Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again -beginning below the first row and continuing on until complete.
4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

Kerobo, Charles Omotayo

FRACTIONATION OF MULTICOMPONENT MIXTURES BY STAGED SEQUENCE CYCLIC PROCESS AND PARAMETRIC PUMPING

New Jersey Institute of Technology D.ENG.SC. 1982
University Microfilms
International 300 N. Zeet Road, Ann Arbor, M 148106

Copyright 1983
 by

Kerobo, Charles Omotayo
All Rights Reserved

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \qquad 1.

1. Glossy photographs or pages \qquad
2. Colored illustrations, paper or print \qquad
3. Photographs with dark background \qquad
4. Illustrations are poor copy \qquad
5. Pages with black marks, not original copy \qquad
6. Print shows through as there is text on both sides of page \qquad
7. Indistinct, broken or small print on several pages \qquad
8. Print exceeds margin requirements \qquad
9. Tightly bound copy with print lost in spine \qquad
10. Computer printout pages with indistinct print \qquad
11. Page(s) \qquad lacking when material received, and not available from school or author. Pa \qquad seem to be missing in numbering only as text follows.
12. Page(s)
13. Two pages numbered \qquad . Text follows.
14. Curling and wrinkled pages \qquad
15. Other \qquad

FRACTIONATION OF MULTICOMPONENT MIXTURES BY STAGED SEQUENCE CYCLIC PROCESS AND PARAMETRIC PUMPING -

by
Charles Omotayo Kerobo

Dissertation submitted to the Faculty of the Graduate School
of the New Jersey Institute of Technology in partial
fulfillment of the requirements for the degree of Doctor of Engineering Science

1982

APPROVAL SHEET

Title of Dissertation: Fractionation of Multicomponent Mixtures by Staged Sequence Cyclic Process and Parametric Pumping
Name of Candidate: Charles Omotayo Kerobo Doctor of Engineering Science, 1982
Dissertation and Abstract Approved:

Ching-Ronf Huang
Professor \& Assistant Chairman for
Graduate Studies
Department of Chemical Engineering Ching-Ronf Huang
Professor \& Assistant Chairman for
Graduate Studies
Department of Chemical Engineering Ching-Ronf Huang
Professor \& Assistant Chairman for
Graduate Studies
Department of Chemical Engineering
\qquad
Date
\qquad

Date

Date

Name: Charles Omotayo Kerobo
Degree and date to be conferred: D. Eng. Sc., 1982

Techincal education: Government Trade Centre Yaba Lagos, June 1966			
Secondary eclucation: Rhodes High School, New York, NY, January 1973			
Collegiate institutions attended	Dates	Degree	Date of Degree
Essex County College	73/74	A.A.S.	8/75
N.J. Institute of Technology	74/76	B.Sc.	$5 / 76$
N.J. Institute of Technology	76/78	M.Sc.	5/79
N.J. Institute of Technology	79/82	D.Eng.	. $10 / 82$

Major: Chemical Engineering
Minor: Mathematics

Publications/Research:

Master's Thesis, New Jersey Institute of Technology, "Equilibrium Theory of pH Parametric Pumping," (1979), Advisor-H.T. Chen (deceased).
"Semi-Continuous pH Parametric Pumping: Process Characteristics and Protein Separation," (with H.T. Chen, W.T. Yang, C.M. Wu and V. Jajalla), Separation Science and Technology, 16, 43, 1981.
"Research on Parametric Pumping," (with H.T. Chen, H.C. Hollein, and C.R. Huang), Chemical Engineering Education, Vol. 15, No. 4, Fall 1981.
"Separation of Proteins via pH Parametric Pumping," (with H.T. Chen, U. Pancharoen, W.T. Yang, and R.J. Parisi), Scparation Science and Technology, 15, 1377, 1980.

Positions Held:

1977-1982 Teaching Assistant, Chemical Engineering Depart-ment, New Jersey Institute of Technology, Newark,New Jersey.
1976-1977 Instructional Intern, Chemistry Department, EssexCounty College, Newark, New Jersey.
1971-1972 Machinist, Mueller Specialty, Brooklyn, New York.
1968-1971 Mechanic in Cigarette-Making Department, Nigeria Tobacco Company, Ibadan, Nigeria.
1966-1968 Fitter, Machinist and Turner, Metal Box Company,Apapa Lagos, Nigeria.

Abstract

Title of Dissertation: | Fractionation of Multicomponent Mix- |
| :--- |
| tures by Staged Sequence Cyclic Pro-
 cess and Parametric Pumping |

Charles Omotayo Kerobo, Doctor of Engineering Science, 1982

Dissertation directed by:
Ching-Rong Huang
Professor and Assistant Chairman for Graduate Studies Department of Chemical Engineering

The continuous fractionation of multicomponent fluid mixtures has been experimentally and theoretically investigated by staged sequence cyclic process and parametric pumping operating in the direct thermal mode.

A multicolumn staged sequence cyclic process for the separation of solute mixtures was developed. The criteria necessary for the continuous fractionation of a system of n solutes with n+1 columns arranged in a series operated with $n+1$ cyclic variables is presented. The feasibility for practical application of this process was demonstrated by fractionating the model system, O-xylene-Anisole-n-heptane on silica gel. The separation was modeled by one column staged sequence experimental data and by the equations of continuity under nonequilibrium conditions with nonlinear equilibria of the individual solutes. Diverse operating variables necessary for maximum separation were optimized. The results showed that this process could be a viable alternative to parametric pumping, cycling zone adsorption, or simulated moving bed.

Two column parametric pumping arranged back-to-back with alternating top and bottom feed (to minimize reservoir mixing) was also used in the continuous fractionation of a model system consisting of toluene-acetophenone-n-heptane in silica gel. A simple method for predicting the purification of a given solute(s) was derived based on the method of characteristics, by assuming the existence of pseudo binary systems, each system consisting of one solute and the common solvent. Comparatively, two column parametric pumping provides better separation capability than a one column parapump.

PREFACE

A multicolumn staged sequence cyclic process for the continuous fractionation of solute mixtures has herein been introduced as a viable alternative to parametric pumping, cycling zone adsorption and simulated moving bed. A two column (back-to-back) parametric pumping process designed for the purification of solute mixtures, an extension of the state-of-the-art in separation processes, is also discussed. This advance will provide greater feasibility for practical application of these separation technologies.

DEDICATION

To the memory of Professor Hung-Tsung Chen, Educator, Advisor and a true friend.

If not for this or that
On such and such a day
Had varied by an hour or an inch
Or something neglected had been done
Or something done had been neglected

Arthur Haley

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my thesis advisor, Professor C.R. Huang, for all of his time, ideas and interest. Professor Huang's aid has been invaluable in directing this research to a successful conclusion. In addition, I must acknowledge the one person who is really responsible for the initiation of this work--Dr. H.T. Chen. Before his untimely death, he was not only my mentor, but also a good friend.

I also wish to acknowledge my gratitude to Drs. J. Kappraff, G. Lewandowski, W. Wong and R. Parker, members of my advisory committee for their interest and useful suggestions. A great deal of appreciation is due to Mr. J.J. Huang, Ms. Helen C. Hollein and Dr. Ura Pancharoen for their valuable advice and suggestions.

I am also grateful to Dr. Gerald Sugerman and Ms. Diana Muldrow for their expert help and guidance in the drafting and textual aspects of the dissertation, and Mr. Sol Bravman for his valuable suggestions regarding the analytical work.

I am grateful to the NJIT Computer Center for the large amount of computer time used, and especially the computer center staff who were always willing to give their assistance.

I am especially grateful to my dear friends, Messrs. Buhari Umoru and Thomas A. Aliu, who mademy dreams of furthering my education come true. Particular thanks are also due to my
beloved friends, Sol and Carmen Bravman, and Christopher and Isimeme Omogbai for their encouragement and help during crucial periods, in many tangible and many more intangible ways.

TABLE OF COHTENTS

Chapter Page
Preface ii
Dedication iii
Acknowledgements iv
List of Tables ix
List of Figures xi
1 Introduction \& An Overview of Cyclic Chromato- graphic Separation Processes 1
Introduction 1
An Overview of Cyclic Chromatographic Separation Processes 4
Pressure Swing Parametric Pumping 6
pH Parametric Pumping 9
Other Related Variations of pH Parametric Pumping 13
Thermal Parametric Pumping 14
The Batch Direct Thermal Mode 16
The Continuous Direct Thermal Mode Parametric Pump 22
Recuperative Thermal Mode Parametric Pumping 28
Cycling Zone Adsorption 30
2 Adsorption Mechanism in Parametric Pumping and Cyclic Adsorption 36
Equilibrium Considerations 40
Kinetic Considerations 45
3 The Mathematics of Adsorption in a Packed Bed 52
The Complete Model of a Packed Bed 52
Simplified Model--No Axial Dispersion 68ChapterPage
4 Numerical Solution 77
Finite Difference Method of Solution 77
Finite Difference Equations for Finite Mass Transfer with Nonlinear Adsorption Isotherm 82
The Cell (Effective Plate) Mode 92
Computational Algorithm 92
Continuous Parametric Pumping 92
Cyclic Adsorption Process 97
Solution by Method of Characteristics 101
Material Balance with Finite Mass Transfer Rate 101
Instantaneous Mass Transfer (Equili- brium Theory) 109
Parametric Pumping 112
Staged Sequence Adsorption Process. 129
5 Separation of Dilute Multicomponent Solutions by Cyclic Adsorption and Parametric Pumping 136
Separation by Parametric Pumping 136
Internal Equations 139
External Equations 149
Cyclic Adsorption Process--One Column 152
Internal Equations 158
External Equations 161
6 Process Description 166
Parametric Pumping 166
Staged Sequence Cyclic Process 168
7 Process Operation 174
Parametric Pumping 174
Staged Sequence Cyclic Process 177
Chapter Page
8 Results and Discussion 183
Design of Fixed Beds by the Prediction of Breakthrough and Desorption Curves 183
Parametric Pumping 197
One Column Staged Sequence Cyclic Process 228
Multicolumn Staged Sequence Cyclic Process 246
9 Conclusions and Recommendations. 272
Appendices
I Breakthrough and Desorption Experimental Data 276
II One Column Parametric Pumping Experimental Data 280
III Two Column Parametric Pumping Experimental Data 291
IV One Column Cycling Zone Experimental Data 296
V Computer Programs 321
VI Computer Developed Breakthrough Data 338
VII Computer Developed Staged Sequence Cyclic Process Data 364
Nomenclature 423
Selected Bibliography 426

LIST OF TABLES

Table Page
5.1 Characteristics of Two Column Continuous Parametric Pumping 141
5.2 Characteristics of a Staged Sequence Adsorption Process 162
1-3 Breakthrough and Desorption Experimental Data 276
4-9 One Column Parametric Pumping Experimental Data - Semicontinuous With Top Feed 280
10-11 One Column Parametric Pumping Experimental Data - Continuous With Top Feed. 287
12-13 One Column Parametric Pumping Experimental Data - Continuous With Bottom Feed 289
14-17 Two Column Parametric Pumping Experimental Data - Alternating Top Feed 291
18-25 One Column Cycling Zone Experimental Data 296
26 One Column Staged Sequence $\mathrm{t}_{30}=\mathrm{t}_{60}=\mathrm{t}_{85}=$ 10 mins Recycle Ratio $=1.0$ 319
27
One Column Staged Sequence Experimental and Calculated Data - $\mathrm{t}_{30}=\mathrm{t}_{60}=\mathrm{t}_{85}=10 \mathrm{mins}$ Recycle Ratio $=0.0$. 320
COMPUTER DEVELOPED BREAKTHROUGH DATA
28
Effect of Mass Transfer Coefficient onEffluent Concentration339
29 Effect of Equilibrium Constant on Effluent Concentration 347
COMPUTER DEVELOPED STAGED SEQUENCE CYCLIC PROCESS DATA
Effect of Stage Duration Time on Separation 365
Effect of Number of Cells on Separation 370 3132Effect of Product Withdrawal Rate onSeparation374

33 Effect of Column Displacement on Separation... 382
34 Effect of Recycle Ratio on Separation

Effect of Recycle Ratio, Time $=30$ mins...... 396
Effect of Concentration on Separation, Recycle Ratio $=0.0$, Time $=10 \mathrm{mins}$.

37 Effect of Concentration on Separation, Recycle Ratio $=0.00$, Time $=14$ mins.......... 410

Effect of Concentration on Separation, Recycle Ratio $=1.00$, Time $=10$ mins.......... 415

LIST OF FIGURES

Figure Page
1.1 Column Diagram for Continuous pH Parametric Pumping 10
1.2 Apparatus Arrangement for Thermal Parametric Pumping. (a) Recuperative Mode. (b) Direct Mode 15
1.3 Continuous Thermal Mode Parametric Pump with Top Feed 23
1.4 Staged Cycling Zone Extraction System 33
2.1 Unmodified Silica Gel 38
2.2 Equilibrium Distribution Isotherm for o-Xylene 42
2.3 Equilibrium Distribution Isotherm for Anisole 43
2.4 Concentration Profile with (a) Sharp Boundary and (b) Diffuse Boundary 50
3.1 Fixed Bed Packed with Adsorbent Particles. 53
3.2 Roots of $\tan \lambda_{n}=\lambda_{n}$ 66
3.3 Roots for $f(\lambda n)$ when $L A^{2} / 4 \rightarrow \infty$ 66
4.1 Operational Steps of Stop and Go Method 93
4.2 Diagram of Operational Steps Used in Computer Simulation - Continuous Parametric Pumping 95
4.3 Schematic Description of the Operational Steps Used in the Computer Simulation for a Staged Sequence Cyclic Adsorption Process 100
4.4 z,t-Diagram Along Which $y(z, t)$ is Defined 103
4.5 z,t-Diagram Along Which $x(z, t)$ i's Defined 106
4.6 Steady State Characteristics for Batch Parametric Pumping 108
4.7 Alternating Top and Bottom Feed Arrangement for a Continuous Parametric Pump 113

Figure		Page
4.8	Externals for Middle Section of Two Column	
	Parametric Pump with Alternating Top and	
	Bottom Feed.	119
4.9	Net Movement of Concentration Fronts of	
	the Strongly Adsorbed Component for a	
	Pseudo-Binary System: $L_{i}\left(\mathrm{~T}_{1}\right)<\mathrm{L}_{\mathrm{i}}\left(\mathrm{T}_{2}\right)$	122
4.10	Steady State Characteristics for the Strongly	
	Adsorbed Component for a Pseudo-Binary	
	System: $\mathrm{L}_{\mathrm{i}}\left(\mathrm{T}_{1}\right)<\mathrm{L}_{\mathrm{i}}\left(\mathrm{T}_{2}\right)$.	123
4.11	Top Column Externals for Two Column	
	Parametric Pump with Alternating Top	
	and Bottom Feed..	125
4.12	Net Movement of Concentration Fronts	
	of the Strongly Adsorbed Component for a	
	Pseudo-Binary System: $\mathrm{L}_{\mathrm{i}}\left(\mathrm{T}_{1}\right)>\mathrm{L}_{\mathrm{i}}\left(\mathrm{T}_{2}\right)$.	127
4.13	Steady State Characteristics for the	
	Strongly Adsorbed Component for a Pseudo-	
	Binary System: $L_{j}\left(\mathrm{~T}_{1}\right)>\mathrm{L}_{\mathrm{i}}\left(\mathrm{T}_{2}\right)$.	128
4.14	Column Arrangement for staged Sequence	
	Cyclic Process.....	130
C. 15	Concentration Wave Fronts for Staged	
	Sequence Cyclic Process $L_{A}\left(\mathrm{~T}_{1}\right)=0.33 \mathrm{~h}$,	
	$\mathrm{L}_{A}\left(\mathrm{~T}_{2}\right)=0.50 \mathrm{~h}, \mathrm{~L}_{A}\left(\mathrm{~T}_{3}\right)=0.66 \mathrm{~h}, \mathrm{~L}_{\mathrm{B}}\left(\mathrm{T}_{1}\right)=0.16 \mathrm{~h}$,	
	$L_{B}\left(T_{2}\right)=0.33 \mathrm{~h}, L_{B}\left(T_{3}\right)=0.50 \mathrm{~h}$.	133
4.16	Concentration Wave Fronts for Staged Sequence	
	Cyclic Process $L_{A}\left(T_{1}\right)=0.5 \mathrm{~h}, \mathrm{~L}_{A}\left(\mathrm{~T}_{2}\right)=0.66 \mathrm{~h}$,	
	$\mathrm{L}_{\mathrm{A}}\left(\mathrm{T}_{3}\right)=0.83 \mathrm{~h} ; \mathrm{L}_{\mathrm{B}}\left(\mathrm{T}_{1}\right)=0.33 \mathrm{~h}, \mathrm{~L}_{\mathrm{B}}\left(\mathrm{T}_{2}\right)=0.5 \mathrm{~h}$,	
		134
5.1	Schematic of a Two Column Parametric Pumping	
	With Alternating Top and Bottom Feed..	137
5.2	Material Balance Diagram for Columns I \& II	150
5.3	Temperature - Time Diagram for One Column	
	Cycling Zone Adsorption Process..........	153
5.4	Steady State Characteristic Solution for	
	One Column Adsorption Process..........	157
5.5	Material Balance Diagram for a Staged	
	Sequence Adsorption Process.	163

Figure Page
6.1 Internal Flow Rates in a Two Column Parametric Pump With Alternating Top Feed 167
6.2 Column Arrangement for Staged Sequence Cyclic Process 169
7.1 Experimental Apparatus for Alternating Top and Bottom Feed Thermal Parametric Pumping 175
7.2 Experimental Apparatus for One Column Used in Simulating Staged Sequence Cyclic Process 178
7.3 Schematic of Staged Sequence Cyclic Process for the fractionation of Solutes A and B 180
8.1 Unfavorable Desorption Isotherm for O-Xylene and Anisole Column Initially Saturated with $5 \% \mathrm{~V} / \mathrm{V}$ Anisole in n -Heptane 184
8.2 Unfavorable Desorption Isotherm for O-Xylene and Anisole 187
8.3 Effect of Solvent Mixtures on Desorption of O-Xylene and Anisole 189
8.4 Concentration - Time Diagram for Various Mass Transfer Coefficients 191
8.5 Concentration - Time Diagram for Various Equilibrium Constants 193
8.6 Effect of Equilibrium Constant on Effluent Concentration 195
8.7 Effect of Column Height on Linear Equilibrium Concentration 196
8.8 One Column Semicontinuous Parapump With Top Feed 198
8.9 One Column Semicontinuous Parapump With Top Feed 200
8.10 One Column Semicontinuous Parapump With Top Feed 201
8.11 One Column Continuous Parapump With Top Feed. 203
8.12 One Column Continuous Parapump With Bottom Feed 204

8.14 Concentration Transients for $\mathrm{P}_{\mathrm{T}}=0.1$, $P_{B}=0.3$ 208
8.15 Concentration Transients for $\mathrm{P}_{\mathrm{T}}=0.2$, $P_{B}=0.2$ 209
8.16 Concentration Transients for $\mathrm{P}_{\mathrm{T}}=0.3$, $P_{B}=0.1$ 211
8.17 Steady State Characteristics for $\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{T}}=$ 0.2 213
8.18 Steady State Characteristics for $P_{B}=0.1$, $\mathrm{P}_{\mathrm{T}}=0.3$ 214
8.19 Concentration Transients for $P_{T}=0.1$, $P_{B}=0.1$ 216
8.20 Effect of Feed Rate on Concentration Transients 217
8.21 Effect of Top Product Withdrawal Rate on Concentration Transients 219
8.22 Steady State Concentrations for the Production of Toluene and Acetophenone in a Two Column System 221
8.23 Comparison of Top and Bottom One Column Feed Continuous with Alternating Top and Bottom Feed Two Column Parametric Pump 222
8.24 Effect of Mixing on Multicomponent Separation (Example 1) 224
8.25 Effect of Mixing on Multicomponent Separation (Example 2) 226
8.26 Effect of Production Rate on Solute Concentration for a Two Column Parametric Pump 227
8.27 Concentration of O-Xylene and Anisole at Lower Temperature Level Thermal Switching Period: $\mathrm{t}_{30}=\mathrm{t}_{60}=10 \mathrm{mins}$ 230
8.28 Concentrations of $0-X y l e n e$ and Anisole at Upper Temperature Level Thermal Switching Period: $\mathrm{t}_{60}=\mathrm{t}_{85}=10 \mathrm{mins}$ 232
8.29 Concentration of O-Xylene and Anisole at Lower Temperature Level Thermal Switching Period: $\mathrm{t}_{30}=\mathrm{t}_{60}=10 \mathrm{mins}$ 234
8.30 Concentration of $0-X y l e n e$ and Anisole at Low and High Temperature Levels Thermal Switching Period: $\mathrm{t}_{30}=\mathrm{t}_{60}=\mathrm{t}_{85}=10 \mathrm{mins}$ 236
8.31 Concentration of O-Xylene and Anisole at Low and High Temperature Levels Thermal Switching Period: $\mathrm{t}_{30}=\mathrm{t}_{60}=\mathrm{t}_{85}=14 \mathrm{mins}$ 238
8.32 Concentration of $0-X y l e n e$ and Anisole at Low and High Temperature Levels Thermal Switching Period: $\mathrm{t} 30=10 \mathrm{mins}, \mathrm{t}_{60}=\mathrm{t} 85=14 \mathrm{mins}$ 239
8.33 Concentration of O-Xylene and Anjsole at Low and High Temperature Levels Thermal Switching Period: $\mathrm{t}_{30}=20 \mathrm{mins}, \mathrm{t}_{60}=\mathrm{t} 85=1 \pm \mathrm{mins}$ 241
8.34 Recovery of $0-X y l e n e$ and Anisole Thermal Switching Period: $\mathrm{t}_{30}=\mathrm{t}_{60}=\mathrm{t}_{85}=14 \mathrm{mins}$ 242
8.35 One Column Staged Sequence - Recylce Ratio = $0.0, \mathrm{t}_{30}=\mathrm{t}_{60}=\mathrm{t}_{85}=10 \mathrm{mins}$ 244
8.36 One Column Staged Sequence - Recycle Ratio = $1.0, \mathrm{t}_{30}=560=\mathrm{t}_{85}=10 \mathrm{mins}$ 245
8.37 Product Concentration at $\mathrm{T}_{2}\left(\mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}\right)$ 247
8.38 Product Concentration at $\mathrm{T}_{3}\left(\mathrm{~T}_{1} \mathrm{~T}_{2} \mathrm{~T}_{3}\right)$ 248
8.39 Effect of Product Withdrawal Rate on Concentration Transients for Recycle Ratio $=1.0$ 250
8.40 Effect of Number of Cells on Concentration Transients for Components A and B at T_{2}. 251
8.41 Concentration Transients of Components A and B for $H=75 \mathrm{~cm}$ 253
8.42 Effect of Column Height on Concentration Transients for Components A and B 254
8.43 Effect of Stage Times on Concentration Transients for Component A and B at $T 3$ 255

Figure		Page
8.44	Effect of Stage Times on Concentration	
	Transients for Components A and B at T_{3}	257
8.45	Effect of Stage Times on Separation Factor.	258
8.46	Effect of Recyle Ratio on Separation Factor	260
8.47	Steady State Separation Factor Versus	
	Recycle Ratio.	261
8.48	Effect of Product Withdrawal Rate on	
	Separation.	263
8.49	Effect of Product Withdrawal Rate on	
	Steady State Separation Factor	264
8.50	Effect of Column Displacement on	
	Separation Factor.............	265
8.51	Steady State Separation Factor Versus	
	Column Displacement.	267
8.52	Effect of Concentration on Separation	
	Factor, Recyle Ratio = 0.0.	268
8.53	Effect of Concentration on Steady State	
	Separation Factor.	269
8.54	Effect of Concentration on Steady State	
	Separation Factor for Recyle Ratio =	
	0.0 and 1.0.	270

CHAPTER 1
 INTRODUCTION \& AN OVERVIEW OF CYCLIC CHROMATOGRAPHIC SEPARATION PROCESSES

INTRODUCTION

Prior articles which describe the utility of single column or segmented column systems for cycling zone adsorption separation processes, as well as for comparable parametric pumping systems have herein been extended to muiticolumn operations. This advance will provide greater feasibility for practical application of these separation technologies.

Direct thermal staged sequence cyclic separation processes and two column (effluent ends connected) back to back parametric pumping were investigated. The operating characteristics of two column and single column top feed (Chen, et al., 1972, 1973 and Stokes, 1976) parametric pumping processes were comparatively evaluated, and a limited comparison of parametric pumping versus staged sequence cyclic adsorption was made. The relative capabilities and performance characteristics of cycling zone and staged sequence cyclic process will be discussed.

Staged sequence adsorption and parametric pumping are cyclic separation processes characterized by unidirectional flow and flow reversal respectively, coupled to a change in a thermodynamic variable. The change in the intensive variable in a two phase system consisting of one mobile and one immobile phase (gas-solid, liquid-solid, or liquid-liquid) causes a separation
of the components to be achieved by alternately adsorbing and desorbing the solutes sequentially.

Various analytical solutions for the prediction of concentration histories are derived for chromatographic columns with step and pulse inputs based on linear or pseudo linear portions of non linear equilibria. These equations are useful for correlating system parameters that are necessary for design purposes. The theoretical prediction of the model with pulse inputs is applicable to the system in which the chromatographic coiumn sequence consists of series of adsorption-desorption processes. The models of column operation range in complexity from that described by simplified equations of continuity to that describing a detailed and complex situation where in all the kinetic effects are taken into consideration. The derivations of these analytical solutions are covered in Chapter 3 .

The analysis of direct thermal mode staged sequence adsorption and parametric pumping is based on equilibrium theory with linear and non linear equilibria as developed by Pigford (1969), as well as the more realistic non equilibrium theory with non linear equilibria of the favorable type. The equilibrium theory was generalized by Aris (1969) and applied to the analysis of continuous and semicontinuous single solute separation by Chen et al. (1972, 1973), and Gregory and Sweed (1970); and to multicomponent separation by Chen et al. (1974), Butts, Gupta, and Sweed (1972), and Foo, Bergsman and Wankat (1980). The nonequilibrium theory with non linear equilibria was first
applied to the analysis of parametric pumping by Wilhelm and his co-workers (1968).

The equilibrium theory assumes that the interface between the solid and the fluid phases are locally at equilibrium with a controlled linear distribution function having a temperature . dependent equilibrium relationship. All diffusive and dispersive effects are assumed to be negligible: The equilibrium theory is most suitablefor dilute solutions with linear equilibria, and is often extended to multicomponent systems by the principle of superimposition or by treating the multicomponent system as a series of pseudo-binary systems. The application of equilibrium theory to the staged sequence adsorption process and parametric pumping is covered in Chapters 4 and 5.

The non equilibrium approaches with linear and non linear equilibria constraints were simplified under the assumptions of constant fluid and solid properties, radial uniformity and negligible axial diffusion. In both cases, a linear interphase mass transfer rate was assumed. In the one case, the nonequilibrium with linear equilibria hypothetical treatment was solved by method of characteristics, while, in another case, the nonequilibrium with non linear equilibria was used to model the column by the STOP-GO algorithm (Sweed and Wilhelm, 1969) and is covered in Chapter 4.

AN OVERVIEW OF CYCLIC CHROMATOGRAPHIC SEPARATION PROCESSES

Cyclically operated gradient chromatographic processes are separation techniques characterized by unidirectional or alternating flow, coupled to a change in the thermodynamic variabie. The change in the intensive variable induces separation of the components of a fluid mixture in a two-phase system consisting of one mobile and one immobile phase (gas-solid, liquid-solid or liquid-liquid). These cyclic processes include parametric pumping, pressure swing adsorption parametric pumping and cycling zone adsorption. In parametric pumping and pressure swing adsorption, the flow is alternating, while the flow in cycling zone adsorption is unidirectional. These new techniques in separation technology have received considerable attention in recent years.

Cyclic processes represent new developments in separation science because of both their novelty and their adaptability to techniques commonly used in the separation of fluid mixtures (i.e. adsorption, extraction, affinity chromatography and ionexchange chromatography). The adaptation can be made, in principle, to any system where alteration of an applicable intensive variable such as temperature, pressure, pH, ionic strength or electric field results in a differential shift in the distribution of solutes between the mobile and immobile phases.

These new separation techniques have the following features:

1) batch chromatographic separations can be made semicontinuous or continucus; continuous operation minimizes processing time (therby reducing degradation of sensitive substances like proteins) and maximizes production rate;
2) semi-continuous or continuous processes, when optimized, have high separation capabilities and the solutes can be concentrated within limits to desired levels by setting the relative volumes of the appropriate product streams;
3) no regeneration chemicals are needed to clean the adsorbents so chemical contamination of the product streams is eliminated.

The late Wilhelm and his co-workers (1966) invented the batch parapump and introduced a semi-continuous parapumping process. Since that time, a pre-existing industrial process known as "pressure swing adsorption" has been identified as operating on the parametric pumping principle. A similar process which utilizes cyclic variation of an intensive variable and unidirectional flow called "cycling zone adsorption" was developed by Pigford and his co-workers in 1969.

A brief mention will be made of separations resulting from cyclic changes in pressure and pH (with ionic strength or electric field). The brevity of the discussions that will be made on the aforementioned cyclic changes bears no reflection on the importance of these novel separation techniques, but is due
to their limited relevance to this study. However, thorough discussion will be offered on separations due to cyclic changes in temperature gradients.

PRESSURE SWING PARAMETRIC PUMPING

Pressure swing adsorption (or heatless adsorption as it is occasionally called) was invented by Skarstrom in 1959 who soon thereafter received the first U.S. patent on the process (in 1960). The experimental set-up consisted of a two column process which Skarstrom used alternating between adsorption at high pressure and desorption at low pressure employing an upward and downward flow of gas respectively. Shendalman and Mitchell (1972) presented the first detailed theoretical work on pressure swing adsorption using the model system CO_{2}-helium-silica gel. The configuration of their experimental set-up was similar to that of Skarstrom (1959). In their theoretical analysis, the equilibrium theory of Pigford (1969) was used, in which all of the dispersive forces were assumed negligible. Criteria necessary for good separation were developed, but their results did not agree both quantitatively and qualitatively. Mitchell and Shendalman (1973) presented a non-dispersive and non-equilibrium model in which equations were solved using finite difference technique by first reducing the equations from partial differential equations to ordinary differential equations by the method of characteristics.

Turnock and Kadlec (1971) studied the pressure swing adsorption processes for the separation of nitrogen and methane on
a molecular sieve. In the mathematical modeling of their system, instantaneous equilibrium, plug-flow, and ideal gas behavior were all assumed and the phase equilibria expression was assumed to obey the Freundlich isotherm. Their results agree both quantitatively and qualitatively with experimental determination. Kowler and Kadlec (1972) optimized the cycle time and found that in order to obtain the desired product composition and minimize the exhaust rate, an optimum cycle time of approximately three minutes was required. This work was also done using nitrogen and methane on a molecular sieve.

Jenczewski and Myers (1970) used an equilibrium model with favorable isotherm (Langmuir) to correlate experimental data from a closed thermal, pulse adsorber. At $15^{\circ} \mathrm{C}$ the active component is adsorbed, then the column temperature is increased to $70^{\circ} \mathrm{C}$ and the $f l u i d$ is displaced by an amourt equal to a fraction of the column void volume which was preselected before the start of the run. Three model systems were used--argonpropane, ethane-propane and propane-propylene--on activated carbon adsorbent. Measurable separation was not observed for the propane-propylene system. The separation observed for argon-propane and ethane-propane were quite poor. Radial temperature gradients of $1.0^{\circ} \mathrm{C}$ to $2.0^{\circ} \mathrm{C}$ were noticed even with the isothermal model of operation.
" . .
Lopez (1973) used an equilibrium plug-flow model for a batch isothermal system (propane-argon on activated carbon) using pressure swing adsorption. Effects of temperature, pressure and
concentration were investigated. A continuous pressure swing adsorption system was studied by Weingartner (1973) for the model system carbon dioxide-helium on silica gel. The experimental results were analyzed by means of an equilibrium theory, and the various operation parameters necessary for the complete removal of the solute $\left(\mathrm{CO}_{2}\right)$ were investigated.

Belsky (1977) extended the use of continuous pressure swing adsorption to the separation of a ternary mixture--propylenecarbon dioxide-helium on silica gel. Various performance characteristics were examined. Using the same model system, Rastogi (1977) experimentally and theoretically conducted a study based on a non-equilibrium theory and linear adsorption equilibria. A comparison was made for the binary and ternary gas mixtures, and the conditions necessary for the separation of multicomponent mixtures were established.

Chan et al. (1980) presented a theoretical analysis of pressure swing adsorption. The analysis was based on equilibrium theory for a two component system where the concentration of one component was assumed to be at trace level. The theory predicted that for a large separation factor, high recovery of pure product could be obtained and that increased pressure ratios should also increase the recovery. The converse was found true for small separation factors. The authors simplified the transport equations for the two components by assuming that the concentration of one of the components to maintain essential unity. By so doing, the two simultaneous equations were reduced
to one equation solvable by method of characteristics. Wong et al. (1980) studied the separation of hydrogen-tritium on vanadium hydride particles on a two column system. The mechanism of separation was evaluated theoretically and experimentally and they concluded that the separation was due to absorption isotope-effect which selectively occured within the monohydride phase. Hill et al. (1982) conducted an experimental study with equipment similar to that of Wong et al. (1980), and modeled the separation by using equilibrium theory with minor modifications to include kinetic isotope effect, finite mass transfer and isotope exchange.
pH PARAMETRIC PUMPING (Fig. 1.1)
Parametric pumping processes, which are based on pH variation, are usually operated in the so-called recuperative mode, i.e. the intensive variable is set at a different level in the streams entering either end of the column. In this mode, the pH change moves across the bed as the entering streams penetrate the chromatographic column.

Sabadell and Sweed (1970) developed pH parametric pumping for the separation of aqueous solutions of K^{+}and Na^{+}on a cation exchange resin. The experimental apparatus was a one column arrangement with the top end open and the bottom end closed. Their results were rather encouraging since they were able to purify the material to 15 to 80% above the feed concentration. In 1975, Shaffer and Hamrin reported a pH parametric pumping process for trypsin removal from an enzyme mixture (chymo-

FIGURE 1.1 COLUNN DIAGRAMi FOR CONTINUOUS pl PARAMETRIC PUMPING. (Kerobo, 1979)
trypsin plus trypsin) using a sepharose type ion exchanger. The separation was predicted by Pigford's (1969) equilibrium theory and the experimental results were much lower than the theoretical expectations. Since then, Chen and co-workers have researched protein separations via pH parametric pumping with emphasis on maximum separation and continuous operation.

Chen et al. (1976, 1977) have experimentally investigated a semi-continuous pH parametric pump using the model system of the two arbitrarily mixed proteins--human serum albumin and human hemoglobin in aqueous solution--on the sephadex cation exchanger. These two proteins have different isoelectric points and the processes developed for the model system may be applied to any mixture of proteins having different isoelectric points. Proteins which carry a net positive charge and will adsorb on a cation exchanger at pHs below their isoelectric points; proteins which carry a net negative charge adsorb at pHs above their isoelectric points. The semi-continuous pump, which had a center feed between an enriching column and a stripping column, was operated batchwise during upflow and continuously during downflow. Two pH levels were imposed periodically on the system. Various factors affecting the separation were examined, including pH levels and ionic strength of the protein solutions, resevoir displacement and product flow rates. Hemoglobin was stripped from the top stream and enriched in the bottom stream; the separation factor for hemoglobin reached a limit of six in the best run. The albumin concentration remains unchanged in
this process, but removal of hemoglobin from the top stream leaves the top product relatively richer (by weight fraction) in albumin.

Chen et al. (1979) used a continuous pH parametric pump to separate the model system hemoglobin-albumin on a CM sepharose cation exchanger. This pump configuration had protein feed solutions at low pH and at high pH (relative to the isoelectric point of hemoglobin) introduced respectively to the bottom and top of a chromatographic column. It was shown that increasing the volume of the top product to some optimum level relative to the volume of the bottom product gave the pump the capacity for large enrichment of hemoglobin in the bottom product stream. Note that this system should, in fact, be considered "semicontinuous," because each cycle contains two stages where the product is not withdrawn.

An equilibrium theory was used in a theoretical analysis of the batch single-column and multi-column pH parametric pump by Chen et al. (1980). Simple graphical procedures for predicting separation showed that a parametric pump consisting of a series of columns packed alternately with cation and anion exchangers is capable of yielding very high separation factors. Experimental results, based on a comparison of albumin enrichment in one column and two column systems packed with CM and DEAE sepharose, were shown to support the theory.

Chen et al. (1981) developed a mathematical model with finite mass transfer for the model system hemoglobin-albumin on

CM sepharose. This model agrees quite well with the experimental data. Various factors affecting the separation were examined, including the addition of recycle stages to the one column process.

Fractionation of multicomponent protein mixtures by multicolumn pH parametric pumping was investigated theoretically and experimentally by Chen and co-workers (1980). The parametric pumping apparatus consisted of a series of chromatographic columns packed alternately with cation and anion exchangers. Separation of a mixture of n-proteins required a parametric pumping system consisting of $n-c o l u m n s$ and $n+2$ reservoirs. Various methods of operation of the parapump were discussed. Preliminary experimental data were shown in this paper for the two column batch separation of the model system hemoglobinalbumin on $C M$ and DEAE sepharose, and these data were in qualitative agreement with the calculated results. Optimization of the batch two column system has been recently completed and separation factors as large as twenty five were obtained for the mixture (Chen et al., 1981).

OTHER RELATED VARIATIONS OF pH PARAMETRIC PUMPING

Chen, Ahmed and Rollan (1981) studied the purification of the enzyme (alkaline phosphatese) by parametric pumping with pH and ionic strength using a semi-continuous process. Alkaline phosphatese, extracted from the human placenta, contains some contaminating proteins which have isoelectric points approximately equal to that of the enzyme; hence, the additional
intensive variable (ionic strength). Comparison of enzyme purification by parametric pumping and cycling zone adsorption showed that the former process has a higher purification factor and a larger percentage enzyme activity recovered, while the latter process has a higher rate of production. Optimization indicated that a parametric pump operating with two proper combinations of the two intensive variables--pH and ionic strength--is superior to a parametric pumping system based on only pH or ionic strength.

Chen, Hollein and Ma (1981) have combined pH and electric field for splitting two proteins in a mixture from each other in a semi-continuous mode of operation with a single column set-up. The same model system was used as in previous protein separation studies, i.e. hemoglobin and albumin in aqueous solution on $C M$ sepharose cation exchanger. The separation obtained in the single column, semi-continuous pH parametric pumping process is enhanced by inducing an electric field across the chromatographic column during certain stages of the process. Separation factors as high as 120 are reported for the mixture.

THERMAL PARAMETRIC PUMPING

The basic principles of parametric pumping were first described by Wilhelm et al. in 1966. In this pioneering work, a batch recuperative mode of operation was applied; the fluid was heated in a heat exchanger before flowing up through the bed and cooled before flowing down (see Figure 1.2a). Figure 1.2b illustrates the direct thermal mode batch parametric pumping

FIGURE 1.2 APPARATUS ARRANGEMENT FOR THERMAL PARAIńETRIC PUMPING. (a) RECUPERATIVE MODE. (b) DIRECT HODE. (Wilheim, 1966)
which calls for external application of heating and cooling sources during upward and downward flow of fluid through the column. The discussion of thermal parametric pumping will be started with the Direct Thermal Mode before going into the Recuperative Mode.

The Batch Direct Thermal Mode (Fig. 1.2b)

The direct thermal mode can further be subdivided into two categories, batch and open separations. The batch separations will first be presented in chronological order and followed then by the open separations. Briefly, a suitable experimental set up consists of a jacketed column packed with a suitable adsorbent. In the first half cycle, the column is heated and the fluid is flown from the bottom reservoir through the column to the top reservoir, and in the second half cycle, the column is cooled and the fluid is flown from the top reservoir through the column to the bottom reservoir. By successive synchronization of the flow directions with heating and cooling, the necessary separation is achieved. The principle behind the separation is that during the cold downflow, the adsorbent retains or retards the movement of the solutes, and releases them during the hot upflow, by so doing the solutes are concentrated at the top reservoir and depleted from the bottom reservoir.

The work of Wilhem and Sweed (1968) illustrates the batch direct thermal parametric pumping. The authors separated toluene from n-heptane on silica gel adsorbent employing two temperature cycling limits (hot and cold). The separation
factor (i.e. the ratio of the concentration in the top reservoir to the concentration in the bottom reservoir) was in the magnitude of $10^{5}: 1$ after about 52 cycles. The theoretical method of analysis was complex and involves a good deal of computation. Sweed and Wilhelm (1969) presented a powerful method of computation algorithm for the solution of the transport equations resuiting from the simulation of the batch pump. The equations are first simplified by reducing the partial differential equations to ordinary differential equations by method of characteristics, after which the ordinary differential equations are solved numerically by the STOP-GO method, suitable for handling of any rate equation. The method of characteristics eliminates all axial diffusion. The STOP-GO method was used to simulate the toluene-n-heptane data (Wilhelm and Sweed, 1968) and the comparisons were quite good.

Pigford, Baker and Blum (1969) developed the "equilibrium theory," based on the assumption of localized equilibrium between the solid and fluid phases. The material balance equations are greatly simplified since rate equations are not required. Linear equilibrium expressionwas assumed and all axial dispersive forces were neglected. The resulting equation after applying the assumptions is a hyperbolic equation solvable by method of characteristics. The validity of the equilibrium theory was tested by the authors by fitting the equilibrium parameter, b, with the data of wilhelmetal. (1969), but no correlation was found, and, also, the concentratons are over
predicted. This lack of correlation, as one would expect, is a result of the oversimplification of the transport equations. In any case, this paper (Pigford et al. 1969) served as the limelight behind the reason for separation. The validity of the equilibrium theory caused considerable correspondence--amongst active and prominent investigators in this field--because of a difference of opinions. The equilibrium theory was generalized by Aris (1969). The prediction for low concentration was quite reasonable and the poor correlation for high concentration was attributed to mass transfer limitations.

To this reasoning, Rhee and Amundson (1979) pointed out that it was due to non-linear equilibria at high concentration rather than mass transfer resistances. Chen and Hill (1971) presented the separation characteristics of batch and open parametric pumping, the details of which will be discussed later. Sweed and Gregory (1971) modeled the separation of $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$-ion retardation resin. The dependence of mass transfer coefficients on temperature and velocity was determined from break through data. The data obtained from this work was used to simulate a continuous process. Butts, Gupta and Sweed (1972) used the equilibrium theory for the separation of multicomponent mixtures. The authors presented algebraic equations for the prediction of column and reservoir concentrations based on linear, non-competitive, non-dispersive and local equilibrium theory. The model considered asymetric fluid displacements in both half cycles, thereby causing different solutes to penetrate dif-
ferent distances in the column. Butts etal. (1973) extended the analysis for multicomponent mixtures to the separation of a binary mixture of K^{+}and H^{+}on a Dowex 50 x 8 resin. K^{+}ions were concentrated in the top reservoir and H^{+}ions in the bottom reservoir. With slight modification in the operating conditions, a ternary mixture was separated. In this experiment, K^{+} ion was concentrated in the top reservoir, H^{+}in the bottom reservoir, and Na^{+}in the middle of the column.

Gupta and Sweed (1973) used a mixing cell model to simulate the non-equilibrium effects in parametric pumping with linear isotherms. The effects of mass transfer resistances and axial diffusion were taken into consideration. This simulation is more realistic since equilibrium conditions are rarely attained in parametric pumping. The cell model was solved by either Laplace transform or matrix exponentiation. Grevillot and Tondeur (1976) studied equilibrium staged parametric pumps with non-linear isotherms. One single equilibration step and discrete transfer were regarded as one-half cycle. Suggestive analogies similar to that of total reflux distillation were given. Simple graphical McCabe-Thiele representation of the history of the concentration transients for the first few cycles was also presented. Single stage, two stage and nth stage parametric pumping were described. The number of stages is, in essence, equivalent to the number of cells. A one stage or cell means that the whole column, consisting of the adsorbent particle, is considered to be a single stage or cell. Grevillot and

Tondeur (1977) extended the single transfer step equilibrium graphical analysis (Grevillot and Tondeur, 1976) to multiple transfer equilibration steps per half-cycle. The reservoir concentrations were also embedded in the staging analysis. N equilibrium stage and n transfer steps per half cycle were also presented. The steady state graphical solution consists of a staircase for both linear and non-linear equilibria. Theoretically, increasing the number of transfer steps, n, even with a single stage, an infinite separation is possible, since the concentrations of the reservoirs are accounted for from cycle to cycle.

In a series of studies done by Rice and his coworkers $(1973,1973,1974,1975,1975)$, qualitative treatment has been offered on batch parametric pumping. Their approach is a very important fundamental treatment that has been neglected since the inception of parametric pumping principles. Important dispersive forces that influence separation have been neglected for many years, all on the premise of simplifying the horror of mathematical equations resulting from modeling the internal and external solute movements in the column. Rice (1973) presented an analytical treatment for the prediction of the dispersive forces and steady state separation in parametric pumping. His derivation was based on "zero-flux condition," meaning that as the separation approaches a steady state value, the average solute flux appraches zero. The author also predicted that an optimum steady state separation cecurs at a kinematic Peclet
number of about 3.0 , and that larger separations could be obtained when the pump is operated at high frequency. Rice and Mackenzie (1973) presented experimental data for aqueous oxalic acid on activated carbon obtained from batch parametric pumping operated at high frequency. A reversed separation effect was observed. At high frequency of operation, thermal velocity is less than fluid velocity. Experimental studies on the temperature gradient showed that the variation of the axial temperature was in the neighborhood of $2^{\circ} \mathrm{C}$. The author suggested inclusion of the radial diffusion terms in the original transport equations of Baker and Pigford (1971).

Rice and Foo (1974) studied the effects of thermal diffusion and frequencies of operation on batch parametric pumping operation. Rice and Mackenzie (1973) proved experimentally that axial temperature gradient was too small to be worthy of any attention in the modeling, but that radial thermal velocity is quite slow and could significantly affect the rate adsorptiondesorption radially in the column. Rice (1974) studied the effects of all transport resistances on the optimum frequencies in parametric pumping. In commenting further on the temperature gradients in the column, the author assumed that small reservoir volumes are of sufficient physical grounds to neglect the axial temperature gradient, and that radial temperature gradients are primarily responsible for concentration dependence on radial position. Rice (1975) compared square velocity wave of Pigford (1969) to a sinusoidal velocity wave and concluded that para-
pumps operated with square velocity profiles producelarger separations than parapumps operated with purely sinusoidal velocity waves. For parapumps operated with equal displacements, but with square wave and sine wave velocity profiles, the author concluded that the enrichment of parapumps with sine wave velocity profile is slower.

The Continuous Direct Thermal Mode Parametric Pump (Fig. 1.3)
Application of the parametric pumping process to the separation of liquids in open systems has been studied extensively, both continuously and semicontinuously in the direct thermal mode. Sweed (1971) presented a considerable review of experimental work, while Horn and Lin (1969) were pioneers in presenting a theoretical calculation for such an open system. The experimental arrangement of Horn and Lin (1969) consisted of a two-column arrangement with a center feed, a center reservoir and reservois at both ends of the column where products were withdrawn. The mathematical description of the apparatus was rigorous. Firstly, a single solute system was used in which it was mathematically shown that the solute can be concentrated at one end of the reservoir (the "enrichment problem"). Secondly, the mathematical analysis of a two component "split problem" was also presented.

Gregory and Sweed (1970) introduced a continuous process analytically for an equilibrium parametric pump by method of characteristics. Separations resulting from symmetric and nonsymmetric flow systems for various configurations are tabu-

Fig. 1.3. Continuous Thermal Mode Parametric Pump with Top Feed (Chen and Hill, 1971)
lated. Sweed and Gregory (1971) simulated a continuous process with $\mathrm{NaCl}-\mathrm{H}_{2} \mathrm{O}$-ion retardation resin system data obtained from a batch parametric pump. This paper was rather significant in that it illustrated that batch parametric pumping can be modeled accurately with a continuous process.

Chen and Hill (1971) introduced the first completely continuous parametric pumping process. Five different versions of the thermal parapump (two continuous, two semi-continuous, and the batch pump) were analyzed in terms of the equilibrium theory and the appropriate mass transport equations. The mathematical model indicates that, under certain operating conditions, the batch pump and pumps with feed at the enriched end have the capacity for complete removal of a solute from one product fraction and for arbitrarily large enrichment of that solute in the other fraction. Separation factors and enrichment are modest for pumps with feed at the depleted end. The concept of "penetration distance" was introduced in this paper as the distance a concentration front will move into the column during a half cycle. Experimental verification of these models for the system toluene-n-heptane on silica gel have been studied extensively by Chen and his co-workers (1972, 1973a, 1973b).

Chen et al. (1972) studied the continuous parapump operation experimentally with top feed. The system used for this continuous parapump was toluene-n-heptane on silica gel. A separation factor of over 600 was obtained for only 14 cycles in the region predicted by the equilibrium theory. In the initial work
done on the glucose-fructose-water system, fullers earth was used as the adsorbent (Chen, Jaferi and Stokes, 1972). The breakthrough data were fitted to a Langmuir isotherm and the separation predicted with equilibrium theory. A considerable attempt was made to design the experimental runs so that the equilibrium parameter, b, could be obtained. An extremely long cycle time was required for a typical run. Gregory and sweed (1972) experimentally determined the behavior of a continuous parametric pumping system. Experimental batch data were used to simulate continuous process. Five versions of column arrangements were optimized. The equilibrium parameters and rates of mass transfer were experimentally determined and used in the solution of model equations by STOP-GO algorithm. Gupta and Sweed (1973) studied the effects of nonequilibrium in parametric pumping. The mixing cell model of a packed bed was used in the analysis of the nonequilibrium effects. The results obtained were more realistic when compared with the equilibrium theory. The authors presented a two column schematic for the separation of multicomponent mixtures by nonsymmetrical flow pattern in the columns.

A semicontinuous parametric pumping with top feed was experimentally studied by Chen, Reiss, Stokes and Hill (1973). Three possible regions of pump operations were presented. The concentration transient equations derived under equilibrium conditions were presented. It was postulated that an infinite steady state separation factor can be attained when the pump is
operated in Region 1 (separation factor equal the ratio of top product concentration to bottom product concentration). Chen and Manganaro (1974) derived mathematical expressions for determining optimal performance of equilibrium pumps. The studies were done with a model system $\mathrm{NaNO}_{3}-\mathrm{H}_{2} \mathrm{O}$ via ion-retardation resin. Empahsis was placed on the operating conditions necessary for achieving high separation factors with maximum yield. Chen, Lin, Stokes and Fabisiak (1974) extended the continuous thermal parametric pumping to the separation of multicomponent mixtures. The model system used was toluene, aniline and n heptane on silica gel. A simple method for predicting multicomponent separations was developed. This method invokes the assumption that a multicomponent mixture contains a series of pseudo-binary systems. Each binary system consists of one solute (toluene or aniline) plus the common inert solvent (nheptane). Experimental data agreed reasonably well with the analytical predictions. The multicomponent system, glucose-fructose-water on a cation exchanger (Bio-Rad AG50W-X4, calcium form) was also studied (Chen and D'emidio, 1975). Agreement between experiment and theory was roughly equivalent to that obtained above.

In 1973, Sweed and Rigaudeau outlined the heat transfer problems that would be encountered in the scale up of thermal parametric pumping systems. The heating and cooling times are proportional to the diameter squared. The authors suggested packing numerous laboratory size tubes in a single shell for
scale up. A scale up of the continuous thermal parapumping system was done and the design equations were developed (Chen and Stokes, 1979). Proposals were outlined for the construction and operation of the parapump assembly; the auxiliary equipment and the instrumentation were also outlined. The commercial parapump assumes the configuration of multiple parallel tubes in a heat exchanger shell; this design facilitates direct thermal mode operation. The energy requirements were shown to be of the same order of magnitude as that for distillation.

Grevillot (1980) reported the analytical and theoretical equilibrium staged continuous parametric pumping process. This paper is an extension of two previous papers (1976, 1977) for the batch process. Operating conditions for a linear parapump are determined analytically and theoretically and generalized for non-linear isotherms. Analogies with distillation are made taking into account optimal feed stage location, minimum reflux and separation factor for given sets of conditions.

Rice and Foo (1981) carried out a direct-mode process for the continuous desalination of water using a dual-column system packed with bifunctional resin (Bio-Rad AG11A8). The derivations of the design equations for steady state continuous process were based on a nonequilibrium batch theory. The equation for the prediction of the steady state separation factor for continuous parapump as a function of the steady state separation factor for batch parapump and product rate seems to agree very well for the range of experiments undertaken.

Costa, Rodrigues, Grevillot and Tondeur (1982) have recently studied the purification of phenolic wastewater by a continuous direct mode parametric pumping using linear equilibrium theory. This work was done with a single column with top feed and packed with Duolite ES-681. The nonmixed dead volume model presented was tailored after the work of Chen and Hill (1971). The concentration transient equations developed to emphasize the influence of top and bottom dead volumes were also presented for batch, semicontinuous and continuous processes. Based on both of these experimental results and analytical results for the nonmixed reservoir, in order for the concentration transients to be improved, a minimum top dead volume should be maintained for a given bottom dead volume. Also, relative to the mixed case, a better separation could be obtained wilicut top dead volume.

RECUPERATIVE THERMAL MODE PARAMETRIC PUMPING

In addition to the pH parametric pumping already discussed, the thermal recuperative mode was the first recuperative mode of parametric pumping initiated by Wilhelm and his co-workers (1966, 1968 and 1969). Despite the inherent energy recovery advantage of recuperative thermal mode over the direct thermal mode, much work has not been done in this area probably due to the difficulty of precise experimental work. The experimental results of Wilhelm and co-workers were rather discouraging. The separation factors that were obtained from their results ranged from an average value of 1.11 to a maximum value of 1.22 .

However, Rolke and Wilhelm (1969) presented a very detailed mathematical modeling for the simulation of a continuous recuperative mode parametric pumping. Though the modeling was very attractive, the computational algorithm was too time consuming.

Sweed and Rigaudeau (1973) noticed that for there to be large separations, thermal waves must breakthrough the column for any given cycle. It was shown that earlier works on the recuperative mode were performed under the condition where thermal breakthrough did not occur. Simulated results where suistantial separations could be obtained with proper selection of thermal penetration were also presented.

Wankat (1978) theoretically studied continuous thermal recuperative mode parametric pumping, and various conditions necessary to achieve complete and partial separation for a given solute from the bottom product were elaborated. When thermal wave velocity is greater than the concentration wave velocity, complete separation of solute from the bottom product is attained, and the separation for both direct and recuperative modes are the same. The energy requirements for a given separation are less for recuperative mode than direct mode, and could also be decreased for unmixed reservoirs. For pumps with partial separations, unmixed reservoirs could increase the separation.

A new concept recently presented by Tondeur, Jacob, Schweich and Wankat (1981) is the "Guillotine Effect." This effect, which is a result of thermal shock waves, would cause some solute
effluent concentrations to temporarily approach zero (very dilute). This phenomena could be noticed in any chromatographic adsorption-desorption process where pure cyclic thermodynamic waves can be obtained (i.e. temperature, pH and concentration). In fact, this phenomena is a result of adsorption of the solute due to a change in temperature from hot to cold. When the temperature is initially switched from hot to cold, the cold temperature front travels down the column; the solute concentration front trailing behind it is adsorbed, and, as the adsorbent capacity is approached, the solute concentration will rise and begin to approach the feed concentration.

CYCLING ZONE ADSORPTION

Cycling zone adsorption is a cyclic separation technique characterized by unidirectional flow through a series of columns called "zones." According to Pigford et al. (1969) who developed this process, the direct mode was called "standing wave," while the recuperative mode was called "travelling wave." In the direct mode, the columns are cooled or heated externally, and in the recuperative mode, the fluid entering the column is heated or cooled in a heat exchanger. The zones are arranged in a way such that the temperatures (or the applicable thermodynamic variables) are out of phase. The authors reported four experiments consisting of direct and recuperative mode of operation. Two of these experiments are single zone recuperative mode for the separation of methane from helium and acetic acid from water; while the other two experiments are a single zone direct mode for
the separation of acetic acid from water and double zone direct mode for acetic acid from water. The reported separation factors are high for the direct modes and even higher for the two zone. A detailed theoretical study was done by Baker and Pigford (1971), and theoretical explanation of the phenomena of separation of the cycling zone adsorption process presented. The authors showed that the equations applicable to the recuperative mode are equally applicable to the direct mode if the direct mode is considered to be a recuperative mode with infinite thermal wave velocity. The heat and mass balance equations were solved with the assumptions of local equilibrium theory (Pigford et al., 1969). The characteristic solution predicted that the cycling temperature on the column whether it was direct or recuperative, propagates through the column without changing shape or amplitude. The analytical solution for the linear isotherm predicts that infinite separation factors could be obtained as the number of zones approaches infinity, but similar conclusions cannot be reached for nonlinear isotherms due to shock and diffusive waves. The concentrations obtained for recuperative modes can be enhanced or amplified if the thermal wave velocity can be adjusted to be equal or lie between the concentration wave velocities of hot and cold temperatures. Experimental results of the adjustment of the thermal wave velocity was not reported.

Gupta and Sweed (1971) analyzed cycling zone adsorption process analytically. Model equations and graphical compu-
tational algorithmwere presented based on equilibrium theory with linear equilibria. Their emphasis wason the proper selection of fluid displacement that would enable increased separation to be obtained.Ginde and Chu (1972) used a mixed bed of ion exchange resins in a single zone cycling adsorber to separate NaCl from water. This process was essentially a batch cycling zone with total recycle since products from the column were recycled until the desired separations were obtained. The parameters which affected separations were the amount of liquid in the system, the flow rate and the cycle time. In 1972, Rieke extensively studied the direct thermal mode of cycling zone adsorber for the model system toluene-n-heptane on silica gel. Experimental results showed that separation could be improved by switching temperature at an optimum frequency. Results for partial and no recycling were presented, and for the case with partial recycling, increased separation can be obtained, but longitudinal mixing limited the amount of separation.

Wankat (1973, 1974; see Fig. 1.4) extended the cycling zone adsorption process to liquid-liquid extraction. With a collection of test tubes, experiments were carried out for the separation of diethylamine-water-toluene, where toluene was used as the stationary phase. Direct and recuperative modes of operation were studied using the counter-current distribution system similar to that in Craig and Craig's "Technique of Organic Chemistry." Discrete transfer and equilibrium steps were applied to keep one liquid phase stationary. For the recuperative

FIGURE 1.4 STAGED CYCLING ZONE EXTRACTION SYSTER (Wankat, 1973)
mode, a dependency of separation on thermal wave velocity was observed. However, a qualitative agreement was obtained both theoretically and experimentally.

Meir and Lavie (1974) theoretically studied a continuous cyclic zone adsorption. In this recuperative mode process, a sinusodial temperature input was assumed to be periodically imposed on the column. The mathematics of the problem was formulated under the assumption of local equilibrium. The analytical solution which was obtained via method of characteristics predicts the conditions under which separation could be obtained. Wankat (1975) showed that a recuperative mode cycling adsorption can be used to separate fluid mixtures into their individual components. The theoretical approach was based on local equilibrium and equilibrium staged theory. The temperature inputs consists of a series of temperature steps with one step for one component. Conditions necessary to effect separation were outlined.The equations presentedwere the same as those of Baker and Pigford (1971) and the conditions necessary for separation are based on the characteristic solution. The calculational scheme based on the equilibrium staged model is similar to the STOP-GO algorithm developed for parametric pumping (Sweed and Wilhelm, 1969).

Nelson, Silarski and Wankat (1978) developed a theoretical model for recuperative cycling zone adsorption processes. The equations were derived based on the equilibrium stage model and were solved numerically by the modified fourth order Runge-Kutta
method. The algorithm is a general scheme that is capable of handing different equilibrium isotherms and any thermodynamic intensive variable necessary for cyclic separations. The computer algorithm was used to simulate various experimental data and the results agree qualitatively. Foo, Bergsman and Wankat (1980) developed a segmented cycling zone adsorption system for the separation of multicomponent mixtures. This direct mode cycling zone system works on the principle that different solute concentration wave velocities have to be slower than or faster than given thermal wave velocities in order for the components to be separated. A single column consists of many zones and each zone consists of one or more sections. Based on the experimental results, the degree of separation depends on the total number of sections, the number of sections in a given temperature zone and the thermal switching rate.

CHAPTER 2

ADSORPTION MECHANISM IN PARAMETRIC PUMPING

AND CYCLIC ADSORPTION

The concept of adsorption chromatography is dated as far back as 1903 when it was first used for the separation of plant pigments. Since then, other analytical methods have been developed, and, as a result, the usage of adsorption chromatography has since been narrowed to the purification of fluid mixtures that are prohibitively expensive or impossible to separate by less conventional methods. This chapter will focus primarily on the adsorption of some organic compounds on some solid adsorbents.

The basic underlying principle of adsorption is interactions between the adsorbents (solid phase) and the adsorbates (solutes). These interactions can be purely physical, chemical or a combination of both. In physical adsorptions, layers of monomolecules are arranged on the adsorbent surface and are held there by weak van der Waals forces. Under appropriate operating conditions, the layers of monomolecules may concentrate at the interphase (interphase between the solid and fluid phases) due to these forces. The rate and degree of adsorption depends on the adsorbent type and the chemical properties of the adsorbates. On the other hand, chemisorption could involve reaction or chemical bonding between adsorbent and the adsorbate. The presence of the various forces in both the adsorbents and
adsorbates depends on their polarity (i.e. the positive and negative centers due to molecular arrangement or orientation).

Most adsorbents suitable for the separation of hydrocarbons may be polar (for adsorption chromatography) or non polar (for reverse phase partition chromatography). Silica gel, which was found most suitable for this study, is a polar adsorbent. The degree of adsorptive interactive forces will, in most part, increase with increased solute polarity. Solutes or solvents can be arranged in increasing order of dipole moment as follows:

Water >oxygenated organic compounds > hydrocarbons (2.1) One can then conclude that the polarity of the solutes (solvents) increases with the number of assymetrically placed functional groups, and decreases with increasing molecular weight for a given number of functional groups.

It is now evident that the adsorbent bed is the basis of chromatographic separation. So, to achieve separation, migration of substances through the bed has to be at different rates. The substances to be separated are passed through the adsorbent column and the adsorbent retarded or released based on the conditions of operation. The mobile phase serves as the avenue of transporting the solutes through the column. Therefore it will be very instructive to take a closer look at the stationary material and the way it selectively retards the solutes.

Figure 2.1 shows the chemical representation of the surface of silica gel. The basic germane characteristics of silica gel are the structure and chemical configuration of its surface.

FIGURE 2.1 UNMODIFIED SILICA GEL

These surface characteristics can be exceedingly complex in nature. The surface layer can consist of hydrogen bonded water and silanol groups where one or two OH groups are attached to the same silicon atom. Silica gel can be chemically or thermally modified. If it is not chemically modified, there is a tendency towards irregularity in the number and spacing of the surface groups. The effect of these irregularities is a lack of reproducibility and separation characteristics. Silica gels that are not chemically modified have to be modified thermally (i.e. activation) so as to control the surface activity or strength. The number of $O H$ groups accessible to the solutes determines the degree of bonding between the gel and the solutes. Silica gel can be partially or completely deactivated by the addition of water which covers the active sites by hydrogen binding. The importance of adsorbent selection to suit the material to be separated can not be overstressed. It is essential to have a thorough knowledge of the nature of the separation mechanism.

In adsorbents like silica gel, ion-dipole and dipole-dipole interactions may be responsiblefor the mechanism of adsorption. Induced dipole interactions (van der Wals forces) may also be present if materials to be separated are weakly polar. Amongst the various factors which may affect adsorption is the steric and spatial differences between solutes. This factor enables geometric and optical isomers to be separated by adsorption chromatography. The steric and spatial factors are also largely
responsible for the extent to which the solute is arranged on the surface of the adsorbents, and since some solutes are easily arranged relative to other solutes, the easily arranged solutes are adsorbed easily.

The usual configuration of.a chromatographic process for the separation of liquid mixtures is a cyclindrical column packed with pre-selected solid particles. In the convectional adsorption process, the fluid mixtures are introduced from the top of the column and the effluent collected in fractions and analyzed, or the compositions may be analyzed through an on-line system such as a gas chromatograph or UV spectrometer. As the fluid mixtures are steadily introduced, the solutes tend to be adsorbed by the solid, starting from the top of the column and gradually saturating the column as the process is continued. After saturation, the solutes are eluted by a single solvent, a combination of solvents or by applying an eluotropic series of solvents. The elution process depends on the solutes being separated. The packed column could be regenerated by heating, or, if the elution process consists of a rational series of solvents (Scott and Kucera, 1973), the packed column is automatically regenerated and ready for the next analysis. For processes that involve analytical separations, the fluid mixture is introduced in the form of a pulse followed by elution. The magnitude of the pulse input amongst many other factors depends on the purity desired.

EQUILIBRIUM CONSIDERATIONS

During the process of separation in a packed column, solute
bands migrate down the column at a velocity, u_{i}, con (see Chapter 3). u_{i}, con, which is perhaps the major variable that ensures separability of different i solutes, is functionally dependent on the operating variables and equilibrium parameters.

```
\(u_{i, c o n}=f(b u l k\) velocity, solid phase concentration, ther-
    modynamic variables, etc.)

The equilibrium distribution between the solid and liquid phase can be expressed as
\[
\begin{equation*}
x_{i}=f(y, T) \tag{2.3}
\end{equation*}
\]

Equation 2.3 means that the solid phase concentration, \(x\), is functionally dependent on the liquid phase concentration, \(y\), and the column temperature, \(T\). The equilibrium distribution isotherms (Perry, 1973) are frequently characterized as "favorable" or "convex" (such as that shown in Figures 2.1 and 2.2) if, and only if
\[
\begin{equation*}
\frac{\partial^{2} f}{\partial y^{2}}=\text { negative } \tag{2.4}
\end{equation*}
\]
or "unfavorable" or "concave" if, and only if
\[
\begin{equation*}
\frac{\partial 2_{f}}{\partial y^{2}}=\text { positive } \tag{2.5}
\end{equation*}
\]
and "मinear" if, and only if
\[
\begin{equation*}
\frac{\partial 2_{\mathrm{f}}}{\partial \mathrm{y}^{2}}=\text { zero } \tag{2.6}
\end{equation*}
\]

Favorable breakthrough curves such as that shown in Figures 2.1 and 2.2 can be calculated from unfavorable desorption data by the method of characteristics (Sherwood, Pigford and wilke,



Təタ eotits s/otows'x
1975). Values of \(x\), as a function of \(y\), were estimated using desorption breakthrough data after the column was initially saturated by \(1 \% \mathrm{v} / \mathrm{v} \mathrm{o}-\mathrm{xylene}\) and \(1 \% \mathrm{v} / \mathrm{v}\) anixole in n-heptane. The column was eluted with pure \(n\)-heptane at a flow rate of 1 cc/min. This method of characteristics was derived for single solutes, but was extended to the analysis of two solutes by superposition of single solute results with the assumption that adsorption of each solute is independent of the presence of others. Equilibrium distribution isotherms for most solutes, especially hydrocarbons, exhibit convexity. There are few exceptions (Sherwood, Pigford and Wilke, 1975) to this observation in adsorption of electrolytic solutions in ion exchange resins. Contrary to most assumptions in the modeling of adsorptions in packed beds, linear equilibrium isotherms are not necessarily obtained at low (dilute) solute concentrations.

For qualitative and quantitative prediction of column behaviors, realistic expressions for the equilibrium distribution isotherm are imperative. This equilibrium distribution expression, which is the driving force, \(F(x, y)\), that causes separation of solutes in a large number of packed columns, relates to the characteristic behavior of the solutes in both the liquid and solid phases. The most widely used of these adsorption equilibria expressions for single components are the famous Langmuir, Freundlich, Brunauer, Emmett, and Teller (BET) expressions, and for multicomponents the Langmuir expression. These are empirical correlations mostly derived for the adsorption of gas
mixtures (Sherwood, Pigford and Wilke, 1975) and have been successfully applied to the correlation of liquid mixtures.

The Langmuir expression (Eq. 2.7) was derived on the assumption of mono-layer and the fixed number of adsorption sites available for adsorption on the solid surface. Equation 2.7 is useful over a limited concentration range, and it also predicts linear equilibrium isotherms as the fluid phase concentration approaches zero.
\[
\begin{equation*}
x=\frac{Q K y *}{1+K y^{*}} \tag{2.7}
\end{equation*}
\]

The Freundlich expression (Eq. 2.8) is the most widely used for the correlation of adsorption equilibria, but does not
\[
\begin{equation*}
x=k y^{l / n} \tag{2.8}
\end{equation*}
\]
predict linear equilibrium isotherms as the concentration approaches zero. Other equilibrium isotherm expressions are extensiors of the Langmuir isotherm developed for complex systems. For the systems used for this work, a modified Langmuir isotherm (first developed by Sweed, 1969) of the form
\[
\begin{equation*}
x=\frac{A y^{*}}{1+B y^{*}}+D y * \tag{2.9}
\end{equation*}
\]
was used. The constants \(A\) and \(B\) are temperature dependent constants to be determined emperically, while the constant \(D\) is dependent on the adsorbent type.

\section*{KINETIC CONSIDERATIONS}

Although understanding of the kinetics of the movement of the solutes is a basic necessity for effective modeling of a packed bed, the transport mechanism of a given solute in a packed
bed could be very complex. A single or a combination of the following transport mechanisms contributes to the adsorption of the solute by the solid phase:
1. eddy diffusion;
2. mass transfer of the solute from the fluid phase to the interface;
3. mass transfer of the solute from the interface to the liquid phase:
4. mass transfer of the solute into the solid phase;
5. mass transfer of the solute on the adsorption sites of the solid phase; and
6. in some cases, chemical reaction of the solute with the adsorption sites.

During the process of adsorption, the above characteristic phenomena may be sequential as outlined and in the desorption process, the reserve order of the outlined sequence is true. For the formulation of simple models, most of the above mechanisms are neglected, especially the related mass-transfer resistances and longitudinal dispersion. And upon such simplifications, the concentration at the interphase is usually taken to be in equilibrium with the solid phase. The most frequently used models for the description of effluent curves from the packed bed are the equilibrium and finite mass transfer models.

In the equilibrium model, radical velocity, concentration, and temperature gradients are usually disregarded. In both isothermal and adiabatic operations, effect of temperature on
the physical parameters are usually neglected except in the equilibrium relationship. If mass transfer between the fluid and solid phases is assumed fast, simple adsorption equilibria may be adequate. The resulting transport equations, after applying the above assumptions, tend to overpredict the adsorption phenomena. However, it is advantageous in that the calculational algorithm involved is very simplistic in nature.

The finite mass transfer model tends to be more realistic in that solute mass transport across the interface is accounter for. For this model, the rate of mass transfer is due primarily to molecular diffusivity and convective forces. The rate of mass transport across the interface is usually expressed as
\[
\begin{align*}
& \frac{\partial x}{\partial t}=\lambda\left(y-y^{*}\right)  \tag{2.10}\\
& \lambda=\frac{k a}{1-\varepsilon}  \tag{2.11}\\
& k=\left[\left(1 / K_{f}\right)+\left(1 / K_{S}\right)\right]^{-1} \tag{2.12}
\end{align*}
\]
where
\(\lambda=\) overall mass transfer coefficient
\(k=\) overall mass tranfer coefficient
\(K_{f}=f l u i d\) phase mass transfer coefficient
\(K_{S}=\) solid phase mass transfer coefficient
\(a=\) total interfacial area per unit volume of packed space \(\varepsilon=\) column void volume fraction

For a slow rate of change of fluid and solid concentrations at the interface, the resistance to mass transfer is high and the contribution of solid phase mass transfer is negligible and \(k=\) \(K_{f}\) (Eq. 2.12).

In equilibrium models with favorable distribution isotherms, the concentration wave front is concentration-dependent, and an influent of constant concentration causes a sharp concentration profile (Foo, Bergsman and Wankat, 1980; Helfferich and Klein, 1970)(i.e. discontinuous or shock front), and a step function is approached; whereas a diffuse wave is obtained for unfavorable distribution isotherms. For linear distribution isotherms the concentration wave front is concentration independent and influent of constant concentration displaces the wave front along the column with no change in shape.

The rate of advance of the solute concentration wave front can be expressed as (see Chapters 4 and 5)
\[
\begin{equation*}
u_{i, c o n}=\frac{v^{\varepsilon}}{\left[\varepsilon+(1-\varepsilon) f^{\prime}\left(x_{i}, y_{i}\right)\right]} \tag{2.13}
\end{equation*}
\]
and
\[
f^{\prime}\left(x_{i}, y_{i}\right)=\frac{\partial x_{i}}{\partial y_{i}}
\]
where
\[
\begin{aligned}
& v=\text { the interstitial velocity of the solution; and } \\
& v \varepsilon=\text { column superficial velocity. }
\end{aligned}
\]

For favorable distribution isotherms, \(\partial x_{i} / \partial y_{i}\) decreases with \(y_{i}\). This means that solute wave velocity is faster in the regions of high concentrations, and thereby overtakes a solute in a lower concentration region and a shock or sharp boundary results (Figure 2.4). Solutes with unfavorable distribution isotherm exhibit high velocities in the low concentration regions and diffuse waves result (Figure 2.4b), but the velocities of
solutes with linear isotherms are independent of concentration and thereby result in no change in solute wave fronts. The opposite phenomena takes place during a desorption process-solutes with favorable distribution isotherms exhibit diffuse waves, solutes with unfavorable distribution isotherms exhibit sharp or shock waves and those with linear distribution isotherms maintain constant shape concentration wave fronts.

From the ongoing analysis, it is evident that to design an efficient fixed bed or adsorption column, it is a matter of necessity to have a thorough understanding of adsorption mechanisms and the rate processes governing the system. Based on this understanding, the breakthrough curves (i.e. the effiuent histories) can be logically analyzed. One shortcoming in the design of adsorption processes is that the rates and the mechanisms of the adsorption process are unique to the type of adsorption, the bulk fluid velocity, the concentration of the influent and the geometry of the adsorption column.

In the study of the dynamics of adsorption systems, the normal route generally taken is to predict the effluent history based on the influent history. Examples of influent histories commonly used are pulse and step inputs. Also, based on responses of the various inputs and the corresponding outputs, a suitable analysis and modeling of the system is done by formulating a mathematical representation to unify the relationships between the inputs and outputs. More often than not, the resulting equations may be so complex that in order for the


FIGURE 2.4 CONCENTRATION PROFILE WITH (a) SHARP BOUNDARY AND (b) DIFFUSE BOUNDARY
equations to be solvable, simplifying assumptions becomes a matter of course. Such studies where the solutes undergo adsorption and the effluents are continuously removed and analysis for concentration history have been elegantly described by Treybal ("Mass Transfer Operations") as "single transition systems." The single transition systems, as simple as it sounds, require a thorough knowledge for the interpretation and prediction of the effluent histories. Cyclic adsorption process and parametric pumping could be categorized as a "multiple transition system" since it involves an alternating series of adsorption and desorption. This means that a set of additional mathematical formulations is necessary for the prediction of the desorption process. The adsorption and desorption steps in cyclic adsorption and parametric pumping involves a change in the intensive variable such as temperature, pressure, pH , ionic strength, electric field or magnetic field. The alteration of the intensive variable results in a differential shift in the distribution of solutes between the mobile and immobile phases. By taking into account the effects of the various or appropriate intensive variable, the mathematical modeling is further complicated.

\section*{THE MATHEMATICS OF ADSORPTION IN A PACKED BED}

\section*{THE COMPLETE MODEL OF A PACKED BED}

The packed bed under consideration is assumed to have a cross sectional area of \(S\) square units. It is also assumed that it is packed with fine particles such that the void volume is filled with solvent or solution. At time zero, a solution of known concentration is pumped into the column at room temperature and the column itself is operated isothermally at known temperature \(T\). It is assumed that the process of adsorption of all solutes is non-competitive. It is desired to determine the fluid phase concentration at any time and at any position in the bed.

Then making a detailed material balance on an elemental length of bed \(\Delta Z\) (Figure 3.1), the following result was obtained:

\section*{Fluid Phase}
\[
\begin{align*}
\varepsilon S \Delta z & \frac{\partial y}{\partial t}=\left.v S y\right|_{z=z}-\left.v S y\right|_{z=z+\Delta z} \\
& -\frac{S \Delta z(1-\varepsilon)}{4 / 3 \pi r_{o}^{3}} \cdot 4 \pi r_{o} 2_{K_{f}}\left(y-y_{\text {int }}\right) \\
& -\left.\varepsilon S E_{D} \frac{\partial y}{\partial z}\right|_{z=z}+\left.\varepsilon S E_{D} \frac{\partial y}{\partial z}\right|_{z=z+\Delta z} \tag{3.1}
\end{align*}
\]
dividing Eq. 3.1 by \(\Delta z \varepsilon S\), as \(\Delta z\) approaches 0 , we get
\[
\begin{equation*}
\frac{\partial y}{\partial t}=-\frac{v}{\varepsilon} \frac{\partial y}{\partial z}-\frac{1-\varepsilon}{\varepsilon} \frac{3}{r_{o}} K_{f}\left(y-y_{i n t}\right)+E_{D} \frac{\partial^{2} y}{\partial z^{2}} \tag{3.2}
\end{equation*}
\]


FIGURE 3.1
FIXED BED PACKED WITH ADSORBENT PARTICLES

\section*{Solid Phase}
\[
\begin{equation*}
\left.4 \pi r^{2} \cdot N_{A r}\right|_{r}-\left.4 \pi r^{2} N_{A r}\right|_{r+\Delta r}=4 \pi r^{2} \cdot \Delta r \cdot \frac{\partial x}{\partial t} \tag{3.3}
\end{equation*}
\]
dividing Eq. 3.3 by \(4 \pi \Delta r\), as \(\Delta r\) approaches 0 , we get
\[
\begin{equation*}
-\frac{\partial\left(r^{2} N_{\mathrm{Ar}}\right)}{\partial r}=r^{2} \frac{\partial x}{\partial t} \tag{3.4}
\end{equation*}
\]

Since \(N_{A r}=-D_{S} \frac{\partial x}{\partial r}\), Eq. 3.4 becomes
\[
\begin{equation*}
D_{S}\left(r^{2} \frac{\partial 2 x}{\partial r^{2}}+2 r \frac{\partial x}{\partial r}\right)=r^{2} \frac{\partial x}{\partial t} \tag{3.5}
\end{equation*}
\]

For spherical particles, the particle shape factor \(\alpha_{f}=2\). Therefore upon rearrangement of Eq. 3.5, we get
\[
\begin{equation*}
D_{S}\left(\frac{\partial 2_{x}}{\partial r^{2}}+\frac{\alpha_{f}}{r} \frac{\partial x}{\partial r}\right)=\frac{\partial x}{\partial t} \tag{3.6}
\end{equation*}
\]

To understand the mechanism of adsorption, some assumptions are necessary. The relationship between the fluid phase, y, and the solid phase, x will be assumed to be linear. The constraint that goes with this assumption requires that we stay within the dilute concentration region. If we invoke the local equilibrium theory of Pigford et al. (1969), we have in the region of small \(x\left(r=r_{0}\right)\)
\[
\begin{equation*}
y_{\text {int }}(z, t)=K x\left(r=r_{o}, z, t\right) \tag{3.7}
\end{equation*}
\]

Equation 3.7 implies that equilibrium is established at every time and space in the bed. \(K\) is a function of the intensive variable (e.g. temperature, pressure, pH, etc.) and all the flow characteristics of the bed. The initial conditions of the bed are:
\[
\begin{equation*}
y(z, t=0)=y_{0}=\text { constant, } 0 \leq z \leq L \tag{3.8}
\end{equation*}
\]
which also means that \(y_{i n t}(z, t=0)=y_{o}\)
\[
\begin{equation*}
\mathrm{x}(\mathrm{r}, \mathrm{z}, \mathrm{t}=0)=\mathrm{x}_{0}=\text { constant, } 0 \leq \mathrm{z} \leq \mathrm{L}, 0 \leq \mathrm{r} \leq \mathrm{r}_{\mathrm{O}} \tag{3.9}
\end{equation*}
\]

The boundary conditions necessary for a complete solution are
\[
\begin{align*}
& \frac{v}{\varepsilon} y(z=0, t)-\left.E_{D} \frac{\partial y(t)}{\partial z}\right|_{z=0}=\frac{v}{\varepsilon} y_{\text {in }}  \tag{3.10}\\
& \frac{\partial y}{\partial z}(z=L, t)=0 \text { for small } t, y=y_{0}  \tag{3.11}\\
& y(z=L, t)=y_{\text {in }} \text { for large } t, y=y_{\text {in }}  \tag{3.12}\\
& \left.\frac{\partial y}{\partial z}\right|_{z=L}=\text { finite for intermediate } t \text { or }\left.\frac{\partial 2^{y}}{\partial x^{2}}\right|_{z=L}=0 \tag{3.13}
\end{align*}
\]

Equations. 3.11 through 3.13 can be combined to give
\[
\begin{align*}
& \left.\frac{\partial^{2} y}{\partial z^{2}}\right|_{z=L}=0  \tag{3.14}\\
& \frac{\partial x}{\partial r}(r=0, z, t)=0 ; 0 \leq z \leq L, t \geq 0  \tag{3.15}\\
& D_{S} \frac{\partial x}{\partial r}\left(r=r_{o}, z, t\right)=K_{f}\left[y(z, t)-y_{i n t}\left(r_{0}, z, t\right)\right] \\
&  \tag{3.16}\\
& \\
& 0 \leq z \leq L, t \geq 0
\end{align*}
\]
\(y_{\text {int }}\left(r_{o}, z, t\right)=f\left[x\left(r_{o}, z, t\right)\right]\) as shown by Eq. 3.7
\[
\begin{equation*}
y(z, t \rightarrow \dot{\infty})=y_{i n} \tag{3.17}
\end{equation*}
\]
\[
\begin{equation*}
x\left(r_{o}, z, t \rightarrow \infty\right)=x_{e q}=\frac{y_{\text {in }}}{K}=\frac{y_{i n}}{K} \tag{3.18}
\end{equation*}
\]

Equations 3.2 and 3.6 become
\[
\begin{equation*}
\frac{\partial Y}{\partial t}+\frac{(1-\varepsilon)}{\varepsilon} \cdot \frac{3}{r_{O}} \cdot K_{f}\left(Y-Y_{i n t}\right)=E_{D} \frac{\partial^{2} Y}{\partial z^{2}}-\frac{v}{\varepsilon} \frac{\partial Y}{\partial z} \tag{3.19}
\end{equation*}
\]
and
\[
\begin{equation*}
\frac{\partial X}{\partial t}=D_{S}\left(\frac{\partial 2 X}{\partial r^{2}}+\frac{2}{r} \frac{\partial X}{\partial r}\right) \tag{3.20}
\end{equation*}
\]
where
\[
Y=-\left(y-y_{0}\right), Y_{i n t}=-\left(y_{i n t}-y_{O}\right)
\]
and
\[
x=-\left(x-x_{0}\right)
\]

Note that as y increases with respect to t, and decreases with respect to \(z ; \quad Y\) decreases with respect to time \(t\), and increases with respect to \(z\). So also \(x\) increases with respect to \(r\) and \(t\); and \(X\) decreases with respect to \(r\) and \(t\).

Laplace transform Eq. 3.20, with Eq. 3.9 to get
\[
\begin{equation*}
S \bar{X}=D_{S}\left(\frac{d^{2} \bar{X}}{d r^{2}}+\frac{2}{r} \frac{d \bar{X}}{d r}\right) \tag{3.21}
\end{equation*}
\]
or
\[
\begin{equation*}
r^{2} \frac{d^{2} \bar{X}}{d r^{2}}+2 r \frac{d \bar{X}}{d r}-\frac{S}{D_{S}} r^{2} \bar{X}=0 \tag{3.22}
\end{equation*}
\]

Equation 3.22 is a Bessel equation. The generalized Bessel's equation is of the form
\[
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+x\left(a+2 b x^{r}\right) \frac{d y}{d x}+\left[c+d x^{2 N}-b(1-a-r) x^{r}+b^{2} x^{2 r}\right] y=0 \tag{3.23}
\end{equation*}
\]

The general solution to Eq. 3.23 is
\[
\begin{equation*}
y=x^{\frac{1-a}{2}} \cdot e^{-\frac{b x^{r}}{r}}\left[c_{1} Z_{p}\left(\frac{\sqrt{|d|}}{N} x^{N}\right)+c_{2} Z_{-p}\left(\frac{\sqrt{|d|}}{N} x^{N}\right)\right] \tag{3.24}
\end{equation*}
\]
where
\[
p=\frac{1}{N} \sqrt{\left(\frac{1-a}{2}\right)^{2}-c}
\]

For the problem at hand, \(a=2, b=0, d=-\frac{N}{D_{S}}\), and \(N=1\)
\[
p=\frac{1}{1} \sqrt{\left(\frac{1-2}{2}\right)^{2}}=\frac{1}{2}
\]

Therefore,
\[
\begin{equation*}
\bar{X}=r^{-\frac{1}{2}}\left[c_{1} I_{\frac{1}{2}}\left(\sqrt{\frac{S}{D_{S}}} r\right)+c_{2} I_{-\frac{1}{2}}\left(\sqrt{\frac{S}{D_{S}}} r\right)\right] \tag{3.25}
\end{equation*}
\]

From Eq. 3.15
\[
\begin{equation*}
x(r=0, z, t)=f i n i t e, \text { at } r=0 \tag{3.26}
\end{equation*}
\]

The Laplace transform of Eq. 3.26 is
\[
\begin{equation*}
\overline{\mathrm{X}}=\text { finite at } \mathrm{r}=0 \tag{3.27}
\end{equation*}
\]

Application of Eq. 3.27 to Eq. 3.25, gives
\[
C_{2}=0
\]
and
\[
\begin{equation*}
\overline{\mathrm{X}}=\mathrm{C}_{1} \mathrm{r}^{-1 / 2} \mathrm{I}_{1 / 2}\left(\sqrt{\frac{\mathrm{~S}}{\mathrm{D}_{S}}} r\right) \tag{3.28}
\end{equation*}
\]
because
\[
I_{1 / 2}\left(\sqrt{\frac{S}{D_{S}}} r\right) \cong \frac{\left(\frac{S}{\bar{D}_{S}}\right)^{1 / 4}}{2^{1 / 2} \cdot(1 / 2)!} r^{1 / 2} \text { for small } r
\]
and
\[
I_{-1 / 2}\left(\sqrt{\frac{S}{D_{S}}} r\right) \cong \frac{2^{1 / 2}}{(-1 / 2)!}\left(\frac{S}{D_{S}}\right)^{-1 / 4} \cdot r^{-1 / 4} \text { for small } r
\]
one should also note that
\[
c_{1}=f(z) \text { since } x=f(r, t)
\]
\[
X=f(r, t) \text { and } \bar{X}=f(r, S)
\]

Take the derivative of Eq. 3.28
\[
\frac{\partial \bar{X}}{\partial r}=C_{1} \sqrt{\frac{S}{D_{S}}} \cdot r^{-1 / 2} \cdot I_{3 / 2}\left(\sqrt{\frac{S}{D_{S}}} r\right)
\]
since
\[
\frac{d}{d x}\left[x^{-P} I_{p}(\alpha x)\right]=\alpha x^{-p_{I_{p+1}}(\alpha x)}
\]

Therefore
\[
\begin{equation*}
\left.\frac{\partial \bar{X}}{\partial r}\right|_{r=r_{0}}=C_{1} \sqrt{\frac{S}{D_{S}}} r_{o}^{-1 / 2} \cdot I_{3 / 2}\left(\sqrt{\frac{S}{D_{S}}} r_{o}\right) \tag{3.29}
\end{equation*}
\]

Take Laplace transform of Eq. 3.19 with the initial condition of Eq. 3.8 to get
\[
\begin{equation*}
S \bar{Y}+\frac{(1-\varepsilon)}{\varepsilon} \cdot \frac{\alpha_{f}+1}{r_{o}} K_{f}\left(\bar{Y}-\bar{Y}_{i n t}\right)=E_{D} \frac{d^{2} \bar{Y}}{d z^{2}}-\frac{v}{\varepsilon} \frac{d \bar{Y}}{d z} \tag{3.30}
\end{equation*}
\]

Take Laplace transform of Eq. 3.16 to get
\[
\begin{equation*}
\left.D_{S} \frac{\partial \bar{X}^{r}}{\partial r}\right|_{r=r_{o}}=K_{f}\left(\bar{Y}-\bar{Y}_{i n t}\right) \tag{3.31}
\end{equation*}
\]

Where each member of Eq. 3.31 is a function of \(z\) only. Take Laplace transform of Eq. 3.7 to get
\[
\begin{equation*}
\overline{\mathrm{Y}}_{\text {int }}=\mathrm{K} \overline{\mathrm{X}}\left(\mathrm{r}_{\mathrm{o}}\right) \tag{3.32}
\end{equation*}
\]

Evaluate Eq. 3.28 at \(r=r_{o}\) and combine it with Eq. 3.32 to get
\[
\begin{equation*}
\overline{\mathrm{Y}}_{\mathrm{int}}=\mathrm{C}_{1} \mathrm{Kr}_{\mathrm{o}}^{-1 / 2} \mathrm{I}_{1 / 2}\left(\sqrt{\frac{\mathrm{~S}}{\bar{D}_{\mathrm{S}}}} \mathrm{r}_{\mathrm{o}}\right) \tag{3.33}
\end{equation*}
\]

Substitute Eqs. 3.29 and 3.33 into Eq. 3.31
\[
C_{1} D_{S} \sqrt{\frac{S}{D_{S}}} \cdot r_{o}{ }^{-1 / 2} I_{\frac{3}{3} / 2}\left(\sqrt{\frac{S}{D_{S}}} r_{o}\right)=K_{\hat{I}} \bar{Y}-c_{1} K_{f} \cdot K r_{o}{ }^{-1 / 2} I_{1 / 2}\left(\sqrt{\frac{S}{D_{S}}} r_{o}\right)
\]

Therefore
\[
\begin{equation*}
C_{1}=\frac{K_{f} \bar{Y}}{\sqrt{D_{S} S}} \cdot r_{o}{ }^{-1 / 2} \cdot I_{3 / 2}\left(\sqrt{\frac{S}{D_{S}}} r_{o}\right)+K_{f} K r_{o}{ }^{-1 / 2} \cdot I_{1 / 2}\left(\sqrt{\frac{S}{D_{S}}} r_{o}\right) ~ \tag{3.34}
\end{equation*}
\]

Combine Eqs. 3.33 and 3.34
\[
\begin{align*}
& \bar{Y}_{\text {int }}=\frac{\mathrm{K}_{\mathrm{f}} \mathrm{Kr}_{\mathrm{o}}{ }^{-1 / 2} \mathrm{I}_{1 / 2}\left(\sqrt{\frac{\mathrm{~S}}{\bar{D}_{S}}} \mathrm{r}_{\mathrm{o}}\right) \overline{\mathrm{Y}}}{\sqrt{\mathrm{D}_{S} \mathrm{~S}} \mathrm{r}_{\mathrm{o}}{ }^{-1 / 2} \mathrm{I}_{3 / 2}\left(\sqrt{\frac{S}{\mathrm{D}_{\mathrm{S}}}} \mathrm{r}_{\mathrm{o}}\right)+\mathrm{K}_{f} \mathrm{Kr}_{\mathrm{o}}{ }^{-1 / 2} \mathrm{I}_{1 / 2}\left(\sqrt{\frac{\mathrm{~S}}{\mathrm{D}_{S}}} \mathrm{r}_{\mathrm{o}}\right)} \\
& =\frac{K_{f} K I_{1 / 2}\left(\sqrt{\frac{S}{\bar{D}_{S}}} r_{o}\right) \overline{\mathrm{Y}}}{\sqrt{\bar{D}_{S} S} I_{3 / 2}\left(\sqrt{\frac{S}{D_{S}}} r_{o}\right)+K_{f} K I_{1 / 2}\left(\sqrt{\frac{S}{D_{S}}} r_{o}\right)} \tag{3.35}
\end{align*}
\]

Combine Eqs. 3.35 and 3.30 to obtain an ordinary differential equation in terms of \(\overline{\mathrm{Y}}\)
\[
\begin{equation*}
\frac{d^{2} \bar{Y}}{d z^{2}}-A \frac{d \bar{Y}}{d z}-(B S+D(S)) \bar{Y}=0 \tag{3.36}
\end{equation*}
\]
where
\[
\begin{aligned}
& A=\left(\frac{v}{\varepsilon E_{D}}\right) \\
& B={\frac{1}{E_{D}}}_{D(S)}=\frac{1-\varepsilon}{\varepsilon} \cdot \frac{\alpha_{f}+1}{E_{D} r_{o}} \cdot K_{f}\left(1-\frac{K_{f} K I_{1 / 2}\left(\sqrt{\frac{S}{D_{S}}} r_{o}\right)}{\sqrt{D_{S} S} I_{3 / 2}\left(\sqrt{\frac{S}{D_{S}}} r_{o}\right)+K_{f} K I_{1 / 2}\left(\sqrt{\frac{S}{D_{S}}} r_{o}\right)}\right)
\end{aligned}
\]

The solution of Eq. 3.36 is
\[
\begin{aligned}
& \left(D-r_{1}\right)\left(D-r_{2}\right) Y=0 \\
& r_{1}, r_{2}=\frac{A \pm \sqrt{A^{2}+4(B S}+D(S)}{2}
\end{aligned}
\]

Therefore
\[
\begin{equation*}
\bar{Y}=e^{\frac{A}{2}}\left[C_{3} \cdot \sinh \frac{\left.\sqrt{A^{2}+4(B S+D(S)}\right)}{2} z+C_{4} \cosh \frac{\sqrt{A^{2}+4(B S+D(S))}}{2} z\right. \tag{3.37}
\end{equation*}
\]

Since we are interested in the effluent concentration, the constants \(C_{3}\) and \(C_{4}\) should be evaluated using boundary conditions expressed by Eqs. 3.10 and 3.11. Neglecting the second member of Eq. 3.10, for constantyin, the Laplace transformof Eq. 3.10
\[
\text { is }\left.\overline{\mathrm{Y}}\right|_{\mathrm{Z}=0}=-\frac{\left(\mathrm{y}_{\mathrm{in}}-\mathrm{y}_{\mathrm{O}}\right)}{\mathrm{s}}
\]

Therefore from Eq. 3.37,
\[
\begin{equation*}
c_{4}=-\frac{y_{i n}-y_{0}}{s} \tag{3.38}
\end{equation*}
\]

From Eq. 3.14,
at \(z=L, \frac{d^{2} y}{d z^{2}}=0\) or \(\frac{d^{2} \bar{y}}{d z^{2}}=0\)
But from Eq. 3.36,
\[
\frac{\mathrm{d}^{2} \bar{Y}}{\mathrm{dz}}=\mathrm{A} \frac{\mathrm{~d} \overline{\mathrm{Y}}}{\mathrm{dz}}+(\mathrm{Bs}+\mathrm{D}(\mathrm{~s})) \overline{\mathrm{Y}}
\]

Therefore
\(\left.A \frac{d \bar{Y}}{d z}\right|_{z=L}+\left.(B s+D(s)) \bar{Y}\right|_{z=L}=0\)
From Eq. 3.37,
\[
\begin{aligned}
& \frac{d \bar{Y}}{d z}=\frac{A}{2} \exp \left(\frac{A}{2} z\right)\left[C_{3} \cdot \sinh \frac{b}{2} z+C_{4} \cdot \cosh \frac{b}{2} z\right] \\
& +\exp \left(\frac{A}{2} z\right)\left[C_{3} \cdot \frac{b}{2} \cdot \cosh \frac{b}{2} z+C_{4} \cdot \frac{b}{2} \cdot \sinh \frac{b}{2} z\right]
\end{aligned}
\]

Therefore
\[
\begin{aligned}
& \frac{A^{2}}{2} \exp \left(\frac{A}{2} L\right)\left[C_{3} \cdot \sinh \frac{b}{2} L+C_{4} \cdot \cosh \frac{b}{2} L\right] \\
& +A \exp \left(\frac{A}{2} L\right)\left[C_{3} \frac{b}{2} \cosh \frac{b}{2} L+C_{4} \frac{b}{2} \sinh \frac{b}{2} L\right] \\
& +(B s+D(s)) \cdot \exp \left(\frac{A}{2} L\right)\left[C_{3} \sinh \frac{b}{2} L+C_{4} \cosh \frac{b}{2} L\right]=0 \\
C_{3}= & -\frac{\frac{A^{2}}{2}}{\frac{A^{2}}{2}} \cosh \frac{b}{2} L+A \frac{b}{2} \sinh \frac{b}{2} L+A \frac{b}{2} \cosh \frac{b}{2} L+(B s+D(s)) \cosh \frac{b}{2} L \\
& =C_{4}(B s+D(s)) \sinh \frac{b}{2} L
\end{aligned}
\]
where
\[
\begin{aligned}
& b=\sqrt{A^{2}+4(B s+D(s))} \\
& \sinh u=u+\frac{u^{3}}{3!}+\frac{u^{5}}{5!}+\frac{u^{7}}{7!}+\cdots \cdot \\
& \cosh u=I+\frac{u^{2}}{2!}+\frac{u^{4}}{4!}+\frac{u^{6}}{6!}+\cdots \cdot \\
& I_{1 / 2}(u)=\sum_{k=0}^{\infty} \frac{(u / 2)^{2 k+1 / 2}}{k!(k+1 / 2)!}=\frac{(3.40)}{\left.\frac{1}{2}\right)^{1 / 2}}+\frac{\left(\frac{u}{2}\right)^{5 / 2}}{\left(1 \frac{1}{2}\right)!}+\frac{\left(\frac{u}{2}\right)^{9 / 2}}{2!\left(2 \frac{1}{2}\right)!!}+\cdots \\
& I_{3 / 2}(u)=\sum_{k=0}^{\infty} \frac{(u / 2)^{2 k+3 / 2}}{k!(k+3 / 2)!}=\frac{\left(\frac{u}{2}\right)^{3 / 2}}{\left(\frac{3}{2}\right)!}+\frac{\left(\frac{u}{2}\right)^{7 / 2}}{\left(\frac{5}{2}\right)!}+\frac{\left(\frac{u}{2}\right)^{11 / 2}}{2!\left(\frac{7}{2}\right)!}+\cdots
\end{aligned}
\]

To invert Eq. 3.37 to time domain, an understanding of the method of residues is paramount to the effective inversion of the Laplace transformation. If,
\[
\overline{\mathrm{f}}(\mathrm{~s})=\frac{\mathrm{p}(\mathrm{~s})}{q(\mathrm{~s})}
\]
where \(p(s)\) and \(q(s)\) are analytic at \(s_{n}\) (polynomials of \(s\) ) and \(q\left(s_{n}\right)=0\) while \(q^{\prime}\left(s_{n}\right) \neq 0\) and \(p\left(s_{n}\right) \neq 0\), then the residue of \(f(s)\) at pole \(s_{n}\) iS
\[
p_{n}(t)=\frac{p\left(s_{n}\right)}{q^{\prime}\left(s_{n}\right)} \exp \left(s_{n} t\right) \text { for simple pole }
\]
where
\[
q^{\prime}\left(s_{n}\right)=\left.\frac{d q(s)}{d s}\right|_{s=s_{n}}
\]

Then
\[
f(t)=L^{-1}\left\{\frac{p(s)}{q(s)}\right\}=\sum_{n=1}^{\infty} \rho_{n}(t)
\]

For the problem at hand,
\[
\begin{equation*}
\bar{Y}=\exp \left(\frac{A}{2} z\right)\left[C_{3} \sinh \frac{b}{2} z+C_{4} \cdot \cosh \frac{b}{2} z\right] \tag{3.37}
\end{equation*}
\]
and combining Eqs. 3.38 and 3.39 ,
\(C_{3}=\frac{y_{i n}-y_{o}}{s} \cdot \frac{\frac{A^{2}}{2} \cosh \frac{b}{2} L+A \frac{b}{2} \sinh \frac{b}{2} L+(B s+D(s)) \cosh \frac{b}{2} L}{\frac{A}{2} \sinh \frac{b}{2} L+A \frac{b}{2} \cosh \frac{b}{2} L+(B s+D(s)) \sinh \frac{b}{2} L}\) (3.42)
Check to ascertain that all terms are polynomial of \(s\) \(I_{1 / 2}\left(\operatorname{cs}^{1 / 2}\right)=a_{1} s^{1 / 4}+a_{2} s^{1+1 / 4}+a_{3} s^{2+1 / 4}+\ldots=\frac{r_{0}^{1 / 2}}{2^{1 / 2} \cdot \frac{1}{2}!D_{S}^{1 / 4}} s^{1 / 4}+\)
with \(\alpha \equiv r_{o} / D_{S}{ }^{1 / 2}\)
\[
\begin{gathered}
I_{3 / 2}\left(\alpha s^{1 / 2}\right)=b_{1} s^{3 / 4}+b_{2} s^{1+3 / 4}+b_{3} s^{2+3 / 4}+\ldots=\frac{r_{o}^{3 / 2} s^{3 / 4}}{2^{3 / 2} \cdot\left(\frac{3}{2}\right)!D_{S}}{ }^{3 / 4}+ \\
s^{1 / 2} I_{3 / 2}\left(\alpha s^{1 / 2}\right)=b_{1} s^{1+1 / 4}+b_{2^{\prime}} s^{2+1 / 4}+b_{3} s^{3+1 / 4}+\ldots= \\
\frac{r_{o}{ }^{3 / 2} s^{1+1 / 4}}{2^{3 / 2} \cdot\left(\frac{3}{2}\right)!D_{S}}+
\end{gathered}
\]

Therefore
\(\frac{I_{1 / 2}\left(s^{1 / 2}\right)}{s^{1 / 2} I_{3 / 2}\left(s^{1 / 2}\right)+I_{1 / 2}\left(s^{1 / 2}\right)}=\) function of polynomial of \(s=C_{0}+C_{1} s+C_{2} s^{2}+\ldots\)

This also means that
\[
D(s)=\text { polynomial of } s
\]

Therefore
\[
\frac{\mathrm{b}}{2} \mathrm{~L}=\frac{\mathrm{A}^{2}+4(\mathrm{Bs}+\mathrm{D}(\mathrm{~s}))}{2} \mathrm{~L}=\sqrt{\text { polynomial of } s}=d_{0}+\mathrm{d}_{1} s+\mathrm{d}_{2} s^{2}+\ldots
\]

From Eq. 3.41,
\(\cosh \frac{\mathrm{b}}{2} \mathrm{~L}=\) function of polynomial of \(s=e_{o}+e_{1} s+e_{2} s^{2}+\ldots\) and from Eq. 3.40,
\(\left(\frac{b}{2} L\right)^{-1} \cdot \sinh \frac{b}{2} L=\) function of polynomial of \(s=f_{0}+f_{1} S+f_{2} S^{2}+\ldots\)

In order to have Eq. 3.37 in the form of
\[
\bar{Y}=\frac{p(s)}{q(s)}=\frac{(\text { polynomial of } s)_{1}}{(\text { polynomial of } s)_{2}},
\]

Equation 3.42 must be multiplied by (b/2).L in the numerator and denominator. Therefore
\[
\begin{equation*}
\bar{Y}=\exp \left(\frac{A_{2}}{2} z\right)\left[-\frac{p_{1}(s)}{q_{1}(s)}+\frac{p_{2}(s)}{q_{2}(s)}\right] \tag{3.43}
\end{equation*}
\]
where
\[
\begin{aligned}
& p_{1}(S)=\left(y_{i n}-y_{0}\right) \cosh \frac{b}{2} z \\
& q_{1}(S)=S \\
& p_{2}(s)=\left(y_{i n}-y_{0}\right)\left[\frac{A^{2}}{2}+A \frac{b}{2} \tanh \frac{b}{2} L+(B s+D(s))\right] \frac{\sinh \frac{b}{2} z}{\frac{b}{2} L} \\
& q_{2}(s)=s\left[\frac{A^{2}}{2} \frac{\tanh \frac{b}{2} L}{\frac{b}{2} L}+\frac{A}{L}+(B s+D(s)) \frac{\tanh \frac{b}{2} L}{\frac{b}{2} L}\right]
\end{aligned}
\]
\[
\text { poles of } \frac{p_{1}(s)}{q_{1}(s)} \text { at } s=0
\]

Therefore the residue \(\rho(t)=\frac{p_{1}(s=0)}{q_{1}^{1}(s=0)} \exp (0 . t)\)
\[
\begin{aligned}
q_{1}(s) & =1 \\
p(s=0) & =\left(y_{i n}-y_{0}\right) \cdot \cosh \frac{\sqrt{A^{2}+4 D(s=0)}}{2} z \\
& =\left(y_{i n}-y_{0}\right) \cdot \cosh \frac{A}{2} z
\end{aligned}
\]

Poles of \(\frac{p_{2}(s)}{q_{2}(s)}\) at \(s_{1}=0\) and \(s_{n}, n=2,3,4, \ldots\)
\[
\begin{aligned}
& q_{2}\left(s_{n}\right)=0 \\
& s_{n}\left[A_{2}^{2} \frac{\tanh \frac{b}{2} L}{\frac{b}{2} L}+\frac{A}{L}+\left(B s_{n}+D\left(s_{n}\right)\right) \frac{\tanh \frac{b}{2} L}{\frac{b}{2} L}\right]=0 \\
& s_{1}=0 \text { first pole of } \frac{p_{2}(s)}{q_{2}(s)} ; \rho_{1}=\frac{p_{2}\left(s_{1}=0\right)}{q_{2}\left(s_{1}=0\right)} \cdot 1
\end{aligned}
\]
also
\[
\begin{gather*}
\frac{A^{2}}{2} \cdot \frac{\tanh \frac{b}{2} L}{\frac{b}{2} L}+\frac{A}{L}+\left(B s_{n}+D\left(s_{n}\right)\right) \frac{\tanh \frac{b}{2} L}{\frac{b}{2} L}=0  \tag{3.44}\\
n=2,3,4, \ldots
\end{gather*}
\]

Let
\[
\begin{equation*}
\left.\frac{b}{2} L\right|_{s=s_{n}}=i \lambda_{n} \tag{3.45}
\end{equation*}
\]
then
\[
\begin{equation*}
\tanh \frac{b}{2} \mathrm{~L}=\tanh i \lambda_{\mathrm{n}}=\mathrm{i} \tan \lambda_{\mathrm{n}} \tag{3.46}
\end{equation*}
\]
also
\[
\sqrt{\mathrm{A}^{2}+4\left(\mathrm{~B} s_{\mathrm{n}}+\mathrm{D}\left(s_{\mathrm{n}}\right)\right)}=i \lambda_{\mathrm{n}} \cdot \frac{2}{\mathrm{~L}}
\]
\[
\begin{align*}
\left.\sqrt{A^{2}+4\left(B s_{n}\right.}=D\left(s_{n}\right)\right) & =\frac{4 \lambda^{2} n}{L} \\
\left(B s_{n}+D\left(s_{n}\right)\right) & =-\frac{\frac{4 \lambda^{2} n}{L}-A^{2}}{4} \\
& =-\frac{\lambda^{2} n}{L}-\frac{A^{2}}{4} \tag{3.47}
\end{align*}
\]

Equation 3.44 becomes
\[
\frac{A^{2}}{2} \cdot \frac{i \tan \lambda_{n}}{i \lambda_{n}}+\frac{A}{L}-\left(\frac{\lambda^{2} n}{L}+\frac{A^{2}}{4}\right) \cdot \frac{i \tan \lambda_{n}}{i \lambda_{n}}=0
\]
or
\[
\begin{align*}
\tan \lambda_{n} & =\frac{\frac{A}{L} \cdot \lambda_{n}}{\frac{\lambda^{2} n}{L}-\frac{A^{2}}{4}} \\
& =\frac{4 A \lambda_{n}}{4 \lambda^{2} n_{n}-L A^{2}} \tag{3.48}
\end{align*}
\]

Solve for \(\lambda_{n}, n=2,3,4, \ldots\)
Eq. 3.48 is a transcendental equation and the roots \(\lambda_{n}\) must be solved graphically or by computer. Numerically if \(\mathrm{LA}^{2} / 4=\) L/4(v/ E \(\left.\mathrm{E}_{\mathrm{D}}\right)^{2}\) is large, it means that the diffusivity of the molecules are small (for molecules with very large molecular weight). In this case, one would have the special case of Figure 3.3. Knowing values of \(\lambda_{n}\) from Eq. 3.48, values of \(s_{n}, n=2\), 3, 4, ... can be calculated numerically from Eq. 3.47. Since \(Y(z, t)\) decreases with \(t, s_{n}, n=2,3,4, \ldots\) should be negative quantities.

Now find
\[
q_{2}^{\prime}\left(s_{n}\right)=\left.\frac{d q_{2}(s)}{d s}\right|_{s=s_{n}}
\]


FIGURE 3.2 ROOTS OF TAN \(\lambda_{n}=\lambda_{n}\)


FIGURE 3.3 ROOTS OF \(f\left(\lambda_{n}\right)\) WHEN \(\frac{L A^{2}}{4} \longrightarrow \infty\)
\[
\begin{aligned}
& \frac{d}{d x}\left[x I_{p}(\alpha x)\right]=\alpha x p I_{p-1}(\alpha x) \\
& \frac{d}{d x}\left[I_{p}\left(\alpha_{x}\right)\right]=\alpha I_{p-1}(\alpha x)-\frac{p}{x} I_{p}\left(\alpha_{x}\right) \\
& D(s)=K_{f_{0}}\left[1-\frac{K_{f} K I_{1 / 2}\left(\sqrt{S / D_{S}} r_{0}\right)}{D_{S S} I_{3 / 2}\left(\sqrt{S / D_{S}} r_{0}\right)+K_{f} K I_{1 / 2}\left(\sqrt{S} / D_{S} r_{O}\right)}\right]
\end{aligned}
\]
where
\[
\begin{aligned}
& K_{f_{O}}=\frac{1-\varepsilon}{\varepsilon} \cdot \frac{\alpha_{f}+1}{E_{d} r_{o}} \cdot K_{f}
\end{aligned}
\]
\[
\begin{aligned}
& +\frac{K_{f} K I_{1 / 2}\left(\sqrt{s / D_{S}} r_{0}\right) \cdot\left[r_{o} / \sqrt{D_{S}} s^{3 / 4} I_{1 / 2}\left(\sqrt{s / D_{S}} r_{o}\right)\right.}{\left[\sqrt{s D_{S}} I_{3 / 2}\left(\sqrt{s / D_{S}} r_{o}+K_{f} K I_{1 / 2}\left(\sqrt{s / D_{S}} r_{o}\right)\right]^{2}\right.} \\
& +\frac{\left.K_{f} K\left\{r_{o} / 2 \sqrt{s D_{S}} I_{3 / 2}\left(\sqrt{s / D_{S}} r_{0}\right)+\frac{1}{4} s I_{1 / 2}\left(\sqrt{s / D_{S}} r_{0}\right)\right\}\right]}{\left[\sqrt{s D_{S}} I_{3 / 2}\left(\sqrt{s / D_{S}} r_{0}+K_{f} K I_{1 / 2}\left(\sqrt{s / D_{S}} r_{o}\right)\right]^{2}\right.} \\
& \equiv F(s) \\
& b=\sqrt{A^{2}+4(B s+D(s))} \\
& \frac{d\left(\frac{b}{2} L\right)}{d s}=\frac{L}{2} \cdot \frac{1}{2} \cdot \frac{4 B+4 \frac{d D(s)}{d s}}{\sqrt{A^{2}+4(B s+D(s))}} \\
& =\frac{B+F(s)}{\sqrt{A^{2}+4(B s+D(s))}} L \\
& \equiv \mathrm{H}(\mathrm{~s}) \\
& \frac{d\left(\tanh \frac{b}{2} L\right)}{d s}=\frac{d\left(\tanh \frac{b}{2} L\right)}{d\left(\frac{b}{2} L\right)} \cdot \frac{d\left(\frac{b}{2} L\right)}{d S}
\end{aligned}
\]
\[
\begin{aligned}
& +\left(\operatorname{sech} \frac{b}{2} L\right)^{2} \cdot \frac{B+F(S)}{\sqrt{A^{2}+4(B s+D(s))}} \cdot L \\
& =L(B+F(s)) \cdot \frac{\left[\operatorname{sech} \frac{b}{2} L\right]^{2}}{b} \\
& \equiv G(s)
\end{aligned}
\]

Therefore,
\[
\begin{aligned}
& q_{2}(s)=s\left[\frac{A^{2}}{2} \frac{\tanh \frac{b}{2} L}{\frac{b}{2} L}+\frac{A}{L}+(B s+D(s)) \frac{\tanh \frac{b}{2} L}{\frac{b}{2} L}\right] \\
& q_{2}{ }^{1}(s)=\frac{A^{2}}{2} \frac{\tanh \frac{b}{2} L}{\frac{b}{2} L}+\frac{A}{L}+(B s+D(s)) \frac{\tanh \frac{b}{2} L}{\frac{b}{2} L} \\
& +s\left\{\frac{A^{2}}{2}\left[\frac{G(s)}{\frac{b}{2} L}-\frac{\left(\tanh \frac{b}{2} L\right) \cdot H(s)}{\left(\frac{b}{2} L\right)^{2}}\right]+(B+F(s)) \frac{\tanh \frac{b}{2} L}{\frac{b}{2} L}\right. \\
& \left.+\frac{B s+D(s)}{\frac{b}{2} L} \cdot G(s)-\frac{(B s+D(s))}{\left(\frac{b}{2} L\right)^{2}} \cdot \tanh \frac{b}{2} L \cdot H(s)\right\}
\end{aligned}
\]

The final solution is
\[
\begin{align*}
& Y(z, t)=\exp \left(\frac{A_{2}}{2} z\right)\left[-L^{-1}\left\{\frac{p_{1}(s)}{q_{1}(s)}\right\}+L^{-1}\left\{\frac{p_{2}(s)}{q_{2}(s)}\right\}\right. \\
& Y(z, t)=\exp \left(\frac{A_{2}}{2} z\right)\left[-\left(y_{i n}-y_{0}\right) \cdot \cosh \frac{A_{2}}{2}+\frac{p_{2}\left(s_{1}=0\right)}{q_{2}^{1}\left(s_{1}=0\right)}+\sum_{n=2}^{\infty} \frac{p_{2}\left(s_{n}\right)}{q_{2}^{1}\left(s_{n}\right)} \exp \left(s_{n} t\right)\right] \tag{3.49}
\end{align*}
\]

\section*{SIMPLIFIED MODEL --NO AXIAL DISPERSION}

For the fixed bed adsorption shown in Figure 3.1, only concentration gradients in the axial direction caused by the
bulk flow are considered. All radial gradients, axial dispersion and the like are ignored. The material balance for both fluid and solid is as follows:
\[
\begin{array}{ll}
\text { Liquid: } & \frac{\partial y}{\partial t}+\frac{v}{\varepsilon} \frac{\partial y}{\partial z}=-\lambda\left(y-y^{*}\right) \\
\text { Solid: } & \frac{\partial x}{\partial t}=\left(\frac{\varepsilon}{1-\varepsilon}\right) \lambda\left(y-y^{*}\right)  \tag{3.51}\\
& \lambda=\frac{k(T) a}{\varepsilon}=\text { mass transfer coefficient, } \sec ^{-1}
\end{array}
\]

Rewriting Eqs. 3.50 and 3.51 , we get
\[
\begin{align*}
& \varepsilon \operatorname{sc} \frac{\partial y}{\partial t}+\operatorname{vsc} \frac{\partial y}{\partial z}+(1-\varepsilon) \operatorname{cs} \frac{\partial x}{\partial t}=0  \tag{3.50a}\\
& (1-\varepsilon) \operatorname{cs} \frac{\partial x}{\partial t}=\operatorname{sk}(T) a\left(y-y^{*}\right) \tag{3.51a}
\end{align*}
\]

By method of combination of variables, define
\[
\begin{equation*}
\mathrm{t}^{\prime}=\mathrm{t}-\mathrm{z}\left(\frac{\varepsilon_{S C}}{\mathrm{v}}\right) \tag{3.52}
\end{equation*}
\]

Since
\[
\begin{align*}
& y=y(z, t)=y\left(z, t^{\prime}\right) \\
& \frac{\partial y}{\partial t}=\left(\frac{\partial y}{\partial t^{\prime}}\right)\left(\frac{\partial t^{\prime}}{\partial t}\right)+\left(\frac{\partial x}{\partial z}\right)\left(\frac{\partial z}{\partial t}\right) \tag{3.53}
\end{align*}
\]
and
\[
\frac{\partial y}{\partial z}=\left(\frac{\partial y}{\partial t_{z}}\right) \cdot\left(\frac{\partial t^{\prime}}{\partial z}\right)+\left(\frac{\partial y}{\partial z}\right)_{t^{\prime}}\left(\frac{\partial z}{\partial z}\right)_{t}
\]

Therefore
\[
\begin{equation*}
\frac{\partial y}{\partial z}=-\frac{\partial y}{\partial t},\left(\frac{\varepsilon s c}{\operatorname{csv}}\right)+\frac{\partial y}{\partial z} \tag{3.54}
\end{equation*}
\]

Substituting Eqs. 3.53 and 3.54 into Eq. 3.50a to get
\[
\begin{equation*}
\frac{\partial y}{\partial z}=-\frac{s k(T) a}{\operatorname{csv}}\left(y-y^{*}\right) \tag{3.55}
\end{equation*}
\]

Rewriting Eq. (3.51a) in terms of Eq. 3.52,
\[
\begin{align*}
& x=x(z, t) \\
& \frac{\partial x}{\partial t},=\left(\frac{\partial x}{\partial t},\right)_{z} \cdot\left(\frac{\partial t^{\prime}}{\partial t}\right)_{z}+\left(\frac{\partial z^{\prime}}{\partial z}\right)_{t} \cdot\left(\frac{\partial z}{\partial t}\right)_{z} \tag{3.56}
\end{align*}
\]

Therefore Eq. 3.51 a becomes
\[
\begin{equation*}
\frac{\partial x}{\partial t},=\frac{k(T) a}{(1-\varepsilon) c}(y-y *) \tag{3.57}
\end{equation*}
\]

Assuming a linear equilibrium distribution,
\[
\begin{equation*}
\mathrm{y}^{*}=\mathrm{mx} \tag{3.58}
\end{equation*}
\]

Equations 3.56-3.58 are solved based on the following boundary conditions:
\[
\begin{align*}
& \text { I.C.: at } t^{\prime}=0, x=0 \quad \text { for all } z>0  \tag{3.59}\\
& \text { B.C.: at } z=0, \quad y=y_{i} \quad \text { for all } t^{\prime}>0 \tag{3,60}
\end{align*}
\]

Equations \(3.56-3.58\) are easily solvable when written in dimensionless variables.

Therefore,
\[
\text { let } \begin{align*}
Y & =\frac{y}{y_{i}}  \tag{3.61}\\
X & =\frac{m X}{y_{i}}  \tag{3.62}\\
\zeta & =\frac{z k(T) a}{v C}  \tag{3.63}\\
\tau & =\frac{m t^{\prime} k(T) a}{(1-\varepsilon) c} \tag{3.64}
\end{align*}
\]

Substituting Eqs. 3.63-3.64 into Eqs. 3.55 and 3.57 , we get
\[
\begin{equation*}
\frac{\partial Y}{\partial \zeta}=-(Y-X) \tag{3.65}
\end{equation*}
\]
and
\[
\begin{equation*}
\frac{\partial X}{\partial \tau}=(Y-X) \tag{3.66}
\end{equation*}
\]
and the boundary conditions become
\[
\begin{array}{lll}
\text { I.C.: at } \tau=0, X=0 & \text { for all } \zeta \\
\text { B.C. : at } \zeta=0, Y=1 & \text { for all } \tau \tag{3.68}
\end{array}
\]

Laplace transform Eqs. 3.65 and 3.66 with respect to \(\tau\)
\[
\begin{align*}
& \frac{d \bar{Y}}{d \partial}=-\bar{Y}+\bar{X}  \tag{3.69}\\
& s \bar{X}=\bar{Y}-\bar{X} \text { or } \bar{X}=\frac{1}{s+1} \bar{Y} \tag{3.70}
\end{align*}
\]

Combine Eqs. 3.69 and 3.70
\[
\begin{equation*}
\frac{d \bar{Y}}{d \partial}=-\bar{Y}+\frac{1}{s+1} \bar{Y}=-\frac{s}{s+1} \bar{Y} \tag{3.71}
\end{equation*}
\]

Integrate Eq. 3.71 using Eq. 3.68 (B.C. 2)
\[
\begin{equation*}
\int_{\bar{Y}=\frac{1}{s}}^{\bar{Y}} \frac{d \bar{Y}}{\bar{Y}}=-\frac{s}{s+1} \int_{\zeta=0}^{\zeta} d \zeta \tag{3.72}
\end{equation*}
\]
\[
\ln \bar{Y}-\ln \frac{1}{s}=-\frac{s}{s+1} \zeta
\]
\[
s \bar{Y}=\exp \left(-\frac{s}{s+1} \zeta\right)
\]
or
\[
\begin{equation*}
\bar{Y}(\zeta, \tau)=\frac{1}{s} \exp \left(-\frac{s}{s+1} \zeta\right) \tag{3.73}
\end{equation*}
\]
and
\[
\bar{X}=\frac{1}{s+1} \cdot \frac{1}{s} \cdot \exp \left(-\frac{s}{s+1} \zeta\right)
\]
or
\[
\begin{equation*}
\bar{X}(\zeta, \tau)=\frac{1}{s} \cdot \frac{\exp \left(-\frac{s}{s+1} \zeta\right)}{s+1} \tag{3.74}
\end{equation*}
\]

Take the inverse transform of Eq. 3.73
\[
\begin{align*}
& Y(\zeta, \tau)=\frac{1}{s} \cdot e^{-\frac{s}{s+1} \zeta} \\
& =\frac{1}{s} e^{-\frac{s+1-1}{s+1} \zeta} \\
& =\frac{1}{s} e^{-\zeta} e^{+\frac{\zeta}{s+1}} \\
& =e^{-\zeta}\left[\frac{s+1}{s} \cdot \frac{e^{\frac{\zeta}{s+1}}}{s+1}\right] \\
& =e^{-\zeta}\left[\left(1+\frac{1}{s}\right) \cdot \frac{e^{\frac{\zeta}{s+1}}}{s+1}\right] \\
& Y(\zeta, \tau)=e^{-\zeta}\left[\frac{e^{\frac{\zeta}{s+1}}}{s+1}+\frac{1}{s} \cdot \frac{e^{\frac{\zeta}{s+1}}}{s+1}\right] \tag{3.75}
\end{align*}
\]

Equation 3.75 is now transformable by method of convolution.
\[
\begin{aligned}
& f(s-a) \\
& \frac{1}{s} e^{-\frac{k}{s}} \\
& f_{1}(s) \cdot f_{2}(s) \\
& \frac{1}{s+1} e^{\frac{\zeta}{s+1}} \\
& \frac{1}{s+1} \frac{e^{\frac{\zeta}{s+1}}}{s+1}
\end{aligned}
\]
\[
\begin{aligned}
& e^{a t} \cdot F(t) \\
& J_{0}(2 \sqrt{k t}) \\
& F_{1} * F_{2}=\int_{o}^{t} F_{1}(t-\sigma) F_{2}(\sigma) d ब \\
& e^{-\zeta} \cdot J_{0}(2 \sqrt{-\zeta \tau}) \\
& \int_{0}^{\tau} 1 \cdot e^{-\sigma} \cdot J_{0}(2 \sqrt{-\zeta \tau}) d_{\sigma}
\end{aligned}
\]

Therefore Eq. 3.75 becomes
\[
\begin{align*}
Y(\zeta, \tau) & =L^{-1}[\bar{Y}] \\
& =e^{-\zeta}\left[e^{-\tau} \cdot J_{0}(i \sqrt{4 \zeta \tau})+\int_{0}^{\tau} e^{-\sigma} \cdot J_{0}(i \sqrt{4 \zeta \sigma}) d \sigma\right. \\
Y(\zeta, \tau) & =e^{-(\zeta+\tau)} \cdot J_{0}(i \sqrt{4 \zeta \tau})+\int_{0}^{\tau} e^{-(\zeta+\sigma)} J_{0}(i \sqrt{4 \zeta \sigma}) d \sigma \tag{3.76}
\end{align*}
\]

Using the same method of convolution, Eq. 3.74 can be transformed to
\[
\begin{equation*}
X(\zeta, \tau)=\int_{0}^{\tau} e^{-(\zeta+\sigma)} \cdot J_{0}(\mathrm{i} \sqrt{4 \zeta \sigma}) d \sigma \tag{3.77}
\end{equation*}
\]

Equations 3.76 and 3.77 describe the fluid and solid phases concentration at any position and time space as an empty column is being saturated respectively at any desired temperature. Equations 3.76 and 3.77 represent an analytical solution when a step forcing function in concentration is imposed on the column as described by Eqs. 3.59 and 3.60. If a pulse forcing function in concentration is imposed on the column, the following initial and boundary conditions are necessary.
\[
\text { Initial Condition: at } t^{\prime}=0, \text { for } z>0, \quad x=0(3.78)
\]

Equation 3.78 implies that the liquid phase concentration must be zero for t'o > (zEs/v) (see Eq. 3.52), where t'o is the time duration for which the pulse is applied.

Boundary Condition: at \(z=0\), for \(0 \leq t^{\prime} \leq t^{\prime} 0 \quad y=y_{i}\)
\[
\begin{equation*}
t^{\prime}>t^{\prime} o \quad y=0 \tag{3.79}
\end{equation*}
\]
where
\[
t^{\prime} o=t o-\left(\frac{z \varepsilon S}{v}\right)
\]

Change Eqs. 3.78 and 3.79 to dimensionless variable (see Eqs. 3.63 and 3.64 ), and obtain
I.C. at \(\tau=0, \quad X=0 \quad\) for all \(\zeta\)
B.C. at \(\zeta=0, \quad Y=u(\tau)-u\left(\tau-\tau^{\prime}\right)\) for all \(\tau>0\)

Equation 3.81 means that
\[
Y=1 \quad \text { for } 0<\tau \leq \tau^{\prime}
\]
and
\[
Y=0 \quad \text { for } \tau>\quad \tau^{\prime}
\]
where
\[
\tau^{\prime}=\frac{m t_{0}^{\prime} k(T) a}{(1-\varepsilon) c}
\]

The Laplace transform of Eqs. 3.80 and 3.81 are, respectively
\[
\begin{array}{ll}
\tau=0, & \bar{X}=0 \\
\zeta=0, & \bar{Y}=\frac{1}{s}\left(1-e^{-\tau^{\prime} s}\right) \tag{3.81a}
\end{array}
\]

Integrating Eq. 3.71 using Eq. 3.81a,
\[
\begin{equation*}
\int_{\bar{Y}=\frac{1}{s}\left(1-e^{-\tau^{\prime} s}\right)}^{\bar{Y} \overline{\bar{Y}}}=-\frac{s}{s+1} \int_{\zeta=0}^{\zeta} d s \tag{3.82}
\end{equation*}
\]
\(\ln \frac{s \bar{Y}}{1-e^{-\tau^{\prime} s}}=-\frac{s}{s+1} \zeta\)
\[
s \bar{Y}=\left(1-e^{\left.-\tau^{\prime} s\right)} e^{-\left(\frac{s}{S+1}\right) \zeta}\right.
\]
or
\[
\begin{equation*}
\bar{Y}=[1-\exp (-\tau ' s)]\left[\frac{1}{s} \exp \left(-\frac{s}{s+1} \zeta\right)\right] \tag{3.83}
\end{equation*}
\]
and
\[
\bar{X}=\frac{1}{s+1} \bar{Y}
\]
or
\[
\begin{equation*}
\bar{X}=\left[1-\exp \left(-\tau^{\prime} s\right)\left[\frac{1}{s(s+1)} \exp \left(-\frac{s}{s+1} \zeta\right)\right]\right. \tag{3.84}
\end{equation*}
\]

Take the inverse Laplace transform of Eqs. 3.83 and 3.84.
\[
\begin{align*}
& \bar{Y}=\left(1-e^{-\tau^{\prime} s}\right)\left\{e^{-\zeta}\left[\frac{1}{s+1} e^{\frac{\zeta}{s+1}}+\frac{1}{s}\left(\frac{1}{s+1} e^{\frac{\zeta}{s+1}}\right)\right]\right\} \\
& =\left\{e^{\left.\left.-\left[\frac{1}{s+1} e^{\frac{\zeta}{s+1}}+\frac{1}{s\left(\frac{1}{s+1}\right.} e^{\frac{\zeta}{s+1}}\right)\right]\right\}}\right. \\
& \left.\left.-e^{-\tau^{\prime} s} e^{-\zeta} \frac{1}{s+1} e^{\frac{-\zeta}{s+1}}+\frac{1}{s}\left(\frac{1}{s+1} e^{\frac{\zeta}{s+1}}\right)\right]\right\} \tag{3.85}
\end{align*}
\]

By method of convolution, as previously outlined, and by shifting theorem,
\[
\text { if } f(s)=e^{-\alpha s} f(s), \text { then } F(t)=u(t-\alpha) F(t-\alpha)
\]

Therefore, Eq. 3.85 becomes
\[
\begin{align*}
& Y(\tau, \zeta)=\left\{e^{-(\zeta+\tau)} J_{0}(i \sqrt{4 \zeta \tau})+\int_{0}^{\tau} e^{-(\zeta+\sigma)} J_{0}(i \sqrt{4 \zeta \sigma}) d \sigma\right\} u(\tau) \\
& -e^{-\left(\zeta+\tau-\tau^{\prime}\right)} J_{0}\left(i \sqrt{4 \zeta\left(\tau-\tau^{\prime}\right)}\right)+\int_{0}^{\tau-\tau^{\prime}\left(\zeta+\sigma-\tau^{\prime}\right)} e^{-\left(i \sqrt{4 \zeta\left(\sigma-\tau^{\prime}\right)}\right) d d_{\sigma} \psi^{\prime} u\left(\tau-\tau^{\prime}\right)} \tag{3.86}
\end{align*}
\]

Therefore, for \(0<\tau \leq \tau^{\prime}\),
\[
\begin{equation*}
Y(\tau, \zeta)=e^{-(\zeta+\tau)} J_{0}(i \sqrt{4 \zeta \tau})+\int_{0}^{\tau} e^{-(\zeta+\sigma)} J_{0}(i \sqrt{4 \zeta \sigma}) d \sigma \tag{3.87}
\end{equation*}
\]
and for \(\tau>\tau\), Eq. 3.86 is applicable.
Equation 3.84 becomes,
\[
\begin{align*}
& \bar{X}=\left(1-e^{-\tau^{\prime} s}\right)\left[e^{-\zeta}\left(\frac{1}{s}\left(\frac{1}{s+1}\right) e^{\frac{\zeta}{s+1}}\right)\right] \\
& =e^{-\zeta}\left[\frac{1}{s}\left(\frac{1}{s+1} e^{\frac{\zeta}{s+1}}\right)\right]-e^{-\tau^{\prime} s}\left\{e^{-\zeta}\left[\frac{1}{s}\left(\frac{1}{s+1} e^{\frac{\zeta}{s+1}}\right)\right]\right\} \tag{3.88}
\end{align*}
\]

\section*{Therefore}
\[
\begin{align*}
& X(\tau, \zeta)=\left\{\int_{0}^{\tau} e^{-(\zeta+\sigma)} J_{0}(i \sqrt{4 \zeta} \bar{\sigma}) d \sigma\right\} u(\tau)- \\
& \left\{\int_{0}^{\tau} e^{-\left(\zeta+\sigma-\tau^{\prime}\right)} J_{0}\left(i \sqrt{4 \zeta\left(\sigma-\tau^{\prime}\right)}\right) d \sigma\right\} u\left(\tau-\tau^{\prime}\right)  \tag{3.89}\\
& \text { for } 0<\tau \leq \tau^{\prime} \text {, } \\
& X(\tau, \zeta)=\int_{0}^{\tau} e^{-(\zeta+\sigma)} J_{0}(i \sqrt{4} \bar{\zeta} \sigma) d \sigma \tag{3.90}
\end{align*}
\]
and for \(\tau>\tau^{\prime}\), Eq. 3.89 is applicable.

\section*{CHAPTER 4}

\section*{NUMERICAL SOLUTION}

\section*{FINITE DIFFERENCE METHOD OF SOLUTION}

An alternative method of solving the mass transport equation is by finite difference method. This method is particularly useful for solving higher order ordinary differential equations of boundary value types. The material balance under consideration in this section is a combination of Eqs. 3.50 and 3.51 to give
\[
\begin{equation*}
\varepsilon \frac{\partial y}{\partial t}+(1-\varepsilon) \frac{\partial \mathrm{x}}{\partial \mathrm{t}}+\mathrm{v} \frac{\partial \mathrm{y}}{\partial \mathrm{z}}=0 \tag{4.1}
\end{equation*}
\]

To begin the analysis of Eq. 4.1, let us consider the first-order differential equation,
\[
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{~d} z}=\mathrm{f}(\mathrm{z}, \mathrm{y}) \tag{4.2}
\end{equation*}
\]

Each member of Eq. 4.1 is assumed to be continuous. In Eq. 4.2, if \(d y / d z\) is replaced by \(y_{i}-y_{i-1} / z_{i}-z_{i-1}\), a difference equation of the first order is obtained,
\[
\begin{equation*}
\frac{y_{i}-y_{i-1}}{z_{i}-z_{i-1}}=f\left(z_{i}, y_{i}\right) \tag{4.3}
\end{equation*}
\]

Upon rearrangement and evaluation over a time step j, Eq. 4.3 becomes
```

y(i,j)= y(i-1,j-1) + f[z(i,j-1),y(i,j-1)].[z(i,j-1) - z(i-1,j-1)]

```

In general, difference equations do not require even spacing
of the pivotal points, but assuming that Eq. 4.4 has an evenly spaced pivot, \(z(i, j-1)-z(i-1, j-1)\) is replaced by \(\Delta z\) and we get
\[
\begin{equation*}
y(i, j-1)=y(i-1, j-1)+\Delta z f[z(i, j-1), y(i, j-1)] \tag{4.5}
\end{equation*}
\]

Rearrange Eq. 4.5 to get
\[
\begin{equation*}
\frac{d y}{d z}=\frac{y(i, j-1)-y(i-1, j-1)}{\Delta z}=I[z(i, j-1), y(i, j-1)] \tag{4.6}
\end{equation*}
\]

Similarly, other members of Eq. 4.1 can be written in finite difference form.
\[
\begin{align*}
& \frac{d y}{d t}=\frac{y(i, j)-y(i, j-1)}{\Delta t}  \tag{4.7}\\
& \frac{d x}{d t}=\frac{x(i, j)-x(i, j-1)}{\Delta t} \tag{4.8}
\end{align*}
\]

Substituting Eqs. 4.6 through 4.8 into Eq. 4.1, we get
\(\varepsilon\left[\frac{y(i, j)-y(i, j-1)}{\Delta t}\right]+(1-\varepsilon)\left[\frac{x(i, j)-x(i, j-1)}{\Delta t}\right]+\frac{q}{S}\left[\frac{y(i, j-1)-y(i-1, j-1)}{\Delta z}\right]=0\)
where \(\mathrm{v}=\mathrm{q} / \mathrm{s}\)
Multiply Eq. 4.9 by \(\Delta t\) and \(s \Delta z\),
\(v[y(i, j)-y(i, j-1)]+\bar{V}[x(i, j)-x(i, j-1)]+V[y(i, j-1)-y(i-1, j-1)]=0\)
where
\[
\begin{aligned}
& V=\varepsilon s \Delta z=q \Delta t=\text { volume of solute in the fluid phase } \\
& \bar{V}=(1-\varepsilon) s \Delta_{z}=\text { volume of solute in the solid phase } \\
& s=\text { cross sectional area of empty column }
\end{aligned}
\]

Rearranging Eq. 4.10, we obtain
\[
V y(i, j)-V y(i, j-1)+\bar{V} x(i, j)-\bar{V} x(i, j-1)=V y(i-1, j-1)-V y(i, j-1)
\]
or
\[
\begin{equation*}
V y(i, j)+\bar{V} x(i, j)=V y(i-1, j-1)+\bar{V} x(i, j-1) \tag{4.11}
\end{equation*}
\]

Let
\[
\begin{align*}
x & =K(T) y  \tag{4.12}\\
& =\text { linear equilibrium relation for the solute }
\end{align*}
\] between solid and liquid phases

Expressing the equilibrium relation in finite difference form, we get
\[
\begin{equation*}
x(i, j-1)=K(i, j-1) y(i, j-1) \tag{4.13}
\end{equation*}
\]
and
\[
\begin{equation*}
x(i, j)=K(i, j) y(i, j) \tag{4.14}
\end{equation*}
\]

Substitute Eqs. 4.13 and 4.14 into Eq. 4.11
\[
V y(i, j)+\bar{V} K(i, j) y(i, j)=V y(i-1, j-1)+\bar{V} K(i, j-1) y(i, j-1)
\]
or
\[
\begin{equation*}
y(i, j)[V+\bar{V} K(i, j)]=V y(i-1, j-1)+\bar{V} K(i, j-1) y(i, j-1) \tag{4.15}
\end{equation*}
\]

Upon rearrangement,
\[
\begin{equation*}
y(i, j)=\frac{V y(i-1, j-1)+\bar{V} K(i, j-1) y(i, j-1)}{V+\bar{V} K(i, j)} \tag{4.16}
\end{equation*}
\]

Equation 4.16 is so general that it can be applied to calculate the concentration transients (Kerobo, 1979) for batch, continuous parapump and cyclic adsorption process simulation. The inputs of the computer simulation depends on the desired process, viz: batch or continuous, as the case may be,
but for cyclic adsorption process, a different algorithm is needed. The standard FORTRAN IV language was used for the simulation.

As can be readily seen from Eq. 4.16, the concentration for the next transfer step can be solved in terms of the concentrations in the previous transfer step. Since the linear isotherm constant, \(K(T)\), is a function of temperature, and temperature varies with the time (j) step, it then becomes necessary to use the appropriate \(K(T)\) value that corresponds to the temperature of the time step under consideration. The equilibrium isotherm shifts with temperatrue variation; therefore, the fluid mixture in the column and therefore the solute is expected to experience a change in concentration. Usually, the solute concentration in the fluid phase increases with an increase in temperature. At low temperature, the solute wave moves slowly and is held up by the stationary (solid) phase. A subsequent increase in the solute movement is attained as a step change in temperature is selectively imposed on the column.

In the computation of the concentration transients, it is assumed that local equilibrium between the liquid and the sorbent in the layers of the separating medium in the column is attained. Deviations from local equilibrium can be accounted for by introducing the concept of "effective plates" or "celis." In this discontinuous model, the fluid mixture in an effective plate of the bed attains equilibrium with the sorbent before it moves on into the next plate. The effluent thus consists of a
sequence of finite volumes of the fluid mixture, each of which is so large as to fill an effective plate. On their way through the column, these volumes are subjected to a series of equilibrations, one in each effective plate.

The assumption of equilibrium theory is particularly useful in simplifying the material balance made on the extensive variables of the column. The assumption of descrete (effective plate or cells) transfer equilibrium stage model was used by Jenczewski and Meyer (1970); Wankat (1974); Grevillot and Tondeur (1976); Kerobo (1979); and Chen et al. (1980a, 1980b, 1981). Although the equilibrium theory does overpredict the concentration transients, it enables us to have a clear insight of the parametric pumping process. For the system under investigation, the results of the breakthrough data exhibit a favorable (Langmuir type) adsorption isotherm. This phenomenon is indicative of competitive non-interactive adsorption by the adsorbates on the adsorbent sites. The breakthrough data were fitted to a modified Langmuir isotherm (Sweed, 1969) of the form
\[
\begin{equation*}
x_{i}=\frac{A y *_{i}}{1+B y *_{i}}+D y *_{i} \tag{4.17}
\end{equation*}
\]

Therefore, to adequately simulate the concentration profiles of the effluent using the local equilibrium theory, the solid phase concentration must be calculated using Eq. 4.17 instead of Eq. 4.12. In the finite difference form, Eq. 4.17 becomes
\[
\begin{equation*}
x(I, J)=\frac{A y(I, J)}{I+B y(I, J)}+D y(I, J) \tag{4.18a,b}
\end{equation*}
\]
and
\[
x(I, J-1)=\frac{A y(I, J-1)}{1+\operatorname{By}(I, J-1)}+\operatorname{Dy}(I, J-1)
\]

The constants, \(A\) and \(B\), in Eq. 4.17 or \(4.18 \mathrm{a}, \mathrm{b}\) are temperature dependent, while the constant, \(D\), is a function of the adsorbate type. The equations necessary for calculating the concentration profiles by successive iterations are Eqs. 4.11 and 4.18.

Chen et al. (1981) predicted open parametric pumping by finite mass transfer, and a linear equilibrium adsorption was assumed (for dilute solution). In their work, the difference equations necessary for calculating the concentration transients as shown in their paper (Eqs. 7 and 9) are as follows:
\[
\begin{align*}
& y(I, J)=y(I-1, J-I)-\left(\frac{I-\varepsilon}{\varepsilon}\right)[x(I, J)-x(I, J-1)]  \tag{7}\\
& x(I, J)=\frac{y(I-1, J-1)+\left(\frac{1-\varepsilon}{\varepsilon}\right) x(I, J-1)}{\left(\frac{1-\varepsilon}{\varepsilon}\right)+\frac{1}{k}} \\
& +\left[x(I, J-1)-\frac{y(I-1, J-1)+\left(\frac{1-\varepsilon}{\varepsilon}\right) x(I, J-1)}{\left(\frac{1-\varepsilon}{\varepsilon}\right)+\frac{1}{k}}\right] \cdot \operatorname{Exp}\left[-\lambda\left(\left(\frac{1-\varepsilon}{\varepsilon}-\frac{\varepsilon}{k}\right)+\frac{1}{k}\right) \Delta t\right] \tag{9}
\end{align*}
\]

The development of the equations necessary for calculating \(x(I, J)\) and \(y(I, J)\) with non-linear adsorption isotherm is quite involved, as will be shown in the on-going analysis.

FINITE DIFFERENCE EQUATIONS FOR FINITE MASS TRANSFER IITH NON-LINEAR ADSORPTION ISOTHERM

For favorable adsorption isotherms of the Langmuir type, the solute material balances reflecting the events occurring within the adsorption column are
\[
\begin{align*}
& \varepsilon v \frac{\partial y}{\partial z}+\varepsilon \frac{\partial y}{\partial t}=-(1-\varepsilon) \frac{\partial x}{\partial t}  \tag{4.19}\\
& \frac{\partial x}{\partial t}=\lambda\left(y-y^{*}\right)  \tag{4.20}\\
& x=\frac{A y^{*}}{1+B y^{*}}+D y^{*} \tag{4.2I}
\end{align*}
\]

Note that the asterisk, as shown in Eq. 4.21, indicates equilibrium with the solid (adsorbent) phase and it was omitted from Eqs. 4.17 and \(4.18 a, b\) when local equilibrium is assumed.

In writing Eqs. 4.19 through 4.21 , plug illow was assumed, axial diffusion was neglected and the mass transfer coefficient \(\lambda\) is assumed to be only dependent on temperature. To obtain an equation analoguous to Chen et al. (1981), but with non-linear adsorption isotherm of the Langmuir type: it is necessary to write Eqs. 4.19 through 4.21 in finite difference form to obtain an expression for \(y^{*}\) from Eq. 4.21 as a function of \(x\) and the physical constants.
\[
\mathrm{x}=\frac{1}{\frac{1}{\mathrm{Ay*}}+\frac{B}{A}}+\frac{\mathrm{D}}{\frac{1}{\mathrm{y}^{*}}}
\]
or
\[
x=\frac{1}{\bar{A} \bar{y}+C}+\frac{D}{\bar{y}}
\]
where
\[
\begin{aligned}
& \bar{A}=\frac{1}{A}, \bar{y}=\frac{1}{y^{*}} \text { and } C=\frac{B}{A} \\
& (x \bar{y}-D)(\bar{A} \bar{y}+C)=\bar{y}
\end{aligned}
\]
\[
\begin{align*}
& \bar{A} x \bar{y}^{2}+(C x-D \bar{A}) \bar{y}-C D=\bar{y} \\
& \bar{A} x \bar{y}^{2}+(C x-D \bar{A}-1) \bar{y}-C D=0 \tag{4.22}
\end{align*}
\]

Equation 4.22 is in a quadratic form in \(y\), and roots can be obtained by a quadratic formula.
\[
\begin{equation*}
\bar{y}_{1}, \bar{y}_{2}=-\frac{(C x-D \bar{A}-1) \pm \sqrt{(C x-D \bar{A}-1)^{2}+4 \overline{\mathrm{~A} C D X}}}{2 \overline{\mathrm{~A} x}} \tag{4.23}
\end{equation*}
\]

Equation 4.23 can be simplified greatly if the adsorbate type physical constant \(D\) is allowed to approach zero ( \(D \rightarrow 0\) ), in which case the two roots will be identical, viz:
\[
\overline{\mathrm{y}}_{1}, \overline{\mathrm{y}}_{2}=\frac{1-\mathrm{Cx}}{\overline{\mathrm{~A} x}}
\]
or
\[
\begin{equation*}
y^{*}=\frac{A^{-1} X_{X}}{1-B A^{-1} x} \tag{4.24}
\end{equation*}
\]

Replace the time and position derivatives in Eq. 4.19 by the lowest order backward differences:
\[
\begin{align*}
& \varepsilon v \Delta t[y(I, J-1)-y(I-1, J-1)]+\varepsilon \Delta z[y(I, J)-y(I, J-1)] \\
& =-(1-\varepsilon) \Delta z[x(I, J)-x(I, J-1)] \tag{4.25}
\end{align*}
\]

If
\[
\frac{H}{N Z}=\Delta z=v \Delta t, \text { where } H=\text { height of the column and } N Z=
\]
position increments, then Eq. 4.25 now becomes,
\[
\begin{equation*}
y(I, J)=y(I-1, J-1)-\left(\frac{1-\varepsilon}{\varepsilon}\right)[x(I, J)-x(I, J-1)] \tag{4.26}
\end{equation*}
\]

Substitute Eqs. 4.24 and 4.26 into Eq. 4.20 to obtain
\[
\begin{equation*}
\frac{\partial x}{\partial t}=\lambda\left[y(I-1, J-1)-\left(\frac{1-\varepsilon}{\varepsilon}\right) x(I, J)+\left(\frac{1-\varepsilon}{\varepsilon}\right) x(I, J-1)-\frac{A^{-1} x(I, J)}{1-B A^{-1} x(I, J)}\right] \tag{4.27}
\end{equation*}
\]

Let \(a=y(I-1, J-1)+\left(\frac{1-\varepsilon}{\varepsilon}\right) x(I, J-1)\)
\[
\begin{align*}
& \mathrm{b}=-\mathrm{A}^{-1}  \tag{4.28}\\
& \mathrm{c}=-\mathrm{BA}^{-1} \\
& \mathrm{f}=-\left(\frac{1-\varepsilon}{\varepsilon}\right)
\end{align*}
\]

Equation 4.27 now becomes,
\[
\begin{align*}
& \frac{\partial x}{\partial t} \quad=\lambda\left[a+f x(I, J)+\frac{b x(I, J)}{1+c \times(I, J)}\right] \\
& =\lambda\left\{\frac{a[1+c x(I, J)]+f x(I, J)[1+c x(I, J)]+b x(I, J)}{1+c x(I, J)}\right\} \\
& =\lambda\left\{\frac{a+\operatorname{acx}(I, J)+f x(I, J)+\operatorname{cfx}(I, J)^{2}+b x(I, J)}{1+c x(I, J)}\right\} \\
& =\lambda\left\{\frac{\operatorname{cfx}(I, J)^{2}+(a c+b+f) x(I, J)+a}{1+c x(I, J)}\right\} \\
& =\lambda \operatorname{cf}\left\{\frac{x(I, J)^{2}+\operatorname{gx}(I, J)+h}{1+\operatorname{cx}(I, J)}\right\} \tag{4.29}
\end{align*}
\]
where
\[
\begin{aligned}
& g=\frac{a c+b+f}{c f} \\
& h=\frac{a}{c f}
\end{aligned}
\]

Upon rearrangement, Eq. 4.28 becomes
\[
\begin{equation*}
\frac{[1+c x(I, J)] d x(I, J)}{x(I, J)^{2}+g x(I, J)+h}=\lambda c f d t \tag{4.30}
\end{equation*}
\]

To integrate Eq. 4.29, the left member has to be rearranged into two parts. Thus,
\[
\begin{equation*}
\frac{c x(I, J) d x(I, J)}{x(I, J)^{2}+g x(I, J)+h}+\frac{d x(I, J)}{x(I, J)^{2}+g x(I, J)+h}=\lambda c f d t \tag{4.29a}
\end{equation*}
\]

Equation 4.30 can easily be integrated by using the following identities:
\[
\int \frac{d x}{a x^{2}+b x+c}=\left\{\begin{array}{l}
\frac{2}{\sqrt{4 a c-b^{2}}} \tan ^{-1} \frac{2 a x+b}{\sqrt{4 a b-b^{2}}} \\
\frac{1}{b^{2}-4 a c} \ln \left(\frac{2 a x+b-\sqrt{b^{2}-4 a c}}{2 a x+b+\sqrt{b^{2}-4 a c}}\right)
\end{array}\right.
\]
and
\(\int \frac{x d x}{a x^{2}+b x+c}=\frac{1}{2 a} \ln \left(a x^{2}+b x+c\right)-\frac{b}{2 a} \int \frac{d x}{a x^{2}+b x+c}\)

Upon integration of Eq. 4.30 with respect to \(t\) over the time increment \(\Delta t\),
\[
\begin{align*}
& \frac{c}{2} \ln \left[x(I, J)^{2}+g x(I, J)+h\right]-\frac{g c}{2}\left\{\frac{1}{\sqrt{g^{2}-4 h}} \ln \left(\frac{2 x(I, J)+g-\sqrt{g^{2}-4 h}}{2 x(I, J)+g+\sqrt{g^{2}-4 h}}\right)\right\} \\
& +\frac{1}{\sqrt{g^{2}-4 h}} \ln \left(\frac{2 x(I, J)+g-\sqrt{g^{2}-4 h}}{2 x(I, J)+g+\sqrt{g^{2}-4 h}}\right)=\lambda c f \Delta t \quad(4.30 \mathrm{a}) \tag{4.30a}
\end{align*}
\]
\(\left.\frac{c}{2} \ln \left[x(I, J)^{2}+g x(I, J)+h\right]+\left(1-\frac{g C}{2}\right) \frac{1}{\sqrt{g^{2}-4 h}} \ln \left(\frac{2 x(I, J)+g-\sqrt{g^{2}-4 h}}{2 x(I, J)+g+\sqrt{g^{2}-4 h}}\right)\right\}\)
\(=\lambda c f \Delta t\)
\(\left[x(I J)^{2}+g x(I, J)+h\right]^{\beta} \cdot\left[\frac{2 x(I, J) G-\sqrt{g^{2}-4 h}}{2 x(I, J)+g+\sqrt{g^{2}-4 h}}\right]^{\gamma}=e^{\lambda c f \Delta t}\)
where
\[
\begin{aligned}
& =\frac{c}{2} \\
& =\left(1-\frac{g c}{2}\right)\left(g^{2}-4 h\right)^{-0.5}
\end{aligned}
\]

For a system for which the physical constant D>0, Eqs. 4.19 through 4.21 can be solved by method of characteristics as per Chen et al. (1976).

Let
\[
\bar{z}=z / v
\]
and by the method of characteristics.

For characteristic I:
\[
\frac{\mathrm{d} \overline{\mathrm{z}}}{\mathrm{dt}}=1
\]
so that
\[
\begin{equation*}
\frac{d y}{d z}=-\left(\frac{1-\varepsilon}{\varepsilon}\right) \lambda\left(y-y^{*}\right) \tag{4.19a}
\end{equation*}
\]

For characteristic II:
\[
\frac{d \bar{z}}{d t}=0
\]
and
\[
\begin{equation*}
\frac{d x}{d t}=\lambda(y-y *) \tag{4.20a}
\end{equation*}
\]

Applying the modified Euler method to Eqs. 4.19a and 4.20a, the following is obtained,
\(y(I, J)=y(I-1, J-1)-\left(\frac{1-\varepsilon}{\varepsilon}\right) \frac{\lambda}{2} \Delta t[y(I, J)-y *(I, J)+y(I-1, J-1)-y *(I-1, J-1)]\)
and
\(x(I, J)=x(I, J-1)+\frac{\lambda}{2} \Delta t[y(I, J)-y *(I, J)+y(I, J-1)-y *(I, J-1)]\)
(4.20b)
where
\[
\Delta t=\Delta \bar{Z}=\frac{H}{N Z \bullet v}
\]
and
\[
\begin{align*}
& y *(I, J)=\frac{(A+D-B \cdot x(I, J))}{2 B \cdot D} \\
& +\frac{\sqrt{[A+D-B \cdot x(I, J)]^{2}+4 B \cdot D \cdot x(I, J)}}{2 B \cdot D} \tag{4.23a}
\end{align*}
\]

For the system under consideration, Eqs. 4.19b, 4.20b and 4.23a along with the necessary external equations were used to calculate the concentration transients emerging from the column for the staged sequence cyclic process by iterative method.

Calculation of \(y^{*}--\) For the calculation of the fluid concentration in equilibrium with solid phase, \(y^{*}\), the following constants were used:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{O-Xylene} & \multicolumn{3}{|c|}{Anisole} \\
\hline & 3030 K & \(333^{\circ} \mathrm{K}\) & \(358^{\circ} \mathrm{K}\) & 3030 K & \(333^{\circ} \mathrm{K}\) & \(358^{\circ} \mathrm{K}\) \\
\hline A : & 8.65 & 1.46 & 8.00 & 1.40 & 9.00 & 8.25 \\
\hline B : & 66.97 & 18.47 & 65.00 & 1.89 & 68.90 & 120.00 \\
\hline
\end{tabular}
\(D=0.29 \mathrm{~cm}^{3}\) pores \(/ \mathrm{gm}\) dry silica gel
Calculation of \(\lambda_{i} . \quad \lambda_{i}\), the mass transfer coefficient, is a function of concentration and temperature, therefore values of \(\lambda_{i}\) must be calculated for every cell in the column. Kim (1976)
developed a set of equations for the calculation of mass transfer coefficients for the system toluene-acetophenone-n-heptane on silica gel. Stokes (1976) generalized the equations for multicomponent systems. Stokes' equations were modified where necessary to suit the system \(0-x y l e n e-a n i s o l e-n-h e p t a n e ~ o n ~ s i l i c a ~\) gel.
\[
\begin{equation*}
\lambda_{i}=\left(A_{p}\right)\left(J_{D}\right)(v)(\varepsilon)(S c)^{-2 / 3} \tag{4.30d}
\end{equation*}
\]
where
\[
\begin{aligned}
& J_{D}=(R e)^{-0.78} \text { for laminar flow } \\
& R e=\frac{D_{p} v \rho_{f} \varepsilon}{f(1-\varepsilon)}=\text { Reynolds No. for flow in packed beds } \\
& S c=\frac{\mu_{f}}{\mu_{f} D_{f}}=\text { Schmidt No. } \\
& A p=a_{p} / \rho_{S}=\text { interfacial area/unit weight of adsorbent } \\
& V E=\text { superficial column velocity }
\end{aligned}
\]

For staged sequence cyclic process, ve can be expressed as follows:

\section*{Stage I}

Stage II

\section*{Stage III}

Column \(1 \quad\left(\mathrm{R}+\mathrm{P}_{\mathrm{I}}+\mathrm{P}_{\mathrm{T}}\right) Q \mathrm{t}_{\mathrm{I}} \quad\left(\mathrm{R}+\mathrm{P}_{\mathrm{I}}+\mathrm{P}_{\mathrm{B}}\right) Q \mathrm{t}_{\mathrm{II}} \quad\left(\mathrm{H}+\mathrm{P}_{\mathrm{B}}\right) Q \mathrm{t}_{\mathrm{III}}\)
Column \(2\left(R+P_{I}+P_{T}\right) Q t_{I} \quad\left(R+P_{I}\right) Q t_{I I} \quad\left(R+P_{T}+P_{B}\right) Q t_{I I I}\)
Column \(3 \quad\left(\mathrm{R}+\mathrm{P}_{\mathrm{T}}\right) \mathrm{Qt}_{\mathrm{I}} \quad\left(\mathrm{R}+\mathrm{P}_{\mathrm{I}}+\mathrm{P}_{\mathrm{B}}\right) \mathrm{Qt}_{\mathrm{II}} \quad\left(\mathrm{R}+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right) \mathrm{Qt} I I \mathrm{I}\)
where \(t_{I}, t_{I I}, t_{I I I}=\) stage duration time for stage \(I\), II and III respectively,
and
\[
R=\text { reflux ratio }
\]
\(\rho_{f}=\sum_{n=1}^{n} y_{i} M_{i}\)
\(\mu_{f}=\frac{\sum_{n=1}^{n} y_{i} \mu_{i}}{\sum_{n=1}^{n} y_{i}}\)
where
\(y_{i}=\) moles \(i / v o l u m e ~ o f ~ s o l u t i o n ~\)
\(\mu_{i}\) can be calculated from the Thomas' equation (Thomas, 1946).
\(\mu_{i}=0.1167 \rho_{\ell}{ }^{1 / 2} 10^{\gamma}\)
\(\gamma=\frac{B\left(1-T_{r}\right)}{T_{r}}\)
\(\mu_{i}=\) solute viscosity in centipoise
\(\rho_{\ell}=\) solute density at normal boiling point, g/cc
\(B=\) viscosity constant to be calculated by summation of the atomic and group contributions
\(\mathrm{T}_{\mathrm{r}}=\) reduced temperature of solutes, expressed as a fraction of a given temperature to the critical temperature, \(\mathrm{TOK} / \mathrm{T}_{\mathrm{C}}{ }^{\mathrm{OK}}\)
\begin{tabular}{lcl} 
& \(\mathrm{T}_{\mathrm{c}} \mathrm{OK}\) & B \\
n-Heptane & 540 & 0.75 \\
O-Xylene & 625 & 0.7678 \\
Anisole & 642 & 0.8668
\end{tabular}

The following is the calculated viscosity data from Thomas' equation:

\section*{Viscosity in gm/cm•min)}
\begin{tabular}{llll} 
& \(\underline{3030 \mathrm{~K}}\) & \(\underline{333^{\circ} \mathrm{K}}\) & \(\underline{3580 \mathrm{~K}}\) \\
n-Heptane & 0.2236 & 0.1694 & 0.1393 \\
O-Xylene & 0.4340 & 0.3125 & 0.2479 \\
Anisole & 0.6518 & 0.4453 & 0.3403
\end{tabular}
\(\alpha\) which is functionally dependent on the solute and concentration (Kim, 1976), was shown to asymptotically approach a constant value at low concentration. The functional dependency of \(\alpha\) on concentration was obtained via a curve fitting method for acetophenone and toluene and the equations are applicable to a good degree of accuracy to anisole and O-xylene.

The diffusivity, \(D_{f}\), of the solute-solvent is a function of the solute and temperature as expressed by the modified equation of Wilke and Chang (1955) and can be estimated by
\[
D_{f_{i}}=\frac{7.4 \times 10^{-8}(60)\left(\psi_{S} M_{S}\right)^{0.5} \mathrm{~T}}{\mu_{f} V_{M_{i}}^{0.6}}
\]
where
\[
\begin{aligned}
\mathrm{D}_{\mathrm{f}_{\mathrm{i}}} & =\text { mutual diffusion coefficient of solute i at low } \\
& \text { concentrations in the solvent, } \mathrm{cm}^{2} / \mathrm{min} \\
& =\text { association factor of solvent, dimensionless } \\
& =1.0 \text { for heptane (unassociated solvent) } \\
\mu_{f} & =\text { viscosity of solvent, } \mathrm{gm} / \mathrm{cm} / \mathrm{min} \\
M_{S} & =\text { solvent molecular weight, } 100.2 \mathrm{gm} / \mathrm{mole} \text { for hep- } \\
& \text { tane } \\
\mathrm{V}_{\mathrm{M}_{\mathrm{i}}}= & \text { molal volume of solute i at normal boiling point } \\
& \text { cc/g mole }
\end{aligned}
\]
\[
\begin{aligned}
& =118.358 \mathrm{cc} / \mathrm{g} \text { mole for } 0-x y l e n e \\
& =108.683 \mathrm{cc} / \mathrm{g} \text { mole for anisole } \\
& =\quad \text { temperature of column, oK, } \mathrm{T}_{1}(=30), \mathrm{T}_{2}(=60) \text { or } \\
& \mathrm{T}_{3}(=85)
\end{aligned}
\]

\section*{THE CELL (EFFECTIVE PLATE) MODEL (STOP \& GO ALGORITHM)}

The adsorbent bed is divided into \(N\) equal cells (plates or stages), each of length \(z / N N z\), where \(z\) is the length of the column, and each stage is represented as \(i, j\). In this case, \(i\) will be the cell number, and \(j\) is the transfer step. The schematic cf this cell model is clearly depicted by Figure 4.1 . Initially, the system is assumed to be in equilibrium at \(j-1\), in which case each cell will have uniform concentrations in both the fluid and solid phases. If each fluid section is displaced exactly one step ahead in the transfer step, then the fluid \(y(i, j-1)\) originally opposite the solid section \(i\) will now be opposite \(i+1\). After each transfer step, the operation is stopped, and mass transfer is allowed to occur in all stages. Thereafter, equilibrium is immediately re-established and the next transfer step (j) begins.

\section*{COMPUTATION ALGORITHM}

\section*{Continuous Parametric Pumping}

The diagram of the operational steps used in the simulation of the parametric pumping process is depicted in Figure 4.2. Equations 4.16 was used in the calculation of all concentration transients. Divide the adsorbent columns into \(N Z\) equal stages,

each of length \(Z / N Z\) and \(Z\) being the length of the bed. Divide the time domain into NT increments. The time interval for the downard fluid flow is NT1, and NT2 for the upward fluid flow.

Initialize the fluid and solid compositions in the NZ stages to some physically realizable values at \(\mathrm{T}_{2}\left(\mathrm{~T}_{2} \mathrm{~T}_{1}\right)\). Initial composition was assumed to be \(\mathrm{Y}_{\text {INT }}=1\) in this simulation. The initialization (equilibration) step is at \(j=1\) (see Figure 4.2(a)). The operational steps of the algorithm are as follows:
1. Push Down (Figure 4.2(b)): Columns 1 and 2 are operated at \(\mathrm{T}_{1}\) and \(\mathrm{T}_{2}\) respectively. The time step NT1 for the downward flow of the fluid phase is divided into \(N Z\) equal time increments of length NTI/NZ. Each fluid section is displaced one step ahead beginning at \(j=2\) for each time element NT1/NZ. A predetermined volume of feed is mixed with the fluid from the top reservoir and introduced into column 1, while top and bottom products are simultaneously withdrawn. Equilibration is allowed to re-establish, the concentration profile \(Y\) in the column is determined and another displacement is made; this time at \(j=3\). When \(j=N T 1\) time step is attained, the bottom reservoir concentration is calculated.
2. Push Up (Figure 4.2(c)): Columns 1 and 2 are now operated at \(T_{2}\) and \(T_{1}\) respectively. The time step \(N T 2\) for the upward flow of the fluid phase is divided into \(N Z\) equal time increments of length NT2/NZ. Each fluid section is displaced one step ahead beginning at \(j=2\) for each time element


FIGURE 4.2 DIAGRAM OF OPERATIONAL STEPS USED IN COMPUTER SIMULATION - CONTNUOUS PARAMETRIC PUMPING

NT2/NZ. The mixture of feed and fluid from the bottom reservoir is now introduced into column 2 at \(T_{1}\), while top and bottom products are simultaneously withdrawn. Successive equilibration is allowed, and concentration profile YY determined until a final displacement at \(j=N T 2\) is attained, after which the top reservoir concentration is calculated.

This sequence of operation ends the first cycle. For subsequent cycles, steps 1 and 2 have to be repeated. The simulation of this calculational algorithm assumes the following :
(a) That these NZ increments (volume elements) are entirely independent of one another.
(b) That the calculation of concentration profiles of the fluid mixtures assume a set of pseudo-binary (all components are non-interactive, and non-reacting).
(c) That the volume elements represent batch reactors connected in series.
(d) That only partial equilibration between adjacent phases and full equilibration between opposite (solid and fluid) phases take place.
(e) That each volume element is treated individually for calculating concentrations.

Appendix \(V\) contains a listing of the FORTRAN IV digital
computer program written to implement the EQUILIBRIUM THEORY WITH STOP-GO METHOD for the direct mode parametric pumping.

\section*{CYCLIC ADSORPTION PROCESS}

\section*{Stage I}
1. Divide each adsorbent bed into \(N Z\) equal axial position increments and the stage duration time into \(N T\) time increments, such that \(N Z / v=t, H(N z * v)=t / N T\).
2. The system is initially assumed to be in equilibrium with the feed concentration at \(\mathrm{T}_{3}\).
3. Calculate \(y(I, J)\) and \(x(I, J)\) by Eqs. 4.23a, 4.26a and 4.30c with the initial ( \(\mathrm{J}=1\) ) and boundary ( \(\mathrm{I}=1\) ) condition shown below:

\section*{Initial Conditions:}

For each column, \(y(I, 1)_{n}=y(I, N T)_{n-1 / 3}=\) concentration of \(y\) at the end of ( \(n-1 / 3\) ) th stage, \(n=\) number of complete cycle. \(x(I, 1)_{n}=x(I, N T)_{n-1 / 3}=\) concentration of \(x\) at the end of ( \(n-1 / 3\) ) th stage.
\(\lambda(I, 1)=f\left[y(I, 1)_{n}\right]\) via Eq. 4.30d
and
\[
y *(I, 1)=f\left[x(I, 1)_{n}\right] \text { via Eq. 4.23a }
\]

Boundary Conditions:
\[
\left.x(1, J)\right|_{n-1 / 3}=\left.x(1, J-1)\right|_{n-1 / 3^{+}}+\Delta x
\]
where \(\Delta x\) is the increment in \(x\) obtainable by the fourth order Runge-Kutta numerical integration of Eq. 4.20,
\[
\mathrm{K}_{1}=\lambda\left(\mathrm{y}_{\mathrm{o}}-\mathrm{y}_{\mathrm{o}}{ }^{*}\right) \Delta \mathrm{t}
\]
let
\[
\begin{aligned}
& x_{1}=x_{0}+\mathrm{K}_{1} / 2 \\
& \mathrm{~K}_{2}=\lambda\left(\mathrm{y}_{\mathrm{o}}-\mathrm{y}_{1}{ }^{*}\right) \Delta \mathrm{t} \\
& \mathrm{y}_{1}{ }^{*}=f\left(\mathrm{x}_{1}\right) \text { via Eq. } 4.21 \\
& \mathrm{x}_{2}=\mathrm{x}_{\mathrm{o}}+\mathrm{K}_{2} / 2 \\
& \mathrm{~K}_{3}=\lambda\left(\mathrm{y}_{\mathrm{o}}-\mathrm{y}_{2}^{*}\right) \Delta \mathrm{t}, \mathrm{y}_{2}^{*}=\mathrm{f}\left(\mathrm{x}_{2}\right) \\
& \mathrm{x}_{3}=\mathrm{x}_{\mathrm{o}}+\mathrm{K}_{3} \\
& \mathrm{~K}_{4}=\lambda\left(\mathrm{y}_{\mathrm{o}}-\mathrm{y}_{3}^{*}\right) \Delta \mathrm{t}, \mathrm{y}_{3}^{*}=\mathrm{f}\left(\mathrm{x}_{3}\right)
\end{aligned}
\]
therefore
\[
\Delta x=1 / 6\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right)
\]
4. Calculate \(y(I, J)\) and \(x(I, J)\) for \(t=\Delta t, 2 \Delta t, 3 \Delta t, \ldots N T \Delta t\), and \(\bar{z}>0\), by performing the following steps:

Step 1: Estimate values for \(y(I, J)\) and \(x(I, J)\) as follows:
\[
\begin{aligned}
& y(I, J)^{\text {es }}=y(I-1, J-1) \\
& \quad-\left(\frac{1-\varepsilon}{\varepsilon}\right) \lambda(I-1, J-1)[y(I-1, J-1)-y *(I-1, J-1)] \cdot N T \cdot \Delta t
\end{aligned}
\]
and
\[
x(I, J) \text { es }=x(I, J-1)+\lambda(I, J-1)[y(I, J-1)-y *(I, J-1)] d N T \cdot \Delta t
\]

Step 2: Using estimated values of \(y(I, J)\) and \(x(I, J)\) to calculate \(y^{*}(I, J)\) es and \(\lambda(I, J)\) es from Eqs. 4.23a and 4.30d respectively.

Step 3: We are now in a position to calculate the concentrations from Eqs. 4.19 b and 4.20 b by using estimated values,
\[
\begin{aligned}
y(I, J) & =y(I-1, J-1) \\
& -\left(\frac{1-\varepsilon}{\varepsilon}\right) \frac{\Delta t}{2} \lambda(I, J)^{\text {es }}[y(I, J) \text { es }-y *(I, J) \text { es }] \\
& -\left(\frac{1-\varepsilon}{\varepsilon}\right) \frac{\Delta t}{2} \lambda(I-1, J-1)[y(I-1, J-1)-y *(I-1, J-1)]
\end{aligned}
\]
and
\[
\begin{aligned}
& x(I, J)=x(I, J-1) \\
& \quad+\frac{\Delta t}{2} \lambda(I, J) \text { es }[y(I, J) \text { es }-y *(I, J) \text { es }] \\
& \quad+\frac{\Delta t}{2} \lambda(I, J-1)[y(I, J-1)-y *(I, J-1)]
\end{aligned}
\]

Step 4: Check for deviation between values from steps 1 and 3,
\[
\left|\frac{y(I, J)-y(I, J)^{e s}}{y(I, J)^{e s}}\right| \leq \varepsilon
\]
and
\[
\left|\frac{x(I, J)-x(I, J) e s}{x(I, J)^{e s}}\right| \leq \varepsilon
\]
where \(\varepsilon\) is the desired tolerance.
If the conditions specified in this step are not satisfied, repeat steps 1 through 4.

For subsequent stages, repeat the procedure from number 3 to 4 (see Figure 4.3).

Appendix \(V\) contains a listing of the FORTRAN IV digital computer program written to implement the calculational algorithm for the staged sequence cyclic adsorption process.


FIGURE 4.3 SCHEAATIC DESCRIPTION OF THE OPERATIONAL STEPS USED IN THE COMPUTER SIMULATION OF THE STAGED SEQUENCE CYCLIC ADSORPTION PROCESS.
(a) INITIALIZATION STEP (b) STAGE I (c) STAGE II
(d) STAGE III

\section*{SOLUTION BY METHOD OF CHARACTERISTICS}

\section*{Material Balance with Finite Mass-Transfer Rate}

Let us go back to the material balance equations (Eqs. 4.19 and 4.20), but we will now assume that y* in the finite masstransfer rate between mobile and stationary phases expressed by the flux \(\lambda\left(y-y^{*}\right)\) is linear (see Eq. 4.31) instead of the nonlinear Langmuir isotherm expressed by Eq. 4.21. For clarity the basic equations will be presented again.
\[
\begin{align*}
& \frac{\partial y}{\partial t}+\frac{v}{\varepsilon} \frac{\partial y}{\partial z}=-\lambda\left(\mathrm{y}-\mathrm{y}^{*}\right)  \tag{4.19}\\
& \frac{\partial \mathrm{x}}{\partial t}=\left(\frac{\varepsilon}{1-\varepsilon}\right) \lambda\left(\mathrm{y}-\mathrm{y}^{*}\right)  \tag{4.20}\\
& \mathrm{y}^{*}=\mathrm{x} / \mathrm{k}(\mathrm{~T}) \tag{4.31}
\end{align*}
\]

Chen et al. (1976) and Stokes (1976) each independently presented a numerical scheme for solving the material balance equations by the method of characteristics. We will again assume that all physical properties are constant. The fluid entering the column is also assumed to be at constant compositions and velocity. The solutions to Eqs. 4.19 and 4.20 can be expressed in the form of
\[
\begin{equation*}
y\left(u_{1}, u_{2}\right)=0 \text { and } x\left(u_{3}\right)=0 \tag{4.32}
\end{equation*}
\]
where
\[
\begin{equation*}
u_{1}(t, z)=c_{1}, u_{2}(t, z)=c_{2} \text { and } u_{3}(t)=c_{3} \tag{4.33}
\end{equation*}
\]

The natural boundary conditions to specify are
\[
\begin{equation*}
x(z, o)=x_{0} \quad 0 \leq z \leq L \tag{4.34}
\end{equation*}
\]
\[
\begin{array}{lr}
\mathrm{y}(\mathrm{z}, \mathrm{o})=y_{0} & 0 \leq z \leq L \\
\mathrm{y}(\mathrm{o}, \mathrm{t})=\langle\mathrm{y}\rangle & \mathrm{t} \geq 0 \\
\frac{\mathrm{dx}(0, \mathrm{t})}{\mathrm{dt}}=\lambda\left(\langle\mathrm{y}\rangle-y^{*}\right), \quad \mathrm{t} \geq 0 \tag{4.36a}
\end{array}
\]

Equation 4.36 implies that at the entrance of the column, <y > represents an average concentration which could constitute combination of the feed solution \(\left(y_{0}=1\right)\) and the reflux solutions.

According to the method of characteristics (Acrivos, 1956), the choice of paths in the ( \(z, t\) )-plane is optional. Equations 4.32 and 4.33 are independent solutions of two of the associated ordinary equations
\[
\begin{equation*}
\frac{\mathrm{dt}}{1}=\frac{\mathrm{dz}}{\mathrm{v} / \varepsilon}=-\frac{\mathrm{dy}}{\lambda(\mathrm{y}-\mathrm{x} / \mathrm{k})} \tag{4.37}
\end{equation*}
\]
and
\[
\begin{equation*}
\frac{\mathrm{dt}}{1}=\frac{\mathrm{dz}}{0}=\frac{1-\varepsilon}{\varepsilon} \frac{\mathrm{dx}}{\lambda(\mathrm{y}-\mathrm{x} / \mathrm{k})} \tag{4.38}
\end{equation*}
\]

Since the characteristic curves are straight lines with direction ratios ( \(t, z, y\) ) and ( \(t, x\) ), it then follows that any surface (Eqs. 4.32 and 4.33) contains the straight lines from the origin to points on the surface. Although the geometric interpretation of the solutions of Eqs. 4.19 and 4.20 can readily be obtained, an explicit solution of a pair of the associated equations (Eq. 4.37 or 4.38 ) could be difficult.

Equality of the first two members of Eq. 4.37 gives
\[
\begin{equation*}
\frac{\mathrm{dz}}{\mathrm{dt}}=\frac{\mathrm{v}}{\varepsilon} \tag{4.39}
\end{equation*}
\]
and equality of the last two members of Eq. 4.37 gives
\[
\begin{equation*}
\frac{d y}{d z}=-\frac{\lambda \varepsilon(y-x / k)}{v} \tag{4.40}
\end{equation*}
\]


FIGURE 4.4 Z,t-PLANE ALONG WHICH \(Y(Z, t)\) IS DEFINED

As shown in Fig. 4.4, the characteristics are straight lines in the ( \(z, t\) )-plane of slope \(\mathrm{v} / \mathrm{E}\) (Eq. 4.39). Consider a point ( \(z, t\) ) lying on or parallel to 0 A , that is
\[
(t-c)>\frac{\varepsilon z}{v} .
\]
where \(c\) is the distance of any family of curves parallel to the OA. The inclination of the characteristics is
\[
\theta=\tan ^{-1}\left(\frac{\mathrm{~V}}{\varepsilon}\right)
\]

If \(c=t-\varepsilon z / v\), then to find \(S\) the following derivations are necessary.
\[
\begin{aligned}
& d s^{2}=d z^{2}+d t^{2} \\
& d s^{2}=d z^{2}\left(1+\left[\frac{d t}{d z}\right]^{2}\right)
\end{aligned}
\]

Therefore,
\[
\begin{equation*}
s=\frac{z}{v} \sqrt{v^{2}+\varepsilon^{2}} \tag{4.41}
\end{equation*}
\]

Rewriting Eq. 4.40 in terms of the arbitrary variable s,
\[
\frac{\mathrm{dy}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dz}}=-\frac{\lambda \varepsilon(\mathrm{y}-\mathrm{x} / \mathrm{k})}{\mathrm{v}}
\]
but
\[
\frac{d s}{d z}=\frac{\sqrt{v^{2}+\varepsilon^{2}}}{v}
\]

Therefore
\[
\frac{d y}{d s}=-\frac{\lambda \varepsilon(y-x / k)}{\sqrt{v^{2}+\varepsilon^{2}}}
\]
or
\[
\begin{equation*}
\frac{d y}{d s}+\frac{\lambda \varepsilon}{\sqrt{v^{2}+\varepsilon^{2}}} y=\frac{\lambda \varepsilon}{\sqrt{v^{2}+\varepsilon^{2}}} \mathrm{k} \tag{4.42}
\end{equation*}
\]
and the solution to Eq. 4.42 is the sum of the complimentary and particular solutions.
\[
y(c, s)=A_{1} \exp \left(\frac{\lambda \varepsilon s}{\sqrt{v^{2}+\varepsilon^{2}}}\right)+\frac{x}{k}
\]
or
\[
\begin{equation*}
y(z, t)=A_{1} \exp \left(-\frac{\lambda \varepsilon}{v} z\right)+\frac{x}{k} \tag{4.43}
\end{equation*}
\]

Application of the boundary condition of Eq. 4.22 yields
\[
\begin{equation*}
y(z, t)=\frac{x}{k}+(\langle y\rangle-x / k) \exp \left(-\frac{\lambda \varepsilon z}{v}\right) \tag{4.44}
\end{equation*}
\]

In the same fashion, equality of the first two members of Eq. 4.38 gives
\[
\begin{equation*}
\frac{\mathrm{dz}}{\mathrm{dt}}=0 \tag{4.45}
\end{equation*}
\]
and equality of the last two members of Eq. 4.38 yields
\[
\begin{equation*}
\frac{d x}{d t}=\frac{\varepsilon \lambda(y-x / k)}{(1-\varepsilon)} \tag{4.46}
\end{equation*}
\]

As depicted by Fig. 4.5, the characteristics of the solid phase concentration, \(x\), are straight lines in the ( \(z, t\) )-plane with slope 0 or \(z=\) constant. Upon integration of Eq. 4.46, we obtain
\[
\begin{equation*}
t=-\frac{k(1-\varepsilon)}{\varepsilon \lambda} \ln (y-x / k)+A_{2} \tag{4.47}
\end{equation*}
\]

Applying the boundary condition of Eq. 4.34 and 4.35 , the following expression is obtained


FIGURE \(4.5 \quad \mathrm{Z}, \mathrm{t}\)-PLANE ALONG WHICH \(\mathrm{X}(\mathrm{Z}, \mathrm{t})\) IS DEFINED
\[
\begin{equation*}
x(z, t)=k\left[y-B e^{-\left(\frac{\varepsilon}{1-\varepsilon}\right) \frac{\lambda t}{K}}\right] \tag{4.48}
\end{equation*}
\]
where \(B=y_{o}-x_{o} / k\)
To calculate \(x(z, t)\) and \(y(z, t)\) at the points where the two characteristics intersect, we substitute Eq. 4.48 into Eq. 4.44 to obtain
\[
y=\frac{1}{B}\left[B y-e^{-\left(\frac{1-\varepsilon}{\varepsilon}\right) \lambda t}\right]\left[1-e^{-\frac{\lambda \varepsilon z}{v}}\right]+\langle y\rangle e^{-\frac{\lambda \varepsilon z}{v}}
\]
and upon simplification, we get
\[
\begin{equation*}
y(z, t)=\langle y\rangle+B\left\{e^{-\frac{\varepsilon \lambda t}{(1-\varepsilon) k}}-e^{-\left[\frac{\varepsilon \lambda t}{(1-\varepsilon) k}-\frac{\lambda \varepsilon z}{v}\right]}\right\} \tag{4.49}
\end{equation*}
\]

If we now substitute Eq. 4.49 into Eq. 4.48 , an expression can
\[
\begin{align*}
& \text { be obtained for } x(z, t) . \\
& \qquad x(z, t)=k\left\{\langle y\rangle-B e^{-\left[\frac{\varepsilon \lambda t}{(1-\varepsilon) k}-\frac{\lambda \varepsilon z}{v}\right]}\right\} \tag{4.50}
\end{align*}
\]

Note that Eqs. 4.49 and 4.50 are only defined at the points where the characteristics intersect.

From Eqs. 4.48 and 4.49 the fluid phase concentration \(y(z, t)\) can be obtained along with the characteristic \(z=v t / \varepsilon+c\) and the solid phase concentration \(x(z, t)\) can also be obtained along the characteristic \(z=c\). The values of \(y(z, t)\) and \(x(z, t)\) during the parapumping process are functionally dependent on many adjustable parameters: \(\lambda, k, t, z\) and \(v\). From Eq. 4.49 it is apparent that for large bulk fiuid velocity \(v, y(z, t) \simeq\langle y\rangle\), meaning that the concentration in the fluid phase before exiting the column will be essentially equal to the concentration of fluid that was pumped into the column. This phenomena is physically sound since mass-transfer from the fluid phase to the solid phase is significantly reduced for highvelocities. As cycle time increases, \(y(z, t)\) decreases and \(x(z, t)\) increases for low temperature and vise versa for high temperatures which is what should be ex-


FIG. 4.6 : STEADY STATE CHARACTERISTICS FOR BATCH PARAMETRIC PUMPING

\section*{CHARACTERISTICS I: FLUID PHASE \\ CHARACTERISTICS II: SOLID PHASE}
pected, since longer times allow for near equilibrium situations to be attained and mass-transfer from the fluid phase into the solid phase to occur for low temperatures (mass-transfer from the solid phase into the fluid phase is obtained for high temperatures).

Equations 4.49 and 4.50 can Iurther be written to be independent of \(z\) and \(v\), if \(t=z / v\), we have
\[
\begin{equation*}
y(z, t)=\langle y\rangle+B\left\{e^{-p q t}-e^{-[1-q] p t}\right\} \tag{4.51}
\end{equation*}
\]
and
\[
\begin{equation*}
x(z, t)=k\left\{\langle y\rangle-B e^{-[1-q] p t}\right\} \tag{4.52}
\end{equation*}
\]
where
\[
p=\lambda \varepsilon \quad \text { and } \quad q=\frac{1}{(1-\varepsilon) k}
\]

The parameter \(p\) characterizes the capacity of the fluid phase while the parameter \(q\) characterizes the capacity of the solid phase.

\section*{Instantaneous Mass-Transfer (Equilibrium Theory)}

In Chapter 5, various criteria necessary to achieve the desired separations are developed by the method of characteristics based on the assumption of instantaneous mass-transfer between the fluid phase and the solid phase. Pigford et al. (1969), in the development of the equilibrium theory for processes inside the column assumed that local interphase equilibrium exists with a linear distribution law having a tempera-ture-dependent distribution coefficient. Other pertinent as-
sumptions are negligible axial diffusion, instantaneous temperature change when the column temperature is changed, the existence of plug flow and constant fluid density. Chen et al. (1974) analyzed the separation of multicomponent mixtures by treating the mixtures as \(n\) pairs of pseudo-binary systems. Each system was assumed to include one solute and a common inert solvent. They characterized the system by an equilibrium parameter \(b_{i}\), associated with a given two-phase system operated at two specific temperatures. The equilibrium parameter was expressed as
\[
\begin{equation*}
\mathrm{b}_{\mathrm{i}}=\frac{0.5\left(\mathrm{~m}_{2 \mathrm{i}}-\mathrm{m}_{1 \mathrm{i}}\right)}{1+0.5\left(\mathrm{~m}_{1 \mathrm{i}}+\mathrm{m}_{2 \mathrm{i}}\right)} \tag{4.53}
\end{equation*}
\]
where
\begin{tabular}{rl}
\(\mathrm{m}_{1 i}=\) & dimensionless equilibrium constant at tempera- \\
& ture \(\mathrm{T}_{1}\) for component \(i ;\) \\
\(\mathrm{m}_{2 i}=\quad\) dimensionless equilibrium constant at \(T_{2}\) for \\
& component \(i\).
\end{tabular}

For three temperatures, \(b_{i}\) needs to be redefined as
\[
\begin{align*}
& b^{1}=\frac{m_{2 i}-m_{1 i}}{2+m_{1 i}+m_{2 i}}  \tag{4.54}\\
& b^{2} i=\frac{m_{3 i}-m_{2 i}}{2+m_{2 i}+m_{3 i}} \tag{4.55}
\end{align*}
\]
where \(\mathrm{bl}_{\mathrm{i}}\) is the equilibrium parameter associated with \(\mathrm{T}_{1}\) and \(\mathrm{T}_{2}\), and \(b^{2}{ }_{i}\) is the equilibrium parameter associated with \(T_{2}\) and \(T_{3}\) ( \(\mathrm{T}_{1}<\mathrm{T}_{2}<\mathrm{T}_{3}\) ). Equation 4.53 is applicable to parametric pumping process where the pump is operated at two specific temperatures and Eqs. 4.54 and 4.55 are applicable to cyclic adsorption
sumptions are negligible axial diffusion, instantaneous temperature change when the column is changed, the existence of plug flow and constant fluid density. Chen et al. (1974) analyzed the separation of multicomponent mixtures by treating the mixtures as n pairs of pseudo-binary systems. Each system was assumed to include one solute and a common inert solvent. They characterized the system by an equilibrium parameter \(b_{i}\), associated with a given two-phase system operated at two specific temperatures. The equilibrium parameter was expressed as
\[
\begin{equation*}
\mathrm{b}_{\mathrm{i}}=\frac{0.5\left(\mathrm{~m}_{2 \mathrm{i}}-\mathrm{m}_{1 \mathrm{i}}\right)}{1+0.5\left(\mathrm{~m}_{1 \mathrm{i}}+\mathrm{m}_{2 \mathrm{i}}\right)} \tag{4.53}
\end{equation*}
\]
where
\[
\begin{aligned}
\mathrm{m}_{1 i}= & \text { dimensionless equilibrium constant at tempera- } \\
& \text { ture } \mathrm{T}_{1} \text { for component } i ; \\
\mathrm{m}_{2 i}= & \text { dimensionless equilibrium constant at } T_{2} \text { for } \\
& \text { component } i .
\end{aligned}
\]

For three temperatures, \(b_{i}\) needs to be redefined as
\[
\begin{align*}
b_{i} & =\frac{m_{2 i}-m_{1 i}}{2+m_{1 i}+m_{2 i}}  \tag{4.54}\\
b^{2} & =\frac{m_{3 i}-m_{2 i}}{2+m_{2 i}+m_{3 i}} \tag{4.55}
\end{align*}
\]
where \(b_{i}^{1}\) is the equilibrium parameter associated with \(T_{1}\) and \(T_{2}\), and \(b^{2}{ }_{i}\) is the equilibrium parameter associated with \(T_{2}\) and \(T_{3}\) \(\left(T_{1}<T_{2}<T_{3}\right)\). Equation 4.53 is applicable to parametric pumping process where the pump is operated at two specific temperatures and Eqs. 4.54 and 4.55 are applicable to cyclic adsorption
process where more than two temperatures are needed for the fractionation of \(\mathfrak{f l u i d}\) mixtures. In general, for a sequential temperature input the equilibrium parameter associated with temperatures \(T_{j}\) and \(T_{j+1}\) may be expressed as
\[
\begin{equation*}
\mathrm{b}_{\mathrm{i}}^{j}=\frac{\mathrm{m}_{i}\left(\mathrm{~T}_{j+1}\right)-\mathrm{m}_{\mathrm{i}}\left(\mathrm{~T}_{j}\right)}{2+\mathrm{m}_{\mathrm{i}}\left(\mathrm{~T}_{j}\right)+\mathrm{m}_{\mathrm{i}}\left(\mathrm{~T}_{j+1}\right)} \tag{4.56}
\end{equation*}
\]
where
\[
\begin{aligned}
\mathrm{i} & =1,2,3, \ldots \\
j & =1,2,3, \ldots
\end{aligned}
\]

The material balance equations for the equilibrium theory will not be derived here (see Eqs. 5.1 through 5.8). The steady state characteristic solutions for parametric pumping and cyclic adsorption process will be tested separately. Let us consider the parametric pumping process for the separation of multicomponent mixtures (see Fig. 4.7)

\section*{PARAMETRIC PUMPING}
\[
\begin{equation*}
u_{i c o n}=\frac{v}{1+m_{i}(T)} \tag{4.57}
\end{equation*}
\]
where
\(v \quad=\) the bulk velocity of the mobile phase
\(u_{\text {icon }}=\) the velocity of the concentration wave of component i.

The slopes of the characteristics can then be written in terms of the intersticial velocity and the equilibrium parameter \(\mathrm{b}_{\mathrm{i}}\),


\section*{Column I}

Downwards Cold Half Cycle \(=u_{i}\), con \(\equiv\left(\frac{\partial z}{\partial t}\right)_{c}=\)
\[
\begin{equation*}
\frac{\mathrm{v}_{0}\left(1+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right)}{\left(1+\mathrm{b}_{\mathrm{i}}\left[1+0.5\left(\mathrm{~m}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)+\mathrm{m}_{\mathrm{i}}\left(\mathrm{~T}_{2}\right)\right)\right]\right.} \tag{4.58}
\end{equation*}
\]

Upwards Hot HalfCycle= \(u_{i}, \operatorname{con} \equiv\left(\frac{\partial z}{\partial t}\right)_{H}=\)
\[
\begin{equation*}
\frac{\mathrm{v}_{\mathrm{O}}\left(1+\mathrm{P}_{\mathrm{B}}\right)}{\left(1-\mathrm{b}_{\mathrm{i}}\right)\left[1+0.5\left(\mathrm{~m}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)+\mathrm{m}_{\mathrm{i}}\left(\mathrm{~T}_{2}\right)\right)\right]} \tag{4.59}
\end{equation*}
\]

\section*{Column II}

Downwards Hot Half Cycle \(=u_{i}\), con \(\equiv\left(\frac{\partial z}{\partial t}\right)_{H}=\)
\[
\begin{equation*}
\frac{v_{0}\left(1+P_{B}\right)}{\left(1-b_{i}\right)\left[1+0.5\left(m_{i}\left(T_{1}\right)+m_{i}\left(T_{2}\right)\right)\right]} \tag{4.60}
\end{equation*}
\]

Upwards Cold Half Cycle \(=u_{i}\), con \(\equiv\left(\frac{\partial z}{\partial t}\right)_{c}=\)
\[
\begin{equation*}
\frac{v_{0}\left(1+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right)}{\left(1+\mathrm{b}_{\mathrm{i}}\right)\left[1+0.5\left(\mathrm{~m}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)+\mathrm{m}_{\mathrm{i}}\left(\mathrm{~T}_{2}\right)\right)\right]} \tag{4.61}
\end{equation*}
\]

Equations 4.57 through 4.61 are the concentration velocities for component i. The derivations are based on material balances in a volume element of the column. According to Eqs. 4.58 through 4.61, the mobile phase concentration velocity depends on the operating conditions and the equilibrium parameters \(m_{i}(T)\) and \(b_{i}(T)\), where, in terms of the nomenclature used by Pigford et al. (1969) and Chen et al. (1973),
\[
\begin{align*}
& m\left(T_{2}\right)=m_{0}-a \\
& m\left(T_{1}\right)=m_{0}+a \tag{4.62}
\end{align*}
\]
\[
b=a /(1+m)
\]

Equation 4.62 is the dimensionless equilibrium constant parameter for a single component, and to extend Eq. 4.62 to multicomponent mixtures, Chen et al defined \(b_{i}\) as given by Eq. 4.53 for two specific temperatures where the constants a and \(\mathrm{m}_{\mathrm{io}}\) (Eq. 4.62) now become,
\[
\begin{align*}
& a=\frac{m_{i}\left(T_{2}\right)-m_{i}\left(T_{1}\right)}{2}  \tag{4.63}\\
& m_{\text {io }}=\frac{m_{i}\left(T_{1}\right)+m_{i}\left(T_{2}\right)}{2}
\end{align*}
\]

The characteristic lines are described by the distance-time derivatives (Eqs. 4.58 to 4.61 ), or
\[
\begin{equation*}
\frac{d z}{d t}=\bar{I} \frac{v}{+m(T)}=u_{i}, \text { con } \tag{4.64}
\end{equation*}
\]
and
\[
\begin{equation*}
\mathrm{y}(1+\mathrm{m}(\mathrm{~T}))=\text { constant }) \tag{4.65}
\end{equation*}
\]

From Fig. 4.7 we know that
Downflow
\[
\begin{align*}
& \mathrm{h}_{\mathrm{I}}:\left(1+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right) \mathrm{Q}=\left(1+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right) \mathrm{v}_{\mathrm{O}} \mathrm{~A}  \tag{4.66}\\
& \mathrm{~h}_{\mathrm{II}}:\left(1+\mathrm{P}_{\mathrm{B}}\right) \mathrm{Q}=\left(1+\mathrm{P}_{\mathrm{B}}\right) \mathrm{v}_{\mathrm{O}} \mathrm{~A} \tag{4.67}
\end{align*}
\]

\section*{Upflow}
\[
\begin{align*}
& \mathrm{h}_{\mathrm{I}}:\left(1+\mathrm{P}_{\mathrm{B}}\right) \mathrm{Q}=\left(1+\mathrm{P}_{\mathrm{B}}\right) \mathrm{v}_{\mathrm{O}} \mathrm{~A}  \tag{4.68}\\
& \mathrm{~h}_{\mathrm{II}}:\left(1+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right) \mathrm{Q}=\left(1+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right) \mathrm{v}_{\mathrm{O}} \mathrm{~A} \tag{4.69}
\end{align*}
\]
where
\(A=\) cross sectional area of the column

If Eqs. 4.66 to 4.69 and Eq. 4.53 are substituted into Eq. 4.64, Eqs. 4.58 through 4.61 are obtained. Eqs. 4.64 and 4.65 are obtained from the material balance equations as will be fully explained in Chapter 5. Equation 4.65 implies that the concentration along a characteristic line given by the slope \(\mathrm{v} /(1+\mathrm{m}(\mathrm{T}))(\mathrm{Eq} .4 .64)\) are constant for any given temperature except at the boundary where the temperature is switched from one temperature to another. Therefore a change in concentration will accompany a change in temperature according to the following
\[
\begin{equation*}
\frac{y\left(T_{1}\right)}{y\left(T_{2}\right)}=\frac{1-b_{i}}{1+b_{i}} \tag{4.70}
\end{equation*}
\]

A set of equations describing the characteristic lines in one column is adequate, provided the heights of both columns are equal (i.e. \(h_{I}=h_{I I}\) ), to fully describe the system (see Fig. 4.7) since the two columns are operated back to back. Now, if Eqs. 4.58 and 4.59 are integrated between the limits of \(t=t_{1}\) and \(t=t_{2}\) we get the wave front penetration distances for cold downflow and hot upflow (Column I), respectively, a concept first defined by Chen and Hill (1971).
\[
\begin{equation*}
L_{i}\left(T_{1}\right)=\frac{v_{0}\left(1+P_{T}+P_{B}\right) \Delta t}{\left(1+b_{i}\right)\left[1+0.5\left(m_{i}\left(T_{1}\right)+m_{i}\left(T_{2}\right)\right)\right]} \tag{4.71}
\end{equation*}
\]
and
\[
\begin{align*}
& L_{i}\left(T_{2}\right)=-\frac{v_{0}\left(1+P_{B}\right) \Delta t}{\left(1-b_{i}\right)\left[1+0.5\left(m_{i}\left(T_{1}\right)+m_{i}\left(T_{2}\right)\right)\right]}  \tag{4.72}\\
& \frac{L_{i}\left(T_{2}\right)}{L_{i}\left(T_{1}\right)}=\frac{\left(1+P_{B}\right)\left(1+b_{i}\right)}{\left(1+P_{T}+P_{B}\right)\left(1-b_{i}\right)} \tag{4.73}
\end{align*}
\]

In the derivation of the concentration transients, Chen and Hill (1971a) presented the concentration transients for the top and bottom product streams for operation in Regions 1, 2 and 3. The equations predicted that, at steady state ( \(n \rightarrow \infty\) ), solute removal from the lower stream is complete in Region 1 , but only partially removed in Regions 2 and 3. For the derivation of the concentration transients for the parapumping arrangements shown in Fig. 4.7, Region 1 mode of operation is applicable. The derivation of the concentration transients for the pseudobinary system is based on the assumption that the less adsorbed solute acts as an inert solvent. This assumption is sound physically if the low temperature is chosen such that adsorption on the solid phase is minimal. Hence, the ternary system can then be treated as a pseudo-binary system.

If the feed is introduced into the top of the column during downflow, and \(\mathrm{L}_{\mathrm{i}}\left(\mathrm{T}_{2}\right) \geq \mathrm{L}_{\mathrm{i}}\left(\mathrm{T}_{1}\right)\), then from Eq. 4.73 we have
\[
\frac{L_{i}\left(T_{2}\right)}{L_{i}\left(T_{1}\right)} \geq\left(\frac{1+P_{B}}{1+P_{T}+P_{B}}\right)\left(\frac{1+b_{i}}{1-b_{i}}\right)
\]

If we let
\[
\begin{equation*}
\left(\frac{1+P_{B}}{1+P_{T}+P_{B}}\right)\left(\frac{1+b_{i}}{1-b_{i}}\right) \geq 1 \tag{4.74}
\end{equation*}
\]

This means that
\[
\frac{1+\mathrm{P}_{\mathrm{B}}}{\mathrm{P}_{\mathrm{T}}} \geq \frac{\left(1-\mathrm{b}_{\mathrm{i}}\right)}{2 \mathrm{~b}_{\mathrm{i}}}
\]
or
\[
\begin{equation*}
\frac{\mathrm{P}_{\mathrm{T}}}{1+\mathrm{P}_{\mathrm{B}}} \leq \frac{2 \mathrm{~b}_{\mathrm{i}}}{1-\mathrm{b}_{\mathrm{i}}} \tag{4.75}
\end{equation*}
\]
if
\[
\frac{P_{T}}{1+P_{B}}=\frac{2 b_{i}}{1-b_{i}}
\]
then
\[
\begin{equation*}
\frac{1+P_{B}+P_{T}}{1+P_{B}}=\frac{1-b_{i}+2 b_{i}}{1-b_{i}}=\frac{1+b_{i}}{1-b_{i}} \tag{4.76}
\end{equation*}
\]

Equation 4.75 means that for the strongly adsorbed solute to concentrate at the top of the column (i.e. \(L_{i}\left(T_{2}\right)>L_{i}\left(T_{1}\right)\) ), the ratio \(P_{T} /\left(1+P_{B}\right)\) must be less or equal to \(2 b_{i} /\left(1-b_{i}\right)\). Another useful identity is given by Eq. 4.76.

Figure 4.8 shows top products exit during the \(n\) cycle of operation. The external equation may be obtained from material balance based on Fig. 4.8. By making a solute and total mass balance, the following relation for the \(n\)th downflow half-cycle may be obtained:
\[
\begin{equation*}
\left\langle y_{T_{2}}\right\rangle_{\mathrm{n}}\left(1+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right)=\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\mathrm{n}-1}\left(1+\mathrm{P}_{\mathrm{B}}\right) \tag{4.77}
\end{equation*}
\]

Upon substituting Eq. 4.76 into Eq. 4.77 and rearranging the resulting equation, the following is obtained:
\[
\begin{equation*}
\left\langle\mathrm{y}_{\mathrm{T}_{2}}\right\rangle_{\mathrm{n}}=\frac{1-\mathrm{b}_{\mathrm{i}}}{1+\mathrm{b}_{\mathrm{i}}}\left\langle\mathrm{y}_{\mathrm{T}_{1}}\right\rangle_{\mathrm{n}-1} \tag{4.78}
\end{equation*}
\]

During the (n-1)th cycle (i.e. upflow half cycle), the fluid emerging from the bottom column experiences a change in concentration equal to

\[
\begin{equation*}
\left\langle\mathrm{y}_{\mathrm{T} 1}\right\rangle_{\mathrm{n}-1}=\left(\frac{1-\mathrm{b}_{\mathrm{i}}}{1+\mathrm{b}_{\mathrm{i}}}\right)\left\langle\mathrm{y}_{\mathrm{T}_{\mathrm{z}^{2}}}{ }_{\mathrm{n}-1}\right. \tag{4.79}
\end{equation*}
\]
and Eq. 4.78 now becomes
\[
\begin{equation*}
\left\langle y_{T_{2}}\right\rangle_{n}=\left\{\left(\frac{1-b_{i}}{1+b_{i}}\right)\left(\frac{1-b_{i}}{1+b_{i}}\right) \quad\right\}\left\langle y_{T_{2}}\right\rangle_{n-1}, n \geq 2 \tag{4.80}
\end{equation*}
\]
or
\[
\begin{aligned}
& \left\langle y_{T_{2}}\right\rangle_{\mathrm{n}}=\left\{\left(\frac{1-\mathrm{b}_{\mathrm{i}}}{1+\mathrm{b}_{\mathrm{i}}}\right)^{2}\right\}^{\mathrm{n}-1}\left\langle\mathrm{y}_{\mathrm{T}_{2}}\right\rangle_{1} \\
& \text { I.C. at } \mathrm{n}=1 \\
& \left\langle\mathrm{y}_{\mathrm{T}_{2}}\right\rangle_{1}=\mathrm{y}_{0}
\end{aligned}
\]

Therefore
\[
\left\langle\mathrm{y}_{\mathrm{T}_{2}}{ }_{\mathrm{n}}=\mathrm{y}_{0}\left(\frac{1-\mathrm{b}_{\mathrm{i}}}{1+\mathrm{b}_{\mathrm{i}}}\right)^{2 \mathrm{n}-2}\right.
\]
or
\[
\begin{equation*}
\frac{\left\langle\mathrm{y}_{\mathrm{T}_{2}}{ }_{\mathrm{n}}\right.}{\mathrm{y}_{\mathrm{o}}}=\left(\frac{1-\mathrm{b}_{\mathrm{i}}}{1+\mathrm{b}_{\mathrm{i}}}\right)^{2 \mathrm{n}-2} \tag{4.81}
\end{equation*}
\]

By means of Eq. 4.81, the concentration transients can be calculated during the downilow half cycle, and for the upflow half cycle, the following equation can be used in calculating the concentration transients,
\[
\begin{equation*}
\frac{\left\langle\mathrm{y}_{\mathrm{T}_{1}}\right\rangle_{n}}{\mathrm{y}_{0}}=\left(\frac{1-\mathrm{b}_{\mathrm{i}}}{1+\mathrm{b}_{\mathrm{i}}}\right)\left(\frac{1-\mathrm{b}_{i}}{1+\mathrm{b}_{\mathrm{i}}}\right)^{2 n-2}=\left(\frac{1-b_{i}}{1+b_{i}}\right)^{2 n-1} \tag{4.82}
\end{equation*}
\]

Since \(b_{i} \ll 1\), at steady state \((n \rightarrow \infty)\), Eqs. 4.81 and 4.82 become
\[
\begin{equation*}
\frac{\left\langle\mathrm{y}_{\mathrm{T}_{2}}\right\rangle_{\infty}}{\mathrm{y}_{\mathrm{O}}} \text { or } \frac{\left\langle\mathrm{y}_{\mathrm{T}_{1}}\right\rangle_{\infty}}{\mathrm{y}_{0}}=0 \tag{4.83}
\end{equation*}
\]

Equation 4.83 means that at steady state, the top product
concentration would consist of the inert solvent (toluene and \(n-\) heptane). If Eqs. 4.82 and 4.83 are written in terms of the principal operating variables, we obtain the following:
\[
\begin{equation*}
\frac{\left\langle\mathrm{y}_{\mathrm{T}_{2}}\right\rangle_{\mathrm{n}}}{\mathrm{y}_{\mathrm{O}}}=\left(\frac{\mathrm{P}_{\mathrm{T}}}{1+\mathrm{P}_{\mathrm{B}}}\right)^{2 \mathrm{n}-2} \tag{4.84}
\end{equation*}
\]
and
\[
\begin{equation*}
\frac{\left\langle y_{T_{1}}\right\rangle_{n}}{y_{0}}=\left(\frac{\mathrm{p}_{T}}{1+\mathrm{P}_{\mathrm{B}}}\right)^{2 \mathrm{n}-1} \tag{4.85}
\end{equation*}
\]

There are certain values of \(\mathrm{P}_{\mathrm{T}}\) and \(\mathrm{P}_{\mathrm{B}}\) for which Eq. 4.83 is no longer true. When operating the parapump with \(\mathrm{P}_{\mathrm{T}}<\mathrm{P}_{\mathrm{B}}\), the strongly adsorbed solute does not appear in the top product at steady state and Eq. 4.83 holds true. This situation is depicted in Fig. 4.9. The steady state characteristics are shown in Fig. 4.10 for the case in which \(\mathrm{P}_{\mathrm{T}}<\mathrm{P}_{\mathrm{B}}\) and thus \(\mathrm{L}_{\mathrm{i}}\left(\mathrm{T}_{1}\right) / \mathrm{L}_{\mathrm{i}}\left(\mathrm{T}_{2}\right)<1\). In Fig. 4.10, by geometry, the bottom product concentration transients \(\left\langle\mathrm{y}_{\mathrm{B}_{1}}\right\rangle_{\mathrm{n}}\) can be derived as follows:
\[
\begin{equation*}
\frac{\overline{A B}}{\overline{A D}}=\frac{L_{i}\left(T_{1}\right)}{L_{i}\left(T_{2}\right)}=\left(\frac{1+P_{T}+P_{B}}{1+P_{B}}\right)\left(\frac{1-b_{i}}{1+b_{i}}\right) \tag{4.86}
\end{equation*}
\]

Let
\[
\begin{equation*}
P_{1}=\text { integer }\left[\frac{h-L_{i}\left(T_{1}\right)}{L_{i}\left(T_{2}\right)-L_{i}\left(T_{1}\right)}\right] \tag{4.87}
\end{equation*}
\]
and
\[
\begin{aligned}
r_{1}= & P_{1}+1 \\
= & \text { number of cycles necessary for the establishment of } \\
& \text { steady state characteristic pattern. }
\end{aligned}
\]



FIGURE 4.10:
STEADY STATE CHARACTERISTICS FOR THE STRONGLY ADSORBED COMPONENT FOR A PSEUDO-BINARY SYSTEM, \(L\left(T_{1}\right) / L\left(T_{2}\right)<1\)

Where
\[
\begin{aligned}
& P_{1}+q_{1}=\frac{h-L_{i}\left(T_{1}\right)}{L_{i}\left(T_{2}\right)-L_{i}\left(T_{1}\right)}=\frac{h-L_{i}\left(T_{1}\right)}{\Delta L_{i}} \\
& P_{1}=\text { zero or a positive integer }
\end{aligned}
\]
and
\[
0 \leq q_{1} \leq 1
\]

Therefore,
\[
\begin{equation*}
\frac{\overline{\mathrm{BC}}}{\mathrm{q}_{1} \Delta \mathrm{~L}_{\mathrm{i}}}=\frac{\Delta t}{\mathrm{~L}_{\mathrm{i}}\left(\mathrm{~T}_{2}\right)} \tag{4.89}
\end{equation*}
\]
or
\[
\begin{align*}
& \frac{\overline{\mathrm{BC}}}{\overline{\overline{A D}}}=\frac{\overline{\mathrm{BC}}}{\Delta \mathrm{t}}=\frac{q_{1}}{\mathrm{~L}_{\mathrm{i}}\left(\mathrm{~T}_{2}\right)} \Delta \mathrm{L}_{\mathrm{i}}  \tag{4.90}\\
& =\left[\frac{\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{2}\right)-\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)}{\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{2}\right)}\right] q_{1} \\
& =\left[1-\frac{\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)}{\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{2}\right)}\right] q_{1}
\end{align*}
\]
\[
\begin{equation*}
=1-\left[\frac{\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)}{\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{2}\right)}+\left(1-\frac{\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)}{\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{2}\right)}\right) \mathrm{q}_{1}\right] \tag{4.91}
\end{equation*}
\]

Therefore, the bottom product concentration after nth cycle can then be calculated from the following (see Fig. 4.10)
\(\left\langle y_{B_{1}}\right\rangle_{n}=\left(\frac{1+b_{i}}{1-b_{i}} ; \frac{\overline{A B}}{\overline{A D}}\left\langle y_{B_{2}}\right\rangle_{n-1}+\frac{\overline{\mathrm{BC}}}{\overline{\mathrm{AD}}}\left\langle y_{T_{1}}\right\rangle_{n-P_{1}}-1+\frac{\overline{C D}}{\overline{A D}}\left\langle y_{T_{1}}\right\rangle_{n-P_{1}}\right.\)


And upon substitution of Eqs. 4.86, 4.90 and 4.91 into Eq. 4.92 the following is obtained
\[
\begin{equation*}
\left\langle y_{B_{1}}\right\rangle_{n}=\frac{1-b_{i}}{1+b_{i}}\left\langle y_{B_{2}}\right\rangle_{n-1}+\left(1-\frac{L_{i}\left(T_{2}\right)}{L_{i}\left(T_{1}\right)}\right) q_{1}\left[\left\langle y_{T_{1}}\right\rangle_{n-P-1}+\left(1-q_{1}\right)\left\langle y_{T_{1}}\right\rangle_{n-p_{1}}\right] \tag{4.93}
\end{equation*}
\]

For the case in which \(P_{B} P_{T}\) or \(L_{i}\left(T_{1}\right) / L_{i}\left(T_{2}\right) \geq 1\), the steady state characteristics developed with these conditions result in incomplete separation, i.e. component \(B\) (more strongly adsorbed component) is found in the product taken from the middle of the two columns ( \(\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\mathrm{n}}\) ). From experimental observations, the concentration increases as the magnitude of \(L_{i}\left(T_{1}\right) / L_{i}\left(T_{2}\right)\) increases. In Figs. 4.12 and 4.13 , by geometry, the concentration transients \(\left\langle\mathrm{y}_{\mathrm{T}_{1}}\right\rangle_{\mathrm{n}}\) can be derived as follows:
\[
\begin{align*}
& \frac{\bar{E} G}{\overline{E F}}=\frac{L_{i}\left(T_{2}\right)}{L_{i}\left(T_{1}\right)}=\left(\frac{1+P_{B}}{1+P_{T}+P_{B}}\right)\left(\frac{1+b_{i}}{1-b_{i}}\right)  \tag{4.94}\\
& P_{2}=\text { integer }\left[\frac{h-L_{i}\left(T_{2}\right)}{L_{i}\left(T_{1}\right)-L_{i}\left(T_{2}\right)}\right] \\
& P_{2}+q_{2}=\frac{h-L_{i}\left(T_{2}\right)}{L} i_{i}\left(T_{1}\right)-L_{i}\left(T_{2}\right)
\end{align*} \frac{h-L_{i}\left(T_{2}\right)}{\Delta L_{i}}, ~ l
\]

Where
\[
\mathrm{q}_{2}=\text { zero or a positive integer }
\]
and
\[
0 \leq q_{2} \leq 1
\]

\section*{Therefore}
部
\(\frac{\left\langle y_{T^{\prime}}{ }_{n}\right.}{y_{0}}\)

FIGURE 4.12 NET MOVEMENT OF CONCENTRATION FRONTS OF TIE STRONGLY ADSORBED COAPONENT FOR A PSEUDO-BINARY SYSTEM WHERE Li \(\left(\mathrm{T}_{1}\right) / \mathrm{Li}\left(\mathrm{T}_{2}\right)>1\)

\[
\begin{align*}
& \frac{\overline{\mathrm{GI}}}{\overline{\mathrm{EF}}}=\frac{\overline{\mathrm{GI}}}{\Delta \mathrm{t}}=\frac{\mathrm{q}_{2} \Delta \mathrm{~L}_{\mathrm{i}}}{\mathrm{~L}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)}=q_{2}\left[\frac{\mathrm{~L}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)-\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{2}\right)}{\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)}\right]  \tag{4.95}\\
& \frac{\overline{\overline{I F}}}{\overline{\mathrm{EF}}}=1-\frac{\overline{E I}}{\overline{\mathrm{EF}}} \\
& =1-\left[\frac{\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{2}\right)}{\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)}+q_{2}\left(1-\frac{\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{2}\right)}{\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)}\right)\right] \\
& =\left(1-\frac{\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{2}\right)}{\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)}\right)\left(1-q_{2}\right) \tag{4.96}
\end{align*}
\]

Therefore the top product, \(\left\langle y_{T_{1}}\right\rangle_{n}\), concentration after nth cycle can then be calculated from
\(\left\langle\mathrm{y}_{\mathrm{T}_{1}}\right\rangle_{\mathrm{n}}=\left\langle\mathrm{y}_{\mathrm{T}_{1}}\right\rangle_{\mathrm{n}}\left(\frac{1-\mathrm{b}}{1+\mathrm{b}}\right) \frac{\overline{\mathrm{EG}}}{\overline{\mathrm{EF}}}+\left\langle\mathrm{y}_{\mathrm{B}_{2}}\right\rangle_{\mathrm{n}-\mathrm{P}_{2}-1} \frac{\overline{\mathrm{GI}}}{\overline{\mathrm{EF}}}+\left\langle\mathrm{y}_{\mathrm{B}_{2}}\right\rangle_{\mathrm{n}-\mathrm{P}_{2}} \frac{\overline{\overline{\mathrm{EF}}}}{\overline{\overline{\mathrm{F}}}}\)

Upon substitution of Eqs. 4.94 through 4.96 into Eq. 4.97, we obtain
\(\left\langle y_{T_{1}}\right\rangle_{n}=\frac{1-b}{1+b}\left\langle y_{T_{2}}\right\rangle_{n}+\left(1-\frac{L_{i}\left(T_{2}\right)}{L_{i}\left(T_{1}\right)}\right)\left[q_{2}\left\langle y_{B_{2}}\right\rangle_{n-P_{2}-1}+\left(1-q_{2}\right)\left\langle y_{B_{2}}\right\rangle_{n-P_{2}}\right]\)

The bottom product concentration \(\left\langle\mathrm{y}_{\mathrm{B}_{1}}\right\rangle_{\mathrm{n}}\) can also be calculated by making a solute and total mass balance.

\section*{Staged Sequence Adsorption Process}

Figure 4.14 shows the column arrangement for the staged sequence adsorption process. The intersticial velocities, \(\varepsilon v\), of the material in the three columns for stage 1 are,
\[
\begin{equation*}
h_{I}: \quad\left(R+P_{T}+P_{I}\right) Q=\left(R+P_{T}+P_{I}\right) v_{O} A \tag{4.99}
\end{equation*}
\]


FIGURE 4.14:
COLUMN ARRANGEMENT FOR STAGED SEQUENCE CYCLIC PROCESS
\[
\begin{align*}
& h_{I I}: \quad\left(R+P_{T}+P_{I}\right) Q=\left(R+P_{T}+P_{I}\right) v_{O} A  \tag{4.100}\\
& h_{I I I}: \quad\left(R+P_{T}\right) Q=\left(R+P_{T}\right) v_{O} A \tag{4.101}
\end{align*}
\]
where
\[
R=\text { amount of material refluxed in ml. }
\]

The slopes of the characteristics can then be written in terms of Eqs. 4.99 to 4.101 and Eqs. 4.54 and 4.55

Column I: \(u_{i}\), con \(\equiv\left(\frac{\partial z}{\partial t}\right)_{T_{1}}=\frac{\left(R+P_{T}+P_{I}\right) v_{o}}{\left(1+b_{i}^{3}\right)\left[1+0.5\left(m_{i}\left(T_{1}\right)+m_{i}\left(T_{3}\right)\right)\right]}\)

Column II: \(u_{i}\), con \(\equiv\left(\frac{\partial z}{\partial t}\right)_{T_{2}}=\frac{\left(\mathrm{R}+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{I}}\right) \mathrm{v}_{\mathrm{O}}}{\left(1-\mathrm{b}_{\mathrm{i}}\right)\left[1+0.5\left(\mathrm{~m}_{\mathrm{i}}\left(\mathrm{T}_{1}\right)+\mathrm{m}_{\mathrm{i}}\left(\mathrm{T}_{2}\right)\right)\right]}\)
(4.103)

Column III: \(u_{i}\), con \(\equiv\left(\frac{\partial z}{\partial t}\right)_{T_{3}}=\frac{\left(R+P \cdot T_{0}\right) v_{o}}{\left(1-b^{2}{ }_{i}\right)\left[1+0.5\left(m_{i}\left(T_{2}\right)+m_{i}\left(T_{3}\right)\right)\right]}\)

Upon integration of Eqs. 4.102 to 4.104 , between the limits of \(t=t_{1}\) and \(t=t_{2}\), we get the wave front penetration distances for the stage 1 mode of operation.
\[
\begin{align*}
& \mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)=\frac{\left(\mathrm{R}+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{I}}\right) \mathrm{v}_{0}}{\left(1+\mathrm{b}_{\mathrm{i}}\right)\left[1+0.5\left(\mathrm{~m}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)+\mathrm{m}_{\mathrm{i}}\left(\mathrm{~T}_{3}\right)\right)\right]} \cdot \Delta \mathrm{t}  \tag{4.105}\\
& \mathrm{~L}_{\mathrm{i}}\left(\mathrm{~T}_{2}\right)=\frac{\left(\mathrm{R}+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{I}}\right) \mathrm{v}_{\mathrm{o}}}{\left(1-\mathrm{b}_{\mathrm{i}}\right)\left[1+0.5\left(\mathrm{~m}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)+\mathrm{m}_{\mathrm{i}}\left(\mathrm{~T}_{3}\right)\right)\right]} \cdot \Delta t \tag{4.106}
\end{align*}
\]
\[
\begin{equation*}
L_{i}\left(T_{3}\right)=\frac{\left(R+P_{T}\right) v_{o}}{\left(1-b_{i}^{2}\right)\left[1+0.5\left(m_{i}\left(T_{2}\right)+m_{i}\left(T_{3}\right)\right)\right]} \cdot \Delta \tag{4.107}
\end{equation*}
\]

Figures 4.15 and 4.16 illustrate the concentration characteristics for two solute systems assuming linear isotherms. Figure 4.15 illustrates a case with the penetration distances for the two components equal \(\mathrm{L}_{\mathrm{A}}\left(\mathrm{T}_{1}\right)=0.33 \mathrm{~h}, \mathrm{~L}_{\mathrm{A}}\left(\mathrm{T}_{2}\right)=0.50 \mathrm{~h}\), \(\mathrm{L}_{\mathrm{A}}(\mathrm{T})=0.66 \mathrm{~h} ; \mathrm{L}_{\mathrm{B}}\left(\mathrm{T}_{1}\right)=0.166 \mathrm{~h}, \mathrm{~L}_{\mathrm{B}}\left(\mathrm{T}_{2}\right)=0.33 \mathrm{~h}\) and \(\mathrm{L}_{\mathrm{B}}\left(\mathrm{T}_{3}\right)=0.50 \mathrm{~h}\), where \(h\) is the height of the column. It is assumed that \(h_{I}=h_{I I}=h_{\text {III }}\). Some of the concentration wave fronts originating from \(T_{1}\) do not break through the column after experiencing a sequence of three temperature inputs. As a consequence, component \(A\) peaks at \(T_{3}\) instead of \(T_{2}\) and component \(B\) concentrates at the temperature boundary. Baker and Pigford (1971) noted that by adjusting the thermal velocity and thus the penetration distance of the thermal wave to override the natural thermal wave, certain concentration wave fronts can be amplified. By so doing, of course, the concentration waves can be made to concentrate at desired points between two given temperature boundaries. This lag in concentration waves can also be directed to exit or emerge at desired points within a given temperature if the frequencies of the temperature inputs are varied (i.e. if the duration of the stages are made nonsymetrical). As predicted by equilibrium theory, the concentration characteristics will change according to Eq. 4.70 or
\[
\begin{equation*}
\frac{y\left(T_{1}\right)}{y\left(T_{2}\right)}=\frac{1-b_{i}^{1}}{1+b_{i}^{3}} \tag{4.108}
\end{equation*}
\]


FIG.4.15 : CONCENTRATION WAVE FRONTS FOR STAGED SEQUENCE CYCLIC PROCESS
\[
\begin{aligned}
& \mathrm{L}_{\mathrm{A}}\left(\mathrm{~T}_{1}\right)=0.33 \mathrm{~h}, \mathrm{~L}_{\mathrm{A}}\left(\mathrm{~T}_{2}\right)=0.50 \mathrm{~h}, \mathrm{~L}_{\mathrm{A}}\left(\mathrm{~T}_{3}\right)=0.66 \mathrm{~h} ; \\
& \mathrm{L}_{\mathrm{B}}\left(\mathrm{~T}_{1}\right)=0.166 \mathrm{~h}, \mathrm{~L}_{\mathrm{B}}\left(\mathrm{~T}_{2}\right)=0.33 \mathrm{~h} \text { and } \mathrm{L}_{\mathrm{B}}\left(\mathrm{~T}_{3}\right)=0.50 \mathrm{~h}
\end{aligned}
\]


FIGURE 4.16:
CONCENTRATION HAVE FRONTS FOR STAGED SEQUENCE CYCLIC PROCESS \(L_{A}\left(T_{1}\right)=0.5 \mathrm{~h}, \mathrm{~L}_{\mathrm{A}}\left(\mathrm{T}_{2}\right)=0.66 \mathrm{~h}, \mathrm{~L}_{\mathrm{A}}\left(\mathrm{T}_{3}\right)=0.833 \mathrm{~h} ;\)
\(L_{B}\left(T_{1}\right)=0.33 h, L_{B}\left(T_{2}\right)=0.5 h\) and \(L_{B}\left(T_{3}\right)=0.66 h\)
and
\[
\begin{equation*}
\frac{y\left(T_{2}\right)}{y\left(T_{3}\right)}=\frac{1-b^{2} i}{1-b_{i}^{1}} \tag{4.109}
\end{equation*}
\]

Figure 4.16 illustrates a case where component \(A\) has been directed to exit the column at \(T_{2}\) and component \(B\) at \(T_{3}\). For this case, the penetration distances for the two components are \(L_{A}\left(T_{1}\right)=0.5 h, \quad L_{A}\left(T_{2}\right)=0.66 h, \quad L_{A}\left(T_{3}\right)=0.833 h ; \quad L_{B}\left(T_{1}\right)=0.33 h\), \(L_{B}\left(T_{2}\right)=0.5 h\) and \(L_{B}\left(T_{3}\right)=0.65 h\). Some of the characteristic wave fronts of component \(A\left(L_{A}(T) L_{B}(T)\right)\) originating from a column at \(T_{1}\) only see a change in temperature once ( \(T_{2}\) ) before exiting, while component \(B\) originating from the same source see \(T_{2}\) and \(T_{3}\) before exiting. With proper selection of operating conditions such as \(P_{T}, P_{B}\) and \(P_{I}\) and for the most part \(v_{O}\), the concentration characteristics can be made to undergo a series of temperature changes, thereby building concentrated characteristic wave fronts before exiting.

\section*{CHAPTER 5}

\section*{SEPARATION OF DILUTE MULTICOMPONENT SOLUTIONS BY CYCLIC ADSORPTION AND PARAMETRIC PUMPING}

The cyclic adsorption process and parametric pumping are operated continuously. They are continuous in the sense that the feed is steadily introduced and the products continuously withdrawn.

\section*{SEPARATION BY PARAMETRIC PUMPING}

Figure 5.1 illustrates the schematics of the column arrangement for the downflow first half cycle and the upflow second half cycle. The flowrate to and from the reservoirs of the parapump during each half cycle is \(Q\) (volume-units per unit time). The duration time of each half cycle is t (time units), therefore the displacement volume is \(Q t\). The dead volumes associated with the top and bottom reservoirs are \(\mathrm{V}_{\mathrm{T}}\) and \(\mathrm{V}_{\mathrm{B}}\) respectively.

The feed flow rate is \(Q\left(P_{T}+P_{B}\right)\) and the top and bottom product flow rates are \(\mathrm{QP}_{\mathrm{T}}\) and \(\mathrm{QP} \mathrm{P}_{\mathrm{B}}\), respectively, where \(\mathrm{P}_{\mathrm{T}}\) and \(\mathrm{P}_{\mathrm{B}}\) are the ratios of the top and bottom product flow rates to the reservoir displacement rate. The feed stream during the first half cycle is located at the top of column I (Fig. 5.1-a) and at the bottom of column II (Fig. 5.1-b) during the second half cycle. The feed and product streams flow steadily during the upflow and downflow half cycles. The column internal flow rates can easily be obtained from the flow diagrams as shown in Fig. 6.1. The external material balances could be made around the points of

bottom and top product withdrawal. During downflow, the flow rate in column \(I\) is \(\left(1+P_{T}+P_{B}\right) Q\), and in column II is \(\left(1+P_{B}\right) Q\), while the upflow flow rate in column \(I\) is \(\left(1+P_{B}\right) Q\) and that of column II is \(\left(1+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right) \mathrm{Q}\). The given product streams during discharge come only from the column and not from the reservoir, nor from the feed stream.

At the start of the run, the columr is filled with adsorbent particles, the column voids and the reservoirs are filled with a three-component mixture, two components of which distribute between the two phases. Column I is at temperature \(T_{1}\) and column II at temperature \(T_{2}\) during downflow, while column \(I\) is at temperature \(\mathrm{T}_{2}\) and column II is at temperature \(\mathrm{T}_{1}\) during upflow. The material from the reservoir and feed are assumed to be well mixed before they are fed to the column. The volume of material in the connecting lines is assumed to be included in the dead volume of the adjacent reservoir. Before the parapumping operation is started, the distribution of solutes in the fluid phase is equal to the feed concentration \(y_{o}\) throughout the apparatus and they are equilibrated with the solute concentration on the adsorbent particles at the higher temperature \(\mathrm{T}_{2}\). The pumping operation is started by changing the temperature of column \(I\) from \(T_{2}\) to \(T_{1}\) and maintaining column 2 at \(T_{1}\) coupled with downward flow.

The parametric pumping parameters just in the on-going analysis are used in the mathematical development of the adsorp-tion-desorption of the fluid mixtures in the column during the parametric pumping operation, and the flow processes occurring
within the column (internal equations). External equations, which are also necessary, are the solute material balances on streams flowing to and from a reservoir which also consider the feed and product streams.

\section*{Internal Equations}

For the analysis of the internal equations, the equilibrium theory of Pigford et al. (1969) will be used. The equilibrium theory was originated by Pigford (1969) and generalized by Aris (1969), and extended to continuous direct mode parametric pumping by Chen and Hill (1971) and Chen et al. (1972), and also applied to the analysis of cycling zone adsorption by Baker and Pigford (1971), Gupta and Sweed (1971) and Wankat (1971). The following assumptions were made:
1. interphase equilibrium is established at any point in the bed;
2. a linear distribution law which has a temperaturedependent distribution coefficient exists;
3. rate of heat transfer is high, therefore temperature change within the column is instantaneous;
4. steady unidirectional flow of all fluid elements (plug flow);
5. axial dispersion is negligible;
6. change of fluid density is negligible (total moles of fluid per unit volume of fluid, and total moles of fluid per unit volume of solid are constant). In the
```

equations, the terms }\mp@subsup{y}{i}{}\mathrm{ and }\mp@subsup{x}{i}{}\mathrm{ incorporate the fluid density, ρ_{f}, and solid density, ρ_{S}, terms shown by Pigford et al. (1969).

```

Based on the above simplifying assumptions, the solute material balance in both the fluid and solid phase is:
\[
\begin{equation*}
\varepsilon \frac{\partial y_{i}}{\partial t}+\varepsilon_{v} \frac{\partial y_{i}}{\partial z}+(1-\varepsilon) \frac{\partial \mathrm{x}_{i}}{\partial \mathrm{t}}=0 \tag{5.1}
\end{equation*}
\]

Subject to the linear equilibrium isotherm,
\[
\begin{equation*}
x_{i}=M_{i}(T) y_{i} \tag{5.2}
\end{equation*}
\]

If the linear isotherm is differentiated
\[
\begin{equation*}
\frac{\partial x_{i}}{\partial t}=M_{i}(T) \frac{\partial y_{i}}{\partial t}+y_{i} \frac{\partial M_{i}(T)}{\partial T} \cdot \frac{\partial T}{\partial t} \tag{5.3}
\end{equation*}
\]
if
\[
\begin{equation*}
m_{i}=\frac{(1-\varepsilon)}{\varepsilon} M_{i}(T) \tag{5.4}
\end{equation*}
\]

Then
\[
\begin{equation*}
\frac{\partial m_{i}}{\partial T}=\frac{(1-\varepsilon)}{\varepsilon} \frac{\partial M_{i}(T)}{\partial T} \tag{5.5}
\end{equation*}
\]

By substitution, Eq. 5.1 becomes
\[
\begin{equation*}
\left(1+m_{i}\right) \frac{\partial y_{i}}{\partial t}+v \frac{\partial y_{i}}{\partial z}+\frac{\partial m_{i}}{\partial T} \cdot \frac{\partial T}{\partial t} \cdot y_{i}=0 \tag{5.6}
\end{equation*}
\]

By the method of characteristics, we get
\[
\begin{equation*}
\frac{d t}{1+m_{i}}=\frac{d z}{v}=\frac{-d y_{i}}{\frac{d m_{i}}{d T} \cdot \frac{d T}{d t} \cdot y_{i}} \tag{5.7}
\end{equation*}
\]
which beomes
\[
\begin{equation*}
\frac{d z}{d t}=\frac{v}{1+m_{i}}=u_{\operatorname{con}}=\frac{v}{1+\frac{(1-\varepsilon)}{\varepsilon} M_{i}(T)} \tag{5.8}
\end{equation*}
\]
TABLE 5.1



Meaning that in the \(z-t\) plane, the characteristic curves are straight lines having slopes of \(u_{\text {con }}\). If Eq. 5.8 is integrated between the limits of \(t=t_{a}\) and \(t=t_{b}\), we get the wave front penetration distances for hot upflow and cold downflow, respectively (the concept of which was first defined by Chen and Hill [1971]).
\[
\begin{equation*}
L_{i}(T)=u_{c o n} t=\frac{v}{1+\frac{(1-\varepsilon)}{\varepsilon} M_{i}(T)} \Delta t \tag{5.9}
\end{equation*}
\]

Now, from Figure 5.2 and Table 5.1, the flow rates in the columns during the downflow are Column \(I\left(=\left(1+P_{T}+P_{B}\right) Q\right)\) and Column II \(\left(=\left(1+P_{B}\right) Q\right)\); and during the upflow, Column \(I\left(=\left(1+P_{B}\right) Q\right)\) and Column II \(\left(=\left(1+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right) \mathrm{Q}\right)\) and Eq. 5.9 becomes:

Downflow:
\[
\begin{align*}
& \mathrm{LI}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)=-\left[\frac{\mathrm{v}\left(1+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right) \Delta \mathrm{t}_{1}}{1+\left(\frac{1-\varepsilon}{\varepsilon}\right) \mathrm{M}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right)}\right]  \tag{5.10}\\
& \mathrm{L}^{I I_{i}\left(T_{2}\right)}=-\left[\frac{\mathrm{v}\left(1+\mathrm{P}_{\mathrm{B}}\right) \Delta \mathrm{t}_{1}}{1+\left(\frac{1-\varepsilon}{\varepsilon}\right) M_{i}\left(\mathrm{~T}_{2}\right)}\right] \tag{5.11}
\end{align*}
\]

Upflow:
\[
\begin{align*}
& L_{i}^{I}\left(T_{2}\right)=+\left[\frac{v\left(1+P_{B}\right) \Delta t_{2}}{1+\left(\frac{1-\varepsilon}{\varepsilon}\right) M_{i}\left(T_{2}\right)}\right]  \tag{5.12}\\
& L_{i I}\left(T_{1}\right)=+\left[\frac{v\left(1+P_{T}+P_{B}\right) \Delta t_{2}}{1+\left(\frac{1-\varepsilon}{\varepsilon}\right) M_{i}\left(T_{1}\right)}\right] \tag{5.13}
\end{align*}
\]
while the negative and positive signs indicate the downflow and upflow directions respectively.

For component \(A\), where \(M_{A}(T)<M_{B}(T)\) and therefore \(L_{A}(T)>L_{B}(T)\),
\[
\begin{gather*}
\frac{L_{A}^{I}\left(T_{1}\right)}{L_{A}^{I}\left(T_{2}\right)}=\left[\frac{v\left(1+P_{T}+P_{B}\right) \Delta t_{1}}{1+\left(\frac{1-\varepsilon}{\varepsilon}\right) M_{A}\left(T_{1}\right)}\right] \cdot\left[\frac{1+\left(\frac{1-\varepsilon}{\varepsilon}\right) M_{A}\left(T_{2}\right)}{v\left(1+P_{B}\right) \Delta t_{2}}\right]  \tag{5.14}\\
\quad=\left[\frac{1+P_{T}+P_{B}}{1+P_{B}}\right] \cdot\left[\frac{\varepsilon+(1-\varepsilon) M_{A}^{I}\left(T_{2}\right)}{\varepsilon+(1-\varepsilon) M_{A}^{I}\left(T_{1}\right)}\right] \cdot\left[\frac{\Delta t_{1}}{\Delta t_{2}}\right] \tag{5.15}
\end{gather*}
\]

As shown by Chen and Hill (1971), one can also conclude that the degree of purity of \(A\) in the top by parametric pumping depends on the relative magnitudes of \(L_{A}^{I}\left(T_{1}\right) / L_{A}^{I}\left(T_{2}\right)\) and the height of column \(I, H^{I}\). To be able to have most of \(B\) in the bottom product,
\[
\begin{equation*}
\frac{L_{B}^{I}\left(T_{1}\right)}{L_{B}^{I}\left(T_{2}\right)}=\left[\frac{1+P_{T}+P_{B}}{1+P_{B}}\right] \cdot\left[\frac{\varepsilon+(1-\varepsilon) M_{B}^{I}\left(T_{2}\right)}{\varepsilon+(1-\varepsilon) M_{B}^{I}\left(T_{1}\right)}\right] \cdot\left[\frac{\Delta t_{1}}{\Delta t_{2}}\right] \tag{5.16}
\end{equation*}
\]

Which also depends on the relative magnitudes of \(L_{B}\left(T_{1}\right) / L I_{B}\left(T_{2}\right)\) and the height of column \(I, H^{I}\). Following the same reasoning, to be able to have most of component \(A\) and \(B\) in the top and bottom product respectively in column II, the following relative magnitude of penetration distances holds:
\[
\begin{equation*}
\frac{L^{I I} A_{A}\left(T_{2}\right)}{L^{I I}{ }_{A}\left(T_{1}\right)}=\left[\frac{1+P_{B}}{1+P_{T}+P_{B}}\right] \cdot\left[\frac{\varepsilon+(1-\varepsilon) M_{A}^{I I}\left(T_{2}\right)}{\varepsilon+(1-\varepsilon) M_{A}^{I I}\left(T_{1}\right)}\right] \cdot\left[\frac{\Delta t_{1}}{\Delta t_{2}}\right] \tag{5.17}
\end{equation*}
\]
and
\[
\begin{equation*}
\frac{L^{I I}{ }_{B}\left(T_{2}\right)}{L^{I I}{ }_{B}\left(T_{1}\right)}=\left[\frac{1+P_{B}}{1+P_{T}+P_{B}}\right] \cdot\left[\frac{\varepsilon+(1-\varepsilon) M^{I I} B_{B}\left(T_{2}\right)}{\varepsilon+(1-\varepsilon) M_{B}^{I I}\left(T_{1}\right)}\right] \cdot\left[\frac{\Delta t_{1}}{\Delta t_{2}}\right] \tag{5.18}
\end{equation*}
\]

In order to direct the movement of component \(A\) to the top product and component \(B\) to the bottom product, the following inequalities must be satisfied:
\[
\begin{align*}
& \frac{L_{A}{ }_{A}\left(T_{1}\right)}{L_{A}\left(T_{2}\right)}>1 \text { and } L_{A}{ }_{A}\left(T_{1}\right)>H^{I}{ }_{\mathrm{COI}}  \tag{5.19}\\
& \frac{L_{B}\left(T_{1}\right)}{L_{B}\left(T_{2}\right)}<1 \text { and } L_{B}{ }_{B}\left(T_{1}\right)<H^{I} \operatorname{col}  \tag{5.20}\\
& \frac{L^{I I}\left(T_{2}\right)}{L_{A}^{I I}\left(T_{1}\right)}<1 \text { and } L_{A}^{I I_{A}\left(T_{2}\right)<H^{I I} \operatorname{col} 10} \tag{5.21}
\end{align*}
\]

Equations 5.19 through 5.22 provide the necessary guidelines that must be satisfied for a satisfactory pump performance. From Equations 5.17 through 5.18, one can see that the relative magnitude of the penetration distances consists of three terms. The first term is the ratio of the flow rates in the columns during downflow to the flow rates during upflow. The second term is the ratio of the equilibrium capacity of each component at a given temperature, and the third term is the ratio of the duration time for each half cycle. For a given material, the equilibrium capacity of each component at a given temperature is fixed. The ratios of the flow rates and the half cycle duration time only provides the parapumper the means to get a desired ratio of the relative penetration distances for a given cycle and temperature. Since the bulk velocity of the pumping operation would be fixed for a given operation, the change in the ratios of the flow rates can be achieved by proper adjustment of
the size of products withdrawn from the top \(\left(\mathrm{P}_{\mathrm{T}}\right)\) and bottom ( \(\mathrm{P}_{\mathrm{B}}\) ). The half cycle time could be made symmetrical (the duration time for downflow half cycle equal to the duration time for upflow half cycle) or asymmetrical (the duration time for downflow half cycle not equal to the duration time for upflow half cycle). For all runs done in this study, symmetrical half cycle times were used.

By substituting Eq. 5.14 into Eq. 5.19, the following is obtained,
\[
\begin{align*}
& \left(\frac{1+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}}{1+\mathrm{P}_{\mathrm{B}}}\right)\left(\frac{\varepsilon+(1-\varepsilon) \mathrm{M}_{\mathrm{A}}\left(\mathrm{~T}_{2}\right)}{\varepsilon+(1-\varepsilon) \mathrm{M}_{\mathrm{A}}\left(\mathrm{~T}_{1}\right)}\right) \frac{\Delta t_{1}}{\Delta t_{2}}>1  \tag{5.23}\\
& \frac{1+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}}{1+\mathrm{P}_{\mathrm{B}}}>\frac{\Delta \mathrm{t}_{2}}{\Delta \mathrm{t}_{1}}\left[\frac{\varepsilon+(1-\varepsilon) \mathrm{M}_{\mathrm{A}}\left(\mathrm{~T}_{1}\right)}{\varepsilon+(1-\varepsilon) \mathrm{M}_{\mathrm{A}}\left(\mathrm{~T}_{2}\right)}\right] \tag{5.24}
\end{align*}
\]

Define
\[
\begin{equation*}
\Delta M_{i}^{I}=\left[\frac{\varepsilon+(1-\varepsilon) M_{i}^{I}\left(T_{k, j-1}\right)}{\varepsilon+(1-\varepsilon) M_{i}^{I}\left(T_{k, j}\right)}\right] \tag{5.25}
\end{equation*}
\]
\(\Delta M_{i}\) is the equilibrium capacity coefficient for component \(i\) where \(T_{k, j-1}\) denotes the previous temperature at a given position \(k\), and time interval \(j-1\) at which the equilibrium coefficient is evaluated while \(T_{k, j}\) is the new temperature at the same position \(k\) and new time interval \(j\).

For symmetrical half cycle duration time, and upon rearrangement,

For component A,
\[
\begin{align*}
& \frac{\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}}{\mathrm{P}_{\mathrm{B}}}>\Delta \mathrm{M}_{\mathrm{A}}^{\mathrm{I}}  \tag{5.26}\\
& \frac{\mathrm{P}_{\mathrm{E}}}{\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}}<\Delta \mathrm{M}_{\mathrm{A}} \tag{5.27}
\end{align*}
\]

For component \(B\)
\[
\begin{equation*}
\frac{\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}}{\mathrm{P}_{\mathrm{B}}}<\Delta \mathrm{M}_{\mathrm{B}} \tag{5.28}
\end{equation*}
\]
and
\[
\begin{equation*}
\frac{\mathrm{P}_{\mathrm{B}}}{\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}}>\Delta \mathrm{M}_{\mathrm{B}}^{\mathrm{II}} \tag{5.29}
\end{equation*}
\]

For physical adsorption such as the phenomena normally found in separation of hydrocarbons, the right hand member of Eqs. 5.26 through 5.29 could be significantly varied by proper adjustment of the left side member. The variability could be achieved if one imagines that as the concentration wave moves smoothly down the column at a given temperature, the solute molecules undergo a series of stop-and-go behavior. In actuality, nonequilibrium exists in most physical systems, since the concentration of the components continually upsets the equilibrium. As a result of this constant movement of concentration waves, full equilibrium is prevented. Therefore it is clear that the amount of product withdrawal determines how slow or fast the movement of a given solute is. If the product withdrawn at a given temperature is small, the solute wave will move slower and conditions of near equilibrium are obtained and therefore high value of \(M_{i}(T)\) (which invariably affects the value of \(M_{i}\) ). But, if the product
withdrawn at the same temperature is large, the solute wave will move faster and the conditions far removed from equilibrium are obtained and therefore low value of \(M_{i}(T)\). This characteristic behavior is more pronounced at low temperatures. If there was to be no flow, full equilibrium could be established. Instead of true equilibrium, a steady state condition is obtained where the solutes continuously shift back and forth between the solid and liquid phases at a given temperature.

As would be expected, if a uniform temperature distribution is assumed in the column before the products are withdrawn, the contribution to the nonequilibrium situation by the size of the product withdrawnmight be linear. But, if the column is not allowed to attain a uniform temperature distribution before product withdrawal is started, the contribution to nonequilibrium will be nonlinear. The non uniform temperature distribution in the column is more pronounced in the cyclic adsorption process where the product withdrawal is started the moment a new temperature is imposed on the column.

Following Eq. 5.19, for component \(A\) to appear in the top product, it means that
\[
L_{A}^{I}\left(T_{1}\right)-L_{A}^{I}\left(T_{2}\right)>0 \text { or } L_{A}^{I I_{A}}\left(T_{2}\right)-L_{A}^{I I_{A}}\left(T_{I}\right)<0
\]

Substituting the penetration distance expressions (Eqs. 5.10 through 5.13) into Eqs. 5.19 and 5.20 , it is found that
\[
\frac{\mathrm{P}_{\mathrm{F}}}{\mathrm{P}_{\text {Bott }}}>\frac{\Delta \mathrm{t}_{2}}{\Delta \mathrm{t}_{1}} \Delta \mathrm{M}_{\mathrm{i}}
\]
or
\[
\begin{equation*}
P_{\text {Bott }}>c \Delta M_{i}-1 \tag{5.30}
\end{equation*}
\]
where
\[
C=\frac{\Delta t_{1}}{\Delta t} P_{F} \text { and } P_{F}=P_{T o p}+P_{\text {Bott }}
\]

For symmetrical para pumping operations with constant total feed PF, C is constant. One can see from Eq. 5.30 that when PBott \(<\) \(C \Delta M_{i}{ }^{-1}\), both components \(A\) and \(B\) would appear in the bottom product streams. Therefore for a mixture containing solutes A and \(B\), each with its own \(\Delta M\), it follows that
\[
\begin{equation*}
C \Delta M_{B^{-1}}>P_{\text {Bott }}>C \Delta M_{A}-1 \tag{5.31}
\end{equation*}
\]

By proper adjustment of \(P_{\text {Bott }}\) in Eq. 5.31, a true solute split will be obtained which is analogous to that obtained by a multicomponent distillation column.

The requirement necessary for only component \(A\) to appear in the top product corresponds to the Region 1 mode of operation (Chen et al. [1974]) and that it is necessary for both components \(A\) and \(B\) to appear in the bottom product corresponding to the Region 2 mode of operation. Normal multicomponent mixtures exhibit exothermic heats of adsorption. Therefore equilibrium isotherms \(M_{i}(T)\) and \(m_{i}(T)\) have positive slopes. Some of these components will be in Region 1 and some in Region 2, depending on the values of their \(\Delta M_{i}\) and on the manner in which the principal operating parameters \(P_{\text {Bott }}\) and \(\mathrm{P}_{\text {Top }}\) are selected by the operator. However, mixtures that exhibit endothermic heat of adsorption could be in Region 3 mode of operation (i.e., \(L_{i}\left(T_{1}\right)\) and \(\left.L_{i}\left(T_{2}\right)>H_{C O l}\right)\).

Upon rearrangement and integration, the concentration profile can be obtained from Eq. 5.7 viz :
\[
\frac{d y_{i}}{y_{i}}=-\frac{d n_{i}}{1+m_{i}}
\]
or
\[
\begin{equation*}
\frac{d y_{i}}{y_{i}}=-\frac{(1-\varepsilon) d M_{i}(T)}{\left[\varepsilon+(1-\varepsilon) M_{i}(T)\right]} \tag{5.32}
\end{equation*}
\]

Integrating Eq. 5.32 without definite limits (Pigford et al. [1969]), one gets
\[
\begin{equation*}
y_{i}(z, t)\left[\varepsilon+(1-\varepsilon) M_{i}(T)\right]=\text { constant } \tag{5.33}
\end{equation*}
\]
or
\[
y_{i}(z, t)\left[1+m_{i}(T)\right]=\text { constant }
\]

Equation 5.33 means that the concentration \(y_{i}(z, t)\) will undergo a change in value proportional to \(\Delta M_{i}\) at defined by equation 5.25 ; when the characteristic, pass through a cold region to a hot one, the value of \(\Delta M_{i}\) will be large and when the characteristics pass through a hot region to a cold one, the value of \(\Delta M_{i}\) will be small. The magnitude of \(\Delta M_{i}\) depends on the adsorbent type, the solutes, the solvents, the flow rates, amount of products ( \(\mathrm{P}_{\mathrm{Top}}\) and \(\mathrm{P}_{\text {Bott }}\) ) withdrawn, and principally on the temperature.

\section*{External Equations}

To determine the concentration of components \(A\) and \(B\), make a material balance on all streams going in and out of the columns (see Figure 5.4).


FIGURE 5.2 MATERIAL BALANCE DIAGRAM FOR COLUMNS I \& II

Material balance for columns I and II is as follows:
I: \(\quad\left(P_{\text {Top }}+P_{\text {Bott }}\right) y_{o}+\left\langle y_{B R}\right\rangle_{n-1}=\left(1+P_{T o p}+P_{\text {Bott }}\right)\left\langle y_{\text {Top }}\right\rangle_{n}\)

II: \(\left(1+P_{\text {Top }}\right)\left\langle y_{\text {Top }}\right\rangle_{n}=\left\langle y_{B}\right\rangle_{n}\left(1+P_{\text {Bott }}\right)+\left\langle y_{B R}\right\rangle_{n}\)

From Eqs. 5.34 and 5.35,
\[
\begin{equation*}
\left\langle y_{T o p}>_{n}=\frac{1}{1+P_{F}}\left[\left(\mathrm{P}_{\text {Top }}+\mathrm{P}_{\text {Bott }}\right) \mathrm{y}_{\mathrm{O}}+\left\langle\mathrm{y}_{\text {Bott }}\right\rangle_{\mathrm{n}-1}\right]\right. \tag{5.36}
\end{equation*}
\]
and
\[
\begin{equation*}
\left\langle y_{\text {Bott }}\right\rangle_{n}=\left\langle y_{\text {Top }}\right\rangle_{n}-\frac{\left\langle y_{B R}\right\rangle_{n}}{1+P_{\text {Bott }}} \tag{5.37}
\end{equation*}
\]

Equation 5.33 implies that for a given temperature and half cycle duration time that
\[
y\left(1+m_{i}(T)\right)=\text { constant }
\]

Therefore for the first half cycle duration time, \(\Delta t_{1}\),
\[
\begin{equation*}
y_{i \Delta t_{1}}\left(1+m_{i}\left(T_{k, j-1}\right)\right)=\text { constant } \tag{5.38}
\end{equation*}
\]
and for the second half cycle duration time, \(\Delta t_{2}\),
\[
\begin{equation*}
\mathrm{y}_{i \Delta t_{2}}\left(1+\mathrm{m}_{\mathrm{i}}\left(\mathrm{~T}_{\mathrm{k}, \mathrm{j}}\right)\right)=\text { constant } \tag{5.39}
\end{equation*}
\]

After the temperature change from \(T_{k, j-1}\) to \(T_{k, j}\), the change in concentration is
\[
\begin{equation*}
\frac{y_{i} \Delta t_{2}}{y_{i} \Delta t_{1}}=\frac{1+m\left(T_{k, j-1}\right)}{1+m\left(T_{k, j}\right)}=\Delta M_{i} \tag{5.40}
\end{equation*}
\]

From Eq. 5.30, and for symmetrical half cycle time (i.e., \(\Delta t_{1}=\) \(\Delta t_{2}\), and \(C=P_{F}\), at the lower limit, \(P_{B}=P_{F} \Delta M_{i}-1\), then
\[
\begin{equation*}
P_{\text {Bott }}=P_{F}\left[\frac{1+m_{i}\left(T_{k, j}\right)}{1+m_{i}\left(T_{k, j-1}\right)}\right]=P_{F} \Delta M_{i}-1 \tag{5.41}
\end{equation*}
\]

Substitute Eq. 5.41 into Eqs. 5.36 and 5.37 to get
\[
\begin{equation*}
\langle\text { yTop }\rangle_{\mathrm{n}}=\frac{\mathrm{y}_{\mathrm{O}}}{1+\mathrm{P}_{\mathrm{F}}}\left[\left(\mathrm{P}_{\mathrm{T}} \div \mathrm{P}_{\mathrm{F}} \Delta M_{\mathrm{i}}-1\right)+\frac{\left\langle\mathrm{y}_{\mathrm{Bott}}\right\rangle_{\mathrm{n}-1}}{\mathrm{y}_{\mathrm{O}}}\right] \tag{5.42}
\end{equation*}
\]
and
\[
\begin{equation*}
\left\langle y_{B}\right\rangle_{n}=\frac{y_{0}}{1+P_{F}}\left[\left(P_{T}+P_{F} \Delta M_{i}-1\right)+\frac{\left\langle y_{B O t t}\right\rangle_{n-1}}{y_{O}}\right]-\frac{\Delta M_{i}\left\langle y_{B R}\right\rangle_{n}}{P_{F}+\Delta M_{i}} \tag{5.43}
\end{equation*}
\]
where
\[
\left\langle y_{B R}\right\rangle_{\mathrm{n}}=\left\langle y_{B R}\right\rangle_{\mathrm{n}-\mathrm{I}}\left|V_{\mathrm{B}}+Q t\right|
\]

\section*{CYCLIC ADSORPTION PROCESS--ONE COLUMN}

The cyclic adsorption process developed for the separation of liquid mixtures is shown in Figure 5.5. The preliminary work done consists of a one column process similar to Wakat (1978) and his co-workers, and Barker III and Pigford (1971). The feed at a constant concentration \(y_{o}\) is introduced into the column at a flowrate \(Q\) volume units per unit time. The duration time of each cycle is \(t_{n}\) time units, \(n\) equals the number of temperature steps, therefore the displacement volume for a given cycle is \(\mathrm{Qt}_{\mathrm{n}}\). The temperature of the bed which is cyclically altered consists of a series of temperature step inputs. At the end of the upper temperature input, the temperature input is down stepped to the lowest temperature and the series of temperature step inputs is again started. For the one column process, samples are continuously collected and analyzed for the effluent concentration. Cyclic changes are obtained as a result of the cyclic temperature inputs. The series of temperature imposed on the column is determined by the number of solutes in the fluid


FIGURE 5.3 STEPMISE TEMPERATURE PROFILE APPLIED TO COLUMN
mixture. The lowest temperature is chosen so that all solutes are adsorbed. The highest temperature is picked so that all solutes are completely desorbed. By such careful selection of the lowest and highest temperature levels, all the solutes will be concentrated between the lowest and highest temperatures. The intermediate temperatures will have to be chosen so that the solutes will be selectively fractionated depending on the penetration distances \(L_{i}(T)\) at the given temperature. The penetration distance of individual solutes in the column depends on the equilibrium distribution of each solute between stationary and mobile phases. Therefore successful fractionation is determined by those experimental variables that affect this distribution, the composition of the solutes in the fluid mixtures, the composition of the solutes in the stationary phase, volumetric flowrate, and the separation temperature.

In the local equilibrium theory (Pigford [1969]) used in the analysis of the separation phenomenon, the effect of the concentration of the solutes is assumed to be negligible. The principal variables that affect the distribution of the solutes and therefore the penetration distance, is the temperature input and the fluid volumetric flow rate. As a given solute concentration wave front penetrates through the column at a given temperature, the distances moved by the molecules of each solute are not identical. The differences in molecular penetration distances for molecules of each solute do not arise from differences in equilibrium distribution, rather, it is caused by physical or rate processes.

The important physical processes which affect the molecular penetration distances could be classified into five categories:
(a) Eddy diffusion (or multiple flowpaths): This phenomenon arises from the fact that the fluid mixtures flow through microscopic pathways through the packed bed. The molecules will move through wide pathways faster, and slower through narrow pathways. So the magnitude of eddy diffusion depends on the particle size and how well the column is packed.
(b) Liquid phase mass transfer: The mass transfer of the liquid depends on differing flow rates of different parts of a single microscopic pathway. Solute molecules adjacent to adsorbent particles move slower than those in the center of a flowstream.
(c) Intraparticle mass transfer: This is more pronounced if the adsorbent particle consists of porous particles. Solute molecules move in and out of these pores by diffusion. Certain solute molecules will diffuse in and out of the pores faster than others. The molecules that diffuse faster will penetrate down the column more than those that diffuse slower.
(d) Solid-phase mass transfer: The solute molecules that are in the pores diffuse further into the solid part of the adsorbent. The longer the molecules take in returning to the fluid phase, the shorter the distance penetrated by such molecules down the column.
(e) Longitudinal diffusion (or axial diffusion): This is the random movement of solute molecules in all directions. The effect of longitudinal diffusion could be very significant at low flow rates and small adsorbent particles.

The equilibrium distributions are also a directional function of the excess free energies of adsorption ( \(\Delta G\) ) of the fluid mixtures, which are a direct measure of the net forces holding the solutes to the adsorbent. Although the chemical nature of the solutes may differ, two solutes in a given liquid-solid system may have the same partition coefficient, \(k=K V_{S} / V_{m}\) ( \(K=\) equilibrium distribution coefficient, \(V_{S}=\) volume of solute in solid phase, and \(\mathrm{V}_{\mathrm{m}}=\) volume of solute in mobile phase), in which case, one may be held predominantly by nonpolar forces and the other by polar forces. The sequence of temperature chosen must be such as to be able to progressively decrease the dispersive forces and therefore the equilibrium distribution coefficient.

The penetration distance equation as defined ir Eq. 5.9 also applies to the cyclic adsorption process. Figure 5.4 shows the steady state characteristic solution for the cyclic adsorption process. From Eq. 5.9, it is shown that if the average bulk velocity of the fluid within the column is \(v \mathrm{~cm} / \mathrm{sec}\), the concentration wave velocity of solute \(i\) is \(u_{\text {con }}, \mathrm{cm} / \mathrm{sec}\), then the solute wave will penetrate down the column a distance \(L_{i}(T)\). To be able to collect samples concentrated in a desired component, it becomes a matter of necessity to be able to predict the time


FIGURE 5.4 STEADY STATE CHARACTERISTIC SOLUTION FOR ONE COLUMN ADSORPTION PROCESS
required for the solute wave to exit the length of the column. Upon rearrangement of Eq. 5.9,
\[
\begin{equation*}
\frac{L_{i}(T)}{\Delta t}=\frac{v}{1+\frac{(1-\varepsilon)}{\varepsilon} M_{i}(T)}=u_{c o n} \tag{5.9a}
\end{equation*}
\]

Now, define \(\bar{\theta}_{i}=\) average time required for the center of the band to exit the height of the column, \(H_{C o l}\), after a temperature change. Since time equals distance divided by velocity
\[
\begin{equation*}
\bar{\theta}_{\mathrm{i}}=\frac{\mathrm{H}_{\mathrm{Col}} \Delta \mathrm{t}}{\mathrm{~L}_{\mathrm{i}}(\mathrm{~T})} \tag{5.44}
\end{equation*}
\]

To express \(\theta_{i}\) as a function of the fundamental column parameters \(H_{c o l}, M_{i}(T)\) and \(\varepsilon\), we have
\[
\begin{equation*}
\bar{\theta}_{i}=\frac{H_{\operatorname{col}}\left[\varepsilon+(1-\varepsilon) M_{i}(T)\right]}{\dot{\varepsilon} V} \tag{5.45}
\end{equation*}
\]

To collect concentrated samples over a given period of time. Eq. 5.45 can be rewritten,
\[
\begin{equation*}
\bar{\theta}_{\mathrm{i}} \pm \sigma=\frac{\mathrm{H}_{\mathrm{Col}}\left[\varepsilon+(1-\varepsilon) \mathrm{M}_{\mathrm{i}}(\mathrm{~T})\right]}{\varepsilon V} \tag{5.46}
\end{equation*}
\]

Where \(\sigma\) is the time deviation from \(\bar{\theta}_{i}\); and \(\bar{\theta}_{i}-\sigma\) is the average time when product withdrawal is started, and \(\bar{\theta}_{i}+\sigma\) is the average time at which product withdrawal is ended.

\section*{Internal Equations}

From Eq. 5.9, it becomes apparent that to separate a given solute \(A\) from the solvent, two temperature levels \(T_{1}\) and \(T_{2}\) are required \(\left(T_{1}<T_{2}\right)\) with corresponding solute concentration wave penetration distance \(L_{1}\) and \(L_{2}\), therefore we must have,
\[
\begin{equation*}
\mathrm{L}_{1}<\mathrm{H}_{\mathrm{col}}<\mathrm{L}_{2} \tag{5.47}
\end{equation*}
\]

For two solutes, three temperature levels are required, \(\mathrm{T}_{1}<\mathrm{T}_{2}<\mathrm{T}_{3}\), and the following inequality criteria must be satisfied:
\[
\begin{align*}
& \left(L_{A}\right)_{1}<H_{C O l}<\left(L_{A}\right)_{2} \\
& \left(L_{B}\right)_{2}<H_{C O l}<\left(L_{B}\right)_{3} \tag{5.48}
\end{align*}
\]
and
\(\left(\mathrm{L}_{\mathrm{B}}\right)_{2}<\mathrm{H}_{\mathrm{Col}}<\left(\mathrm{L}_{\mathrm{A}}\right)_{2}\)

Equation 5.48 states that for solute A to be fractionated from solute \(B\), the penetration distance of solute \(A\) at \(T_{2}\) must be greater than the height of the column and the penetration distance of solute \(B\) at \(T_{2}\) must be less than the height of the column. The principal operating parameters must be chosen so that solute A could exit the column at temperature level \(\mathrm{T}_{2}\) while solute \(B\) does not, and solute \(B\) should exit the column at temperature level \(\mathrm{T}_{3}\). Temperature level \(\mathrm{T}_{1}\) must be low enough so that the exiting fluid will have a low concentration in both solutes. If the time duration at which \(\mathrm{T}_{1}\) is imposed is long enough, the exiting solute concentration would rise and finally correspond to the feed concentration. Therefore it is extremely critical to choose cycle duration time to prevent this occurence. The reasoning for the development of the inequality criteria for two solutes could be extended to \(n\) number of solutes. For i-solute systems, the following criteria must be satisfied to be able to fractionate them into a variety of fractions.
\[
\begin{gathered}
\left(\mathrm{L}_{1}\right)_{1}<\mathrm{H}_{\mathrm{COl}}<\left(\mathrm{L}_{1}\right)_{2} \\
\left(\mathrm{~L}_{2}\right)_{2}<\mathrm{H}_{\mathrm{COl}}<\left(\mathrm{L}_{2}\right)_{3} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\left(\mathrm{~L}_{\mathrm{i}}\right)_{\mathrm{N}}<\mathrm{H}_{\mathrm{COl}}<\left(\mathrm{L}_{\mathrm{i}}\right)_{\mathrm{N}+1}
\end{gathered}
\]
and
\(\left(\mathrm{L}_{2}\right)_{2}<\mathrm{H}_{\mathrm{COl}}<\left(\mathrm{L}_{1}\right)_{2}\)
\(\left(\mathrm{L}_{3}\right)_{3}<\mathrm{H}_{\mathrm{COl}}<\left(\mathrm{L}_{2}\right)_{3}\)
. .
\(\left(L_{i}\right)_{N}<H_{C O 1}<\left(L_{i-1}\right)_{N}\)
where
\(i=\) number of solutes
\(N=\) number of temperature levels
Now that the necessary conditions for the fractionation have been established, there are certain practical limitations that must be taken into account. These limitations are as follows: the solvent should be generally inexpensive; the solvent should be non polar to avoid competition between solvent and solute for adsorption site; a mixture of solvents should be avoided to prevent demixing normally found in liquid-solid chromatography; and the solvent should have low viscosity to ensure rapid mass transfer and thus adequate column efficiency. The solvent should be significantly less volatile than any solute thereby rendering recovery of solute via distillation practicable without the necessity to employ substantial fractional distillation or to expend energy evaporating solvents.

\section*{CYCLIC ADSORPTION PROCESS--MULTICOLUMN}

The simulated one column cyclic adsorption process which is operated semi-continuously, (fluid mixture fed into the column continuously, but product is not withdrawn continuously) is extended to staged sequence cyclic adsorption. With the staged sequence cyclic adsorption, the process is operated continuousiy in that the fluid mixtures are fed into the columns and product withdrawn continuously. This process is, in essence, a simulated moving bed. The true continuous nature of the process eliminates the mixed reservoirs normally used in parametric pumping, since reservoir mixing tends to reduce separation (Rice and Foo [1981]). Separation of a mixture of \(i\) solutes by the direct-mode of operation requires a set-up with \(n+1\) columns and \(N\) driving forces. The feed and product ports are fixed in the staged sequence process, but different components can be directed to exit from specified ports by synchronizing the feed and product positions with the appropriate intensive variable (in this work, a series of temperature step inputs). For a complete analysis of the internal equations, Eqs. 5.47 through 5.49 and Table 5.2 give all the details of the events occurring in the columns.

\section*{External Equations}

The analysis of the phenomenon of fractionation is incomplete without the external equations. Figure 5.7 shows the schematic of the staged sequence adsorption process. We can write the mass balance at \(\Delta t_{1}\) time cycle.
table 5.2
CHARACTERISTICS OF A STAGED SEqUENCE ADSORPTION PROCESS


\[
\begin{array}{rlr}
\text { Column 1: } \mathrm{P}_{\mathrm{F}}+\mathrm{R}_{\mathrm{T}} \mathrm{P}_{\mathrm{T}} & =\mathrm{P}_{\mathrm{B}} \\
\text { Column 2: } & \mathrm{P}_{\mathrm{B}} & :-\mathrm{F}_{\mathrm{I}} \\
\text { Column 3: } & \mathrm{R}_{\mathrm{I}} \mathrm{P}_{\mathrm{I}} & =\mathrm{P}_{\mathrm{T}} \tag{5.52}
\end{array}
\]

Combine Eqs. 5.50 and 5.51
\[
\begin{equation*}
\mathrm{P}_{\mathrm{F}}+\mathrm{R}_{\mathrm{T}} \mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{I}} \tag{5.53}
\end{equation*}
\]

Combine Eqs. 5.52 and 5.53
\[
\mathrm{P}_{\mathrm{F}}+\mathrm{R}_{\mathrm{T}} \mathrm{R}_{\mathrm{I}} \mathrm{P}_{\mathrm{I}}=\mathrm{P}_{\mathrm{I}}
\]
or
\[
\begin{equation*}
P_{I}=\frac{P_{F}}{1-R_{T} R_{I}} \tag{5.54}
\end{equation*}
\]

Combine Eqs. 5.52 and 5.54 to get
\[
\begin{equation*}
\mathrm{P}_{\mathrm{T}}=\frac{\mathrm{P}_{\mathrm{F}} \mathrm{R}_{I}}{1-\mathrm{R}_{T} \mathrm{R}_{\mathrm{I}}} \tag{5.55}
\end{equation*}
\]

The solute concentrations are obtained by making a solute material balance on the entire system. A solute balance for nth cycle, considering columns 1 and 2 , we obtain
\[
\begin{align*}
\left\langle y_{I}\right\rangle_{n} P_{I} & =\left\langle y_{B}\right\rangle_{n} P_{B} \\
& =\left\langle y_{B}\right\rangle_{n}\left[P_{F}+\mathrm{R}_{\mathrm{T}} \mathrm{P}_{\mathrm{T}}\right] \\
\left\langle y_{I}\right\rangle_{\mathrm{n}} & =\left\langle y_{B}\right\rangle_{\mathrm{n}-1}\left[\frac{\mathrm{P}_{\mathrm{F}}+\mathrm{R}_{\mathrm{T}} \mathrm{P}_{\mathrm{T}}}{\mathrm{P}_{\mathrm{I}}}\right] \tag{5.56}
\end{align*}
\]

Considering the three columns,
\[
\begin{equation*}
\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\mathrm{n}} \mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{F}} \mathrm{y}_{\mathrm{F}}+\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\mathrm{n}-1} \mathrm{R}_{\mathrm{T}} \mathrm{P}_{\mathrm{T}}-\left\langle\mathrm{y}_{\mathrm{I}}\right\rangle_{\mathrm{n}}\left(1-\mathrm{R}_{\mathrm{I}}\right) \mathrm{P}_{\mathrm{I}} \tag{5.57}
\end{equation*}
\]

Substitute Eqs. 5.55 and 5.56 into Eq. 5.57 to obtain
\(\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\mathrm{n}}=\mathrm{y}_{\mathrm{F}}\left(\frac{1}{\mathrm{R}_{\mathrm{I}}}-\mathrm{R}_{\mathrm{T}}\right)+\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\mathrm{n}-1} \mathrm{R}_{\mathrm{T}}+\left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\mathrm{n}-1}\left(1-\frac{1}{\mathrm{R}_{\mathrm{I}}}\right)(5.58)\)
Solute concentration transients can be calculated for l \(^{\prime} \mathrm{I}_{\mathrm{n}}\) and \(\left\langle y_{T}\right\rangle_{n}\) for cycle time \(\Delta t_{1}\). Similar solute concentration equations can be derived for subsequent cycle times.

\section*{CHAPTER 6}

\section*{PROCESS DESCRIPTION}

\section*{PARAMETRIC PUMP ING}

The configuration of the parametric pump considered is shown in Figure 6.1. The material to be separated is pumped through the column system between the reservoirs during upflow and downflow at a volumetric flow rate \(Q\). Each half cycle time is \(t\), and the columns operate with a displacement volume \(Q t\). The reservoirs at the outer ends of the columns have dead volumes \(V_{B}=V\), and the inner ends of the columns are attached to each other with minimal dead volume. This back-to-back arrangement in an open parametric pumping would minimize reservoir mixing (Thompson and Bowen, 1972). The two columns are operated at \(180^{\circ}\) out of phase thermally, and arranged in such a fashion that a feed is alternately delivered to the outer ends of the columns at \(T_{1}\left(T_{1}<T_{2}\right)\).

The flow rates within the columns are \(\left(1+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right) \mathrm{Q}\) at \(\mathrm{T}_{1}\), and \(\left(1+P_{B}\right) Q\) at \(T_{2}\) for the upper and lower columns respectively during downflow. During upflow, the respective column flow rates for the upper and lower columns are reversed, i.e. \(\left(1+P_{B}\right) Q\) at \(T_{2}\), and \(\left(1+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right) \mathrm{Q}\) at \(\mathrm{T}_{1}\). The feed which is only introduced to the outer end of a column at \(T_{1}\) has a flow rate \(\left(P_{T}+P_{B}\right)\). The top and bottom product flow rates are \(\mathrm{P}_{\mathrm{T}} \mathrm{Q}\) and \(\mathrm{P}_{\mathrm{B}} \mathrm{Q}\) respectively. Material balance around the point of entry of the feed and point of upper column product withdrawal during both downflow and upflow show that the flow rate must be \(\left(1+P_{T}+P_{B}\right) Q\), while the \(f\) low rate at the

point of bottom product withdrawal must be \(\left(1+P_{B}\right) Q\).
The two columns are assumed to be filled with the adsorbent particles; the column voids and both reservoirs are filled with fluid mixtures consisting of a three component mixture, two components of which are assumed to distribute between the liquid and solid phases. The bottom product stream (taken from outer ends of columns) during both downflow and upflow comes only through the columns and not from the reservoirs or directly from the feed stream. The top product stream (inner ends of the columns) during both downflow and upflow also comes through the columns. Our interest will be focused primarily on the effluents leaving the inner ends of the columns where minimum mixing is assumed to occur. Component \(A\) is to be concentrated at the inner ends of the columns in both downflow and upflow. It is assumed that the concentration of each band of component \(A\) at the inner ends of the columns is not mixed (i.e. plug flow), except when the top product is taken. Component \(B\) is to be concentrated at the outer ends of the column in both downflow and upflow. The concentrations of the bands taken as bottom products are assumed to be perfectly mixed after the bottom product is withdrawn.

\section*{STAGED SEQUENCE CYCLIC PROCESS}

In principle, the staged sequence cyclic process is a simulated moving bed. The advantages claimed for this process is the combination of the inherent selectivity and separation capabilities of a chromatographic column; elimination of a

desorbent normally employed in a conventional or simulated moving bed operation to displace feed components in the column, application of temperature cycling as the only force used to attain adsorption and selective desorption, a continuous fractionation of multicomponent solutions into a variety of fractions, and the elimination of reservoir mixing normally found in parametric pumping.

The schematic for the staged sequence cyclic process is shown in Figure 6.2. The temperature cycling consists of a series of temperature steps sequentially imposed on the columns. The process consists of three distinct stages. Each stage consists of \(n+1\) simultaneous operations. To fractionate \(n\) components, \(n+1\) columns are arranged in a series and \(n+1\) temperature step inputs are required. The fractionation process is achieved by operating the columns in such a fashion that each column experiences a sequential temperature input. The temperatures must be choosen so that, at the lowest temperature, the penetration distance, \(\mathrm{L}_{\mathrm{i}}\left(\mathrm{T}_{1}\right)\), of all components in the solution is less than the height ( \(H_{\text {col }}\) ) of the column. For this study, columns of equal heights are used; however, columns of unequal height could also be used. If we consider a mixture containing i solutes, each solute with its own \(L_{i}\left(T_{N}\right)\), the temperatures must be chosen so that
\[
\begin{gather*}
\mathrm{L}_{1}\left(\mathrm{~T}_{1}\right)<\mathrm{H}_{\mathrm{CO}}<\mathrm{L}_{1}\left(\mathrm{~T}_{2}\right) \\
\mathrm{L}_{2}\left(\mathrm{~T}_{2}\right)<\mathrm{H}_{\mathrm{COl}}<\mathrm{L}_{2}\left(\mathrm{~T}_{3}\right) \\
\cdot  \tag{6.1}\\
\cdot \\
\cdot \\
\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{\mathrm{N}}\right)<\mathrm{H}_{\mathrm{Col}}<\mathrm{L}_{\mathrm{i}}\left(\mathrm{~T}_{\mathrm{N}+1}\right)
\end{gather*}
\]
and
\[
\begin{gather*}
\mathrm{L}_{2}\left(\mathrm{~T}_{2}\right)<\mathrm{H}_{\mathrm{Col}}<\mathrm{L}_{1}\left(\mathrm{~T}_{2}\right) \\
\mathrm{L}_{3}\left(\mathrm{~T}_{3}\right)<\mathrm{H}_{\mathrm{Col}}<\mathrm{L}_{2}\left(\mathrm{~T}_{3}\right) \\
\cdot  \tag{6.2}\\
\cdot
\end{gather*}
\]

Following the supposition that the fluid mixtures to be separated contain species \(A\) and \(B\) with penetration distances \(L_{A}(T)\) and \(L_{B}(T)\) where as \(L_{A}(T)>L_{B}(T)\) and specifically,
\[
\begin{align*}
& \mathrm{L}_{\mathrm{A}}\left(\mathrm{~T}_{1}\right)<\mathrm{H}_{\mathrm{col}}<\mathrm{L}_{\mathrm{A}}\left(\mathrm{~T}_{2}\right) \\
& \mathrm{L}_{\mathrm{B}}\left(\mathrm{~T}_{2}\right)<\mathrm{H}_{\mathrm{col}}<\mathrm{L}_{\mathrm{B}}\left(\mathrm{~T}_{3}\right) \tag{6.3}
\end{align*}
\]
and
\[
\begin{equation*}
\mathrm{L}_{\mathrm{B}}\left(\mathrm{~T}_{2}\right)<\mathrm{H}_{\mathrm{col}}<\mathrm{L}_{\mathrm{A}}\left(\mathrm{~T}_{2}\right) \tag{6.4}
\end{equation*}
\]
then, at \(T_{1}\), the solution is fed to colymn 1 and components \(A\) and B are simultaneously released from columns 2 and 3 respectively; these columns are respectively at \(\mathrm{T}_{2}\) and \(\mathrm{T}_{3}\). As a result, the fluid exiting from column 1 will have low solute concentrations; the effluent from column 2 has high concentration in solute \(A\) and low concentration in \(B\); and fluid with high concentration of solute \(B\) and low concentration of solute \(A\) is withdrawn from column 3. If the process is properly timed, the band of high concentration of both solutes can be withdrawn as samples, while
the portion low in solute concentration is recycled. The duration of each stage is crucial, since with long duration times, the exiting solute concentration would approach the feed concentration. A chronological description of the temperature cycling and internal equations as found in the staged sequence cyclic process is described below.

The columns are initialized with the feed solution at \(T_{3}\), and the operational steps of the staged sequence cyclic process is as follows:

Stage 1: Operating temperature regiments are imposed on the columns in the following sequence: Column \(1\left(\mathrm{~T}_{3} \rightarrow \mathrm{~T}_{1}\right)\), Column \(2\left(\mathrm{~T}_{1} \rightarrow \mathrm{~T}_{2}\right)\), and Column \(3\left(\mathrm{~T}_{2} \rightarrow \mathrm{~T}_{3}\right)\) (where the arrow means change). The flow rate in column 1 is \(\left(\beta+P_{I}+P_{T}\right) Q\), \(\beta\) is the amount of fluid recycled from column 3; \(P_{I}\) is the amount of product to be withdrawn from column 2 at \(\mathrm{T}_{2} ; \mathrm{P}_{\mathrm{T}}\) the amount of product to be withdrawn from column 3 at \(T_{3}\); and \(\left(P_{T}+P_{T}\right) Q\) is the amount of fresh feed delivered into the system as make up fluid. Since no product is withdrawn from the exit of column 1 , the flow rate in column 2 is identical to that in column 1. All the dilute material from column 1 is introduced into column 2. At the exit of column 2, the flow rate of the product withdrawn is \(P_{I} Q\) and the remaining portion, \(\left(\beta+\mathrm{P}_{\mathrm{T}}\right) Q\) is now the feed into column 3. The top product with a flow rate equal to \(\mathrm{P}_{\mathrm{T}} \mathrm{Q}\) is withdrawn from column 3. As can be seen from the ongoing analysis, the flow rate in column 3 is not equal to the flow rate in columns

1 and 2 , other arrangements where the flow rates are equal are possible.

Stage 2: For this stage, the column operating temperatures are switched in the following order: Column \(1\left(T_{1}+T_{2}\right)\), column \(2\left(\mathrm{~T}_{2} \rightarrow \mathrm{~T}_{3}\right)\) and column \(3\left(\mathrm{~T}_{3} \rightarrow \mathrm{~T}_{1}\right)\). The flow rate of the material in column 3 which is now the input, and therefore the flow rate of the material in column 1 is \(\left(\beta+P_{B}+P_{I}\right) Q\). The amount of product (rich in component \(A\) ) to be withdrawn from column 1 is \(P_{B} Q\), while the remaining portion, \(\left(\beta+P_{I}\right) Q\), is input to column 2. Products rich in component \(B\) at a flow rate of \(P_{I} Q\) is withdrawn at the exit of column 2, and the balance \(B Q\) combined with the make up fluid, \(\left(P_{I}+P_{B}\right) Q\) is now the feed and therefore the flow rate of the fluid in column 1.

Stage 3: This is the last stage in the staged sequence cyclic process. The column temperatures are switched as follows: Column 1 ( \(\mathrm{T}_{2} \rightarrow \mathrm{~T}_{3}\) ), column 2 ( \(\mathrm{T}_{3} \rightarrow \mathrm{~T}_{1}\) ) and column 3 ( \(\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}\) ). The amount of material being delivered into column 1 from the exit of column 3 is \(\left(\beta+P_{B}\right) Q\). At the exit of column 1 , the bottom product, at a rate of \(\mathrm{P}_{\mathrm{B}} Q\), is withdrawn and the remaining material, \(\beta Q\), is combined with \(\left(P_{T}+P_{B}\right) Q\) and fed into column 2. At the exit of column 2, no product is withdrawn--all of the exiting material goes to column 3. Exiting from column 3 is material \(r i c h\) in component \(A\) and the top product is withdrawn at a rate of \(\mathrm{P}_{\mathrm{T}} Q\), while the rest is recycled to column 1. These stages consist of the first cycle, and for subsequent cycles, stages 1 through 3 are repeated.

\section*{CHAPTER 7}

\section*{PROCESS OPERATION}

\section*{PARAMETRIC PUMPING}

The preliminary parapumping work done was with one column with top feed identical to that used by Chen et al. (1972, 1973) and Stokes (1976). The description of the one column experimental set up will not be repeated, but the two column parametric pump employed thereafter with alternating top feed apparatus shown in Figure 7.1 will be offered. The equipment consists of two jacketed glass columns each 1.0 cm in diameter and 90 cm long packed with 30-60 mesh chromatographic-grade silica gel manufactured by Fisher Scientific. The two bottom reservoirs at the outer ends of the columns were two 50 cc glass syringes operated by a dual infusion-withdrawal pump manufactured by the Harvard Apparatus Company. The pump circuit was modified by wiring a micro-switch to automatically reverse the syringes at the completion of each cycle.

The jacketed columns were heated and cooled by pumping water from constant hot and refrigerated baths maintained at constant temperatures of approximately \(70^{\circ} \mathrm{C}\) and \(30^{\circ}\) respectively. The heating and cooling process was accomplished by direct piping from the baths to the column using a series of solenoid valves to direct the heating or cooling fluids in and out of the columns. The solenoid valves were wired to timers so that the heating and cooling of the columns could be achieved at \(180^{\circ}\) thermally out of phase.


FIGURE 7.1 EXPERIMENTAL APPARATUS FOR ALTERNATING TOP FEED THERMAL PARAMETRIC PUMPING

The feed solution was alternately delivered to the top of the column that is being cooled. A manual valve was used to change the flow direction of the feed solution from two 50 cc syringes mounted in a second infusion-withdrawal pump, and one syringe was used as a back-up for the other. This arrangement eliminated abrupt interruptions of the pumping process for periodic refilling of the feed syringe. By so doing, the possibility of destroying the waves and therefore causing internal mixing of the concentration bands is eliminated. Micrometer capillary valves were used to regulate the flow rates of the top and bottom product streams. Thermal expansion and contraction of the fluid mixture and packing material which occurs due to periodic temperature change causes air to enter the system. The presence of air in the system reduces mass transfer considerably. This problem could be corrected by using the micrometer capillary valves to impose a back pressure on the column to compensate for the expansive and contractive effects caused by temperature changes.

Prior to each run, the column was slurry packed with silica gel in the feed solution and carefully degased. The two reservoirs, feed pumps and all connecting lines were filled with the feed mixture at ambient temperatures. The reservoir delivery rate was set allowing a dead volume of about 10 cc.

To begin each run, the heating and cooling fluid delivery pumps were started and the heating and cooling fluid directed to the desired column. The feed and reservoir pumps are switched
on and the timers activated: The effluent from the bottom reservoir is mixed with the feed and fed into the first column while the pumping direction is downward, and the top and bottom products are simultaneously withdrawn. At the end of the first half cycle, the microswitch wired to the pump automatically reversed the pumping direction of 'the reservoir syringes, while the timer switched the solenoids to supply cold water to the jacket of column 2 and hot water to column 1. Simultaneously, the feed was directed to the top of column 2 and products withdrawn from the top and bottom. The samples to be analyzed are taken from the top and bottom streams at the end of each cycle, and analyzed by gas chromatography.

\section*{STAGED SEQUENCE CYCLIC PROCESS}

The experimental part of the staged sequence cyclic process was done with a single column and the data used to simulate a continuous multicolumn staged sequence cyclic operation. The experimental apparatus for the single column process is shown in Figure 7.2. The equipment consists of a jacketed stainless steel column 1.0 cm in diameter and 90 cm long, fitted with appropriate stainless steel swagelok tube fittings equiped with sintered discs. The column was packed with \(30-60\) mesh chromatographic grade silica gel taken from the same stock as that used for the parametric pumping runs. Before packing, the silica gel was activated in a vacuum oven for 24 hours at \(100^{\circ} \mathrm{C}\) to extract water vapor and related soluble materials that may block the adsorption sites of the adsorbent particles.

\section*{3 way Solonoid Valves}


FIGURE 7.2 EXPERIMENTAL APPARATUS FOR ONE COLUMN USED IN SIMULATING STAGED SEQUENCE CYCLIC PROCESS

The jacketed column was heated or cooled by three constant temperature baths maintained at approximately \(\mathrm{T}_{3}\left(=85^{\circ} \mathrm{C}\right)\), \(\mathrm{T}_{2}\left(=60^{\circ} \mathrm{C}\right)\), and \(\mathrm{T}_{1}\left(=30^{\circ} \mathrm{C}\right)\). The baths are piped to the column via a series of solenoid valves connected to programmable timers to heat/cool or recycle the heating/cooling fluid.

The feed solution was delivered by a low pressure Milton Roy Mini pump, with all inlet pressures slightly above atmospheric pressure. Sample fractions were collected at regular and predetermined intervals, and analyzed by gas chromatography.

To start the fractionation process, the column was initialized at \(T_{3}\left(T_{3}>T_{2}>T_{1}\right)\). The temperature in the column was then downstepped to \(T_{1}\), while the feed solution is fed continuously to the column for a predetermined period of time, and sample fractions continuously taken for analysis. At the end of the sampling period at \(T_{1}\), the temperature of the column is changed to \(T_{2}\) while the feeding and sampling process was continued. And, finally, the column temperature is changed to \(T_{3}\). At the completion of the sampling period, one set of temperature cycling is completed. For subsequent sets of temperature cycling, a down step in temperature was made to \(T_{1}\) and the entire process was repeated.

After establishing the peaking period of the solutes as a result of the temperature cycling, sample products are then withdrawn over a given appropriate interval to collect high product concentrations in component \(A\) at \(T_{2}\) and in component \(B\) at \(T_{3}\). However, fractionation with this arrangement is a semicontinuous process in that when the column is at \(T_{I}\), no

sample products were withdrawn. When the column is at \(\mathrm{T}_{2}\), sample products with concentration high in A was only withdrawn, while at \(T_{3}\), product high in component \(B\) was withdrawn.

To continuously fractionate the solutes in a true continuous fashion, a schematic diagram shown in Figure 7.3 was used to simulate the one column process. The diagram consists of three stainless steel columns of identical dimensions. This arrangement is advantageous in that high solute product concentrations can be simultaneously obtained.

For the analysis of the sample products, a Hewlett Packard Models 5730A chromatograph and an 3380 A integrator were used. Before the analysis of sample products, the flow rate of the carrier gas, in this case helium, was precisely set at 86 cubic centimeters per minute with a bubble flow meter. The oven, thermal conductivity detector, and injection port were maintained at constant temperatures of 250 , 200 , and 250 degrees Celsius respectively. The detector attenuator was set at a constant value of 1 , and the chart speed at 0.5 centimeters per minute. A single column made of 0.635 centimeter o.d. copper tubing of approximately 183 cm long packed with Pennwatt 223 and 4 percent \(K O H\) on an innert support phase manufactured by Applied Science Laboratories, Inc. was used. All sample injections were two microliters from a five microliter syringe from Hamilton.

Before the calibrations of the integrator, the "START DELAY" on the integrator was used to omit the solvent peaks. The feed sample was injected and an "EXTERNAL METHOD" of calibration was
used and each subsequent sample was calculated based on the feed calibration. The external method of calculation was used since constant sample volume was used for the purpose of reproducibility (H.P. Laboratory Automation Products, Instrument Manual, model 3380, 1978).

Based on the above calibration, the ratios of the percent of the component peaks in any given product sample to the percent of the corresponding peaks in the feed sample was obtained directly.
```

 Amount of A in sample product =
 Area of A in sample product.Amount of A in Feed . XF
Area of A in feed

```
where XF is a multiplying factor. In all analysis, the value of XF was taken as unity.

\section*{CHAPTER 8}

\section*{RESULTS AND DISCUSSION}

The discussion of all results will be offered under three classifications, viz. concentration histories of breakthrough and desorption of column operation using standard elution technology, one and two column parametric pumping, and one and multicolumn staged sequence cyclic process.

\section*{DESIGN OF FIXED-BEDS BY THE PREDICTION OF BREAKTHROUGH}

\section*{AND DESORPTION CURVES}

An efficient design of a fixed bed adsorption column requires an effective predictive tool of the breakthrough and desorption concentration histories. Problems most often encountered could exhibit favorable or unfavorable nonlinear or linear equilibria. The adsorption and desorption of most organic materials are such that favorable and unfavorable equi1ibrium isotherms respectively predominate.

Figures 8.1 through 8.3 exemplify the conditions under which unfavorable equilibrium for the system \(0-X y l e n e-A n i s o l e-n-h e p-\) tane in silica gel are obtained. For these desorption cycles proportional pattern behavior of the fluid concentration at the bed exit is achieved. Therefore accurate prediction of the breakthrough of the fluid concentration from these equilibrium behavior and proportional pattern behavior can be obtained. In parametric pumping operation, in short any cyclic operation, and

especially those that involve physical adsorption, desorption is generally the rate limiting step. Figure 8.1 depicts the unfavorable equilibrium relationship for the desorption of \(5 \%\) \(\mathrm{v} / \mathrm{v} 0-x y l e n e\) and \(5 \% \mathrm{v} / \mathrm{v}\) anisole in the solvent n -heptane. The unfavorable isotherms for both O-xylene and anisole exhibit a proportionate pattern. The curvatures show no significant difference even at high temperatures. This observation seems to suggest that, at high concentration where the isotherms show no real difference, the driving force (the adsorbed phase concentration difference at the operating temperatures) necessary for a cyclic separation is at a bare minimum and therefore poor separation would result, and in order to achieve a reasonable separation, long cycle time or large numbers of separation stages would be required. The effluent concentration of 0 xylene is reduced essentially to zero in about 14-16 minutes or corresponding to \(28-32\) cubic centimeters of desorbing fluid for the systems employed. On the other hand, the concentration of anisole shows excessive tailing which is indicative of chemisorption. This condition can generally be attributed to the polar character of anisole, hence anisole or polar solutes will not move rapidly especially on polar adsorbents. The nature of the adsorbent account for the mass action equilibria in the cyclic process. Silica gel contains a large variety of active sites, hence polar solutes would exhibit considerable tailing.

Ultimately, the separation of components depends on the ratio of the total amount of each solute in the solid phase to
the total amount of each solute in the liquid phase. This ratio, normally called the capacity factor \(k\) ', (Introduction to Modern Liquid Chromatography, Snyder and Kirkland) is a function of temperature. However, only a limited functional dependency of \(k^{\prime}\) on temperature is possible (Schmit, et al., 1971), between the limits set by the mobile phase volatilization point on the upper end and excessive solvent viscosity at lower temperatures. Therefore presaturating the column with O-xylene and anisole at fairly high concentration before desorption at a temperature range of \(10^{\circ}-70^{\circ} \mathrm{C}\), the isotherms may not provide an adequate fundamental driving force necessary for separation, since at temperatures considerably higher would be close to the boiling point of the solvent.

Figure 8.2 shows a desorption isotherm for a column presaturated with \(1 \% \mathrm{v} / \mathrm{v} 0-x y l e n e\) and \(1 \% \mathrm{v} / \mathrm{v}\) anisole at temperatures of \(30^{\circ}\), \(60^{\circ}\) and \(85^{\circ} \mathrm{C}\). The curves for the dilute sorbate concentrations exhibit considerable driving force compared with Figure 8.1. However, examination of the isotherms show that the rate at which the concentration of 0 -xylene approach zero is higher at high temperatures, while the opposite is the case for the rate at which the concentration of anisole approaches zero. In other words, the velocity, \(u_{i}\), or the relative frontal movement (RF) for the desorption process,
\[
u_{o-x y l e n e}\left(T=85^{\circ} \mathrm{C}\right)>u_{o-x y l e n e}\left(T=60^{\circ} \mathrm{C}\right)>u_{o-x y l e n e}\left(\mathrm{~T}=30^{\circ} \mathrm{C}\right)
\]
and
\[
u_{\text {anisole }}\left(T=85^{\circ} \mathrm{C}\right)<u_{\text {anisole }}\left(\mathrm{T}=60^{\circ} \mathrm{C}\right)<\mathrm{u}_{\text {anisole }} \mathrm{e}^{\left(\mathrm{T}=30^{\circ} \mathrm{C}\right)}
\]


A plausible explanation to this observation is that there is interdependence of the equilibrium distributions of the two species. That is to say that the stationary phase concentration of O-xylene depends not only on the liquid phase concentration of O-xylene, but also on the concentration of anisole, or
\[
x=f(\text { O-xylene, Anisole) (in equilibrium) }
\]

This would also mean that there is competition between O-xylene and anisole for the limited number of adsorption sites of silica gel. The velocity of O-xylene (uo-xylene) increases with increase in temperature thereby depleting the concentration of O-xylene in the solid phase. By so doing, there is less competition for anisole and its concentration in the solid phase is increased with a decrease in \(O-x y l e n e\) concentration. This phenomena would lead to the conclusion that molecules with higher affinity provide stronger competition and therefore greater reduction of the solid phase concentration. One could also conclude that with increase in temperature, the velocities of molecules with lower affinity will be higher than the velocities (RF) of molecules with higher affinity.

From the desorption curves shown so far (Figures 8.1 and 8.2), the excessive tailing of anisole is observed. For efficient design of cyclic process (adsorption and desorption), it would, of course, be desirable to reduce all effluent concentrations to some arbitrary value close to zero, especially with an increase in temperature. Since the upper limit of the temperature that could be used is set by the boiling point of the

solvent, a mixture of two solvents such as polar and nonpolar solvents (e.g. heptane and isopropanol) would reduce this tailing effect. Figure 8.3 shows desorption curves with a mixture of two solvents, \(n\)-heptane and \(1 \% \mathrm{v} / \mathrm{v}\) isopropanol. Although the tailing effect has been successfully reduced, the isotherms over the temperature range show no measurable driving force necessary for effective cyclic separation. Since there is no significant difference in the curves for a given solute at all temperatures, it would be reasonable to assume that temperature will not be an effective cyclic variable when a mixture of two or more solvents are used. A mixture of nonpolar solvent and a concentration of a polar solvent below \(1 \% \mathrm{v} / \mathrm{v}\) would result in demixing (Introduction to Modern Liquid Chromatography, Snyder and Kirkland), and above \(1 \% \mathrm{v} / \mathrm{v}\) no retention of \(0-x y l e n e\) and anisole is observed, i.e. the solid phase concentration of both solutes rapidly approaches zero after the addition of approximately one void volume of desorbing solvent, thereby reducing the rate of mass transfer between the solutes and the adsorbents considerably.

Figures 8.4 through 8.7 show major functional diagrams obtained from the breakthrough patterns based on Eq. 3.86. The expression of Eq. 3.86 is based on the premise that in the rate expression transport resistances in the fluid phase around the particles dominate. However, this equation (Eq. 3.86) is an approximation for estimating breakthrough curves in that it does not account for all necessary transport resistances in the solid


FIGURE 8.4 CONCENTRATION - TIME DIAGRAM FOR VARIOUS MASS TRANSFER COEFFICIENT
and fluid phase. For precise determination of breakthrough curves, Eq. 3.49 should be used. Equation 3.49 , even though the derivation was based on linear equilibrium instead of the more realistic nonlinear equilibria, precisely accounts for the unsteady state diffusion in the solid and liquid phases, and all of the various transport effects. Even though this complete model equation for a packed bed accounts for all the dispersive tendencies, in practice it is rather cumbersome to use. Equation 3.86 presents a very useful simplification, therefore all breakthrough curves were obtained via this simplified form.

Figure 8.4 shows the effluent concentration as a function of reduced time for various mass transfer coefficient. The rear flanks of the curves exhibit well dispersed gaussian type curves, but the shape of the latter portion of the effluent curves show a nongaussian type distribution. As the column is being loaded, the solute spreads out as it moves with the solvent down the column because of dispersion. The amount of spread depends on the intensity of the dispersive forces. However, as soon as the introduction of pure solvent is begun, the spread is reduced, and thus the dispersive phenomena, hence the curves are nonsymmetrical. It can also be seen that the sharpness of the curves decrease with an increase in mass transfer coefficient. At slow mass exchange, the peaks are sharp and tall, an indication of unretained solute, and as mass exchange is increased, the solutes are gradually retained and the peak shape becomes broader with decreasing height.

CONCENTRATION-TIME DIAGRAM FOR VARIOUS EQUILIBRIUM CONSTANTS
FIGURE 8.5

\begin{abstract}
Figure 8.5 illustrates a series of concentration-time curves for various equilibrium constants. This figure exemplifies the characteristic behavior of linear systems, as the effluent concentration distribution remains constant for all ranges of equilibrium constants. The peaks become sharper with an increase in equilibrium constant. These simplistic behavior which is characteristic of linear systems are widely responsible for the wide usage and application to fixed-bed separation processes.
\end{abstract}

Figures 8.6 and 8.7 show the dimensionless effluent concentration profile as a function of equilibrium constants for fixed values of \(t\) for both adsorption and desorption steps. From Figure 8.6, it can be seen that for \(\mathrm{m}<1.3\) for a column of 100 cm in length, the slope of the adsorption step at 80 minutes exhibits a linear relationship, while the desorption at 200 minutes exhibits a near nonlinear relationship.

For the adsorption step and for \(m>1.3\), the slope is nonlinear and approaches the maximum dimensionless concentration of unity while the concentration of the desorption step goes through a maximum concentration of unity and then suddenly decreases in a nonlinear fashion. The sudden decrease is a consequence of the fact that as the equilibrium constant increases, the fluid phase concentration is quickly depleted for a fixed time ( \(k \rightarrow \infty, y \rightarrow 0\) for a given t). Figure 8.7 shows the case for which \(0.1 \leq m \leq 1.0\) for both the adsorption and desorption steps at 60 and 200 minutes respectively for column lengths of 5,25 and 50 centimeters. For


FIGURE 8.6 EFFECT OF EQUILIBRIUM CONSTANT ON EFFLUENT CONCENTRATION
NOILUZLNGONOD SSATNOISNGINIG
\(\left(7^{\prime} T\right) \lambda\)
the adsorption step, the effluent concentrations approach unity very gradually with increase in column lengths. As m \(\rightarrow 0.1\), the effluent concentrations tend towards a focal point for all column lengths. The desorption step curve generated at \(t=200\) minutes also shows a maximum, and as \(m \rightarrow 1\), the three curves degenerate toward a focal point and further toward an asymptote

\section*{PARAMETRIC PUMPING}

All one column parametric pumping runs were performed with 2.5 volume percent toluene and acetophenone in \(n\)-heptane (dilute solution, Stokes (1976)). A total of ten runs with a single column configuration either operating in a top or bottom feed mode (Chen, 1971, 1972, 1973, 1974) are presented. Pertinent operating variables necessary for the operation of a two column configuration were optimized with the one column process. Six runs performed with a two column configuration are also presented. The complete experimental data for one and two column parametric pumping are shown in tabular form in Appendices II and III respectively. Some of the data are plotted as product/feed solute concentration ratios or percent recovery versus number of cycles, \(n\). The column/columns were operated between temperature levels of \(2980^{\circ} \mathrm{K}\left(25^{\circ} \mathrm{C}\right)\) and \(343^{\circ} \mathrm{K}\left(70^{\circ} \mathrm{C}\right)\), the ratio of the feed to reservoir volume ranged from 0.1 to 0.4 , and the top and bottom reservoir dead volumes were 5 cubic centimeters. The one column dimensions are 1.0 cm in diameter and 90 cm in length glass column, and the two column parapump consisted of stainless steel columns of the same dimensions.

FIGURE 8.8

Figures 8.8 through 8.10 illustrate the separation attained with a one-column semicontinuous parapump with top feed for values of top and bottom product withdrawal rate ( \(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\) ) operated at half cycle time of 20 minutes. One can see from Figure 8.8 that the transients for depletion of the bottom product, \(\left\langle y_{B}\right\rangle_{n} / y_{o}\) is more gradual compared to that in Figure 8.9. Therefore it is clear that the transient times to remove the solute from the bottom reservoir or the bottom product stream is long. At steady state, however, \(\left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\infty} / \mathrm{y}_{\mathrm{o}}\) for \(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}=0.1\) and 0.25 would be approximately equal. Figure 8.10 shows a case for \(P_{T}+P_{B}=0.40\), which would correspond to feed of \(16 c \mathrm{c}\) over the entire half cycle time since the reservoir displacement is 40 cc . The separation obtained is poor because more product is withdrawn per half cycle, and a build up of dilute solution is prevented. The separation improves with a decreasing \(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\) and, as \(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\) becomes smaller, conditions of close parametric pump or batch pump is approached (Chen, 1971). Based on equilibrium theory, Chen et al. (1974) predicted that there exists an optimal reservoir displacement flow rate \(Q_{\max }\) and an optimal bottom product flow rate \(P_{B_{\text {max }}}\), of which the bottom product concentrations, \(\left\langle y_{B}\right\rangle_{n} / y_{o}\) decreases as \(n\) increases for a parapump operated in a semicontinuous mode as long as \(Q \leq Q_{\max }\) (or \(Q_{t} \leq Q_{\max }{ }^{t}\) ) and \(P_{B} \leq P_{B_{\max }}\) (or \(P_{B} t \leq P_{B_{\max }}{ }^{t}\) ) and \(t\) being the half cycle time. The above conditions are necessary conditions for a monotonically decreasing bottom product concentration. For all runs, \(Q_{\max } t \approx 40.0 \mathrm{cc}\) and \(\mathrm{P}_{\mathrm{B}_{\max }} \approx 0.9\left(\mathrm{P}_{\mathrm{B}_{\max }}=Q_{\max }(2 \mathrm{~b} /(1-\mathrm{b}))_{\mathrm{k}}\right.\). In Figure 8.8 for which \(P_{B}=1.0\) the monotonic decrement of the


bottom product can be seen, but Figures 8.9 and 8.10 with \(P_{B}=2.5\) and 5 respectively, where \(P_{B}>P_{B_{\max }}\), the steady state behavior switches from a situation of which the solutes are completely removed from the bottom reservoir to one in which the solute. removal is incomplete.

Figures 8.11 and 8.12 illustrate the effect of the feed location (top or bottom feed) on the concentration transients for a continuous parapump operation. Figure 8.11 shows an initial downward slope of the acetophenone bottom product stream, it extends to the fifth cycle and is followed by an upward turn to the eighth cycle and levels off after cycle number 8. This dip was not observed in the semicontinuous runs, even over the wide range of \(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\) employed. Stokes (1976) observed similar experimental results, but contended that the dip was sensitive to the value of the bottom product withdrawal rate ( \(\mathrm{P}_{\mathrm{B}}\) ). Similar phenomena (Fig. 8.11) was observed with toluene but less pronounced. Figure 8.12 shows the concentration transients for the continuous pump with bottom feed. Chen and Hill (1971a) in the analysis of the performance characteristics showed that a continuous pump will produce bottom solute concentration with incomplete solute removal for certain values of \(P_{B}\) compared with a semicontinuous pump where complete solute removal is possible. This observation is a consequence of the loci of switching points between Region \(1\left[L\left(T_{1}\right) \leq L\left(T_{2}\right)\right.\) and \(\left.h_{c o l}\right]\) and Region \(2\left[L\left(T_{2}\right)<L\left(T_{1}\right)\right.\) and \(\left.L\left(T_{2}\right) \leq h_{c o l}\right]\) for which \(P_{B}=2 b /(1-\) b) for semicontinuous and \(P_{B}=b\) for a continuous pump. The


authors also predicted that the purification of the bottom product achieved with continuous pumps with bottom feed would be considerably less than that achieved with top feed. A comparison of the bottom products (see Figs. 8.11 and 8.12) shows that \(\left\langle y_{B}\right\rangle_{\infty} / y_{0}\) (top feed) is less than \(\left\langle y_{B}\right\rangle_{\infty} /\) y \(_{o}\) (bottom feed). Figure 8.12 shows a down turn for \(\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\mathrm{n}} / \mathrm{y}_{\mathrm{o}}\) with values less than unity for acetophenone up to the eighth cycle followed by a sharp turn upwards to values greater than unity and asymptotically approaching the value of two as observed by the previous runs (Fig. 8.11). One physical interpretation is that the acetophenone initially saturating the entire column is rapidly adsorbed from the solution and the dilute \(n\)-heptane solution is displaced down the column by the main stream until the normal acetophenone concentration wave from outer ends breaks through the top of the column at the eighth cycle. Another reason for incomplete removal of solute from the bottom product stream from pumps with bottom feed is because of the introduction of feed at the bottom. The separation factor for this continuous mode of operation can be large for small \(\mathrm{P}_{\mathrm{T}}\) (Chen and Hill, 1971a).

Figure 8.13 shows the net direction of concentration fronts moving through the column as a function of \(n\) for the two column parametric pumping with alternating top and bottom feed. In this figure, the net movement of toluene is in Region 1 (Chen and Hill, 1971a) where \(L_{\text {toluene }}\left(T_{2}\right)>L_{\text {toluene }}\left(T_{1}\right)\), while the net movement of acetophenone is in Region 2 , where \(L_{\text {acetophenone }}\left(T_{1}\right)>\) Lacetophenone \(\left(\mathrm{T}_{2}\right)\). The two column process arranged back-to-

back is a combination of the two modes of column arrangements, viz. top and bottom feed single column process. Thompson and Bowen (1972) in a communication proposed an idealized back-toback column arrangement that may minimize mixing in a closed (batch) parametric pumping by eliminating reservoirs at the column ends. Though the method of Thompson and Bowen would be experimentally impossible to perform, it does, theoretically, show, however, that the separation factor for the band of the highest concentration is of the order (constant)4n-1 for a double column process in the absence of mixing. In Figure 8.13, the pump is operated so that the characteristics of toluene originating from the end of the column at \(\mathrm{T}_{1}\) exit at the inner ends of the column while the characteristics of acetophenone originating from the end of the columns at \(T_{1}\) do not break through and eventually terminate at the same end at \(T_{2}\) when the cycle is reversed. Thus, when the mixture is introduced into the columns at \(\mathrm{T}_{1}\) for certain values of \(\mathrm{P}_{\mathrm{T}}\) and \(\mathrm{P}_{\mathrm{B}}\), toluene would leave at the inner ends of the columns and acetophenone would leave at the outer ends with a relative recovery of toluene less or equal to 100 percent, while acetophenone would be considerably less than 100 percent for a feed concentration of 50 percent toluene and 50 percent acetophenone. In the on-going analysis, the effects of \(\mathrm{P}_{\mathrm{T}}\) and \(\mathrm{P}_{\mathrm{B}}\) on the steady state characteristics are shown in Figures 8.17 and 8.18.

Figures 8.14 through 8.16 and Figure 8.18 show the effects of feed \(\left(\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{T}}\right)\), and/or top product \(\left(\mathrm{P}_{\mathrm{T}}\right)\) withdrawal rate. on


FIGURE 8.14 CONCENTRATION TRANSIENTS FOR \(P_{T}=0.1\) AND \(P_{B}=0.3\)


FIGURF: 8.15 CONCENTRATION TRANSIENTS FOR \(P_{T}=0.2\) AND \(P_{B}=0.2\)
percent recovery and the steady state characteristics for toluene and acetophenone for alternating top feed two column parametric pumps. It should be noted, as pointed out in Chapter 6, that of special interest is the top product concentration \(\left(\langle y T\rangle_{n} / y_{0}\right)\), i.e. effluents leaving the inner ends of the columns where minimum mixing occurs. The bottom product concentration ( \(\left\langle y_{B}\right\rangle_{n} / y_{0}\) ) fronts for acetophenone as shown in Figure 8.13 shows no real build up of concentration fronts, partly because the penetration distance of acetophenone when the feed is introduced is much less than the penetration distance for toluene, and when the pumping direction is reversed, some of the acetophenone that accumulated in the previous half cycle is pumped out of the column and a portion is collected as bottom product, while the rest is pumped to the bottom reservoir. Other reasons for the low percent recovery of acetophenone from the bottom product are that tremendous mixing occurs, especially with fresh feed, and mixing decreases separation (Thompson and Bowen, 1972; Wankat, 1978) ; and from Figures 8.14 through 8.16 and Figure 8.18 , it can be seen that the percent recovery of acetophenone steadies out at almost \(60 \%\) on the third or fourth cycle, which means that acetophenone is partially immobilized on the upper section of the column. The immobilization of acetophenone is a result of chemisorption (Figs. 8.1 and 8.2) since the bulk of the acetophenone is strongly adsorbed in the solid phase for the range of temperature of operation.

One can see from Figures 8.14 through 8.16 that the decrease


FIGURE 8.16 CONCENTRATION TRANSIENTS FOR \(P_{T}=0.3\) nND \(P_{B}=0.1\)
of \(P_{T}\) produces an increase in the steady state top product percent recovery of toluene and thus a decrease in the concentration of acetophenone. However, the transient time for the enrichment of toluene (or depletion of acetophenone) is about the same, and the lowest concentration band (depletion of acetophenone) can be calculated from
\[
\begin{equation*}
\frac{\left\langle\mathrm{y}_{\left.\mathrm{T}_{2}\right\rangle_{\mathrm{n}}}\right.}{\mathrm{y}_{\mathrm{o}}}=\left(\frac{\mathrm{P}_{\mathrm{T}}}{1+\mathrm{P}_{\mathrm{B}}}\right)^{2 \mathrm{n}-2} \tag{4.84}
\end{equation*}
\]

For a given value of \(\mathrm{P}_{\mathrm{B}}\) by adjustment of \(\mathrm{P}_{\mathrm{T}}\) to an arbitrarily low value, we may obtain an arbitrarily high degree of depletion of acetophenone in the top product stream. The recovery of toluene in the top product is about \(100 \%\) in the seventh cycle (Fig. 8.14) for \(\mathrm{P}_{\mathrm{T}}=0.1\) and \(\mathrm{P}_{\mathrm{B}}=0.3\); and about \(97 \%\) in the same cycle (Fig. 8.15) for \(\mathrm{P}_{\mathrm{T}}=0.2\) and \(\mathrm{P}_{\mathrm{B}}=0.2\). But for \(\mathrm{P}_{\mathrm{T}}=0.3\) and \(\mathrm{P}_{\mathrm{B}}=0.1\), the percent recovery of acetophenone decreased to about \(19 \%\) on the fourth cycle and took an upward turn thereafter approaching the bottom product concentration. The reason for this phenomena is apparent, since \(L_{\text {acetophenone }}\left(T_{1}\right)>L_{\text {acetophenone }}\left(T_{2}\right)\), and \(L(T)\) is a function of \(\mathrm{P}_{\mathrm{T}}\) and \(\mathrm{P}_{\mathrm{B}}\), an increase in \(\mathrm{P}_{\mathrm{T}}\) increases Lacetophenone \(\left(T_{1}\right)\) and as a consequence, at \(T_{1}\) the migration of acetophenone to the inner ends of the column increases for \(\mathrm{P}_{\mathrm{T}} 0.2\), thereby resulting intermixing of the top and bottom products.

The steady state characteristic solutions for the product concentration for \(\mathrm{P}_{\mathrm{T}}=0.2\) and \(\mathrm{P}_{\mathrm{T}}=0.3\) are respectively shown in Figures 8.17 and 8.18. In Figure 8.17, the parapump is operated in such a fashion that all acetophenone characteristics origi-


FIGURE 8.17 STEADY STATE CHARACTERISTICS FOR \(P_{B}=P_{T}=0.2\)


FIGURE 8.18 STEADY STATE CHARACTERISTICS FOR \(P_{B}=0.1, P_{r}=0 .:\)
nating at the outer ends of the column at the point of entry of the feed and solution from the reservoir exit at the top, hence most of the acetophenone entering the column eventually leaves in the bottom product and \(\left\langle y_{T} \text {, acetophenone }\right\rangle_{\infty} / y_{0}=0\) for certain values of \(\mathrm{P}_{\mathrm{T}}\). In Figure 8.18 , the amount of top product, \(\mathrm{P}_{\mathrm{T}}\), withdrawn is too much and breakthrough of some of the acetophenone from the bottom product material occurs in the top product and reduces the percent recovery of toluene. Therefore the material which breaks through in the top gradually reduces the recovery, hence \(\left\langle y_{T}\right\rangle_{n} / y_{o} \approx\left\langle y_{B}\right\rangle_{n} /\) y \(_{o}\) (see Fig. 8.16).

Figure 8.19 illustrates a case where the total feed introduced is about half the amount introduced in previous cases. This time \(\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{T}}=0.2\), but \(\mathrm{P}_{\mathrm{T}}=0.1\). The results indicate that the size of the feed has little or no effect on the steady state separation, but the greatest determining factor on the percent recovery is the amount of top product, \(\mathrm{P}_{\mathrm{T}}\) withdrawn. The acetophenone concentration decreased gradually to essentially \(0.00 \%\), while the concentration of toluene increased to about \(100 \%\) at about the fifth cycle. The concentration of acetophenone in the bottom product also increased gradually and steadied to a value of about \(62 \%\), while that of toluene to about \(38 \%\). In the runs with \(\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{T}}=0.4\) (see Figs. 8.14 through 8.16), the steady state value was approached more sharply (at about the third cycle) than with the run where \(\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{T}}=0.2\) was employed. The latter case \(\left(P_{B}+P_{T}=0.4\right)\) corresponds to a total of 16 cc of feed solution introduced per half cycle. Before the start of the run,


FIGURE 8.19 CONCENTRATION TRANSIENTS FOR \(P_{T}=0.1\) AND \(P_{B}=0.1\)


FIGURE 8.20 EFFECT OF FEED RATE ON CONCENTRATION TRANSIENTS
the entire column was saturated with the feed solution. By introducing a feed solution of about 16 cc in every half cycle, more fluid is used to displace the initial concentration of the column, and since the penetration of acetophenone is much less than the penetration of toluene, with proper adjustment of \(\mathrm{P}_{\mathrm{T}}\) a breakthrough of acetophenone is prevented, but in the case of \(\mathrm{P}_{\mathrm{B}}+\mathrm{P}_{\mathrm{T}}=0.2,8 \mathrm{cc}\) of feed solution is introduced, and more cycles are required to displace the initial concentration of the column. Figure 8.20 illustrates a comparison of the two cases. One can see that the steady state concentrations for the two cases are virtually the same.

In Figure 8.21, the effect of top product withdrawal rate on the recovery of toluene (or depletion of acetophenone) is illustrated for values of \(\mathrm{P}_{\mathrm{T}}=0.1,0.2\) and 0.3 for fixed value of \(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}=0.4\). The recovery of toluene ranges from a case where \(100 \%\) separation is achieved to a case where partial recovery is obtained. For \(\mathrm{P}_{\mathrm{T}}=0.1\), only 4 cc of product is withdrawn from the top. Since the penetration of the solutes is a function of the interstitial velocity which is, in turn, expressed in terms of \(P_{T}\) and \(P_{B}\), then it is obvious that an increase in \(P_{T}\) would automatically increase the relative movement of any solute. What this means is that when withdrawing about 4 cc of product from the top, the relative movement of acetophenone is such that acetophenone never breaks through or exits the column via the inner ends. Increasing the top product withdrawal rate to \(\mathrm{P}_{\mathrm{T}}=0.2\) ( 8 cc ), the column interstitial velocity is increased and thus


FIGURE 8.21 EFFECT OF TOP PRODUCT WITHDRAWAL RATE ON CONCENTRATION TRANSIETS
the relative movement of the solutes. By so doing, some of the acetophenone breaks through the column and \(98 \%\) of toluene is recovered. Based on these results, a trade off can be made in terms of the desired economic viability. A further increase of the top product withdrawal rate to \(\mathrm{P}_{\mathrm{T}}=0.3\) (12 cc) shows that most of the acetophenone is virtually pumped to the top of the column (inner ends) as the pumping process continues. At steady state the material from the bottom reservoir is pumped to the top product and the two products become equal. This means that if the pump is operated so that \(\mathrm{P}_{\mathrm{T}}=0.4(16 \mathrm{cc})\) and \(\mathrm{P}_{\mathrm{B}}=0.0\), there will be no separation and the top product concentration will approach the feed concentration.

The steady state concentration for both toluene and acetophenone as a function of top product withdrawal rate is shown in Figure 8.22. One can see that the steady state concentration of acetophenone in the top product increases from \(0.0 \%\), approaching the feed concentration (50\%) as \(\mathrm{P}_{\mathrm{T}}\) increases, while that of toluene decreases from \(100 \%\) to the feed concentration. The steady state concentration of acetophenone in the bottom product increases from the feed concentration and levels off at about \(66 \%\), and that of toluene shows a decrease and levels off at \(34 \%\). The dashed lines are extrapolated for \(0 \leq \mathrm{P}_{\mathrm{T}}<0.1\). \(\mathrm{P}_{\mathrm{T}}=0.0\) would correspond to a case where no top product is withdrawn and only product withdrawn from the bottom. For this case, in order to obtain the steady state concentration for the top product, the tubes connecting the two columns together will have to be


FIGURE 8.22 STEADY STATE CONCENTRATION FOR THE PRODUCTION OF TOLUENE AND ACETOPHENONE IN A TWO COLUMN SYSTEM


FIGURE 8.23
COMPARISON OF TOP AND BOTTOM FEED CONTINUOUSONE COLUMN PARAMETRIC PUMP WITH ALTERNATING TOP AND BOTTOM FEED TWO COLUMN PARAMETRIC PUMP ING
carefully disconnected (at the end of the run) in the middle in order to withdraw a sample to determine the concentration. But for \(\mathrm{P}_{\mathrm{T}}=0.4\), where all of the samples are withdrawn as top product, to determine the steady state concentration for the bottom product, a sample has to be withdrawn from the bottom reservoirs at the end of the entire run.

Figure 8.23 shows a comparison of the recoveries obtained via one column and two column parametric pumping. The data from the one column parametric pumping consist of those from top and bottom feed mode continuous pumps. The data show, in all respects, that two column parametric pumping is superior to the one column, especially for purification of multicomponent systems. The purification of a desired component would, in essence, correspond to the split problem which has received very little attention. Chen et al. (1974), in the analysis of multicomponent separation, claimed that a multicomponent split analogous to that obtained by multicomponent distillation columns could be obtained by proper adjustment of the bottom product withdrawal rate using a single column, but experimental verification was never presented. Butt et al. (1972) also discussed the separation of multicomponent mixtures using a nonsymmetrical flow to force the separation or split with a single column, but experimental treatment was not offered. Gupta and Sweed (1973) presented another theoretical treatment whereby a split could be obtained in a two column configuration using a nonsymmetrical flow pattern. The experimental results of this work may there-


FIG. 8.24 EFFECT OF RESERVOIR MIXING ON PRODUCT CONCENTRATION
fore be considered a breakthrough in achieving a true split with a direct thermal mode parametric pumping using temperature cycling as the only thermodynamic variable.

Figures 8.24 and 8.25 show the effect of reservoir mixing on the separation of multicomponent mixtures. For the mixed reservoirs, data from one column operated semicontinuously are being compared with data retrieved from two column processes with alternating top feed. In both figures, and for the purpose of clarity, a pseudobinary system is assumed where the concentration of acetophenone in the lean product is considered. For the conditions shown the concentration with no mixing are lower than the concentration with mixing. In the results shown, acetophenone concentrations essentially approach zero for the no mixing case, whereas the concentration of acetophenone for the mixing case levels off to values much higher than zero. For operating condition employed, the results of the two column process fits well with the predictions of Chen et al. (1972) that the log [lean product] versus \(n\), the number of cycles would produce \(a\), where a is the slope obtainable by lease squares fit. The relation is true only for parametric pumps operated in the Region 1 regime. In the no mixing case, each element of the fluid leaving one column to the other (inner ends) is not mixed with the elements before it or after it. The only time that mixing occurs is when top product is withdrawn. The top product would essentially consist of fluid elements that have undergone a series of temperature changes between the two columns before



FIGURE 8.26 EFFECT OF PRODUCTION RATE ON SOLUTE CONCENTRATION
they are finally withdrawn as product. Since separability in this case would be measured by the degree of purification of acetophenone, and by the nature of the experimental arrangement, discriminatory withdrawal of desired dilute material can not be made, while the undesired concentrated material is recycled (Wankat, 1978). For the mixed reservoir, each sample product respresents a sequential averaging of solute concentration.

Figure 8.26 illustrates a comparison of steady state concentrations for the recovery of toluene and acetophenone. This plot shows the degree of enrichment for both toluene and acetophenone. The enrichment of toluene occurs in the top product, while that of acetophenone occurs in the bottom product. For values of \(\left[\mathrm{P}_{\mathrm{T}} /\left(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right)\right] \leq 0.25\), corresponding to \(\mathrm{P}_{\mathrm{T}} \leq 0.1\), no acetophenone appears in the top product stream and \(100 \%\) of toluene is recovered. Beyond \(\mathrm{P}_{\mathrm{T}}=0.1\) the percentage recovery of toluene decreases with increasing \(\mathrm{P}_{\mathrm{T}} /\left(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right)\) and will be equal to the feed concentration ( \(50 \%\) ) when all of the products are withdrawn from the top stream ( \(\mathrm{P}_{\mathrm{T}}=0.4\) ). The bottom stream (enrichment of acetophenone) is not very sensitive to the size of bottom product. For \(\left[\mathrm{P}_{\mathrm{B}} /\left(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right)\right] \leq 0.60\), the percent recovery of acetophenone is about \(67 \%\) and for \(0.60<\left[\mathrm{P}_{\mathrm{B}} /\left(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}\right)\right] \leq 1.0\), the percent recovery shows only a slight drop from \(67 \%\) to about \(53 \%\).

\section*{ONE COLUMN STAGED SEQUENCE CYCLIC PROCESS}

Figure 8.27 through 8.34 show the experimental results obtained from one column cycling zone adsorption/desorption process. The results are cyclic steady states where each cycle
is a repeat of the cycle before it. This limiting condition where a cyclic steady state is obtained has been theoretically proven by Wankat (1973), and Lavie and Rielly (1972). The aim of thesecycling zone experiments is to estiablish the necessary conditions for the design of a staged sequence cyclic process.

Thermal wave velocity, \(u_{t h}\) has been shown by wankat (1973) to be insensitve to temperature, but that if series of temperature step inputs are imposed as the cyclic variable, the size of the step inputs will determine the thermal wave velocity. In the original work on cycling zone, Baker and Pigford (1971) defined the travelling wave (recuperative) and standing wave (direct) mode of cyclic operation. The latterbeing the case where the fluid is heated/cooled before it is pumped through the adsorbent column, while in the later case, the column walls are heated/cooled directly during the course of operation. The thermal velocity of the travelling wave can be made to approach that of the standing wave if the natural thermal velocity can in fact be made to approach infinity ( \(u_{t h} \longrightarrow \infty\) ). However, for a cycling zone process operating at high frequency (short thermal switching period), the ideal direct thermal mode (where \(u_{t h} \rightarrow \infty\) ) can never be obtained because the column temperature is always changed before the original column temperature reaches steady state. Therefore the mode of operation of the cycling zone experiments done in this study could neither be classified as a recuperative nor direct mode. The physical operation itself is direct mode, but the response of the temperature imposed on the column is not instantaneous (normally assumed by most research-

ers) which is characteristic of direct mode of operation.
Wankat (1974) defined a parameter A, which is a function of the heat capacities of the mobile and solid phases and the column material, that is analogous to Baker and Pigford's (1971) uth. The shape of \(u_{t h}\) is a square wave and it is greater than \(u_{C}\) (concentration wave velocity) if \(A=1.0\). When \(A=1.0\), a square temperatuare wave is attained, meaning that the moment the column temperature is changed, an instantaneous response of the exact temperature is attained. Instantaneous temperature change does not necessarily mean maximum separation. The effect of \(A\) on the separation has been theoretically investigated by Wankat (1974) and found that there existsanoptimum value, where \(0.0<A<1.0\) for which maximum separation can be obtained. Therefore all the experimental strategies in this study and hence the values of A are based not on the adjustment of the heat capacities of the system materials but on the temperature cycling frequency (Wankat, 1973). Based on the same line of reasoning, the temperature wave can be expressed in terms of the penetration distances (Chen and Hill, 1971a) where \(L_{t h}\) is the peneration distance of the thermal wave and \(L_{i}(T)\) is the penetration distance of component \(i\) at temperature \(T\).

Various characteristic concentration profiles have been observed based on the adjustment of \(L_{t h}\). By proper adjustment of \(L_{t h}\), the amplification of solute concentration (Baker and Pigford, 1971) could be obtained. Figure 8.27 shows the effluent concentration versus time for the system o-xylene-anisole-nheptane on silica gel.


This run was performed in the lower temperature level, viZ: \(\mathrm{T}_{1}\left(=30^{\circ} \mathrm{C}\right)\) and \(\mathrm{T}_{2}\left(=60^{\circ} \mathrm{C}\right)\). These temperatures are chosen so that \(o-x y l e n e\) can be concentrated between the thermal boundary \(T_{1}\) and \(T_{2}\) while anisole will not. The cyclic behavior of the concentration profile with change in temperature can easily be seen. At \(30^{\circ} \mathrm{C}\), o-xylene and anisole are adsorbed and their concentrations even at \(30^{\circ} \mathrm{C}\) would eventually approach the feed concentrations. So for all runs, the frequencies of thermal switching periods are chosen so thatthese limiting concentrations at low frequencies are prevented. At \(60^{\circ} \mathrm{C}\), the concentration of o-xylene increases somewhat but still below the feed level. For this run the thermal switching period is \({ }^{t} 30=t_{60}=10 \mathrm{mins}\), and under this operating condition, \(L_{t h}>L_{o-}\) \(x y l e n e(60)>L_{\text {anisole }}(60)\) and \(L_{t h}>L_{o-x y l e n e(30)} \approx L_{\text {anisole }}(30) \cdot\)

The condition where \(u_{t h}>u_{h}>u_{c}\) ( \(u_{h}=\) concentration during hot cycle and \(u_{c}=\) concentration during cold cycle) (Wankat, 1978), and thus \(L_{t h}>L_{i}\left(T_{2}\right)>L_{i}\left(T_{i}\right)\) are typical of most liquid systems. One can also see that the concentrations of both solutes lag behind Lth since the solutes peak exact on the thermal boundary.

Figure 8.28 illustrates a case where the cycling zone is operated at the higher temperature level i.e., at \(\mathrm{T}_{2}\left(=60^{\circ} \mathrm{C}\right)\) and \(\mathrm{T}_{3}\left(=85^{\circ} \mathrm{C}\right)\). The thermal switching period is \(\mathrm{t}_{60}=\mathrm{t} 85=10 \mathrm{mins}\). One obvious behavior noticeable from this figure is that it appears as if the maximum peaks for both o-xylene and anisole occur at \(60^{\circ} \mathrm{C}\). In reality the solutes peaked at \(85^{\circ} \mathrm{C}\) but there is a tremendous concentration lag behind the thermal velocity. This

is to say that \(L_{t h}>L_{\text {anisole }}(85)>L_{o-x y l e n e(85)}\) and \(L_{t h}>L_{\text {ani- }}\) sole(60) \()_{\text {L }}\)-xylene (60). Also at this temperature level, the concentration of o-xylene is around the feed level at both temperatures, the reason for this is that the cyclic process is not operated in a temperature range to allow for enough o-xylene to be adsorbed and therefore subsequently desorbed. In effect o-xylene and heptane both act as solvent at this temperature range. Figure 8.29 shows where the cyclic process is again operated at the lower temperature level. All the operating variables are the same as that shown in Figure 8.27 except that it is operated in a fashion such that \(L_{0-x y l e n e(60)}>L_{t h}>L_{0-}\) xylene (30) and \(L_{t h}>L_{\text {anisole }}(60)>L_{\text {anisole }}(30)\). To be able to over ride the natural thermal penetration distance it would require a special artistry when the cyclic process is being operated. Initially when the temperature is switched form \(30^{\circ} \mathrm{C}\) to \(60^{\circ} \mathrm{C}\), the thermal wave moves behind the concentration wave, and during the course of operation the thermal wave gradually over takes the concentration wave. If the thermal wave is allowed to maintain this speed till the end of t 60 , \(0-x y l e n e\) will peak at the temperature boundary. In order for the o-xylene to peak between \(T_{1}\) and \(T_{2}\), the thermal wave must be slowed down by switching the temperature to the next temperature step so that it does not overtake the concentration wave. The thermal velocities for all the other runs are adjusted by switching the column temperature to the next temperature step about 4 mins before the end of that temperature cycle.



 \(\mathrm{L}_{\mathrm{o}-\mathrm{xy}} \mathrm{lene}(30)\)
FIGURE 8.30

In Figure 8.30, the three temperature step inputs were used in operating the cycling zone. For this run, the thermal switching period is \(\mathrm{t}_{30}=\mathrm{t} 60=\mathrm{t} 85=10 \mathrm{mins}\). Anisole peaked at \(85^{\circ} \mathrm{C}\) and exhibited a single peak but o-xylene showed double peaks, one at \(60^{\circ} \mathrm{C}\) and the other at \(85^{\circ} \mathrm{C}\). The reason for this is obvious, at the end of \(60^{\circ} \mathrm{C}\) temperature step, all of the o-xylene did not exit the column completely, and as soon as the column temperature is raised to \(85^{\circ} \mathrm{C}\), anisole must now exit the column and by so doing it exit the column with the rest of o-xylene, hence the overlap of the second o-xylene peak with anisole. Figure 8.31 also shows the same characteristic phenomena for a cyclic process operated at \(t_{30}=t_{60}=t_{85}=14 \mathrm{mins}\). The second \(0-x y l e n e\) peak does not overlap the anisole peak as much as the case when it is operated at \(\mathrm{t}_{30}=\mathrm{t}_{60}=\mathrm{t}_{85}=10 \mathrm{mins}\). The reason for this is that more time is allowed for the o-xylene peak to exit the column when it is operated at \(\mathrm{t}_{30}=\mathrm{t}_{60}=\mathrm{t}_{85}=14 \mathrm{mins}\). However, Figure 8.30 and 8.31 do have one thing in common. The concentration of oxylene exhibited a dip before the second peak that overlapped the anisole peak. From Figures 8.30 and 8.31, the characteristic behavior of the o-xylene and anisole before or after the dip is inconsistent for any conclusion to be drawn.

In Figure 8.32, the thermal switching periods are t \(\mathrm{t}_{30}=10\) mins, \(t_{60}=t_{85}=14\) mins. At \(60^{\circ}\) and \(85^{\circ} \mathrm{C}\), o-xylene peak do not show any appreciable increase above the feed concentration. The amount of \(0-x y l e n e\) adsorbed at \(30^{\circ} \mathrm{C}\) for \(\mathrm{t}_{30}=10 \mathrm{mins}\) are completely desorbed during the \(60^{\circ}\) and \(85^{\circ} \mathrm{C}\) interval, since the total time for the desorption is about 28 mins . In the case of




\footnotetext{


}
anisole, about 24 mins of adsorption time is available for anisole to be adsorbed in the column, i.e, \(\mathrm{t}_{30}=10 \mathrm{mins}\) and \(t_{60}=14\) mins, therefore at the \(85^{\circ} \mathrm{C}\) interval, a much sharper anisole peak is obtained. Increasing t 30 to 20 mins . (see Figure 8.33) shows almost the reverse of the result obtained in Figure 8.32. A case where the anisole never peaked above the feed concentration can be seen. At the \(30^{\circ}\) interval which is for a duration of 20 mins, anisole is almost completely adsorbed and it is virtually blocking all the adsorption sites. Since adsorption between the two solutes is competitive, the sites occupied by one solute is almost if not completely void of the other solute. When the temperature is subsequently raised to \(60^{\circ}\) and \(85^{\circ} \mathrm{C}\), the concentration of anisole takes an upward trend which is a sign of desorption, but the column is not maintained at this temperatures long enough for the anisole peak to emerge to above the feed concentration. On the other hand, the o-xylene peak flunctuates slightly above and below the feed concentration. In some cases at the \(30^{\circ}\) interval, the concentration of o-xylene is about the same concentration as the feed, meaning that all the adsorption sites are completely occupied by anisole and as a result, o-xylene is no longer retained in the column.

Figure 8.34 illustrates a situation whereby high solute concentrations could be recovered, while the low concentration regions are recycled. Once all the operating conditions are established, the problem is now reduced to collecting the samples of the desired products manually or automatically knowing the relative retention time of each peak. Continuous


collection of sample products is no longer necessary, the samples are collected in the region where the desired sample is expected to peak. The samples can then be analyzed and those containing lower concentrations of the desired component are pooled and concentrated. This staged sequence cyclic process can be used to concentrate and/or purify desired solutes, even if the solutes exist in trace or high concentration levels.

Figures 8.35 and 8.36 illustrate experimental and theroretical verification of a staged sequence cyclic process. Products high in concentrations of \(0-X y l e n e ~ a n d ~ A n i s o l e ~ a r e ~ o b-~\) tained when the one column process was operated with thermal switching periods for all temperatures equal to 10 mins . Figure 8.35 shows a case when there is no reflux. For there to be no reflux, all exiting fluid from the column not taken as product are completely discarded while fresh feed is fed continuously into the column. Since the cycling zone experiments have helped to establish the times at which O-Xylene and Anisole peaked at \(T_{2}\) and \(T_{3}\), for a given thermal switching period, a manual or automatic sampling system provides the means by which sample products are withdrawn. At \(60^{\circ} \mathrm{C}\), the steady state concentration of \(0-X y l e n e\) and Anisole are 1.22 and 0.76 respectively and that of Anisole and \(0-X y l e n e\) at \(85^{\circ} \mathrm{C}\) are respectively 1.32 and 0.99 . At \(8^{\circ} \mathrm{C}\), one can see that the concentration of \(0-X y l e n e\) is about the feed concentration. This is the result of the \(0-X y l e n e\) peaking with Anisole peak (See Figure 8.30) when Anisole is
 feed concentration) can also be seen from Figure 8.36. Figure


FIGURE 8.35 ONE COLUMN STAGED SEQUENCE - RECYCLE RATIO \(=0.0\)


\begin{abstract}
8.36 shows the effect of complete recycle (or reflux) on separation. The fresh feed is mixed with the portion of the effiuent not withdrawn as product and fed to the column. The fresh feed is now used as a make-up fluid to compensate for the product withdrawn. The product concentrations from these experiments are qualitatively and quantiatively in agreement. In view of the fact that these concentrations represent average values over a given period of time, the separation is comparatively good relative to separations normally obtained with conventional parametric pumping. Large separations could be obtained if the concentraion bands in very concentrated regions for \(0-X y l e n e\) and Anisole at \(60^{\circ} \mathrm{C}\) and \(85^{\circ} \mathrm{C}\) are taken as products.
\end{abstract}

\section*{MULTICOLUMN STAGED SEQUENCE CYCLIC PROCESS}

Figures 8.37 through 8.54 show the theoretical results of the multicolumn staged sequence cyclic process. It is necessary to present a large number of figures so as to be able to see the effect of all the variables. All of the theoretical results were obtained via the numerical solution of the transport equations with finite mass transfer and non linear equilibria.

Figures 8.37 and 8.38 show the transient product concentrations taken at \(\mathrm{T}_{2}\) and \(\mathrm{T}_{3}\) respectively for a system with = 1.0 and \(\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{B}}=0.20\). By nature of the column arrangements, nonsymmetrical flow rates results in the three columns per stage. The column at \(\mathrm{T}_{3}\) always has less material in it per a given stage. Figure 8.37 show a modest separation when the columns are

FIGURE 8.37 PRODUCT CONCENTRATION AT \(T_{2}\left(T_{1}<T_{2}<T_{3}\right)\)
\(Q=25, \mathrm{TIME}=15, \mathrm{NNZ}=29, \mathrm{H}=90\)
YAO \(=0.00095 \mathrm{gmole} / \mathrm{cc}, Y B O=0.00086 \mathrm{gmole} / \mathrm{cc}\)


FIGURE 8.38 PRODUCT CONCENTRATION AT \(\mathrm{T}_{3}\left(\mathrm{~T}_{1<} \mathrm{T}_{2}\left\langle\mathrm{~T}_{3}\right)\right.\), YBo 00095 gmole/cc YBo \(=0.00086\) gmole \(/ \mathrm{cc} \mathbf{Q}=25\), T ME \(=15\) : \(\mathrm{NNZ}=29, \mathrm{H}=90\)
operated for 15 mins per stage, while in Figure 8.38, the phenomena of component \(A(w h i c h\) in this case will be O-Xylene) with product concentrations close to the feed concentration is again observed. The concentrations of componenet \(B\) (Figure 8.38) show arbitrarily high concentration around the third cycle and dropping off sharply in all the three stages. Since component \(B\) is the slower moving component, it tends to concentrate into bands while moving slowly down the column. The sharp concentration rise observed in the first or second cycle is a result of the accumulation of sharp concentration waves moving closely together down the column. As soon as the concentrated solution rich in component \(B\) exits the column at \(T_{3}\) on the third cycle, the concentration on subsequent cycles successively falls till steady state concentration is reached on the twelveth cycle. It can also be seen that the steady state concentrations of components \(A\) and \(B\) become increasingly reduced with increase in stage, and are almost identical, falling slightly below the feed concentration in Stage III. An obvious reason for this is that at the start of the run, there is tremendous amount of axial dispersion in the \(T_{3}\) column where product \(r i c h\) in component \(B\) is withdrawn due to a decrease in flow rate and thus column displacerrent.

Figure 8.39 shows the concentration transients for the enrichment components \(A\) and \(B\) for \(P_{T}=0.200\) and 0.365 (where \(\mathrm{P}_{\mathrm{T}^{+}} \mathrm{P}_{\mathrm{B}}\) \(=0.400\) ). Component \(B\) still exhibited the phenomena of sharp increase and an abrupt decrease in concentration and in some cases the steady state concentration is well below the feed


FIGURE 8-39 EFFECT OF PRODUCT WITHDRAWAL RATE ON CONCENTRATION TRANSIENTS FOR BETA \(=1.0, \mathrm{Q}=25\)
\[
\underset{(\underline{T M E}=15, ~ N N Z}{ }=29, \text { H }=90, Y \mathrm{YO}=0.00095,
\]

concentration (about 0.75) especially in Stage III with \(P_{B}=0.035\). The reason for this extremely low value is that the quantity withdrawn per stage is so small that the bulk of component \(B\) remains virtually in the column since component \(B\) is more strongly adsorbed and therefore with slower relative velocity (not always the case). The concentrations of component A show no unusual behavior. Figure 8.40 shows the effect of the number of cells on the transient concentration. In this figure, only the products withdrawn at \(\mathrm{T}_{2}\) (i.e. high concentration of component \(A\) and low concentration of component A). It can be seen that the number of cells has relatively no effect on the enrichment of component \(A\), but a significant effect on the depletion of component \(B\). In a 11 the three stages, arbitrarily low concentration of component \(B\) is produced with a decrease in the number of cells. When the columns are divided into fewer number of cells, dispersion and axial mixing is introduced and the dilute materials are more affected since they are more sensitive to dispersive and various phenomenological forces occuring in the columns. The effect is more pronounced as dilute material is being produced as the number of cycle is increased. However, increasing the number of cells decreases the sensitivity, such that for \(N N Z=29\) and 39 , the concentration of component \(B\) is virtually the same. The mathematical method of determining the number of cells necessary for stability in numerical computation was not used since it is just as easy to determine it by trial and error. Above and below the optimum number of cells, the computation time could be enormous. Above





the optimum, the column concentrations are unneccessarily computed for more cells than required while below the optimum, the convergence is slow.

Figure 8.41 and 8.42 show the effect of column height on concentration transients for both components \(A\) and \(B\). Figure 8.41 shows concentration profiles for components \(A\) and \(B\) for \(H\) \(=75.00 \mathrm{~cm}\), while Figure 8.42 shows the relative comparison of the concentration profiles for both components for process operated with \(H=75.00 \mathrm{~cm}\) and 90.00 cm . All the rest of the simulation was done with \(H=90.00 \mathrm{~cm}\) since the column height used for the experimental part is 90 cm . Overall, simulation with \(H=90.00 \mathrm{~cm}\) produced better separation. The height of the column only affected the separation in Stage \(I\) and little or no effect in Stages II and III. Figures 8.43 and 8.44 illustrate the effect of stage duration time on the production of components A and B. From Figure 8.43, separation in all the three stages increase with increase in stage duration time. This theoretical result agrees well with experimental observation. In the one column cycling zone experiment, it was seen that as the thermal switching period (See Figure 8.30 and 8.31) is increased from 10.0 minutes to 14 minutes, the \(0-X y l e n e\) peak which in this case would be component \(A\) separates better from Anisole. At \({ }^{\mathrm{t}} \mathrm{H}_{3}=\mathrm{t}_{60}=\mathrm{t} 85=10 \mathrm{mins}\), (Figure 8.30) the second \(0-X y l e n e\) peak is burried under the Anisole peak, while at \(\mathrm{t}_{30}=\mathrm{t} 60=\mathrm{t}=85=14 \mathrm{mins}\) (Figure 8.31), the separability of this second peak was improved. In the case of the simulation, the longer the stage


duration time, the two peaks observed in the experiment may tend to exit the column as one concentrated peak hence the increase in the concentration of component A (Figure 8.43) with stage duration time. But the enrichment of component B (Figure 8.44) at various stage duration time shows that the steady state concentration is drastically reduced with stage duration above 10 mins. The highly concentrated wave fronts of component \(B\) is essentially withdrawn as product at or about the fourth cycle for Stage I, third cycle for Stage II and second cycle for Stage III. After the high concentration bands are withdrawn, subsequent cycles consists of less concentrated withdrawn in component \(B\), especially the stage duration time well above 10 minutes. The separation factors for the various stage duration is shown in Figure 8.45. The separation factor is defined as follows:
\[
\begin{equation*}
S F_{n}=\left[\frac{\left\langle y_{A}\right\rangle_{n} / y_{A O}}{\left\langle y_{B}\right\rangle_{n} / y_{B o}}\right]_{T_{2}} \cdot\left[\frac{\left\langle y_{B}\right\rangle_{n} / y_{B o}}{\left.y_{A}\right\rangle_{n} / y_{A O}}\right]_{T_{3}} \tag{8.1}
\end{equation*}
\]
or at steady state,
\[
\begin{equation*}
S_{s s}=\left[\frac{\left\langle y_{A}\right\rangle_{\infty} / y_{A O}}{\left\langle y_{B} /_{\infty} / y_{B o}\right.}\right]_{T_{2}} \cdot\left[\frac{\left\langle y_{B}\right\rangle_{\infty} / y_{B o}}{\left\langle A_{A}\right\rangle_{\infty} / y_{A O}}\right]_{T 3} \tag{8.2}
\end{equation*}
\]

The separation factor obtained from Stages II and III are almost equal and much less than the separation factor obtained from Stage I. If the separability is determined from the separation factor, one would at first glance consider stage duration time of 20 minutes as the most desirable. The separtion factor


FIGURE 8.46 EFFECT OF RECYCLE RATIO ON SEPARATION FACTOR

especially of a two component system determines how well separated one component is compared to another, but not on the enrichment of the two components. If a stage duration time of 20 minutes is chosen, at steady state, highly concentrated A will be produced and not so concentrated B will be produced, but if 10 or 15 minutes is used as the stage duration time, a modest enrichment of both components \(A\) and \(B\) will be produced.

Figures 8.46 and 8.47 show the effect of recycle on separation factors for \(t=15\) and 30 minutes. Again the simulation for \(t=30\) mins. produces higher separation factors, not because longer stage duration time results in higher recoveries of both components \(A\) and \(B\) but because separation factor is in effect a measure of separability. In this case, high recovery of component \(A\) is achieved at the expense of component B. Figure 8.46 shows only the separtion factor obtained in Stage \(I\), but the profiles of the separation factors from Stages II and III are similar but slightly lower. This fact can be seen clearly from Figure 8.47. The steady state separation factors as found in all of the three stages for \(t=15\) and 30 minutes show that separation increase with increase in recycle ratio. In some cases, such as in Stages \(I\) and \(I I\), the steady state separation for \(t=15\) and 30 mins are parallel. Figures 4.48 and 4.49 illustrate the effect of product withdrawal rate on separation. Equal product withdrawal rates are used since we already saw the effect of unequal product withdrawal rate from Figure 8.39. It should be remembered that the size of products withdrawn determines the movement of concentration waves (penetration distances of both


FIGURE 8.48 EFFECT OF PRODUCT WITHDRAWAL RATE ON SEPARATION

FIGURE 8.49 effect of product withdrawal rate on steady state separation factor


FIGURE 8.50 EFFECT OF COLUMN DISPLACEMENT ON SEPARATION FACTOR
components) that move through the column. Lets consider an extreme case where \(\mathrm{P}_{\mathrm{T}}=\mathrm{PB}=\mathrm{P}=1.0\), that means that the feed introduced into the column and therefore the products withdrawn is the same, size as the amount of displaceable volume in the column, meaning that the sample withdrawn goes through only one series of temperature step inputs. An optimum product withdrawal rate exist for which the best separation can be obtained. This is clearly illustrated in Figure 8.49 that maximum separation can be obtained in Stages \(I\) and III when \(P_{T}=P_{B}=P=0.2\) while the same is true for Stage II when \(P_{T}=P_{B}=P=0.3\). The optimum value of \(\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{B}}=0.2\) was used in most of the theoretical simulation. The existence of this optimum value of \(P_{T}=P_{B}\) means that the fluid mixture has undergone optimum series of temperature inputs to yield optimum separation.

Figures 8.50 and 8.51 show the effect of column displacement on separation factors. At extremely low values of \(Q\), the separation factor and thus the solute concentrations are irregular and oscillatory. At very high values of \(Q\), the separatior is low. An optimum value of \(Q\) is observed. This optimum value is \(Q=25 c c\) and with this value, a maximum separation can be obtained. The column void volume is between 25 cc to 29 cc depending on the accuracy to which to column is packed. This optimum value of \(Q\) can be clearly seen from Figure 8.51. At extremely low values of \(Q\), the fluid and therefore the concentration waves spend longer time in the column and they undergo various temperature changes. In the process of this repeated


FIGURE 8.51 STEADY STATE SEPARATION FACTOR VERSUS COLUMN DISPLACEMENT


FIGURE 8.53 EFFECT OF CONCENTRATION ON STEADY STATE SEPARATION PACTOR

temperature change the majority of the concentration waves cancel each other out with only a few exceptions. At very large values of \(Q\), more fluid mixtures (much more than the void volume of the column) are passed through the column and that again reduces the concentration. Figures 8.52 to 8.54 illustrate the effect of feed concentration on separation for \(t=10\) and 14 mins and recylce ratios of 0.0 and 1.0 . It can be seen that \(5 \% \mathrm{~V} / \mathrm{V}\) of feed for both components gives better separation. At extremely high feed concentration such as \(20 \% \mathrm{~V} / \mathrm{V}\), the separation is drastically reduced since the condition of extreme nonideality and non-equilibrium conditions is approached. At low feed concentrations such as \(2.5 \% \mathrm{~V} / \mathrm{V}\), most of the material are adsorbed in the column since the active sites in the solid phase are relatively unoccupied. It can also be seen from Figure 8.54 that a recycle ratio of 1.0 would give better separation in Stage I in comparison with recycle ratio of 0.0 for the same reasons given earlier during the discussion of recycle ratio on separation.

\section*{CHAPTER 9}

\section*{CONCLUSIONS AND RECOMMENDATIONS}

In this dissertation the emphasis has been on the design of a fixed bed adsorption column, development of a parametric pumping process for the purification of multicomponent mixtures in dilute solutions, and on the design of a cyclic process (an alternative to parametric pumping, cycling zone adsorption, or simulated moving bed) suitable for the continuous fractionation of hydrocarbon mixtures for operation in the direct thermal mode.

Various analytical solutions of a fixed-bed sorption column for the prediction of effluent concentrations of each species in both the solid and liquid phases as a function of column position and time space were derived. These analytical solutions were based on the mathematical description of the complete and simplified models. The solution of the complete model was based on various interfacial phenomena subject to pertinent initial and boundary conditions and linear equilibrium distribution, while the simplified model was based on the premise that, in the rate expression, transport resistances in the fluid phase around the particle dominate.

Effluent concentrations as a function of column position and time were obtained via the simplified model. The theoretical calculations showed that, at slow mass exchange, the concentration peaks are sharp and tall, and as mass exchange is increased, the peak shape became broader with decreasing height.

Sharper peaks were also observed with an increase in equilibrium constants.

A multicolumn staged sequence cyclic process for the continuous fractionation of multicomponent fluid mixtures has also been modeled. Experimental data retrieved from a single column staged sequence cyclic process (employing o-xylene-anisole-nheptane on silica gel) were used for the simulation of the multicolumn cyclic process. The separation of solutes from dilute and concentrated multicomponent solutions were predicted by computer calculations and numerical solutions of the equations of continuity. This mathematical model assumed a finite rate of mass transfer and nonlinear equilibria of individual solutes. The computed concentration profiles agreed with the experimental results. The following parameters affecting the separations were theoretically optimized: number of cells (plates), height of the columns, stage duration time, product withdrawal rates, recycle ratio (reflux ratio), the solute concentrations in the feed, and column displacement volume. The separability of solutes depends functionally on all of the variables. The optimum values of the variables have been established.

It was demonstrated that a two column parametric pump arranged back-to-back can minimize reservoir mixing (that normally occurs in a one column process), and thereby improve separation. It was further demonstrated that purification of a given solute(s) in a multicomponent system, and a true multi-
component split (normally achieved in multicomponent distillation) can be attained more efficiently with fewer cycles. The performance characteristics necessary to achieve high recoveries were established. Mathematical models for the depletion of a given solute(s) (where minimum mixing occurs) were derived by the method of characteristics based on the assumption of a pseudo binary system, consisting of one solute and the common solvent. The purification of solute(s) was significantly increased by decreasing the bottom product withdrawal rate.

The dilute product was found to be very sensitive to the number of cells (number of theoretical plates) used, while the enriched product was not affected. A cyclic process with longer columns could result in higher separability for some components, but may not do so for others. Separation factor and steady state enrichment of component \(A\) [o-xylene] were found to increase, while the steady state enrichment of component \(B\) [anisole] was found to decrease with increase in stage duration time above the optimum. Separability of the solutes increased with recycle ratio, with a maximum separation for recycle ratio equal to unity and minimum for recycle ratio equal to zero. The separation of solute(s) would increase with an increase in product withdrawal rate until the ratio of feed volume to void volume displacement is 0.2. Thereafter, solute separation decreases. The column became saturated and the separation capability dropped of \(\underset{i}{ }\) sharply as the total solute concentrations reached 20 percent volume. The separation of solutes increased sharply as the
column displacement volume increased to approximately one void volume. Thereafter, solute separation decreased.

A comprehensive experimental program is needed to quantitatively verify the theoretical results of the staged sequence cyclic process. Particular emphasis should be paid to the heat transfer problems so as to be able to determine precisely the mode of operation of this process. Optimization of the various operating conditions should also be done. In cyclic processes, a great deal of time is usually expended to the determination of the sorbent and solvent suitable for the separation problem at hand. Sorbent properties critical for cyclic separations, especially those that give a substantial measurable solute equilibrium shift should be studied. A mixture of solvents should be avoided to prevent demixing normally found in liquidsolid chromatograplhy; and the solvent should have low viscosity to ensure rapid mass transfer and thus adequate column efficiency. The solvent should be significantly less volatile than any solute thereby rendering recovery of solute via distillation practical without the necessity to employ substantial fractional distillation or to expend energy evaporating solvents.

A scale-up and a complete feasibility study should be done to determine the commercial application, if any, of the staged sequence cyclic process. Other forms of cyclic thermodynamic variables such as pH , electric field, ionic strength, concentration and magnetic field should be employed to determine the versatility of the process.

\title{
APPENDIX I \\ BREAKTHROUGH AND DESORPTION \\ EXPERIMENTAL DATA
}

TABLE 1

\section*{Runs 36, 38 and 39}

Saturation: 5\% v/v O-Oxylene and 5\% v/v Anisole in N-Heptane Desorption: \(100 \% \mathrm{~N}\)-Heptane

Feed: \(\quad y_{01}=0-X y l e n e, y_{02}=\) Anisole
\begin{tabular}{ccccccc}
\hline & \multicolumn{2}{c}{\(70^{\circ} \mathrm{C}\)} & \multicolumn{2}{c}{\(45^{\circ} \mathrm{C}\)} & \multicolumn{2}{c}{\(10^{\circ} \mathrm{C}\)} \\
\begin{tabular}{l} 
Time \\
Mins
\end{tabular} & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\mathrm{y}_{2} / \mathrm{y}_{02}\) & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\mathrm{y}_{2} / \mathrm{y}_{02}\) & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\mathrm{y}_{2} / \mathrm{y}_{02}\) \\
\hline 2 & 1.0086 & 1.0271 & 1.0000 & 0.9893 & 1.0192 & 1.0156 \\
4 & 1.0153 & 1.0353 & 0.0084 & 1.0002 & 0.9989 & 0.9977 \\
6 & 1.0000 & 1.0095 & 1.0011 & 1.0000 & 1.0224 & 1.0227 \\
8 & 0.9940 & 0.9991 & 1.0145 & 1.0036 & 1.0081 & 1.0062 \\
10 & 0.9991 & 1.0000 & 1.0013 & 0.9926 & 1.0000 & 1.0000 \\
12 & 1.0252 & 1.0233 & 1.0170 & 0.9949 & 0.9443 & 0.9640 \\
14 & 0.9103 & 0.9539 & 0.8696 & 0.9422 & 0.8587 & 0.9320 \\
16 & 0.6939 & 0.8625 & 0.5973 & 0.7994 & 0.8429 & 0.8122 \\
18 & 0.4716 & 0.7650 & 0.3759 & 0.7005 & 0.4570 & 0.7140 \\
20 & 0.2755 & 0.6774 & 0.2133 & 0.6209 & 0.3222 & 0.6344 \\
22 & 0.1348 & 0.6121 & 0.1098 & 0.5766 & 0.2073 & 0.5704 \\
24 & 0.0530 & 0.5732 & 0.0494 & 0.5434 & 0.1253 & 0.5223 \\
26 & 0.0185 & 0.5526 & 0.0205 & 0.5193 & 0.0786 & 0.4967 \\
28 & 0.0083 & 0.5617 & 0.0097 & 0.5050 & 0.0489 & 0.4722 \\
30 & 0.0049 & 0.5369 & 0.0056 & 0.5074 & 0.0294 & 0.4580 \\
32 & 0.0042 & 0.5512 & 0.0043 & 0.5013 & 0.0193 & 0.4393 \\
34 & 0.0036 & 0.5179 & 0.0037 & 0.4778 & 0.0114 & 0.4268
\end{tabular}

TABLE 2

\section*{Runs 40, 41 and 42}

Saturation: 5\% v/v Toluene and \(5 \%\) v/v Anisole in 1\% v/v Isopropyl Alcohol and \(89 \% \mathrm{v} / \mathrm{v}\) N-Heptane

Desorption: 1\% v/v Isopropyl Alcohol and N-Heptane
Feed: \(\quad y_{01}=0-X y l e n e, y_{02}=\) Anisole
\begin{tabular}{rcccccc}
\hline \multicolumn{6}{c}{\(70^{\circ} \mathrm{C}\)} & \multicolumn{2}{c}{\(46^{\circ} \mathrm{C}\)} & \(4{ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{c} 
Time \\
Mins
\end{tabular} & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\mathrm{y}_{2} / \mathrm{y}_{02}\) & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\mathrm{y}_{2} / \mathrm{y}_{02}\) & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\mathrm{y}_{2} / \mathrm{y}_{02}\) \\
\hline 2 & 0.9934 & 0.9954 & 1.0006 & 0.9943 & 1.0072 & 0.9946 \\
4 & 1.0054 & 0.9991 & 0.9974 & 0.9962 & 1.0024 & 0.9906 \\
6 & 1.0119 & 1.0122 & 0.9869 & 0.9866 & 0.9965 & 0.9859 \\
8 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0031 & 0.9945 \\
10 & 0.7707 & 0.9296 & 0.9712 & 0.9794 & 1.0000 & 1.0000 \\
12 & 0.2148 & 0.7646 & 0.6338 & 0.8980 & 0.6416 & 0.8660 \\
14 & 0.0253 & 0.6247 & 0.14627 & 0.6964 & 0.2297 & 0.6265 \\
16 & 0.0066 & 0.4390 & 0.02271 & 0.4943 & 0.0814 & 0.4385 \\
18 & 0.0042 & 0.3090 & 0.0062 & 0.3688 & 0.0289 & 0.2811 \\
20 & 0.0034 & 0.2329 & 0.0039 & 0.2059 & 0.0117 & 0.1769 \\
22 & 0.0026 & 0.1730 & 0.0027 & 0.1232 & 0.0058 & 0.1054 \\
24 & 0.0023 & 0.1217 & 0.0022 & 0.0752 & 0.0036 & 0.0659 \\
26 & 0.0021 & 0.0804 & 0.0021 & 0.0412 & 0.0028 & 0.0429 \\
28 & 0.0021 & 0.0473 & 0.0016 & 0.0220 & 0.0024 & 0.0248 \\
30 & 0.0008 & 0.0202 & 0.0011 & 0.01109 & 0.0017 & 0.0168 \\
32 & 0.0007 & 0.0103 & 0.0099 & 0.0062 & -0 & -0
\end{tabular}

TABLE 3

Runs 43, 44 and 45
Saturation: 1\% v/v 0-Oxylene and \(1 \% \mathrm{v} / \mathrm{v}\) Anisole in Heptane Desorption: N-Heptane

Feed: \(\quad y_{01}=0-X y l e n e, y_{02}=\) Anisole
\begin{tabular}{rcccccc}
\hline & \multicolumn{3}{c}{\(85^{\circ} \mathrm{C}\)} & \multicolumn{2}{c}{\(60^{\circ} \mathrm{C}\)} & \multicolumn{2}{c}{\(30^{\circ} \mathrm{C}\)} \\
\hline \begin{tabular}{l} 
Time, \\
Mins
\end{tabular} & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\mathrm{y}_{2} / \mathrm{y}_{02}\) & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\mathrm{y}_{2} / \mathrm{y}_{02}\) & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\mathrm{y}_{2} / \mathrm{y}_{02}\) \\
\hline 1 & 1.0000 & 1.1700 & 1.0000 & 1.0944 & 1.0000 & 1.0000 \\
3 & 1.0180 & 1.0650 & 1.0190 & 1.2257 & 1.0000 & 1.0000 \\
5 & 1.1105 & 1.0130 & 0.9930 & 1.1163 & 1.0413 & 0.9890 \\
7 & 1.1031 & 1.0360 & 1.0000 & 1.0944 & 1.0218 & 0.9012 \\
9 & 1.0000 & 1.0000 & 1.0170 & 1.1382 & 1.0325 & 0.9293 \\
11 & 0.8758 & 0.9718 & 0.9994 & 1.0000 & 1.0260 & 0.9494 \\
13 & 0.7313 & 0.9686 & 0.9696 & 0.9708 & 0.9830 & 0.8793 \\
15 & 0.7438 & 0.7348 & 0.9967 & 0.9341 & 0.8780 & 0.8796 \\
17 & 0.7224 & 0.6743 & 0.9983 & 0.9159 & 0.7460 & 0.8753 \\
19 & 0.5971 & 0.5348 & 0.9812 & 0.8648 & 0.6087 & 0.7213 \\
21 & 0.3009 & 0.3457 & 0.9815 & 0.8466 & 0.4760 & 0.7145 \\
23 & 0.1540 & 0.2541 & 0.8979 & 0.8131 & 0.3530 & 0.6792 \\
25 & 0.0498 & 0.1823 & 0.6618 & 0.7282 & 0.2427 & 0.6517 \\
27 & 0.0164 & 0.1453 & 0.6421 & 0.7125 & 0.1670 & 0.6345 \\
29 & -1 & 0.0954 & 0.2579 & 0.6492 & 0.1111 & 0.6125 \\
31 & -0 & 0.0512 & 0.1187 & 0.6201 & 0.0680 & 0.5930 \\
33 & -1 & 0.0105 & 0.04455 & 0.5988 & 0.0280 & 0.5011
\end{tabular}

\section*{APPENDIX II}

ONE-COLUMN PARAMETRIC PUMPING EXPERIMENTAL DATA

TABLE 4
Run 5 Ref: L21
One Column--Semicontinuous Mode: Top Feed
Conditions: Binary System Acetophenone-n-Heptane Solution
Yo Acetophenone \(=2.5 \% \mathrm{v} / \mathrm{v} ;\) Feed Abs. \(=0.673\)
Half Cycle Time \(=20\) mins; Displacement Volume \(=40 \mathrm{cc}\)
\(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}=0.25, \mathrm{P}_{\mathrm{B}}=0.125, \lambda=246\)
\(\mathrm{T}_{2}=70^{\circ} \mathrm{C} ; \mathrm{T}_{1}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Cycle No.} & \multirow[b]{2}{*}{\(\mathrm{y}_{\mathrm{T}}\)} & (Absorba & \multicolumn{2}{|l|}{Bottom Product (Absorbance)} \\
\hline & & \(\mathrm{y}_{\mathrm{T}} / \mathrm{y}_{0}\) & y'B & \(y_{B} / y^{\prime}\) \\
\hline 1 & 0.805 & 1.196 & 0.507 & 0.753 \\
\hline 2 & 0.669 & 0.994 & 0.361 & 0.536 \\
\hline 3 & 0.703 & 1.044 & 0.153 & 0.227 \\
\hline 4 & 0.717 & 1.065 & 0.042 & 0.062 \\
\hline 5 & 0.738 & 1.096 & 0.036 & 0.053 \\
\hline 6 & 0.750 & 1.114 & 0.023 & 0.034 \\
\hline 7 & 0.752 & 1.117 & 0.018 & 0.026 \\
\hline 8 & 0.830 & 1.233 & 0.018 & 0.026 \\
\hline 9 & 0.891 & 1.323 & 0.018 & 0.026 \\
\hline 10 & 0.896 & 1.331 & 0.024 & 0.035 \\
\hline 11 & 0.879 & 1.306 & 0.023 & 0.034 \\
\hline 12 & 0.900 & 1.333 & 0.014 & 0.020 \\
\hline 13 & 0.888 & 1.319 & 0.015 & 0.022 \\
\hline 14 & 0.918 & 1.364 & 0.011 & 0.016 \\
\hline
\end{tabular}

TABLE 5
Run 6 Ref: L22
One Column--Semicontinuous
Mode: Top Feed
Conditions: Binary System Toluene-n-Heptane Solution
\(y_{o}\) Toluene \(=2.5 \% \mathrm{v} / \mathrm{v}\); Feed Abs. \(=.226\)
Half Cycle Time \(=20\) mins;
Displacement Volume \(=40 \mathrm{cc}\)
\(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}=0.25, \mathrm{P}_{\mathrm{B}}=0.125, \lambda=263\)
\(\mathrm{T}_{2}=70^{\circ} \mathrm{C} ; \mathrm{T}_{1}=25^{\circ} \mathrm{C}\)


TABLE 6


TABLE 7
Run 8 Ref: L24
One Column--Semicontinuous Mode: Top Feed
Conditions: Binary System Acetophenone-n-Heptane Solution
yo Acetophenone \(=2.5 \% \mathrm{v} / \mathrm{v}\); Feed Abs. \(=0.673\)
Half Cycle Time \(=20\) mins; Displacement Volume \(=40 \mathrm{cc}\)
\(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}=0.1, \mathrm{P}_{\mathrm{B}}=0.025, \lambda=246\)
\(\mathrm{T}_{2}=70^{\circ} \mathrm{C} ; \mathrm{T}_{1}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|}
\hline Cycle No. & \(\xrightarrow{\text { Top } \operatorname{Pr}}\) & (Absorba & \(\frac{\text { Botto }}{\text { yb }}\) & \begin{tabular}{l} 
(Absorb \\
\(\mathrm{y}_{\mathrm{B}} / \mathrm{y}_{0}\) \\
\hline
\end{tabular} \\
\hline 1 & 0.536 & 0.796 & 0.403 & 0.600 \\
\hline 2 & 0.550 & 0.817 & 0.214 & 0.317 \\
\hline 3 & 0.650 & 0.965 & 0.230 & 0.341 \\
\hline 4 & 0.674 & 1.001 & 0.182 & 0.270 \\
\hline 5 & 0.727 & 1.080 & 0.105 & 0.156 \\
\hline 6 & 0.758 & 1.126 & -- & -- \\
\hline 7 & 0.786 & 1.167 & 0.044 & 0.065 \\
\hline 8 & 0.757 & 1.124 & 0.040 & 0.060 \\
\hline 9 & 0.682 & 1.013 & 0.028 & 0.041 \\
\hline 10 & \(0.751^{\circ}\) & 1.115 & 0.023 & 0.035 \\
\hline 11 & 0.679 & 1.008 & 0.006 & 0.008 \\
\hline 12 & 1.049 & 1.558 & 0.141 & 0.210 \\
\hline 13 & 0.671 & 0.997 & 0.097 & 0.145 \\
\hline 14 & 0.606 & 0.900 & 0.000 & 0.000 \\
\hline
\end{tabular}

TABLE 8
Run 9 Ref: L25
One Column--Semicontinuous Mode: Top Feed
Conditions: Binary System Acetophenone-n-Heptane Solution
yo Acetophenone \(=2.5 \% \mathrm{v} / \mathrm{v}\); Feed Abs. \(=0.683\)
Half Cycle Time \(=20\) mins;
Displacement Volume \(=40 \mathrm{cc}\)
\(P_{T}+P_{B}=0.4, P_{B}=0.025, \lambda=246\)
\(\mathrm{T}_{2}=70^{\circ} \mathrm{C} ; \mathrm{T}_{1}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Cycle \\
No.
\end{tabular}} & \multicolumn{2}{|l|}{Top Product (Absorbance)} & \multicolumn{2}{|l|}{Bottom Product (Absorbance)} \\
\hline & \(\mathrm{y}_{\mathrm{T}}\) & \(\mathrm{y}_{\mathrm{T}} / \mathrm{y}_{\mathrm{o}}\) & \(\because\) & \(\mathrm{y}_{\mathrm{B}} / \mathrm{y}\) \\
\hline 1 & 0.593 & 0.868 & 0.651 & 0.953 \\
\hline 2 & 0.607 & 0.888 & 0.154 & 0.225 \\
\hline 3 & 0.796 & 1.165 & 0.180 & 0.263 \\
\hline 4 & 0.770 & 1.127 & 0.112 & 0.165 \\
\hline 5 & 0.954 & 1.396 & 0.232 & 0.339 \\
\hline 6 & 0.847 & 1.240 & 0.091 & 0.133 \\
\hline 7 & 0.893 & 1.307 & 0.085 & 0.125 \\
\hline 8 & 1.123 & 1.644 & 0.092 & 0.135 \\
\hline 9 & 0.926 & 1.355 & 0.225 & 0.329 \\
\hline 10 & 1.009 & 1.477 & 0.078 & 0.115 \\
\hline 11 & 1.082 & 1.584 & 0.105 & 0.153 \\
\hline 12 & 0.980 & 1.434 & 0.192 & 0.281 \\
\hline 13 & 1.176 & 1.721 & 0.096 & 0.142 \\
\hline 14 & 1.012 & 0.1481 & 0.222 & 0.325 \\
\hline
\end{tabular}

\section*{TABLE 9}

\section*{Run 10 Ref: L23}

One Column--Semicontinuous Mode: Top Feed
Conditions: Binary System Toluene-n-Heptane Solution
yo Toluene \(=2.5 \% \mathrm{v} / \mathrm{v} ;\) Feed Abs. \(=0.239\)
Half Cycle Time \(=20\) mins; Displacement Volume \(=40 \mathrm{cc}\)
\(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}=0.4, \mathrm{P}_{\mathrm{B}}=0.025, \lambda=263\)
\(\mathrm{T}_{2}=70^{\circ} \mathrm{C} ; \mathrm{T}_{1}=25^{\circ} \mathrm{C}\)
Cycle Top Product (Absorbance) Bottom Product (Absorbance)
\begin{tabular}{|c|c|c|c|c|}
\hline No. & yT & \(\mathrm{y}_{\mathrm{T}} / \mathrm{y}_{0}\) & yB & \(\mathrm{y}_{\mathrm{B}} / \mathrm{y}_{\mathrm{O}}\) \\
\hline 1 & 0.211 & 0.882 & 0.227 & 0.953 \\
\hline 2 & 0.274 & 1.146 & 0.135 & 0.565 \\
\hline 3 & 0.328 & 1.372 & 0.119 & 0.501 \\
\hline 4 & 0.339 & 1.418 & 0.129 & 0.540 \\
\hline 5 & 0.410 & 1.715 & 0.124 & 0.520 \\
\hline 6 & 0.447 & 1.870 & 0.123 & 0.515 \\
\hline 7 & 0.531 & 2.221 & 0.125 & 0.525 \\
\hline 8 & 0.517 & 2.163 & 0.124 & 0.523 \\
\hline 9 & 0.574 & 2.401 & 0.129 & 0.542 \\
\hline 10 & 0.567 & 2.372 & 0.134 & 0.561 \\
\hline 11 & 0.558 & 2.334 & 0.135 & 0.565 \\
\hline 12 & 0.618 & 2.585 & 0.125 & 0.524 \\
\hline 13 & 0.617 & 2.581 & 0.139 & 0.582 \\
\hline 14 & 0.550 & 2.301 & 0.138 & 0.579 \\
\hline
\end{tabular}

TABLE 10
Run 11 Ref: L26
One Column--Continuous Mode: Top Feed
Conditions: Binary System Toluene-n-Heptane Solution
\(y_{o}\) Toluene \(=2.5 \% \mathrm{v} / \mathrm{v}\); Feed Abs. \(=0.235\)
Half Cycle Time \(=20\) mins;
Displacement Volume \(=40 \mathrm{cc}\)
\(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}=0.4, \mathrm{P}_{\mathrm{B}}=0.025, \lambda=263\)
\(\mathrm{T}_{2}=70^{\circ} \mathrm{C} ; \mathrm{T}_{1}=25^{\circ} \mathrm{C}\)
Cycle Top Product (Absorbance) Bottom Product (Absorbance)
No.
\(\underline{y_{T}} \quad y_{T} / y_{o}\)
\(\xrightarrow{\text { J B }}\)
0.190
0.808
10.219
0.932
0.119
0.506

3
0.334
1.421
0.107
0.455

4
0.360
1.532
0.082
0.348

5
0.406
1.727
0.082
0.348

6
0.426
1.812
0.117
0.493
\(7 \quad 0.432\)
1.838
0.106
0.451

8
0.506
2.153
0.108
0.459

9
0.483
2.055
0.154
0.655

10
0.547
2.327
0.194
0.825

11
0.419
1.782
0.091
0.387

12
0.464
0.974
0.119
0.506

13
0.434
1.846
0.159
0.676

14
0.426
1.813
0.107
0.455

TABLE 11
Run 12 Ref: L29
One Column--Continuous Mode: Top Feed
Conditions: Binary System Acetophenone-n-Heptane Solution
\(y_{o}\) Acetophenone \(=2.5 \% \mathrm{v} / \mathrm{v} ;\) Feed Abs. \(=0.589\)
Half Cycle Time \(=20\) mins; Displacement Volume \(=40 \mathrm{cc}\)
\(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}=0.4, \mathrm{P}_{\mathrm{B}}=0.025, \lambda=246\)
\(\mathrm{T}_{2}=70^{\circ} \mathrm{C} ; \mathrm{T}_{1}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|}
\hline Cycle
No. & Top Pr
\(\underline{y_{T}}\) & (Absorb
\(\mathrm{y}^{\mathrm{I}} / \mathrm{y}_{0}\) & Bottom & (Absor
\(\mathrm{y}_{\mathrm{B}} / \mathrm{y}_{0}\) \\
\hline 1 & 0.759 & 0.288 & 0.217 & 0.368 \\
\hline 2 & 1.138 & 1.932 & 0.044 & 0.074 \\
\hline 3 & 1.005 & 1.706 & 0.158 & 0.268 \\
\hline 4 & 1.151 & 1.954 & 0.035 & 0.059 \\
\hline 5 & 1.314 & 2.230 & 0.021 & 0.035 \\
\hline 6 & 1.306 & 2.217 & 0.084 & 0.142 \\
\hline 7 & 1.277 & 0.034 & 2.168 & 0.057 \\
\hline 8 & 1.318 & 2.237 & 0.037 & 0.0628 \\
\hline 9 & 1.375 & 2.334 & 0.065 & 0.110 \\
\hline 10 & 1.334 & 2.264 & 0.063 & 0.106 \\
\hline 11 & 1.201 & 2.039 & 0.071 & 0.120 \\
\hline 12 & 1.392 & 2.363 & 0.051 & 0.086 \\
\hline 13 & 1.338 & 2.271 & 0.100 & 0.169 \\
\hline 14 & 1.174 & 1.993 & 0.133 & 0.225 \\
\hline
\end{tabular}

TABLE 12


\section*{TABLE \\ 13}

Run 14 Ref: L28
One Column--Continuous
Mode: Bottom Feed
Conditions: Binary System Acetophenone-n-Heptane Solution
yo Acetophenone \(=2.5 \% \mathrm{v} / \mathrm{v} ;\) Feed Abs. \(=0.529\)
Half Cycle Time \(=20\) mins; Displacement Volume \(=40 \mathrm{cc}\)
\(\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}=0.4, \mathrm{P}_{\mathrm{B}}=0.025, \lambda=246\)
\(\mathrm{T}_{2}=70^{\circ} \mathrm{C} ; \mathrm{T}_{1}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Cycle
No.} & \multicolumn{2}{|l|}{Top Product (Absorbance)} & Bottom Product & (Absorbance) \\
\hline & \({ }^{\text {YT }}\) & \(\mathrm{y}_{\mathrm{T}} / \mathrm{y}_{0}\) & \(\mathrm{U}^{\prime} \underline{\underline{\square}}\) & \(\mathrm{yB}_{\mathrm{B}} / \mathrm{y}_{0}\) \\
\hline 1 & 0.404 & 0.763 & 0.382 & 0.722 \\
\hline 2 & 0.336 & 0.635 & 0.323 & 0.610 \\
\hline 3 & 0.180 & 0.340 & 0.296 & 0.559 \\
\hline 4 & 1.151 & 0.285 & 0.295 & 0.557 \\
\hline 5 & 0.164 & 0.310 & 0.256 & 0.483 \\
\hline 6 & 0.155 & 0.293 & 0.278 & 0.525 \\
\hline 7 & 0.131 & 0.247 & 0.281 & 0.531 \\
\hline 8 & 0.105 & 0.198 & 0.285 & 0.538 \\
\hline 9 & 0.333 & 0.629 & 0.278 & 0.525 \\
\hline 10 & 0.492 & 0.930 & 0.279 & 0.527 \\
\hline 11 & 0.635 & 1.197 & 0.288 & 0.544 \\
\hline 12 & 0.842 & 1.591 & 0.275 & 0.519 \\
\hline 13 & 0.886 & 2.674 & 0.268 & 0.506 \\
\hline 14 & 0.830 & 1.568 & 0.264 & 0.499 \\
\hline
\end{tabular}

\section*{APPENDIX III}

\section*{TWO-COLUMN PARAMETRIC PUMPING} EXPERIMENTAL DATA

\section*{TABLE 14}

\section*{Run \#20}

\section*{Two-Columns--Alternating Top Feed}


\section*{TABLE 15}

\section*{Run \#21}

\section*{Two-Columns--Alternating Top Feed}
Conditions: \begin{tabular}{l} 
Ternary System--Toluene-Acetophenone-n-Heptane \\
Solution \\
yo1 (Toluene) \(=5.0 \% \mathrm{v} / \mathrm{v}\) \\
yo2 (Acetophenone) \(=5.0 \% \mathrm{v} / \mathrm{v}\) \\
\\
Half Cycle Time \(=20 \mathrm{mins}\). \\
\\
Displacement Volume \(=40 \mathrm{cc}\) \\
\\
\(\mathrm{P}_{\mathrm{T}}=0.200 ; \mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}=0.400\) \\
\\
\(\mathrm{~T}_{2}=70^{\circ} \mathrm{C} ; \mathrm{T}_{1}=25^{\circ} \mathrm{C}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Cycle No.} & \multirow[t]{2}{*}{\[
\frac{\text { Feed }}{\mathrm{cc}}
\]} & \multicolumn{6}{|l|}{Top Product Recovery (\%) Bottom Product Recovery (\%)} \\
\hline & & cc & \(\mathrm{y}_{1}\) & y 2 & cc & y 1 & Y 2 \\
\hline 1 & 16 & 8 & 70.290 & 29.710 & 8 & 40.660 & 59.340 \\
\hline 2 & 16 & 8 & 86.780 & 13.220 & 8 & 36.990 & 63.010 \\
\hline 3 & 16 & 8 & 97.340 & 2.659 & 8 & 35.470 & 64.530 \\
\hline 4 & 16 & 8 & 98.460 & 1.544 & 8 & 34.690 & 65.310 \\
\hline 5 & 16 & 8 & 97.520 & 2.482 & 8 & 34.050 & 65.950 \\
\hline 6 & 16 & 8 & 92.620 & 7.382 & 8 & 33.470 & 66.530 \\
\hline 7 & 16 & 8 & 96.840 & 3.162 & 8 & 33.350 & 66.650 \\
\hline 8 & 16 & 8 & 97.740 & 2.258 & 8 & 33.260 & 66.740 \\
\hline 9 & 16 & 8 & 97.860 & 2.141 & 8 & 32.730 & 67.270 \\
\hline 10 & 16 & 8 & 98.250 & 1.754 & 8 & 32.450 & 67.550 \\
\hline
\end{tabular}

TABLE 16


\section*{TABLE 17}

\section*{Run \#23}

Two-Columns--Alternating Top Feed
Conditions: Ternary System--Toluene-Acetophenone-n-Heptane Solution
y01 (Toluene) \(=5.0 \% \mathrm{v} / \mathrm{v}\) y02 (Acetophenone) \(=5.0 \% \mathrm{v} / \mathrm{v}\)
Half Cycle Time \(=20\) mins. Displacement Volume \(=40 \mathrm{cc}\)
\(\mathrm{P}_{\mathrm{T}}=0.1 ; \mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{B}}=0.200\)
\(\mathrm{T}_{2}=70^{\circ} \mathrm{C} ; \mathrm{T}_{1}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Cycle \\
No.
\end{tabular}} & \multirow[t]{2}{*}{\[
\frac{\text { Feed }}{\mathrm{cc}}
\]} & \multicolumn{6}{|l|}{Top Product Recovery (\%) Bottom Product Recovery (\%)} \\
\hline & & cc & y 1 & \(\mathrm{y}_{2}\) & cc & \(\mathrm{y}_{1}\) & Y 2 \\
\hline 1 & 8 & 4 & 57.610 & 42.390 & 4 & 40.350 & 59.65 \\
\hline 2 & 8 & 4 & 76.060 & 23.940 & 4 & 40.740 & 59.26 \\
\hline 3 & 8 & 4 & 88.290 & 11.710 & 4 & 39.110 & 60.89 \\
\hline 4 & 8 & 4 & 96.110 & 3.894 & 4 & 37.390 & 62.61 \\
\hline 5 & 8 & 4 & 98.420 & 1.584 & 4 & 35.890 & 64.16 \\
\hline 6 & 8 & 4 & 99.160 & 0.839 & 4 & 34.87 & 65.13 \\
\hline 7 & 8 & 4 & 99.480 & 0.517 & 4 & 34.150 & 65.85 \\
\hline 8 & 8 & 4 & 99.550 & 0.445 & 4 & 32.850 & 67.15 \\
\hline 9 & 8 & 4 & 99.770 & 0.225 & 4 & 32.05 & 67.95 \\
\hline 10 & 8 & 4 & 100.00 & 0.000 & 4 & 32.04 & 67.96 \\
\hline
\end{tabular}

\section*{APPENDIX IV}

ONE-COLUMN CYCLING ZONE
EXPERIMENTAL DATA

\section*{TABLE 18}

\section*{Run \#45}

Conditions: Temperature Switching Time for
\[
\begin{aligned}
& \left(\mathrm{T}_{1}=25\right)=\left(\mathrm{T}_{2}=60\right)=10 \mathrm{mins} \\
& y_{01}(0-\text { Xylene })=1.0 \text { vol } \% ; \\
& y_{02}(\text { Anisole })=1.0 \text { vol } \%
\end{aligned}
\]

Cycle No. Temp. \({ }^{\circ}\)

1
60
Effluent Concentrations
1.0701
0.7197
1.1954
0.68164
1.3580
0.6811
1.5511
0.7250
1.6517
0.7900

25
\(1.6224 \quad 0.8339\)
1.6224
0.9122
1.4680
0.9058
1.2212
0.8104
1.1195
0.7445

\section*{TABLE 18 (Cont'd.)}


TABLE 18 (Cont'd.).
Effluent Concentrations
Cycle No.
\begin{tabular}{lll} 
Temp. \({ }^{\circ} \mathrm{C}\) & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\underline{\mathrm{y}_{2} / \mathrm{y}_{02}}\) \\
25 & 1.1212 & 0.6292 \\
& 1.1212 & 0.6710 \\
& 1.0988 & 0.7123 \\
& 0.9568 & 0.6689 \\
& 0.8086 & 0.5912
\end{tabular}

TABLE 19
Run \#46
Conditions: Temperature Switching Time for
\(\left(T_{2}=60\right)=\left(T_{3}=85\right)=10 \mathrm{mins}\)
Y01 (Toluene) \(=1.0\) vol \(\%\);
\(y_{02}(\) Anisole \()=1.0\) vol \(\%\)
Efさluent Concentrations
Cycl
1

2
\begin{tabular}{|c|c|c|}
\hline Temp. \({ }^{\circ} \mathrm{C}\) & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\mathrm{y}_{2} / \mathrm{y}_{02}\) \\
\hline \multirow[t]{4}{*}{85} & 0.8339 & 1.3056 \\
\hline & 0.8574 & 1.2421 \\
\hline & 0.9224 & 1.2384 \\
\hline & 1.0260 & 1.3516 \\
\hline \multirow[t]{6}{*}{60} & 1.0511 & 1.5616 \\
\hline & 1.1300 & 1.7392 \\
\hline & 0.9270 & 1.6107 \\
\hline & 0.9706 & 1.8677 \\
\hline & 0.8385 & 1.6557 \\
\hline & 0.84771 & 1.5864 \\
\hline \multirow[t]{5}{*}{85} & 0.8557 & 1.4727 \\
\hline & 0.8419 & 1.3966 \\
\hline & 0.9310 & 1.4865 \\
\hline & 0.9873 & 1.6663 \\
\hline & 1.0281 & 2.0100 \\
\hline \multirow[t]{5}{*}{60} & 1.0695 & 2.1819 \\
\hline & 0.9385 & 2.1041 \\
\hline & 0.8908 & 2.1258 \\
\hline & 0.8310 & 1.8947 \\
\hline & 0.8402 & 1.7303 \\
\hline
\end{tabular}

TABLE 19 (Cont'd.)
Effluent Concentration
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Cycle No.} & \multirow[t]{2}{*}{Temp. \({ }^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{} \\
\hline & & Y \(1 / \mathrm{y}_{01}\) & \(\underline{y_{2} / y_{02}}\) \\
\hline 3 & 85 & 0.8252 & 1.5039 \\
\hline & & 0.8396 & 1.4415 \\
\hline & & 0.9068 & 1.4764 \\
\hline & & 0.9994 & 1.6869 \\
\hline & & 1.0109 & 1.8979 \\
\hline & 60 & 1.0568 & 2.0920 \\
\hline & & 0.9965 & 2.1274 \\
\hline & & 0.9413 & 2.0962 \\
\hline & & 0.8482 & 1.7990 \\
\hline & & 0.8327 & 1.5568 \\
\hline
\end{tabular}

\section*{TABLE 20}

\section*{Run \#47}

Conditions: **Temperature Switching Time for \(\left(T_{1}=25\right)=\left(T_{2}=60\right)=10 \mathrm{mins}\) \(y_{01}(0-X y l e n e)=1.0\) vol \(\%\); yo2(Anisole) \(=1.0\) vol \%
*All runs are adjusted for temperature lag of 4 mins.
**Transients not included in data
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Cycle No.} & \multirow[b]{2}{*}{Temp. \({ }^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{E: \({ }^{\text {f }}\) fluent Concentrations} \\
\hline & & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\mathrm{y}_{2} / \mathrm{y}_{02}\) \\
\hline \multirow[t]{10}{*}{3} & \multirow[t]{5}{*}{60} & 0.8196 & 0.5217 \\
\hline & & 0.9848 & 0.5628 \\
\hline & & 1.0849 & 0.6149 \\
\hline & & 1.1496 & 0.7061 \\
\hline & & 1.1021 & 0.7075 \\
\hline & \multirow[t]{5}{*}{25} & 1.0667 & 0.7606 \\
\hline & & 1.0443 & 0.8275 \\
\hline & & 0.8759 & 0.7649 \\
\hline & & 0.6824 & 0.6125 \\
\hline & & 0.6407 & 0.4863 \\
\hline \multirow[t]{5}{*}{4} & \multirow[t]{5}{*}{60} & 0.7179 & 0.4710 \\
\hline & & 0.9504 & 0.5231 \\
\hline & & 1.1063 & 0.5570 \\
\hline & & 1.0615 & 0.5604 \\
\hline & & 1.1131 & 0.6091 \\
\hline
\end{tabular}

TABLE 20 (Cont'd.)
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{Cycle No.} & \multirow{3}{*}{Temp. \({ }^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{Effluent Concentration} \\
\hline & & & \\
\hline & & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\mathrm{y}_{2} / \mathrm{y}_{02}\) \\
\hline & 25 & 1.0683 & 0.6488 \\
\hline & & 0.9864 & 0.6813 \\
\hline & & 0.8315 & 0.6430 \\
\hline & & 0.6569 & 0.5069 \\
\hline & & 0.6824 & 0.4424 \\
\hline 5 & 60 & 0.7518 & 0.4295 \\
\hline & & 0.9551 & 0.4696 \\
\hline & & 1.1006 & 0.5193 \\
\hline & & 1.1454 & 0.5914 \\
\hline & & 1.0735 & 0.6220 \\
\hline & 25 & 0.9822 & 0.6407 \\
\hline & & 0.8524 & 0.6225 \\
\hline & & 0.6798 & 0.5274 \\
\hline & & 0.6736 & 0.4586 \\
\hline & & 0.7022 & 0.3927 \\
\hline
\end{tabular}

\section*{TABLE 21}

\section*{Run \#48}

Conditions: **Temperature Switching Time for
\[
\begin{aligned}
& \left(\mathrm{T}_{1}=30\right)=\left(\mathrm{T}_{2}=60\right)=10 \mathrm{mins} \\
& \mathrm{y}_{01}(0-\mathrm{Xylene})=1.0 \text { vol } \% ; \\
& \text { y }_{02}(\text { Anisole })=1.0 \text { vol } \% \\
& \text { *All runs are adjusted for temperature lag of } 4 \\
& \text { mins. } \\
& \text { **Transients not included in data }
\end{aligned}
\]

Effluent Concentrations
Cycle No.
Temp. \({ }^{\circ} \mathrm{C}\)

30
0.5429
0.6512
0.5890
0.5857

60
0.6190
0.4959
0.7181
0.5563
0.8345
0.7056
1.2484
1.4445
0.7181
1.1071

85
1.1423
1.8355
0.9262
1.2450
0.9361
1.4690
1.0756
1.7916
1.0488
1.6613

TABLE 21 (Cont'd.)

TABLE 21 (Cont'd.)

Cycle No.
Temp. \({ }^{\circ} \mathrm{C}\)
85 \begin{tabular}{lll}
1.0436 & 0.8873 \\
1.2930 & 1.0906 \\
1.1916 & 1.2492 \\
1.7703 & 1.3839 \\
1.7703 & 1.3839 \\
1.2470 & 1.3171
\end{tabular}

TABLE 22

\section*{Run \#49}

Conditions: **Temperature Switching Time for
\[
\begin{aligned}
& \left(\mathrm{T}_{1}=30\right)=\left(\mathrm{T}_{2}=60\right)=\left(\mathrm{T}_{3}=85\right)=10 \mathrm{mins} \\
& \text { y } 01(0-\text { Xylene })=1.0 \text { vol } \% ; \\
& \text { y } 02(\text { Anisole })=1.0 \text { vol } \% \\
& \text { *All runs are adjusted for temperature lag of } 4 \\
& \text { mins. } \\
& \text { **Transients not included in data }
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Cycle No.} & \multirow[b]{2}{*}{Temp. \({ }^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{Effluent Concentrations} \\
\hline & & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\mathrm{y}_{2} / \mathrm{y}_{02}\) \\
\hline 3 & 85 & 0.8919 & 0.7853 \\
\hline & & 0.9887 & 0.8490 \\
\hline & & 1.0601 & 0.9266 \\
\hline & & 0.9689 & 1.2053 \\
\hline & & 0.9276 & 1.3471 \\
\hline & & 0.8562 & 1.2960 \\
\hline & & 0.8661 & 1.2741 \\
\hline & 30 & 0.7618 & 1.1189 \\
\hline & & 0.6308 & 0.8283 \\
\hline & & 0.6641 & 0.6938 \\
\hline & & 0.7609 & 0.6284 \\
\hline & & 0.7736 & 0.5191 \\
\hline & & 0.7839 & 0.4458 \\
\hline & & 0.9422 & 0.4559 \\
\hline & 60 & 1.0258 & 0.4690 \\
\hline & & 1.1329 & 0.4985 \\
\hline & & 1.2353 & 0.6191 \\
\hline
\end{tabular}

TABLE 22 (Cont'd.)
Effluent Concentration
Cycle No.

4
Temp. \({ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|}
\hline \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\underline{y_{2} / y_{02}}\) \\
\hline 1.1146 & 0.6803 \\
\hline 1.085 & 0.7853 \\
\hline 1.0878 & 0.9110 \\
\hline 1.0427 & 0.9552 \\
\hline 0.9628 & 0.8696 \\
\hline 1.2475 & 1.1362 \\
\hline 1.1540 & 1.2328 \\
\hline 1.0878 & 1.6139 \\
\hline 0.9920 & 1.4774 \\
\hline 0.9835 & 1.5444 \\
\hline 1.0493 & 1.5554 \\
\hline 0.9065 & 1.3116 \\
\hline 0.7689 & 1.0868 \\
\hline 0.6796 & 0.8426 \\
\hline 0.6665 & 0.6402 \\
\hline 0.7346 & 0.5782 \\
\hline 0.8891 & 0.5394 \\
\hline 0.8806 & 0.4681 \\
\hline 0.9835 & 0.4660 \\
\hline 1.0831 & 0.5107 \\
\hline 1.1136 & 0.6039 \\
\hline 1.2198 & 0.7764 \\
\hline 1.1423 & 0.8469 \\
\hline 0.9798 & 0.8165 \\
\hline
\end{tabular}


TABLE 23

\section*{Run 750}

Conditions: **Temperature Switching Time for
\(\left(\mathrm{T}_{1}=30\right)=\left(\mathrm{T}_{2}=60\right)=\left(\mathrm{T}_{3}=85\right)=10 \mathrm{mins}\)
\(y_{01}(0-X y l e n e)=1.0\) vol \%;
\(y_{02}(\) Anisole \()=1.0\) vol \(\%\)
*All runs are adjusted for temperature lag of 4 mins.
**Transients not included in data

Cycle No. Temp. \({ }^{\circ} \mathrm{C}\)

5
85


30


60
-
\begin{tabular}{ll}
\(\frac{\mathrm{y}_{1} / \mathrm{y}_{01}}{1.1496}\) & \(\underline{\mathrm{y}_{2} / \mathrm{y}_{02}}\) \\
1.2287 \\
1.2500 & 1.4414 \\
1.1708 & 1.5974 \\
1.2721 & 1.8183 \\
1.1970 & 1.6866 \\
0.9531 & 0.2926 \\
0.8397 & 1.0301 \\
0.8780 & 0.8911 \\
0.8346 & 0.6669 \\
0.8467 & 0.5274 \\
0.9430 & 0.5457 \\
1.0907 & 0.6171 \\
1.1265 & 0.7575 \\
1.0987 & 0.9853 \\
1.0025 & 1.0548
\end{tabular}

Effluent Concentrations

TABLE 23 (Cont'd.)
Effluent Concentration
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Cycle No.} & \multirow[t]{2}{*}{Temp. \({ }^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{luent Concentration} \\
\hline & & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\mathrm{y}_{2} / \mathrm{y}_{02}\) \\
\hline \multirow[t]{15}{*}{6} & \multirow[t]{5}{*}{85} & 1.1098 & 1.1674 \\
\hline & & 1.2177 & 1.2287 \\
\hline & & 1.3331 & 1.4126 \\
\hline & & 1.343 & 1.5988 \\
\hline & & 1.1607 & 1.4135 \\
\hline & \multirow[t]{5}{*}{30} & 1.0267 & 1.2532 \\
\hline & & 0.8598 & 0.9432 \\
\hline & & 0.8533 & 0.7868 \\
\hline & & 0.8744 & 0.6692 \\
\hline & & 0.9117 & 0.6010 \\
\hline & \multirow[t]{5}{*}{60} & 0.9294 & 0.5503 \\
\hline & & 0.908 & 0.5160 \\
\hline & & 1.163 & 0.6097 \\
\hline & & 1. 2547 & 0.7032 \\
\hline & & 1.0539 & 0.8892 \\
\hline \multirow[t]{10}{*}{7} & \multirow[t]{5}{*}{85} & 1.1144 & 1.0379 \\
\hline & & 1.2016 & 1.1125 \\
\hline & & 1.3407 & 1.3660 \\
\hline & & 1.3210 & 1.4748 \\
\hline & & 1.2157 & 1.3842 \\
\hline & \multirow[t]{5}{*}{30} & 0.9581 & 1.0969 \\
\hline & & 0.8382 & 0.8504 \\
\hline & & 0.8009 & 0.6619 \\
\hline & & 0.8351 & 0.5425 \\
\hline & & 0.8623 & 0.4720 \\
\hline
\end{tabular}

TABLE 23 (Cont'd.)
Effluent Concentration
Cycle No.
Temp. \({ }^{\circ} \mathrm{C}\)

60
\begin{tabular}{ll}
\(\frac{y_{1} / y_{01}}{0.9889}\) & \(\frac{y_{2} / y_{02}}{0.5114}\) \\
1.1370 & 0.5475 \\
1.1365 & 0.5887 \\
1.0987 & 0.7456 \\
0.9909 & 0.8664 \\
1.0861 & 0.9766 \\
1.2031 & 1.0580 \\
1.2091 & 1.1628 \\
1.2580 & 1.3545 \\
1.2071 & 1.3101
\end{tabular}

TABLE 24

\section*{Run \#51}

Conditions: **Temperature Switching Time for
\(\left(T_{1}=30\right)=20 \mathrm{mins}\)
\(\left(\mathrm{T}_{2}=60\right)=\left(\mathrm{T}_{3}=85\right)=14 \mathrm{mins}\)
\(y_{01}(0-X y l e n e)=1.0\) vol \(\%\);
\(y_{02}(\) Anisole \()=1.0 \operatorname{vol} \%\)
*All runs are adjusted for temperature lag of 4 mins.
**Transients not included in data
Effluent Concentrations
Cycle No. Temp. \({ }^{\circ} \mathrm{C}\)
\begin{tabular}{ll}
\(y_{1} / y_{01}\) & \(\underline{y_{2} / y_{02}}\) \\
0.9524 & 0.3595 \\
1.1960 & 0.4307 \\
1.2220 & 0.4635 \\
1.2910 & 0.5698 \\
1.2930 & 0.6206 \\
1.2470 & 0.6444 \\
1.1520 & 0.5706 \\
0.9276 & 0.4527 \\
0.7319 & 0.3883 \\
0.6786 & 0.3395 \\
0.6695 & 0.3101 \\
0.6796 & 0.2648 \\
0.6971 & 0.2373 \\
0.7109 & 0.2291 \\
0.8674 & 0.898
\end{tabular}

TABLE 24 (Cont'd.)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Cycle No.} & \multirow[b]{2}{*}{Temp. \({ }^{\circ}{ }^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{Effluent Concentration} \\
\hline & & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\mathrm{y}_{2} / \mathrm{y}_{02}\) \\
\hline & 60 & 0.9863 & 0.1972 \\
\hline & & 0.1680 & 0.2181 \\
\hline & & 1.3140 & 0.2439 \\
\hline & & 1.3520 & 0.2622 \\
\hline & & 1.3980 & 0.2823 \\
\hline & & 1.4150 & 0.3064 \\
\hline & & 1.3660 & 0.3058 \\
\hline 4 & 85 & 1.3520 & 0.3360 \\
\hline & & 1.3600 & 0.3537 \\
\hline & & 1.4640 & 0.3784 \\
\hline & & 1.4930 & 0.4167 \\
\hline & & 1.4980 & 0.4754 \\
\hline & & 1.3770 & 0.4992 \\
\hline & & 1.3730 & 0.5486 \\
\hline & 30 & 1.3560 & 0.5875 \\
\hline & & 1.2600 & 0.5767 \\
\hline & & 1.0380 & 0.5027 \\
\hline & & 0.9163 & 0.4376 \\
\hline & & 0.8906 & 0.3825 \\
\hline & & 0.9050 & 0.3328 \\
\hline & & 0.9518 & 0.3017 \\
\hline & & j0.9897 & 0.2602 \\
\hline & & 0.8114 & 0.1886 \\
\hline & & 1.0540 & 0.2160 \\
\hline
\end{tabular}

TABLE 24 (Cont'd.)
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{Cycle No.} & \multirow{3}{*}{Temp. \({ }^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{Effluent Concentration} \\
\hline & & & \\
\hline & & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\underline{y_{2} / \mathrm{y}_{02}}\) \\
\hline & 60 & 0.9863 & 0.1972 \\
\hline & & 0.1680 & 0.2181 \\
\hline & & 1.3140 & 0.2439 \\
\hline & & 1.3520 & 0.2622 \\
\hline & & 1.3980 & 0.2823 \\
\hline & & 1.4150 & 0.3064 \\
\hline & & 1.3660 & 0.3058 \\
\hline & 60 & 1.0931 & 0.2090 \\
\hline & & 1.1740 & 0.2119 \\
\hline & & 1.3290 & 0.2386 \\
\hline & & 1.3840 & 0.2578 \\
\hline & & 1.3790 & 0.2965 \\
\hline & & 1.3240 & 0.3157 \\
\hline & & 1.2320 & 0.3244 \\
\hline
\end{tabular}

\section*{TABLE 25}

\section*{Run \({ }^{\boldsymbol{\#}} 52\)}

Conditions: **Temperature Switching Time for
```

(T
(T2 = 60) = (T3 = 85) = 14 mins
y01 (O-Xylene) = 1.0 vol %;
y02(Anisole) = 1.0 vol %
*All runs are adjusted for temperature lag of 4
mjns.
**Transients not included in data

```

Cycle No.

3

Temp. \({ }^{\circ} \mathrm{C}\)

85

30

60
60

Effluent Concentrations
\(\underline{y_{1} / y_{01}} \quad \underline{y_{2} / y_{02}}\) \(0.8093 \quad 0.9570\) \(0.8815 \quad 1.4670\)
\(0.8349 \quad 1.5980\)
\(0.8252 \quad 1.6400\)
\(0.8292 \quad 1.6540\)
\(0.8462 \quad 1.6150\)
\(0.7241 \quad 1.3960\)
\(0.6218 \quad 1.0940\)
\(0.6180 \quad 0.8587\)
\(0.6185 \quad 0.6772\)
\(0.6832 \quad 0.5901\)
\(0.8704 \quad 0.7922\)
\(0.8791 \quad 0.5976\)
\(0.9895 \quad 0.7028\)
\(1.0150 \quad 0.8688\)
\(1.0090 \quad 1.0200\)

TABLE 25 (Cont'd.)
Effluent Concentration
Cycle No.
Temp. \({ }^{\circ} \mathrm{C}\)

60

85
0.9941
1.0070
\begin{tabular}{ll}
\(\mathrm{y}_{1} / \mathrm{y}_{01}\) \\
\hline 0.9733 & \(\underline{y_{2} / \mathrm{y}_{02}}\) \\
0.9197 & 1.0760 \\
0.9003 & 1.0480 \\
0.9941 & 1.0070 \\
1.0790 & 1.0250 \\
1.0720 & 1.4090 \\
0.9933 & 1.5880 \\
0.9588 & 1.7410 \\
0.9502 & 1.6740 \\
0.8772 & 1.431 \\
0.7061 & 0.8511 \\
0.6501 & 0.6697 \\
0.6563 & 0.5612 \\
0.7093 & 0.4892 \\
0.7576 & 0.4531 \\
0.8195 & 0.5001 \\
0.9690 & 0.6138 \\
1.0810 & 0.9462 \\
1.076 & 0.8680 \\
0.9838 & 0.9500
\end{tabular}

TABLE 25 (Cont'd.)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Cycle No.} & \multirow[b]{2}{*}{Temp. \({ }^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{Effluent Concentration} \\
\hline & & \(\mathrm{y}_{1} / \mathrm{y}_{01}\) & \(\mathrm{y}_{2} / \mathrm{y}_{02}\) \\
\hline & 85 & 0.9030 & 0.9143 \\
\hline & & 0.9973 & 1.0050 \\
\hline & & 0.9777 & 1.1310 \\
\hline & & 0.9284 & 1.2580 \\
\hline & & 0.8799 & 1.2950 \\
\hline & & 0.8559 & 1.2670 \\
\hline & & 0.7904 & 1.1620 \\
\hline
\end{tabular}

\section*{TABLE 26}

\section*{Run \#53}

\section*{One-Column--Staged Sequence}

Conditions: Ternary System--O-Xylene-Anisole-n-Heptane Solution Recycle Ratio \(=1.0\)
\(y_{01}(0-X y l e n e)=10 \% \mathrm{v} / \mathrm{v}\) \(y_{02}\) (Anisole) \(=10 \% \mathrm{v} / \mathrm{v}\)
Thermal Switching Period: \(\mathrm{T}_{30}=\mathrm{t}_{60}=\mathrm{t}_{85}=10 \mathrm{mins}\)
Sample Size \(=6 \mathrm{cc}\)
Product at \(60^{\circ} \mathrm{C}\)
Product at \(85^{\circ} \mathrm{C}\)
Cycle \(\quad y_{1} / y_{01} \quad \underline{y_{2} / y_{02}} \quad \underline{y_{1} / y_{01}} \quad \underline{y_{2} / y_{02}}\)

No. Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc.
1
\(1.23 \quad 1.26\)
0.75
0.77
0.98
\(0.92 \quad 1.33\)
1.36

2
1.28
1.26
0.78
0.73
0.98
1.011 .32
1.26

3
1. 25
1.23
0.68
0.64
0.99
1.061 .30
1.25

4
1.23
1.20
0.65
0.60
0.96
1.02. 1.29
1.27

5
1.23
1.96
0.63
0.60
\(0.95 \quad 1.01 \quad 1.28\)
1.23

6
1. 20
1.18
0.60
0.59
\(0.94 \quad 0.99\)
1. 27
1. 23

7
1.15
1.17
0.59
0.58
0.96
\(0.98 \quad 1.23\)
1.20

8
1.14
1.16
0.59
0.58
0.98
\(0.97 \quad 1.18\)
1.19

9
1.19
1.16
0.58
0.57
0.98
\(0.97 \quad 1.21\)
1.17

10
1.18
1.55
0.55
0.57
0.94
\(0.96 \quad 1.90\)
1.16

11
1.20
1.50
0.59
0.56
0.93
0.951 .20
1.14

12
1.19
1.46
0.58
0.56
0.92
0.95
1.75
1.13

\section*{TABLE 27}

Run \#54

\section*{One-Column--Staged Sequence}

Conditions: Ternary System--O-Xylene-Anisole-n-Heptane Solution Recycle Ratio \(=0.0\)
y01 (O-Xylene) \(=10 \% \mathrm{v} / \mathrm{v}\) yo2(Anisole) \(=10 \% \mathrm{v} / \mathrm{v}\)
Thermal Switching Period: \(\mathrm{T}_{30}=\mathrm{t}_{60}=\mathrm{t}_{85}=10 \mathrm{mins}\)
Sample Size \(=6 c c\)
Product at \(60^{\circ} \mathrm{C} \quad\) Product at \(85^{\circ} \mathrm{C}\)

\begin{tabular}{llllllllll} 
No. & Exp. & Calc. & Exp. & Calc. & Exp. & Calc. & Exp. & Calc. \\
\cline { 1 - 1 } & & 1.24 & 1.269 & 0.77 & 0.773 & 1.001 & 1.002 & 1.35 & 1.334 \\
2 & 1.26 & 1.248 & 0.85 & 0.800 & 0.99 & 0.990 & 1.37 & 1.336 \\
3 & 1.26 & 1.226 & 0.85 & 0.827 & 0.87 & 0.978 & 1.39 & 1.338 \\
4 & 1.25 & 1.225 & 0.85 & 0.827 & 0.87 & 0.978 & 1.39 & 1.338 \\
5 & 1.25 & 1.225 & 0.80 & 0.827 & 1.10 & 0.998 & 1.37 & 1.338 \\
6 & 1.25 & 1.225 & 0.80 & 0.827 & 1.10 & 0.978 & 1.35 & 1.338 \\
7 & 1.24 & 1.225 & 0.80 & 0.827 & 1.10 & 0.978 & 1.35 & 1.338 \\
8 & 1.23 & 1.225 & 0.79 & 0.827 & 0.97 & 0.978 & 1.33 & 1.338 \\
9 & 1.23 & 1.225 & 0.78 & 0.827 & 0.98 & 0.978 & 1.33 & 1.338 \\
10 & 1.24 & 1.225 & 0.78 & 0.827 & 0.97 & 0.978 & 1.34 & 1.338 \\
11 & 1.22 & 1.225 & 0.78 & 0.827 & 0.965 & 0.978 & 1.31 & 1.338 \\
12 & 1.22 & 1.225 & 0.78 & 0.827 & 0.95 & 0.978 & 1.31 & 1.338
\end{tabular}

CHARLES O. KEROEO
DEPARTMENT OF CHEMICAL ENGINEERING VEW JERSEY INSTITUTE OF TECHNOLOGY NEWARK, NEW JERSEY, C7102

AUGUST.3OTH. 1982

This prggram calculates the concentaation profiles in THE SIMULATION OF A STAGED SEQUENCE CYCLIC PROCESS USING THE METHCD CHAFACTERISTIGS AND A FOURTH ORDER RUNGE KUTTA NUMERICAL ALGORITHM
```

 N UMEN CLLATUURE
 A = CROSS-SECTIDNAL AHEA , SQ.CM.
AMW = SURFACE AREA OF SOLID PER GRAM OF SOLID, GMMOLE/CC.
BMW = MOLECULAR WEIGHT OF O-XYLENE, CC./G.SOLID
CMW = MOLECULAR WEIGHT OF ANISOLE, GM.IGMMOLE
DENS = DENSITY OF SILICA GEL, G-SOLID/CC.
DENS = DENSITY OF O-XYLENE, GMMOLE/CC.
DENC = DENSITY OF ANISOLE, GMMOLE/CC.
DE,DC = CONSTANTS IN KODIFIEO LANGMUIP ISOTHERM,
CC.PCRE/G.
DP=SOLID PARTICLE DIAMETER,CM.
ERR = TCLERANCE
H = HEIGHT OF THE COLUMN, CM.
N = NUMBER OF CYCLES
NNZ = NUMGER OF CELLS
NITER = NUMEER OF ITERATIONS
PET,PEZ,PG3 = TEMPERATURE DEPENLENT CONSTANTS IN MODIFIED
LANGMUIR ISOTHERM FCR O-XYLENE AT T1: TZ AND
T3 RESPECTIVELY
PC1,FC2,PC3 = TEMPERATURE DEPENDENT CONSTANTS IN MODIFIED
LANGMUIR ISOTHERM FOR ANISOLE AT T1. TZ AND
T3 PESPECTIVELY
QB1.QEZ.QE3 = TEMPERATURE DEPENDENT CONSTANTS IN MODIFIED
LANGMUIR ISOTHERM FCR O-XYLENE AT T1, TZ AND
T3 RESPECTIVELY
OC1,GCZ,QC3 = TEMPERATURE DEPENDENT CONSTANTS IN MODIFIED
LANGMUIR ISOTHERM FOR ANISOLE AT T1. T2 AND
T3 RESPECTIVELY
VISB1,VISEZ,VISB3 = VISCOSITY OF O-XYLENE T T1, T2, AND T3
VISC1,VISCZ,VISC3 = VISCOSITY OF ANISOLE AT T1, TZ, AND TZ
RESPECTIVELY
TEMP 1,TEMP2,TEMP3 = OPERATING TEMPERATURES DEGREES , K
TIME = STAGE DURATION TIME, MINS.
Q = CGLUMN DISPLACEMENT VOLUAE CC.
VOID = COLUMN VOID VOLUME
VMG = MOLAR VOLUME OF O-XYLENE, CC./GMMOLE
VMC = MOLAR VOLUME OF ANISOLE, CC./GMMOLE
YA= iMITIAL CONCENTRATION OF HEPTANE GMMOLE/CC.
YBO = INITIAL CONCENTRATION OF O-XYLENE GMMOLE/CC.
YCO = INITIAL CONCENTRATION OF ANISOLE GMMOLE/CC.
YA1/YAO = NOGMALIZED CONCENTRATION OF ANISOLE IN COLUMN 1
YB1/YBO= NORMALIZED CONCENTRATION OF ANISOLE IN COLUMN Z
YAZ/YAO = NOGMALIZED CONCENTRATION OF O-XYLENE IN COLUMN Z
YEZ/YEC = NOFMALIZED CONCENTRATION OF ANISOLE IN COLUMN 2

```
    YAB/YAC = NOFMALIZED CONCENTRATION OF O-XYLENE IN COLUMN ?
    YE3/YSC = NOGMALIEED CONCENTRATION OF ANISOLE IN COLUMN 3
    OIMENSION YB1(100),YC1(100),YE2(100),YC2(100).
    *Yg ((100),YCZ(10C),XE1(100),XC1(100),XE2(100),XCZ(100),
    * XB:(1J0), XC3(1こC),YEIZ(100),YCIZ(100),YETS(100),
    *YCI=(1J0), YGE1(1CO),YCE1(100),RAE1(100),RAC1(100),
    * YGc<(1J0), YCEZ(100), R4日Z(100),REC2(100),xXE1(100),
    *xx0<(100),xxe3(100),xxc1(100), xxcz(100),xxc33(100)
    DIMENSION YYET(100), YYBZ(100), YYE3(100),YYC1(100).
    *YYCE(100), YYC3(100), YYEB1(100), YYCE1(100), YEB3(100),
    * YY圮(100), YYCEZ(100), YYBE3(100), YYCES(100), RRAB1(100),
    *RRA(1(1 D0), RRAGZ(100), RRACZ(100),RRAB3(100), RRAC3(100).
```



```
    *YYYCEZ(1J0), YYYCOS(10J),RRRIBT(100),PRRAC1(100)
    DIMENSION FRRAEZ(100),RRRABZ(10C), RRRACZ(100),
    *RRGFC3(100),PHOT(100),PHOB(100),EETA(100),YCE3(100)
    DIMENSION FABZ(100),RAC3(100),SF1(50),SF2(50),SF3(50)
    COMMON VOILC,DENS,VISAT,VISAZ,VISAZ,VISEI,VISE2,VISB3,
    *VISG1,VISCE,VISC3,TEM1,TEM2,TEM3,PE1,PB2,PE3,
    *PC1,PC2,PC3,QE1,QE2,QB3,OC1,QCZ,QC3,V1,V2,V3,OT1,
    *DT&,DT3,NITER,TIME,VMB,VMC,DE,DC,ANW,BMW,CMH,DP,AP,
    *ERH,NZ,DENE,DENC
    REAL 100,N,NNZ,NCASE,NITER,NR
    100
        FG\tilde{MAT (SIG)}
    REAO 12G,PE1,PEa,PES,PC1,PCZ,PCZ
    120 Fuimat (6ft.2)
    REAC 130,QE1,QE2,QBZ,QC1,QC2,GC3
130 FOFMAT (GFE.2)
    READ 141,VISA1,VISAZ,VISE1,VISEZ,VISC1,VISC2
    REAC 90,VISA3,VISB3,VISC3
    90 Format (3F6.4)
    141 FORMAT (CF6.4)
    READ 1S,H,TIME,YA,YBO,YCO,Q
    REAC 152,VT,VB,VOID,DENS,ERF,A
15 FORMAT(OF9.5)
152 FOHMAT(GF9.5)
    READ 10,AP,DENE,DENC,DG,DC,DP
16 FOKMAT(6F9.5)
    READ 17,TEM1,TEMZ,TEM3,VME,VMC
17 FOKMAT(SFG.2)
    READ 18,AMH,BMW,CMW
    18 FOHMAT(3FG.2)
    DO G9I=1,NCASE
    REAO 2O,PHCT(I),PHOE(I),BETA(I)
    continue
    20 FORMAT(.3F6.4)
    3O FOHMAT(2F6.4)
    DO 000 1=1,NCASE
CO2O FORMAT(-1-)
    11 FORMAT( 1)
    PRINT 2020
    PRINT 3030
3030 FOGMAT(9X,`N",8X,`NNZ",5X,"NCASE`,5X,`NITER"//)
    PRINT 1O,N,NNZ,NCASE,NITER,NR
    PRINT 11
    PRINT 3040
3040 FOGMATC10X,-PE1^,10X,-PB2`,10X,-PB3",10X,-PC1`.
```

```
    *10x,-PC2*,10x,-FC3-11)
        PREMT 12,PE1,PE2,PB3,PC1,PC2,PC3
        PRINT 11
        pqint 3050
zJSO FORMATC10X,"QE1",10x,-0日2",10x,"GB3",10x,
    *-QC1",1Ex,-QC2-.1CX,-OC3-11)
        PR&!TT13,QE1,QEZ,QBZ,QC1,QC2,QC3
        PRI!vT 11
        PRIMT 3060
3060 FOnMAT(7X,`VISA``,7x,`VISAZ`,7x,`VISB1",7x,`VISB2",
    *7x,*VISC1*,7x,*VISCZ*)
        PRE:,T 14,V:SA1,VISAZ,VISE1,VISE?,VISC1,VISC2
        PE:\T 3261
```



```
    PR{价9,VISA3,VISB3,VISC3
    PRINT 11
    PRINT 3070
```



```
        PRINT 15,H,TIME,YA,YBO,YCO,Q,VT,VB
        PRINT 11
        PRINT 30Z0
```



```
    PR:HT 15,VCID,DENS,ERR,A
    PQINT 11
    print 3090
3090 FOFMATC 10X,"AP",10x,"DENE",10X,"DENC`,10x,"DB",
    *10x,-DC*,1(x, "DP")
        PRIAT 16,AP,DENE,DENC,DE,DC,DP
        PRINT 11
        PRINT 4010
4010 FORMATC 10x,"TEMT",10x, "TEMZ`,10X,
    *'TEM3",10x,"VMB",10x,"VMC"/1)
        PRINT 17,TEM1,TEMZ,TEM3,VME,VMC
        PRINT 11
        PRINT 4020
```



```
    PRINT 18,AMW,BMW,CMW
    PRINT 11
    PRINT }707
7070 FOKMAT(6X, 'PHOT`,6X, -PHOB`.6X, "日ETA"//)
    PRINT 2O,PHOT(I),PHOB(I),BETA(I)
    PRINT 2020
    V1=(EETA(I)+PHOT(I)+PHOB(I))*Q/(A*VOID*TIME)
    V2=(BETA(I)+PHOT(I) +PHOB(I))*Q/(A*VOID*TIME)
    V3=(EETA(I)*PHOT(I))*Q/(A*VOID*TIME)
    DT1=H/(NNZ *VT)
    DT < = H/(NNZ*VZ)
    DT3=H/(NNZ*V3)
    PRINT 111,V1,V2,V3,OT1,DT2,DT3
111 FORMAT(15x, -V1= , F10.5,5x, VV2=`,F10.5,5x,
    *`V S=`,F10.5, 5x, -DT1=`,F10.5,5x, -DT2= -,F10.5,5x,
    *-DT3=-,F10.5)
    NZ = FiNZ+!
    YEP1=YBO
    YCPT=YCO
    YBF\hat{C}=YE0
    YCF C=YCO
```

```
        YBP?=YEO
        YCPZ=YCO
        DO こ1 J=1,NZ
        YB1(J)=Y日O
        YC1(J)=YCO
21 CALL EQYTOX(PQ3,PC3,0日3,QC3,DE,OC,Y日1(J),YCT(J),
    *DEGE,DENC,XE1(J), XC1(J))
        00 i2 J=1, MZ
        YBC(J)=YEO
        YCL(J)=YCO
22 CALL EQYTOX(PE3,PC3,QE3,QC3,DE,DC,YBZ($),YCZ(J).
    *DE,*E,DENC, XP2(J),XC2(J))
        00 <3 J=1, \2
        YEこ(J)=YE0
        YC-(J)= YCO
23 CALL EGYTOX(PBS,PC3,GS3,QC3,DE,DC,YB3(J),YCS(J).
    *DENA,DENC, XBI(J),X(3(J))
        M=1
        IF(N-1)31,31,32
31 YOP1=YBO
    YCP1=YC0
        GO TO 33
32 YBP1=YY5&3(M-1)
    YCP1=YYCE3(M-1)
    IF(NR.EQ.O)YEP1=YBO*(1. -EETA(I))+YYEBI(M-1) #BETA(I)
    IF(SG.EQ.O)YCPT=YCO*(1.-BETA(I))+YYCB3(M-1)*BETA(I)
33 YSLN=((PHOT(I) +PHOE(I))*YEO+YEP1*EETA(I))
    */(PHOT(1)+FHOS(I)+EETA(I))
    YCIN=((PHOT(I) +PHOE(I))*YCO+YCP1*BETA(I))
    */(PHOT(I)+FHOB(I)+BETA(I))
        IND=1
        TEMP=TEM1
        PRINT 222,M, YBP1,YCP1,YBIN, YCIN
222 FOKUATC.5X, "M=`. I5,5X, `YBP1= `E20.5,5X, `YCP1=`, E20.5.
    * 5X, 'YBIN=`, E20.5,5X, 'YCIN=`,E2O.5///)
        CALL CONC&IND, XG1,XC1,YB1,YC1,YEIN,YCIN,XXB1,XXC1,
    *YYBT,YYC1,YBE,YCB,M,YA,YBO,YCO)
        YBE1(M)=YEE
        YC U1(M) =YCE
        IF(M.EQ.1)GO TO 801
        RAG1(M)=(YEB1(M)+YBE1(M-1))/(2.*YBO)
        RAC1(M)=(YCB1(M)+YCE;(同-1))/(2.*YCO)
    GO TO }80
801 RAG1(M) = YEE1(M)/YBO
    RACT(M) = YCET(M)/YCO
802 PRINT 800,M,TEMP,YBE1(M),YCE1(M),RAB1(M),RAC1(M)
```



```
    *E15.5,5X, `YCE1= - E15.5.5X, "RAB1=`, E15.5.5X, - RACT=``,
    *E15.5//1)
    INO=2
    TEMP=TEMZ
    YBIN=YB1(NZ)
    YCIN=YC1(NZ)
    CALL CONCCIND,XEZ,XCZ,YBZ,YCZ,YBIN,YCIN,XXBZ,
    *XXGZ,YYBZ,YYCZ,YBB,YCB,M,YA,YBO,YCO)
    YBGZ(M)=YEE
    YCLC(M) = YCE
    IF(M.EQ.1)GOTO 8CG
```

```
    RAuz(M) = (YEE2(M)+YEEZ(M-1))/(Z.*YBO)
    RA[&(M) = (YCEZ (r)+YCEZ(M-1))/(Z.*YCO)
    GO TO 807
506 RAこट(M) =YEEZ(M)/YEO
    RAGL(M)=YCEZ(M)/YCO
8C7 PRINT E SS,N,TEAP,YEGZ(M),YCEZ(M),RAEZ(M),RACZ(M)
```



```
    *"RA(2=`, E15.5///)
        INu=3
        TENP=TEMZ
        YBi\=Y自(NZ)
        YC1:=YC 2(NZ)
        CALL CONC(IND,XE3,XCZ,Y日3,YC3,YEIN,YCIN,XXE3,XXC3,
    *YY L ミ, YYC3,YBE,YCB,M,YA,YBO,YCO)
    YBES(M)=YBE
    YCoS (M) =YCE
    IF(M.EQ.1)GO TO 80B
    RAGz(14)=(YER3(M)+YGE3(M-1))/(2.*YEO)
    RAEZ(M)=(YCES(M)+YCE3(M-1))/(Z.*YCO)
    GO T0 S C. 
Z08 RAES(M)=YBE3(M)/YBO
    RALZ(M)=YCE3(M)/YCO
809 PRINT 8 10,M,TEMP,YBE3(M),YCE3(M),RAG3(M),RAC3(M)
```



```
    */\mp@code{FAC3 =`.E15.5///)}
        IF(M-1) 51,51,52
51 YYGF1=Y80
    YYCF1=YCO
    GO TO 53
52 YYEF1=YB3(NZ)
    YYCP1=YC3(NZ)
    IF(NR.EQ.O)YYBP1=YB0*(1.-BETA(I))+YB3(NZ)*BETA(I)
    IF(NROEQ.O)YYCP1=YCO*(1.-日ETA(I))+YCZ(NZ)*BETA(I)
53 YYGIN=YYBP1
    YYCIN=Y YCP1
    PRINT 333,M,YYEIN,YYCIN
333 FOIMATC5X."M=`,I10,5X, 'YYEIN=`,E15.5.5X.
    *`YYCIN=*,E15.51/1)
    DO OO L=1,NZ
    XB1(L)= XXB1(L)
    XC1(L)=XXC1(L)
    X日c(L)=XX日C(L)
    XCZ(L)=XXCZ(L)
    XB3(L)=XXBZ(L)
    XC3(L)=XXCZ(L)
    YB1(L)=YYB1(L)
    YC1(L)=YYC1(L)
    YBC(L)=YYBZ(L)
    YCZ(L)= YYCZ(L)
    YBj(L)=YYBZ(L)
    YCZ(L)=YYC3(L)
    IND=2
    TEMP=TEM2
    CALL CONC(IND,XE1,XC1,YB1,YC1,YYEIN,YYCIN,XXB1,
    * XXC1,YYB1,YYC1,YBE,YCB,M,YA,YBO,YCO)
    YYGE1(M)=YEB
```

```
    YyGR1(M)=YCE
    IF(N.EQ.1)GO TO &11
    RRAE1(M)=(YYGB1(M)+YYBE1(M-1))/(2.*YBO)
    RR&C1(M)=(YYCE1(M)+YYCE1(;i-1))/(2.*YCO)
    60 T0 &12
Öl\ RRAE1(M)=YYRE1(M)/YEO
    RRAC1(M)=YYCE1(M)/YCO
812 PRINT 74,M,TEMP,YYEE1(M),YYCB1(M),FRAB1(M),
    *RRi(1 (M)
    74 FOGMATC?X, -M=-,I10,5X, -TEMP=-,Ft.2,5X, - YYEET=-,
    *E12.5,5X, - YYCR1=`,E15.5,5X, -RFAF1=',E15.5,
    */, Ex,-RRAC1=`,E15.5/1/)
        1サしここ
        TE:H=TENZ
        YY: ZA=YE1(NZ)
        YYi茦=Y(1(AZ)
        CALL CONCSIND,XEZ,XCZ,YEZ,YCZ,YYEIN,YYCIN,XXBZ,
    #XXCZ,YYBZ,YYCZ,YGE,YCB,M,YA,YEO,YCO)
        YY&EZ(M)=YEE
        YYCEZ(M)=YCB
        IF(M.EQ.1)60 TO &̂13
        RRAEZ(M)=(YYBEZ(M)+YYBZZ(M-T))/(\hat{2.*YBO)}
        RR^nCZ(M)=(YYCEZ(M)+YYCEZ(M-1))/(Z.*YCO)
        GO TO & 14
.313 RRAEC(M)=YYE日Z(N)/YEO
    RRA(2(M)=YYCEZ(M)/YCO
814 PRINT 72,M,TEMP,YYBEZ(M),YYCBZ(M),RRABZ(M),
    *RRACZ(M)
72 FORMAT( 3X,MM=`,I10,5X, -TEMP=-,FG.2,5X,
```



```
    *'RRAB2=-,E15.5,5x.1,-RRAC2=-.E15.5/11)
        IND=1
        TEMP=TEM1
        YYEIN=(YBZ(NZ)*EETA(I)+(PHOT(I)+PHOB(I))*YBO)/
    *(BETA(I)+PHOT(I)+PHOB(I))
        YYCIN=(YCZ(NZ)*EETA(I)+(PHOT(I)+PHOB(1))*YCO)/
    *(BETA(I)+PHOT(I)+PHOB(I))
        CALL CONCCIND,XE3,XC3,YE3,YC3,YYEIN,YYCIN,
    *XXEZ,XXC3,YYB3,YYC 3,YAB,YCZ,M,YA,YEO,YCO)
        YY运(M)=YE日
        YYCE3(M)= YCB
        IF(M.EQ.1)GO TO 815
        RRAES(M)=(YYBE3(M)+YYgG3(M-1))/(2.*YB0)
        RRAC3(M)=(YYCES(M)+YYCE3(M-1))/(Z.*YCO)
        GO TO 816
815 RRAB3(M)=YYBE3(M)/YBO
    RRAC3(M)=YYCES(M)/YCO
816 PRINT 7 3,M,TEMP,YYBB3(M),YYCB3(M),RRAB3(M),RRAC3(M)
73 FOKMAT( 3X, 'M=`,110,5X,"TEMP =',F6.2,5X, 'YYBE 3=`,
    *E15.5,5X, 'YYCB3=-,E15.5,5X., -RRAE3=`, E15.5,5X.
    */, -RRAC 3=-.E15.5///)
    00 75 L=1,N2
    XB1(L)=XXB1(L)
    XC1(L)= XXC1(L)
    XBZ(L)=XXBZ(L)
    xCZ(L)=XXCZ(L)
    XB3(L)=Xx93(L)
    XC3(L)=XXCz(L)
```

```
    Yロ1(L)=YY\Xi1(L)
    YC1(L)=YYC1(L)
    YBL(L)= YYEC(L)
    YC<(L)=YYCZ(L)
    YZ-(L)=YYEZ(L)
    YCJ(L)= YYCJ(L)
    IF({i-1) 76,7t,77
    YYYEP1=YEO
    YYYCPT=YCO
    GO 1078
77 YYYEP1=YE3(NZ)
    YY YCPY=YC3(NZ)
    IF(i.R.EG.O)YYYEFT=YEO*(1.-EETA(I))+YES(NZ)*RETA(I)
    IF(`A.EG.O)YYY(F1=YCO*(1.-#こT & (I)) +YCZ(NZ)*EETA(I)
    YYYにIV=YYYEP1
    YYYCIN= YYYCPT
    INu=3
    TEMP=TEM3
    CALL CONCCIND,XE1,XC1,YB1,YC1,YYYBIN,YYYCIN,
    #XX & 1,XXC1,YYE1,YYC1,YBB,YCE,M,YA,YEO,YCO)
    YYYEE1(M)= YEB
    YYYCE1(M)= YCE
    IF(M.EG.1) ©0 T0 &17
    RR的E1(M)=(YYYEB1(M)+YYYBE1(M-1))/(2.*YEO)
    RRA&C1(M)= (YYYCE1(M)+YYYCE1(M-1))/(2.*YCO)
    GO TO 315
817 RRGAE1(M)=YYYBE1(M)/Y日0
    RRFAC1(M)=YYYCB1(M)/YCO
818 PRINT B1,M,TEMP,YYYEE1(M),YYYCBI(M),RRRRAB1(M),
    *RRRAC1(M)
81 FORMATC 3X, "M=`, I10, 5X, "TEMP=`, F6. 2,5X,
```



```
    * 5X,/, -RRRAC1=`,E15.5///)
        IND=1
        TEMP=TEM1
        YY YEIN=(YB1(NZ)*BETA(I)+(PHOT(I)+PHOB(I))*YBO)/
    *(BETA(I)+PHOT(I)+PHOB(1))
        YYYCIN=(YC1(NZ)*BETA(I)+(PHOT(I)+PHOB(I))*Y(O)/
    *(BETA(I) +PHOT(I)+PHOB(I))
        CALL CONC(IND,XEZ,XC2,YBZ,YCZ,YYYBIN,YYYCIN,
    *XXEZ,XXC2,YYBZ,YYCZ,YBB,YCB,M,YA,YEO,YCO)
        YYYBBZ(M)=YBB
        YY YCB2(M)=YCB
        IF(M.EQ.1)GO TO 819
        RRRABZ(M)=(YYYBBZ(M)+YYYBBZ(M-1))/(2.*YBO)
        RRRAC2(M)=(YYYCBZ(M)+YYYGBZ(M-1))/(Z.*YCO)
        GO 10 820
819 RRRABZ(M)= YYYBB2(M)/YBO
    RRRACZ(M)=YYYCEZ(M)/YCO
820 PRINT 82,M,TEMP,YYYEE2(M), YYYCEZ(M),RRRAB2(M).
    *RRRACZ(M)
```



```
    *E15.5.5X, `YYCB2=`,E15.5,5X,`RRRAB2=`,E15.5.5X,
    */,"RRRACZ=`,E15.5////)
        INU=2
        TEMP=TEMZ
        YY YEIN= YEZ(NZ)
        YYYCIN=YCZ(NZ)
```

```
    CALL CONC(IND,XES,XCS,YB3,YC3,YYYESN,YYYCIN,
    *XXOI,XXCS,YYES,YYCS,YBB,YCS,M,YA,YEO,YCO)
        YY YFSB3(M) = YBB
        YYYCES(M) = YCB
        IF(M.EQ.1)EO TO &21
        RFK*EZ(M)=(YYYEE3(M)+YYYER3(M-1))/(2.*YBO)
        RRRACJ(M)=(YYYCB3(M)+YYYCB3(M-1))/(2.*YCO)
        G0 T0 822
8\1 GRNAE3(M)=YYY品(M)/YSO
        RRKAC3(M)=YYYCES(M)/YCO
Ō2 PRANT 33,M,TEYP,YYYERS(M),YYYCOS(M),RRRAE3(M),
    *RRAF(3(m)
8] FOG:ATC ミX,'M=`:I10,5x,'TENP=`,Ft.2,5x,
    *'YYYEZ3 =`"E15.5,5X, 'YYYCEZ=`, E1S.5,5X,
```



```
        DO ©4L=1,NZ
        XB1(L)=XXB1(L)
        XC1(L)=XXC1(L)
        X日< (L) =XXSC(L)
        XC2(L)=XXC2(L)
        XES(L)=XXES(L)
        XC: (L) =XXCZ(L)
        YG1(L)= YYE1(L)
        YC1(L)= YYC1(L)
        YR_(L)=YYBC(L)
        YCz(L)=YYCz(L)
        YBS(L)=YYB3(L)
34 YCS(L)=YYCZ(L)
        IF(M-N) 50,500.500
50 M=M+1
        GO TO 32
500 00 501 M=1,N
        SF1(M)=RABZ(M)*RAC3(M)/(RACZ(M)*RAE3(M))
        SF2(M)=RRAB1(M)*RRAC2(M)/(RRAC1(M)*RRAB2(M))
501 SF3(M)=RRRAB3(M)*RRRAC1(M)/(RRRAC3(M)*RRRAB1(M))
        PRIMT 510,(M,YEB1(M),YCB1(M),YBEZ(M),YCBC(M).
    *YBE3(M),YCE3(M),M=1,N)
```



```
    *(5X,I5, 6E1C.5))
        PRINT 511,(M,YYEB1(M), YYCB1(M),YYBS2(M),YYCB2(M),
    *YYB3(M),YYCB3(M),M=1,N)
```



```
    *(5X,I5,6E10.5))
        PRINT 512,(M,YYYBB1(M), YYYCE1(M),YYYBBZ(M), YYYCBZ(M),
    # YYYEB3(M),YYYCBZ(M),M=1,N)
512 FORMATK -- 3X, -M", 5X, YYYBE1",5X, `YYYCB1', 5X,
    * 'YYYEBZ `, 5X, "YYYCBZ`, 5X, "YYYBE3",5X,
    *`YYYC日3*//(5X.I5,6E10.5))
        PRINT 522,NNZ,H,TIME
        PRINT 523,PHOT(I), PHOB(I),BETA(I)
```



```
523 FORMAT(7X, 'PHOT=`,F10.5.2X, 'PHOE=`,F10.5.2X.
    * -BETA=`,F1C.5)
        PRINT S 24,YBO,YCO,O
S24 FORMAT(7X, YEO=`,F10.5.2X, `YCO=`,F10.5, 2X,*O=`,F10.5)
    PRINT 516
```

516 fonmat (15x, - CONCENTRATION TRANSIENTS IN STAGE 1-) PRENT 519

PRINT 513, (M,RAB1(M),RAC1(M),RAEZ(M),RACZ(M),
*RAC-(M), RAC3 (M), SF 1 (M) , M=1, N)

 PRINT 517
517 FOR*AT(//, 15 x, CONCENTRATION TRANSIENTS IN STAGE 2-) PR:NT 520

*RRAES(in), RFAC3(n),SFC(M), M=1,N)

PRINT 518
518 FORMAT(//,15X, CONCENTRATION TRANSIENTS IN STAGE 3°) PRINT 521

oOD continue STUP EN 0

SUDROUTINE CONC CIND,XBZ, XCZ,YBZ,YCZ,YBIN,YCIN,
*XXE, XXC, YYE,YYC,YYBAV,YYCAV,M,YA,YBO,YCO)
COMMON VOIO, DENS,VISA1,VISA2,VISA3,VISE1,VISB2,
*VISE3,VISC1,VISC2,VISC3,TEM1,TEM2,TEM3,PB1,PB2,PE3,
*PC 1,PC2,PC3, QB1, QB2,QB3,QC1,QC2, QC3,V1,V2,V3,DT1,DT2,
\#DT3,NITER,TIME, VMB, VMC, DE, DC, AMW, BMW, CMW, DP, AP, ERR,NZ,
*DEEE, DENC
DIMENSI ON XBZ (100), XC2(100),YB2(100),YC2(100), XXB2(100),
\# $X X C(100), Y Y B(100), Y Y C(100), X B T(100), X C T(100), X X B S(100)$,
*XXCS(100), YYBS(100), YYCS(100), NTR(100), XXC2(100),
*YÝC(100), XXB(1C0), YYCZ(100), YYB2EQ(100), YYCZEQ(100),
*YYEZES(100),YYC2ES(100),RAYE(100),RAYC(100)
SUMB=YB2(N2)
SUMC=YCZ(N2)
IF (IND.EA.1)GO 1020
IF (IND.EQ. C$) \mathrm{GO}$ TO 10
IF(IND.EQ. 3)GO TO 37
VISA=VISA2
VI SE=VI SB2
VISC=VISC2
$v=v \hat{c}$
$\mathrm{PB}=\mathrm{PB} 2$
$P C=P C 2$
$\mathrm{QB}=\mathrm{QB} 2$
$Q C=Q C 2$
. $D T=D T 2$

```
    TEn=TEM2
    GO TO 30
    20 VISA=VISA1
    VISE=VI SB1
    VISE=VISC1
    V= vi
    PG=Fg1
    PC=FC1
    GG=2 &1
    GC=G.C1
    DT=ST1
    TEM=TEM1
    GO T0 3:
    37 VI うん=VISA3
        VIS:=VISB3
        VISC=VISC3
        V=V?
        PG=PES
        PC=FB3
        QB=GE?
        QC=CC3
        DT=0T3
        TEM=TEM 3
    3C CNSTE=-(1.-VOID)*DENS/VOID
        CNSTC=-(1.-VOID)*DENS/VOID
        CNSTC=-(1.-VOID)*DENS/VOID
        XBT(1)= KB2(1)
        XCT(1)=XC2(1)
        00 22L=1,N2
        XXロZ(L)=XBZ(L)
        XXCZ(L) =XCZ(L)
        YYaट(L)=YBZ(L)
    22 YYCZ(L)=YCZ(L)
        K=1
    155 CNK=K
    TT = CT*CNK
    YYE(1)= YBIN
        YYC(1)= YCIN
        CALL YSTAR(PE,PC,QB,QC,DE,DC,YBEQI,YCEQI.
        *OENE,DENC, XXE2(1), XXC2(1))
            CALL RUNGE(YYBZ(1),YYCZ(1), YBEQI,YCEQI,XXEZ(1),XXC2(1),
    *PG,PC,QB,QC,DE,DC,DENB,OENC,XB,XC,DT,YA,AMW,BMW,CMW,
    *VISA,VI SB,VISC,DP,VOID,VME,VMC,V,AP,TEM)
        XBT(K+1)=XE
        xCT(K+1)=xC
        XXE(1)= XBT ( }k+1
        XXC(1)=XCT(K+1)
        RAYE(1)=YYE(1)/YEO
        RAYC(1) =YYC(1)/YCO
        l=<
C
85 ITER=1
    NTR(1)=1
    YYuEEQ(1)=Y日EQI
    YY(2EQ(1)= YCEQI
    CALL CMSS(YA,YYBZ(I-1),YYC2(I-1),AMW,BMW,CMW,VISA,VISB,
    *VISC,DP,VOID,AP,VMB,VMC,CLE,CLC,V,TEM)
    YYES(I) = YYEZ(I-1) +CNSTB*CLE*DT*(YYBZ(I-1)-YYEZEQ(I-1))
```

YYCS（I）$=Y Y C Z(I-1)+C A S T C * C L C * D T *(Y Y C Z(I-1)-Y Y C \mathcal{C Q} Q(1-1))$ CALL YSTAR（PE，PC，QB，QC，DE，DC，YYEZEG（I），YYCZEQ（I）．
＊DE\｛，E，DENC，$\times \times B 2(I), X \times C 2(I)\}$
$X X E S(I)=X X E Z(I)+C L B * D T *(Y Y E Z(I)-Y Y E 2 E Q(I))$
$X X i S(I)=X X C 2(I)+C L C * D T *(Y Y C Z(I)-Y Y C Z E Q(I))$
101 CALL YSTAR（PE，PC，QB，GC，D日，OC，YYEZES（I），YYCZES（I），
＊DEAK，DE VC，XXES（I），XXCS（I））
$A Q 1=Y Y B S(I)+Y Y E \bar{C}(I-1)-Y Y B C E S(I)-Y Y B 2 E Q(I-1)$
$A Q_{\star}=A Q 1 *(D T / 2) * C N S T E * C L$.
$Y Y:(I)=Y Y E ट(I-1)+A Q 2$
BQ $1=Y Y C S(I)+Y Y(Z(I-1)-Y Y C 2 E S(1)-Y Y C 2 E Q(I-1)$
EGL＝EG1＊（DT／C．）＊CNSTC＊CLC
YYし（I）$=Y Y C$ こと（I－1）＋BGZ
XXじ（I）＝XXEE（I）＋（CLS＊OT／Z．）＊（YYES（I）＋YYBZ（I）－YYEZES（I）－
＊$Y Y_{\llcorner }$LEQ（I））
$X X C(I)=X X C \bar{C}(I)+(C L C * D T / Z) *.(Y Y C S(I)+Y Y C Z(I)-Y Y C Z E S(I)-$
＊YYCくEQ（I））
CE VYE＝（YYS（I）－YYES（I））／YYES（I）
$D E \forall Y C=(Y Y C(I)-Y Y C S(I)) / Y Y C S(I)$
IF（ABS（DEVYR）－ERR） $50,50,60$
50 IF（AES（DEVYC）－EFR） $7 \mathrm{C}, 70,60$
$7 C D E V X E=(X X B(I)-X X B S(: ~)) / X X B S(I)$
$D E \because \times C=(X X C(I)-x \times C S(I)) / X X C S(I)$
IF（AES（DEVXB）－ERR） 80.80 .60
80 IF（iES（DEVXB）－ERR）71，71，6
6C IF（ITER－NITER）E1，71，71
81 YYES（I） Y YYE（I）
$Y Y C S(I)=Y Y C(I)$
$X X E S(I)=X X E(I)$
$X X \subset S(I)=X X C(I)$
ITER＝ITER＋T
GO TO 101
71 NTE（I）＝ITER
RAYE（I）$=Y Y G(I) / Y B O$
RAYC（I）＝YYC（I）／YCO
IF（I－NZ）82．90．90
$I=j+1$
GO TO 85
$90 S U M E=S U M B+Y Y B(N Z)$
SUMC＝SUMC＋YYC（NZ）
IF（TT－TIME）150，200，200
150 DO 151 L＝1，NZ
$Y Y E Z(L)=Y Y E(L)$
$Y Y C \mathcal{C}(L)=Y Y C(L)$
$X X B Z(L)=X X B(L)$
$151 \times \times C \overline{2}(L)=X \times C(L)$
$K=k+1$
GO TO 155
200 TOTK＝K＋1
YYEAV＝S UMB／TOTK
YYCAV＝S UMC ITOTK
RETURN
END

SUGROUT INE RUNGECYBI，YCI，YBEQI，YCEQI，XBI，XCI，PB，PC，QE，GC， ＊DE，DC，DENB，DENC，XB，XC，TT，YA，AMW，BMW，CMW，VISA，VISE，

```
*VISG,DP,VOID,VME,VMC,V,AP,TEM)
    CALL CMSSCYA,YEI,YCI,AMW,ZMW,CMW,VISA,VISB,VISC,DP,
*VOLD,AP,VME,VMC,CLB,CLC,V,TEM)
    AK&1=CLG*(YBI-YEEGI)*TT
    AKC1=CLC*(YCI-YCEGI)*TT
    XZu=XBI + (AKB1/Z.)
    x2= =xCI +(AKC1/2.)
    CALL YSTAR(PB,PC,QB,GC,DE,DC,YEEQ,YCEQ,DENB,DENC,
* X2u, X2C)
```



```
    AKCc=CLC* (YCI-YCEQ)*TT
    X3c=XBI + (AKBZ/2.)
    X3i=XCI +(AKC2/\tilde{c})
    CALL YSTAR(PE,PC,AE,QC,DE,DC,Y日EG,YCEQ,DENS,DENC,
* X3-, X`C)
    AKc?=CLB*(YBI-YEEQ)*TT
    AKEs=CLC*(YCI-YCEG)*TT
    X4U=XZI +AKE3
    X4G=XCI +AKC3
    CALL YSTAR(PB,PC,QE,QC,DE,DC,YEEQ,YCEQ,DENB,DENC,
*X4B,X4C)
    AK`&=CLB*(YBI-YEEQ)*TT
    AKC&=CLC*(YCI-YCEQ)*TT
    DXE = (AK 日1+2.*AKB2+2.*AKE3+AKB4)/6.
    DXC=(AKC1+2.*AKC2+2.*AKC3+AKC4)/6.
    XB=XEI+DXE
    XC=XCI+DXC
    RETURN
    ENO
```

 SUEFOUT INE CMSSYYA,YB,YC,AMW, BM\&,CMW,VISA,VISB,
 *VISC, DP, VOID,AP,VMB,VMC,CLB,CLC,V,TEM)
$A L P H B=0.005 * E X P(-Y B / 0.00045)$
ZC=YC10. DOCS
ALPHC=0.005-0.00282*2C*0.000925*2C**2. -0.000103
** Z C**3。
$D E N=Y A * A M W+Y B * B M W+Y C * C M W$
$V I S=(V I S A * Y A+V I S B * Y E+V I S C * Y C) /(Y A+Y E+Y C)$
FACT=(DP*V*VOID*DEN)/(VISC*(1.-VOID))
FJi = ALP HE* (FACT** (-0.78$)$)
FJC=ALPHC*(FACT**(-0.78$))$
DCONST $=(7.4 * 10 * *(-8.0)) * 60 . *(A M W * *(0.5))$
$D E A=D C O N S T * T E M /(V I S * V M E * *(0.6))$
$D C A=D C O N S T * T E M /(V I S * V M C * *(0.6))$
$C L E=A P * F J B * V * V O I D *((D E N * D B A / V I S) * *(2.13)$.
$C L C=A P * F J C * V * V O I D *((D E N * D C A / V I S) * *(2 . / 3)$.
RETURN
END

* $X B, X C)$
$X B=P E * Y B /(1 .+Q E * Y B / D E N B)+D B * Y B$
$X C=P C * Y C /(1 .+Q C * Y C / D E N C)+D C * Y C$
RETURN
ENu

C c C

SUeFOUTINE YSTAR(PE,PC, QB, QC, DE, DC, YB, YC, DENB, DENC, * XE, XC)

CONSRS=(PB+DE)*DENE-QE*XE
$Y E=(-C O N S R E+S Q R T(C C H S \pi B * C O N S R E+4 . * Q Q * D B * X E * O E N E))$
*/(c.*QB*DE)
$C O 1.5 R C=(P C+D C) * D E N C-Q C * X C$
$Y C=(-C O N S R C+S Q R T(C O N S R C * C O N S R C+4 * * G C * C * X C * D E N C))$
$* /(\angle . * Q C * D C)$
kETLRN
Ev~
C THIS PNUGRAM PGEDICTS THE RESFONSE OF A PULSE \& STEP INPUT IN
C A PACKEV 3ED
C
C
C
C
C
C
C L=LENGTH OF CCLUNN
C A=INTERFACIAL AREA fER UNIT VOLUME
C KX=INTERFACIAL MASS TRANSFER COEFFICIENT
C KM=EQUILISRUIM CONSTANT
DIMENSION AK(2S),SIGMA(505),
* XS IEMA(5O5), TSUM(505), XOUT(505),SSUM(505),
*TPRIME(505),REALT(505),TTAU(505).
*SSIGMA(505),SSSUM(505), XXOUT(505),TTPRIM(505).
*RR=ALT(505),TTiUP(5こ5),TSSUM(5 55),XXSIGM(505)
REAL KX,KM,KZ
REAE(5,48)A
48 FORMAT(I2)
NN=N+1
DO 506 KK=1,NN
REAO(5,49)A,KX,KM
49 FORMAT(F6.1,F7.5,F5.3)
AREA=0.7853982
Z=5.
VOIO=0.38
VEL=1.00
YF=1.0
TAU=1.
TAUP=2.
PT=TAUP-TAL
DPT=PT/ 500.
SI = (Z*AREA*A*KX)/VEL
TP=(1.-VOID)/(KM*KX*A)
RT=Z*(VOID*AREA*YF/VEL)
DT=TAU/500.
TPGIME(1)=C.O
DO 50 I =2,501
TPRIME(I)=DT*(I-1)*TP
50 CONTINUE
DO S5 I=1,501
REALT(I)=TFRIME(I) +RT
55 CONTINUE
TTAU(1)=0.0
DO 53 1 =2,501
TTAU(I)=(I-1)*DT
53 CONTINUE
C
C
C

```
    TTPRIM(1)=TPRIME(501)
```

 00 5こ5 I=2,501
 TTHRIM(I) = DPT*(I-1)*TP+TTPRIM(1)
 sOS continue
 C
C
55
C
C
C

```

```

C
C
C
C
C
C
44
COMPUTE FACTCRIALS
AK (1)=1.0
DO 44I=2,20
AK(I)=AK(I-1)*I
44 CONTINUE
COMPUTE ARGUMENT OF BESSEL FUNCTION
SIGMA(1)=0.0
SSUM(1)=1.C
TSUM(1)=0.0
DO 33 I =2,501
SIGMA(I)=DT*(I-1)
XX1=SIGMA(1)
X1=SQRT (4**SI*XX1)
XSIGMA(I) = XI
C
C
C
C
C
SUM=1.0
DO 333 II=1,20
X=(XSIGMA(I)/2.)**2.*II
SUM=SUM + (X/(AK(II))**2.)
333 CONTINUE
EXX=SIGMA(I)+SI
SSUM1=S UM *EXP(-EXX)
SSUM(I) = S SUM1
TSUM(I)=TSLM(I-1)+DT*(SSUM(I)+SSUM(1-1))/2.
CONTINUE
C

```
```

C
AA SLM=1.
DO 11 I=1,20
SUM1=SQRT(4.*SI*TAU)/2.
ASUM=SUM1**2.*I
AA LLM=(ASUM/(AK(I)**2.))+AASUM
11 contivue
XX=\triangleASUM*EXP(-SI-TAUS
c
c
C
111 continu:
SS ignt(1)=C.C
sssum(1)=1.0
TS SLM(1)=0.0
DO 34 I=2,501
SSIEMA(I)=CPT*(I-1)
xX= =SSIGMA(I)
X2 = SQRT (4.*SI* X X)
xx sigm(I) = x2
C
c
C
Sumc=1.0
DO }334 II=1,2
xx=(xxSIGM(1)/2.)**2.*II
SUMz=SUMZ+(XX/(AK(II))**Z2.)
334 CONTINUE
EEX=SSIGMA (I)+SI
SS UMZ =S UM 2 *EXP(-EEX)
SS SUM(I)=SSUM2
TSSUM(I)=TSSUM(I-1)+DPT*(SSSUM(I)+SSSUM(I-1))/2.
34 CONTINUE
C
C
AA ASUM=1.0
DO 110 I=1,20
SUMद=SQRT(4.*SI*PT)/2.
AS SLM=SUM2**2.*I
AA ASUM=(ASSUM/(AK(I)**2.))+AAASUM
110 continue
PPT=TAU +TA UP
XXX=AAA SUM *EXP(-SI-PPT)
DO 250 1=1,501
xx OUT(I)=xCUT(501)-xxX-TSSUM(I)
250 continue
c
C
C
WRITE(6,60)

```

```

 * -Effluent conc.-)
 DO 121 1=1,501,20
 WRITE(6,13立REALT(I),TPRIME(I),TTAU(I), XOUT(I)
 121 CONTINUE
DO 122 I=1,501,20

```

WRITE(0,132)RREALT(I), TTPRIN(I),TTAUP(I), XXOUT (I)
132 FOKMAT(5X,F11.5,5X,F11.5,5X,F9.5,5X,F9.5)
122 COIMTINUE
\(5 \mathrm{C6}\) CONTINUE
STUF
Eリン

\section*{APPENDIX VI}

COMPUTER DEVELOPED BREAKTHROUGH DATA

TABLE 28

\title{
EFFECT OF MASS TRANSFER COEFFICIENT OF EFFLUENT CONCENTRATION
}
\[
a=1000, m=1.0
\]

TABLE 28
\(\varepsilon \cdot \lambda=0.01\)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { TIME } \\
& 29.84512 \\
& 39.76511
\end{aligned}
\] & \[
\begin{aligned}
& \text { TPRIME } \\
& 0.00000 \\
& 9.91999
\end{aligned}
\] & \[
\begin{aligned}
& \text { TAU } \\
& 0.00000 \\
& 0.16000
\end{aligned}
\] & \[
\begin{gathered}
\text { EFFLUENT CONC. } \\
0.05008 \\
0.12623
\end{gathered}
\] \\
\hline 49.68510 & 19.83998 & 0.32000 & 0.20074 \\
\hline 59.65510 & 29.75998 & 0.48000 & 0.27403 \\
\hline 69.52510 & 39.67998 & 0.64000 & 0.34481 \\
\hline 79.46510 & 49.59998 & 0.80000 & 3.41224 \\
\hline 89.36510 & 5.9 .51997 & 0.96000 & 0.47575 \\
\hline 99.28505 & 69.43993 & 1.12900 & 0.53502 \\
\hline 109.25505 & 79.35992 & 1.28000 & 0.58994 \\
\hline 119.12503 & 89.27991 & 1.44000 & 0.64347 \\
\hline 129.04507 & 99.19995 & 1.60000 & 0.68673 \\
\hline 138.96507 & 109.11995 & 1.76000 & 0.72887 \\
\hline 148.89506 & 119.03993 & 1.92000 & 0.76710 \\
\hline 158.85505 & 128.95993 & 2.58000 & 0.85165 \\
\hline 168.72504 & 138.87991 & 2.24000 & 0.83277 \\
\hline 178.64503 & 148.79991 & 2.40000 & 0.86073 \\
\hline 188.56502 & 158.71989 & 2.56000 & 0.88578 \\
\hline 198.48502 & 168.63989 & 2.72000 & 0.93816 \\
\hline 208.40500 & 178.55988 & 2.88000 & 0.928 .12 \\
\hline 218.32506 & 188.47993 & 3.04000 & 0.94589 \\
\hline 228.24504 & 198.39992 & 3.20000 & 0.96168 \\
\hline 238.16504 & 208.31992 & 3.36000 & 0.97568 \\
\hline 248.08502 & 218.23990 & 3.52000 & 0.98807 \\
\hline 258.00488 & 228.15990 & 3.68000 & 0.99904 \\
\hline 267.92480 & 238.07988 & 3.84000 & 1.00872 \\
\hline 277.84497 & 247099988 & 4.00000 & 1.01736 \\
\hline 277.84497 & 247.99988 & 4.00000 & 1.01719 \\
\hline 282.80493 & 252.95987 & 4.08000 & 0.97932 \\
\hline 287.75464 & 257.91967 & 4.16000 & 0.94213 \\
\hline 292.72460 & 262.87963 & 4.24000 & 0.93482 \\
\hline 297.68481 & 267.83984 & 4.32000 & 0.86761 \\
\hline 302.64477. & 272.79980 & 4.48000 & 0.83073 \\
\hline 307.6 C473 & 277.75976 & 4.48000 & 0.79433 \\
\hline 312.56469 & 282.71972 & 4.56000 & 0.75857 \\
\hline 317.52465 & 287.67968 & 4.64000 & 0.72355 \\
\hline 322.48461 & 292.63954 & 4.72000 & 0.68937 \\
\hline 327-44458 & 297. 59960 & 4.80000 & 0.65612 \\
\hline 352.40478 & 302-55981 & 4.88000 & 0.62385 \\
\hline 337.36474 & 307.51977 & 4.96000 & 0.59261 \\
\hline 342.32470 & 312.47973 & 5.04000 & 0.56243 \\
\hline 347.28466 & 317.43969 & 5.12000 & 0.53333 \\
\hline 4Y352.24462 & 322.39965 & 5.20000 & 0.50533 \\
\hline ) 357.20458 & 327.35961 & 5.28000 & 0.47842 \\
\hline 362.16455 & 332.31958 & 5.360000 & 0.45261 \\
\hline 367.13475 & 337.27978 & 5.44000 & 0.42789 \\
\hline 372.08471 & 342.23974 & 5.52000 & 0.40423 \\
\hline 377.04467 & 347.19970 & 5.60000 & 0.38163 \\
\hline 382.00463 & 352.15966 & 5.68000. & 0.36006 \\
\hline 386.96459 & 357.11962 & 5.76000 & 0.33949 \\
\hline 391.92656 & 362.07958 & 5.84000 & 0.31990 \\
\hline 396.89452 & 367.03955 & 5.92000 & 0.30126 \\
\hline 401.84472 & 371.99975 & 6.00000 & 0.28354 \\
\hline
\end{tabular}

TABLE 28 CONTINUET
\[
\varepsilon \lambda=0 . C 2
\]


TABLE 28 CONTINUED
\(\varepsilon \lambda=0.03\)


TABLE 28 CONTINUED
\(\varepsilon \lambda=0.04\)


\section*{TABLE 28 CONTINUED}
\[
\varepsilon \lambda=0.05
\]


TABLE 28 CONTINUED
\(\varepsilon \lambda=0.06\)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { TIME } \\
29.84512
\end{gathered}
\] & \[
\begin{aligned}
& \text { TPRIME } \\
& 0.00000
\end{aligned}
\] & \[
\begin{aligned}
& \text { TAU } \\
& 0.00000
\end{aligned}
\] & EfflUENT CONC.
\[
2.00510
\] \\
\hline 31.49844 & 1.65333 & 0.16000 & -0.01117 \\
\hline 33.15178 & 3.3:666 & 0.32000 & 0.01439 \\
\hline 24.8.511 & 4.96780 & 0.49300 & J.c1816 \\
\hline 36.45845 & 6.0.61333 & 0.64000 & 0.02249 \\
\hline 33.11179 & 8.26660 & 0.80000 & 0.02688 \\
\hline 39.75511 & 9.92000 & 0.96000 & 0.03141 \\
\hline 41.41844 & 11.57332 & 1.12000 & 0.03587 \\
\hline 43.07176 & 13.22665 & 1.23-00 & 0.04023 \\
\hline 44.75510 & 14.87998 & 1.44300 & 0.04432 \\
\hline 46.37845 & 16.53333 & 1.60000 & 0.04822 \\
\hline 48.03177 & 18.18565 & 1.76000 & 0.05186 \\
\hline 49.68510 & 19.83998 & 1.92000 & 0.05524 \\
\hline 51.38844 & 21.49332 & 2.08000 & -0.05835 \\
\hline 52.99176 & 23.14664 & 2.24:00 & 0.06123 \\
\hline 54.64510 & 24.79997 & 2.40000 & 0.06380 \\
\hline 56.29843 & 26.45321 & 2.56000 & 0.06615 \\
\hline 57.95177 & 28.10664 & 2.72000 & 0.06829 \\
\hline 59.65509 & 29.75996 & 2.83000 & 0.07021 \\
\hline 61.25844 & 31.4 .1331 & 3.04030 & 0.07194 \\
\hline 62.91177 & 33.06665 & 3.20000 & 0.07348 \\
\hline 64.56509 & 34.71997 & 3.36000 & 0.07487 \\
\hline 66.21843 & 36.373 ? & 3.52000 & 0.07610 \\
\hline 67.87977 & 38.02664 & 3.68000 & 0.07720 \\
\hline 69.52509 & 39.67996 & 3.84000 & 0.07818 \\
\hline 71.17842 & 41.33330 & 4.00000 & 0.07904 \\
\hline 71.17842 & 41.33330 & 4.00000 & 0.07904 \\
\hline 72.00508 & 42.15996 & 4.68000 & 0.076 .16 \\
\hline 72.83174 & 42.98662 & 4.16000 & 0.07495 \\
\hline 73.65842 & 43.81329 & 4.24000 & 0.07348 \\
\hline 74.48508 & 44.63995 & 4.32000 & 0.07185 \\
\hline 75.31174 & 45.46661 & 4.40000 & 0.06995 \\
\hline 76.13841 & 46.29329 & 4.48000 & 0.06796 \\
\hline 76.96507 & 47.11995 & 4.56 .00 & 0.06587 \\
\hline 77.29175 & 47.94662 & 4.64000 & 0.06370 \\
\hline 78.61849 & 48.77328 & 4.72000 & 0.06148 \\
\hline 79.64507 & 49.59995 & 4.80000 & 0.05923 \\
\hline 80.27174 & 50.42662 & 4.88000 & 0.05697 \\
\hline 81.09840 & 51.25328 & 4.96000 & 0.05471 \\
\hline 81.92506 & 52.07994 & 5.54000 & 0.05246 \\
\hline 82.75174 & 52.90662 & 5.12000 & 0.05024 \\
\hline 83.57840 & 53.73328 & 5.20000 & 0.04806 \\
\hline 84.45506 & 54.55994 & 5.28000 & 0.04592 \\
\hline 85.23174 & 55.38661 & 5.36000 & 0.04383 \\
\hline 86.05840 & 56.21327 & 5.44000 & 0.04179 \\
\hline 86.82506 & 57.03993 & 5.52500 & 0.03981 \\
\hline 87.71173 & 57.86661 & 5.60000 & 0.03790 \\
\hline 88.53839 & 58.69327 & 5.68000 & 0.03604 \\
\hline 89.36577 & 59.51994 & 5.76000 & 0.03426 \\
\hline 90.19173 & 60.34660 & 5.84000 & 0.03254 \\
\hline 91.01839 & 61.17326 & 5.92000 & 0.03088 \\
\hline 91.84506 & 61.99994 & 6.00000 & 0.02929 \\
\hline
\end{tabular}

TABLE 28 CONTINOED
\(\varepsilon \lambda=0.07\)


TABLE 29

EFFECT OF EQUILIBRIUM CONSTANT ON EFFLUENT CONCENTRATION
\[
a=1000 \quad K_{x}=0.00001
\]

\section*{TABLE 29 CONTINUED}
\begin{tabular}{|c|c|c|c|c|}
\hline & T 7 ME & TPGIME & taU & Effluent ccinc. \\
\hline & 29.84512 & 0.00000 & C.c0030 & \multirow[t]{2}{*}{\[
\begin{array}{r}
0.05978 \\
0.12623 \\
\hline
\end{array}
\]} \\
\hline & 42.24512 & 12.39999 & 0.16000 & \\
\hline & 54.64511 & 24.79999 & \(\bigcirc .32000\) & 3.20074 \\
\hline & 67.04510 & 77.17998 & 0.48050 & 0.27403 \\
\hline & 77.46511 & 49.59590 & \(=.84070\) & 0.34431 \\
\hline & \%1.34511 & 61.78) & -2.0? & 7.41224 \\
\hline & 104.24516 & 74.39998 & - 2.9605 & 0.47575 \\
\hline & 110.64505 & 85.79903 & 1.12000 & 0.53502 \\
\hline & 129.04504 & 99.19992 & 1.28000 & 3.58994 \\
\hline & 141.44594 & 111.59901 & 1.44020 & 0.64047 \\
\hline & 153.84509 & 123.99907 & 1.62000 & 0.68673 \\
\hline & 166.24509 & 136.39996 & 1.76000 & 0.72887 \\
\hline & 173.64508 & 149.79996 & 1.92000 & 0.76710 \\
\hline & 191.04507 & 161.19995 & 2.08090 & 0.80165 \\
\hline & 283.44505 & 173.59903 & 2.24000 & 0.83277 \\
\hline & 215.84505 & 195.99992 & 2.40000 & 0.86073 \\
\hline & 223.24504 & 103.39992 & 2.56000 & 0.88578 \\
\hline & c4 4.04503 & 210.79901 & 2.72000 & 0.99816 \\
\hline & 253.04501 & 223.19989 & 2.88000 & 0.92312 \\
\hline & 265.44506 & 235.59996 & 3.04000 & 0.94589 \\
\hline & 277.84497 & 247.99995 & 3.20000 & 0.96168 \\
\hline & 290.24487 & 260.39990 & 3.36000 & 0.97568 \\
\hline & 302.64477 & 272.79980 & 3.52000 & 0.98807 \\
\hline \multirow[t]{6}{*}{} & 315.04467 & 285.19979 & 3.68000 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.99904 \\
& 1.008 ? 2
\end{aligned}
\]} \\
\hline & 327.44482 & 297.59985 & 3.84000 & \\
\hline & 359.84472 & 309.99975 & 4.00000 & 1.01726 \\
\hline & 339.84472 & 359.99975 & 4.00000 & 1.01725 \\
\hline & 355.34448 & 325.49951 & 4.20000 & 0.92191 \\
\hline & 370.84448 & 340.99951 & 4.40000 & 0.82916 \\
\hline & 386.34448 & 356.47951 & 4.60000 & 0.73939 \\
\hline & 401.84448 & 371.99951 & 4.80000 & \[
0.65455
\] \\
\hline & 417.34468 & 387.49.95: & 5.00000 & \[
0.57582
\] \\
\hline & 432.84448 & 402.99951 & 5.20000 & 0.50376 \\
\hline & 448, 34448 & 418.49951 & 5.40000 & 0.43854 \\
\hline & 463.84448 & 433.99951 & 5.69000 & 0.38006 \\
\hline & 477.34448 & 449.49951 & 5.83000 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.32800 \\
& 0.28197
\end{aligned}
\]} \\
\hline & 494.84448 & 464.99951 & 6.00000 & \\
\hline & 510.34448 & 480.49951 & 6.20000 & 0.24749 \\
\hline & 525.84448 & 4.95 .99951 & 6.40000 & 0.20606 \\
\hline & 541.34448 & 511.49951 & 6.60000 & 0.17517 \\
\hline & 556.84448 & 526.99951 & 6.80000 & 0.14836 \\
\hline & 572.34448 & 542.4.9959 & 7.00000 & \[
0.12514
\] \\
\hline & 587.84448 & 557499951 & 7.20000 & \[
0.10511
\] \\
\hline & 603.34448 & 573.49951 & 7.40000 & 0.08787 \\
\hline & 618.84448 & 588.99951 & 7.60000 & 0.07306 \\
\hline & 634.34448 & 604.49951 & 7.80000 & 0.06738 \\
\hline & 649.84448 & 619.99951 & 8.00000 & 0.04953 \\
\hline & 665.34648 & 635.49951 & \(8 \cdot 25000\) & 0.04027 \\
\hline & 680. 84448 & 650.79951 & E. 40000 & 0.03237 \\
\hline & 696.34 .448 & 066.49951 & 8.60000 & 0.02566 \\
\hline & 711.84448 & 681.99951 & 8.80000 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.01996 \\
& 0.01512
\end{aligned}
\]} \\
\hline & 727.34448 & 697.49951 & 9.00090 & \\
\hline
\end{tabular}

TABLE 99
\(m=0.6\)


TABLE 29 CONTINUED
\begin{tabular}{|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TAU EFFLUENT CCNC.}} \\
\hline T:ME & Trinime & & \\
\hline 29.84512 & 0.00000 & 0.00000 & 0.05008 \\
\hline 28.11179 & 8.26666 & 0.16090 & 0.12623 \\
\hline 40.37845 & 16.533 .3 & \(\therefore .32000\) & 3.20074 \\
\hline 54.64511 & 24.79879 & . 48000 & 3.27403 \\
\hline \(\underline{2.197 \% ~}\) & 75.60人7 & .ti \({ }^{\text {a }}\) & 6.34401 \\
\hline 71.17665 & 41.33373 & -.85000 & 0.41224 \\
\hline 77.44511 & 49.59907 & 1.95000 & 0.47575 \\
\hline 27.71175 & 57.86662 & 1.12000 & 0.53502 \\
\hline 95.97841 & 66.13329 & 1.29000 & 0.58994 \\
\hline 154.24507 & 74.39905 & 1.44000 & 0.64047 \\
\hline 112.51175 & 82.66666 & 1.67000 & 0.68673 \\
\hline 120.77844 & 90.93332 & 1.76000 & 0.72387 \\
\hline 127.04510 & 97.19998 & 1.92000 & 0.76710 \\
\hline 137.31177 & 107.46664 & 2.08000 & 0.80165 \\
\hline 145.57843 & 115.733?1 & 2.24000 & 0.33277 \\
\hline 153.34509 & 123.99997 & 2.42000 & 0.86073 \\
\hline 162.11175 & 132.26653 & 2.56000 & 0.88578 \\
\hline 176.37842 & 140.53329 & 2.72000 & 0.90816 \\
\hline 178.64508 & 148.79996 & 2.88000 & 0.92812 \\
\hline 186.91179 & 157.06667 & 3.04090 & 0.94589 \\
\hline 195.17845 & 165.33333 & 3.20000 & 0.96168 \\
\hline 203.44511 & 173.59999 & 3.36000 & 0.97568 \\
\hline 211.71178 & 181.86665 & 3.52000 & \(0.988 \mathrm{C7}\) \\
\hline W, 619.97844 & 190.13332 & 3.68000 & 0.99904 \\
\hline \% 228.24510 & 198.39998 & 3.84000 & 1.00872 \\
\hline \$ 236.511176 & 206.66604 & 4.00000 & , 1.01726 \\
\hline 236.51176 & 206.66664 & 4.00000 & 1.01725 \\
\hline 246.84509 & 216.99997 & 4.20000 & 0.92191 \\
\hline 257.17822 & \(227.333 \times 0\) & 4.42000 & 0.82916 \\
\hline 267.51171 & 237.66664 & 4.60000 & 0.73939 \\
\hline 277.84497 & 247.99997 & 4.80000 & 0.65455 \\
\hline 288.17822 & 258,33325 & 5.00000 & 0.57582 \\
\hline 298.51147 & 268.66650 & 5.20000 & 0.50376 \\
\hline 308.84472 & 278.99975 & 5.40000 & 0.43854 \\
\hline \(319.178 \geq 2\) & 289.33325 & 5.63000 & 0.38006 \\
\hline 329.51147 & 299.66650 & 5.80000 & 0.32810 \\
\hline 339.84472 & 309.99975 & 6.00000 & 0.28197 \\
\hline 350,17822 & 320.33325. & 6.20000 & 0.24149 \\
\hline 360.51147 & 330.66650 & 6.40000 & 0.20606 \\
\hline 370.84472 & 340.99975 & 6.80000 & 0.17517 \\
\hline 381.17822 & 351.33325 & 6.85090 & 0.14836 \\
\hline 4,391.51147\% & 361.66650\% & 7.00000 & 0.12514 \\
\hline 401.84472 & 371409975. & 7.20000 & 0.10511 \\
\hline 412.17822 & 382.33325. & 7.40000 & 0.08787 \\
\hline 422.51147 & 392.66650 & 7.60000 & 0.07306 \\
\hline 432.84472 & 402.99975 & 7.80000 & 0.06038 \\
\hline 443.17822 & 413.33325 & C. 0000 & 0.04953 \\
\hline 453.51147 & 423.66650 & 8.20090 & 0.04027 \\
\hline 463.84472 & 433.99975 & 8.40000 & 0.03237 \\
\hline 474.17822 & 444.33325 & 8.60000 & 0.02566 \\
\hline 484.51147 & 454.66650 & 8.3 .9030 & 0.01796 \\
\hline 494.84472 & 464.99975 & 9.00030 & 0.01512 \\
\hline
\end{tabular}

TABLE 29 CONTINUED
\[
\mathrm{m}=1.4
\]
\begin{tabular}{|c|c|c|c|}
\hline TIME & Tootme & 740 & EFFLUENT CCNC. \\
\hline 29.84512 & 0.09070 & 6.00000 & 0.05008 \\
\hline 35.93083 & 7.38571 & 3.16000 & 9.12623 \\
\hline 44.19654 & 14.17142 & \(\therefore .32000\) & 0.20074 \\
\hline 51.13225 & 21.25:13 & \(\therefore 04000\) & C. 27403 \\
\hline -0.13797 & 20.34295 & \(\because .5400\) & 3.34431 \\
\hline 65.2?368 & 35.42856 & -.8.9300 & 5.41224 \\
\hline 72.35939 & 42.51427 & 6.95090 & 0.47575 \\
\hline 77.44507 & 49.59995 & 1.12000 & 0.53502 \\
\hline 86.53273 & 56.63565 & 1.28020 & 0.58994 \\
\hline 73.61649 & 63.77136 & 1.44090 & 0.64047 \\
\hline 100.79224 & 70.85712 & 1.60090 & 0.68673 \\
\hline 177.78795 & 77.94283 & 1.76000 & 0.72837 \\
\hline 114.87366 & 85.02853 & 1.92000 & 0.76710 \\
\hline 121.9593? & 92.11424 & 2.08000 & 0.80165 \\
\hline 127.045 .77 & 97.19905 & 2.24 .700 & 0.83277 \\
\hline 135.13073 & 196.23550 & 2.40000 & 0.86073 \\
\hline 143.21649 & 113.37137 & 2.56090 & 0.83578 \\
\hline 150.30220 & 123.45708 & 2.72000 & 0.93816 \\
\hline 157.38791 & 127.54279 & 2.88000 & 0.92812 \\
\hline 164.47366 & 134.62854 & 3.04000 & 0.94589 \\
\hline 171.55937 & 141.71425 & 3.20000 & 0.96168 \\
\hline 178.64508 & 148.79996 & 3.36000 & 0.97568 \\
\hline 185.73079 & 155.88567 & 3.52000 & 0.98857 \\
\hline 192.81650 & 162.97137 & 3.68000 & 0.99904 \\
\hline T 199.90221 & 170.05708 & 3.84000 & 1.00872 \\
\hline \(\bigcirc \quad 206.98792\) & 177.14.279 & 4.00000 & 1.01726 \\
\hline 206.98792 & 177.14279 & 4.00000 & 1.01725 \\
\hline 215.34505 & 185.99992 & 4.20000 & 0.92191 \\
\hline 224.70219 & 194.85707 & 4.40000 & 0.82916 \\
\hline 233.55933 & 203.71420 & 4.60000 & 0.73939 \\
\hline + 242.41647 & 212.57135 & 4.80000 & 0.65455 \\
\hline \(\bigcirc \quad . \quad 251.27362\) & 221.42850 & 5.00000 & 0.57582 \\
\hline 260.13061 & 233.28560 & 5.25000 & 0.50376 \\
\hline 268.98779 & 239.14278 & 5.40000 & 0.43854 \\
\hline 277.84497 & 247.99991 & 5.60000 & 0.38036 \\
\hline M- 286.79190 & 256485693. & 5.80000 & 0.32809 \\
\hline \#). 295.55908 & 265.71411. & 6,00000 & 0.28197 \\
\hline \(\underline{304.41625}\) & 274.57128 & 6.20000 & 0.24149 \\
\hline 313.27319 & 283.42822 & 6.43000 & \(0.206 \mathrm{C6}\) \\
\hline 322.13037 & 292.28540 & 6.60050 & 0.17517 \\
\hline 330.98754 & 301.14257 & 6.80000 & 0.14836 \\
\hline \% 3339.84472 & 309199975 & 7.00000 & 0.12514 \\
\hline Mreme 3487190 & 378.858933 & 7.20000 & 0.10511 \\
\hline प प) 357.55908 & 327.714111 & 7.40000. & 0.08787 \\
\hline 366.41625 & 336.57128 & 7.63000 & 0.07306 \\
\hline 375.27319 & 345.42822 & 7.80000 & 0.06038 \\
\hline 384.13037 & 354.28540 & 8.00000 & 0.04953 \\
\hline \(\cdots 392.98754\) & 363.14257 & 3.20000 & 0.04027 \\
\hline 401.844 .72 & 371.99975 & 8.40000 & 0.03237 \\
\hline 410.70190 & 380.85693 & 8.60000 & 0.02566 \\
\hline 417.55908 & 389.71411 & 8.8:079 & 0.01996 \\
\hline 428.41625 & 398.57128 & 3.03000 & 0.01512 \\
\hline
\end{tabular}

TABLE 29 CONTINUED
\(m=1.8\)
\begin{tabular}{|c|c|c|c|}
\hline TIME & TPRIME & TTM & \multirow[t]{3}{*}{SFFLUENT CCNC.
0.05008
0.12623} \\
\hline 27.84512 & J.00090 & C. 00000 & \\
\hline 30.04512 & 0.2150 & . 16000 & \\
\hline 42.24512 & 12.42000 & -.32000 & 3.20074 \\
\hline 46.44511 & 13.59709 & \(=.63090\) & 0.27403 \\
\hline \(5 . .64511\) & 24.77509 & -66492 & 3.344?1 \\
\hline 57.84512 & 31.37000 & -. 35090 & 7.412? \\
\hline 67.04512 & 37.27000 & C.960.0 & 0.47575 \\
\hline 73.24509 & 43.39996 & 1.12000 & 0.53502 \\
\hline 79.44503 & 49.59906 & 1.28070 & 0.58904 \\
\hline 85.64598 & 55.79996 & 1.44000 & 0.64047 \\
\hline 91.84512 & 62.09090 & 1.60000 & 0.68673 \\
\hline 98.04512 & 68.20000 & 1.76000 & 0.72887 \\
\hline 124.24512 & 74.39909 & 1.92020 & 0.76710 \\
\hline 110.44511 & 55.59999 & 2.33000 & 0.85155 \\
\hline 116.04519 & 86.79399 & 2.24070 & 0.83277 \\
\hline \(1 \geq 2.84511\) & 92.99998 & 2.40000 & 0.86073 \\
\hline 129.24599 & 99.17997 & 2.56000 & 0.88578 \\
\hline 135.24509 & 105.39996 & 2.72020 & 0.93816 \\
\hline 141.44508 & 111.59996 & 2.88000 & 0.92812 \\
\hline 147.64513 & 117.89000 & 3.84000 & 0.94599 \\
\hline 153.84512 & 124.00000 & 3.20000 & 0.96168 \\
\hline 160.04512 & 130.20000 & 3.36000 & 0.97568 \\
\hline 166.24512 & 136.39999 & 3.52000 & 0.98807 \\
\hline 172.44511 & 142.59909 & 3.68000 & 0.99 .904 \\
\hline 178.64511 & 148.79999 & 3.84000 & 1.00872 \\
\hline 184.84511 & 154.99998. & 4.50000 & 1.01726 \\
\hline 184.845911 & 154.99998 & 4.00000 & 1.01725 \\
\hline 192.59511 & 162.74998 & 4.20000 & 0.92191 \\
\hline 200.34511 & 170.49908 & 4.40000 & 0.82916 \\
\hline 208.09511 & 178.24998 & 4.60000 & 0.73939 \\
\hline 215.84511 & 185.99998 & 4.80000 & 0.65455 \\
\hline - 223.59511 & 193.74998 & 5.00000 & 0.57582 \\
\hline 231.34508 & 201.49995 & 5.20000 & 0.50376 \\
\hline 239.09511 & 209.24998 & 5.40000 & 0.43854 \\
\hline 266.84511 & 216.99998 & 5.60000 & 0.38006 \\
\hline 254.59509 & 224.74997. & 5.80000 & 0.328 co \\
\hline \#. 262.34497 & 232.49997 & 6.00000 & 0.28197 \\
\hline , 270.09497 & 2414.24 .997 & 6.21000 & 0.24149 \\
\hline 277.84497 & 247.99997 & 6.40000 & 0.20606 \\
\hline \(<85.59497\) & 255.75000 & 6.60000 & 0.17517 \\
\hline 293.34472 & 263.49975 & 6.80000 & 0.14836 \\
\hline \% 4.301 .09472 & 271424975 & 7.00000 & 0.12514 \\
\hline \% 308,84472 & 278.99975 & 7.29000 & 0.10511 \\
\hline \(\underline{\square}\) 316.59472 & 286.74975 & 7.47000 & 0.08787 \\
\hline 324.34472 & 294.49975 & 7.60000 & 0.07306 \\
\hline 332.09472 & 302.24975 & 7.80000 & 0.06038 \\
\hline 339.84497 & 310.00000 & 8.09000 & 0.04953 \\
\hline 347.59497 & 317.75000 & 8.20000 & 0.04027 \\
\hline 355.34497 & 325.50000 & 8.40000 & 0.03237 \\
\hline 363.09472 & 333.24975 & 6.60000 & 0.02566 \\
\hline 37 J .84472 & 343.99975 & 3.80000 & 0.01996 \\
\hline 378.59472 & 348.74975 & 9.00090 & 0.01512 \\
\hline
\end{tabular}

TABLE 29 CONTINUED
\[
m=2.0
\]
\begin{tabular}{|c|c|c|c|}
\hline T：ME & TPRIME & TAU & EFFLUENT CCNC． \\
\hline 27.84512 & 0.00090 & E．00000 & \(=.05098\) \\
\hline 34.80511 & 4.96000 & 0.16000 & 0.12623 \\
\hline こ7．75シ11 & 7.7200 & こ．3こうの & 2.20074 \\
\hline 44.72511 & 14.37905 & \(\because\) Csunt & －．27503 \\
\hline 47.63545 & 17.85908 & \(\therefore .640^{n} 3\) & 5.34481 \\
\hline 54.64511 & 24.79997 & －8．000 & 0.41224 \\
\hline 59.60510 & 29.75998 & 0.96000 & 0.47575 \\
\hline 54.56508 & 34.71996 & 1.12000 & 0.53502 \\
\hline 57.53529 & 39.67996 & 1.28030 & 0.58994 \\
\hline 76．48598 & 44.63795 & 1.44000 & 0.64047 \\
\hline 79.44510 & 47.59998 & 1.50000 & 0.68673 \\
\hline 8.4 .40509 & 54.55977 & 1.76000 & 0.72887 \\
\hline 89．36508 & 59.54905 & 1.92000 & 0.76710 \\
\hline 9．4． 32509 & 64.47907 & 2.08000 & 0.80165 \\
\hline 99.28528 & 69.43906 & 2.24030 & 0.83277 \\
\hline 104.24537 & 74.39905 & 2.40020 & 3．86C73 \\
\hline 109.20500 & 79.35904 & 2.56000 & 0.88578 \\
\hline 114.15507 & 34.3199 .5 & 2.72000 & 0.90816 \\
\hline 119.12506 & 89.27994 & 2．88000 & 0.92312 \\
\hline 124．08508 & 94．23996 & 3.04000 & 0.94589 \\
\hline 129.04507 & 99.19995 & 3.20000 & 0.96168 \\
\hline 134.00508 & 104.15996 & 3.36000 & 0.97568 \\
\hline 138.95507 & 109．11995 & 3.52000 & 0.98807 \\
\hline 143．92506 & 114.17294 & 3.68000 & 0.99904 \\
\hline अ\％ 148.88506 & 119.03993 & 3.84000 & 1.00872 \\
\hline \(\geq\) \％ 153.84506 & 123．990944． & 4.00000 & 1.01726 \\
\hline 153.84506 & 123.99994 & 4.00000 & 1.01725 \\
\hline 160.04506 & 130．19994 & 4.20000 & 0.92191 \\
\hline 156.24506 & 136.39993 & 4.40000 & 0.82916 \\
\hline 172.44505 & 142．59993 & 4.60000 & 0.73939 \\
\hline 178.64505 & 148.79903 & 4.80000 & 0.65455 \\
\hline － 1184.84505 & 154．99992 & 5．00000 & 0.57582 \\
\hline 191.04531 & 161.19989 & 5.20000 & 0.50376 \\
\hline 197.24504 & 167.39992 & 5.40000 & 0.43854 \\
\hline 203.44504 & 173.59901 & 5.60000 & \(0.350-6\) \\
\hline \％ 4.209 .64503 & 1779.79991 & 5.80000 & 0.328 CO \\
\hline 3．\({ }^{\text {a }}\) 215．84503 & 185.99991 & 6.00000 & 0.28197 \\
\hline － & 192．19989 & 6． 20000 & 0.24149 \\
\hline 223.24509 & 198.39989 & 6.40000 & 0.20666 \\
\hline 234.44504 & 204.59991 & 6.60000 & 0.17517 \\
\hline 240.64503 & 210.79991 & t． 80000 & 0.14836 \\
\hline 246．84503 & 216.99991 & 7．80000 & 0.12514 \\
\hline 253.04501 & 223．19989 & 7.20000 & 0.10511 \\
\hline \＄+259.24487 & 229．39989 & 7.40000 & 0.08787 \\
\hline 265.44482 & 235.59988 & 7.60000 & 0.07306 \\
\hline 271.64477 & 241.79988 & 7.80000 & 0.06038 \\
\hline 277.84497 & 247.99901 & 8.00090 & 0.04953 \\
\hline 284.04492 & 254.19989 & 8.22000 & 0.04027 \\
\hline 290.24462 & 260．39955 & 8.40000 & \(0.03 \geq 37\) \\
\hline 296.44482 & 266．59985 & 8.80000 & 0.02566 \\
\hline 302.64477 & 272.79930 & 8.80000 & 0.01996 \\
\hline \(\geq 08.84472\) & 278.99975 & 8.00000 & 0.01512 \\
\hline
\end{tabular}

TABLE 29 CONTINUED
\(m=2.2\)


TABLE 29 CONTINUED
\(\mathrm{m}=2.4\)


TABLE 29 CONTINUED
\(\mathrm{m}=2.6\)
\begin{tabular}{|c|c|c|c|c|}
\hline TME & TPRIME & taU & EFFLUENT CCNC． & \\
\hline 27.84512 & 0.00000 & C． 00000 & 0.05008 & \\
\hline 33.66349 & 3.81538 & \(\underline{0.16000}\) & 0.12623 & \\
\hline 77.47588 & 7.63576 & 6．32020 & 3.20074 & \\
\hline 41.29126 & 11.44615 & C． 43000 & 0.27403 & \\
\hline 45.19684 & 95.26153 & 6.64000 & 0.34481 & \\
\hline 6．．9263 & 19．78～ & － \(0^{\text {ar2 }}\) & 0.41224 & \\
\hline S2．7ア761 & 22.892 .78 & こ．960こ0 & 3.47575 & \\
\hline 50.55278 & 26.79766 & 1.12000 & 0.53502 & \\
\hline 65．36845 & 30.52373 & 1.28000 & 0.58994 & \\
\hline 64.18353 & 34.33841 & 1.44000 & 0.64047 & \\
\hline 67．99393 & 28．95 281 & 1.69000 & 0.68673 & \\
\hline 71.81432 & 41.96917 & 1.76000 & 0.72887 & \\
\hline 75.62970 & 45.78458 & 1.92000 & 0.76710 & \\
\hline 79．44507 & 49.59995 & 2．08300 & 0.80165 & \\
\hline 32．Eड545 & 53.61533 & 2.24000 & 0.83277 & \\
\hline 87．07584 & 57.23071 & 2．4．0000 & 0.86073 & \\
\hline 70．30122 & 51.04590 & 2.56000 & 0.88578 & \\
\hline 94.70654 & 54.86147 & 2.72000 & \(0.928: 16\) & \\
\hline 92.52197 & 68.67685 & 2.88000 & 0.92812 & \\
\hline 102.35737 & 72.49225 & 3.04000 & 0.94589 & \\
\hline 156.15276 & 76.30763 & 2． 20000 & 0.96168 & \\
\hline 109.96814 & 80.12302 & 3.36000 & 0.97568 & \\
\hline 113.78351 & 83.93839 & 3.52000 & 0.98807 & \\
\hline \％\％117，59889 & 87． 75377 & 3.68600 & 0.99904 & \\
\hline F－12T，4428 & 91.56915 & 3.84000 & 1.00872 & \\
\hline 125.22966 & 95.38454 & 4.80000 & 1.01726 & \\
\hline 125.22960 & 95.38454 & 4.00000 & 1.01725 & \\
\hline 129.99889 & 100.15376 & 4.20000 & 0.92191 & \\
\hline 134.76811 & 104.92299 & 4.40000 & 0.82916 & \\
\hline 139.53734 & 109.69221 & 4.60000 & 0.73939 & \\
\hline 144．30656 & 114.46144 & 4.80000 & 0.65455 & \\
\hline 149.07579 & 119．23067 & 5.00000 & 0.57582 & \\
\hline 153.84500 & 123.99988 & 5.20000 & 0.50376 & \\
\hline 158.61424 & 128.76912 & 5.40000 & 0.43854 & \\
\hline 163.38347 & 133.53835 & 5.60000 & 0.38006 & \\
\hline 168．15269 & 138.317757 & 5．89000 & 0.328 co & \\
\hline 172.92192 & 143.07680 & 6.00000 & 0.28197 & \\
\hline \(\underline{177.69115}\) & 147.84602 & 0.20000 & 0.24149 & \\
\hline 182.46037 & 152.61525 & 6.40000 & 0.20606 & \\
\hline 187．22961 & 157.38449 & 6.60000 & 0.17517 & \\
\hline 191.99884 & 152.15372 & 6.80000 & 0.14836 & \\
\hline \％） 196.76807 & 166.92294 & 7.20000 & 0.12514 & \\
\hline \[
201.53729
\] & \[
171.69217
\] & 7.20000 & 0.10511 & \\
\hline \％．\％ 206.30652 & 176．46140 & 7.40000 & 0.08787 & \\
\hline 211.07574 & 181.23062 & 7.60000 & 0.07306 & \\
\hline 215.84497 & 185.99985 & 7.80000 & 0.06038 & \\
\hline E2C．61431 & 190．76909 & B．coono & 0.04953 & \\
\hline 225.38344 & 195.53831 & S． 28050 & 0.04027 & \\
\hline 230.15206 & 200.30754 & 8.40000 & 0.03237 & \\
\hline 234.92189 & 205.07677 & 8.60000 & 0.02566 & \\
\hline 239.69112 & 209.84599 & E．80000 & 0.01996 & \\
\hline 244.46034 & こ14．61522 & 9.00000 & 0.01512 & \\
\hline
\end{tabular}

TABLE 29 CONTINUED
\(m=2.8\)


TABLE 29 CONTINDED
\[
m=3.0
\]
\begin{tabular}{|c|c|c|c|}
\hline TME & tprine & Tsu & EFFLUENT CCNC. \\
\hline 29.84512 & 0.00000 & 5.00000 & 0.05008 \\
\hline 33.15178 & 3.30666 & 6.16000 & 0.12623 \\
\hline 36.45 245 & 0.61323 & 2.32000 & 0.20074 \\
\hline 79.76511 & 9.91909 & 6.48000 & 0.27403 \\
\hline \(4 \mathrm{E} \times 1175\) & 13.22566 & c.64らnc & 0.34481 \\
\hline 46.37843 & 16.53571 & -. 6000 & 0.41224 \\
\hline 49.68513 & 19.83958 & 6.96050 & 0.47575 \\
\hline 52.99174 & 23.14602 & 1.12000 & 0.53502 \\
\hline 56.29842 & 26.45329 & 1.23400 & 0.58994 \\
\hline 59.60507 & 29.75905 & 1.44000 & 0.64047 \\
\hline \(6 E .91176\) & 23.06664 & i. 50000 & 0.68673 \\
\hline 66.21841 & 36.37329 & 1.76000 & 0.72887 \\
\hline 69.52509 & 39.67906 & 1.92000 & 0.76710 \\
\hline 72.83174 & 42.98062 & 2.08000 & 0.80155 \\
\hline 70.1784 & 40.20327 & -. 24 ¢ric & 0.83277 \\
\hline 79.44507 & 49.59905 & 2.40000 & 0.86073 \\
\hline 82.75172 & 52.97660 & 2.56000 & 0.88578 \\
\hline 80.65838 & 56.21326 & 2.72000 & 0.90816 \\
\hline 89.35505 & 59.51993 & 2.88000 & 0.92812 \\
\hline 92.67174 & 62.82681 & 3.04000 & 0.94589 \\
\hline 75.97839 & 66.13327 & 3.25000 & 0.96168 \\
\hline 99.28505 & 69.43993 & 3.36000 & 0.97568 \\
\hline 102.59172 & 72.74660 & 3.52000 & 0.98807 \\
\hline 105.89838 & 76-05325 & 3.68000 & 0.99904 \\
\hline 4109.20505 & 75.35902 & 3.84000 & 1000872 \\
\hline L 41112.51170 & 82.66658 & 4.00000 & 1.01726 \\
\hline 192.51170 & 82.66658 & 4.50000 & 1.01725 \\
\hline 116.64502 & 86.79990 & 4.20000 & 0.92191 \\
\hline 120.77835 & 90.93323 & 4.40000 & 0.82916 \\
\hline 124.91168 & 95.006656 & 4.60000 & 0.73939 \\
\hline 129.04501 & 99.19989 & 4.80000 & 0.65455 \\
\hline 133.17834 & 103.33322 & 5.00000 & 0.57582 \\
\hline 137.31166 & 107.46654 & 5.20000 & 0.50376 \\
\hline 141.44501 & 111.59988 & 5.40000 & 0.43854 \\
\hline 145.57834 & 115.73322 & 5.60000 & 0.38006 \\
\hline 149.71165 & 119.86653 & 5.80000 & 0.328 CO \\
\hline 153.84499 & 123*99986 & 6.00000 & 0.28197 \\
\hline 157.97832 & 128.13319 & 6.20000 & 0.24149 \\
\hline 162.11165 & 132.26653 & 6.40000 & 0.20606 \\
\hline 166.24500 & 136.39987 & 6.60000 & 0.17517 \\
\hline 170.37831 & 140.53319 & 6.85000 & 0.14836 \\
\hline \%ma 174.51164 & 144.66652 & 7.00000 & 0.12514 \\
\hline \[
178.64497
\] & 148.79985 & 7.20000 & 0.10511 \\
\hline \(\bigcirc 182,77831\) & 152.93318 & 7.40000 & 0.08787 \\
\hline 186,91162 & 157.96650 & 7.65000 & 0.07306 \\
\hline 191.04495 & 161.19983 & 7.80000 & 0.06038 \\
\hline 195.17830 & 165.33218 & 8.00000 & 0.04953 \\
\hline \% 2199.31163 & 169.46651 & 8.20000 & 0.04027 \\
\hline \(\square 203.44496\) & 173.59.984 & 8.40000 & 0.03237 \\
\hline 207.57828 & 177.73315 & 8.60000 & 0.02566 \\
\hline 291.79169 & 181.86649 & 3.87000 & 0.01996 \\
\hline 215.84494 & 185.79982 & 9.00000 & 0.01512 \\
\hline
\end{tabular}

TABLE 29 CONTINUED
\(\mathrm{m}=3.2\)


TABLE 29 CONTINUED
\(m=3.4\)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
174 \\
29.84512 \\
32.76270 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { TPRIAE } \\
& 0.00090 \\
& 2.99754
\end{aligned}
\] & \[
\begin{aligned}
& T: 0 \\
& 0.00000 \\
& C .160000 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { SFFLUENT CCNC. } \\
0.050 \mathrm{CB} \\
0.12623
\end{gathered}
\] \\
\hline 25.69040 & 5.83527 & \(=.32070\) & 5.20074 \\
\hline 28.59805 & 8.75294 & C.43020 & 0.27453 \\
\hline 41.5957 & \(11.67{ }^{\text {1 }}\) \% & -64この & 0.34491 \\
\hline 44.43325 & 14.5937 & -. 2 L 2 S & 0.41234 \\
\hline 47.35293 & 17.57596 & \(\because .700 \mathrm{~J}\) & 0.47575 \\
\hline 55.26862 & 27.42349 & 1.12000 & 0.53502 \\
\hline 53.18626 & 23.34114 & 1.28020 & 0.53994 \\
\hline 56.19591 & 26.25879 & 1.44020 & 0.64947 \\
\hline 59.02158 & 29.17645 & \(1.6-0.0\) & 0.58673 \\
\hline 61.93921 & 32.09409 & 1.76000 & 0.72387 \\
\hline 64.85686 & 35.01473 & 1.92000 & 0.7671 J \\
\hline 67.77451 & 37.92938 & C.08000 & 0.80165 \\
\hline 75.69214 & 40.86772 & 2.24.020 & 3.33277 \\
\hline 73.60979 & 43.76456 & 2.40020 & 0.36073 \\
\hline 76.52744 & 46.6 श231 & 2.55.090 & 0.88578 \\
\hline 79.64507 & 49.59995 & 2.72000 & 0.90316 \\
\hline 82.36272 & 52.51759 & 2.88000 & 0.92842 \\
\hline 85.28938 & 55.43526 & 3.06000 & 0.94589 \\
\hline 88.19803 & 58.35291 & 3.22000 & 0.961188 \\
\hline 91.11566 & 69.27054 & 3.35000 & 0.97568 \\
\hline 94.03331 & 64.19819 & 3.52000 & \(0.988 \mathrm{C7}\) \\
\hline \% 96.95096 & 67.10583 & 3.68000 & 0.99904 \\
\hline 99.86861 & 70.023488 & 3.84000 & 1.00872 \\
\hline -122.78624 & 72.94112 & 4.00000 & 1.01726 \\
\hline 102.78624 & 72.94112 & 4.00000 & 1.01725 \\
\hline 106.43329 & 76.58817 & 4.20000 & 0.92191 \\
\hline 110.09035 & 81.23523 & 4.45000 & 0.82916 \\
\hline 113.72746 & 83.88220 & 4.60000 & 0.73939 \\
\hline 117.37447 & 87.52934 & 4.80000 & 0.65455 \\
\hline 121.02151 & 91.17639 & 5.00090 & 0.57582 \\
\hline 124.66856 & 94.82344 & 5.20000 & 0.50376 \\
\hline 128.31563 & 98.47050 & 5.40000 & 0.43854 \\
\hline 131.96269 & 152.11757 & 5.60000 & 0.38006 \\
\hline 135,60974 & 105.76462 & 5.80000 & 0.328 .00 \\
\hline 4 ¢ 139.25679 & 109.41167 & 0.00000 & 0.28197 \\
\hline \(\underline{\square}\) & 113.05873 & 6.20000 & 0.24149 \\
\hline - 146.55090 & 116.70578 & 6.40000 & 0.20606 \\
\hline 150.19798 & 120.35286 & 6.60000 & 0.17517 \\
\hline 153.84503 & 123.99991 & 6.83000 & 0.14836 \\
\hline \% 157.49208 & 127-64696 & 7.c0000 & 0.12514 \\
\hline \% & 131.29412 & 7.20000 & 0.10511 \\
\hline 1 1 164,78619 & 134.94107 & 7.40000 & 0.08787 \\
\hline 168.43326 & 138.58812 & 7.60000 & 0.07306 \\
\hline 172.08031 & 142.23518 & 7.80000 & 0.06038 \\
\hline 175.72737 & 145.88225 & 8.50000 & 0.04953 \\
\hline 179.37444 & 149.52931 & 8.20000 & 0.04027 \\
\hline - 183.02148. & 153.17636 & 8.40000 & 0.03237 \\
\hline - 186.66853 & 150.82341 & 8.60000 & 0.02566 \\
\hline 190.31560 & 150.47047 & 8.80000 & 0.01996 \\
\hline 193.96265 & 164.11752 & 9.00000 & 0.01512 \\
\hline
\end{tabular}

\section*{TABLE 29 CONTINUED}
\(m=3.6\)
\begin{tabular}{|c|c|c|c|}
\hline T1ME & Trame & TAU & Effluent cone． \\
\hline 29.84512 & 0.00000 & C．00000 & 0.05003 \\
\hline 32.06056 & 2.75555 & C． 16000 & 0.12623 \\
\hline ？ 5.35622 & 5.51111 & \(\therefore .32000\) & 3.20374 \\
\hline ？ 3.11977 & 3．25546 & －48この & 5.27423 \\
\hline 二こ．ロロフア2 & 11．222？ & \(\therefore .64070\) & 0.34489 \\
\hline 43.02238 & 13.77777 & －． 30000 & 0.41224 \\
\hline 45.37843 & 16.53331 & 0.86000 & 0.47575 \\
\hline 49.13397 & 19.28885 & 1.12000 & 0.53502 \\
\hline 31.33953 & 22.34442 & 1.22 T 0 & 0.58994 \\
\hline 54．04508 & 24.79596 & 1.44000 & 0.64047 \\
\hline 57.49065 & 27.55553 & 1.60000 & 0.68673 \\
\hline 60.15625 & 31.311 C & 1.76000 & 0.72887 \\
\hline 52.91176 & 33.05664 & 1.92000 & 0.76710 \\
\hline 55.65730 & 35.82217 & \(2 . C 8000\) & 0.80165 \\
\hline 68.42285 & 38.57773 & 2.24070 & 0.83277 \\
\hline 71.17841 & 41.33328 & 2.40000 & 0.86073 \\
\hline 73.93396 & 44.38884 & 2.56000 & 0.88578 \\
\hline 76.68951 & 46.84439 & 2.72000 & 0.93816 \\
\hline 79.44505 & 49.59993 & 2.88000 & 0.92812 \\
\hline 82.20062 & 52．35550 & 3.04000 & 0.94589 \\
\hline 84.95618 & 55.11112 & 3.25000 & 0.96168 \\
\hline 87.71173 & 57.86661 & 3.36000 & 0.97568 \\
\hline 90.46729 & 60.62216 & 3． 52000 & 0.98807 \\
\hline 93.22284 & 63.37772 & 3.68000 & 0.99904 \\
\hline 95.97839 & 66．13327 & 3.84000 & 1．00872 \\
\hline ¢ \(\quad 98.73393\) & 68，888881 & 4.00000 & 1.01726 \\
\hline 98.73393 & 68.88881 & 4.00000 & 1.01725 \\
\hline 102．17836 & 72.33324 & 4.20000 & 0.92191 \\
\hline 105.62280 & 75.77758 & 4.40000 & 0.82916 \\
\hline 109.06725 & 79．22212 & 4.60000 & 0.73939 \\
\hline \％ 112.51169 & 82，66656 & 4.80000 & 0.65455 \\
\hline ＜ \(1+115.95613\) & 86．，11101 & 5.00000 & 0.57582 \\
\hline 119.40056 & 87.55544 & 5.22000 & 0.53376 \\
\hline 122.84502 & 92.99989 & 5.40000 & 0.43854 \\
\hline 126.28946 & 96.44434 & 5.60000 & 0.38006 \\
\hline 129．73390 & 99.88878 & 5.80000 & 0.328 co \\
\hline 133.17833 & 103．33321 & 0.00000 & 0.28197 \\
\hline 136.62277 & 126．77765 & 6.20000 & 0.24149 \\
\hline 140.06721 & 190.22209 & 6.40000 & 0.20606 \\
\hline 143.51167 & 113.66655 & 6.60000 & \(0: 17517\) \\
\hline 146.95612 & 117.11099 & 6.80000 & 0.14836 \\
\hline 150.40054 & 120.55542 & 7.00000 & 0.12514 \\
\hline 153．84499 & 123.99986 & 7.20000 & 0.10511 \\
\hline ¢ 157．28943 & 127．44431 & 7.40000 & 0.08787 \\
\hline 160.73387 & 130.88875 & 7.60000 & 0.07306 \\
\hline 164．17831 & 134.33319 & 7.80000 & 0.06038 \\
\hline 167.62276 & 137.77763 & 8.00000 & 0.04953 \\
\hline 171.06720 & 141．22208 & 8.20000 & 0.04027 \\
\hline 174.51164 & 144.60652 & 8.40000 & 0.03237 \\
\hline 177.95609 & 148.11096 & 8.60000 & 0.02566 \\
\hline 181．4C053 & 151．5554 & 8.8700 & C．02996 \\
\hline 194.84496 & 154.99993 & 9.00000 & 0.01512 \\
\hline
\end{tabular}

TABLE 29 CONTINUED
\(\mathrm{m}=3.8\)
\begin{tabular}{|c|c|c|c|}
\hline TTME & TPRIME & TaU & \multirow[t]{3}{*}{SFFLUENT CCNC．
0.05088
0.12623} \\
\hline 29.84512 & 0.00030 & 6.00090 & \\
\hline 32.45504 & \(2.51: 52\) & ． \(16=90\) & \\
\hline ？5． \(5 \leq 610\) & 5．221－5 & 5.32050 & 2.20074 \\
\hline －7．6．658 & 7．-1.157 & －． 48000 & 2.27403 \\
\hline 4 －．こ973 & －．ム くごし & \(\therefore . t 60 n\) & 0.34491 \\
\hline 42.89774 & 13.05252 & －．8030 & 0.41224 \\
\hline \(45.5-320\) & 15.66314 & 6.96000 & 0.47575 \\
\hline 48.11877 & 18.27365 & 1.12000 & 0.53502 \\
\hline 50.72929 & 20.88417 & 1.28070 & 0.58994 \\
\hline 53.33981 & 23．49469 & 1.64000 & 0.64047 \\
\hline 55.95035 & 26.10522 & 1.60000 & 0.68673 \\
\hline 58.56088 & 28.71576 & 1.76000 & 0.72887 \\
\hline 51.17143 & 31.32628 & 1.92000 & 0.76710 \\
\hline 63.78192 & 53.93680 & 2.08030 & 5．809 98 \\
\hline 66.129244 & 26．54732 & 2． 24000 & 0.83277 \\
\hline 69.00295 & 39.15794 & 2.40000 & 0.86073 \\
\hline 71.01349 & 41.76877 & 2.56000 & 0.88578 \\
\hline 74.22407 & 44.37889 & 2． 22000 & 0.90816 \\
\hline 76.83453 & 40.98 .941 & 2.88000 & 0.92812 \\
\hline 79.44507 & 49．0．59995 & 3.04000 & 0.94589 \\
\hline 82.05559 & 52.21046 & 3.20000 & 0.96168 \\
\hline 84.66612 & 54.82100 & 3.36000 & 0：97568 \\
\hline 87.27664 & 57.4315 .2 & 3.52000 & 0.98807 \\
\hline 89.88716 & 60．04204 & 3.68000 & 0.99904 \\
\hline 92，49768 & 62．65256 & 3.84000 & 1.00872 \\
\hline 95.10820 & 65426308 & 4.00000 & 1.01726 \\
\hline 95.10820 & 65.26308 & 4.00000 & 1.01725 \\
\hline 99.37135 & 68．526？3 & －． 20000 & 0.92191 \\
\hline 101.63451 & 71.78938 & 4.40000 & 0.82916 \\
\hline 104．89766 & 75．05254 & 4.60000 & 0.73939 \\
\hline 108．16081 & 78.31589 & 4.80000 & 0.65455 \\
\hline － 1111.42397 & 814． 57884 & 5.80000 & 0.57582 \\
\hline 194.68710 & 84.84198 & 5.20000 & 0.50376 \\
\hline 117.95027 & 88.10515 & 5.40000 & 0.43854 \\
\hline 121.21342 & 91.36830 & 5.60000 & 0.38906 \\
\hline 124．47658 & 94．63145 & 5.80000 & 0.32800 \\
\hline 127．73973 & 97．89461 & 0.00000 & 0.28197 \\
\hline 131.00288 & 101．15776 & 0.20000 & 0.24449 \\
\hline 134.26604 & 104.42091 & 6.40000 & 0.20606 \\
\hline 137.52921 & 107.68408 & 6.60000 & 0.17517 \\
\hline 140.79236 & 110.94724 & 6．80000 & 0.14836 \\
\hline \％ 144.05551 & 114．21039 & 7.00000 & 0.12514 \\
\hline \％） 14761866 & 117．47354 & 7.20000 & 0.10511 \\
\hline \(\bigcirc \quad 150.58 .182\) & 120．73669 & 7.40000 & 0.08787 \\
\hline 153.84497 & 123.99985 & 7.60000 & 0.07366 \\
\hline 157.10812 & 127.26300 & 7.80000 & 0.06038 \\
\hline 160.37129 & 130.52617 & 8.00000 & 0.04953 \\
\hline 163.63445 & 133.78932 & 8.20000 & 0.04027 \\
\hline 166．89760 & 137.55247 & 2.40000 & 0.03237 \\
\hline 170．18075 & 140.31563 & 8.60000 & 9.02586 \\
\hline 173.42390 & 143.57878 & \％．80000 & 0.01996 \\
\hline 176.68700 & 146.84193 & 5.00000 & 0.01512 \\
\hline
\end{tabular}

TABLE 29 CONTINUED
\(m=4.0\)


\section*{APPENDIX VII}

COMPUTER DEVELOPED STAGED SEQUENCE CYCLIC PROCESS DATA

\section*{TABLE 30}

\section*{EFFECT OF STAGE DURATION TIME ON SEPARATION}
\begin{tabular}{ll}
NNZ & \(=29\) \\
H & \(=90.0 \mathrm{~cm}\) \\
PHOT & \(=0.20\) \\
PHOB & \(=0.20\) \\
BETA & \(=1.0\) \\
\(\mathrm{Y}_{\text {AO }}\) & \(=0.00095 \mathrm{gmoles} / \mathrm{cc}\) \\
\(\mathrm{Y}_{\mathrm{Bo}}\) & \(=0.00086 \mathrm{gmoles} / \mathrm{cc}\) \\
Q & \(=25.00 \mathrm{cc}\)
\end{tabular}

\section*{TABLE 30}
\[
\text { TIME }=5.00 \mathrm{mins}
\]


COMCENTAATICN TRAASIENTS IN STAGE 2
T,





TIME \(=10.0\) mins.
concentration transients in stage 1 T1 - T?
\[
T 7
\]
\(\qquad\) .


COACENTFATION TPAYSIENTSINSTAGE 2 \(T\)

M YAT/YAQ YET/YPO YAZIYAO YBE/YGO YAS/YAO YBZ/YRO

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{} \\
\hline M & VA1/YAO & YE1/YBO & YAZIYAO & y82/980 & YA3/YAO & YB3/Y80 \\
\hline 1 & C. 95081 & 1.36812 & 0.87633 & 0.81921 & 1.29410 & 0.62538 \\
\hline 2 & 1.02162 & 1.25576 & 0.85112 & 0.85594 & 1.26375 & 0.64745 \\
\hline 3 & 1.05621 & 1.22678 & 0.81476 & 0.84871 & 1.23844 & 0.62845 \\
\hline 4 & 1.02157 & 1.23281 & 0.79898 & 0.82584 & 1.23672 & 0.59245 \\
\hline 5 & 1.07393 & 1.18203 & 0.78590 & 0.82377 & 1.22943 & 0.58117 \\
\hline 6 & 1.00240 & 1.16815 & 0.77402 & 0.80981 & 1.22537 & 0.56243 \\
\hline 7 & 2.99490 & 1.13146 & 0.76557 & C.80571 & 1.22098 & 0.551 c 2 \\
\hline 8 & C.98780 & 1.11392 & 0.75791 & 0.79493 & 1.21820 & 0.53871 \\
\hline 9 & 0.98277 & 1.08705 & 0.75220 & 0.78994 & 1.21555 & 0.52878 \\
\hline 10 & C.97835 & 1.06976 & 0.74723 & 0.78168 & 1.21377 & 0.51887 \\
\hline 11 & C.97498 & 1.04898 & 0.74346 & 0.77652 & 1.21223 & 0.51728 \\
\hline 12 & C.97216 & 1.03282 & 0.74328 & 0.77011 & 1.21113 & 0.50263 \\
\hline
\end{tabular}
```

TIME = 15.0

```

CONCENTRATION TRANSIENTS IN STAGE 1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & A & & & & & \\
\hline 1 & C.97391 & & & 0.65796 & 000 & \\
\hline 2 & 0.91217 & 0.85041 & 1.27815 & 0.64549 & 0.88999 & 1.30960 \\
\hline 3 & C. 87290 & 0.0 ç32 & 1.33335 & 0.59426 & 0.7338 & 1.79173 \\
\hline 4 & \(\therefore .89545\) & 0.75008 & 1.33478 & C. 5349 & 0.7057 & 1.8310 \\
\hline 5 & 0.28039 & C. 74103 & 1.31965 & 0.51294 & 0.70 .35 & . 7793 \\
\hline 6 & 0.87224 & 0.71805 & 1.31650 & 0.49037 & 0.69019 & 1.76088 \\
\hline 7 & C. 86587 & 0.71010 & 31116 & 0.48304 & 0.68313 & . 68042 \\
\hline 8 & 0.86072 & 0.69090 & 1.30838 & 0.47156 & 0.67664 & . 65129 \\
\hline 9 & 0.35691 & C. 68201 & 1.30542 & 0.45881 & 0.67172 & 1.58353 \\
\hline 10 & 0.85387 & 0.66679 & 1.30381 & 0.45011 & 0.66780 & 1.54860 \\
\hline & C. 85176 & 0.65749 & 30222 & 0.43938 & 0.66482 & \\
\hline & . 850 & . 6462 & . 3014 C & 0.43238 & 0.6 & 1.46010 \\
\hline
\end{tabular}

CORCENTRATION TRANSIENTS IN STAGE 2
I2 T3 T1
\begin{tabular}{ccccccc} 
& YA1/YAO & YB1/YBO & YAZ/YAO & YBZ/YBO & YA3/YAO & YB3/YSO \\
1 & 1.24946 & 0.75028 & 0.89965 & 1.27831 & 1.00098 & 0.79594 \\
\hline 2 & 1.25144 & 0.70618 & 0.83986 & 1.48785 & 0.92483 & 0.82491 \\
3 & 1.22555 & 0.61011 & 0.81423 & 1.54860 & 0.84210 & 0.88866 \\
4 & 1.19612 & 0.57210 & 0.831147 & 1.50043 & 0.82373 & 0.88738 \\
\hline 5 & 1.18836 & 0.56128 & 0.81383 & 1.48636 & 0.80869 & 0.87355 \\
6 & 1.18063 & 0.54726 & 0.80746 & 1.40639 & 0.79737 & 0.86848 \\
7 & 1.17526 & 0.53987 & 0.80012 & 1.37855 & 0.78714 & 0.85137 \\
\hline 8 & 1.17036 & 0.52638 & 0.79531 & 1.31243 & 0.77998 & 0.84507 \\
9 & 1.16705 & 0.51965 & 0.79103 & 1.27886 & 0.77330 & 0.83007 \\
10 & 1.16404 & 0.50810 & 0.78818 & 1.22884 & 0.976886 & 0.82286 \\
\hline 11 & 1.16210 & 0.50168 & 0.78573 & 1.19410 & 0.76476 & 0.81086 \\
12 & 1.16040 & 0.49267 & 0.78417 & 1.15820 & 0.76209 & 0.880324 \\
\hline
\end{tabular}

COACENTRATION TRANSIENTS IN STAGE 3
T3 TI T2

\[
\text { TIME }=20.0
\]

GONCENTRATION TPANSIENTS IN STAGE 1
T1－－TI \(\qquad\) T2


CONCENTRAIION TRANSIENIS IN ITAGE 2
T2 T3 T1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 & 1．2713］ & 0.74933 & 3.97449 & 1.29322 & 0.79680 & 0.78959 \\
\hline 2 & 1.27457 & 0.70241 & 0.81333 & 1.51462 & 0.208 .67 & 0.32261 \\
\hline 3 & 1.24508 & 0.59443 & 0.77929 & 1.56824 & 0.80412 & 0.89022 \\
\hline 4 & 1.20831 & 0.55037 & 0.82534 & 1.52086 & 0.78365 & 0.88709 \\
\hline 5 & 1.23058 & 0.53715 & 2.39681 & 1.49664 & 0.77411 & 0.37278 \\
\hline 0 & 1.19475 & 0.52141 & 0.80347 & 1.39853 & 0.76265 & 0.86487 \\
\hline 7 & 1.13968 & 0.59278 & 0.79736 & 1.35263 & 3.75448 & 0.84194 \\
\hline 8 & 1.18577 & 0.49673 & D． 79434 & 1．25072 & 0.74823 & 0.83413 \\
\hline 8 & 1.18310 & 3.48900 & 0.79125 & 1.21683 & 0.74275 & 0.81311 \\
\hline 10 & 1.18076 & 0.47451 & 0.78925 & 1.15423 & 0.73937 & 0.33477 \\
\hline 11 & \(1.177+7\) & 1．46756 & 2.73834 & 1．11855 & 0.73628 & 0.78836 \\
\hline 12 & 1.17333 & J．45723 & 2.78770 & 1.67177 & 0.73453 & 0.77347 \\
\hline
\end{tabular}

CONGENTRATION TRANSIENTS IN STAGE 3
T3 T1 TI
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline V & YAT／YAO & Y \(51 / \mathrm{Y} 90\) & YAL／YAO & Y5こ／Y30 & YAS／YAO & YS3／YEO \\
\hline 1 & －． 39174 & 1.41280 & 2．94365 & 0.60303 & 1.35939 & 0.69676 \\
\hline 2 & 2.98309 & 1.26725 & 0.35705 & 0.84635 & 1.34063 & 0.60637 \\
\hline 3 & 1.02954 & 1.23377 & 0.75008 & 0.33155 & 1.33574 & J． 55486 \\
\hline 4 & 6．99726 & 1.23394 & ］． 35299 & C． 00475 & 1.36041 & 0.49878 \\
\hline 5 & C．99．924 & 1.13622 & 7．75053 & C． 79538 & 1.33300 & 0.47940 \\
\hline 0 & C．96320 & 1.10754 & 3．74425 & C．76928 & 1.33230 & 0.45225 \\
\hline 7 & C．79459 & 1.03162 & O． 73.51 & 0.76063 & 1.32937 & 0.43866 \\
\hline \(\dot{ \pm}\) & －．97072 & 0.99658 & 3．73368 & 0.73711 & 1.32951 & 0.42347 \\
\hline 9 & －．97813 & 0.94381 & 0.73042 & O．72717 & 1.32861 & 0.40537 \\
\hline 10 & C．97576 & 0.81373 & 2.72796 & S－70．901 & 1.32869 & 0.39594 \\
\hline 11 & －． 2751 s & J．Eこ715 & 3.72642 & 5.09873 & 1.32864 & 0.38413 \\
\hline 1こ & －． 0743 J & －． 5 5963 & 3．72520 & C．08790 & 1.32987 & 0.37758 \\
\hline
\end{tabular}

\section*{TABLE 31}

\section*{EFFECT OF NUMBER OF CELLS ON SEPARATION}
\begin{tabular}{rl}
H & \(=90.0 \mathrm{~cm}\) \\
PHOT & \(=0.200\) \\
PHOB & \(=0.20\) \\
BETA & \(=1.0\) \\
\(\mathrm{Y}_{\text {AO }}\) & \(=0.00095\) gmoles \(/ \mathrm{cc}\) \\
\(\mathrm{Y}_{\text {Bo }}\) & \(=0.00086\) gmoles \(/ \mathrm{cc}\) \\
Q & \(=25.00 \mathrm{cc}\)
\end{tabular}

TABLE 31
\(N N Z=9\)

Concentration transze：its in stage 1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Hi & HTMAO & YET／YEO & YAESYAO & YBżYEO & YA3／YAO & rez／YRo \\
\hline 1 & 9.9778 & 2．2？277 & 1．7509 & ご込ご， & 1.00 ¢00 & 1.015 .1 \\
\hline － & \(\because \because \because:\) & い・－ &  & \(\therefore\)－ 6 & 2．91ここ6 & 1.25360 \\
\hline & & － \(1.1=7\) & 1． 1.6 & －，905 & 3，7，095： & \(1.51=27\) \\
\hline 4 & c．89722 & 0.73722 & 1.28517 & 0.55035 & 0.75278 & 1.61312 \\
\hline 5 & C．88815 & 0.72087 & 1.27600 & C． 21613 & 0.74643 & 1.52278 \\
\hline 0 & \(6.880 \times 3\) & 0.69187 & 1.27215 & 0.49232 & 0.73501 & 1.48389 \\
\hline 7 & \(\bigcirc .37448\) & 0.07723 & \(1.26 \pm 57\) & C．47252 & 3.726 .34 & 1.43532 \\
\hline － & \(\therefore 86942\) & 0.65769 & 1.26651 & 0.45859 & 0.71927 & 1.36264 \\
\hline 5 & r．3t574 & 5.56572 & 1.2524 & C． 0.44885 & 2.71352 & 1.31020 \\
\hline 10 & 0.86264 & 0.63325 & 1.26170 & 0.43563 & 0.70919 & 1．27498 \\
\hline 11 & 0.60031 & 0.62427 & \(1.26: 15\) & 0.42567 & 0.79552 & 1.24197 \\
\hline 12 & C．35943 & 0.61643 & 1.25025 & 0.42240 & 0.73285 & 1． 21596 \\
\hline
\end{tabular}

COACEOTRATION TRAMSIENTS IN STAGE 2


\section*{Concentration inans ients in stage}


TABLE 31 CONTINUED
\[
N N Z=19
\]

CJNCEMTRATM NA TRGNSIEATS IN STAGE 1 I1 TV IR
in YAT/YAO YET/YQO YAZ/YAO YEZ/YOO YAZ/YAO YBS/YSO


CONCFMTRATIOH TOGASIENTS IY STAGE 2
T3:
\(T 1\)
M. YATLYAO YELKYPO YAZLYAO YBLZYBO YABMYAO YAB/YAO
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 1.21678 & 0.75394 & 0.93299 & 1.25224 & 1.00598 & 0.80801 & \\
\hline 2 & 1.21678 & 0.71415 & 0.97570 & 1.43716 & 0.94740 & 0.82885 & \\
\hline 3. & 1.19501 & 9. 63053 & 0.83731 & 1.49397 & d.89058 & 0.87583 & \\
\hline & 1.17305 & 0.59432 & 0.84437 & 1.43279 & 0.87540 & 0.87175 & \\
\hline 4, 5 & 1.1.6536 & 0.s8266 & 0.82787 & 1.41926 & 0.85626 & 0.85524 & \\
\hline 6 & 1.15625 & 0.56780 & 0.81836 & 1.35570 & 0.84539 & 0.85315 & \\
\hline 7 & 1.15071 & 0.55980 & 0.80957 & 1.33024 & 0.83398 & 0.83609 & \\
\hline 8 & 1.9452? & 0.54800 & 0.8029 ? & 1.22374 & 0.82622 & 0.82978 & \\
\hline 9 & 1.14142 & 0.54692 & 0.79738 & 1.25700 & 0.81890 & 0.81888 & \\
\hline 10. & 1.13799 & 0.531181 & 0.79311 & 1. 22311 & 0.81367 & 0.81259 & \\
\hline 11 & 1.13551 & 0, 52573. & 0.78963 & 1,19852 & 0.80901 & 0.80428 & \\
\hline 12 & 1.13338 & 0.51888 & 0.78696 & 1.17372 & 0.80557 & 0.79862 & \\
\hline
\end{tabular}

\section*{concempration tandstemts. in Sitagem 3}


TABLE 31 CONTINUED
\(N N Z=39\)

CONCEMTRATION TPANSIENTS IN STAGE 1


CONCENTFATICN TRANSTENTS IN STAGE ?



CONCENFRATIGNGTRANSIEMTS IW STAGE 3


\section*{EFFECT OF PRODUCT WITHDRAHAL RATE ON SEPARATION}
\begin{tabular}{ll} 
NNZ & \(=29\) \\
H & \(=90.0 \mathrm{~cm}\) \\
BETA & \(=1.00\) \\
\(\mathrm{Y}_{\text {Ao }}\) & \(=0.00095\) gmoles \(/ \mathrm{cc}\) \\
\(\mathrm{Y}_{\text {Bo }}\) & \(=0.00086\) gmoles \(/ \mathrm{cc}\) \\
Q & \(=25.00 \mathrm{cc}\)
\end{tabular}

\section*{TABLE 32}
\[
\mathrm{PHOT}=\mathrm{PHOB}=0.10
\]
```

GONCENTRATIOR TGANSIENTS IN STAGE 1
T! Tた
r3

```


CONGENTRATICN TRANSIENTS IN STAGE Z


CONCENTFATION TRANSIENTS IN STAGE 3


TABLE 32 CONTINUED

\section*{PHOT \(=\mathrm{PHOB}=0.30\)}

T？Tこ Tミ
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline i & V41／480 & 7E1／YE0 & yez／yac & YRe／yE0 & YAZ／YAO & res／ymo & SFACTOR \\
\hline \multirow[b]{4}{*}{－} & －． 27042 & C．ES 11 & 1.95 & \(\underline{x}+23\) & 1.050 & 1.315 & 1．35808 \\
\hline & & \(\cdots\) & \(\cdots-1+4\) & ． 71.1 & \(0.80^{2} 1\) & 1.2540 & 2.46141 \\
\hline & & & 1．\(\because\)－ & －71．： & －．74－6？ & 1．6ヶ97－ & ？．89555 \\
\hline & & ． 774.2 & 1．-5. & \(\therefore 195\) & －0．54t72 & 1．74． 71 & 4.38910 \\
\hline \multirow[t]{3}{*}{3
8
7} & 5.34738 & 0.78242 & 1.21192 & 0.70493 & 0.67303 & 1.74268 & 4．4475？ \\
\hline & \％． 83158 & 0.79332 & 1.20225 & 0.70634 & 0.65300 & 1.77176 & 4.61662 \\
\hline & －． 31936 & 0.78777 & 1.19276 & C． 71532 & 0.63642 & 1.77215 & 4.64316 \\
\hline \multirow[b]{3}{*}{10} & － 2214 & \(\because .7800\) & 1．1859 & 6.71725 & 9．623－8 & 1.78671 & 4.75150 \\
\hline & \(\because 96115\) & 0.79280 & 1.18002 & 0.72451 & 0.61301 & 1.79943 & 4.74963 \\
\hline & \(-7010\) & \(0.734 \times 0\) & 1．1755． & －． 28.60 & 0.60565 & 1.70 ¢ 11 & 4.90135 \\
\hline \multirow[t]{2}{*}{11.} & 8.78041 & 0.77665 & 1.97171 & c． 73143 & 0.59918 & 1.30193 & 4.81556 \\
\hline & r．7051？ & 0.70308 & 1．1685 & 0.73351 & 0.59407 & 1.80690 & 4.84599 \\
\hline
\end{tabular}

COMCEATPATIOM TRANSIERTS IN STAGE 2

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{T？} & \multicolumn{3}{|r|}{19} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{SFACTOR}} \\
\hline  & \[
\text { YA } 1 / Y A O
\] & Yel/reo & \[
Y A Z I Y A O
\] & Yactrso & YAS/YAO & YB3／YEO & & \\
\hline 1 & 1.21081 & 0.79145 & 0.90751 & 1.29401 & 1.00985 & 0.80513 & 2.18140 & \\
\hline 2 & 1.21329 & 0.74967 & 0.34420 & 1.4731 im & 0.95100 & 0.80702 & 2.82422 & \\
\hline 3 & 1.19152 & 0.68623 & 0.7854 ？ & 1.58995 & 0.88768 & 0.89683 & 3.51490 & \\
\hline 4 & 1．16355 & 6．660661 & 9．77437． & 1．00012． & 0．86477 & 0.81914 & 3.63952 & \\
\hline \％\(\%\) & 1.15091 & 0.66215 & 0．74968． & 1．43824 & 0.83910 & 0.81683 & 3.79829 & \\
\hline 6. & 4.13782 & 0.66514 & 0．73277 & 1．63871 & 0.82273 & 0.82103 & 3.82557 & \\
\hline 7 & 1．12833 & 0.66872 & 0.71380 & 1.05816 & 0.80791 & 0.32319 & 3.89813 & \\
\hline ¢ & 1.13095 & 0.67218 & 0.70779 & 1.66095 & 0.79677 & 0.82569 & 3.91341 & \\
\hline 4 & 1.114 ys & 0.67435 & 0.69094 & 1.07274 & 0.78743 & 0.82769 & 3.95639 & \\
\hline 19 & 1．10994 & 0．6774423 & 0．69202\％ & 1．67617 & 0.78110 & 0.82940 & 3.96860 & \\
\hline \％ & 1．70600． & 0．677913： & 0.68641 & 1．68367 & 0.77407 & 0.83091 & 3.99460 & \\
\hline ¢ & 1．10275． & 0，68128： & 0.68190 & 1．6888．4． & 0．76927． & 0.83214 & 4.03412 & 2 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 3


TABLE 32 CONTINUED
PHOT \(=\) PHOB \(=0.40\)


GURGEMTFATIOA TRANSIFNTS IN ETAGE 2
\(\qquad\) 11


CONEENTRATION TRANSIENTS IN STAGE 3


\section*{TABLE 32 CONTINUED}

\section*{PHOT \(=\mathrm{PHOB}=0.50\)}

COCEYTATIO: TOANSIESTS IG GTAGE 1
T 1
T:
T?

concentanticn tpanstents in stage 2

\section*{T: \\ T}

11


CONCENTRATION TRANSIENTS IN STAGE 3
\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
1 \\
2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.996=0 \\
& 0.90888
\end{aligned}
\] & \[
\begin{aligned}
& 1.38258 \\
& 1.38213
\end{aligned}
\] & \[
\begin{aligned}
& 0.92552 \\
& 0.01092
\end{aligned}
\] & \[
\begin{aligned}
& C .78720 \\
& 0.78633 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.18599 \\
& 1.15500
\end{aligned}
\] & \[
\begin{aligned}
& 0.80902 \\
& 0.85478 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.26155 \\
& 2.05479 \\
& \hline
\end{aligned}
\] \\
\hline Whyme3 & \[
\begin{aligned}
& 8.88963 \\
& 0.818066
\end{aligned}
\] & \[
\begin{aligned}
& 4 \times 28999 \\
& t \times 42793 \\
&
\end{aligned}
\] & \[
\begin{aligned}
& \text { 0.87417 } \\
& 0.8496 ?
\end{aligned}
\] & \[
\begin{aligned}
& 0.77424 \\
& 0.76155 \\
& 0.76011
\end{aligned}
\] & \[
\begin{aligned}
& 1.11730 \\
& 1.10296 \\
& 1.09021
\end{aligned}
\] & \[
\begin{aligned}
& 0.87942 \\
& 0.86764 \\
& 0.86970
\end{aligned}
\] & \[
\begin{aligned}
& 2.03948 \\
& 2.18196 \\
& 2.18839
\end{aligned}
\] \\
\hline & C. 79932 & 1.42048 & \(0.8197 \%\) & 0.75900 & 1.08131 & 0.86375 & 2.24039 \\
\hline 7 & C.78530 & 1.42512 & 0.81345 & 0.75779 & 1.07470 & 0.86349 & 2.25884 \\
\hline \& & C. 77527 & 1.42431 & 0.80338 & C. 75738 & 1.06980 & 0.86156 & 2.28124 \\
\hline 9 & 6.76773 & 1442273 & C. 79817 & 0.75687 & 1.06617 & 0.86094 & 2.29492 \\
\hline 4\#): 16 & 0.76217 & 1.42200 & 0.79426 & 0.75663 & 1.06346 & 0.86029 & 2.33630 \\
\hline \(3 \times 11\) & t.75802 & 1.42141 & 0.75134. & 0.75642 & 1.06143 & 0.85993 & 2. 31456 \\
\hline 12 & . 75491 & \(7.421[3\) & C.780.75 & C.75629 & 1.05091 & 0.85966 & 2.32085 \\
\hline
\end{tabular}

\section*{TABLE 32 CONTINUED PHOT \(=\mathrm{PHOB}=0.60\)}

CDACEMTFATICN TRANSIEN:TS IN STAGE 1 T1

Tこ
\[
T \geq
\]


COHCENTRATION TRANSIENTS IN STAGE 2 T? T3 T1


CONCENTRATION TRANSIENTS IN STAGE 3



TABLE 32 CONTINUED
PHOT \(=\mathrm{PHOB}=0.90\)


\section*{TABLE 32 CONTINUED \\ \(\mathrm{PHOT}=\mathrm{PHOB}=1.0\)}

GOMCEMTRATIBN TOAMSIENTS IN STAGE 1
T: Tこ T?


CONCEMTRATION TPANSTENTS IN STAGE 2
\(T\) T? T1


\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 1 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
8.87107 \\
0.85510 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.32939 \\
1.30985 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 9.95385 \\
& 0.94439 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.82168 \\
& C .89397 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.10582 \\
& 1.08569 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.90191 \\
& 0.99545 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
1.87119 \\
1.83662 \\
\hline
\end{array}
\] & \\
\hline  &  & \[
\begin{aligned}
& 1426144 \\
& 4 \times 858 \\
& 1-2422
\end{aligned}
\] & \[
\begin{aligned}
& 0 \text { Qesot } \\
& 0 \text { gites? }
\end{aligned}
\] & \[
\begin{aligned}
& 0.80068 \\
& 0.79196 \\
& 0.70782
\end{aligned}
\] & \[
\begin{aligned}
& 1.05686 \\
& 1.44435 \\
& 1.03779
\end{aligned}
\] & \[
\begin{aligned}
& 0.89253 \\
& 0.87171 \\
& 0.86514
\end{aligned}
\] & \[
\begin{aligned}
& 1685046 \\
& 1,91289 \\
& 1,93158
\end{aligned}
\] &  \\
\hline 6 & C.76298 & 1.23673 & 0.89956 & 0.78634 & 1.03384 & 0.86192 & 1.94419 & \\
\hline 7 & \(\therefore .757\)-6 & 1.234?5 & 0.89731 & 0.73557 & 1.03171 & 0.86052 & 1.95257 & \\
\hline 3 & C.75509 & 1.23304 & 0.89007 & C. 78524 & 1.03049 & 0.85994 & 1.95684 & \\
\hline  & \[
\begin{array}{r}
7535 \\
6+7565 \\
4 \times 16
\end{array}
\] & \[
\begin{aligned}
& 1,23256 \\
& \times 25234 \\
& 1,23<24
\end{aligned}
\] & \[
\begin{aligned}
& 0.89537 \\
& 0.8949 \\
& 0.2947 \%
\end{aligned}
\] & \[
\begin{array}{r}
0.78510 \\
0.78503 \\
0.78500
\end{array}
\] & \[
\begin{aligned}
& 1.02981 \\
& 1.02943 \\
& 1.02321
\end{aligned}
\] & \[
\begin{aligned}
& 0.85967 \\
& 0.85956 \\
& 0.85951
\end{aligned}
\] & \[
\begin{aligned}
& 1.95943 \\
& 1.96390 \\
& 1.96173
\end{aligned}
\] &  \\
\hline 12 & C.751こ8 & \(1.23 \overline{20}\) & 0.79463 & 0.73499 & 1.02909 & 0.85949 & 1.96221 & \\
\hline
\end{tabular}

\section*{EFFECT OF COLUMN DISPLACEMENT VOLUME ON SEPARATION}
\begin{tabular}{ll} 
NNZ & \(=29\) \\
H & \(=90.0 \mathrm{~cm}\) \\
PHOT & \(=0.20\) \\
PHOB & \(=0.20\) \\
BETA & \(=1.0\) \\
\(\mathrm{Y}_{\mathrm{AO}}\) & \(=0.00095\) gmoles \(/ \mathrm{cc}\) \\
\(\mathrm{Y}_{\text {Bo }}\) & \(=0.00086\) gmoles \(/ \mathrm{cc}\)
\end{tabular}

\section*{TABLE 33}
\[
Q=5.0 \mathrm{cc}
\]
\[
\text { CAMCEUTPATICV TRANSTE:GTS IN STAGE } 1
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4 & YAT／YAO & Yロ1／Ys0 & YAZ／YAO & YPZ／YEO & YAS／YAO & YE3／YEC & SFACTOR \\
\hline 1 & －．78．13 & ［．83630 & 1．15322 & E．09695 & 1.03300 & 1.01461 & 1.73707 \\
\hline － & －こマさ & －． 3.87 & 1．192\％ & － 0655 & 1.35833 & 3．78753 & 1.61671 \\
\hline & －こースこ & －79－－ 1 & 1．19： & －0？4こ & 1.1515 & －．95271 & 1.42557 \\
\hline \(\checkmark\) & ． 0.4 & 8.23539 & \(1.1955=\) & \(\therefore 07432\) & 1.15126 & 2．97399 & 1.44430 \\
\hline \(=\) & \(\therefore 8097\) & 0.85362 & 1.17643 & 0.72753 & 1.10341 & 1.35641 & 1.51657 \\
\hline \(\%\) & \(\bigcirc .77598\) & 0.31092 & 1.17172 & C． 75492 & 1.08322 & 1.01715 & 1.45744 \\
\hline 7 & － 94206 & 0.52568 & 1.18725 & 0.72478 & 1.07024 & 1.02756 & 1.57276 \\
\hline \(=\) & ． 91535 & J． 35744 & 1.13329 & C．05985 & 1.06646 & 1.06635 & 1.79257 \\
\hline ； & \(\therefore\)－994 & 0.64372 & 1.96321 & U．05461 & 1.07500 & 1.06653 & 1.76270 \\
\hline 10 & \(-39320\) & 0.25957 & 1．14？73 & 0． 56756 & 1.07389 & 1.01778 & 1.61268 \\
\hline 11 & F．35574 & 0.37672 & 1．13C3？ & C．67559 & 1.05951 & 0.98313 & 1.55255 \\
\hline 12 & －．39442 & 0.85964 & 1．92517 & 6．03620 & 1.04994 & C．98777 & 1.55733 \\
\hline
\end{tabular}

COMCEMTRATION TRANSIENTG IN STAGE 2
\(T ? ~ T ?\)


CONCENTRATION TRANSIENTS IN STAGE 3


TABLE 33 CONTINUED
\(Q=10.00 \mathrm{cc}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{} \\
\hline \％ & TATPAD & YताTYE0 & Pastya & Y®टाYEO & YASTYAC & YESTYEO & SFACTOR \\
\hline 1 & 9.97305 & 2.32454 & 1．2085？ & 0.67982 & 1.03000 & 1.315 .55 & 1.80455 \\
\hline － &  & 「．EपनT & T．\({ }^{\text {C4 }} 4\) & 1．777．7 & 1.1555 & C．07J5 & \(1.2545 ?\) \\
\hline & \(\because \because:\) &  & 1．\(\underbrace{-2}\) & －it & 1．2ミ？¢ & 2．コンゴも & 1.10514 \\
\hline － & \(\because \cdot 57\). &  & 1.5751 & － 15 5゙\％ & 1.19116 & 1.24249 & 1.15474 \\
\hline 5 & T． \(217 \%\) & \(0.84 E 15\) & 1．］E700 & －．7तTT & T＝18455 & 1.08164 & 1.27071 \\
\hline 0 & 8.95689 & 0.87387 & 1.07513 & 0.72637 & 1.18325 & 1.07847 & 1.34937 \\
\hline 7 & C．08744 & 0.89163 & 1.05208 & 0.75174 & 1.17829 & 1.02741 & 1.23192 \\
\hline ＇ & －785．5 & T．866： & T． 534 & 0.7750 & T．16533 & 1．0173 & 1.20162 \\
\hline 9 & C．97207 & 0.84791 & 1.05174 & C． 75445 & 1.15628 & 1.05331 & 1.25328 \\
\hline 10 & C．96002 & 0.25975 & 1．745 61 & 0.73854 & \(1.15 \geq 17\) & 1.05544 & 1.29580 \\
\hline 11 & 2.05514 & C．ETUx & 1.33763 & L． 74176 & 1.14680 & 1． 1.3478 & 1.26225 \\
\hline 12 & \(\therefore 94927\) & C．eozne & 1．03245 & C．75512 & 1.13346 & 1.22883 & 1.23559 \\
\hline
\end{tabular}

Cuncéntration transients in stage è Tこ Tこ T1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & YAT／YAO & YP1／YBO & razivao & YECAY80 & va3trao & YE3／Y80 & SFACTOR \\
\hline \multicolumn{8}{|r|}{\(\begin{array}{lllllllll}0.65577 & 1.17913 & 0.97318 & 0.97807 & 0.82937 & 1.55008\end{array}\)} \\
\hline 2 & 1.14120 & 0.74573 & 1.2030 .9 & 0.77318
0.98356 & 0.99427 & 0.82937
0.83855 & 1.55908
1.25114 \\
\hline 5 & 1.09319 & 0.74893 & 1.19268 & 1.25038 & 1.00288 & 0.85606 & 1.28515 \\
\hline 4 & 1.0987 & 0.65663 & F18257 & 1.07957 & J．97453 & 0.8875 & 1.52769 \\
\hline 5 & 1.08549 & 0.67456 & 1.19658 & 1．02215 & 0.96101 & 0.91472 & 1.37461 \\
\hline 6 & 1.07509 & 0.70410 & 1.17939 & 0.99953 & 0.96417 & 0.88454 & 1.29404 \\
\hline i & 1.07267 & प．71677 & 1.76661 & T． C 2678 & 0.95292 & 0.85511 & 1.32456 \\
\hline 3 & 9.07010 & 0.67982 & 1.16130 & 1.04388 & 0.93935 & 0.87166 & 1.41493 \\
\hline 9 & 9.06315 & C．67010 & 1.95794 & 1.62334 & 0.93203 & 0.83698 & 1.40212 \\
\hline 14 & T．05763 & 0.68553 & 1．14894 & T．00502 & 10.92794 & 0.87709 & 1.34879 \\
\hline 11 & 1.05371 & 0.69242 & 1.14065 & 1.01394 & 0.91962 & 0.86078 & 1.35273 \\
\hline प－\％ 12 & 1.05013 & 0.68006 & 1.13602 & 1.02438 & 0.91115 & 0.86365 & 1.39242 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 3

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 1.18696 \\
& 1.14366
\end{aligned}
\] & \[
\begin{aligned}
& 1.00209 \\
& 1.06558
\end{aligned}
\] & \[
\begin{aligned}
& 0.89769 \\
& 0.92876
\end{aligned}
\] & \[
\begin{aligned}
& 0.87685 \\
& 0.85684
\end{aligned}
\] & \[
\begin{aligned}
& 1.2 .1183 \\
& 1.14493
\end{aligned}
\] & \[
\begin{aligned}
& 0.63318 \\
& 0.69584
\end{aligned}
\] & \[
\begin{aligned}
& 1.61579 \\
& 1.53881
\end{aligned}
\] \\
\hline 3 & T．70369 & 1.03464 & 0．9E3T2 & 0.894517 & 1.08749 & 0.75220 & T．34854 \\
\hline 4 & 2.10293 & 0.75333 & 0.90350 & 0.88729 & 1.06946 & 0.79133 & 1.16817 \\
\hline 5 & 9.08475 & 0.98863 & 0.91287 & 0.82769 & 1.05932 & 0.81013 & 1.19173 \\
\hline \({ }_{6}\) & 1．072c9 & 1.01758 & 0.9958 & 0.83957 & 1.06249 & 5.76127 & 1.32448 \\
\hline 7 & 1.07293 & 1.00573 & 0.88079 & 0.86165 & 1.05438 & 0.74575 & 1.32530 \\
\hline 8 & 1.06517 & 0.97513 & 0.87770 & 0.86223 & 1.04553 & 0.76787 & 1.24395 \\
\hline 9 & 1.05415 & 0.97672 & 0.8717 & 0.85901 & 1.041883 & 0.78000 & 1.23575 \\
\hline 10 & 1.04739 & 0.99327 & 0.85195 & c． 83474 & 1.03896 & 0.76262 & 1.29198 \\
\hline 11 & 1.04352 & 0.99166 & 0.85435 & 0.84579 & 1.03366 & 0.74883 & 1.31175 \\
\hline 16 & 1.04693 & 0.97543 & 0.344966 & J．c4855 & 1.02842 & 1.75617 & T． 25063 \\
\hline
\end{tabular}

TABLE 33 CONTINUED
\[
Q=15.00 \mathrm{cc}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & 4AT／YAJ & Yet／yro & YAR／YAO & Y8E／YBO & YAS／YAO & Y93／YE0 & SFACTOR \\
\hline 1 & 9.97353 & 0.22192 & 1．21335 & 0.67435 & 1.09700 & 1.31544 & 1.82701 \\
\hline \(\checkmark\) & \(\bigcirc 2853\) & \(\cdots 7\) & 1．－14 & C．056is & 1.0650 & 1．07．757 & 1.71836 \\
\hline ： &  & 二． & 1．？ &  & 1.14253 & こップ＂こ & 1．45244 \\
\hline 4 & － \(2-3{ }^{2}\) & － 22147 & 1．191 & －． \(0^{7} 727\) & 1．17587 & 1.31414 & 1．44309 \\
\hline 5 & －． 25445 & 0.36137 & T．20220 & 3.64315 & 1.1338 & 0.79798 & 1.47213 \\
\hline \(\stackrel{*}{6}\) & 5.81748 & 0.85923 & 1.95586 & C．07040 & 1.08193 & 0.95471 & 1.38971 \\
\hline 7 & 0.79817 & 0.83271 & 1.04057 & 0.06776 & 1.04810 & 0.97743 & 1.46579 \\
\hline － & \(\therefore 771 \mathrm{j}\) & 6．24c3 & 1．22005 & 0.0493 & 1．33311 & 0.76579 & 1.47956 \\
\hline 9 & \(\because 75752\) & 0.34365 & 1.05937 & E． 05590 & 1.00728 & 0.95124 & 1.45327 \\
\hline 1 & 9．7422？ & \(2.33 \geq 75\) & 2．79746 & L． 25669 & 0.98509 & 0.95801 & 1.47509 \\
\hline 11 & \(\because 72552\) & 0.35371 & 2.28713 & 6.64825 & 3.97093 & 0.95460 & 1.49716 \\
\hline \(1 こ\) & －．71422 & 2．835？2 & 9．77516 & C．：49I2 & 9.05374 & 0.94675 & 1.48238 \\
\hline
\end{tabular}

EONCENTRATICN TRAVSIENTS IN STAGE 2
\(\qquad\) T1


CONCENTRATION TRANSIENTS IN STAGE 3


\section*{TABLE 33 CONTINUED}
\(Q=20.0 \mathrm{cc}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & YAT／YAO & YB1／8月0 & YAR／YA？ & YRC／YBO & YAS／YAO & YE3／YE0 & SFACTOR \\
\hline 1 & －．77554 & 7.31537 & 1.24977 & 0.06593 & 1.00900 & 1.01550 & 1.35171 \\
\hline \％ & － 7.77 & 6.9654 & 1．7．75？ & 2．－2？ 2 & 3.97512 & 1.1819 & 2.43447 \\
\hline － & －\(\because 1\). & こ． 3 ？ & 1．3ワ & \(\therefore\)－ 3517 & 3.75 & 1．4．266 & 7．53278 \\
\hline 4 & ． 2324 & \(\therefore .77121\) & \({ }^{1} .^{7} 4^{3} 3^{4}\) & －．-7035 & 1． 22135 & 1．4？ 3 ？ & 3.54095 \\
\hline 2 & － 45355 & 0.76722 & 1．34538 & 2．56136 & 2．97111 & 1.23726 & 3.16349 \\
\hline 0 & ？．94734 & 0.73647 & 1．25382 & 0.55977 & 3.97113 & 1.30166 & 3.24052 \\
\hline 7 & 8.95160 & 0.73166 & 1.36298 & 0.52801 & 0.99251 & 1．26780 & 3.29712 \\
\hline 6 & －7732 & 2．72612 & 1．77 17 & 0.32657 & 1.03254 & 1.21755 & 3.15772 \\
\hline 9 & －．93320 & 0.71007 & 1．37733 & 0.51906 & 1.01463 & 1.21467 & 3.17781 \\
\hline 10 & \(\therefore .7522\) & \(0.70 \leqslant 13\) & 1．9835？ & 0.30911 & 1.92515 & 1.19283 & 3.13555 \\
\hline 11 & 1.30306 & 3.70193 & \(1.7591 ?\) & E． 50751 & 1.03374 & 1.16944 & 3.09661 \\
\hline 1： & 1．20？ 1 & U．546？ & 1.39335 & 0．59147 & 1.04242 & 1.15173 & 3.09753 \\
\hline
\end{tabular}

CONCENTRATIMN TRANSIENTS IN STAGE 2
\(\qquad\)
T2 T3 T1


\section*{TABLE 33 CONTINUED}
\(\mathrm{Q}=30.0 \mathrm{cc}\)

CONCEATRATION TPANEPENTS IN STAGE 1
T！\(\quad\) ？\(T^{\text {？}}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline n & YAT／YAO & YE1／YEO & YAZ/YAO & Y82／Y30 & YAS／YAO & YE3／YEO & SFACTOR \\
\hline 1 & \(\therefore 27507\) & 0.82282 & 1.20054 & 0.68893 & 1.00000 & 1.01403 & 1.76863 \\
\hline \％ & 72561 & （：．640\％7 & 1.21612 & 5.72154 & \(5.890 \mathrm{Cz}^{2}\) & 1．24622 & 2.33637 \\
\hline － & －59？ 2 & 1．70776 & 1．24？ &  & 2．76963 & 1．55074 & 3.54140 \\
\hline 2 & \(\bigcirc\) & －75？ & 9． \(31.44^{\circ}\) & \(\therefore\)－\(\because 64\) & \(\therefore .7556\) & 1．54\％「 & 2.97529 \\
\hline － & － 76 & －．7－4－5 & 1． 3664 & \(\because 4407\) & \(\therefore 708\) & \(1.513 \pm 0\) & 4.05366 \\
\hline 0 & \(\because 8.5\)－ & U．71241 & 1．2こと家 & こ． \(19 \% 0\) & 0.69253 & 1.50423 & 4.27824 \\
\hline 7 & －．85612 & 0.70471 & 1.21232 & 0.60633 & 0.67768 & 1.47830 & 4.36335 \\
\hline 5 & －0．8769 & ［．09745 & 1．25750 & c． 58874 & 0.66671 & 1.45474 & 4.50553 \\
\hline 9 & －．84141 & C．60089 & 1．？ 2 27 & こ． 57879 & 9.65692 & 1.44749 & 4.57894 \\
\hline 15 & \(\because 5: 526\) & C．0．5s7 & \(1.19 \%{ }^{\circ}\) & \(\because .56703\) & 0.64956 & 1.45562 & 4.67695 \\
\hline 11 & 6．8．352 & 0.68073 & 1.1957 ？ & 0.55914 & 0.64235 & 1.42314 & 4.73787 \\
\hline 12 & －．9c65？ & 0.67670 & 1.19306 & E．\(=5093\) & 0.63681 & 1.41358 & 4.85734 \\
\hline \multicolumn{8}{|c|}{COMCEMTRATION TRANSIEATS IM STAGE 2 \(T \mathrm{c}^{\prime} \quad T\) ？} \\
\hline M & YAT／YAO & Yal／Yeo & YA2／YAO & YE2／Y80 & YAZIXAO & YBJ／YEO & SFACTOR \\
\hline 1 & 1．207）2 & 0.80308 & 0.89954 & 1． 29437 & 1.01657 & 0.80329 & 2.16360 \\
\hline 2 & 1.21331 & 0.75023 & 0.84328 & 1.43925 & 0.96975 & 0.78758 & 2.75954 \\
\hline 3 & 1.19703 & 0.66813 & 0.79357 & 1.50293 & 0.92553 & 0.76474 & 3.39311 \\
\hline 4 & 1.67528 & \(0.620 \% 0\) & 0．79002 & 1．45606 & 0.91147 & 0.75053 & 3.49201 \\
\hline 5 & 1.16708 & 0.60114 & 0.77217 & 1.44815 & 0.89092 & 0.73569 & 3.64105 \\
\hline \(\square \square+\mathrm{Q}\) ¢ & 1．15641 & 0,58316 & 0.75845 & \(1 \times 41165\) & 0.87965 & 0.72661 & 3.65949 \\
\hline 7 & 1.14966 & 0.57538 & 0.74696 & 1．39483 & 0.86784 & 0.71995 & 3.73112 \\
\hline 8 & 1.14313 & 0.56761 & 0.73718 & 1．37047 & 0.85894 & 0.71327 & 3.74408 \\
\hline 9 & 1．13806 & 0.55892 & 0.72919 & 1.35518 & 0.85108 & 0.70856 & 3.78484 \\
\hline 10 & 1．13364 & 0.55294 & 0.72244 & 1.33794 & 0.84464 & 0.70380 & 3.79695 \\
\hline 11 & 1.13002 & 0.54620 & 0．71693 & 1.32540 & 0.83915 & 0.70022 & 3.22111 \\
\hline 12 & 1.12694 & 0.54225 & 0.71212 & 1.31270 & 0.83457 & 0.69679 & 3.83096 \\
\hline
\end{tabular}

CONCENTRATION TRAMSIENTS IN STAGE 3

M，YATIYAO YBYGYEO YAZIYAC YBZIYEO YASYYAO YBS／YBO SFACTOR


\section*{TABLE 33 CONTINUED \(Q=35.0 \mathrm{cc}\)}

T1 TZ Tマ
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline if & YA I/YAO & YET/YEO & YAZ/YAO & YE2/Y80 & YA3/YAO & YB3/YEO & SFACTOR \\
\hline 1 & \(\therefore\) - & 0.32974 & 1.18767 & 0.72919 & 1.03000 & 1.01374 & 1.69759 \\
\hline \(\because\) & \(\because 3.35\) & \(=.624\) & 1.125 & -75973 & 6.90774 & 1.177.1 & 2.05 .65 \\
\hline & - ¢ ¢ - & \(\therefore .776\) & 1.-1 : 2 & \(\therefore\) - 570 & \(\cdots \mathrm{CO} 25\) & 1.7433t & 2.73757 \\
\hline \(-\) &  & - \(75=17\) & 1.7172 & \(\bigcirc 0250\) & 2.75675 & 1.335 3 & 3.21776 \\
\hline 5 & -617J & 0.08577 & 1. 526 ? & -. 44711 & 0.73910 & 1.23771 & 3.11216 \\
\hline 0 & -.95235 & 0.66248 & 1.17322 & C.59877 & 0.72842 & 1.27524 & 3.31111 \\
\hline 7 & r.38537 & 0.54635 & 1.19353 & 5. 57097 & 0.71672 & 1.17616 & 3.43054 \\
\hline 7 & - 6.635 & 0.53551 & 1.15973 & 5.54533 & 2.70672 & 1.15296 & 3.54587 \\
\hline 7 & - 37538 & 3. 626 7 1 & 1.18672 & し. \(2 \geq\) ¢3 & 3.70173 & 1.13540 & 3.63394 \\
\hline 19 & -. 27277 & 0.61951 & 1.13414 & C. 51430 & 0.69610 & 1.12094 & 3.70761 \\
\hline 11 & 9.86976 & 0.61425 & 1.12205 & 0.57365 & 3.69152 & 1.10974 & 3.76640 \\
\hline 12 & -.56734 & 5.65993 & 1.1373? & 0.49530 & \(0.6 \hat{c} 775\) & 1.10071 & 3.81391 \\
\hline
\end{tabular}
concentfation transeents in stage z \(T 2 T Z T 9\)


CONCENTRATION TRANSIENTS IN STAGE 3


\section*{TABLE 33 CONTINUED}
\(\mathrm{Q}=40.0 \mathrm{cc}\)

GONCEMTRATION TPANSIEYTS IN STAGE 1
\(T 1 T\) T？T？
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\cdots\) & YAT／YAC & YETTYEO & YAZTYAO & Y927Y30 & YA3／YAO & Y33／YE0 & SFACTOR \\
\hline 1 & \(\therefore .951 \leq 4\) & 0.83773 & 1.17460 & 0.73234 & 1.03000 & 1.01261 & 1.62331 \\
\hline － & \(\cdots \mathrm{P} 715\) & － 0 － \(0^{\text {a }}\) & 1．1763 & 6．70533 & 7．95771 & 1．14112 & 1.95610 \\
\hline － & －2こ？ & 8.77674 & 1．15？74． & －． 2495 & 3．35713 & 1.25120 & 2．29］15 \\
\hline － & \(\because 71417\) & －．71：7 & 1．1．1\％ & ．．73－94 & 3.7744 & 1.19756 & 2．5コこ51 \\
\hline \％ & ． 0.717 & C．cst4 & 1.17255 & －0．scta & 2．7543 & 1.1409 & 2.60597 \\
\hline 0 & －．89740 & 0.06585 & 1．104 3 ？ & 0.03234 & 0.74285 & 1.10714 & 2.74220 \\
\hline 7 & 0.89094 & 0.65043 & P． 15037 & c．60384 & 0.73112 & 1.08337 & 2.34488 \\
\hline E & －58527 & 0.64022 & 1.15452 & －．58171 & 0.72257 & 1.06420 & 2.92304 \\
\hline ； & －．85230 & \(0.6 \pm 246\) & 1．15099 & U． 35557 & 0.71553 & 1.05071 & 2.98855 \\
\hline 16 & 2.87670 & 0.62674 & 1.14780 & 0.55391 & 0.70972 & 1.04077 & 3.03873 \\
\hline 17 & － 5731 & 0.52254 & 1.14523 & 6．54520 & 0.70502 & 9.03324 & 3.07845 \\
\hline 12 & －\({ }^{\text {c／．}}\) & 0．522－4 & 1．1431 & －． & 0.75 & 9．0．3 & －07c4 \\
\hline
\end{tabular}

CONCENTRATION TPANSIENTS IN STAGE 2
T？TE
19


CONCENTRATION TRANSIENTS IN STAGE 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & VATMAO & YET／YEO & \[
Y A Z ノ Y A O
\] & & YAB／VAO & r83／480 & SFACTOR \\
\hline 1 & C． 38899 & 1.33386 & 0.95295 & 0.77514 & 1.18440 & 0.79653 & 2.23127 \\
\hline 2 & 0.90302 & 1.28156 & 0.96166 & 0.75236 & 1.16081 & 0.81826 & 2.01333 \\
\hline 3 & 7690140 & 1．21471 & 0．94518 & 0.71292 & 1.13451 & 0.79724 & 1.94202 \\
\hline 4 & E．87565 & 1．15905 & 0.92094 & 0.68162 & 1.12932 & 0.71263 & 2.09764 \\
\hline 48 & 0.86165 & 1.09563 & 0.91897 & 0.68019 & 1.12317 & 0.67078 & 2.12912 \\
\hline 6 & C．85161 & 1.05741 & 0.91008 & 0.64669 & 1.11724 & 0.63677 & 2．17854 \\
\hline 7 & 5．84160 & 1.02810 & 0.90346 & 0.63564 & 1.11285 & 0.61207 & 2.21783 \\
\hline 8 & 0.83435 & 1.00554 & 0.89817 & 0.62812 & 1.10897 & 0.59564 & 2.24381 \\
\hline 9 & C．82820 & 0.98927 & 0.87365 & 0.62251 & 1.10579 & 0.58267 & 2.26691 \\
\hline 10. & 0.92313 & 0.97685 & 0.89002 & 0.61836 & 1.10317 & 0.57318 & 2.28406 \\
\hline 11 & 0.81903 & 0.96750 & 9.88700 & 0.61532 & 1.10098 & 0.56610 & 2.29763 \\
\hline 12 & 81503 & 6066 & 88451 & 6130 & ． 09916 & 0.56383 & 30837 \\
\hline
\end{tabular}

TABLE 33 CONTINUED
\(Q=45.0 \mathrm{cc}\)

CGNESYTRATINH TDANSIENTE IN STAGE 1
T个 TE
13
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline A & YA1/YAO & YET/YBO & YAZ/YAC & Ygz/Y80 & YA3/YAO & YS3/YEO & SFACTOR \\
\hline 1 & -.90315 & U. 24599 & 1.15288 & 0.75534 & 1.00000 & 1.01140 & 1.55712 \\
\hline \(-\) & -06.9 & C.E 311 s & 1.16574 & \(\therefore-262\) & 2.09494 & 1.11274 & 1.721 C3 \\
\hline - & - 07.7 F & -.75:\% &  & -. 15 &  & 1.1:3:? & \(2.0144^{\circ}\) \\
\hline \(\stackrel{\square}{4}\) & - 244.7 & 5.75557 & 1.1-517 & 107503 & \(\because .79059\) & 1.120t1 & 2.17258 \\
\hline 1 & -71041 & 0.6563 & 1.15-17 & -0767? & 5.7853 & 1.37971 & 2.20361 \\
\hline 6 & 5.71033 & 0.67310 & 1.14384. & C. 65377 & 9.77053 & 1.04572 & 2.37460 \\
\hline 7 & 5.90428 & C.65893 & 1.13941 & C.62551 & 0.76093 & 1.02398 & 2.45128 \\
\hline E & \%.9065 & 0.64923 & 1.135 Cr & ¢.6059 & 7.75756 & 1.00772 & 2.53495 \\
\hline \(y\) & \(\therefore 30504\) & C.E4252 & 1.1317= & C. 59197 & 0.74795 & 2.9?645 & 2.54735 \\
\hline 10 & \(\therefore 9925 \%\) & 0.63768 & 1.1289 \(=\) & 0.58207 & 0.74321 & 0.98849 & 2.57965 \\
\hline 11 & C. 36996 & C.63425 & 1.12671 & 5.57513 & 9.73946 & 0.98277 & 2.60365 \\
\hline 36 & -.22737 & C.05182 & 1.12482 & 0.57018 & 0.73643 & 0.97871 & 2.62193 \\
\hline
\end{tabular}

CONCENTRATIGN TOANSIENTS IN STAGE 2
\(T\) T?
T1


CONCENTRATION TRANSIENTS IN STAGE 3

\section*{ 72}
M. YATAYAO YETAYEO YAZFYAO. YBZAYEO YAB/YAO YB3/YBO SFACTOR
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 0.88508 & 1.30433 & 0.97468 & 0.78917 & 1.16253 & 0.82693 & 2.07174 \\
\hline 2 & C. 89263 & 1.25070 & 0.97497 & 0.76323 & 1.14303 & 0.83325 & 1.92204 \\
\hline 3 & C.88884 & 1.16799 & 0196220 & 0.72192 & 1.41907 & 0.79294 & 1.85459 \\
\hline 5 & E, 80731 & 1.10778 & 0.94525 & 0.69232 & 1.11293 & 0.72079 & 1.97213 \\
\hline 5 & C. 85384 & 1.05514 & 0.93785 & 0.66987 & 1.10780 & 0.67800 & 2.01912 \\
\hline 6 & 0.84544 & 1.02006 & 0.93073 & 0.65552 & 1.10214 & 0.64818 & 2.05158 \\
\hline 7 & C. 83678 & 0.99589 & 0.92486 & 0.64504 & 1.09813 & 0.62713 & 2.08398 \\
\hline 8 & C.83052 & 0.97798 & 0.92554 & 0.63776 & 1.09472 & 0.61259 & 2.10433 \\
\hline 9 & 5.82547 & 0.96546 & 0.91684 & 0.63269 & 1.09187 & 0.60221 & 2.12057 \\
\hline 10 & C.82127 & 0.95649 & 9.91388 & 0.62906 & 1.08959 & 0.59484 & 2.13533 \\
\hline 11 & C.81795 & 0.95004 & 0.91149 & 0.62649 & 1.08771 & 0.58961 & 2.14271 \\
\hline 12 & \(\therefore .815 .4\) & 0.94545 & 0.90754 & U. 02460 & 1.08617 & 0.58587 & 2.15033 \\
\hline
\end{tabular}

\section*{TABLE 33 CONTINUED \\ \(Q=50.0 \mathrm{cc}\)}

Goncentpatig: transignts in stage 1
Ti TC T?


CONCENTRATION TRANSIEMTS IN STAGE 2
```

T1

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{te} & \multicolumn{4}{|l|}{Whmm T1} & \\
\hline * & THYAO & ye1/rtio & Yizi Yas & rezlye & YABIYAO & \[
\mathrm{ya}
\] & fACTOR &  \\
\hline 1 & 1.16179 & 0.90766 & 0.87401 & 1. 22685 & 1.02117 & 0.83476 & 1.79671 & \\
\hline 2 & 1.16633 & 0.85023 & 0.84785 & 1.23099 & 0.99444 & 0.81671 & 1.99167 & \\
\hline 3 & 1.15935 & 0.76509 & 0.81200 & 1.18683 & 0.96825 & 0.77326 & 2.21456 & \\
\hline  & \[
\begin{aligned}
& 1514296 \\
& 14354 \\
& 13044
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { C.799414 } \\
& 0.75060 \\
& 0.78 .082
\end{aligned}
\] & \[
\begin{aligned}
& 1.31867 \\
& 1 \times 06169 \\
& 1 \times 03153 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.96293 \\
& 0.95219 \\
& 0.94512
\end{aligned}
\] & \[
\begin{aligned}
& 0.73295 \\
& 0.70658 \\
& 0.688 .0
\end{aligned}
\] & \[
\begin{aligned}
& 2.22759 \\
& 2.27986 \\
& 2.33172
\end{aligned}
\] &  \\
\hline 7 & 9.12475 & 0.62086 & 0.77388 & 1.01078 & 0.94032 & 0.67491 & 2.36618 & \\
\hline 8 & 1.12108 & 0.60737 & 0.76837 & C. 99644 & 0.93576 & 0.66611 & 2.39371 & \\
\hline 9 & 1.11932 & 0.59820 & \(0.75 ? 76\) & 0.98658 & 0.93236 & 0.65995 & 2.41421 & \\
\hline  &  & \[
\begin{aligned}
& 9.59186 \\
& 9.58746 \\
& 9.5844
\end{aligned}
\] & \[
\begin{aligned}
& \text { 9.76827 } \\
& \text { Qas534 } \\
& 0.75504
\end{aligned}
\] &  & \[
\begin{aligned}
& 0.92965 \\
& 0.92741 \\
& 92564
\end{aligned}
\] & \[
\begin{aligned}
& 0.65569 \\
& 0.65275 \\
& 0.65069
\end{aligned}
\] & \[
\begin{aligned}
& 2.42885 \\
& 2.43992 \\
& 2.44812
\end{aligned}
\] &  \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 3



\title{
TABLE 33 CONTINUED \\ \(Q=60.0 \mathrm{cc}\)
}

COACEMTRATION TRAASIERTS IN STASE 1
T1 T゙ Tこ

concenteation trans:cnts in stage 2
T? TE T1


CONCENTRATION TRANSIENTS IN STAGE 3



\section*{TABLE 34}

\section*{EFFECT OF RECYCLE RATIO ON SEPARATION, TIME \(=15 \cdot 0 \mathrm{mins}\)}
\begin{tabular}{ll}
NNZ & \(=29\) \\
H & \(=90.0 \mathrm{~cm}\) \\
\(\mathrm{Y}_{\text {Ao }}\) & \(=0.00095\) gmoles \(/ \mathrm{cc}\) \\
\(\mathrm{Y}_{\text {Bo }}\) & \(=0.00086\) gmoles \(/ \mathrm{cc}\) \\
Q & \(=25.0 \mathrm{cc}\)
\end{tabular}

TABLE 34
Beta \(=0.00\) ， TIME \(=15 \mathrm{mins}\).
\(\mathrm{PHOT}=\mathrm{PHOB}=0.70\)
concentaaticn transients in stage 1 T1 T2
\(T 3\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & YATMAO & Y51／Yso & YAZIYAC & Yez／ybo & YAB／YAO & ye3／yeo & SFACTOR \\
\hline 1 & －．97391 & 0.90421 & 1．24155 & 0.55796 & 1.00000 & 1.31575 & 1.91670 \\
\hline 2 & －．287．9 & こ．90こ44 & 1.2156 ？ & C．70574 & 0.92420 & 1.32578 & 2.47829 \\
\hline \(\pm\) & －75きここ & 1．こ1くら4 & 1.1555 & こ．70455 & 9．アテ159 & 1.82762 & 3.44295 \\
\hline 4 & －．75Eく5 & 1．こ1こ61 & 1．1715？ & －．çsec & 3.75494 & 2.22742 & 3.91099 \\
\hline 5 & \(\therefore .75642\) & 1．こ1261 & \(1.170^{7}\) & C．E3596 & 0.71423 & 2.03462 & 3.98973 \\
\hline 6 & 2．79622 & 1.01261 & 1.17065 & 0.83586 & 0.71332 & 2.03463 & 5.99477 \\
\hline 7 & 0.79622 & 1.01261 & 1.17065 & 0.83586 & 0.71329 & 2.03463 & 3.99497 \\
\hline \(\varepsilon\) & 5.79622 & 1．012t & 1.17065 & 0.83580 & 0.71329 & 2.03463 & 3.99497 \\
\hline 7 & E．796こ2 & 1.01261 & 1.17665 & C． 83586 & 0.71329 & 2.03463 & 3.99497 \\
\hline 10 & r．79622 & 1.21269 & 1.17865 & C． 83586 & 0.71329 & 2.03463 & 3.99497 \\
\hline 11 & ？．79622 & 1.01261 & 1.17065 & C． 83586 & 0.71329 & 2.03463 & 3.99497 \\
\hline 12 & －．79662 & 1．こ12 & 1．172t5 & 0.63596 & 0.71329 & 2.07463 & 3.99497 \\
\hline \multicolumn{8}{|c|}{\begin{tabular}{l}
CONCENTRATION TRANSIENTS IN STAGE 2 \\
T2
\end{tabular}} \\
\hline M & YA \(1 /\) YAO & YE1／YPO & YASIYAO & Y日2／ybo & YAS／YAO & Y83／YE0 & SfACtor \\
\hline 1 & 1.24946 & 0.75028 & 0.96593 & 1.19178 & 0.97391 & 0.80460 & 2.05471 \\
\hline 2 & 1． 23311 & 0.77657 & 0.90158 & 1.43495 & 0.81669 & 0.93276 & 2.52729 \\
\hline 3 & 1.21648 & 0.80287 & 0.82739 & 1.68368 & 0.61180 & 1.28839 & 3.08323 \\
\hline 4 & 1.21620 & 0.80287 & 0.81709 & 1.68924 & 0.55784 & 1.41648 & 3.13170 \\
\hline 5 & 1.21620 & 0.80287 & 0.81660 & 1.68924 & 0.55120 & 1.41711 & 3.13357 \\
\hline 6 & 1.21620 & 0.80287 & 0.81659 & 1.68924 & 0.55084 & 1.41711 & 3.13361 \\
\hline 7 & 1.21620 & 0.80287 & 0.81659 & 1.68924 & 0.55083 & 1.41711 & 3.13361 \\
\hline 8 & 1.21620 & 0.80297 & 0.81659 & 1.68924 & 0.55083 & 1.41711 & 3.13361 \\
\hline 9 & 1.21620 & 0.80287 & 0.81659 & 1.63924 & 0.55083 & 1.41711 & 3.13361 \\
\hline 10 & 9．21620 & 0.80287 & 0.81659 & 1.68924 & 0.55083 & 1.41711 & 3.13361 \\
\hline 11 & 1.21620 & 0.80287 & 0.81659 & 1.68924 & 0.55083 & 1.41711 & 3.13361 \\
\hline 12 & 1.21620 & 0.80287 & 0.81659 & 1.68924 & 0.55083 & 1.41711 & 3.13361 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 3

M YAT／YAO YBI／YBO YAZ／YAO YB2／YBO YAZ／YAO YBZ／YBO
10
\begin{tabular}{r}
1 \\
2 \\
3 \\
\hline
\end{tabular}
2
3
4
5
6
7
7
\(8 \quad 0.96814 \quad 1.36907\)
\(\begin{array}{rll}9 & C .96814 & 1.36967 \\ 10 & 0.96814 & 1.36907\end{array}\)
\(\begin{array}{ll}11 \\ 12 & 0.96814-1.36907 \\ 0.96814 & 1.36907\end{array}\)

TABLE 34 CONTINUED

> Beta \(=0.20, T I M E=15 \mathrm{mins}\). \(\mathrm{PHOT}={ }^{\mathrm{PHOB}}=0.60\)

CONCENTRATION TRANSIENTS IN STAGE 1 T1 T2

T 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\cdots\) & YA？／YAO & YE1／YEO & YAZ／YAO & YВ2／YB0 & YAS／YAO & В \(3 / Y 80\) & SFACTOR \\
\hline 1 & \(\therefore .77391\) & 0.80421 & 1．24155 & C． 65790 & 1．00000 & 1.01585 & 1.91639 \\
\hline こ & フ．0095 &  & 9．2こ921 & C．20034 & 2.91223 & 1．33005 & 2.61170 \\
\hline 5 & － 2.315 & 6．9£327 & 1．21013 & －．75407 & ］． 76463 & 1． 5 ¢7－9 & 3.91443 \\
\hline 4 & ． 80109 & 0.99560 & 1.1583 ？ & 6．757こう & 0.70158 & 2．J¢112 & 4.51578 \\
\hline 5 & 0.79437 & 1.00858 & 1．1960C & 0.70221 & 0.69507 & 2．10378 & 4.56941 \\
\hline 6 & －．79328 & 1.01077 & 1.19433 & 0.79778 & 0.69035 & 2．12691 & 4.61233 \\
\hline 7 & 「．79271 & 1.01225 & 1.17399 & 0.79883 & 0.68879 & 2．12217 & 4.62677 \\
\hline e & ？．79251 & 1.01268 & 1.17 こ84 & 0.79949 & 0.68837 & 2．13497 & 4.63109 \\
\hline 9 & －．79245 & 1.01286 & 1.19270 & 0.79968 & 0.68920 & 2．13577 & 4.63290 \\
\hline 15 & \(\bigcirc .79242\) & 1．01293 & 1．19378 & C． 79977 & 0.68814 & 2.13613 & 4.63350 \\
\hline 11 & \(\bigcirc .79242\) & 1.01255 & 1.19377 & 0.79980 & 0.68212 & 2．136？6 & 4.63372 \\
\hline 12 & －．79241 & 1.01296 & 1.19377 & C．79981 & \(0.68 \times 12\) & 2．136 21 & 4.63380 \\
\hline
\end{tabular}

CONCEMTRATION TRANSIENTS IN STAGE 2 \(T 2\)

M YA1／YAO YB1／YBO YAZ／YAO YBC̃／YBO YASIYAO
YB3／YEO
SFACTOR
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 1.24946 & 0.75028 & 0.94862 & 1.21651 & 0.97877 & 0.80289 & 2.13563 \\
\hline 2 & 1.23614 & 0.76773 & 0.88215 & 1.45839 & 0.82873 & 0.96210 & 2666191 \\
\hline 3 & 1.21916 & 0.783 & 0.81629 & 1.75122 & 0.62923 & 1.23596 & 3.24454 \\
\hline 4 & 1.21337 & 0.78858 & 0.81123 & 1.72113 & 0.58032 & 1.349 cg & 3.26450 \\
\hline 5 & 1.21112 & 0.79636 & 0.80404 & 1.74343 & 0.57683 & 1.35846 & 3.29764 \\
\hline 6 & P． 211080 & 0.79735 & 0.80218 & 1.74871 & 0.57132 & 1.37071 & 3.31031 \\
\hline 7 & 1.21058 & 0.79823 & 0.80166 & 1.75131 & 0.57062 & 1.37315 & 3.31309 \\
\hline 8 & 1.21051 & 0.79844 & 0.83143 & 1.75220 & 0.57025 & 1.37454 & 3.31470 \\
\hline 9 & 1.21049 & 0.79855 & 0.80136 & 1.75254 & 0.57010 & 1.37409 & 3.31515 \\
\hline 10 & 1.21048 & 0.79858 & 0.80133 & 1.75268 & 0.57006 & 1.37517 & 3.31533 \\
\hline 11 & 1.21048 & 0.79860 & 0.80132 & 1.75272 & 0.57004 & 1.37523 & 3.315 .39 \\
\hline 12 & 1.21048 & 0.79860 & 0.80132 & 1.75274 & 0.57004 & 1.37526 & 3.31541 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 3


TABLE 34 CONTINUED
Beta \(=0.40\), TIME \(=15\) mins.
\(\mathrm{PHOT}=\mathrm{PHOB}=0.50\)

CONCENTRATION TRANSIENTS IN STAGE 1 T1 TE T?


CONGENTRATION TRANSIENTSIN STAGE 3

\section*{\(T 3\)}
\(T 1\)
T2


TABLE 34 CONTINUED
Beta \(=0.60\), TIME \(=15\) mins. \(\mathrm{PHOT}=\mathrm{PHOB}=0.40\)

CONCENTRATION TRANSIENTS IN STAGE 1 \(T 1\)

\section*{TZ}

13
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & YGTIYAO & Y81/YB0 & Yac/yao & YBZ/YBO & YABAYAO & VB3C180 & SFACTOR \\
\hline 1 & C. 97391 & 0.80421 & 1.24155 & 0.65796 & 1.00000 & 1.015 .97 & 1.91712 \\
\hline 2 & 0.89911 & 0.87847 & 1.25388 & 0.66698 & 0.89606 & 1.34345 & 2.81855 \\
\hline 3 & 0.92748 & 0.92196 & 1.25482 & 0.68474 & 0.72732 & 1.90718 & 4.84361 \\
\hline 4 & 0.81345 & 0.92457 & 1.25497 & 0.69666 & 0.67995 & 2.10621 & 5.57998 \\
\hline 5 & C. 79649 & 0.95479 & 1.24198 & 0.71655 & 0.68216 & 2.15967 & 5.48741 \\
\hline 6 & 0.79224 & 0.96475 & 1.23653 & 0.73585 & 0.66529 & 2.244 .10 & 5.66821 \\
\hline 7 & 0.78661 & 0.98005 & 1.23386 & 0.74639 & 0.66144 & 2.27439 & 5.68431 \\
\hline a & 0.78437 & 0.98672 & 1.23149 & 0.75651 & 0.65778 & 2.31517 & 5.72955 \\
\hline 9 & 0.78266 & 0.99419 & 1.23036 & 0.76242 & 0.65567 & 2.33472 & 5.74631 \\
\hline 10 & 0.78167 & 0.99825 & 1.22954 & 0.76773 & 0.65454 & 2.35467 & 5.76145 \\
\hline 11 & 0.78106 & 1.00202 & 1.22904 & 0.77111 & 0.65378 & 2.36624 & 5.76873 \\
\hline 12 & 0.78068 & 1.00436 & 1.22872 & 0.77389 & 0.65334 & 2.37638 & 5.77497 \\
\hline \multicolumn{8}{|c|}{\begin{tabular}{l}
CONCENTRATICN TRANSIENTS IN STAGE 2 \\
12 T3
\end{tabular}} \\
\hline \(\cdots\) & YA1/YAO & Ye1/Y80 & YACIYAO & Yezrybo & YASIYAO & Y日3/480 & SFACTOR \\
\hline 1 & 7.24946 & 0.75028 & 0.92493 & 1.25088 & 0.98931 & 0.79961 & 2.25221 \\
\hline 2 & 1.24189 & 0.74346 & 0.85558 & 1.48858 & 0.86524 & 0.91088 & 2.90628 \\
\hline 3 & 1.21423 & 0.72878 & 0.81524 & 1.68833 & 0.69604 & 1.10926 & 3.45044 \\
\hline 4 & 1.18535 & 0.74659 & 0.82049 & 1.2347 .1 & 0.66062 & 1.18116 & 3.35676 \\
\hline 5 & 1.17719 & 0.76959 & 0.79558 & 1.81530 & 0.65472 & 1.20049 & 3.49021 \\
\hline 6. & 1.17455 & 0.77806 & 0.79120 & 1.34512 & 0.63825 & 1.23145 & 3.52042 \\
\hline 7 & 7.17079 & 0.78931 & 0.78598 & 1.88344 & D.63455 & 1.24991 & 3.55445 \\
\hline 8 & 1.16956 & 0.79416 & 0.78313 & 1.90246 & 0.630 .32 & 1.25705 & 3.57764 \\
\hline 9 & 1.16843 & 0.79981 & 0.78158 & 1.92938 & 0.62825 & 1.26399 & 3.59134 \\
\hline 10 & 1.16782 & 0.80279 & 0.78052 & 1.93259 & 0.62705 & 1.27149 & 3.63191 \\
\hline 11 & 1.16744 & 0.80563 & 0.77921 & 1.94228 & 0.62626 & 1.27557 & 3.60882 \\
\hline 12 & 1.16719 & 0.80737 & 0.77954 & 1.94864 & 0.62584 & 1.27932 & 3.61380 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 3

M. MATIYAO YBT/YBO YAZIYAO YEZAYBO YAZAYAO YBJ/YBO SFACTOR
\begin{tabular}{rrrrrrrr}
1 & 0.94202 & 1.38868 & 0.82218 & 0.88735 & 1.29143 & 0.67184 & 2.83363 \\
2 & 0.98304 & 1.34875 & 0.76790 & 0.96968 & 1.25717 & 0.69924 & 2.46676 \\
3 & 0.99106 & 1.38581 & 0.72065 & 1.03309 & 1.21969 & 0.761007 & 2.30138 \\
4 & 0.95777 & 1.48446 & 0.70842 & 1.04898 & 1.21259 & 0.768 .05 & 2.41400 \\
5 & 0.95320 & 1.49367 & 0.68973 & 1.07961 & 1.20491 & 0.79339 & 2.37979 \\
\hline 6 & 0.94652 & 1.52715 & 0.68628 & 1.08970 & 1.19994 & 0.81262 & 2.38244 \\
7 & 0.94301 & 1.54499 & 0.68098 & 1.10479 & 1.19754 & 0.82586 & 2.37573 \\
8 & 0.94108 & 1.56167 & 0.67879 & 1.11153 & 1.19565 & 0.83639 & 2.37223 \\
9 & 0.93975 & 1.57206 & 0.67730 & 1.11890 & 1.19459 & 0.84364 & 2.36875 \\
10 & 0.93899 & 1.58072 & 0.67639 & 1.12298 & 1.19389 & 0.84931 & 2.36642 \\
11 & 0.93852 & 1.58656 & 0.67587 & 1.12670 & 1.19343 & 0.85331 & 2.36431 \\
\hline 12 & 0.93822 & 1.59114 & 0.67554 & 1.12905 & 1.19315 & 0.85636 & 2.36290
\end{tabular}

TABLE 34 CONTINUED
Beta \(=0.800\), TIME \(=15\) mins. \(\mathrm{PHOT}=\mathrm{PHOB}=0.30\)

CONCENTRATION TRANSIENTS IN STAGE 1
T1 T2 T3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & YA1/YAO & YB1/YB0 & YAZ/YAO & YB2/YEO & YA3/YAO & YB3/YB0 & SFACTOR \\
\hline 1 & 9.97391 & 0.80421 & 1.24155 & 0.65796 & 1.00000 & 1.01602 & 1.91721 \\
\hline 2 & 0.90551 & C.86463 & 1.26568 & 0.65596 & 0.88637 & 1.34311 & 2.92377 \\
\hline 3 & ?.54415 & 0.86965 & 1.29506 & 0.64223 & 0.71639 & 1.90461 & 5.35939 \\
\hline 4 & C. 83548 & 0.85229 & 1.28540 & \(0.63 C 82\) & 0.66848 & 2.05732 & 6.27958 \\
\hline 5 & C.87480 & 0.87426 & 1.26618 & 0.64554 & 0.66258 & 2.13135 & 6.22047 \\
\hline 6 & 0.80331 & 0.88107 & 1.25760 & 0.66229 & 0.64445 & 2.18147 & 6.42767 \\
\hline 7 & 0.79349 & 0.89843 & 1.25076 & 0.67538 & 0.63645 & 2.20672 & 6.42110 \\
\hline 8 & 0.78728 & 0.90595 & 1.24577 & 0.68891 & 0.62982 & 2.26356 & 6.49907 \\
\hline 9 & C.78250 & 0.91830 & 1.24219 & 0.69928 & 0.62544 & 2.28984 & 6.50364 \\
\hline 10 & 0.77918 & 0.92531 & 1.23958 & 0.71097 & 0.62232 & 2.32940 & 6.53344 \\
\hline 11 & 0.77671 & 0.93422 & 1.2375? & 0.71884 & 0.62014 & 2.35377 & 6.53258 \\
\hline 12 & C. 77493 & 0.94030 & 1.23613 & 0.72739 & 0.61855 & 2.38140 & 6.54262 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 2
T2 T3
11
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & YAT/YAO & YETAYBO & YAZIYAO & YB2/Y80 & YA3/YAO & YB3/E80 & SFACTOR \\
\hline 7 & 9.24946 & 0.75028 & 0.91906 & 9.26803 & 0.99500 & 0.79778 & 2.31785 \\
\hline 2 & 1.24589 & 0.72614 & 0.84223 & 1.50146 & 0.89205 & 0.87116 & 3.05877 \\
\hline 3 & 1.21504 & 0.67991 & 0.79544 & 1.65458 & 0.75951 & 1.00874 & 3.71720 \\
\hline 4 & 1.17825 & 0.68456 & 0.79563 & 1.69096 & 0.72232 & 1.04866 & 3.65806 \\
\hline 5 & 1.16484 & 0.70246 & 0.76988 & \(1 \times 76855\) & 0.70125 & 1.06076 & 3.80925 \\
\hline 6 & 1.15606 & 0.71078 & 0.76005 & 1.79377 & 0.681966 & 1.08326 & 3.83857 \\
\hline 7 & 7. 14865 & 0.72391 & 0.75171 & 1.84737 & 0.67062 & 1.09026 & 3.90257 \\
\hline 8 & 1.14409 & 0.73031 & 0.74531 & 1.87322 & 0.66200 & 1.10674 & 3.93735 \\
\hline 9 & 1.14055 & 0.74032 & 0.74103 & 1.91105 & 0.65615 & 1.11417 & 3.97312 \\
\hline 10 & 1.13807 & 0.74623 & 0.73807 & 1.93442 & 0.65210 & 1.12580 & 3.99713 \\
\hline 11 & 1.13628 & 0.75365 & 0.73583 & 1.96198 & 0.64913 & 1.13261 & 4.02007 \\
\hline 12 & 1.13494 & 0.75878 & 0.73428 & 1.98181 & 0.64712 & 1.14098 & \(4 \% 03699\) \\
\hline
\end{tabular}

COMCENTRATION TRANSIENTS IN STAGE 3


\section*{TABLE 35}

EFFECT OF RECYCLE RATIO, TIME \(=30\). mins.
\begin{tabular}{ll}
NNZ & \(=29\) \\
H & \(=90.0 \mathrm{~cm}\) \\
\(\mathrm{Y}_{\mathrm{AO}}\) & \(=0.00095\) gmole \(/ \mathrm{cc}\) \\
\(\mathrm{Y}_{\mathrm{Bo}}\) & \(=0.00086\) gmole \(/ \mathrm{cc}\) \\
Q & \(=25.00 \mathrm{~cm}\)
\end{tabular}

TABLE 35
Beta \(=0.00\) ，TIME \(=30\) mins．
\(\mathrm{PHOT}=\mathrm{PHOB}=0.70\)

「1 Tこ T？
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4 & Ye1／YAC & YE1／YFO & Yiz／YA0 & YPa／YEC & YAZ／YRO & YE3／YE0 & SFACTOR \\
\hline 1 & －96973 & coisses & 1．2556\％ & 6．64023 & 1.00000 & ．1．21615 & 2.04046 \\
\hline c & － 650 & 0． 50.6 & 1．07－2？ & －ロフ¢54 & 2．25765 & 1.30431 & 2.87734 \\
\hline \(\bigcirc\) & & & & & \(\therefore 7 \because 172\) & 1．0起 & 40 －メア5－ \\
\hline \(\checkmark\) & 71 & & －－ & － － \(415^{\text {a }}\) & \067751 & 2．1－519 & 4.50475 \\
\hline z & － 76.131 & 1．20338 & 1．ご达 & c．0．311 & 2．6719？ & 2.13596 & 4.85439 \\
\hline \(\varepsilon\) & 0.76131 & 1.00323 & 1．22620 & C． 204111 & 0.67173 & 2．12896 & 4.85550 \\
\hline 7 & 5.76131 & 1.05378 & 1．22t20 & C． 80411 & 0.67173 & 2.13880 & 4.85551 \\
\hline － & \(\because 7 \leq 1=1\) & 1－ 1 Cここ2 & 1．2こ！こ？ & C．\(=: 2411\) & \(0.6717^{\circ}\) & 2．175：0 & 4.35551 \\
\hline \(\dagger\) & \(\because 76159\) & 1．05328 & 1.22629 & C．20411 & 0.67178 & 2.13896 & 4.85551 \\
\hline 15 & －． 7613 & 1.20858 & 1．2E62？ & E．cest1 & 2.67178 & 2． \(1 \pm 306\) & 4.5551 \\
\hline i1 & －761 1 & \(1.003=\) c & 1．26620 & こ． 00411 & C． 57173 & 2.13836 & 4.25551 \\
\hline 12． & \(\cdots \cdot 7.1\) & 1．Cこここと & －．ここちご & C．0．jul1 & 3．6717？ & 2．1733 & 4.85557 \\
\hline
\end{tabular}

CORCENTRATICN TOANSIENTE IA：STAGE 2
\(I\) T2
\(I 1\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline n & Yat／YAO & Ye1／reo & Yas & YEZ／YEO & YA & Y 8 & Sfactor \\
\hline 9 & 7.29958 & 0.74840 & 0.93665 & 1.29798 & 0.96895 & 0.78808 & 2.33274 \\
\hline 1 2 & 1.28651 & 0.77038 & 0.84237 & 1.48284 & 0.77359 & 0.98977 & 2.93968 \\
\hline － 3 & 1.27343 & 0.79237 & 0.77318 & 1.750 .64 & 0.51877 & 1.32714 & 3.63883 \\
\hline 4 & 1.2734. & 0.79237 & 0.76823 & 1.75357 & 0.45680 & 1.46291 & 3.66839 \\
\hline 2.5 & 1.27341 & 0.79237 & 0.76817 & 1.75357 & 0.45426 & 1.46300 & 3.66865 \\
\hline \(3-6\) & 1.27341 & 0.39237 & 0.76817 & 1.75357 & 0.45423 & 1.46300 & 3．6．68865 \\
\hline 4 & 1.27341 & 0.79237 & 0.75817 & 1.75357 & 0.45423 & 1.46300 & 3.66865 \\
\hline \({ }^{3}\) \％ & 1.27341 & 0.79237 & 0.75817 & 1.75357 & 0.45423 & 1.46300 & 3.66865 \\
\hline 8 & 1.27341 & 0．79237 & 7.73817 & 1.75357 & 0.45423 & 1.46300 & 3.26365 \\
\hline 1 c & 1.27341 & 0.79237 & 0.76817 & 1.75357 & 0.45423 & 1.46350 & 3.66865 \\
\hline 11 & 1.27341 & 0.79237 & 0.76817 & 1.75357 & 0.45423 & 1.46300 & 3.66865 \\
\hline 312 & 1.27341 & 0.79237 & 0.75817 & 1．15357 & 0.45423 & 1.46300 & 3.66865 \\
\hline wf & & & & & & & \\
\hline \multicolumn{8}{|l|}{CONCENTRATICN TRANSIENTS IN STAGE 3} \\
\hline 9 & \multicolumn{2}{|l|}{} & \multicolumn{2}{|r|}{11} & \multicolumn{2}{|l|}{－ 12} & \\
\hline it & & & & & & & \\
\hline 1 & Yat／raO & रE1／YB0 & YAZYAO & \multicolumn{2}{|l|}{YRzCYBA KAZ／YAO} & raz／x日 & SFACTOR \\
\hline  & & & & & & & \\
\hline \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & C． 92803 & 1.41169 & 0.74705 & 0.97294 & 1.28364 & 0.75119 & 2.59771 \\
\hline  & 0.72050 & 1.41102 & 0.58 .737 & 1.22154 & 1.19 .915 & 0.83934 & 2.19002 \\
\hline \(0 \quad 4\) & C． 92049 & 1.41102 & 0.58566 & 1.22153 & 1.18238 & 0.88841 & 2.04013 \\
\hline ， & 5.92049 & 1.41102 & 0.58565 & 1.22153 & 1.18180 & 0．888．41 & 2.03911 \\
\hline 26 & C． \(92044^{\circ}\) & 1.41102 & 0.58565 & 1.22153 & 1.18179 & 0.88841 & 2.03910 \\
\hline 97 & 0.92049 & 1.41102 & 0.58565 & 1.22153 & 1.18179 & C．89841 & 2.03910 \\
\hline 1－ & 3.72049 & 1.41102 & 0.58565 & 1.22153 & 1.18170 & 0.38841 & 2.03910 \\
\hline 9 & C．92049 & 1.41102 & 0.58565 & 1．22153 & 1.16179 & 0.83841 & 2.03910 \\
\hline 10 & 0.92049 & 1.41102 & 0.5856 .5 & 1.22153 & 1.18179 & 0.33841 & 2.03010 \\
\hline \(\because \quad 11\) & E．9204． & 1.41102 & 0.53 .565 & 1．22153 & 1.18179 & 0.88341 & 2.03 .910 \\
\hline － 12 & ． 9.92047 & 1.41102 & 2.53505 & 1.22153 & 1.181 .79 & 0.32841 & 2.03910 \\
\hline & & & & & & & \\
\hline
\end{tabular}

TABLE 35 CONTINUED
Beta \(=0.20\) ，TIME \(=30\) mins．
PHOT \(=\mathrm{PHOB}=0.60\)

T3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & YAT／YAS & Y \(=1 / 870\) & YAZIYAO & Yロ，／YEO & YAS／YAO & Ye3／Yeo & SFACTOR \\
\hline ． & ． 9.9780 & C． g \(^{\text {a }}\) & 1．785t？ & C．t4023 & 1.000 .00 & 1.21630 & \(2 \cdot 64975\) \\
\hline \(\checkmark\) & －-115 & － 55543 & 1．95：7？ & C． 6316 & 9.37034 & 1．375：4 & 3.22968 \\
\hline ， & － －\(_{\text {\％}}\) & －．77．1．7 & 1．7ア1こ & ．．175 1 & う．？ごくら & 1．350：4 & 4.91602 \\
\hline & －77 & ． \(9 \cdot 514\) & \(1.95 \%\) & \(=.76740\) & 2．4555 & \(2.1: 504\) & 5．Eと2こ？ \\
\hline 5 & \(=70403\) & 8.7403 & 1．2572 & C．75120 & 0.65198 & 2．19950 & 5．64591 \\
\hline 6 & － 70417 & C．99855 & 1．25 52？ & 0.75645 & 0.64869 & 2.22095 & 5.63182 \\
\hline 7 & － \(7655^{\circ}\) & C． 99976 & 1.25514 & 6.75721 & 0.64777 & 2.22403 & \(5.69 ? 27\) \\
\hline \(\because\) & －．76742 & 1.0503 & 1．75594 & －．75777 & 5.64760 & 2.22716 & 5.67572 \\
\hline \(c_{j}\) & 0.76353 & 1．ごらこ1 & 1.25497 & －．75731 & 3.64751 & 2． 22703 & 5.69711 \\
\hline 15 & －．75356 & 1.08025 & 1．2549t & 5.75797 & 3．64748 & 2.22309 & 5.69745 \\
\hline 11 & －703j0 & 1．00こ27 & 1．2549 & C．7579 & 9．64747 & 2.22 亿18 & 5.67759 \\
\hline 15 & －7c3－6 & 1．らことこき & 1．2549 & こ．75\％50 & 9．64？\({ }^{\text {？}}\) & 2．22321 & 5．6976？ \\
\hline
\end{tabular}

COMC＝VTRATIM TRA：SIENTS IH STAGE 2


TABLE 35 CONTINUED
Beta \(=0.40\) ，TIME \(=30 \mathrm{mins}\) ．
\(\mathrm{PHOT}=\mathrm{PHOB}=0.5\)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\cdots\) & yat／YAO & Ye1／yeo & YąCyio & Y 321980 & YAS／YAQ & Ye3／YE0 & SFACTOR \\
\hline & 96axe & \(\therefore\)－ \(3 \mathrm{c}=\) & 1.23 .50 & E．04．023 & 1．0．can & 1．21．asta & 2． 24084. \\
\hline & & 7ア・ &  &  & 7．3559 & 1．3プご & \(3.1655 ?\) \\
\hline & & & & ．\(\because 7\) & － \(0 \times 11\) & 1．75 & 「．5ソフJ？ \\
\hline & & & \(1 \cdot 526\) & － 198 & \(3 \mathrm{x}-324\) & 2．197？ & \(\underline{6} 5.5570\) \\
\hline 5 & －7731 & 2．96503 & \(1.2547 \%\) & －-7 caz & 2.63745 & 2．229．23 & 5.42905 \\
\hline 3 & 0.77155 & 0.97897 & 1．2812？ & C． 70982 & 2．62929 & 2．23107 & 5.54261 \\
\hline 7 & C．7e2is & 0.973 .75 & 1．2875？ & 0.71235 & 1． 6.52772 & 2．22223 & 6.56449 \\
\hline \(\checkmark\) & －？ 0 3－？ & －．c．557 & 1．2787 & 「．715？ & 0.628 .4 & 2．3．549 & 6.57980 \\
\hline \(1-\) & \(\bigcirc 76752\) & 0.92207 & 1.2795 ？ & ©．71627 & 0.62633 & 2． 31012 & 6.53886 \\
\hline 15 & －7， 76 & \(\underline{-20372}\) & 1．2734： & －． 7172 & 2．t2613 & 2.31355 & 6.592 22 \\
\hline 11 & \(\because .76 ? 50\) & C．78 12 & 1．7794 & 6.71742 & ？．52608 & 2.31595 & 6.57450 \\
\hline 12 & －70732 & －¢8こ？ & 1．9763？ & 6.71763 & 2.62634 & 2．310：5 & 6.57547 \\
\hline
\end{tabular}

CCiACATGATEON TRANSIE：GTS IN STAGE 2


TABLE 35 CONTINUED
Beta \(=0.60\) ，TIME \(=30\) mins． \(\mathrm{PHOT}=\mathrm{PHOB}=0.4\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\cdots\) & YA 1／YAO & Y81／YEC & Yą／YAO & yec／yso & YAS／YAO & YE3／YEO． & SFACTOR \\
\hline & －． 9585 & 0．789－9 & 1．25： & 3．64023 & 1.0000 & 1． 21638 & 2.04091 \\
\hline & － \(27 ?\) & －0．4＝ & 1．－20 & －．61164 & 3.30644 & 1．375\％5 & －．24294 \\
\hline & & \(\therefore\)－\(\square^{7}\) & & －\(\therefore_{6} 1\) & －5「ご & 1．\({ }^{-2}\) & ¢02\％ 4 \\
\hline － & －\(\sim^{2}\) & 5051 & － & ¢． \(6: 7\) & －\(\because\) Oこ： & 2．1－22 & 7．こジこの \\
\hline Z & －．72741 & E．0．0t5 & 1．7－2． & －05725 & 3.5424 ？ & 2.21256 & 5.85740 \\
\hline 0 & \(=.78450\) & 0.93412 & 1.25374 & 0.07323 & 2.62789 & 2.29391 & 7.06373 \\
\hline 7 & 0.77829 & 0.74883 & 1.33184 & C． 07560 & 0.62709 & 2.31374 & 7．06656 \\
\hline C & － 7 7to？ & －．05 000 & 1．アヶ゙5 & E．0？ 09 & 2.62459 & 2.35308 & 7.11953 \\
\hline 7 & － 07743 & －．jectz & 1.24977 & U．Cう158 & －．b2？ 5 & 2.36959 & 7.13893 \\
\hline 10 & 9.77491 & C． 5.540 & 1．29Ec & 5．09610 & 2．62？ 3 ？ & 2.32703 & 7.1516 ？ \\
\hline 11 & 2．7735 & －．96719 & 1．2576 & C．0．0847 & 0.62212 & C． 39808 & 7.15190 \\
\hline 12 & － 7.722 & \(\therefore .0658\) & 1．いつらす & 5．72053 & 2．62909 & \(2.400 \% 4\) & 7.16592 \\
\hline
\end{tabular}

CEANCETRATICN TOG：SEENTS IN STAGE 2
\(T 2\) TT Tr Tr Tr Tr


\section*{TABLE 35 CONTINUED}

Beta \(=0.80\) ，TIME \(=30\) mins．
\(\mathrm{PHOT}=\mathrm{PHOB}=0.30\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\[
1
\]}} \\
\hline & & & \\
\hline
\end{tabular} Tこ T
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\because\) & YAT／YAO & \(Y=1 / Y E 0\) & YA？／YAC & Yロごイ日O & YAS／YAO & YE3／YEO & SFACTOR \\
\hline 1 & \(-06356\) & 2．73502 & 1．2E56 & 6.04524 & 1.00000 & 1．01642 & 2.04900 \\
\hline \(\because\) & \(\cdots \cdots 11\) & こったが「ご & ？＂ここ & －－ここ5こ & \(\because 25516\) & 1.37125 & 3．35359 \\
\hline & \(\because \cdots ?\) & 1－： & & － & －．5：～ご & 1．7：5xt & \(\leq .29214\) \\
\hline － & 1 & ．． 610 & 1，－？ & －．74\％ & ソ旨このここ & こ．1．143 & 2．03254 \\
\hline － & － & \(\therefore .2 こ 7: 2\) & 1.7375 & \(\cdots\) & 9．63501 & 2.15325 & 7.83015 \\
\hline 6 & \(\therefore\) ¢1？ & －．33439 & 1．33185 & C． 58740 & 0.61876 & 2.22366 & 8.14836 \\
\hline 7 & －．9C315 & －． 55196 & 1．2こ726 & 0.59314 & 0.61651 & 2.22379 & 3.07166 \\
\hline 三 & \(\because 3-4 \geq 2\) & ［．3545） & 1．3271 & 4．0191 & 3．61171 & 2.2 .0699 & 8.21646 \\
\hline 5 & －マ こうご & \(=.36613\) &  & C．0je10 & －6．6911 & 2． 2795 & 9．22139 \\
\hline 10 & 0.7577 & 6．87529 & 1．3126？ & C． 21466 & 9．60738 & 2．27927 & 9．25234 \\
\hline 11 & －75557 & －．378「こ & 1．71721 & E．01914 & 0.65604 & 2．35726 & 8.27554 \\
\hline \(1-\) & －．73418 & C．29こ？ & 1．71¢ & －． 22578 & 7.65504 & 2.38409 & 8.23668 \\
\hline
\end{tabular}

CONGEATRA ITA TOANSIENTS IN STAGE 2
\(T=\)
T
M YAT／YAO YBT／YEO YAZ／YAO．YBZ／YEO YAZ／YAO YEZ／YBO SFACTOR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 4 & 1
2
3 & \[
\begin{array}{r}
1.29958 \\
1.29938 \\
4.36144 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.74840 \\
& 0.71770 \\
& 0.64902
\end{aligned}
\] & \[
\begin{aligned}
& 0.85<62 \\
& 0.79422 \\
& 0.76522
\end{aligned}
\] & \[
\begin{aligned}
& 1.29805 \\
& 1.55034 \\
& 1.68710
\end{aligned}
\] & \[
\begin{aligned}
& 0.98561 \\
& 0.85008 \\
& 0.65811
\end{aligned}
\] & \[
\begin{aligned}
& 0.78383 \\
& 0.86577 \\
& 1.01768
\end{aligned}
\] & \[
\begin{array}{r}
2.64365 \\
3.57916 \\
4.28517 \\
\hline
\end{array}
\] \\
\hline ＇： & 4 & 1． 20775 & 0.63975 & 0.78623 & 1.71338 & 0.61877 & 1.04925 & 4.11282 \\
\hline 1 & 5 & 1.19477 & 0.64976 & 0.75071 & 1.78178 & 0.61444 & 1.05543 & 4.30692 \\
\hline 3 & 6 & 1.19027 & 0.65092 & 0.75781 & 1.78305 & Q． 57454 & 1.07249 & 4．30251 \\
\hline 4 & 7 & 1.18290 & 0.65956 & 0.75044 & 1.83868 & 0.65840 & 1.07129 & 4．39424 \\
\hline 5 & 8 & 1.13027 & 0.66023 & 0.74690 & 1.85097 & 0.58126 & 1.08887 & 4.43017 \\
\hline & 9 & 1.17536 & 5.66906 & 0.7438 ？ & 1.88700 & D． 57774 & 1.09174 & 4.45273 \\
\hline & 10. & 1.17518 & 0.67121 & 0.74152 & 1.90403 & 0.57403 & 1.10326 & 4.49361 \\
\hline 3 & 11 & 1.17352 & 0.67730 & \(0.74 C 23\) & 1.72852 & 0.57179 & 1.10763 & 4.51404 \\
\hline 3 & 12 & 1.17246 & 0.68012 & 0.73911 & 1.94702 & 0.57012 & 1.11523 & 4.54118 \\
\hline
\end{tabular}

CONCENTFATICN IRANSIENTS IN STAGE 3


TABLE 36
EFFECT OF CONCENTRATION ON SEPARATION, RECYCLE RATIO \(=\mathbf{0 . 0}\)
TIME \(=10 \mathrm{mins}\)\(\quad\)\begin{tabular}{ll} 
NNZ & \(=29\) \\
H & \(=90.0 \mathrm{~cm}\) \\
PHOT & \(=0.70\) \\
PHOB & \(=0.70\) \\
BETA & \(=0.00\) \\
Q & \(=25.0 \mathrm{cc}\)
\end{tabular}

TABLE 36
\(Y_{A O}=Y_{B o}=2.5 \% \mathrm{~V} / \mathrm{V}\)
concentration transients in stage 1
T1 T2 T3


CONCENTRATION TRANSIENTS IN STAGE 3

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 1.01269 & 0.87700 & 0.55004 & 1.51077 & 2.12593 & 0.60576 & 3.03927 \\
\hline 2 & 0.93346 & 0.90990 & 0.49970 & 1.44.146 & 1.70588 & 0.70061 & 2.37340 \\
\hline 3 & 4883556 & 9:934362 & 0x42188 & 1-38595 & 1220549 & 0.77805 & 1-76476 \\
\hline & 7, 85088 & 0.94325 & 0-38819: & 1.40045 & 1.08890 & 0.76392 & 7. S8017 \\
\hline 5 & C. 85086 & 0.943725 & 0.38292 & 1.40114 & 1.04167 & 0.76803 & 1.50356 \\
\hline 6 & C.85086 & 0.94325 & 0.38267 & T.40115 & 1.02913 & 0.76890 & 1.48376 \\
\hline 7 & 0.85086 & 0.94325 & 0.38267 & 1.40115 & 1.0274 .7 & 0.76892 & 1.48135 \\
\hline 8 & C. 85086 & 0.94325 & 0.38267 & 1.40115 & 1.02736 & 0.76892 & 1.48119 \\
\hline 9 & 2.85086 & 4.94355 & 0.38267 & 1.40115 & 7.02736 & 0.76892 & T.48179 \\
\hline 10. & 0.85086 & 0.94325 & 0.38267 & 1.401t5 & 1.02738 & 0.76892 & 1.481118 \\
\hline 811 & 0.85086 & 0.94325 & 0.38267 & 1.40115 & 1.02736 & 0.76892 & 1.48118 \\
\hline 12 & 0.85086 & 0.94325 & 0.38267 & 1.40115 & 1.02736 & 0.76892 & 1.4 \\
\hline
\end{tabular}

TABLE 36 CONTINUED
\(\mathrm{Y}_{\mathrm{AO}}=\mathrm{Y}_{\mathrm{Bo}}=5 \% \mathrm{~V} / \mathrm{V}\)

CONCENTRATION TRANSIENTS IN STAGE 1
T1
T2
13
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & YAT／YAO & YE1／YEO & YAZ／YAO & YB2RYEO & YAS／VAO & YB3／YEO & SFACTOR \\
\hline 1 & 0.94755 & 0.96349 & 1.63577 & 0.60006 & 1.00000 & 1.02513 & 2.79455 \\
\hline 2 & C．76656 & 1.09055 & 1.53245 & C．53839 & 0.90906 & 1.17816 & 3.12084 \\
\hline \(=\) & －5こうご & 1． 11733 & 1.24141 & 5．72105 & 0.74064 & 1.49871 & 3．75450 \\
\hline 4 & －．57451 & 1.21511 & 1.23122 & C． 76500 & 0.63611 & 1.60508 & 4.29139 \\
\hline 5 & 6.57447 & 1.21811 & 1.22067 & 0.76 .562 & 0.60337 & 1.72644 & 4.56169 \\
\hline 6 & 0.57447 & 1.21811 & 1．22026 & 0.76563 & 0.59722 & 1.72715 & 4.60929 \\
\hline 7 & 9， 57447 & 1.21811 & 1.22025 & 0.76563 & 0.59673 & 1.72716 & 4.61302 \\
\hline \(\delta\) & C． 57447 & 1．29891 & 1.22025 & 0.76563 & 0.59679 & 1.72796 & 4.61316 \\
\hline 9 & C． 57447 & 1.21811 & 1.22025 & 0.76563 & 0.59671 & 1.72716 & 4.61317 \\
\hline 10 & C． 57447 & 1.21811 & 1.22025 & C． 76563 & 0.59671 & 1.72716 & 4.61317 \\
\hline 11 & 0．57447 & 1.21811 & 1．22025 & 0.76563 & 0.59671 & 1．72716 & 4.61317 \\
\hline 12 & C． 57447 & 1．21811 & 1.22025 & 0.76563 & 0.59671 & 1.72716 & 4.61317 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 2 T？


CONCENTRATION TRANSIENTS IN STAGE 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  & Yat \(1 / V A 0\) & re1ry80 & YAR/TAO & raz／480 & VAB／TAO & Yo3rveo & SEACTOA \\
\hline 10 & 0.93795 & 1.16409 & 0.56923 & 1.20231 & 1.64563 & 0.60202 & 3.39256 \\
\hline 20 & 0.91284 & 1.17923 & 0.49425 & 1.31876 & 1.43648 & 0.68281 & 2.71769 \\
\hline \(3 \times 3\) & 0.88748 & 7．19436 & 0，40687 & 1.43860 & 1.1647 & 0．80597 & 1．9449\％ \\
\hline 4 & 7．88723 & 1.19435 & 0．39377 & 1.44199 & 1.08536 & 0.85033 & 1.71822 \\
\hline צル\％\({ }^{5}\) & 0.88723 & 1719435 & 0.39307 & 1.44203 & 1.06687 & 0.85246 & 1.68474 \\
\hline 6 & 0.88723 & 1.19435 & 0.39305 & 1.44200 & 1.06503 & 0.85247 & 1.68181 \\
\hline & 0.88723 & 1.19435 & 0.39305 & 1.44200 & 1.06494 & 0.85247 & 1.68166 \\
\hline 8 & 0.88723 & 1.19435 & 0.39305 & 1.44200 & 1.06494 & 0.85247 & 1.68166 \\
\hline 980 & 0．88723 & 1.19435 & 0.39305 & 7．44200 & 1.064294 & 0.85247 & 1.68766 \\
\hline ）． \(10 \% 0\) & 0.88723 & 1.19435 & 0.39305 & 1.44200 & 1.06494 & 0.85247 & 1.68166 \\
\hline 41110 & c． 888723 & 1.19435 & 0.39305 & 1.44200 & 1.06494 & 0.85247 & 1.68168 \\
\hline 12 & －．88723 & 1.19435 & 0.39305 & 1.44200 & 1.06494 & 0.85247 & 1.68166 \\
\hline
\end{tabular}

\section*{TABLE 36 CONTINUED}
\(Y_{A O}=Y_{\text {Bo }}=10 \% \mathrm{~V} / \mathrm{V}\)

CONCENTRATION TRANSiENTS IN STAGE 1
T1 T2 T3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & YAT／YAO & Ya1／Y80 & YAz／YAO & YB27YBO & YA3／YAO & Y83／YEO & SFACTOR \\
\hline 1 & －． 97283 & 0.80793 & 9.26229 & 0.08414 & 1.00000 & 1.01451 & 1.87186 \\
\hline c & C． 88155 & 0.70544 & 1．23422 & C．73747 & 0.93251 & 1.29343 & 2.32134 \\
\hline I & －．7850？ & 1.50294 & 1．1904 & こ．ど2312 & 2.80247 & 1.74368 & 3.13263 \\
\hline 4 & －．7¢178 & 1.00204 & 1.17315 & 0.86553 & 0.72624 & 1.93404 & 3.65925 \\
\hline 5 & 5.78108 & 1.00294 & 1.17120 & 0.86561 & 0．71974 & 1.94311 & 3.69091 \\
\hline 6 & 0.78108 & 1.00294 & 1.17112 & 0.86561 & 0.70877 & 1.94315 & 5.73919 \\
\hline 7 & 0.78168 & 1.00294 & 1.17112 & 0.86561 & 0.70863 & 1.94315 & 3.70991 \\
\hline \(\varepsilon\) & 0.78108 & 1.00294 & 1.17112 & 5．86561 & 0.70862 & 1.94315 & 3.70995 \\
\hline 9 & 0.78108 & 1.00294 & 1.17112 & 0.86561 & 0.70862 & 1.94315 & 3.70995 \\
\hline 10 & ก．78108 & 1.00294 & 1.17112 & 0.86561 & 0.70862 & 1.94315 & 3.70995 \\
\hline 11 & 6.78108 & 1.00294 & 1.17112 & 0.86561 & 0.70862 & 1.94315 & 3.70995 \\
\hline 12 & 0.78158 & 1.00294 & 1.17112 & 0.86561 & 0.70862 & 1.94315 & 3.70995 \\
\hline
\end{tabular}

CONCENTFATION TRANSIENTS IN STAGE 2
TZ
T3
11
M YAT／YAO YE1／YBO YAZ／YAO YBZ／YBO YAS／YAO YES／YBO SFACTOR
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 1.26959 & 0.77367 & 0.98269 & 1.17224 & 0.97283 & 0.808 .73 & 1.95753 \\
\hline 2 & 1.24829 & 0.80042 & 0.91494 & 1.39744 & 0.81127 & 0.96326 & 2.38196 \\
\hline 3 & 1.22631 & 0.82718 & 0.83359 & 1.62961 & 0.60221 & 1.23158 & 2.89821 \\
\hline 4 & 1.22562 & 0.82719 & 0.81892 & 1.63660 & 0.54595 & 1．34693 & 2.96107 \\
\hline 5 & 1.22560 & 0.82719 & 0.81781 & 1.65661 & 0.53635 & 1.34828 & 2.96508 \\
\hline 6 & 1．22560 & 0.82719 & 0.81777 & 1.63661 & 0.53548 & 1.34828 & 2.96524 \\
\hline 7 & 1.22560 & 0.82719 & 0.81777 & 1.63661 & 0.53543 & 1.34828 & 2.96525 \\
\hline 8 & 1.22560 & 0.82719 & 0.81777 & 1.63661 & 0.53543 & 1.34828 & 2.96525 \\
\hline 9 & 9.22560 & 0.82719 & 0.81777 & 1.63661 & 0.53543 & 1.34828 & 2.96525 \\
\hline 10 & 1.22560 & 0.82719 & 0.81777 & 1.63661 & 0.53543 & 1.34828 & 2.96525 \\
\hline 11 & 1.22560 & 0.82719 & 0.81777 & 1.63661 & 0.53543 & 1.34828 & 2.96525 \\
\hline 12 & 1.22500 & 0.82719 & 0.81777 & 1.63661 & 0.53543 & 1．34828 & 2.96525 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 3
TS．TR TT， 12
MY YAL／YAO．YBIIYBO YAZIYAO YBLAYBO YA3／YAO YB \(3 / Y B O\) SFACTOR


TABLE 36 CONTINUED
\(\mathrm{Y}_{\mathrm{AO}}=\mathrm{Y}_{\mathrm{Bo}}=20 \% \mathrm{~V} / \mathrm{V}\)

CONCENTRATION TRANSIENTS IN STAGE 1 T1

12
T3


CONCENTRATION TRANSIENTS IN STAGE 2 12 T3 T1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & YA 1 IYAO & YB1/YB0 & YA2/YAO & YB2/YEO & YA3/YAO & YB3/Y80 & SFACTOR \\
\hline \multicolumn{8}{|l|}{} \\
\hline 1 & 9.04557 & 0.96056 & 1.02989 & 1.12198 & 0.99494 & 0.75762 & 1.18583 \\
\hline 2 & 1.04042 & 0.97480 & 1.02382 & 1.27487 & 0.97992 & 0.83326 & 1.32904 \\
\hline 3 & 1.03333 & 0.98905 & 1.01072 & 1.43002 & 0.95809 & 0.97167 & 1.47819 \\
\hline 4 & 1.03066 & 0.98908 & 1.000084 & 1.43229 & 0.946 .58 & 1.03579 & 1.49125 \\
\hline 5 & 1.02966 & 0.98909 & 0.99687 & 1443232 & 0.93983 & 1.03718 & 1.49576 \\
\hline 6 & 1.02929 & 0.98909 & 0.99529 & 1.43232 & 0.93691 & 1.03721 & 1.49758 \\
\hline 7 & 1.02915 & 0.98909 & 0.99467 & 1.43232 & 0.93569 & 1.03721 & 1.49831 \\
\hline 8 & 1.02909 & 0.98909 & 0.99443 & 1.43232 & 0.93519 & 1.03721 & 1.49859 \\
\hline 9 & 1.02907 & 0.98909 & 0.99434 & 1.43232 & 0.93498 & 1.03721 & 1.49870 \\
\hline 10 & 1.02907 & 0.98909 & 0.99 .430 & 1.43232 & 0.93490 & 1.03721 & 1.49875 \\
\hline 11 & 1.02906 & 0.98909 & 0.99429 & 1.43232 & 0.93486 & 1.03721 & 1.49876 \\
\hline 12 & 1.02906 & 0.98909 & 0.99428 & 1.43232 & 0.93485 & 1.03721 & 1.49877 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 3


\section*{TABLE 37}

\section*{EFFECT OF CONCENTRATION ON SEPARATION, RECYCLE RATIO \(=\mathbf{0 . 0 0}\), TIME = 14 mins.}
\begin{tabular}{ll} 
NNZ & \(=29\) \\
H & \(=90.0 \mathrm{~cm}\) \\
PHOT & \(=0.70\) \\
PHOB & \(=0.70\) \\
BETA & \(=0.00\) \\
Q & \(=25.0 \mathrm{cc}\)
\end{tabular}

TABLE 37
\(Y_{A O}=Y_{B o}=2.5 \% \mathrm{~V} / \mathrm{V}\)

CONCENTAATICN TRANSTEVTS IN STAGE 1
T1
\(T 2\)
13
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \({ }^{\text {M }}\) & YAT/YAO & YB1/YBO & YACSYAO & YBZ/YBO. & Ya3/Yao & Ye3/ybo & SFACTOR \\
\hline 1 & 6.93157 & 1.27377 & 2.14038 & 0.29884 & 1.00000 & 1.03576 & 3.70207 \\
\hline を & \(\cdots\) & 1.31100 & 1.92964 & C. 67916 & 3.97773 & 0.75076 & 2.61856 \\
\hline ; & \(\because .541>1\) & 1.35153 & 1.27014 & 5.74196 & 1.95784 & 0.72728 & 2.27355 \\
\hline 4 & 2.52451 & 1.354 .1 & 1.2159 & -.72931 & 5.53279 & 1.08750 & 2.32962 \\
\hline 5 & C. 52441 & 1.35481 & 1.16122 & 0.73521 & 0.58948 & 1.06890 & 2.86372 \\
\hline 6 & 0.52441 & 1.35481 & 1.15855 & 0.73524 & 0.57075 & 1.07372 & 2.96434 \\
\hline 7 & 0. 52441 & 1.35481 & 1.15851 & 0.73524 & 0.56778 & 1.07404 & 2.98063 \\
\hline 8 & 0.52441 & 1.35481 & 1.15851 & C.73524 & 0.56765 & 1.07405 & 2.98136 \\
\hline 9 & 0.52441 & 1.35481 & 1.155851 & 0.73524 & 0.56764 & 1.07405 & 2.98137 \\
\hline 10 & 0.52441 & 1.35481 & 1.15851 & 0.73524 & 0.56764 & 1.07405 & 2.98137 \\
\hline 11 & T.5244 & 7.35481 & 1.75851 & 0.73524 & 0.56764 & 1.07405 & 2.98137 \\
\hline 12 & 7.52441 & 1.35481 & 1.15859 & 0.73524 & 0.56764 & 1.07405 & 2.98137 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 2
\(T 2\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & YA1/YAO & yeq/yea & YAR/YAO & YE2/YBO & YA3/YAO & YB3/YBO & SFACTOR \\
\hline 1 & 2.16987 & 0.60092 & 0.96566 & 1.03424 & 0.93158 & 1.27495 & 3.86737 \\
\hline 2 & 1.86216 & 0.63786 & 0.88536 & 1.03073 & 0.71415 & 1.37049 & 3.39872 \\
\hline 3 & 1.54675 & 0.67498 & 0.73748 & 1.02963 & 0.44934 & 1.44289 & 3.19933 \\
\hline 4 & 1.53961 & 0.67516 & 0.65779 & 1.03564 & 0.38798 & 1.42250 & 3.58886 \\
\hline 5 & 1.53898 & 0.67516 & 0.64536 & 1.03925 & 0.36774 & 1.42707 & 3.67068 \\
\hline 6 & 1.53898 & 0.67516 & 0.64503 & 1.03927 & 0.36051 & 1.42892 & 3.67261 \\
\hline 7 & T. 53898 & 0.67516 & 0.64503 & 1.03927 & 0.35951 & 1.428 .95 & 3.67263 \\
\hline 8 & 1.53898 & 0.67516 & 0.64503 & 1.03927 & 0.35947 & 1.42895 & 3.67263 \\
\hline 9 & 1.53898 & 0.67516 & 0.64503 & 1.03927 & 0.35947 & 1.428 .95 & 3.67263 \\
\hline 16 & 1.53889 & 0.67516 & 0.64503 & 1.03927 & 0.35947 & 1.42895 & 3.67263 \\
\hline 11 & 1.53898 & 0.67516 & 0.64503 & 1.03927 & 0.35947 & 1.428 .95 & 3.67263 \\
\hline 14.4 & 1.53898 & 0.67516 & 0.64505 & 1.03927 & 0.35947 & 1.42895 & 3.67263 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 3


TABLE 37 CONTINUED
\[
\mathrm{Y}_{\mathrm{AO}}=\mathrm{Y}_{\mathrm{Bo}}=5 \% \mathrm{~V} / \mathrm{V}
\]

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\cdots\) & YAT/YAO & Yal/Yeo & YAS/YAO & YB2/YBO & YA3/7AO & YB3/Y80 & SFACTOR \\
\hline 1 & 0.94461 & 0.96193 & 1.66604 & 0.58712 & 1.00000 & 1.02557 & 2.91026 \\
\hline E & C. 75173 & 1.09702 & 1.56676 & -i.62537 & 7.90020 & 1.183 Cl & 3.28984 \\
\hline 3 & \(\therefore .55578\) & 1.23273 & 1.74724 & C. 71291 & J.73299 & 1.51742 & 3.91257 \\
\hline 4 & -. 55267 & 1.23195 & 1.21991 & 0.76135 & 2.64023 & 1.72088 & 4.30721 \\
\hline 5 & -. 55207 & 1.23195 & 1.21271 & 0.75147 & 0.61093 & 1.74786 & 4.55640 \\
\hline 6 & 2.55267 & 1.23105 & 1.21260 & 0.76147 & 0.60664 & 1.74812 & 4.58886 \\
\hline 7 & 0.55267 & 1.23195 & 1.21260 & 0.76147 & 0.50545 & 1.74812 & 4.59031 \\
\hline 8 & 0.55257 & 1.23195 & 9.21260 & 0.76147 & 0.60644 & 1.74812 & 4.59033 \\
\hline 9 & ก.5526́7 & 1.23195 & 1.21260 & 0.76147 & 0.60644 & 1.74812 & 4.59033 \\
\hline 10 & 0.55267 & 1.23195 & 1.21260 & 0.76147 & 0.60644 & 1.74812 & 4.59033 \\
\hline 19 & 0.55267 & 1.23195 & 1.21260 & 0.76147 & 0.60644 & 1.74812 & 4.59033 \\
\hline 12 & 0.55267 & 1.23195 & 1.21260 & 0.76147 & 0.60644 & 1.74812 & 4.59033 \\
\hline
\end{tabular}

CONCENTRATISN TRANSIENIS IN STAGE 2
T2
T3
\(T 1\)
M. YAT/YAO YBT/YBO YAZIYAO YBZ/YBO YAB/YAO YBZ/YBO SFACTOR
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 1.69537 & 0.5924 \% & 0.88204 & 1.12467 & 0.94459 & 0.96248 & 3.64903 \\
\hline 2 & 1.59803 & 0.63305 & 0.82324 & 1.25428 & 0.67331 & 1.20374 & 3.84600 \\
\hline 3 & 1.50006 & 0.67366 & 0.73149 & 1.40792 & 0.37332 & 1.57759 & 4.28586 \\
\hline 4 & 1.49949 & 0.67365 & 0.69706 & 1.43197 & 0.33484 & 1.71579 & 4.57272 \\
\hline 5 & 1.49949 & 0.67365 & 0.69557 & 1.43198 & 0.32400 & 1.72140 & 4.58252 \\
\hline 6. & 1.49949 & 0.67365 & 0.69556 & 1.43198 & 0.32287 & 1.72141 & 4.58262 \\
\hline 7 & 1.49949 & 0.67365 & 0.59556 & 1.43198 & 0.32283 & 1.72141 & 4.58262 \\
\hline 8 & 4.49949 & 0.67365 & 0.69556 & 1.43198 & 0.32283 & 1.72141 & 4.58262 \\
\hline 9 & 1.49949 & 0.67365 & 0.69556 & 1.43198 & 0.32283 & 1.72141 & 4.58262 \\
\hline 15 & 7.49949 & 0.67365 & 0.69556 & 1.43198 & 0.32283 & 1.72141 & 4.58262 \\
\hline 11 & 1.49949 & 0.67365 & 0.69556 & 1.43198 & 0.32283 & 1.72141 & 4.58262 \\
\hline 12 & 1.49949 & 0.67365 & 0.69556 & 1.43198 & 0.32283 & 1.72141 & 4.58262 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 3


\section*{TABLE 37 CONTINUED}
\(Y_{A O}=Y_{B o}=10 \% \mathrm{~V} / \mathrm{V}\)
concentration toansients in stage 1 \(T 1\)

T2

\section*{T3}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 9 & YAT／YAO & Ye1／Y80 & YAR／YAO & Y日2／Y80 & YA3／YAO & YB3／YEO & SFACTOR \\
\hline 1 & 2.76975 & 3.79536 & 1.28 .837 & 0.07161 & 1.00000 & 1.01481 & 1.94675 \\
\hline 2 & r．36775 & 0.89423 & 1．26262 & E．72306 & 0.91279 & 1.31835 & 2.52279 \\
\hline \(j\) & \(\because 7.377\) & こ．94ここ7 & 1． 21074 & こ．こ1ころ1 & 3．70797 & \(1.875 ? 4\) & 3． 52293 \\
\hline 4 & － 75149 & 2．89374 & 1.19944 & －． 05211 & 0.69885 & 1.97510 & 4.01849 \\
\hline 5 & \(\bigcirc .76138\) & 0.99334 & 1.19827 & 0.85211 & 0.68652 & 2.50163 & 4.10007 \\
\hline 6 & T． 76158 & 0.90334 & 1.19825 & C．85211 & 0.68543 & 2.001 .65 & 4.10651 \\
\hline 7 & 0.76138 & 0.99334 & 1.19825 & 0.85211 & 0.68539 & 2.00165 & 4.10676 \\
\hline \(\stackrel{\text { cher }}{ }\) & ．7613？ & 0.99334 & 1.19025 & C． 35211 & 0.68539 & 2.00165 & 4.10676 \\
\hline 99 & 2.76138 & 0.99334 & 1.19825 & 0.85211 & 0.68539 & 2.00165 & 4.10676 \\
\hline 10 & \(\therefore .76138\) & 0.79334 & 1.19825 & 0.85211 & 0.68539 & 2.00165 & 4.10676 \\
\hline 11 & 5.76138 & 0.79334 & 1.19925 & 0.85211 & 0.68539 & 2.00165 & 4.10676 \\
\hline 12 & \(\bigcirc 76139\) & 0.99334 & 1.19925 & 0.85211 & 0.68539 & 2.00165 & 4.10676 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 2
\(T 2\) T3 T1


\section*{TABLE 37 CONTINUED}
\(\mathrm{Y}_{\mathrm{AO}}=\mathrm{Y}_{\mathrm{Bo}}=20 \% \mathrm{~V} / \mathrm{V}\)

CONCEMTRATICN TRANSIENTS IN STAGE 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & YAT／YAO & YEI／YEO & YAC／YAO & Ye2／Y80 & YA3／YAO & Y日3／YB0 & SFACTOR \\
\hline 1 & 5.99306 & \(0.7 \pm 457\) & 1．05．95？ & 0.79935 & 1.00005 & 1.00776 & 1.33450 \\
\hline \(\bar{c}\) & －98514 & 0.79413 & 1.64042 & C．E712 & 1.01068 & 1.22007 & 1.45408 \\
\hline 三 & －． 0 ¢157 & 0.85367 & 1．r374 & C．¢5871 & 1．0ct13 & 1．47512 & 1.58767 \\
\hline 4 & －． 95577 & こ． 05364 & 1．05366 & 0．5765E & 0.93147 & 1．520．69 & 1.64366 \\
\hline 5 & \％．954 0.9 & 0.85364 & 1.03231 & 0.97444 & 0.95889 & 1．52159 & 1.66379 \\
\hline 6 & C． 95356 & 0.85363 & 1.03185 & 0.97444 & 0.96450 & 1．52153 & 1.67046 \\
\hline 7 & 0.95342 & 0.85363 & 1.03170 & 0.97444 & 0.96311 & 1.52153 & 1.67264 \\
\hline ® & －．05338 & 0.85363 & 1.03165 & C． 97444 & 0.96266 & 1.52153 & 1.67334 \\
\hline 19 & 0.95337 & 0.85363 & 1.03164 & 0.97444 & 0.96252 & 1． 521.53 & 1.67355 \\
\hline ： 10 & C．95337 & C．85363 & 1．03163 & 0.97444 & 0.96248 & 1.52153 & 1.67362 \\
\hline －11 & C．05337 & 0.85363 & 1.03163 & 0.97444 & 0.96247 & 1.52153 & 1.67364 \\
\hline 12 & ¢09337 & 0.85363 & 1．03163 & 0.97444 & 0.96246 & 1.52153 & 1.67365 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 2
\(T 2\) TS
I 1


CONCENTRATION TRANSIENTS IN STAGE 3

\begin{tabular}{ll} 
EFFECT OF CONCENTRATION ON SEPARATION, RECYCLE RATIO \(=1.00\), \\
TIME \(=10\) mins. \\
NNZ & \(=29\) \\
H & \(=90.0 \mathrm{~cm}\) \\
PHOT & \(=0.20\) \\
PHOB & \(=0.20\) \\
BETA & \(=1.00\) \\
Q & \(=25.0 \mathrm{cc}\)
\end{tabular}

TABLE 38
\[
\mathrm{Y}_{\mathrm{AO}}=\mathrm{Y}_{\mathrm{Bo}}=2.5 \% \mathrm{~V} / \mathrm{V}
\]

CONCENTRATION TRANSIENTS IN STAGE 1. \(T 1\)

T2
73
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & YAT/YAO & YE1/YBO & YAZ/YAO & YBC/YBO & YA3/YAO & Y 3 / Y BO & SFACTOR \\
\hline \multicolumn{8}{|r|}{1 S.93424 1.26.54 2.12572-6.60.950-1.01000 1.03575.3.57837} \\
\hline 2 & 9.73227 & 1.37449 & 2.254C6 & 0.64467 & 1.00812 & 0.97995 & 3.11175 \\
\hline \(\pm\) & \(\because .70890\) & 1.35887 & 1.89584 & 0.69028 & 0.94637 & 0.94571 & 2.73733 \\
\hline 4 & 5.80425 & 1.38618 & 1.84229 & 0.20557 & 1.86315 & 0.91969 & 2.78208 \\
\hline 5 & C. 70416 & 1.43362 & 1.81736 & 0.73874 & 0.85933. & 0.95070 & 2.72165 \\
\hline 6 & 2.69558 & 1.41442 & 1.68778 & 0.75396 & 0.83765 & 1.04640 & \[
2.79640
\] \\
\hline 7 & . 6.68173 & 1.45369 & 1.18517 & 0.74858 & 0.79922 & 1.02130 & 2.84254 \\
\hline 8 & \(\bigcirc 64946\) & 1.47629 & 1.62932 & 0.76910 & 0.78846 & 1.04647 & 2.81173 \\
\hline 9 & 7.63751 & 1.47162 & 1.57867 & 0.77613 & 0.77396 & 1.11883 & 2.94037 \\
\hline 10 & 5.62624 & 1.42955 & 1.554 .65 & 0.77632 & 0.75732 & 1.10432 & 2.91921 \\
\hline 11 & 2.61234 & 1.50664 & 1.5321 ? & 0.78825 & 0.74777 & 1.12957 & 2.93622 \\
\hline 12 & 0.60348 & 1.50773 & 1.50805 & 0.79217 & 0.73889 & 1.17611 & 3.03515 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 2 T2 T3 T1


CONCENTRATION TRANSIENTS IN STAGE 3
MUYALIYAO YBLEYBO YAZLYAO YAZLYBG YASLYAO YBSCYBO SEACTOR
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
1 \\
2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
0.89208 \\
1.0 .9700 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.94137 \\
& 0.92374
\end{aligned}
\] & \[
\begin{aligned}
& 0.52794 \\
& 0.49885
\end{aligned}
\] & \[
\begin{aligned}
& 1.55472 \\
& 1.53986 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
2.53007 \\
2.16156 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
0.56371 \\
0.65615
\end{array}
\] & \[
\begin{array}{r}
4.73629 \\
2.77400
\end{array}
\] \\
\hline 3 & 1.15446 & 1.08121 & 0.52004 & 1.45130 & 1.73297 & 0.74099 & 2.19033 \\
\hline 4 & 0.96952 & 1.23103 & 0.53694 & 1.49707. & 1.71656 & 0.71309 & 3.05649 \\
\hline 5 & 0.94468 & 1.15039 & 0.48806 & 1.59339 & 1.69345 & 0.73533 & 2.80445 \\
\hline 6 & 0.93118 & 1.18942 & 0.47492 & \(1=54882\) & 1.59857 & 0.76949 & 2.65359 \\
\hline 7 & 0.88746 & 1.27296 & 0.46911 & 1.58754 & 1.56584 & 0.75553 & 2.97278 \\
\hline 8 & ก.8.8525 & 1.23879 & 0.45427 & 1.63672 & 1.53927 & 0.77065 & 2.85967 \\
\hline 9 & 1.85102 & 1.26750 & 0.44533 & 1.62061 & 1.50195 & 0.78 .748 & 2.84069 \\
\hline 10 & C. 83267 & 1.31379 & 0.43972 & 1.64543 & 1.47841 & 0.78308 & 2=97880 \\
\hline 11 & 0.81887 & 1.30109 & 0.63298 & 1.67071 & 1.46033 & 0.29257 & 2.92758 \\
\hline 12 & -. 80900 & 1.32081 & 0.42771 & 1.66683 & 1.44180 & 0.80100 & 2.93877 \\
\hline
\end{tabular}

TABLE 38 CONTINUED
\(Y_{A O}=Y_{B O}=5 \% \mathrm{~V} / \mathrm{V}\)
concentration transients in stage 1 11

T2
T3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & Yat/YaO & YBi/Y品 & YARAYAO & re2/reo & YA3/YAO & r83/Ye0 & SFACTOR \\
\hline 1 & 9.94755 & 0.96349 & 1.635 .77 & 0.60006 & 0.99999 & 1.02554 & 2.79567 \\
\hline 2 & 0.78315 & 1.03374 & 1.59747 & 2. 36757 & 0.88757 & 1.25135 & 4.22147 \\
\hline 3 & -.67741 & 1.02200 & 1.73239 & 0.54367 & 0.73617 & 1.66595 & 7.21056 \\
\hline 4 & ? 688867 & 0.95541 & 1.66233 & 0.53909 & 0.70830 & 1.56851 & 6.82247 \\
\hline 5 & 0.63699 & 0.95660 & \(1.5710{ }^{\circ}\) & 0.53991 & 0.70378 & 1.34026 & 5.54161 \\
\hline 6 & 5.61688 & 0.93148 & 1.51188 & 0.53725 & 0.67075 & 1.38391 & 5.80616 \\
\hline 7 & 0.58673 & 0.93062 & 1.47259 & 0.52304 & 0.65022 & 1.32524 & 5.73825 \\
\hline 8 & . 56592 & 0.92434 & 1.42225 & 0.52371 & 0.63514 & 1.29598 & 5.54130 \\
\hline 9 & 3.55016 & 0.91855 & 1.38870 & 0.51923 & 0.61789 & 1.29183 & 5.59177 \\
\hline 10 & ก. 53462 & 0.91718 & 1.35826 & 0.51692 & 0.60624 & 1.26905 & 5.50042 \\
\hline 11 & . 53339 & 0.91417 & 1.33152 & 0.51605 & 0.59561 & 1.26406 & 5.47602 \\
\hline 12 & 0.51372 & 0.91279 & 1.31090 & 0.51439 & 0.58659 & 1.25718 & 5.46188 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 2
T2 T3 Ti
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & YATIYAO & rat/ryoo & MAZIYAO & Ye2fyso & YASJMAO & YB3/K80 & SFACTOR \\
\hline 1 & 1.66150 & 0.60504 & 0.81092 & 1.26965 & 0.97514 & 0.95380 & 4.29952 \\
\hline 2 & 1.62162 & 0.60734 & 0.78372 & 1.38588 & 0.72738 & 1.08382 & 4.72152 \\
\hline 3 & 1.46695 & 0.61955 & 0.81485 & 1.25343 & 0.44389 & 1.27584 & 3.64218 \\
\hline 4 & 1.30767 & 0.65632 & 0.82862 & 1.06111 & 0.41701 & 1.24950 & 2.55148 \\
\hline 5 & 1.26243 & 0.64654 & 0.76708 & 1.11459 & 0.40343 & 1.18686 & 2.83718 \\
\hline 6 & 1.22916 & 0.64943 & 0.74458 & 1.06657 & 0.37357 & 1.20028 & 2.84245 \\
\hline 7 & 7.18348 & 0.62344 & 0.72133 & 1.03684 & 0.35966 & 1.17825 & 2.72866 \\
\hline & 1.15751 & 0.61364 & 0.69654 & 1.03600 & 0.34568 & 1.17251 & 2.80558 \\
\hline 9 & 1.13168 & 0.61062 & 0.68103 & 1.01609 & 0.33408 & 1.16983 & 2.76512 \\
\hline 10 & 1.17039 & 0.60907 & 0.66517 & 1.01198 & 0.32593 & 1.16280 & 2.77362 \\
\hline 11 & 1.09430 & 0.60595 & 0.65265 & 1.00664 & 0.31855 & 1.176154 & 2.78544 \\
\hline 12 & 1.08007 & 0.60518 & 0.64284 & 1.00136 & 0.31285 & 1.15902 & 2.78093 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 3
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{} \\
\hline N & YATIYAO & YB1/Y80 & YAZIYAO & Yaz/Ya0 & YAS/YAO & Y日 \(3 / \times 80\) & SFACTOR \\
\hline 1 & 0.83181 & 1.30275 & 0.62215 & 1.09309 & 1.88941 & 0.51534 & 5.74208 \\
\hline 2 & 1.01779 & 1.11636 & 0.54093 & 1.16362 & 1.77359 & 0.53010 & 3.66974 \\
\hline 3 & 1.09775 & 0.99953 & 0.4 .9482 & 1.14214 & 1.62358 & 0.55162 & 2.67994 \\
\hline 4 & 0.97550 & 1.07955 & 0.49366 & 1.07759 & 1.57625 & 0.53903 & 3.23610 \\
\hline 5 & 0.94803 & 1.04309 & 0.45084 & 1.08785 & 1.51460 & 0.52872 & 3.14564 \\
\hline 6 & 0.90553 & 1.01266 & 0.43525 & 1.06383 & 1.44807 & 0.52894 & 3.06161 \\
\hline 7 & 0.86551 & 1.01579 & 0.41488 & 1.05977 & 1.41031 & 0.51958 & 3.18564 \\
\hline 8 & 0.84115 & 0.99845 & 0.39875 & 1.05578 & 1.36518 & 0.51875 & 3.12382 \\
\hline 9 & 0.81384 & 0.99518 & 0.38759 & 1.04903 & 1.33250 & 0.51630 & 3.15592 \\
\hline 10 & 0.79392 & 0.99137 & 0.37659 & 1.04773 & 1.30508 & 0.51419 & 3.16957 \\
\hline 11 & 0.77740 & 0.98668 & 0.36845 & 1.04499 & 1.28066 & 0.51355 & 3.16508 \\
\hline 12 & 0.76297 & 0.98543 & 0.36172 & 1.04334 & 1.26174 & 0.51243 & 3.18020 \\
\hline
\end{tabular}

TABLE 38 CONTINUED
\(Y_{A O}=Y_{B o}=10 \% \mathrm{~V} / \mathrm{V}\)

CONCENTRATION TRANSIENTS IN STAGE 1
T1 T2 TI
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M & YA1/YAO & YB1/Y80 & YA2/YAO & YG2/Y80 & YA3/YAO & Y83/YB0 & SFACTOR \\
\hline 1 & C.97283 & 0.80793 & 1.26229 & 0.68414 & 1.00000 & 1.01468 & 1.87218 \\
\hline 2 & 0.90446 & 0.85118 & 1.29251 & 0.68172 & 0.89599 & 1.27345 & 2.77717 \\
\hline 3 & E.855く9 & 0.815 .50 & 1.35249 & 0.04270 & 0.74700 & 1.68849 & 4.75624 \\
\hline 4 & \(\bigcirc .36609\) & 0.75720 & 1.35152 & 0.59621 & 0.70761 & 1.74177 & 5.57418 \\
\hline 5 & 0.85015 & 0.75605 & 1.33253 & 0.58051 & 0.70271 & 1.71201 & 5.59239 \\
\hline 6 & 0.83702 & 0.74383 & 1.32530 & 0.56938 & 0.68700 & 1.71877 & 5.82332 \\
\hline 7 & 0.82597 & 0.74135 & 1.31633 & 0.56192 & 0.67649 & 1.68390 & 5.83101 \\
\hline 8 & C.81651 & 0.73255 & 1.31010 & 0.55436 & 0.66723 & 1.67802 & 5.94345 \\
\hline 9 & 0.80871 & 0.72909 & 1.30410 & 0.54758 & 0.65970 & 1.65216 & 5.96437 \\
\hline 10 & 0.80203 & 0.72236 & 1.29958 & 0.54128 & 0.65339 & 1.64228 & 6.03465 \\
\hline 11 & 0.79651 & 0.71856 & 1.29542 & 0.53529 & 0.64878 & 1.62257 & 6.05793 \\
\hline 12 & 9.77132 & 0.71320 & 1.27220 & 0.52996 & 0.64380 & 1.61125 & 6.10231 \\
\hline
\end{tabular}

CONCENTRATION TPANSIENTS IN STAGE 2
T2 T3 T1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(M\) & YA1/YAO & YBT/YEA & YAZAYAO & YE2/Y80 & YA3/YAO & YB3/YBO & SFACTOR. \\
\hline 1 & 1.26959 & 0.77367 & 0.90985 & 1.24657 & 1.00357 & 0.79701 & 2.24830 \\
\hline 2 & 1.269 .33 & 0.73068 & 0.84800 & 1.43670 & 0.92137 & 0.81458 & 2.94319 \\
\hline 3 & 1.23958 & 0.64425 & 0.81338 & 1.51787 & 0.83387 & 0.85781 & 3.59054 \\
\hline 4 & 1.20745 & 0.60890 & 0.82310 & 1.48951 & 0.8 .1190 & 0.85841 & 3.58849 \\
\hline 5 & 1.19624 & 0.60238 & 0.80180 & 1.49823 & 0.78944 & 0.84843 & 3.71069 \\
\hline 6 & 1.18433 & 0.59335 & 0.79079 & 1.46031 & 0.77334 & 0.84853 & 3.68596 \\
\hline 7 & 1.17558 & 0.58982 & 0.77968 & 1.45423 & 0.75819 & 0.84329 & 3.71747 \\
\hline 8 & 1.16748 & 0.58281 & 0.77121 & 1.42656 & 0.74652 & 0.838 .16 & 3.70548 \\
\hline 9 & 1.16115 & 0.57898 & 0.76374 & 1.41624 & 0.73590 & 0.83183 & 3.71898 \\
\hline 10 & T.15547 & 0.57328 & 0.75777 & 1.39541 & 0.72751 & 0.82904 & 3.71157 \\
\hline \(\bigcirc 11\) & 1.15095 & 0.56957 & 0.75260 & 1.38358 & 0.72002 & 0.82410 & 3671493 \\
\hline + 12 & 1.14696 & 0.56492 & 0.74842 & 1.36709 & 0.71401 & 0.82113 & 3.70860 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 3

H TATAYAO YBTAYBO YAZ/YAO YBZIYBO YAS/YAO YB 3 YYBO SFACTOR
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}
1 \\
2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 0.92725 \\
& 1.01605 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.36192 \\
& 1.26618 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.84657 \\
& 0.81133 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
0.79839 \\
0.83185 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1.36199 \\
& 1.32955 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.64827 \\
& 0.67605 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.08583 \\
& 2.45079 \\
& \hline
\end{aligned}
\] \\
\hline 3 & 1.06078: & 1.25803 & 0.76835 & 0.82452 & 1.30430 & 0.66190 & 2.33695 \\
\hline 4 & 1.02042 & 1.27606 & 0.75103 & 0.80438 & 1.30212 & 0.629178 & 2.5814 .9 \\
\hline 5 & 1.01226 & 1.23627 & 0.73358 & 0.80538 & 1.29170 & 0.62155 & 2.53808 \\
\hline 6 & 0.99723 & 1.23081 & 0.71969 & 0.79531 & 1.28565 & 0.60622 & 2.61749 \\
\hline 7 & 0.98743 & 1.20368 & 0.70831 & 0.79358 & 1.27920 & 0.599.25 & 2.60217 \\
\hline 8 & 0.97792 & 1.19388 & 0.69841 & 0.78609 & 1.27462 & 0.58831 & 2.64501 \\
\hline 9 & 0.97076 & 1.17376 & 0.69038 & 0.78331 & 1.27022 & 0.58117 & 2.64266 \\
\hline 10 & 0.96422 & 1.16250 & 0.68343 & 0.77760 & 1.26695 & 0.57261 & 2.66760 \\
\hline 11 & 0.95913 & 1.14677 & 0.67774 & 0. 77444 & 1.26394 & 0.56591 & 2.67041 \\
\hline 12 & 0.95460 & 1.13555 & 0.67286 & 0.76990 & 1.26.164 & 0.55895 & 2.68501 \\
\hline
\end{tabular}

\section*{TABLE 38 CONTINUED}
\(\mathrm{Y}_{\mathrm{AO}}=\mathrm{Y}_{\mathrm{Bo}}=20 \% \mathrm{~V} / \mathrm{V}\)

CONCENTRATION TRANSIENTS IN STAGE 1
T1

T2
T즐


CONCENTRATION TRANSIENTS IN STAGE 2
T2 T3 T1


CONCENTRATION TRANSIENTS IN STAGE 3 T3 T2

M YAT/YAO YET/YBO YAZ/YAO YBZ/YBO YABAYAO YB3/YBO SEACTOR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 1.01508 & 1.25081 & 0.98043 & 0.67276 & 1.07160 & 0.88509 & 1.49188 \\
\hline & 2 & 1.02880 & 1.25406 & 0.97679 & 0.68472 & 1.05895 & 0.93494 & 1.38065 \\
\hline & 3 & 1.03214 & 1.31396 & 0.96880 & 0.66805 & 1.04394 & 0.96965 & 1.37058 \\
\hline & 4 & 1.01760 & 1.35451 & 0.96417 & 0.65956 & 1.03892 & 0.974 .48 & 1.41909 \\
\hline & 5 & 1.01171 & 1.36734 & 0.95872 & 0.67360 & 1.03349 & 0.99169 & 1.4084 .9 \\
\hline & 6 & 1.00562 & 1.39075 & 0.95096 & 0.68284 & 1.02856 & 1.00897 & 1.40983 \\
\hline - \(\}\) & 7 & 0.99876 & 1.40526 & 0.94634 & 0.69687 & 1.02484 & 1.03207 & 1.39716 \\
\hline & 8 & 0.99448 & 1.42569 & 0.94233 & 0.71058 & 1.02174 & 1.05522 & 1.38811 \\
\hline ? & 9 & . 0.99073 & 1.44198 & 0.93871 & 0.72841 & 1.01910 & 1.08350 & 1.36896 \\
\hline & 10 & 0.98739 & 1.46185 & 0.93611 & 0.74840 & 1.01700 & 1.11527 & 1.35037 \\
\hline & 11 & 0.98494 & 1.47822 & 0.93408 & 0.77386 & 1.01525 & 1.15263 & 1.32193 \\
\hline & 12 & 0.98294 & 1.49551 & 0.93242 & 0.79880 & 1.01383 & 1.19065 & 1.29553 \\
\hline
\end{tabular}


CONCENTRATION TRANSIENTS IN STAGE 1
T1 T2 T3

concentration transients in stage 2

M YAT/YAO YB1/YBO YAZ/YAO YBZ/YBO YA3/YAO YBZ/YBO
\begin{tabular}{ccccccc}
1 & 1.24946 & 0.75028 & 0.89026 & 1.27689 & 1.00093 & 0.79475 \\
2 & 1.25305 & 0.70263 & 0.83921 & 1.44030 & 0.94409 & 0.77416 \\
3 & 1.23857 & 0.57386 & 0.82254 & 1.43683 & 0.89246 & 0.76209 \\
\hline 5 & 1.22503 & 0.49991 & 0.855103 & 1.28799 & 0.89002 & 0.73691 \\
5 & 1.22689 & 0.46257 & 0.84753 & 1.20810 & 0.88748 & 0.70477 \\
6 & 1.22703 & 0.43520 & 0.85024 & 1.07078 & 0.899048 & 0.69151 \\
\hline 7 & 1.22959 & 0.42303 & 0.85215 & 0.99681 & 0.89122 & 0.67100 \\
8 & 1.23098 & 0.40867 & 0.85488 & 0.93284 & 0.89452 & 0.66012 \\
9 & 9.23323 & 0.40117 & 0.85735 & 0.39226 & 0.89671 & 0.64902 \\
\hline 10 & 1.23489 & 0.39412 & 0.85976 & 0.86753 & 0.89955 & 0.64255 \\
11 & 1.23664 & 0.38999 & 0.86187 & 0.84835 & 0.90182 & 0.63793 \\
12 & 1.23805 & 0.38705 & 0.85375 & 0.83756 & 0.90403 & 0.63466 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 3



CONCENTRATION TRANSIENTS IN STAGE 1 T1 TE TZ

concentration transients in stage 2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{T 2} & \multicolumn{2}{|r|}{T3} & \multicolumn{2}{|c|}{\(T 1\)} \\
\hline M & YA \(1 / \mathrm{YAO}\) & YET/Y80 & YAZ/YAO & yge/rgo & YAS/YAO & YE3/Y80 \\
\hline 1 & 1.24946 & 0.75028 & 0.91706 & 1.26803 & 1.00098 & 0.79695 \\
\hline 2 & 1.25014 & 0.70969 & 0.84675 & 1.49739 & 0.90879 & 0.86997 \\
\hline 3 & 1.25507 & 0.64484 & 0.81759 & 1.58741 & 0.80064 & 1.00480 \\
\hline 4 & 1.17284 & 0.65393 & 0.82752 & 1.61524 & 0.77240 & 1.02814 \\
\hline 5 & 1.15861 & 0.66547 & 0.80069 & 1.06650 & 0.74999 & 1.03937 \\
\hline 6 & 7.14552 & 0.67495 & 0.78959 & 1.07988 & 0.72939 & 1.05078 \\
\hline 7 & 1.13411 & 0.68569 & 0.77693 & 1.73767 & 0.71293 & 1.05466 \\
\hline 8 & 1.12470 & 0.69270 & 0.76732 & 1.76364 & 0.69914 & 1.07288 \\
\hline 9 & 1.17662 & 0.70830 & 0.75859 & 1.82314 & 0.68774 & T.0831:2 \\
\hline 10. & 1.10945 & 0.71805 & 0.75158 & 1.85821 & 0.67753 & 1.09887 \\
\hline 11 & 1.10350 & 0.73535 & 0.74507 & 1.91872 & 0.66875 & 1.15913 \\
\hline 12 & 1.09802 & 0.74819 & 0.73982 & 1.96563 & 0.66178 & 1.12803 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 3 13

11
\(T 2\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline M & YATIYAO & Y81/YEO & YAZ/YAO & Y82/Y80 & YAB/YAO & YB3/YBO \\
\hline 1 & C.92754 & 1.39450 & 0.84705 & 0.84838 & 1.33220 & 0.61684 \\
\hline 2 & 1.01140 & 1.27357 & 0.8556 .1 & 0.91022 & 1.30317 & 0.64389 \\
\hline 3 & 1.04363 & 1.29761 & 0.75883 & 0.92283 & 1.28258 & 0.63119 \\
\hline 4 & T. 99838 & 1.35328 & 0.73858 & 0.92524 & 1.27877 & 0.62500 \\
\hline 5 & 0.99018 & 1.36698 & 0.71666 & 0.93591 & 1.26573 & 0.64776 \\
\hline 6 & 0.97223 & 1.41490 & 0.70218 & 0.93931 & 1.25795 & 0.65982 \\
\hline 7 & 0.96053 & 1.43532 & 0.68843 & 0.95738 & 1.24973 & 0.68189 \\
\hline 3 & 0.94919 & 1.48427 & 0.67733 & 0.96408 & 1.24333 & 0.69888 \\
\hline 9 & 0.94045 & 1.51475 & 0.66781 & 0.98283 & 1.23697 & 0.72287 \\
\hline 10 & 0.93212 & 1.56573 & 0.65958 & 0.99251 & 1.23185 & 0.74643 \\
\hline 11 & C.92573 & 1.60681 & 0.65262 & 1.01133 & 1.22668 & 0.77442 \\
\hline 12 & C. 91947 & 1.66182 & 0.64645 & 1.02472 & 1.22237 & 0.83394 \\
\hline
\end{tabular}


YEO＝ 3． 25955 yC0 \(=\) 5．50636 \(\qquad\)
```

*

```
\(\mathrm{CO}=\)
\(\qquad\)

CONCENTRATION TRANSIENTS IN STAGE 1
\(\therefore \quad Y A T M A O\) YST／YEO YAZ／YAO YEE／YEO YAB／YAO YES／YBO
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 & & －－－ & 1.15914 & E． 72888 & 1.0000 & 1.01393 \\
\hline E & 5450 & 0.87556 & 1.15755 & C． 75049 & 0.95085 & 1.19593 \\
\hline & & ‥ 45 － & 1.97715 & －．-3427 & 3．87036 & 1.42597 \\
\hline \(\div\) & －7： 77 & 6.76524 & 1．1701？ & 6．77399 & \(2.84-11\) & 1．445：0 \\
\hline & 4 & ．77，－ & －，15ヶ5！ & －．－ics & \(\because\) ごアこ1 & 1.4505 \\
\hline \(=\) & 11： & \(\because .75=c\) & 1．14 6.5 & \(\because 6596\) & \(\therefore 22251\) & 1．393こ0 \\
\hline 1 & － 4 C & 2．75 &  & C．05475 & 0.78690 & 1． 36063 \\
\hline B & － 3 ¢083 & 2．75159 & 1．13こ14 & 2.64070 & 2．77529 & 1．35339 \\
\hline 9 & 「．95？44 & 0.74443 & \(1.1270 n\) & C． 03205 & 0.75557 & 1.33975 \\
\hline 15 & －2－7 7 & 0．75971 & 1．1227 & 0.02323 & －． 75753 & 1.32952 \\
\hline 11 & C．34234 & 0.73478 & 1．11925 & C．41673 & 0.75093 & 1.32022 \\
\hline 12 & C． 23815 & 0.73111 & 1．11t3？ & C．61089 & 0.74548 & 1.31275 \\
\hline
\end{tabular}

WHEENTEATIOH TRANSIENTS IN STAGE ？

N YE1／YAO YET／YEO YAZ／YAO YOZ／YEO YAJ／YAO YEZ／YEO
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 1 & 1.15255 & 0.79920 & 0.96222 & 1.22510 & 1.02122 & 0.82923 \\
\hline & 2 & 1.15554 & 0.75910 & 0.92607 & 1.35262 & 0.99167 & 0.82734 \\
\hline 1，\({ }^{3}\) & 3 & 1.14217 & 0.70795 & 0.87381 & 1.40830 & 0.96433 & 0.81574 \\
\hline ＇， & 4 & 1.12326 & 0.67971 & 0.86158 & 1． 35091 & 0.95199 & 0.80329 \\
\hline & 5 & 1.11374 & 0.66157 & 0.84436 & 1.33809 & 0.93117 & 0.79121 \\
\hline & 6 & 1.10267 & 0.65061 & 0.82894 & 1.30810 & 0.91921 & 0.77978 \\
\hline & 7 & 1.09496 & 0.63807 & 0.81688 & 1． 29228 & 0.90847 & 0.77245 \\
\hline & \(\varepsilon\) & 1.08545 & 0.63021 & 0.80659 & 1.27404 & 0.89946 & 0.75490 \\
\hline & 9 & 7.08305 & 0.62298 & 0.79804 & 1.26930 & 0.89219 & 0.75953 \\
\hline & 10 & 1.07863 & 0.61637 & 0.79105 & 1.24916 & 0.88612 & 0.75454 \\
\hline & 11 & 1．07473 & 0.61105 & 3.73527 & 1．23972 & 0.88910 & 0.75066 \\
\hline & 12 & 1.07196 & 0.60087 & 0.78049 & 1.23135 & 0.87695 & 0.74726 \\
\hline
\end{tabular}

CONCENTRATION TRANSIENTS IN STAGE 3
T3
\(T 2\)


\section*{NOMENCLATURE}
a
b
\(A, B, D\)

C
\(C_{A}, C_{B}\)
\(D_{S}\)
\(E_{D}\)
H, h
\(\mathrm{L}(\mathrm{T})\)

M
m
n
Q
surface area for mass transfer
dimensionless equilibrium parameter
temperature dependent Langmuir constants (Eq. 4.17)
as defined by Eq. 5.30
concentration of components \(A\) and \(B\) (Fig. 5.4)
solid phase diffusivity
liquid phase axial diffusivity
column height, cm
penetration distance as a function of temperature
\(\mathrm{x} / \mathrm{y}, \mathrm{cc} / \mathrm{gm}\)
dimensionless equilibrium parameter for parapump or equilibrium constant for packed column design ( \(x / y, c c / g m\) )
number of cycles
reservoir displacement rate for parapump (cc/min) or column displacement volume for staged sequence (cc)
interstitial velocity \(\mathrm{cm} / \mathrm{min}\)
solute concentration velocity
as defined by Eq. 4.87
top reservoir dead volume, cc
bottom reservoir dead volume, cc
concentration of solute in the solid phase, gm moles/gm of adsorbent
concentration of solute in the liquid phase, gm moles/cc
\begin{tabular}{|c|c|}
\hline \(\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}\) & column operating temperatures \\
\hline P & product volumetric flow rate/reservoir displacement rate for parapump or volume of product/column displacement for staged sequence, dimensionless \\
\hline t & duration time, mins \\
\hline r & radius of sperical particle \\
\hline z & column axis \\
\hline \(\mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{T}}, \mathrm{R}_{\mathrm{I}}\) & bottom, top and intermediate reflux ratios \\
\hline SF & separation factor \\
\hline <> & average value \\
\hline \multicolumn{2}{|l|}{Greek Letters} \\
\hline \(\beta\) & reflux ratio or recycle ratio \\
\hline \(\varepsilon\) & void fraction in packing, dimensionless \\
\hline \(\rho_{s}\) & density of adsorbent, gm/cc \\
\hline \(\rho_{f}\) & density of fluid, gm/cc \\
\hline \(\tau\) & dimensionless time for adsorption step \\
\hline \(\tau^{\prime}\) & dimensionless time since start of desorption \\
\hline \(\Delta\) & change \\
\hline
\end{tabular}

\section*{Subscriןts}

\section*{o}

B

T
i

A, B
F
n
initial condition
stream from or to bottom of the column
stream from or to top of the column
solute i
solutes \(A\) and \(B\)
stream from feed
number of cycle
steady state
B, I, T
bottom, intermediate and top

\section*{SELECTED BIBLIOGRAPHY}

Acrivos, A., I.E.C. Eng., Design and Process dev., 703 (1956). Ahmed, Z.M., Ph.D. Dissertation, New Jersey Institute of Technology (1981).

Ahmed, Z.M., paper F2-2 AIChE-GVC joint meeting, Vol. IV of reprints, Munich, Germany (Sept. 1974).

Aris, R., I.E.C. Fund. 8, 603 (1969).
Aris, R., and N.R. Amundson, "Mathematical Methods in Chemical Engineering, Vol. 2, Prentice-Hall, Inc., Englewood Ciiffs, New Jersey (1973).

Baker, B. and R.L. Pigford, I.E.C. Fund. 10, 283 (1971).
Belsky, S.E., M.S. Thesis, New Jersey Institute of Technology (1977).

Bird, R.B. W.E. Steward and E.N. Lightfoot, "Transport Phenomena," John Wiley \& Sons, Inc., New York, 1960.

Busbice, M.E. and P.C. Wankat, Chrom 8429, 369 (1975).
Butis, T.J., R. Gupta and N.H. Sweed, Chem. Eng. Sci. 27855 (1972).

Chan, Y.N.I., F.B. Hill and Y.W. Wong, Chem. Eng. Sci., 36, 243 (1981).

Chen, H.T. and F.B. Hill, Separation Science, 6 , 411 (1971).
Chen, H.T., J.L. Rak, J.D. Stokes and F.B. Hill, AIChE J., 18, 356 (1972).

Chen, H.T., E.H. Reiss, J.D. Stokes and F.B. Hill, AIChE J., 19, 589 (1973).

Chen, H.T., J.A. Park and J.L. Rak, Separation Science, 9, 35 (1974).

Chen, H.T., W.W. Lin, J.D. Stokes and W.R. Fabisiak, AIChE J., 20, 306 (1974).

Chen, H.T., J. Jaferi and J.D. Stokes, paper 9e presented at 73rd AIChE National Meeting, Minneapolis, MN (August, 1972).

Chen, H.T. and V.J. D'Emidio, AIChE J., 21, 813 (1975).
Chen, H.T. and J.A. Manganaro, AIChE J., 20, 1020 (1974).

Chen, H.T., A.K. Rastogi, C.Y. Kim and J.L. Rak, Sep. Sci., 11, 335 (1976).

Chen, H.T., D.I. Cho, J. Dell'Osso and P. Falcon, paper 346 presented at 82nd AIChE National Meeting, Atlantic City, NJ (August, 1976).

Chen, H.T., T.K. Hsieh, H.C. Lee and F.B. Hill, AIChE J., 23, 695 (1977).

Chen, H.T., Y.W. Wong and S. Wu, AIChE J., 25, 320 (1979).
Chen, H.T., W.T. Yang, C.M. Wu, C.O. Kerobo and V. Jajalla, Separat. Sci. and Tech., 16, 43 (1981).

Chen, H.T., U. Pancharoen, W.T. Yang, C.O. Kerobo and R.J. Parisi, Separat. Sci. and Tech., 15, 1377 (1980).

Chen, H.T., W.T. Yang, U. Pancharoen and R.J. Parisi, AIChE J., 26, 839 (1980).

Chen, H.T., D. Hanesian and A. Allentuch, "Separation and Purification of Proteins via Continuous Parametric Pumping," NSF Report (March 25, 1981).

Chen, H.T., Z.M. Ahmed and V. Rollan, I.E.C. Fund., 20, 171 (1981).

Chen, H.T., H.C. Hollein and H.C. Ma, paper presented at 2nd World Congress of Chemical Engineering, Montreal (October, 1981).

Chen, H.T., J.F. Chao, J.J. Huang and C.R. Huang, paper presented at AIChE New Orleans Meeting (November, 1981).

Chen, H.T., C.O. Kerobo, H.C. Hollein and C.R. Huang, Chem. Eng. Ed., 166 (Fall, 1981).

Chen, H.T., in P.A. Schweitzer (Ed.), "Handbook of Separation Techniques for Chemical Engineers," McGraw-Hill, New York (1979).

Chester, R.C., "Techniques in Partial Differential Equations," McGraw-Hill Company, New York (1971).

Chihara, K. and M. Suzuki, Proceeding of World Congress of Chemical Eng., 4 (1981), Montreal, Canada.

Churchill, R.V., "Operational Mathematics," McGraw-Hill Company, New York (1958).

Costa, C.A.V., A.E. Rodrigues, G. Grevillot and D. Tondeur, AIChE J., 28, 73 (1982).
deRosset, A.J., R.W. Neuzil, and D.B. Broughton in A.E. Rodrigues (Ed.), "Proceedings of the NATO Advanced Study Institute on Percolation Processes," Espinho, Portugal (Juiy, 1978).

Foo, S.C., K.H. Bergsman and P.C. Wankat, I.E.C. Fund., 17, 32 (1978).

Gregory, R.A. and N.H. Sweed, Chem. Eng. J., 1,207 (1970).
Gregory, R.A. and N.H. Sweed, Chem. Eng. J., 4, 139 (1972).
Grevillot, G., AIChE J., 26, 120 (1980).
Grevillot, G. and D. Tondeur, AIChE J., 22, 1055 (1976).
Grevillot, G. and D. Tondeur, AIChE J., 23, 840 (1977).
Gupta, R. and N.H. Sweed, I.E.C. Fund., 10, 280 (1971).
Gupta, R. and N.H. Sweed, I.E.C. Fund., 12, 335 (1973).
Helfferich, F. and G. Klein, "Multicomponent Chromatography," Marcel Dekker, Inc., New York (1970).

Hildebrand, F.B., "Advanced Calculus for Applications," Pren-tice-Hall, Inc., Englewood Cliffs, New Jersey (1962).

Hill, F.B., Y.W. Wong and Y.N.I. Chan, AIChE J., 28, 1 (1982).
Jenczewski, T.J. and A.L. Meyers, I.E.C. Fund., 9, 220 (1970).
Jenczewski, T.J. and A.L. Meyers, I.E.C. Fund., 9, 217 (1970).
Kerobo, C.O., M.S. Thesis, New Jersey Institute of Technology (1979).

Kowler, D.E., and R.H. Kadlec, AIChE J., 18, 1207 (1972).
Lavie, R. and M.J. Rielly, Chem. Eng. Sci., 27, 1835 (1972).
Lightfoot, E.N., R.J. Sanchez-Palma, and D.O. Edwards in E.M. Schoen (Ed.), "New Chemical Engineering Separation Techniques," Interscience Publishers, New York, London (1962).

Liteanu, C., and S. Gocan, "Gradient Liquid Chromatography," John Wiley and Sons, Inc., New York (1974).

Lopez, J.G., M.S. Thesis, New Jersey Institute of Technology (1973).

Meir, D. and R. Lavie, Chem. Eng. Sci., 29, 1133 (1974).

Nelson, W.C., D.F. Silarski and P.C. Wankat, I.E.C. Fund., 17 ,,\(~\)
Oren, Y. and A. Soffer, J. Electrochem. Soc., 125, 869 (1978).
Pigford, R.L., B. Baker III and D.E. Blum, I.E.C. Fund., 8 , 848 (1969).

Pigford, R.L., B. Baker III and D.E. Blum, I.E.C. Fund, 8 , 144 (1969).

Rastogi, A.K., M.S. Thesis, New Jersey Institute of Technology (1977).

Rhee, H.K. and N.R. Amundson, I.E.C., Fund., 9, 303 (1970).
Rice, R.G. and S.C. Foo, I.E.C. Fund., 13, 396 (1974).
Rice, R.G., I.E.C. Fund., 12, 406 (1973).
Rice, R.G. and M. MacKenzie, I.E.C. Fund., 12, 486 (1973).
Rice, R.G., I.E.C. Fund., 14, 202 (197E).
Rice, R.G., I.E.C. Fund., 14, 362 (1975).
Rice, R.G., Sep. Purif. Methods, 5 , 139 (1976).
Rice, R.G. and S.C. Foo, I.E.C. Fund., 20, 150 (1981).
Ruthven, D.M., AIChE J., 24, 540 (1978).
Sabadell, J.E. and N.H. Sweed, Sep. Science, 5, 171 (1970).
Schroeder, H.G. and C.E. Hamrin, Jr., AIChE J., 21, 807 (1975).
Scott, R.P.W., and P. Kucera, Analytical Chemistry, 45, 4, P. 749 (1973).

Scott, R.P.W., and P. Kucera, J. of Chrom. Sci., 13, 337 (1975).
Shendalmen, L.H. and J.E. Mitchell, Chem. Eng. Sci., 27, 1449 (1972).

Shaffer, A.G. and C.E. Hamrin, AIChE J., 21, 782 (1975).
Sherwood, T.K., R.L. Pigford and C.R. Wilke, "Mass Transfer," McGraw-Hill Company (1975).

Skarstrom, C.W., Ann. N.Y. Acad. Sci., 72, 75 (1959).
Snyder, L.R. and J.J. Kirkland, "Introduction to Modern Liquid Chromatography," 2nd ed., John Wi81ey \& Sons, Inc., New York (1979).

Sokolnikoff, I.S. and R.M. Redheffer, "Mathematics of Physics and Modern Engineering," McGraw-Hill Book Company, Inc., New York (1958).

Stokes, J.D. and H.T. Chen, I.E.C. Process Des. Dev., 18, 147 (1979).

Sweed, N.H. and R.A. Gregory, AIChE J., 17, 171 (1971).
Sweed, N.H. and R.H. Wilhelm, I.E.C. Fund., 8 , 221 (1969).
Sweed, N.H. and J.M. Rigandeau, Paper presented at 66th Annual AIChE Meeting in Philadeiphia (Nov. 12, 1973).

Sweed, N.H. in E.S. Perry and C.J. Von Oss (Eds.), "Progress in Separation and Purification," Vol. 4, Wiley (Interscience), New York (1971).

Sweed, N.H., in N. Li (Ed.), "Recent Developments in Separation Science," Vol. 1, Chemical Rubber Co., Cleveland (1972).

Thomas, L.H., J. Chem. Soc., 573 (1946).
Thompson, D.W. and B.D. Bowen, I.E.C. Fund., 11, 415 (1972).
Thompson, D.W. and D. Bass, Canadian J. Chem. Engr., 52, 345 (1974).

Tondeur, D., P. Jacob, D. Schweich and P.C. Wankat, Proceedings of 2nd World Congress of Chemical Engineering, 4 (1981) Montreal, Canada.

Turnock, P.H. and R.H. Kadlec, AIChE J., 17, 335 (1971).
Villermaux, J., in A.E. Rodrigues (Ed.), "Proceedings of the NATO Advanced Study Institute on Percolation Processes," Espinho, Portugal (July, 1978).

Wankat, P.C., Separation Science, 9, 85 (1974).
Wankat, P.C., in A.E. Rodrigues (Ed.), "Proceedings of the NATO Advanced Study Institute of Percolation Processes," Espinho, Portugal (July, 1978).

Wankat, P.C., J. of Chrom., 88, 211 (1974).
Wankat, P.C., Separation Science, 8 (4), 473 (1973).
Wankat, P.C., I.E.C. Fund., 14, 96, (1975).
Wankat, P.C., Chem. Eng. Sci., 33, 723 (1978).
Weingartner, P.F., M.S. Thesis, New Jersey Institute of Technology (1973).

Wilhelm, R.H., A.W. Rice, R.W. Rolke and N.H. Sweed, I.E.C. Fund., 7 , 337 (1968).
Wilhelm, R.H. and N.H. Sweed, Science, 159, 522 (1968).
Wilhelm, R.H., A.W. Rice and A.R. Bendelius, I.E.C. Fund., 5 , 141 (1966).

Wilke, C.R. and P.C. Chang, AIChE J., 1, 264 (1955).
Wong, Y.W. and F.B. Hill, Proceedings of World Congress of Chemical Engineering, 4 (1981) Montreal, Canada.
Wong, Y.W., F.B. Hill and Y.N.I. Chan, Separation Science and Tech., 15, 423 (1980).```

