Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

> Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

Title of Thesis: Prediction of Heats of Mixing by Group Contribution Methods

William Rupp, Master of Science, 1982
Thesis directed by: Dr. Dimitrios Tassios Professor of Chemical Engineering

Three group contribution methods used to predict heats of mixing were tested: AGSM, UNIFAC with temperature dependent parameters and the modified UNIFAC of Skjold-Jorgensen et al. The modified UNIFAC provided the best results and was adopted in this study. Primary parameters were obtained for ten groups with alkanes. The simultaneous correlation of cyclic and straight-chain alkanes gave poor results. Attempts to improve the error by changing the group area parameter for cyclic CH_{2} failed.

A major problem in correlating the experimental data was the multiplicity of roots. The best set of parameters was obtained by using a grid approach for the initial parameters. The model can be used in the temperature range 0° to $100^{\circ} \mathrm{C}$. 104 systems from the literature were tested of which 78 had a prediction error of less than 20 percent. High errors were observed for some isomers, and long-chain molecules.

PREDICTION OF HEATS OF MIXING

 BY GROUP CONTRIBUTION METHODSby
William Walter Rupp

Thesis submitted to the Faculty of the Graduate School of the New Jersey Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering 1982

Title of Thesis:	Prediction of Heats of Mixing By Group Contribution Methods
Name of Candidate: \quadWilliam Walter Rupp Master of Science, 1982	

Thesis and Abstract Approved:

> Dr. Dimitrios Tassios
> Professor
> Department of Chemical
> Engineering and Chemistry

Dr. John E. McCormick
Professor
Department of Chemical
Engineering and Chemistry

Dr. Reginald P.T. Tomkins
Assistant Professor
Department of Chemical
Engineering and Chemistry

Date Approved: $5 / 6 / 82$

VITA

DEDICATION

To my Father

ACKNOWLEDGMENTS

To Dr. Tassios, whose "philosophizing" sessions sustained my interest throughout this project;

To Prof. Mal Simon, who although not involved with my thesis became a good friend during my graduate work;
and to my mother and sister, for their typing, proofreading and support.
Chapter Page
ACKNOWLEDGMENTS ii
I. INTRODUCTION 1
II. PREVIOUS WORK 5
A. Early Work 5
B. Recent Work 9
C. Group Contribution Methods 15
III- GROUP CONTRIBUTICN METHODS 24
A. The Analytical Group Solution Model(AGSM) 26
B. The UNIFAC Method 29
IV. RESULTS AND DISCUSSION 32
A. Preliminary Calculations 33
B. Evaluation of the Models 37
C. Regression of the Data 45
D. Final Parameters 47
V. CONCLUSIONS 66
SELECTED BIBLIOGRAPHY 71
A. Primary Sources 71
B. Data Sources 75
APPENDIX I. Regression Computer Program 160
APPENDIX II. Prediction Computer Program 180

IIST OF TABLES

Table Page
I. Data Base for AGSM Group Parameters by Ratcliff and co-workers. 79
II. Group Area Parameter - Q_{k} 80
III. Prediction of Alcohol/Alkane Systems Using Ratcliff and co-worker's parameters for the AGSM Model 81
IV. Prediction of Group G/Alkane Systems Using Ratcliff and co-worker's parameters for the AGSM Model 82
V. Regressing for interaction parameters at onetemperature versus regressing at more thanone temperature for the UNIFAC model....... 83
VI. Selected Type I and Type II systems used in evaluating the optimum exponent, \mathcal{B}, in equations (30) and (31) 84
VII. Regression Error for AGSM and UNIFAC in the Grand Plot 85
VIII. Prediction Error for AGSM and UNIFAC in the Grand Plot 86
IX. Prediction of the system n-octanol + n-heptane by AGSM where $\beta=1.50$. 87
X. Examples of Multiplicity of Roots for AGSM in the Grand Plot 88
XI. Results for the Grand Plot using UNIFAC with the $Z(T)$ 89
XII. Comparison of Skjold-Jorgensens' $Z(T)$ and$Z(T)$ Correlated from n-octanol + n-heptaneData at $30^{\circ} \mathrm{C} .$.90
XIII. Grid of Initial Parameters to be Used with the Modified UNIFAC 91XIV. Maximum Experimental ΔH^{M} Valies for CyciicAlkanes and Normal Alkanes with a CommonSecond Component at Equal Mole Fractions.92
Table Page
XV. Correlation of Methanol + Alkane Data including Cyclic Alkanes. 93
XVI. Correlation Errors for Methanol + Alkane Data Including Cyclic Alkanes. 94
XVII. Prediction Errors for Methanol + Alkane Data Including Cyclic Alkanes 95
XVIII. Correlation of Methanol + Alkane Data including Cyclic Alkanes 96
XIX. Correlation Errors for Methanol + Alkane Data Including Cyclic Alkanes 97
XX. Prediction Errors for Methanol + Alkane Data Including Cyclic Alkanes 98
XXI. Correlation of Secondary Amines + Alkane Data Including Cyclic Alkanes. 99
XXII. Correlation Errors for Secondary Amines + Alkane Data Including Cyclic Alkanes. 100
XXIII. Prediction Errors for Secondary Amines + Alkane Data including Cyclic Alkanes. 101
XXIV. Correlation of Secondary Amines + Alkane Data Including Cyclic Alkanes 102
XXV. Correlation Errors for Secondary Amines + Alkane Data Including Cyclic Alkanes 103
XXVI. Correlation of Tertiary Amine + Alkane Data Including Cyclic Alkanes 104
XXVII. Correlation Errors for Tertiary Amine + Alkane Data Including Cyclic Alkanes. 105
XXVIII. Correlation of CCl + Alkane Data Including Cyclic Alkanes. 106
XXIX. Correlation Errors for CCl + Alkane Data Including Cyclic Alkanes. 107
XXX. Correlation of $\mathrm{CCl}_{2}+$ Alkane Data Including Cyclic Alkanes 108
XXXI. Correlation Errors for CCl2 + Alkane Data Including Cyclic Alkanes 109
Table Page
XXXII. Correlation of $\mathrm{CCl}_{3}+$ Alkane Data Including Cyclic Alkanes. 110
XXXIII. Correlation Errors for $\mathrm{CCl}_{3}+$ Alkane Data Including Cyclic Alkanes 111
XXXIV Correlation of $\mathrm{CCl}_{4}+$ Alkane Data Including Cyclic Alkanes. 112
XXXV. Correlation Errors for $\mathrm{CCl}_{4}+$ AlkaneData Including Cyclic Alkanes............. 113
XXXVI. Systems Used in Evaluating an Optimum Q for Cyclic CH_{2}. 114
XXXVII. Correlation of CCl + Alkane Data 115
XXXVIII. Correlation Errors for CCl + Alkane Data 116
XXXIX. Prediction Errors for CCl + Alkane Data 117
XI. Eiffect of the Parameter Values on $\psi i j$and $d \psi i j / \partial T .$.
XII. Correlation of $\mathrm{CCl}_{2}+$ Alkane Data 119
XIII. Correlation Errors for $\mathrm{CCl}_{2}+$ Alkane Data 120
XIIII. Correlation of $\mathrm{CCl}_{3}+$ Alkane Data 121
XLIV. Correlation Errors for $\mathrm{CCl}_{3}+$ Alkane Data. 122
XLV. Correlation of Carbon Tetrachloride + Alkane Data 123
XLVI. Correlation Errors for Carbon Tetrachloride + Alkane Data 124
XLVII. Prediction Errors for Carbon Tetrachloride + Alkane Data 125
XLVIII. Correlation of Primary Amines + Alkane Data 126
XIIX. Correlation Errors for Primary Amines + Alkane Data 127
L. Prediction Errors for Primary Amines + Alkane Data 128
Table Page
II. Correlation of Secondary Amines + Alkane Data. 129
LII. Correlation Errors for Secondary Amines + Alkane Data 130
LIII. Prediction Errors for Secondary Amines + Alkane Data 131
LIV. Correlation of Tertiary Amines + Alkane Data. 132
LV. Correlation of Tertiary Amines + Alkane Data. 133
LVI. Correlation Errors for Tertiary Amines + Alkane Data 134
LVII. Prediction Errors for Tertiary Amines + Alkane Data 135
LVIII. Correlation of Benzene + Alkane Data 136
IIX. Correlation Errors for Benzene + Alkane Data 137
IX. Prediction Errors for Benzene + Alkane Data 138
LXI. Correlation of Methanol + Alkane Data 139
LXII. Correlation Errors for Methanol + Alkane Data 140
LXIII. Prediction Errors for Methanol + Alkane Data 141
LXIV. Correlation of Alcohol + Alkane Data 142
LXV. Correlation Errors for Alcohol + Alkane Data 143
LXVI. Prediction Errors for Alcohol + Alkane Data 144
LXVII. Group Interaction Parameters, $-\mathrm{CH}_{2}$ with Group 145

LIST OF FIGURES

1. Performance of equation (30) with the UNIFAC model146
2. Performance of equation (31) with the AGSM model 147
3. Effect of the Value of Q on the accuracy of correlation for systems containing cycloalkanes. 148
4. Comparison of experimental and predicted heats of mixing for $n-h e x a n e$ with 1-chlorobutane and with 2-chlorobutane at $25^{\circ} \mathrm{C}$. 149
5. Comparison of experimental and predictedheats of mixing for n-hexane with1-chlorobutane and with t-butylchlorideat $25^{\circ} \mathrm{C}$150
6. Effect of alkane chain length on prediction error for 1-chlorobutane + n-alkane data at $25^{\circ} \mathrm{C}$. 151
7. Effect of length of component containing group CCl on prediction error for n-octane data at $25^{\circ} \mathrm{C}$ 152
8. Prediction errors for carbon tetrachloride mixtures at several temperatures 153
9. Comparison of experimental and predicted heatsof mixing for n-hexane with dichloromethane,chloroform and carbon tetrachloride at$25^{\circ} \mathrm{C}$154
10. Comparison of experimental and predicted heats of mixing for n-heptane with n-butylamine, diethylamine and triethylamine at $25^{\circ} \mathrm{C}$ 155
11. Effect of alkane chain length on correlationand prediction error for benzene +n-alkane data at $25^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$.156

Figure

Page
12. Comparison of experimental data of n-heptane with several n-alcohols at $30^{\circ} \mathrm{C}$.. 157
13. Comparison of experimental and predicted heats of mixing of n-hexane with n-butanol, 2-butanol and 2-methyl-2-propanol at $45^{\circ} \mathrm{C}$.................. 158
14. Effect of the value of Q on the accuracy of correlation and prediction for

$$
\text { alcohol systems..................................... . . } 159
$$

I. INTRODUCTION

Excess enthalpy (heat of mixing) occurs, as the term suggests, from the mixing of two or more components. Knowledge of heats of mixing is important in several chemical engineering processes, such as fractional, extractive and azeotropic distillation.

A large share of the experimental heats of mixing data are for binary mixtures at $25^{\circ} \mathrm{C}$. However, the more commonly encountered system is a multicomponent mixture at a higher temperature. What is needed is a method that used existing data to calculate the heats of mixing of systems for which there are no data available. One promising method to solve this problem is the group contribution model. Group contribution methods calculate interactions among molecules in terms of the interaction between the functional groups of the molecule. The advantage of this approach is that whereas there are thousands of mixtures in the chemical industry there are only a limited number of functional groups.

The group contribution method assumes that the excess enthalpy is the sum of the contributions of the different groups (i.e. $\mathrm{CH}_{2}, \mathrm{OH}, \mathrm{ACH}$) that make up the molecule. This assumption is an approximate representation, of course, in that it implies that a specific group in a molecule is independent of the other groups in that molecule. For example, the OH group in n -propanol is the same as in t-butanol.

According to the group contribution concept, n-butanol would consist of the groups $\mathrm{OH}, \mathrm{CH}_{2}$ and CH_{3}. Group interaction
parameters are used to account for the contribution of each group. For example, in the binary mixture n-butanol $+n-$ heptane the following interaction parameters could be obtained: $\mathrm{CH}_{2} / \mathrm{OH}$ and $\mathrm{OH} / \mathrm{CH}_{2}$ (where the interactions for the groups CH_{2} and CH_{3} are considered the same). The group interaction parameters are found from correlating experimental heats of mixing data. The parameters could then be used to predict other alcohol + alkane mixtures for which no data is available.

Until 1961, when Mrazek and Van Ness (77) published endothermic heats of mixing data for alcohol + aromatic systems, reliable experimental data were scarce. Some other early researchers in this field included Tsao and Smith (42) and Hirobe (13). The main source of error in isothermal calorimetry is due to vaporization-condensation effects. The Van Ness calorimeter contained no vapor space and therefore eliminated this error. Later, Winterhalter and Van Ness (101) modified their calorimeter so that exothermic heats of mixing could also be measured.

In the past 25 years there have been many articles reporting experimental heats of mixing data. There have also been articles which reported a discrepancy between two author's data. For example, Williamson and Scott's (43) data for the system ethanol + benzene at $45^{\circ} \mathrm{C}$ differed from those of Brown and Fock (5) by 15 percent. After personal communication between the two groups, Brown and Fock took new measurements which were in close agreement with Williamson's data.

Due to this problem, how does the investigator who is going to use the data know whether it is accurate? There are several things one can look for. In many articles the authors first give data on a test mixture. They then compare their experimental results with other data on the same system, if the comparison is favorable the author assumes his calorimeter and expertise are good. The author then gives new, previously unpublished results on other mixtures. One example of this procedure is an article by Murakami and Fujishiro (78). First, they reported data for benzene + carbon tetrachloride at $25^{\circ} \mathrm{C}$ which were within a few percent of the generally accepted data. Then they gave new data for n-butanol with other polar liquids. This approach seems reasonable.

According to McGlashan (21), a test mixture should meet the following criteria:
a) a large difference in density between the two components;
b) the liquids should be easily purified;
c) if a vapor space is present the liquids should be chosen (i.e. have very different vapor pressures) so that the errors are at least as large as those which would occur with the mixture to be studied;
d) the heats of mixing should be of the same magnitude as the mixture that will be used; and
e) the test mixture should have been studied by several researchers.

Two popular test mixtures are benzene + carbon tetrachloride
and cyclohexane $+n$-hexane. Some researchers prefer the first pair because of the large difference in density between the two liquids (specific gravity of benzene $=0.879$, specific gravity of carbon tetrachloride $=1.595$). Due to the significant difference in density it is hard to mix them completely. Therefore, a calorimeter can be used with confidence if accurate results are measured for this system. The maximum experimental heat of mixing for this system at $25^{\circ} \mathrm{C}$ is about $115 \mathrm{~J} / \mathrm{mole}$. Despite this argument for the first binary, cyclohexane + n-hexane at $25^{\circ} \mathrm{C}$ is probably the system whose heats of mixing are best known. For example, in the 1969 volume of the Journal of Chemical Thermodynamics there are four articles that report data on this mixture. The maximum experimental heat of mixing for this system is about $220 \mathrm{~J} /$ mole.

Some authors do not check their calorimeter with a standard mixture. Instead, they duplicate a system at one temperature already in the literature and then report experimental results on the same mixture at another temperature. For example, Ramalho and Ruel (92) published the heats of mixing of 23 binary alcohol/alkane systems most of which had been previously unreported.

Finally, some researchers develop a reputation for recording good data. A few people in this category include: J.-P.E. Grolier in France, H.C. Van Ness in the United States, R.S. Ramalho and M. Ruel in Canada, and G.C. Benson, also in Canada.
II. PREVIOUS WORK

There have been many papers published on heats of mixing, some have given experimental data and some have presented a new method to correlate and/or predict heats of mixing. This section will discuss some of the methods which have been used to correlate and predict heats of mixing. It will be divided into three parts: Early work, meaning the 1950^{\prime} s and $60^{\prime} \mathrm{s}$, recent work, and group contribution methods.

A. Early Work

The following equation based on Tsao and Smith (42)

$$
\begin{equation*}
G^{E}=x_{1} x_{2}\left[B_{0}+B_{1}\left(x_{1}-x_{2}\right)+B_{2}\left(x_{1}-x_{2}\right)^{2}+\ldots\right] \tag{1}
\end{equation*}
$$

was found to be successful in calculating the excess Gibbs free energy. Therefore, early researchers used a similar expression for the correlation of heats of mixing:

$$
\begin{equation*}
\Delta H^{M}=x_{1} x_{2}\left[A_{0}+A_{1}\left(x_{1}-x_{2}\right)+A_{2}\left(x_{1}-x_{2}\right)^{2}+\ldots\right] \tag{2}
\end{equation*}
$$

Tsao and Smith (42) correlated endothermic, exothermic and endoexothermic systems using equation (2). They needed only two constants to correlate the experimental data accurately. Williamson and Scott (43) correlated alcohol + benzene mixtures using the formula

$$
\begin{equation*}
\Delta H^{M}=x_{1} x_{2}\left[A_{0}+A_{1}\left(1-2 x_{1}\right)+A_{2}\left(1-2 x_{1}\right)^{2}+\ldots\right] \tag{3}
\end{equation*}
$$

However, four constants were needed to adequately represent the data.

Power series equations were also used to predict ternary heats of mixing. For example, equation (4) was developed by Scatchard and co-workers (35) but first proposed by Redlich and Kister (34). For n-constant binary equations the ternary heats of mixing are:

$$
\begin{align*}
\Delta H^{M} & =x_{1} x_{2}\left[{ }^{A_{0}}+A_{12}\left(x_{1}-x_{2}\right)+\ldots+A_{n_{12}}\left(x_{1}-x_{2}\right)^{n}\right] \\
& +x_{1} x_{3}\left[A_{0_{13}}+A_{1_{13}}\left(x_{1}-x_{3}\right)+\ldots+A_{n_{13}}\left(x_{1}-x_{3}\right)^{n}\right] \tag{4}\\
& +x_{2} x_{3}\left[A_{O_{23}}+A_{1}\left(x_{23}-x_{3}\right)+\ldots+A_{n_{23}}\left(x_{2}-x_{3}\right)^{n}\right]
\end{align*}
$$

This equation successfully predicted the mixture carbon tetrachloride + benzene + cyclohexane but was unsatisfactory when cyclohexane was replaced by methanol. However, if the terms ($x_{1}-x_{2}$) and ($x_{1}-x_{3}$) in equation (4) were arbitrarily replaced by $\left(2 x_{1}-1\right)$ then the methanol mixture was accurately predicted. Equation (5) is the result:

$$
\begin{align*}
\Delta H^{M} & =x_{1} x_{2}\left[A_{O_{12}}+A_{1}\left(2 x_{1}-1\right)+\ldots+A_{n_{12}}\left(2 x_{1}-1\right)^{n}\right] \\
& +x_{1} x_{3}\left[{ }^{A} O_{13}+A_{1}\left(2 x_{1}-1\right)+\ldots+A_{n_{13}}\left(2 x_{1}-1\right)^{n}\right] \tag{5}\\
& +x_{2} x_{3}\left[A_{0_{23}}+A_{1}\left(x_{23}-x_{3}\right)+\ldots+A_{n_{23}}\left(x_{2}-x_{3}\right)^{n}\right]
\end{align*}
$$

For this specific case component 1 is methanol, in general component 1 is the polar compound. The parameters in equations (1) through (5) are a function of temperature.

Schnaible, Van Ness and Smith (36) presented experimental data for binary and ternary systems and evaluated different methods to predict heats of mixing. They concluded
that the prediction of heats of mixing from pure component data only was inadequate. For example, in the regular-solution theory the interaction energy density c_{12} equals

$$
\begin{equation*}
c_{12}=\left(c_{11} c_{22}\right)^{n} \tag{6}
\end{equation*}
$$

where c_{11} and c_{22} are the cohesive energy densities of the pure components. It was found that just a slight change in the exponent n caused a significant change in the heats of mixing. They also studied equations (4) and (5) for the prediction of heats of mixing and concluded that equation (4) was satisfactory for nonpolar systems while equation (5) was good for polar and nonpolar mixtures.

Goates, Sullivan and Ott (11) studied the effect of mole fraction and temperature on the heats of mixing. They measured the heats of mixing of the binary mixtures that can be developed from benzene, cyclohexane and carbon tetrachloride at several temperatures from 10° to $40^{\circ} \mathrm{C}$. All three binaries were successfully correlated and the expression for the cyclohexane + benzene binary was

$$
\begin{align*}
\Delta H^{M}= & x_{1} x_{2}\left[3105.0-7.98 T-(1303.0-4.37 T)\left(x_{1}-x_{2}\right)\right. \tag{7}\\
& \left.+(1738.0-5.486 T)\left(x_{1}-x_{2}\right)^{2}\right]
\end{align*}
$$

As can be seen, a lot of the research done in the 1950's and early 60's was for the correlation of experimental data with empirical equations. However, some authors tried other methods, for example, Goates, Snow and James (10)
used the quasi-lattice theory to correlate and predict the heats of mixing of alcohol-hydrocarbon systems. They studied three binaries: cyclohexane + ethanol, benzene + methanol and benzene + ethanol. The lattice theory assumes that the liquid has solid-like characteristics, that is, the molecules remain in a regular array in space. For the qua-si-lattice theory the number and type of contact points for each molecule and the interaction energies for all combination of contact points are needed. The coefficients needed were obtained from the first two binaries and used to predict the benzene + ethanol mixture. There was a fairly good agreement between the experimental data and the calculated results.

B. Recent Work

The heats of mixing are related to the excess Gibbs free energy by the Gibbs-Helmholtz equation

$$
\begin{equation*}
\left[\frac{d_{G} \mathrm{E}}{d T}\right]_{P, x}=\frac{-\Delta H^{M}}{T^{2}} \tag{8}
\end{equation*}
$$

In the past decade much of the research has been concentrated in the use of this relationship. Investigators have tried to predict VLE data from heats of mixing data, or vice versa. One example of the calculation of binary vapor-liquid equilibrium data from heats of mixing is the paper by Hanks, Gupta and Christensen (12). The authors used two semi-theoretical equations: the Wilson and NRTL equations. The method consisted of evaluating the parameters in the equation from heats of mixing data and then calculating the phase equilibrium data using pure component vapor pressures. The authors studied six mixtures (with their maximum heats of mixing value given in parenthesis): carbon tetrachloride + acetone, $45^{\circ} \mathrm{C}$ ($318 \mathrm{~J} /$ mole) ; benzene + acetone, $45^{\circ} \mathrm{C}$ ($165 \mathrm{~J} / \mathrm{mole}$); toluene + acetonitrile, $45^{\circ} \mathrm{C}$ ($500 \mathrm{~J} / \mathrm{mole}$); toluene + acetone, $45^{\circ} \mathrm{C}$ ($250 \mathrm{~J} / \mathrm{mole}$); toluene + nitroethane, $45^{\circ} \mathrm{C}$ ($350 \mathrm{~J} /$ mole) ; and cyclopentane + tetrachloroethylene, $25^{\circ} \mathrm{C}(230 \mathrm{~J} / \mathrm{mole})$. The Wilson equation gave a satisfactory fit of the heats of mixing data for only two systems: carbon tetrachloride + acetone and benzene + acetone. The NRTL equation was used to correlate the other four systems. In general, there was very good agreement between the
experimental and predicted VIE data. Even the azeotrope for the toluene + nitroethane system was predicted. (Experimental mole fraction of toluene is 0.71 versus the predicted value of 0.70). Two sets of parameters were found for the toluene + acetonitrile system. The parameters with the lower correlation error for the heats of mixing data also gave a lower prediction error for the VIE data. The authors concluded that their method of obtaining experimental heats of mixing data and then predicting the $x-y$ data is easier then the actual measurement of VLE data. The authors said they chose six "highly nonideal" systems but the maximum heats of mixing was only $500 \mathrm{~J} / \mathrm{mole}$.

Nicolaides and Eckert (28) also studied this problem. They wanted to test the ability of several analytical expressions to correlate and predict different types of data (limiting activity coefficients, VLE, heats of mixing and liquid-liquid equilibrium). They also wanted to determine what was the minimum amount of data needed to predict the various types of data. The four expressions studied were the Van Laar, Wilson, UNIQUAC and Zeta equations. The author's results were as follows:
a) The local composition equations gave better VLE correlation than the Van Laar equation. However, the improvement was not as great as might be expected.
b) The two more recent local composition equations, UNIQUAC and Zeta, did not give any significant improvement over the Wilson equation in the correlation of VLE and ΔH^{M}
data. The Van Laar equation could not be used for heats of mixing prediction because it contains no temperature dependent term.
c) Parameters obtained from VLE data and used to predict ΔH^{M} data gave poor results, the reverse - the prediction of VLE data from ΔH^{M} data gave even poorer results. This is the opposite conclusion that was reached by Hanks et al. The systems used were benzene + cyclohexane, acetone + ethanol and acetonitrile + benzene.
d) Parameters obtained from limiting activity coefficients gave very good predictions of VLE data but poor results for heats of mixing.
e) Increasing the number of parameters from two to four by assuming a linear temperature dependence for the parameters was done for the three local composition equations. The prediction of heats of mixing from VLE data improved slightly for most systems. However, the results for VLE prediction from ΔH^{M} data did not improve.
f) Determining parameters from liquid-liquid equilibria and then predicting $x-y$ data gave fair results. The results for heats of mixing prediction were poor.

The authors concluded that limiting activity coefficients could replace classical VLE measurements. However, heats of mixing data and liquid-liquid equilibria would have to be measured directly. No equation was capable of crosspredicting ΔH^{M} or LLE data from VIE data. In fact, the choice of equation was not critical, the only improvement
of the more recent local composition equations over the wilson equation was their ability to represent liquid phase separation.

Nagata and Yamada (22) did a study similar to Nicolaides and Eckert (28) and obtained similar results. Their results and conclusions are as follows:
a) For their calculations they used the Wilson, Heil and NRTL equations with parameters that varied linearly with temperature.
b) Heats of mixing were calculated from parameters correlated from VLE data. The authors presented results for two typical systems: methanol + benzene at $35^{\circ} \mathrm{C}$ and acetone + chloroform at $25^{\circ} \mathrm{C}$. The maximum experimental heat of mixing for methanol + benzene is $+825 \mathrm{~J} / \mathrm{mole}$, for acetone + chloroform the maximum value is -1900 J/mole. The results were fair to poor with no equation predicting the heats of mixing better than the other two. The absolute deviation ranged from $50 \mathrm{~J} / \mathrm{mole}$ to $825 \mathrm{~J} / \mathrm{mole}$.
c) Excess Gibbs free energy was predicted from parameters correlated from heats of mixing data. Poor results were obtained, with typical predictions being less then half the experimental value. The authors stated that the method of Hanks et al (12) should be limited to special cases, i.e. where the heats of mixing are low.
d) The simultaneous correlation of G^{E} and ΔH^{M} data was very good for all 3 equations.
e) Ternary heats of mixing were successfully predicted from parameters regressed from binary data. Again the choice of equation did not affect the results.

Liu, Weber and Tao (20) predicted ternary heats of mixing from the simultaneous correlation of binary vapor-liquid equilibrium and heats of mixing data. The authors predicted two ternary systems: acetone + chloroform + methanol at $50^{\circ} \mathrm{C}$ and chloroform + ethanol + n-heptane at $50^{\circ} \mathrm{C}$. In both cases the predicted and experimental values compared favorably.

From these four articles the following conclusions can be reached:
a) The cross-prediction of $V L E$ and ΔH^{M} data is dubious at best. Only Hanks et al (12) have successfully predicted heats of mixing from vapor-liquid equilibrium data. one article was discussed here but they have presented many more in Thermochimica Acta and Industrial and Engineering Chemistry on the same topic.
b) For the correlation of the data all the local composition equations performed equally well. The advantage of the more recent equations over the Wilson equation is their ability to predict partial miscibility.
c) Although these equations correlated the binary data well and adequately predicted ternary heats of mixing, experimental data were needed for each system to obtain the parameters. This points out the advantage of group

```
contribution methods - only a limited amount of experimental data are needed. Past work on group contribution methods will be discussed in the next section.
```

C. Group Contribution Methods

Langmuir (16) first proposed the group contribution method in 1925. However, no serious work was done until 1959 when Derr et al (30,33) developed their group contribution model. Some work had been done between 1925 and 1959, see for example Tompa (41), but nothing of significance. Like the models that were developed later, Derr et al assumed that the interaction energy of two molecules could be approximated by the sum of the contributions of the interacting groups. This group contribution was dependent on the group concentrations and two group parameters: interaction coefficient and cross section. The interaction coefficient was due to the interaction between the functional groups in the solution, while the cross section was associated with the size of the groups. Redlich, Derr and Pierotti (33) presented the model. Papadopoulos and Derr (30) predicted the heats of mixing of paraffin and aromatic binaries, and obtained satisfactory results.

Derr's method was extended by Chao et al (6) to include polar substances. They predicted several alcohol + alkane mixtures with best results for high alcohol concentrations for mixtures of higher molecular weight components. Ramalho et al (31) later predicted ketone-ketone systems.

In 1972 Lee, Greenkorn and Chao $(17,18,19)$ developed a group contribution method based on both the cell theory and the quasichemical lattice theory. They have predicted
the heats of mixing of alkane/alkane, alcohol/alkane and ketone/alkane systems. Their method can also be used to predict other properties including heat of vaporization and density. However, their model has not gained much use.

UNIFAC (UNIQUAC Functional-group activity coefficients) was developed by Fredenslund et al (9) at Berkeley in 1975. UNIFAC was an extension of UNIQUAC which had also been developed at Berkeley by Abrams and Prausnitz (1). The Fredenslund article presented temperature independent interaction parameters for the prediction of activity coefficients for binary and multicomponent mixtures. Parameters were given for mixtures containing water, hydrocarbons, alcohols, chlorides, nitriles, ketones, amines and other liquids in the temperature range 275° to $400^{\circ} \mathrm{K}$. Fredenslund et al (8) later attempted to predict heats of mixing using parameters obtained from VLE data. However, typical results differed from the experimental values by a factor of two.

Nagata and Ohta (23) used the UNIFAC method to predict the heats of mixing of binary systems of alkanes with n-alcohols, ketones, esters and ethers, and ternary n-alcohol + n-alcohol + n-alkane systems. For all cases the prediction error was less than 20 percent, however, only the alcohol data was predicted at more than one temperature. Also, six temperature-independent coefficients were needed
to represent the alcohol/alkane interaction:

$$
\begin{align*}
& \psi\left(\mathrm{CH}_{2}, \mathrm{COH}\right)=81.35 \operatorname{EXP}\left[\frac{-2424}{T}\right]+0.157 \tag{9}\\
& \psi\left(\mathrm{COH}, \mathrm{CH}_{2}\right)=330.9 \operatorname{EXP}\left[\frac{-1682}{T}\right]+190 \tag{10}
\end{align*}
$$

The prediction errors for n-alcohol + branched alkane systems were larger than those for n-alcohol + n-alkane mixtures, also the ethanol systems had larger errors than the other n-alcohols.

Skjold-Jorgensen et al (39) revised and extended the UNIFAC method for the prediction of vapor-liquid equilibria. New and improved parameters were presented based on new data which had become available. The only change of consequence for the prediction of heats of mixing was the new definition of the alcohol group. Previously, the main alcohol group had been defined as CCOH , with different subgroups $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CHCH}_{2} \mathrm{OH}\right.$, etc). In this work, the alcohol group was redefined as a group containing OH only, but methanol was still kept as a separate group. Unfortunately, the new group cannot distinguish between primary, secondary and tertiary alcohols.

Recently, Skjold-Jorgensen et al (40) modified the UNIFAC and UNIQUAC models by introducing a general temperature dependence for the interaction parameters. The modified model still required two parameters per binary group, the same as the original model. The generalized formula was developed through the simultaneous correlation of vapor
liquid equilibrium and heats of mixing data. It was obtained, however, from only a limited number of systems with non-associating components. They obtained very good predictions of $x-y$ data from parameters correlated from heats of mixing data and fair results when they attempted the reverse, prediction of heats of mixing from VLE data. The systems predicted contained the five components: alkanes, alkenes, benzene, toluene and ethers.

The researchers who have dealt with group contribution models the most extensively are Ratcliff and his co-workers at McGill University in Canada. Ratcliff and Chao (32) first presented a Group Solution Model in 1969 for the prediction of vapor-liquid equilibrium, but indicated that the model could be applied to other thermodynamic properties. Like the model of Derr et al, their group model was composed of two independent parts: the skeletal contribution and the energetic interactions between the functional groups in the solution. The skeletal contribution accounts for the differences in size of the molecules but not molecular shape. The Bronsted-Koefoed (4) congruence principle was used to describe this effect.

The group contribution effect is described by the equation

$$
\begin{equation*}
\log \gamma_{i}^{G}=\sum_{k} N_{k i}\left(\log \Gamma_{k}-\log \Gamma_{k}^{*}\right) \tag{11}
\end{equation*}
$$

where $N_{k i}$ is the number of groups of type k in component i, Γ_{k} is the activity coefficient of group k and Γ_{k}^{*} is the
activity coefficient of group k at standard state. Equation (11) was correlated with experimental data to determine a number for $\log \Gamma$ for each group k.

The model was first checked to see how well it correlated vapor-liquid equilibrium data for 3 systems at $40^{\circ} \mathrm{C}$: ethanol + iso-octane, ethanol + n-heptane, and methanol + water; and 3 systems at $90^{\circ} \mathrm{C}$: n-propanol + water, n-propanol + n-decane and iso-propanol + n-decane. For all six systems the correlated results compared favorably with the experimental data. The authors then predicted four multicomponent systems at $40^{\circ} \mathrm{C}$: methanol + ethanol + water, methanol + ethanol + n-hexane $+n-h e p t a n e, ~ e t h a n o l+n-h e x-$ ane + iso-octane and methanol + ethanol + n-hexane + n-heptane + water. The predicted results compared reasonably well with the experimental values.

In 1971 Nguyen and Ratcliff (24) applied this Group Solution Model to heats of mixing. The equation for heats of mixing followed the same format as for activity coefficients

$$
\begin{equation*}
\Delta H^{M}=\Delta H^{G}+\Delta H^{S} \tag{12}
\end{equation*}
$$

where ΔH^{G} represents the heats of mixing due to group interactions and ΔH^{S} is the skeletal contribution to the heats of mixing. The skeletal contribution was obtained from the heats of mixing of n-alkanes. In most cases this number was negligible, for example, for n-butanol $+n$-hexane at $25^{\circ} \mathrm{C}$ the binary n -pentane +n -hexane was used to compute
the skeletal contribution, but the heats of mixing were only $1-2 \mathrm{~J} / \mathrm{mole}: \quad \Delta H^{G}$ was found in the same manner as $\log \gamma^{G}$. The authors predicted two alcohol/alkane ternary systems at $25^{\circ} \mathrm{C}: n$-octane +n -propanol +n -octanol and n-heptane $+n-p r o p a n o l+n-p e n t a n o l$. There was good agreement between the calculated and experimental values.

In the same year Nguyen and Ratcliff (25) predicted the heats of mixing of ketone + alkane systems using their Group Solution Model. This time they neglected the skeletal contribution but the prediction error only increased by 1 percent. Ketones were regarded as consisting of carbonyl and methylene groups. The group excess enthalpies were computed from the experimental data for the acetone $+\mathrm{n}-\mathrm{hex}-$ ane system at $25^{\circ} \mathrm{C}$. They then predicted 10 ketone + n-alkane and ketone + ketone binaries with an average error of 15.7 percent. This error is somewhat high but the heat of mixing for ketone + ketone systems is low (on the order of $100 \mathrm{~J} / \mathrm{mole}$).

In 1974 Nguyen and Ratcliff (26) presented the Analytical Group Solution Model (AGSM) for the prediction of heats of mixing. The heat of mixing due to the interactions between the groups was calculated from an analytical expression, namely the Wilson equation. They did not include a skeletal contribution because they felt it was unimportant. In this paper they dealt with alcohol/alkane systems. Five parameters were needed to represent the data
adequately:

$$
\begin{align*}
& \mathrm{a} \mathrm{OH} / \mathrm{CH}_{2}=34.95 \mathrm{EXP}\left[\frac{-2908}{\mathrm{~T}}\right] \tag{13}\\
& \mathrm{a} \mathrm{CH}_{2} / \mathrm{OH}=26.69 \mathrm{EXP}\left[\frac{-1336}{\mathrm{~T}}\right]+7.705 \tag{14}
\end{align*}
$$

The alcohol/alkane data were predicted in the temperature range 15° to $55^{\circ} \mathrm{C}$. Most of the prediction errors were less than 10 percent, except for the ethanol systems where higher errors were found.

In 1975 Nguyen and Ratcliff (27) studied the heats of mixing of alcohols with branched alkanes, the systems studied were pentanol and isopentanol with hexane isomers. For the systems predicted they found no effect on the prediction error due to the branched alkanes.

In 1978 Lai et al (15) extended the model to include liquid mixtures containing alkanes, chloroalkanes and alcohols. They also decided to use a general temperature dependency for the interaction parameters:

$$
\begin{equation*}
a_{j k}=\operatorname{EXP}\left[A_{j k}+\frac{B_{j k}}{T}\right] \tag{15}
\end{equation*}
$$

Therefore, they had to calculate new parameters for alcohols with alkanes since a $\left(\mathrm{CH}_{2} / \mathrm{OH}\right)$ from the previous article did not follow this format. They calculated new $\mathrm{OH} / \mathrm{CH}_{2}$ parameters using data from 7 systems including 4 at $15^{\circ} \mathrm{C}$, 2 at $30^{\circ} \mathrm{C}$ and 1 at $45^{\circ} \mathrm{C}$. The average Root Mean Square Deviation (RMSD) was 7.4 percent. They also calculated $\mathrm{Cl} / \mathrm{CH}_{2}$ interaction parameters using 7 systems (2 at $15^{\circ} \mathrm{C}$, 3 at $25^{\circ} \mathrm{C}$,

2 at $35^{\circ} \mathrm{C}$). The average RMSD was 3.2 percent. Using these parameters they were able to calculate $\mathrm{Cl} / \mathrm{OH}$ parameters. Again they used 7 systems and the average RMSD was 4.8 percent. The temperatures used: 2 at $15^{\circ} \mathrm{C}, 3$ at $25^{\circ} \mathrm{C}$ and 2 at $35^{\circ} \mathrm{C}$. They also predicted two types of ternary systems: with CH_{2} and OH groups and $\mathrm{CH}_{2}, \mathrm{OH}$ and Cl groups. For these predictions the average RMSD was 8.5 percent.

In a later paper Doan-Nguyen et al (7) evaluated interaction parameters for additional groups presented in Table I.

In 1979 Siman and Vera (38) reevaluated their $\mathrm{CH}_{2} / \mathrm{OH}$ interaction parameters. The parameters were obtained by simultaneously fitting G^{E} and ΔH^{M} data. Overall, the prediction error for alcohol/alkane systems increased. In the same paper they reported the heats of mixing for alcohol + amine systems, which are exothermic (negative). The AGSM model correlated and predicted these systems well except for those containing methanol.

The work reported here is divided into two phases. The first phase was the evaluation of the AGSM, UNIFAC and modified UNIFAC models on the basis of their ability to correlate and predict the enthalpies of mixing of a selected set of binary systems. The second phase involved the generation of interaction parameters for all the possible combination of groups for which data is available using the best model. These parameters could then be used for the prediction of mixtures for which no experimental data exists.

Most of the work in the first phase was done by Ojini (29), but some contribution was made by the author. This thesis will deal mostly with the modified UNIFAC approach and include the regression for parameters of several active groups with alkanes.
III. GROUP CONTRIBUTION METHODS

The group contribution methods mentioned in the previous sections have used different equations to calculate the heats of mixing but the basic idea for all of them has been the same. Most have assumed that the heats of mixing are due to two contributions: the first part is due to the differences in size and shape of the molecules and the second part accounts for the energetic interactions between the molecules. However, for heats of mixing the second part is more important.

The second contribution, the molecular interactions, is calculated by using group interaction parameters. An example would best illustrate the use of group parameters. The mixture n-pentanol + 1-chlorobutane contains the groups $\mathrm{CH}_{2}, \mathrm{OH}$ and Cl (where the interactions for the groups CH_{2} and CH_{3} are considered the same). In order to predict this mixture the following interactions are considered: $\mathrm{CH}_{2} / \mathrm{OH}$, $\mathrm{CH}_{2} / \mathrm{Cl}$ and $\mathrm{OH} / \mathrm{Cl}$. As mentioned in the Introduction, $\mathrm{OH} / \mathrm{CH}_{2}$ parameters could be found from the binary n-butanol $+n-h e p-$ tane. The $\mathrm{Cl} / \mathrm{CH}_{2}$ parameters could be correlated from 1-chlorobutane + n-hexane data. Both of these sets of parameters are primary parameters since they are obtained from mixtures containing only two groups. The OH/Cl parameters are secondary parameters. Secondary parameters are parameters obtained from mixtures containing three groups and using the appropriate primary parameters. In this case,
$\mathrm{Cl} / \mathrm{OH}$ parameters could be generated from n-octanol + 1-chlorohexane data. Finally, the system n-pentanol

+ 1-chlorobutane could be predicted.
A. The Analytical Group Solution Model (AGSM)

The basic equations of the AGSM model as developed by Ratcliff and co-workers (26) are included here. The AGSM method assumes that the contribution of each compound in the mixture is accounted for by summing the contribution of each group that makes up the chemical compound. Therefore, the partial molar excess enthalpy of component i is given by

$$
\begin{equation*}
\overline{\Delta H_{i}}=\sum_{k} N_{k i}\left(H_{k}-H_{k i}^{*}\right) \tag{16}
\end{equation*}
$$

where $N_{k i}$ is the number of groups of type k in component i, H_{k} is the excess enthalpy of group k and $H_{k i}{ }^{*}$ is the standard state enthalpy of group k in pure component i. It follows that the heat of mixing is

$$
\begin{equation*}
\Delta H^{M}=\sum_{i} x_{i} \overline{\Delta H_{i}} \tag{17}
\end{equation*}
$$

where x_{i} is the mole fraction of component i. The group excess enthalpy H_{k} is found from the Wilson equation

$$
\begin{equation*}
\frac{H_{k}}{R T^{2}}=\frac{\sum_{j} X_{j} b_{k j}}{\sum_{j} X_{j} a_{k j}}+\sum_{j} \frac{X_{j} b_{j k}}{\sum_{m} X_{m} a_{j m}}-\sum_{j}\left[\frac{x_{j} a_{j k}}{\left(\sum_{m} X_{m} a_{j m}\right)^{2}} \sum_{m} x_{m} b_{j m}\right] \tag{18}
\end{equation*}
$$

where X_{k} is the group fraction of group k in the mixture and defined as

$$
\begin{equation*}
x_{k}=\frac{\sum_{i} x_{i} N_{k i}}{\sum_{k} \sum_{i} x_{i} N_{k i}} \tag{19}
\end{equation*}
$$

$H_{k i}{ }^{*}$ is also calculated from equation (18) using the group fraction of group k in pure component i, instead of the group fraction of group k in the mixture. The temperature dependent group parameters $a_{j k}$ and $b_{j k}$ are related by

$$
\begin{equation*}
b_{j k}=\frac{d}{d T}\left[a_{j k}\right] \tag{20}
\end{equation*}
$$

Ratcliff and co-workers adopted the following expressions for their group parameters

$$
\begin{align*}
& a_{j k}=\operatorname{EXP}\left[A_{j k}+\frac{B_{j k}}{T}\right] \tag{21}\\
& b_{j k}=\operatorname{EXP}\left[A_{j k}+\frac{B_{j k}}{T}\right]\left[\frac{-B_{j k}}{T}\right] \tag{22}
\end{align*}
$$

where $A_{j k}$ and $B_{j k}$ are temperature independent coefficients. Once these coefficients are correlated from experimental data they can be used to predict other mixtures containing the same groups.

The AGSM model does not include a factor which takes into account the size and shape of the group. Consider for example the case of n-hexane and 2,2 dimethylbutane. The AGSM model does not differentiate between them, since it only considers the total number of groups present. Ratcliff and co-workers have published several articles reporting results which show there is no need to distinguish between specific groups, i.e. $\mathrm{CH}, \mathrm{CH}_{2}, \mathrm{CH}_{3}$ etc. For example, Lai et al (15) predicted chloro/alkane mixtures with good results. Two binaries they predicted were n-hexane with 1and with $2-$ chlorobutane at $25^{\circ} \mathrm{C}$. The AGSM model predicts
the same heats of mixing for both mixtures since it does not distinguish between what carbon atom the Cl group is bonded with. Since the heats of mixing for both systems are similar the prediction error is low. On the other hand, Ratcliff and co-workers have never predicted secondary and tertiary alcohols. However, the difference in heats of mixing of n-heptane with 1 - and with 2 -propanol is about 20 percent. In this case the AGSM model fails to predict the $2-$ propanol system accurately.

B. The UNIFAC Method

The prediction of vapor-liquid equilibrium by the UNIFAC method was presented by Fredenslund et al (9) in 1975. The UNIFAC model separates the activity coefficient into two parts: the first part accounts for the difference in size of the molecules while the second part represents energetic interactions. However, when the expression for the heats of mixing is determined using the Gibbs-Helmholtz relationship (equation (8)), the first part does not appear since it is not a function of temperature. Therefore, the UNIFAC model reduces to the same format as the AGSM except that the expression for the group excess enthalpy H_{k} is different. The equation for H_{k} is:
$\frac{H_{k}}{R T^{2}}=-Q_{k}\left[\frac{-\sum_{m} \Theta_{m} \psi_{m k}^{\prime}}{\sum_{m} \Theta_{m} \psi_{m k}}-\sum_{m}\left[\frac{\Theta_{m} \psi_{k m}^{\prime}}{\sum_{n} \Theta_{n} \psi_{n m}}-\frac{\Theta_{m} \psi_{k m}\left(\sum_{n} \Theta_{n} \psi_{n m}^{\prime}\right)}{\left(\sum_{n} \Theta_{n} \psi_{n m}\right)^{2}}\right]\right]$
where
Q_{k} : area parameter for group k
Θ_{m} : area fraction of group m

$$
\begin{gather*}
\Theta_{m}=\frac{Q_{m} X_{m}}{\sum_{n} Q_{n} X_{n}} \tag{24}\\
\psi_{m n}=\operatorname{EXP}-\left[\frac{U_{m n}-U_{n n}}{R T}\right]=\operatorname{EXP}-\left[\frac{a_{m n}}{T}\right] \tag{25}\\
\psi_{m n}^{\prime}=\frac{d}{d T} \psi_{m n} \tag{26}
\end{gather*}
$$

$U_{m n}$: measure of the energy of interaction between groups m and n
$a_{m n}$: group-interaction parameter
Once the group interaction parameters are evaluated from experimental data they can be used to predict other mixtures containing the same groups.

Skjold-Jorgensen et al (40) modified the UNIFAC model by introducing a generalized temperature dependency for the interaction parameters. They suggest that the parameter $\psi_{m n}$ can be written as:

$$
\begin{equation*}
\psi_{\mathrm{mn}}=\operatorname{EXP}-\left[\frac{\mathrm{Za}_{\mathrm{mn}}^{\prime}}{2 T}\right] \tag{27}
\end{equation*}
$$

where Z is the lattice coordination number which in the original UNIFAC was a constant equal to 10. Therefore, the group-interaction parameter reduced to

$$
\begin{equation*}
a_{m n}=\frac{Z a_{m n}^{\prime}}{2} \tag{28}
\end{equation*}
$$

The authors proposed, however, to make Z a function of temperature:

$$
\begin{equation*}
Z(T)=35.2-0.1272 T+0.00014 T^{2} \tag{29}
\end{equation*}
$$

The numerical constants were obtained by the simultaneous fit of vapor-liquid equilibrium data for six binaries and heats of mixing data for three binaries. The systems involved were hydrocarbons and ethers, while the temperature
range was 25° to $129^{\circ} \mathrm{C}$.
One difference in the two expressions for H_{k} is that the UNIFAC model includes the group area parameter, Q_{k}, which takes into account the size of the group. The area parameter is obtained from Van der Waals surface areas as given by Bondi (3). As mentioned before, for the AGSM model 2,2 dimethylbutane would consist of $6 \mathrm{CH}_{2}$ groups, no distinction would be made between $\mathrm{CH}_{3}, \mathrm{CH}_{2}$ and C groups. However, for the UNIFAC model 2,2 dimethylbutane would be $1 \mathrm{C}, 1 \mathrm{CH}_{2}$ and $4 \mathrm{CH}_{3}$ groups. The interaction parameters for the three groups would be the same but the area parameter would be different for each group. The group area parameter appears in the equation for H_{k} not only as Q_{k} (in front of the bracket in equation (23) but also through Θ_{k}, which in essence replaces the group fraction of the AGSM model. Table II includes the Q values used in this study.
IV. RESULTS AND DISCUSSION

The Results and Discussion section is divided into four parts: preliminary calculations, evaluation of the models, regression of the data and final parameters. The total work for the heats of mixing project was done by three people: Hetzel (thesis to be completed in October 1982), Ojini (29), and the author. Data or results developed by one person often were necessary to the work of another. While most of the work reported in this thesis was done by the author, some of the preliminary work was shared by all three.

A. Preliminary Calculations

One of the first decisions that had to be made was which group contribution model should be used - AGSM or UNIFAC. Ratcliff and co-workers had published interaction parameters in several papers so it was decided to predict different types of systems using their parameters. Tables III and IV give the results of this analysis. Table III gives predictions for alcohol/alkane systems. The table shows that parameters regressed from heats of mixing data only give better predictions than parameters simultaneously regressed from heats of mixing and vapor-liquid equilibrium data. However, for n-butanol and higher alcohols the results are similar. Table IV presents prediction results for binary systems not containing an alcohol. All the prediction errors are low with only the two benzene + alkane systems at $50^{\circ} \mathrm{C}$ greater than 15 percent. However, as seen from Table I the benzene/alkane parameters were correlated from 3 systems at $25^{\circ} \mathrm{C}$, this would account for the higher prediction errors at $50^{\circ} \mathrm{C}$.

For the UNIFAC model no interaction parameters were available which had been obtained from heats of mixing data. Parameters reported in the literature were correlated from vapor-liquid equilibrium data. Ojini (29) had determined that these parameters were inadequate for heats of mixing prediction.

One problem that developed early was the effect of temperature on heats of mixing and the interaction parameters. It was found that the heats of mixing of some systems increased as the temperature increased, for example, alcohols + alkanes and nitroalkanes + alkanes. But for most systems the heats of mixing decreased as the temperature increased. Also, as seen from the AGSM results with benzene + alkanes (Table IV) the experimental data used to correlate the parameters had a significant effect. This can be further seen from Table V which gives the results for the correlation and prediction of n-propanol $+n$-heptane data using the UNIFAC model. Table V shows that if only n-propanol + n-heptane at $30^{\circ} \mathrm{C}$ is used to find the parameters the correlation error is 0.9 percent. Using these parameters to predict the same system at $45^{\circ} \mathrm{C}$ gives a prediction error of 15.6 percent. However, if the data at both temperatures are used to find the parameters the correlation error is 6.7 percent. Therefore, when parameters are obtained it would be best to include data at as many temperatures as possible. The correlation error would be higher but the overall error would be lower.

One advantage of UNIFAC over AGSM is the ability to distinguish between isomers (through the use of the group area parameter Q). Some work was done in this area to see if the UNIFAC was also able to predict heats of mixing for isomers accurately. The alcohols were chosen as the test group and the parameters used were those obtained from
n-propanol + n-heptane at $30^{\circ} \mathrm{C}$. The groups for n -propanol are $1 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{Q}=1.664)$ and $1 \mathrm{CH}_{3}$. Two secondary alcohol + alkane systems were predicted: 2-propanol + n-heptane at $45^{\circ} \mathrm{C}$ and 2 -butanol +n -hexane at $25^{\circ} \mathrm{C}$. The groups for 2-propanol are $1 \mathrm{CHOHCH}_{3}(\mathrm{Q}=1.660)$ and $1 \mathrm{CH}_{3}$ and for 2-butanol are $1 \mathrm{CHOHCH}_{3}, 1 \mathrm{CH}_{2}$ and $1 \mathrm{CH}_{3}$. The prediction of the heats of mixing of these two systems was poor. The poor results were due to the small difference in Q values between primary and secondary alcohols. Because of the slight difference ($\Delta=0.004$) in Q, nearly the same heats of mixing was calculated for n-propanol + n-heptane and 2-propanol + n-heptane. However, the heats of mixing of 2-propanol + n-heptane are about 20 percent higher than for n-propanol + n-heptane. A new Q for secondary alcohols was sought using the same parameters. The lowest average error for the two systems was 17.1 percent for $Q=3.5$. However, more extensive work would have to be done before changing a Q value. In addition, such a drastic change in Q, from 1.660 to 3.5 cannot be justified. For, once a Q is changed, it would have to be good for all systems, not just alcohol + alkane systems. Though this work was sketchy it did show that predicting isomers later might be difficult.

From the initial calculations the following observations can be made:
a) both the AGSM and UNIFAC models gave low prediction errors (< 20 percent) for most systems,
b) correlating VLE and ΔH^{M} data simultaneously gave high
errors,
c) both the AGSM and UNIFAC had difficulty predicting isomers, and
d) the temperature dependency of the parameters was an important factor to consider.

In order to choose the appropriate model the three workers on the heats of mixing project developed the Grand Plot.

B. Evaluation of the Models

Since the preliminary calculations were not conclusive enough to choose between the two models, the Grand Plot criteria was developed by the three workers on the heats of mixing project. The Grand Plot was developed to answer two questions:
a) Which model should be used: AGSM or UNIFAC?
b) What form of temperature dependency of the interaction parameters was best?

The Grand Flot relates the temperature exponent β to S_{c}, the average cumulative prediction error. The Grand Plot included the following:
a) A general temperature dependency expression for the interaction parameters was assumed. For example, for the UNIFAC model the group parameter equals:

$$
\begin{equation*}
\psi_{\mathrm{mn}}=\operatorname{EXP}-\left[\frac{\mathrm{a}_{\mathrm{mn}}}{\mathrm{~T}}\right] \tag{25}
\end{equation*}
$$

where $a_{m n}$ is the temperature independent parameter. Now $a_{m n}$ would also become a function of temperature by assuming:

$$
\begin{equation*}
\psi_{m n}=\operatorname{EXP}-\left[\frac{A_{m n}{ }^{T} \beta+B_{m n}}{T}\right] \tag{30}
\end{equation*}
$$

A similar expression was used for the AGSM model

$$
\begin{equation*}
a_{k j}=\operatorname{EXP}\left[\frac{C_{k j} T^{\beta}+D_{k j}}{T}\right] \tag{31}
\end{equation*}
$$

Where the coefficients $A_{m n}, B_{m n}, C_{k j}$ and $D_{k j}$ are temperature independent. The value of β, for each model, is determined from the correlation and prediction of heats of mixing data for a selected set of binary systems.

It should be noticed that the temperature dependency of the interaction parameters given by equations (30) and (31) is not the only one possible. For example, Nguyen and Ratcliff (26) used a total of five parameters for the $\mathrm{OH} / \mathrm{CH}_{2}$ interactions with the AGSM model. Later, Lai et al (15) revised these parameters so that only four were necessary. Similarly, Nagata and Ohta (23) used six parameters for the same interactions with the UNIFAC model. Considering the large number of experimental data for n-alcohols/n-alkanes their approach is justified. However, the purpose of the present study is to develop a temperature dependency expression applicable for all group pairs, including several cases where only limited data are available. For this reason a four-parameter expression was sought.
b) The binary systems were classified into two types: Type I: Heats of mixing increase as temperature increases,

Type II: Heats of mixing decrease as temperature increases.

Preliminary calculations showed that positive exponents
(β) favored Type I systems, while Type II systems did better with negative exponents (β). To obtain an optimum value for β two Type I and two Type II systems were selected as presented in Table VI. Experimental data for the four systems was available at two temperatures.
d) The heats of mixing data were correlated at the lower temperature using values of β from -2 to +2 in intervals of 0.5 excluding $\beta=0$. For each β, a separate set of interaction parameters was found.
d) The heats of mixing were predicted at the higher temperature using the same value of β and the appropriate set of interaction parameters. In practical applications it is often desirable to extrapolate the heats of mixing data to higher temperatures.
$\dot{e})$ The average cumulative prediction error S_{c} is defined as:

$$
\begin{equation*}
S_{c}=\frac{\sum_{i} S_{j}}{I} \tag{32}
\end{equation*}
$$

where L is the number of systems, and S_{j} is the average absolute percent error for system j :

$$
\begin{equation*}
S_{j}=\sum_{i}\left|\frac{\Delta H_{\exp }^{M}-\Delta H_{c a l c}^{M}}{\Delta H_{\operatorname{lip}}^{M}}\right|_{i}^{* 100} \tag{33}
\end{equation*}
$$

where V is the total number of experimental points and the subscripts exp and calc indicate experimental and
calculated respectively.
Table VII contains the regression results for UNIFAC and AGSM, while Table VIII gives the prediction results. (Ojini did all the regression and prediction results for UNIFAC, Hetzel did the AGSM regression and prediction for $\beta=+1.0,+0.5,-0.5$ and -1.0$)$. The author did the AGSM regression and prediction for $\beta=+2.0,+1.5,-1.5$ and -2.0.

Three problems arose immediately even before a Grand Plot was made. The three problems were: (1) some prediction errors were very high, (2) for some exponents no parameters were obtained, and (3) for some exponents more than one set of parameters were found. Although three problems are mentioned here they are all due to the problem of multiplicity of roots. This problem will become more apparent when the final parameters are correlated.

For the AGSM predictions there were three systems with a very high error: benzene + n-octane $\beta=+2, \beta=-2$ and n-octanol + n-heptane $\beta=+1.5$. A check was made by predicting different systems. For the benzene + alkane systems the prediction error for systems at $25^{\circ} \mathrm{C}$ was less than 5 percent, but the errors for systems at $50^{\circ} \mathrm{C}$ were greater than 200 percent. Table IX contains the prediction results for n-octanol + n-heptane at different temperatures. The results seem strange with errors of up to 50,000 percent being indicated. Therefore, it was determined that since similar errors were found for other temperatures the results

were correct.

The second problem in the AGSM regression was that the program did not converge and no parameters were found for nitroethane $+2,2$-dimethylbutane at $30^{\circ} \mathrm{C}$ for $\beta=-1.5$. This brings up the question of what parameters should be chosen as initial values. Except for the nitro group Rat-. cliff and co-workers had reported parameters for the systems studied in the Grand Plot using a linear temperature dependence $(\beta=1.0)$. The initial parameters for the Grand Plot were obtained by prorating Ratcliff's parameters for each temperature dependency. Normally these starting values converged on a new set of parameters. If the program did not converge one of the parameters was changed and the program run again. This approach generally was successful but repeated attempts failed to give a final set of parameters for nitroethane $+2,2$-dimethylbutane at $30^{\circ} \mathrm{C}$.

Two sets of final parameters for the following systems and temperature dependencies were available: benzene + n-octane, $\beta=-1.5$ and n-octanol $+n$-heptane, $\beta=1.5$. Table X presents the results for the two systems. The results for the benzene + alkane systems show that the prediction error at the higher temperature is nearly the same for both sets of parameters. For alcohol + alkane systems the parameters with the higher correlation error gave the lower prediction error. The reason for this is not clear.

Figures 1 and 2 are the Grand Plot for the UNIFAC and AGSM, respectively. From these two graphs and Tables VII and VIII it is noticed that the AGSM gave more erratic results than the UNIFAC. Figure 1, the UNIFAC Grand Plot, shows that $\beta=0.5$ gives the best results with an average absolute error of 7.7 percent. Figure 2, the AGSM Grand Plot, shows the lowest cumulative error was 18 percent for $\beta=-0.5$. A closer look at Figure 1 shows that $\beta=1.0$ is not on the smooth curve (11.5 percent) and might be expected to have a lower cumulative error than $\beta=0.5$. Considering the problems with other temperature exponents it was decided to try and improve the error for $\beta=1.0$ (linear temperature dependence) before making the final decision on which model and temperature exponent to use.

Attempts to improve $\beta=1.0$ were unsuccessful. When looking at the percent error for the four systems for $\beta=1.0$ the $n-o c t a n o l+n$-heptane system had the largest error (18.0 percent). Attempts were made to improve the percentage error for this system by using different starting values, but the prediction error did not change.

At this time it looked like $\beta=0.5$ would have to be used with the UNIFAC. However, based on a pre-publication by Skjold-Jorgensen (40) on the $Z(T)$, it was decided to give the modified UNIFAC with the $Z(T)$ the same test as the AGSM and four parameter UNIFAC. Table XI gives the results for the four systems in the Grand Plot. The average cumulative error based on the set of parameters with the lowest
correlation error was 5.0 percent. This error is less than that for the UNIFAC with $\beta=0.5$. Therefore, since the UNIFAC with $Z(T)$ had the lowest prediction error on the Grand Plot it was decided to use the $Z(T)$ for the future calculations. The $Z(T)$ had the additional advantage in that only two interaction parameters were needed per group pair versus the four parameters that were used before.

A new expression for $Z(T)$ was sought for two reasons: (1) Skjold-Jorgensen's $Z(T)$ was correlated from both vapor liquid equilibrium and heats of mixing data but this study was only interested in the prediction of heats of mixing. It must be remembered, however, that Skjold-Jorgensen et al (40) obtained good predictions for both kinds of data. (2) The data base used to find the $Z(T)$ expression included only alkanes, alkenes, benzene, toluene and ethers. Skjold-Jorgensen et al (40) stated that a special "chemical term" might be needed to predict associating systems. It should be noted that of the four systems predicted in the Grand Plot only the alcohol binary, an associated mixture, had an error greater than 10 percent. An expression for $Z(T)$ was sought that would be applicable for all groups. In the first attempt to find a new $Z(\mathbb{T})$ only the alcohol binary was used in the data base. Table XII gives the new $Z(T)$ and prediction and correlation results for three systems. The results with Skjold-Jorgensen's $Z(\mathbb{T})$ are also included for comparison and, in most cases, did better. As mentioned before, the lattice coordination number (Z)
was a constant set equal to 10 in the original UNIFAC. At $25^{\circ} \mathrm{C}$, Skjold-Jorgensen's $Z(T)=9.72$ while the Z correlated from n-octanol + n-heptane at $30^{\circ} \mathrm{C}$ is the unreasonable value of 22.15. Therefore, the first attempt at finding a new expression for Z was unsuccessful.

Finding a general expression for Z is a difficult process. When looking at equation (27) it is noticed that both Z and $a_{m n}^{\prime}$ are in the numerator, so in effect, the two parameters are estimated from the value of their product. To find a new expression for Z the plan was to include the four systems from the Grand Plot, which would mean regressing for 11 parameters (8 interaction parameters and 3 coefficients for Z). To get good results would be very difficult because of this relation between Z and $a_{m n}^{\prime}$. Instead, it was decided to use Skjold-Jorgensens' equation for the final parameters because Skjold-Jorgensen et al (40) had predicted heats of mixing well.

C. Regression of the Data

Appendix I is a print out of a sample regression run and explains how to enter a computer run. Appendix II is the same except that it applies to a prediction run.

Due to the problem of multiplicity of roots, a system of common starting values had to be devised to ensure that the best set of parameters was obtained. A grid of starting values, covering the range +200 to -200 in intervals of 200 as shown in Table XIII was used. This points to a significant advantage of the modified UNIFAC model as compared to the original UNIFAC which needed four interaction parameters. To have the same kind of grid would have involved a very large chart of initial values. The upper value $a_{m n}^{\prime}=200$ was chosen because if $a_{m n}^{\prime}$ becomes too large then $\frac{d \psi}{d T}$ is very small and becomes inconsequential. An example of this will be given later. In the first UNIFAC article by Fredenslund, Jones and Prausnitz (9) they set an upper limit of 3000 for $a_{m n}$ which corresponds to $a_{m n}^{\prime}$ of 617. For $a_{m n}^{\prime}=200$ the corresponding $a_{m n}$ equals 972 and in their article over 80 percent of their reported parameters were less than 972. Therefore, a starting value for $a_{m n}^{\prime}$ of 200 seems reasonable.

The results for each type of system will be given in three tables:

1) The first table will give the initial and final parameters, FMIN and standard deviation. Also, the correlation
error will be given if the program converged on a set of parameters. The minimization function FMIN was defined as:

$$
\begin{equation*}
\text { FMIN }=\frac{1}{V} \quad \underset{V}{V}\left|\frac{\Delta H_{\text {exp }}^{M}-\Delta H_{\text {calc }}^{M i}}{\Delta H_{\text {exp }}^{N i}}\right|_{i}^{2} \tag{34}
\end{equation*}
$$

where V is the number of data points used in determining the interaction parameters.
2) The second table will give the correlation errors for each set of parameters. The average and maximum percent error for each binary will be given. The maximum percent error is given in order to see if the parameters correlated the mixture well over the entire range of mole fraction. A column is also included which gives the experimental heat of mixing at its maximum value and the corresponding predicted number. This column was given in order to demonstrate the size of the error. The systems chosen for the regression included data at different temperatures and with various solvents, if possible.
3) The third table is the prediction results for the systems not included in the regression data base. Each system was predicted with each set of parameters. The column marked with an asterisk is the percent error for the set chosen as the final parameters. To demonstrate the size of the error, the maximum error $\Delta H_{\max }^{M}=\left|\Delta H_{\text {exp }}^{M}-\Delta H_{\text {calc }}^{M}\right|$ is also given for each system.

D. Final Parameters

The final part of this thesis was to find interaction parameters for the following groups with CH_{2} :

1) benzene
2) methanol
3) alcohols
4) primary amines
5) secondary amines
6) tertiary amines
7) CCl, i.e. 1-chlorobutane
8) CCl_{2}, i.e. dichloromethane
9) CCl_{3}, i.e. chloroform
10) CCl_{4}, (carbon tetrachloride as separate group)

Table II contains the Q values for all the groups used in this thesis. All of these parameters are found from binary mixtures where one component is an alkane, for example, n-butanol + n-heptane.

When the final parameters were first correlated cycloalkanes were included in the data base. There were several reasons for including the cycloalkanes:

1) Availability of data. For some systems, such as benzene and alcohols, there is a considerable amount of experimental data in the literature. However, for other systems, for example, dichloromethane and chloroform, there is only a limited amount of data. In these cases including the cycloalkane data would hopefully
give interaction parameters with a wider applicability in terms of temperature range and size of solvent.
2) If cycloalkane data were not included then secondary parameters would be necessary to predict mixtures containing cycloalkanes. The binary system n-butanol + cyclohexane is taken as an example to illustrate the prediction method. If the cyclic CH_{2} and the straight chain CH_{2} were considered as equal then only the primary parameters a $\mathrm{OH} / \mathrm{CH}_{2}$ and a $\mathrm{CH}_{2} / \mathrm{OH}$ would be needed to predict this mixture. However, if cycloalkanes were considered separately and excluded from the data base then secondary parameters would be needed. First, n-butanol + n-hexane would be correlated to find a $\mathrm{OH} / \mathrm{CH}_{2}$ and a $\mathrm{CH}_{2} / \mathrm{OH}$ where CH_{2} represents straight chain alkanes only. Then cyclohexane + n-hexane data would have to be regressed to find the parameters a $\mathrm{CH}_{2} /\left(\mathrm{CH}_{2}\right.$ and a $\left(\mathrm{CH}_{2}\right) / \mathrm{CH}_{2}$ where $\left(\mathrm{CH}_{2}\right.$ represents cyclic CH_{2} as in cyclohexane. Finally, n-propanol + cyclohexane data would be regressed to find the parameters a $\mathrm{OH} /\left(\mathrm{CH}_{2}\right.$ and a $\left(\mathrm{CH}_{2} / \mathrm{OH}\right.$. These interaction parameters would be secondary parameters. After these three sets of parameters were obtained then the binary n-butanol + cyclohexane could be predicted.
3) Principle of group contribution methods. A group contribution method is an approximate method to calculate heats of mixing. It is used when experimental data is
not available. If too many functional groups are defined then the idea behind grolup contribution methods is defeated.
4) In the first UNIFAC paper by Fredenslund, Jones and Prausnitz (9) they did not include cycloalkanes in their data base when regressing for parameters. They did however predict two cyclohexane systems, cyclohexane $+1,2$-dichloroethane and cyclohexane + methyl acetate, and obtained good predictions for both systems. They stated that, "these favorable results suggest that the UNIFAC is applicable to systems containing cyclohexane ($6 \mathrm{CH}_{2}$ groups) and, perhaps, other cyclic alkanes." Although their paper dealt with VLE predictions it was hoped the same would be true for heats of mixing data.

Table XIV gives experimental data for cyclic alkanes and n-alkanes with a common second component at equal mole fractions. As seen from Table XIV there seems to be no common thread in the data, sometimes there is very little difference in the heats of mixing and, in some cases, the heats of mixing of one system are twice that of the other. Also, for three of the seven cases the heats of mixing of the cyclic system are greater than that of the normal alkane system.

Unfortunately, the simultaneous correlation of straight chain and cyclic alkanes gave poor results. Therefore, it was decided to exclude cyclic alkanes when correlating for the
final parameters. A summary of the results follows:
a) methanol. Tables XV to XX give the results for methanol. When the methanol + cyclohexane data at $25^{\circ} \mathrm{C}$ were correlated the regression results were better than when the $50.5^{\circ} \mathrm{C}$ binary was used.
b) Secondary amines. Tables XXI to XXV give the results for secondary amines. Ethyleneimine, trimethyleneimine, pyrrolidine, piperidine, hexamethyleneimine and heptamethyleneimine are cyclic amines of the formula $\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{NH}$ where n is two through seven. When two cyclic amine systems were included in the regression (Table XXI) the prediction results were poor for the other cyclic systems. Including three cyclic amines (Table XXIV) did not improve the results.
c) Tertiary amines. Tables XXVI and XXVII give the results for tertiary amines. The correlation results were poor but this is due more to the low heats of mixing of these systems ($\Delta H^{\mathrm{Mi}}<100 \mathrm{~J} / \mathrm{mole}$) than to the two cyclic amine systems included in the regression data base.
d) CCl. Tables XXVIII and XXIX are the results for CCl systems. Two sets of parameters were obtained, however, the value for a CH_{2} / G was the same for both sets while a G / CH_{2} was different (where group G represents a group other than CH_{2}).
e) CCl_{2}. Tables XXX and XXXI give the results for CCl_{2} systems. Three sets of parameters were obtained but the
correlation results were only adequate. Part of the problem may be due to the groups involved in the correlation. Dichloromethane is one group, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, while 1,1,2,2-tetrachloroethane is one group twice, CHCl_{2}. By the UNIFAC method the parameters would be the same but the group area parameter would be different. As will be seen later the value of Q can cause unexpected problems. f) CCl_{3}. Tables XXXII and XXXIII give the results for CCl_{3} systems. Since only two mixtures were included in the data base and their heats of mixing are fairly close (considering the temperature difference) the correlation results were very good.
g) CCl_{4}. Tables XXXIV and XXXV give the results for CCl_{4} systems. Five sets of parameters were obtained where the correlation error was nearly the same - 52 to 53 percent. Closer inspection of the results show that the parameters for sets B and C are reversed, and the same is true for sets E and F. The same problem will appear when the cyclo systems are excluded.

Since the Q value for CH_{2} in alkanes and cycloalkanes is the same, and equal to 0.54 , it was attempted to improve the correlation results for cycloalkanes by changing the Q value for cyclic CH_{2}. A similar approach was used by Anderson and Prausnitz (2) to improve the vapor-liquid equilibrium performance of the UNIQUAC model for systems containing water and alcohols. The following procedure
was used to find a new Q :
a) Fix a value for Q. Four Q values were used: 0.4, $0.54,0.65$ and 0.75 .
b) Regress for CH_{2} /Group G interaction parameters using the five systems in Table XXXVI. Three Type II systems were used because they make up the majority of binary mixtures.
c) Find the optimum Q from a plot of the overall average absolute error versus Q, as shown in Figure III. It is apparent that no significant improvement was obtained, at least for reasonable values of Q. It was decided, therefore, to treat the cyclic compounds separately.

Although a strong case had been made for considering cyclic and straight chain alkanes the same, there were several reasons for treating them separately:

1) Even if one Q value was more successful than the others and was adopted as the new Q for cyclic CH_{2}, this Q would also have to work for secondary parameters and beyond. More extensive work would have to be done to see what the effect would be on other systems.
2) As seen from Table XIV sometimes the heats of mixing for cyclic and straight chain alkanes are very close, and this is reflected in the correlation results which are very good. For example, the heats of mixing of chloroform with n-hexane and with cyclohexane were similar. If the Q value were changed it would probably increase the errors for

these systems.

3) Although Fredenslund et al (9) reported good results for two cyclohexane systems, other authors have also had problems with cyclic systems. For example, Kikic et al (14) modified the combinatorial part of UNIFAC to better predict vapor-liquid equilibrium with cycloalkanes. DoanNguyen et al (7) reported separate parameters for cyclic CH_{2} with benzene and toluene for the AGSM.

Tables XXXVII to IXVI present the correlation and prediction results for the final parameters when cyclic systems are excluded. Table LXVII gives a list of the final parameters for the ten groups along with their correlation error. For six of the ten cases more than one set of parameters gave a correlation error of less than 20 percent. In such cases the set of parameters that were the smallest in absolute value were chosen. The reasoning behind this will be given in more detail when the CCl + alkane systems is discussed. However, a similar conclusion was reached by Silverman and Tassios (37) in the correlation of vapor-liquid equilibrium data with the wilson equation. Their work involved systems with negative deviations from Raoult's law where up to three sets of parameters are possible. Some specific comments for each type of system follow.
a) CCl. Tables XXXVII to XL give the results for CCl systems. (Please note that not all of the initial parameters in the grid were used. In order to save computer time
the final parameters obtained from the cyclic regression were used as starting parameters here). Five sets of parameters were obtained with four sets giving a similar correlation error, especially if the experimental uncertainty of the data is taken into account. It should also be noticed that for sets B, D and E the value for a $\mathrm{CH}_{2} / \mathrm{CCl}$ is identical while a $\mathrm{CCl} / \mathrm{CH}_{2}$ varies. In order to determine the final interaction parameters, the four parameters $\psi(1,2), \psi(2,1)$, $d \psi / d T(1,2)$ and $d \psi / d T(2,1)$ that enter into the calculation of heats of mixing were evaluated. The results are given in Table XL and show that only Set A gave reasonable numbers for the four values. Based on these results Set A was chosen as the final parameters. And, for this reason the set of parameters that were the smallest in absolute value were chosen as the final parameters.

Twenty-two systems were predicted as given in Table XXXIX and for thirteen systems the percent error was less than 20 percent. However, when one of the components was
 error was high. Figure 4 shows the experimental and predicted heats of mixing for n-hexane with 1-chlorobutane and with 2 -chlorobutane at $25^{\circ} \mathrm{C}$, the prediction errors were 3.9 percent and 29.4 percent, respectively. As seen from the graph the experimental heats of mixing for both systems are nearly identical. The reason the $2-c h l o r o b u t a n e$ prediction error is so high is due to the Q values. The groups
for 1-chlorobutane are $2 \mathrm{CH}_{2}, 1 \mathrm{CH}_{3}$ and $1 \mathrm{CH}_{2} \mathrm{Cl}(\mathrm{Q}=1.264)$, while for 2 -chlorobutane are $1 \mathrm{CH}_{2}, 2 \mathrm{CH}_{3}$ and 1 CHCl $(\mathrm{Q}=0.952)$. The percentage difference between $\mathrm{Q}\left(\mathrm{CH}_{2} \mathrm{Cl}\right)$ and $Q(C H C l)$ is nearly 25 percent, and this accounts for the difference in the predicted values. Ratcliff and coworkers also predicted these two systems but had much better results. This is due to the fact that the AGSM model does not distinguish between what carbon atom the Cl group is bonded with. The AGSM model predicts the same heats of mixing for the two systems, as a result, since the experimental values are so close the prediction error is very low for both systems.

Figure 5 shows the experimental and predicted heats of mixing for n-hexane with 1-chlorobutane and with t-butylchloride at $25^{\circ} \mathrm{C}$, the prediction errors were 3.9 percent and 55.3 percent, respectively. The Q values again account for the large error for the t-butylchloride system. The groups for t-butylchloride are $3 \mathrm{CH}_{3}$ and $1 \mathrm{CCl}(\mathrm{Q}=0.724)$ and the percentage difference between $Q\left(\mathrm{CH}_{2} \mathrm{Cl}\right)$ and $Q(\mathrm{CCl})$ is nearly 43 percent. This is the main reason for the high prediction error, the $3 \mathrm{CH}_{3}$ groups could increase the error slightly but shouldn't be much of a factor. Both of these graphs show that the theoretical advantage of the group area parameter Q is not always adequate in reality.

A test of a group contribution model is the effect of the chain length on the accuracy of the correlation and/or
prediction. Figure 6 is for binary mixtures of 1-chlorobutane with an n-alkane at $25^{\circ} \mathrm{C}$. No distinct trend is noticed but the error does not increase as the length of the alkane increases. Figure 7 is a graph for molecules containing the group $\mathrm{CH}_{2} \mathrm{Cl}$ and n -alkanes. It shows that as the number of carbon atoms in the molecule with the group $\mathrm{CH}_{2} \mathrm{Cl}$ increases the prediction error also increases. In general, both of these trends will be followed by other types of systems.

The effect of temperature could not be studied since all but two of the mixtures were at $25^{\circ} \mathrm{C}$. b) CCl_{2}. Tables XLI and XLII give the results for CCl_{2} systems. Only two mixtures were available and both were used for the correlation of the parameters. This is a case where the cycloalkanes would have expanded the data base somewhat. Set A was chosen as the final set of parameters, but this set may be temporary. For sets A and C the value for a $\mathrm{CH}_{2} / \mathrm{CCl}_{2}$ is very close, while a $\mathrm{CCl}_{2} / \mathrm{CH}_{2}$ is quite different. However, the difference (0.58) between the two sets for the parameter a $\mathrm{CH}_{2} / \mathrm{CCl}_{2}$ is somewhat larger than for the other cases (0.15 or less). The true test for these parameters will be when they are used for the evaluation of secondary parameters.
c) CCl_{3}. Tables XIIII and XIIV give the results for CCl_{3} systems. Set B was chosen as the final parameters because it had the lowest correlation error and the parameters had
the smallest absolute value. Notice how the value for a $\mathrm{CH}_{2} / \mathrm{CCl}_{3}$ is identical (11.77) for sets A and E while a $\mathrm{CCl}_{3} / \mathrm{CH}_{2}$ is different.

An important point should be made here concerning both the CCl_{2} and CCl_{3} parameters. Only dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was used to find the CCl_{2} parameters, and only chloroform $\left(\mathrm{CHCl}_{3}\right)$ for the CCl_{3} parameters. In theory, the CCl_{2} parameters can be used to predict mixtures containing the specific groups $-\mathrm{CHCl}_{2}$ and $-\mathrm{CCl}_{2}$, for example, 1,1,2,2-tetrachloroethane ($2 \mathrm{CHCl}_{2}$ groups) + n-hexane. How good the prediction would be is not known, but it would hopefully provide a reasonable approximation. The same reasoning holds for the group $-\mathrm{CCl}_{3}$. This gets back to the cyclo problem mentioned before and the mixture 1,1,2,2-tetrachloroethane + cyclohexane. How much of the difficulty in correlation is due to the cyclos and how much because of the different groups involved is not known. In conclusion, both the CCl_{2} and CCl_{3} parameters should be used with caution and reevaluated when more data becomes available with different solvents and temperatures.
d) CCl_{4} (carbon tetrachloride). Tables XLV to XLVII give the results for CCl_{4}. Six sets of parameters were obtained, and one is obviously discounted because of its high error. The other five sets have a correlation error in the 7.0 to 7.7 percent range. As mentioned before in the cyclo section, there is a problem with reverse parameters for this system.

The parameters for sets A and B are nearly the reverse, while sets D and E are the reverse also. This situation is unlike the one discussed before with the group CCl where the first parameter a $\mathrm{CH}_{2} / \mathrm{CCl}$ was the same (and the FMIN was also the same). Fortunately, set C has a low correlation error and parameters that are small in absolute value. On first inspection, set C would be chosen as the final set of parameters. Sixteen binary mixtures were available for prediction, and as seen from Table XLVII no set of parameters performed significantly better than the others. Therefore, set C was chosen as the final parameters. The problem with reverse parameters was only encountered with this system. Methanol which was considered a separate group and benzene (6 ACH groups) did not have this problem. So carbon tetrachloride being a separate group would not cause this problem. Since carbon tetrachloride data was relatively plentiful, several topics can be mentioned. Experimental data is available for octane isomers, and as seen from Tables XLVI and XIVII there is only a slight difference in the errors. However, the only two prediction errors greater than 15 percent are for $\mathrm{CCl}_{4}+n$-hexadecane, which suggests that the error increases with increasing chain length of alkane. This is the opposite conclusion that was found from the group CCl where no effect was found. Though the errors do increase they are still within reasonable limits. Figure 8 is a study of the effect of temperature on
the correlation and prediction error. In general, there is an increase in error as the temperature increases. However, the temperature range is too small to make a definite conclusion. Also, the $\mathrm{CCl}_{4}+n$-hexadecane mixture was not included and the percent error at $40^{\circ} \mathrm{C}$ was less than that at 20 or $30^{\circ} \mathrm{C}$.

The source of experimental data has not been discussed since early in the Introduction, but Figure 8 raises an interesting point. It is noticed for the $\mathrm{CCl}_{4}+n$-hexane system that the errors slightly increase with temperature but that the average percent error at 25° is higher than expected. For $\mathrm{CCl}_{4}+\mathrm{n}$-heptane the average percent error is also higher than anticipated. For $\mathrm{CCl}_{4}+$ iso-octane the three points fall on a straight line. The reference for the experimental data was the same (69) except for the two systems at $25^{\circ} \mathrm{C}$ (45). How much of the error is due to the UNIFAC model and how much because of experimental error is not known, but this graph puts into perspective how well the UNIFAC does perform. It should be mentioned that the CCl_{2} and CCl_{3} parameters were correlated from the same source as the two points at $25^{\circ} \mathrm{C}$.

Figure 9 was included to show how the heats of mixing of dichloromethane, chloroform and carbon tetrachloride with a common second component (n-hexane) are related. From the graph it is seen that the heats of mixing increase as the number of chlorine atoms decreases.
e) Primary amines. Tables XLVIII to L give the results for primary amines. Three sets of parameters were obtained, but set A was chosen as the final parameters because it was the only unique set. The other two sets both had a common parameter, the same problem as with the CCl group parameters.
f) Secondary amines. Tables LI to LIII give the results for secondary amines. Set B was clearly the better pair of parameters. The diethylamine mixtures have a relatively high error, 15.5 to 20.9 percent, and are predicted on the low side.
g) Tertiary amines. Tables LIV to LVII give the results for tertiary amines. Of the ten groups that were worked on, the tertiary amine regression was the most difficult one. When the data were first regressed (Table LIV) the two mixtures used were triethylamine $+n-h e p t a n e$ at $45^{\circ} \mathrm{C}$ and tri-n-dodecyclamine $\left(\mathrm{C}_{36} \mathrm{NH}_{75}\right)+\mathrm{n}$-octane at $30^{\circ} \mathrm{C}$. The first binary was chosen because it had the highest temperature available, the second binary because it had the greatest number of CH_{2} groups. It was felt that with these two mixtures the parameters would have a wide range of applicability. However, the computer program could not converge on any parameters. The problem was due to the low heats of mixing of these systems. At equal mole fractions, ΔH^{M} for the first binary is $95 \mathrm{~J} / \mathrm{mole}$, for the second binary it is $62 \mathrm{~J} / \mathrm{mole}$. For the UNIFAC model these heats of mixing values are nearly the same, but the number of groups is
very different. Therefore, the program could not converge on any set of parameters. When tri-n-dodecyclamine + n-octane was replaced by triethylamine $+n$-hexane at $30^{\circ} 0$ (Table LV) a set of parameters was found. But still it was a difficult process, as seen by the many different initial parameters that were used.

The prediction errors are quite high for two of the systems (triethylamine $+n-h e p t a n e$ at $25^{\circ} \mathrm{C}$ and tri-ndodecyclamine $+n-o c t a n e$ at $30^{\circ} \mathrm{C}$). For tri-n-dodecyclamine $+n$-octane at $30^{\circ} \mathrm{C}$ the UNIFAC predicts a nearly ideal system, while the maximum experimental value is about 80 $J / m o l e$. The UNIFAC method tends to overcompensate towards ideality when predicting this system, due to the high number of CH_{2} groups.

Figure 10 was included to show how the heats of mixing of n-butylamine, diethylamine and triethylamine with a common second component (n-heptane) are related. Both nbutylamine and diethylamine have three CH_{2} or CH_{3} groups, so the difference in heats of mixing is due to the amine group. All the experimental data were taken from the same reference (73). This reference also includes experimental data for the same three amines with benzene and chlorobenzene. Looking at this data it is seen how difficult it will be to evaluate secondary parameters. The heats of mixing of diethylamine + benzene and triethylamine + benzene are nearly the same (maximum ΔH^{M} of about $330 \mathrm{~J} / \mathrm{mole}$ at $25^{\circ} \mathrm{C}$), while
their heats of mixing are very different with n-heptane. The secondary parameters will have to account for this difference.
h) Benzene. Tables LVIII to LX give the results for benzene. Benzene was one of the components included in the evaluation of the $Z(\mathbb{T})$ by Skjold-Jorgensen et al (40). And, as a result, the correlation of the benzene systems was easy as shown in Table LVIII. Set A was chosen as the final parameter set, with sets D and E having the same value for a $\mathrm{CH}_{2} / \mathrm{ACH}$ and different values for a $\mathrm{ACH} / \mathrm{CH}_{2}$.

Since there are a considerable amount of benzene data several topics can be studied. One of the topics is the prediction of isomeric alkanes. In this case the hexane and iso-octane isomers give very good results. Figure 11 is a graph of average percent error versus the number of carbon atoms in the alkane at two temperatures. It shows that the number of carbon atoms and the temperature have little effect on the prediction and correlation errors. i) Methanol. Tables IXI to IXIII give the results for methanol. The first question that should be asked is why methanol isn't considered $1 \mathrm{CH}_{3}$ and 1 OH group and classified as an alcohol? When Skjold-Jorgensen et al (39) revised and expanded the UNIFAC and defined the alcohol group as CH , they kept methanol as a separate group. They stated that experimental data were readily available and that based on their experience it was "advantageous to treat the first
number of a homologous series with special care". This fact is seen from Figure 12, which is a plot for different n-alcohols with n-heptane at $30^{\circ} \mathrm{C}$. From the graph it is seen that the heats of mixing decrease with increasing chain length of the alcohol. However, methanol and ethanol do not follow this pattern. In order to ease the situation somewhat methanol is made a separate group.

Parameter set B was chosen as the final parameters with an average regression error of 4.5 percent. The experimental data for methanol $+n$-propane, $+n$-butane and $+n$-pentane at $25^{\circ} \mathrm{C}$ were recorded by Christensen and co-workers at Brigham Young University $(91,76,53)$. They use a high-pressure flow calorimeter for their experimental data; for example, the methanol + n-propane run was made at 2985 kPa (29.5 atm) and $25^{\circ} \mathrm{C}$. In light of this the prediction errors are quite credible.
j) Alcohols. Tables LXIV to LXVI give the results for alcohols. Three sets of parameters were obtained but Set A was chosen as the final parameters. As might be expected the alcohol parameters were similar to the methanol parameters.

One ethanol system was used in the correlation of the parameters and eight more systems were predicted. The average error for the nine ethanol systems was 16.1 percent. Two primary alcohol systems were used in the correlation and twenty were predicted. The average error for the twentytwo primary alcohol systems was 18.1 percent. One secondary
alcohol was used in the regression of parameters and four were predicted. The average error for the five secondary alcohols was 28.6 percent. Two tertiary alcohol systems were included in the correlation and prediction. The average error for the two systems was 28.9 percent.

Figure 13 is a graph that gives the heats of mixing of primary, secondary and tertiary alcohols with a common second component (n-hexane) at $45^{\circ} \mathrm{C}$. It shows that the secondary alcohol (2-butanol) have the highest experimental heats of mixing, while the primary alcohol (n-butanol) have the lowest heats of mixing. However, the predicted results are nearly the same for the three mixtures. Since the parameters and the Q value for $O H$ are the same for each type of alcohol, the only difference in the mixtures is the number of $\mathrm{C}, \mathrm{CH}_{2}$ and CH_{3} groups. As can be seen from the prediction results these groups make little difference in the final error. It should be noted that the AGSM method would predict the same heats of mixing for the three mixtures. Each alcohol would be considered one $O H$ group and four CH_{2} groups.

An effort was made to improve the alcohol results by changing the Q value, the same idea that was done before with the cyclic alkanes. The procedure was as follows:
a) Specify $Q(O H)$. The values ranged from 1.0 to 5.0 , the Q value by Bondi (3) is 1.2 .
b) Regress for $\mathrm{CH}_{2} / \mathrm{OH}$ parameters using the system n-butanol + n-heptane at $30^{\circ} \mathrm{C}$.
c) Using these parameters predict 2-propanol + n-heptane at $30^{\circ} \mathrm{C}$ and 2-methyl-2-propanol + n-hexane at $27^{\circ} \mathrm{C}$. However, as seen from Figure 14 no significant improvement was observed for any reasonable value of Q.

v. CONCLUSIONS

1. Group contribution methods are a promising way to predict heats of mixing when experimental data are not available.
2. The three models (AGSM, UNIFAC with temperature dependent parameters and modified UNIFAC) were evaluated on the basis of their ability to correlate and predict the enthalpies of mixing of a selected set of binary systems. The modified UNIFAC model gave the best results and it was adopted in this study.
3. The simultaneous correlation of cyclic and straight chain alkanes gave poor results. Attempts to improve the error by changing the Q value for cyclic CH_{2} failed. Therefore, cyclic alkanes will be treated separately.
4. Final interaction parameters were obtained for ten groups with alkanes (primary parameters). Only the correlation error for the alcohols was greater than 10 percent (17.6 percent).
5. A major problem in correlating the data was the multiplicity of roots. The best set of parameters was obtained by using a grid approach for the initial parameters.
6. Most of the experimental data used in the correlation are in the $25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ range. Moderate extrapolation to higher temperatures should be satisfactory.
7. A theoretical advantage of UNIFAC over AGSM is the use of the group area parameter Q; however, the prediction of isomers was mixed. When the isomer was the alkane, for example iso-octane, the results were good. But when the isomer was the component containing the group G (where group G is a group other than CH_{2}) the results were not as good. For example, the high errors for the 2 -chlorobutane mixtures were due to the Q value.
8. The results due to the length of the molecule varied. In general, when the chain length of the alkane increased the prediction error did not increase. However, when the length of the component containing the group G increased the prediction error also increased. In this case the calculated heats of mixing were less then the experimental value. UNIFAC tends to overcompensate towards ideality when the number of CH_{2} groups is high.
9. The errors for primary alcohols were relatively good (15-20 percent), but the prediction errors for secondary and tertiary alcohols were high (25-30 percent).
10. 104 systems from the literature were predicted and 78 had a prediction error less than 20 percent.

$a_{j k}, a_{k j}$	```= AGSM temperature dependent parameters, equation (15)```
$a_{m n}, a_{n m}$	= UNIFAC parameter, equation (25)
$a_{m n}^{\prime}, a_{n m}^{\prime}$	= modified UNIFAC parameter, temperature independent, equation (27)
$A_{j k}, B_{j k}$	= AGSM temperature independent coefficients, equation (15)
$A_{m n}, B_{m n}$	$=$ UNIFAC temperature independent coefficients used in Grand Plot, equation (30)
A_{0}, A_{1}, A_{2}	= temperature dependent parameters, equations (2) and (3)
$A_{n_{12}}, A_{n_{13}}, A_{n_{23}}$	$=$ temperature dependent parameters, ternary systems, equations (4) and (5)
$\mathrm{b}_{j k}, \mathrm{~b}_{\mathrm{kj}}$	$\begin{aligned} & =\text { AGSM temperature dependent parameter, } \\ & \text { equation }(20) \end{aligned}$
$\mathrm{B}_{0}, \mathrm{~B}_{1}, \mathrm{~B}_{2}$	```= temperature dependent parameters, equation (1)```
c_{11}, c_{22}	$=$ cohesive energy density of pure component
c_{12}	= interaction energy density
$\mathrm{C}_{\mathrm{kj}}, \mathrm{D}_{\mathrm{kj}}$	$\begin{aligned} & =\text { AGSM temperature independent coefficients } \\ & \text { used in Grand Plot, equation (31) } \end{aligned}$
FMIN	= minimization function, equation (34)
G	$=$ group, other than CH_{2}
G^{E}	$=$ excess Gibbs free energy
H_{k}	$=$ excess enthalpy of group k
$\mathrm{H}_{\mathrm{ki}}{ }^{*}$	$=$ standard state enthalpy of group k in pure component i
$\overline{\Delta H_{i}}$	$=\underset{i}{\operatorname{partial}} \text { molar excess enthalpy of component }$
ΔH^{G}	```= excess enthalpy due to group interactions, equation (12)```

ΔH^{M}	= excess enthalpy
ΔH^{S}	= excess enthalpy due to skeletal contribution, equation (12)
$\Delta H^{M}{ }_{\text {max }}$	= maximum absolute difference in J/mole between experimental and calculated excess enthalpy
L	$=$ number of systems, equation (32)
N_{ki}	$=$ number of groups of type k in component i
P	= pressure
Q_{k}	$=$ area parameter of group k
R	$=$ gas constant, J / K mole
S_{c}	```= average cumulative prediction error, equation (32)```
S_{j}	```= average absolute percent error for system j, equation (33)```
t	$=$ temperature, ${ }^{\circ} \mathrm{C}$
T	= absolute temperature, ${ }^{\circ} \mathrm{K}$
$U_{m n}$	```= measure of the energy of interaction between``` groups m and n
V	```= number of experimental data points, equations (33) and (34)```
x	$=$ liquid phase mole fraction
X_{k}	$=$ group fraction of group k in the mixture
z	= lattice coordination number

Greek Symbols

B	$=$temperature exponent, equations (31)
γ_{i}^{G}	$=$activity coefficient due to effect of group contribution, equation (11)
Γ_{k}	$=$ activity coefficient of group k
Γ_{k}^{*}	$=$activity coefficient of group k at standard state
Θ_{m}	$=$ area fraction of group m
$\psi_{\mathrm{mn}}, \psi_{\mathrm{nm}}$	$=$ UNIFAC group parameters, equation (25)

Subscripts

calc	$=$ calculated
\exp	$=$ experimental
pre	$=$ predicted
i	$=$ component i
j, k, m, n	$=$ groups j, k, m and n

Superscripts
$G \quad=$ group contribution
S $\quad=$ skeletal

* $=$ reference state

SELECTED BIBLIOGRAPHY

A. Primary Sources

1. Abrams, D.S. and Prausnitz, J.M., "Statistical Thermodynamics of Liquid Mixtures. A New Expression for the Excess Gibbs Energy of Partly and Completely Miscible Systems," AICHE J., 21, 116(1975).
2. Anderson, T.F. and Prausnitz, J.M., "Application of the UNIQUAC Equation to Calculation of Multicomponent Phase Equilibria. 1. Vapor-Liquid Equilibria," Ind.Eng.Chem. Proc.Des.Dev., 17,552(1978).
3. Bondi, A., Physical Properties of Molecular Crystans, Liquids and Glasses, Wiley, New York(T968).
4. Bronsted, J.N. and Koefoed, J., Danske Videnskab. Selekab. Mat. Fys. Nedd., 27, No. 17, 1(1946).
5. Brown, I. and Fock, W., Aust. J. Chem., E, 361 (1955).
6. Chao, K.C., Robinson, R.I., Smith, M.I. and Kuo, C.M., "A Group Interaction Theory of Heats of Mixing and Application to Alcohol: Paraffin Solutions," Chem. Eng. Frog. Sym. Ser. No. 81, 63,121(1967).
7. Doan-Nguyen, T.H., Vera, J.H. and Ratcliff, G.A., "Frediction of Heats of Mixing by an Analytical Group Solution Model," 27 th Canadian Chemical Engineering Conference, Calgary, Alberta, 1977.
8. Fredenslund, Aa., Gmehling, J. and Rasmussen, P., Vapor-Iiquid Equilibria Using UNIFAC: A Group Co., New York (1977).
9. Fredenslund, Aage, Jones, Russel I. and Prausnitz, John M., "Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures," AICHE J., 21,1086(1975).
10. Goates, J.R., Snow, R.I. and James, M.R., "Application of Quasi-lattice Theory to Heats of Mixing in some Alcohol-Hydrocarbon Systems," J. Phy. Chem., 65,335(1961).
11. Goates, J. Rex, Sullivan, Ralph J. and Ott, J. Bevan, "Heats of Mixing in the System Carbon Tetrachloride -Cyclohexane-Benzene," J. Phy - Chem., 63,589(1959).
12. Hanks, Richard W., Gupta, Avinash C. and Christensen, James J., "Calculation of Isothermal Vapor-Liquid Equilibrium Data for Binary Mixtures from Heats of Mixing," Ind. Eng. Chem. Fund., 10,504(1971).
13. Hirobe, H., J. Fac. Sci. Imp. Univ. Tokyo, 1,155(1925).
14. Kikic, Alessi, Rasmussen, P. and Fredenslund, Aa., "On the Combinatorial Part of the UNIFAC and UNIQUAC Models," Can. J. Chem. Eng., 58,253(1980).
15. Lai, Tu Tam, Doan-Nguyen, T. Huong, Vera, Juan H. and Ratcliff, Gerald A., "Prediction of Heats of Mixing of Liquid Mixtures Containing Alkane, Chloroalkane and Alcohol by an Analytical Group Solution Model," Can. J. Chem. Eng., 56,358(1978).
16. Langmuir, I., "The Distribution and Orientation of Molecules," Third Colloid Symposium Monograph, The Chemical Catalog Company, Inc., New York(1925).
17. Lee, Tsung-Wen, Greenkorn, Robert A. and Chao, KwangChu, "Statistical Thermodynamics of Group Interactions in Pure n-alkane and n-alkanol-1 liquids," Ind. Eng. Chem. Fund., 11,293(1972).
18. Lee, Tsung-Wen, Greenkorn, Robert A. and Chao, KwangChu, "Statistical Thermodynamics of Group Interactions in n-alkanone Pure Liquids and Solutions," Can. J. Chem. Eng., 51,81(1973).
19. Lee, Tsung-Wen, Greenkorn, Robert A. and Chao, KwangChu, "Statistical Thermodynamics of Group Interactions in n-alkane-n-alkanol and n-alkanol-n-alkanol Solutions," Chem. Eng. Sci., 28,1005(1973).
20. Liu, Joseph C.H., Weber, James H. and Tao, Luh C., "Prediction of Ternary Heat of Mixing from Binary Vapor-Liquid Equilibrium and Heat of Mixing Data by Using Wilson Equation," Can. J. Chem. Eng., 56,766(1978).
21. McGlashan, M.L. in Experimental Thermochemistry, Vol II, H.A. Skinner, Ed., Interscience Publishers, Inc., New York, N.Y., 1962, Chapter 15.
22. Nagata, Isamu and Yamada, Toshiro, "Correlation and Prediction of Heats of Mixing of Liquid Mixtures," Ind. Eng. Chem. Proc. Des. Dev., 11,574(1972).
23. Nagata, Isamu and Ohta, Tatsuhiko, "Prediction of the Excess Enthalpies of Mixing of Mixtures using the UNIFAC Method," Chem. Eng. Sci., 33,177(1978).
24. Nguyen, T.H. and Ratcliff, G.A., "Prediction of Heats of Mixing by a Group Solution Model with Application to Alkane/Alcohol Mixtures," Can. J. Che. Eng., 49,120(1971).
25. Nguyen, T.H. and Ratcliff, G.A., "Prediction of Heats of Mixing Containing Aliphatic Hydrocarbons and Ketones by a Group Solution Model," Can. J. Chem. Eng., 49,889(1971).
26. Nguyen, T.H. and Ratcliff, G.A., "Prediction of Heats of Nixing of Liquid Mixtures by an Analytical Group Solution Model," Can. J. Chem. Eng., 52,641(1974).
27. Nguyen, T.H. and Ratcliff, G.A., "Heats of Mixing of Binary Systems of Isopentanol and n-pentanol with Hexane Isomers at $25^{\circ} \mathrm{C}$: Measurement and Prediction by Analytical Group Solution Model," J. Chem. Eng. Data, $20,256(1975)$.
28. Nicolaides, George L. and Eckert, Charles A., "Optimal Representation of Binary Liquid Mixtures Nonidealities," Ind. Eng. Chem. Fund., 17,331(1978).
29. Ojini, Ignatius, "Temperature Dependency of the Group Interaction Parameters in the AGSM and UNIFAC Models for the Prediction of Heats of Nixing," Mi.S. Thesis, Department of Chemical Engineering, New Jersey Institute of Technology (1980).
30. Papadopoulos, M.N. and Derr, E.I., "Group Interaction. II. A Test of the Group Model on Binary Solutions of Hydrocarbons," J. Am. Chem. Soc., 81,2285(1959).
31. Ramalho, R.S., Tillie, J.L. and Kaliaguine, S., "Heats of Mixing for Homologous Series of Ketones and Their Prediction from Group Interaction Theory and the Congruence Principie," Can. I. Chem. Eng., 41,830(1970).
32. Ratcliff, G.A. and Chao, K.C., "Prediction of Thermodynamic Properties of Polar Mixtures by a Group Solution Model," Can. J. Chem. Eng., 47,148(1969).
33. Redlich, O. Derr, E.L. and Pierotti, G.J., "Group Interaction. I. A Model for Interaction in Solutions," J. Am. Chem. Soc., 81,2283(1959).
34. Redlich, Otto and Kister, A.T., "Algebraic Representation of Thermodynamic Properties and the Classification of Solutions," Ind. Eng. Chem., 40,345(1948).
35. Scatchard, George, Ticknor, Leland B., Goates, J. Rex and McCartney, Eric R., "Heats of Mixing in Some Non-electrolyte Solutions," J. Am. Chem. Soc., 74,3721(1952).
36. Schnaible, H.W., Van Ness, H.C. and Smith, J.M., "Heats of Mixing of Liquids," AICHE J., 3,147(1957).
37. Silverman, N. and Tassios, D., "The Number of Roots in the Wilson Equation and Its Effect on VaporLiquid Equilibrium Calculations," Ind. Eng. Chem. Proc. Des. Dev., 16,13(1977).
38. Siman, Jaime E. and Vera, Juan H., "Heats of Mixing of Amine-Alcohol Systems. An Analytical Group Solution Model Approach," Can. J. Chem. Eng., 57,355(1979).
39. Skjold-Jorgensen, Steen, Kolbe, Barbel, Gmehling, Jurgen and Rasmussen, Peter, "Vapor-Liquid Equilibria by UNIFAC Group Contribution. Revision and Extension." Ind. Eng. Chem. Proc. Des. Dev., 18,714(1979) 。
40. Skjold-Jorgensen, S., Rasmussen, P. and Fredenslund, Aa., "On the Temperature Dependence of the UNIQUAC/UNIFAC Models," Chem. Eng. Sci., 35,2389(1980).
41. Tompa, H., "Statistical Thermodynamics of Mixtures of Normal Paraffins," Faraday Soc. Trans., 45,101(1949).
42. Tsao, C.C. and Smith, J.M., "Heats of Mixing of Iiquids," Chem $\mathrm{Eng} \cdot \mathrm{Prog} \cdot$ Sym. Series No. 7 , 49,107(1953).
43. Williamson, A.G. and Scott, R.I., "Heats of Vixing of Non-Electrolyte Solutions. I. Ethanol + Eenzene and Methanol + Benzene," J. Fhy. Chem., 64,440(1960).

B. Data Sources

44. Andrews, A.W. and Morcom, K.W., J. Chem. Thermo., 3,519(1971).
45. Bissell, T.G., Okafor, G.E. and Williamson, A.G., J. Chem. Thermo., 3,393(1971).
46. Brown, If,i106(1964). . and Smith, F., Aust. J. Chem.,
47. Brown, I., Fock, W. and Smith, F., J. Chem. Thermo.,
48. Budoo, B. and Philippe, R., J. Chem. Thermo.,
49. Cabani, S. and Ceccanti, N., J. Chem. Thermo., 5,9(1973).
50. Campbell, A.N. and Kartzmark, E.M., Can. J. Chem., 47,619(1969).
51. Christensen, J.J., Izatt, R.M., Stitt, B.D. and Hanks, R.W., J. Chem. Thermo., 11,261(1979).
52. Christensen, J.J., Izatt, K.M., Stitt, B.D., Hanks, R.W. and Williamson, K.D., J. Chem. Thermo., 11,1029(1979).
53. Collins, S.G., Christensen, J.J., Izatt, R.M. and Hanks, R.W., J. Chem. Thermo., 12,609(1980).
54. Diaz Pena, M. and Menduina, C. J. Chem. Thermo.,
55. Diaz Pena, N_{i}. and Nenduina, C., J. Chem. Thermo., 6,1097(1974).
56. Doan-Nguyen, T.H., Vera, J.H. and Ratcliff, G.A., J. Chem. Eng. Data, 23,218(1978).
57. Elliot, Keith and wormald, Christopher J., J. Chem. Thermo., 8,881(1976).
58. Ewing, M.B. and Marsh, K.N., J. Chem. Thermo., 2,351(1970).
59. Findlay, T.J.V. and Kavanagh, P.J., J. Chem. Thermo., 6,367(1974).
60. Gracia, M., Otin, S. and Gutierrez Losa, C., J. Chem. Thermo., 6,701(1974).
61. Grauer, F. and Kertes, A.S., J. Chem. Eng. Data, 18,405(1973).
62. Grolier, J.-P.E., Int. Data Series, Selected Data Mixtures, Series A, 1974, 222.
63. Grolier, J.-P.E., Ballet, D. and Viallard, A., J. Chem. Thermo., 6,895(1974).
64. Grolier, J.-P.E. and Inglese, A., Int. Data Series, Selected Data Mixtures, Series A, 1975, 72.
65. Grolier, J.-P.E. and Inglese, A., Int. Data Series, Selected Data Mixtures, Series A, 1975, 73.
66. Grolier, J.-P.E. and Inglese, A., Int. Data Series, Selected Data Mixtures, Series A, 1975, 74.
67. Handa, Yash Paul, Knobler, Charles M. and Scott, Robert L., J. Chem. Thermo., 9,451(1977).
68. Harsted, Bjarne Schroll and Thomsen, E. Sonnich, J. Chem. Thermo., 6,549(1974).
69. Harsted, B.S. and Thomsen, E.S., J. Chem. Thermo., 6,557(1974).
70. Hsu, Kuei-Yen and Clever, H. Lawrence, J. Che. Eng. Data, 20,268(1975).
71. Karbalai Ghassemi, Mi.H. and Grolier, J.-P.E., Int. Data Series, Selected Data Mixtures, Series A, 1976, 66.
72. Kiyohara, Osamu, Benson, George C. and Grolier, Jean-Pierre E., J. Chem. Thermo., 9,315(1977).
73. Letcher, T.M. and Bayles, J.W., J. Che. Eng. Data, 16,266(1971).
74. Lundberg, G.W., J. Che. Eng. Data, 9,193(1964).
75. Mahl, B.S. and Khurma, J.R., J. C. S. Faraday I,
76. McFall, T.A., Post, M.E., Collins, S.G., Christensen, J.J. and Izatt, R.M., J. Chem. Thermo., 13,41(1981).
77. Mrazek, Robert V. and Van Ness, H.C., AICHE J., 7,190(1961).
78. Murakami, Sachio and Fujishiro, Ryoichi, Bull. Chem. Soc. Jap., 39,720(1966).
79. Nguyen, T.H. and Ratcliff, G.A., J. Chem. Eng. Data, 20,252(1975).
80. Paz Andrade, M.I., Int. Data Series, Selected Data Mixtures, Series A, 1973, 100.
81. Faz Andrade, M.I., Int. Data Series, Selected Data Mixtures, Series A, 1973, 101.
82. Paz Andrade, M.I., Int. Data Series, Selected Data Mixtures, Series $A, 1973,102$.
83. Paz Andrade, M.I., Int. Data Series, Selected Data Mixtures, Series A, 1973, 103.
84. Paz Andrade, M.I., Int. Data Series, Selected Data Mixtures, Series A, 1973, 104.
85. Paz Andrade, M.I. and Bravo, R., Int. Data Series, Selected Data Mixtures, Series A, 1977, 71.
86. Paz Andrade, M.I. and Bravo, R., Int. Data Series, Selected Data Mixtures, Series A, 1977, 73.
87. Paz Andrade, M.I. and Bravo, R., Int. Data Series, Selected Data Mixtures, Series A, 1977, 74.
88. Paz Andrade, M.I. and Bravo, R., Int. Data Series, Selected Data Mixtures, Series A, 1977, 75.
89. Paz Andrade, M.I., Bravo, R., Garcia, M., Grolier, J.-P. E. and Kehiaian, H.V., J. De Chimie Phy., 76,51(1979).
90. Posa, C. Gonzalez, Nunez, I. and Villar, E., J. Chem. Thermo., 4,275(1972).
91. Post, M.E., McFall, T.A., Christensen, J.J. and Izatt, R.M., J. Chem. Thermo., 13,77(1981).
92. Ramalho, F.S. and Ruel, N., Can. J. Chem. Eng., 46,456(1968).
93. Savini, C.G., Winterhalter, D.R. and Van Ness, H.C., J. Chem. Eng. Data, $10,168(1965)$.
94. Savini, C.G., Winterhalter, D.R. and Van Ness, H.C., J. Chem. Eng. Data, 10,171(1965).
95. Touhara, H., Ikeda, M., Nakanishi, K. and Watanabe, N., J. Chem. Thermo., 7,887(1975).
96. Valero, J., Gracia, M. and Gutierrez Losa, C., J. Chem. Thermo., 12,621(1980).
97. Van Ness, H.C., Soczek, C.A. and Kochar, N.K., J. Chem. Eng. Data, 12,346(1967).
98. Van Ness, H.C., Soczek, C.A., Peloquin, G.I. and Machado, R.I., J. Chem. Eng. Data, 12,217(1967).
99. Velasco, I., Otin, S. and Gutierrez Losa, C., J. Chimie Physique et de Physico-Chimie Biologique, 75,706 (1978).
100. Watson, A.E.P., MicLure, I.A., Bennett, J.F. and Benson, G.C., I. Phy. Chem., 69,2753(1965).
101. Winterhalter, D.R. and Van Ness, H.C., I. Chem. Eng. Data, 11,189(1966).
Data Base for AGSM Group Parameters
by Ratcliff and co-workers (7).
 No. of
Systems

MABLE II．Group Area Parameter－Q_{k} ．

Main Group	Subgroup	Q_{k}	Examole
${ }^{\prime} \mathrm{CH}_{2} \mathrm{C}$	CH_{3}	0.848	ethane： $2 \mathrm{CH}_{3}$
	CH_{2}	0.540	butane： $2 \mathrm{CE}_{3}, 2 \mathrm{CH}_{2}$
	CH	0.228	2－methy2pentane： $3 \mathrm{CH}_{3}, 2 \mathrm{CH}_{2}, 1 \mathrm{CH}$
	C	0.000	2，2－dimethyltutane： $4 \mathrm{CH}_{3}, 1 \mathrm{CH}_{2}, 1 \mathrm{C}$
＂ACE＂	ACH	0.400	benzene： 6 ACH
＂OE＂	OH	1.200	2－butanol： $2 \mathrm{CF}_{3}, 1 \mathrm{CH}_{2}, 1 \mathrm{CH}, 1 \mathrm{CH}$
$\mathrm{CH}_{3} \mathrm{OH}{ }^{\text {a }}$	$\mathrm{CH}_{3} \mathrm{OH}$	4.432	methanol： $1 \mathrm{CH}_{3} \mathrm{OE}$
＂CNH2＂	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	1.544	methylamine： $1 \mathrm{CH}_{3} \mathrm{iH}_{2}$
	$\mathrm{CH}_{2} \mathrm{NH}_{2}$	1.236	n－butylamine： $1 \mathrm{CH}_{3}, 2 \mathrm{CH}_{2}, 1 \mathrm{CH}_{2} \mathrm{NH}_{2}$
	CHMH_{2}	0.924	isopropylamine： $2 \mathrm{CH}_{3}, 1 \mathrm{CLNH}_{2}$
＂CNH＂	$\mathrm{CH}_{3} \mathrm{NH}$	1.244	dimethylamine： $1 \mathrm{CE}_{3}, 1 \mathrm{CH}_{3} \mathrm{NH}$
	$\mathrm{CH}_{2} \mathrm{NH}$	0.936	dietinglamine： $2 \mathrm{CH}_{3}, 1 \mathrm{CH}_{2}, 1 \mathrm{CH}_{2} \mathrm{NH}$
	CMNH	0.624	diisopropylamine： $4 \mathrm{CH}_{3}, 1 \mathrm{CH}, 1 \mathrm{CHNH}$
＂（C）3 ${ }^{\text {N }}$	$\mathrm{CH}_{3} \mathrm{~N}$	0.940	trimethylamine： $2 \mathrm{CF}_{3}, 1 \mathrm{CH}_{3} \mathrm{~N}$
	$\mathrm{CH}_{2} \mathrm{~N}$	0.632	triethylamine： $3 \mathrm{CH}_{3}, 2 \mathrm{CH}_{2}, 1 \mathrm{CH}_{2} \mathrm{~N}$
＂CCL＂	$\mathrm{CH}_{2} \mathrm{CL}$	1.264	1－chlorobutane： $1 \mathrm{CH}_{3}, 2 \mathrm{CH}_{2}, 1 \mathrm{CH}_{2} \mathrm{CL}$
	CECL	0.952	2－chlorobutane： $2 \mathrm{CH}_{3}, 1 \mathrm{CH}_{2}, 1 \mathrm{CHCL}$
	CCL	0.724	2－chlcro－2－methylproparie： $3 \mathrm{CH}_{3}, 1 \mathrm{COL}$ ．
$\mathrm{COCI}_{2}{ }^{\text {a }}$	$\mathrm{CH}_{2} \mathrm{CL}_{2}$	1.988	dichloromethane： $1 \mathrm{CH}_{2} \mathrm{CI}_{2}$
	CHCL_{2}	1.684	1，1－dichloroethane： $1 \mathrm{CH}_{3}, 1 \mathrm{CHCL}_{2}$
	CCL_{2}	1.448	2，2－dichloropropane： $2 \mathrm{CH}_{3}, 1 \mathrm{CCL}_{2}$
＂CCiz3＂	CHCL_{3}	2.410	caloroform： $1 \mathrm{CECI}_{3}$
	COH_{3}	2．184	1，1，1－trichloroethane：i $\mathrm{CH}_{3}, 1 \mathrm{CCL}_{3}$
$\mathrm{COCP}_{4}{ }^{\text {c }}$	COL_{4}	2.910	varben tetrachioride： 1 COL 4
＂CCOR＂	$\mathrm{CH}_{2} \mathrm{SH}_{2} \mathrm{OH}$	1.6054	1－propanol： $1 \mathrm{CH}_{3}, 1 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}$
	CECHCH_{3}	1.660	2－butancl： $1 \mathrm{CH}_{3},{ }^{\text {，}} \mathrm{CH}_{2}$, ， CHCOCH_{3}
	こ以C：CH2	1.352	3－octanol： $2 \mathrm{CH}_{3}, 4 \mathrm{CH}_{2}, 1 \mathrm{chCsin} 2$
	$\mathrm{CO}_{3} \mathrm{OH}_{2} \mathrm{OH}$	1.972	ethanol： $1 \mathrm{VH}_{3} \mathrm{CH}_{2} \mathrm{CH}$
	ニッCr 2 CH	1.352	2－methyl－1－propanol： $2 \mathrm{CH}_{3}$ ，； $\mathrm{aHCH}_{2} \mathrm{CH}$

$$
\begin{aligned}
& \text { Prediction of Alcohol/Alkane Systems Using Ratcliff } \\
& \text { and co-worker's parameters }(7,38) \text { For the AGSM Model. }
\end{aligned}
$$

ヨ
国

TABLE IV. Prediction of Group G/Alkane Systems Using Ratcliff and co-worker's parameters (7) For the AGSM Model.

System	$\mathrm{t},{ }^{\circ} \mathrm{C}$	Data Points	Avg. \% Error	Ref.
2-butanone + n-hexane	25	20	4.6	72
2-pentanone + n-hexane	25	20	5.0	72
3-pentanone +n -hexane	25	20	9.4	72
ethyl acetate + n-hexane	25	17	2.4	63
methyl acetate + n-octane	25	21	2.7	63
methyl acetate + n-hexane	25	16	4.3	63
methyl acetate +n -dodecane	25	21	5.4	63
ethyl acetate + n-octane	25	22	1.9	63
ethyl acetate + n-dodecane	25	20	4.0	63
propyl acetate + n-hexane	25	17	1.8	63
butyl acetate $+n-$ hexane	25	18	4.8	63
n-butylamine + n-heptane	25	6	11.0	73
n-butylamine + n-heptane	45	6	5.3	73
benzene + n-octane	25	21	2.3	54
benzene + n-octane	50	13	17.1	55
benzene + n-dodecane	25	10	3.9	54
benzene + n-dodecane	50	15	18.6	55

TABLE V. Regressing for interaction parameters at one temperature versus regressing at more than one temperature for the UNIFAC model.

System	n-propanol + n-heptane $30^{\circ} \mathrm{C}$	
Parameters used	30°	$30^{\circ}+45^{\circ}$
Avg. \% Error	0.9	5.88
System	n-propanol + n-heptane $45^{\circ} \mathrm{C}$	
Parameters used	30°	$30^{\circ}+45^{\circ}$
Avg. \% Error	15.6^{*}	7.54
* Prediction Error		

TABLE VI. Selected Type I and Type II systems used in evaluating the optimum exponent, β, in equations (30) and (31).

System	Type	t, ${ }^{\circ} \mathrm{C}$	Data Points	Ref.
nitroethane + 2,2-dimethylbutane	I	30	10	67
nitroethane + 2,2-dimethylbutane	I	40	4	67
n-octanol + n-heptane	I	30	18	93
n-octanol + n-heptane	I	55	10	79
benzene + n-octane	II	25	18	54
benzene + n-octane	II	50	18	55
n-butylamine + n-heptane	II	25	8	73
n-butylamine + n-heptane	II	45	6	73


```
Z.C.: No Convergence
```

U.A.: Not Available

N.C.: No parameters obtained from data regression.

TABLE IX. Prediction of the system n-octanol $+n$-heptane by AGSM where $\beta=1.50$.

$\underline{t,{ }^{\circ} \mathrm{C}}$	$\begin{gathered} \text { DATA } \\ \text { POINTS } \\ \hline \end{gathered}$	AVG. \% ERROR	REF
15	10	54.86	79
30	18	3.71	93
45	18	10737.0	93
55	10	51475.0	79

TABLE X. Examples of Multiplicity of Roots For

TABLE XI. Results for the Grand Plot using UNIFAC with the Z(T).

SYSTEM	CORRELATION $\%$ ERROR	PREDICTION $\%$
benzene + n-octane	0.32	1.97
n-butylamine + n-heptane	1.36	2.03
n-butylamine + n-heptane	2.47	4.02
nitroethane + 2,2 dimethylbutane	6.2	3.18
nitroethane + 2,2 dimethylbutane	7.07	2.12
n-octanol + n-heptane	22.93	21.1
n-octanol + n-heptane	41.2	36.79
n-octanol + n-heptane	41.7	34.7
n-octanol + n-heptane	16.2	12.9

TABLE XIII. Grid of Initial Parameters to be Used with the Modified UNIFAC.

$\mathrm{a}^{\prime} \mathrm{CH}_{2} / \mathrm{G}$	$\mathrm{a}^{\prime} \mathrm{G} / \mathrm{CH}_{2}$
+200	+200
+200	0.1
+200	-200
0.1	+200
0.1	0.1
0.1	-200
-200	+200
-200	0.1
-200	-200

$$
0_{+1}^{0} \stackrel{n}{\sim} \stackrel{n}{N} \stackrel{i n}{\sim} \stackrel{n}{\sim}
$$

$$
\begin{aligned}
& \text { Second } \\
& \text { Component } \\
& \text { n-pentanol } \\
& \text { benzene } \\
& \text { carbon tetrachloride } \\
& \text { dichloromethane } \\
& \text { chloroform } \\
& \text { n-octene } \\
& \text { 2-nitropropane }
\end{aligned}
$$

$$
\begin{aligned}
& + \\
& 0 \\
& 0
\end{aligned} \quad \& \quad \text { a }
$$

$$
\begin{aligned}
& \text { Data used in Correlation: } \\
& \text { Methanol + N-hexane } 40^{\circ} \mathrm{C} \\
& \text { Methanol + N-hexane } 50^{\circ} \mathrm{C} \\
& \text { Methanol + N-heptane } 60^{\circ} \mathrm{C} \\
& \text { Methanol + Cyclohexane } 50.5^{\circ} \mathrm{C}
\end{aligned}
$$

Alkanes.

$$
\dot{\sigma}
$$

$$
\begin{array}{lllll}
0 \\
0 & 0 & 0 & 0 & 0 \\
i
\end{array}
$$

$$
\begin{aligned}
& \text { methanol }+n \text {-hexane } \\
& \text { methanol }+n \text {-hexane } \\
& \text { methanol }+n \text {-heptane } \\
& \text { methanol }+ \text { cyclohexane }
\end{aligned}
$$

```
TABLE XVII. Prediction Errors for Methanol + Alkane Data Including Cyclic Alkanes.
```

			$\begin{aligned} & \text { Avg. } \\ & \text { Error } \\ & \hline \end{aligned}$	
		Data	Set	
System	$\underline{\mathrm{t}}{ }^{\circ} \mathrm{C}$	Points	A	Ref.
methanol + n-hexane	45	17	7.5	94
methanol + n-heptane	30	8	7.6	94

Correlation of Methanol + Alkane Data
including Cyclic Alkanes.

웅

$$
\begin{array}{cccc}
\stackrel{4}{4} \\
\stackrel{y}{\mid l} & \vec{\sigma} & \vec{\sigma} & \vec{\sigma} \\
\hline
\end{array}
$$

TABLE XX. Prediction Errors for Methanol + Alkane Data Including Cyclic Alkanes.

	Data		$\begin{aligned} & \text { Avg. \% } \\ & \text { Error } \end{aligned}$		Ref.
			S		
System	t, ${ }^{\circ}{ }_{C}$	Points		B	
methanol + n-hexane	45	17	22.0	4.7	94
methanol + n-heptane	30	ε	23.3	8.0	94

$$
\left.\begin{array}{l|ll}
+ \\
0 \\
\vdots
\end{array} \right\rvert\, \&<
$$

TABIE XXI. Correlation of Secondary Amines + Alkane

Remarks
13.2%
13.2%
note 1
note 1
note 1

$$
0_{0} G 2
$$

$$
\text { ethyleneimine }+ \text { cyclohexane } 25^{\circ} \mathrm{C}
$$

$$
\text { heptamethyleneimine }+ \text { cyclohexane }
$$

	1
\sim	0
M	M

$\stackrel{1}{\infty}$
M
\sim
FNIN

| + | |
| :--- | :--- | :--- |
| 0 | |
| 0 | 1 |\lll

Initial
Parameters
$0.1,0.1$
$+100,+100$
$-100,+100$
$-100,-100$
$+100,-100$

4	m	g	g
a	g	g	

TABLE XXII. Correlation Errors for Secondary Amines + Alkane

$$
\begin{aligned}
& \text { System } \\
& \text { diethylamine + n-heptane } \\
& \text { dibutylamine + n-hexane } \\
& \text { ethyleneimine + cyclohexane } \\
& \text { heptamethyleneimine + cyclohexane }
\end{aligned}
$$

$$
\begin{array}{cc}
\text { Data } \\
\text { Points } & \\
\cline { 1 - 4 } & \begin{array}{c}
\text { Avg. } \% \\
6
\end{array} \\
& 6.1 \\
19 & 10.7 \\
12 & 23.0 \\
11 & 10.7
\end{array}
$$

$$
\begin{array}{l|lll}
0 & \sim & \sim & \infty \\
\sim & \stackrel{n}{\sim}
\end{array}
$$

б

rd Deviation.
102

sf-am+m

1. Repeating same FMIN and Standard Deviation.
104

$$
\begin{array}{lc|ccccc}
x & 0 \\
& 0 & 0 & 0 & \ddots & 0 & 0 \\
+ & 0 & 0 & 0 & \dot{0} & \dot{0} & \dot{0} \\
\sim & & & 1 & &
\end{array}
$$

TABTE XXVII. Correlation Errors for Tertiary Amine + Alkane
Data Including Cyclic Alkanes.

$$
\begin{aligned}
& 0 \cdot 901 \\
& 1 \cdot 601 \\
& 1 \cdot G 6 \\
& \varepsilon \cdot 001 \\
& G \cdot 201 \\
& \hline x 0 x x 4 \\
& \% \cdot x 2 n
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { System }}{} \\
& \text { triethylamine }+n-h e p t a n e \\
& \text { tri-n-dodecylamine }+ \text { n-octane } \\
& \text { tributylamine }+n-\text { hexane } \\
& \text { N-methylpyrrolidine }+ \text { cyclohexane } \\
& \text { N-methylpiperidine }+ \text { cyclohexane }
\end{aligned}
$$

$$
105
$$

$$
\stackrel{0}{0}-\sim m \forall i
$$

Cyclic Alkanes.

+		
0		
\sim	4	\square

$\begin{gathered}\text { Standard } \\ \text { Deviation }\end{gathered}$
0.10×10^{-4}
0.18×10^{-4}
0.0
0.0
Deviation.
106
TABLE XXIX. Correlation Errors for CoL + Alkane

$$
0 \int_{n}^{0} \mid \underset{\sim}{n} \stackrel{n}{n} \stackrel{N}{n} \stackrel{n}{n}
$$

$$
\begin{aligned}
& \frac{\text { Systern }}{1-c h l o r o b u t a n e ~}+n \text {-hexane } \\
& 2 \text {-chlorobutane }+n \text {-hexane } \\
& 1,2 \text { dichloroethane }+ \text { cyclohexane } \\
& 1 \text {-chlorohexane }+n \text {-octane } \\
& 1 \text {-chloropentane }+n \text {-heptane } \\
& 1 \text {-chlorobutane }+n \text {-nonane }
\end{aligned}
$$

$$
\stackrel{0}{\dot{1}} \mid-\infty n \forall \operatorname{\omega }
$$

107

TABLE XXX. Correlation of $\mathrm{CCL}_{2}+$ Alkane Data Including Cyclic Alkanes.
+
0
0
0

$+\infty$	
0	
0	

$$
x
$$

$\cdots \quad \infty \quad 0 \quad 0$

Remarks
note 1
19.0%
note 1
16.4%
16.2%
16.2%
note 1
16.2%
note 1

Note:

1. Repeating same FMIN and Standard Deviation.

S＊カヤOレ	$0 \cdot$ ¢	て・して	$6^{\circ} \mathrm{StOL}$	9^{\cdot} £ 2	を・して	S＊S\＆6	$5 \cdot \nabla \varepsilon$	$\Sigma \cdot G 己$	ε
£．6をとし	8＊02	じヤし	ガしも¢し	8＊81	がもし	で8とてし	し・8も	と＊	2
$\downarrow^{*} 80 己 1$	$6 \cdot 81$	$\nabla^{*} G$	8＊ヤOこレ	て＇02	$S \cdot G 1$	て＊8\＆O1	$\downarrow^{*} 62$	を・して	1
	$\begin{aligned} & \overline{x O X x G} \\ & \% \cdot x \varepsilon W \\ & \overline{D+\theta S} \end{aligned}$	$\begin{aligned} & \text { xoxxG} \\ & \% \cdot g \Lambda V \end{aligned}$	$\begin{gathered} 0\left[E 0 W^{H} \nabla\right. \\ \text { xeN } 7 V \end{gathered}$	$\begin{aligned} & \overline{x O X X I} \\ & \% \cdot x \in W \\ & \hline 7 \partial S \end{aligned}$	$\begin{aligned} & \text { IOXXGH} \\ & \% \cdot g \cap \forall \end{aligned}$	$\begin{gathered} \text { गTeo } W^{\text {H }} \\ \text { xew } 7 \forall \end{gathered}$	$\begin{aligned} & \overline{\text { xoxxG }} \\ & \% \cdot x_{W} \\ & \overline{V+\partial S} \end{aligned}$	$\begin{aligned} & \overline{I O X X G} \\ & \% \cdot 8 \wedge V \end{aligned}$	$\begin{aligned} & . O N \\ & \text { س } \quad 7 s \Lambda_{S} \end{aligned}$
65	$0 \cdot 8821$	Ol	S2			¢0โ0К0	山еч7аи	－¢¢0тp	ε
09	$6 \cdot 5511$	61	OL	әuex	TOKo	ハеч7əox	วexfa7	$Z^{6} L^{\prime} \downarrow$	己
$5\rangle$	O＊とOヤレ	し1	¢			едđәч－и	บец7әш	－0โपวтp	1
－Far	$\begin{gathered} \overline{\mathrm{dx} \partial} \mathrm{H} \nabla \\ \text { xeW } q V \end{gathered}$	$\begin{aligned} & \text { squṬod } \\ & \text { eqed } \end{aligned}$	$\overline{0} 7$			แә 75Ω			\bigcirc

Cyclic Alkanes.

 110

System
chloroform + n-heptane
chloroform + cyclohexane
희 - -

$$
\begin{array}{ll|ll}
2 & 4 & 0 & 0 \\
\dot{\infty} & 0 & \dot{1} \\
\sum & 4 & \cdots & m
\end{array}
$$

$$
\begin{array}{cc|cc}
\therefore & 4 & M & N \\
0 & 0 & \dot{0} & \dot{3} \\
0 & 0 & M & N
\end{array}
$$

$$
\begin{gathered}
\text { System } \\
\text { No. } \\
\hline \begin{array}{c}
1 \\
2
\end{array}
\end{gathered}
$$

111
Cyclic Alkanes. Correlation of CCL_{4}

- $\overline{\text { IIXXX }} \overline{\text { FTGVU }}$

 $L L \cdot Z Z$
$L L \cdot Z Z$
$L L \cdot Z Z$
$\angle 9^{\circ} \cdot Z Z$
$S S \cdot 2 Z$
$S S \cdot 2 Z$
$8 t^{\circ} O t$
$\overline{N I W H}$

$$
\begin{gathered}
\text { Initial } \\
\text { Parameters } \\
\hline+200,+200 \\
+200,0.1 \\
+200,-200 \\
0.1,+200 \\
0.1,0.1 \\
0.1,-200 \\
-200,0.1
\end{gathered}
$$

Note:
ard Deviation.
112
TABLE XXXV. Correlation Errors for CCL + Alkane

\cdots	-
cis	OMNFEM
+	\forall-inmm

Data
Points
13
16
13
12
12
10

113

TABLE XXXVI. Systems Used in Evaluating an Optimum Q for Cyclic CH_{2}.

System	t, ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Data } \\ \text { Points } \\ \hline \end{gathered}$	Type	Ref.
methanol + cyclohexane	50.5	11	I	50
nitroethane + cyclohexane	25	13	I	70
piperidine + cyclohexane	25	14	II	49
benzene + cyclohexane	50	13	II	57
1,4 dioxane + cyclohexane	60	4	II	44

$$
\begin{array}{llll}
0 \\
0 & \& \infty & 0 & A
\end{array}
$$

$$
\begin{array}{cccc}
\text { TABLE XXXVII. Correlation of } \mathrm{CCL} \text { + Alkane Data. } \\
\cline { 1 - 3 } & & & \\
\text { Initial } & \text { Final } & & \text { Standard } \\
\text { Parameters } & \text { Parameters } & \text { FMIN } & \text { Deviation } \\
\hline 34.0,1202.2 & 35.61,1052.8 & 1.50 & 0.44 \times 10^{-5} \\
-200,0.1 & -5265.9,0.80 & 74.31 & 0.746 \\
0.1,0.1 & 47.9,-13.3 & 1.23 & 0.95 \times 10^{-6} \\
33.9,1314.0 & 35.6,1313.9 & 1.50 & 0.95 \times 10^{-6} \\
435.8,27.9 & 437.7,37.9 & 18.85 & 0.0 \\
41.3,-7.6 & 47.9,-13.3 & 1.23 & 0.25 \times 10^{-5} \\
0.1,-200 & 35.6,300.3 & 1.50 & 0.95 \times 10^{-6} \\
34.0,1669.7 & 35.6,1900.8 & 1.50 & 0.0
\end{array}
$$

Notes:

$$
115
$$

TABLE XXXVIII. Correlation Errors for CCl + AIkane Data.

$$
\begin{gathered}
\mathrm{No} . \\
\hline 1 \\
2 \\
3 \\
4 \\
5
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\text { System }}{\text { 1-chlorobutane }+n-\text { hexane }} \\
& 2-\text { chlorobutane }+n-\text { hexane } \\
& 1-\text { chlorohexane }+n-\text { octane } \\
& 1-\text { chloropentane }+n \text {-heptane } \\
& 1-\text { chlorobutane }+n-\text { nonane }
\end{aligned}
$$

$$
\begin{array}{lll}
\text { Effect of the Parameter Values on } \psi_{i j} \\
\frac{1(2,1)}{-13.26} & \frac{\psi(1,2)}{0.4585} & \frac{\psi(2,1)}{1.241} \\
1313.87 & 0.5597 & 4.998 \times 10^{-10} \\
37.87 & 7.97 \times 10^{-4} & 0.5394 \\
300.25 & 0.5598 & 7.49 \times 10^{-3} \\
1900.76 & 0.5596 & 3.50 \times 10^{-14}
\end{array}
$$

$$
\begin{aligned}
& \text { and } d \psi_{i j} / d \mathrm{~T} \\
& \frac{\frac{d \psi}{d T}(1,2)}{0.0028} \\
& .00255 \\
& 4.46 \times 10^{-5} \\
& 0.00255 \\
& 0.00255
\end{aligned}
$$

$$
\dot{\vec{x} \mid}
$$

范 \& a 0

$$
\begin{array}{lcll}
\text { TABLE XLI. } & \text { Correlation of } \mathrm{CCI}_{2}+\text { Alkane Data. } \\
& \\
& \text { Final } & & \begin{array}{l}
\text { Standard } \\
\text { Initial }
\end{array} \\
\begin{array}{l}
\text { Parameters }
\end{array} & \underline{\text { Parameters }} & \underline{\text { FMIN }} & \underline{\text { Deviation }} \\
22.1,-1.00 & 26.6,-0.389 & 0.049 & 0.88 \times 10^{-6} \\
413.0,17.4 & 352.7,20.6 & 0.165 & 0.79 \times 10^{-6} \\
20.7,1335.0 & 26.0,1469.4 & 0.049 & 0.19 \times 10^{-6}
\end{array}
$$

119

TABLE XLII. Correlation Errors for CCL_{2} + Alkane Data.

$$
\begin{aligned}
& 0^{\bullet} \varepsilon l \varepsilon \downarrow \\
& 0^{\bullet} \text { ¿Ot } \\
& \text { dxə } \begin{array}{l}
W^{H} \nabla \\
\text { xeW } 7 v
\end{array}
\end{aligned}
$$

$$
\begin{array}{ll|ll}
x & H \\
\dot{0} & 0 & \dot{4} \\
\dot{4} & \dot{4} & \dot{\sim} & \dot{+}
\end{array}
$$

$$
\begin{array}{cc}
Z L & S Z \\
\frac{S L}{\text { squṬOd }} & \frac{S Z}{\text { equad }}
\end{array}
$$

$$
\begin{array}{ll|ll}
x \infty & H & 0 & 0 \\
\dot{\infty} & 0 \\
< & \dot{H} & \cdots & \dot{+}
\end{array}
$$

$$
\begin{gathered}
\text { System } \\
\text { No. } \\
\hline 1 \\
2
\end{gathered}
$$

$$
\begin{array}{l|llll}
\stackrel{0}{0} \\
\stackrel{1}{|l|} & \square & 0 & a & \oplus
\end{array}
$$

克 $-\infty$

$$
\begin{aligned}
& \begin{array}{ll|ll}
x e & 4 & 0 & - \\
\infty & 0 & 0 & 0 \\
\infty & 4 & 0 & n \\
i & 4 & n & n
\end{array}
\end{aligned}
$$

TABLE XLV.
Correlation of Carbon Tetrachloride + Alkane Data.
品 1 －NMJ

$$
\left.\begin{array}{cc}
x & 0 \\
\sum & 0 \\
\vdots & 0 \\
+ & 0 \\
0 & 0
\end{array} \right\rvert\,
$$

$1 \cdot 25$	L・ヤ3	$0^{\circ} \mathrm{OL}$	$3^{\circ} 258$	8＊ヤレ	8＊
9＊LSL	－08	与・カワ	6° Lも	$0^{\circ} \mathrm{L}$	2^{\bullet}
L．3L2	$6 \cdot 821$	$2 \cdot 5 G$	と・しん	でで	$9^{\circ} 6$
0．86	$L \cdot S L$	$8 \cdot 09$	$0 \cdot$ ¢8¢	$6 \cdot L$	$\varepsilon \cdot G$
$\overline{5 T E O}{ }_{N} \mathrm{H} \nabla$	xoxxt	xoxx	$\overline{\text { TEO }} \mathrm{H} \nabla$	IOXX员	IOXX
x 7 \％ 7	\％－xed	\％•3＾H	xen 7 F	\％－xex	\％• $3 \wedge \forall$
	$\overline{47 \partial S}$			T 7 as	
0．598	$1 \cdot ¢ \downarrow$	$G^{\circ} \cdot L$	2•3t反	\downarrow^{\bullet} ¢	$0^{\circ} \mathrm{L}$
2•6ヵ¢	$9^{*} 11$	$0^{\circ} \mathrm{L}$	－ 8 カを	カ・で	∇^{*}
S．897	$L \cdot \varepsilon \downarrow$	$3^{*} 6$	L．69b	9＊てし	8＊8
と・23反	$5 \cdot 6$	$t \cdot G$	－6L反	$8 \cdot 3$	$9 \cdot 5$
$\overline{O[80} \mathrm{H}_{\mathrm{H}}$	IOXXT	xOTXT	$\overline{\text { OTEO } H \nabla}$	Joxat	TOT．J品
xen 70	$\% \frac{x \operatorname{xen}}{D 7 \partial S}$	$\% \cdot 9 \wedge y$	xew 7%	$\% \frac{x e w}{q+\partial S}$	\％•g＾V
69	$1 \cdot 1 \Sigma \Sigma$		02		әuexa
69	0．LZを		Ot		әueqd
69	2．115		Ot		aueso pexa
69	L．20t		O\＆		ขurfoo
Fج	$\overline{\mathrm{dx}}$		$\overline{\text { ¢ }} \quad \overline{0_{0}{ }^{\prime} 7}$		
	xen 7				

* Mை

 iso-octane iso-octane n-decane n-octane n-octane n-octane n-nonane n-hexane n-hexane n-heptane n-heptane

$$
\begin{aligned}
& \text { Avg. \% Error } \\
& \text { Parameter Set }
\end{aligned}
$$

TABLE XLVIII. Correlation of Primary Amines + Alkane Data.
TABLE YLIX. Correlation Errors for Primary Amines + Alkane Data.

127

$$
\begin{array}{ll|lll}
x & 4 & M & 0 & n \\
0 & 0 & 0 & 0 & 0 \\
B & y & 0 & r & M
\end{array}
$$

\& $\%$

Prediction Errors for Primary Amines + Alkane Data.

mi $\underset{\sim}{m}$
$\frac{\text { Avg. \% Error }}{\text { Parameter Set }}$
OT $\because \dot{+}$

* $\underset{\sim}{*} \underset{\sim}{\circ}$
128

$$
\left.\begin{aligned}
& + \\
& 0 \\
& 0 \\
& \hline
\end{aligned} \right\rvert\, \ll
$$

TABLE II. Correlation of Secondary Amines + Alkane Data.

129

TABLE LII. Correlation Irrors for Secondary Amines + Alkane Data.

\[

\]

$$
\begin{array}{ccc}
\text { System } & & \text { Data } \\
\text { t, }{ }^{\mathrm{o}} \mathrm{C} & \text { Points } \\
\text { diethylamine }+ \text { n-heptane } & 45 & 19 \\
\text { dibutylamine }+ \text { n-hexane } & 30 & 19
\end{array}
$$

$$
\frac{\Delta H^{M} \exp \frac{\text { At } \operatorname{Max}}{\Delta H^{M 1} \operatorname{calc}}}{671.0} \begin{gathered}
213.1 \\
280.9
\end{gathered}
$$

$$
\left.\begin{array}{l|l}
0 \\
\dot{Z}
\end{array}\right)-N
$$

$$
131
$$

$$
\begin{array}{c|cc}
0 & \sim & \sim \\
+0 & 0
\end{array}
$$

+

0
0

21	\checkmark	\leftharpoondown	-	\checkmark	-	-	-	\sim	-
E		\bigcirc	${ }^{(1)}$	${ }^{\omega}$	${ }^{\circ}$	0			\bigcirc
0	$+3$	$+$	$+$	$+$	$+$	$+$	$+$	$\stackrel{+}{0}$	$+$
8	\bigcirc	\bigcirc	\%	¢	z	\%	2	建	$\underset{\sim}{2}$

TABLE LV. Correlation of Tertiary Amines + Alkane Data.

> Data $\frac{\text { used }}{\text { in }} \frac{\text { Correlation: }}{\text { triethylamine }+ \text { n-heptane }} 45^{\circ} \mathrm{C}$ triethylamine + n-hexane $\quad 30^{\circ} \mathrm{C}$

Initial	Final		Standard		
Parameters	Parameters	FMIN	Deviation	Remarks	Set
+200, +200	22.62,66.51	0.160	0.19×10^{-4}	note 1	
+200,0.1	22.86,0.118	0.282	0.13×10^{-5}	note 1	
+200,-200	20.72,40.14	0.179	0.43×10^{-3}	note 2	
0.1,+200	22.54,65.84	0.160	0.18×10^{-4}	note 1	
0.1,0.1	22.63,66.66	0.160	0.22×10^{-4}	note 2	
0.1,-200	22.59,66.21	0.160	0.35×10^{-4}	note 2	
-200, +200	-950.2,35.63	16.532	0.13×10^{-2}	note 1	
-200,0.1	-4734.2,0.68	36.765	0.3178	note 3	
-200,-200	-1083.9,35.43	16.537	0.87×10^{-3}	note 1	
22.7,67.90	22.70,67.32	0.160	0.23×10^{-4}	note 1	
32.2,100.0	22.56,65.95	0.160	0.34×10^{-5}	note 1	
32.2,575.6	28.94,576.0	0.283	0.10×10^{-5}	note 1	
88.5,-47.5	22.74,67.89	0.160	0.10×10^{-4}	note 2	
89.0,-47.56	21.50,54.99	0.163	0.28×10^{-2}	note 2	
32.2,0.12	22.71,67.60	0.160	0.15×10^{-4}	note 2	
22.7,67.60	22.60,66.35	0.160	0.20×10^{-5}	note 1	
21.5,55.00	22.58,66.19	0.160	0.19×10^{-5}	note 1	
22.7,200.0	22.65,66.91	0.160	0.86×10^{-6}	5.2\%	A
+200,67.0	22.76,68.23	0.160	0.68×10^{-6}	5.2\%	A
0.1,67.0	22.63,66.77	0.160	0.30×10^{-5}	note 1	
-200,67.0	-963.6.35.82	16.526	0.35×10^{-2}	note 1	
22.7,-200	22.62,66.43	0.160	0.86×10^{-5}	note 1	
22.7,0.1	28.87,0.114	0.282	0.25×10^{-5}	note 1	
Notes: 1. Repeating 2. Ran out of 3. Error Mess	same FMIN and f time. sage.	Standard	Deviation.		

Correlation of Benzene + Alkane Data.

$\stackrel{N}{N}$

0	
+0	NONONO

* 4 nMை $\dot{\sim}$

Avg. \% Error
Parameter Set

 $\stackrel{\infty}{\sim}$

TABIE LXII. Correlation Errors for Methanol + Alkane Data.

$$
\stackrel{\circ}{=1} \stackrel{\rightharpoonup}{\sigma} \vec{\sigma}
$$

$$
\begin{aligned}
& \text { vane } \\
& \text { vane } \\
& \text { pane } \\
& \text { At Max } \\
& \begin{array}{r}
\Delta H^{M} \mathrm{calc}
\end{array} \\
& \begin{array}{r}
976.5 \\
930.2 \\
900.2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { At Max } \\
& \begin{array}{r}
\Delta H^{H} \exp \\
\hline 714.9 \\
848.7 \\
1061.0
\end{array}
\end{aligned}
$$

ob l

$$
\begin{array}{c|ccc}
0 & 8 & 0 & 0 \\
+ & 8 & & 8
\end{array}
$$

$$
\begin{aligned}
& \frac{\text { Avg }}{\text { Parameter Set }} \\
& \begin{array}{ccccc}
& 0 & \llcorner & 0 & 0 \\
\text { al } & \dot{U} & \ddots & \dot{0} & M \\
& M & \uplus & \& & F
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { य11 } \begin{array}{llll}
a & \square & \square & M \\
\dot{j} & M & M & \dot{j}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
&
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llll}
+ \\
0 & 4 & \infty & 0
\end{array}
\end{aligned}
$$

TABLE LXIV. Correlation of Alcohol + Alkane Data.

$$
\begin{gathered}
\text { Initial } \\
\text { Parameters } \\
\hline 398.2,13.3 \\
+200,+200 \\
+200,0.1 \\
+200,-200 \\
0.1,+200 \\
0.1,0.1 \\
0.1,-200 \\
-200,+200 \\
-200,0.1 \\
-200,-200
\end{gathered}
$$

$$
\begin{aligned}
& 8 L L \cdot G \varepsilon \\
& \angle S L^{\circ} \varepsilon G \\
& \angle L L \cdot G \varepsilon \\
& 8 \forall t^{\circ} \cdot 2 L \\
& L \angle 6^{\circ} \cdot 9 \\
& 8 カ+\cdot
\end{aligned}
$$

$$
12.448
$$

Repeating same FMIN and Standard Deviation.
2. Error Message.
TABLE LXV. Correlation Errors for Alcohol + Alkane Data.
 $0 \cdot 9701$
$8 \cdot 06 D 1$
$9 \cdot 905$
$7 \cdot 5521$
$5 \cdot L 63$
dxa HD
xen 7 V

$$
\begin{aligned}
& \text { System } \\
& \text { ethanol }+n \text {-hexane } \\
& \text { n-butanol }+ \text { n-nonane } \\
& \text { n-pentanol }+2,2 \text {-dimethylbutane } \\
& 2 \text {-propanol }+n-\text { heptane } \\
& 2 \text {-methyl-2-propanol }+n-\text { hexane }
\end{aligned}
$$

$$
\stackrel{\circ}{\dot{Z}} \mid r N m+u
$$

TABLE IXVI. Frediction Errors for Alcohol + Alkane Data.

System	$\pm{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Avg. W Error } \\ & \text { Farameter Set } \end{aligned}$				
		$\begin{gathered} \text { Data } \\ \text { Foints } \end{gathered}$			$\triangle \mathrm{H}^{M}$	
			\underline{E}^{1}	\underline{A}^{*}	max	2ef.
n-propanol + n-hexane	45	8	20.4	12.3	159.0	46
n-butanol + n-hexane	45	7	83.3	10.4	129.9	46
n-pentanol + n-hexane	45	18	89.5	20.5	189.7	93
n-hexanol + n-hexane	45	7	88.6	15.7	199.4	46
n-octanol + n-hexane	45	7	91.6	18.2	204.7	46
erhanol + n-heptane	10	14	57.1	17.5	E7.3	97
ethanol + n-heptane	20	12	59.4	19.0	140.8	92
ethanol + n-heptane	25	12	61.4	16.2	162.0	02
ethanol + n-heptane	30	16	64.4	18.5	189.2	92
ethanol + n-heptane	45	13	71.9	16.6	258.2	97
ethanol + n-heptane	60	15	79.3	15.1	287.9	97
ethanol + n-heptane	75	14	82.4	11.4	248.3	97
ethanol + n-decane	25	19	61.7	17.0	284.3	51
n-propanol + n-decane	25	18	73.1	16.7	200.4	51
n-butanol + n-decane	25	18	79.2	20.1	183.2	51
n-pentanol + n-decane	25	17	81.9	21.9	184.6	51
n-hexanol + n-decane	25	19	85.5	20.3	207.7	51
n-heptanol + n-decane	25	19	86.2	18.6	196.9	51
n-octanol - n-decane	25	19	87.6	19.9	207.3	51
n-pentanol + a-hexane	25	10	77.7	15.4	128.3	27
n-pentanol + n-heptane	25	12	79.9	20.5	146.9	92
n-pentanol + n-octane	25	13	82.0	24.6	165.6	92
n-pentanol + n-nonane	25	18	81.9	19.5	184.5	52
n-pentanol + n-tetradecane	25	13	83.0	33.3	273.4	92
n-pentarol + n-pentane	25	16	74.7	11.9	89.7	53
n-pentanol + n-butane	25	17	74.0	11.0	81.4	76
2-methyl-1-propanol + n-hexane	25	10	85.1	22.0	221.9	47
2-methyl-1-propanol + n-hexane	45	10	89.0	17.5	271.9	47
2-butanol + n-hexane	25	6	88.9	33.3	440.7	47
2-cutanol + n-nexane	45	6	90.8	25.2	499.3	47
2-methyl-2-propanol + n-hexane	27	ε	37.9	35.1	463.1	47
2-oropanol + n-heprane	30	20	78.8	31.7	313.6	98
2-propanol + n-ieptane	45	21	82.6	28.1	349.5	98

Note:

[^0]TAELE LXVII. Group Interaction Parameters, $-\mathrm{CH}_{2}$ with Group G.

Group G	$\xrightarrow{\mathrm{CH}_{2} / \mathrm{G}}$	$\underline{\mathrm{G} / \mathrm{CH}_{2}}$	$\begin{aligned} & \text { Avg. } \\ & \text { Error } \\ & \hline \end{aligned}$
CCL	47.85	-13.26	7.0
CCL_{2}	26.60	-0.389	3.8
CCI_{3}	15.22	-2.75	1.3
CCL_{4}	2.75	1.79	7.4
CNH_{2}	81.36	-5.95	E.8
CNH	50.02	8.16	8.4
(C) 3^{N}	22.65	66.91	5.2
ACH	12.09	1.89	3.2
$\mathrm{CH}_{3} \mathrm{OH}$	394.4	12.90	4.5
OH	323.4	49.15	17.6

Fig. 2. Performance of equation (31) with the fGSV model.

O Type I systems
\triangle Type II systems
\square Cverall error

Fig. 3. Effect of the value of Q on the accuracy of correlation for systems containing cycloalkanes.

O Overall error

- Two Type I systems
\triangle Three Type II systems

Fig. 7. Effect of length of component containing group CCL on prediction error for $n-o c t a n e$ data at $25^{\circ} \mathrm{C}$. (Experimental data: $56,86,89,96$).

Mole fraction of the halocarbon
Fig. 9. Comparison of experimental and predicted heats of mixing for n-hexane with dichloromethane, chloroform and carbon tetrachloride at $25^{\circ} \mathrm{C}$. (Experimental deta: 45).

O exp., and - - 1 pre.: dichloromethane
\triangle exp., and -2 pre.: chloroform
\square exp., and - 3 pre.: carbon tetrachloride

Fig. 10. Comparison of experimental and predicted heats of mixing for n-heptane with r-butylamine, diethylamine and triethyjamine at $25^{\circ} \mathrm{C}$.
(Experimental data: 73).
$\begin{array}{lll}O \exp ., \text { and - - } 1 \text { pre.: } & \text { n-butylamine } \\ \Delta \text { exp., and - } 2 & \text { pre.: } & \text { diethylamine } \\ \text { - } \exp ., \text { and }-3 \text { pre.: } & \text { triethylamine }\end{array}$

Pig. 12. Comparison of experimental data of n-heptane with several n-alcohols at $30^{\circ} \mathrm{C}$.
(Experimental data: 92,93,94).

Fig. 14. Effect of the value of Q on the accuracy of correlation and prediction for alcohol systems. (Experimentel data: 47,93, 98).

O n-butanol + n-heptane 3000
Δ 2-propanol $+n$-heptane $30^{\circ} \mathrm{C}$
2-methyl-2-propanol + n-hexane $27^{\circ} \mathrm{C}$

Appendix I

Regression Computer Program

This appendix presents the regression computer program using the modified UNIFAC (with the $Z(T)$). Before explaining how to enter the program in the computer it might be good at this time to explain what is involved in the regression of interaction parameters. The regression computer program has three parts: main program, subroutine REG and subroutine FMIN. The main program has two parts, in the first part the information is read in by the computer. The data needed by the program is the number of experimental data points, the experimental data given as mole fraction and heats of mixing in J/mole, the number of parameters, and the starting values for the interaction parameters. The second part prints out the results when the program has converged on a good set of parameters.

The regression of the experimental data was accomplished using the subroutine REG which was identified in the book by Fredenslund et al (8). There were three subroutines available to us and REG was chosen because it took the least amount of computer time. The subroutine FMIN is where the prediction of heats of mixing by the UNIFAC method takes place.

The regression computer program does the following: 1) read in data,
2) call subroutine REG which in turn calls subroutine FMIN,
3) the heats of mixing is calculated for each data point in this subroutine,
4) the minimization function (FMIN) is defined by equation (34) (on page 47)
5) the program returns to REG where the parameters are changed in order to reduce FMIN and then returns to the other subroutine with this new set of parameters, 6) the computer program repeats this procedure until one of the following occurs:
a) the program converges when the standard deviation is less than 1×10^{-5}, and the final results are printed out,
b) the program reaches 200 iterations and stops calculating. This limit is needed because sometimes the program goes in the wrong direction and the FMIN gets large. Also, sometimes the program gets stuck on a set of parameters and repeats the same FMIN and standard deviation over and over.
c) The program uses all the computer time it was allotted. In order to run the program on the school computer a time limit had to be given when the program was entered. The amount of time depended on the number of data points and the type of system. Some systems converged on a set of parameters more easily than others, for example, the
alcohol regression took longer than the benzene regression.

An example of a computer run will be given for the benzene/alkane regression. Below is a listing of the input data (program name $=$ BENZENE-ALKANE-REG-DATA): line 1 = number of experimental data points lines $2-68=$ experimental data for all the systems used, given as mole fraction of benzene and heats of mixing in $\mathrm{J} / \mathrm{mole}$
line 69 = number of interaction parameters lines 70-71 = initial values of parameters

11	67		31	0.7088	1319.0	61	0.4760	1047.0
2	0.2651	698.0	32	0.7642	1252.0	62	0.5463	1108.0
3	0.4200	931.0	33	0.8436	1016.0	63	0.6131	1128.0
4	0.5207	1000.0	34	0.9193	645.0	64	0.6859	1111.0
5	0.5909	1003.0	35	0.1873	524.0	65	0.7553	1035.0
6	0.6868	939.0	36	0.3089	827.0	66	0.8283	887.0
7	0.7449	862.0	37	0.4077	1034.0	67	0.8855	694.0
8	0.8145	716.0	38	0.5053	1184.0	68	0.9410	417.0
9	0.8975	467.0	39	0.5809	1263.0	69	2	
10	0.0794	216.0	40	0.6893	1295.0	70		0.1
11	0.1503	394.0	41	0.7572	1249.0	71	0.1	
12	0.2111	534.0	42	0.8177	1129.0			
13	0.2655	650.0	43	0.8949	829.0			
14	0.3118	739.0	44	0.9482	485.0			
15	0.3910	867.0	45	0.1006	256.0			
16	0.4535	940.0	46	0.2104	492.0			
17	0.5046	980.0	47	0.2851	629.0			
18	0.5665	1009.0	48	0.3461	721.0			
19	0.6294	1002.0	49	0.4465	828.0			
20	0.7059	943.0	50	0.5289	867.0			
21	0.7944	817.0	51	0.5938	866.0			
22	0.8799	575.0	52	0.6655	831.0			
23	0.9496	277.0	53	0.7576	714.0			
24	0.1454	476.0	54	0.8346	562.0			
25	0.2689	816.0	55	0.9188	314.0			
26	0.3499	1013.0	56	0.0609	178.0			
27	0.4289	1145.0	57	0.1306	370.0			
28	0.5062	1263.0	58	0.2292	618.0			
29	0.5675	1321.0	59	0.3126	797.0			
30	0.6262	1345.0	60	0.3985	946.0			
							0	

The nomenclature for the main computer program is given below:

ERROR Percentage difference between calculated and experimental heats of mixing

HEMIX(I) Calculated heats of mixing of component in the mixture

HK(K) Heats of mixing of group k
HKS(K,I) Standard state heats of mixing of group k in pure component i

HMIXE Experimental heats of mixing
HMIX Calculated heats of mixing
HSUM(I) Partial molar heats of mixing of component in the mixture

I component i

J, K groups j, k

NDATA number of experimental data points
$N(K, I) \quad$ Number of groups of type k in component i
Q(J) Area parameter of group j
R
$T \quad$ Absolute temperature, ${ }^{\circ} \mathrm{K}$
$T H(J) \quad$ Area fraction of group j
THS(J,I) Area fraction of group j in pure component i

XM(I) Mole fraction of component i
XT
Group interaction parameter determined by data reduction

The computer program that follows is the main regression program adapted for the benzene/alkane correlation (lines 20-94 in subroutine FMIN). This program. is called ZT-BENZENE-REG.

FORTPAA IV (VEF 53) SOURCE IISTING:

FOFTRAN IV (VER 53, SOURCE LISTING: FAIN SUBROUTINE OG/16/80 20:

FORTRAN IV (VER 53, SOURCE LISTIVG: FMIN SUEROUTINE 09/16/80 20:

FCRTRAR IV (VER 5? SOURCE LISTING: FHIN: SURROUTINE 09/16/8の 20

FORTRAN IV (VER 53) SOURCE LISTING: FMIN SUBROUTINE 09/16/80 20:1

FORTRAN IV (VER 53) SOURCE LISIUNG: FMIN SUAROUTINE 09/16/80 20:

C
C. \qquad
1
\qquad
C
\qquad

FURTKAR IV (VEF 5:) SOURFE LISTING: REG SUBROUTINE O9/16/80 20:

FORTRAN IV (VER 53) SOURCE ISTIPG: R=G SURROUTINE O9/16/80 20:

The procedure to run the program follows:

1) Write a mini-program

> /LOGON JR301923,JCHE $701, \mathrm{c}^{\prime} 43$ conove'
> /PARAM LIST=YES, DEBUG=YES, MAP=NO, WRLST=YES
> /SYSFILE SYSDTA=(main program name)
> /EXEC \$BGFOR
> /SYSFILE SYSDTA=(data program name)
> /EXEC *
> /LOGOFF
where JR301923 is the student I.D. number. For this case the main program is $2 T-B E N Z E N E-R E G$, and the data program is BENZENE-ALKANE-REG-DATA. Call this mini-program BENZ-ALKANE-ONE.
2) Return to the system (@SY), the computer will give a $/$.
3) Then type
/ENTER BENZ-ALKANE-ONE,TIME=XXX
then hit control C, the computer will give a / and give the job number for this run. The amount of time you enter depends on the particular system and the number of data points, the range is $200-800$ seconds but could be higher. The same amount of time should not be entered for each type of system. Sometimes the parameters get stuck on the same value, and repeat the same predictions over and over. If an excessive amount of time is given then the computer will continue calculating until the limit is reached, as a result, a lot of computer time is wasted.
4) The output is obtained from the computer room. A typical printout is given on the following pages.

\qquad

\qquad

Appendix II

Prediction Computer Program

This appendix will give a listing of the prediction computer program and explain how to use it. The prediction program is the subroutine FMIN in the regression program with some minor changes in format statements and input data. The binary benzene + n-octane at $50^{\circ} \mathrm{C}$ will be predicted using the parameters from Appendix I. The input data needed to predict this mixture follows:

1	13		13	0.8984	418.0
2	0.0600	160.0	14	0.9636	168.0
3	0.1607	413.0	15	0.54	
4	0.2456	591.0	16	0.848	
5	0.3172	718.0	17	0.40	
6	0.3765	800.0	18	0	
7	0.4484	872.0	19	0	
8	0.5182	910.0	20	6	
9	0.5818	917.0	21	6	
10	0.6622	883.0	22	2	
11	0.7598	760.0	23	0	
12	0.8318	609.0	24	323.15	

where
line 1 = number of experimental data points
lines $2-14=$ experimental data, given as mole fraction of benzene and heats of mixing in $\mathrm{J} / \mathrm{mole}$
lines $15-17=$ group area parameters for groups CH_{2}, CH_{3} and ACH , respectively
lines 18-23 = number of groups of type k in component i line $24=$ temperature, ${ }^{\circ} \mathrm{K}$

Call this program BENZ-NC8-323-PRE. The following pages give a listing of the prediction program.
253. eF
1.0000 C FROGGAM TO CALCULATE HEATS OF MIXING USING UNIFAC
2.0000 C MAIN FROGRAM
3.0000 C XM1=MOLE FFACTION FEAII IN, HMIXE=EXFERIMENTAL HEATS OF
4.0000 C MIXING, HMIX=FREIICTEII EXCESS ENTHALFY, XT=INTERACTION
5.0000 C FARAMETERS (TEMFERATURE-INDEPENDENT)
6.0000 IIIMENSION XM1 (40), $\operatorname{HMIXE}(40)$, $\operatorname{HMIX}(40)$, ERFROR(40)
7.0000 IIMENSION XT(10)
8.0000
9.0000
10.0000
11.0000
12.0000
13.0000
14.0000

C NIATA=NUMBEF OF IIATA FOINTS
FEAD I,NIATA
1 FORMAT(I2)
HO $3 \mathrm{I}=1$, NIATA
REAII 2,XM1(I),HMIXE(I)
3 CONTINUE
2 FORMAT(F6.4,F8.1)
16.0000 C NFAF $=$ NUMBER OF FARAMETERS
17.0000

18,0000
19.0000
20.0000
21.0000
22.0000
23.0000
24.0000 .
25.0000
26.0000
27.0000
$\ldots \quad 28.0000$
29.0000
30.0000
31.0000... FORMAT (F12.4;F19.3,F20.4;F15.4)
32.0000 C ASUMER=AUEFAGE ERFOK
33.0000
34.0000
35.0000
36.0000
37.0000
38.0000 R)
39.0000
40.0000
41.0000
42.0000
43.0000
44.0000
45.0000
46.0000
47.0000
48.0000
49.0000
50.0000

FRINT 14,ASUMER
14 FORMAT('O THE AUEFAGE ERROF $=$ ',F7.4)
STOF
ENI
SUEROUTINE FMIN(XMI,HMIXE,HMIX,EFROR,NIATA,XT,NFAR,SUME
C UNIFAC - TEMFEFATURE-INIEFENIENT FAFAMETERS
IIIMENSION XMI (40), $\operatorname{HMIXE}(40)$, $\operatorname{HMIX}(40)$, EFFROR (40)
IIIMENSION HS(10), $\mathrm{HS}(10,10)$, $\operatorname{HEAT}(10,10)$, $\operatorname{HEMIX}(50)$
IIMENSION $A(10,10), A X(10), \operatorname{HK}(10), \operatorname{HKS}(10,10), \operatorname{IN}(10,10)$
IIIMENSION ESUM(10), $\operatorname{IIS}(10,10), \operatorname{CS}(10,10), E S(10), F S(10)$
IIIMENSION $G S(10), C(10,10), I(10,10), E(10), F(10), G(10)$
IIMENSION $\mathrm{H}(10), \mathrm{B}(10,10), \mathrm{EX}(10), \mathrm{XM}(10), \mathrm{N}(10,10)$
IIIMENSION $X(10), H 1(10), H 1 S(10), C S U M(10), F(10,10)$
IIIMENSION YSUM(10), CSSUM(10), BSSUM (10), HSUM(10)
IIIMENSION WSUM (10), TH(10), THS (10, 10), Q(10), USUM (10)
IIMENSION XT(10)
C I=NUMEEF OF COMFONENTS

```
    51.0000
    100 FORMAT(I2)
        IC=I+1
    53.0000
    54.0000
    55.0000
    56.0000
    57.0000
    58.0000
    59.0000
    60.0000
    61.0000
    62.0000
    63.0000
    64.0000
    65.0000
    66.0000
    67.0000
    68.0000
    69.0000
    70.0000
    71.0000
    72.0000
    73.0000
    74.0000
    75.0000
    76.0000
    77.0000
    78.0000
    79.0000
    80.0000
    81.0000
    82.0000
    83.0000
    84.0000
    85.0000
    86.0000
    87.0000
    88.0000
    89.0000
    90.0000
    91.0000
    92.0000
    93.0000
    94.0000
    95.0000
    96.0000
    97.0000
    98.0000
    99.0000
    100.0000
    C K=NUMEEF OF GROUPS
        REAII 100,K
    KG=K+1
    C Q=AREA EY BONDII
    C Q(CH3)=0.848, Q(CH2)=0.540,Q(CH)=0.228,Q(C)=0.0
    C Q(ACH)=0.4,Q(OH)=1.20,Q(CH2CH2OH})=1,664,Q(CHOHCH3)=1.66
    IO 120 K3=2,KG
        REALI 110,Q(K3)
    120 CONTINUE
    110 FORMAT(FG.4)
C N(K,I)=NUMEER OF GROUP K IN COMPONENT I
C FEAII IN ORILER N(2,2),N(3,2),N(4,2)...N(2,3),N(3,3),ETC.
    IO 150 I4=2,IC
        INO 140 K5=2,KG
            FEAII 100, N(K5,I4)
    140 CONTINUE
    150 CONTINUE
    C R=GAS CONSTANT, UNITS ARE (JOULE)/(G MOLE)(K)
        R=8.314
C T=TEMFERATURE IN IIEG. K
        REAII 170,T
    170 FORMAT(F7.3)
        FRINT }19
        FORMAT('O FREDICTION OF HEATS OF MIXING')
        PRINT 195.
        FORMAT(' USING THE UNIFAC METHON',
        FFINT 200,I
200 FOFMAT('ONUMEER OF COMFONENTS=',I3)
        FFINT 210,K
210 FORMAT(' NUMEEF OF GROUPS=',I3)
        FRINT 500
        HO 230 J12=2,K゙G
        FRINT 220,J12,Q(J12)
    220 FOFMAT(' Q(',I2,')=',F6.4)
    230 CONTINUE
        FRINT 500
        IC 260 J14=2,IC
            HO 250 J15=2,N゙G
                FRINT 240,J15,J14,N(J15,J14)
                    FORMAT(' N(',I2,',',I2,')=',I2)
        CONTINUE
    240
    250
    260 CONTINUE
    500 FOFMAT('0')
        FFINT 280,T
    280 FORMAT('O THE TEMFEFATUFE=',F10.3,' IIEG. K゙')
C A(K゙ッM)=TEMFERATURE-INDEFENLIENT FARAMETERS
    IO 330 N20=2,KG
```

```
    101.0000
    102.0000
    103.0000
    104.0000
    105,0000.
    106.0000
    107.0000
    108.0000
    109.0000
    110.0000
    111,0000
    112.0000
    113.0000
    114.0000
    115.0000
    116.0000
    117.0000
    118.0000
    119.0000
    120.0000
    121.0000
    122.0000
    123.0000
    124.0000
    125.0000
    126.0000
    127.0000
    128.0000
    129.0000
    130.0000
    131.0000
    132.0000
    133.0000
    134.0000
    135.0000
    136.0000
    137.0000
    138.0000
    139.0000
    140.0000
    141.0000
    142.0000
    143.0000
    144.0000
    145.0000
    146.0000
    147.0000
    148.0000
    149.0000
    150.0000
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{aligned}
& \text { LIa } 330 K 2 I=2, K G \\
& A(K 20, K 21)=0 .
\end{aligned}
\] & \\
\hline 330 & CONTINUE & \\
\hline C LAST & GROUF = GROUF G, IT IS NOT AN ALKANE & GROUP \\
\hline & [10 340.J33=2,KG & \\
\hline & IF (J33.EQ.KG)GO TO 340 & \\
\hline & A (J33,KG) \(=\times \mathrm{XT}(1)\) & \\
\hline & \(A(K G, J 33)=X T(2)\) & \\
\hline 340 & CONTINUE & \\
\hline & PRINT 350 & \\
\hline 350 & FORMAT ('O THE TEMFERATURE-INIEPENIENT & FARAMETEFS= \({ }^{\prime}\) \\
\hline & FRINT 360, XT(1) & \\
\hline 360 & FORMAT (' A \({ }^{(C H 2 / G)=, ~ F 15.5) ~}\) & \\
\hline & PRINT 370, XT (2) & \\
\hline 370 & FORMAT(' A(G/CH2) \(=\) ',F15.5) & \\
\hline & ALPHA \(=35.2\) & \\
\hline & BETA \(=-.1272\) & \\
\hline & GAMMA \(=.00014\) & \\
\hline & FFFINT 372,ALFHA, BETA,GAMMA & \\
\hline 372 & FORMAT \({ }^{\prime} \mathrm{O} \mathrm{Z}(\mathrm{T})=\), F6.2,' 'F10.7.'*T & +!,F10.7, \\
\hline & '*T*T') & \\
\hline & Ho 777 KFN=1,NLIATA & \\
\hline & XM(2) =XM1 (KF'N) & \\
\hline & \(X M(3)=1+-X M(2)\) & \\
\hline & \(E X(1)=0\) & \\
\hline 4.*...*. & \(A X(1)=0\) & \\
\hline & AXSUM=0 & \\
\hline & HO \(30 \mathrm{M}=2, \mathrm{KG}\) & \\
\hline -....... & H0 \(40 \mathrm{I}=2\), IC & \\
\hline & IO \(50 \mathrm{~K}=2 \cdot \mathrm{KG}\) & \\
\hline & \(A X(K)=A X(K-1)+X M(I) * N(K, I)\) & \\
\hline 50 & CONTINUE & \\
\hline & \(E X(I)=E X(I-1)+X M(I) * N(M, I)\) & \\
\hline & AXSUM \(=A \times S U M+A X(K G)\) & \\
\hline 40 & CONTINUE. & \\
\hline & \(X(M)=E X(I C) / A X S U M\) & \\
\hline & AXSUM=0 & \\
\hline 30 & CONTINUE & \\
\hline & WSUM (1) \(=0\) & \\
\hline & I10 \(99 \mathrm{~J}=2, \mathrm{KKG}\) & \\
\hline & IIO \(88 \mathrm{M}=2 \boldsymbol{0} \mathrm{~K}\) & \\
\hline & WSUM (M) \(=\) WSUM \((M-1)+Q(M) * X(M)\) & \\
\hline 88 & CONTINUE & \\
\hline & TH(J) \(=\) Q (J)*X(J)/WSUM(KG) & \\
\hline 99 & CONTINUE & \\
\hline & \(\underline{L}(1,1)=0\). & \\
\hline & \(C(1,1)=0\) & \\
\hline & \(F(1)=0\). & \\
\hline & \(E(1)=0\). & \\
\hline & \(G(1)=0\). & \\
\hline
\end{tabular}
```

151.0000
152.0000
153.0000
154.0000
155.0000
156.0000
157.0000
158.0000
159.0000
160.0000
161.0000
162.0000
163.0000
164.0000
165.0000
166.0000
167.0000
168.0000
169.0000
170.0000
171.0000
172.0000
173.0000
$=-\quad 174.0000$ 175.0000 176.0000
$-\quad 177+0000$
178.0000
179.0000
180.0000
181.0000
182.0000
183.0000
184.0000
185.0000
186.0000
187.0000
188.0000
189.0000
190.0000
191.0000
192.0000
193.0000
194.0000
195.0000
196.0000
197.0000
198.0000
199.0000 200.0000
$H(1)=0$.
$B(1,1)=0$.
$\operatorname{csum}(1)=0$.
$\operatorname{ESUM}(1)=0$.
10 $3 \mathrm{~K}=2, \mathrm{KG}$
IO $1 \mathrm{~J}=2 . \mathrm{KG}$
IO $2 \mathrm{M}=2, \mathrm{KG}$
$C(J, M)=T H(M) * E X F(-((A L F H A+B E T A * T+G A M M A * T * T) * A(M, J)$
G) /(2*T))*(((ALFHA+BETA*T+GAMMA*T*T)*A(M, J))/(2*T*T
G)-(A(M,J)*(2*GAMMA*T+BETA))/(2*T))
$F(J, M)=T H(M) * E X F(-((A L F H A+B E T A * T+G A M M A * T * T) * A(M, J)$
G) $/(2 * T))$.
$\operatorname{CSUM}(M)=\operatorname{CSUM}(M-1)+C(J, M)$
$\operatorname{BSUM}(M)=\operatorname{BSUM}(M-1)+F(J, M)$
$\mathrm{I}(\mathrm{J}, \mathrm{M})=(\operatorname{ABS}(\operatorname{BSUM}(M))) * * 2$.
CONTINUE
$E(J)=E(J-1)+T H(J) * E X F(-$ ($(A L P H A+B E T A * T+G A M M A * T * T)$
G*A(K:J))/(2*T))*CSUM(KG)/D(J,KG)

G*A(K゙, J))/(2*T))*(((ALFHA+BETA*T+GAMMA*T*T)*A(K,J)
G)/(2*T*T)-(A(K,J)*(2*GAMMA*T+BETA))/(2*T))/BSUM(KG)
$G(J)=G(J-1)+T H(J) * E X F(-$ ((ALFPHA+BETA*T+GAMMA*T*T)
G*A(J, K$)) /(2 * T)) *(((A L F H A+B E T A * T+G A M M A * T * T) * A(J, K)$
G)/(2*T*T)-(A(J.K)*(2*GAMMA*T+BETA))/(2*T))

G*A(J,K))/(2*T))
CONTINUE
$H 1(K G)=G(K G) / H(K G)$
$H K(K)=Q(K) *(H 1(K G)+F(K G)-E(K G)) * R * T * T$
3 CONTINUE
$\operatorname{YSUM}(1)=0$.
IO $5 \mathrm{I}=2$, IC
[10 10 J=2, KG
IO $20 \mathrm{M}=2, \mathrm{KG}$
YSUM(M) $=N(M, I)+Y S U M(M-1)$
CONTINUE
$\operatorname{IIN}(J, I)=F L O A T(N(J, I)) / Y S U M(K G)$
10 CONTINUE
5 CONTINUE
$\operatorname{USUM}(1)=0$.
110 $77 \mathrm{I}=2, \mathrm{IC}$
no $66 \mathrm{~J}=2, \mathrm{KG}$
no $55 \mathrm{M}=2$, KG
$\operatorname{USUM}(M)=\operatorname{USUM}(M-1)+Q(M) * \operatorname{IN}(M, I)$
55 CONTINUE
THS (J,I) $=$ Q(J)*IIN(J,I)/USUM(KG)
66 CONTINUE
77 CONTINUE
$[1 S(1,1)=0$.
$\operatorname{CS}(1,1)=0$.

```
    201,0000
    202.0000
    203.0000
    204.0000
    205.0000
    206.0000
    207.0000
    208.0000
    209.0000
    210.0000
    211.0000
    212.0000
    213.0000
    214.0000.
    215.0000
    216.0000
    217.0000
    218.0000
    219.0000
    220.0000
    221.0000
    222,0000
    223.0000
    224.0000
    225.0000
    226.0000
    227.0000
    228.0000
    229.0000
    230.0000
    231.0000
    232.0000
    233.0000
    234.0000
    235.0000
    236.0000
    237.0000
    238.0000
    239.0000
    240.0000
    241.0000
    242.0000
    243.0000
    244.0000
    245.0000
    246.0000
    247.0000
    248.0000
    249.0000
    250.0000
    251.0000
252.0000
```

201,0000

```
\(E S(1)=0\)
\(F S(1)=0\).
\(\operatorname{GS}(1)=0\).
HS(1)=0.
\(\operatorname{ES}(1,1)=0\).
\(\operatorname{CSSUM}(1)=0\).
\(\operatorname{ESSUM}(1)=0\).
10 \(44 \mathrm{I}=2\), IC
no \(33 \mathrm{KK=2,kG}\)
10 \(11 \mathrm{~J}=2, \mathrm{KG}\)
Ho \(22 \mathrm{M}=2\) ドG
CS (J,M)=THS (M,I)*EXF (- ( (ALFHA+EETA*T+GAMMA*T*T) G*A(M,J))/(2*T))*(((ALFHA+BETA*T+GAMMA*T*T)*A(M,J) G)/(2*T*T)-(A(M,J)*(2*GAMMA*T+BETA))/(2*T)) ES(J,M)=THS(M,I)*EXF(-((ALPHA+EETA*T+GAMMA*T*T) G*A(M,J))/(2*T))
\(\operatorname{CSSUM}(M)=\operatorname{CsSUM}(M-1)+\operatorname{CS}(J, M)\)
ESSUM \((M)=\operatorname{BSSUM}(M-1)+\) BS \((J, M)\)
\(\operatorname{IIS}(J, M)=(\operatorname{ABS}(\operatorname{ESSUM}(M))) * * 2\).
22
CONTINUE
ES(J)=ES(J-1)+THS(J,I)*EXP(- ( (ALFHA+BETA*T+GAMMA*T G*T)*A(K,J))/(2*T))*CSSUM(KG)/DS(J,KG)
FS(J)=FS(J-1)+THS(J,I)*EXF (- ( (ALPHA+BETA*T+GAMMA*T G*T)*A(K,J))/(2*T))*( ((ALFHA+BETA*T+GAMMA*T*T)*A(K, J) G)/(2*T*T)-(A(K, J)*(2*GAMMA*T+BETA))/(2*T))/BSSUM(KG) GS(J)=GS(J-1)+THS(J,I)*EXP(-((ALPHA+BETA*T+GAMMA*T G*T)*A(J,K))/(2*T))*(( (ALFHA+BETA*T+GAMMA*T*T)*A(J,K) G)/(2*T*T)-(A(J,K)*(2*GAMMA*T+EETA))/(2*T))
HS(J)=HS(J-1) +THS(J,I)*EXP(-((ALPHA+BETA*T+GAMMA*T G*T)*A(J,K))/(2*T))
11. CONTINUE
H1S(KG)=GS(KG)/HS(KG)
HKS (K,I)=Q(K)*(H1S(KG)+FS(KG)-ES(KG))*R*T*T
33 CONTINUE
44 CONTINUE
HEMIX(1)=0.
HSUM (1) \(=0\).
\(\operatorname{HEAT}(1,1)=0\).
\(11060 \mathrm{I}=2\), IC
no \(70 \mathrm{~K}=2, \mathrm{KG}\)
HEAT \((K, I)=N(K, I) *(H K(K)-H K S(K, I))\)
HSUM(K) =HSUM(K-1)+HEAT(K,I)
CONTINUE
HEMIX(I)=XM(I)*HSUM(KG)+HEMIX(I-1)
CONTINUE
HEMIX(3)=HEMIX(IC)
HMIX (KFN) = HEMIX(3)
ERROR(KF'N)=100.*(HMIXE(KFN)-HMIX(KFN))/HMIXE(KFN)
SUMER=SUMER+AES(ERFOR (KFN))
CONTINUE
RETURN
ENII
253. @SY
\%EKFT FCOUNT 3691F2
/LDGOFF
\% E420 LOGOFF AT 14:13 ON 10/11/80; FOF TSN 0464.
```


To run the program use the following procedure:

1) read the prediction program (@REA 'program name')
2) type @RUN
3) the computer will print the following:
FASTFOR (CONVERSATIONAL.VER 9)
4) just as the computer finishes printing hit the break key
5) the computer will give a slash(/)
6) type
/SYSFILE SYSDTA=BENZ-NC8-323-PRE

/R

then hit control C and the computer will print out the calculations. A listing for this system is given on the next page.
7) This program could also be run the same way the regression program was done. In that case the amount of time needed is only a few seconds. The procedure outlined above prints the output at the computer terminal.

PREDICTION OF HEATS OF MIXING USING
THE MODIFIED UNIFAC METHOD
BENZENE (1) + N-OCTANE (2) 323.15 K
REF: DIAZ PENA, M. AND C. MENDUINA, J.CHEM.THERMO.,6,1097(1974).

$N(K, I)=$ NUMBER OF GROUPS OF TYPE K IN COMPONENT I

THE TEMPERATURE $=323.15 \mathrm{DEG} \cdot \mathrm{K}$
THE TEMPERATURE-INDEPENDENT PARAMETERS ARE

$$
\mathrm{A}(\mathrm{CH} 2, \mathrm{ACH})=12.09
$$

$$
\mathrm{A}(\mathrm{ACH}, \mathrm{CH} 2)=1.90
$$

$Z(T)=35.20-0.1272 * T+0.00014 * T * T$

MOLE FRACTION OF	EXPERIMENTAL HEATS	PREDICTED HEATS	$\%$
COMPONENT 1	OF MIXING (J/MOLE)	OF MIXING (J/MOLE)	ERROR
0.0600	160.0	165.8	-3.6
0.1607	413.0	415.5	-0.6
0.2456	591.0	594.8	-0.6
0.3172	718.0	720.9	-0.4
0.3765	800.0	805.9	-0.7
0.4484	872.0	882.8	-1.2
0.5182	910.0	926.8	-1.8
0.5818	917.0	937.4	-2.2
0.6622	883.0	905.2	-2.5
0.7598	760.0	786.7	-3.5
0.8318	609.0	633.7	-4.1
0.8984	418.0	433.8	-3.8
0.9636	168.0	175.2	-4.3

THE AVERAGE ERROR $=2.3 \%$

[^0]: 1. The prediction errors for sets 3 and C are the same.
