order of the components here must correspond to that used in the title. This is done by typing for each component the following (Format 3F10.4):

$$
R \quad Q \quad Q P
$$

where $\quad R=r$

$$
Q=q
$$

$$
Q P=q^{\prime}
$$

This information is typed on 3 lines. Use one line for each component.
17. Specify Model A

Follow the instructions given in step 14.
18. $\alpha_{13}, \alpha_{23}$ and $\alpha_{12}$ for model A

Follow the instructions given in step 15.
19. $r, q$ and $q^{\prime}$ for model $A$

Follow the instructions given in step 16.
20. Number of iterations to be used

For every pair of iterations involving models $B$ and $A$, steps 14 through 19 must be performed. For example, if 4 iterations (2 iterations for each model) are to be performed, then steps 14 through 19 must be performed twice.

All of the input data for the program REG-2EQN are typed beginning on column 1 and, for the ternary LLE and binary VLE data, one line is used for each data point.

A sample input is given in the next page, followed by a listing of the computer program REG-2EQN.

$\begin{aligned} & 96 T \\ & 065 \end{aligned}$				
1395－ 10.0				
こ．ご55	E．t 7	$1 \cdot{ }^{4}$	45.7	
こ．こマ4	－033	$1 \cdot[?$	45.9	
3.183	1.516	1.7	45．	
－． 2.91	1.006	1.19	45. ？	
$\therefore .38=$	1.49	1．1 $=$	45．？	
0.597	1.663	1.304	25．？	
J．546	1.22	1.354	45.7	
$こ .574$	1.174	1.425	45.	
3.72 E E	1.079	1.677	$45 . t$	
0.8945	1.23	$1.9{ }^{\circ}$	45.7	
－． 07	1． 0	E． 3	45.9	
	8.48	2.828	45.7	
こ． $5 シ 5$	C．9895	1.473 3	$45 . ?$	
¢．$¢ 5$	1.0	1.4	45.5	
S．tes	1.73	1.365	25.8	
－．7Ez	1.000	1．3こ75	45.7	
0.7959	1.2	1.3	45.7	
0．ts55	1.012	1.3	$45 . ?$	
0．122	1.05	1．č	45.0	
O．5： 5	1．こ4£	1.295	45.7	
0.12	1.96	7.207	45. ？	
0.4144	1.125	1．12	45.0	
6．3．5 5	1.17	1．1．8	45.7	
］．20E3	1．2？	1．J5	45. ？	
$0 \cdot 2 \geq 6$	1.308	1．Ct3	45.0	
O．こここ	1．t？	1.09	$45 . ?$	
$0 \cdot 32$	2.112	1.612	$45 . ?$	
1.532	1.0			
1．5？	1.0			
T．ET	1．0．3			
1.455	1.213			
1.593	1.237			
T． 15	1.088			
1.285	1.117			
1.267	1.11 3			
7.124	1.775			
1.075	1.695			
1.027	2．2． 1			
1．0C5	2.638			
1.053	1.778			
1.012	1.639			
1．017	1.575			
1．54	1.695			
1.853	1.338			
1.04	1.304			
1.127	1.231			
1.130	1.153			
T． 1.158	1.120			
1．くら3	1.255			
1．28E	1. －t 1			
7．226	1.024			
1.410	1.022			
1.664	1.003			
9．630	1．E＂			


0.5169	0.116 ?	0.0683	C. 5491	3.1278	12.44	1.82
0.8954	3.1451	0.0721	0.7957	0.1621	11.07	1.73
[.E3J5	E.164?	C. $\mathrm{C}=43$	0.7451	5.1705	प. 8.85	1.643
0.8406	0.1719	0.2710	0.7185	[.2)35	7.893	1.614
0.7810	0.2225	0.118 E	0.632	0.2849	5.32	1.452
0.7529	0.4255	C.1262	C.5807	0.3275	4.673	1.405
0.7235	二. 2674	0.1432	C.5617	0.3696	3.92	1.282
$0.70<5$	0.272?	0.1619	0.5506	0.3875	3.4	1.376
0.5003	J.439	0.6660	0.372	0.7576	1.51	1.053
240.0	243.0	2450	240.0			
568.	615.					
345.0	345.0	345.0	365.0			
1345.	861.					
01						
-1.0	-1.0	-1.				
01						
0.30	0.30	0.20				
$\cdots$						
$\begin{aligned} & -1 \cdot 0 \\ & 01 \end{aligned}$	$-1.0$	$-1.0$				
$0 \cdot \mathrm{O}$	3.50	L.C!				
/LOGOFF						

$\qquad$

	commjn/cova/yy, cai,coz, ©3(4n)
	COLCOV/COM1]/G5(40), G6(40), DCC(40),NTIE
\%	C0MMON/COM12/04(20), 65 (20), OC1(20),0C2(20)
	COMMON/COM13/EG2M,GDEAR, EG2M1, EGAM?
	OIMENSION XSTY(2), XST2(2), XST3(2), XST4(2), XST5(2), XST6(2)
	WIMENSION ERASIC(40), ERPS2C(4) , ERRS3C(4) , ERRS4C(40)
$c$	
$\checkmark$	
c	
$C$	THIS IS THE FROERIM REE-2EaN
$\tau$	
5	THIS PROGFR\% PERFOPVS THE ITERATIO: CALCULATION (METHOD II)
	for a pair of motils fer any combination of the following
$c$	MJESLS: VRTL, LEMF AMO UYIQUAE:
$c$	
c	
c	
$c$	
$\bigcirc$	
$\tau$	
c	FORMS STATENE:TS FOR The Main progrem
c	
$\tau$	
140	
36.3	FOEB: F $^{-}$- , 5x, 7F1-.6)
911	
919	FORF:T( ', 2F90.2)
909	
905	F刀RM:T(I2)
905	
$9{ }^{9} 4$	FOR4.4 (? 5 9.4)
905	
122	FOEMAT ( - SF9E.こ)
	FORMAT(bjel)
2	FOFMT ( ', 'SYSTEM -,6019)
3	
55	
17	F ¢FM\&T(?F1?.4)
15	FJFMat(cfa0.3)
$\varepsilon$	FOnल
15	
13	
15	

```
 1J FOF%ET(F1S.3)
 19 FCFYRT(3F10.C)
 F0RMKT(7F10.4)
 100 FOEMAT(" ".14,20X,F1(0.E)
 300 FDEMAT(* - -1ST CHARRCTEF= OF ITERATIONS*.5X,
 T-2hO (HBRACTEG= OF TIE-LINES')
 301 FOFMRT(- - TEMPERATURE(C) OF THE LLE SYSTEM')
 3O2 FOFGATC - -FIRST CHAPACTER= OF VLE POINTS FOR 1-3 EINAPY'.
 18X. SECOND (HPRLCTENि= FOK THE (-3 BIYARY')
 プ3 fORMGT(-1- -ALFAGY ALFRこ3')
```



```
 T(STARTING VRLUES FOK MISCIRLE EINARIESN')
```





```
 1-STAFTING VALUES FCR PARTIALLY MISCIELE EINARY')
```



```
 17x. G2T%.2x:(EEGRESSED VALUES)')
```




```
 1)
 309 FORNAT(' ", EEEPESSION EPROR IN GAMMA FOR TME {-3 BINAKY')
```




```
 1)
 311 FDPMAT(" - REERESSION ERROR IN GAMMA FOR THE 2-I BTNARY')
```




```
 1-0D2-,7x,-003-1
 3\3 FORMAT(', ERAOR YY')
 ZEJ FOFMAT(- -5X,9F10.4)
 322 FORMAT(* - 5X,F90.1)
323 FORNATR ,F5.2,9X,F5.23
 328 FOFMAT(* -,4F10.2)
```



```
373 FOFMAT(%,5x,3FT!.1)
399 FORMAT(- - 5x,F10.4,2X,4F1J.3,2X,2F10.1)
 220 FORMAT(- -,1[x,I2,37x,12)
 329 FORRGT(CI2)
 31& FOFFAT(P, KUMGEE OF LOOPS USED. ERROR IN REGRESSION')
 777 FORMAT(- - 'AVEPAGE PEACEMTMGE ERROR IN BINAFY GAMMMS')
 773 f0,MAT(..13X,FTE.T)
 779 FORMAT(" ",AVERAEE PERCERITAGE ERROR IN DIST. COEFF.")
 750 FORNAT(- - OVEFALL AVG. PERC. ERROR IN CALC. BINARY", 2X,
 TGATMA FCR ? ITERATIGNS FOR A GIVEN MOCEL'
 t
 C
 THIS IS THE MAIA PROGRAM
$
[
\(\mathrm{NCOMP}=3\)
READT，T：TLE
PRINTC，TITLE
PREAT 3 CO
REDESS，NTMFS，ATIE
```



```
F5：1．750
```



```
 PRIMTE22,TEMFE
 PRISTT 302
 TKS=273.15+TEVF?
 REKL5S,*N9,IN?
 PDINT3,INT,INZ
 00 117 K=1,IN?
 PE2019,X1(K),GAMA1E(K),GAMA?E(K),TEMP1
 TKY(K)=273.15+TEKM品
T17 X(C(R)=1.0-X1(K)
 DO 11& KK=1,iN2
 RE:01E,X3(KK),GAM43E(KK),GAMALE(KK),TEMPZ
```



```
 DO 4 K=1,IN1
 FEEDTE,GKNFGI(K),GAMGBC(K)
 C cONTINUE
 CO 6 KK=1,INE
 RERCTE,GNMM&3(KK),G\MMAL(KK)
 t continue
 PQ:4T305
 00 LTI I=1,NTIE
 REAC{G,x14(I),xi2(I),x21(I),X22(I),DC1(I),DC2(I),DC(I)
 xこ1(i)=9.1-x19(I)-x21(I)
 x3c(1)=1.{-x1?(:)-x22(:)
 IF(x31(1).EQ.0.0) 人31(I)=1.05-20
 IF(x32(I).EO.O.C)\times32(I)=1.05-20
```



```
 1.DE(I)
 41 CONTINUE
 MTOTहL=T
 NFL:G=1
 READ18,XST1(1),XST2(1),XST3(1),XST4(1)
 REANT11,XSTS(1),XETS(1)
 RSA018,XST1(こ),XS:2(2),XST3(2),XST4(2)
 RE:0011,XSTS(2),XSTS(2)
QU8 DOQ:=1,NT:MES
 EORI1C=0.n
 EQRTZC=0.0
 R=E0.0.1:G#
 IF(IEG:EO.2)60 TO 001
 PRINTEO?
 RERD\j4,ALFAT?,ALFA?S,मLFAT?
 PEIYTE23,:LFA13,ALFSZ?
 6) T0 902
#ता PRIATE?
 DS प03 I:=1,NCOMP
 RELDFF4,R(II),A(II),00(II)
Qतु pश:M\J5,श(11),Q(:1),QF(11)
9.2 FPIVTEOL
 IF(MFLAG.EQ.E)G0 -0 136
```



```
 51%=x\leqslantT巳(!)
 Gこ1=x@TE(1)
 6) 10 13?
130 covilyu=
 PO:NT32S,X5T1(2), X5T2(2),X5T3(2),X5T4(2)
 512 =xST?(?)
 G?1=xSTG(%)
```

```
137 COITINUE
 15(IEG*.EQ.2)G0 TO 907
```

    pryitbis
    PVE:T1370, LLFA12,612,G21
    6910113
    दJ7 CसTITUE
PKivtyog
PFETTI10, E12,521
TTE GNTINU5
$x=6$
$L=1000$
$:=3.0005$
PQ:NT2.TITLE
$1=M+1$
$\bar{x}=x+3$
$0027: 1=9, \mathrm{M}$
2? $0 \times(: 1)=10.0$
If(NFLGGEQ. Z)GOTO 13:

$x+(2)=x 5 T ?(9)$
$x_{T}(E)=x^{2} T(1)$
$x-(4)=x 5 \operatorname{TL}(1)$
$x+(5)=x \in T 5(1)$
$x(6)=x 5 t 6(1)$
0) $460 \mathrm{~J}=\uparrow$, IM
G4MA12(J)=6AMMA1(J)

450 contirue
$00461 \mathrm{~J}=1,1 \mathrm{O}$ ?
G: K S S (J) $=6 \operatorname{GMMA}(J)$
G24442(J) G G : M M 4 (J)
469 continus
60 TO 131
130 GOATIMUE
$X T(1)=x S T 1(2)$
$x T(2)=x 5 T 5(2)$
$x T(3)=x 5 T \geq(2)$
$x>(4)=x \leq T 4(2)$
$x T(5)=x 515(3)$
$x T(6)=x \leqslant 76(2)$
$0.5450 \mathrm{~J}=1$, IN 9


650 contince
C. $459 \mathrm{~J}=\mathrm{T}, \mathrm{IN}$ ?
G:v:31(J)=Garma3(J)
GAvat1 (J) =GAMAL(J)
द59 COETIMLE
131 colitinue

101 pexitic?
FQ: $\because T 1[$ ? XT( 1$), X T(2), X T(3), X T(4), X T(5), X T(6)$
103 $F=1: T 2$ こ5
[) $11 \mathrm{~J}=1,1 \mathrm{IV}_{1}$

1(J), EfRCpz(J)
If (htciat. En. T) है TC 54


```
 OO 515 m=1.IN1
 EfRS1C(*)=(AES((ERMA11(v)-G1(M))/GAMA11(M)))*100.
```



```
510 ERRT1C=ERRTIC+EZRSIC(M)+ERRS2C(M)
 G0 1C 5?0
500 cOHTINUE
 DO 52J J=^,]N9
 ERRS1C(J)=(AES((GRMAT2(J)-G9(J))/GAMA92(J)))=100.
 ERFEC(TJT=(ABE(TGTRGC(T)-6?(J))1GAMACट(J)))=100.
 E2C ERFT1C=5RPTICTERASTC(J)+ERFS2C(J)
532 continue
 ERETTC=ERणTTCTE|INT
 540 CONTINUE
 DO 115 J=9,1n1
 G5, MNT(J)=GT(J)
 G2*M&2(J)=G?(J)
115 COMTINUF
 pritisc,
 PF:NT13,0N1
 PR:5T77T
 PFI:T7TE,EGTM!
 PRINTT10
 co 14 JJ=9,IN?
```



```
 1ERROR3(JJ), ERPORG(JJ)
 IF(NTOTAL.EQ.1)GO TO 640
 IF(ff[AG.EQ.LIGC OOCD
 DO 610 J=1,IN?
 ERRS?C(J)=(AES((GEv131(J)-5?(J))/GAMA31(J)))*100.
 E?RS4E(J)= (AES(6AMALG(J)-Gद(J))/GAMA4T(J)))*10J.
 610 EPRT2C=ER=T2C+EPRS3C(J)+EPRS4C(J)
 G? TO 030
b!J CJITINUE
 () 5<0 J=1,1n?
 EfRS3C(J)=(AES(GSMS32(J)-6́3(J))/G:M432(J)))=103.
```



```
 O20 ERRT2C=ERET2CHERRSIC(I)+ERRSLC(J)
 630 continu5
 ERGTCEERETरCT(2.IVट)
 ERETC=(ERPTIC+EPRTZC)/C.0
 64% COHTINUE
 0. 116 JJ=1,1M2
 6:4MA3(JJ)=53(JJ)
 G4**A4(JJ)=64(JJ)
Tle coxtivuE
 porst391
 PF!4Ti3,QQ2
 Fa:.177?
 PQIMT77O,EG:M?
 PR14TS12
 00 L3 LL=9,VIIE
 43 F2:NT1S,G7(LL),GE(LL),U9(LL),G19(LL),G5(LL),GS(LL),DCC1(LL),
 10CCE(LL),DEC(LL),GL(LL),QE(LL),Q3(LL)
 PFITTEi?
 PR:\T13,yy
 Pマ:!T777
 PFif7% E%4
 IF(ITOT:L.EQ.T)ER=TC=?.002
```

	$\begin{aligned} & \text { PDIUT750 } \\ & \text { PRI:UT778,ERRTE } \end{aligned}$
	PRITT779
	PRこ:T778,003:
	PDISTE14
	$x S T 1(1)=x-(1)$
	$\mathrm{xST} 2(1)=x T(?)$
	$\times 5 T \leqslant(1)=x^{T}(3)$
	$\mathrm{XST5}(1)=\mathrm{xT}(5)$
	$x 576(9)=x T(5)$
	60 T0 i33
132	contivue
	$x \subseteq T \geq(2)=x T(2)$
	$x 5: 3(2)=x+(3)$
	$x 574(2)=x .(4)$
	$x \leq 55(2)=x+(5)$
	$x 576(2)=x T(6)$
133	Contique
	NFLAG =AFLAG 1
	NTOTAL = MTOTAL+1
	IF(NFLAG.GT. 2 )GO TO 135
135	NFL $\ddagger$ G $=1$
134	contitue
9	PRIAT16, L1C,
	STEP
	EvE
	SUEROUTENE FH(YS,XT)
	REIL XT( 6 )
	REAL SUMTXT( S., SUM (3), SUMTT (3)
	REAL PHI (3), E(3), THET: (3), THETAP( 3 )
	REML L(3), L1, L2
	COMMOR/COMTALEAS, RLFA??
	COMMON/COM2/ERRCRT(LC), ERROP2(40), ERROR3(40), ERROR4(40)
	COFFON/CO*S/ALFA12,G12,G21, TK3, D( (4)
	COMNOY/COYA/YY, Q01, GG?,03(40)
	Cowrov/cov12/Q4(2n), GS(20), DC1(20), DC? 20 )
	COVDON/COMT/EEAY, OCEAR, EJAM1, EGAM2
	t( ) , D( ${ }^{\text {a }}$ )
	DICEVS:ON C(3),0(3),CC(3), AR(3), ES(3), GLC (6), XR( 6 )
$c$	
6	
c	
c	
c	
$\checkmark$	

```
C
E
&
 YT:E=0.
 K\0rp=?
 ES2*1=.S
 EG*NZ=5.C
 QUE:F=こ.U
 201=1.5
 Q02=5.0
 OJ CTEJ=?.NTIE
 *?(J)= こ.こ
 GL(J)=v.j
 C?G5(J)=0.J
 D9 こ: I= 1,IVY
 IF(IECN.EC.こ)SC TOGSN
 TQUTS=X:(1)7(MT(1):1.8572)
 T&しミ1=xT(こ)/(こん1(:)*1.927号)
 G13=EXF(-1LFA9Z-Y:U9ड)
```



```
 50!=x1(I)+X2(!)*Ez9
 505=x2(:)+X1(I)*E93
 ST=651TS01
 S2=6151502
 S15=51:*2.0
 525=5!**2.0
 S44=x2(I)**?.N*(T)U{T*515+T*U13*G93/S02**2.「)
 G1(I)=ixP(544)
 555=X1(1)**2.]*(TT01E*52S+TMUST*G377501*E.0)
 G2(%)=EXP(S55)
 60 70 g%1
9Jु 2=1%.E
 F1=F(1)
 01=Q(1)
 GTPF:N=GF(T)
 F2=0(2)
 02=0(3)
 QCPFIP=QP(?)
 LI=(Z/2.0)*(R9-C1)-(\hat{N1-1.0)}
 LZ=(2/2.0) (रूZ-Cこ)-(2こ-1.0)
 PHIT=(\I(I)*FI)/(XI(I)*RQ+X2(I)*RZ)
 PHI2=1.0-PHI1
 THETA1= (X1(I)*G1)/(x1(E)*Q9+x2(I)*Q2)
 THETAZ=9.R-THETA1
 THET1P=(XY(I)*G1PFIM)/(XI(I)*Q1PEIM+X2(I)*Q 2FRIM)
 THET2P=1. T-THETMP
 TACUIZ=EXP(-XT(G)/(1.0E72*TK1(1)))
 T:OUZ1=EXF(-XT(2)/(1.9E72*TK1(I)))
 6(1=1LOG(PHIT/X1(1))+(2/2.0)*Q1*(ELOG(THETA9/PHIT)) +
 1F!E%(L1-(F9*Lर/F२))
 GC\overline{c}=&LOG(PHIZ/XZ(I))+(え/Z.0)*G2*(ALOG(THETAZ/PHIご))*
 1PH!1*(L?-(RZ*L1/R1))
 609=-G1FKIM*(ALOG(THETTF+THET2F*TFOU\\))4
 1(THET2P*O1PRI*) +((TACUG9/(THET1P&THETZF*TAOUZ1))-
 1(THOU12/(THET2P+THET1P-THOU12)))
 GDZ=-GGFKIF#(ELOC(THETEFPTHFTIF*TIOUTZ))*
 1(THETYP*QZPRIN)*((TACU12/(THET2P+THET1P*TMOU12))-
```



```
 G1(:)=EXF(GC1+Cなq)
```







```
 1&2(:))/E:**:(2(I)))**2
 69=601+YY1
```



```
 C01=こ21/:19
 00!T I=1,1,6
 if(IEG%.EO.Z)&G TO C[?
 T:Uこ3=xT(?)/(TK2(I)*1.5E7?)
```



```
 Gここ=ミ秋(-:LFAこミ*T:Uこ?)
```



```
 503=x3(I)+x[(I) % 5? %
 SOL=x<(こ)+x3(I)*6こZ
 53=Eここ/S0?
 SL=C:3TSJL
 S35=5き**2.こ
 SLS=S4**<..?
```



```
 G?(I)=EXF(556)
 S77=x3(I)**2..)*(T.3Uころ*5454T*U32*632/503**2.n)
 64(-)=ExF(577)
 EO TO 924
 903 [O:TINUE
 FI=P(ट)
 G9=C(2)
 G1PFIM=QP(2)
 LT=F(3)
 G2=G(?)
 Q2FG1M=QP(3)
 F:LT=(Z/ट.0)*(Eq-6q)-(F1-1.0)
 LZ=(Z/訁.0)*(R2-62)-(FZ-1.0)
 PHI1=(XZ(?)*R1)/(X3(1)*&1+X4(1)*R2)
 FHIE=1,त-FHIT
 THETA1=(X3(I)*Q1)/(x3(I)*Q1+X4(I)*G2)
 THETA2=1.?-THFTA1
*: THET1F=(X3\I)*G1POIM)7(X3(1)*QGPRIM+XL(I)*Q ZPKIM)
 THET2P=1.7-THET1F
 TAOU\2=EXP(-XT(3)/(1.0%72*TK2(1)))
 TKOULT=EXF(-XT(L)/(T.6872*TK2(I)])
 6C1=ALOG(PHI1/XI(:))*(2/2.0)*Q1*(ALOG(THETA1/PHI1))*
 1PHI2*(L1-(R1*LZ/R2))
 GC2={LOG(PHIZ7*L(I))+(Z72.0)*QC*(4LOG(THETA2/PHIC}))
 1PH11*(LZ-(R2*L1/R1))
 G只1=-@1PRI**(*LOG(THET1P+THET2P*TAOUZI))+
 1(THET?P*Q1PRIM)*(TTAOUET/(THETIP+THET?P*TIOUZT))-
 1(TAOU12/(THET?PP+THET1F*T&OU12)))
 GRE=-Q2PR:M*(&LOG(THETこP+THET1P*TAOU12))*
 T(THET1F*Q\sumP思)*((TACUT2T(THET2P+THET1P*TMOUTK))-
 1(TACUZ1/(THETIP +THETZF*TAOUZ1)))
 G3(I)=EXP(GC1+GR1)
 G4(%)=EXP(GC<+G5C)
gQ4 EPROKZ(I)=(AES((GAMZIE(I)-G?(I))/GAMAZE(I)))*100.0
```

```
 ERROR4(:)=(AZS((GEMALE(I)-G4(I))/GGMA4E(I)))*100.0
 EG4%Z=EGA*2+ERROR?(I) +ERRORL(I)
```



```
 164(1))/GawM&4(i))]**\overline{c}
 ?1 QQZ=2QZ+YYZ
 EG\M?=EGKMटT(?-IN?)
 EGAM=(EGAM1+EGAMZ)/2.0
 QQ2=Q22/IN2
 0.5 45 1=1, FCOMP
 GT(I,I)=2.0
 45 continue
 दाप,2ा =x,(5)
 GT(}2,1)=xT(3
 GT(i, z)=xT(1)
 GT(I-T] =xT(2)
 GT(2,3)=x-(3)
 GT(T,2)=xT(4)
 DO TSENT=T,NTIE
 NFLSG=0
 XF(1)=x11(NT)
 x?(?)=x\1(MT)
 x2(?)=x31(17T)
 G) 10 40
 3 CONTINUE
 XR(1)= X12(NT)
 XR(2)=x22(NT)
 \?(3) =x32(15)
 40 contiyus
 RT={.9872*TK3
 IF(IEQN.EG.?JGO TO दCS
 ALFA(1,1)=0.0
 ALF&(1,2)=ALF&1?
 ALFD(ट,1)={LFE1/
 ALFA(2,2)=C.0
 ALFA(3,3)=0.0
 ALFT(T,S]=ALFETS
 ALF:(E, 1)=ALF:13
 ALF气(2,3)={LF&23
 ALF:(z,2)=ALFI??
 C th:S routiMe calculates permary gammas w!th the vrtl
C AND LENF EQUETION.
 00 298 I=?,4comp
 TACU(J,I)=(GT(J,I)-GT(I,I))/RT
 G(J,I)=EXP(-ALFA(J,I)+iAOU(J,I))
 cqe contrNUE
 [3 3C2 I=1,NCCMF
 CC(i)=0
 h(I)=3.
 W(I)=:。
 00 こj9 J=9,4CONF
 C(J)=?
 L(J)=?
 00 ここ0k=1,4corp
```




```
 W(I)=K(I)+G(K,I)*XR(K)
 COG ((J)=C(J)+XR(K),T:OU(K,J)*G(K,J)
 O(J)=E(J)+G(K,J)*XF(K)
 300 (ONTINUE
 A(I)=A(I)/W(I)
 BP(J)=C(J)/D(J)
 C(CI)=CC(I)+((XF(J)*E(I,J))/D(J))*(TAOU(I,J)-3B(J))
 301 CONTINUE
 GLC(I)=AA(I)+CC(I)
 GAMT(I) =EXP(GLC(1))
 302 CO4TINUE
 60 10 905
C
C THIS ROUTINE CALCULATES TERNARY GAMMAS MITH THE MODIFIED
c viviguac eguation.
C
 0.5 z=13.0
 [0 33 J=1,NEOMF
 GT(J,J)=0.j
 88 TIJU(J,I)=EXF(-GT(J,I)/PT)
 77 CONTINUE
 SUMOX=0.0
 SUMRX=0.3
 SUNGPX=0.2
 SUMXL=0.0
 00 5J7 I=1,1,COYD
 SU*TXT(I)=0.0
 SU*(氵)=0.?
 607 SUMTT(I)=!.?
 DO 600 I=1, vCOMP
 SUMRX=SUMEX+F(I) *XR(I)
 SUMGX=SUMQX+Q(I)*XR(I)
 SSJ SUYGPX=SUNODX+GF(I)*XO(I)
 DJ ED! I=?,VE~MP
 PHI(I)=(R(I)*XR(I))/SUMRX
 THETA(I)=(Q(j)*XR(I))/SUMQX
 THETAF(I)=(QP(I)* XR(I))/SUMQPX
 6] L(I)=(Z/2.\)*(T(I)-Q(I))-?(I)+1.0
 00 604 : = 1. YCONF
 604 SU:XL=SUMXL+XD(I)*L(I)
 0.) 60: I=1, NCOMP
 DO 62S J=1,NCONP
 500 SUYTT(:)=SUMTT(:)+THETAD(J)*TAOU(J,I)
 0. 0.e J=T,NChmo
 00 6J& }k=9,\{0M
 62& SU!TXT(J)=SU**XT(J)+THETAP(K)*TAOU(K,J)
 00 60, I=1, \CलMF
 0% 650 J=9, v(0.%F
 609 SUA(I)=SU*(I)+(THETAP(J)*TKOU(I,J))/SUMTXT(J)
 A&(:)=&LOC(OHI(I)/XP(:))+(Z/2.O)*Q(I)*&LJG(THETA(I)/PHI(I))
 1+L(I)
 5(:)=-(PHI(I)/XF(I)).SUMXL-OF(I)}\mathrm{ ILOG(SUMTT(I))+QP(I)-
 1(₹P(こ)*SUN(:))
691 6:M-(I) =EyP(:M(I)+E(I))
 IF(IFLAG.GT.{)GO TO &?,
```

```
 GS(VT)=G{NT(j)
 G7(NT)=GAMT(1)
 G7(IT =GतNT(2)
 60 i0 3
 EDC GE(:TT)=GA*T(3)
 63(NT)=Eत्त\T(T)
 G1J(NT)=GAMT(?)
 DCC(NT)=G5(NT)/OG(NT)
 DC[T(NT)=G7(N)/GE(NT)
 DCCZ(NT)=69(NT)/G1)(NT)
 Q3(:T)=(AES((DC(NT)-DCC(NT))/DC(NT)))*100.0
 QS=(RES(0C(NT)-0CC(NT))/DC(NT))):*?.0
 QL(NT)=(ARS((DCT(NT)-DCC1(NT))/DCT(NT)))*100.0
 GS(MT)=(ARS((DCZ(NT)-DCCZ(NT))/DCZ(VT)))*100.2
```



```
 日8=(AES((DC?(HT)-DCCZ(MT))/DCZ(NT)))**2.0
 QD3:RR=GDE:R+Q?(NT)+Q4(HT)+0S(NT)
733 Y:IE=YTIE+QS+Q7+Q!
 QOE:R=GDEIRI(?**TIE)
 YY=(YT:E/VTIE)+GQQ+QQ2
 YS=YY
 RETUR:i
 5:0
 SUBROUTINE LSGR(XT,X,DX,Y,M,M,M},L,E,LTC,D)
 REAL XT(0),X(5,9),JJ(3),A(3,3),OX(6),Y(7)
 IH=3
 IL=?
 L1C = 0
 IF(L.LE.0) GO TO SO
 IHE = 49+1
 Ev=*
 EN = EN*1.5
 LT=L
 L = -L
 L2 = (3*m)/2+5
 k3=2
 IF(si.6E.3) K3=3
 K4=*3-1
 6 = x 3*?
 G = 1.[10
 09 150 1=9,M
 CALL FN(Y(1),YT)
 00 105 J=?, M1
 XT(J-1) = XT(J-1)+0x(J-1)
 D) 104 I=9,M
-124 x(:,J)=xT(:)
 CALL FK(Y(J),XT)
 xT(J-१) = x(J-{,1)
10S contiAUE
 FLG = 1.2
 6) %0 5?
Tra L1T=L!c+1
 IF(LIC.GE.LY) GO TO LOE
 5: YL = 1.?EZ3
 YH=-rL
 Y2 = YH
```



	$\begin{aligned} & Y T T=Y T \\ & 001 \geq 5 I=1, M \end{aligned}$
135	$x T!)=1.5 \times x^{\top}(7)-0.5 * x(1,1 H)$
	CSLL FA（YT，Xt）
	IF（YT．LE．YL ） 60 TO 140
	$00138 \quad 1=1.19$
1138	$x(i, I H)=(2.0 * x T(I)+x(i, I H)$ ） 3.0
	$Y(I H)=Y T T$
	65 TO TDe
140	00 $142 \mathrm{I}=1.4$
142	X（：$: 1 H$ ）$=$ XT（I）
	$Y(I H)=Y T$
1	60 70108
	$I H C=I H C-1$
	IFITHC．EQ．O）GO TO 300
	IF（YT．GE．YH）G0 TO 173
	D $168 \mathrm{I}=1$ ，M
T	$\times 5=X T(1)$
	$X T( \pm)=x(I, I H)$
158	$X(I, I H)=X S$
173	D0 $1741=1.9$
174	$X T(I)=0.75 * \times(T, I H)+$ ． $2.25 * \times T(I)$
	CALL FA（YT，XT）
	IF（YT．GT．YH）EJ TO पही
	$Y(1 H)=Y T$
	DO $175 \mathrm{I}=1,4$
775	$\bar{X}(1,1 H)=X T(\%)$
	60 TO 103
18.5	D） $135 \mathrm{~J}=1,41$
	IF（J．EQ．IL）60 TO TES
	DO $182 \mathrm{I}=1$ ，＊
	$X T(i)=(X(I, J)+X(1, I L) / 2.0$
Te？	$x(1, J)=x T(1)$
	CALL FN（Y（J），XT）
135	continue
	6010178
300	IHC $=2 * M 1$
	IF（M．6E．3） 60 TO 350
	$5=0.0$
	$003: 2 \mathrm{I}=1, \ldots$
	X $\left.: 1, r_{1}+2\right)=X(I, I H)-X(I, I L)$
	$X(1, M+Z)=X(1, I H)-X(1, I 3)$
302	$s=s+x(1, M+2) * * 2$
302	$S=S Q R T(S)$
	IF（ $5 . E Q .0 .0) s=1.05-5$
304	$u=-x(2, w+2) / 5$
	$x(2,4+2)=x(9, k+2) / 5$
	$x(1, x+2)=0$
	$s=x(1, k+2) * x(1, v+7)+x(2, m+2) * x(2, *+3)$
	$00305 \mathrm{I}=1, \mathrm{M}$
305	$x(2, x+2)=x(7, y+5) * 5$
3 ct	cの ここ $1=1$ ，
3 C ？	$X T(I)=X(I, I H)+X(I, N+Z)$
	CELLEN（Y－，XT）
	00309 ？$=1,4$
309	$X T(I)=X(I, I H)-X(I, N+C)$
	IF（YTTALE．YT）EOTO 32\％

```
 D0 311 I=1,M
 311 XT(I) = X(I,IH)+X(I,M+C)
 YTY= YT
 0) 321 I=1,M
321 x(1,IH)=XT(I)
 6J TO 108
 350 DO 252 :=9,4
 XT(I) = X(I,IH) - X(I,IL)
 x(I,M+Z)=x(I,IH)-x(I,I2)
 352 x(:,Y+3)=x(I,IH)-x(i,I3)
 s1 = 0.0
 00 355 1=1,M
 s=s+xT(:)**2
 355 S! = S1+x(I,M+3)**2
 S = SQPT(S)
 ST = SQRT(ST)
 s2 = 0.0
 D.) 357 I=9,M
 IF(S.EQ.J.) S=1.E-5
 XT(i) = xT(I)/S
 S? = S2+XT(I)+x(I, X + E)
 357 x(I,K+j)=x(1,N+?)/51
 DO 363 I=1.%
360 x(2,4+2)=x(5,4+2)-xT(i)*S?
 s1 = 0.0
 DO 362 ! = 1,M
362 51 = S1+x(1,*+2)**2
 S1 = SGRT(S1)
 00 365 i=1,M
 IF (S1.EQ.3.J)S1=1.0 E-5
 365 x(1,y+Z) = x (1,N+2)/51
 S1 = 0.0
 DO 367 I=1.M
 S1 = 51+x-(1)*x(1,M+3)
 357-5? = S % x x (2,N+2)*x(1,*+3)
 DO 370 1=1,4
 370 立(I,M+2)=S*(S1*xT(I)+S2*x(I,N+2)-x(I,M+3))
 400 S = Y(1)
 Y(1) = Y(IL)
 r(IL) = S
 D5 402 I=1,M
 x (%) = x(:,泣)
 432 x(I,1) = XT(I)
 RETURY
```

The output of this program contains the following information for each iteration:

1. Input data.
2. The regressed parameters.
3. Calculated binary activity coefficients for each component in the $1-3$ and $2-3$ binaries.
4. Absolute percentage error in binary activity coefficients for each component in the $1-3$ and $2-3$ binaries.
5. Standard deviation in binary activity coefficients for the 1-3 and 2-3 binaries.
6. Overall average absolute percentage error in binary activity coefficients for each binary.
7. Calculated ternary activity coefficients for each component in both phases.
8. Calculated distribution coefficients for each component.
9. Absolute percentage error in distribution coefficients for each component.
10. Minimum value of the minimization function.
11. Overall average absolute percentage error in binary $\gamma^{\prime}$ 's for both binaries.
12. Overall average absolute percentage error in binary $\gamma^{\prime}$ 's for both binaries for 2 successive iterations for a given model.
13. Overall average absolute percentage error in distribution coefficients for all three components.
14. Number of loops used in the regression.
15. Error in the regression.

## Glossary for the Program REG-2EQN

$\operatorname{ALFA12}=\alpha_{12}$
ALFA13 $=\alpha_{13^{\circ}}$
ALFA23 $=\alpha_{23}$
D = error in the regression.
DCC1, DCC2 and DCC = calculated distribution coefficient of components 1, 2 and 3, respectively.

DC1, DC2 and DC = experimental distribution coefficient of components 1, 2 and 3, respectively.

EGAM = overall average absolute percentage error in binary activity coefficients for both binaries.

EGAM1 and EGAM2 = overall average absolute percentage error in binary activity coefficients for binary $1-3$ and binary 2-3, respectively.

ERRTC = overall average absolute percentage error in calculated binary activity coefficients for both binaries for 2 successive iterations for a given model.

ERRTC1 and ERRTC2 = overall average absolute percentage error in binary activity coefficients for 2 successive iterations for a given model for binaries $1-3$ and $2-3$, respectively.

ERROR1 and ERROR2 = absolute percentage error in binary activity coefficients in the $1-3$ binary system for components 1 and 3, respectively.

ERROR 3 and ERROR4 = absolute percentage error in binary activity coefficients in the $2-3$ binary system for components 2 and 3, respectively.

ERRS1C and ERRS2C $=$ absolute percentage error in binary activity coefficients for 2 successive iterations for a given model for components 1 and 3 , respectively.

ERRS3C and ERRS4C $=$ absolute percentage error in binary activity coefficients for 2 successive iterations for a given model for components 2 and 3 , respectively.

G1 and G2 = calculated binary activity coefficients in the $1-3$ binary system for components 1 and 3, respectively.

G3 and G4 = calculated binary activity coefficients in the 2-3 binary system for components 2 and 3, respectively.
$G 5=\gamma_{3}^{I}$.
$G 6=\gamma_{3}^{I I}$.
$G 7=\gamma_{1}^{I}$.
$G 8=\gamma_{1}^{\text {II }}$
$G 9=\gamma_{2}^{I}$.
G10 $=\gamma_{2}^{I I}$.
G12 $=\Delta g_{12}$ or $\Delta u_{12}$, from the mutual solubility data.
G21 $=\Delta g_{21}$ or $\Delta u_{21}$, from the mutual solubility data.
GAMA1E and GAMA2E = experimental activity coefficient in the $1-3$ binary system for components 1 and 3, respectively.

GAMA3E and GAMA4E = experimental activity coefficient in the $2-3$ binary system for components 2 and 3 , respectively.

GAMA11 and GAMA12 = calculated component 1 activity coefficients in binary 1-3 from the latter iteration of 2 successive iterations for model B and model A , respectively.

GAMA21 and GAMA22 = calculated component 3 activity coefficients in binary $1-3$ from the latter iteration of 2 successive iterations for model $B$ and model $A$, respectively.

GAMA31 and GAMA32 = calculated component 2 activity coefficients in binary 2-3 from the latter iteration of 2 successive iterations for model B and model A , respectively.

GAMA41 and GAMA42 = calculated component 3 activity coefficients in binary 2-3 from the latter iteration of 2 successive iterations for model $B$ and model $A, r e s p e c t i v e l y . ~$

GAMMA1 and GAMMA2 = activity coefficients predicted by model which obtained reasonable parameters in method I, for binary 1-3 for component 1 and component 3, respectively.

GAMMA3 and GAMMA4 = activity coefficients predicted by model which obtained reasonable parameters in method $I$, for binary 2-3 for component 2 and component 3, respectively.

IEQN = equation to be used.
IN1 and IN2 $=$ number of VIE data points for the $1-3$ and $2-3$ binary systems, respectively.
L1C $=$ number of loops used in the regression for each iteration.

NTIMES = number of iterations to be used.
NTIE $=$ number of LIE tie lines.
$Q=q$ in the UNIQUAC model.
$Q P=q^{\prime}$ in the UNIQUAC model.
QQ1 and QQ2 = standard deviation in activity coefficient for the 1-3 and 2-3 binary systems, respectively.
$Q_{4}, Q_{5}$ and $Q_{3}=$ absolute percentage error in distribution coefficients for components 1,2 and 3 , respectively.
$Q D B A R=$ average of $Q_{3}, Q_{4}$ and $Q_{5}$.
$R=r$ in the UNIQUAC model.
TEMP1, TEMP2 and TEMP3 $=$ temperature of the $1-3$ binary system, 2-3 binary system and LLE system (C), respectively.
TITLE $=$ title of the system.
$\mathrm{X} 1=\mathrm{X}_{1}$ for the $1-3$ binary system.
$X_{2}=X_{3}$ for the 1-3 binary system.
X3 $=x_{2}$ for the 2-3 binary system.
$X_{4}=X_{3}$ for the $2-3$ binary system.
$\mathrm{x} \not 11=\mathrm{X}_{1}^{\mathrm{I}}$.
$\mathrm{x} 12=\mathrm{X}_{1}^{\mathrm{II}}$.

$$
\begin{aligned}
& \mathrm{X} 21=\mathrm{X}_{2}^{I} \\
& \mathrm{X} 22=\mathrm{X}_{2}^{I I} . \\
& \mathrm{X} 31=X_{3}^{I} . \\
& X 32=X_{3}^{I I} .
\end{aligned}
$$

XST1 $=$ starting value for $\Delta g_{13}$ or $\Delta u_{13^{\circ}}$
XST2 $=$ starting value for $\Delta g_{31}$ or $\Delta u_{31^{\circ}}$
XST3 $=$ starting value for $\Delta g_{23}$ or $\Delta u_{23^{\circ}}$
XST4 $=$ starting value for $\Delta g_{32}$ or $\Delta u_{32^{\circ}}$
$\mathrm{XT}(1)=\Delta \mathrm{g}_{13}$ or $\Delta \mathrm{u}_{13^{\circ}}$
$\mathrm{XIT}(2)=\Delta \mathrm{g}_{31}$ or $\Delta \mathrm{u}_{31^{\circ}}$
$\operatorname{XI}(3)=\Delta g_{23}$ or $\Delta u_{23^{\circ}}$
$\operatorname{XI}(4)=\Delta g_{32}$ or $\Delta u_{32}$.
$\mathrm{XP}(5)=\Delta \mathrm{g}_{12}$ or $\Delta \mathrm{u}_{12}$.
$\mathrm{XT}(6)=\Delta g_{21}$ or $\Delta u_{21^{\circ}}$
$Y Y=$ minimum value of the minimization function.

## NOMENCLATURE

```
A
A
B}\mp@subsup{i}{ij}{}= second virial coefficient
C. I. = consistency index.
\mp@subsup{\hat{f}}{i}{}}=\mathrm{ fugacity of component i in the mixture.
Gij}=\mathrm{ see equation (12).
gij = NRTL or LEMF parameters.
\Deltag}\mp@subsup{g}{ij}{}=(\mp@subsup{g}{ij}{}-\mp@subsup{g}{jj}{})
h}\mp@subsup{}{}{e}=\mathrm{ excess enthalpy of the liquid mixture.
J = see equation (22).
K = XII/ XI, distribution coefficient.
L = number of VLE data points for the 2-3 binary system.
l}\mp@subsup{l}{j}{}=\mathrm{ see equation (14).
M = number of VLE data points for the 1-3 binary system.
N = number of tie lines.
n = number of components.
P = total pressure.
P
Q = number of data points in a ternary VIE system.
q, q' = surface parameters in the UNIQUAC model.
R = gas constant.
r = size parameter in the UNIQUAC model.
```

$T=$ system temperature.
$T_{i j}=$ see equation (12).
$\mathbb{T}_{\text {min }}=$ lowest boiling point in a binary VLE system.
$\mathrm{T}_{1}, \mathrm{~T}_{2}=\begin{aligned} & \text { boiling points of pure components } 1 \text { and } 2, ~\end{aligned}$
$u_{i j}=$ UNIQUAC parameter.
$\Delta u_{i j}=\left(u_{i j}-u_{j j}\right)$.
$\mathrm{V}=$ molar volume of the vapor mixture.
$\mathrm{v}^{\mathrm{e}}=$ excess volume of the liquid mixture.
$v_{i}^{L}=$ molar liquid volume.
$\mathrm{X}=$ liquid phase mole fraction.
$\Delta X=$ see Figure 35.
$Y$ = vapor phase mole fraction.
$\Delta \bar{Y}=$ see equation (24).
$Z=$ compressibility factor.
$\mathrm{z}=$ liquid phase coordination number.

## Greek Letters

$\alpha=$ nonrandomness parameter in the NRTL and LEMF models. $\gamma=$ activity coefficient.
$\phi_{i}^{S}=$ fugacity coefficient of pure vapor $i$ at $T$ and saturation pressure, $P_{i}^{s}$.
$\hat{\phi}_{i}=$ vapor phase fugacity coefficient of component $i$ in the mixture.
$\Phi=$ segment fraction in the UNIQUAC model.
$\theta, \theta^{\prime}=$ area fraction in the UNIQUAC model.
$\mathcal{T}=$ total boiling point range.
$\tau_{i j}=$ see equation (14).

Superscripts
$C=$ calculated value.
$E=$ experimental value.
e = excess value.
$\mathrm{L}=$ liquid phase.
I, II = liquid phases $I$ and $I I$, respectively.
s = saturated.
$\mathrm{V}=$ vapor phase.
$\wedge=$ value for a mixture.

- = average value.

Subscripts
$\min =$ minimum value.
$i, j$ and $k=$ components $i, j$ and $k$.

## LITERATURE CITED

1. Abrams, D. S., Prausnitz, J. M., AIChE J., 21, 116(1975).
2. Akita, K., Yoshida, F., J. Chem. Eng. Data, 8 , 484(1963).
3. Anderson, T. F., Prausnitz, J. M., Ind. Eng. Chem. Process Des. Dev., 17, 561(1978).
4. Black, C., Joris, G. G., Taylor, H. S., J. Chem. Phys., 16, 537(1948).
5. Blackford, D. S., York, R., J. Chem. Eng. Data, 10, 313(1965).
6. Bowden, W. W., Staton, J. C., Smith, B. C., J. Chem. Eng. Data, 11, 296(1966).
7. DeFre, R. M., Verhoeye, L. A., J. Appl. Chem. Biotechnol., 26, 469(1976).
8. Fredenslund, A, Jones, R. L., Prausnitz, J. M., AIChF J., 21, 1086(1975).
9. Gay, L., Chim. Ind., 18, 187(1927).
10. Griswold, J. $\underset{2352(1949) \text {. }}{ }$
11. Hala, E., Wichterle, I., Polak, J., Boublik, T., "Vapor-Liquid Equilibrium Data at Normal Pressure", Pergamon Press, New York, N. Y., 1968.
12. Hand, D. B., J. Phys. Chem., 34 , 1961(1930).
13. Herington, E. F. G., J. Inst. Petrol., 37, 457(1951).
14. Hudson, J. W., Van Winkle, M., Ind. Eng. Chem. Process Des. Dev., 2, 466(1970).
15. Joy, D. S., Kyle, B. G., Ind. Eng. Chem. Process Des. Dev., 2, 244(1970).
16. Lampa, A., Matous, B., Novak, L., Pick, P., Collection Czechoslov. Chem. Commun., 45, 1159(1980).
17. Marina, J. M., PhD Thesis, New Jersey Institute of Technology, Newark, N. J., 1973.
18. Marina, J. M., Tassios, D. P., Ind. Eng. Chem. Process Des. Dev., 12, 271(1973).
19. Mattelin, A. C., Verhoeye, L. A. J., Chem. Engng. Sci., 30, 193(1975).
20. McCants, J. F., Jones, J. H., Ind. Eng. Chem., 45, 454(1953).
21. Mcglashan, M. L., Williamson, A. G., J. Chem. Eng. Data, 21, 196(1976).
22. Newsham, D. M. T., Vahdat, N. Chem. Eng. J., 13, (Parts I and II), 27(1977).
23. Nicolaides, G. I., Eckert, C. A., Ind. Eng. Chem. Fundam., 17, 331(1978).
24. Ordaz, J., Personal Communication, New Jersey Institue of Technology,: Newark, N.J., 1978.
25. Palmer, D. A., Smith, B. D., J. Chem. Eng. Data, 17, 71(1972).
26. Prausnitz, J. M., "Molecular Thermodynamics of FluidPhase Equilibria", Prentice Hall, Englewood Cliffs, N. J., 1969.
27. Prausnitz, J. M., Anderson, T. F., Grens, E., Eckert, C. A., Hsieh, R., $0^{\prime}$ Connell, J., "Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria", Prentice Hall: New Jersey, 1980.
28. Prausnitz, J. M., Eckert, C. A., Orye, R. V., O'Connell, V. P., "Computer Calculations for Multicomponent Vapor-Liquid Equilibria", Prentice Hall: New Jersey, 1967.
29. Ratcliff, G. A., Chao, K. C., Can. J. Chem. Eng., 47, 148(1969).
30. Renon, H., Prausnitz, J. M., AIChE J., 14, 135(1968).
31. Simonetty, J., MS Thesis, New Jersey Institute of Technology, Newark, N. J., 1981.
32. Simonetty, J., Yee, D. K., Tassios, D. P., Ind. Eng. Chem. Process Des. Dev., 21, 174(1982).
33. Skjold-Jorgensen, S., Kolbe, B., Gmehling, J., Rasmussen, P., Ind. Eng. Chem. Process Des. Dev., 18, 714(1979).
34. Sorensen, J. M.,Arlt, W.,"Liquid-Liquid Equilibrium Data Collection", DECHEMA Chemistry Data Series, Vol.5(Parts I-III), Frankfurt, 1979.
35. Sorensen, J. M., Magnussen, T., Rasmussen, P., Fredenslund, A., Fluid Phase Equilibria, 3, (Part II), 47(1979).
36. Stephen, H., Stephen, T., "Solubility of Inorganic and Organic Compounds", Macmillan, New York, N. Y., 1963.
37. Tsonopoulos, C., AIChE J., 20, 263(1974).
38. Udovenko, V. V., Mazanko, T. F., Izv. Vyssh. Ucheb. Zaved. Khim. Khim. Tekhno., 18, 1077(1975).
39. Volpicelli, G., J. Chem. Eng. Data, 13, 150(1968).
