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ABSTRACT

Title of Dissertation: Fractionation of Multicomponent Mix-
tures by Staged Sequence Cyclic Pro-
cess and Parametric Pumping

Charles Omotayo Kerobo, Doctor of Engineering Science, 1982

Dissertation directed by:

Ching-Rong Huang
Professor and Assistant Chairman for Graduate Studies
Department of Chemical Engineering

The continuous fractionation of multicomponent fluid mix-
tures has been experimentally and theoretically investigated by
staged sequence cyclic process and parametric pumping operating

in the direct thermal mode.

A multicolumn staged sequence cyclic process for the sepa-
ration of solute mixtures was developed. The criteria necessary
for the continuous fractionation of a system of n solutes with
n+l columns arranged in a series operated with n+1 cyclic vari-
ables is presented. The feasibility for practical application
of this process was demonstrated by fractionating the model
system, O-xylene-Anisole-n-heptane on silica gel. The separa-
tion was modeled by one column staged sequence experimental data
and by the equations of continuity under nonequilibrium condi-
tions with nonlinear equilibria of the individual solutes.
Diverse operating variables necessary for maximum separation
were optimized. The results showed that this process could be
a viable alternative to parametric pumping, cycling zone ad-

sorption, or simulated moving bed.



Two column parametric pumping arranged back-to-back with
alternating top and bottom feed (to minimize reservoir mixing)
was also used in the continuous fractionation of a model system
consisting of toluene-acetophenone-n-heptane in silica gel. A
simple method for predicting the purification of a given sol-
ute(s) was derived based on the method of characteristics, by
assuming the existence of pseudo binary systems, each system
consisting of one solute and the common solvent. Comparatively,
two column parametric pumping provides better separation capa-

bility than a one column parapump.



PREFACE

A multicolumn staged sequence cyclic process for the con-
tinuous fractionation of solute mixtures has herein been intro-
duced as a viable alternative to parametric pumping, cycling
zone adsorption and simulated moving bed. A two column (back-
to-back) parametric pumping process designed for the purifi-
cation of solute mixtures, an extension of the state-of-the-art
in separation processes, is also discussed. This advance will
provide greater feasibility for practical application of these

separation technologies.
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CHAPTER 1
INTRODUCTION & AN OVERVIEW OF CYCLIC
CHROMATOGRAPHIC SEPARATION PROCESSES

INTRODUCTION

Prior articles which describe the utility of single column
cr segmented column systems for cycling zone adsorption sepa-
ration processes, as well as for comparable parametric pumping
systems have herein been extended to muliticolumn operations.
This advance will provide greater feasibility for practical

application of these separation technologies.

Direct thermal staged sequence cyclic separation processes
and two column (effluent ends connected) back to back parametric
pumping were investigated. The operating characteristics of two
column and single column top feed (Chen, et al., 1972, 1973 and
Stokes, 1976) parametric pumping processes were comparatively
evaluated, and a 1imited comparison of parametric pumping versus
staged sequence cyclic adsorption was made. The relative
capabilities and performance characteristics of cycling zone

and staged sequence cyclic process will be discussed.

Staged sequence adsorption and parametric pumping are cy-
clic separation processes characterized by unidirectional flow
and flow reversal respectively, coupled to a change in a thermo-
dynamic variable. The change in the intensive variable in a two
phase system consisting of one mobile and one immobile phase

(gas-solid, liquid-solid, or liquid-liquid) causes a separation



of the components to be achieved by alternately adsorbing and

desorbing the solutes sequentially.

Various analytical solutions for the prediction of con-
centration histories are derived for chromatographic columns
with step and pulse inputs based on linear or pseudo linear
portions of non linear equilibria. These equations are useful
for correlating system parameters that are necessary for design
purposes. The theoretical prediction of the model with pulse
inputs is applicable to the system in which the chromatographic
coiumn sequence consists of series of adsorption-desorption
processes. The models of column operation range in complexity
from that described by simplified equations of continuity to
that describing a detailed and complex situation where in all the
kinetic effects are taken into consideration. The derivations

of these analytical solutions are covered in Chapter 3.

The analysis of direct thermal mode staged sequence ad-
sorption and parametric pumping is based on equilibrium theory
with linear and non linear equilibria as developed by Pigford
(1969), as well as the more realistic non equilibrium theory with
non linear equilibria of the favorable type. The equilibrium
theory was generalized by Aris (1969) and applied to the analysis
of continuous and semicontinuous single solute separation by
Chen et al. (1972, 1973), and Gregory and Sweed (1970); and to
multicomponent separation by Chen et al. (1974), Butts, Gupta,
and Sweed (1972), and Foo, Bergsman and Wankat (1980). The

nonequilibrium theory with non linear equilibria was first



applied to the analysis of parametric pumping by Wilhelm and his

co-workers (1968).

The equilibrium theory assumes that the interface between
the solid and the fluid phases are locally at equilibrium with
a controlled linear distribution function having a temperature .
dependent equilibrium relationship. All diffusive and disper-
sive effects are assumed to be negligible: The equilibrium
theory is most suitable for dilute solutions with linear equili-
bria, and is often extended to multicomponent systems by the
principle of superimposition or by treating the multicomponent
system as a series of pseudo-~-binary systems. The application of
equilibrium theory to the staged sequence adsorption process and

parametric pumping is covered in Chapters 4 and 5.

The non equilibrium approaches with linear and non linear
equilibria constraints were simplified under the assumptions of
constant fluid and solid properties, radial uniformity and
negligible axial diffusion. In both cases, a linear interphase
mass transfer rate was assumed. In the one case, the non-
equilibrium with linear equilibria hypothetical treatment was
solved by method of characteristics, while, in another case, the
nonequilibrium with non linear equilibria was used to model the
column by the STOP-GO algorithm (Sweed and Wilhelm, 1969) and is

covered in Chapter 4.



AN OVERVIEW OF CYCLIC CHROMATOGRAPHIC SEPARATION PROCESSES

Cyclically operated gradient chromatographic processes are
separation techniques characterized by unidirectional or alter-
nating flow, coupled to a change in the thermodynamic variable.
The change in the intensive variable induces separation of the
components of a fluid mixture in a two-phase system consisting
of one mobile and one immobile phase (gas-solid, liquid-solid or
liquid-liquid). These cyclic processes include parametric
pumping, pressure swing adsorption parametric pumping and cy-
cling zone adsorption. In parametric pumping and pressure swing
adsorption, the flow is alternating, while the flow in cycling
zone adsorption is unidirectional. These new techniques in
separation technology have received considerable attention in

recent years.

Cyclic processes represent new developments in separation
science because of both their novelty and their adaptability to
techniques commonly used in the separation of fluid mixtures
(i.e. adsorption, extraction, affinity chromatography and ion-
exchange chromatography). The adaptation can be made, in
principle, to any system where alteration of an applicable
intensive variable such as temperature, pressure, pH, ionic
strength or electric field results in a differential shift in the

distribution of solutes between the mobile and immobile phases.

These new separation technigues have the following fea-

tures:



1) batch chromatographic separations can he made semi-
continuous or continucus; continuous operation mini-
mizes processing time (therby reducing degradation of
sensitive substances like proteins) and maximizes
production rate;

2) semi-continuous or continuous processes, when opti-
mized, have high separation capabilities and the sol-
utes can be concentrated within 1limits to desired
levels by setting the relative volumes of the ap-
propriate product streams;

3) no regeneration chemicals are needed to clean <the

adsorbents so chemical contamination of the product

streams is eliminated.

The late Wilhelm and his co-workers (1966) invented the
batch parapump and introduced a semi-continuous parapumping
process. Since that time, a pre-existing industrial process
known as 'pressure swing adsorption' has been identified as
operating on the parametric pumping principle. A similar
process which utilizes cyclic variation of an intensive variable
and unidirectional flow called '"cycling zone adsorption'" was

developed by Pigford and his co-workers in 1969.

A brief mention will be made of separations resulting from
cyclic changes in pressure and pH (with ionic strength or
electric field). The brevity of the discussions that will be
made on the aforementioned cyclic changes bears no reflection on

the importance of these novel separation techniques, but is due



to their limited relevance to this study. However, thorough
discussion will be offered on separations due to cyclic changes

in temperature gradients.

PRESSURE SWING PARAMETRIC PUMPING

Pressure swing adsorption (or heatless adsorption as it is
occasionally called) was invented by Skarstrom in 1959 who soon
thereafter received the first U.S. patent on the process (in
1960). The experimental set-up consisted of a two column process
which Skarstrom used alternating between adsorption at high
pressure and desorption at low pressure employing an upward and
downwe rd flow of gas respectively. Shendalman and Mitchell
(1972) presented the first detailed theoretical work on pressure
swing adsorption using the model system COg-helium-silica gel.
The configuration of their experimental set-up was similar to
that of Skarstrom (1959). In their theoretical analysis, the
equilibrium theory of Pigford (1969) was used, in which all of
the dispersive forces were assumed negligible. Criteria neces-
sary for good separation were developed, but their results did
not agree both quantitatively and qualitatively. Mitchell and
Shendalman (1973) presented a non-dispersive and non-equili-
brium model in which equations were solved using finite dif-
ference techniqﬁe by first reducing the equations from partial
differential equations to ordinary differential equations by

the method of characteristics.

Turnock and Kadlec (1971) studied the pressure swing ad-

sorption processes for the separation of nitrogen and methane c¢n



a molecular sieve. In the mathematical modeling of their system,
instantaneous equilibrium, plug-flow, and ideal gas behavior
were all assumed and the phase equilibria expression was assumed
to obey the Freundlich isotherm. Their results agree both quan-
titatively and qualitatively with experimental determination.
Kowler and Kadlec (1972) optimized the cyéle time and found that
in order to obtain the desired product composition and minimize
the exhaust rate, an optimum cycle time of approximately three
minutes was required. This work was also done using nitrogen and

methane on a molecular sieve.

Jenczewski and Myers (1970) used an equilibrium model with
favorable isotherm (Langmuir) to correlate experimental data
from a closed thermal, pulse adsorber. At 159C the active
component is adsorbed, then the column temperature is increased
to 70°C and the fluid is displaced by an amount equal to a
fraction of the column void volume which was preselected before
the start of the run. Three model systems were used--argon-
propane, ethane-propane and propane-propylene--on activated
carbon adsorbent. Measurable separation was not observed for
the propane-propylene system. The separation observed for
argon-propane and ethane-propane were quite poor. Radial tem-
perature gradients of 1.0°9C to 2.00C were noticed even with the

isothermal model of operation.

®* v

Lopez (1973) used an equilibrium plug-flow model for a batch
isothermal system (propane-argon on activated carbon) using

pressure swing adsorption. Effects of temperature, pressure and



concentration were investigated. A continuous pressure swing
adsorption system was studied by Weingartner (1973) for the
model system carbon dioxide-helium on silica gel. The ex-
perimental results were analyzed by means of an equilibrium
theory, and the various operation parameters necessary for the

complete removal of the solute (COg) were investigated.

Belsky (1977) extended the use of continuous pressure swing
adsorption to the separation of a ternary mixture--propylene-
carbon dioxide-helium on silica gel. Various performance char-
acteristics were examined. Using the same model system, Rastogi
(1977) experimentally and theoretically conducted a study based
on a non-equilibrium theory and linear adsorption equilibria. A
comparison was made for the hinary and ternary gas mixtures, and
the conditions necessary for the separation of multicomponent

mixtures were established.

Chan et al. (1980) presented a theoretical analysis of
pressure swing adsorption. The analysis was based on equili-
brium theory for a two component system where the concentration
of one component was assumed to be at trace level. The theory
predicted that for a large separation factor, high recovery of
pure product could be obtained and that increased pressure
ratios should also increase the recovery. The converse was found
true for small separation factors. The authors simplified the
transport equations for the two components by assuming that the
concentration of one of the components to maintain essential

unity. By so doing, the two simultaneous equations were reduced



to one equation solvable by method of characteristics. Wong et
al. (1980) studied the separation of hydrogen-tritium on van-
adium hydride particles on a two column system. The mechanism
of separation was evaluated theoretically and experimentally
and they concluded that the separation was due to absorption
isotope-effect which selectively occured within the monohydride
phase. Hill et al. (1982) conducted an experimental study with
equipment similar to that of Wong et al. (1980), and modeled the
separation by using equilibrium theory with minor modifications
to include Kkinetic isotope effect, finite mass transfer and

isotope exchange.

pH PARAMETRIC PUMPING (Fig. 1.1)

Parametric pumping processes, which are based on pH varia-
tion, are usually operated in the so-called recuperative mode,
i.e. the intensive variable is set at a different level in the
streams entering either end of the column. 1In this mode, the pH
change moves across the bed as the entering streams penetrate the

chromatographic column.

Sabadell and Sweed (1970) developed pH parametric pumping
for the separation of agqueous solutions of K* and Na*t on a cation
exchange resin. The experimental apparatus was a one column
arrangement with the top end open and the bottom end closed.
Their results were rather encouraging since they were able to
purify the material to 15 to 80% above the feed concentration.
In 1975, Shaffer and Hamrin reported a pH parametric pumping

process for trypsin removal from an enzyme mixture (chymo-
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trypsin plus trypsin) using a sepharose type ion exchanger. The
separation was predicted by Pigford's (1969) equilibrium theory
and the experimental results were much lower than the theo-
retical expectations. Since then, Chen and co-workers have
researched protein separations via pH parametric pumping with

emphasis on maximum separation and continuous operation.

Chen et al. (1976, 1977) have experimentally investigated
a semi-continuous pH parametric pump using the model system of
the two arbitrarily mixed proteins--human serum albumin and
human hemoglobin in aqueous solution--on the sephadex cation
exchanger. These two proteins have different isoelectric points
and the processes developed for the model system may be applied
to any mixture of proteins having different isoelectric points.
Proteins which carry a net positive charge and will adsorb on a
cation exchanger at pHs below their isoelectric points; proteins
which carry a net negative charge adsorb at pHs above their
isoelectric points. The semi-continuous pump, which had a
center feed between an enriching column and a stripping column,
was operated batchwise during upflow and continuously during
downflow. Two pH levels were imposed periodically on the system.
Various factors affecting the separation were examined, in-
cluding pH levels and ionic strength of the protein solutions,
resevoir displacement and product flow rates. Hemoglobin was
stripped from the top stream and enriched in the bottom stream;
the separation factor for hemoglobin reached a limit of six in

the best run. The albumin concentration remains unchanged in
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this process, but removal of hemoglobin from the top stream
leaves the top product relatively richer (by weight fraction) in

albumin.

Chen et al. (1979) used a continuous pH parametric pump to
separate the model system hemoglobin-albumin on a CM sepharose
cation exchanger. This pump configuration had protein feed
solutions at low pH and at high pH (relative to the isoelectric
point of hemoglobin) introduced respectively to the bottom and
top of a chromatographic column. It was shown that increasing
the volume of the top product to some optimum level relative to
the volume of the bottom product gave the pump the capacity for
large enrichment of hemoglobin in the bottom product stream.
Note that this system should, in fact, be considered '"semi-~
continuous," because each cycle contains two stages where the

product is not withdrawn.

An equilibrium theory was used in a theoretical analysis of
the batch single-column and multi-column pH parametric pump by
Chen et al. (1980). Simple graphical procedures for predicting
separation showed that a parametric puﬁp consisting of a series
of columns packed alternately with cation and anion exchangers
is capable of yielding very high separation factors. Experi-
mental results, based on a comparison of albumin enrichment in
one column and two column systems packed with CM and DEAE

sepharose, were shown to support the theory.

Chen et al. (1981) developed a mathematical model with

finite mass transfer for the model system hemoglobin-albumin on
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CM sepharose. This model agrees quite well with the experi-
mental data. Various factors affecting the separation were
examined, including the addition of recycle stages to the one

column process.

Fractionation of multicomponent protein mixtures by multi-
column pH parametric pumping was investigated theoretically and
experimentally by Chen and co-workers (1980). The parametric
pumping apparatus consisted of a series of chromatographic
columns packed alternately with cation and anion exchangers.
Separation of a mixture of n-proteins required a parametric
pumping system consisting of n-columns and n+2 reservoirs.
Various methods of operation of the parapump were discussed.
Preliminary experimental data were shown in this paper for the
two column batch separation of the model system hemoglobin-
albumin on CM and DEAE sepharose, and these data were in
qualitative agreement with the calculated results. Optimiza-
tion of the batch two colunmn system has been recently completed
and separation factors as large as twenty five were obtained for

the mixture (Chen et al., 1981).

OTHER RELATED VARIATIONS OF pH PARAMETRIC PUMPING

Chen, Ahmed and Rollan (1981) studied the purification of
the enzyme (alkaline phosphatese) by parametric pumping with pH
and ionic strength using a semi-continuous process. Alkaline
phosphatese, extracted from the human placenta, contains some
contaminating proteins which have isoelectric points approxi-

mately equal to that of the enzyme; hence, the additional
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intensive variable (ionic strength). Comparison of enzyme
purification by parametric pumping and cycling zone adsorption
showed that the former process has a higher purification factor
and a larger percentage enzyme activity recovered, while the
latter process has a higher rate of production. Optimization
indicated that a parametric pump operating with two proper
combinations of the two lintensive variables--pH and ionic
strength--is superior to a parametric pumping system based on

only pH or ionic strength.

Chen, Hollein and Ma (1981) have combined pH and electric
field for splitting two proteins in a mixture from each other in
a semi-continuous mode of operation with a single column set-up.
The same model system was used as in previous protein separation
studies, i.e. hemoglobin and albumin in aqueous solution on CM
sepharose cation exchanger. The separation obtained in the
single column, semi-continuous pH parametric pumping process is
enhanced by inducing an electric field across the chromato-
graphic column during certain stages of the process. Separation

factors as high as 120 are reported for the mixture.

THERMAL PARAMETRIC PUMPING

The basic principles of parametric pumping were first de-
scribed by Wilhelm et al. in 1966. In this pioneering work, a
batch recuperative mode of operation was applied; the fluid was
heated in a heat exchanger before flowing up through the bed and
cooled before flowing down (see Figure 1.2a). Figure 1.2b

illustrates the direct thermal mode batch parametric pumping
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which calls for external application of heating and cooling
sources during upward and downward flow of fluid through the
column. The discussion of thermal parametric pumping will be
started with the Direct Thermal Mode before going into the

Recuperative Mode.

The Batch Direct Thermal Mode (Fig. 1.2b)

The direct thermal mode can further be subdivided into two
categories, batch and open separations. The batch separations
will first be presented in chronological order and followed then
by the open separations. Briefly, a suitable experimental set
up consists of a Jjacketed column packed with a suitable ad-
sorbent. In the first half cycle, the column is heated and the
fluid is flown from the bottom reservoir through the column to
the top reservoir, and in the second half cycle, the column is
cooled and the fluid is flown from the top reservoir through the
column to the bottom reservoir. By successive synchronization
of the flow directions with heating and cooling, the necessary
separation is achieved. The principle behind the separation is
that during the cold downflow, the adsorbent retains or retards
the movement of the solutes, and releases them during the hot
upflow, by so doing the solutes are concentrated at the top

reservoir and depleted from the bottom reservoir.

The work of Wilhem and Sweed (1968) illustrates the batch
direct thermal parametric pumping. The authors separated tol-
uene from n-heptane on silica gel adsorbent employing two

temperature cycling limits (hot and cold). The separation



factor (i.e. the ratio of the concentration in the top reservoir
to the concentration in the bottom reservoir) was in the magni-
tude of 109:1 after about 52 cycles. The theoretical method of
analysis was complex and involves a good deal of computation.
Sweed and Wilhelm (1969) presented a powerful method of com-
putation algorithm for the solution of the transport equations
resulting from the simulation of the batch pump. The equations
are first simplified by reducing the partial differential equa-
tions to ordinary differential equations by method of charac-
teristics, after which the ordinary differential equations are
solved numerically by the STOP-GO method, suitable for handling
of any rate equation. The method of characteristics eliminates
all axial diffusion. The STOP-GO method was used to simulate the
toluene-n-heptane data (Wilhelm and Sweed, 1968) and the com-

parisons were quite good.

Pigford, Baker and Blum (1969) developed the "equilibrium
theory," based on the assumption of localized equilibrium
between the solid and fiuid phases. The material balance
equations are greatly simplified since rate equations are not
required. Linear equilibrium expressionwas assumed and all
axial dispersive forces were neglected. The resulting equation
after applying the assumptions is a hyperbolic equation sol-
vable by method of characteristics. The validity of the equi-
librium theory was tested by the authors by fitting the equi-
librium parameter, b, with the data of Wilhelmet al. (1969), but

no correlation was found, and, also, the concentratons are over
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predicted. This lack of correlation, as one would expect, is a
result of the oversimplification of the transport equations. In
any case, this paper (Pigford et al. 1969) served as the
limelight behind the reason for separation. The validity of the
equilibrium theory caused considerable correspondence--amongst
active and prominent investigators in this field--because of a
difference of opinions. The equilibrium theory was generalized
by Aris (1969). The prediction for low concentration was quite
reasonable and the poor correlation for high concentration was

attributed to mass transfer limitations.

To this feasoning, Rhee and Amundson (1979) pointed out that
it was due to non-linear equilibria at high concentration rather
than mass transfer resistances. Chen and Hill (1971) presented
the separation characteristics of batch and open parametric
pumping, the details of which will be discussed later. Sweed and
Gregory (1971) modeled the separation of NaCl-Ho0-ion retarda-
tion resin. The dependence of mass transfer coefficients on
temperature and velocity was determined from break through data.
The data obtained from this work was used to simulate a con-
tinuous process. Butts, Gupta and Sweed (1972) used the equi-
librium theory for the separation of multicomponent mixtures.
The authors presented algebraic equations for the prediction of
column and reservoir concentrations based on linear, non-com-
petitive, non-dispersive and local equilibrium theory. The
model considered asymetric fluid displacements in both half

cycles, thereby causing different solutes to penetrate dif-
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ferent distances in the column. Butts et al. (1973) extended the
analysis for multicomponent mixtures to the separation of a
binary mixture of K* and H* on a Dowex 50x8 resin. K* ions were
concentrated in the top reservoir and H* ions in the bottom
reservoir. With slight modification in the operating condi-
tions, a ternary mixture was separated. In this experiment, K*
ion was concentrated in the top reservoir, HY in the bottom

reservoir, and Nat in the middle of the column.

Gupta and Sweed (1973) used a mixing cell model to simulate
the non-equilibrium effects in parametric pumping with linear
isotherms. The effects of mass transfer resistances and axial
diffusion were taken into consideration. This simulation is
more realistic since equilibrium conditions are rarely attained
in parametric pumping. The cell model was solved by either
Laplace transform or matrix exponentiation. Grevillot and
Tondeur (1976) studied equilibrium staged parametric pumps with
non-linear isotherms. One single equilibration step and dis-
crete transfer were regarded as one-half cycle. Suggestive
analogies similar to that of total reflux distillation were
given. Simple graphical McCabe-Thiele representation of the
history of the concentration transients for the first few cycles
was also presented. Single stage, two stage and nth stage
parametric pumping were described. The number of stages is, in
essence, equivalent to the number of cells. A one stage or cell
means that the whole column, consisting of the adsorbent par-

ticle, is considered to be a single stage or cell. Grevillot and
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Tondeur (1977) extended the single transfer step equilibrium
graphical analysis (Grevillot and Tondeur, 1976) to multiple
transfer equilibration steps per half-cycle. The reservoir
concentrations were also embedded in the staging analysis. N
equilibrium stage and n transfer steps per half cycle were also
presented. The steady state graphical solution consists of a
staircase for both linear and non-linear equilibria. Theo-
retically, increasing the number of transfer steps, n, even with
a single stage, an infinite separation is possible, since the
concentrations of the reservoirs are accounted for from cycle to

cycle.

In a series of studies done by Rice and his co-
workers (1973, 1973, 1974, 1975, 1975), qualitative treatment
has been offered on batch parametric pumping. Their approach is
a very important fundamental treatment that has been neglected
since the inception of parametric pumping principles. Important
dispersive forces that influence separation have been neglected
for many years, all on the premise of simplifying the horror of
mathematical equations resulting from modeling the internal and
external solute movements in the column. Rice (1973) presented
an analytical treatment for the prediction of the dispersive
forces and steady state separation in parametric pumping. His
derivation was based on ''zero-flux condition," meaning that as
the separation approaches a steady state value, the average
solute flux appraches zero. The author also predicted that an

optimum steady state separation cicurs at a kinematic Peclet



number of about 3.0, and that larger separations could be
obtained when the pump is operated at high frequency. Rice and
Mackenzie (1973) presented experimental data for aqueous oxalic
acid on activated carbon obtained from batch parametric pumping
operated at high frequency. A reversed separation effect was
observed. At high frequency of operation, thermal velocity is
less than fluid velocity. Experimental studies on the tempera-
ture gradient showed that the variation of the axial temperature
was in the neighborhood of 29C. The author suggested inclusion
of the radial diifusion terms in the original transport equa-

tions of Baker and Pigford (1971).

Rice and Foo (1974) studied the effects of thermal diffusion
and frequencies of operation on batch parametric pumping opera-
tion. Rice and Mackenzie (1973) proved experimentally that
axial temperature gradient was too small to be worthy of any
attention in the modeling, but that radial thermal velocity is
gquite slow and could significantly affect the rate adsorption-
desorption radially in the column. Rice (1974) studied the
effects of all transport resistances on the optimum frequencies
in parametric pumping. In commenting further on the temperature
gradients in the column, the author assumed that small reservoir
volumes are of sufficient physical grounds to neglect the axial
temperature gradient, and that radial temperature gradients are
primarily responsible for concentration dependence on radial
position. Rice (1975) compared square velocity wave of Pigford

(1969) to a sinusoidal velocity wave and concluded that para-
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pumps operated with square velocity profiles producelarger
separations than parapumps operated with purely sinusoidal
velocity waves. For parapumps operated with equal displace-
ments, but with square wave and sine wave velocity profiles, the
author concluded that the enfichment of parapumps with sine wave

velocity profile is slower.

The Continuous Direct Thermal Mode Parametric Pump (Fig. 1.3)

Application of the parametric pumping process to the sepa-
ration of liquids in open systems has been studied extensively,
both continuously and semicontinuously in the direct thermal
mode. Sweed (1971) presented a considerable review of experi-
mental work, while Horn and Lin (1969) were pioneers in pre-
senting a theoretical calculation for such an open system. The
experimental arrangement of Horn and Lin (1969) consisted of a
two-column arrangement with a center feed, a center reservoir
and reservois at both ends of the column where products were
withdrawn. The mathematical description of the apparatus was
rigorous. Firstly, a single solute system was used in which it
was mathematically shown that the solute can be concentrated at
one end of the reservoir (the "enrichment problem'"). Secondly,
the mathematical analysis of a two component "split problem' was

also presented.

Gregory and Sweed (1970) introduced a continuous process
analytically for an equilibrium parametric pump by method of
characteristics. Separations resulting from symmetric and non-

symmetric flow systems for various configurations are tabu-
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lated. Sweed and Gregory (1971) simulated a continuous process
with NaCl-HoO-ion retardation resin system data obtained from a
batch parametric pump. This paper was rather significant in that
it illustrated that batch parametric pumping can be modeled

accurately with a continuous process.

Chen and Hill (1971) introduced the first completely con-
tinuous parametric pumping process. Five different versions of
the thermal parapump (two continuous, two semi-continuous, and
the batch pump) were analyzed in terms of the equilibrium theory
and the appropriate mass transport equations. The mathematical
model indicates that, under certain operating conditions, the
batch pump and pumps with feed at the enriched end have the
capacity for complete removal of a solute from one product
fraction and for arbitrarily large enrichment of that solute in
the other fraction. Separation factors and enrichment are
modest for pumps with feed at the depleted end. The concept of
"penetration distance" was introduced in this paper as the
distance a concentration front will move into the column during
a half cycle. Experimental verification of these models for the
system toluene-n-heptane on silica gel have been studied exten-

sively by Chen and his co-workers (1972, 1973a, 1973b).

Chen et al. (1972) studied the continuous parapump operation
experimentally with top feed. The system used for this con-
tinuous parapump was toluene-n-heptane on silica gel. A separa-
tion factor of over 600 was obtained for only 14 cycles in the

region predicted by the equilibrium theory. In the initial work
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done on the glucose-fructose-water system, fullers earth was
used as the adsorbent (Chen, Jaferi and Stokes, 1972). The
breakthrough data were fitted to a Langmuir isotherm and the
separation predicted with equilibrium theory. A considerable
attempt was made to design the experimental runs so that the
equilibrium parameter. b, could be obtained. An extremely long
cycle time was required for a typical run. Gregory and Sweed
(1972) experimentally determined the behavior of a continuous
parametric pumping system. Experimental batch data were used to
simulate continuous process. Five versions of column arrange-
ments were optimized. The equilibrium parameters and rates of
mass transfer were experimentally determined and used in the
solution of model equations by STOP-GO algorithm. Gupta and
Sweed (1973) studied the effects of nonequilibrium in parametric
pumping. The mixing cell model of a packed bed was used in the
analysis of the nonequilibrium effects. The results obtained
were more realistic when compared with the equilibrium theory.
The authors presented a two column schematic for the separation
of multicomponent mixtures by nonsymmetrical flow pattern in the

columns.

A semicontinuous parametric pumping with top feed was ex-
perimentally studied by Chen, Reiss, Stokes and Hill (1973).
Three possible regions of pump operations were presented. The
concentration transient equations derived under equilibrium
conditions were presented. It was postulated that an infinite

steady state separation factor can be attained when the pump is
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operated in Region 1 (separation factor equal the ratio of top
product concentration to bottom product concentration). Chen
and Manganaro (1974) derived mathematical expressions for de-
termining optimal performance of equilibrium pumps. The studies
were done with a model system NaNOg-H90 via ion-retardation
resin. Empahsls was placed on the operating conditions neces-
sary for achieving high separation factors with maximum yield.
Chen, Lin, Stokes and Fabisiak (1974) extended the continuous
thermal parametric pumping to the separation of multicomponent
mixtures. The model system used was toluene, aniline and n-
heptane on silica gel. A simple method for predicting multi-
component separations was developed. This method invokes the
assumption that a multicomponent mixture contains a series of
pseudo-binary systems. Each binary system consists of one
solute (toluene or aniline) plus the common inert solvent (n-
heptane). Experimental data agreed reasonably well with the
analytical predictions. The multicomponent system, glucose-
fructose-water on a cation exchanger (Bio-~-Rad AG50W-X4, calcium
form) was also studied (Chen and D'emidio, 1975). Agreement
between experiment and theory was roughly equivalent to that

obtained above.

In 1973, Sweed and Rigaudeau outlined the heat transfer
problems that would be encountered in the scale up of thermal
parametric pumping systems. The heating and cooling times are
proportional to the diameter squared. The authors suggested

packing numerous laboratory size tubes in a single shell for



scale up. A scale up of the continuous thermal parapumping
system was done and the design equations were developed (Chen and
Stokes, 1979). Proposals were outlined for the construction and
operation of the parapump assembly; the auxiliary equipment and
the instrumentation were also outlined. The commercial parapump
assumes the configuration of multiple parallel tubes in a heat
exchanger shell; this design facilitates direct thermal mode
operation. The energy requirements were shown to be of the same

order of magnitude as that for distillation.

Grevillot (1980) reported the analytical and theoretical
equilibrium staged continuous parametric pumping process. This
paper is an extension ot two previous papers (1976, 1977) for the
batch process. Operating conditions for a linear parapump are
determined analytically and theoretically and generalized for
non-linear isotherms. Analogies with distillation are made
taking into account optimal feed stage location, minimum reflux

and separation factor for given sets of conditions.

Rice and Foo (1981) carried out a direct-mode process for
the continuous desalination of water using a dual-column system
packed with bifunctional resin (Bio-Rad AG11A8). The deriva-
tions of the design eguations for steady state continuous
process were based on a nonequilibrium batch theory. The
equation for the prediction of the steady state separation
factor for continuous parapump as a function of the steady state
separation factor for batch parapump and product rate seems to

agree very well for the range of experiments undertaken.



Costa, Rodrigues, Grevillot and Tondeur (1982) have re-
cently studied the purification of phenolic wastewater by a
continuous direct mode parametric pumping using linear equi-
librium theory. This work was done with a single column with top
teed and packed with Duolite ES-681. The nonmixed dead volume
model presented was tailored after the work of Chen and Hill
(1971). The concentration transient equations developed to
emphasize the influence of top and bottom dead volumes were also
presented for batch, semicontinuous and continuous processes.
Based on both of these experimental results and analytical
results for the nonmixed reservoir, in order for the con-
centration transients to be improved, a minimum top dead volume
should bé maintained for a given bottom dead volume. Also,
relative to the mixed case, a better separation could be obtained

witicut top dead volume.

RECUPERATIVE THERMAL MODE PARAMETRIC PUMPING

In addition to the pH parametric pumping already discussed,
the thermal recuperative mode was the first recuperative mode of
parametric pumping initiated by Wilhelm and his co-workers
(1966, 1968 and 1969). Despite the inherent energy recovery
advantage of recuperative thermal mode over the direct thermal
mode, much work has not been done in this area probably due to
the difficulty of precise experimental work. The experimental
results of Wilhelm and co-workers were rather discouraging. The
separation factors that were obtained from their results ranged

from an average value of 1.11 to a maximum value of 1.22.
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However, Rolke and Wilhelm (1969) presented a very detailed
mathematical modeling for the simulation of a continuous re-
cuperative mode parametric pumping. Though the modeling was
very attractive, the computational algorithm was too time con-

suming.

Sweed and Rigaudeau (1973) noticed that for there to be
large separations, thermal waves must breakthrough the column
for any given cycle. It was shown that earlier works on the
recuperative mode were performed under the condition where
thermal breakthrough did not occur. Simulated results where
substantial separations could be obtained with proper selection

of thermal penetration were also presented.

Wankat (1978) theoretically studied continuous thermal re-
cuperative mode parametric pumping, and various conditions
necessary to achieve complete and partial separation for a given
solute from the bottom product were elaborated. When thermal
wave velocity is greater than the concentration wave velocity,
complete separation of solute from the bottom product is attain-
ed, and the separation for both direct and recuperative modes are
the same. The energy requirements for a given separation are
less for recuperative mode than direct mode, and could also be
decreased for unmixed reservoirs. For pumps with partial

separations, unmixed reservoirs could increase the separation.

A new concept recently presented by Tondeur, Jacob, Schweich
and Wankat (1981) is the "Guillotine Effect." This effect, which

is a result of thermal shock waves, would cause some solute
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effluent concentrations to temporarily approach zero (very
dilute). This phenomena could be noticed in any chromatographic
adsorption-desorption process where pure cyclic thermodynamic
waves can be obtained (i.e. temperature, pH and concentration).
In fact, this phenomena is a result of adsorption of the solute
due to a change in temperature from hot to cold. When the
temperature is initially switched from hot to cold, the cold
temperature front travels down the column; the solute con-
centration front trailing behind it is adsorbed, and, as the
adsorbent capacity is approached, the solute concentration will

rise and begin to approach the feed concentration.

CYCLING ZONE ADSORPTION

Cycling zone adsorption is a cyclic separation technique
characterized by unidirectional flow through a series of columns
called "zones." According to Pigfordetal. (1969) who developed
this process, the direct mode was called "standing wave,' while
the recuperative mode was called '"travelling wave."” In the
direct mode, the columns are cooled or heated externally, and in
the recuperative mode, the fluid entering the column is heated
or cooled in a heat exchanger. The zones are arranged in a way
such that the temperatures (or the applicable thermodynamic
variables) are out of phase. The authors reported four experi-
ments consisting of direct and recuperative mode of operation.
Two of these experiments are single zone recuperative mode for
the separation of methane from helium and acetic acid from water;

while the other two experiments are a single zone direct mode for
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the separation of acetic acid from water and double zone direct
mode for acetic acid from water. The reported separation factors
are high for the direct modes and even higher for the two zone.
A detailed theoretical study was done by Baker and Pigford
(1971), and theoretical explanation of the phenomena of sepa-
ration of the cycling zone adsorption process presented. The
authors showed that thféequations applicable to the recuperative
mode are equally applicable to the direct mode if the direct mode
is considered to be a recuperative mode with infinite thermal
wave velocity. The heat and mass balance equations were solved
with the assumptions of local equilibrium theory (Pigford et
al., 1969). The characteristic solution predicted that the
cycling temperature on the column whether it was direct or
recuperative, propagates through the column without changing
shape or amplitude. The analytical solution for the linear
isotherm predicts that infinite separation factors could be
obtained as the number of zones approaches infinity, but similar
conclusions cannot be reached for nonlinear isotherms due to
shock and diffusive waves. The concentrations obtained for
recuperative modes can be enhanced or amplified if the thermal
wave velocity can be adjusted to be equal or lie between the
concentration wave velocities of hot and cold temperatures.
Experimental results of the adjustment of the thermal wave

velocity was not reported.

Gupta and Sweed (1971) analyzed cycling zone adsorption

process analytically. Model equations and graphical compu-
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tational algorithmwere presented based on equilibrium theory
with linear equilibria. Their emphasis wason the proper selec-
tion of fluid displacement that would enable increased separa-
tion to be obtained.Ginde and Chu (1972) used a mixed bed of ion
exchange resins in a single zone cycling adsorber to separate
NaCl from water. This process was essentially a batch cycling
zone with total recycle since products from the column were
recycled until the desired separations were obtained. The
parameters which affected separations were the amount of liquid
in the system, the flow rate and the cycle time. In 1972, Rieke
extensively studied the direct thermal mode of cycling =zone
adsorber for the model system toluene-n-heptane on silica gel.
Experimental results showed that separation could be improved by
switching temperature at an optimum frequency. Results for
partial and no recycling were presented, and for the case with
partial recycling, increased separation can be obtained, but

longitudinal mixing limited the amount of separation.

Wankat (1973, 1974; sece Fig. 1.4) extended the cycling zone
adsorption process to liquid-liquid extraction. With a col-
lection of test tubes, experiments were carried out for the
separation of diethylamine-water-toluene, where toluene was
used as the stationary phase. Direct and recuperative modes of
operation were studied using the counter-current distribution
system similar to that in Craig and Craig's "Technique of Organic
Chemistry.'" Discrete transfer and equilibrium steps were ap-

plied to keep one liquid phase stationary. For the recuperative
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mode, a dependency of separation on thermal wave velocitiy was
observed. However, a qualitative agreement was obtained both

theoretically and experimentally.

Meir and Lavie (1974) theoretically studied a continuous
cyclic zone adsorption. In £his recuperative mode process, a
sinusodial temperature input was assumed to be periodically
imposed on the column. The mathematics of the problem was
formulated under the assumption of local equilibrium. The
analytical solution which was obtained via method of charac-
teristics predicts the conditions under which separation could
be obtained. Wankat (1975) showed tﬁat a recuperative mode
cycling adsorption can be used to separate fluid mixtures into
their individual components. The theoretical approach was based
on local equilibrium and equilibrium staged theory. The temper-
ature inputs consists of a series of temperature steps with one
step for one component. Conditions necessary to effect separa-
tion were outlined.The equations presentedwere the sameas those
of Baker and Pigford (1971) and the conditions necessary for
separation are based on the characteristic solution. The
calculational scheme based on the equilibrium staged model is
similar to the STOP-GO algorithm developed for parametric pump-

ing (Sweed and Wilhelm, 1969).

Nelson, Silarski and Wankat (1978) developed a theoretical
model for recuperative cycling zone adsorption processes. The
equations were derived based on the equilibrium stage model and

were solved numerically by the modified fourth order Runge-Kutta
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method. The algorithm is a general scheme that is capable of
handling different equilibrium isotherms and any thermodynamic
intensive variable necessary for cyclic separations. The com-
puter algorithm was used to simulate various experimental data
and the results agree qualitatively. Foo, Bergsman and Wankat
(1980) developed a segmented cycling zone adsorption system for
the separation of multicomponent mixtures. This direct mode
cycling zone systuem works on the principle that different solute
concentration wave velocities have to be slower than or faster
than given thermal wave velocities in order for the components
to be separated. A single column consists of many zones and each
zone consists of one or more sections. Based on the experimental
results, the degree of separation depends on the total number of
sections, the number of sections in a given temperature zone and

the thermal switching rate.



CHAPTER 2
ADSORPTION MECHANISM IN PARAMETRIC PUMPING

AND CYCLIC ADSORPTION

The concept of adsorption chromatography is dated as far
back as 1903 when it was first used for the separation of plant
pigments. Since then, other analytical methods have been
developed, and, as a result, the usage of adsorption chromato-
graphy has since been narrowed to the purification of fluid
mixtures that are prohibitively expensive or impossible to
separate by less conventional methods. This chapter will focus
primarily on the adsorption of some organic compounds on some

solid adsorbents.

The basic underlying principle of adsorption is interac-
tions between the adsorbents (solid phase) and the adsorbates
(solutes). These interactions can be purely physical, chemical
or a combination of both. In physical adsorptions, layers of
monomolecules are arranged on the adsorbent surface and are held
there by weak van der Waals forces. Under appropriate operating
conditions, the layers of monomolecules may concentrate at the
interphase (interphase between the solid and fluid phases) due
to these forces. The rate and degree of adsorption depends on
the adsorbent type and the chemical properties of the adsor-
bates. On the other hand, chemisorption could involve reaction
or chemical bonding between adsorbent and the adsorbate. The

presence of the various forces in both the adsorbents and

36
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adsorbates depends on their polarity (i.e. the positive and

negative centers due to molecular arrangement or orientation).

Most adsorbents suitable for the separation of hydrocarbons
may be polar (for adsorption chromatography) or non polar (for
reverse phase partition chromatography). Silica gel, which was
found most suitable for this study, is a polar adsorbent. The
degree of adsorptive interactive forces will, in most part,
increase with increased solute polarity. Solutes or solvents

can be arranged in increasing order of dipole moment as follows:
Water > oxygenated organic compounds > hydrocarbons (2.1)

One can then conclude that the polarity of the solutes (solvents)
increases with the number of assymetrically placed functional
groups, and decreases with increasing molecular weight for a

given number of functional groups.

It is now evident that the adsorbent bed is the basis of
chromatographic separation. So, to achieve separation, migra-
tion of substances through the bed has to be at different rates.
The substances to he separated are passed through the adsorbent
column and the adsorbent retarded or released based on the
conditions of operation. The mobile phase serves as the avenue
of transporting the solutes through the column. Therefore it
will be very instructive to take a closer look at the stationary

material and the way it selectively retards the solutes.

Figure 2.1 shows the chemical representation of the surface
of silica gel. The basic germane characteristics of silica gel

are the structure and chemical configuration of its surface.
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These surface characteristics can be exceedingly complex in
nature. The surface layer can consist of hydrogen bonded water
and silanol groups where one or two OH groups are attached to the
same silicon atom. Silica gel can be chemically or thermally
modified. If it is not chemically modified, there is a tendency
towards irregularity in the nu%ber and spacing of the surface
groups. The effect of these irregularities 1is a 1lack of
reproducibility and separation characteristics. Silica gels
that are not chemically modified have to be modified thermally
(i.e. activation) so as to control the surface activity or
strength. The number of OH groups accessible to the solutes
determines the degree of bonding between the gel and the solutes.
Silica gel can be partially or completely deactivated by the
addition of water which covers the active sites by hydrogen
binding. The importance of adsorbent selection to suit the
material to be separated can not be overstressed. It is
essential to have a thorough knowledge of the nature of the

separation mechanism.

In adsorbents like silica gel, ion-dipole and dipole~dipole
interactions may be responsible for the mechanism of adsorption.
Induced dipole interactions (van der Waals forces) may also be
present if materials to be separated are weakly polar. Amongst
the various factors which may affect adsorption is the steric and
spatial differences between solutes. This factor enables geo-
metric and optical isomers to be separated by adsorption chro-

matography. The steric and spatial factors are also largely



responsible for the extent to which the solute is arranged on the
surface of the adsorbents, and since some solutes are easily
arranged relative to other solutes, the easily arranged solutes

are adsorbed easily.

The usual configuration of a chromatographic process for the
separation‘of liquid mixtures 1s a cyclindrical column packed
with pre-selected solid particles. In the convectional ad-
sorption process, the fluid mixtures are introduced from the top
of the column and the effluent collected in fractions and
analyzed, or the compositions may be analyzed through an on-line
system such as a gas chromatograph or UV spectrometer. As the
fluid mixtures are steadily introduced, the solutes tend to be
adsorbed by the solid, starting from the top of the column and
gradually saturating the column as the process is continued.
After saturation, the solutes are eluted by a single solvent, a
combination of solvents or by applying an eluotropic series of
solvents. The elution process depends con the solutes being
separated. The packed column could be regenerated by heating,
or, if the elution process consists of a rational series of
solvents (Scott and Kucera, 1973), the packed column is auto-
matically regenerated and ready for the next analysis. For
processes that involve analytical separations, the fluid mix-
ture is introduced in the form of a pulse followed by elution.
The magnitude of the pulse input amongst many other factors

depends on the purity desired.

EQUILIBRIUM CONSIDERATIONS

During the process of separation in a packed column, solute



bands migrate down the column at a velocity, uj con (see Chapter
3). ui,con, which is perhaps the major variable that ensures
separability of different i solutes, is functionally dependent

on the operating variables and equilibrium parameters.

Ui, con = t(bulk velocity, solid phase concentration, ther-

modynamic variables, etc.) (2.2)

The equilibrium distribution between the solid and liquid

phase can be expressed as
xi = £(y,T) (2.3)

Equation 2.3 means that the solid phase concentration, x, is
functionally dependent on the liquid phase concentration, y, and
the column temperature, T. The equilibrium distribution iso-
therms (Perry, 1973) are frequently characterized as "favor-
able" or '""convex'" (such as that shown in Figures 2.1 and 2.2) if,

and only if

3 2f

= = negative (2.4)
dy?2 ¢

or "unfavorable' or ''concave'" if, and only if

3 2f

—= = positive (2.5)
ay2 P

and '"linear" if, and only if

2
%;% = Zero (2.6)

Favorable breakthrough curves such as that shown in Figures
2.1 and 2.2 can be calculated from unfavorable desorption data

by the method of characteristics (Sherwood, Pigford and Wilke,
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1975). Values of x, as a function of y, were estimated using
desorption breakthrough data after the column was initially
saturated by 1% v/v o-xylene and 1% v/v anixole in n-heptane.
The column was eluted with pure n-heptane at a flow rate of 1
cc/min. This method of characteristics was derived for single
solutes, but was extended to the analysis of two solutes by
superposition of single solute results with the assumption that
adsorption of each solute is independent of the presence of
others. Equilibrium distribution isotherms for most solutes,
especially hydrocarbons, exhibit convexity. There are few
exceptions (Sherwood, Pigford and Wilke, 1975) to this observa-
tion in adsorption of electrolytic solutions in ion exchange
resins. Contrary to most assumptions in the modeling of ad-
sorptions in packed beds, linear equilibrium isotherms are not

necessarily obtained at low (dilute) solute concentrations.

For qualitative and quantitative prediction of column be-
haviors, realistic expressions for the equilibrium distribution
isotherm are imperative. This equilibrium distribution expres-
sion, which is the driving force, F(x,y), that causes separation
of solutes in a large number of packed columns, relates to the
characteristic behavior of the solutes in both the liquid and
solid phases. The most widely used of these adsorption equili-
bria expressions for single components are the famous Langmuir,
Freundlich, Brunauer, Emmett, and Teller (BET) expressions, and
for multicomponents the Langmuir expression. These are empir-

ical correlations mostly derived for the adsorption of gas



45

mixtures (Sherwood, Pigtord and Wilke, 1975) and have been

successfully applied to the correlation of liquid mixtures.

The Langmuir expression (Eq. 2.7) was derived on the as-
sumption of mono-layer and the fixed number of adsorption sites
available for adsorption on the solid surface. Equation 2.7 is
useful over a limited concentrationrange, and it also predicts
linear equilibrium isotherms as the fluid phase concentration

approaches zero.

_ _QKy*
¥ 5T 1 Ky* (2.7)
The Freundlich expression (Eq. 2.8) is the most widely used

for the correlation of adsorption equilibria, but does not
X = kyl/n (2.8)

predict linear equilibrium isotherms as the concentration ap-
proaches zero. Other equilibrium isotherm expressions are
extensions of the Langmuir isotherm developed for complex sys-
tems. For the systems used for this work, a modified Langmuir
isotherm (first developed by Sweed, 1969) of the form

Ay *

= —a¥*
X = 1 By ¥ + Dy* (2.9)
was used. The constants A and B are temperature dependent

constants to be determined emperically, while the constant D is

dependent on the adsorbent type.

KINETIC CONSIDERATIONS

Although understanding of the kinetics of the movement of
the solutes is a basic necessity for effective modeling of a

packed bed, the transport mechanism of a given solute in a packed
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bed could be very complex. A single or a combination of the

following transport mechanisms contributes to the adsorption of

the solute by the solid phase:

1. eddy diffusion;

2. mass transfer of the solute from the fluid phase to the
interface;

3. mass transfer of the soiute from the interface to the
liquid phase;

4, mass transfer of the solute into the solid phase;

o. mass transfer of the solute on the adsorption sites of
the solid phase; and

6. in some cases, chemical reaction of the solute with the

adsorption sites.

During the process of adsorption, the above characteristic
phenomena may be sequential as outlined and in the desorption
process, the reserve order of the outlined sequence is true. For
the formulation of simple models, most of the above mechanisms
are neglected, especially the related mass-transfer resistances
and longitudinal dispersion. And upon such simplifications, the
concentration at the interphase 1s usually taken to be in
equilibrium with the solid phase. The most frequently used modeis
for the description of effluent curves from the packed bed are the

equilibrium and finite mass transfer models.

In the equilibrium model, radical velocity, concentration,
and temperature gradients are usually disregarded. In both

isothermal and adiabatic operations, effect of temperature on
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the physical parameters are usually neglected except in the
equilibrium relationship. If mass transfer between the fluid
and solid phases is assumed fast, simple adsorption equilibria
may be adequate. The resulting transport equations, after
applying the above assumptions, tend to overpredict the ad-
sorption phenomena. However, it is advantageous in that the

calculational algorithm involved is very simplistic in nature.

The finite mass transfer model tends to be more realistic
in that solute mass transport across the interface is accountec
for. For this model, the rate of mass transfer is due primarily
tomolecular diffusivity and convective forces. The rate of mass

transport across the interface is usually expressed as

E oy - y®) (2.10)

A = o2 - | (2.11)

k = [(1/Kg) + (1/Kg)1-L (2.12)
where

A = overall mass transfer coefficient

k = overall mass tranfer coefficient

Ky = fluid phase mass transfer coefficient

Kg = solid phase mass transfer coefficient

a = total interfacial area per unit volume of packed space

¢ = column void volume £raction

For a slow rate of change of fluid and solid concentrations at
the interface, the resistance to mass transfer is high and the
contribution of solid phase mass transfer is negligible and k =

K¢ (Eq. 2.12).
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In equilibrium models with favorable distribution iso-
therms, the concentration wave front is concentration-depen-
dent, and an influent of constant concentration causes a sharp
concentration profile (Foo, Bergsman and Wankat, 1980; Helf-
ferich and Klein, 1970)(i.e. discontinuous or shock front), and
a step function is approached; whereas a diffuse wave is obtained
for unfavorable distribution isotherms. For linear distri-
bution isotherms the concentration wave front is concentration
independent and influent of constant concentration displaces

the wave front along the column with no change in shape.
The rate of advance of the solute concentration wave front
can be expressed as (see Chapters 4 and 5)

vEe

and

. 90X i
where

v = the interstitial velocity of the solution; and

vE = column superficial velocity.

For favorable distribution isotherms, 9x;/%; decreases with y;.
This means that solute wave velocity is faster in the regions of
high concentrations, and thereby overtakes a solute in a lower
concentration region and a shock or sharp boundary results
(Figure 2.4). Solutes with unfavorable distribution isotherm
exhibit high velocities in the low concentration regions and

diffuse waves result (Figure 2.4b), but the velocities of
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solutes with linear isotherms are independent of concentration
and thereby result in no change in solute wave fronts. The
opposite phenomena takes place during a desorption process--
solutes with favorable distribution isotherms exhibit diffuse
waves, solutes with unfavorable distribution isotherms exhibit
sharp or shock waves and those with linear distribution iso-

therms maintain constant shape concentration wave fronts.

From the ongoing analysis, it is evident that to design an
efficient fixed bed or adsorption column, it is a matter of
necessity to have a thorough understanding of adsorption mech-
anisms and the rate processes governing the system. Based on
this understanding, the breakthrough curves (i.e. the effiluent
histories) can be logically analyzed. One shortcoming in the
design of adsorption processes is that the rates and the mech-
anisms of the adsorption process are unique to the type of
adsorption, the bulk fluid velocity, the concentration of the
influent and the geometry of the adsorption column.

In the study of the dynamics of adsorption systems, the
normal route generally taken is to predict the effluent history
based on the influent history. Examples of influent histories
commonly used are pulse and step inputs. Also, based on
responses of the various inputs and the corresponding outputs,
a suitable analysis and modeling of the system is done by
formulating a mathematical representation to unify the rela-
tionships between the inputs and outputs. More often than not,

the resulting equations may be so complex that in order for the
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equations to be solvable, simplifying assumptions becomes a
matter of course. Such studies where the solutes undergo
adsorption and the effluents are continuously removed and anal-
ysis for concentration history have been elegantly described by
Treybal (""Mass Transfer Operations') as 'single transition
systems." The single transition systems, as simple as it sounds,
require a thorough knowledge for the interpretation and pre-
diction of the effluent histories. Cyclic adsorption process
and parametric pumping could be categorized as a '"multiple
transition system" since it involves an alternating series of
adsorption and desorption. This means that a set of additional
mathematical formulations is necessary for the prediction of the
desorption process. The adsorption and desorption steps in
cyclic adsorption and parametric pumping involves a change in
the intensive variable such as temperature, pressure, pH, ionic
strength, electric field or magnetic field. The alteration of
the intensive variable results in a differential shift in the
distribution of solutes between the mobile and immobile phases.
By taking into account the effects of the various or appropriate
intensive variable, the mathematical modeling is further com-

plicated.



CHAPTER 3
THE MATHEMATICS OF ADSORPTION IN A PACKED BED

THE COMPLETE MODEL OF A PACKED BED

The packed bed under consideration is assumed to have a
cross sectional area of S square units. It is also assﬁmed that
it is packed with fine particles such that the void volume is
filled with solvent or solution. At time zero, a solution of
known concentration is pumped into the column at room tempera-
ture and the column itself is operated isothermally at known
temperature T. It is assumed that the process of adsorption of
all solutes is non-competitive. It is desired to determine the
fluid phase concentration at any time and at any position in the

bed.

Then making a detailed material balance on an elemental

length of bed AZ (Figure 3.1), the following result was obtained:

Fluid Phase

y _ -
€SAz at ~ VSyIz=z VSyIz=z+Az
SAZ(l - E) 2
- ——— ., 47T K ( - } )
4/3ﬂr03 o“hfly Yint
- €SEp §_| + €SEp F%‘ (3.1)
2y, z=2+Az

dividing Eg. 3.1 by AzeS, as Az approaches 0, we get

3 v 9 1 -¢ 3 32
L--252-5 7o K£(y - yint) + Ep 5;% (3.2)
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Solid Phase

= 4TII'ZQAI'0 39X (3.3)

amr2.Napl - 47r2Np.| =%

r+ATr

dividing Eq. 3.3 by 4nAr, as Ar approaches 0, we get

3 (r2Npy) 5 x
- A8l _ p2 22 .
or r® 5% (3.4)
. X . -
Since Npr = - Ds 37 Eq. 3.4 becomes
S ar2 T ar 3t '

For spherical particles, the particle shape factor ar=2. There-

fore upon rearrangement of Eq. 3.5, we get

3 2x af 3x
Dg(—5 + — —=) =
S5r2 T T 3

Q
>

(3.6)

Q>
ct

To understand the mechanism of adsorption, some assumptions
are necessary. The relationship between the fluid phase, y, and
the solid phase, x will be assumed to be linear. The constraint
that goes with this assumption requires that we stay within the
dilute concentration region. If we invoke the local equilibrium
theory of Pigford et al. (1969), we have in the region of small

x(r=rg)
Yint(z’t) = Kx(r = oy, 2, t) (3.7)

Equation 3.7 implies that equilibrium is established at every
time and space in the bed. K is a function of the intensive
variable (e.g. temperature, pressure, pH, etc.) and all the flow
characteristics of the bed. The initial conditions of the bed

are:
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y(z, t = 0) = yo = constant, 0 < z < L (3.8)

which also means that yipt(z, t = 0) = yo

x(r, z, t = 0) = xg = constant, O <z <L, 0 <r <r,

(3.9)

The boundary conditions necessary for a complete solution are

g y(z = 0, t) - Ep a%’%l o = Yin (3.10)
g—;’(z =L, t) =0 for small t, y = yg (3.11)
y(z = L, t) = yjn for large t, y = ¥in (3.12)
ay = finite for intermediate t or EEX = 0 (3.13)
32151 ax2 151,

Equations 3.11 through 3.13 can be combined to give

2
ag =0 (3.14)
9Z2% z=[,

%(r:O,z,t):O;OiziL,tZO (3.15)

3
Dg g%(r =Tqg, 2, t) = Kely(z,t) - yine(ro,z,t)]
0<z<0L, t>0 (3.186)
Vint(ro,z,t) = f{x(ry,2,t)] as shown by Eq. 3.7
y(z,t » &) = yjp (3.17)

Yint _ Yin
K

X(rO,Z,t > 9 = Xeq =T— = (3.18)

Equations 3.2 and 3.6 become
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QQ
S
<}

dY (1 - ¢) 3 . B [ v 3Y
and

3X _ p.32X . 2 3%

T DS(BPZ + 7 =) (3.20)
where

Y = -(y - ¥o): Yint = -(Yint - Yo)
and

X = -(x - xq4)

Note that as y increases with respect to t, and decreases with
respect to z; Y decreases with respect to time t, and
increases with respect to z. So also x increases with respect

to r and t; and X decreases with respect to r and t.

Laplace transform Eg. 3.20, with Eq. 3.9 to get

- _ d2X | 2 dX |
SX = DsC 5 + 7 &) (3.21)
or
27 —
2 d=X dX S Lo% _
o2 + 2r ir D r<X = 0 (3.22)

Equation 3.22 is a Bessel equation. The generalized Bessel's

equation is of the form

2
x2 9%Y | «(a + 2pxr)d¥ +lc + dx2N - p(1 - a - r)xF + b2x2r]y = 0
dx 2 dx

(3.23)

The general solution to Eq. 3.23 is

1-a _bx® T
y=x2 . T [c12p( l;l xNy 4 czz_p(-'ﬂgI xN )| (3.24)

where



For the problem at hand, a = 2, b = 0, d

_1f1=2y2 1
P =7 2 =3
Therefore,
—_ R S
X = I 1I1¢( D r) + col_ 1@‘ r)]
5 S

From Eq. 3.15
x(r = 0, 2, t) = finite, at r = 0O

The Laplace transform of Eg. 3.26 is

X = finite at r = 0O

Application of Eq. 3.27 to Eq. 3.25, gives

Cy =0

and

X = Clr_l/2 11/2(J%§ r)

because
S )1/4

~ 1/2
1/2([-— r) 172 (1/2),

and

~ 2l/2 S \-1/4 _-1/4
I—l/z(\/— ( 1/2)| (E) oI"

one should also note that

c1 = f(2) since x = f(r,t)

SO

for small r

for small r

- and N = 1

(3.25)

(3.26)

(3.27)

(3.28)
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X = f(r, t) and X = £f(r,S)

Take the derivative of Eq. 3.28

a—i = Clj— rr/2 13/2([%——5- r)

since

%;[X'Plp(ax)] = ax"PIpyq(ax)
Therefore

X 1 - {

Take Laplace transform of Eq. 3.19 with the initial condition

of Eq. 3.8 to get

¢ . (l-e)%+1 o o _ g, 927 _ v dY

SY + . T, Ke(Y - Yint) = Ep 122 & dz (3.30)
Take Laplace transform of Eq. 3.16 to get

Ds g—; = Ke(Y - Tipe) (3.31)

r=rq

Where each member of Eq. 3.31 is a function of 2 only.
Take Laplace transform of Egq. 3.7 to get

Yint = KX(rgp) (3.32)

Evaluate Eq. 3.28 at r=rg and combine it with Eq. 3.32 to get

5 -1/2 ’S

Substitute Egs. 3.29 and 3.33 into Eg. 3.31



S’E_ -1/2¢, ’§_

Therefore

K:Y - cle.Kro"l/le/z(J%E ry)

KsY

C1=
-172 S -172 IS
JDsS .« rg / -Ig/g(Jﬁg ro)+ KgKrg / '11/2(JB§ ro)

(3.34)
Combine Egs. 3.33 and 3.34

-1/2 ’S =

-1/2 S -1/2 S
JDgS ro IB/Z(JﬁE rol)+ KiKrg I1/2(JB§ rs)

Yint =

. S_ 7
KxKIl/z(/DS ro)¥
S 5
s Ia/z(Jﬁg ro)+ foll/z(jﬁg ro)

(3.35)

Combine Egs. 3.35 and 3.30 to obtain an ordinary differential

equation in terms of Y

%-AS—Z-(BS + D(SHT = 0 (3.36)
where
A = E%B)
B = %D -
b(s) = Lz e.aé : 1.Kf(1 ) KfKIl/z(/;; ro) |
0]

JDSS IS/Z(J%é rol+ KfKIl/z(J%g r'o)

The solution of Eq. 3.36 is

(D -r1)(D - r9)Y =0

A + VA2 + 4(Bs + D(S)
riy,ra = 5




Therefore

_ =2
Y = e2 [Caesinh
3

vA4 + 4(BS + D(S))
2

2z + Cyqcosh

60

YA4 + 4(BS +D(S)),
2

(3.37)

Since we are interested in the effluent concentration, the

constants C3 and C4 should be evaluated using boundary condi-

tions expressed by Egs.

3.10 and 3.11.

Neglecting the second

member of Eq. 3.10, for constantyjp, thelLaplace transformof Eq. 3.10

is _
le:O =

Therefore from Eq.

Cq = -
From Eq. 3.

at z =

But from Eq.

a2y

= A
dz2

Therefore

+ exp(%z)[Cs.g.cosh

Therefore

Yin

(Yin - Yo!

S

3.37,

- Yo

dyY

2z

S

9o
- 0or ¥ _ o
dz2

+ (Bs + D(s))Y

+ (Bs + D(s))?lz=L =0

exp(%z)[C3.sinh P Cgqecosh %z]

2

b

b . b
52 + Cqegesinh §z]

(3.38)
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2
A= A . b b
3 exp(EL)[C3.51nh §L + Cgqecosh EL]
A b b b . b
+ A exp(3L)[C35 cosh 3L + C43 sinh 5L

+(Bs + D(s)).exp(%L)[Cg sinh %L + C4 cosh gL] =0

2
A< cosh QL + AE sinh EL + (Bs + D(s))cosh EL
2 2 2 2 2
Ca = - IV - . ; . .C4(3.39)
5 sinh §L + A§ cosh §L + (Bs + D(s))sinh §L
where
JA2 + 4(Bs + D(s))
. 3 u— UT
sinh u = u + T FE5T T ATt (3.40)
2 4 6
u u u
cosh u =1+ 57 + 37 + 7 + (3.41)
1/2 5/2 9/2
o 2k+1/2 %) (%) (2)
I, fu) = = (u/2) _ 2 . -2 + 2 +
ko Kk + 1721 1 (111 21h1n
2 2 2
3/2 7/2 11/2
® ,2k+3/2 (3) (3 (3)
1w = 2 (B TEIT - gt ot
k=0 (§) (5)' 2'(5)’

To invert Eq. 3.37 to time domain, an understanding of the
method of residues is paramount to the effective inversion of the

Laplace transformation. If,

o - 8

where p(s) and q(s) are analytic at sp (polynomials of s) and
q(sp) = 0 while q'(sp)#0 and p(sy)#0, then the residue of £(s)

at pole s, iS
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(sp)
pn(t) = gTT§_7 exp(spt) for simple pole
n
where
' d
a’(sp) = SHE|
S=Sp
Then
-1, p(s) by
f(t) = L { =~} = 7z pp(t)
a(s) n=1
For the problem at hand,
5 A . b b
Y = exp(52z)[C3 sinh 52 + Cqecosh §z] (3.37)

and combining Egs. 3.38 and 3.39,

A2 b b . . b b
Vin - Yo 3 cosh QL + A§ sinh §L + (Bs + D(s))cosh 5L
C3 = . 5 (3.42)
S Az sinh 2L + AR cosh B + (Bs + D(s))sinh by,
2 2 2 2 2
Check to ascertain that all terms are polynomial of s
1/2
T
4 o) 1/4
Il/z(asl/z) - alS1/4 + azs1+1/ + a352+1/4 ¥ oo = o7 174 5 .
with a = ro/Dgt/ 2
r 3/253/4
o}
13/z(msl/z) _ bls3/4 . b2s1+3/4 . bSS2+3/4 + = 3753 3731+
sl/ng/z(asl/z) = blsl+1/4+ b2'32+1/4 + b3ss+1/4 + . =
r03/2sl+1/4
+
3/2 ,3 3/4
Therefore
1/2
73 Il/zi/: ) 73 = functionof polynomial of S=CO+Cls+C2s2+..
s Ig/a( s )+ I1/2( s )
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This also means that

D(s) = polynomial of s
Therefore
2 4
%L - A%t 4(25 il D(S))L = vYpolynomial of s = dg + dis + dgs?2 +

From Eq. 3.41,

cosh §L = function of polynomial of s = eq + e1s + ezsz +

and from Eq. 3.40,

(gL) «sinh %L = function of polynomial of s = fo + f18 + fos2 +

In order to have Eg. 3.37 in the form of

s  p(s) (polynomial of s)i

a(s) = (polynomial of s)g ’

Equation 3.42 must be multiplied by (b/2).L in the numerator

and denominator. Therefore

p1(s) pal(s)

5 A
Y = exp(ZZ)[— q1(s) + qz(s)] (3-43)
where
p1(S) = (yin - Yo)cosh %z
q1(S) = S
2 sinh 3z
p2(s) = (yin - ¥o)[3~ + A3 tanh BL + (Bs + D(s))]—p 2
21,
b 2
b
tanh =L tanh 3L
A2 2 A 2
qo(s) = S[E— EL t T+ (Bs + D(s)) EL ]

2 2
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. P1(s)
poles of EITET at s = 0
i p1(s=0)
Therefore the residue p(t) = —gTT exp(0et)

q1+(s=0)

q;'(s) =1
VA< =

p(s=0) = (yipn - Yo)ecosh A +24D(S 0)

A
(Yin - Yo)ecosh 52

QZ(Sn) = O
A2 tanh %L A tanh %L
spl5” ——=— + 2 + (Bs, + D(sp)) I =0
2 EL L bL
2 2
pa(s) p2(s1=0)

S1 = 0 first pole of m; P =

also
b b

A2 tanh EL A tanh §L

A2 B i(Bsy + D(sy))——2 =0 (3.44)

2 "B L b

2 2
n=2, 3, 4,

Let

b .
then

tanh DL = tanh ilp = i tan A (3.46)
also

VAZ + 4(BSn + D(Sn)) = iAnO%
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/ . 4r 2y
YA2 + 4(Bsp = D(sp)) = 3
ax2, a2
(Bsp + D(sp)) = - _L :
2
A 2
= -t (3.47)
Fquation 3.44 becomes
2 i ) A2 2  itanA
A itanap A i n A ) 1tananp B
2 1h, frL-VT Tileixy T
or
%.A
tan Ap =
on - a2
L 4
___ 48)
T a2, - La2 (3.

Solve for Ap, n = 2, 3, 4,

Eq. 3.48 is a transcendental equation and the roots A, must be
solved graphically or by computer. Numerically if LA2/4 =
L/4(v/ Ep)2 is large, it means that the diffusivity of the
molecules are small (for molecules with very large molecular
weight). In this case, one would have the special case of Figure

3.3. Knowing values of A, from Eq. 3.48, values of sy, n = 2,

3, 4, ... can be calculated numerically from Eqg. 3.47. Since
Y(z,t) decreases with t, sy, n=2, 3, 4, ... should be negative
quantities.
Now find
dgs(s)
QZ'(Sn) = ——ag——‘



tanA

=An

ROOTS OF TAN An

FIGURE 3.2

4AN
4N2-1A2

ROOTS OF £(An) WHEN LA

FIGURE 3.3

4



67

%;[xlp(ax)] = axPIp_q(ax)
%;[Ip(ax)] = alp_j(ax) - % Ip(oex)

) KfKI1/2(v/87Dg ro)
D(s) = Kg (1 - 55 T3/2(/5/D5 ro) + K¢Ki1,/5(/37/D% r&?]

where
1 - ¢ %f t 1
Kfo = c . Edro oKf
dn(s) K¢K(ro/2vDgseIz/2(Vs/Dg ro + 1/4sel1/9(¥Ys/Dg rq))
a8 YDgs 13/2(Ys/Ds ro) + KgKIp/a(v¥3/Dg ro)

KfKIl/z(/S/DS ro).[ro//ﬁg 33/411/2(/S/Ds T'o)
[VsDg I3/2(¥s/Ds ro + KgKIj/2(¥s/Dg ro)]2

KfK{ro/2v/sDg I3/2(/s/Dg ro) + % s I1/2(/s7/Dg ro)}l

[¥sDs 13/2(/s/Dg ro + KgKI1;/p(/s/Dg rodl?

z F(s)

b = VA2 + 4(Bs + D(s))

b dD(s)

= L1,
ds =~ 2°2% /A2 1 4(Bs + D(s))

B + F(s)
YAZ + 4(Bs + D(s))

H(s)

b
d(tanh 3L) d(tanh %L) d(%L)
—ds____ ~ das

d(3L)
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b. .2 B + F(S)
+ (sech 2L)“ , - .
2 VA< + 4(Bs + D(s))
[sech %L]2
= L(B + F(8)) o ——p——
z G(s)
Therefore,
A2 tanh %L A tanh %L
qa(s) = sl5= —— + = + (Bs + D(s)) ——=]
2 b L by
2 2
b b
o tanh 2L tanh =L
qol(s) = A= 2. A, (Bs + D(s)) ——=2—
2 " b L by
2 2
A2 G(s) (tanh %L)-H(S) tanh %L
+ S{_[ - ]+ (B + F(s))
2 by (812 3L
2 2 2
+ Bs £ D(s) qrgy _ (Bs + D(s)) oopp By pigyy
5 b, .2 2
—2-L (—2'L)

The final solution is

_ A _1,P1(s) _1,P2(s)
Y(z,t) = exp(zz)[-L {ql(S)} + L {EEngﬂ
Y(z,t) = exp(%z)[—(yin - ¥o)ecosh %z + P2te1 z Bgifﬂl exp(spyt) ]

Q2(Sl=0) * n=2 q%(Sn)
(3.49)

SIMPLIFIED MODEL-~NO AXIAL DISPERSION

For the fixed bed adsorption shown in Figure 3.1, only

concentration gradients in the axial direction caused by the



bulk flow are considered. All radial gradients,
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axial dis-

persion and the like are ignored. The material balance for both

fluid and solid is as follows:

s .. 9Y v 3y _ _ I
Liquid: v + ¢ 357 = y (y y*?
Solid: 2% = (—S)A(y - y*)

) at 1 - ¢ y Y

Rewriting Eqs. 3.50 and 3.51, we get

dy dy ax
€sc 3¢ + vsc 3T + (1 - €)cs 3% = 0

(1 - g)cs %% = sk(T)a(y - y*)

By method of combination of variables, define

EscC
(£29)

y = y(z,t) = y(z,t")

dy _ 9y yot' 9% 192z
'(avfat 27(525552

3t

and
3 dy. At’ 3
3% =( t;.ea—n( 1) (%)

Therefore

- TG o

= mass transfer coefificient,

(3.

50)

(3.51)

sec-1

(3.

(3.

(3.

(3.

Substituting Eqs. 3.53 and 3.54 into Eq. 3.50a to get

.50a)

5la)

52)

53)

54)
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Q
<3

_ sk(T)a

YT (y - y=*) (3.55)

N

Rewriting Eq. (3.51a) in terms of Eq. 3.52,

X = x(z,t)

=3 W& @y LLds) (3.56)
Therefore Eq. 3.51la becomes

%%' - ?(T)g . (y - y*) (3.57)

Assuming a linear equilibrium distribution,

By

v* = mx . (3.58)

Equations 3.56~3.58 are solved based on the following boundary
conditions:
I.C.: at t' =0, x =0 for all z > 0 (3.59)
B.C.: at z =0, y =yj for all t' >0 A (3.60)

Equations 3.56-3.58 are easily solvable when written in dimen-

sionless variables.

Therefore,

let ¥ = L (3.61)
¥i

X = %% (3.62)

¢ = 2k(T)a (3.63)

: = %%L%i%%% (3.64)

Substituting Eqs. 3.63-3.64 into Eqs. 3.55 and 3.57, we get
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%% = (Y - X) (3.65)
and
)
Z (Y- X (3.66)
and the boundary conditions become
I.C.: at T=0, X =20 for allg (3.67)
B.C.: at r£=0, ¥ =1 for allT (3.68)
Laplace transform Egs. 3.65 and 3.66 with respect to T
dY _ - .
a3 - -Y + X (3.69)
— — — — 1 —
SX=Y—XOI‘X=—§—'+—1-Y (3.70)
Combine Eqs. 3.69 and 3.70
Y _ o 1 o s =
das ER A i Y, (3.71)
Integrate Eq. 3.71 using Eq. 3.68 (B.C. 2)
Y —
ay - . S8 dz (3.72)
I?=l 7 s + 1 fC=O
S
o 1 S
ln Y - 1n s = s + 1 C
- S
sY = exp(- g57¢) -
or
1 S
Y@ ,1) = S exp(- r— T) (3.73)
and
= 1 1 S
X = P l.goeXp(- s+ 1 z)
or
S
3 1 expl- 557 ©9)
X T = =
(¢,t) S s+ 1 (3.74)

Take the inverse transform of Eq. 3.

73
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- —= g
Y(g,T) = %-e s+1
_ s+1-1
=17 Ts¥1 C
S
LT
= = g Ge s+l
_&_
- e L[S * 1 eS+1l
= s 's+1
&
s+1
= ¢ 1l, e
e "1 + s)'s + 1]
_L_
s+1 s+1
Y(z,t) = e 5(& + 1.8 ] (3.75)

s + 1 s's +1
Equation 3.75 is now transformable by method of convolution.

f(s) F(t)
£(s-a) 2t r(t)
-
t
£1(s)efa(s) F1*Fg = J F1(t-0)Fo(0)dg
T (o]
L S e % Io(2/TT )
&
1 es+1 T -G
s+l =7 fol.e oJo(2v~zT )do
Therefore Eq. 3.75 becomes
-1 —
Y(z,1) = L “[Y]
_(; T i e T o —
= e “[e sdo(ivaTTt ) + S e  "Jd,y(ivdzo dde
o}

T
Y(g, 1) = e FF T ao(ivaTT ) ¢ £ e (59 5 (1/3T5 Ydo
o]
(3.76)
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Using the same method of convolution, Eq.3.74 can be transformed
to
T
X(g,T) = J e‘“*o).Jo(i/ZEE Ydo (3.77)
o]
Equations 3.76 and 3.77 describe the fluid and solid phases
concentration at any position and time space as an empty column
is being saturated respectively at any desired temperature.
Equations 3.76 and 3.77 represent an analytical solution when a
step forcing function in concentration is imposed on the column
as described by Egs. 3.59 and 3.60. If a pulse forcing function
in concentration is imposed on the column, the following initial

and boundary conditions are necessary.
Initial Condition: at t' = 0, for z > 0, X = 0 (3.78)

Equation 3.78 implies that the liquid phase concentration must
be zero for t'o> (zes/v)(see Eq. 3.52), where t'o is the time
duration for which the pulse is applied.

Boundary Condition: at z =0, for 0 < t' < t'o vV = Vi

Il
o

t' > t'o y
(3.79)
where
" _ (ZES
t'o = to (_V_)
Change Egs. 3.78 and 3;79 to dimensionless variable (see Egs.

3.63 and 3.64), and obtain

I.C. at =T 0 for all ¢ (3.80)

]
o
>
I}

B.C. at ¢ u(t) - u(r - t') for all © > O

]
o
-
]

(3.81)



Equation 3.81 means that

Y =1 for 0 <t < 1!
and

Y =0 for T > T'
where

v _ mty'k(T)a
R G - T

The Laplace transform of Egs.

S

T =0, X=0
=0, Y=21a-e""9
Integrating Eq. 3.71 using Eq. 3.8la,
Y = z
o4 LS. =571 ¢ s
Y==(1-e~T'8)Y =0
sY s
1n1_e—T's= S+ll;
s
s¥ = (1 - e—T'S)e—(S+l)C
or
v = ' 1 S
Y = [1 - exp(-T s)][S exp(—S — 1C)]
and
- 1 -
X = s + 1 Y
or
X =11 - eXp(-T'S)[as—l_*_—ﬁ exp(-

Take the inverse Laplace transform of Egs.

s +

3.80 and 3.81 are,

1
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respectively

(3.80a)

(3.81a)

(3.82)

(3.83)

z)} (3.84)

3.83 and 3.84.
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~-T'sg -C 1 gfI 1 1 gfi
Y = (1 - M =T e + (g e OB
£ L
- tetdy T e ST
G _&_
~ e~ TS e—%s i T eS+l + é(s 1 I es+l)]} (3.85)

By method of convolution, as previously outlined, and by shift-

ing theorem,
if £f(s) = e %f(s), then F(t) = u(t - a)F(t - a)

Therefore, Eg. 3.85 becomes

T
v(t,z) = {e &g (wan)+ e %) 5 (i/aT5 ) dotult)
(o]

—(c+1-1") . T'Ekc+o-r') : ; '
- e Jo(WarT-T )+ [ e Jo(ivar (g -1 ") )doku(t 1 ')
0
(3.86)
Therefore, for 0 < 1 < 1',
(C+1) T _(z+0) -
v(t,0) = e ot (ivagT) + £ e 595 (ivTo)de  (3.87)

(o]

and for T > 1', Eq. 3.86 is applicable.

Equation 3.84 becomes,

_ _L
X = (1 - e‘T'S)[e‘C(-Sl-(s . DeSth)
E , <
= e‘clé(g—%—f eSthy] - T S{e';[é(g—%—f eS* 11 (3.88)

Therefore



T
X(t,z) = {/S e_(C+0)Jo(i/ZEE)do}u(r) -
o

{fTe-(€+O_T')Jo(i/4cio—r’))do}u(T—T')

o

for 0 < 1t < 1",

T
x(t,z) = f ¢ (5%9) 5 (iv/Fg5)do
(0]

and for t > t', Eq. 3.89 is applicable.
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(3.89)

(3.90)



CHAPTER 4

NUMERICAL SOLUTION

FINITE DIFFERENCE METHOD OF SOLUTION

An alternative method of solving the mass transport equation
is by finite difference method. This method is particularly
useful for solving higher order ordinary differential equations
of boundary value types. The material balance under con-

sideration in this section is a combination of Egqs. 3.50 and 3.51

to give

dy ax dy
€ 35 (1 - €) Tt Vs s 0 o (4.1)

To begin the analysis of Eq. 4.1, let us consider the first-order

differential equation,

ay _
iz - f(z’y) (4.2)

Each member of Eq. 4.1 is assumed to be continuous. In Eq. 4.2,
if dy/dz is replaced by yj-yj-1/2ij-2j-1, a difference equation
of the first order is obtained,

Yi = ¥i-1

Zi - 2i-1 = f(Zl,Yl) (4.3)

Upon rearrangement and evaluation over a time step j, Eq. 4.3

becomes

y(i,J) = y(i-1,3-1) + £lz(i,j-1),y(i,j-)]elz2(i,j-1) - z(i-1,j-1)]
(4.4)

In general, difference equations do not require even spacing

7
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of the pivotal points, but assuming that Eq. 4.4 has an evenly

spaced pivot, z(i,j-1)-z(i-1,j-1) is replaced by Az and we get
y(i,3-1) = y(i-1,j-1) + azf(z(i,j-1),y(i,j-1)]  (4.5)
Rearrange Eq. 4.5 to get

%ﬁ _oy(i,§-1) A—Zyu_l,j—l) C El2(L,9-1), 901, 5-1)] (4.6)

Similarly, other members of Eq. 4.1 can be written in finite

difference form.

dy _ y(i,j) - y(i,j-1)

dt = At (4.7)
dx _ x(i,j) - x(i,j-1)

at AT (4.8)

Substituting Egqs. 4.6 through 4.8 into Eq. 4.1, we get

At At s Az
(4.9)

E[Y(i,J)-Y(i,J—l)]+(l_€)[X(i,j)—x(i,j-l)]+Q[Y(i,J-1)—Y(i-1,j—l)]=0

where v = q/s

Multiply Eq. 4.9 by 4t and siz,

V[Y(i,j)—Y(i,j—l)]+V[x(i9j)-x(i9j_l)]+V[Y(i9j-1)-Y(i—l,j‘1)]=0

(4.10)
where
V = €s8z = qAt = volume of solute in the fluid phase
V = (1-€)sAz = volume of solute in the solid phase
8 = Cross sectional area of empty column

Rearranging Eq. 4.10, we obtain
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Vy(i,j)-Vy(i,j-1)+Vx(i,j)-Vx(i,j-1) = Vy(i-1,j-1)-Vy(i,j-1)

or
Vy(i,j)+Vx(i,j) = Vy(i-1,j-1)+Vx(i,j-1) (4.11)
Let
x = K(T)y (4.12)

linear equilibrium relation for the solute

il

between solid and liquid phases

Expressing the equilibrium relation in finite difference

form, we get

x(i,3-1) = K(i,j-Dy(i,j-1) (4.13)
and

x(i,3) = K(i,3)y(1,3) | (4.14)
Substitute Egs. 4.13 and 4.14 into Eq. 4.11

Vy(i,j)+VK(i,jdy(i,j) = Vy(i-1,3-1) + VK(i,j-1)y(i,j-1)
or

y(i,3) Vv + VK(i,j)] = vy(i-1,j-1) + VK(i,j-1)y(i,j-1)

(4.15)

Upon rearrangement,

Vy(i-1,3-1) + VK(i,j-1)y(i,j-1)
Vv + VK(i,j)

y(i,3) = (4.16)

Equation 4.16 is so general that it can be applied to
calculate the concentration transients (Kerobo, 1979) for
batch, continuous parapump and cyclic adsorption process simu-
lation. The inputs of the computer simulation depends on the

desired process, viz: batch or continuous, as the case may be,
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but for cyclic adsorption process, a different algorithm is

needed. The standard FORTRAN IV language was used for the

simulation.

As can be readily seen from Eq. 4.16, the concentration for
the next transfer step can be solved in terms of the con-
centrations in the previous transfer step. Since the linear
isotherm constant, K(T), is a function of temperature, and
temperature varies with the time (j) step, it then becomes
necessary to use the appropriate K(T) value that corresponds to
the temperature of the time step under consideration. The
equilibrium isotherm shifts with temperatrue variation; there-
fore, the fluid mixture in the column and therefore the solute
is expected to experience a change in concentration. Usually,
the solute concentration in the fluid phase increases with an
increase in temperature. At low temperature, the solute wave
moves slowly and is held up by the stationary (solid) phase. A
subsequent increase in the solute movement is attained as a step

change in temperature is selectively imposed on the column.

In the computation of the concentration transients, it is
assumed that 1local equilibrium between the 1liquid and the
sorbent in the layers of the separating medium in the column is
attained. Deviations from local equilibrium can be accounted
for by introducing the'concept of "effective plates'" or "cells."
In this discontinuous model, the fluid mixture in an effective
plate of the bed attains equilibrium with the sorbent before it

moves on into the next plate. The effluent thus consists of a
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sequence of finite volumes of the fluid mixture, each of which
is so large as to fill an effective plate. On their way through
the column, these volumes are subjected to a series of equili-

brations, one in each effective plate.

The assumption of equilibrium theory is particularly useful
in simplifying the material balance made on the extensive
variables of the column. The assumption of descrete (effective
plate or cells) transfer equilibrium stage model was used by
Jenczewski and Meyer (1970); Wankat (1974); Grevillot and Ton-
deur (1976); Kerobo (1979); and Chen et al. (1980a, 1980b, 1981).
Although the equilibrium theory does overpredict the concen-
tration transients, it enables us to have a clear insight of the
parametric pumping process. For the system under investigation,
the results of the breakthrough-data exhibit a favorable (Lang-
muir type) adsorption isotherm. This phenomenon is indicative
of competitive non-interactive adsorption by the adsorbates on
the adsorbent sites. The breakthrough data were fitted to a

modified Langmuir isotherm (Sweed, 1969) of the form

Ay*3

= ________.1 - By*i + Dy*l (4.17)

Xi

Therefore, to adequately simulate the concentration profiles of
the effluent using the local equilibrium theory, the solid phase
concentration must be calculated using Eq. 4.17 instead of Eq.

4.12. In the finite difference form, Eq. 4.17 becomes

__Ay(1,d)
x(1,3) = —Yrogy + Dv(1,J) (4.182a,b)
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and

_ __Ay(1.J-1) \
x(I,d-1) = T+ By(1,d-1) + Dy(I,d-1)

The constants, A and B, in Eq. 4.17 or 4.18a,b are temperature
dependent, while the constant, D, is a function of the adsorbate
type. The equations necessary for calculating the concentration

profiles by successive iterations are Eqs. 4.11 and 4.13.

Chen et al. (1981) predicted open parametric pumping by
finite mass transfer, and a linear equilibrium adsorption was
assumed (for dilute solution). In their work, the difference
equations necessary for calculating the concentration tran-

sients as shown in their paper (Eqs. 7 and 9) are as tollows:
1 - ¢

y(I,J) = y(I-1,J-1)-( —) [x(I,d) - x(I,J-1)] (7)
y(I1-1,5-1)+(3 ——=)x(I,J-1)
X(I,J) = (1 - € 1
e )+ k
y(I-1,0-1)+(2=5)x(1,5-1) ie 1
+ [x(I,d-1)-~ ¢ T JeExp[-A ((Fg=)+)at]
(=—==) + =
€ k (9)

The development of the equations necessary for calculating
x(I,J) and y(I,J) with non-linear adsorption isotherm is quite

involved, as will be shown in the on-going analysis.

FINITE DIFFERENCE EQUATIONS FOR FINITE MASS TRANSFER WITH

NON-LINEAR ADSORPTION ISOTHERM

For favorable adsorption isotherms of the Langmuir type, the
solute material balances reflecting the events occurring within

the adsorption column are
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9y Y . _(1 - ax
v gy tesy = (1 €) T (4.19)
a_X - )\(y - y*) (4-20)
at

_ __Ay*

= T+ By* + Dyx* (4.21)

Note that the asterisk, as shown in Eq. 4.21, indicates equili-
brium with the solid (adsorbent) phase and it was omitted from

Egqs. 4.17 and 4.18a,b when local equilibrium is assumed.

In writing Egs. 4.19 through 4.21, plug flow was assumed,
axial diffusion was neglected and the mass transfer coefficient
A is assumed to be only dependent on temperature. To obtain an
equation analoguous to Chen et al. (1981), but with non-linear
adsorption isotherm of the Langmuir type. it is necessary to
write Eqs. 4.19 through 4.21 in finite difference form to obtain

an expression for y* from Eq. 4.21 as a function of x and the

physical constants.

g =L D
1 BT 1
Ay* A y*
or
1 D
X = == + =
Ay + C y
where
= 1 - .1 B
A—K,y=§’—;andc_§

(xy - D)y + C) =7
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Axy2 + (Cx - DA)Y - CD =y
Axy2 + (Cx - DA - 1)y - CD = 0O (4.22)

Equation 4.22 is in a quadratic form in y, and roots can be

obtained by a quadratic formula.

(Cx - DA - 1)+/(Cx - DA - 1)2 + 4ACDX
2Ax

y1:Yg = - (4.23)

Equation 4.23 can be simplified greatly if the adsorbate type

physical constant D is allowed to approach zero (D+0), in which

case the two roots will be identical, viz:

;; —3—; =1-CX
R "
or
A-1x
y* = S (4.24)
1 - BA-1lx

Replace the time and position derivatives in Eq. 4.19 by the

lowest order backward differences:
evit[y(I,d-1)-y(I-1,J-1)]+etz[y(I,d)-y(I,J=-1)]

= (1 - e)bz[x(I,J) - x(I,Jd-1)] (4.25)

If

H

N7 = Az = vAt, where H = height of the column and NZ =

position increments, then Eq. 4.25 now becomes,

1 - ¢
£

y(I1,J) = y(I-1,J-1)-( Y[x(I,d) - x(I,d-1)] (4.26)
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Substitute Eqs. 4.24 and 4.26 into Eq. 4.20 to obtain

A-1lx(1,3) ]

89X _ 3 I-1,J-1)-(—= J)+(—
ot [y ) - (A=) % (1, 30+ (A=E)x(1,d-1)- T BA-1x(1.3)
(4.27)
Let a = y(I-1,J- 1)+( )x(I J-1)
b = -A-1 :
(4.28)
¢ = -BA-1
£ o= (L=t —E)

Equation 4.27 now becomes,

- _ ) bX(IaJ)
=% = AMa + £x(I,Jd) + 1 + cx(I,J)]

Coall o+ ex(1,3)] + £x(1,J)[1 + ex(I,J)] + bx(I,Jd)
=x{ 1 + cx(I,d) }

@t acx(1,J) + fx(I,J) + cfx(1,J)2 + bx(I,d)
=A 1 + cx(1I,Jd) }

_ A{cfx(I,J)z + (ac + b + £)x(1.J) + a,
= 1 + ¢cx(I,Jd)

2
-2 cf{X(I’Ji ++C§?§f3g) + by (4.29)

where
- ac + b + £

a
h = cf

Upon rearrangement, Eg. 4.28 becomes

1 + ex(I,d3)]dx(1,J)
x(1,d)2 + gx(I,d) +h

= Acfdt (4.30)
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To integrate Eq. 4.29, the left member has to be rearranged into

two parts. Thus,

cex(I,J)dx(I,J) . dx(I,J)
x(I,J)2 + gx(I,d) + h x(I,J)2 + gx(I,J) + h

= yxcfdt

(4.29a)

Equation 4.30 can easily be integrated by using the following

identities:
) -1 2ax+b
——_=2— tan ,————E
Ydac-b Y4ab-b
dx
S Zibnre -
ax“+bx+c 1 In (2ax_+ b - Vb2 - dac )
b2-4ac 2ax + b + Yb?2 - dac
and
xdx b dx

=L 1ncax2 + bx + c) -

ax2 + bx + ¢ 2a 2a 7 ax2 + bx + ¢

Upon integration of Eq. 4.30 with respect to t over the time
increment At,

1 2x(1,J)+g-/g2-4h

c gec

= 1n[x(I,d)2 + gx(I,J) + h] - &&{——= 1n¢

2 2 /g2 - 4n 2x(1,J)+g+/g2-4n
) — —

+ 1 1n(2X(I,J) + g 'gz 4h) =>\CfAt (4.30a)

ng - 4h 2x(1,J) + g + Vg2 - 4n

In{x(I,Jd)2+gx(I,J)+h]+(1 - %E) 1 ln(ZX(I’J)+g' "4h)}
Vg2-4h  2x(I,J)+g+/g2-4h

[\1fe

= AcfAt

(x(13)2+gx(1,d)+h]> [26(T2d) G-YgZ-dh ¥ _ Acflt

2x(I,J)+g+Vg2—4h

(4.30b)

)}
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where
c

2
-0.5

(1 - £%)(g2 - 4n)

For a system for which the physical constant D>0, Eqs. 4.19
through 4.21 can be solved by method of characteristics as per

Chen et al. (1976).

Let
z = z/v

and by the method of characteristics.

For characteristic I:

so that

dy _ 4 =Ny - y¥) (4.192)

z

Q.

For characteristic 1I1:

dz
at = °
and
dx
3 = My - %) (4.20a)

Applying the modified Euler method to Egs. 4.19a and 4.20a, the

following is obtained,

y(I,J) = y(I-1,J—1)-(1§5)%At[y(1,J)-y*(I,J)+y(1—1,J-1)_y*(I-1,J—1)]

(4.19b)
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and

x(1,0) = x(I,J=1)+486[y(I,d)=y*(I,3)+y(I,J-1)-y*(1,d-1)]

(4.20b)
where
bt = bz = Nz?v
and
y(1,9) = A+ D - Bex(L,J))
L VA +D - B.x(ééfglz + 4B.Dex(I,d) (4. 230)

For the system under consideration, Egs. 4.19b, 4.20b and
4.23a along with the necessary external equations were used to
calculate the concentration transients emerging from the column

for the staged sequence cyclic process by iterative method.

Calculation of y*--For the calculation of the fluid con-

centration in equilibrium with solid phase, y*, the following

constants were used:

O-Xylene Anisole
3030K 3339K 3589K 8039K 3339K 3580K
A: 8.65 1.46 8.00 1.40 9.00 8.25
B: 66.97 18.47 65.00 1.89 68.90 120.00

and

D = 0.29 em3 pores/gm dry silica gel

Calculation of Ai. Ai, the mass transfer coefficient, is

a function of concentration and temperature, therefore values of

A; must be calculated for every cell in the column. Kim (1976)
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developed a set of equations for the calculation of mass transfer
coefficients for the system toluene-acetophenone-n-~heptane on
silica gel. Stokes (1976) generalized the equations for multi-
component systems. Stokes' equations were modified where ne-

cessary to suit the system O-xylene-anisole-n-heptane on silica

gel.

AL = -2/3 ,

i = (Ap)(JIp)(v)(e)(Sc) (4.304)

where

Jp = (Re)” 278 for laminar flow

Dpr fE .
Re = ETT—:—ET = Reynolds No. for flow in packed beds
Hf .

Sc = 1¥5E = Schmidt No.

Ap = ap/oS = interfacial area/unit weight of adsorbent

vEé = superficial column velocity

For staged sequence cyclic process, ve can be expressed as

follows:

Stage I Stage II Stage III
Column 1 (R+P1+Pp)Qtg (R+P1+PB)Qt 11 (R+PR)QtTTT
Column 2 (R+P1+Pp)Qty (R+P1)Qt11 (R+Pp+PBIQtIIT
Column 3 (R+Pp)Qtg (R+P1+PR)Qt1] (R+Pp+PB)QtIIT

where ty, ty1, tyyy = stage duration time for stage I, II and III
respectively,
and

R = reflux ratio
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n
pPr = z viMj
n=1
n
2 oyiW
M - n=1
f n
LI Vi
n=1
where
yi = moles i/volume of solution

Mj can be calculated from the Thomas' equation (Thomas, 1946).

uy = 0.1167031/2 10"

B(1 - Tp)
Y = T
uj = solute viscosity in centipoise
pg = solute density at normal boiling point, g/cc
B = viscosity constant to be calculated by summation of the

atomic and group contributions

Ty = reduced temperature of solutes, expressed as a fraction

of a given temperature to the critical temperature,

TOK/TCOK
TcOK B
n-Heptane 540 0.75
O-Xylene 625 0.7678
Anisole 642 0.8668

The following is the calculated viscosity data from Thomas'

equation:
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Viscosity in gm/cmemin)

3030K 3339K 3580K
n-Heptane 0.2236 0.1694 0.1393
O-Xylene 0.4340 0.3125 0.2479
Anisole 0.6518 0.4453 0.3403

o which is functionally dependent on the solute and con-
centration (Kim, 1976), was shown to asymptotically approach a
constant value at low concentration. The functional dependency
of don concentration was obtained via a curve fitting method for
acetophenone and toluene and the equations are applicable to a

good degree of accuracy to anisole and O-xylene.

The diffusivity, D¢, of the solute-solvent is a function of
the solute and temperature as expressed by the modified equation

of Wilke and Chang (1955) and can be estimated by

7.4x10-8(60) (VM) 0-5T

Df; = 0.6
i UfVMi
where
D, = mutual diffusion coefficient of solute i at low

concentrations in the solvent, cm2/min
bg = association factor of solvent, dimensionless

= 1.0 for heptane (unassociated solvent)

U = viscosity of solvent, gm/cm/min

Mg = solvent molecular weight, 100.2 gm/mole for hep-
tane

VMi = molal volume of solute i at normal boiling point

cc/g mole
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= 118.358 cc/g mole for O-xylene
= 108.683 cc/g mole for anisole
T = temperature of column, 9K, T1(=30), To(=60) or

T3(=85)

THE CELL (EFFECTIVE PLATE) MODEL (STOP & GO ALGORITHM)

The adsorbent bed is divided into N equal cells (plates or
stages), each of length 2z/NNz, where z is the length of the
column, and each stage is represented as i,j. In this case, 1
will be the cell number, and j is the transfer step. The
schematic cf this cell model is clearly depicted by Figure 4.1.
Initially, the system is assumed to be in equilibriumat j-1, in
which case each cell will have uniform concentrations in both the
fluid and solid phases. If each fluid section is displaced
exactly one step ahead in the transfer step, then the fluid
y(i,j-1) originally opposite the solid section i will now be
opposite i+l. After each transfer step, the operation is
stopped, and mass transfer is allowed to occur in all stages.
Thereafter, equilibrium is immediately re-established and the

next transfer step (j) begins.

COMPUTATION ALGORITHM

Continuous Parametric Pumping

The diagram of the operational steps used in the simulation
of the parametric pumping process is depicted in Figure 4.2.
Equations'4.16 was used in the calculation of all concentration

transients. Divide the adsorbent columns into NZ equal stages,
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each of length Z/NZ and 7Z being the length of the bed. Divide
the time domain into NT increments. The time interval for the

downward fluid flow is NT1, and NTZ2 for the upward fluid flow.

Initialize the fluid and solid compositions in the NZ stages
to some physically realizable values at To(Tg T1). Initial
composition was assumed to be Yyt = 1 in this simulation. The
initialization (equilibration) step is at j = 1 (see Figure

4.2(a)). The operational steps of the algorithm are as follows:

1. Push Down (Figure 4.2(b)): Columns 1 and 2 are operated at
T1 and T9 respectively. The time step NT1 for the downward
flow of the fluid phase is divided into NZ equal time
increments of length NT1/NZ. Each fluid section is dis-
placed one step ahead beginning at j=2 for each time element
NT1/NZ. A predetermined volume of feed is mixed with the
fluid from the top reservoir and introduced into column 1,
while top and bottom products are simultaneously withdrawn.
Equilibration is allowed to re-establish, the concentration
profile Y in the column is determined and another dis-
placement is made; this time at j=3. When j=NT1l time step
is attained, the bottom reservoir concentration is cal-

culated.

2. Push Up (Figure 4.2(c)): Columns 1 and 2 are now operated
at To and Tq respectively. The time step NT2 for the upward
flow of the fluid phase is divided into NZ equal time
increments of length NT2/NZ. Each fluid section is dis-

placed one step ahead beginning at j=2 for each time element



(a) Initialization Step

=

:

x Ty To
NT2 | (b) Push Down Step (Y)
T2 T1
(c) Push Up Step (YY)
FIGURE 4.2 DIAGRAM OF OPERATIONAL STEPS USED IN COMPUTER

SIMULATION - CONTNUOUS PARAMETRIC PUMPING




a]
(o))

NT2/NZ. The mixture of feed and fluid from the bottom
reservoir is now introduced into column 2 at Ty, while top
and bottom products are simultaneously withdrawn. Suc-
cessive equilibration is allowed, and concentration profile
YY determined until a final displacement at j=NT2 is at-

tained, after which the top reservoir concentration is

calculated.
This sequence of operation ends the first cycle. For
subsequent cycles, steps 1 and 2 have to be repeated. The

simulation of this calculational algorithm assumes the follow-
ing:
(a) That these NZ increments (volume elements) are en-

tirely independent of one another.

(b) That the calculation of concentration profiles of the
fluid mixtures assume a set of pseudo-binary (all

components are non-interactive, and non-reacting).

(c) That the volume elements represent batch reactors

connected in series.

(d) That only partial equilibration between adjacent
phases and full equilibration between opposite (solid

and fluid) phases take place.

(e) That each volume element is treated individually for

calculating concentrations.

Appendix V contains a listing of the FORTRAN IV digital
computer program written to implement the EQUILIBRIUM THEORY

WITH STOP-GO METHOD for the direct mode parametric pumping.
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CYCLIC ADSORPTION PROCESS

Stage 1

1. Divide each adsorbent bed into NZ equal axial position
increments and the stage duration time into NT time in-
crements, such that NZ/v = t, H(Nz*v)=t/NT.

2. The system is initially assumed to be in equilibrium with

the feed concentration at T3.

3. Calculate y(I,J) and x(I,J) by Eqs. 4.23a, 4.26a and 4.30c
with the initial (J=1) and boundary (I=1) condition shown
below:

Initial Conditions:

For each column, y(I,1), = y(I,NT)n_l/g = concentration of
y at the end of (n-1/3)th stage, n = number of complete cycle.
x(I,1)p = x(I,NT)p-1/3 = concentration of x at the end of

(n-1/3)th stage.

A(I,1) = f[y(I,l)n] via Eq. 4.30d
and

y*(I,1) = £[x(I,1),] via Eq. 4.23a

Boundary Conditions:

X(l,J)ln_l/3 = x(l’J—l)ln—l/S-i- AX

where Ax is the increment in x obtainable by the fourth order

Runge-Kutta numerical integration of Eq. 4.20,

Kl = J\(yo - Yo*)At

let
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X1 = Xo + Ki/2
Ko = A(yo - y1¥)At
y1*¥ = f(x71) via Eqg. 4.21
X2 = Xo + Kg/2
K3 = A(yo - y2*)ot, yo* = £(x2)
X3 = Xo + K3
Kg = A(yo - y3*)At, y3* = £(x3)
therefore
Ax = 1/6(K1 + 2Ko + 2K3 + Kg)
4. Calculate y(I,J) and x(I,J) for t =At, 2At, 3At, ...NTu.t,

and z>0, by performing the following steps:

Step 1: Estimate values for y(I,J) and x(I,J) as follows:

y(I,J)€S = y(I-1,J-1)

-4 5 €M (1-1,J-1)[y(1-1,J-1)-y*(I-1,J-1)].NTent

and

x(1,d)€S = x(I,J-1)+\(I1,d-1)[y(I,J-1)-y*(I,J-1)].NT.At

Step 2: Using estimated values of y(I,J) and x(I,J) to cal-
culate y*(I,J)€S and A (1,J)€S from Eqgs. 4.23a and

4.30d respectively.

Step 3: We are now in a position to calculate the concen-
trations from Egs. 4.19b and 4.20 b by using estimated

values,
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y(I,d) = y(I-1,J-1)

~(25) AL, esly(r,0)88 ~ yx(1,d)es]
€

(L=t é% A(I-1,3-1)[y(I-1,J-1)-y*(I-1,J-1)]

and

x(I,d) = x(I,J-1)
+ é% A(I,J)eS(y(I,J)88 - yx(I,J)€s]

+ A (1, 0-1) [y (1, d-1)-y*(1,3-1)]

Step 4: Check for deviation between values from steps 1 and 3,

y(I,d) - y(I,J)€s
y(I,J)es

[ AN
m

and

x(I,d) - x(I,J)es ik ¢
x(I,J)es

where € is the desired tolerance.

If the conditions specified in this step are not satisfied,

repeat steps 1 through 4.

For subsequent stages, repeat the procedure from number 3

to 4 (see Figure 4.3).

Appendix V contains a listing of the FORTRAN IV digital
computer program written to implement the calculational al-

gorithm for the staged sequence cyclic adsorption process.
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<__| Beta e PT Beta <= Beta <=1 P

I11

11
I PT+PB
Py - Py
Ta T Ty Ty
I
‘ Beta P +P _tJ Beta..,
> —= "r'B BETA
|‘ NT1 NT2 | NT3 i_‘
(a) (b) (c) (d)
FIGURE 4.3

SCHEMATIC DESCRIPTION OF THE OPERATIONAL STEPS USED
IN THE COMPUTER SIMULATION OF THE STAGED SEQUENCE
CYCLIC ADSORPTION PROCESS.

(a) INITIALIZATION STEP (b) STAGE I (c) STAGE II
(d) STAGE III
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SOLUTION BY METHOD OF CHARACTERISTICS

Material Balance with Finite Mass~Transfer Rate

Let us go back to the material balance equations (Egs. 4.19
and 4.20), but we will now assume that y* in the finite mass-
transfer rate between mobile and stationary phases expressed by
the flux A(y-y*) is linear (see Eq. 4.31) instead of the non-
linear Langmuir isotherm expressed by Eq. 4.21. For clarity the

basic equations will be presented again.

% + .;_’._g—z- = - }\(y - y*) (4.19)
%% (=N (y - y%) (4.20)
y* = x/k(T) (4.31)

Chen et al. (1976) and Stokes (1976) each independently
presented a numerical scheme for solving the material balance
equations by the method of characteristics. We will again assume
that all physical properties are constant. The fluid entering
the column is also assumed to be at constant compositions and
velocity. The solutions to Egs. 4.19 and 4.20 can be expressed

in the form of

y(uj,ug) = 0 and x(ug) = 0O (4.32)
where
ui(t,z) = cq,ug(t,z) =cg and uz(t) = cg3 (4.33)

The natural boundary conditions to specify are

(4.34)

A
N

tA
o

x(z,0) = Xg 0
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y(z,0) = ¥o 0 <z <L (4.35)
y(o,t) = <y> t 20 (4.36)
L) - A<y> - y%), £ >0 (4.36a)

Equation 4.36 implies that at the entrance of the column,
<y > represents an average concentration which could constitute
combination of the feed solution (yg=1) and the reflux solu-

tions.

According to the method of characteristics (Acrivos, 1956),
the choice of paths in the (z,t)-plane is optional. Equations
4.32 and 4.33 are independent solutions of two of the associated

ordinary equations

dt dz dy

T RS s ) (4-30)
and

dat _dz _ 1 - ¢ dx (4.38)

1 -0 - € Ay - x/k) )

Since the characteristic curves are straight lines with direc-
tion ratios (t,z,y) and (t,x), it then follows that any surface
(Egqs. 4.32 and 4.33) contains the straight lines from the origin
to points on the surface. Although the geometric interpretation
of the solutions of Eqgqs. 4.19 and 4.20 can readily be obtained,
an explicit solution of a pair of the associated equations (Eq.

4.37 or 4.38) could be difficult.

Equality of the first two members of Eq. 4.37 gives

dz

=Y
3 - & (4.39)
and equality of the last two members of Eq. 4.37 gives
dy _ _ Ae(y - x/k) (4.40)

dz v
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FIGURE 4.4 Z,t-PLANE ALONG WHICH Y(Z,t) IS DEFINED
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As shown in Fig. 4.4, the characteristics are straight lines
in the (z,t)-plane of slope v/€ (Eq. 4.39). Consider a point

(z,t) lying on or parallel to OA, that is

€Z
(t = ¢c) > .

where ¢ is the distance of any family of curves parallel to the

OA. The inclination of the characteristics is
6 = tan—1 (g)

If ¢c =t - ez/v, then to find S the following derivations are

necessary.
ds2 = dz2 + dt2
as? = dz2(1 + (&)%)
Therefore,
s =2 /v2 €2 (4.41)

Rewriting Eq. 4.40 in terms of the arbitrary variable s,

dy ds _ _Ae(y - x/k)
ds*dz v

but

ds =»/V2+E:2

dz v
Therefore
dy _ _Ae(y - x/k)

ds Jv2 + €2



or

R —— (4.42)
s ‘/V2+e2 sz+gzk

and the solution to Eq. 4.42 is the sum of the complimentary and

particular solutions.

AE s ) +

]

X
y(c,s) Alexp(j/ T

ve + €
or \
Aqexp(- ﬁi z) + > (4.43)

y(z,t) K

i

Application of the boundary condition of Eq. 4.22 yields

v(z,t) = 15 + (<y> - x/K)exp(- *—%% (4.44)

In the same fashion, equality of the first two members of Eq.

4.38 gives
dz _
= =0 (4.45)

and equality of the last two members of Eq. 4.38 yields

dx _er(y - x/k)
dt (1 -¢) (4.46)

As depicted by Fig. 4.5, the characteristics of the solid
phase concentration, x, are straight lines in the (z,t)-plane
with slope 0 or z = constant. Upon integration of Eq. 4.46, we

obtain

k(1 - €)
- B o=l

z In (y - x/K) + Ag (4.47)

Applying the boundary condition of Eq. 4.34 and 4.35, the

following expression is obtained
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FIGURE 4.5 Z, t-PLANE ALONG WHICH X(Z,t) IS DEFINED
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x(z,t) = kly - B e-(I%E)E—] (4.48)
where B = yo5 - Xo/k
To calculate x(z,t) and y(z,t) at the points where the two
characteristics intersect, we substitute Eq. 4.48 into Eq. 4.44

to obtain

) -GEOM Ae2 - 3%
y = glBy - e {1 - e I + <y>e
and upon simplification, we get
_ €At _[E} t - st]
y(z,t) = <y> + Ble (I-8)k _ (1-e )k Vo (4.49)

If we now substitute Eq. 4.49 into Eq. 4.48, an expression can

be obtained for x(z,t). ert B Agz]

- -
x(z,t) = ki<y> - B e (1-€)k Vo (4.50)

Note that Egs. 4.49 and 4.50 are only defined at the points where
the characteristics intersect.

From Eqs. 4.48 and 4.49 the fluid phase concentration y(z,t)
can be obtained along with the characteristic z = vt/e+c and the
solid phase concentration x(z,t) can also be obtained along the
characteristic z = ¢c. The values of y(z,t) and x(z,t) during the
parapumping process are functionally dependent on many adjus-
table parameters: A, k, t, z and v. From Eq. 4.49 it is apparent
that for large bulk fiuid velocity v, y(z,t)= <y>, meaning that
the concentration in the fluid phase before exiting the column
will be essentially equal to the concentration of fluid that was
pumped into the column. This phenomena is physically sound since
mass-transfer from the fluid phase to the solid phase is sig-
nificantly reduced forhighvelocities. As cycle time increases,
y(z,t) decreases and x(z,t) increases for low temperature and

vise versa for high temperatures which is what should be ex-



108

1/
S S S S S

/ / / /& — Characteristic
I
| Characteristic
‘///// II
A

FIG. 4.6 : STEADY STATE CHARACTERISTICS FOR BATCH
PARAMETRIC PUMPING

CHARACTERISTICS I: FLUID PHASE
CHARACTERISTICS II: SOLID PHASE

0

ct



109

pected, since Longer times allow for near equilibriumsituations
to be attained and mass-transfer from the fluid phase into the
solid phase to occur for low temperatures (mass-transfer from
the solid phase into the fluid phase is obtained for high
temperatures).

Equations 4.49 and 4.50 can further be written to be inde-

pendent of z and v, if t = z/v, we have

qt _ -ll-alpt

v(z,t) = <y> + B{e P } (4.51)
and
x(z,t) = ki<y> - B e~ [1-alpty (4.52)
where
1
p = Ac and 9= 1T~k

The parameter p characterizes the capacity of the fluid phase
while the parameter q characterizes the capacity of the solid

phase.

Instantaneous Mass-Transfer (Equilibrium Theory)

In Chapter 5, various criteria necessary to achieve the
desired separations are developed by the method of character-
istics based on the assumption of instantaneous mass-transfer
between the fluid phase and the solid phase. Pigford et al.
(1969), in the development of the equilibrium theory for pro-
cesses inside the column assumed that local interphase equili-
brium exists with a linear distribution law having a tempera-

ture-dependent distribution coefficient. Other pertinent as-
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sumptions are negligible axial diffusion, instantaneous tem-
perature change when the column temperature is changed, the
existence of plug flow and constant fluid density. Chen et al.
(1974) analyzed the separation of multicomponent mixtures by
treating the mixtures as n pairs of pseudo-binary systems. Each
system was assumed to include one solute and a'common inert
solvent. They characterized the system by an equilibrium
parameter b;, associated with a given two-phase system operated
at two specific temperatures. The equilibrium parameter was

expressed as

0.5(mgj - mypj)

bi 1 + O.S(mli + mzi) (4'53)
where
myj = dimensionless equilibrium constant at tempera-
ture Ty for component i;
moj = dimensionless equilibrium constant at Tg for
component 1i.
For three temperatures, bj needs to be redefined as
m2i - M1ji
1. . 1
bi = 3% mii + moj (4.54)
m . - m Py
p2; = p—ok — 21 (4.55)

2 + mgj + mgj

where bli is the equilibrium parameter associated with T; and To,
“and b2; is the equilibrium parameter associated with Tg and T3
(T1<T9<T3). Equation 4.53 is applicable to parametric pumping
process where the pump is operated at two specific temperatures

and Egqs. 4.54 and 4.55 are applicable to cyclic adsorption
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sumptions are negligible axial diffusion, instantaneous tem-
perature change when the column is changed. the existence of plug
flow and constant fluid density. Chen et al. (1974) analyzed the
separation of multicomponent mixtures by treating the mixtures
as n pairs of pseudo-binary systems. Each system was assumed to
include one solute and a common inert solvent. They charac-~
terized the system by an equilibrium parameter bj, associated
with a given two-phase system operated at two specific tempera-

tures. The equilibrium parameter was expressed as

0.5(mp; - myj)

bi 1 + 0.5(my1j + moy) (4.53)
where
myj = dimensionless equilibrium constant at tempera-
ture Tq for component 1i;
Mo; = dimensionless equilibrium constant at Tg for

component i.
For three temperatures, bj; needs to be redefined as

Mo; — M1
1. _ 21 1i
P = 3 myy + mp; (4.54)

m3zj - Moj
2 + mgj + m3j

b2 (4.55)
where bli is the equilibrium parameter associated with Ty and To,
and bzi is the equilibrium parameter associated with Ty and Tg
(T1<T9<T3). Equation 4.53 is applicable to parametric pumping
process where the pump is operated at two specific temperatures

and Eqs. 4.54 and 4.55 are applicable to cyclic adsorption



112

process where more than two temperatures are needed for the
fractionation of fluid mixtures. In general, for a sequential
temperature input the equilibrium parameter associated with

temperatures Tj and Tj,; may be expressed as

i - mj (Typ1) - mi(T3) (4.56)
i 2 +mi(Ty) + mi(Tj4q)
where
1 = 1, 2, 3!

The material balance equations for the equilibrium theory
will not be derived here (see Egqs. 5.1 through 5.8). The steady
state characteristic solutions for parametric pumping and cy-
clic adsorption process will be tested separately. Let us
consider the parametric pumping process for the separation of

multicomponent mixtures (see Fig. 4.7)

PARAMETRIC PUMPING

Uicon = I‘Iza;ffj (4.57)
where

A\ = the bulk velocity of the mobile phase

Ujcon = the velocity of the concentration wave of com-

ponent i.

The slopes of the characteristics can then be written in
terms of the intersticial velocity and the equilibrium parameter

bj,
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Column I

@
N

iU
~
~—

1]

QL
ps
(@)

Downwards Cold Half Cycle = Ui, con

vol(l + P + Pp)

(1 + bill + 0.5(m;(T1) + mi(T2))] (4.58)
Upwards Hot HalfCycle= uj con = (32), -
vo(l + Pg) (4.5
. .59)
(1 - bi)[1 + 0.5(m;(Ty) + my(Tqg))]
Column Il
Downwards Hot Half Cycle = uj cop = (%%)H =
vo(l + Ppy) (
4.60)
(1 - bj)[1 + 0.5(mi(T1) + mj(Tg))]
Upwards Cold Half Cycle = Ui con = (%%) =
c
Vo(l + Pp + Pg) (4.61)

(T +b)[1 + 0.5(m;(Tq) + mi(Ty))]

Equations 4.57 through 4.61 are the concentration veloci-
ties for component i. The derivations are based on material
balances in a volume element of the column. According to Egs.
4.58 through 4.61, the mobile phase concentration velocity
depends on the operating conditions and the equilibrium para-
meters m; (T) and b;(T), where, in terms of the nomenclature used

by Pigford et al. (1969) and Chen et al. (1973),

1

m(T1) = mg + a (4.62)
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b =a/(1 + m)

Equation 4.62 is the dimensionless equilibrium constant para-
meter for a single component, and to extend Eq. 4.62 to multi-
component mixtures, Chen et al defined bj as given by Eq. 4.53
for two specific temperatures where the constants a and mjo (Eq.

4.62) now become,

_ mi(Tg) - mj(Ty) (4.63)

The characteristic lines are described by the distance-time

derivatives (Egs. 4.58 to 4.61), or

dz v

H=Tm=ui7con (4-64)
and

y(1 + m(T)) = constant) (4.65)

From Fig. 4.7 we know that

Downflow
hi: (1 + Pp + PR)Q = (1 + Py + PlvpA (4.66)
hri: (1 + Pg)Q = (1 + PplvpA (4.67)
Upflow
hi: (1 + Pg)Q = (1 + Pg)vya (4.68)
hry: (1 + Pp + Pg)Q = (1 + Py + Pp)lvpA (4.69)

where
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A = cross sectional area of the column

If Eqs. 4.66 to 4.69 and Eg. 4.53 are substituted into Eq.
4.64, Eqs. 4.58 through 4.61 are obtained. Eqgs. 4.64 and 4.65
are obtained from the material balance equations as will be fully
explained in Chapter 5. Equation 4.65 implies that the con-
centration along a characteristic line given by the slope
v/(1+m(T))(Eq. 4.64) are constant for any given temperature
except at the boundary where the temperature is switched from one
temperature to another. Therefore a change in concentration
will accompany a change in temperature according to the fol-

lowing

y(T1) 1 - by

v(To) =~ 1+ by (4.70)

A set of equations describing the characteristic lines in
one column is adequate, provided the heights of both columns are
equal (i.e. hy=hyy), to fully describe the system (see Fig. 4.7)
since the two columns are operated back to back. Now, if Egs.
4.58 and 4.59 are integrated between the limits of t=t; and t=tg
we get the wave front penetration distances for cold downflow and
hot upflow (Column I), respectively, a concept first defined by

Chen and Hill (1971).

vo(1l + Pqp + PglAt

Li(Ty) = (1 + bi)l1 + 0.5(mj(T1) + mj(Ty))] (4-71)
and
_ Vo(l + PB)At
Li(Tg) = - (1 - o)1 + 0.5(m;(T1) + mi(T5))] (4.72)
Li(Tg) (1 + Pg)(1 + by) (4.73)

Li(Ty) = (T + Pp + P)(T = by)
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In the derivation of the concentration transients, Chen and
Hill (1971a) presented the concentration transients for the top
and bottom product streams for operation in Regions 1, 2 and 3.
The equations predicted that, at steady state (n»® ), solute
removal from the lower stream is complete in Region 1, but only
partially removed in Regions 2 and 3. For the derivation of the
concentration transients for the parapumping arrangements shown
in Fig. 4.7, Region 1 mode of operation is applicable. The
derivation of the concentration transients for the pseudo-
binary system is based on the assumption that the less adsorbed
solute acts as an inert solvent. This assumption is sound
physically if the low temperature is chosen such that adsorption
on the solid phase is minimal. Hence, the ternary system can

then be treated as a pseudo-binary system.

If the feed is introduced into the top of the column during

downflow, and L;(Tp)2L;(T1), then from Eq. 4.73 we have

Li(Tg) N 1 + Pp 1 + by
Li(T1) = "1 + Pp + PB) 1 - by

If we let

1 + Pg 1 + by

T3ty T %) 2 1 (4.74)

This means that

1 + P s (1 - b;)
Py = 2bj

or
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Pr 2bj
< :
1+DPg - 1< b; (4.75)
if
Pp 2b;
1 +Pg 1 - bj
then
1 + Pp + P 1 - b; + 2bj; 1 + bj
B T _ i i _ i (4.76)

1 + Pg 1 - by 1 - by

Equation 4.75 means that for the strongly adsorbed solute
to concentrate at the top of the column (i.e. Lj(T9)>Li(T71)), the
ratio Pp/(1+Pg) must be less or equal to 2b;/(1-bj). Another

useful identity is given by Eq. 4.76.

Figure 4.8 shows top products exit during the n cycle of
operation. The external equation may be obtained from material
balance based on Fig. 4.8. By making a solute and total mass
balance, the following relation for the nth downflow half-cycle

may be obtained:

<yT2>n(1 + Pp + Pg) = <yp> _4(1 + Pg) (4.77)

Upon substituting Eq. 4.76 into Eq. 4.77 and rearranging the

resulting equation, the following is obtained:

1 - by
<yT2>n = 1——;——-b—i-<‘yrr1>n—l (4-78)

During the (n-1)th cycle (i.e. upflow half cycle), the fluid

emerging from the bottom column experiences a change in con-

centration equal to
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1 - bj

= (—1

and Eq. 4.78 now becomes

1 -~ Dbj 1 - by,

or
1 - by 2 n-1
< > = ———— } < >
vty = Ty y1g”
I.C. at n = ]_’
< =
YT2>1 Yo
Therefore
< N (1 - bj 2n-2
or
< > .
YT2 n 1 - bl 2n-2
voo - 1% bi) (4.81)

By means of Eq. 4.81, the concentration transients can be
calculated during the downflow half cycle, and for the upflow
half cycle, the following equation can be used in calculating the

concentration transients,

1 - by 2n-2 1 - bj 2n-1

= (T_I-E;) (4.82)

YT1%, 1 - by (
Vo T M1+ by 1 + by

Since bj<<1l, at steady state (n+x), Egs. 4.81 and 4.82 become

< yT2 >°° < yTl >°°

Vo or Vo =0 (4.83)

Equation 4.83 means that at steady state, the top product
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concentration would consist of the inert solvent (toluene and n-
heptane). If Eqs. 4.82 and 4.83 are written in terms of the

principal operating variables, we obtain the following:

<¥To on-2

— =8 _ P, (4.84)
Yo 1 + Pp

and
<y‘T>
1 -

— - B ._ _Pp )2“ 1 (4.85)

Yo 1 + Pg

There are certain values of Pt and Pg for which Eq. 4.83 is no
longer true. When operating the parapump with Prq<Ppg, the
strongly adsorbed solute does not appear in the top product at
steady state and Eq. 4.83 holds true. This situation is depicted
in Fig. 4.9. The steady state characteristics are shown in Fig.
4.10 for the case in which Pp<Pg and thus Lj(T1)/Lj(Tg)<l. 1In
Fig. 4.10, by geometry, the bottom product concentration tran-

sients <yBl> can be derived as follows:
n

a8 Li(Tqy) 1 +Pp +Pg 1 - Dy
ap - Li(T2) ~ (—1= Pp 1+ bi) (4.86)
Let
h - Lj(Ty)

P1 = integer [ ] (4.87)

Li(T9) - Lij(Tq)
and

ri = Pp +1

number of cycles necessary for the establishment of

steady state characteristic pattern.



122

1>(%0) "1/(') ' quanm walsxs XuVNIS-0QnASd V BO4
ININOJWOD QAYHOSAV ATIONOULS HHL 40 SINONA NOILVHINAONOD 40 INAWTAOW LAN 6°% HHADLA

s

+A

€

, b

I3

Tl

0

oX

od
< A>

+




123

] t+(n+1)At t+(n+2)At

-t t+npt

Yo

< >
<yB2>n yBl n
FIGURE 4.10:

STEADY STATE CHARACTERISTICS FOR THE STRONGLY ADSORBED COMPONENT
FOR A PSEUDO-BINARY SYSTEM, L(Tl)/L(Tz)(l
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Where
h - Lij(Ty1) h - Li(Tl)

P + a1 = Li(Tg) - Li(T1) = AL: (4.88)

P; = zero or a positive integer
and

0 Sqgp £1
Theretore,

BC it

q1iLj — Lj(T32) (4.89)
or

BC _BC _ 41 _

K= = & ~ 0;(Ty AL _ (4.90)

_ [Li(Tz) - Li(Tl)]

- L;(To) 91

Li(Tq1)
[ - Li(Tz)]ql
D _, _ AC
AD A
Li(Ty) Li(Tq1)
=1 - 11 11 (4.91)

[Li(Tg) * (- Li(Tz))qll

Therefore, the bottom product concentration after nth cycle can
then be calculated from the following (see Fig. 4.10)

1 +bi 3B BC CD
< > = (/=) = > 4+ ==X > - 1 4+ =%
YB1”y T T -1’ & "B27n-1 T ED Tl nopg ap YT nopg

Q

(4.92)
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FIGURE 4.11 TOP COLUMN FEXTERNALS FOR TWO COLUMN PARAMETRIC PUMP WITH ALTERNATING TOP FEED
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And upon substitution of Egs. 4.86, 4.90 and 4.91 into Eqg. 4.92

the following is obtained

YB17, T 1 + by YBg n-1 L;(Tq1) 1t <¥Ty n-p

(4.93)

For the case in which Pg Pp or L;j(T1)/L;j(T2)21, the steady
state characteristics developed with these conditions result in
incomplete separation, i.e. component B (more strongly adsorbed
component) is found in the product taken from the middle of the
two columns (<yT'>n)' From experimental observations, the
concentration increases as the magnitude of L;j(T1)/L;j(Tgy) in-
creases. In Figs. 4.12 and 4.13, by geometry, the concentration

transients <YT1> can be derived as follows:
n

EG Li(Ty) 1+ Pg 1 + by

= -~ LTy - (T +pp + 98T =%y’ (4.94)

Li(T1) - Lj(Ty)

Py = integer|

h - Li(Tg) _ B - Lij(Tp)
Pog + Qg = 7 ;(T1) - L;(Ty) ALj

Where

Qo = Zero or a positive integer
and

0 £qz <1

Therefore

+(1-q1) <y, >
1 1 Ty n

Py

]
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GI _GI _ 928L; _ . Li(Ty) - L;j(Tg)
ﬁ T At Li(T]_; az2( Li(T1) 1 (4.95)
IrF _, _E
EF  EF
_ Li(To) (1 Li(T.?,_)_
=1 - gy ettt - oo
Li(Tg)

Therefore the top product, <yTl> , concentration after nth cycle
n

can then be calculated from

1 - by EG
< > = <y > P—— P < >

|
==

+ <y >
YB n-Pg

(4.97)

Upon substitution of Egqs. 4.94 through 4.96 into Eq. 4.97, we

obtain

1 - D Li(Tg)

Yr17y T Tee YTt T pyrryy) [82Yeyy

+{(1 - )< >
n 1 427°YBy

-Po-
(4.98)

The bottom product concentration YBy > can also be calculated
n

by making a solute and total mass balance.

Staged Sequence Adsorption Process

Figure 4.14 shows the column arrangement for the staged
sequence adsorption process. The intersticial velocities,

ev, of the material in the three columns for stage 1 are,

hy: (R + Pp 4 PI)Q = (R + PT + PI)VOA (4.99)

129

n-Po

]
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hii: (R + Pp + Pr)Q = (R + Pp + PplvgyA (4.100)
hiri: (R + Pp)Q = (R + PplvpA (4.101)
where

R = amount of material refluxed in ml.

The slopes of the characteristics can then be written in terms

of Egqs. 4.99 to 4.101 and Egs. 4.54 and 4.55

_ - (R + PT + PI)VO
Column I: uj = (5p), = :
i,con 3t py (1 + b3i)[1 + 0.5(mj(Ty) + mj(T3))]

(4.102)

Column II: Uuj con = (5€) = (R + Pp + Prlvg
T2 (1 - b{)[1 + 0.5(mi(T7) + mj(Ty))]

(4.103)

az (R +P.T)vo

Col III: uj = (33 =
olumn Ui, con at)Tg (1-"n 21)[1 + 0.5(m;(Tg) + mi(T3))]

(4.104)

Upon integration of Eqs. 4.102 to 4.104, between the limits of
t =ty and t = ty, we get the wave front penetration distances

for the stage 1 mode of operation.

(R +P7 +P1lvg
(1 + b3;)[{1 + 0.5(m;(Ty) + mi(Tg))].

Li(Tl) At (4.105)

P P

Li(T9) = .
1tz (1 - b)[1 + 0.5(mj(T1) + mj(T3))] .
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(R +PT)VO .
(1 - b2;)[1 + 0.5(m;(Tg) + m;(T3))]

Li(T3) A (4.107)

Figures 4.15 and 4.16 illustrate the concentration charac-
teristics for two solute systems assuming linear isotherms.
Figure 4.15 illustrates a case with the penetration distances
for the two components equal Lj (T7)=0.33h, Lj(T9)=0.50h,
La(T )=0.66h; Lg(T1)=0.166h, Lg(Ty) = 0.33h and Lg(T3)=0.50h,
where h is the height of the column. It is assumed that
hi=hyi=hiy7. Some of the concentration wave fronts originating
from T; do not break through the column after experiencing a
sequence of three temperature inputs. As a consequence, com-
ponent A peaks at T3 instead of T, and component B concentrates
at the temperature boundary. Baker and Pigford (1971) noted that
by adjusting the thermal velocity and thus the penetration
distance of the thermal wave to override the natural thermal
wave, certain concentration wave fronts can be amplified. By so
doing, of course, the concentration waves can be made to con-
centrate at desired points between two given temperature boun-
déries. This lag in concentration waves can also be directed to
exit or emerge at desired points within a given temperature if
the frequencies of the temperature inputs are varied (i.e. if the
duration of the stages are made nonsymetrical). As predicted by
equilibrium theory, the concentration characteristics will

change according to Eq. 4.70 or

Y(Tl) 1 - bli

v(Ty) = T b3i (4.108)
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