Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

Title of Thesis: Prediction of Heats of Mixing by Group Contribution Methods William Rupp, Master of Science, 1982 Thesis directed by: Dr. Dimitrios Tassios Professor of Chemical Engineering

Three group contribution methods used to predict heats of mixing were tested: AGSM, UNIFAC with temperature dependent parameters and the modified UNIFAC of Skjold-Jorgensen et al. The modified UNIFAC provided the best results and was adopted in this study. Primary parameters were obtained for ten groups with alkanes. The simultaneous correlation of cyclic and straight-chain alkanes gave poor results. Attempts to improve the error by changing the group area parameter for cyclic CH₂ failed.

A major problem in correlating the experimental data was the multiplicity of roots. The best set of parameters was obtained by using a grid approach for the initial parameters. The model can be used in the temperature range 0° to 100° C. 104 systems from the literature were tested of which 78 had a prediction error of less than 20 percent. High errors were observed for some isomers, and long-chain molecules.

PREDICTION OF HEATS OF MIXING BY GROUP CONTRIBUTION METHODS

Ъy

William Walter Rupp

Thesis submitted to the Faculty of the Graduate School of the New Jersey Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering

D \langle Q1

APPROVAL SHEET

Title of Thesis: Prediction of Heats of Mixing By Group Contribution Methods

Name of Candidate: William Walter Rupp Master of Science, 1982

Thesis and Abstract Approved:

Dr. Dimitrios Tassios Professor Department of Chemical Engineering and Chemistry

Dr. John E. McCormick Professor Department of Chemical Engineering and Chemistry

Dr. Reginald P.T. Tomkins Assistant Professor Department of Chemical Engineering and Chemistry

Date Approved: 5/6/82

ATIV

Name:

William Walter Rupp

Permanent address:

Degree and date to be conferred:

M.S. Che, 1982

Date of birth:

Place of birth:

Secondary education: Queen of Peace High School, 1974

Collegiate institutions attended	Dates	Degree	Date of Degree	
New Jersey Institute of Technology	1974-78	B.S.	May, 1978	
New Jersey Institute of Technology	1978-82	M.S.	May, 1982	

New Jersey Institute of Technology

Major:	Chemical Engineering
Publication:	Thesis to be published
Positions held:	June 1980 to Present Vessel Analytical Engineer M.W. Kellogg, Co. Hackensack, New Jersey
	September 1978 to May 1979 September 1979 to May 1980 Graduate Assistant

Newark, New Jersey

DEDICATION

To my Father

ACKNOWLEDGMENTS

To Dr. Tassios, whose "philosophizing" sessions sustained my interest throughout this project;

To Prof. Mal Simon, who although not involved with my thesis became a good friend during my graduate work;

and to my mother and sister, for their typing, proofreading and support.

TABLE OF CONTENTS

Chapter		Page
ACKNOWLE	DGMENTS	ii
I. II	NTRODUCTION	1
II. PH	REVIOUS WORK	5
	A. Early Work	5
	B. Recent Work	9
	C. Group Contribution Methods	15
III. GH	ROUP CONTRIBUTION METHODS	24
	A. The Analytical Group Solution Model(AGSM)	26
	B. The UNIFAC Method	29
IV. RI	ESULTS AND DISCUSSION	32
	A. Preliminary Calculations	33
	B. Evaluation of the Models	37
	C. Regression of the Data	45
	D. Final Parameters	47
V. CC	NCLUSIONS	66
SELECTED	BIBLIOGRAPHY	71
	A. Primary Sources	71
	B. Data Sources	75
APPENDIX	I. Regression Computer Program	160
APPENDIX	II. Prediction Computer Program	180

LIST OF TABLES

Table		Page
I.	Data Base for AGSM Group Parameters by Ratcliff and co-workers	79
II.	Group Area Parameter - Q _k	80
III.	Prediction of Alcohol/Alkane Systems Using Ratcliff and co-worker's parameters for the AGSM Model	81
IV.	Prediction of Group G/Alkane Systems Using Ratcliff and co-worker's parameters for the AGSM Model	8 2
V.	Regressing for interaction parameters at one temperature versus regressing at more than one temperature for the UNIFAC model	83
VI.	Selected Type I and Type II systems used in evaluating the optimum exponent, β , in equations (30) and (31)	84
VII.	Regression Error for AGSM and UNIFAC in the Grand Plot	85
VIII.	Prediction Error for AGSM and UNIFAC in the Grand Plot	86
IX.	Prediction of the system n-octanol + n-heptane by AGSM where β = 1.50	87
Χ.	Examples of Multiplicity of Roots for AGSM in the Grand Plot	88
XI.	Results for the Grand Plot using UNIFAC with the Z(T)	89
XII.	Comparison of Skjold-Jorgensens' Z(T) and Z(T) Correlated from n-octanol + n-heptane Data at 30°C	90
XIII.	Grid of Initial Parameters to be Used with the Modified UNIFAC	91
XIV.	Maximum Experimental ΔH^M Values for Cyclic Alkanes and Normal Alkanes with a Common Second Component at Equal Mole Fractions	92

¶ah]e		Daga
TADIC		Iage
XV.	Correlation of Methanol + Alkane Data including Cyclic Alkanes	93
XVI.	Correlation Errors for Methanol + Alkane Data Including Cyclic Alkanes	94
XVII.	Prediction Errors for Methanol + Alkane Data Including Cyclic Alkanes	95
XVIII.	Correlation of Methanol + Alkane Data including Cyclic Alkanes	96
XIX.	Correlation Errors for Methanol + Alkane Data Including Cyclic Alkanes	97
XX.	Prediction Errors for Methanol + Alkane Data Including Cyclic Alkanes	98
XXI.	Correlation of Secondary Amines + Alkane Data Including Cyclic Alkanes	99
XXII.	Correlation Errors for Secondary Amines + Alkane Data Including Cyclic Alkanes	100
XXIII.	Prediction Errors for Secondary Amines + Alkane Data including Cyclic Alkanes	101
XXIV.	Correlation of Secondary Amines + Alkane Data Including Cyclic Alkanes	102
XXV.	Correlation Errors for Secondary Amines + Alkane Data Including Cyclic Alkanes	103
XXVI.	Correlation of Tertiary Amine + Alkane Data Including Cyclic Alkanes	104
XXVII.	Correlation Errors for Tertiary Amine + Alkane Data Including Cyclic Alkanes	105
XXVIII.	Correlation of CCl + Alkane Data Including Cyclic Alkanes	106
XXIX.	Correlation Errors for CCl + Alkane Data Including Cyclic Alkanes	107
XXX.	Correlation of CCl ₂ + Alkane Data Including Cyclic Alkanes	108
XXXI.	Correlation Errors for CCl ₂ + Alkane Data Including Cyclic Alkanes	109

Table	Page
XXXII.	Correlation of CCl ₃ + Alkane Data Including Cyclic Alkanes
XXXIII.	Correlation Errors for CCl ₃ + Alkane Data Including Cyclic Alkanes
XXXIV.	Correlation of CCl ₄ + Alkane Data Including Cyclic Alkanes
XXXV.	Correlation Errors for CCl ₄ + Alkane Data Including Cyclic Alkanes
XXXVI.	Systems Used in Evaluating an Optimum Q for Cyclic CH ₂ 114
XXXVII.	Correlation of CCl + Alkane Data 115
XXXVIII.	Correlation Errors for CCl + Alkane Data 116
XXXIX.	Prediction Errors for CCl + Alkane Data 117
XL.	Effect of the Parameter Values on ψ ij and $d\psi$ ij/ d T
XLI.	Correlation of CCl ₂ + Alkane Data 119
XLII.	Correlation Errors for CCl ₂ + Alkane Data 120
XLIII.	Correlation of CCl ₃ + Alkane Data 121
XLIV.	Correlation Errors for CCl ₃ + Alkane Data 122
XLV.	Correlation of Carbon Tetrachloride + Alkane Data 123
XLVI.	Correlation Errors for Carbon Tetrachloride + Alkane Data
XLVII.	Prediction Errors for Carbon Tetrachloride + Alkane Data
XLVIII.	Correlation of Primary Amines + Alkane Data 126
XLIX.	Correlation Errors for Primary Amines + Alkane Data 127
L.	Prediction Errors for Primary Amines + Alkane Data

Table		Page
LI.	Correlation of Secondary Amines + Alkane Data	. 129
LII.	Correlation Errors for Secondary Amines + Alkane Data	. 130
LIII.	Prediction Errors for Secondary Amines + Alkane Data	. 131
LIV.	Correlation of Tertiary Amines + Alkane Data	. 132
LV.	Correlation of Tertiary Amines + Alkane Data	. 133
LVI.	Correlation Errors for Tertiary Amines + Alkane Data	• 134
LVII.	Prediction Errors for Tertiary Amines + Alkane Data	. 135
LVIII.	Correlation of Benzene + Alkane Data	136
LIX.	Correlation Errors for Benzene + Alkane Data	. 137
LX.	Prediction Errors for Benzene + Alkane Data	• 138
LXI.	Correlation of Methanol + Alkane Data	139
LXII.	Correlation Errors for Methanol + Alkane Data	. 140
LXIII.	Prediction Errors for Methanol + Alkane Data	. 141
LXIV.	Correlation of Alcohol + Alkane Data	. 142
LXV.	Correlation Errors for Alcohol + Alkane Data	. 143
LXVI.	Prediction Errors for Alcohol + Alkane Data	. 144
TXAII.	Group Interaction Parameters, -CH ₂ with Group G	. 145

LIST OF FIGURES

Figure		Page
1.	Performance of equation (30) with the UNIFAC model	146
2.	Performance of equation (31) with the AGSM model	147
3.	Effect of the Value of Q on the accuracy of correlation for systems containing cycloalkanes	148
4.	Comparison of experimental and predicted heats of mixing for n-hexane with 1-chlorobutane and with 2-chlorobutane at 25°C	149
5.	Comparison of experimental and predicted heats of mixing for n-hexane with 1-chlorobutane and with t-butylchloride at 25°C	150
6.	Effect of alkane chain length on prediction error for 1-chlorobutane + n-alkane data at 25°C	151
7.	Effect of length of component containing group CCl on prediction error for n-octane data at 25°C	152
8.	Prediction errors for carbon tetrachloride mixtures at several temperatures	153
9.	Comparison of experimental and predicted heats of mixing for n-hexane with dichloromethane, chloroform and carbon tetrachloride at 25°C	s 154
10.	Comparison of experimental and predicted heats of mixing for n-heptane with n-butylamine, diethylamine and triethylamine at 25°C	155
11.	Effect of alkane chain length on correlation and prediction error for benzene + n-alkane data at 25°C and 50°C	156

Figure		Page
12.	Comparison of experimental data of n-heptane with several n-alcohols at 30°C	••• 157
13.	Comparison of experimental and predicted heats of mixing of n-hexane with n-butanol, 2-butanol and 2-methyl-2-propanol at 45°C	158
14.	Effect of the value of Q on the accuracy of correlation and prediction for alcohol systems	159

I. INTRODUCTION

Excess enthalpy (heat of mixing) occurs, as the term suggests, from the mixing of two or more components. Knowledge of heats of mixing is important in several chemical engineering processes, such as fractional, extractive and azeotropic distillation.

A large share of the experimental heats of mixing data are for binary mixtures at 25°C. However, the more commonly encountered system is a multicomponent mixture at a higher temperature. What is needed is a method that used existing data to calculate the heats of mixing of systems for which there are no data available. One promising method to solve this problem is the group contribution model. Group contribution methods calculate interactions among molecules in terms of the interaction between the functional groups of the molecule. The advantage of this approach is that whereas there are thousands of mixtures in the chemical industry there are only a limited number of functional groups.

The group contribution method assumes that the excess enthalpy is the sum of the contributions of the different groups (i.e. CH₂, OH, ACH) that make up the molecule. This assumption is an approximate representation, of course, in that it implies that a specific group in a molecule is independent of the other groups in that molecule. For example, the OH group in n-propanol is the same as in t-butanol.

According to the group contribution concept, n-butanol would consist of the groups OH, CH₂ and CH₃. Group interaction

parameters are used to account for the contribution of each group. For example, in the binary mixture n-butanol + n-heptane the following interaction parameters could be obtained: CH_2/OH and OH/CH_2 (where the interactions for the groups CH_2 and CH_3 are considered the same). The group interaction parameters are found from correlating experimental heats of mixing data. The parameters could then be used to predict other alcohol + alkane mixtures for which no data is available.

Until 1961, when Mrazek and Van Ness (77) published endothermic heats of mixing data for alcohol + aromatic systems, reliable experimental data were scarce. Some other early researchers in this field included Tsao and Smith (42) and Hirobe (13). The main source of error in isothermal calorimetry is due to vaporization-condensation effects. The Van Ness calorimeter contained no vapor space and therefore eliminated this error. Later, Winterhalter and Van Ness (101) modified their calorimeter so that exothermic heats of mixing could also be measured.

In the past 25 years there have been many articles reporting experimental heats of mixing data. There have also been articles which reported a discrepancy between two author's data. For example, Williamson and Scott's (43) data for the system ethanol + benzene at 45°C differed from those of Brown and Fock (5) by 15 percent. After personal communication between the two groups, Brown and Fock took new measurements which were in close agreement with Williamson's data. Due to this problem, how does the investigator who is going to use the data know whether it is accurate? There are several things one can look for. In many articles the authors first give data on a test mixture. They then compare their experimental results with other data on the same system, if the comparison is favorable the author assumes his calorimeter and expertise are good. The author then gives new, previously unpublished results on other mixtures. One example of this procedure is an article by Murakami and Fujishiro (78). First, they reported data for benzene + carbon tetrachloride at 25° C which were within a few percent of the generally accepted data. Then they gave new data for n-butanol with other polar liquids. This approach seems reasonable.

According to McGlashan (21), a test mixture should meet the following criteria:

- a) a large difference in density between the two components;
- b) the liquids should be easily purified;
- c) if a vapor space is present the liquids should be chosen (i.e. have very different vapor pressures) so that the errors are at least as large as those which would occur with the mixture to be studied;
- d) the heats of mixing should be of the same magnitude as the mixture that will be used; and
- e) the test mixture should have been studied by several researchers.

Two popular test mixtures are benzene + carbon tetrachloride

and cyclohexane + n-hexane. Some researchers prefer the first pair because of the large difference in density between the two liquids (specific gravity of benzene = 0.879, specific gravity of carbon tetrachloride = 1.595). Due to the significant difference in density it is hard to mix them completely. Therefore, a calorimeter can be used with confidence if accurate results are measured for this system. The maximum experimental heat of mixing for this system at 25° C is about 115 J/mole. Despite this argument for the first binary, cyclohexane + n-hexane at 25° C is probably the system whose heats of mixing are best known. For example, in the 1969 volume of the <u>Journal of Chemical Thermodynamics</u> there are four articles that report data on this mixture. The maximum experimental heat of mixing for this system is about 220 J/mole.

Some authors do not check their calorimeter with a standard mixture. Instead, they duplicate a system at one temperature already in the literature and then report experimental results on the same mixture at another temperature. For example, Ramalho and Ruel (92) published the heats of mixing of 23 binary alcohol/alkane systems most of which had been previously unreported.

Finally, some researchers develop a reputation for recording good data. A few people in this category include: J.-P.E. Grolier in France, H.C. Van Ness in the United States, R.S. Ramalho and M. Ruel in Canada, and G.C. Benson, also in Canada.

II. PREVIOUS WORK

There have been many papers published on heats of mixing, some have given experimental data and some have presented a new method to correlate and/or predict heats of mixing. This section will discuss some of the methods which have been used to correlate and predict heats of mixing. It will be divided into three parts: Early work, meaning the 1950's and 60's, recent work, and group contribution methods.

A. Early Work

The following equation based on Tsao and Smith (42)

$$G^{E} = x_{1}x_{2} \left[B_{0} + B_{1}(x_{1}-x_{2}) + B_{2}(x_{1}-x_{2})^{2} + \cdots \right]$$
(1)

was found to be successful in calculating the excess Gibbs free energy. Therefore, early researchers used a similar expression for the correlation of heats of mixing:

$$\Delta H^{M} = x_{1}x_{2} \left[A_{0} + A_{1}(x_{1}-x_{2}) + A_{2}(x_{1}-x_{2})^{2} + \cdots \right]$$
(2)

Tsao and Smith (42) correlated endothermic, exothermic and endoexothermic systems using equation (2). They needed only two constants to correlate the experimental data accurately. Williamson and Scott (43) correlated alcohol + benzene mixtures using the formula

$$\Delta H^{M} = x_{1}x_{2} \left[A_{0} + A_{1}(1-2x_{1}) + A_{2}(1-2x_{1})^{2} + \cdots \right]$$
(3)

However, four constants were needed to adequately represent the data.

Power series equations were also used to predict ternary heats of mixing. For example, equation (4) was developed by Scatchard and co-workers (35) but first proposed by Redlich and Kister (34). For n-constant binary equations the ternary heats of mixing are:

$$\Delta H^{M} = x_{1}x_{2} \left[{}^{A}_{0}{}_{12} + {}^{A}_{1}{}_{12}(x_{1}-x_{2}) + \cdots + {}^{A}_{n}{}_{12}(x_{1}-x_{2})^{n} \right] + x_{1}x_{3} \left[{}^{A}_{0}{}_{13} + {}^{A}_{1}{}_{13}(x_{1}-x_{3}) + \cdots + {}^{A}_{n}{}_{13}(x_{1}-x_{3})^{n} \right]$$
(4)
+ $x_{2}x_{3} \left[{}^{A}_{0}{}_{23} + {}^{A}_{1}{}_{23}(x_{2}-x_{3}) + \cdots + {}^{A}_{n}{}_{23}(x_{2}-x_{3})^{n} \right]$

This equation successfully predicted the mixture carbon tetrachloride + benzene + cyclohexane but was unsatisfactory when cyclohexane was replaced by methanol. However, if the terms (x_1-x_2) and (x_1-x_3) in equation (4) were arbitrarily replaced by $(2x_1-1)$ then the methanol mixture was accurately predicted. Equation (5) is the result:

$$\Delta H^{M} = x_{1}x_{2} \left[{}^{A}_{0}{}_{12} + {}^{A}_{1}{}_{12}(2x_{1}-1) + \dots + {}^{A}_{n}{}_{12}(2x_{1}-1)^{n} \right] + x_{1}x_{3} \left[{}^{A}_{0}{}_{13} + {}^{A}_{1}{}_{13}(2x_{1}-1) + \dots + {}^{A}_{n}{}_{13}(2x_{1}-1)^{n} \right]$$
(5)
+ $x_{2}x_{3} \left[{}^{A}_{0}{}_{23} + {}^{A}_{1}{}_{23}(x_{2}-x_{3}) + \dots + {}^{A}_{n}{}_{23}(x_{2}-x_{3})^{n} \right]$

For this specific case component 1 is methanol, in general component 1 is the polar compound. The parameters in equations (1) through (5) are a function of temperature.

Schnaible, Van Ness and Smith (36) presented experimental data for binary and ternary systems and evaluated different methods to predict heats of mixing. They concluded

that the prediction of heats of mixing from pure component data only was inadequate. For example, in the regular-solution theory the interaction energy density c₁₂ equals

$$c_{12} = (c_{11}c_{22})^n$$
 (6)

where c_{11} and c_{22} are the cohesive energy densities of the pure components. It was found that just a slight change in the exponent n caused a significant change in the heats of mixing. They also studied equations (4) and (5) for the prediction of heats of mixing and concluded that equation (4) was satisfactory for nonpolar systems while equation (5) was good for polar and nonpolar mixtures.

Goates, Sullivan and Ott (11) studied the effect of mole fraction and temperature on the heats of mixing. They measured the heats of mixing of the binary mixtures that can be developed from benzene, cyclohexane and carbon tetrachloride at several temperatures from 10° to 40° C. All three binaries were successfully correlated and the expression for the cyclohexane + benzene binary was

$$\Delta H^{M} = x_{1}x_{2} \left[3105.0 - 7.98T - (1303.0 - 4.37T)(x_{1}-x_{2}) + (1738.0 - 5.486T)(x_{1}-x_{2})^{2} \right]$$
(7)

As can be seen, a lot of the research done in the 1950's and early 60's was for the correlation of experimental data with empirical equations. However, some authors tried other methods, for example, Goates, Snow and James (10) used the quasi-lattice theory to correlate and predict the heats of mixing of alcohol-hydrocarbon systems. They studied three binaries: cyclohexane + ethanol, benzene + methanol and benzene + ethanol. The lattice theory assumes that the liquid has solid-like characteristics, that is, the molecules remain in a regular array in space. For the quasi-lattice theory the number and type of contact points for each molecule and the interaction energies for all combination of contact points are needed. The coefficients needed were obtained from the first two binaries and used to predict the benzene + ethanol mixture. There was a fairly good agreement between the experimental data and the calculated results.

B. Recent Work

The heats of mixing are related to the excess Gibbs free energy by the Gibbs-Helmholtz equation

$$\left[\frac{\sigma' g^{E}}{\sigma' T}\right]_{P,x} = \frac{-\Delta H^{M}}{T^{2}}$$
(8)

In the past decade much of the research has been concentrated in the use of this relationship. Investigators have tried to predict VLE data from heats of mixing data, or vice versa. One example of the calculation of binary vapor-liguid equilibrium data from heats of mixing is the paper by Hanks, Gupta and Christensen (12). The authors used two semi-theoretical equations: the Wilson and NRTL equations. The method consisted of evaluating the parameters in the equation from heats of mixing data and then calculating the phase equilibrium data using pure component vapor pressures. The authors studied six mixtures (with their maximum heats of mixing value given in parenthesis): carbon tetrachloride + acetone, 45°C (318 J/mole); benzene + acetone, 45°C (165 J/mole); toluene + acetonitrile, 45°C (500 J/mole): toluene + acetone, 45°C (250 J/mole); toluene + nitroethane, 45°C (350 J/mole); and cyclopentane + tetrachloroethylene, 25°C (230 J/mole). The Wilson equation gave a satisfactory fit of the heats of mixing data for only two systems: carbon tetrachloride + acetone and benzene + acetone. The NRTL equation was used to correlate the other four systems. In general, there was very good agreement between the

experimental and predicted VLE data. Even the azeotrope for the toluene + nitroethane system was predicted. (Experimental mole fraction of toluene is 0.71 versus the predicted value of 0.70). Two sets of parameters were found for the toluene + acetonitrile system. The parameters with the lower correlation error for the heats of mixing data also gave a lower prediction error for the VLE data. The authors concluded that their method of obtaining experimental heats of mixing data and then predicting the x-y data is easier then the actual measurement of VLE data. The authors said they chose six "highly nonideal" systems but the maximum heats of mixing was only 500 J/mole.

Nicolaides and Eckert (28) also studied this problem. They wanted to test the ability of several analytical expressions to correlate and predict different types of data (limiting activity coefficients, VLE, heats of mixing and liquid-liquid equilibrium). They also wanted to determine what was the minimum amount of data needed to predict the various types of data. The four expressions studied were the Van Laar, Wilson, UNIQUAC and Zeta equations. The author's results were as follows:

- a) The local composition equations gave better VLE correlation than the Van Laar equation. However, the improvement was not as great as might be expected.
- b) The two more recent local composition equations, UNIQUAC and Zeta, did not give any significant improvement over the Wilson equation in the correlation of VLE and ΔH^{M}

data. The Van Laar equation could not be used for heats of mixing prediction because it contains no temperature dependent term.

- c) Parameters obtained from VLE data and used to predict ΔH^{M} data gave poor results, the reverse the prediction of VLE data from ΔH^{M} data gave even poorer results. This is the opposite conclusion that was reached by Hanks et al. The systems used were benzene + cyclo-hexane, acetone + ethanol and acetonitrile + benzene.
- d) Parameters obtained from limiting activity coefficients gave very good predictions of VLE data but poor results for heats of mixing.
- e) Increasing the number of parameters from two to four by assuming a linear temperature dependence for the parameters was done for the three local composition equations. The prediction of heats of mixing from VLE data improved slightly for most systems. However, the results for VLE prediction from ΔH^M data did not improve.
- f) Determining parameters from liquid-liquid equilibria and then predicting x-y data gave fair results. The results for heats of mixing prediction were poor.

The authors concluded that limiting activity coefficients could replace classical VLE measurements. However, heats of mixing data and liquid-liquid equilibria would have to be measured directly. No equation was capable of crosspredicting ΔH^M or LLE data from VLE data. In fact, the choice of equation was not critical, the only improvement of the more recent local composition equations over the Wilson equation was their ability to represent liquid phase separation.

Nagata and Yamada (22) did a study similar to Nicolaides and Eckert (28) and obtained similar results. Their results and conclusions are as follows:

- a) For their calculations they used the Wilson, Heil and NRTL equations with parameters that varied linearly with temperature.
- b) Heats of mixing were calculated from parameters correlated from VLE data. The authors presented results for two typical systems: methanol + benzene at 35°C and acetone + chloroform at 25°C. The maximum experimental heat of mixing for methanol + benzene is +825 J/mole, for acetone + chloroform the maximum value is -1900 J/mole. The results were fair to poor with no equation predicting the heats of mixing better than the other two. The absolute deviation ranged from 50 J/mole to 825 J/mole.
- c) Excess Gibbs free energy was predicted from parameters correlated from heats of mixing data. Poor results were obtained, with typical predictions being less then half the experimental value. The authors stated that the method of Hanks et al (12) should be limited to special cases, i.e. where the heats of mixing are low.
- d) The simultaneous correlation of G^E and $\triangle H^M$ data was very good for all 3 equations.

e) Ternary heats of mixing were successfully predicted from parameters regressed from binary data. Again the choice of equation did not affect the results.

Liu, Weber and Tao (20) predicted ternary heats of mixing from the simultaneous correlation of binary vapor-liquid equilibrium and heats of mixing data. The authors predicted two ternary systems: acetone + chloroform + methanol at 50° C and chloroform + ethanol + n-heptane at 50° C. In both cases the predicted and experimental values compared favorably.

From these four articles the following conclusions can be reached:

- a) The cross-prediction of VLE and ΔH^M data is dubious at best. Only Hanks et al (12) have successfully predicted heats of mixing from vapor-liquid equilibrium data. One article was discussed here but they have presented many more in <u>Thermochimica Acta and Industrial and Engineering</u> <u>Chemistry</u> on the same topic.
- b) For the correlation of the data all the local composition equations performed equally well. The advantage of the more recent equations over the Wilson equation is their ability to predict partial miscibility.
- c) Although these equations correlated the binary data well and adequately predicted ternary heats of mixing, experimental data were needed for each system to obtain the parameters. This points out the advantage of group

contribution methods - only a limited amount of experimental data are needed. Past work on group contribution methods will be discussed in the next section.

C. Group Contribution Methods

Langmuir (16) first proposed the group contribution method in 1925. However, no serious work was done until 1959 when Derr et al (30,33) developed their group contribution model. Some work had been done between 1925 and 1959. see for example Tompa (41), but nothing of significance. Like the models that were developed later, Derr et al assumed that the interaction energy of two molecules could be approximated by the sum of the contributions of the interacting groups. This group contribution was dependent on the group concentrations and two group parameters: interaction coefficient and cross section. The interaction coefficient was due to the interaction between the functional groups in the solution, while the cross section was associated with the size of the groups. Redlich, Derr and Pierotti (33) presented the model. Papadopoulos and Derr (30) predicted the heats of mixing of paraffin and aromatic binaries, and obtained satisfactory results.

Derr's method was extended by Chao et al (6) to include polar substances. They predicted several alcohol + alkane mixtures with best results for high alcohol concentrations for mixtures of higher molecular weight components. Ramalho et al (31) later predicted ketone-ketone systems.

In 1972 Lee, Greenkorn and Chao (17,18,19) developed a group contribution method based on both the cell theory and the quasichemical lattice theory. They have predicted

the heats of mixing of alkane/alkane, alcohol/alkane and ketone/alkane systems. Their method can also be used to predict other properties including heat of vaporization and density. However, their model has not gained much use.

UNIFAC (<u>UNIQUAC Functional-group activity coefficients</u>) was developed by Fredenslund et al (9) at Berkeley in 1975. UNIFAC was an extension of UNIQUAC which had also been developed at Berkeley by Abrams and Prausnitz (1). The Fredenslund article presented temperature independent interaction parameters for the prediction of activity coefficients for binary and multicomponent mixtures. Parameters were given for mixtures containing water, hydrocarbons, alcohols, chlorides, nitriles, ketones, amines and other liquids in the temperature range 275° to 400° K. Fredenslund et al (8) later attempted to predict heats of mixing using parameters obtained from VLE data. However, typical results differed from the experimental values by a factor of two.

Nagata and Ohta (23) used the UNIFAC method to predict the heats of mixing of binary systems of alkanes with n-alcohols, ketones, esters and ethers, and ternary n-alcohol + n-alcohol + n-alkane systems. For all cases the prediction error was less than 20 percent, however, only the alcohol data was predicted at more than one temperature. Also, six temperature-independent coefficients were needed

to represent the alcohol/alkane interaction:

$$\Psi(CH_2, COH) = 81.35 \text{EXP}\left[\frac{-2424}{T}\right] + 0.157$$
 (9)

$$\Psi(\text{COH,CH}_2) = 330.9 \text{EXP}\left[\frac{-1682}{\text{T}}\right] + 190$$
 (10)

The prediction errors for n-alcohol + branched alkane systems were larger than those for n-alcohol + n-alkane mixtures, also the ethanol systems had larger errors than the other n-alcohols.

Skjold-Jorgensen et al (39) revised and extended the UNIFAC method for the prediction of vapor-liquid equilibria. New and improved parameters were presented based on new data which had become available. The only change of consequence for the prediction of heats of mixing was the new definition of the alcohol group. Previously, the main alcohol group had been defined as CCOH, with different subgroups $(CH_2CH_2OH, CHCH_2OH, etc)$. In this work, the alcohol group was redefined as a group containing OH only, but methanol was still kept as a separate group. Unfortunately, the new group cannot distinguish between primary, secondary and tertiary alcohols.

Recently, Skjold-Jorgensen et al (40) modified the UNIFAC and UNIQUAC models by introducing a general temperature dependence for the interaction parameters. The modified model still required two parameters per binary group, the same as the original model. The generalized formula was developed through the simultaneous correlation of vapor

liquid equilibrium and heats of mixing data. It was obtained, however, from only a limited number of systems with non-associating components. They obtained very good predictions of x-y data from parameters correlated from heats of mixing data and fair results when they attempted the reverse, prediction of heats of mixing from VLE data. The systems predicted contained the five components: alkanes, alkenes, benzene, toluene and ethers.

The researchers who have dealt with group contribution models the most extensively are Ratcliff and his co-workers at McGill University in Canada. Ratcliff and Chao (32) first presented a Group Solution Model in 1969 for the prediction of vapor-liquid equilibrium, but indicated that the model could be applied to other thermodynamic properties. Like the model of Derr et al, their group model was composed of two independent parts: the skeletal contribution and the energetic interactions between the functional groups in the solution. The skeletal contribution accounts for the differences in size of the molecules but not molecular shape. The Bronsted-Koefoed (4) congruence principle was used to describe this effect.

The group contribution effect is described by the equation

$$\log \gamma_{i}^{G} = \sum_{k} N_{ki} (\log \Gamma_{k} - \log \Gamma_{k}^{*})$$
 (11)

where N_{ki} is the number of groups of type k in component i, Γ_k is the activity coefficient of group k and Γ_k^* is the

activity coefficient of group k at standard state. Equation (11) was correlated with experimental data to determine a number for log Γ for each group k.

The model was first checked to see how well it correlated vapor-liquid equilibrium data for 3 systems at 40° C: ethanol + iso-octane, ethanol + n-heptane, and methanol + water; and 3 systems at 90° C: n-propanol + water, n-propanol + n-decane and iso-propanol + n-decane. For all six systems the correlated results compared favorably with the experimental data. The authors then predicted four multicomponent systems at 40° C: methanol + ethanol + water, methanol + ethanol + n-hexane + n-heptane, ethanol + n-hexane + iso-octane and methanol + ethanol + n-hexane + n-heptane + water. The predicted results compared reasonably well with the experimental values.

In 1971 Nguyen and Ratcliff (24) applied this Group Solution Model to heats of mixing. The equation for heats of mixing followed the same format as for activity coefficients

$$\Delta H^{M} = \Delta H^{G} + \Delta H^{S}$$
(12)

where ΔH^{G} represents the heats of mixing due to group interactions and ΔH^{S} is the skeletal contribution to the heats of mixing. The skeletal contribution was obtained from the heats of mixing of n-alkanes. In most cases this number was negligible, for example, for n-butanol + n-hexane at 25°C the binary n-pentane + n-hexane was used to compute

the skeletal contribution, but the heats of mixing were only 1-2 J/mole. ΔH^{G} was found in the same manner as log γ^{G} . The authors predicted two alcohol/alkane ternary systems at 25°C: n-octane + n-propanol + n-octanol and n-heptane + n-propanol + n-pentanol. There was good agreement between the calculated and experimental values.

In the same year Nguyen and Ratcliff (25) predicted the heats of mixing of ketone + alkane systems using their Group Solution Model. This time they neglected the skeletal contribution but the prediction error only increased by 1 percent. Ketones were regarded as consisting of carbonyl and methylene groups. The group excess enthalpies were computed from the experimental data for the acetone + n-hexane system at 25° C. They then predicted 10 ketone + n-alkane and ketone + ketone binaries with an average error of 15.7 percent. This error is somewhat high but the heat of mixing for ketone + ketone systems is low (on the order of 100 J/mole).

In 1974 Nguyen and Ratcliff (26) presented the Analytical Group Solution Model (AGSM) for the prediction of heats of mixing. The heat of mixing due to the interactions between the groups was calculated from an analytical expression, namely the Wilson equation. They did not include a skeletal contribution because they felt it was unimportant. In this paper they dealt with alcohol/alkane systems. Five parameters were needed to represent the data
adequately:

a
$$OH/CH_2 = 34.95EXP \left[\frac{-2908}{T}\right]$$
 (13)

$$a CH_2/OH = 26.69EXP \left[\frac{-1336}{T}\right] + 7.705$$
 (14)

The alcohol/alkane data were predicted in the temperature range 15° to 55°C. Most of the prediction errors were less than 10 percent, except for the ethanol systems where higher errors were found.

In 1975 Nguyen and Ratcliff (27) studied the heats of mixing of alcohols with branched alkanes, the systems studied were pentanol and isopentanol with hexane isomers. For the systems predicted they found no effect on the prediction error due to the branched alkanes.

In 1978 Lai et al (15) extended the model to include liquid mixtures containing alkanes, chloroalkanes and alcohols. They also decided to use a general temperature dependency for the interaction parameters:

$$a_{jk} = EXP\left[A_{jk} + \frac{B_{jk}}{T}\right]$$
(15)

Therefore, they had to calculate new parameters for alcohols with alkanes since a (CH_2/OH) from the previous article did not follow this format. They calculated new OH/CH_2 parameters using data from 7 systems including 4 at $15^{\circ}C$, 2 at $30^{\circ}C$ and 1 at $45^{\circ}C$. The average Root Mean Square Deviation (RMSD) was 7.4 percent. They also calculated Cl/CH_2 interaction parameters using 7 systems (2 at $15^{\circ}C$, 3 at $25^{\circ}C$,

2 at 35° C). The average RMSD was 3.2 percent. Using these parameters they were able to calculate Cl/OH parameters. Again they used 7 systems and the average RMSD was 4.8 percent. The temperatures used: 2 at 15° C, 3 at 25° C and 2 at 35° C. They also predicted two types of ternary systems: with CH₂ and OH groups and CH₂, OH and Cl groups. For these predictions the average RMSD was 8.5 percent.

In a later paper Doan-Nguyen et al (7) evaluated interaction parameters for additional groups presented in Table I.

In 1979 Siman and Vera (38) reevaluated their CH_2/OH interaction parameters. The parameters were obtained by simultaneously fitting G^E and ΔH^M data. Overall, the prediction error for alcohol/alkane systems increased. In the same paper they reported the heats of mixing for alcohol + amine systems, which are exothermic (negative). The AGSM model correlated and predicted these systems well except for those containing methanol.

The work reported here is divided into two phases. The first phase was the evaluation of the AGSM, UNIFAC and modified UNIFAC models on the basis of their ability to correlate and predict the enthalpies of mixing of a selected set of binary systems. The second phase involved the generation of interaction parameters for all the possible combination of groups for which data is available using the best model. These parameters could then be used for the prediction of mixtures for which no experimental data exists.

Most of the work in the first phase was done by Ojini (29), but some contribution was made by the author. This thesis will deal mostly with the modified UNIFAC approach and include the regression for parameters of several active groups with alkanes.

III. GROUP CONTRIBUTION METHODS

The group contribution methods mentioned in the previous sections have used different equations to calculate the heats of mixing but the basic idea for all of them has been the same. Most have assumed that the heats of mixing are due to two contributions: the first part is due to the differences in size and shape of the molecules and the second part accounts for the energetic interactions between the molecules. However, for heats of mixing the second part is more important.

The second contribution, the molecular interactions, is calculated by using group interaction parameters. An example would best illustrate the use of group parameters. The mixture n-pentanol + 1-chlorobutane contains the groups CH₂, OH and Cl (where the interactions for the groups CH₂ and CH_3 are considered the same). In order to predict this mixture the following interactions are considered: CH_2/OH_2 , CH_2/Cl and OH/Cl. As mentioned in the Introduction, OH/CH_2 parameters could be found from the binary n-butanol + n-hep-The Cl/CH₂ parameters could be correlated from tane. 1-chlorobutane + n-hexane data. Both of these sets of parameters are primary parameters since they are obtained from mixtures containing only two groups. The OH/Cl parameters are secondary parameters. Secondary parameters are parameters obtained from mixtures containing three groups and using the appropriate primary parameters. In this case,

Cl/OH parameters could be generated from n-octanol + 1-chlorohexane data. Finally, the system n-pentanol + 1-chlorobutane could be predicted.

A. The Analytical Group Solution Model (AGSM)

The basic equations of the AGSM model as developed by Ratcliff and co-workers (26) are included here. The AGSM method assumes that the contribution of each compound in the mixture is accounted for by summing the contribution of each group that makes up the chemical compound. Therefore, the partial molar excess enthalpy of component i is given by

$$\overline{\Delta H_{i}} = \sum_{k}^{\Sigma} N_{ki} (H_{k} - H_{ki}^{*})$$
(16)

where N_{ki} is the number of groups of type k in component i, H_k is the excess enthalpy of group k and H_{ki}^* is the standard state enthalpy of group k in pure component i. It follows that the heat of mixing is

$$\Delta H^{M} = \sum_{i} x_{i} \overline{\Delta H_{i}}$$
(17)

where x_i is the mole fraction of component i. The group excess enthalpy H_k is found from the Wilson equation

$$\frac{H_{k}}{RT^{2}} = \frac{\sum_{j}^{X} j^{b} k j}{\sum_{j}^{X} j^{a} k j} + \frac{\sum_{j}^{X} j^{b} j k}{\sum_{m}^{X} m^{a} j m} - \frac{\sum_{j}^{X} \left[\frac{X j^{a} j k}{(\sum_{m}^{X} m^{a} j m)^{2}} \sum_{m}^{X} m^{b} j m \right]$$
(18)

where X_k is the group fraction of group k in the mixture and defined as

$$X_{k} = \frac{\sum_{i}^{N} x_{i} N_{ki}}{\sum_{k}^{N} \sum_{i}^{N} x_{i} N_{ki}}$$
(19)

 H_{ki} is also calculated from equation (18) using the group fraction of group k in pure component i, instead of the group fraction of group k in the mixture. The temperature dependent group parameters a_{ik} and b_{ik} are related by

$$b_{jk} = \frac{\partial}{\partial T} \left[a_{jk} \right]$$
 (20)

Ratcliff and co-workers adopted the following expressions for their group parameters

$$a_{jk} = EXP \left[A_{jk} + \frac{B_{jk}}{T} \right]$$
 (21)

$$b_{jk} = EXP \left[A_{jk} + \frac{B_{jk}}{T} \right] \left[\frac{-B_{jk}}{T} \right]$$
 (22)

where A_{jk} and B_{jk} are temperature independent coefficients. Once these coefficients are correlated from experimental data they can be used to predict other mixtures containing the same groups.

The AGSM model does not include a factor which takes into account the size and shape of the group. Consider for example the case of n-hexane and 2,2 dimethylbutane. The AGSM model does not differentiate between them, since it only considers the total number of groups present. Ratcliff and co-workers have published several articles reporting results which show there is no need to distinguish between specific groups, i.e. CH, CH_2 , CH_3 etc. For example, Lai et al (15) predicted chloro/alkane mixtures with good results. Two binaries they predicted were n-hexane with 1and with 2-chlorobutane at $25^{\circ}C$. The AGSM model predicts the same heats of mixing for both mixtures since it does not distinguish between what carbon atom the Cl group is bonded with. Since the heats of mixing for both systems are similar the prediction error is low. On the other hand, Ratcliff and co-workers have never predicted secondary and tertiary alcohols. However, the difference in heats of mixing of n-heptane with 1- and with 2-propanol is about 20 percent. In this case the AGSM model fails to predict the 2-propanol system accurately.

B. The UNIFAC Method

The prediction of vapor-liquid equilibrium by the UNIFAC method was presented by Fredenslund et al (9) in 1975. The UNIFAC model separates the activity coefficient into two parts: the first part accounts for the difference in size of the molecules while the second part represents energetic interactions. However, when the expression for the heats of mixing is determined using the Gibbs-Helmholtz relationship (equation (8)), the first part does not appear since it is not a function of temperature. Therefore, the UNIFAC model reduces to the same format as the AGSM except that the expression for the group excess enthalpy H_k is different. The equation for H_k is:

$$\frac{H_{k}}{RT^{2}} = -Q_{k} \left[\frac{-\sum_{m} \Theta_{m} \psi_{mk}}{\sum_{m} \Theta_{m} \psi_{mk}} - \sum_{m} \left[\frac{\Theta_{m} \psi_{km}}{\sum_{n} \Theta_{n} \psi_{nm}} - \frac{\Theta_{m} \psi_{km} (\sum_{n} \Theta_{n} \psi_{nm})}{(\sum_{n} \Theta_{n} \psi_{nm})^{2}} \right] \right]$$
(23)

where

 \mathbb{Q}_k : area parameter for group k Θ_m : area fraction of group m

$$\Theta_{\rm m} = \frac{Q_{\rm m} X_{\rm m}}{\sum_{\rm n} Q_{\rm n} X_{\rm n}}$$
(24)

$$\psi_{mn} = EXP - \left[\frac{U_{mn} - U_{nn}}{RT}\right] = EXP - \left[\frac{a_{mn}}{T}\right] \quad (25)$$
$$\psi_{mn} = \frac{\partial}{\partial T} \psi_{mn} \quad (26)$$

U_{mn}: measure of the energy of interaction between groups m and n

a_{mn}: group-interaction parameter Once the group interaction parameters are evaluated from experimental data they can be used to predict other mixtures containing the same groups.

Skjold-Jorgensen et al (40) modified the UNIFAC model by introducing a generalized temperature dependency for the interaction parameters. They suggest that the parameter ψ_{mn} can be written as:

$$\psi_{mn} = EXP - \left[\frac{Za_{mn}}{2T}\right]$$
(27)

where Z is the lattice coordination number which in the original UNIFAC was a constant equal to 10. Therefore, the group-interaction parameter reduced to

$$a_{mn} = \frac{Za_{mn}}{2}$$
(28)

The authors proposed, however, to make Z a function of temperature:

$$Z(T) = 35.2 - 0.1272T + 0.00014T^2$$
 (29)

The numerical constants were obtained by the simultaneous fit of vapor-liquid equilibrium data for six binaries and heats of mixing data for three binaries. The systems involved were hydrocarbons and ethers, while the temperature

range was 25° to 129°C.

One difference in the two expressions for ${\rm H}_k$ is that the UNIFAC model includes the group area parameter, Q_k , which takes into account the size of the group. The area parameter is obtained from Van der Waals surface areas as given by Bondi (3). As mentioned before, for the AGSM model 2,2 dimethylbutane would consist of 6 CH₂ groups, no distinction would be made between CH_3 , CH_2 and C groups. However, for the UNIFAC model 2,2 dimethylbutane would be 1 C, 1 CH_2 and 4 CH_3 groups. The interaction parameters for the three groups would be the same but the area parameter would be different for each group. The group area parameter appears in the equation for ${\rm H}_k$ not only as ${\rm Q}_k$ (in front of the bracket in equation (23) but also through Θ_k , which in essence replaces the group fraction of the AGSM model. Table II includes the Q values used in this study.

IV. RESULTS AND DISCUSSION

The Results and Discussion section is divided into four parts: preliminary calculations, evaluation of the models, regression of the data and final parameters. The total work for the heats of mixing project was done by three people: Hetzel (thesis to be completed in October 1982), Ojini (29), and the author. Data or results developed by one person often were necessary to the work of another. While most of the work reported in this thesis was done by the author, some of the preliminary work was shared by all three.

A. Preliminary Calculations

One of the first decisions that had to be made was which group contribution model should be used - AGSM or Ratcliff and co-workers had published interaction UNIFAC. parameters in several papers so it was decided to predict different types of systems using their parameters. Tables III and IV give the results of this analysis. Table III gives predictions for alcohol/alkane systems. The table shows that parameters regressed from heats of mixing data only give better predictions than parameters simultaneously regressed from heats of mixing and vapor-liquid equilibrium data. However, for n-butanol and higher alcohols the results are similar. Table IV presents prediction results for binary systems not containing an alcohol. All the prediction errors are low with only the two benzene + alkane systems at 50°C greater than 15 percent. However, as seen from Table I the benzene/alkane parameters were correlated from 3 systems at 25°C, this would account for the higher prediction errors at $50^{\circ}C_{\bullet}$

For the UNIFAC model no interaction parameters were available which had been obtained from heats of mixing data. Parameters reported in the literature were correlated from vapor-liquid equilibrium data. Ojini (29) had determined that these parameters were inadequate for heats of mixing prediction.

One problem that developed early was the effect of temperature on heats of mixing and the interaction parame-It was found that the heats of mixing of some systems ters. increased as the temperature increased, for example, alcohols + alkanes and nitroalkanes + alkanes. But for most systems the heats of mixing decreased as the temperature increased. Also, as seen from the AGSM results with benzene + alkanes (Table IV) the experimental data used to correlate the parameters had a significant effect. This can be further seen from Table V which gives the results for the correlation and prediction of n-propanol + n-heptane data using the UNIFAC model. Table V shows that if only n-propanol + n-heptane at 30° C is used to find the parameters the correlation error is 0.9 percent. Using these parameters to predict the same system at 45°C gives a prediction error of 15.6 percent. However, if the data at both temperatures are used to find the parameters the correlation error is 6.7 percent. Therefore, when parameters are obtained it would be best to include data at as many temperatures as possible. The correlation error would be higher but the overall error would be lower.

One advantage of UNIFAC over AGSM is the ability to distinguish between isomers (through the use of the group area parameter Q). Some work was done in this area to see if the UNIFAC was also able to predict heats of mixing for isomers accurately. The alcohols were chosen as the test group and the parameters used were those obtained from

n-propanol + n-heptane at $30^{\circ}C_{\bullet}$ The groups for n-propanol are 1 CH_2CH_2OH (Q=1.664) and 1 CH_3 . Two secondary alcohol + alkane systems were predicted: 2-propanol + n-heptane at 45° C and 2-butanol + n-hexane at 25° C. The groups for 2-propanol are 1 CHOHCH₃ (Q=1.660) and 1 CH₃ and for 2-butanol are 1 CHOHCH₃, 1 CH₂ and 1 CH₃. The prediction of the heats of mixing of these two systems was poor. The poor results were due to the small difference in Q values between primary and secondary alcohols. Because of the slight difference ($\Delta = 0.004$) in Q, nearly the same heats of mixing was calculated for n-propanol + n-heptane and 2-propanol + n-heptane. However, the heats of mixing of 2-propanol + n-heptane are about 20 percent higher than for n-propanol + n-heptane. A new Q for secondary alcohols was sought using the same parameters. The lowest average error for the two systems was 17.1 percent for Q = 3.5. However, more extensive work would have to be done before changing a In addition, such a drastic change in Q, from 1.660 Q value. to 3.5 cannot be justified. For, once a Q is changed, it would have to be good for all systems, not just alcohol + alkane systems. Though this work was sketchy it did show that predicting isomers later might be difficult.

From the initial calculations the following observations can be made:

- a) both the AGSM and UNIFAC models gave low prediction errors (<20 percent) for most systems,
- b) correlating VLE and ΔH^M data simultaneously gave high

errors,

- c) both the AGSM and UNIFAC had difficulty predicting isomers, and
- d) the temperature dependency of the parameters was an important factor to consider.

In order to choose the appropriate model the three workers on the heats of mixing project developed the Grand Plot.

B. Evaluation of the Models

Since the preliminary calculations were not conclusive enough to choose between the two models, the Grand Plot criteria was developed by the three workers on the heats of mixing project. The Grand Plot was developed to answer two questions:

- a) Which model should be used: AGSM or UNIFAC?
- b) What form of temperature dependency of the interaction parameters was best?

The Grand Plot relates the temperature exponent β to S_c , the average cumulative prediction error. The Grand Plot included the following:

 A general temperature dependency expression for the interaction parameters was assumed. For example, for the UNIFAC model the group parameter equals:

$$\Psi_{mn} = EXP - \left[\frac{a_{mn}}{T}\right]$$
 (25)

where a_{mn} is the temperature independent parameter. Now a_{mn} would also become a function of temperature by assuming:

$$\psi_{mn} = EXP - \left[\frac{A_{mn}T^{\beta} + B_{mn}}{T} \right]$$
(30)

A similar expression was used for the AGSM model

$$a_{kj} = EXP \left[\frac{C_{kj}T^{\beta} + D_{kj}}{T} \right]$$
(31)

Where the coefficients A_{mn} , B_{mn} , C_{kj} and D_{kj} are temperature independent. The value of β , for each model, is determined from the correlation and prediction of heats of mixing data for a selected set of binary systems.

It should be noticed that the temperature dependency of the interaction parameters given by equations (30) and (31) is not the only one possible. For example, Nguyen and Ratcliff (26) used a total of five parameters for the OH/CH₂ interactions with the AGSM Later, Lai et al (15) revised these parameters model. so that only four were necessary. Similarly, Nagata and Ohta (23) used six parameters for the same interactions with the UNIFAC model. Considering the large number of experimental data for n-alcohols/n-alkanes their approach is justified. However, the purpose of the present study is to develop a temperature dependency expression applicable for all group pairs, including several cases where only limited data are available. For this reason a four-parameter expression was sought.

- b) The binary systems were classified into two types: Type I: Heats of mixing increase as temperature increases,
 - Type II: Heats of mixing decrease as temperature increases.

Preliminary calculations showed that positive exponents

 (β) favored Type I systems, while Type II systems did better with negative exponents (β) . To obtain an optimum value for β two Type I and two Type II systems were selected as presented in Table VI. Experimental data for the four systems was available at two temperatures.

- c) The heats of mixing data were correlated at the lower temperature using values of β from -2 to +2 in intervals of 0.5 excluding β =0. For each β , a separate set of interaction parameters was found.
- d) The heats of mixing were predicted at the higher temperature using the same value of β and the appropriate set of interaction parameters. In practical applications it is often desirable to extrapolate the heats of mixing data to higher temperatures.
- b) The average cumulative prediction error S_c is defined as:

$$S_c = \frac{\sum_{j=1}^{N} S_j}{L}$$

where L is the number of systems, and S_j is the average absolute percent error for system j:

$$S_{j} = \sum_{i}^{\Sigma} \frac{\Delta H^{M}_{exp} - \Delta H^{M}_{calc}}{\Delta H^{M}_{exp}}$$
 * 100 (33)

where V is the total number of experimental points and the subscripts exp and calc indicate experimental and

V

39

(32)

calculated respectively.

Table VII contains the regression results for UNIFAC and AGSM, while Table VIII gives the prediction results. (Ojini did all the regression and prediction results for UNIFAC, Hetzel did the AGSM regression and prediction for $\beta = +1.0$, +0.5, -0.5 and -1.0). The author did the AGSM regression and prediction for $\beta = +2.0$, +1.5, -1.5 and -2.0.

Three problems arose immediately even before a Grand Plot was made. The three problems were: (1) some prediction errors were very high, (2) for some exponents no parameters were obtained, and (3) for some exponents more than one set of parameters were found. Although three problems are mentioned here they are all due to the problem of multiplicity of roots. This problem will become more apparent when the final parameters are correlated.

For the AGSM predictions there were three systems with a very high error: benzene + n-octane $\beta = +2$, $\beta = -2$ and n-octanol + n-heptane $\beta = +1.5$. A check was made by predicting different systems. For the benzene + alkane systems the prediction error for systems at 25° C was less than 5 percent, but the errors for systems at 50° C were greater than 200 percent. Table IX contains the prediction results for n-octanol + n-heptane at different temperatures. The results seem strange with errors of up to 50,000 percent being indicated. Therefore, it was determined that since similar errors were found for other temperatures the results were correct.

The second problem in the AGSM regression was that the program did not converge and no parameters were found for nitroethane + 2,2-dimethylbutane at 30° C for $\beta = -1.5$. This brings up the question of what parameters should be chosen as initial values. Except for the nitro group Ratcliff and co-workers had reported parameters for the systems studied in the Grand Plot using a linear temperature dependence ($\beta = 1.0$). The initial parameters for the Grand Plot were obtained by prorating Ratcliff's parameters for each temperature dependency. Normally these starting values converged on a new set of parameters. If the program did not converge one of the parameters was changed and the program run again. This approach generally was successful but repeated attempts failed to give a final set of parameters for nitroethane + 2,2-dimethylbutane at 30° C.

Two sets of final parameters for the following systems and temperature dependencies were available: benzene + n-octane, $\beta = -1.5$ and n-octanol + n-heptane, $\beta = 1.5$. Table X presents the results for the two systems. The results for the benzene + alkane systems show that the prediction error at the higher temperature is nearly the same for both sets of parameters. For alcohol + alkane systems the parameters with the higher correlation error gave the lower prediction error. The reason for this is not clear. Figures 1 and 2 are the Grand Plot for the UNIFAC and AGSM, respectively. From these two graphs and Tables VII and VIII it is noticed that the AGSM gave more erratic results than the UNIFAC. Figure 1, the UNIFAC Grand Plot, shows that $\beta = 0.5$ gives the best results with an average absolute error of 7.7 percent. Figure 2, the AGSM Grand Plot, shows the lowest cumulative error was 18 percent for $\beta = -0.5$. A closer look at Figure 1 shows that $\beta = 1.0$ is not on the smooth curve (11.5 percent) and might be expected to have a lower cumulative error than $\beta = 0.5$. Considering the problems with other temperature exponents it was decided to try and improve the error for $\beta = 1.0$ (linear temperature dependence) before making the final decision on which model and temperature exponent to use.

Attempts to improve $\beta = 1.0$ were unsuccessful. When looking at the percent error for the four systems for $\beta = 1.0$ the n-octanol + n-heptane system had the largest error (18.0 percent). Attempts were made to improve the percentage error for this system by using different starting values, but the prediction error did not change.

At this time it looked like $\beta = 0.5$ would have to be used with the UNIFAC. However, based on a pre-publication by Skjold-Jorgensen (40) on the Z(T), it was decided to give the modified UNIFAC with the Z(T) the same test as the AGSM and four parameter UNIFAC. Table XI gives the results for the four systems in the Grand Plot. The average cumulative error based on the set of parameters with the lowest correlation error was 5.0 percent. This error is less than that for the UNIFAC with β =0.5. Therefore, since the UNIFAC with Z(T) had the lowest prediction error on the Grand Plot it was decided to use the Z(T) for the future calculations. The Z(T) had the additional advantage in that only two interaction parameters were needed per group pair versus the four parameters that were used before.

A new expression for Z(T) was sought for two reasons: (1) Skjold-Jorgensen's Z(T) was correlated from both vapor liquid equilibrium and heats of mixing data but this study was only interested in the prediction of heats of mixing. It must be remembered, however, that Skjold-Jorgensen et al (40) obtained good predictions for both kinds of data. (2) The data base used to find the Z(T) expression included only alkanes, alkenes, benzene, toluene and ethers. Skjold-Jorgensen et al (40) stated that a special "chemical term" might be needed to predict associating systems. It should be noted that of the four systems predicted in the Grand Plot only the alcohol binary, an associated mixture, had an error greater than 10 percent. An expression for Z(T) was sought that would be applicable for all groups.

In the first attempt to find a new Z(T) only the alcohol binary was used in the data base. Table XII gives the new Z(T) and prediction and correlation results for three systems. The results with Skjold-Jorgensen's Z(T) are also included for comparison and, in most cases, did better. As mentioned before, the lattice coordination number (Z) was a constant set equal to 10 in the original UNIFAC. At 25° C, Skjold-Jorgensen's Z(T) = 9.72 while the Z correlated from n-octanol + n-heptane at 30° C is the unreasonable value of 22.15. Therefore, the first attempt at finding a new expression for Z was unsuccessful.

Finding a general expression for Z is a difficult process. When looking at equation (27) it is noticed that both Z and a'_{mn} are in the numerator, so in effect, the two parameters are estimated from the value of their product. To find a new expression for Z the plan was to include the four systems from the Grand Plot, which would mean regressing for 11 parameters (8 interaction parameters and 3 coefficients for Z). To get good results would be very difficult because of this relation between Z and a'_{mn} . Instead, it was decided to use Skjold-Jorgensens' equation for the final parameters because Skjold-Jorgensen et al (40) had predicted heats of mixing well.

C. <u>Regression of the Data</u>

Appendix I is a print out of a sample regression run and explains how to enter a computer run. Appendix II is the same except that it applies to a prediction run.

Due to the problem of multiplicity of roots, a system of common starting values had to be devised to ensure that the best set of parameters was obtained. A grid of starting values, covering the range +200 to -200 in intervals of 200 as shown in Table XIII was used. This points to a significant advantage of the modified UNIFAC model as compared to the original UNIFAC which needed four interaction parameters. To have the same kind of grid would have involved a very large chart of initial values. The upper value a = 200 was chosen because if a becomes too large then $\frac{\partial \psi}{\partial T}$ is very small and becomes inconsequential. An example of this will be given later. In the first UNIFAC article by Fredenslund, Jones and Prausnitz (9) they set an upper limit of 3000 for ${\bf a}_{mn}$ which corresponds to ${\bf a}_{mn}'$ of 617. For $a'_{mn} = 200$ the corresponding a_{mn} equals 972 and in their article over 80 percent of their reported parameters were less than 972. Therefore, a starting value for a'_{mn} of 200 seems reasonable.

The results for each type of system will be given in three tables:

1) The first table will give the initial and final parameters, FMIN and standard deviation. Also, the correlation

error will be given if the program converged on a set of parameters. The minimization function FMIN was defined as:

$$FMIN = \frac{1}{v} \sum_{v} \left| \frac{\Delta_{H}^{M} - \Delta_{H}^{M}}{\Delta_{H}^{M}} \right|^{2}$$
(34)

where V is the number of data points used in determining the interaction parameters.

2) The second table will give the correlation errors for each set of parameters. The average and maximum percent error for each binary will be given. The maximum percent error is given in order to see if the parameters correlated the mixture well over the entire range of mole fraction. A column is also included which gives the experimental heat of mixing at its maximum value and the corresponding predicted number. This column was given in order to demonstrate the size of the error. The systems chosen for the regression included data at different temperatures and with various solvents, if possible.

3) The third table is the prediction results for the systems not included in the regression data base. Each system was predicted with each set of parameters. The column marked with an asterisk is the percent error for the set chosen as the final parameters. To demonstrate the size of the error, the maximum error $\Delta H^{M}_{max} = \left| \Delta H^{M}_{exp} - \Delta H^{M}_{calc} \right|$ is also given for each system.

D. Final Parameters

The final part of this thesis was to find interaction parameters for the following groups with CH₂:

- 1) benzene
- 2) methanol
- 3) alcohols
- 4) primary amines
- 5) secondary amines
- 6) tertiary amines
- 7) CCl, i.e. 1-chlorobutane
- 8) CCl₂, i.e. dichloromethane
- 9) CCl₃, i.e. chloroform

10) CCl₄, (carbon tetrachloride as separate group)

Table II contains the Q values for all the groups used in this thesis. All of these parameters are found from binary mixtures where one component is an alkane, for example, n-butanol + n-heptane.

When the final parameters were first correlated cycloalkanes were included in the data base. There were several reasons for including the cycloalkanes:

1) Availability of data. For some systems, such as benzene and alcohols, there is a considerable amount of experimental data in the literature. However, for other systems, for example, dichloromethane and chloroform, there is only a limited amount of data. In these cases including the cycloalkane data would hopefully

give interaction parameters with a wider applicability in terms of temperature range and size of solvent.

- 2) If cycloalkane data were not included then secondary parameters would be necessary to predict mixtures containing cycloalkanes. The binary system n-butanol + cyclohexane is taken as an example to illustrate the prediction method. If the cyclic CH_2 and the straight chain CH_2 were considered as equal then only the primary parameters a OH/CH_2 and a CH_2/OH would be needed to predict this mixture. However, if cycloalkanes were considered separately and excluded from the data base then secondary parameters would be needed. First, n-butanol + n-hexane would be correlated to find a OH/CH₂ and a CH₂/OH where CH₂ represents straight chain alkanes only. Then cyclohexane + n-hexane data would have to be regressed to find the parameters a $CH_2/(CH_2)$ and a $(CH_2)/CH_2$ where (CH_2) represents cyclic CH_2 as in cyclohexane. Finally, n-propanol + cyclohexane data would be regressed to find the parameters a OH/(CH2 and a $(CH_2)/OH$. These interaction parameters would be secondary parameters. After these three sets of parameters were obtained then the binary n-butanol + cyclohexane could be predicted.
- 3) Principle of group contribution methods. A group contribution method is an approximate method to calculate heats of mixing. It is used when experimental data is

not available. If too many functional groups are defined then the idea behind group contribution methods is defeated.

4) In the first UNIFAC paper by Fredenslund, Jones and Prausnitz (9) they did not include cycloalkanes in their data base when regressing for parameters. They did however predict two cyclohexane systems, cyclohexane + 1,2-dichloroethane and cyclohexane + methyl acetate, and obtained good predictions for both systems. They stated that, "these favorable results suggest that the UNIFAC is applicable to systems containing cyclohexane (6 CH₂ groups) and, perhaps, other cyclic alkanes." Although their paper dealt with VLE predictions it was hoped the same would be true for heats of mixing data.

Table XIV gives experimental data for cyclic alkanes and n-alkanes with a common second component at equal mole fractions. As seen from Table XIV there seems to be no common thread in the data, sometimes there is very little difference in the heats of mixing and, in some cases, the heats of mixing of one system are twice that of the other. Also, for three of the seven cases the heats of mixing of the cyclic system are greater than that of the normal alkane system.

Unfortunately, the simultaneous correlation of straight chain and cyclic alkanes gave poor results. Therefore, it was decided to exclude cyclic alkanes when correlating for the

final parameters. A summary of the results follows:

a) methanol. Tables XV to XX give the results for methanol. When the methanol + cyclohexane data at 25° C were correlated the regression results were better than when the 50.5° C binary was used.

b) Secondary amines. Tables XXI to XXV give the results for secondary amines. Ethyleneimine, trimethyleneimine, pyrrolidine, piperidine, hexamethyleneimine and heptamethyleneimine are cyclic amines of the formula $(CH_2)_nNH$ where n is two through seven. When two cyclic amine systems were included in the regression (Table XXI) the prediction results were poor for the other cyclic systems. Including three cyclic amines (Table XXIV) did not improve the results.

c) Tertiary amines. Tables XXVI and XXVII give the results for tertiary amines. The correlation results were poor but this is due more to the low heats of mixing of these systems ($\Delta H^{M} < 100 \text{ J/mole}$) than to the two cyclic amine systems included in the regression data base.

d) CCl. Tables XXVIII and XXIX are the results for CCl systems. Two sets of parameters were obtained, however, the value for a CH_2/G was the same for both sets while a G/CH_2 was different (where group G represents a group other than CH_2).

e) CCl₂. Tables XXX and XXXI give the results for CCl₂ systems. Three sets of parameters were obtained but the

correlation results were only adequate. Part of the problem may be due to the groups involved in the correlation. Dichloromethane is one group, CH₂Cl₂, while 1,1,2,2-tetrachloroethane is one group twice, CHCl₂. By the UNIFAC method the parameters would be the same but the group area parameter would be different. As will be seen later the value of Q can cause unexpected problems.

f) CCl₃. Tables XXXII and XXXIII give the results for CCl₃ systems. Since only two mixtures were included in the data base and their heats of mixing are fairly close (considering the temperature difference) the correlation results were very good.

g) CCl₄. Tables XXXIV and XXXV give the results for CCl₄ systems. Five sets of parameters were obtained where the correlation error was nearly the same - 52 to 53 percent. Closer inspection of the results show that the parameters for sets B and C are reversed, and the same is true for sets E and F. The same problem will appear when the cyclo systems are excluded.

Since the Q value for CH_2 in alkanes and cycloalkanes is the same, and equal to 0.54, it was attempted to improve the correlation results for cycloalkanes by changing the Q value for cyclic CH_2 . A similar approach was used by Anderson and Prausnitz (2) to improve the vapor-liquid equilibrium performance of the UNIQUAC model for systems containing water and alcohols. The following procedure

was used to find a new Q:

a) Fix a value for Q. Four Q values were used: 0.4,0.54, 0.65 and 0.75.

b) Regress for CH₂/Group G interaction parameters using the five systems in Table XXXVI. Three Type II systems were used because they make up the majority of binary mixtures.

c) Find the optimum Q from a plot of the overall average absolute error versus Q, as shown in Figure III. It is apparent that no significant improvement was obtained, at least for reasonable values of Q. It was decided, therefore, to treat the cyclic compounds separately.

Although a strong case had been made for considering cyclic and straight chain alkanes the same, there were several reasons for treating them separately:

1) Even if one Q value was more successful than the others and was adopted as the new Q for cyclic CH₂, this Q would also have to work for secondary parameters and beyond. More extensive work would have to be done to see what the effect would be on other systems.

2) As seen from Table XIV sometimes the heats of mixing for cyclic and straight chain alkanes are very close, and this is reflected in the correlation results which are very good. For example, the heats of mixing of chloroform with n-hexane and with cyclohexane were similar. If the Q value were changed it would probably increase the errors for these systems.

3) Although Fredenslund et al (9) reported good results for two cyclohexane systems, other authors have also had problems with cyclic systems. For example, Kikic et al (14) modified the combinatorial part of UNIFAC to better predict vapor-liquid equilibrium with cycloalkanes. Doan-Nguyen et al (7) reported separate parameters for cyclic CH₂ with benzene and toluene for the AGSM.

Tables XXXVII to LXVI present the correlation and prediction results for the final parameters when cyclic systems are excluded. Table LXVII gives a list of the final parameters for the ten groups along with their correlation error. For six of the ten cases more than one set of parameters gave a correlation error of less than 20 In such cases the set of parameters that were percent. the smallest in absolute value were chosen. The reasoning behind this will be given in more detail when the CCl + alkane systems is discussed. However, a similar conclusion was reached by Silverman and Tassios (37) in the correlation of vapor-liquid equilibrium data with the Wilson equation. Their work involved systems with negative deviations from Raoult's law where up to three sets of parameters are possible. Some specific comments for each type of system follow.

a) CCl. Tables XXXVII to XL give the results for CCl systems. (Please note that not all of the initial parameters in the grid were used. In order to save computer time the final parameters obtained from the cyclic regression were used as starting parameters here). Five sets of parameters were obtained with four sets giving a similar correlation error, especially if the experimental uncertainty of the data is taken into account. It should also be noticed that for sets B, D and E the value for a $CH_2/CC1$ is identical while a $CC1/CH_2$ varies. In order to determine the final interaction parameters, the four parameters $\psi(1,2)$, $\psi(2,1)$, $d\psi/dT(1,2)$ and $d\psi/dT(2,1)$ that enter into the calculation of heats of mixing were evaluated. The results are given in Table XL and show that only Set A gave reasonable numbers for the four values. Based on these results Set A was chosen as the final parameters. And, for this reason the set of parameters that were the smallest in absolute value were chosen as the final parameters.

Twenty-two systems were predicted as given in Table XXXIX and for thirteen systems the percent error was less than 20 percent. However, when one of the components was either 2-chlorobutane or t-butylchloride the prediction error was high. Figure 4 shows the experimental and predicted heats of mixing for n-hexane with 1-chlorobutane and with 2-chlorobutane at 25°C, the prediction errors were 3.9 percent and 29.4 percent, respectively. As seen from the graph the experimental heats of mixing for both systems are nearly identical. The reason the 2-chlorobutane prediction error is so high is due to the Q values. The groups for 1-chlorobutane are 2 CH_2 , 1 CH_3 and 1 CH_2Cl (Q = 1.264), while for 2-chlorobutane are 1 CH_2 , 2 CH_3 and 1 CHCl (Q = 0.952). The percentage difference between Q(CH_2Cl) and Q(CHCl) is nearly 25 percent, and this accounts for the difference in the predicted values. Ratcliff and coworkers also predicted these two systems but had much better results. This is due to the fact that the AGSM model does not distinguish between what carbon atom the Cl group is bonded with. The AGSM model predicts the same heats of mixing for the two systems, as a result, since the experimental values are so close the prediction error is very low for both systems.

Figure 5 shows the experimental and predicted heats of mixing for n-hexane with 1-chlorobutane and with t-butylchloride at 25° C, the prediction errors were 3.9 percent and 55.3 percent, respectively. The Q values again account for the large error for the t-butylchloride system. The groups for t-butylchloride are 3 CH₃ and 1 CCl (Q = 0.724) and the percentage difference between Q(CH₂Cl) and Q(CCl) is nearly 43 percent. This is the main reason for the high prediction error, the 3 CH₃ groups could increase the error slightly but shouldn't be much of a factor. Both of these graphs show that the theoretical advantage of the group area parameter Q is not always adequate in reality.

A test of a group contribution model is the effect of the chain length on the accuracy of the correlation and/or prediction. Figure 6 is for binary mixtures of 1-chlorobutane with an n-alkane at 25° C. No distinct trend is noticed but the error does not increase as the length of the alkane increases. Figure 7 is a graph for molecules containing the group CH₂Cl and n-alkanes. It shows that as the number of carbon atoms in the molecule with the group CH₂Cl increases the prediction error also increases. In general, both of these trends will be followed by other types of systems.

The effect of temperature could not be studied since all but two of the mixtures were at 25°C.

b) CCl_2 . Tables XLI and XLII give the results for CCl_2 systems. Only two mixtures were available and both were used for the correlation of the parameters. This is a case where the cycloalkanes would have expanded the data base somewhat. Set A was chosen as the final set of parameters, but this set may be temporary. For sets A and C the value for a CH_2/CCl_2 is very close, while a CCl_2/CH_2 is quite different. However, the difference (0.58) between the two sets for the parameter a CH_2/CCl_2 is somewhat larger than for the other cases (0.15 or less). The true test for these parameters will be when they are used for the evaluation of secondary parameters.

c) CCl₃. Tables XLIII and XLIV give the results for CCl₃ systems. Set B was chosen as the final parameters because it had the lowest correlation error and the parameters had
the smallest absolute value. Notice how the value for a CH_2/CCl_3 is identical (11.77) for sets A and E while a CCl_3/CH_2 is different.

An important point should be made here concerning both the CCl_2 and CCl_3 parameters. Only dichloromethane (CH₂Cl₂) was used to find the CCl₂ parameters, and only chloroform (CHCl₃) for the CCl₃ parameters. In theory, the CCl₂ parameters can be used to predict mixtures containing the specific groups $-CHCl_2$ and $-CCl_2$, for example, 1,1,2,2-tetrachloroethane (2 CHCl₂ groups) + n-hexane. How good the prediction would be is not known, but it would hopefully provide a reasonable approximation. The same reasoning holds for the group -CCl3. This gets back to the cyclo problem mentioned before and the mixture 1,1,2,2-tetrachloroethane + cyclohexane. How much of the difficulty in correlation is due to the cyclos and how much because of the different groups involved is not known. In conclusion, both the CCl₂ and CCl₃ parameters should be used with caution and reevaluated when more data becomes available with different solvents and temperatures.

d) CCl₄ (carbon tetrachloride). Tables XLV to XLVII give the results for CCl₄. Six sets of parameters were obtained, and one is obviously discounted because of its high error. The other five sets have a correlation error in the 7.0 to 7.7 percent range. As mentioned before in the cyclo section, there is a problem with reverse parameters for this system. The parameters for sets A and B are nearly the reverse, while sets D and E are the reverse also. This situation is unlike the one discussed before with the group CCl where the first parameter a CH_2/CCl was the same (and the FMIN was also the same). Fortunately, set C has a low correlation error and parameters that are small in absolute value. On first inspection, set C would be chosen as the final set of parameters. Sixteen binary mixtures were available for prediction, and as seen from Table XLVII no set of parameters performed significantly better than the others. Therefore, set C was chosen as the final parameters. The problem with reverse parameters was only encountered with this system. Methanol which was considered a separate group and benzene (6 ACH groups) did not have this problem. So carbon tetrachloride being a separate group would not cause this problem.

Since carbon tetrachloride data was relatively plentiful, several topics can be mentioned. Experimental data is available for octane isomers, and as seen from Tables XLVI and XLVII there is only a slight difference in the errors. However, the only two prediction errors greater than 15 percent are for CCl_4 + n-hexadecane, which suggests that the error increases with increasing chain length of alkane. This is the opposite conclusion that was found from the group CCl where no effect was found. Though the errors do increase they are still within reasonable limits.

Figure 8 is a study of the effect of temperature on

the correlation and prediction error. In general, there is an increase in error as the temperature increases. However, the temperature range is too small to make a definite conclusion. Also, the CCl_4 + n-hexadecane mixture was not included and the percent error at $40^{\circ}C$ was less than that at 20 or $30^{\circ}C$.

The source of experimental data has not been discussed since early in the Introduction, but Figure 8 raises an interesting point. It is noticed for the CCl_4 + n-hexane system that the errors slightly increase with temperature but that the average percent error at 25° is higher than expected. For CCl_4 + n-heptane the average percent error is also higher than anticipated. For CCl_4 + iso-octane the three points fall on a straight line. The reference for the experimental data was the same (69) except for the two systems at 25°C (45). How much of the error is due to the UNIFAC model and how much because of experimental error is not known, but this graph puts into perspective how well the UNIFAC does perform. It should be mentioned that the CCl_2 and CCl_3 parameters were correlated from the same source as the two points at 25°C.

Figure 9 was included to show how the heats of mixing of dichloromethane, chloroform and carbon tetrachloride with a common second component (n-hexane) are related. From the graph it is seen that the heats of mixing increase as the number of chlorine atoms decreases.

e) Primary amines. Tables XLVIII to L give the results for primary amines. Three sets of parameters were obtained, but set A was chosen as the final parameters because it was the only unique set. The other two sets both had a common parameter, the same problem as with the CCl group parameters.

f) Secondary amines. Tables LI to LIII give the results for secondary amines. Set B was clearly the better pair of parameters. The diethylamine mixtures have a relatively high error, 15.5 to 20.9 percent, and are predicted on the low side.

Tertiary amines. Tables LIV to LVII give the results g) for tertiary amines. Of the ten groups that were worked on, the tertiary amine regression was the most difficult one. When the data were first regressed (Table LIV) the two mixtures used were triethylamine + n-heptane at 45° C and tri-n-dodecyclamine $(C_{36}NH_{75})$ + n-octane at $30^{\circ}C$. The first binary was chosen because it had the highest temperature available, the second binary because it had the greatest number of CH2 groups. It was felt that with these two mixtures the parameters would have a wide range of applicability. However, the computer program could not converge on any parameters. The problem was due to the low heats of mixing of these systems. At equal mole fractions, ${\bf \Delta} { extsf{H}}^{ extsf{M}}$ for the first binary is 95 J/mole, for the second binary it is 62 J/mole. For the UNIFAC model these heats of mixing values are nearly the same, but the number of groups is

very different. Therefore, the program could not converge on any set of parameters. When tri-n-dodecyclamine + n-octane was replaced by triethylamine + n-hexane at 30°C (Table LV) a set of parameters was found. But still it was a difficult process, as seen by the many different initial parameters that were used.

The prediction errors are quite high for two of the systems (triethylamine + n-heptane at $25^{\circ}C$ and tri-n-dodecyclamine + n-octane at $30^{\circ}C$). For tri-n-dodecyclamine + n-octane at $30^{\circ}C$ the UNIFAC predicts a nearly ideal system, while the maximum experimental value is about 80 J/mole. The UNIFAC method tends to overcompensate towards ideality when predicting this system, due to the high number of CH₂ groups.

Figure 10 was included to show how the heats of mixing of n-butylamine, diethylamine and triethylamine with a common second component (n-heptane) are related. Both nbutylamine and diethylamine have three CH_2 or CH_3 groups, so the difference in heats of mixing is due to the amine group. All the experimental data were taken from the same reference (73). This reference also includes experimental data for the same three amines with benzene and chlorobenzene. Looking at this data it is seen how difficult it will be to evaluate secondary parameters. The heats of mixing of diethylamine + benzene and triethylamine + benzene are nearly the same (maximum ΔH^{M} of about 330 J/mole at 25°C), while

their heats of mixing are very different with n-heptane. The secondary parameters will have to account for this difference.

h) Benzene. Tables LVIII to LX give the results for benzene. Benzene was one of the components included in the evaluation of the Z(T) by Skjold-Jorgensen et al (40). And, as a result, the correlation of the benzene systems was easy as shown in Table LVIII. Set A was chosen as the final parameter set, with sets D and E having the same value for a CH_2/ACH and different values for a ACH/CH_2 .

Since there are a considerable amount of benzene data several topics can be studied. One of the topics is the prediction of isomeric alkanes. In this case the hexane and iso-octane isomers give very good results. Figure 11 is a graph of average percent error versus the number of carbon atoms in the alkane at two temperatures. It shows that the number of carbon atoms and the temperature have little effect on the prediction and correlation errors. i) Methanol. Tables LXI to LXIII give the results for methanol. The first question that should be asked is why methanol isn't considered 1 CH_3 and 1 OH group and classified as an alcohol? When Skjold-Jorgensen et al (39) revised and expanded the UNIFAC and defined the alcohol group as OH, they kept methanol as a separate group. They stated that experimental data were readily available and that based on their experience it was "advantageous to treat the first

number of a homologous series with special care". This fact is seen from Figure 12, which is a plot for different n-alcohols with n-heptane at 30° C. From the graph it is seen that the heats of mixing decrease with increasing chain length of the alcohol. However, methanol and ethanol do not follow this pattern. In order to ease the situation somewhat methanol is made a separate group.

Parameter set B was chosen as the final parameters with an average regression error of 4.5 percent. The experimental data for methanol + n-propane, + n-butane and + n-pentane at 25° C were recorded by Christensen and co-workers at Brigham Young University (91,76,53). They use a high-pressure flow calorimeter for their experimental data; for example, the methanol + n-propane run was made at 2985 kPa (29.5 atm) and 25° C. In light of this the prediction errors are quite credible.

j) Alcohols. Tables LXIV to LXVI give the results for alcohols. Three sets of parameters were obtained but Set A was chosen as the final parameters. As might be expected the alcohol parameters were similar to the methanol parameters.

One ethanol system was used in the correlation of the parameters and eight more systems were predicted. The average error for the nine ethanol systems was 16.1 percent. Two primary alcohol systems were used in the correlation and twenty were predicted. The average error for the twentytwo primary alcohol systems was 18.1 percent. One secondary

alcohol was used in the regression of parameters and four were predicted. The average error for the five secondary alcohols was 28.6 percent. Two tertiary alcohol systems were included in the correlation and prediction. The average error for the two systems was 28.9 percent.

Figure 13 is a graph that gives the heats of mixing of primary, secondary and tertiary alcohols with a common second component (n-hexane) at 45° C. It shows that the secondary alcohol (2-butanol) have the highest experimental heats of mixing, while the primary alcohol (n-butanol) have the lowest heats of mixing. However, the predicted results are nearly the same for the three mixtures. Since the parameters and the Q value for OH are the same for each type of alcohol, the only difference in the mixtures is the number of C, CH₂ and CH₃ groups. As can be seen from the prediction results these groups make little difference in the final error. It should be noted that the AGSM method would predict the same heats of mixing for the three mixtures. Each alcohol would be considered one OH group and four CH₂ groups.

An effort was made to improve the alcohol results by changing the Q value, the same idea that was done before with the cyclic alkanes. The procedure was as follows: a) Specify Q(OH). The values ranged from 1.0 to 5.0, the Q value by Bondi (3) is 1.2.

b) Regress for CH_2/OH parameters using the system n-butanol + n-heptane at $30^{\circ}C$.

c) Using these parameters predict 2-propanol + n-heptane at 30° C and 2-methyl-2-propanol + n-hexane at 27° C. However, as seen from Figure 14 no significant improvement was observed for any reasonable value of Q.

V. CONCLUSIONS

- Group contribution methods are a promising way to predict heats of mixing when experimental data are not available.
- 2. The three models (AGSM, UNIFAC with temperature dependent parameters and modified UNIFAC) were evaluated on the basis of their ability to correlate and predict the enthalpies of mixing of a selected set of binary systems. The modified UNIFAC model gave the best results and it was adopted in this study.
- 3. The simultaneous correlation of cyclic and straight chain alkanes gave poor results. Attempts to improve the error by changing the Q value for cyclic CH₂ failed. Therefore, cyclic alkanes will be treated separately.
- 4. Final interaction parameters were obtained for ten groups with alkanes (primary parameters). Only the correlation error for the alcohols was greater than 10 percent (17.6 percent).
- 5. A major problem in correlating the data was the multiplicity of roots. The best set of parameters was obtained by using a grid approach for the initial parameters.
- 6. Most of the experimental data used in the correlation are in the 25°C to 50°C range. Moderate extrapolation to higher temperatures should be satisfactory.

- 7. A theoretical advantage of UNIFAC over AGSM is the use of the group area parameter Q; however, the prediction of isomers was mixed. When the isomer was the alkane, for example iso-octane, the results were good. But when the isomer was the component containing the group G (where group G is a group other than CH₂) the results were not as good. For example, the high errors for the 2-chlorobutane mixtures were due to the Q value.
- 8. The results due to the length of the molecule varied. In general, when the chain length of the alkane increased the prediction error did not increase. However, when the length of the component containing the group G increased the prediction error also increased. In this case the calculated heats of mixing were less then the experimental value. UNIFAC tends to overcompensate towards ideality when the number of CH₂ groups is high.
- 9. The errors for primary alcohols were relatively good (15 - 20 percent), but the prediction errors for secondary and tertiary alcohols were high (25 - 30 percent).
- 10. 104 systems from the literature were predicted and 78 had a prediction error less than 20 percent.

NOMENCLATURE

^a jk, ^a kj	= AGSM temperature dependent parameters, equation (15)
a _{mn} , a _{nm}	= UNIFAC parameter, equation (25)
a _{mn} , a _{nm}	<pre>= modified UNIFAC parameter, temperature independent, equation (27)</pre>
^A jk, ^B jk	<pre>= AGSM temperature independent coefficients,</pre>
A _{mn} , B _{mn}	= UNIFAC temperature independent coeffi- cients used in Grand Plot, equation (30)
A ₀ , A ₁ , A ₂	<pre>= temperature dependent parameters, equa- tions (2) and (3)</pre>
^A n ₁₂ , ^A n ₁₃ , ^A n ₂₃	<pre>= temperature dependent parameters, ternary systems, equations (4) and (5)</pre>
^b jk, ^b kj	= AGSM temperature dependent parameter, equation (20)
^B ₀ , ^B ₁ , ^B ₂	<pre>= temperature dependent parameters, equation (1)</pre>
°11, °22	= cohesive energy density of pure component
°12	= interaction energy density
^C kj, ^D kj	= AGSM temperature independent coefficients used in Grand Plot, equation (31)
FMIN	= minimization function, equation (34)
G	= group, other than CH_2
G^{E}	= excess Gibbs free energy
^H k	= excess enthalpy of group k
H _{ki}	<pre>= standard state enthalpy of group k in pure component i</pre>
$\overline{\Delta H_{i}}$	= partial molar excess enthalpy of component i
ΔH^{G}	<pre>= excess enthalpy due to group interactions, equation (12)</pre>

$\Delta \operatorname{H}^{M}$	=	excess enthalpy
$\Delta \mathrm{H}^{\mathrm{S}}$	=	excess enthalpy due to skeletal contribution, equation (12)
$\Delta \mathtt{H}^{\mathtt{M}}_{\mathtt{max}}$	=	maximum absolute difference in J/mole between experimental and calculated excess enthalpy
L	=	number of systems, equation (32)
N _{ki}	=	number of groups of type k in component i
Р	=	pressure
Q _k	=	area parameter of group k
R	=	gas constant, J/K mole
^S c	=	average cumulative prediction error, equation (32)
Sj	×	average absolute percent error for system j, equation (33)
t	=	temperature, ^o C
Т	=	absolute temperature, ^O K
U _{mn}	-	measure of the energy of interaction between groups m and n
V	æ	number of experimental data points, equations (33) and (34)
x	=	liquid phase mole fraction
x _k	#	group fraction of group k in the mixture
Z	=	lattice coordination number

Greek	Symbols	
β	2000 - 2000 - 20	temperature exponent, equations (30) and (31)
γ_i^{G}	=	activity coefficient due to effect of group contribution, equation (11)
$\Gamma_{\mathbf{k}}$	=	activity coefficient of group k
${\Gamma_k}^*$	=	activity coefficient of group k at standard state
Θ_{m}	=	area fraction of group m
ψ_{mn} ,	$\psi_{nm} =$	UNIFAC group parameters, equation (25)

Subscripts

calc	= calculated
exp	= experimental
pre	= predicted
i	= component i
j, k, m, n	= groups j, k, m and n

Superscripts

G	=	group contribution
S	=	skeletal
×	=	reference state

SELECTED BIBLIOGRAPHY

A. <u>Primary</u> Sources

- Abrams, D.S. and Prausnitz, J.M., "Statistical Thermodynamics of Liquid Mixtures. A New Expression for the Excess Gibbs Energy of Partly and Completely Miscible Systems," <u>AICHE</u> J., 21,116(1975).
- Anderson, T.F. and Prausnitz, J.M., "Application of the UNIQUAC Equation to Calculation of Multicomponent Phase Equilibria. 1. Vapor-Liquid Equilibria," <u>Ind.Eng.Chem.Proc.Des.Dev.</u>, 17,552(1978).
- 3. Bondi, A., <u>Physical Properties of Molecular Crystans</u>, Liquids and Glasses, Wiley, New York(1968).
- 4. Bronsted, J.N. and Koefoed, J., <u>Danske Videnskab</u>. <u>Selekab.Mat. Fys. Medd.</u>, 27, No. 17, 1(1946).
- 5. Brown, I. and Fock, W., <u>Aust. J. Chem.</u>, 8, 361(1955).
- 6. Chao, K.C., Robinson, R.L., Smith, M.L. and Kuo, C.M., "A Group Interaction Theory of Heats of Mixing and Application to Alcohol: Paraffin Solutions," <u>Chem. Eng. Prog. Sym. Ser. No. 81</u>, 63,121(1967).
- 7. Doan-Nguyen, T.H., Vera, J.H. and Ratcliff, G.A., "Prediction of Heats of Mixing by an Analytical Group Solution Model," 27th Canadian Chemical Engineering Conference, Calgary, Alberta, 1977.
- 8. Fredenslund, Aa., Gmehling, J. and Rasmussen, P., <u>Vapor-Liquid</u> Equilibria Using UNIFAC: A Group <u>Contribution Method</u>. Elsevier Scientific Pub. <u>Co.</u>, New York (1977).
- 9. Fredenslund, Aage, Jones, Russel L. and Prausnitz, John M., "Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures," AICHE J., 21,1086(1975).
- 10. Goates, J.R., Snow, R.L. and James, M.R., "Application of Quasi-lattice Theory to Heats of Mixing in some Alcohol-Hydrocarbon Systems," J. Phy. Chem., 65,335(1961).
- 11. Goates, J. Rex, Sullivan, Ralph J. and Ott, J. Bevan, "Heats of Mixing in the System Carbon Tetrachloride -Cyclohexane-Benzene," J. Phy. Chem., 63,589(1959).

- 12. Hanks, Richard W., Gupta, Avinash C. and Christensen, James J., "Calculation of Isothermal Vapor-Liquid Equilibrium Data for Binary Mixtures from Heats of Mixing," <u>Ind. Eng. Chem. Fund.</u>, 10,504(1971).
- 13. Hirobe, H., J. Fac. Sci. Imp. Univ. Tokyo, 1,155(1925).
- 14. Kikic, Alessi, Rasmussen, P. and Fredenslund, Aa., "On the Combinatorial Part of the UNIFAC and UNIQUAC Models," Can. J. Chem. Eng., 58,253(1980).
- 15. Lai, Tu Tam, Doan-Nguyen, T. Huong, Vera, Juan H. and Ratcliff, Gerald A., "Prediction of Heats of Mixing of Liquid Mixtures Containing Alkane, Chloroalkane and Alcohol by an Analytical Group Solution Model," <u>Can. J. Chem. Eng.</u>, 56,358(1978).
- 16. Langmuir, I., "The Distribution and Orientation of Molecules," <u>Third Colloid Symposium Monograph</u>, The Chemical Catalog Company, Inc., New York(1925).
- 17. Lee, Tsung-Wen, Greenkorn, Robert A. and Chao, Kwang-Chu, "Statistical Thermodynamics of Group Interactions in Pure n-alkane and n-alkanol-1 liquids," Ind. Eng. Chem. Fund., 11,293(1972).
- 18. Lee, Tsung-Wen, Greenkorn, Robert A. and Chao, Kwang-Chu, "Statistical Thermodynamics of Group Interactions in n-alkanone Pure Liquids and Solutions," Can. J. Chem. Eng., 51,81(1973).
- 19. Lee, Tsung-Wen, Greenkorn, Robert A. and Chao, Kwang-Chu, "Statistical Thermodynamics of Group Interactions in n-alkane-n-alkanol and n-alkanol-n-alkanol Solutions," Chem. Eng. Sci., 28,1005(1973).
- 20. Liu, Joseph C.H., Weber, James H. and Tao, Luh C., "Prediction of Ternary Heat of Mixing from Binary Vapor-Liquid Equilibrium and Heat of Mixing Data by Using Wilson Equation," <u>Can. J. Chem. Eng.</u>, 56,766(1978).
- 21. McGlashan, M.L. in <u>Experimental Thermochemistry</u>, <u>Vol II</u>, H.A. Skinner, Ed., Interscience Publishers, Inc., New York, N.Y., 1962, Chapter 15.
- 22. Nagata, Isamu and Yamada, Toshiro, "Correlation and Prediction of Heats of Mixing of Liquid Mixtures," <u>Ind. Eng. Chem. Proc. Des. Dev.</u>, 11,574(1972).
- 23. Nagata, Isamu and Ohta, Tatsuhiko, "Prediction of the Excess Enthalpies of Mixing of Mixtures using the UNIFAC Method," <u>Chem. Eng. Sci.</u>, 33,177(1978).

- 24. Nguyen, T.H. and Ratcliff, G.A., "Prediction of Heats of Mixing by a Group Solution Model with Application to Alkane/Alcohol Mixtures," <u>Can. J. Che. Eng.</u>, 49,120(1971).
- 25. Nguyen, T.H. and Ratcliff, G.A., "Prediction of Heats of Mixing Containing Aliphatic Hydrocarbons and Ketones by a Group Solution Model," Can. J. Chem. Eng., 49,889(1971).
- 26. Nguyen, T.H. and Ratcliff, G.A., "Prediction of Heats of Mixing of Liquid Mixtures by an Analytical Group Solution Model," <u>Can. J. Chem. Eng.</u>, 52,641(1974).
- 27. Nguyen, T.H. and Ratcliff, G.A., "Heats of Mixing of Binary Systems of Isopentanol and n-pentanol with Hexane Isomers at 25°C: Measurement and Prediction by Analytical Group Solution Model," J. Chem. Eng. Data, 20,256(1975).
- 28. Nicolaides, George L. and Eckert, Charles A., "Optimal Representation of Binary Liquid Mixtures Nonidealities," Ind. Eng. Chem. Fund., 17,331(1978).
- 29. Ojini, Ignatius, "Temperature Dependency of the Group Interaction Parameters in the AGSM and UNIFAC Models for the Prediction of Heats of Mixing," M.S. Thesis, Department of Chemical Engineering, New Jersey Institute of Technology (1980).
- 30. Papadopoulos, M.N. and Derr, E.L., "Group Interaction. II. A Test of the Group Model on Binary Solutions of Hydrocarbons," J. Am. Chem. Soc., 81,2285(1959).
- 31. Ramalho, R.S., Tillie, J.L. and Kaliaguine, S., "Heats of Mixing for Homologous Series of Ketones and Their Prediction from Group Interaction Theory and the Congruence Principle," <u>Can. J. Chem. Eng.</u>, 41,830(1970).
- 32. Ratcliff, G.A. and Chao, K.C., "Prediction of Thermodynamic Properties of Polar Mixtures by a Group Solution Model," <u>Can. J. Chem. Eng.</u>, 47,148(1969).
- 33. Redlich, O. Derr, E.L. and Pierotti, G.J., "Group Interaction. I. A Model for Interaction in Solutions," J. <u>Am. Chem. Soc.</u>, 81,2283(1959).
- 34. Redlich, Otto and Kister, A.T., "Algebraic Representation of Thermodynamic Properties and the Classification of Solutions," <u>Ind. Eng. Chem.</u>, 40,345(1948).

- 35. Scatchard, George, Ticknor, Leland B., Goates, J. Rex and McCartney, Eric R., "Heats of Mixing in Some Non-electrolyte Solutions," J. Am. Chem. Soc., 74,3721(1952).
- 36. Schnaible, H.W., Van Ness, H.C. and Smith, J.M., "Heats of Mixing of Liquids," <u>AICHE J.</u>, 3,147(1957).
- 37. Silverman, N. and Tassios, D., "The Number of Roots in the Wilson Equation and Its Effect on Vapor-Liquid Equilibrium Calculations," <u>Ind. Eng. Chem. Proc. Des. Dev.</u>, 16,13(1977).
- 38. Siman, Jaime E. and Vera, Juan H., "Heats of Mixing of Amine-Alcohol Systems. An Analytical Group Solution Model Approach," <u>Can. J. Chem. Eng.</u>, 57,355(1979).
- 39. Skjold-Jorgensen, Steen, Kolbe, Barbel, Gmehling, Jurgen and Rasmussen, Peter, "Vapor-Liquid Equilibria by UNIFAC Group Contribution. Revision and Extension." Ind. Eng. Chem. Proc. Des. Dev., 18,714(1979).
- 40. Skjold-Jorgensen, S., Rasmussen, P. and Fredenslund, Aa., "On the Temperature Dependence of the UNIQUAC/UNIFAC Models," <u>Chem. Eng. Sci.</u>, 35,2389(1980).
- 41. Tompa, H., "Statistical Thermodynamics of Mixtures of Normal Paraffins," <u>Faraday Soc. Trans.</u>, 45,101(1949).
- 42. Tsao, C.C. and Smith, J.M., "Heats of Mixing of Liquids," Chem. Eng. Prog. Sym. Series No. 7, 49,107(1953).
- 43. Williamson, A.G. and Scott, R.L., "Heats of Mixing of Non-Electrolyte Solutions. I. Ethanol + Benzene and Methanol + Benzene," J. Phy. Chem., 64,440(1960).

44. Andrews, A.W. and Morcom, K.W., J. Chem. Thermo., 3,519(1971). Bissell, T.G., Okafor, G.E. and Williamson, A.G., 45. J. Chem. Thermo., 3,393(1971). Brown, I., Fock, W. and Smith, F., <u>Aust. J. Chem.</u>, 17,1106(1964). 46. Brown, I., Fock, W. and Smith, F., J. Chem. Thermo., 1,273(1969). 47. Budoo, B. and Philippe, R., J. Chem. Thermo., 48. 10,1147(1978). Cabani, S. and Ceccanti, N., J. Chem. Thermo., 5,9(1973). 49. Campbell, A.N. and Kartzmark, E.M., Can. J. Chem., 50. 47.619(1969). Christensen, J.J., Izatt, R.M., Stitt, B.D. and 51. Hanks, R.W., J. Chem. Thermo., 11,261(1979). Christensen, J.J., Izatt, R.M., Stitt, B.D., 52. Hanks, R.W. and Williamson, K.D., J. Chem. Thermo., 11,1029(1979). Collins, S.G., Christensen, J.J., Izatt, R.M. and 53. Hanks, R.W., J. Chem. Thermo., 12,609(1980). Diaz Pena, M. and Menduina, C., J. Chem. Thermo., 54. 6,387(1974). 55. Diaz Pena, M. and Menduina, C., J. Chem. Thermo., 6,1097(1974). Doan-Nguyen, T.H., Vera, J.H. and Ratcliff, G.A., J. Chem. Eng. Data, 23,218(1978). 56. Elliot, Keith and Wormald, Christopher J., 57. J. Chem. Thermo., 8,881(1976). 58. Ewing, M.B. and Marsh, K.N., J. Chem. Thermo., 2,351(1970). Findlay, T.J.V. and Kavanagh, P.J., J. Chem. Thermo., 59. 6,367(1974). Gracia, M., Otin, S. and Gutierrez Losa, C., 60. J. Chem. Thermo., 6,701(1974).

- 61. Grauer, F. and Kertes, A.S., J. Chem. Eng. Data, 18,405(1973).
- 62. Grolier, J.-P.E., Int. Data Series, Selected Data Mixtures, Series A, 1974, 222.
- 63. Grolier, J.-P.E., Ballet, D. and Viallard, A., J. Chem. Thermo., 6,895(1974).
- 64. Grolier, J.-P.E. and Inglese, A., Int. Data Series, Selected Data Mixtures, Series A, 1975, 72.
- 65. Grolier, J.-P.E. and Inglese, A., Int. Data Series, Selected Data Mixtures, Series A, 1975, 73.
- 66. Grolier, J.-P.E. and Inglese, A., Int. Data Series, Selected Data Mixtures, Series A, 1975, 74.
- 67. Handa, Yash Paul, Knobler, Charles M. and Scott, Robert L., J. Chem. Thermo., 9,451(1977).
- 68. Harsted, Bjarne Schroll and Thomsen, E. Sonnich, J. Chem. Thermo., 6,549(1974).
- 69. Harsted, B.S. and Thomsen, E.S., <u>J. Chem. Thermo.</u>, 6,557(1974).
- 70. Hsu, Kuei-Yen and Clever, H. Lawrence, J. Che. Eng. Data, 20,268(1975).
- 71. Karbalai Ghassemi, M.H. and Grolier, J.-P.E., Int. Data Series, Selected Data Mixtures, Series A, 1976, 66.
- 72. Kiyohara, Osamu, Benson, George C. and Grolier, Jean-Pierre E., J. Chem. Thermo., 9,315(1977).
- 73. Letcher, T.M. and Bayles, J.W., <u>J. Che. Eng. Data</u>, 16,266(1971).
- 74. Lundberg, G.W., J. Che. Eng. Data, 9,193(1964).
- 75. Mahl, B.S. and Khurma, J.R., <u>J. C. S. Faraday I</u>, 73,29(1977).
- 76. McFall, T.A., Post, M.E., Collins, S.G., Christensen, J.J. and Izatt, R.M., J. Chem. Thermo., 13,41(1981).
- 77. Mrazek, Robert V. and Van Ness, H.C., <u>AICHE J.</u>, 7,190(1961).
- 78. Murakami, Sachio and Fujishiro, Ryoichi, Bull. Chem. Soc. Jap., 39,720(1966).

- 79. Nguyen, T.H. and Ratcliff, G.A., J. Chem. Eng. Data, 20,252(1975).
- 80. Paz Andrade, M.I., Int. Data Series, Selected Data Mixtures, Series A, 1973, 100.
- 81. Paz Andrade, M.I., Int. Data Series, Selected Data Mixtures, Series A, 1973, 101.
- 82. Paz Andrade, M.I., Int. Data Series, Selected Data Mixtures, Series A, 1973, 102.
- 83. Paz Andrade, M.I., Int. Data Series, Selected Data Mixtures, Series A, 1973, 103.
- 84. Paz Andrade, M.I., Int. Data Series, Selected Data Mixtures, Series A, 1973, 104.
- 85. Paz Andrade, M.I. and Bravo, R., Int. Data Series, Selected Data Mixtures, Series A, 1977, 71.
- 86. Paz Andrade, M.I. and Bravo, R., Int. Data Series, Selected Data Mixtures, Series A, 1977, 73.
- 87. Paz Andrade, M.I. and Bravo, R., Int. Data Series, Selected Data Mixtures, Series A, 1977, 74.
- 88. Paz Andrade, M.I. and Bravo, R., Int. Data Series, Selected Data Mixtures, Series A, 1977, 75.
- 89. Paz Andrade, M.I., Bravo, R., Garcia, M., Grolier, J.-P.E. and Kehiaian, H.V., <u>J. De Chimie Phy</u>., 76,51(1979).
- 90. Posa, C. Gonzalez, Nunez, L. and Villar, E., J. Chem. Thermo., 4,275(1972).
- 91. Post, M.E., McFall, T.A., Christensen, J.J. and Izatt, R.M., <u>J. Chem. Thermo.</u>, 13,77(1981).
- 92. Ramalho, R.S. and Ruel, M., <u>Can. J. Chem. Eng.</u>, 46,456(1968).
- 93. Savini, C.G., Winterhalter, D.R. and Van Ness, H.C., J. Chem. Eng. Data, 10,168(1965).
- 94. Savini, C.G., Winterhalter, D.R. and Van Ness, H.C., J. Chem. Eng. Data, 10,171(1965).
- 95. Touhara, H., Ikeda, M., Nakanishi, K. and Watanabe, N., J. Chem. Thermo., 7,887(1975).

- 96. Valero, J., Gracia, M. and Gutierrez Losa, C., J. Chem. Thermo., 12,621(1980).
- 97. Van Ness, H.C., Soczek, C.A. and Kochar, N.K., J. Chem. Eng. Data, 12,346(1967).
- 98. Van Ness, H.C., Soczek, C.A., Peloquin, G.L. and Machado, R.L., J. Chem. Eng. Data, 12,217(1967).
- 99. Velasco, I., Otin, S. and Gutierrez Losa, C., J. Chimie Physique et de Physico-Chimie Biologique, 75,706(1978).
- 100. Watson, A.E.P., McLure, I.A., Bennett, J.E. and Benson, G.C., <u>J. Phy. Chem.</u>, 69,2753(1965).
- 101. Winterhalter, D.R. and Van Ness, H.C., J. Chem. Eng. Data, 11,189(1966).

TABLE 1. Data Base for AGSM Group Parameters

by Ratcliff and co-workers (7).

	No. of		AVE.
Groups	Systems	t, ^o C	RMSD
alkane, ketone	2	$0^{0}(2), 20^{0}(1), 25^{0}(2)$	6.0
alkane, ester	Ċ	all at 25 ⁰	4.5
alkane, ether	-	250	12.8
alkane, nitrile	-	250	10.7
alkane, amine	-	250	3.2
benzene, alkane	ĸ	all at 25 ⁰	2.2
toluene, alkane	R	25 ⁰ (2), 50 ⁰ (1)	3.0

TABLE II. Group Area Parameter - Q_k.

Main Group	Subgroup	Qk	Example
	CH3	0.848	ethane: 2 CH ₃
"CH2"	Сн	0.540	butane: 2 CH_3 , 2 CH_2
-	СН	0.228	2-methylpentane: 3 CH ₃ , 2 CH ₂ , 1 CH
	C	0.000	2,2-dimethylbutane: 4 CH ₃ , 1 CH ₂ , 1 C
"ACH"	ACH	0.400	benzene: 6 ACH
"OE"	он	1,200	2-butanol: 2 CH3, 1 CH2, 1 CH, 1 CH
"СН3ОН"	снзсн	1.432	methanol: 1 CH ₃ OH
	CH3NH2	1.544	methylamine: 1 CH ₃ NH ₂
"CNH2"	CH2NH2	1,236	n-butylamine: 1 CH ₃ , 2 CH ₂ , 1 CH ₂ NH ₂
-	CHNH2	0.924	isopropylamine: 2 CH3, 1 CHNH2
	CH_NH	1.244	dimethylamine: 1 CH_, 1 CH_NH
RONHW	CH NH	0.936	diethylamine: 2 CH-, 1 CH-, 1 CH-NH
0	CHNH	0.624	diisopropylamine: 4 CH_, 1 CH, 1 CHNH
	····	0.024	
"(C) ₃ N"	CH ₃ N	0.940	trimethylamine: 2 CH ₃ , 1 CH ₃ N
)	CH2N	0.632	triethylamine: 3 CH ₃ , 2 CH ₂ , 1 CH ₂ N
	CH_CL	1.264	1-chlorobutane: 1 CH3, 2 CH2, 1 CH2CL
"CCL"	CHCL	0.952	2-chlorobutane: 2 CH ₃ , 1 CH ₂ , 1 CHCL
	CCL	0.724	2-chlcro-2-methylpropane: 3 CH ₃ , 1 CCL
	CH,CL,	1.988	dichloromethane: 1 CH2CL2
"CCL2"	CHCL,	1.684	1,1-dichloroethane: 1 CH ₃ , 1 CHCL ₂
-	CCL2	1.448	2,2-dichloropropane: 2 CH ₃ , 1 CCL ₂
"CCL3"	CHCL	2.410	chloroform: 1 CHCL3
	ccr3	2.184	1,1,1-trichloroethane: 1 CH ₃ , 1 CCL ₃
"CCL ₄ "	CCL4	2.910	carbon tetrachloride: 1 CCL4
	CH2CH2OH	1.664	1-propanol: 1 CH3, 1 CH2CH2CH
	CHCHCH3	1.660	2-butancl: 1 CH ₃ , 1 CH ₂ , 1 CHCHCH ₅
"CCCH"	CHCHCH2	1.352	3-octanol: 2 CH_3 , 4 CH_2 , 1 $CHCHCH_2$
	CH3CH2OH	1.972	ethanol: 1 CH3CH2CH
	CHCH2CH	1.352	2-methyl-1-propanol: 2 CH ₃ , 1 CHCH ₂ CH

Prediction of Alcohol/Alkane Systems Using Ratcliff and co-worker's parameters (7,38) For the AGSM Model. TABLE III.

Avg. % Error

		Data	${f \Delta}_{ m H}{}^{ m M}$	$\mathbf{\Delta}$ H ^M & VLE	
System	t, ^o C	Points	Data	Data	Ref
ethanol + n-hexane	30	18	11.1	47.2	93
ethanol + n-hexane	45	18	7.4	52.0	63
ethanol + n-nonane	30	18	19.4	52.4	93
ethanol + n-nonane	45	18	17.1	55.5	63
n-propanol + n-heptane	30	18	2.0	18.7	63
n-propanol + n-heptane	45	18	6. 6	17.3	93
n-butanol + n-heptane	30	18	5.7	6.8	66
n-butanol + n-heptane	45	18	9 • 5	4.8	63
n-pentanol + n-hexane	30	18	7.9	5.6	66
	45	18	10.3	4.6	93
- n-octanol + n-heptane	30	18	11.9	9 . 8	93
n-octanol + n-heptane	45	18	9.2	6.1	93
n-octanol + n-nonane	30	18	10.5	8°9	66
n-octanol + n-nonane	45	18	10.3	6.3	93

<u>TABLE IV.</u> Prediction of Group G/Alkane Systems Using Ratcliff and co-worker's parameters (7) For the AGSM Model.

		Data	Avg. %	
System	t, ^o C	Points	Error	Ref.
2-butanone + n-hexane	25	20	4.6	72
2-pentanone + n-hexane	25	20	5,0	72
3-pentanone + n-hexane	25	20	9.4	72
ethyl acetate + n-hexane	25	17	2.4	63
methyl acetate + n-octane	25	21	2.7	63
methyl acetate + n-hexane	25	16	4.3	63
methyl acetate + n-dodecane	25	21	5.4	63
ethyl acetate + n-octane	25	22	1.9	63
ethyl acetate + n-dodecane	25	20	4.0	63
propyl acetate + n-hexane	25	17	1.8	63
butyl acetate + n-hexane	25	18	4.8	63
n-butylamine + n-heptane	25	6	11.0	73
n-butylamine + n-heptane	45	6	5.3	73
benzene + n-octane	25	21	2.3	54
benzene + n-octane	50	13	17.1	55
benzene + n-dodecane	25	10	3.9	54
benzene + n-dodecane	50	15	18.6	55

TABLE V. Regressing for interaction parameters at one temperature versus regressing at more than one temperature for the UNIFAC model.

System	n-propanol + n-heptane 30°C				
Parameters used	30 ⁰	$30^{\circ} + 45^{\circ}$			
Avg. % Error	0.9	5.88			
and the second secon					
System	n-propanol +	n-heptane 45°C			
Parameters used	30 ⁰	$30^{\circ} + 45^{\circ}$			
Avg. % Error	15.6*	7.54			

*Prediction Error

TABLE VI. Selected Type I and Type II systems used in evaluating the optimum exponent, β , in equations (30) and (31).

System	Type	t, ^o C	Data Points	Ref.
nitroethane + 2,2-dimethylbutane	I	30	10	67
nitroethane + 2,2-dimethylbutane	I	40	4	67
n-octanol + n-heptane	I	30	18	93
n-octanol + n-heptane	I	55	10	79
benzene + n-octane	II	25	18	54
benzene + n-octane	II	50	18	55
n-butylamine + n-heptane	II	25	8	73
n-butylamine + n-heptane	II	45	6	73

System Type I.		<u>nitro</u>	ethane	+ <u>2,2-a</u>	imethyl	outane	<u>30°C</u>	
Temperature Exponent	+2.0	+1.5	+1.0	+0.5	-0.5	-1.0	-1.5	-2.0
S AGSM	7.1	7.8	8.4	N.C.	7.2	7.5	N.C.	4.9
S _j UNIFAC	1.5	1.4	1.7	0.7	N.A.	5.8	4.7	7.4
J.			n-octar	<u>nol + n</u>	-heptane	<u>30°c</u>		· · · ·
Temperature Exponent	+2.0	+1.5	+1.0	+0.5	-0.5	-1.0	-1.5	-2.0
S AGSM	1.7	2.4	1.0	N.C.	1.1	1.5	15.3	15.7
S _I UNIFAC	1.1	1.5	1.1	3.0	1.1	7.7	5.4	3.7
System Type II	•		benzer	<u>ie + n-c</u>	<u>octane</u>	25°C		
Temperature Exponent	+2.0	+1.5	+1.0	+0.5	-0.5	-1.0	-1.5	-2.0
S _j AGSM	0.3	1.2	0.3	1.5	1.0	0.3	0.3	0.4
S UNIFAC	0.3	0.3	0.3	0.7	0.6	0.5	0.5	0.3
•		<u>n-</u>	-butylan	<u>ine</u> + 1	n-heptar	<u>1e 25°</u>	2	
Semperature Exponent	+2.0	+1.5	+1.0	+0.5	-0.5	-1.0	-1.5	-2.0
S, AGSM	1.3	1.5	1.8	2.1	1.4	1.4	1.4	1.4
SjUNIFAC	1.3	1.4	1.4	1.4	1.3	1.5	1.3	1.2

TABLE VII. Regression Error for AGSM and UNIFAC in the Grand Plot.

.

No Convergence

N.A.: Not Available

<u>System Type I</u>	•	<u>nitroe</u>	thane	+ <u>2,2-d</u>	imethyll	utane	40°C	
Temperature Exponent	+2.0	+1.5	+1.0	+0.5	-0.5	-1.0	-1.5	-2.0
S _j AGSM	14.4	10,9	8.1	N.C.	23.9	2.6	N.C.	1.0
S, UNIFAC	10.6	7.0	12.5	4.0	2.2	3.0	3.0	3.0
		1	n-octa	<u>nol</u> + <u>n</u> -	heptane	<u>55°C</u>		
Temperature Exponent	+2.0	+1.5	+1.0	+0.5	-0.5	-1.0	-1.5	-2.0
S _j AGSM	13.9	52597.5	5.5	N.C.	31.9	53.0	30.8	31.7
SJUNIFAC	1.2	4.5	18.0	12.1	43.0	24.0	22.0	21.1
-								
System Type I	<u>I</u> .		benze	<u>ne</u> + <u>n-c</u>	octane	<u>50°c</u>		
<u>System</u> <u>Type</u> <u>I</u> Temperature Exponent	<u>1</u> . <u>+2.0</u>	+1.5	benze	<u>ne + n-c</u> +0.5	-0.5	<u>50°C</u> _1.0	-1.5	-2.0
<u>System Type I</u> Temperature Exponent S _j AGSM	<u>+2.0</u> 214.9	+1.5 78.6	<u>benze</u> +1.0 13.5	<u>ne</u> + <u>n-c</u> +0.5 168.0	-0.5 14.2	<u>50°C</u> -1.0 17.5	<u>-1.5</u> 24.3	-2.0 278.1
<u>System Type I</u> Temperature Exponent S _j AGSM S _j UNIFAC	<u>+2.0</u> 214.9 17.6	+1.5 78.6 13.6	<u>benze</u> +1.0 13.5 9.3	<u>ne</u> + <u>n-c</u> +0.5 168.0 9.6	-0.5 14.2 7.8	<u>50°c</u> -1.0 17.5 5.9	<u>-1.5</u> 24.3 5.6	-2.0 278.1 7.2
<u>System Type I</u> Temperature Exponent S _j AGSM S _j UNIFAC	<u>+2.0</u> 214.9 17.6	+1.5 78.6 13.6 <u>n-1</u>	<u>benze</u> +1.0 13.5 9.3 butyla	<u>ne</u> + <u>n-c</u> +0.5 168.0 9.6 mine + 1	-0.5 14.2 7.8 h-heptar	<u>50°c</u> -1.0 17.5 5.9 <u>3e</u> <u>45[°]</u>	<u>-1.5</u> 24.3 5.6	-2.0 278.1 7.2
<u>System Type I</u> Temperature Exponent S _j AGSM S _j UNIFAC Temperature Exponent	<u>+2.0</u> 214.9 17.6 <u>+2.0</u>	+1.5 78.6 13.6 <u>n-1</u> +1.5	<u>benze</u> +1.0 13.5 9.3 <u>butyla</u> +1.0	<u>ne</u> + <u>n-c</u> +0.5 168.0 9.6 <u>mine</u> + <u>r</u> +0.5	<u>-0.5</u> 14.2 7.8 <u>a-heptar</u> -0.5	$\frac{50^{\circ}c}{-1.0}$ 17.5 5.9 3e 45° -1.0	<u>-1.5</u> 24.3 5.6 <u>-1.5</u>	-2.0 278.1 7.2 -2.0
<u>System Type I</u> Temperature Exponent S _j AGSM S _j UNIFAC Temperature Exponent S _j AGSM	<u>+2.0</u> 214.9 17.6 <u>+2.0</u> 59.6	+1.5 78.6 13.6 <u>n-1</u> +1.5 24.8	<u>benze</u> +1.0 13.5 9.3 <u>butyla</u> +1.0 57.5	<u>ne</u> + <u>n-c</u> +0.5 168.0 9.6 <u>mine</u> + <u>1</u> +0.5 107.8	-0.5 14.2 7.8 0-heptar -0.5 1.8	<u>50°0</u> -1.0 17.5 5.9 <u>36</u> <u>45°</u> -1.0 26.8	<u>-1.5</u> 24.3 5.6 <u>-1.5</u> 5.0	-2.0 278.1 7.2 -2.0 6.3

TABLE VIII. Prediction Error for AGSM and UNIFAC in the Grand Plot.

.

N.C.: No parameters obtained from data regression.

TABLE IX.	Prediction of the system n-octanol
	+ n-heptane by AGSM where $\beta = 1.50$.

t, ^o C	DATA POINTS	AVG. % ERROR	REF
15	10	54.86	79
30	, 18	3.71	93
45	18	10737.0	93
55	10	51475.0	79

TABLE X. Examples of Multiplicity of Roots For AGSM in the Grand Plot. Parameters Correlated from n-octanol + n-heptane at $30^{\rm O}$ C (β = +1.50).

			<u>ເ</u>	i	
		Data	Correlation	Correlation	
System	t, ^o c	Points	Error=3.7%	Error=14.7%	Ref.
n-octanol + n-heptane	15	10	54.9	16.5	61
n-octanol + n-heptane	30	18	3.7	14.7	63
n-octanol + n-heptane	45	18	10737.0	14.2	93
n-octanol + n-heptane	55	10	51475.0	19.9	62
Parameters Correlated	from be	nzene + r	-octane at 25 ⁰	$C (\beta = -1.50).$	•
			ן בע	لر .	
		Data	Correlation	Correlation	
System	t, ⁰ C	Points	Error=4.7%	Error=0.4%	Ref.
benzene + n-octane	25	21	4.7	0.4	54
benzene + n-octane	50	13	29.2	28.6	55
benzene + n-dodecane	25	10	5.9	2.1	54
benzene + n-dodecane	50	15	27.7	29.2	55

<u>TABLE</u> XI. Results for the Grand Plot using UNIFAC with the Z(T).

SYSTEM	CORRELATION % ERRCR	PREDICTION % ERROR
benzene + n-octane	0.32	1.97
n-butylamine + n-heptane	1.36	2.03
n-butylamine + n-heptane	2.47	4.02
nitroethane + 2,2 dimethylbutane	6.2	3.18
nitroethane + 2,2 dimethylbutane	7.07	2.12
n-octanol + n-heptane	22.93	21.1
n-octanol + n-heptane	41.2	36.79
n-octanol + n-heptane	41.7	34.7
n-octanol + n-heptane	16.2	12.9

	Skjold-Jorgensens' Z(T) 35.2 - 0.1272T + 0.00014T ²	n-octanol + n-heptane 30 ^o C 39.2 - 0.1105T + 0.000179T ²
	Avg. %	AVG • %
System	Error	Error
n-octanol + n-heptane 30 ⁰ C	16.2	11.6
n-octanol + n-heptane 55°C	12.9	35.3
benzene + n-octane 25 ⁰ C	0.3	0.6
benzene + n-octane 50 ⁰ C	2.0	3.6
n-butylamine + n-heptane 25 ⁰ C	1.4	34.9
n-butylamine + n-heptane 45 ⁰ C	2°0	35.1

Comparison of Skjold-Jorgensens' Z(T) and Z(T) Correlated from n-octanol + n-heptane Data at 30°C. TABLE XII.

TABLE XIII. Grid of Initial Parameters to be Used with the Modified UNIFAC.

a CH ₂ /G	a G/CH ₂
+200	+200
+200	0.1
+200	-200
0.1	+200
0.1	0.1
0.1	-200
-200	+200
-200	0.1
-200	-200

Second Component t, ^o C bentanol 25	Norm	al Alkane		Cyclic	Alkane	
Second omponent t, ^o C tanol 25	- - 1					
tomponent t, ^o C itanol 25	First	$\mathbf{\Delta}$ H ^M		First	$\mathbf{\Delta}_{\mathrm{H}^{\mathrm{M}}}$	
itanol 25	Component	(J/mole)	Ref.	Component	(J/mole)	Ref.
L	n-hexane	495	90	cyclohexane	265	06
ene 22	n-pentane	850	54	cyclopentane	625	100
on tetrachloride 25	n-hexane	315	45	cyclohexane	165	68
loromethane 25	n-hexane	1315	45	cyclohexane	1275	59
roform 25	n-hexane	750	45	cyclohexane	630	59
tene 25	n-hexane	30	11	cyclohexane	250	62
tropropane 25	n-hexane	1470	70	cyclohexane	1500	10
TABLE XV. Correlation of Methanol + Alkane Data including Cyclic Alkanes.

Methanol + N-hexane 50^oC Methanol + N-hexane 40°C Methanol + N-heptane 60°C Data used in Correlation:

Methanol + Cyclohexane 50.5° C

Set

Y

-

Starting Parameters	Final Parameters	Fmin	Standard	Remarks
+200, +200	326.0, 399.9	5.51	0.43×10^{-5}	Note 1
+200, 0.1	388.4, 13.71	1.77	0.95 x 10 ⁻⁶	12.5%
+200, -200	388.4, 13.70	1.77	0.95 x 10 ⁻⁶	12.5%
0.1, +200	21.41, 703.1	7.67	0.58 x 10 ⁻⁵	Note 1
0.1, 0.1	53.05, -15.53	6.16	0.35 x 10 ⁻⁵	Note 1
-200, +200	326.0, 399.8	5.51	0.58 x 10 ⁻⁵	Note 1
-200, 0.1	53.08, -15.53	6.16	0.58 x 10 ⁻⁵	Note 1
-200, -200	326.0, 399.9	5.51	0.54 x 10 ⁻⁵	Note 1

Note: 1. Repeating same Fmin and SD.

Correlation Errors for Methanol + Alkane Data TABLE XVI.

Including Cyclic Alkanes.

			Set	A			
		Data	Avg. %	Max. %	At Wax	Ň	
System	t, ⁰ C	Points	Error	Error	$\Delta H^m exp$	ΔH^{n}_{pre}	Ref.
nethanol + n-hexane	40	14	α ω	15.3	714.9	777.4	94
nethanol + n-hexane	50	13	5.4	17.7	848.7	856.4	94
nethanol + n-heptane	60	16	5.0	20.9	1061.0	1074.3	94
nethanol + cyclohexane	50.5	-	36.7	43.1	1241.5	794.4	20

TABLE XVII. Prediction Errors for Methanol + Alkane Data Including Cyclic Alkanes.

			Avg. % Error	
		Data	Set	
System	t, ^o C	Points	<u> </u>	Ref.
methanol + n-hexane	45	17	7.5	94
methanol + n-heptane	30	8	7.6	94

Correlation of Methanol + Alkane Data including Cyclic Alkanes. TABLE XVIII.

Data used in Correlation:

50°C 40°C methanol + n-hexane

methanol + n-hexane

60°C methanol + n-heptane methanol + cyclohexane 25° C

Set	Å.	V	P	Å	V	A	рц	h.	IJ
Kemarks	22.9%	22.9%	22.9%	22.9%	22.9%	22.9%	5.6%	22.9%	24.6%
Standard Deviation	0.9 x 10 ⁻⁶	0.95 x 10 ⁻⁶	0.67 x 10 ⁻⁶	0.95 x 10 ⁻⁶	0.95 x 10 ⁻⁶	0.0	0.22 × 10 ⁻⁶	0.67 x 10 ⁻⁶	0.95 x 10 ⁻⁶
NIMI	4.48	4.48	4.48	4.48	4.48	4.48	0.227	4.48	5.68
Final Parameters	44.65, -12.99	44.64, -12.98	44.65, -12.98	44.66, -12.99	44.65, -12.99	44.65, -12.98	398.2, 13.30	44.66, -12.99	20.21, 771.4
Starting Farameters	105.98, -38.24	20, 20	0.1, +100	37.37, -11.79	-100, +100	+100, -100	+100, +100	-100, -100	42,717

Correlation Errors for Methanol + Alkane Data TABLE XIX.

Including Cyclic Alkanes.

	C	Data	4 A	vg. <u>%</u> Er arameter	Set	
System	t, oc	Points	A	щ	ଅ ।	Ref.
methanol + n-hexane	40	14	27.0	6.7	28.4	94
methanol + n-hexane	50	13	21.3	3.7	21.4	94
methanol + n-heptane	09	16	20.8	4.3	25.2	94
methanol + cyclohexane	25	9	24.4	10.4	20.9	95

97

TABLE	<u>XX</u> .	Predi Data	lction Inclu	Error ding C	s for yclic	Methano Alkanes	l + •	Alkane	
								a Aliante de la composición Aliante de la composición Aliante de la composición	

System	<u>t, °c</u>	Data <u>Points</u>	Avg. % Error Set <u>A</u> B	<u>Ref.</u>
methanol + n-hexane	45	17	22.0 4.7	94
methanol + n-heptane	30	8	23.3 8.0	94

TABLE XXI. Correlation of Secondary Amines + Alkane Data Including Cyclic Alkanes.

Data Used in Correlation:

diethylamine + n-heptane 45°C dibutylamine + n-hexane 30°C ethyleneimine + cyclohexane 25°C heptamethyleneimine + cyclohexane 25°C

inalStandardametersFMINDeviationRemarksSet90,45.291.3850.013.2%A91,45.201.3850.013.2%A.7,38.6633.5950.012note 1.0,799.547.9170.0038note 169,45.041.3850.44x10^5note 1					
ametersFMINDeviationRemarksSet90,45.291.3850.013.2%A91,45.201.3850.013.2%A.7,38.6633.5950.012note 1.0,799.547.9170.0038note 189,45.041.3850.44x10 ⁻⁵ note 1	Final		Standard		
90,45.29 1.385 0.0 13.2% A 91,45.20 1.385 0.0 13.2% A .7,38.66 33.595 0.012 note 1 .0,799.5 47.917 0.00938 note 1 89,45.04 1.385 0.44x10 ⁻⁵ note 1	rameters	FMIN	Deviation	Remarks	Set
91,45.20 1.385 0.0 13.2% A .7,38.66 33.595 0.012 note 1 .0,799.5 47.917 0.00938 note 1 89,45.04 1.385 0.44x10 ⁻⁵ note 1	.90,45.29	1.385	0.0	13.2%	V
.7,38.66 33.595 0.012 note 1 .0,799.5 47.917 0.00938 note 1 89,45.04 1.385 0.44x10 ⁻⁵ note 1	.91,45.20	1.385	0.0	13.2%	A
.0,799.5 47.917 0.00938 note 1 89,45.04 1.385 0.44x10 ⁻⁵ note 1	9.7,38.66	33.595	0.012	note 1	
89,45.04 1.385 0.44x10 ⁻⁵ note 1	7.0,799.5	47.917	0.0038	note 1	
	.89,45.04	1.385	0.44x10 ⁻⁵	note 1	

Note:

1. Repeating same FMIN and Standard Deviation.

TABLE XXII. Correlation Errors for Secondary Amines + Alkane

Data Including Cyclic Alkanes.

		Data	Avg. %	
System	t, ^o C	Points	Error	Ref.
diethylamine + n-heptane	45	9	6.1	73
dibutylamine + n-hexane	30	19	10.7	66
ethyleneimine + cyclohexane	25	12	23.0	49
heptamethyleneimine + cyclohexane	25	<	10.7	49

	22
Data	AVE.
Amines + Alkane	Data
Prediction Errors for Secondary including Cyclic Alkanes.	
F XXIII.	
TABL	

System	t, °C	Data Points	AVG. %	Ref.
trimethyleneimine + cyclohexane	25	6	32.7	49
pyrrolidine + cyclohexane	25	12	41.1	49
piperidine + cyclohexane	25	14	32.7	49
hexamethyleneimine + cyclohexane	25	-	35.9	49
diethylamine + n-heptane	25	œ	-	73
diethylamine + n-hexane	30	19	1.	66

Correlation of Secondary Amines + Alkane Data Including Cyclic Alkanes. TABLE XXIV.

Data used in Correlation:

heptamethyleneimine + cyclohexane ethyleneimine + cyclohexane 25°C pyrrolidine + cyclohexane 25⁰C diethylamine + n-heptane 45°C dibutylamine + n-hexane 30^{0} C

25°0

nitial	Final		Standard		
rameters	Parameters	NIMA	Deviation	Remarks	Set
00+200	420.8.39.61	27.242	0.15×10 ⁻⁴	note 1	
00,0,1	420.8.39.71	27.242	°0°0	62.9%	A.
00200	420.8,39.59	27.242	0.11×10^{-4}	note 1	
.1,+200	53.13.42.39	3.474	0.12×10 ⁻⁴	note 1	
1,0.1	53.07.42.06	3.474	0.0	19.1%	g
.1,-200	53.09.42.01	3.474	0.0	19.1%	Ê
00,+200	-916.8,37.90	43.244	0.45×10^{-2}	note 1	
00,0.1	-4734.2,0.683	59.176	0.1987	note 2	
00,-200	-902.2,37.76	43.243	0.18x10 ⁻²	note 1	

Notes: 1. Repeating same FMIN and Standard Deviation. 2. Error Message.

orrel Alka	orrelation Errors for Secondary Amine	Alkane Data Including Cyclic Alkar
о т	00	+
ABLE XXV.	ABLE XXV.	

Data At Wax	Points AH exp Kcf.	6 670.0 73	19 280.9 99	12 1673.6 49	12 1197.9 49	11 446.9 49	
	t, ^o C	45	30	25	25	25	
	System	diethylamine + n-heptane	dibutylamine + n-hexane	ethyleneimine + cyclohexane	pyrrolidine + cyclohexane	heptamethyleneimine + cyclohexane	
	No.		CJ	М	4	5	

	At Max . M	ΔH^{T}_{calc}	625.3	326.9	1271.0	725.0	416.7
Set B	Max. %	Error	6.7	19.1	53.6	52.0	10.8
	Avg. %	Eror	3.4	16.9	21.5	39.8	6 •3
	At Max	ΔH^{T} calc	304.2	153.1	374.1	199.7	128.5
Set A	Max. %	Firor	55.8	179.0	80.5	53.7	76.2
	Avg. %	lirror	48.8	52.0	73.2	3• <i>31</i> .	64.0
	System	No.	~	2	2	4	Г

	Set	% A		• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	↓	B B	
	Remark	100.0	note	note	note	note	93.1	note
Standard	Deviation	0.0	0.15x10 ⁻⁴	0.19x10 ⁻⁴	0.15x10 ⁻⁴	0.15x10 ⁻⁴	0.0	0.15x10 ⁻²
	FM1 N	56.00	51.05	51.05	51.08	51.08	51.08	52.18
Final	Parameters	2581.6,570.5	2117.1,-1.02	1356.4,-1.02	-1.07,2197.7	-1.40,0.325	-1.07,6833.5	-346.5,182.7
Initial	Parameters	+200,+200	+200,0.1	+200,-200	0.1,+200	0.1,0.1	0.1,-200	-200,+200

Correlation of Tertiary Amine + Alkane Data Including

Cyclic Alkanes.

TABLE XXVI.

Repeating same FMIN and Standard Deviation.

104

b

99.3%

0.0

55.26

-863.1,539.7

-200,-200

Note:

• ---

		Ref.	73.	61	48 48	49	49			kt Max ▲M	∆ ^H calc	0.0	0.0	-0.2	0°0	0.0
	Max	H ^M exp	96.0	81.2	-9.3	44.1	49.2			Max. %	Fror	100.0	100.0	100.2	100.0	100.0
	Аt	⊲				C	****			Ανε. %	hrror	100.0	100.0	97.3	100.0	100.0
nes.	Data	Points	5		5	12	13			At Max ▲M	Δ ^{H⁻calc}	-2.2	-0.2	-0.7	-7.3	-5.7
Data Including Cyclic Alka		t, ^o C	45	30	25	25	25	а + с		Max. %	Error	102.5	100.3	95.1	105.1	106.0
				ane		ohexane	hexane			Avg. %	Error	102.4	100.3	66.7	103.3	104.4
		rstem	n-heptane	ine + n-oct	n-hexane	dine + cyc	ine + cyclc			At Max . M	ΔH^{L} calc	0.0	0.0	0.0	0.0	0.0
		Sy	lamine +	odecylam:	lamine +	lpyrrolic	lpiperid	< + 0	120	Max. %	Error	100.0	100.0	100.0	100.0	100.0
			triethy.	tri-n-d	tributy	N-methy]	N-methy			Avg. %	Error	100.0	100.0	100.0	100.0	100.0
		No.	~	2	2	4	5			System	No.	~~	2	23	4	ي ت

TABLE XXVII. Correlation Errors for Tertiary Amine + Alkane

Correlation of CCL + Alkane Data Including Cyclic Alkanes. TABLE XXVIII.

Initial	Final		Standard		
Parameters	Parameters	NIMA	Deviation	Remarks	Set
+200,+200	406.0,261.5	50.24	0.10×10 ⁻⁴	note 1	
+200,-200	406.0,261.8	50.24	0.18x10 ⁻⁴	note 1	
-200,+200	33.97,1669.7	2.99	0.0	11.7%	A
-200,-200	33.96,1202.2	2.99	0.0	11.7%	щ

Note:

1. Repeating same FMIN and Standard Deviation.

Correlation Errors for CCL + Alkane Data Including Cyclic Alkanes. TABLE XXIX.

At Wax W	$\Delta H^{M} exp$ Ref.	516.4 15	506.1 15	1368.2 75	428.1 89	456.0 89	603.8	
Data	Points	10	10	19	19	19	19	
	t, ^o C	35	35	25	25	25	25	
	System	1-chlorobutane + n-hexane	2-chlorobutane + n-hexane	1,2 dichloroethane + cyclohexane	1-chlorohexane + n-octane	1-chloropentane + n-heptane	1-chlorobutane + n-nonane	
	No.		2	50	4	5	9	

	At Max . M	ΔH ^{rn} calc	492.8	304.1	1722.6	414.2	464.0	616.9
Set B	Max. %	Error	£•3	43.5	41.8	10.3	10.1	6. 3
	AVE. %	Error	4.1	38.9	22.7	3 . 8	4.8	5.2
	At Max	ΔH^{I_1} calc	492.9	304.1	1722.8	414.3	464.1	617.0
Set A	Max. %	hror	8.7	43.5	41.9	10.3	10.1	9.4
	Avg. %	Error	4.1	38.9	22.7	3.8	4.7.	5.2
	System	No.	~~	2	23	4	5	9

Correlation of CCL₂ + Alkane Data Including Cyclic Alkanes. TABLE XXX.

11.424 $0.43x10^{-5}$ note 11.891 $0.95x10^{-6}$ 19.0% 1.891 $0.95x10^{-6}$ 19.0% 1.1424 $0.95x10^{-6}$ 16.4% 1.135 $0.95x10^{-6}$ 16.2% 1.135 $0.95x10^{-6}$ 16.2% 11.424 $0.55x10^{-6}$ 16.2% 11.424 $0.95x10^{-6}$ 16.2% 11.424 $0.35x10^{-6}$ 16.2% 11.424 $0.35x10^{-6}$ 16.2%	Final Parameters		NIMH	Standard <u>Deviation</u>	Remarks	Set
$302.0, 348.3 11.424 0.45 \times 10^{-5} \text{note 1}$ $413.0, 17.43 1.891 0.95 \times 10^{-6} 19.0\%$ $302.1, 348.3 11.424 0.64 \times 10^{-5} \text{note 1}$ $20.76, 1335.0 1.140 0.95 \times 10^{-6} 16.4\%$ $22.18, -1.00 1.135 0.95 \times 10^{-6} 16.2\%$ $22.17, -1.00 1.135 0.95 \times 10^{-6} 16.2\%$ $302.1, 348.2 11.424 0.53 \times 10^{-6} 16.2\%$ $22.20, -1.01 1.135 0.95 \times 10^{-6} 16.2\%$ $22.20, -1.01 1.135 0.95 \times 10^{-6} 16.2\%$ $22.20, -1.01 1.135 0.95 \times 10^{-6} 16.2\%$ $22.20, -1.01 1.1424 0.55 \times 10^{-6} 16.2\%$ $22.20, -1.01 1.1424 0.35 \times 10^{-6} 16.2\%$ $22.20, -1.01 1.1424 0.35 \times 10^{-6} 16.2\%$		Parameters	FMIN	Deviation	Remarks	
$413.0, 17.43$ 1.891 $0.95x10^{-6}$ 19.0% $302.1, 348.3$ 11.424 $0.64x10^{-5}$ 10.0% $20.76, 1335.0$ 1.1420 $0.95x10^{-6}$ 16.4% $22.18, -1.00$ 1.135 $0.95x10^{-6}$ 16.2% $22.17, -1.00$ 1.135 $0.95x10^{-6}$ 16.2% $302.1, 348.2$ 11.424 $0.63x10^{-5}$ 10.2% $302.1, 348.2$ 11.424 $0.95x10^{-6}$ 16.2% $302.1, 348.2$ 11.424 $0.95x10^{-5}$ 10.2% $302.1, 348.2$ 11.424 $0.55x10^{-5}$ 10.2%		302.0,348.3	11.424	0.43×10^{-2}	note 1	
$302.1, 348.3 \qquad 11.424 \qquad 0.64 \times 10^{-5} \qquad \text{note 1}$ $20.76, 1335.0 \qquad 1.140 \qquad 0.95 \times 10^{-6} \qquad 16.4\%$ $22.18, -1.00 \qquad 1.135 \qquad 0.95 \times 10^{-6} \qquad 16.2\%$ $22.17, -1.00 \qquad 1.135 \qquad 0.95 \times 10^{-6} \qquad 16.2\%$ $302.1, 348.2 \qquad 11.424 \qquad 0.63 \times 10^{-5} \qquad \text{note 1}$ $22.20, -1.01 \qquad 1.135 \qquad 0.95 \times 10^{-6} \qquad 16.2\%$ $302.1, 348.2 \qquad 11.424 \qquad 0.55 \times 10^{-6} \qquad 16.2\%$ $302.1, 348.2 \qquad 11.424 \qquad 0.35 \times 10^{-6} \qquad 16.2\%$		413.0,17.43	1.891	0.95x10 ⁻⁶	19.0%	
$20.76,1335.0 1.140 0.95x10^{-0} 16.4\% 16.2\% 16.2\% 16.2\% 16.2\% 16.2\% 16.2\% 16.2\% 16.2\% 16.2\% 16.2\% 16.2\% 16.2\% 11.424 0.65x10^{-6} 16.2\% 16.2\% 122.20,-1.01 1.135 0.95x10^{-6} 16.2\% 16.2\% 16.2\% 16.2\% 10.2\% $		302.1,348.3	11.424	$64x10^{-}$	note 1	
22.181.00 1.135 0.95×10^{-6} 16.2% 22.171.00 1.135 0.95×10^{-6} 16.2% 302.1.348.2 11.424 0.63×10^{-5} note 1 22.201.01 1.135 0.95×10^{-6} 16.2% 302.1.348.2 11.424 0.35×10^{-6} note 1		20.76,1335.0	1.140	0.95x10 ⁻⁶	16.4%	
22.17,-1.00 1.135 0.95×10 ⁻⁶ 16.2% 502.1,348.2 11.424 0.63×10 ⁻⁵ note 1 22.20,-1.01 1.135 0.95×10 ⁻⁶ 16.2% 502.1,348.2 11.424 0.35×10 ⁻⁵ note 1		22.18,-1.00	1.135	0.95×10 ⁻⁶	16.2%	
502.1,348.2 11.424 0.63x10 ⁻⁹ note 1 22.20,-1.01 1.135 0.95x10 ⁻⁶ 16.2% 502.1,348.2 11.424 0.35x10 ⁻⁵ note 1	()	22.17,-1.00	1.135	0.95x10 ⁻⁶	16.2%	
22.20,-1.01 1.135 0.95×10 ⁻⁶ 16.2% 302.1,348.2 11.424 0.35×10 ⁻⁵ note 1		502.1,348.2	11.424	0.63x10 ⁻ 2	note 1	
302.1,348.2 11.424 0.35x10 ⁻² note 1		22.20,-1.01	1.135	0.95×10 ⁻⁶	16.2%	
	-	302.1,348.2	11.424	0.35×10 ⁻²	note 1	

Note:

1. Repeating same FMIN and Standard Deviation.

Correlation Errors for CCL₂ + Alkane Data

TABLE XXXI.

TABLE XXXII. Correlation of CCL₃ + Alkane Data Including Cyclic Alkanes.

Set	A	В	A	Ð	A	E	A	Ē	A
Remarks	29.1%	6.5%	29.1%	3.3%	2.9%	3.3%	29.1%	3.4%	2.9%
Standard Deviation	0.95×10 ⁻⁶	0.39×10 ⁻⁶	0.95×10 ⁻⁶	0.68x10 ⁻⁶	0.70×10 ⁻⁶	0.60×10 ⁻⁶	0.95x10 ⁻⁶	0.68×10 ⁻⁶	0.26x10 ⁻⁶
NIME	2.605	0.146	2.605	0.043	0.022	0.043	2.605	0.045	0.022
Final <u>Parameters</u>	378.1,324.7	486.4,10.20	378.1,324.7	11.34,1438.9	15.49,-3.32	11.33,1924.6	378.0,324.7	11.09,0.204	15.54,-3.35
Initial Parameters	+200,+200	+200,0.1	+200,-200	0.1,+200	0.1,0.1	0.1,-200	-200,+200	-200,0.1	-200,-200

						M	calc	76.4	.46 . 3		t Max M	calc	776.2	546.2		
đ		ef.	45	65	et C	ax.% At	rror A	7.7	8.7	et F	ax.% At	irror	ະ •0•ສ	ст 0		
lkane Data	aX	K K	0.	5	2	Avg. % N	Brror B	3•0	3.6	ω ι	AVG•% N	H TOTTH	3.2	.0 M		
r CCL ₃ + A 1es.	At M M	ΔII ^{III}	797	643		At Nax M	AH ^r calc	706.4	632.6		At Max M	∆H ^{ri} cal.c	776.4	646.3		
Errors fo Clic Alkar	Data	Points	10	12	Set B	Max. %	Hrror 2	14.8	14.4	Set E	Max. %	Fror	7.7	8.7		
relation luding Cy		t, ^o c	25	40		Avg. %	Hrror	7.6	5 • J		Avg. %	Error	3.0	3.6		
XIII. Cor Inc			eptane	lohexane		At Max	Δ ^{H^{··}calc}	350.3	531.2		At Max	ΔH^{r} calc	780.7	650.7		
TABLE XX		System	orm + n-h	orm + cyc	Set A	Max. %	Hrror	56.0	61.3	Set D	Max. %	Fror	5.2	6.3		
			chlorof	chlorof		Avg. %	Error	36.3	23.2		AVG. %	Error	3.1	2		
		No.	~	5		System	No.	~	N		System	No.	~	5		

	ابد							
	Se	A	Щ		C	A	E	Γų.
	Remarks	66.9%	52.1%	note 1	52.5%	52.8%	52.8%	52.8%
Standard	Deviation	0.0	0.0	0.15x10 ⁻⁴	0.0	0.0	0.0	0•0
	FMIN	40.48	22.55	22.55	22.67	22.77	22.77	22.77
Final	Parameters	569.2,535.6	721.7,1.72	721.6,1.72	1.74,720.1	1.42,0.365	0.199,1.59	1.59,0.197
Initial	Parameters	+200,+200	+200,0.1	+200,-200	0.1,+200	0.1,0.1	0.1,-200	-200,0.1

Correlation of CCL₄ + Alkane Data Including Cyclic Alkanes.

TABLE XXXIV.

Note:

1. Repeating same FMIN and Standard Deviation.

	Ref.	00000000000000000000000000000000000000	At Wax W	ΔH^{L} calc	148.6 111.1 119.2	137. 8 137. 6 8	At Max	Δ ^{II^{II}calc}	151.7	118.7	138.3
	At Max ${oldsymbol{\Delta}}_{H^{M}}^{M}$ exp	402.7 73.1 511.2 527.0 331.1	Set C Max. %	Error	23-54 30.0 30.0	66 58 60 9 60	Set F Nax. %	Error	64•0 63•9	23.3	610
+ Alkane s.	ata ints	2022000	AVG. %	Hrror	000 000 000 000 000 000 000 000 000 00	557 587 0 0 0 0 0 0 0	Avg. %	l]rror	52. 54.15	22.6 64.3	
for CCL ₄ ic Alkafie	oC Fo	0,	At Max M	ΔH^{r_1} calc	146.9 109.9 118.2	184 - 2 136 - 2 135 - 9	At Max	$\Delta_{\rm H}^{\rm M}_{\rm calc}$	151.1	118.8 181.7	138.6
n Errors ding Cycl	۔ دب	0 0	Set B Max. %	Error	64.0 81.7 23.5	64 6 61 0 61	Set E Max. %	Eror	64 6 61 2	24.0 66 x	59°3
orrelatio ata Inclu		o-octane clopentan clohexane nexadecan reptane rexane	Avg. %	Brror	62 53 0 1 0	63.0 57.3 58.7	Avg. %	Error	62.6 54.4	22.5	57.0 7.7.4
E XXXV. CC	ystem	<pre>>ride + iso >ride + cyo >ride + cyo >ride + n-} >ride + n-}</pre>	At Max M	$\Delta^{\rm H^{rn}}$ calc	34 0 34 4 66 0	85.0 57.9 15.6	At Max.	ΔH^{M} calc	151.7	1100 001 000 000	141.0
TABL	<u>نې</u>	tetrachl tetrachl tetrachl tetrachl tetrachl tetrachl tetrachl	Set A Wax. %	Error	91.6 178.0 117.0	959 950 950 950	Set D Max. %	Error	64.1 63.7	23.1 53.1	
		carbon carbon carbon carbon carbon carbon	AVG. %	Hrror	82.0 54.2 6	65•7 69•7	Åvg. %	Error	62.5 54.3	52.6	57.7
	No.	-0N4100	System	No.	← 01 50	400	System	No.	- a	150 =	4 M Ø

<u>TABLE XXXVI</u>. Systems Used in Evaluating an Optimum Q for Cyclic CH₂.

		Data		
System	t, ^o C	Points	Type	Ref.
methanol + cyclohexane	50.5	11	I	50
nitroethane + cyclohexane	25	13	I	70
piperidine + cyclohexane	25	14	II	49
benzene + cyclohexane	50	13	II	57
1,4 dioxane + cyclohexane	60	4	II	44

TABLE XXXVII. Correlation of CCL + Alkane Data.

Initial	Final		Standard		
Parameters	Parameters	FMIN	Deviation	Remarks	Set
34.0,1202.2	35.61,1052.8	1.50	0.44x10 ⁻⁵	note 1	
-200,0.1	-5265.9,0.80	74.31	0.746	note 2	
0.1,0.1	47.9,-13.3	1.23	0.95x10 ⁻⁶	7.0%	A
33.9,1314.0	35.6,1313.9	1.50	0.95x10 ⁻⁶	8.7%	щ
435.8,27.9	437.7.37.9	18.85	0.0	46.6%	U
41.3,-7.6	47.9,-13.3	1.23	0.25x10 ⁻⁵	note 1	
0.1,-200	35.6,300.3	1.50	0.95x10 ⁻⁶	8.7%	Ŋ
34.0,1669.7	35.6,1900.8	1.50	0.0	8.7%	Ŧ

Notes:

1. Repeating same FMIN and Standard Deviation.

2. Error Message.

Data.
Alkane
+
CCJ
for
Errors
Correlation
•IIIVXXX
TABLE

			At •		210	20	NM									
Ref.	11 10 10 10 10 10 10 10 10 10 10 10 10 1	Set C	Nax. %	Error	102.8 90.0	84.6	54. / 69. 3									
At Max $\Delta_{\rm H}^{\rm M}$ exp	516.4 506.1 4286.1 603.8		AVE. %	Fror	41.6	46.8	47.54 43.05									
Data Points	00000		At Max	ΔH^{T} calc	518.8 321.5	438.6	486.9		At Max	ΔH^{M} calc	518.9	321.6	438.6	490.1	650.8	
	22222	Set B	Max. %	Error	9.7 40.0	7.4	14.55	Set E	Max. %	Error	7. 6	40.04	7.4	7.5	14.5	116
	υ		Avg. %	Error	35.3	5	3.2		Avg. %	Error	3.6	35.3	3.9	3.2	7.7	
	 n-hexane n-hexane n-octane n-octane n-notane n-nonane 		At Max	ΔH^{H} calc	497.2	457.0	490.3 637.8		At Max	ΔH^{M}_{calc}	519.6	321.9	438.7	490.3	651.0	
System	obutane + obutane + ohexane + opentane obutane +	Set A	Max. %	Error	3.7 34.8		4. 7.8	Set D	Max. %	Error	6.6	39.9	7.5	7.6	14.6	
	1-chlord 2-chlord 1-chlord 1-chlord 1-chlord		Avg. %	Error	33.0 8		4.9 4.4		Avg. %	Error	3.7	35.3	3.9	3.2	7.7	
No	- 0 M 4 M		System	No.	0		4 เบ		System	No.	-	2	3	4	5	

t Max H^M 292.2 214.9 229.2 305.8

Prediction Errors for CCL + Alkane Data. TABLE XXXIX.

Avg. % Error

Ref.

	$\Delta_{ m H^{M}}$	тах	14.7	46.3	291.7	57.2	59.9	20.7	21.7	52.4	40.6	69.8	26.5	141.1	168.2	25.5	15.6	42.6	35.3	339.5	442.0	619.9	23.0	29.2
Set	k	۲۲	5.2	22.0	55.3	11.8	5.0	1.8	13.2	26.9	18.8	23.9	6. 6	29.4	30.5	3 . 9	4.3	6 •9	6.5	58.1	59.3	64.0	3.6	4.0
arameter		0	35.9	37.7	67.0	39.9	37.4	43.4	34.9	36.5	37.5	57.3	46.6	60.1	59.7	44.7	47.0	48.8	49.7	63.1	63.0	68.9	51.5	48.1
Pa	Ŧ	_ طا	10.3	6.3	59.4	13.1	6.8	5.4	9 . 5	11.3	7.9	34.7	3.2	31.5	33.0	6.5	2.6	4.7	4.8	62.0	63.3	67.5	3.5	4.6
	Data	Points	15	15	12	13	10		13	13	11	13	ر	19	19	19	19	14	15	12	13	14	14	15
	ſ		25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
		System	-chlorohexadecane + n-dodecane	-chlorohexadecane + n-hexadecane	-butylchloride + n-hexane	-chlorobutane + n-octane	-chlorobutane + n-dodecane	-chlorobutane + n-hexadecane	-chlorododecane + n-octane	-chlorododecane + n-dodecane	-chlorododecane + n-hexadecane	-chlorohexadecane + n-octane	-chloro-octane + n-octane	2-chlorobutane + n-hexane	2-chlorobutane + n-octane	-chlorobutane + n-hexane	-chloro-octane + n-hexane	-chlorohexane + n-hexane	-chlorohexane + n-heptane	t-butylchloride + n-octane	c-butylchloride + n-dodecane	J-butylchloride + n-hexadecane	-chloropentane + n-hexane	-chloropentane + n-octane

E are the same. Note: 1. The prediction errors for sets B, D and

	$\frac{\partial \Psi}{\partial T^{(2,1)}}$	0021	$E.405 \times 10^{-11}$	•0026	2.878 x 10 ⁻⁴	8.515 x 10-15	
and $d\psi_{j/dT}$.	<u>01(1,2)</u>	0.0028	.00255	4.46 x 10 ⁻⁵	0.00255	0.00255	
er Values on ∀ ij	(2,1)	1.241	4.995×10^{-10}	0.5394	7.49 x 10 ⁻³	3.50×10^{-14}	
of the Paramete	¥(1,2)	0.4585	0.5597	7.97×10^{-4}	0.5598	0.5596	
. Effect	<u>A(2,1)</u>	-13.26	1313.87	37.87	300.25	1900.76	
TABLE XL	A(1,2)	47.85	35.60	437.70	35.59	35.61	
	Set	Ą	щ	υ	ŋ	Ē	

TABLE XLI. Correlation of CCL₂ + Alkane Data.

	set Set	Å	B	°,
	Remark	3.8%	7.5%	3.7%
Standard	Deviation	0.88x10 ⁻⁶	0.79x10 ⁻⁶	0.19x10 ⁻⁶
	FMIN	0.049	0.165	0.049
Final	Parameters	26.6,-0.389	352.7,20.6	26.0,1469.4
Initial	Parameters	22.1,-1.00	413.0,17.4	20.7,1335.0

Data.
Alkane
+
ccl ₂
for
Errors
Correlation
IIIX
TABLE

At Max $\Delta H^M = \exp Bef.$

Data t, ^oC Points

System

No.

	At Max ΔH^{M}	carc 1456.4 1368.4
45 45	Set C Max. %	Hrror 4.0 12.9
1403.0 1313.0	Avg. %	Error 2.7 4.6
12	At Max A ^{HM}	calc 1291.7 1215.4
25 25	Avg. % Max. %	Error Error 7.5 19.0 7.4 12.6
+ n-heptane + n-hexane	At Max A uM	1456.9 1368.7
omethane omethane	Set A Max. %	Error 4.5 12.4
dichlor dichlor	Avg. %	Error 2.9 4.6
- N	System	No.

TABLE XLIII. Correlation of CCL₃ + Alkane Data.

Initial	Final		Standard		
Parameters	Parameters	NIWH	Deviation	Remarks	Set
11.30,1924.0	11.77,2172.4	0.021	0.71x10 ⁻⁶	2.9%	A
15.50,-3.3	15.27,-2.78	0.005	0.83x10 ⁻⁶	1.3%	СЦ
378.0,324.0	358.4,304.8	2.404	0.95×10 ⁻⁶	32.2%	Ö
486.4,10.2	454.1,10.55	0.079	0.36x10 ⁻⁶	5.8%	Q
11.09,0.204	15.22,-2.75	0.005	0.24x10 ⁻⁶	1.3%	Щ
11.34,1438.1	11.77,1554.7	0.021	0.43x10 ⁻⁶	2.9%	E

	At Max A H ^M 455.6 429.1
ta . 45 .	Set C Max. % 50.7 58.9
lkane Da ax 7.0	Avg. % Error 35.1
$\frac{\text{At }_{\text{H}}}{\Delta_{\text{H}}}$	At Max ΔH^{M} calc 809.6 765.0 At Max ΔH^{M} calc 804.1 762.6
rrors for Data <u>Point</u> s 9	Set B Max. % Error 2.0 3.7 3.7 5et E Max. % 4.2 6.7 6.7
t ^{oC} 25 25	Avg. % Hrror 0.9 1.8 Hrror 2.9 2.8
ulV. Corre leptane lexane	At Max ΔH^{M} calc 804.2 762.7 At Max ΔH^{M} calc 747.8 712.5
TABLE XI System orm + n-b orm + n-b	Set A Max. % Error 6.7 6.7 Set D Max. % Error 10.0
chlorofc	Avg. % Frror 2.9 2.9 2.9 2.9 2.9 2.9 2.9 5.7 5.7
N0. 2	System No. No. No. 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Correlation of Carbon Tetrachloride + Alkane Data. TABLE XLV.

	Set		A		сц.	Ö	A		E	ا نی ا
	Remarks	note 1	7.0%	note 1	7.2%	7.4%	7.7%	note 2	7.4%	57.2%
Standard	Deviation	0.15x10 ⁻⁴	0.14x10 ⁻⁶	0.11x10 ⁻⁴	0.60x10 ⁻⁶	0.26x10 ⁻⁶	0.60x10 ⁻⁶	0.17×10^{-3}	0.84x10 ⁻⁶	0.0
	NIMH	17.843	0.287	29.633	0.301	0.315	0.334	0.301	0.322	17.843
Final	Parameters	503.6,447.5	699.5,4.55	486.7,1464.4	4.53,677.3	2.75,1.79	0.20,4.44	4.53,682.7	4.39,0.20	503.5,447.4
Initial	Parameters	+200,+200	+200,0.1	+200,-200	0.1,+200	0.1,0.1	0.1,-200	-200,+200	-200,0.1	-200,-200

Notes:

1. Repeating same FMIN and Standard Deviation.

2. Ran Out of Time.

	Ref.	At Max Δ H ^M 2 82.3 382.3 368.5 349.2 355.0	At Max AH ^M 218.0 157.6 52.1
ne Data.	At Max AH ^M exp 511.2 327.0 331.1	Set C Max. % 9.5 13.7 13.7	Set F Max. % Error 75.7 80.4 84.7
e + Alka	nts 22 00 00 00 00	Avg. % Error 5.4 7.5 7.5	Avg. % Brror 60.8 70.0
trachlorid		At Max ΔH^{M} 379.4 469.7 348.1 348.2	At Max A H ^M a H ^S a H ^S b H ^S b H^S b H ^S b H ^S b H^S b H^S b H ^S b H ^S
Jarbon Tel		Set B Max. % 8.8 12.6 13.4	Set E Max. % 7.9 12.2 13.0
ors for (-octane texadecant teptane texane	Avg. % Error 5.6 7.4 7.0	Avg. % 5.3 7.2 7.2
lation Err	rstem rride + iso rride + n-h oride + n-h oride + n-h	At Max $\Delta^{\rm H^{M}}$ calc 374.8 463.6 348.2 349.7	At Max A H ^M 280.4 464.4 351.4 355.7
Corre	SJ tetrachlc tetrachlc tetrachlc tetrachlc	Set A Max. % Error 13.1 18.8 8.9	Set D Max. % 12.1 16.0 10.3
ABLE XLV.	carbon carbon carbon carbon carbon	Avg. % Error 6.2 7.7 7.7	Avg. % Error 7.1 7.5
E	0N - 0N4	System No.	System No.

TABLE XLVII. Prediction Errors for Carbon Tetrachloride + Alkane Data.

Error	cer Set
%।	<u>e</u>
Avg.	Paran

				1					M.	
Second		Data						*	ΔH^m	
Component	t, ^o c	Points	٩I	۳I	AI	Ю	Fr.	ខា	max	Ref.
n-hexadecane	20	ω	21.2	20.1	19.7	19.1	84.0	19.3	129.9	69
n-hexadecane	30	ω	16.2	16.2	15.6	15.8	59.4	15.8	91.3	69
iso-octane	20	6	4.7	4.2	5.0	3.0	83.3	2.8	17.1	69
iso-octane	40	14	7.0	7.2	7.8	7.7	46.5	7. 9	36.9	69
n-decane	25	21	2.4	2.6	1.4	6 .	75.9	1.6	11.4	65
n-octane	30	ω	3.4	4.4	4.3	5.7	83.8	4.9	22.4	69
n-octane	40	13	8.6	8.3	7.8	8.0	40.7	7.6	30.1	69
n-octane	50	• •	3.4	5.6	5.3	6.3	.7.97	5.7	25.8	69
n-nonane	25	21	2.4	2.6	1.8	2.2	75.9	1.8	13.5	64
n-hexane	30	10	. 6	8.6	10.5	0 •6	52.8	9 . 5	33.1	69
n-hexane	25	10	8.7	9.2	10.1	10.2	64.8	10.2	37.5	45
n-heptane	22	10	6.2	7.2	7.8	8.2	69.4	7.9	37.9	45
n-dodecane	25	21	4.7	4.9	3.5	3.9	76.6	3.6	43.3	66
n-heptane	30	8	4.7	5.8	5.6	6.6	57.8	6. 0	22.6	69
n-hebtane	20	9	3.8	5.0	5.00	6.3	76.5	5 8	26.2	69
n-hexane	40	12	10.5	10.3	9 . 5	6	42.1	9	32.2	69

Correlation of Primary Amines + Alkane Data. TABLE XLVIII.

Set $\dot{\mathbf{O}}$ Å m 4 4 Å Remarks note 2 note 1 8.8% note 1 note 9.2% 8.8% 8.8% 8.8% 9.3% note note note note note 0.56x10⁻⁶ 0.50×10⁻⁵ 0.97x10⁻⁶ 0.64x10⁻⁶ 0.38x10⁻⁵ 0.96x10⁻⁵ 0.77x10⁻⁶ 0.67x10⁻⁶ 0.42x10⁻⁶ 0.15x10⁻⁴ 0.22×10⁻³ 0.31x10⁻⁵ 0.11x10⁻⁴ 0.12x10⁻⁴ Deviation Standard 0.14652 0.378 0.379 0.361 34.475 25.811 0.390 0.361 8.524 25.805 0.381 8.524 8.524 0.361 0.361 0.361 FWIN 76.71,926.4 81.31,-5.88 81.28,-5.86 76.56,220.2 305.3,39.59 81.31,-5.88 81.36,-5.95 -5265.9,0.804 -1002.9,38.38 81.55,-5.85 76.21,199.4 305.3,39.54 81.36,-5.94 -1701.5,38.95 305.3,39.54 Parameters Final 7.14,491.7 Parameters 86.0,-6.8 77.8,+500 -200,-200 77.8,+790 0.1,-200 0.1,+200 -200,+200 +200,+200 +200,-200 25,200 0.1,0.1 -200,0.1 77.8,0.1 +200,0.1 Initial

Notes:

1. Repeating same FMIN and Standard Deviation.

2. Error Message.

							At Max	∆ ^{II} calc	1195.3	911.3	1188.7
		Kef.	73	66	78	Set C	Max. %	Error	8°0	11.3	21.8
	Ma x M	H ^{r,} exp	281.0	973.1	1.10		AVG• %	Error	5.3	7.4	15.1
	a At		~				At Max	ΔH^{m}_{calc}	1203.2	912.1	1190.3
	Date	Poin	9	19	10	Set B	Max. %	Error	8.4	1.1	22.1
		t, ^o C	45	30	25		Avg. %	Error	4.7	7.3	15.3
			n-heptane	n-hexane	n-hexane		At Max	$\Delta \Pi^{M}$ calc	1189.0	919.7	1175.2
Svstem	System	amine + 1 amine + 1		amine +]	Set A	Max. %	Error	8 • J	13.5	20.7	
			n-butyl	n-hexyl	n-butyl		Avg. %	Error	6.3	7.0	13.5
		No.	~~~	ŝ	5		System	No.		2	M

Correlation Errors for Primary Amines + Alkane Data.

TABLE XLIX.

TABLE L. Prediction Errors for Primary Amines + Alkane Data.
Correlation of Secondary Amines + Alkane Data. TABLE I.I.

Initial	Final		Standard		
Parameters	Parameters	FMIN	Deviation	Remarks	Set
420.8,39.71	486.3,38.28	16.738	0.0	62.7%	A
53.07,42.06	50.02,8.16	0.598	0.98×10 ⁻⁶	8.4%	А
50.9,45.3	49.99,8.15	0.598	0.14x10 ⁻⁵	note 1	

Note:

1. Repeating same FMIN and Standard Deviation.

					M At Max M	$H^{H}exp$ $\Delta H^{H}calc$	671.0 530.8	260.9 283.7	
s + Alkane Data				t B	max. %	error	35.9	3.5	
ary Amine	s Ref.	73	66	Se	avg. %	error	15.5	1.4	
Errors for Second: Data	t, ^o C Point	45 19	30 19		<u>At Max</u> M	H^{H} exp ΔH^{H} calc	671.0 213.1	280.9 88.7	
Correlation	System	ne + n-heptane	ne + n-hexane	et A	max. %	error	159.8	73.4	
TABLE LII	100	diethylami	dibutylami	Se	avg. %	error	62.5	62.9	
	No.	~	2		System	No.	~ -	2	

TABLE LIII. Prediction Errors for Secondary Amines + Alkane Data.

	Ref.	73	66
	ΔH^{M}_{max}	142.8	139.3
<u>Error</u> er Set	* ""[14.7	20.9
<u>Avg. %</u> Paramet	V	77.1	73.9
	Data Points	ŝ	19
	t, ⁰ C	25	30
	System	diethylamine + n-heptane	diethylamine + n-hexane

Correlation of Tertiary Amines + Alkane Data. TABLE LIV.

Data used in Correlation:

Triethylamine + N-heptane 45°C

Tri-n-dodecylamine + N-octane 30°C

Starting Parameters	Final Parameters	Fmin	Standard Deviation	Remarks
+200, +200	32.16, 470.7	8.538	0.25×10^{-4}	Note 1
+200, 0.1	32.15, 0.120	8.540	0.35 x 10 ⁻⁵	Note 1
+200, -200	89.0, -47.56	7.174	0.12 x 10 ⁻⁵	Note 1
0.1, +200	88.56, -47.38	7.174	0.32 x 10 ⁻³	Note 1
0.1, 0.1	88.28, -47.22	7.174	0.79 x 10 ⁻⁴	Note 1
0.1, -200	32.19, 575.6	8.538	0.15×10^{-4}	Note 1
-200, +200	-1045.4, 38.63	18.554	0.20×10^{-2}	Note 1
-200, 0.1	-862.2, 0.148	29.864	0.693	Note 2
-200, -200	-1069.8, 39.48	18.561	0.25×10^{-2}	Note 1

Notes: 1. Repeating same Fmin and Standard Deviation. 2. Error Message.

132

Set

TABLE LV. Correlation of Tertiary Amines + Alkane Data.

Data used in Correlation: triethylamine + n-heptane 45°C triethylamine + n-hexane 30°C

Initial	Final		Standard		
Parameters	Parameters	FMIN	Deviation	Remarks	Set
+200,+200	22.62,66.51	0.160	0.19×10^{-4}	note 1	
+200,0.1	22.86,0.118	0.282	0.13x10 ⁻⁵	note 1	
+200,-200	20.72,40.14	0.179	0.43×10^{-3}	note 2	
0.1,+200	22.54,65.84	0.160	0.18×10^{-4}	note 1	
0.1,0.1	22.63,66.66	0.160	0.22×10^{-4}	note 2	
0.1,-200	22.59,66.21	0.160	0.35×10^{-4}	note 2	
-200,+200	-950.2,35.63	16.532	0.13x10 ⁻²	note 1	
-200,0.1	-4734.2,0.68	36.765	0.3178	note 3	
-200,-200	-1083.9,35.43	16.537	0.87x10 ⁻³	note 1	
22.7,67.90	22.70,67.32	0.160	0.23×10^{-4}	note 1	
32.2,100.0	22.56,65.95	0.160	0.34×10^{-5}	note 1	
32.2,575.6	28.94,576.0	0.283	0.10x10 ⁻⁵	note 1	
88.5,-47.5	22.74,67.89	0.160	0.10×10^{-4}	note 2	
89.0,-47.56	21.50,54.99	0.163	0.28×10^{-2}	note 2	
32.2,0.12	22.71,67.60	0.160	0.15x10 ⁻⁴	note 2	
22.7,67.60	22.60,66.35	0.160	0.20x10 ⁻⁵	note 1	
21.5,55.00	22.58,66.19	0.160	0.19x10 ⁻⁵	note 1	
22.7,200.0	22.65,66.91	0.160	0.86×10^{-6}	5.2%	A
+200,67.0	22.76,68.23	0.160	0.68×10^{-6}	5.2%	A
0.1,67.0	22.63,66.77	0.160	0.30x10 ⁻⁵	note 1	
-200,67.0	-963.6,35.82	16.526	0.35x10 ⁻²	note 1	
22.7,-200	22.62,66.43	0.160	0.86x10 ⁻⁵	note 1	
22.7,0.1	28.87,0.114	0.282	0.25x10 ⁻⁵	note 1	
Notes: 1.Repeating 2.Ran out o	same FMIN and f time.	Standard	Deviation.		

3.Error Message.

TABLE LV1. Correlation Errors for Tertiary Amines + Alkane Data.

SET A

ι 1 Γ	Iei	22	66
$\Delta H = \Delta H$	exp carc	94.8 - 84.4	78.2 - 80.7
Max. %	10.1.14	16.7	5.0
Avg. %	10.1.19	7.5	3•0
Data	STUTOA	19	19
; 0 +	2	45	30
	ON SUCHI	triethylamine + n-heptane	triethylamine + n-hexane

			Ref.	73	48	48	61	48	
: Data.		N TH	Δ ^н max	23.4	2.3	6.7	73.7	14.8	
Amines + Alkane	Avg. % Error		Set A	40.5	2.2	15.5	0.06	13.1	
. Tertiary /		Data	Points	7	19	18	~	19	
Errors for			t, ^o c	25	25	25	30	25	
TABLE LVII Prediction			System	triethylamine + n-heptane	triethylamine + n-hexane	tributylamine + n-octane	tri-n-dodecylamine + n-octane	triethylamine + n-octane	

	ks Set	% A	Ж В	%	% B	% D	% A	% A	F %	% A	% A	
	Kemar	3.2	50.9	6.9	50.9	3.2	3.2	3.2		3.0	3.2	
Standard	Deviation	0.60×10 ⁻⁶	0.0	0.48x10 ⁻⁽	0.0	0.16x10 ⁻⁽	0.81x10 ⁻⁽	0.73×10 ⁻⁽	0.75x10 ⁻	0.45x10 ⁻¹	0.63x10	
	NTWH	0.135	23.688	0.522	23.688	0.152	0.135	0.135	0.152	0.135	0.135	
Final	Parameters	12.07,1.90	516.8,312.2	665.6,14.50	516.6,312.3	14.24,1624.1	12.09,1.89	12.08,1.89	14.23,1452.5	12.08,1.89	12.09,1.89	
Initial	Farameters	10.8,2.6	+200,+200	+200,0.1	+200,-200	0.1,+200	0.1,0.1	0.1,-200	-200,+200	-200,0.1	-200,-200	

	At Max At Max 995.4 1215.9 1277.6 1277.6 1277.6 1277.6 1202.5 1102.5
19 4000000 404040	Set C Kax % 15.9 24.00 24.00 14.7
ex 6 2 2 2 2 2 2 2 2 2 2 2 2 2	AVE. % 5.73 7.99 7.99 7.99 7.99 7.99 7.99 7.99 7
	At Max ΔH^{M} calc 279.0 543.44 3099.99 813.11 2246.66 710.99 913.11 2246.66 710.99 246.61 1145.70
Date 111 131 131 131 131 131 131 131 131 13	Set B Max. % Hrror 77.8 198.1 78.7 105.7 105.7 105.7 105.7 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6
t 250 250 250 250 250 250 250 20 20 20 20 20 20 20 20 20 20 20 20 20	AVB. AVB. % AVB. % AVB. % AVB. % AVB. % AVB. % AVB. % AVB. % AVB. % AVB. %
ctane ane adecane osane tane tane radecane	At Max ΔH^{M} calc 1026.7 1013.2 1323.3 1323.3 852.4 1323.3 ΔH^{M} calc 1019.6 1325.9 1307.6 1146.2 146.2
System - isoloo - n-deco - n-deco + n-deco + n-deco	Set A Max. % Birror 7.2 Set D Max. % Max. % Max. % Nax. %
benzene benzene benzene benzene benzene benzene	Avg. 8 Avg. 7 Avg. 7 Avg. 7 1.0 2.0 2.0 2.0 2.0 2.1 2.0 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	System No.

Correlation Errors for Benzene + Alkane Data. TABLE LIX.

Prediction Errors for Benzene + Alkane Data. TABLE LX.

				AVG	- % Err	۲ <u>ا</u>				
				Par	ameter	Set		2		
Second	¢	Data					k	ΔH^{M}		
Component	t, ^o c	Points	۳I	0	AI	비	A.	max	Ref.	
n-heptane	50	4	32.7	2.3	2.7	2.6	2•5	22.1	74	
n-hexane	25	10	64.1	6.7	1.5	1.5	2.3	21.0	80	
n-heptane	25	ω	61.7	6. 6	2.3	2.2	2.6	32.0	74	
2-methylpentane	25	15	67.6	5.8	1.0	•	6.0	23.0	81	
3-methylpentane	25	11	63.6	7.6	1.4	1.4	1.8	30.8	82	
2,3-dimethylbutane	25	10	65.4	10.0	1.8	- 8	2.5	40.7	84	
2,2-dimethylbutane	25	10	68.6	8.7	1.2	1.2	2.4	28.2	83	
n-octane	25	21	64.5	6.4	2.3	2.3	3.2	38.2	54	
n-undecane	25	۱	67.4	8.3	3•5	3.4	4.3	48.5	54	
n-dodecane	25	10	73.1	8 . 9	2.4	2.4	3.2	35.0	54	
n-tetradecane	25	10	64.9	7.9	1.6	1.7	0.6	14.8	54	
n-pentadecane	25	10	67.3	10.3	0°8	6 . 0	4.	15.4	54	
n-heptadecane	25	11	67.7	11.8	3.7	3 . 8	3.6	60.9	54	
n-hexane	50	13	55.3	ۍ و	2.9	2.9	2 • 8	25.0	55	
n-octane	50	13	61.9	7.7	2.0	2•0	2.3	26.7	5 C	
n-dodecane	50	15	74.0	6.8	1.6	1.6	0.7		5	ŗ
n-hexadecane	50	16	31.3	6 .0	1.7	1.6	2.3	49.6	55	
n-octadecane	50	11	37.1	6 .6	2.4	2.4	2 . 8	55.9	55	
eicosane	50	13	42.4	6.7	2.2	2•2	2	45.7	55	
iso-octane	50	4	34.8	3.8	0.6	0.6	•	17.5	74	

TABLE LXI. Correlation of Methanol + Alkane Data.

	Set	A	р Д	A	C	D
	Remarks	22.9%	4.5%	22.9%	25.5%	25.0%
Standard	Deviation	0.95x10 ⁻⁶	0.16x10 ⁻⁶	0.95x10 ⁻⁶	0.67x10 ⁻⁶	0.67x10 ⁻⁶
	FMIN	3.838	0.145	3.838	3.637	5.221
Final	Parameters	52.39,-16.19	394.4,12.90	52.41,-16.19	322.5,406.2	20.06,748.1
Initial	Parameters	44.6,-13.0	398.2,13.3	53.1,415.5	326.0,400.0	21.4,703.1

		At Max $\Delta_{\rm H}^{\rm M}$ calc	548.7 816.0 1224.2		
۲ ۲ ۲ ۳ ۳	•1	Set C Max. % Error	45.3 45.1 47.1		
kane Da	Ref 94 94	Åvg. % Fror	33•3 24•8 19•2		
thanol + Al	At Max ΔH^{M}_{exp} 714.9 848.7 1061.0	At Max Δ H ^M calc	733.6 808.4 1016.8		
rs for Me	Data Points 14 15	Set B Max. % Error	0 1 3 4 2 4 2 4 5 4 6 6 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8		140
tion Erro	t, 50 60	Avg. % Error	5 5 4 • 6 • 7 0		
. Correla	xane xane otane	At Max ${oldsymbol{\Delta}}_{\mathrm{H}^{\mathrm{M}}}$ calc	976.5 930.2 900.2	At Max ΔH^{M}_{calc} 828.0 710.4 640.5	
BLE LXII	<mark>System</mark> 1 + n-he 1 + n-he	Set A Max. % Wrror	69.7 73.4 73.7	Set D Max. % Firror E0.7 E3.5 E3.5	
Ψ	methano methano methano	Avg. % Error	26.3 21.8 20.7	Avg. % Lirror 28.0 21.3 25.5	
	N N N	System No.	- 0 M	System No.	

Prediction Errors for Methanol + Alkane Data. TABLE LXIII.

				Par	vg. <u>%</u> Err rameter <u>S</u>	or et		
System	t, ⁰ C	Data Points	A	อเ	AI	* 1	∆H max	Ref.
methanol + n-hexane	45	17	24.9	28.9	32.0	4.4	52.5	94
methanol + n-pentane	25	23	33.9	38.4	42.5	17.0	6.11	53
methanol + n-butane	25	23	33.9	49.0	46.0	16.1	112.6	76
methanol + n-propane	25	25	74.3	48.5	73.0	40.3	164.3	16

TABLE LXIV. Correlation of Alcohol + Alkane Data.

	Set		S		Å		· · · · · · · · · · · · · · · · · · ·	~~	Щ Д	2	C)	
	Remark	note	17.6%	note	17.6%	note	note	note	80.5%	note	80.5%	
Standard	Deviation	0.17x10 ⁻⁵	0.95x10 ⁻⁶	0.42x10 ⁻⁵	0.95x10 ⁻⁶	$0.43 x 10^{-4}$	0.58x10 ⁻⁵	0.81x10 ⁻⁵	0.0	0.21688	0.0	
	NIMI	2.623	2.623	2.623	2.623	12.448	6.971	12.448	35.717	53.157	35.718	
Final	Parameters	323.4,49.20	323.4,49.15	323.4,49.05	323.4,49.13	50.51,131.3	138.1,-35.87	50.42,131.0	-1231.8,43.47	-4734.2,0.684	-1306.0,44.02	
Initial	Parameters	398.2,13.3	+200,+200	+200,0.1	+200,-200	0.1,+200	0.1,0.1	0.1,-200	-200,+200	-200,0.1	-200,-200	

No tes:

1. Repeating same FMIN and Standard Deviation.

2. Error Message.

Ref.	93	62	27	98	47		At Nax	Δ ^{H^mcalc}	216.5	143.5	93.3	190.8	114.2
ax exp	7.5	5.4	6.6	0•8	6.0	Set C	Max. %	Hrror	92.0	96.3	93.9	95.9	96.4
At M D H ^M	8	125	50	149	104		AVE • %	Eror	69.9	86.0	76.1	86.0	90 . 8
Data Points	14	10	10	14	9		At Max	∆H ^m calc	216.5	143.5	93.5	190.8	114.3
t, ^o C	45	55	25	60	45	Set B	Max. %	Error	92.0	96.3	93.9	95.9	96.4
			outane		exane		Avg. %	Error	69.7	86.0	76.1	86.0	90.8
tem	tem ane tonane	kane 10nane ,2-dimethy1 .heptane		panol + n-h		At Max	ΔH^{m}_{calc}	919.5	1346.8	469.2	1219.1	837.7	
Sys	+ n-hex	n-n + lo.	nol + 2,	nol + n-	1-2-prop	Set A	Max. %	Error	41.4	29.5	45.4	40.2	52.5
	ethanol	n-butan	n-penta	2-propa	2-methy		Avg. %	Error	13.4	15.6	12.3	24.9	22.7
. No	~~	2	23	4	5		System	No.	~~	\sim	m	4	5

TABLE LXV. Correlation Errors for Alcohol + Alkane Data.

TABLE LXVI. Prediction Errors for Alcohol + Alkane Data.

			Avg. 3	Error		
			Parame	ter <u>Set</u>		
		Data		_	$\Delta \mathtt{H}^{\mathtt{M}}$	
System	t,°C	Points	₿1	<u>A</u> *	max	Ref.
n-propanol + n-hexane	45	-8	80.4	12.3	159.0	46
n-butanol + n-hexane	45	7	83.3	10.4	129.9	46
n-pentanol + n-hexane	45	18	89.5	20.5	189.7	93
n-hexanol + n-hexane	45	7	88.6	15.7	199.4	46
n-octanol + n-hexane	45	7	91.6	18.2	204.7	46
ethanol + n-heptane	10	14	57.1	17.6	£7.3	97
ethanol + n-heptane	20	12	59.4	19.0	140.8	92
ethanol + n-heptane	25	12	61.4	16.2	162.0	92
ethanol + n-heptane	30	16	64.4	18.5	189.2	92
ethanol + n-heptane	45	13	71.9	16.6	258.2	97
ethanol + n-heptane	60	15	79.3	15.1	287.9	97
ethanol + n-heptane	75	14	82.4	11.4	248.3	97
ethanol + n-decane	25	19	61.7	17.0	284.3	51
n-propanol + n-decane	25	18	73.1	16.7	200.4	51
n-butanol + n-decane	25	18	79.2	20.1	183.2	51
n-pentanol + n-decane	25	17	81.9	21.9	184.6	51
n-hexanol + n-decane	25	19	85.5	20.3	207.7	51
n-heptanol + n-decane	25	19	86.2	18.6	196.9	51
n-octanol + n-decane	25	19	87.6	19.9	207.3	51
n-pentanol + n-hexane	25	10	77.7	15.4	128.3	27
n-pentanol + n-heptane	25	12	79.9	20.5	146.9	92
n-pentanol + n-octane	25	13	82.0	24.6	165.6	92
n-pentanol + n-nonane	25	18	81.9	19.5	184.5	52
n-pentanol + n-tetradecane	25	13	83.0	33.3	273.4	92
n-pentanol + n-pentane	25	16	74.7	11.9	89.7	53
n-pentanol + n-butane	25	17	74.0	11.0	81.4	76
2-methyl-1-propanol + n-hexane	25	10	85.1	22.0	221.9	47
2-methyl-1-propanol + n-hexane	45	10	89.0	17.5	271.9	47
2-butanol + n-hexane	25	6	88.9	33.3	440.7	47
2-butanol + n-hexane	45	6	90.8	25.2	499.3	47
2-methyl-2-propanol + n-hexane	27	8	87.9	35.1	463.1	47.
2-propanol + n-heptane	30	20	78.8	31.7	313.6	98
2-propanol + n-heptane	45	21	82.6	28.1	349.5	98

Note:

1. The prediction errors for sets B and C are the same.

TABLE LXVII.	Group Inte	eraction	Parameters,
	-CH ₂ with	Group G.	

Group G	CH ₂ / G	G / CH ₂	Avg. % Error
CCL	47.85	-13.26	7.0
CCL2	26.60	-0.389	3.8
CCL3	15.22	-2.75	1.3
CCL ₄	2.75	1.79	7.4
CNH2	81.36	-5.95	8.8
CNH	50.02	8.16	8.4
(C) ₃ N	22.65	66.91	5.2
ACH	12.09	1.89	3.2
СНЗОН	394.4	12.90	4.5
OH	323.4	49.15	17.6

Fig. 3. Effect of the Value of Q on the accuracy of correlation for systems containing cycloalkanes.

- O Overall error
- Two Type I systems
- Δ Three Type II systems

Fig. 4. Comparison of experimental and predicted heats of mixing for n-hexane with 1-chlorobutane and with 2-chlorobutane at 25°C.
Experimental data: 56.
Δ experimental, and - - 1pre:1-chlorobutane
O experimental, and - - 2pre:2-chlorobutane

Mole fraction of component containing group CCL Fig. 5. Comparison of experimental and predicted heats of mixing for n-hexane with 1-chlcrobutane and with t-butylchloride at 25°C. (Experimental data: 56,96).

 Δ experimental, and - - 1 (pre.): 1-chlorobutane o experimental, and - - 2 (pre.): t-butylchloride

Fig. 7. Effect of length of component containing group CCL on prediction error for n-octane data at 25° C. (Experimental data: 56,86,89,96).

Fig. 9. Comparison of experimental and predicted heats of mixing for n-hexane with dichloromethane, chloroform and carbon tetrachloride at 25°C. (Experimental data: 45).

Õ	exp.,	and	-	-	1	pre.:	dichloromethane
Δ	exp.,	and	-		2	pre.:	chloroform
	exp.,	and		-	3	pre.:	carbon tetrachloride

AVE. % Error

156

benzene + n-alkane 25°C

benzene + n-alkane 50°C

Appendix I

Regression Computer Program

This appendix presents the regression computer program using the modified UNIFAC (with the Z(T)). Before explaining how to enter the program in the computer it might be good at this time to explain what is involved in the regression of interaction parameters. The regression computer program has three parts: main program. subroutine REG and subroutine FMIN. The main program has two parts, in the first part the information is read in by the computer. The data needed by the program is the number of experimental data points, the experimental data given as mole fraction and heats of mixing in J/mole. the number of parameters, and the starting values for the interaction parameters. The second part prints out the results when the program has converged on a good set of parameters.

The regression of the experimental data was accomplished using the subroutine REG which was identified in the book by Fredenslund et al (8). There were three subroutines available to us and REG was chosen because it took the least amount of computer time. The subroutine FMIN is where the prediction of heats of mixing by the UNIFAC method takes place.

The regression computer program does the following: 1) read in data.

2) call subroutine REG which in turn calls subroutine FMIN,

3) the heats of mixing is calculated for each data point in this subroutine,

4) the minimization function (FMIN) is defined by equation (34) (on page 47)

5) the program returns to REG where the parameters are changed in order to reduce FMIN and then returns to the other subroutine with this new set of parameters,

6) the computer program repeats this procedure until one of the following occurs:

- a) the program converges when the standard deviation is less than 1 x 10^{-5} , and the final results are printed out,
- b) the program reaches 200 iterations and stops calculating. This limit is needed because sometimes the program goes in the wrong direction and the FMIN gets large. Also, sometimes the program gets stuck on a set of parameters and repeats the same FMIN and standard deviation over and over.
- c) The program uses all the computer time it was allotted. In order to run the program on the school computer a time limit had to be given when the program was entered. The amount of time depended on the number of data points and the type of system. Some systems converged on a set of parameters more easily than others, for example, the

alcohol regression took longer than the benzene regression.

An example of a computer run will be given for the benzene/alkane regression. Below is a listing of the input data (program name = BENZENE-ALKANE-REG-DATA): line 1 = number of experimental data points lines 2-68 = experimental data for all the systems used,

given as mole fraction of benzene and heats

of mixing in J/mole

line 69 = number of interaction parameters

lines 70-71 = initial values of parameters

67		31	0.7088	1319.0	61	0.4760	1047.0
0.2651	698.0	32	0.7642	1252.0	62	0.5463	1108.0
0.4200	931.0	33	0.8436	1016.0	63	0.6131	1128.0
0.5207	1000.0	34	0.9193	645.0	64	0.6859	1111.0
0.5909	1003.0	35	0.1873	524.0	65	0.7553	1035.0
0.6868	939.0	36	0.3089	827.0	66	0.8283	887.0
0.7449	862.0	37	0.4077	1034.0	67	0.8855	694.0
0.8145	716.0	38	0.5053	1184.0	68	0.9410	417.0
0.8975	467.0	39	0.5809	1263.0	69	2	
0.0794	216.0	40	0.6893	1295.0	70	0.	1
0.1505	294.U	41	0.1572	1249.0	41	0.	
0 2655	554.U	42	0.81/1	1129.0			
0.2099	739 0	4)	0.0949	485 0			
0.3910	867 0	44	0.1006	256 0			
0.4535	940.0	46	0.2104	492.0			
0.5046	980.0	47	0.2851	629.0			
0.5665	1009.0	48	0.3461	721.0			
0.6294	1002.0	49	0.4465	828.0			
0.7059	943.0	50	0.5289	867.0			
0.7944	817.0	51	0.5938	866.0			
0.8799	575.0	52	0.6655	831.0			
0.9496	277.0	53	0.7576	714.0			
0.1454	476.0	54	0.8346	562.0			
0.2689	816.0	25	0.9188	314.0			
0.2499	1015.0	20 57	0.0609	178.0			
0.4209	1263 0	21 50	0.1200	510.0			
0.5675	1321 0	50	0.2292	797 0			
0.6262	1345.0	60	0.3985	946.0			
	67 0.2651 0.4200 0.5207 0.5909 0.6868 0.7449 0.8145 0.8975 0.0794 0.2655 0.3118 0.3910 0.4535 0.5046 0.5665 0.5665 0.6294 0.7059 0.7944 0.2689 0.7949 0.2689 0.7949 0.2689 0.5062 0.5675 0.5675 0.6262	67 0.2651 698.0 0.4200 931.0 0.5207 1000.0 0.5909 1003.0 0.6868 939.0 0.7449 862.0 0.8145 716.0 0.8975 467.0 0.794 216.0 0.794 216.0 0.794 216.0 0.1503 394.0 0.2655 650.0 0.3118 739.0 0.3910 867.0 0.3910 867.0 0.5046 980.0 0.5046 980.0 0.5046 980.0 0.5665 1009.0 0.6294 1002.0 0.7959 943.0 0.7944 817.0 0.8799 575.0 0.9496 277.0 0.1454 476.0 0.2689 816.0 0.3499 1013.0 0.4289 1145.0 0.5062 1263.0 0.5675 1321.0 0.6262 1345.0	67 31 0.2651 698.0 32 0.4200 931.0 33 0.5207 1000.0 34 0.5909 1003.0 35 0.6868 939.0 36 0.7449 862.0 37 0.8145 716.0 38 0.8975 467.0 39 0.0794 216.0 40 0.1503 394.0 41 0.2655 650.0 43 0.3118 739.0 44 0.3910 867.0 45 0.4535 940.0 46 0.5046 980.0 47 0.5665 1009.0 48 0.6294 1002.0 49 0.7059 943.0 50 0.7944 817.0 51 0.8799 575.0 52 0.9496 277.0 53 0.1454 476.0 54 0.2689 816.0 55 0.3499 1013.0 56 0.3499 1013.0 56 0.5675 1321.0 59 0.6262 1345.0 57	67 31 0.7088 0.2651 698.0 32 0.7642 0.4200 931.0 33 0.8436 0.5207 1000.0 34 0.9193 0.5909 1003.0 35 0.1873 0.6868 939.0 36 0.3089 0.7449 862.0 37 0.4077 0.8145 716.0 38 0.5053 0.8975 467.0 39 0.5809 0.0794 216.0 40 0.6893 0.1503 394.0 41 0.7572 0.2111 534.0 42 0.8177 0.2655 650.0 43 0.8949 0.3118 739.0 44 0.9482 0.3910 867.0 45 0.1006 0.4535 940.0 46 0.2104 0.5046 980.0 47 0.2851 0.5665 1009.0 48 0.3461 0.6294 1002.0 49 0.4465 0.7059 943.0 50 0.5289 0.7944 817.0 51 0.5938 0.8799 575.0 52 0.6655 0.9496 277.0 53 0.7576 0.1454 476.0 54 0.8346 0.2689 816.0 55 0.9188 0.3499 1013.0 56 0.0609 0.4289 1145.0 57 0.1306 0.5665 1321.0 59 0.3126 0.6262 1345.0 <	67 31 0.7088 1319.0 0.2651 698.0 32 0.7642 1252.0 0.4200 931.0 33 0.8436 1016.0 0.5207 1000.0 34 0.9193 645.0 0.5909 1003.0 35 0.1873 524.0 0.6868 939.0 36 0.3089 827.0 0.7449 862.0 37 0.4077 1034.0 0.8145 716.0 38 0.5053 1184.0 0.8975 467.0 39 0.5809 1263.0 0.794 216.0 40 0.6893 1295.0 0.1503 394.0 41 0.7572 1249.0 0.2655 650.0 43 0.8949 829.0 0.3118 739.0 44 0.9482 485.0 0.3910 867.0 45 0.1006 256.0 0.4535 940.0 46 0.2104 492.0 0.5665 1009.0 48 0.3461 721.0 0.6294 1002.0 49 0.4465 828.0 0.7059 943.0 50 0.5289 867.0 0.7944 817.0 51 0.5938 866.0 0.8799 575.0 52 0.6655 831.0 0.9496 277.0 53 0.7576 714.0 0.4289 1145.0 57 0.1306 370.0 0.5662 1263.0 58 0.2292 618.0 0.5675 <td>67$31$$0.7088$$1319.0$$61$$0.2651$$698.0$$32$$0.7642$$1252.0$$62$$0.4200$$931.0$$33$$0.8436$$1016.0$$63$$0.5207$$1000.0$$34$$0.9193$$645.0$$64$$0.5909$$1003.0$$35$$0.1873$$524.0$$65$$0.6868$$939.0$$36$$0.3089$$827.0$$66$$0.7449$$862.0$$37$$0.4077$$1034.0$$67$$0.8145$$716.0$$38$$0.5053$$1184.0$$68$$0.8975$$467.0$$39$$0.5809$$1263.0$$69$$0.0794$$216.0$$40$$0.6893$$1295.0$$70$$0.1503$$394.0$$41$$0.7572$$1249.0$$71$$0.2655$$650.0$$43$$0.8949$$829.0$$0.3118$$739.0$$44$$0.9482$$485.0$$0.3910$$867.0$$45$$0.1006$$256.0$$0.4535$$940.0$$46$$0.2104$$492.0$$0.5046$$980.0$$47$$0.2851$$629.0$$0.5665$$1009.0$$48$$0.3461$$721.0$$0.6294$$1002.0$$49$$0.4465$$828.0$$0.7944$$817.0$$51$$0.5938$$866.0$$0.7944$$817.0$$51$$0.5938$$866.0$$0.8799$$575.0$$52$$0.6655$$831.0$$0.9496$$277.0$$53$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	67 31 0.7088 1319.0 61 0.2651 698.0 32 0.7642 1252.0 62 0.4200 931.0 33 0.8436 1016.0 63 0.5207 1000.0 34 0.9193 645.0 64 0.5909 1003.0 35 0.1873 524.0 65 0.6868 939.0 36 0.3089 827.0 66 0.7449 862.0 37 0.4077 1034.0 67 0.8145 716.0 38 0.5053 1184.0 68 0.8975 467.0 39 0.5809 1263.0 69 0.0794 216.0 40 0.6893 1295.0 70 0.1503 394.0 41 0.7572 1249.0 71 0.2655 650.0 43 0.8949 829.0 0.3118 739.0 44 0.9482 485.0 0.3910 867.0 45 0.1006 256.0 0.4535 940.0 46 0.2104 492.0 0.5046 980.0 47 0.2851 629.0 0.5665 1009.0 48 0.3461 721.0 0.6294 1002.0 49 0.4465 828.0 0.7944 817.0 51 0.5938 866.0 0.7944 817.0 51 0.5938 866.0 0.8799 575.0 52 0.6655 831.0 0.9496 277.0 53	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

The nomenclature for the main computer program is given below:

Percentage difference between calculated and ex-ERROR perimental heats of mixing HEMIX(I) Calculated heats of mixing of component i in the mixture HK(K) Heats of mixing of group k Standard state heats of mixing of group k in HKS(K,I)pure component i Experimental heats of mixing HMIXE Calculated heats of mixing HMIX Partial molar heats of mixing of component i in HSUM(I) the mixture component i Ι J.K groups j, k number of experimental data points NDATA Number of groups of type k in component i N(K,I)Q(J)Area parameter of group j Gas constant, J/K mole R Absolute temperature, ^OK Т TH(J)Area fraction of group j Area fraction of group j in pure component i THS(J,I)Group fraction of group j X(J)Mole fraction of component i XM(I)Group interaction parameter determined by data ΧT

reduction

The computer program that follows is the main regression program adapted for the benzene/alkane correlation (lines 20 - 94 in subroutine FMIN). This program is called ZT-BENZENE-REG.
	***** Fürtra	**************	**************************************	165 09/16/80 20:1
<u>_</u> 1	1	C PROGRAM	USING UNIFAC REGRESSION SUBROUTI	NE .
	2	C MAIN PR	ION FOR Z(T) Ogram	
	4	COMM	ON XM1(100),HMIXE(100),HMIX(100), ON Q(100).N(100.100).AFRROR	ERROR(100),NDATA,T
$\hat{\boldsymbol{C}}$, 6 7	DIME	NSION XT(50,50) 1.NDATA	
`	8	1 FORM	AT(14) AT(F16.5)	
\mathcal{C}	10	READ	2, (XM1(I), HMIXE(I), I=1, NDATA) AT(F6.4.F8.1)	
\frown	12	READ	1. NPAR	
	14	SA=1	- E-6 702 (VT(1 1) 1-1 NDAD)	
	16	702 FORM	AT(F15.7)	
~	17	02	0 1=1.NPAR	34
••	19 20	IF(J- 2003 XT(J	-1-1)2002,2003,2002 .1)=1.1*XT(1.1)	
C	21	GO TO 2002 XTCJ	0 20 ,I)=XT(1,I)	
	23	20 CONT	1 <u>NUE</u> 74	
-	25 -	4 FORM PRIA	AT("-",10X, "INITIAL PARAMETERS") T301. (XT(1.1).I=1.NPAR)	
\mathbf{c}	27 28	301 FORM	AT(///,10X,F15.7) =1.	
	29	BETA	= <u>0,5</u> A=2,0	
С	31	CALL	REGENPAR, XT, ALFA, BETA, GAMMA, SA, N R=AFRROR/FLOAT (NDATA)	N)
	33	PRINT 7 FORM	T7 ATC1H0.4X. MOLE FRACTION 3X. FXP	- HMIX - 5X.
	35	<u>*************************************</u>	C. HMIX EX. T ERROR D	(1) 1=1.ND474)
	37	9 FORM	AT(4F15.5)	
	<u>38</u> 39	10 FORM	AT(1HU, AVERAGE 1 ERROR = ,2X,F12	•6)
	<u> </u>	ST OP END		
~				
-				
	and the second			an a

<u>~</u> .	166
•	FOFTRAN IV (VER 53) SOURCE LISTING: FMIN SUBROUTINE 09/16/80 20:
	I _ SUERUUIINE FRINKRITEINO) HNTYCHAAD, EPPAPCHAAD, NAMTA T
	² COMMON G(100) -N(100-100) -AFREOR
\cap	4 C UNIFACTEMPERATURE- INDEPENDENT PARAMETERS
	5 DIMENSION HS(100), ES(100,100), HEAT(100,100), HEMIX(100)
_	6 DINENSION A(100,100), AX(100), HK(100), HKS(100,100)
⊾ C	7 DIMENSION DN(100,100),850M(100),05(100,100)
-	8 DIMENSION ESCTUDI-FSCTUDI-GSCTUDI-CSCTUDI
-	7 DIMENSION C(100,100,100,100,100,100,100,100,00,0000
	11 DIMENSION H1(100).H1S(100).CSUM(100).P(100.100)
	12 DIMENSION YSUM(100)
1 C	13 DIMENSION CSSUM(100), BSSUM(100), HSUN(100), WSUM(100)
	14 DIMENSION TH(100).THS(100.100).VSUM(100).XT(100)
· ~	15 YS=0.
Ĺ	$\frac{10}{17} \qquad \qquad 0 - R 31/$
	18 DO 777 KPN=1-NDATA
C	19 IS=3
	20 IF(KPN.LE.8)60 TO 725
· ·	21 IF(KPN.LE.22)GO TO 735
C	22 IF(KPN.LE.33)GO TO 745
	<u>23 IF(KPN.LE.43)GO TO 755</u>
.C	24 IFARPALE-34360 10 763
- 1	26 C BENZENE + 2.2.4 TRINETHYLPENTANE (ISO-OCTANE) 25 C
Ú.	27 725 T=298.15
	28 N(2,2)=0
· 24	29 N(3,2)=0
	50 N(4,2)=0
	31 = 103 + 20 - 0 37 = 10 + 20 = 6
	33 N(2,3)=1
	34 N(3,3)=1
2	<u>35 N(4.3)=1</u>
\tilde{C}	36 N(S+3)=5
C	3/ NLO ₈ 37=U 78 ¥8=6
	39 $6(2)=0.0$
C	42 Q(3)=.228
	41 Q(4)=.54
1. 10	4 <u>7</u> •(5)= _* 848
	$\frac{45}{10} \frac{9(6) = 4}{210} \frac{1}{220 - 2} \frac{1}{24}$
	44 DU COURTERERA
S.C.	46 A (KK20.KK21)=0.
	47 730 CONTINUE
	48 A(2,6)=XT(1)
	49 A(6,2)=XT(2)
	$\frac{1}{53} = \frac{1}{53} $
1.	57 A(5,6)=A(7,6)

	FORTR	AN IV (VER 53) SOURCE	LISTING: FM	IN SUEROUT	INE 09/16/80 20
~ ↑	53	A(6-3)=A(6.2)			
	54	A(6.4)=A(6,2)			
	55	A (6,5)=A(6,2)			
	56	GO TO	780	50.0		
53	<u> </u>	735 T=373	N-DELANE	<u> </u>		
	59	N(2.3	8=(
	03	740 N(2.2) =0			
-	61	N (3,2)=0			
	62	N (4,2))=0			
5.	<u> </u>	NC3.3.				
	65	КЛ=4	· · ·		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
10 A	66	Q (2) =	.54	X		
-	ć7	Q(3)=	. 848			
	68	Q(4)=(
	70	A(2,2)) = () •			
	71	A (4.4)=0.			· · · · · · · · · · · · · · · · · · ·
	72	A(2.3))=0.			
	73	A (3,2))=0.			
	74	A (2,4))=XT(1)			
	<u> </u>		y = x + (2)			
	77	A44.31	=A(4.2)			
200	78	<u>GO TO</u>	780	•••		
•	. 79	C BENZENE +	N-C16 25	C		
	- 80 s1	745 T=298	15			
1	82	60 TO	740			
	83	C BENZENE +	N-C22 50	ις .	and the second	
	84	<u>755 T=323.</u>	. 15			
	85	N(2,3)	=20			
	80 87	C RENZENE +	N-PENTANE	25 C		
	88	765 1=298.	15			
	39	N (2, 3)	=3			
	90	<u>60 TO</u>	740			
	91	C BENZENE +	N-C14 50	С		
	94	110 (=323) N(2-3)	=12		ų.	l and a second second
1	94	60 TO	740			A CARLES AND A CARLES
	95	789 XM(2)=	XMT (KPN)			
	96	XM(3)=1	.0-XM(2)			
	97	ت= (1) x ع	•			
	98 00	0= (f) XA 0= MH2 XA	. 0			
Services.		DO 30 M	=2.KA		an a	Se da da gan da hana da
	101	00 40 1	=2,15			
	102	DO 50 K	=2,KA			
	103	A X (K) = A	x(K-1)+XM	(I)*N(K,I)		

	FORTRAN IN	V (VER 53) SOURCE	LISTING: FMIN	SUBROUTINE	09/16/80
-	105	'8X(I)=8X(I-1)+XM	(1)+N(M.1)		
	106	AX SUM = AXSUM+AX (K	A)		
_	107 40	CONTINUE			
	108	X(M) = BX(IS)/AXSU	Marka Sana Ang Kangarang Kangara		
	109	AXSUM=0.G	e	·	and the second
		CONTINUE			
	412	ND 99 1=2 KA	•		
	113	DO 88 M=2-KA			
•.	114	WSUM(M) = WSUM(M-1)+@(M)*X(M)		
	115 88	CONTINUE			
	116	TH(J)=2(J)+X(J)/	WSUM(KA)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
	117 99	CONTINUE	. • • •		
	118				
	119	E(1) = 0.0			
	121	F(1) = 0.0			
1	122	6(1)=0.0	and the second second		Selection and the
	123	H(1)=0.0			
ļ	124	B(1.1)=0.0			
•	125	CSUM(1)=0.0	•		
	120	550M(1)=0.0			
1	128	00 1 J=2-KA			
x	170		Sec. 2	March March March 197 March 197	and the second
	ひかい おおおおいろび ふうし 🤰 🌇 🍞 しょうどう ひかんしょうろ	DO Z M=2.KA	2004 State 1996 State 199		
	130	DO 2 M=2,KA 	(-((35.2-0.1272*	T+0.00014+T+	T)*A(M.J)
	1 <u>30</u> 131	DO 2 M=2,KA <u>C(J.M)=TH(M)*EXP</u> X)/(2*T))*(((35.2)	(-((35.2-0.1272* -0.1272*T+0.0001	<u>T+0.00014+T+</u> 4+T+T)+A(M,J	<u>T) *A (M_J)</u>)) / (2 * T * T
)	130 131 132	DO 2 M=2,KA <u>C(J.M)=TH(M)*EXP</u> X)/(2*T))*(((35.2 X)-(A(M,J)*(D.000	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2	T+0.00014*T* 4+T+T)+A(M,J *T))	T) *A (M .J))) / (2 * T * T
)	130 131 132 133	DO 2 M=2,KA C(J.M)=TH(M)*EXP X)/(2*T))*(((35.2 X)-(A(M,J)*(0.000 P(J.M)=TH(M)*EXP X)/(2+T))	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*	<u>T+0.00014+T+</u> 4+T+T)+A(M,J 2+T)) T+C.00014+T+	T)*A(M.J)))/(2*T*T T)*A(M.J)
	130 131 132 133 134 135	DO 2 M=2,KA <u>C(J.M)=TH(M)*EXP</u> X)/(2*T))*(((35.2 X)-(A(M,J)*(D.000 <u>P(J.M)=TH(M)*EXP</u> X)/(2*T)) FSUM(M)=FSUM(M=4	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*	T+0.00014*T* 4*T*T)*A(M,J *T)) T+C.00014*T*	<u>T) *A (M.J)</u>)) / (2 * T * T <u>T) *A (M.J)</u>
	130 131 132 133 134 135 136	DO 2 M=2,KA <u>C(J.M)=TH(M)*EXP</u> X)/(2*T))*(((35.2 X)-(A(M,J)*(0.000 <u>P(J,M)=TH(M)*EXP</u> X)/(2*T)) CSUM(M)=CSUM(M-1 BSUM(M)=BSUM(M-1	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+C(J.N)	<u>T+0.00014*T*</u> 4*T+T)*A(M,J *T)) <u>T+C.00014*T*</u>	T)*A(M.J)))/(2*T*T T)*A(M.J)
	130 131 132 133 134 135 136 137	DO 2 M=2,KA C(J.M)=TH(M)*EXP X)/(2*T))*(((35.2 X)-(A(M,J)*(0.000 P(J.M)=TH(M)*EXP X)/(2*T)) CSUM(M)=CSUM(M-1 BSUM(M)=BSUM(M-1 D(J,M)=(ABS(BSUM	(-((35.2+0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+C(J,M))+P(J,M) (M)))**2.0	<u>T+0.00014+T+</u> 4+T+T)+A(M,J *T)) <u>*T+C.00014+T</u> *	T]*A(M.J)))/(2*T*T T)*A(M.J)
	130 131 132 133 134 135 136 137 138 2	DO 2 M=2,KA <u>C(J.M)=TH(M)*EXP</u> X)/(2*T))*(((35.2 X)-(A(M,J)*(0.000 <u>P(J,M)=TH(M)*EXP</u> X)/(2*T)) CSUM(M)=CSUM(M-1 <u>BSUM(M)=BSUM(M-1</u> D(J,M)=(ABS(BSUM CONTINUE	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+C(J.M))+P(J.M) (M)))**2.0	T+0.00014*T* 4*T*T)*A(M,J *T)) T+C.00014*T*	<u>T)*A(M.J)</u>))/(2*T*T T)*A(M.J)
	130 131 132 133 134 135 136 137 138 2 139	DO 2 M=2,KA <u>C(J.M)=TH(M)*EXP</u> X)/(2*T))*(((35.2 X)-(A(M,J)*(0.000 <u>P(J,M)=TH(M)*EXP</u> X)/(2*T)) CSUM(M)=CSUM(M-1 <u>BSUM(M)=BSUM(M-1</u> D(J,M)=(ABS(BSUM CONTINUE <u>E(J)=E(J-1)+TH(J</u>	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+C(J,N))+P(J,N) (M)))**2.0)*EXP(-((35.2-0.	<u>1272 + T+0.000</u>	T) *A (M .J))) / (2 * T * T T) *A (M ,J) 14 *T *T)
	130 131 132 133 134 135 136 137 138 2 139 140	DO 2 M=2,KA C(J.M)=TH(M)*EXP X)/(2*T))*(((35.2 X)-(A(M,J)*(0.000 P(J,M)=TH(M)*EXP X)/(2*T)) CSUM(M)=CSUM(M-1 BSUM(M)=ESUM(M-1 D(J,M)=(ABS(BSUM CONTINUE E(J)=E(J-1)+TH(J X*A(K,J))/(2*T))*	(-((35.2+0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+C(J,M))+P(J,M) (M)))**2.0)*EXP(-((35.2-0. CSUM(KA)/D(J,KA)	1272+T+0.000	T) *A (M .J))) / (2 * T * T T) *A (M .J) 14 *T *T)
	130 131 132 133 134 135 136 137 138 2 139 140 141 142	DO 2 M=2,KA C(J.M)=TH(M)*EXP X)/(2*T))*(((35.2 Z)-(A(M,J)*(D.0D0 P(J,M)=TH(M)*EXP Z)/(2*T)) CSUM(M)=CSUM(M-1 BSUM(M)=CSUM(M-1 D(J,M)=(ABS(BSUM CONTINUE E(J)=E(J-1)+TH(J Z*ATK,J)/(2*T))* F(J)=F(J-1)+TH(J *ATK,J)/(2*T))*	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+C(J,N))+P(J,N) (M)))**2.0)*EXP(-((35.2-0. CSUM(KA)/b(J,KA))*EXP(-((35.2-0.	<u>T+0.00014*T*</u> 4*T*T)*A(M,J *T)) <u>T+C.00014*T*</u> <u>1272*T+0.000</u> 1272*T+0.000	<u>T) *A (M.J)</u>)) / (2 * T * T <u>T) *A (M.J)</u> <u>14 * T * T)</u>
	130 131 132 133 134 135 136 137 138 2 139 140 141 142 143	DO 2 M=2,KA C(J.M)=TH(M)*EXP X)/(2*T))*(((35.2 X)-(A(M,J)*(0.000 P(J,M)=TH(M)*EXP Z)/(2*T)) CSUM(M)=CSUM(M-1 BSUM(M)=ESUM(M-1 D(J,M)=(ABS(BSUM CONTINUE E(J)=E(J-1)+TH(J X*A(K,J))/(2*T))* F(J)=F(J-1)+TH(J X*A(K,J))/(2*T))*	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+C(J,M))+P(J,M) (M)))**2.0)*EXP(-((35.2-0. CSUM(KA)/b(J,KA))*EXP(-((35.2-0. ((35.2-0.1272*T))*(0.28*T-0.1	<u>1272*T+0.000</u> 1272*T+0.000 1272*T+0.000 1272*T+0.000 1272*T+0.000	T) *A (M .J))) / (2 * T * T T) *A (M ,J) 14 *T *T) 14 *T *T)) *A (K J) /B SUM (K A)
	130 131 132 133 134 135 136 137 138 2 139 140 141 142 143 144	DO 2 M=2,KA C(J.M)=TH(M)*EXP X)/(2*T))*(((35.2 X)-(A(M,J)*(0.000 P(J,M)=TH(M)*EXP X)/(2*T)) CSUM(M)=CSUM(M-1 BSUM(M)=CSUM(M-1 BSUM(M)=ESUM(M-1 D(J,M)=(ABS(BSUM CONTINUE E(J)=E(J-1)+TH(J X*A(K,J))/(2*T))* F(J)=F(J-1)+TH(J X*A(K,J))/(2*T))* X)/(2*T+T)-(A(K,J) G(J)=G(J-1)+TH(J	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+C(J,M))+P(J,M) (M)))**2.0)*EXP(-((35.2-0. CSUM(KA)/b(J,KA))*EXP(-((35.2-0. ((35.2-0.1272*T)*(0.00028*T-0.1)*EXP(-((35.2-0.1272*T)))	<u>1272*T+0.000</u> 1272*T+0.000 1272*T+0.000 1272*T+0.000 1272*T+0.000 1272*T+0.000 1272*T+0.000 1272*T+0.000 1272*T+0.000	T) *A (M.J))) / (2 * T * T T) *A (M.J) 14 *T *T) 14 *T *T) 14 *T *T) /B SUM (KA) 14 *T *T)
	130 131 132 133 134 135 136 137 138 2 139 140 141 142 143 144 145	DO 2 M=2,KA C(J.M)=TH(M)*EXP X)/(2*T))*(((35.2 Z)-(A(M,J)*(D.0D0 P(J,M)=TH(M)*EXP Z)/(2*T)) CSUM(M)=CSUM(M-1 BSUM(M)=CSUM(M-1 D(J,M)=CABS(BSUM CONTINUE E(J)=E(J-1)+TH(J Z*A(K,J))/(2*T))* F(J)=F(J-1)+TH(J Z*A(K,J))/(2*T))* X)/(2*T+T)-(A(K,J) G(J)=G(J-1)+TH(J Z*A(J,K))/(2*T))*	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+C(J,N))+P(J,N) (M)))**2.0)*EXP(-((35.2-0. CSUM(KA)/b(J,KA))*EXP(-((35.2-0.1272*T)*(3.00028*T-0.1)*EXP(-((35.2-0.1272*T	<u>T+0.00014*T*</u> 4*T*T)*A(M,J *T)) <u>T+C.00014*T*</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>+0.00014*T*T</u> 272))/(2*T)) 1272*T+0.000 +0.00014*T*T	<u>T) *A (M.J)</u>)) / (2 * T * T <u>T) *A (M.J)</u> <u>14 * T * T)</u> <u>14 * T * T}</u> <u>2 * A (K.J)</u> / B S UM (KA) 14 * T * T)) * A (J.K)
	130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146	DO 2 M=2,KA C(J.M)=TH(M)*EXP X)/(2*T))*(((35.2 X)-(A(M,J)*(0.000 P(J,M)=TH(M)*EXP Z)/(2*T)) CSUM(M)=CSUM(M-1 BSUM(M)=CSUM(M-1 D(J,M)=CABS(BSUM CONTINUE E(J)=E(J-1)+TH(J X*A(K,J))/(2*T))* F(J)=F(J-1)+TH(J X*A(K,J))/(2*T))* X)/(2*T*T)-(A(K,J) G(J)=G(J-1)+TH(J X*A(J,K))/(2*T))* Z)/(2*T*T)-(A(J,K))* Z)/(2*T*T)+ Z)/(2*T*T)-(A(J,K))* Z)/(2*T*T)+ Z)/(2*T*T)+ Z)/(2*T*T)+ Z)/(2*T*T)+ Z)/(2*T*T)+ Z)/(2*T*T)+ Z)/(2*T*T)+ Z)/(2*T*T)+ Z)/(2*T*T)+ Z)/(2*T*T)+ Z)/(2*T*T)+ Z)/(2*T*T)+	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+C(J,M))+P(J,M) (M)))**2.0)*EXP(-((35.2-0. CSUM(KA)/b(J,KA))*EXP(-((35.2-0. ((35.2-0.1272*T)*EXP(-((35.2-0.1272*T)*EXP(-((35.2-0.1272*T)*(0.00028*T=0.1	<u>1272 + T+0.00014 + T+</u> <u>1272 + T+0.000</u> <u>1272 + T+0.000 <u>1272 + T+0.000</u> <u>1272 + T+0.000</u> <u>1272 + T+0.000 <u>1272 + T+0.000</u> <u>1272 + T+0.000</u> <u>1272 + T+0.000 <u>1272 + T+0.000 <u>1272 + T+0.000 <u>1272 + T+0.000 <u>1272</u></u></u></u></u></u></u>	T) *A (M.J))) / (2*T*T T) *A (M.J) 14*T*T) 14*T*T) 14*T*T) 0*A(K.J) /BSUM (KA) 14*T*T) 0*A(J.K)
	130 131 132 133 134 135 136 137 138 139 140 142 143 142 143 144 145 146 147	D0 2 M=2,KA C(J.M)=TH(M)*EXP X)/(2*T))*(((35.2 X)-(A(M,J)*(0.000 P(J,M)=TH(M)*EXP X)/(2*T)) CSUM(M)=CSUM(M-1 BSUM(M)=CSUM(M-1 BSUM(M)=ESUM(M-1 D(J,M)=(ABS(BSUM CONTINUE E(J)=E(J-1)+TH(J X*A(K,J))/(2*T))* F(J)=F(J-1)+TH(J X*A(K,J))/(2*T))* X)/(2*T*T)-(A(K,J) G(J)=G(J-1)+TH(J X+A(J,K))/(2*T))* X)/(2*T*T)-(A(J,K) H(J)=H(J-1)+TH(J)	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+E(J,M))+P(J,M) (M)))**2.0)*EXP(-((35.2-0. CSUM(KA)/b(J,KA))*EXP(-((35.2-0. ((35.2-0.1272*T)*(0.00028*T-0.1)*EXP(-((35.2-0.	<u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u>	T) *A (M.J))) / (2 * T * T T) *A (M.J) 14 *T *T) 14 *T *T) 14 *T *T) 0 *A (K.J) 14 *T *T) 0 *A (J.K) 14 *T *T)
	136 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148	DO 2 M=2,KA C(J.M)=TH(M)*EXP X)/(2*T))*(((35.2 Z)-(A(M,J)*(0.000 P(J,M)=TH(M)*EXP Z)/(2*T)) CSUM(M)=CSUM(M-1 BSUM(M)=CSUM(M-1 D(J,M)=CABS(BSUM CONTINUE E(J)=E(J-1)+TH(J Z*A(K,J))/(2*T))* F(J)=F(J-1)+TH(J Z*A(K,J))/(2*T))* X)/(2*T*T)-(A(K,J) G(J)=G(J-1)+TH(J Z*A(J,K))/(2*T))* Z)/(2*T*T)-(A(J,K) H(J)=H(J-1)+TH(J Z*A(J,K))/(2*T))* CONTINUE	(-((35.2+0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+C(J,M))+P(J,M) (M)))**2.0)*EXP(-((35.2-0. (35.2-0.1272*T *(0.00028*T-0.1)*EXP(-((35.2-0.1272*T *(0.00028*T-0.1)*EXP(-((35.2-0.1272*T)*(0.00028*T-0.1))*EXP(-((35.2-0.1272*T)))	1272 + T+0.000 1272 + T+0.000 1272 + T+0.000 1272 + T+0.000 +0.000 14 + T + T 272) / (2 + T)) 1272 + T+0.000 +0.000 14 + T + T 272) / (2 + T)) 1272 + T+0.000 +0.000 14 + T + T 272) / (2 + T)) 1272 + T+0.000 +0.000 14 + T + T 272) / (2 + T))	T) *A (M.J))) / (2 * T * T T) *A (M.J) 14 *T *T) 14 *T *T) 14 *T *T) /B SUM (KA) 14 *T *T)) *A (J,K) 14 *T *T)
	130 131 132 133 134 135 136 137 138 139 140 142 143 142 143 144 145 146 147 148 149 145	DO 2 M=2,KA C(J.M)=TH(M)*EXP X)/(2*T))*(((35.2 X)-(A(M,J)*(0.000 P(J,M)=TH(M)*EXP Z)/(2*T)) CSUM(M)=CSUM(M-1 BSUM(M)=CSUM(M-1 D(J,M)=CABS(BSUM CONTINUE E(J)=E(J-1)+TH(J X*A(K,J))/(2*T))* F(J)=F(J-1)+TH(J X*A(K,J))/(2*T))* X)/(2*T*T)-(A(K,J) G(J)=G(J-1)+TH(J X*A(J,K))/(2*T))* Z)/(2*T*T)-(A(L,K) H(J)=H(J-1)+TH(J X*A(J,K))/(2*T))* CONTINUE H(J)=H(J-1)+TH(J) CONTINUE H(J)=(K))/(2*T)	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+C(J,M))+P(J,M) (M)))**2.0)*EXP(-((35.2-0. CSUM(KA)/b(J,KA))*EXP(-((35.2-0. ((35.2-0.1272*T)*(0.00028*T-0.1)*EXP(-((35.2-0. ((35.2-0.1272*T)*(0.00028*T-0.1)*EXP(-((35.2-0.	1272 * T+0.000 1272 * T+0.000	T) *A (M.J))) / (2*T+T T) *A (M.J) 14*T*T) 14*T*T) 14*T*T) 2*A(K.J) /BSUM (KA) 14*T*T) 0*A(J,K) 14*T*T)
	130 131 132 133 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 145 146 147 148 145 145	D0 2 M=2,KA C(J.M)=TH(M)*EXP X)/(2*T))*(((35.2 X)-(A(M,J)*(0.000 P(J,M)=TH(M)*EXP X)/(2*T)) CSUM(M)=CSUM(M-1 BSUM(M)=CSUM(M-1 BSUM(M)=CSUM(M-1 D(J,M)=CSUM(M-1 D(J,M)=CSUM(M-1 D(J,M)=CSUM(M-1 D(J,M)=CSUM(M-1 D(J,M)=CSUM(M-1 CONTINUE E(J)=E(J-1)+TH(J X*A(K,J)/(2*T))* Y)/(2*T*T)-(A(K,J) G(J)=G(J-1)+TH(J X*A(J,K))/(2*T))* X)/(2*T*T)-(A(J,K) H(J)=H(J-1)+TH(J X*A(J,K))/(2*T))* CONTINUE H1(KA)=G(KA)/H(KA) HK(K)=G(K)*(H1(KA))	(-((35.2-0.1272*))/(2) + C(35.2-0.1272))/(2) + C(35.2-0.1272*)/(2) + C(35.2-0.1272*) + C(35.2-0.1272	<u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u>	T) *A (M.J))) / (2 * T * T T) *A (M.J) 14 * T *T) 14 * T *T) 14 * T *T) 0 *A (K.J) /B SUM (KA) 14 * T *T) 0 *A (J.K) 14 * T *T)
	130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 145 146 147 148 149 150 151	DO 2 M=2,KA C(J.M)=TH(M)*EXP X)/(2*T))*(((35.2 Z)-(A(M,J)*(0.000 P(J,M)=TH(M)*EXP Z)/(2*T)) CSUM(M)=CSUM(M-1 BSUM(M)=CSUM(M-1 D(J,M)=CABS(BSUM CONTINUE E(J)=E(J-1)+TH(J Z*A(K,J))/(2*T))* F(J)=F(J-1)+TH(J Z*A(K,J))/(2*T))* X)/(2*T*T)-(A(K,J) G(J)=G(J-1)+TH(J Z*A(J,K))/(2*T))* Z)/(2*T*T)-(A(J,K) H(J)=H(J-1)+TH(J Z*A(J,K))/(2*T))* CONTINUE H(J)=H(J-1)+TH(J Z*A(J,K))/(2*T))* CONTINUE H1(KA)=G(KA)/H(K) HK(K)=G(K)*(H1(K))	(-((35.2+0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+E(J,M))+P(J,M) (M)))**2.0)*EXP(-((35.2-0. (35.2-0.1272*T *(5.00028*T-0.1)*EXP(-((35.2-0. ((35.2-0.1272*T *(0.00028*T-0.1)*EXP(-((35.2-0. ((35.2-0.1272*T)*(0.00028*T-0.1)*EXP(-((35.2-0. ((35.2-0.1272*T)*(0.00028*T-0.1)*EXP(-((35.2-0.	1272 + T + 0.000 1272 + T + 0.000 1272 + T + 0.000 1272 + T + 0.000 + 0.000 14 + T + T 272) / (2 + T)) 1272 + T + 0.000 + 0.000 14 + T + T 272) / (2 + T)) 1272 + T + 0.000 R + T + T	T) *A (M.J))) / (2 * T * T T) *A (M.J) 14 *T *T) 14 *T *T) 14 *T *T) /B SUM (KA) 14 *T *T)) *A (J,K) 14 *T *T)
	136 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 145 146 147 148 145 146 147 150 151 152 153	DO 2 M=2,KA C(J.M)=TH(M)*EXP X)/(2*T))*(((35.2 Z)-(A(M,J)*(D.0D0 P(J,M)=TH(M)*EXP Z)/(2*T)) CSUM(M)=CSUM(M-1 BSUM(M)=CSUM(M-1 D(J,M)=CABS(BSUM CONTINUE E(J)=E(J-1)+TH(J Z*A(K,J))/(2*T))* F(J)=F(J-1)+TH(J Z*A(K,J))/(2*T))* X)/(2*T*T)-(A(K,J) G(J)=G(J-1)+TH(J X*A(L,K))/(2*T))* Z)/(2*T*T)-(A(L,K) H(J)=H(J-1)+TH(J) X*A(J,K))/(2*T))* CONTINUE H(J)=H(J-1)+TH(J) X*A(J,K))/(2*T) CONTINUE H1(KA)=G(KA)/H(KA) HK(K)=G(K)*(H1(KA)) CONTINUE YSUM(1)=D.D	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+C(J,M))+P(J,M) (M)))**2.0)*EXP(-((35.2-0. CSUM(KA)/b(J,KA))*EXP(-((35.2-0. CSUM(KA)/b(J,KA)))*EXP(-((35.2-0. ((35.2-0.1272*T)*(0.00028*T-0.1)*EXP(-((35.2-0. ((35.2-0.1272*T)*(0.00028*T-0.1)*EXP(-((35.2-0. ((35.2-0.1272*T))*(0.00028*T-0.1)))*EXP(-((35.2-0.)))	T+0.00014*T* 4*T+T)*A(M,J *T)) T+C.00014*T* 1272*T+0.000 +0.00014*T*T 272))/(2*T)) 1272*T+0.000 +0.00014*T*T 272))/(2*T)) 1272*T+0.000 +0.00014*T*T 272))/(2*T)) 1272*T+0.000 +0.00014*T*T 272))/(2*T)) 1272*T+0.000 +0.00014*T*T 272))/(2*T)) 1272*T+0.000	T) *A (M.J))) / (2 * T * T T) *A (M.J) 14 *T *T) 14 *T *T) 24 (K.J) 14 *T *T) 2 *A (J.K) 14 *T *T) 2 *A (J.K)
	$ \begin{array}{r} 136 \\ 131 \\ 132 \\ 133 \\ 134 \\ 135 \\ 136 \\ 137 \\ 138 \\ 137 \\ 138 \\ 137 \\ 138 \\ 137 \\ 138 \\ 140 \\ 141 \\ 142 \\ 142 \\ 142 \\ 143 \\ 144 \\ 145 \\ 144 \\ 145 \\ 146 \\ 147 \\ 148 \\ 146 \\ 147 \\ 148 \\ 145 \\ 146 \\ 147 \\ 148 \\ 145 \\ 150 \\ 151 \\ 152 \\ 153 \\ 154 \\ 154 $	D0 2 M=2,KA C(J.M)=TH(M)*EXP X)/(2*T))*(((35.2 X)-(A(M,J)*(0.000 P(J,M)=TH(M)*EXP X)/(2*T)) CSUM(M)=CSUM(M-1 BSUM(M)=CSUM(M-1 D(J,M)=CABS(BSUM CONTINUE E(J)=E(J-1)+TH(J X*A(K,J))/(2*T))* F(J)=F(J-1)+TH(J X*A(K,J))/(2*T))* X)/(2*T*T)-(A(K,J) G(J)=G(J-1)+TH(J) X*A(J,K))/(2*T))* X)/(2*T*T)-(A(K,J)K H(J)=H(J-1)+TH(J) X*A(J,K))/(2*T))* CONTINUE H1(KA)=G(KA)/H(KA HK(K)=G(K)*(H1(KA)) CONTINUE YSUM(1)=0.0 D0-5 I=2,IS	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+C(J,M))+P(J,M) (M)))**2.0)*EXP(-((35.2-0. CSUM(KA)/b(J,KA))*EXP(-((35.2-0. ((35.2-0.1272*T)*(0.00028*T-0.1)*EXP(-((35.2-0. ((35.2-0.1272*T)*(0.00028*T-0.1)*EXP(-((35.2-0. ((35.2-0.1272*T))*(0.00028*T-0.1))*EXP(-((35.2-0.1272*T)))*(0.00028*T-0.1))*(0.000028*T-0.1))*(0.000028*T-0.1))*(0.000028*T-0.1))*(0.000028*T-0.1))*(0.000028*T-0.1))*(0.000028*T-0.1))*(0.000028*T-0.1))*(0.000028*T-0.1))*(0.000028*T-0.1))*(0.000028*T-0.1))*(0.000028*T-0.1))*(0.000028*T-0.1))*(0.000028*T-0.1))*(0.000028*T-0.1))*(0.000028*T-0.1))*(0.000028*T-0.1))*(0.000028*T-0.1))*(0.0000000000000000000000000000000000	<u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u>	T) *A (M.J))) / (2 * T * T T) *A (M.J) 14 *T *T) 14 *T *T) 14 *T *T) 2 *A (K.J) /B SUM (KA) 14 *T *T) 2 *A (J.K) 14 *T *T)
	130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 145 146 145 146 145 146 145 146 145 146 145 146 145 146 145 146 145 146 147 150 151 152 154 155	DO 2 M=2,KA C(J.M)=TH(M)+EXP X)/(2+T))*(((35.2 Z)-(A(M,J)*(0.000 P(J,M)=TH(M)+EXP Z)/(2+T)) CSUM(M)=CSUM(M-1 BSUM(M)=CSUM(M-1 D(J,M)=CABS(BSUM CONTINUE E(J)=E(J-1)+TH(J Z*A(K,J))/(2+T))* F(J)=F(J-1)+TH(J Z*A(K,J))/(2+T))* X)/(2+T+T)-(A(K,J) G(J)=G(J-1)+TH(J Z*A(L,K))/(2+T))* Z)/(2+T+T)-(A(L,K) G(J)=G(J-1)+TH(J Z*A(J,K))/(2+T))* Z)/(2+T+T)-(A(J,K) H(J)=H(J-1)+TH(J Z*A(J,K))/(2+T))* CONTINUE H1(KA)=G(KA)/H(KA) HK(K)=G(K)*(H1(KA))* CONTINUE YSUM(1)=0.0 DO 5 I=2,IS DO 10 J=2,KA	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+C(J,M))+P(J,M) (M)))**2.0)*EXP(-((35.2-0. CSUM(KA)/b(J,KA))*EXP(-((35.2-0. ((35.2-0.1272*T)*(0.00028*T-0.1)*EXP(-((35.2-0. ((35.2-0.1272*T)*(0.00028*T-0.1)*EXP(-((35.2-0. ((35.2-0.1272*T)*(0.00028*T-0.1)*EXP(-((35.2-0. ((35.2-0.1272*T)*(0.00028*T-0.1))* EXP(-((35.2-0.1272*T))* (0.00028*T-0.1))*	<u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>1272*T+0.000</u> <u>R*T+T</u>	T) *A (M.J))) / (2*T*T T) *A (M.J) 14*T*T) 14*T*T) 14*T*T) /BSUM (KA) 14*T*T))*A(J,K) 14*T*T)
	$ \begin{array}{r} 136 \\ 131 \\ 132 \\ 133 \\ 134 \\ 135 \\ 136 \\ 137 \\ 138 2 \\ 139 \\ 140 \\ 141 \\ 142 \\ 142 \\ 142 \\ 143 \\ 144 \\ 145 \\ 144 \\ 145 \\ 146 \\ 147 \\ 148 \\ 145 \\ 146 \\ 147 \\ 148 \\ 145 \\ 145 \\ 145 \\ 145 \\ 151 \\ 152 3 \\ 153 \\ 154 \\ 155 \\ 156 \\ 156 $	DO 2 M=2,KA C(J.M)=TH(M)+EXP X)/(2+T))*(((35.2 Z)-(A(M,J)*(0.000 P(J,M)=TH(M)+EXP Z)/(2+T)) CSUM(M)=CSUM(M-1 BSUM(M)=CSUM(M-1 D(J,M)=CABS(BSUM CONTINUE E(J)=E(J-1)+TH(J Z*A(K,J))/(2+T))* F(J)=F(J-1)+TH(J Z*A(K,J))/(2+T))* X)/(2+T+T)-(A(K,J) G(J)=G(J-1)+TH(J Z*A(K,J))/(2+T))* X)/(2+T+T)-(A(L,K) G(J)=G(J-1)+TH(J Z*A(J,K))/(2+T))* Z)/(2+T+T)-(A(L,K) H(J)=H(J-1)+TH(J Z*A(J,K))/(2+T))* CONTINUE H1(KA)=G(KA)/H(KA HK(K)=G(K)*(H1(KA))+ CONTINUE YSUM(1)=0+0 DO 5 I=2,IS DO 10 J=2,KA DO 20 M=2,KA	(-((35.2-0.1272* -0.1272*T+0.0001 28*T-0.1272))/(2 (-((35.2-0.1272*)+C(J,M))+P(J,M) (M)))**2.0)*EXP(-((35.2-0. CSUM(KA)/b(J,KA))*EXP(-((35.2-0. CSUM(KA)/b(J,KA)))*EXP(-((35.2-0. ((35.2-0.1272*T)*(0.00028*T-0.1)*EXP(-((35.2-0. ((35.2-0.1272*T)*(0.00028*T-0.1)*EXP(-((35.2-0. ()))) ()+F(KA)-E(KA))*	<u>1272 + T + 0 + 00014 + T + 1</u> (4 + T + T) + A (M, J (+ T)) <u>T + C + 00014 + T + 1</u> <u>1272 + T + 0 + 000</u> + 0 - 00014 + T + T 272)) / (2 + T)) 1272 + T + 0 + 000 + 0 - 00014 + T + T 272)] / (2 + T)] 1272 + T + 0 + 000 R + T + T	T) *A (M.J))) / (2 * T * T T) *A (M.J) 14 *T *T) 14 *T *T)

· •

\sim				169
{	FORTRAN	IV (VER 53) SOURCE LISTING: FMIN	SUBROUTINE	09/16/80 2
-	157	YSUM(#)=N(M.I)+YSUM(M-1)		
	158 2	O CONTINUE		
	159	DN(J,I)=FLOAT(N(J,I))/YSUM(KA)		
	161 5			
- -	162	VSUM (1)=0.0		
	163	00 77 1#2.1S		
	165	DO 55 M=2,KA		
$\widehat{}$	166	VSUN(H) = VSUM(M-1)+Q(M) + DN(M,I)		
	157 5			in de la companya de La companya de la comp
\mathbf{c}_{i}	169 6	S CONTINUE	• •	
-	17(7)	CONTINUE		
⁻	171	DS(1,1)=0.0		
-	173	ES(1)=0.0		
\sim	174	FS(1)=0,0		
· · ·	175	65(1)=0.0 HS(1)=0.0		
	177	BS(1,1)=0.0		
_	178	$CSSUM(1)=D \cdot D$		
	179	$\frac{\text{ESSUM(1)=0.0}}{\text{DO } 44 \text{ T=2} \text{-} 14}$		
-	181	00 33 K=2.KA		
	182	00 11 J=2-KA		
	183	D0 22 M=2+KA CS(1-M)=THS(N-T)+FXP(-((35-2-0)	1272*T+0-0001	4 T + T)
	185	%*A(M.J))/(2*T))*(((35.2-0.1272)	*T+0.00C14*T*T) * A (M . J)
	186	X)/(2+T+T)-(A(M,J)+(0,00028+T-0	.1272))/(2+1))	
- ′	187	BS(J, MJ=1HS(M+1)*EXP(+(1)). X*A(M-J))/(2*T3)	• 12/2×1+U+UUU I	471717
•.	189	CSSUM(M) = CSSUM(M-1) + CS(J,M)		,
	190	ESSUM (M)=BSSUM (M-1)+BS(J,M)		
	197 22	CONTINUE		
••• •••	193	ES(J)=ES(J-1)+THS(J,1)*EXP(-(()	55+2-0+1272+T+	0.00014+T
	194	2+T)+ A(K.J))/(2+T))+CSSUM(KA)/D	(J.KA)	0.0004/+*
	195	x+T)+A(K.J))/(2+T))+(((35.2-0.1)	272*T+0.00014*	U• UUU 14* 1 T*T) *A (K•J)
	197	7)/(2+T+T)-(A(K,J)+(0.00028+T-0,	1272))/(2+T))	ASSUM (KA)
	198	GS(J)=GS(J-1)+THS(J,I)*EXP(-((35.2-0.1272+T+	0.00014+T
~	200	2 + 1 + A + J + K + J + (2 + 1) + (1 + 5) + (2 + 1) + (2 + 7 + 7) + (A + 1) + (0 + 0 + 0 + 2) + (2 + 7 + 7) + (2 +	12723)/(2+T))	ITIJTALJ ₉ kj
	201	HS(J)=HS(J-1)+THS(J,I)*EXP(-(()	35.2-0.1272*T+	0.00014*T
<i>.</i>	202	2*T)*A(J,K))/(2*T))		
1	203 11			
	205	HK5(K,I)=Q(K)+(H15(KA)+F5(KA)-F	S(KA))+R+T+T	
	206 33	CONTINUE		
	207 44	CONTINUE HEMIX(1)=C.R		
r -				

• •

	venningen og som sligt til som				170
		FORTRAN IV	(VER 53) SOURCE LISTING: FMIN	SUBROUTINE	09/16/80 20:
		209	HSUM(1)=0.0 HEAT(1.1)=0.0		
	C	211 212 213	DO 60 I=2,IS DO 70 K=2,KA HEAT(K,I)=N(K,I)+(HK(K)-HKS(K,I))	
	₽ C	214 215 70	HSUM(K)=HSUM(K-1)+HEAT(K,1) CONTINUE HEMIX(T)=XM(T)+HSUM(KA)+HEMIX(T)		
	, (217 60 218 218	CONTINUE HEMIX(3)=HEMIX(IS)		
	I C	220 221 222	ERROR(KPN)=100.0+(HMIXE(KPN)-HM AERROR=AERROR+ABS(ERROR(KPN)) DIFF=ABS(HMIXE(KPN)-HMIX(KPN))	IX(KPN))/HMIX	E(KPN)
	С	223 224 <u>225 777</u>	Y=(DIFF/HMIXE(KPN))++2.0 YS=YS+Y CONTINUE		
	С	226 227 228	FF=YS RETURN END		
	Ċ				
	₽ ₽C				
	3 C				
: ; ;		Entraling and Antony and Antony Antony Antony			
	· C				
	C.	-		in de la companya de	
	C.	÷			
	C	C <u>engintetinging</u>		in the analysis in the first second secon	des productions and a second secon
	Ċ				
	C	••••••••••••••••••••••••••••••••••••••			<u></u>
		L			

			171
FORTHAN IV	(VER 53) SOURCE LISTING: REG	SUBROUTINE	09/16/80 20
-	SUBROUTINE REG(NPAR.X.ALFA.BET	A.GAMMA.SA.NN)	
1	DIMENSION X(50,50) .F(100).XS(1	00), XM(100), XE	(100)
3	DIMENSION XX(100), XR(100), XK(1	00),XB(100)	
4	NENPAR		
5 1993-1997 - 1993-1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	NP=6		n an
Č,	00 1 J=1, NN		
8 24	$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$		
<u>ç</u>	CALL FMIN(XX.FF)		
10 1	F(J) = FF		
11	NF=NN		
12 C	NF IS THE NUMBER OF CALCULATI	DNS OF F	
13	ALFA=1.0		
9.5	CANNA-D C		
12			
17	JPR=0		
18 400	FORMAT(SF16.7)		
19 C	ESTIMATION OF THE LOWEST VAL	JE OF F=F8	
20.25	FB=F(1)		
21	DO 98 I=1,N		
22 98	XB(I)=X(1,I)		
23			
25	15(58-5(1)) 31-31 108		
26 108	FB=F(J)		
27	JB=J		
28	DO 41 I=1,N		
29 41	<u>XR(I)=X(J,I)</u>		
36 31	CONTINUE		
23 5	ESTIMATION OF THE RIGHEST VALUE FS=F(1)	. Ut t=ts	
33	DO 51 I=1.N		
34 51	XS(I) = X(1, I)		
35	JS=1		
36	DO 61 J=2,NN		
37	• 1F(FS-F(J))111,61,61		
36 111	(L)1=C1		
- 40	55-5 NO 71 T=1.N		
41 71	$XS(I) = X(J \cdot I)$		
42 61	CONTINUE		
43 C	CALCULATION OF THE CENTROID XM	(I) OF POINTS	
44 C	EXCLUDING XS(I)		
45	DO 81 I=1,N		
ب 40 c1	$X = \{1\} = -XS \{1\}$		
47	00 9 J=1,0N	Standing and stand and the states	Salaria da la compañía de la compañí
49 122	x = (7) = x = (7) + x (1 - 7)		
50.9	CONTINUE		
51	DO 121 1=1,N		<u>, , , , , , , , , , , , , , , , , , , </u>
F B A S A	$\mathbf{Y} = (\mathbf{T}) \pm \mathbf{Y} = (\mathbf{T}) / \mathbf{F} = (0 + \mathbf{T} + \mathbf{N})$		
>			

~		······································			an an in de die die anne, van als	<u>*************************************</u>		172	- 4
FOF	TRAN IV	(VER 53) SOURC	E LISTIN	IG: REG	SUE	ROUTINE	09/16/	80 20
	ET 1	PECIEC	TION						
	54	00 131	1=1.N						
<u> </u>	55 131	XR(I)=	XM(I)+AL	FA*(XM())-XS(I)))			
Þ	50	CALL F	MIN(XR,F	R)					
	58 C	EXPANS	ION						
	59	IF (FR-	F3)141,1	51,151					
	60 141	YF(I)=	$\frac{1=1.N}{XM(1)+GA}$	MMA+(YR)	(T)-YM(T)		<u> </u>		
. ,	62	CALL F	MIN CXE, F	E)					
	6.2	NF=NF+	1						
 No. 	64 65 17	1F (FE-	F8)17,18 T=1.N	.18			0.000		
	<u>56</u>	x(Js.i)=XE(1)	•	~~.				
•	67 19	XS(1)=	XE(I)						
	68 69 C	F(JS)=	FE	THE HAL	TING CRI	TERTON	· · ·		
	70 27	FM=0.0			IIIIG ERI				
	71	DO 20	J=1, NN	· · ·					
	72 20	FM=FM+	FLOAT (NN	<u> </u>					
• •	74	FRMS=0	• 0	•					
	75	<u>00 22</u>	J=1. HN		an a	in the state of th			
<	76 22	FRMS=(F(J)-FM) ST(FORC/	**2+FRMS					
	78	ITER=I	TER+1	FLUX.ISB)	•	2. 10. 10.			
` `	79	JPR=JP	R +1		_				
2	80 81 500		R-200)50	0,500,23	,		· · ·		
	82	IF (JPR	-12902,9	02,903			No. Contraction	a da como	
	83 903	CONTIN	UE		•				
	85 004	IF(JPR	-61901.9	04.904					<u> </u>
2	86 902	CONTIN	UE						
States and the States	87	PRINT1	C7.ITER.	NE ·					
	88 107	FORMAT	(1H0, -	ITERAT SUSPONT	10N ,14	, NI	JMBER DI		
	90	PRINTI	09 09	JUDAUUII	NC 91//				y kan si Sina Militari Militari
•	91 109	FORMAT	(,-	PARAMETE	RS")			······	
i	02 03	PRINT4	00,(X(JS 06.6(15)	,I),1=1, .P#S	N)				
	94 106	FORMAT	(14 ,	FMIN=	,E14.5,	SD=	-1.E14.5)	and the second s
· .	95 901	CONTIN	UE						
	9 <u>6</u> 67 (IF CRMS	-SAJ23.2	3.25					
	98 C	FE GRE	ATER THA	N FB					
	<u>99 18</u>	DC 26	I=1. N		-				
	00	XCJS.I)=XR(]) YD(T)		nei se da. Se e trades				ini. Maria di Karata
	01 26 00 112	F(JS)=	FR						
1	03	FS=FR							
1	<u>04</u>	GO TO I	27						
	· · ·	alan sana sa	n Senten Standard and S	n National and the state	· State State State	Alton in science			
		1997-19684	1982 - S.	30838 <i>ANÍA</i> C (8					A State of the

F	OFTR	AN IV	(VER 5)) SOURCE LISTING: REG	SUBROUTINE	09/16/80 20:12	2:19
	105		NEW SINPLEX			t t
	100	<u>C</u>	ER GREATER THAN FB		정말한 것은 것은 것은 사람이 없다.	
	107	151	DO 30 J=1,NN			
	100		17 (J-JS)28,30,28			
	109	<u>;</u> 3	IF(FR-F(J))10.18.73			
	112	30	CONTINUE			
	111		IF(FR-F5)91,91,32	일을 다음하지 않는 것은 것을 것 같은 것은 것을 많은 것은 것을	가 있는 것 같은 것 같은 것이 있다. 2016년 - 1917년 - 1917년 전 1917년 -	
	112	91	<u>DO 33 1=1.N</u>		전에는 그는 가락 관람을 가질 없다. 	
	113		$X(JS_{+}I) = X\hat{\kappa}(I)$			
	114	33	$X \leq (I) = X \in (I)$			
	115		F(JS)=F8			
	110	. Alteria	FS=FR	an a		
	117	32	DD 34 1=1.N			
	113	34	XK(I)=XA(I)+BETA+(XS(I)-XM(I))		a final and a state of the second	
	115		CALL FMIN(XK, FK)			
	120		NF=NF+1			
	121	2	NEW SIMPLEX			
de Goldereis o	122	C	AFTER CONTRACTION	en 1946 en Stander an		1. A
	123		IF(FK-FS)35,35,36			
	124	35	00 37 I=1.N			22 2 C
	125		X(J3,I)=XK(I)			
	120	37	XS(1)=XK(1)			
	127		F(JS)=FK	· · · · · · · · · · · · · · · · · · ·		
	128		FS=FK			
20-3040)	129		60 TO 27			
	130	36	DO 38 J=1.NN			
	131		DO 39 I=1.N			
	132	<u> </u>	$x(J,I) = (x(J,I) + x_3(I))/2.0$	·		
	173	23	CONTINUE		·	
	134	ر المحالية الم	GO TO 27	e se anna a tha an		÷.,
	135	23	PRINT905			
	136	505	FORMAT (THC. FINAL PARAMETE	RS")		
<u></u>	177		PRINT900			
	17.5	900	FORMAT(1HU, EX, "A(2,4)", 10%, "A(4,	2)~)		
	129		PRINT4(U, (X(JS,I),I=1,N)			
and and a second se	140		PRINTIED, FUSD, RMS		a she an	
	141	233	CONTINUE			
	142		RETURN			
.	14_		ENU			

The procedure to run the program follows:

1) Write a mini-program

/LOGON JR301923,JCHE701,c'43conove'
/PARAM LIST=YES,DEBUG=YES,MAP=NO,WRLST=YES
/SYSFILE SYSDTA=(main program name)
/EXEC \$BGFOR
/SYSFILE SYSDTA=(data program name)
/EXEC *

/LOGOFF

where JR301923 is the student I.D. number. For this case the main program is ZT-BENZENE-REG, and the data program is BENZENE-ALKANE-REG-DATA. Call this mini-program BENZ-ALKANE-ONE.

2) Return to the system (@SY), the computer will give a /.

3) Then type

/ENTER BENZ-ALKANE-ONE, TIME=XXX

then hit control C, the computer will give a / and give the job number for this run. The amount of time you enter depends on the particular system and the number of data points, the range is 200-800 seconds but could be higher. The same amount of time should not be entered for each type of system. Sometimes the parameters get stuck on the same value, and repeat the same predictions over and over. If an excessive amount of time is given then the computer will continue calculating until the limit is reached, as a result, a lot of computer time is wasted.

- :		
Ċ	INITIAL PARAMETERS	
Ċ		
(
C	J. 1552658	
	ITERATION 1 NUMBER OF CALLS FOR THE SUBROUTINE	5
C	PARATETERS	
,	0.1150000 0.1150000 FMIN= 0.646526-02 SD= 0.115428-00	••••••••••••••••••••••••••••••••••••••
~	ITERATION & NUMBER OF CALLS FOR THE SUBROUTINE	13
(
~	PARAMETERS	بللنة كيد مسد أ
	FMIN= 0.630451 02 SD= 0.60424E 00	
[ITERATION 11 NUMBER OF CALLS FOR THE SUBROUTINE	23
C	PARAMETERS	
_	$\frac{1.0031970}{1.2505430} = 0.74672E 01$	
C	TT CDATTON 16 NUMBED OF	* *
~	Land Alandaria and an and a subman a	<u> </u>
	PARATITERS	-
_	6.4906321 4.6460209 EMINE 0.24456 31 50- 0.101/85 01	
ζ.	ITERATION 21 NUMBER OF CALLS FOR THE SUBROUTINE	40
,	PARAMETERS	
•	(+9525562 5+0052079 FMIN= C+2C225F CB SD= 0+70724E=01	
<u>_</u>	ITERATION 20 NUMBER OF CALLS FOR THE SUBROUTINE	49
_	PARAHETERS	-
•	8.1061287 5.7309484 FM1N= 0.19040-00 Sh= 0.70515-07	

No.	ITTERTION 31 NUMBER CF	CALLS FOR THE SUBROUTTAE 53
RE BUSINESS FORM	PARAVETERS 0.250907J 5.5741062	
NON (FMIN= 0.166262 00 SD= 0.14792E+02	
C	ITERATION 36 NUMBER OF	- CALLS FOR THE SUBROUTINE 67
C	PARA-ETERS 9.0239319 3.9830103 FMINE 0.107175 00 SDE 0.74403E-02	
C	ITERATION 41 NUMBER OF	CALLS FOR THE SUBROUTINE 77
, C	PARASETERS 11.9496760 1.9618959	
C	FMIN= 0.13626E 00 SD= 0.62943E-03 ITERATION 46 NUMBER OF	CALLS FOR THE SUBROUTINE 36
C	PARAMETERS	•
	12.1233080 1.8621721 FMIN= 0.13543E 00 SD= 0.30410E-04	
C	ITERATION 51 NUMBER OF	CALLS FOR THE SUBROUTINE 96
<u> </u>	PARAKETERS 12.0808630 FMIN= D.13540F 00 SD= D.34944F-05	
Ń	FINAL PARAMETERS	
	A(2,4) A(4,2) 12.0871460 1.8873072 FMIN= D.13540F CO SD= C.&C632E-D6	
	NOLE FRACTION EXP. HMIX CALC. HMIX D.72515 (90.000) 495.26342	2 ERROR
-	0.42000 931.00000 940.69042 0.52070 1000.00000 1012.18460 0.59090 1003.00000 1026.71430	-1.04086 -1.81848 -2.36434
	0.62632 939.00000 957.99975 0.74450 602.00000 ±87.19750 0.91450 710.00000 735.67236	-3.05837 -2.92314 -3.16655
	0.89750 467.00000 476.62817	-2.06171

den som om

	C.07940	210+00000	218.40753	-1.11460	
	0.21110	534.00000	537.660c4	+0.6×551	
	0.26550	f 50,000000	51-24584	-0.19167	
	0.711-0	739.00000	739.22631	0.10469	
	C.39100	867.00000	862.80322	0.36872	and a later and a start and a start a s
	0.45350	940.00000	979.43603	0.06000	
	0.50460	920.00000	983.68652	-0.37618	- 4. C.S.
	0.56650	1669.00000	1017.19336	-0.41560	
	0.62940	1032.00000	1012.22530	-1.02049	
	r.70596	943.00000	961.56445	-1.96865	
ala ser and a series of the	0.79440	£17.00000	820.46484	-0.42409	
	0.87990	575.00000	578.16992	-0.55129	
	0.94960	277.00000	282.41088	-1.95339	
	1.14540	476.00000	436.57024	8.28293	
	0.26290	216.60000	763.35791	6.45123	
	19925.	1017.00000	948.71240	6.34620	
and the second second	0.42890	1145.00000	1101.21430	3.82407	
	0.50620	1263.00000	1216.57710	3.67560	
	C. 56750	1321.00000	1278.34270	3.22916	
	0.62620	1345.00000	1306.90110	2.83263	
	0.70820	1319.0000	1282.42110	2.77323	
/	0.70420	1252.00000	1211.34690	3.24705	
	0.34360	1016.00000	1005.10810	1.07203	619949 (NOS)
	•• 19 30	645.00000	647.58618	-0.40090	
	0.18730	524.00000	509.65380	2.73782	
	0.30890	827.00000	803.96069	2.70589	
	0.40770	1034.00000	1012.02220	2.12551	
	0.50530	<u>1184.00000</u>	1179.05390	0.41774	
	0.58090	1263.00000	1271.95890	-6.70934	
	0.68930	1295.00000	1323.29390	-2.18486	
	0.75720	1249.00000	1282.78580	-2.70503	
	C. § 1770	1129.00000	1175.54050	-4.12228	
	0.29490	829.00000	529.66064	-7.31732	
		485.00000	538.91255	-11.11595	
	u.10060	250.00000	240.03222	-13-29384	
	0.21040	492.00000	541.18257	-9.99641	
	0.28510	629.00000	0/1.40//1	-0.74208	
	0.14610	121.0000	157.44946	-4.35192	
	•44650	122.J)000	234.52738	-0.73836	
· .		867.00020	252.33452	1.63575	
	0+5Y383	600.00000	533.78308	3.71962	
	ି କରିବିଦିନ୍ଦିର ମହାନ	831.00000	773.58398	6.30758	
	<u> </u>	714,00000	<u></u>	8.C2U1/	<u>, 17 (</u>) (2011)
	0.1.400		490./0011	11.60745	
	<u> </u>	314.000000	272+45556	15.25070	
. /			11 .41/10	4.20002	
	0.10000	370.30980	353-43534 575-43534	5.73634	
	- U+22928 - 1 10 74040	010.00000	20063.546	3.01950	
		141.00000	114.96264	2.10504	

	6.39550	940-08680		1 55014	179
· · · ·	0.47600	1047.00000	1041.86030	0+49089	
and and a second second	<u>C.54670</u>	110:000000	1110.96390	-0.26796	
	0.66590	1111.00000	1142.61100	-1.29531	
	0.75530	1035.00000	1058.62470	-2.28258	
	0.82830 0.88550	887.00000 894.00000	902.30273	-1.72522	
	0.94100	-17.00000	422.59790	-1.34242	
AVED		• 7 4770EC			
FULLI	SOC A ENRUR	J. 108433			
A .					
					a di s
					an a
1990 - A.				1	
					ter filmen de
				<u>e a statu</u> stati ^t i e statu	
arte					
					<u>al in an an</u>
Martin Alexandre and Alexandre an Alexandre and Alexandre and			1일 - 1987년 1월 1일 - 1987년 1일 - 1987년 1월 1997년 1월 - 1987년 1월 1997년 1월 1		
					-

Santa da cara d		A Grand a second second second	n an ann an Anna an Ann An Anna Anna		
		은 가슴은 것은 것은 것은 것이다. 		는 사람이 있는 가지 가지는 것이 못했는다. 	ana shekara na shekara Markara
				고문화방송 관계 다	
			• .		

Appendix II

Prediction Computer Program

This appendix will give a listing of the prediction computer program and explain how to use it. The prediction program is the subroutine FMIN in the regression program with some minor changes in format statements and input data. The binary benzene + n-octane at 50°C will be predicted using the parameters from Appendix I. The input data needed to predict this mixture follows:

13		13	0.8984	418.0
0.0600	160.0	14	0.9636	168.0
0.1607	413.0	15	0.54	
0.2456	591.0	16	0.848	
0.3172	718.0	17	0.40	
0.3765	0,008	18	0	
0.4484	872.0	19	0	
0.5182	910.0	20	6	
0.5818	917.0	21	6	
0.6622	883.0	22	2	
0.7598	760.0	23	0	
0.8318	609.0	24	323.15	
	13 0.0600 0.1607 0.2456 0.3172 0.3765 0.4484 0.5182 0.5818 0.6622 0.7598 0.8318	130.0600160.00.1607413.00.2456591.00.3172718.00.3765800.00.4484872.00.5182910.00.5818917.00.6622883.00.7598760.00.8318609.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

0

where

line 1 = number of experimental data points lines 2 -14 = experimental data, given as mole fraction

of benzene and heats of mixing in J/mole lines 15 - 17 = group area parameters for groups CH₂,

$\text{CH}_{\textbf{3}}$ and ACH, respectively

lines 18 - 23 = number of groups of type k in component i line 24 = temperature, $^{\circ}K$

Call this program BENZ-NC8-323-PRE. The following pages give a listing of the prediction program.

253. QP. 1.0000 C PROGRAM TO CALCULATE HEATS OF MIXING USING UNIFAC 2.0000 C MAIN PROGRAM 3.0000 C XM1=MOLE FRACTION READ IN, HMIXE=EXPERIMENTAL HEATS OF 4.0000 C MIXING, HMIX=PREDICTED EXCESS ENTHALPY, XT=INTERACTION 5.0000 C PARAMETERS(TEMPERATURE-INDEPENDENT) 6.0000 DIMENSION XM1(40), HMIXE(40), HMIX(40), ERROR(40) DIMENSION XT(10) 7.0000 8.0000 SUMER=0. 9.0000 C NDATA=NUMBER OF DATA POINTS READ 1, NDATA 10.0000 FORMAT(12) 11.0000 1 DO 3 I=1,NDATA 12.0000 READ 2,XM1(I),HMIXE(I) 13.0000 3 CONTINUE 14,0000 15.0000 2 FORMAT(F6.4,F8.1) 16.0000 C NPAR=NUMBER OF PARAMETERS NPAR=2 17.0000 18.0000 C ORDER OF PARAMETERS = A(CH2,G), A(G,CH2) 19.0000 XT(1)=53.07 XT(2) = 42.0620.0000 CALL FMIN(XM1, HMIXE, HMIX, ERROR, NDATA, XT, NFAR, SUMER) 21.0000 22.0000 PRINT 6 FORMAT('OMOLE FRACTION OF', 5X, 'EXPERIMENTAL', 8X, 23.0000 6 24.0000 G'PREDICTED',12X,'%') 25+0000 PRINT 7 COMPONENT 2',5X, 'HEATS OF MIXING',4X, FORMAT(1 26.0000 7 G'HEATS OF MIXING',7X,'ERROR') 27.0000 DO 10 J=1, NDATA 28,0000 PRINT 9,XM1(J),HMIXE(J),HMIX(J),ERROR(J) 29.0000 30.0000 10 CONTINUE 32.0000 C ASUMER=AVERAGE ERROR ASUMER=SUMER/(FLOAT(NDATA)) 33.0000 FRINT 14, ASUMER-34.0000 , parameter a FORMAT('0 THE AVERAGE ERROR =',F7.4) 14 35.0000 STOP 36.0000 END SUBROUTINE FMIN(XM1, HMIXE, HMIX, ERROR, NDATA, XT, NFAR, SUME 38.0000 R) 39.0000 C UNIFAC - TEMPERATURE-INDEPENDENT PARAMETERS DIMENSION XM1(40), HMIXE(40), HMIX(40), ERROR(40) 40.0000 DIMENSION HS(10), BS(10,10), HEAT(10,10), HEMIX(50) 41.0000 ి. సిల్లి సిల్లి ఆడుల్ DIMENSION A(10,10), AX(10), HK(10), HKS(10,10), DN(10,10) 42.0000 DIMENSION BSUM(10), DS(10,10), CS(10,10), ES(10), FS(10) 43.0000 DIMENSION GS(10), C(10, 10), D(10, 10), E(10), F(10), G(10) 44.0000 DIMENSION H(10), B(10, 10), BX(10), XM(10), N(10, 10) 45.0000 DIMENSION X(10), H1(10), H1S(10), CSUM(10), F(10, 10)46.0000 47.0000 DIMENSION YSUM(10),CSSUM(10),BSSUM(10),HSUM(10) DIMENSION WSUM(10), TH(10), THS(10, 10), Q(10), VSUM(10) 48.0000 DIMENSION XT(10) 49.0000 50.0000 C I=NUMBER OF COMPONENTS

51.0000 READ 100,I 52.0000 100 FORMAT(12) IC=I+153.0000 54,0000 C K=NUMBER OF GROUPS 55.0000 READ 100,K 56.0000 KG = K + 157.0000 C Q=AREA BY BONDI 58.0000 C Q(CH3)=0.848, Q(CH2)=0.540, Q(CH)=0.228, Q(C)=0.0 59.0000 C Q(ACH)=0.4,Q(OH)=1.20,Q(CH2CH2OH)=1.664,Q(CH0HCH3)=1.660 60.0000 DO 120 K3=2,KG 61.0000 READ 110,Q(K3) 62.0000 120 CONTINUE ----63.0000 - 110 FORMAT(F6.4) 64.0000 C N(K,I)=NUMBER OF GROUP K IN COMPONENT I 65.0000 C READ IN ORDER N(2,2),N(3,2),N(4,2)...N(2,3),N(3,3),ETC. DO 150 I4=2,IC 66.0000 DO 140 K5=2,KG 67.0000 READ 100, N(K5,I4) 68,0000 CONTINUE . 69.0000 140 . م^ن بعد شده مراجع و 70.0000 150 CONTINUE 71.0000 C R=GAS CONSTANT, UNITS ARE (JOULE)/(G MOLE)(K) 72.0000 73.0000 C T=TEMPERATURE IN DEG. K READ 170,T 74.0000 FORMAT(F7.3) 75.0000 170 76.0000 PRINT 190 FORMAT('O PREDICTION OF HEATS OF MIXING') 190 77.0000 PRINT 195 78.0000 Lone . 195 FORMAT(' USING THE UNIFAC METHOD') 79.0000 PRINT 200,I 80.0000 81.0000 200 FORMAT('ONUMBER OF COMPONENTS=', 13) 82.0000 PRINT 210,K FORMAT(' NUMBER OF GROUPS=', I3) 83.0000 210 PRINT 500 84.0000 DO 230 J12=2,KG 85.0000 86.0000 PRINT 220, J12, Q(J12) FORMAT(', Q(', I2, ') = ', F6, 4).220 88.0000 230 CONTINUE PRINT 500 89.0000 DO 260 J14=2,IC 90.0000 DO 250 J15=2,KG 91.0000 92,0000 PRINT 240, J15, J14, N(J15, J14) 93.0000 240 FORMAT(' N('+I2+'+'+I2+')='+I2) 94.0000 250 CONTINUE 1. A.L. 260 CONTINUE 95.0000 96.0000 500 FORMAT(101) -----97.0000 FRINT 280,T FORMAT('O THE TEMPERATURE=',F10.3,' DEG. K') 98.0000 280 99.0000 C A(K,M)=TEMPERATURE-INDEPENDENT PARAMETERS DO 330 K20=2,KG 100.0000

DO 330 K21=2,KG 101.0000 102.0000 A(K20,K21)=0. 103.0000 330 CONTINUE 104.0000 C LAST GROUP = GROUP G, IT IS NOT AN ALKANE GROUP DO 340 J33=2,KG 105.0000... 106.0000 IF(J33.EQ.KG)GD TO 340 107.0000 A(J33,KG) = XT(1)108.0000 A(KG,J33)=XT(2) 109.0000 340 CONTINUE PRINT 350 110.0000 111.0000 350 FORMAT('0 THE TEMPERATURE-INDEPENDENT PARAMETERS=') 112.0000 **PRINT 360, XT(1)** 360 FORMAT(1 113.0000 A(CH2/G)=',F15.5) PRINT 370, XT(2) 370 115.0000 FORMAT(1 A(G/CH2)=',F15.5) ALPHA=35.2 116.0000 ____117.0000 BETA=-.1272 GAMMA=.00014 118,0000 119.0000 PRINT 372, ALPHA, BETA, GAMMA FORMAT('O Z(T) =',F6.2,' ',F10.7,'*T +',F10.7,' 120.0000 372 121.0000 G'*T*T') 122.0000 DO 777 KPN=1,NDATA 123.0000 XM(2) = XM1(KPN)124.0000 XM(3)=1.-XM(2) BX(1)=0 125.0000 AX(1)=0 126.0000 127.0000 AXSUM=0 DO 30 M=2,KG 128.0000 BO 40 I=2,IC --129.0000---130.0000 DO 50 K=2,KG 131.0000 AX(K) = AX(K-1) + XM(I) + N(K,I)132.0000 50 CONTINUE 133.0000 BX(I)=BX(I-1)+XM(I)*N(M,I) 134.0000 AXSUM=AXSUM+AX(KG) 135.0000 40 . CONTINUE 136.0000 X(M)=BX(IC)/AXSUM -137.0000 AXSUM=0 30 138+0000 CONTINUE WSUM(1)=0139.0000 DO 99 J=2,KG 140.0000 141.0000 DO 88 M=2,KG 142,0000 WSUM(M) = WSUM(M-1) + Q(M) * X(M)88 143.0000 CONTINUE 144.0000 TH(J) = Q(J) * X(J) / WSUM(KG)99 145.0000 CONTINUE D(1,1)=0.146.0000 147.0000 C(1,1)=0148,0000 F(1)=0.149.0000 E(1)=0. 150.0000 G(1)=0.

	,	• • • • • • • • • • • • •				
		151.0000	•	H(1)=0.		
		152.0000		B(1,1)=0.		
		153.0000		CSUM(1)=0.		
		154.0000		BSUM(1)=0.		
		155.0000		DO 3 K=2,KG		
		156.0000		DO 1 J=2,KG	and the second	
		157.0000		DO 2 M=2,KG		
		158.0000		C(J,M) = TH(M))*EXP(-((ALPHA+BETA*T+GAMMA*T*T)	*A(M,J)
		159.0000		G)/(2*T))*(((ALPHA+BETA*T+GAMMA*T*T)*A(M,J))/	(2*T*T
		160.0000		G)-(A(M,J)*(2	*GAMMA*T+BETA))/(2*T))	
		161.0000		P(J+M)=TH(M)*EXP(-((ALPHA+BETA*T+GAMMA*T*T)	*A(M,J)
		162.0000	· •	G)/(2*T-)).	and a construction of	
		163.0000		CSUM(M)=CSU	M(M-1)+C(J+M)	
		164,0000		BSUM(M)=BSU	M(M-1)+P(J,M)	
	ينبر ومرد	165.0000		D(J,M)=(ABS	(BSUM(M)))**2.	
		166.0000	2	CONTINUE		
	• •	167.0000		E(J)=E(J-1)	+TH(J)*EXP(-((ALPHA+BETA*T+GAMMA	***
		168.0000		G#A(K#J))/(2#	T))*CSUM(KG)/D(J;KG)	
		169,0000		F(J)=F(J-1)	+TH(J)*EXP(-((ALPHA+BETA*T+GAMMA	****
		170.0000		G*A(K+J))/(2*	T))*(((ALFHA+BETA*T+GAMMA*T*T)*A	(K+J)
	ar +	171.0000		G)/(2*T*T)-(A	(K,J)*(2*GAMMA*T+BETA))/(2*T))/B	SUM(KG)
	1.1	172.0000		G(J) = G(J-1)	+TH(J)*EXP(-((ALPHA+BETA*T+GAMMA	*T*T)
		173,0000		G*A(J,K))/(2*	T))*(((ALPHA+BETA*T+GAMMA*T*T)*A	(.I•K)
		174.0000	• · · · · · · · · · · · · · · · · · · ·	G)/(2*T*T)-(A)	$(J_*K)*(2*GAMMA*T+BETA))/(2*T))$	
		175.0000		H(J)=H(J-1)	+TH(J)*EXP(-((ALPHA+BETA*T+GAMMA	***
		176.0000	_	G#A(J+K))/(2#	T))	
		177.0000	. 1	CONTINUE	• <i>Ψ</i> · <i>Ψ</i>	
		178.0000		H1(KG)=G(KG))/H(KG)	
		179.0000	رائي الإند	HK(K) = Q(K) *	(H1(KG)+F(KG)-F(KG))*R*T*T	
		180.0000		CONTINUE		
		181.0000	-	YSUM(1)=0.		
		182.0000		DO 5 I=2.IC		
		183.0000		ΠΩ 10 J=2 K	Gene	
		184.0000		DO 20 M=2.K	- General de la companya de la company	
		185.0000		YSUM(M)=N(M	T)+YSUM(M-1)	
		186.0000	20	CONTINUE		
		187.0000	20		AT (N(I.T))/YSUM(KG)	
		188.0000	10			
		189.0000	5	CONTINUE		
		190.0000	· U	USUM(1)=0.		
		191 0000		TO 77 I=7.I	~	
		192 0000		10 / 7 = 271		
		192 0000		DO 66 3-27K		
		193.0000			D M (M 1) ± D (M) ¥ DN (M., T)	
		194.0000	EE.			
- "		104 0000	55	TUC(1-T)-D/	IN WINK L. T.YUSIMKKGY	
		107 0000	11		0/mut(0/1// 40011/1/0/	
		100 0000	00 77	CONTINUE		
		100 0000	11			
		177+0000		DO(1-1)		
	·• .	20010000	··· · · · ·			
				•		

•

	185
201.0000	FS(1)=0.
202,0000	FS(1)=0.
203.0000	GS(1)=0.
204.0000	HS(1)=0.
205.0000	BS(1,1)=0.
206.0000	CSSUM(1)=0.
207.0000	BSSUM(1)=0.
208.0000	DO 44 I=2,IC
209.0000	DO 33 K=2,KG
210.0000	DO 11 J=2,KG
211.0000	DO 22 M=2,KG
212.0000	CS(J,M)=THS(M,I)*EXP(-((ALPHA+BETA*T+GAMMA*T*T)
213.0000	G*A(M,J))/(2*T))*(((ALPHA+BETA*T+GAMMA*T*T)*A(M,J)
214.0000	G)/(2*T*T)-(A(M,J)*(2*GAMMA*T+BETA))/(2*T))
215.0000	BS(J;M)=1HS(M;I)*EXP(-((ALPHA+BETA*T+GAMMA*T*T))
217,0000	
217+0000	COOUN(N)=COOUN(N () (D)() (D)
218.0000	DC(1,M)
220.0000 2	」」」」」「「「「「」」」」「「」」」「「」」」 ついて、「」」「「」」「「」」」「「」」」「」」「」」「」」」 ついて、「」」「「」」」「「」」」「」」」「」」」」 ついて、「」」」」「」」」「」」」」 ついて、「」」」」 ついて、「」」」」 ついて、「」」」」 ついて、「」」 ついて、「」」 ついて、 ついて ついて、 ついて ついて ついて ついて ついて つい ついて つい ついて ついて
221.0000	
222,0000	$G*T)*\Delta(K*1))/(2*T))*CSCHM(KG)/DS(1-KG)$
223.0000	FS(J) = FS(J-1) + THS(J+1) * FXP(-((A) PHA+BFTA*T+GAMMA*T))
224.0000	$G*T)*A(K_{J}))/(2*T))*(((ALPHA+BETA*T+GAMMA*T*T)*A(K_{J})))$
225.0000	G)/(2*T*T)-(A(K,J)*(2*GAMMA*T+BETA))/(2*T))/BSSUM(KG)
226.0000	GS(J)=GS(J-1)+THS(J,I)*EXP(-((ALPHA+BETA*T+GAMMA*T
227.0000	G*T)*A(J,K))/(2*T))*(((ALPHA+BETA*T+GAMMA*T*T)*A(J,K))
228.0000	G)/(2*T*T)-(A(J,K)*(2*GAMMA*T+BETA))/(2*T))
229.0000	HS(J)=HS(J-1) +THS(J,I)*EXP(-((ALPHA+BETA*T+GAMMA*T)
230.0000	G*T)*A(J,K))/(2*T))
231.0000 1	1 CONTINUE
232.0000	H1S(KG)=GS(KG)/HS(KG)
233.0000	HNS(N)1)=U(N)*(H1S(NU)+FS(NU)-ES(NU))*K*(*)
234+0000 3	
234,0000 4	4 CONTINUE HEMTY(1)=0.
230,0000	HSUM(1)=0.
238,0000	
239,0000	$III = 2 \cdot IC$
240.0000	DO = 70 K = 2 KG
241.0000	HEAT(K,I)=N(K,I)*(HK(K)-HKS(K,I))
242,0000	HSUM(K) = HSUM(K-1) + HEAT(K + I)
243.0000 7	O CONTINUE
244.0000	HEMIX(I)=XM(I)*HSUM(KG)+HEMIX(I-1)
245.0000 6	O CONTINUE
246+0000	HEMIX(3)=HEMIX(IC)
247.0000	HMIX(KPN)=HEMIX(3)
248.0000	ERROR(KPN)=100.*(HMIXE(KPN)-HMIX(KPN))/HMIXE(KPN)
249+0000	SUMER=SUMER+ABS(ERROR(KPN))
250,0000 77	7 CONTINUE
251.0000	RETURN
	END
253. ØSY ZBKFT FCOUNT	3691F2
/LOGOFF	- AT 14117 01 10/11 (00 - COC TON 04/1
% E420 LOGOF % E421 CPU T	- AT 14413 UN 10/11/80, FUR ISN 04644 IME USED : 8438 SECONDS+88

To run the program use the following procedure:

- 1) read the prediction program (@REA 'program name')
- 2) type @RUN
- 3) the computer will print the following: **FASTFOR (CONVERSATIONAL.VER 9)**
- 4) just as the computer finishes printing hit the break key
- 5) the computer will give a slash(/)
- 6) type

/SYSFILE SYSDTA=BENZ-NC8-323-PRE

/R

then hit control C and the computer will print out the calculations. A listing for this system is given on the next page.

7) This program could also be run the same way the regression program was done. In that case the amount of time needed is only a few seconds. The procedure outlined above prints the output at the computer terminal.

PREDICTION OF HEATS OF MIXING USING THE MODIFIED UNIFAC METHOD BENZENE(1) + N-OCTANE(2)323.15 K REF: DIAZ PENA, M. AND C. MENDUINA, J.CHEM.THERMO., 6, 1097(1974). Q(1) = 0.54GROUP 1 = CH2 $\begin{array}{rcl} \text{GROUP} & 2 & = & \text{CH3} \\ \text{GROUP} & 3 & = & \text{ACH} \end{array}$ Q(2) = 0.848Q(3) = 0.4N(K,I) = NUMBER OF GROUPS OF TYPE K IN COMPONENT IN(1,1) = 0N(2,1) = 0N(3,1) = 61,2) = 6N(N(2,2) = 2N(3.2) = 0THE TEMPERATURE = 323.15 DEG. K THE TEMPERATURE-INDEPENDENT PARAMETERS ARE A(CH2, ACH) = 12.09A(ACH, CH2) = 1.90Z(T) = 35.20 - 0.1272*T + 0.00014*T*TPREDICTED HEATS MOLE FRACTION OF EXPERIMENTAL HEATS ERROR OF MIXING (J/MOLE) OF MIXING (J/MOLE) COMPONENT 1 160.0 165.8 -3.6 0.0600 413.0 415.5 0.1607 -0.6 594.8 -0.6 591.0 0.2456 720.9 -0.4 0.3172 718.0 0.3765 800.0 805.9 -0.7 882.8 -1.2 0.4484 872.0 -1.8 0.5182 926.8 910.0 -2.2 937.4 917.0 0.5818 -2.5 0.6622 883.0 905.2 786.7 -3.5 0.7598 760.0 -4.1 633.7 609.0 0.8318 433.8 418.0 -3.8 0.8984 -4.3 175.2 0.9636 168.0

THE AVERAGE ERROR = 2.3 %

187

%