Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

Pancharoen, Ura

SEPARATION TECHNIQUE ON PROTEINS VIA A PH-PARAMETRIC PUMP: A THEORETICAL AND EXPERIMENTAL STUDY

1982UniversityMicrofilms

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \qquad .

1. Glossy photographs or pages \qquad
2. Colored illustrations, paper or print \qquad
3. Photographs with dark background \qquad
4. Illustrations are poor copy \qquad
5. Pages with black marks, not original copy \qquad
6. Print shows through as there is text on both sides of page \qquad
7. Indistinct, broken or small print on several pages \qquad
8. Print exceeds margin requirements \qquad
9. Tightly bound copy with print lost in spine \qquad
10. Computer printout pages with indistinct print \qquad
11. Page(s) \qquad lacking when material received, and not available from school or author.
12. Page(s) \qquad seem to be missing in numbering only as text follows.
13. Two pages numbered \qquad . Text follows.
14. Curling and wrinkled pages \qquad
15. Other \qquad

SEPARATION TECHNIQUE ON PROTEINS VIA A pH -PARAMETRIC PUMP:

A THEORETICAL AND EXPERIMENTAL STUDY
by
Ura Pancharoen

Dissertation submitted to the Faculty of the Graduate School of the New Jersey Institute of Technology in partial fulfillment of the requirements for the degree of

Doctor of Engineering Science
1982

APPROVAL SHEET

$$
\begin{aligned}
\text { Title of Dissertation: } & \text { Separation Technique on Proteins Via } \\
& \text { A pH-Parametric Pump: A Theoretical } \\
& \text { and Experimental Study }
\end{aligned}
$$

Name of Candidate: Ura Pancharoen Doctor of Engineering Science, 1982

Dissertation and Abstract Approved:

> Dr. C.R. Huang Professor \& Assistant Chrmn. Dept. of Chemical Engineering

\qquad

Date

Date

Date

Date

VITA

Name: Ura Pancharoen
Degree and date to be conferred: D. Eng. Sc., 1982

Primary education: Pra-ka-nong School, Bangkok, Thailand, March 1964

Secondary education: Triam-Udom-Suksa Schoo1, Bangkok, Thailand, March 1966

| Collegiate institutions attended | Date | Degree | Date of
 Degree |
| :--- | :--- | :--- | :--- | :--- |
| Chulalongkorn University | $66 / 70$ | B. Eng. | $6 / 70$ |
| N. J. Institute of Technology | $72 / 75$ | B.Sc. | $5 / 75$ |
| N. J. Institute of Technology | $75 / 77$ | M.Sc. | $5 / 81$ |
| N. J. Institute of Technology | $77 / 82$ | D.Sc. | $5 / 82$ |

Major: Chemical Engineering

Minor: Mathematics

Publications: Chen, H.T., U, Pancharoen, W.T. Yang, C.O. Kerobo and R,J, Parisi, "Separation of Proteins Via $\mathrm{pH}-\mathrm{Parametric} \mathrm{Pumping,"} \mathrm{Separation} \mathrm{Sci}$, Tech, 15, 1377 (1980)

Chen, H.T., W.T. Yang, U. Pancharoen, and R.J. Parisi, "Separation of Proteins Via MultiColumn pH-Parametric Pumping," AIChE. J., 26, 839 (1980)

Chen, H.T., U. Pancharoen, C.R. Huang and C. O. Kerobo, "Analytical and Graphical Solution for Separation of Proteins Via Multi-Column pHParametric Pumping," in preparation.

Chen, H.T., U. Pancharoen, C.R. Huang and C.O. Kerobo, "Separation of L-Dopa \& D-Dopa Via Multi-Column Parametric Pumping," in preparation.

Chen, H.T., U. Pancharoen, C.R. Huang and C.O. Kerobo, "Mathematical Modeling for pH -Parametric Pumping based on Elementary Matrix Algebra," in preparation.

Position held:
1978 - present
Special Lecturer, Chemical Engineering Department, New Jersey Institute of Technology, Newark, New Jersey. (first served as adjunct instructor)

Teaching Assistant, Chemical Engineering Department, New Jersey Institute of Technology, Newark, New Jersey.

Process Engineering, Thai. Chemicals \& Fertilizers Corporation, Lumpang, Thailand.

of Dissertation: Separation Technique on Proteins Via A pH-Parametric Pump: A Theoretical and Experimental Study

Ura Pancharoen, Doctor of Engineering Science, 1982
Dissertation directed by: Dr. C.R. Huang, Professor and Assistant Chairman, Department of Chemical Engineering

The separation of protein mixtures via pH-parametric pumping was investigated both theoretically and experimentally. A simple system consisting of one column packed either with cation or anion exchanger was first considered. A system of parapumps was then developed with more columns which were connected in series and packed alternately with cation and anion exchangers. Various methods of operation of parapumps are discussed. Enrichment and spliting of protein mixtures were examined. In most cases, the separation factor was defined at a steady state condition and was improved by increasing the number of cycles and columns.

Computational methods for predicting both Batch and SemiContinuous parametric pump performance, with equilibrium conditions described were developed. The physical system was characterized by means of interphase mass transfer rates. These methods were based on a set of exterior and interior material balances. Linear parameters were calculated for the
adsorption of the solute on the ion exchanger. A mathematical model based on elementary matrix algebra was developed as well as a graphical method. The properties of eigenvalues and eigenvectors of this formalism were studied. The subject was extended to more complex situations involving a multi-column, and the separation of multi-protein. There is good agreement between predicted and experimental results.

ACKNOWLEDGEIMENT

This research was done under the direction and with the encouraging advice and guidance of Dr. H. T. Chen of the Chemical Engineering Department. After the tragic automobile accident which ended Dr. Chen's life on April 21, 1981; Dr. C. R. Huang was instrumental to see a successful completion of this work. Heartfelt appreciation is extended to Dr. H. T. Chen, thesis advisor, and to Dr. C. R. Huang for their invaluable assistance.

Greatful thanks are extended to the Doctoral Committee for their suggestion and encouragement, and to M.R. Idhinand Abhakara and to Dr. R. A. George who have offerred support and guidance over the years at this College.

Special thank you to Mr. D. F. Bravender, Vice President of The Chase Manhattan Bank, for prove reading this manuscript. Financial support from the Chemical Engineering Department at New Jersey Institute of Technology, where the author is currently employed, also the typing of initial drafts and the final manuscript by Y. Pihtayanukul, T. Nimboonchaj and M. Jampathom are appreciated.

TABLE OF CONTENTS

Chapter Page
ACKNOWLEDGMENT ii
LIST OF FIGURES vi
LIST OF TABLES xi
I. INTRODUCTION 1
II. PROCESS DESCRIPTION 9
A. The One-Column Parametric Pumping System 9
B. Two-Column Parametric Pumping System 14
(1) Mode 1: Three Reservoirs With Both Cation and Anion Exchangers 14
(2) Mode 2: Four Reservoirs With Both Cation and Anion Exchangers 17
(3) Mode 3: Five Reservoirs With Both Anion and Cation Exchangers 20
(4) Mode 4: Two Reservoirs With An Ion Exchanger (Cation or Anion) 23
III. EQUILIBRIUM THEORY-GRAPHICAL SOLUTION 26
A. One-Column System 26
B. Two-Column System 32
IV. ANALYTICAL SOLUTION 51
A. Formal Mathematical Solution 51
B. Calculation of [M]n 57
C. The Cyclic Steady State 59
V. EXPERIMENTAL METHOD 65
A. Experimental System 65
B. Description of Apparatus 66
C. Solutions and Buffers 67
Chapter Page
D. Gel Preparation and Packing 69
E. Measurements 69
F. Operation Process 70
(1) One-Column: Semi-Continuous 70
(2) Two-Column System 73
VI. SEPARATION OF PROTEINS VIA MULTI-COLUMN 85
A. Process Designing for Multi-Protein Separation 85
B. Selection of pH Level 88
C. An Addition to the Original System (Exten- sion System) 91
D. Symmetrical System 91
E. Unsymmetrical System 94
VII. RESULTS AND DISCUSSION 100
A. General 100
B. One-Column System 101
C. Two-Column System 106
D. Separation of Proteins Via Multi-Column 129
E. A Theoretical Study Via Mathematical Formalism Based On Elementary Matrix Algebra 162
VIII. SUMMARY OF CONCLUSIONS 168
NOMENCLATURE 170
APPENDIX A. ANALYTICAL DETAILING 174
APPENDIX B. EXPERIMENTAL DATA 200
APPENDIX C. COMPUTER PROGRAM ON EQUILIBRIUM 263THEORY: SEPARATION OF MULTI-COMPO-NENT VIA pH-PARAMETRIC PUMPING
Chapter Page
APPENDIX D. TABLES: pH-PARAMETRIC PUMPING 314
APPENDIX E. GLOSSARY 329
LITERATURE CITED 330

LIST OF FIGURES

Page

1. The Batch Parametric Pump (Rak, 1978) 3
2. Staged Cycling Zone Extraction System 6 (Wankat, 1973)
3. Column Diagram For pH -Parametric Pumping 10
4. Schematic For Equilibrium Plug Flow Model 12
5. Effect Of n On Concentration Transients 15
6. Two-Column Diagram, Packing With Anion And 16 Cation Exchanger For Mode 1
7. Two-Column Diagram, Packing With Anion And 19 Cation Exchanger For Mode 2
8. Two-Column Diagram, Packing With Anion And 22 Cation Exchanger For Mode 3
9. Two-Column Diagram, Packing Either Wi.th 24 Anion or Cation Exchanger For Mode 4
10. Schematic Of One-Column System 29
11. Graphical Solution For One-Column System 31
12. Schematic Of Two-Column System: Mode 1 35
13. Graphical Solution For Two-Column System: 36 Mode 1
14. Schematic Of Two-Column System: Mode 2 38
15. Graphical Solution Of Two-Column System: 41 Mode 2
16. Schematic Of Two-Column System: Mode 3 43
17. Graphical Solution Of Two-Column System: 45 Mode 3
18. Schematic Of Two-Column System: Mode 4 47
19. Graphical Solution Of Two-Column System: 49
Page
Mode 4
20. The pH-Parametric Pumps Diagram For 52
Mathematical Approach
21. Equilibrium Constants For the Haemoglobin- 54
Albumin System: Sephadex Ion Exchanger (Reference 28)
22. Graphical Solution Base On McCabe-Thiele 63 Diagram
23. The Experimental Apparatus Describes The 68 Three Reservoirs Batch System
24. Schematic Of Single Column, Semi-Continuous 71 System
25. Schematic Of Two-Column, Semi-Continuous 75 System: Mode 2
26. Schematic Of Two-Column, Semi-Continuous 82 System: Mode 4
27. Schematic Of Process-Designing For: 86
(a) An Original First Unit And (b) An Additional Unit
28. Graphical Solution For Process Designing, 87 M-Column System
29. Schematic Of Process Designing For: 93 A Symmetrical Multi-Separation System
30. Schematic Of Process Designing For: 97 An Unsymmetrical Multi-Separation System
31. The Concentration Transients Of Haemo- 102 globin And Albumin vs. Number of Cycles
32. Comparison Of Anion And Cation Column 104 For Haemoglobin
33. Comparison Of Anion And Cation Column 105 For Albumin
34. The Concentration Transients Of Haemo- 107 globin In A Single-Anion-Column System
35. The Concentration Transients Of Albumin 108
Page
In A Single-Anion-Column System
36. The Concentration Transients Of Haemo- 109globin In A Single-Cation-Column System
37. Comparison Of Albumin Concentration 111 Between One- And Two-Column System
38. The Concentration Transients Of Haemo- 112 globin And Albumin vs. Number Of Cycles: Mode 1
39. The Concentration Transients Of Haemo- 114 globin And Albumin vs. Number Of Cycles: Mode 2 (Case I)
40. The Concentration Transients Of Haemo- 115 globin And Albumin vs. Number Of Cycles: Mode 2 (Case II)
41. The Concentration Transients Of Haemo- 116 globin And Albumin vs. Number Of Cycles: Mode 2 (Case III)
42. The Concentration Transients Of Albumin 118 vs. Number Of Cycles: Mode 2
43. The Concentration Transients Of Haemo- 119globin vs. Number Of Cycles: Mode 2
44. The Concentration Transients Of Haemo- 120 globin vs. Number Of Cycles: Mode 2
45. The Concentration Transients Of Albumin 121 vs. Number Of Cycles: Mode 2
46. The Concentration Transients Of Haemo- 123 globin vs. Number Of Cycles: Mode 2
47. The Concentration Transients Of Haemo- 125 globin-Albumin vs. Number Of Cycles: Mode 3 (Case I)
48. The Concentration Transients Of Haemo- 126 globin-Albumin vs. Number Of Cycles: Mode 3 (Case II)
49. The Concentration Transients Of Haemo- 128 globin-Albumin vs. Number Of Cycles: Mode 3 (Case III)

Page
50. Separation Factor Of Haemoglobin vs. 130 Number Of Cycles: Mode 4
51. Separation Factor Of Albumin vs. Number 131 Of Cycles: Mode 4
52. Separation Factor Of Haemoglobin And 132 Albumin vs. Number Of Cycles : Mode 4
53. Graphical Solution Of Protein A Via 135 Two-Column System
54. Graphical Solution Of Protein B Via
Two-Column System
55. Effect Of $\boldsymbol{\beta}$ On Concentration Transients 137 For Protein A
56. Effect Of β On Concentration Transients 138 For Protein B
57. Graphical Solution Of Protein A Via 139 Multi-Column System, Separation From Two Components Of Protein
58. Graphical Solution Of Protein B Via Multi-Column System, Separation From Two Components Of Protein
59. Schematic Of Staircase For Predicting The Protein Steady State Concentration
60. Steady State Separation Factors Of Two 144 Proteins vs. Number Of Columns (M)
61. Graphical Solution Of Protein A Via 147 Multi-Column System, Separation From Multi-Component Of Protein
62. Graphical Solution For Protein Mixtures 148 B, C and D Via Multi-Column System
63. The Concentration Transients Of Protein A 149 And Protein Mixtures B, C And D vs. Number Of Cycles
64. Graphical Solution For Protein B Via Multi-Column System, Separation From Multi-Component Of Protein
Page
65. The Graphical Solution For Protein 151
Mixtures C And D Via Multi-Column System
66. The Concentration Transients Of Protein B 153
And Protein Mixtures C And D vs. Number Of Cycles
67. Graphical Solution Of Protein C Via 155 Multi-Column System
68. Graphical Solution Of Protein D Via 156 Multi-Column System
69. The Concentration Transients Of Protein C 157
And Protein D vs. Number Of Cycles
70. Graphical Solution For Protein Mixtures 159
A And B Via Multi-Column System
71. Graphical Solution For Protein Mixtures 160
C And D Via Multi-Columm System
72. The Concentration Transients Of Proteins 161
A \& B And Proteins C \& D vs. Number Of Cycles
73. The Concentration Transients Of Protein 163
In The Fluid Phase vs. Number Of Cycles (Case I)
74. The Concentration Transients Of Protein 164
In The Solid Phase vs. Number Of Cycles (Case I)
75. The Concentration Transients Of Protein 165
In The Fluid Phase vs. Number Of Cycles (Case II)
76. The Concentration Transients Of Protein 166
In The Solid Phase vs. Number Of Cycles (Case II)
A-1.1. The Plot of λ_{i}^{n} vs. Number Of Cycles 179

LIST OF TABLES

Page

1. An Expression of Protein Charges, 89
Those Which They Would Bear in The Different pH Level Solution.
A-4.1 The Elements of The Matrices And 193 Vectors
A-5.1 Protein Concentration: Case I 198
A-5.2 Protein Concentration: Case II 199
B-1 Experimental Raw Data for One-Column 204-
to B-7 System 210
Ex-B-2.1 Summary of The Experimental Results. 211-
to Ex-B-2.5 One-Column: Batch Operation. 215
B-8 Experimental Raw Data for Two-Column 217-
to B-13 System: Mode 1. 222
Ex-B-3.1 Summary of The Experimental Results. 223
Two-Column System: Mode 1, Batch Operation.
B-14 Experimental Raw Data for Two-Column 225-
to B-18 System: Mode 2 234
Ex-B-4.1 Summary of The Experimental Results. 235
Two-Column System: Mode 2, Batch Operation.
Ex-B-4.2 Summary of The Experimental Results. 236-
to Ex-B-4.4 Two-Column System: Mode 2, Semi- 238Continuous Operation.
B-19 Experimental Raw Data for Two-Column 240-
to B-22 System: Mode 3. 249
Ex-B-5.1 Summary of The Experimental Results. 252
Two-Column System: Mode 3, Batch Operation.
B-23 Experimental Raw Data for Two-Column 254-
to B-29 System: Mode 4. 260
Ex-B-6.1 Summary of The Experimental Results. 261

		Page
	Two-Column System: Mode 4, Batch Operation.	
Ex-B-6. 2	Summary of The Experimental Results. Two-Column System: Mode 4, SemiContinuous Operation.	262
C-1	Nomenclature for Computer Program Input and Output	264
$\text { to } \begin{aligned} & \mathrm{D}-1 \\ & \mathrm{D}-6 \end{aligned}$	Computational Results on Separation of Protein A via Two-Column.	$\begin{aligned} & 315- \\ & 320 \end{aligned}$
$\begin{array}{r} \mathrm{D}-7 \\ \text { to } \mathrm{D}-9 \end{array}$	Computational Results on Separation of Protein B via Two-Column.	$\begin{aligned} & 321- \\ & 323 \end{aligned}$
D-10	Computational Results on Separation of Protein Mixtures A and B via Two-Column.	324
D-11	Computational Results on Separation of Protein Mixtures C and D via Multi-Column.	325
D-12	Computational Results on Separation of Protein Mixtures B, C and D via Multi-Column.	326
D-13	Computational Results on Separation of Protein Mixtures A, B, C and D via Multi-Column.	327
D-14	Computational Results on Separation of Protein Mixtures A, B and C, D via Mulyi-Column.	328

Chapter I

INTRODUCTION

A. DEFINITION

Parametric pumping is a separation technique that is based on the periodic movement of a fluid phase over a solid adsorbent bed and a coupled energy input into the system to induce the separation.

The term "Parametric Pumping" was applied to the separation process in 1966 by the late R.H. Wilhelm of Princeton University, inventor of the batch pump. This separation process was a recuperative mode, which dealt with a two-phase system by means of an interphase mass transfer with an oscillating direction of the fluid flow. The fluid was heated in a heat exchanger before flowing up through the column and cooled before the flow direction had been changed as shown in Figure 1.

B. OPERATION

The basic parametric pump handles a batch operation and illustrates the coupling action. Consider the removal of component A from a fluid mixture of A and B. Assume that component A is absorbed on solid (S), packed in the column as shown in Figure 1. The column will have some void volume to allow the fluid to flow into it by means of two piston-operated fluid reservoirs at each end, which are filled with
the fluid mixture at a known concentration of $A,\left(y_{0}\right)$. Also assume that the condition of interphase equilibrium occurs at a high temperature. Allow the temperature of the two-phase system to change periodically through alternate heating and cooling by transferring heat energy through the media of appropriate temperature to the jacket of the column. Then, the concentration of A in the liquid (y) and the concentration of A on the solid (x), will periodically change to new values in response to the change in the thermodynamic state of the system. Normally, A will be adsorbed on S while the system is heated.

At this step, the direction of flow of the fluid will be changed periodically and synchronized with the system temperature; e.g., only upward flow will occur during heating only downward during cooling. The volume of fluid in the column interstitial space will be depleted in A by adsorption on S only while it moves downward and enriched in A by desorption from S while it moves upward. After the system has completed the cycle of hot upflow and cold downflow, fluid depleted in A will migrate to the bottom of the column; while fluid enriched in A migrates to the top. The result of this operation is a net displacement of component A to the top of the column after a number of synchronized tempera-ture-flow cycles. Separation of the system fluid into a fraction relatively concentrated in A at the top of the column has been achieved while the bottom contains a fraction

relatively lean in A.

C. DEVELOPMENT

In 1966, Wilhelm and his co-worker had investigated the separation of NaCl from water using a mixed bed of ionexchanger for a batch parametric pumping process in the recuperative mode. Wilhelm also expressed his idea of applying the parapump principle/processes with various driving forces such as magnetic, chemical potential, etc.

Wilhelm and Sweed (1968) had modified the system by using the direct mode as shown in Figure 1 on a batch system, to separate toluene from n-heptene, using silica gel as an absorbant. This direct mode is operated by a heating and cooling source which is supplied through the water jacket during upward and downward flow respectively. The stationary bed (column with jacket) is heated before the upward flow of liquid and is cooled before the downward flow by an external source. The parametric pumping process is not limited to only temperature induced liquid/solid mass transfer systems. Jenczewski and Myers (1970) separated the mixture of ethane and propane passing through activated carbon.

Sabadell and Sweed (1970) employed the recuperative mode to remove K^{+}and Na^{+}from water by changing pH levels. For this type of process the high pH end was opened while low pH end remained closed. HCl was introduced to the low end to
maintain the pH levels. The product was withdrawn while a fresh feed was supplied for every half cycle. During the process, the neutralization reaction occurred in the column and was claimed as an energy supplier for the separation. By means of this operation, the maximum separation factor (ratio of enriched product to depleted product) yield for total $\mathrm{K}^{+}+\mathrm{Na}^{+}$was obtained, although the deriving energy source by this method was not optimized.

Nor is parametric pumping limited to single adsorbant beds, one-solute systems, or oscillating flow patterns. In cycling zone extraction (see Figure 2), the mobile phase flows unidirectionally but enters successive zones of alternating, parameter values, e.g., hot and cold temperature, or high and low pH , both of which are utilized to separate glucose and fructose in an aqueous solution, which had been done by Busbice and Wankat in 1975. Chen, Jaferi, and Stokes (1972) had also used parametric pumping for sugar separation in aqueous media. The separation of Na^{+}and K^{+}in aqueous media has already been mentioned. In addition, toluene and analine can be separated from n-heptane using silica gel adsorbant in thermal parametric pumping.

In 1977, Chen and his co-workers had investigated the separation of proteins by use of a continuous pH parametric pump. Many system characteristics such as flow rate, buffer concentration, $\mathrm{pH}-l e v e 1$ and reservoir displacement, which

FIGURE 2 - STAGED CYCLING ZONE EXTRACTION SYSTEM (WANKAT, 1973)
would affect the separation were examined. Chen considered a process which consists of a one column system packed with S.P. Sephadex ($\mathrm{C}-50$) exchange resin and two reservoirs, one having a high pH level the other having a low pH level. Both buffer solutions carry protein mixtures. Chen began the $\mathrm{pH}-$ parametric pump process operation using the batch system (before he developed the continuous process system) and investigated the separation of haemoglobin and albumin.

Chen, et al., (1979) developed the continuous separation process using a protein mixture (haemoglobin-albumin) via pHparametric pumping. The exchange resin, CM Sepharose, was selected for this experiment. The protein mixture was fed alternately to the top and bottom of the column at different pH levels. The top and bottom products were removed conversely. Chen came to the conclusion that the continuous process reached the steady state faster than the batch parametric pump. Also, when the batch system reaches a peak (optimum of steady state value) the concentration of protein in the respective reservoirs will begin to decrease due to the dilution of acid/base titrations (to maintain the pH levels) while the continuous system can be maintained as the number of cycles increases.

The results of this experiment showed that haemoglobin, with an isoelectric point less than pH value; migrated to the higher pH end of the column while the albumin with an iso-
electric point greater than the pH value migrated to the low end of the column.

Chen and his co-workers (1979) also extended the parapump process to multi-column pH-parametric pumping. The system considered was a series of columns that were packed alternately with cation and anion exchangers. Many different types of methods and operations for single and multi-column parapump system were described.

D. DISSERTATION

This dissertation investigates both theoretical and experimental methods using a single or two-column parapump, operated on batch or semi-continuous systems, and also extending the method into a multi-column system. The emphasis of this work is divided into two parts the theoretical and the experimental. New methods of predicting performance are developed which include a method of mathematical approach and a graphical method. For experimental study, the separation of haemoglobin-albumin was selected. We established the necessary displacement, reservoir dead volume, buffer and Sodium Chloride concentration, circulation time and flow rate which would achieve the desired separation.

Chapter II

PROCESS DESCRIPTION

The One-Column Parametric Pumping System

The first system we will consider is shown in Figure 3. It consists of a column packed with an ion exchanger (cation or anion) and reservoirs attached to each end. The pump has dead volumes V_{T} and V_{B} for the top and bottom reservoirs, respectively. Initially, the mixture to be separated fills the column voids, the top reservoir and the bottom dead volume. The top reservoir is maintained at a low pH level $\left(\mathrm{P}_{2}\right)$ by an automatic titrator while a second titrator is used to keep the bottom reservoir at a high pH level (P_{1}). The ionic strengths of the buffer solutions in both top and bottom reservoirs are kept at $I S_{2}$ and $I S_{1}$, respectively by means of two hollow fiber dialyzers manufactured by Amicon.

Two constant pH fields $\left(\mathrm{P}_{1}\right.$ and P_{2}) are imposed periodically to the system. During the first half-cycle, the fluid with $\mathrm{pH}=\mathrm{P}_{2}$ in the top reservoir is pumped into the top of the column. At the same time, the solution that emerges from the column fills the bottom reservoir. On the next half-cycle, the solution with $\mathrm{pH}=\mathrm{P}_{1}$ in the bottom reservoir flows back into the column. At the end of this half-cycle, the top reservoir is filled with the solution that comes out of the top of

FIGURE 3 - COLUMN DIAGRAM FOR pH-PARAMETRIC PUMPING
the column, and one cycle is completed. This procedure is repeated in each of the succeeding cycles until the desired number of cycles are completed.

We deduce the characteristics of the pH-parametric pump described above via a simple discrete transfer equilibrium stage model (Jenczewski and Meyer, 1970; Wankat, 1974; Grevillot and Tondeur, 1976). Let us assume that the adsorbent bed is divided into N equal segments or cells (stages) of length Z / N, where Z is the length of the pump column. Each stage is represented as (I, J), where I is the stage number and J is the transfer step (Figure 4). The system is initially in equilibrium at J-I, and each cell has uniform concentrations in both fluid and solid phases. In the transfer step, each fluid segment is displaced exactly one step ahead. Thus, the fluid $y(I, J-1)$ originally opposite the solid section I is now opposite I+1. After the transfer step, the phase equilibrium is immediately reestablished and the next transfer step J begins.

The mass balance for each component at I and J is,

$$
\begin{equation*}
\mathrm{Vy}(I-1, J-1)+\overline{\mathrm{V}} \mathrm{x}(I, J-1)=\mathrm{Vy}(I, J)+\overline{\mathrm{V}} \mathrm{x}(\mathrm{I}, \mathrm{~J}) \tag{1.1}
\end{equation*}
$$

where V and \bar{V} are the volumes of the fluid and the solid phases per stage, respectively, and will be assumed to be constant. Furthermore, we will make the following assumptions:

FIGURE 4 - SCHEMATIC FOR EQUILIBRIUM PLUG FLOW MODEL
(1) The solute will be distributed between the solid and fluid phases according to a linear form,

$$
\begin{equation*}
\mathrm{x}=\mathrm{ky} \tag{1.2}
\end{equation*}
$$

where k is pH dependent only.
(2) The hydrogen ion does not exchange for the exchanger's counter ion, and therefore there is no lag of pH wave velocity behind the linear liquid velocity.

Proteins carry both negatively and positively charged groups of protein and can be bound to both anion and cation exchangers. Their net charge is dependent on pH . At low pH , the net charge is positive; at high pH it is negative. At the point of zero net charge, the isoelectric point, the substances are not bound to any type of ion exchanger.

Suppose we are concerned with the separation of a protein A from a mixture or solution, and this protein has the isoelectric point I_{A} and $\mathrm{P}_{2}<\mathrm{I}_{\mathrm{A}}<\mathrm{P}_{1}$. Thus, A will bear a negative charge at P_{1} and a positive charge at P_{2}, whereupon A will be taken up by a suitable cation exchanger, R^{-}(with the counter ion S^{+}) at P_{2} and released at P_{1} :

$$
\begin{array}{ll}
\mathrm{R}^{-} \mathrm{S}^{+}+\mathrm{A}^{+} \longrightarrow \mathrm{R}^{-} \mathrm{A}^{+}+\mathrm{S}^{+} \text {at } \mathrm{P}_{2} \\
\mathrm{R}^{-} \mathrm{A}^{+}+\mathrm{S}^{+} \longrightarrow \mathrm{R}^{-} \mathrm{S}^{+}+\mathrm{A}^{-} \text {at } \mathrm{P}_{1}
\end{array}
$$

Therefore, a parametric pump operating with levels of P_{1} and P_{2} should be capable of removing the solute A from the low
pH end of the column and concentrating it at the high pH end. The reverse effect will occur if an anion exchanger is selected.

Concentration transients calculated by means of Equations 1 and 2 are shown in Figure 5. The ordinate is the average reservoir concentration divided by the initial liquid phase concentrations. As long as $\alpha=1$, the steady state concentrations in both top and bottom reservoirs are independent of N chosen. α is defined as the quotient of the reservoir displacement and the column void volume (i.e., number of transfer steps/number of stages). Note that when $\alpha=$ $1, \mathrm{~N}=\mathrm{Q}(\pi / \omega) / \mathrm{V}$.

Two-Column Parametric Pumping System

Mode 1: Three reservoirs with both cation and anion exchangers

The system has two columns and three reservoirs as shown in Figure 6. One column is packed with a cation exchanger (R^{-}) and the other with an anion exchanger (R^{+}). The pH level for the top and bottom reservoirs is maintained at $P_{1}(8)$ and that for the middle reservoir is kept at $P_{2}(6)$. Initially, the top reservoir and both columns are filled with a mixture of the concentration y_{0}. The R^{-}and R^{+}columns are respectively in equilibrium at $P_{1}(=8)$ and $P_{2}(=6)$. One cycle of operation is described as follows:
(1) Transfer down:

Step l. The fluid in $T R$ (top reservoir) is trans-

NUMBER OF CYCLES
FIGURE 5 - EFFECT OF n ON CONCENTRATION TRANSEINTS

FIGURE 6 - TWO COLUMN DIAGRAM, PACKING WITH ANION AND CATION EXCHANGER FOR MODE 1
ferred to the R^{+}column, and the content in the R^{+} column goes to the MR (middle reservoir).

Step 2. The content of the R^{-}column goes to the $B R$ (bottom reservoir) and the fluid in the MR is transferred to the R^{-}column.
(2) Equilibration: The pH in the R^{+}column is changed from P_{2} to P_{1}, and at the same time the $p H$ in the R^{-} column is shifted from P_{1} to P_{2}. Thus, re-equilibrium is allowed in both columns.
(3) Transfer up: The content in the BR is brought back to the R^{-}column. The content in the R^{-}is pushed through the $M R$ and goes back to the R^{+}column. The content in the R^{+}column is transferred to the $T R$.
(4) Equilibration: The pH is switched from P_{1} to P_{2} for the R^{+}column, and from P_{2} to P_{1} for the R^{-}column. The phase equilibrium is reestablished in both columns. Thus, one cycle is completed.

The procedures is repeated for each of the succeeding cycles.

Mode 2: Four reservoirs with both cation and anion exchangers

The system consists of two columns and four reservoirs as shown in Figure 7. One column is packed with a cation exchanger (R^{-}) and the other with anion exchanger (R^{+}). The flow rate within the column is always equal to the reservoir
displacement rate (Q). Thus for both down and up flow, the reservoirs have the same displacement. For this mode, the system requires three different levels of $\mathrm{pH}, \mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3} where $P_{3}<P_{2}<P_{1}$.

The pump has four reservoirs; one top (TR), two middle (ML and MR), and one bottom (BR), respectively, with $\mathrm{pH}=\mathrm{P}_{2}$, P_{1}, P_{3} and P_{2}. The system starts with the top reservoir (TR), one middle reservoir (MR), and both R^{+}and R^{-}columns filled with a mixture of concentration y_{0}. The R^{+}and R^{-}columns are in equilibrium at P_{1} and P_{2} respectively. Flow sequences for one cycle are:
(1) Transfer down: Pump the fluid from the TR through the R^{+}column to the $\mathrm{ML}\left(\mathrm{P}_{1}\right)$, and at the same time, pump the fluid from the $M R\left(P_{3}\right)$ through the R^{-} column to the BR.
(2) Equilibration: The pH in the R^{+}column is changed from P_{1} to P_{2}, and the pH in the R^{-}column is changed from P_{2} to P_{3}. Then, the equilibration of both columns are reestablished
(3) Transfer up: The fluid from $B R$ is pumped to the R^{-} column while the content in the R^{-}column goes through the middle reservoir (MR) to the R^{+}column. At the same time, the content from the R^{+}column is pumped into the TR.
(4) Equilibration: The pH in the R^{+}and the R^{-}columns are changed from P_{2} to P_{3} and P_{3} to P_{2} respectively.

FIGURE 7 - TWO COLUNN DIAGRAM, PACKING WITH ANION AND CATION EXCHANGER FOR MODE 2

Thus, reequilibrium is allowed in both columns.
(5) Transfer down: The content in the R^{+}place is taken by the fluid from the $T R$, and goes into the $M R$ while the content in the R^{-}column is displaced by the fluid from the $M \mathbb{L}$ and transferred to the $B R$.
(6) Equilibration: The pH in the R^{+}and the R^{-}columns are changed respectively from P_{3} to P_{2} and P_{2} to P_{1}. Both columns are allowed to re-equilibrate.
(7) Transfer up: The liquid in the R^{-}column is pumped through the ML to the R^{+}column while the fluid from the $B R$ is transferred to the R^{-}column as well as the content from the R^{+}column goes to the $T R$. Equilibration: The pH in the R^{+}and the R^{-}columns again are changed from P_{2} to P_{1} and P_{1} to P_{2} respectively. Re-equilibration of both columns are allowed to re-establish.

Mode 3: Five reservoirs with both anion and cation exchangers

This process is consistent with two columns and five reservoirs. Both columns are packed; one with a cation exchanger (R^{-}) and the other with an anion exchanger (R^{+}). The system requires two top reservoirs, one middle reservoir and two bottom reservoirs and they are connected by the columns as shown in Figure 8. One top and one bottom reservoirs are maintained at $P_{1}(8)$ and the other top and bottom reservoirs are at $P_{3}(4)$ while the middle reservoir is kept at $P_{2}(6)$. Both
the R^{+}column and the R^{-}column are in equilibrium at $\mathrm{P}_{2}(=6)$ and $P_{1}(=8)$ respectively. The two top reservoirs are filled with a mixture of the concentration y_{0} at $P_{1}(8)$ and $P_{3}(4)$. Also one of the bottom reservoirs is filled with the same concentration y_{0} of a mixture at $\mathrm{P}_{3}(=4)$. The operation for the complete cycle is described as follows:
(1) Transfer down: The fluid from the $T R\left(P_{1}\right)$ is transferred to the R^{+}column, while the content in the R^{+}column (P_{2}) is transferred through the $M R$ to the R^{-}column. At the same time, the fluid in the R^{-} column (P_{1}) is transferred into the $B R$.
(2) Equilibration: The pH in the R^{+}column is changed from P_{2} to P_{1} while the R^{-}column is changed from P_{1} to P_{2}. Thus, re-equilibrium is allowed in both columns.
(3) Transfer up: The content in the $B R\left(P_{3}\right)$ is pumped into the R^{-}column and at the same time, the fluid in the R^{-}column $\left(P_{2}\right)$ is transferred through the MR to the R^{+}column, while the content in the R^{+} column (P_{1}) is transferred into the TR.
(4) Equilibration: The re-equilibration in both the R^{+} and R^{-}columns are allowed due to their changing in pH respectively from P_{1} to P_{2} and P_{2} to P_{3}.
(5) Transfer down: The fluid in $T R\left(P_{3}\right)$ is transferred to the R^{+}column. The content in the $R^{+} \operatorname{column}\left(P_{2}\right)$ is pushed down through the $M R$ to the R^{-}column while

FIGURE 8 - TWO COLUMN DIAGRAM, PACKING WITH ANION AND CATION EXCHANGER FOR MODE 3
the fluid in the R^{-}column $\left(\mathrm{P}_{3}\right)$ is transferred to the BR.
(6) Equilibration: The equilibration in both the R^{+} and R^{-}are re-established due to the pH change from P_{2} to P_{3} and P_{3} to P_{2} respectively.
(7) Transfer up: The content from the $B R\left(P_{1}\right)$ is pumped to the R^{-}column, while the fluid in the R^{-}column $\left(P_{2}\right)$ is transferred through $M \mathbb{R}$ to the R^{+}column. Meanwhile, the fluid in the $\mathrm{R}^{+}\left(\mathrm{P}_{3}\right)$ is transferred to the TR.
(8) Equilibration: Again, there are some changes in pH from P_{3} to P_{2} and P_{2} to P_{1} for the R^{+}and R^{-}columns respectively. So the re-equilibration is allowed.

Mode 4: Two reservoirs with an ion exchanger (cation or anion)

This mode is different from the other three modes as explained on the previous pages. The system has two columns, two reservoirs and two pH-converters (dialyzers and titrators) as shown in Figure 9. Both columns are packed with an ion exchanger (either cation or anion). The pH levels for the top and bottom reservoirs are maintained respectively at $P_{1}(8)$ and $\mathrm{P}_{2}(6)$. Between the top and the bottom columns are two pH converters, for automatic changing the pH from P_{1} to P_{2} or from P_{2} to P_{1} and also maintained the ionic strength constant. Initially, the top reservoir and both columns are filled with a mixture of the concentration y_{0}. The equilibration of both

FIGURE 9 - TWO COLUMN DIAGRAM, PACKING EITHER WITH ANION OR CATION EXCHANGER FOR MODE 4
columns are at $P_{2}(=6)$. A complete cycle of operation is des. cribed as follows:
(1) Transfer down: The fluid in $T R\left(P_{1}\right)$ is transferred to the top column ($M=1$), and the content in the top column $\left(\mathrm{P}_{2}\right)$ goes through the pH -converter $\left(\mathrm{P}_{1}\right)$ and transfers to the bottom column $(M=2)$. At the same time, the content in the bottom column $\left(P_{2}\right)$ is transferred to the BR.
(2) Equilibration: The pH in both columns are changed from P_{2} to P_{1}. Thus, the equilibration is allowed in both columns.
(3) Transfer up: The content in the $B R\left(P_{2}\right)$ is transferred back to the bottom column ($M=2$), while the content in the column goes through the pH-converter $\left(P_{2}\right)$ to the top column $(M=1)$. The fluid in the top column $\left(\mathrm{P}_{1}\right)$ is transferred to the TR.
(4) Equilibration: Again, the re-equilibration in both columns are re-established due to the changing in pH from P_{1} to P_{2}. Thus, one cycle of operation is completed.

Note: There is a minor change with a Semi-Continuous process which will be discussed in the next Chapter.

Chapter III

THEORY

Equilibrium Theory - Graphical Solution

1. One-Column System

The first system we will consider is shown in Figure 10. It consists of a column packed with an ion exchanger (cation or anion) and reservoirs attached to each end. The pump has dead volumes V_{T} and V_{B} for the top and bottom reservoirs respectively. Initially, the mixture to be separated fills the column voids, the top reservoir, and the bottom dead volume. The top reservoir is maintained at a low pH level $\left(\mathrm{P}_{2}\right)$ by an automatic titrator, while a second titrator is used to keep the bottom reservoir at a high pH level (P_{1}). The ionic strengths of the buffer solutions in both top and bottom reservoirs are kept at IS_{2} and IS_{1}, respectively, by means of two hollow fiber dialyzers. The flow system has four distinct stages in each cycle:
(I) The low $\mathrm{pH}\left(\mathrm{P}_{2}\right)$ fluid from the top reservoir enters the top of the column, while the solution emerging from the other end enters the bottom reservoir. The displacement $Q t_{I}$ is set to be the void volume of the column V_{ϵ}; that is $Q t_{I}=V \epsilon$.
(II) Circulation between the top reservoir and the column: This will ensure a complete shift of the pH and ionic strength in the column to P_{2} and IS_{2}, respectively. Also, at the end of the stage, the concentrations in both the top reservoir and column will be identical.
(III) The high pH (P_{1}) fluid from the bottom reservoir enters the bottom of the column, and the solution emerging from the other end enters the top reservoir, with the displacement $\mathrm{Qt}_{\mathrm{III}}=\mathrm{V}_{\boldsymbol{\epsilon}}$ and
(IV) Circulation between the column and the bottom reservoir: This will allow the pH and ionic strength to shift back to P_{1} and I_{1}, respectively, and at the end of the stage the concentration in the column will be the same as that in the bottom reservoir.

Note that the flow rate within the column is always equal to the reservoir displacement rate Q. The duration of circulation $t_{\text {II }}$ or $t_{\text {IV }}$, which can be determined experimentally, depends on V_{ϵ} and V_{B} (or V_{T}), and the pH and ionic strength in both the column and reservoir.

Figure 11 is a graphical solution for one-column system. The assumption made here are:

1. The solute will be distributed between the solid and fluid phases according to a linear form from Equation 1.2,

$$
x=k y
$$

where k is a function of pH and ionic strength.
2. The duration of curculation $t_{I I}$ or $t_{I V}$, is long enough so that at the end of the stage II or IV a phase equilibrium is established.

In Figure 10, the pump consists of a column packed with cation exchanger and reservoirs attached to each end. The pH values of the top and bottom reservoirs are maintained at given levels $P_{2}(=6)$ and $P_{1}(=8)$, respectively. The operation begins with the column filled with a mixture of concentration y_{0}, every where at equilibrium with solid. The initial pH in the column is high $\left(P_{1}=8\right)$. Also, there is fluid of the same initial concentration in the top reservoir. The first fluid motion is downward, and $V_{T}=V_{B}$. Let x and y be the concentrations of A in the solid and fluid phases, respectively. Using Equation 1.2 , we draw two equilibrium lines (with slopes equal to $k_{p_{1}}$ and $k_{p_{2}}$) on an $x-y$ diagram. The initial concentration in the column $\left(y_{0} ; x_{0}\right)$ is represented by the point 0 . One cycle of the operation includes four steps, and the effect of the operation in the first cycle is as follows:
(1) Transfer down: The fluid in the TR (top reservoir) is transferred to the column, and the fluid in the column is transferred to the $B R$ (bottom reservoir). Therefore, the bottom reservoir concentration for the first cycle is y_{0}.
(2) Circulation and Equilibrium at P_{2} : The column pH

is changed from P_{1} to P_{2}. The two phases are then allowed to equilibrate at P_{2}. This leads to a new composition in the column ($\mathrm{y}_{\mathrm{T} 1} ; \mathrm{x}_{\mathrm{T} 1}$), represented by the point T 1 . The point is located at the intersection of equilibrium line $k_{p_{2}}$ and of the operating line passing through $\left(y_{0} ; x_{0}\right)$. The slope of the operating line is $-\left(\mathrm{V}_{\mathrm{T}}+\mathrm{V}\right) / \overline{\mathrm{V}}$, and is obtained by the mass balance constraint, i.e.,
$\left(V_{T}+V\right) y_{T 0}+\bar{V} x_{B 1}=\left(V_{T}+V\right) y_{T 1}+\bar{V} x_{T 1}$
or

$$
\begin{equation*}
\left(V_{T}+V\right) y_{T(n-1)}+\bar{V} x_{B n}=\left(V_{T}+V\right) y_{T n}+\bar{V} x_{T n} \tag{2.2}
\end{equation*}
$$

where $n=1,2, \ldots$
Also $\mathrm{y}_{\mathrm{T} 0}=\mathrm{y}_{0}, \mathrm{x}_{\mathrm{BI}}=\mathrm{x}_{0}$, and $\mathrm{V}=\mathrm{V}_{\epsilon}$.
(3) Transfer up: The solution in the column is brought to the $T R$ and the solution in the $B R$ is returned to the column. The composition in the column is now $\left(y_{B 1} ; x_{T 1}\right)$.
(4) Circulation and Equilibration at P_{I} : The column pH is shifted back to P_{1}. A phase equilibrium is re-established. The new equilibrium point ($y_{B 2}$; $x_{B 2}$), represented by the point $B 2$, is located at the intersection of the equilibrium line $k_{p_{1}}$ and of the operating line passing through ($y_{B 1} ; x_{B 1}$) and having a slope of $\left(V_{B}+V\right) / \bar{V}$, and is obtained from the following mass balance,

y, concentration of protein in the fluid phase, gm-mole/lit. FIGURE 11 - GRAPHICAL SOLUTION FOR ONE COLUMN SYSTEM.

$$
\begin{equation*}
\left(v_{B}+V\right) y_{B(n-1)}=\left(v_{B}+V\right) y_{B n}+\bar{V} x_{B n} \tag{2.3}
\end{equation*}
$$

where $n=2,3, \ldots$, and $V=V \epsilon$.

This completes the first cycle. The second cycle will start from a transfer of the fraction $y_{T 1}$ from the $T R$ to the column and the fraction $y_{B 2}$ to the $B R$. We then follow the steps described above. (See Figure 11). If the procedure is repeated in each of the succeeding cycles, one can see that as n becomes large, the top and bottom reservoir concentrations will approach steady values, i.e., $\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\infty}$ and $\left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\infty}$, respectively. At steady state, the solid phase has a constant composition which is in equilibrium with both $\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\infty}$ and $<y_{B}>_{\infty}$, i.e.,

$$
\begin{equation*}
\mathrm{x}_{\infty}=\mathrm{k}_{\mathrm{p}_{1}}<\mathrm{y}_{\mathrm{B}}>_{\infty}=\mathrm{k}_{\mathrm{p}_{2}}<\mathrm{y}_{\mathrm{T}}>_{\infty} \tag{2.4}
\end{equation*}
$$

and therefore, the line $\overline{T_{s} \bar{B}_{s}}$ must be paralleled to the y axis.
Note that the graphical method described above is based on a simple discrete transfer equilibrium model (Pigford et al., 1969; Jenczewski and Myers, 1970; Wankat, 1974b; Grevi1lot and Tondeur, 1976; 1977).

2. Two-Column Systems

We will consider four modes of two column system shown in Figures 6, 7, 8, and 9. For all systems but one, Mode 4,
one column is packed with a cation exchanger (R^{-}) and the other with an anion exchanger (R^{+}). The flow rate within the column is always equal to the reservoir displacement rate Q. For both down and up flow the reservoirs have the same displacement. It is assumed that we are concerned with the separation of a two-protein system. The two proteins, A and B, have the isoelectric points I_{A} and I_{B}, respectively, and $P_{3}<I_{B}<P_{2}<I_{A}<P_{1}$, where P_{1}, P_{2}, and P_{3} are the pH levels in the reservoirs. Thus, both A and B will bear negative charges at P_{1}, and positive charges at P_{3}, while A and B will carry a positive and negative charge, respectively at P_{2}. Therefore, A will be taken up by a suitable cationic exchanger at P_{2} or P_{3} and released at P_{1}, The reverse effect will occur if an anion exchanger is selected. The steady state concentrations in the reservoirs are graphically shown in Figures 13, 15, and 17. For the purpose of simplification, it is assumed that for protein $A, k_{p_{2}}^{-}=k_{p_{3}}^{-}$and $k_{p_{2}}^{+}=k_{p_{3}}^{+}$, and for protein $B, k_{p_{1}}^{+}=k_{p_{2}}^{+}$and $k_{p_{1}}^{-}=k_{p_{2}}^{-}$. However, other conditions are conceivable. Two basic separation problems will be considered, i.e., enrichment and splitting:
A. Enrichment

The model to be discussed below is for an enrichment process. Our aim is to obtain a product in which the concentration of a component is larger than the corresponding concentration in the feed.

Mode 1: The system has three reservoirs as shown in Figure 12. The pH level for the top and bottom reservoirs is maintained at P_{1} and that for the middle reservoir is kept at P_{2}. Initially, the top reservoir, the dead volumes for the middle and bottom reservoirs, and both columns are filled with a mixture of the concentration y_{0}. The R^{-}and R^{+}columns are respectively in equilibrium at P_{1} and P_{2}. One cycle of operation is:
(I) Pump the fluid from the top reservoir (TR) through the R^{+}column, the middle reservoir (MR) and the R^{-} column to the bottom reservoir (BR), for time t_{I}.
(II) Circulate the fluid between the $T R$ and the R^{+}column, and between the $M R$ and the R^{-}column, for time $t_{I I}$.
(III) Pump the fluid from the bottom reservoir through the R^{-}column, MR and R^{+}column to the top reservoir, for time $t_{\text {III }}$, and
(IV) Circulate the fluid between the $M R$ and the R^{+}column, and between $B R$ and the R^{-}column.

The graphical construction for the concentration profile (Figuresl3a and13b) can be made in the same way as described for the one-column parametric pump. After a certain number of cycles, the concentrations of protein A in the solid phase for both R^{+}and R^{-}columns converge to two limits, $\mathrm{x}_{\mathrm{R}}{ }^{+}$and

FIGURE 13 - GRAPHICAL SOLUTION FOR TWO COLUMN SYSTEM: MODE 1
$x_{R^{-}}$, respectively. Thus, a two step staircase is formed. Note that at steady state, the concentration in the middle reservoir is such that it is in equilibrium with both cation and anion exchangers at P_{2}, i.e.,

$$
\mathrm{x}_{\mathrm{R}^{+}}=\mathrm{k}_{\mathrm{p}_{1}}^{+}<\mathrm{y}_{\mathrm{T}}>_{\infty}=\mathrm{k}_{\mathrm{p}_{2}}^{+}<\mathrm{y}_{\mathrm{M}}>_{\infty}
$$

and

$$
\begin{equation*}
\mathrm{x}_{\mathrm{R}^{-}}=\mathrm{k}_{\mathrm{p}_{1}}^{-}<\mathrm{y}_{\mathrm{B}}>_{\infty}=\mathrm{k}_{\mathrm{p}_{2}}^{-}<\mathrm{y}_{\mathrm{M}}>_{\infty} \tag{2.5}
\end{equation*}
$$

In the R^{+}column, the protein A migrates from the high pH end $\left(\mathrm{P}_{1}\right)$ toward the low pH end $\left(\mathrm{P}_{2}\right)$, whereas in the R^{-} column, it moves in the opposite direction. Thus, we accumulate protein A at the high $p H$ end of the R^{-}column, i.e., the bottom reservoir. By comparing Figures 11 and 13, one can see that the separation factor $\left(\left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\infty} /\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\infty}\right)$ for the two column system is much higher than that for the one column system. Also, from the diagram on Figure 13, no separation occurs for protein B, i.e., $\left(\left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\infty} /\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\infty}\right)=1$. It should be pointed out that, though B carries the same charge at P_{1} and P_{2}, there may be a difference in the k values at these pH levels (depending on the ionic strength, and some amount of separation may occur on B.

B. Splitting

Modes 2 and 3, shown in Figures 14 and 16 respectively,

FIGURE 14 - SCHEMATIC OF TWO COLUMN SYSTEM: MODE 2
are for split processes. The purpose of these modes of operation is to separate the desired proteins from each other.

Mode 2: The pump has four reservoirs; one top, two middle, and one bottom reservoirs, respectively with $\mathrm{pH}=\mathrm{P}_{2}$, P_{1}, P_{3}, and P_{2}. Flow sequences (Figure 14) for one cycle are:
(I) Pump the fluid from TR through the R^{+}column to the MR (P_{1}), and, at the same time pump the fluid from the $\operatorname{MR}\left(P_{3}\right)$ through the R^{-}column to the $B R$, for time t_{I}.
(II) Circulate the fluid between the $T R$ and the R^{+}column, and between the $M R\left(P_{3}\right)$ and the R^{-}column, for time $t_{\text {II }}$.
(III) Pump the fluid from the $B R$ through the R^{-}column, the $\operatorname{MR}\left(P_{3}\right)$ and the R^{+}column to the $T R$, for time ${ }^{\mathrm{t}}{ }_{\text {III }}$ 。
(IV) Circulate the fluid between the $B R$ and the R^{-}column, and between the $M R\left(P_{3}\right)$ and the R^{+}column, for time $t_{\text {IV }}$.
(V) Pump the fluid from $T R$ through the R^{+}column to the $\operatorname{MR}\left(P_{3}\right)$, and at the same time pump the fluid from the $\operatorname{MR}\left(P_{1}\right)$ through the R^{-}column to the $B R$, for time t_{V}.
(VI) Circulate the fluid between the $T R$ and the R^{+}column, and between the $M R\left(P_{1}\right)$ and the R^{-}column, for time $t_{V I}$.
(VII) Pump the fluid from the $B R$ through the column, $M R$ $\left(P_{1}\right)$, and R^{+}column to the $T R$, for time $t_{V I I}$, and
(VIII) Circulate the fluid between the $B R$ and the R^{-}colun, and between the $M R\left(P_{1}\right)$ and the R^{+}column, for time $t_{\text {VIII }}$.

Figures 15 a and 15 bshow the steady state concentrations in the reservoirs. At steady state, the average concentraLion of the middle reservoirs ($M R\left(P_{1}\right)$ and $M R\left(P_{3}\right)$) is such that it is in equilibrium with both cation and anion exchangers, i.e.,

$$
\begin{align*}
& \mathrm{x}_{\mathrm{R}^{+}}=\mathrm{k}_{\mathrm{p}_{2}}^{+}<\mathrm{y}_{\mathrm{T}}>_{\infty}=\overline{\mathrm{k}}^{+}<\mathrm{y}_{\mathrm{M}^{+}}>_{\infty} \tag{2.6}\\
& \mathrm{x}_{\mathrm{R}^{-}}=\mathrm{k}_{\mathrm{p}_{2}}^{-}<\mathrm{y}_{\mathrm{B}}>_{\infty}=\overline{\mathrm{k}}^{-}<\mathrm{y}_{\mathrm{M}^{-}}>_{\infty}
\end{align*}
$$

and

$$
\begin{align*}
\left\langle\mathrm{y}_{\mathrm{M}^{+}}\right\rangle_{\infty} & =0.5\left(\mathrm{y}_{\mathrm{MR}_{\mathrm{p}_{1}}^{+}}+\mathrm{y}_{\mathrm{MR}_{\mathrm{p}_{3}}^{+}}\right)=\left\langle\mathrm{y}_{\mathrm{M}^{-}}\right\rangle_{\infty} \\
& =0.5\left(\mathrm{y}_{\mathrm{MR}_{\mathrm{p}_{1}}^{-}}+\mathrm{y}_{\mathrm{MR}_{\mathrm{p}_{3}}^{-}}\right) \tag{2.7}
\end{align*}
$$

where $\mathrm{y}_{M R_{\mathrm{P}_{1}}^{+}}$and $\mathrm{Y}_{\mathrm{MR}_{\mathrm{p}_{3}}^{+}}$are the steady state solute concentretions from the R^{+}column to the $M R\left(P_{I}\right)$ and $M R\left(P_{3}\right)$ respectively, whereas $y_{M R_{p_{1}}^{-}}$and $y_{M R_{p_{3}}^{-}}$are those from the R^{-}column to the $M R\left(P_{1}\right)$ and $M R\left(P_{3}\right)$, respectively.

y, protein concentration in the fluid phase FIGURE 15 - GRAPHICAL SOLUTION OF TWO COLUMN SYSTEM: MODE 2

The results in Figures $15 a$ and $15 b$ show that, A and B move in the opposite directions, but in this case, protein A migrates upward to the top reservoir ($\mathrm{pH}=\mathrm{P}_{2}$), while B moves downward to the bottom reservoir $\left(\mathrm{pH}=\mathrm{P}_{2}\right)$.

Mode 3: The system contains five reservoirs, tow top, one middle, and two bottom reservoirs, respectively with $\mathrm{pH}=\mathrm{P}_{1}, \mathrm{P}_{3}, \mathrm{P}_{2}, \mathrm{P}_{1}$ and P_{3} (Figure 16). The flow system has eight distinct steps in each cycle:
(I) Pump the fluid from the $T R\left(P_{1}\right)$ through the R^{+} column to the $M R$ and the R^{-}column to the $B R\left(P_{1}\right)$, for time t_{1}.
(II) Circulate the fluid between the $T R\left(P_{1}\right)$ and R^{+} column, and between the $M R$ and the R^{-}column, for time $t_{\text {II }}$.
(III) Pump the fluid from the $B R\left(P_{3}\right)$ through the R^{-} column to the $M R$ and the R^{+}column to the $T R\left(P_{1}\right)$, for time $t_{\text {III }}$.
(IV) Circulate the fluid between the $B R\left(P_{3}\right)$ and the R^{-} column, and between the $M R$ and the R^{+}column, for time $t_{I V}$.
(V) Pump the fluid from the $T R\left(P_{3}\right)$ through the R^{+} column, $M R$ and R^{-}column to the $B R\left(P_{3}\right)$, for time t_{V}.
(VI) Circulate the fluid between the $T R\left(P_{3}\right)$ and the R^{+} column, and between the $M R$ and the R^{-}column, for time t_{VI}.
(VII) Pump the fluid from the $\operatorname{BR}\left(P_{1}\right)$ through the R^{-} column, $M R$ and R^{+}column to the $T R\left(P_{3}\right)$, for time $t_{V I I . ~}$

FIGURE 16 - SCHEMATIC OF TWO COLUMN SYSTEM: MODE 3
(VIII) Circulate the fluid between the $B R\left(P_{1}\right)$ and the R^{-} column, and between the $M R$ and the R^{+}column for time $\mathrm{t}_{\text {VIII }}$.

The steady state concentrations in the reservoirs are graphically presented in Figures 17 a and 17 b . At steady state $(n \rightarrow \infty)$

$$
\begin{aligned}
\mathrm{x}_{\mathrm{R}}^{+}=\mathrm{k}_{\mathrm{p}_{1}}^{+}\left[<\mathrm{y}_{\mathrm{T}}>_{\infty}\right]_{\mathrm{P}_{1}} & =\mathrm{k}_{\mathrm{p}_{3}}^{+}\left[<\mathrm{y}_{\mathrm{T}}>_{\infty}\right]_{\mathrm{P}_{3}} \\
& =\mathrm{k}_{\mathrm{p}_{2}}^{+}\left[<\mathrm{y}_{\mathrm{M}}>_{\infty}\right]
\end{aligned}
$$

and

$$
\begin{align*}
x_{R^{-}}=k_{p_{1}}^{-}\left[<y_{B}>_{\infty}\right]_{P_{1}} & =k_{p_{3}}^{-}\left[<y_{B}>_{\infty}\right]_{P_{3}} \\
& =k_{p_{2}}^{-}\left[<y_{M}>_{\infty}\right] \tag{2.8}
\end{align*}
$$

By connecting the points $\mathrm{T}_{\mathrm{P}_{1}}, \mathrm{~T}_{\mathrm{P}_{3}}, \mathrm{M}_{\mathrm{P}_{2}}^{+}, \mathrm{M}_{\mathrm{P}_{2}}^{-}, \mathrm{B}_{\mathrm{P}_{3}}$ and $\mathrm{B}_{\mathrm{P}_{1}}$, a two step staircase is formed for both proteins, A and B. However, the concentration of A in the bottom reservoir $B R$ $\left.\left(\mathrm{P}_{1}\right)\left(\left[<\mathrm{y}_{\mathrm{B}}\right\rangle_{\infty}\right]_{\mathrm{P}_{1}}\right)$ is much higher than that in the $T R\left(\mathrm{P}_{1}\right)$ $\left.\left(\left[<y_{T}\right\rangle_{\infty}\right]_{P_{1}}\right)$, while the concentration of B in the top reservoir $\left.\operatorname{TR}\left(\mathrm{P}_{3}\right)\left(\left[<\mathrm{y}_{\mathrm{T}}\right\rangle_{\infty}\right]_{\mathrm{P}_{3}}\right)$ is much greater than that in the $\left.\operatorname{BR}\left(\mathrm{P}_{3}\right)\left(\left[<\mathrm{y}_{\mathrm{B}}\right\rangle_{\infty}\right]_{\mathrm{P}_{3}}\right)$. This separation phenomena can be explained as follows: The pH levels, P_{1} and P_{2}, and P_{2} and P_{3}, respectively bracket the isoelectric points of A and B, i.e., $P_{2}<I_{A}<P_{1}$ and $P_{3}<I_{B}<P_{2}$. Thus, in the R^{-}column,

FIGURE 17 - GRAPHICAL SOLUTION OF TWO COLUMN SYSTEM: MODE 3
A and B respectively migrate toward the $B R\left(P_{1}\right)$ and the $M R$ $\left(P_{2}\right)$, whereas in the R^{+}. column, A and B respectively, move toward the $M R\left(P_{2}\right)$ and $T R\left(P_{3}\right)$. In the other words, A and B migrate in opposite directions and concentrate respectively in $B R\left(P_{1}\right)$ and $T R\left(P_{3}\right)$.

The results shown in Figures 17 a andib are very similar to those for Mode 2. Also, by comparing Figures15a and 15b, and Figures 17 a and 17 b one can see that separations by Mode 3 are better thar those by Mode 2, i.e.,

For protein $\left.A:\left[\frac{\left[\left\langle y_{B}\right\rangle_{\infty}\right]_{P_{1}}}{\left[\left\langle y_{T}\right\rangle_{\infty}\right]_{P_{1}}}\right]_{\text {Mode } 3}^{>} \rightarrow \frac{\left\langle y_{T}\right\rangle_{\infty}}{\left\langle y_{B}\right\rangle_{\infty}}\right]_{\text {Mode 2 }}$
For protein B: $\left[\frac{\left[\left\langle y_{T}\right\rangle_{\infty}\right]_{P_{3}}}{\left[\left\langle y_{B}\right\rangle_{\infty}\right]_{P_{3}}}\right]_{\text {Mode } 3}^{\longrightarrow}\left[\frac{\left\langle y_{B}\right\rangle_{\infty}}{\left\langle y_{T}\right\rangle_{\infty}}\right]_{\text {Mode 2 }}^{\text {(2.9) }}$

Mode 4: The system has two reservoirs; one top and one bottom reservoirs, with $\mathrm{pH}=\mathrm{P}_{1}$ and P_{2} respectively. Also the pH -converters are connected to the columns as shown in Figure 18. Flow sequences for one completed cycle are:
(I) Pump the fluid from $T R\left(P_{1}\right)$ to the first column (R^{-}) while the content from the R^{-}column $\left(P_{2}\right)$ is transferred through the pH -converter $\left(\mathrm{P}_{1}\right)$ to the second column (R^{-}). At the same time, the fluid

from the second column $\left(P_{2}\right)$ is transferred to $B R$, for time t_{I}.
(II) Circulate the fluid between the $T R$ and the first column and between the pH -converter and the second column, for time $t_{I I}$.
(III) The fluid from the $B R\left(P_{2}\right)$ is pumped back to the second column. Meanwhile, the fluid in the second column (P_{1}) is transferred through the pH -converter $\left(P_{2}\right)$ to the first column. Also, the fluid from the first column transfers to the $T R$, for time $t_{\text {III }}$ and
(IV) Circulate the fluid between the first column and the pH -converter, and between the second column and the $B R$.

Figures19a and 19b show the steady state concentration in the reservoirs. After a certain number of cycles, the concentrations of protein A in the solid phase for both R^{-} columns converge to two limits, $x_{R^{-}}$(at $M=1$) and $X_{R^{-}}$(at $M=2$). Thus, a two step staircase is formed, i.e.,

$$
\left.\left.x_{R^{-}}{ }_{M F 1)}=k_{p_{1}}^{-}\left[<y_{T}\right\rangle_{\infty}\right]_{P_{1}}=k_{p_{2}}^{-}\left[<y_{M}\right\rangle\right]
$$

and

$$
\begin{equation*}
\mathrm{x}_{\left.\mathrm{R}_{(M}^{-}=2\right)}=\mathrm{k}_{\mathrm{p}_{2}}^{-}\left[\left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\infty}\right] \mathrm{P}_{2}=\mathrm{k}_{\mathrm{p}_{1}}^{-}\left[\left\langle\mathrm{y}_{\mathrm{M}}\right\rangle\right] \tag{2.10}
\end{equation*}
$$

The results of this system is similar to Mode 1. The

y, protein concentration in the fluid phase
FIGURE 19 - GRAPHICAL SOLUTION OF TWO-COLUMN SYSTEM: MODE 4.
protein A migrates from the low pH end $\left(\mathrm{P}_{2}\right)$ toward the high pH end $\left(\mathrm{P}_{1}\right)$, also Figure 19 b shows no separation occurs for protein B.

Chapter IV

ANALYTICAL SOLUTION

Formal Mathematical Solution

Figure 20 shows the principle of the discrete transfers and equilibrations for a total reflux parapump, with a single transfer per half-cycle. The system consists of N columns, which are packed with an ion exchanger (either cation or anion); and two reservoirs, top and bottom, where maintained at a high $\mathrm{pH}\left(\mathrm{P}_{1}\right)$ and a low $\mathrm{pH}\left(\mathrm{P}_{2}\right)$ respectively. Between the columns, the pH -converters are connected as shown in Figure 9.

Let $y_{j}^{1}(n)$ designate the protein concentration, in grams per liter, for the fluid phase in the column (fraction stage) number $j(j=0,1, \ldots N$, and where $j=0$ is a reservoir), at the low pH level, during cycle n . In the same manner, $x_{q}^{h}(n)$ designates the protein concentration in the solid phase, at the high pH level, in the column or stage q ($\mathrm{q}=1,2$, N), during cycle n. N is defined as the total number of columns or stages; the number of protein fraction is thus $N+1$. With these notations, at the beginning of cycle n (See Figure 20), $y_{0}^{1}(\mathrm{n})$ is the concentration in the high pH product reservoir; and in stage $\mathrm{q}, \mathrm{y}_{\mathrm{q}}^{1}(\mathrm{n})$ is in equilibrium at low pH with $x_{q}^{1}(n)$. Let V be the volume of the fluid phase in each

FIGURE 20 - THE pH-PARAMETRIC PUMPS DIAGRAM FOR MATHEMATICAL APPROACH.
column while \bar{v} is the volume of the solid phase in each column. It is also assumed both are constant.

We shall define a relation between the concentrations in cycle n and in cycle $n+1$. By using the material balances and the equilibrium relation within cycle n, the index (n) of the cycle being omitted for simplicity. After a forward transfer, and before any equilibration, stage q contains V liter of liquid phase at concentration y_{q-1}^{1} and \bar{V} Iiter of solid phase at concentration s_{q}^{I}. After re-equilibration at high $\mathrm{pH}\left(\mathrm{P}_{1}\right)$, these concentrations become respectively $\mathrm{y}_{\mathrm{q}-1}^{\mathrm{h}}$ and $\mathrm{x}_{\mathrm{q}}^{\mathrm{h}}$. Conservation of protein implies:

$$
\begin{align*}
& \mathrm{x}_{\mathrm{q}}^{\mathrm{h}}+\rho \mathrm{y}_{\mathrm{q}-1}^{\mathrm{h}}=\mathrm{x}_{\mathrm{q}}^{1}+\rho \mathrm{y}_{\mathrm{q}-1}^{1} ; \tag{3.1}\\
&(\mathrm{q}=1,2, \ldots \mathrm{~N})
\end{align*}
$$

where ρ is the ratio of fluid to solid phase volumes:

$$
\begin{equation*}
\rho=V / \bar{V} \tag{3.2}
\end{equation*}
$$

The low pH equilibration at the start of che cycle and the high pH equilibration after transfer are expressed by:

$$
\begin{align*}
& x_{q}^{1}=k^{1} y_{q}^{1} ; \quad(q=1,2, \ldots N) \tag{3.3}\\
& x_{q}^{h}=k^{h} y_{q-1}^{h} ; \quad(q=1,2, \ldots N) \tag{3.4}
\end{align*}
$$

where k^{1} and k^{h} are the linear (See Figure 21) equilibrium constants for low pH and high pH respectively. Equations 3.3 and 3.4 are substituted into Equation 3.1 and simplify it. Then we shall obtain:

y, protein concentration in the fluid phase
FIGURE 21 - EQUILIBRIUM CONSTANTS FOR THE HAEMOGLOBINALBUMIN SYSTEM: SEPHADEX ION EXCHANGER (REFERENCE 28).

$$
\begin{array}{r}
\mathrm{y}_{\mathrm{q}-1}^{\mathrm{h}}=\frac{\rho}{\rho+k^{h}} \cdot \mathrm{y}_{\mathrm{q}-1}^{1}+\frac{k^{1}}{\rho+k^{h}} \cdot \mathrm{y}_{\mathrm{q}}^{1} ; \tag{3.5}\\
(\mathrm{q}=1,2,--N)
\end{array}
$$

Since the last protein fraction is in the low pH reservoir during the high pH equilibration, it undergoes no exchange, and also no concentration change; thus:

$$
\begin{equation*}
\mathrm{y}_{\mathrm{N}}^{\mathrm{h}}=\mathrm{y}_{\mathrm{N}}^{1} \tag{3.6}
\end{equation*}
$$

Equation 3.5 and 3.6 from a system of $N+1$ linear difference equations relating the y^{h} 's to the $\mathrm{y}^{1 / \mathrm{s}}$ in the matrix form and be expressed by:

$$
\begin{equation*}
{\underset{\sim}{Y}}^{\mathrm{h}}(\mathrm{n})=\left[{\underset{Q}{h}}^{\mathrm{h}}\right] \cdot{\underset{\sim}{Y}}^{1}(\mathrm{n}) \tag{3.7}
\end{equation*}
$$

where $\underset{\sim}{\underset{\sim}{Y}}$ and $\underset{\sim}{{\underset{\sim}{l}}^{1}}$ are the column vectors of the protein fraction concentrations, and $\left[{\underset{\sim}{\Theta}}_{h}\right]$ is the $N+1$ dimensional bidiagonal matrix:

$$
\left[\bigoplus_{h}\right]=\frac{1}{\rho+k^{h}}\left[\begin{array}{cccc}
\rho & k^{1} & 0 & \ldots \ldots \tag{3.8}\\
0 & \ddots & \ddots & 0 \\
\cdot & \ddots & \ddots & . \\
& & \ddots k^{1} \\
0 & \cdot & \cdot & \\
\left(\rho+k^{h}\right)
\end{array}\right]
$$

In the same manner, the analysis for the backward half-cycle
leads to a symmetrical relationship between $Y^{h}(n)$ and the concentration vector $Y^{1}(n+1)$ which represents the conditions after the low pH re-equilibration, thus at the beginning of cycle n+1 :

$$
\begin{equation*}
{\underset{\sim}{Y}}^{1}(\mathrm{n}+\mathrm{I})=\left[{\underset{\sim}{\Theta}}_{1}\right] \cdot{\underset{\sim}{Y}}^{\mathrm{h}}(\mathrm{n}) \tag{3.9}
\end{equation*}
$$

where:

$$
[{\underset{\sim 1}{\Theta}}] \quad=\frac{1}{\rho+k^{1}} \cdot\left|\begin{array}{ccccc}
\left(\rho+k^{1}\right) & 0 & . & 0 & 0 \tag{3.10}\\
k^{h} & \ddots & \ddots & & \\
0 & \ddots & & \rho & \\
. & \ddots & \ddots & \\
0 & \ldots & \ddots & { }_{k} \mathrm{~h} & \rho
\end{array}\right|
$$

Then, we combine both Equations 3.7 and 3.9 to yield a complate cycle:

$$
\begin{equation*}
{\underset{\sim}{Y}}^{1}(\mathrm{n}+1)=[\underset{\sim}{\mathrm{M}}] \cdot{\underset{\sim}{Y}}^{1}(\mathrm{n}) \tag{3.11}
\end{equation*}
$$

where $[\underset{\sim}{M}]$ is the tridiagonal Jacobi matrix of dimension $N+1$:

$$
[\underset{\sim}{M}]=\left[\Theta_{\sim}^{1}\right]\left[\Theta_{h}\right]=\frac{1}{p}\left|\begin{array}{cccccc}
d & e & 0 & 0 & . & . \tag{3.12}\\
a & b & c & 0 & . & \\
0 & a & b & c & 0 & . \\
. & \ddots & \ddots & \\
0 & & \ddots & \ddots & \\
0 & . & & a & a+b
\end{array}\right|
$$

where: $a=\rho k^{h} ; b=\rho^{2}+k^{1} k^{h} ; c=\rho k^{1}$

$$
\begin{align*}
& d=\rho\left(\rho+k^{1}\right) ; \quad e=k^{1}\left(\rho+k^{1}\right) \quad \text { and } \tag{3.13}\\
& p=\left(\rho+k^{1}\right)\left(\rho+k^{h}\right)=a+b+c
\end{align*}
$$

Equation 3.11 is in a form of a linear first order difference equation, so we can solve this equation by recursion

$$
\begin{align*}
{\underset{\sim}{Y}}^{1}(\mathrm{n}) & =[M]{\underset{\sim}{Y}}^{1}(\mathrm{n}-1)=[\mathbb{M}]^{2}{\underset{\sim}{Y}}^{1}(\mathrm{n}-2)=\ldots \ldots \cdot \\
& =[M]^{\mathrm{n}}{\underset{\sim}{1}}^{1}(0) \tag{3.14}
\end{align*}
$$

From Equation 3.14 the concentration vector for any cycle can be obtained in terms of the initial concentration vector ${\underset{\sim}{1}}^{1}(0)$. Thus, it can be called "A Solution of the Conservation Equations", and this formal solution is very simple. However, the calculation of the $n^{\text {th }}$ power of the matrix (M) is not a trivial matter if its dimension and n are large. Therefore, the next section covers the calculation of this matter which will lead us into the physical problem.

Calculation of $[\mathrm{M}]^{\mathrm{n}}$

The calculation of the $n^{\text {th }}$ power of a matrix by successive multiplication is numerically straight forward, although it may require much time and give little qualitative information. So another method is introduced by the calculation of
the eigenvalues λ of $[\mathbb{M}$ 〕 for which standard numerical methods exist. In this case, much more information can be obtained on the eigenvalues by algebraic means, and a simple rapidly converging numerical method can be used, (See Appendix A) owing to the fact that the matrix is of the Jacobi type (tridiagonal matrix). Once the eigenvalues (λ) are known, the elements of the corresponding eigenvectors are calculated directly by:

$$
\begin{aligned}
& y_{1 q}=-\frac{1}{e}\left(d-p \lambda_{q}\right) y_{0 q} \\
& y_{2 q}=-\frac{1}{c}\left(b-p \lambda_{q}\right) y_{1 q}+a y_{0 q}
\end{aligned}
$$

$$
\begin{equation*}
y_{j q}=-\frac{1}{c}\left(b-p \lambda_{q}\right) y_{j-1, q}+a y_{j-2, q} \tag{3.15}
\end{equation*}
$$

$$
\begin{aligned}
y_{N q} & =-\frac{1}{c}\left(b-p \lambda_{q}\right) y_{N-1, q}+a y_{N-2, q} \\
q & =0,1,-\cdots---N
\end{aligned}
$$

where a, b, c, d, e and p are given by Equation 3.13. As usual, the elements of the eigenvectors are defined up to a multiplicative factor, $\mathrm{y}_{0 \mathrm{q}}$. Designating, by $[\underset{\sim}{S} 〕$ the matrix of column eigenvectors of elements $y_{j q}$, the matrix $[\underset{\sim}{M}]$ may be re-written in a diagonalized form:

$$
\begin{equation*}
[\underset{\sim}{M}]=[\underset{\sim}{S}][\underset{\sim}{D}][\underset{\sim}{S}]^{-1} \tag{3.16}
\end{equation*}
$$

where [$\underset{\sim}{D}]$ is the diagonal matrix of the eigenvalues. Then:

$$
\begin{equation*}
[\underset{\sim}{M}]^{\mathrm{n}}=[\underset{\sim}{s}][\underset{\sim}{D}]^{\mathrm{n}} \cdot[\underset{\sim}{s}]^{-1} \tag{3.17}
\end{equation*}
$$

where

$$
[\underset{\sim}{D}]^{n}=\left|\begin{array}{cccccc}
\lambda_{0}^{n} & 0 & 0 & 0 & \ldots & \\
0 & \lambda_{1}^{n} & 0 & 0 & \cdots & 0 \\
c & \cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & & & \cdot \\
0 & & & & & \\
0 & \cdot & \cdot & & & \lambda_{N}^{n}
\end{array}\right|
$$

An equivalent approach is the use of Sylvester's Theorem Expression and gives:

$$
\begin{equation*}
[M]^{n}=\sum_{j=0}^{N} \lambda_{j}^{n}\left[\underset{\sim}{A_{j}}\right] \tag{3.19}
\end{equation*}
$$

where:

$$
\begin{equation*}
\left[A_{j}\right]=\frac{\operatorname{adj}\left(\lambda_{j \sim}^{I}-\underset{\sim}{M}\right)}{\prod_{i \neq j}\left(\lambda_{j}-\lambda_{i}\right)} \tag{3.20}
\end{equation*}
$$

and $\operatorname{adj}\left(\lambda_{j}{ }_{\sim}^{I}-\underset{\sim}{M}\right)$ is the transposed matrix of cofactors of $\left[\lambda_{j} \frac{I}{\sim}-\underset{\sim}{M}\right]$, independent of n. It is seen that the number of cycles (n) appears only as the powers of the eigenvalues, and this allows a quick qualitative look on how the system converges toward its steady state. Here, we shall first try to characterize this steady state.

The Cyclic Steady State

The behavior of the system when the number of cycles (n) becomes large, can be deduced from a close examination of Equations 3.16 to 3.20 and of the eigenvalues. It also can be deduced by physical reasoning. In Appendix A, we demonstrate that all eigenvalues of [M] are real, positive and smaller than or equal to 1 . These conclusions may also be reached by the following considerations:

1. Any negative eigenvalue would bring a contribution to $[M]^{n}$, that changes sign every cycle, leading to an oscillatory behavior of certain concentrations.
2. Any eigenvalue larger than one, would lead to an ever increasing contribution to $(M)^{n}$, and to infinite concentrations for certain initial conditions.
3. Any positive eigenvalue, smaller than one, has an ever decreasing contribution as n becomes large; if there were no eigenvalue equal to one, $[M]^{n}$ would tend toward the zero matrix, and all final concentrations would be zero.

We thus have:

$$
\begin{equation*}
0 \leqslant \lambda_{0} \leqslant \lambda_{1} \leqslant \lambda_{2} \leqslant----\leqslant \lambda_{N}=1 \tag{3.21}
\end{equation*}
$$

From Equations 3.14, 3.19, and 3.20, when n becomes large, the contribution of all eigenvalues different from one disappear and the cyclic steady state is given by:

$$
\begin{equation*}
Y^{1}(\infty)=[\underset{\sim}{M}]{ }^{\infty}{\underset{\sim}{Y}}^{1}(0)=\frac{[\operatorname{adj}(\underset{\sim}{I}-\underset{\sim}{M})]}{\underset{i \neq \mathbb{N}}{ }\left(1-\lambda_{i}\right)}{\underset{\sim}{Y}}^{1}(0) \tag{3.22}
\end{equation*}
$$

More explicit information is obtained by noting that, in the steady state, we will have:

$$
\begin{equation*}
{\underset{\sim}{Y}}^{1}(n+1)={\underset{\sim}{Y}}^{1}(n)={\underset{\sim}{Y}}^{1}(\infty) \tag{3.23}
\end{equation*}
$$

and that this equality is compatible with Equation 3.11 only if ${\underset{\sim}{Y}}^{1}(\infty)$ is an eigenvector of matrix $[\underset{\sim}{M}]$. From the discussion above, it must be the eigenvector corresponding to $\lambda_{\mathbb{N}}$ $=1$. Thus, the components $\mathrm{y}_{\mathrm{i}}^{*}$ of $\underset{\sim}{Y^{1}}(\infty)$ are calculated by letting $\lambda_{\mathrm{q}}=\lambda_{\mathrm{N}}=1$ in the set of Equation 3.15. It may easily be verified that the following relations hold between the concentrations y^{*} thus calculate:

$$
\begin{equation*}
\frac{y_{0}^{*}}{y_{1}^{*}}=\frac{y_{1}^{*}}{y_{2}^{*}}=--\frac{y_{j}^{*}}{y_{j+1}^{*}}=--\frac{y_{N-1}^{*}}{y_{N}^{*}}=\frac{k^{1}}{k^{h}}=\beta \tag{3.24}
\end{equation*}
$$

which implies:

$$
\begin{equation*}
\frac{y_{0}^{*}}{y_{N}^{*}}=\beta^{N} \tag{3.25}
\end{equation*}
$$

This is the equivalent of Fenske's equation. The steady state composition vector, then may be written in terms of y_{0}^{*}, for example:

$$
{\underset{\sim}{Y}}^{1}(\infty)=\left|\begin{array}{c}
y_{0}^{*} \tag{3.26}\\
y_{1}^{*} \\
y_{2}^{*} \\
\cdot \\
y_{N}^{*}
\end{array}\right|=y_{0}^{*}\left|\begin{array}{l}
1 \\
\beta^{-1} \\
\beta^{-2} \\
\cdot \\
\beta^{-N}
\end{array}\right|
$$

An interesting property of this vector is that, it is invariant upon multiplication on the left by $[{\underset{\sim}{A}}]$, which from Equation 3.7,implies that:

$$
\begin{equation*}
{\underset{\sim}{Y}}^{\mathrm{h}}(\infty)={\underset{\sim}{Y}}^{1}(\infty) \tag{3.27}
\end{equation*}
$$

This means that the compositions of the protein fractions are the same after an equilibration at high pH and low pH . In other words, in the cyclic steady state, all compositions are constant, and no protein transfer occurs between phases.

The geometric interpretation from Equations 3.24 to 3.27 is like the relations in the McCabe-Thiele diagram which is a staircase construction between two straight lines as shown in Figure 22, and is consistent with the graphical method from the previous chapter. The steady state composition vector, in Equation 3.26, is defined up to the value of y_{0}^{*}. This

FIGURE 22 - GRAPHICAL SOLUTION BASED ON McCABE-THIELE DIAGRAM.
parameter is calculated from an overall material balance over the system, and give (see Appendix A)

$$
\begin{equation*}
y_{0}^{*} \quad=\frac{W / \bar{V}}{\rho+\left(\rho+k^{1}\right) \sum_{i=1}^{N} \beta^{-i}} \tag{3.28}
\end{equation*}
$$

This result is seen to be an independent of the initial distribution, but to depend only on W, the total mass of protein present in the system.

The knowledge of this steady state allows us in turn to determine the structure of $[M]^{n}$ when n becomes large, as illustrated in Appendix A.

Chapter V

EXPERMENTAL METHOD

A. The Experimental System

The system of separation is considered for removing either Hemoglobin or Albumin from its aqueous solution or their mixture by pumping through a suitable solid phase (absorbant bed) i.e., an ion exchanger (anion or cation). The ion exchanger will attract a protein (absorption) which carries an opposite charge to one in a pH buffer solution, and the protein will be released (desorption) when its charge is changed back (to the same as an ion exchanger) in the other pH buffer solution, in such a way that both fluid and solid phases, in the absorbant bed, are in equilibrium.

Equation 1.1 shows the material balance of protein in both fluid and solid phases. The relationship ratio of the concentration of the solute in the solid to a fluid phase is a function of solute concentration, pH buffer and ionic strength and also expressed in Equation 1.2:

$$
\begin{equation*}
\mathrm{x}=\mathrm{ky} \tag{1.2}
\end{equation*}
$$

where k is called as "an equilibrium constant". The experimental and calculated the equilibrium constant are pictured on Figure 21, where the specific region of interest treated
in this work is marked. The linearlity of the adsorption equilibrium constant in this region is apparent.

B. Description of Apparatus

The system consists of one or two chromatographic columns manufactured by Phamarcia Fine Chemicals. The column(s) was packed either with DEAE-Sepharose (anion exchanger) or with CM-Sepharose (cation exchanger) for a one column system otherwise the top and the bottom columns were packed alternately with anion and cation exchangers. The reservoirs (50 cc Pyrex beakers) were connected to the column(s) as the system required. Reciprocating flow was introduced into the system by a four channel Multi-Staltic Pump \# 2-6200 manufactured by Buchler Instruments. The tubing used in the pump was $1 / 16^{\prime \prime}$ I.D. Tygon tubing manufactured by Norton Plastics. The pump was set up according to manufacturer's specifications and the flow rates of all four channels were adjusted to 1 cc/minute.

The pH levels in the reservoirs were maintained by using three PHM61 meters and two TTT60 automatic titrators, a11 manufactured by Radiometer/Copenhagen. The $\mathrm{pH} 8.5\left(\mathrm{P}_{1}\right)$ and the $\mathrm{pH} 4.0\left(\mathrm{P}_{3}\right)$ reservoirs were monitored by the automatic titrating the solution manually. The acid and base solution used were Hydrochloric acid (0.5 N) and Sodium Hydroxide (0.5 N). Magnetic stirrers were used to ensure perfect mixing in the reservoirs. The reservoirs were placed in the jacketed Pyrex
beakers. Both the reservoirs and the columns were maintained at $5^{\circ} \mathrm{C}$ by the use of circulation bath. An electrically controlled timer was connected to the system for the purpose of starting and ending the process automatically. To maintain the ionic strength, a hollow fiber dialyzer manufactured by Harvard Apparatus Company, was introduced. The experimental apparatus for the three reservoirs batch system is shown in Figure 23.

C. Solutions and Buffers

Three types of buffers were used. For pH value of 8.5, a buffer of tris (Hydroxy-Methyl) Aminomethane and HC1 was used. For pH value of 6.2 , the buffer was tris (Hydroxy-Methyl) Aminomethane, Malaic Acid and NaOH was used. For pH value of 4.0 , a buffer of Acetic Acid and Sodium was used.

The concentration of the above buffer solutions was 0.2 M. Sodium Chloride in calculated amounts was added to each of them. Dilution of the buffers were made according to the experimental parameters.

The two proteins were selected to investigate the separation were Haemoglobin and Albumin; both are manufactured by Worthington Biochemicals.

Component	Protein		Molecular Weight	
A	Haemo.	63,000		6.7
B	Alb.	69,000	4.7	

FIGURE 23 - THE EXPERIMENTAL APPARATUS DESCRIBES THE THREE RESERVOIRS BATCH SYSTEM.

The concentration of protein in the feed solution was 0.02 weight percent (i.e., 0.02 gram protein/100 cc. buffer).

D. Gel Preparation and Packing

Both the CM and the DEAE-Sepharose exchangers were washed and stored for 24 hours in their respective initial buffer solutions. This ensured that the gels would be at their respected pH . The gels were then loaded into the vertical columns and were allowed to settle to a volume of 12 cc.

The columns were next connected to the pump. The next step involves the saturating of gel with the specific feed or buffer solution. This step is a function of the system under investigation. The solutions were pumped into the respective columns for a period of 90 minutes to ensure that solid and the liquid phases were in equilibrium. (NOTE: Pump flow rate $=1.0 \mathrm{cc} / \mathrm{min}$).

E. Measurements

A sample was taken at the end of each cycle from each reservoir, with the Batch System, or at the end of each step, with the Semi-Continuous System. The sample was analyzed on a Bausch and Lomb Spectrophotometer. Past work shows that the absorbance obtained from the spectrophotometer can be related to the relative amounts of protein in the solution. The wave lengths used, were $430 \mu, 560 \mu, 576 \mu, 595 \mu$ and

A dye reagent was used to measure the total amount of protein at 595μ. The dye is manufactured by Bio-Rad Laboratories and was prepared and stored according to the manufacturer's specification. The sample/dye ratio varied, but remained constant for any given experiment. The ratio was sometimes changed to acquire more accurate readings. The reaction time for all samples which required the use of the dye reagent was 5 minutes. This procedure is described in the analysis of the experimental data (see Appendix B for sample of calculation).

F. Operation Processes

One-Column: Semi-Continuous

We first consider two types of systems. In one the column was packed with an anion where the other packed with a cation exchanger. The equipment and the column preparation for the two reservoirs, Semi-Continuous single column (anion) is already explained in Section B and D, respectively. This system consists of an anion exchanger and two reservoirs; 6.2 top $\left(P_{2}\right)$ and 8.5 bottom (P_{1}). The pumping flow diagram is shown in Figure 24.

Procedure. The reservoirs's specifications were:

	$6.2 \mathrm{TR}\left(\mathrm{P}_{2}\right)$	$8.5 \mathrm{BR}\left(\mathrm{P}_{1}\right)$
Dead Volume	30 cc	30 cc
Displacement	12 cc	0 cc

(NOTE: In some experiments the dead volume was either increased or decreased).
(I) Pump the fluid from 6.2 TR through the R^{+}column to the 8.5 BR , for a time period $t_{I}\left(t_{I}=12 \mathrm{~min}\right)$.
(II) Circulate the fluid between the 6.2 TR and the R^{+} column, for a period of $t_{I I}\left(t_{I I}=24 \mathrm{~min}\right)$.
(III) Fresh $6.2\left(P_{2}\right)$ feed enters the R^{+}column from the bottom, for a time period of $t_{\text {III }}\left(t_{\text {III }}=8 \mathrm{~min}\right)$. At the same time, the top product was withdrawn for analysis.
(IV) The fluid from the 8.5 BR is pumped through the R^{+} column to the 6.2 TR for a period of $t_{I V}\left(t_{I V}=12\right.$ min).
(V) Circulate the fluid between the 8.5 BR and the R^{+} column, for a period of $t_{V}\left(t_{V}=24 \mathrm{~min}\right)$.
(VI) Fresh $8.5\left(\mathrm{P}_{1}\right)$ feed enters the R^{+}column from the top, for a period of $t_{V I}\left(t_{V I}=8 \mathrm{~min}\right)$. The bottom product was withdrawn and analyzed.

The completion of step VI is the end of one cycle. All of the products were analyzed on a Bausch and Lomb Spectrophotometer (BLS) at $403 \mu, 595 \mu, 560 \mu, 576 \mu$ and 630μ.

The purpose of using $560 \mu, 576 \mu$ and 630μ is to determine the concentration of haemoglobin. It was determined that the type of buffer will affect the absorbance, thus leading to an error in calculating the relative amount of protein. The 403μ reading was not versatile enough to detect the protein concentration. The procedure for analyzing the samples is described in Section E.

NOTE: F'or the cation column, the equipment and the operation steps are exactly the same as the operation on an anion column as explained above. Also the Batch System operation for the experiment was described earlier in Chapter II.

Two-Column System
Mode 1: Three Reservoirs Batch System
The apparatus and the preparation of the columns for this system has already been explained previously in this chapter. The pump flow diagram can be seen on Figure 12.

Procedure. The reservoirs were started with the following dead volume:

$$
8.5 \mathrm{TR}\left(=\mathrm{P}_{1}\right) \quad 6.2 \mathrm{MR}\left(=\mathrm{P}_{2}\right) \quad 8.5 \mathrm{BR}\left(=\mathrm{P}_{1}\right)
$$

Dead Volume	30 cc	30 cc
Displacement	12 cc	0 cc

NOTE: In some experiments the dead volume was either increased or decreased.

The four operational steps were explained in Chapter II, where $t_{I}=t_{I I I}=12 \mathrm{~min}$ and $t_{I I}=t_{I V}=24 \mathrm{~min}$.

At the end of each cycle, a 3.0 cc sample was removed from each reservoir, $T R, M R$ and $B R$. The samples were analyzed on a BLS at 403μ and 595μ. The procedure for sample analysis, is described in the earlier pages of this chapter.

NOTE: For the Semi-Continuous or Continuous Process, the results were not consistent and omitted from discussion (see Reference 48 for detail).

Mode 2: Four reservoirs Semi-Continuous System

The equipment and the column preparation in the operation of the four reservoirs Semi-Continuous process is the same as described at the beginning of this chapter. This system requires the introduction of fresh feed after each circulation step. The pump flow diagram is shown in Figure 25.

Procedure. The reservoirs were started with the following dead volume:

	$6.2 \mathrm{TR}\left(\mathrm{P}_{2}\right)$	$8.5 \mathrm{MR}\left(\mathrm{P}_{1}\right)$	$4.0 \mathrm{MR}\left(\mathrm{P}_{3}\right)$	$6.2 \mathrm{BR}\left(\mathrm{P}_{2}\right)$
Dead Volumes	30 cc	30 cc	30 cc	30 cc
Displacements	12 cc	0 cc	12 cc	0 cc

(NOTE: In some experiments the dead volume was either increased or decreased).
(I) Pump the fluid from $6.2 T R$ through the R^{+}column to the 8.5 MR , and at the same time pump the fluid from the 4.0 MR through the R^{-}column to the 6.2 BR , for a time period of $t_{I}\left(t_{I}=12 \mathrm{~min}\right)$
(II) The fluid between the $6.2 T \mathrm{R}$ and the R^{+}column, and the 4.0 MR and the R^{-}column were circulated, for a period of $t_{I I}$ (NOTE: $t_{I I}$ depended on the experiment; see the experiment data for the correct value)
(III) Fresh 6.2(P_{2}) feed enters the R^{+}column from the bottom and fresh $4.0\left(\mathrm{P}_{3}\right)$ feed enters the R^{-}column from the bottom, for a perid of $t_{I I I}\left(t_{I I I}=8 \mathrm{~min}\right)$, Both top products were analyzed.
(IV) The fluid from the 6.2 BR is pumped through the R^{-} column, the 4.0 MR and the R^{+}column to the $6.2 T R$, for a period of $t_{I V}\left(t_{I V}=12 \mathrm{~min}\right)$.
(V) The fluid from the 6.2BR and the R^{-}column, and the 4.0MR and R^{+}column were circulated for a period of t_{V}.
(VI) Fresh $4.0\left(\mathrm{P}_{3}\right)$ feed enters the R^{+}column from the top and fresh $6.2\left(\mathrm{P}_{2}\right)$ feed enters the R^{-}column from the top, for a period of $t_{V I}\left(t_{V I}=8 \mathrm{~min}\right)$, while the bottom product were withdrawn and analyzed. (VII) The fluid from the $6.2 T R$ is pumped through the R^{+}
column to the 4.0 MR , and simultaneously, pump the fluid from the 8.5 MR through the R^{-}column to the $6.2 B R$, for a period $t_{V I I}\left(t_{V I I}=12 \mathrm{~min}\right)$.
(VIII) The fluid between the $6.2 T \mathrm{R}$ and the R^{+}column, and the 8.5 MR and the R^{-}column were circulated, for a period of $t_{\text {VIII }}$.
(IX) Fresh 6.2 (P_{2}) feed enters the R^{+}column from the bottom and fresh $8.5\left(P_{1}\right)$ feed enters the R^{-}column from the bottom, for a period of $t_{I X}\left(t_{I X}=8 \mathrm{~min}\right)$. Both of the top products obtained were analyzed.
(X) The fluid from the 6.2 BR is pumped through the R^{-} column, 8.5 MR and R^{+}column to the 6.2 TR , for a period $t_{X}\left(t_{X}=12 \mathrm{~min}\right)$.
(XI) The fluids between the $6.2 B R$ and the R^{-}column, and the 8.5 MR and the R^{+}column were circulated, for a a period of ${ }^{\text {XII }}$.
(XII) Fresh $6.2\left(\mathrm{P}_{2}\right)$ feed enters the R^{-}column from the top and fresh $8.5\left(\mathrm{P}_{1}\right)$ feed enters the R^{+}column from the top, for a period of $t_{X I I}\left(t_{X I I}=8 \mathrm{~min}\right)$. Both of emerging bottom products were analyed.

The completion of step XII is the end of one cycle. All of the products were analyzed on a BLS at $403 \mu, 595 \mu, 560 \mu$, 576μ and 630μ. As mentioned before that, the purpose of using $560 \mu, 576 \mu$ and 630μ is to determine the concentration of haemoglobin. It was determined that the type of buffer will affect the absorbance, thus leading to an error in cal-
culating the relative amount of protein. The procedure to analyze the sample is already described in the earlier pages of this chapter.

Mode 2: Four reservoirs Batch System

The apparatus and the preparation of the column for this system is the same as the Semi-Continuous System as explained in the above paragraph. Figure 14 is shown the flow diagram of the system.

Procedure. The reservoirs were started with the following dead volumes:

	$6.2 \mathrm{TR}\left(\mathrm{P}_{2}\right)$	$8.5 \mathrm{MR}\left(\mathrm{P}_{1}\right)$	$4.0 \mathrm{MR}\left(\mathrm{P}_{3}\right)$	$6.2 \mathrm{BR}\left(\mathrm{P}_{2}\right)$
Dead volumes	30 cc	30 cc	30 cc	30 cc
Displacements	12 cc	0 cc	12 cc	0 cc

(NOTE: In some experiments the dead volume was either increased or decreased).

The steps of operation were explained in the Chapter II, page where $t_{I}=t_{I I I}=t_{V}=t_{V I I}=12 \mathrm{~min}$ and $t_{I I}=t_{I V}=$ $t_{V I}=t_{\text {VIII }}=24 \mathrm{~min}$.

At the end of each cycle, a 3 cc sample was removed from each reservoir. The sample was then analyzed on a BLS (Bausch and Lomb Spectrophotometer) at 403μ and 595μ. The procedure for the analysis of each sample was described as the same as the other Modes from the previous section.

Mode 3: Five Reservoirs Batch System

The equipment and the column were prepared for a system of five reservoirs Batch Operation as was lescribed in the earlier pages of this chapter. The flow diagram of this operation is shown in Figure 16.

Procedure. The reservoirs' dead volume and the displacements were as follows:

$$
8.5 \mathrm{TR}\left(\mathrm{P}_{1}\right) 4.0 \mathrm{TR}\left(\mathrm{P}_{3}\right) 6.2 \mathrm{MR}\left(\mathrm{P}_{2}\right) 8.5 \mathrm{BR}\left(\mathrm{P}_{1}\right) 4.0 \mathrm{BR}\left(\mathrm{P}_{3}\right)
$$

Dead Volumes	30 cc				
Displacements	12 cc	12 cc	0 cc	0 cc	12 cc

NOTE: In some experiments the dead volume was either increased or decreased.

The operation steps of this type of system, can be found in Chapter II. Allow $t_{I}=t_{I I I}=t_{V}=t_{V I I}=12$ minutes while $t_{I I}=t_{I V}=t_{V I}=t_{V I I I}=24$ minutes.

A complete cycle is ended by step VIII and 3.0 cc sample was taken from each reservoir. The samples were then analyzed according to the procedure described, and used, for other different mode(s) as mentioned before.

NOTE: For the Semi-Continuous process, the system had been investigated and the results were very poor. The detail of this explanation is in the Reference 48.

Mode 4: Two Reservoirs Semi-Continuous System

The apparatus and the column preparation for the system have been explained in the earlier pages of this chapter. First of all, the system was packed with anion exchanger in both columns. The system is supplied the fresh feed of both at $P_{1}=8.5$ and $P_{2}=6.2$ after each circulation step. Figure 26 shows the diagram of flow sequences.

Procedure. The reservoirs and pH-Converters (PC) were started with the following dead volumes:

Dead Volume	30 cc	30 cc	30 cc	30 cc
Displacements	12 cc	0 cc	0 cc	0 cc

NOTE: In some case of the experimental, the dead volume was either increased or decreased.
(I) Pump the fluid from 8.5TR through the first column and also through the $8.5 P C$ to the second column, while the fluid from the second column is transferred the 6.2 BR , for a time period of $t_{I}\left(t_{I}=12\right.$ min).
(II) The fluid between the 8.5 TR and the first column, and the $8.5 P C$ and the sedcond column were circulated, for a period of $t_{I I}$ (NOTE: $t_{I I}=24 \mathrm{~min}$, otherwise see the table for the correct value).

(III) Fresh 8.5TR is fed from the top of the first column through $8.5 P C$ and through the second column, for a period of $t_{\text {III }}\left(t_{\text {III }}=8 \mathrm{~min}\right)$. The bottom product was collected at $\mathrm{pH}=8.5$ and analyzed.
(IV) Pump the fluid from 6.2BR through the second column and through the 6.2 PC to the first column, while the content in the first column goes back to the 8.5TR, for a time $t_{I V}\left(t_{I V}=12 \mathrm{~min}\right)$.
(V) The fluid from the first column and 6.2PC, and the 6. 2 BR and the second column were circulated for a period of $t_{V}\left(t_{V}=24 \mathrm{~min}\right)$.
(VI) Fresh 6.2BR feed enters the bottom of the second column through 6.2PC and first column, and at the same time, the top product $(\mathrm{pH}=6.2)$ was collected for a period of $t_{V I}\left(t_{V I}=8 \mathrm{~min}\right)$.

Each cycle is ended at step VI. Then, all the products (top and bottom) were analyzed on a Bausch and Lomb Spectrophotometer at each different wave length as mentioned in the previous section.

NOTE: We repeated the process by replacing the cation exchanger instead of an anion exchanger. The preparation of the apparatus, the operation steps and also the analysis of the sample are exactly the same as we operated on an anion exchanger system. Any minor changes either increasing or decreasing the time
period (t) are indicated in Appendix B.

Mode 4: Two Reservoirs Batch System
The apparatus and the preparation of the column are the same as the Semi-Continuous System. The flow diagram and the procedures were shown in Figure 18 and described in Chapter II. Any minor changes will be explained in Appendix B.

Chapter VI

SEPARATION OF PROTEINS VIA MULTI-COLUMN

This chapter extends the work theoretically from the separation of two proteins via two columns into multi-protein via multi-column. The system is developed and established base on Mode 2 as described in the Chapter I.

Examine any multi-unit system where M columns are considered. Each unit consists of two columns, one which is packed with a cation exchanger ($\mathrm{R}^{\text {") }}$) and the other with an anion exchanger (R^{+}). For the first unit, we need four reservoirs, while each additional unit requires three reservoirs as shown in Figure 27. We will follow the operational steps as mention in Mode 2 Chapter I. Therefore, the steady state concentration of protein A will reach the top reservoir of the first unit, while the steady state concentration of protein B will be found in the bottom reservoir of the last unit. As we explained for the two columns system (see Chapters I, II and IV on Mode 2), proteins A and B will move in opposite directions. The movement of both proteins A and B is shown in Figure 28 and the operational steps, which are exactly the same as Mode 2 system, is shown in Figure 14.

Process Designing for Multi-Protein Separation.

y, protein concentration in the fluid phase
FIGURE 28 - GRAPHICAL SOLUTION FOR PROCESS DESIGNING, M-COLUMN SYSTEM

This process is quite similar to the separation in the two proteins system; the differences which we have to considered are:
I. Selection of pH level in the reservoirs.
II. Adding the extension system(s) to the original system.

Selection of pH Level:

To commence we choose any four proteins A, B, C and D which have the isoelectric points I_{A}, I_{B}, I_{C} and I_{D} respectively and

$$
P_{5}<I_{D}<P_{4}<I_{C}<P_{3}<I_{B}<P_{2}<I_{A}<P_{1}
$$

where $P_{1}, P_{2}, P_{3}, P_{4}$ and P_{5} are the pH levels in the reservoirs. Thus, all proteins (A, B, C and D) will bare a negative charge at P_{1} and positive charge at P_{5}. Of course, at a different pH levels $\mathrm{P}_{2}, \mathrm{P}_{3}$ and P_{4}, proteins $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D will carry a different charge as shown in Table 1.

To select the pH level for the reservoirs, the first necessity is to choose three pH levels. One will be located in $T R, R_{2}$, $\ldots \ldots . . R_{M-2}$ and $B R$, the other two will be located in $\mathrm{ML}_{1}, \mathrm{ML}_{3}, \ldots . . . \mathrm{ML}_{\mathrm{M}-1}$, on the same level of pH , while $\mathrm{MR}_{1}, \mathrm{MR}_{3}, \ldots \ldots . . \mathrm{MR}_{\mathrm{M}-1}$, will be on the other level of pH .

Case I. If we consider P_{2} for reservoirs R_{1}, R_{2}, \ldots

TABI_E 1

An expression of protein charges, those which they would bear in the different pH level solutions.

$$
P_{5}<I_{D}<P_{4}<I_{C}<P_{3}<I_{B}<P_{2}<I_{A}<P_{1}
$$

pH Level	Protein A	Protein B	Protein C	Protein D
	-	-	-	-
P_{2}	+	-	-	-
P_{3}	+	+	-	-
P_{4}	+	+	+	-
P_{5}	+	+	+	+

$\ldots R_{M+1}$, then proteins will be grouped where B, C and D are in the first group while A is in the other, thus

$$
I_{D}, I_{C} \text { and } I_{B}<P_{2}<I_{A}
$$

In the next step we have to evaluate the lowest and the highest pH levels for the middle reservoirs ML and MR . Rewritten, the isoelectric points of these four proteins, will reduce to:

$$
P_{5}<I_{D}, \quad I_{C} \text { and } I_{B}<P_{2}<I_{A}<P_{1}
$$

Then, $M L_{1}, M L_{3}, \ldots . . . M_{M-1}$, will have the pH level P_{1} while $\mathrm{MR}_{1}, \mathrm{MR}_{3}, \ldots \ldots . \mathrm{MR}_{\mathrm{M}-1}$, carry the pH level at P_{5}.

Case II. If P_{3} be selected for reservoirs $T R, R_{2}, \ldots$. $\ldots \mathrm{R}_{\mathrm{M}-2}$ and $B R$, then groups of proteins will be as:

$$
I_{D} \text { and } I_{C}<P_{3}<I_{B} \text { and } I_{A}
$$

Similar to Case I, P_{1} and P_{5} must be selected for M_{1}, M_{3}, $\ldots . . . M L_{M-1}$ and $M R_{1}, M R_{3}, \ldots . . . M R_{M-1}$, respectively.
The iscelectric point can be written as:

$$
P_{5}<I_{D} \text { and } I_{C}<P_{3}<I_{B} \text { and } I_{A}<P_{1}
$$

Case III. If P_{4} be desired for $T R, R_{2}, \ldots . . . R_{M-2}$ and $B R$ then groups of proteins will be different than the other two cases mentioned before. Also, we will have:

$$
I_{D}<P_{4}<I_{C}, I_{B} \text { and } I_{A}
$$

Then P_{1} and P_{5} are selected for $M L$ and $M R$, the same as the first two cases. The isoelectric points now can be stated as

$$
P_{5}<I_{D}<P_{4}<I_{C}, I_{B} \text { and } I_{A}<P_{1}
$$

An Addition to the Original System (Extension System):

The new system of multi-separation via multi-column will be developed into two type of systems, one called "SYMMETRICAL SYSTEM" and the other called "UNSYMMETRICAL SYSTEM". To decide which system will be used depends on the way we choose the pH level. If the pH level is selected as in Case I or Case III, then the system developes into an "UNSYMMETRICAL SYSTEM'. If Case II is selected then the system will be the 'SYMMETRICAL SYSTEM".

Symmetrical System:

We consider A and B which are in one group where isoelectric points (I_{A} and I_{B}) fall in between P_{3} and P_{1}. Where as in the other two, proteins C and D, are in the other group where isoelectric points (I_{C} and I_{D}) fall in between P_{5} and P_{3}. At the outset, we will separate these two groups of proteins by using the same system as shown in Figure 14. We select pH level P_{3} in $T R, R_{2}, \ldots . . . R_{M-2}$ and $B R$ reservoirs and take P_{1} in the middle reservoirs, $\mathrm{ML}_{1}, \mathrm{ML}_{3}, \ldots . .$. M_{M-1} while P_{5} will be in the reservoirs $M R_{1}, M R_{3}, \ldots \ldots$. $\mathrm{MR}_{\mathrm{M}-1}$.

Then both proteins A and B will move upward together, and the steady state value of both concentrations, A and B, will locate together at the top reservoir ($\mathrm{pH}=\mathrm{P}_{3}$) , while the other two proteins C and D will move in the opposite direction into the bottom reservoir (as the same pH level P_{3}).

The next step is to separate A from B and C from D. We need two more extension system to connect with the top reservoir and the bottom reservoir.

Let us consider the separation of A and B first, the isoelectric points of A and B can be written as:

$$
P_{3}<I_{B}<P_{2}<I_{A}<P_{1}
$$

So we select P_{2} as a pH level in $T R, R_{2}, \ldots \ldots . \mathrm{R}_{\mathrm{M}-2}$ and $B R$ of the next extension system. However we choose P_{3} for the left hand side middle reservoirs $\mathrm{MI}_{1}, \mathrm{ML}_{3}$, $\mathrm{ML}_{\mathrm{M}-1}$ and P_{1} for the right hand side middle reservoirs $M R_{1}$, $M R_{3}, \ldots . . . M R_{M-1}$ to be used in the new extension system. Protein A will move to the top of the extension system which is on the right of the original system, while protein B will migrate to the bottom of the extension system as shown in Figure 29. The steady state concentrations of A and B will be collected at the top and bottom reservoir respectively on this extension system and locate to the right of the original system.

Separation of protein C and D is similar to the

FIGURE 29 - SCHEMATIC OF PROCESS DESIGNING FOR: A SYMMETRICAL MULTI-SEPARATION
separation of A and B. Thus the isoelectric points of proteins C and D are stated as:

$$
P_{5}<I_{D}<P_{4}<I_{C}<P_{3}
$$

So we need pH level for reservoir $\mathrm{TR}, \mathrm{R}_{2}, \ldots \ldots . \mathrm{R}_{\mathrm{M}-2}$ and $B R$ in the second extension system at P_{4}, while the middle reservoirs $\mathrm{ML}_{1}, \mathrm{ML}_{3}, \ldots \ldots . . \mathrm{ML}_{\mathrm{M}-1}$, are P_{3} and $\mathrm{MR}_{1}, \mathrm{MR}_{3}, \ldots$ $\ldots . . \mathrm{MR}_{\mathrm{M}-1}$, are P_{5}, for the second extension system. Protein C will migrate to the top reservoir on this second extension system which locate to the left of the original system and protein D will migrate downward to the bottom reservoir on the second extension unit as shown in Figure 29.

Unsymmetrical System:

The method of separation with this system is basically the same as the "Symmetrical System". This system is dependent on the way we decide to use the pH level as explained in the previous discourse. In this type of process, Case I and Case III, the separation method will become an unsymmetrical separation process system. Either Case I or Case III will have exactly the same process. So in the following paragraphs we will consider only Case I as an example.

We have two groups of proteins, one is protein A and the other are B, C and D, the isoelectric points of these proteins can be expressed as:

$$
P_{5}<I_{D}, I_{C} \text { and } I_{B}<P_{2}<I_{A}<P_{1}
$$

As we proceed with the method, we select pH level P_{2} for the reservoirs $T R, R_{2}, \ldots \ldots . . R_{M-2}$ and $B R, P_{1}$ for the middle reservoirs $\mathrm{ML}_{1}, \mathrm{ML}_{3}, \ldots \ldots . . \mathrm{ML}_{\mathrm{M}-1}$, and P_{5} for $\mathrm{MR}_{1}, \mathrm{MR}_{3}, \ldots$ $\ldots . \mathbb{M R}_{\mathrm{M}-1}$ as in the original system. Then protein A will migrate upward to the top while the rest of proteins B, C and D migrate in the opposite direction to the bottom of the system. At steady state condition, the high concentration of protein A will be found in the top reservoir of the system. But the high concentration of all the rest of proteins B, C and D will be discovered in the bottom reservoir of the system. At this point we see that protein A is separated first, and the others are the mixture of proteins B, C and D which need more extension system to separate.

Isoelectric points of proteins B, C and D are

$$
P_{5}<I_{D}<P_{4}<I_{C}<P_{3}<I_{B}<P_{2}
$$

We set up the second separation unit by selecting the pH level on either P_{3} or P_{4}. If we choose P_{3} then proteins can be grouped and their isoelectric points can be expressed as:

$$
\mathrm{P}_{5}<\mathrm{I}_{\mathrm{D}} \text { and } \mathrm{I}_{\mathrm{C}}<\mathrm{P}_{3}<\mathrm{I}_{\mathrm{B}}<\mathrm{P}_{2}
$$

while the other P_{4}, the isoelectric points of proteins will be:

$$
P_{5}<I_{D}<P_{4}<I_{C} \text { and } I_{B}<P_{2}
$$

For this explanation, we use P_{3} for reservoirs $T R, R_{2}, \ldots .$. $\ldots R_{M-2}$ and $B R$ on this first extension system, and allow P_{2} for $M L_{1}, M L_{3}, \ldots M_{M-1}$ while $M R_{1}, M R_{3}, \ldots . . . M R_{M-1}$ will carry the pH level P_{5}. As explained in the previous cases, protein B will migrate toward to the top reservoir on this extension system, while proteins C and D will migrate downward in the opposite direction of B or toward the other end of the system where the last column carries a cation exchanger R^{-}. At steady state, a high concentration of B will be found at the top reservoir of the unit while the bottom reservoir contains a high concentration of the protein mixtures C and D which their isoelectric points stated as:

$$
P_{5}<I_{D}<P_{4}<I_{C}<P_{3}
$$

Once again, we need another extension unit to complete the separation. This extension will separate C from D. First of all, we choose P_{4} for reservoirs $T R, R_{2}, \ldots . . . R_{M-2}$ and $B R$, while P_{3} and P_{5} will be carried by $M_{1}, M_{3}, \ldots \ldots$. $M L_{M-1}$, and $M R_{1}, M R_{3}, \ldots . . . M_{M-1}$, respectively.

In the same manner, the protein C will migrate to the top reservoir of this second extension system, while protein D migrates in the opposite direction of C and reaches the bottom reservoir as shown in Figure 30 .

For the separation of " K " components of protein mixtures where their isoelectric points are $I_{1}, I_{2}, \ldots \ldots . I_{K-1}$ and

I_{K}, the correlation between pH levels and isoelectric points can be expressed as:

$$
P_{K+1}<I_{K}<P_{K} \cdots \cdots P_{11}<I_{10} \cdots I_{2}<P_{2}<I_{1}<P_{1}
$$

Assuming that, I_{K}, I_{10} and I_{1} are selected as a major products. To begin with, the process will have to repeat the steps as mentioned above in the previous case. First, restate the isoelectric points and the coeeesponding pH level of these proteins in terms of:

$$
\mathrm{P}_{\mathrm{K}+1}<\mathrm{I}_{\mathrm{K}}<\mathrm{P}_{\mathrm{K}} \ll \mathrm{I}_{10} \quad \ldots \ldots \mathrm{I}_{1}<\mathrm{P}_{1}
$$

where I_{10} and I_{1} are grouped together. P_{K} is selected for reservoirs $T R, R_{2}, \ldots . .$. . $B R$, choosing P_{1} for the middle reservoirs $M L_{1}, M L_{3}, \ldots . . . M_{M-1}$, whereas P_{K+1} is selected fo $\mathrm{MR}_{\underline{1}}, \mathrm{MR}_{3}, \ldots \mathrm{MR}_{\mathrm{M}-1}$. This is called the original system. Then protein I_{K} will move upward and be collected as one of the major products from the top reservoir of the system while the mixture of proteins $I_{K-1}, I_{K-2}, \ldots . I_{10} \ldots$.. I_{1} will move downward to the bottom reservoir.

The following step is decided upon to separate I_{1} out of the mixture. The isoelectric points and pH levels must be written as:

$$
P_{K}<I_{K-1}, I_{K-2}, \ldots I_{10}, I_{9} \ldots I_{2}<P_{2}<I_{1}<P_{1}
$$

P_{2}, P_{K} and P_{1} are chosen for reservoirs $R_{1}, R_{2}, \ldots \ldots$.
R_{M+1}, middle reservoirs $M_{1}, M R_{3}, \ldots \ldots . M_{M-1}$ and M_{1}, $M_{3}, \ldots . . . M_{M-I}$, respectively. This new process will be called a first extension unit. Then I_{I} is found at the bottom reservoir of this first extension system while the rest of proteins will move upward to the top of the column.

Again, the protein I_{10} can be separated from the mixture of $I_{K-1}, I_{K-2}, \ldots \ldots .{ }^{I}{ }_{10}, I_{9}, \ldots . .$. and I_{2} by grouping these proteins as:

$$
\mathrm{P}_{\mathrm{K}}<\mathrm{I}_{\mathrm{K}-1}, \ldots \mathrm{I}_{11}<\mathrm{P}_{11}<\mathrm{I}_{10}, \ldots \mathrm{I}_{2}<\mathrm{P}_{2}
$$

for the beginning step and selecting $\mathrm{P}_{\mathrm{K}}, \mathrm{P}_{11}$ and P_{2} as a pH levels for use in the second extension unit. Next, proteins are grouped as:

$$
P_{11}<I_{10}<P_{10}<I_{9}, I_{8}, \ldots \ldots . . \text { and } I_{2}<P_{2}
$$

where P_{11}, P_{10} and P_{2} are chosen for the third extension unit. At the end of this step I_{10} is separated and the system is now completed. Altogether we required 4 units of these multi-column systems (one original unit plus three extension units) and these will be connected in series.

Chapter VII

RESUL_TS AND DISCUSSION

A. General

The experimental, analytical and computer solutions for pH-parametric pumps were used to generate concentration curves for both Batch and Semi-Continuous parametric pump at the various values of the operating parameters. These curves give the variation in solute separation, i.e., top and bottom product concentrations, with the change in number of cycles.

Once the experimental process had been established, the internal operation of the pH parametric pump was investigated using Equations 1.1 and 1.2 via graphical and mathematical base on elementary matrix algebra methods. Both fluid and solid phase concentrations were calculated by means of equilibrium theory with linear relationships (for dilute protein concentration) and simple material balances. Each movement of the two pistons push the liquid from top and bottom reservoirs alternately through the column(s), generating varoius concentration curves for any set of operating conditions.

The major variables affecting the shape of both Batch and Semi-Continuous pH-parametric pump concentration curves
are the number of cycles, dead volume, displacement volume and of course the parameter β, where β is defined as the ratio of the equilibrium constant for a low pH to the equilibrium constant for a high pH (See Equation 3.24).

B. One-Column System

First of all, we are concerned with the Batch operation system. Figure 31 illustrates the separation factor (S.F.) $\left.\left(\langle y\rangle{ }_{n} /<y_{0}\right\rangle{ }_{n}\right)$ vs. n for a one column pH parametric pump. Initially, the feed solution containing a solute (haemoglobin or albumin) was present in the top reservoirs only. The column and the bottom reservoir dead volume were filled with the buffer solution $\mathrm{pH}=\mathrm{P}_{1}\left(\mathrm{P}_{1}\right.$ is varied from 8.0 to 8.5). The buffer solutions were made from monobasic and dibasic sodium phosphate. The top and bottom reservoir were respectively maintained at $\mathrm{pH}=6\left(\mathrm{P}_{2}\right)$ and $\mathrm{pH}=8\left(\mathrm{P}_{1}\right)$ so that the isoelectric point of haemoglobin would lie between the two pH levels. As a result of a change in the column pH , haemoglobin experiences a change in net charge, and migrates toward the high pH end on the bottom reservoir. Thus, the separation factor (S.F.) for haemoglobin increases with n and approaches a limiting value. For the case of albumin, $I_{\text {albumin }}=4.7<\mathrm{P}_{2}$, and the net charge is always negative during upflow and downflow. As a result, the albumin concentration is unaffected by the parametric pumping operation and remains at zero.

FIGURE 31 - THE CONCENTRATION TRANSIENTS OF HAEMOGLOBIN AND ALBUMIN vs. NUMBER OF CYCLES.

Figures 32 and 33 show the comparison of anion and cation exchanger column for haemoglobin and albumin respectively. As we know the isoelectric point of albumin is 4.7. The experimental results are shown in Figure 31 . Instead of using $\mathrm{pH}=8, \mathrm{pH}=4$ was selected. The buffers used for this part of the experiments were mixtures of acetic acid, sodium acetate and sodium ch1oride. As the theory predicts, albumin is concentrated at the low pH end of R^{+}column and at the high pH end of the R^{-}column which are opposite from the result for haemoglobin.

For the Semi-Continuous system the analysis of a few experiments using anion and cation exchangers and feed of single components only are involved. The operating parameters for these experimental runs can be found on Exhibit B-2 in Appendix B.

The purpose of these experiments was to investigate the flow migration of the individual components by varying the buffer conditions and also verify the equilibrium constants at the different pH level. The results, shown in Figure 21, not only explained how the equilibrium constant varies due to both the pH change and the ion exchanger, but give us more confidence by confirming the equilibrium theory at a low concentration of the solute (region of interest).

The first set of experiments investigates the anion column using a feed of pure haemoglobin. The ideal conditions

were to have a large concentration of haemoglobin in the 6.2 BR product stream. It was found that the experimental delivered the best results, which is shown in Figure 34.

The next group of experiments involved the use of an anion exchanger and a feed of pure albumin. The ideal condition were to have the concentration of albumin in the 6.2 top product stream low. The experimental results can be seen in Figure 35.

It should be noted that the buffer and sodium chloride concentrations were equal to 0.10 M and 0.05 M , respectively for all reservojirs and feeds.

The last group of experiments were conducted using the cation exchanger and a feed of pure haemoglobin. The ideal conditions were to have the concentration of haemoglobin in the 6.2 bottom product stream low. The results are shown in Figure 36.
C. Two-Column System

Mode 1: Three reservoirs Batch operation

This section is a combination of a two single column system connecting in series and they were packed alternately with an anion and a cation exchanger.

Before we discuss the results of this mode, we have to to understand the flow movement of the individual components

Haemoglobin - Anion Column

FIGURE 34 - THE CONCENTRATION TRANSIENTS OF HAEMOGLOBIN IN A SINGLE-ANION-COLUMN SYSTEM.

FIGURE 35 - THE CONCENTRATION TRANSIENTS OF ALBUMIN

FIGURE 36 - THE CONCENTRATION TRANSIENTS OF HAEMOGLOBIN IN A SINGLE-CATION-COLUMN SYSTEM.
in the system. The haemoglobin having the higher isoelectric point ($=6.7$), will migrate the $8.5\left(P_{1}\right)$ reservoir through the anion $\left(\mathrm{R}^{+}\right)$column to the $6.2\left(\mathrm{P}_{2}\right)$ reservoir. Albumin having a lower isoelectric point ($=4.7$), compare with P_{1} and P_{2}, then the system will have no mass transfer on albumin.

In the same manner, if the column was packed with cation (R^{-}) the haemoglobin will migrate from 6.2 reservoir through R^{-}column to 8.5 reservoir, while no change for the concentration of albumin occur in any reservoirs.

Figures 37 and 38 show the results of running pure haemoglobin and pure albumin. We also found that, for the two column system, a better result on haemoglobin is occured, where there is no change in albumin concentration

Mode 2: Four Reservoirs Satch Operation

A general understanding of the flow movement of the individual component of the four reservoirs system must be explained before we can discuss the results. The haemoglobin having the higher isoelectric point (I.P.), will migrate from the 6.2 bottom reservoir, through the cation column to the 8.5 middle reservoir; and from the 8.5 middle reservoir, through the anion column to the 6.2 top reservoir. The albumin, having the lower isoelectric point (I.P.), will migrate from the 6.2 top reservoir, through the anion column to the 4.0 middle reservoir; and from the 4.0 middle reser-

FIGURE 38 - THE CONCENTRATION TRANSIENTS OF HAEMOGLOBIN AND ALBUMIN vs. NUMBER OF CYCLES: MODE 1.
voir through the cation column to the 6.2 bottom reservoir. Thus, the 6.2 top and the 6.2 bottom reservoir are examined.

Experimental parameters are tabulated in Exhibit B-4 which were conducted by initially having a feed mixture of haemoglobin and albumin in the 4.0 and 8.5 middle reservoirs, and having a pure buffer solution in the 6.2 top and 6.2 bottom reservoirs. This was done to examine the flow migration of haemoglobin and albumin in the system. The 6.2 top and bottom reservoirs buffer and sodium chloride concentration in the 4.0 and 8.5 middle reservoirs varied to aid in the protein migration.

The main objective of these experiments was to have the concentration of haemoglobin greater to that of albumin in the 6.2 top reservoir and to have the concentration of albumin greater to that of haemoglobin in the 6.2 bottom reservoir. By examining Figures 39,40 and 41 , we can see that the concentration of albumin is greater than the concentration of haemoglobin in the 6.2 bottom reservoir. We can also see from the figures that the concentration of haemoglobin is less than the concentration of albumin in the 6.2 top reservoir. This result proved to be negative for the 6.2 top reservoir.

The next set of experiments were designed to investigate the migration of the individual components in the Four Reservoir Batch System.

FIGURE 39 - THE CONCENTRATION TRANSIENTS OF HAEMOGLOBIN AND ALBUMIN vs. NUMBER OF CYCLES: MODE 2. (CASE I)

Haemoglobin - Albumin

FIGURE 40 - THE CONCENTRATION TRANSIENTS OF HAEMOGLOBIN AND ALBUMIN vs. NUMBER OF CYCLES: MODE 2. (CASE II)

[^0]This experiment had pure albumin feed in the 4.0 and the 8.5 middle reservoirs and pure buffer in the 6.2 bottom and top reservoirs. The results of using this experiment proved to be positive (i.e. $y_{A} 6.2$ bottom $>y_{A} 6.2$ top). See Figure 42. The next logical step was to use the same buffer conditions and run the same experiment with pure haemoglobin.

Mode 2: Four Reservoirs Semi-Continuous Operation.

A general understanding of the flow movement of the individual components of the Four Reservoirs Semi-Continuous System. The haemoglobin having the higher isoelectric point (I.P.), will emerge from the 6.2 top product where albumin having the lower isoelectric point (I.P.) will emerge from 6.2 bottom product. The other intermediat steps were analyzed for protein concentration.

Experimental results, see Figures 43 and 44 , were identical with respect to the operating parameters. These experiments were conducted with a feed of pure haemoglobin. The results that were obtained were positive. The concentration of haemoglobin was greater in the 6.2 top product stream than in the 6.2 bottom product stream. The next step was to run another experiment with pure albumin to observe how the albumin migrates.

Figure 45 shows the results which were operated under

FIGURE 42 - THE CONCENTRATION TRANSIENTS OF ALBUMIN vs. NUMBER OF CYCLES: MODE 2.

Haemoglobin

FIGURE 43 - THE CONCENTRATION TRANSIENTS OF HAEMOGLOBIN vs. NUMBER OF CYCLES: MODE 2 (CASE I).

the same buffer and sodium chloride conditions as the in the previous paragraph. The feed was a pure albumin. The results that were obtained were positive. The concentration of albumin was greater in the 6.2 bottom product stream than in the 6.2 top product stream. The next step was to run to run the mixture of haemoglobin and albumin by using the same buffer conditions that were used for the individual run.

The experiment (Figure 46) was conducted with a mixture of haemoglobin and albumin. The results that were obtained were positive. The concentration of haemoglobin in the 6.2 top product stream was greater than the concentration of albumin in the 6.2 top product stream. The y_{H}, $\left(y_{H} / y_{H O}\right)$, values for the 6.2 top product streams were 1.42 and 1.61 respectively. The y_{A}, $\left(y_{A} / y_{A O}\right)$, values were in the order of 0.19 and 0.09 for the 6.2 top product streams. The concentration of albumin in 6.2 bottom product stream was greater than the concentration of haemoglobin in the bottom product stream. The $y_{A},\left(y_{A} / y_{A O}\right), y_{H}$ and $\left(y_{H} / y_{H O}\right)$ values were 1.58 , $1.39,0.15$ and 0.31 respectively in the 6.2 bottom product stream. The buffer concentration for this experiment was 0.10 M and the sodium chloride concentration was 0.05 M for all reservoirs and feed streams. Thus, the experimental parameters that were used in this experiment and calculation were considered acceptable.

Mode 3: Five Reservoirs Batch Operation.

FIGURE 46 - THE CONCENTRATION TRANSIENTS OF HAEMOGLOBINALBUMIN vs. NUMBER OF CYCLES: MODE 2.

Before we can discuss the various results of this system, we have to understand the flow movement of the individual components in the system. The haemoglobin having the higher isoelectric point (I.P.), will migrate from the 8.5 top reservoir through the anion column to the 6.2 middle reservoir; it will then move from the 6.2 middle reservoir through the cation column and into the 8.5 bottom reservoir. The albumin having the lower isoelectric point, will migrate from the 4.0 bottom reservoir through the cation column and to the 6.2 middle reservoir; then from the 6.2 middle reservoir, it will migrate through the anion column and into the 4.0 top reservoir.

Figure 47 can be explained that the haemoglobin did migrate to the 8.5 bottom reservoir, and the albumin also moved to this reservoir. This phenomenon implies that the buffer strength of the 8.5 bottom reservoir will remove not only the haemoglobin but also the albumin from the cation exchanger. By examining the 4.0 top reservoir, we found that the albumin migrated to the 4.0 top reservoir; yet, the buffer strength of the 4.0 top reservoir did not allow the removal of the haemoglobin from the solid phase of the anion exchanger. This type of result was obtained when the the buffer strength was 0.15 M and 0.20 M , and for a sodium chloride of 0.05 M and 0.05 M for experimental results shown in Figures 47 and 48 respectively. The y_{H} value (equivalent to $\left\langle\mathrm{y}_{\mathrm{H}} / \mathrm{y}_{\mathrm{HO}}\right\rangle$ in the previous pages) refers to the feed

FIGURE 47 - THE CONCENTRATION TRANSIENTS OF HAEMOGLOBINALBUMIN vs. NUMBER OF CYCLES: MODE 3 (CASE I).

Haemoglobin-Albumin

[^1]concentration. If this value is equal to 1.0 , this indicates that the haemoglobin is at the initial condition (assuming the buffer solution has haemoglobin present). The same explanation is true for albumin (y_{A}).

The results, shown in Figure 49, were conducted using the same buffer and sodium chloride conditions as mentioned before in the previous page. The major difference was in the 4.0 top reservoir and 8.5 bottom reservoir. The 4.0 top reservoir had only albumin while the 8.5 bottom reservoir had only haemoglobin. This was done to see to what extent the haemoglobin would enter the 4.0 top reservoir and albumin would enter the 8.5 bottom reservoir. The results of this experiment is also confirmed the previous results as discussed in the earlier pages.

Mode 4: Two Reservoirs Batch Operation.

This section is included a few experiments to confirm the mathematical model. The experiments were investigated by running individual components. First of all, with pure haemoglobin where $\mathrm{pH}=6.2\left(\mathrm{P}_{2}\right)$ and $\mathrm{pH}=8.5\left(\mathrm{P}_{1}\right)$ were used. Later on, we performed the experiment on pure albumin where $\mathrm{pH}=6.2\left(\mathrm{P}_{2}\right)$ and $\mathrm{pH}=4.0\left(\mathrm{P}_{3}\right)$ were designed.

The haemoglobin having a higher isoelectric point (I.P.), will migrate from the 6.2 bootom reservoir through the cation column, and through the pH -Converter, then it migrate from

FIGURE 49 - THE CONCENTRATION TRANSIENTS OF HAEMOGLOBINALBUMIN vs. NUMBER OF CYCLES: MODE 3. (CASE III).
the pH -Converter through another cation column into the 8.5 top reservoir. In the same manner, albumin will mj.grate from the 4.0 bottom reservoir through the cation column into the pH-Converter and go through another cation column into the 6.2 top reservoir.

Figures 50 and 51 show how the separation factor of haemoglobin and albumin respectively, were developed as the number of cycles were increased. The experimental results are agree well with the calculation value for both haemoglobin and albumin.

Mode 4: Two Reservoirs Semi-Continuous Operation.

The experiment were performed by running a mixture of haemoglobin and albumin by using $\mathrm{pH}=8.5\left(\mathrm{P}_{1}\right)$ and $\mathrm{pH}=6.2$ $\left(\mathrm{P}_{2}\right)$. The isoelectric point of haemoglobin are in the range of 6.2 to 8.5 , then the separation of haemoglobin was occured. The flow movement of haemoglobin is the same as we mentioned in the previous paragraph. The isoelectric point of albumin is 4.7 and lower than either P_{1} or P_{2}, then there is no separation on albumin. Figure 52 shows the separation factor vs. n (number of cycles) for both haemoglobin and albumin.

D. Separation Of Proteins Via Multi-Column

This section is atheoretical study which extend our study from two column system into a multi-column system. We established that, Mode 2: Four reservoirs Batch Operation,

FIGURE 50 - SEPARATION FACTOR OF HAEMOGLOBIN vs. NUMBER OF CYCLES: MODE 4.

FIGURE 51 - SEPARATION FACTOR OF ALBUMIN vs. NUMBER OF CYCLES: MODE 4.

FIGURE 52 - SEPARATION FACTOR OF HAEMOGLOBIN AND ALBUMIN vs. NUMBER OF CYCLES: MODE 4.
can extend well to a multi-column system and be able to explained by using a graphical method. Our discussion will begin from a simple case and introduce a new symbols of proteins as A, B, C etc., just for our convenience for this explanation as well as the pH levels i.e., $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ and so on.

Two Proteins - Two Columns:

Since the graphical method can predict the steady state concentrations of both top and bottom products for a single column system well, we are able to extend this concept of the graphical method to the two column system where the process description has been described in Chapter II.

To understand the flow movement of individual protein component, we consider the expression of isoelectric point and the pH level. Protein A having the higher isoelectric point (I.P.), will migrate from the P_{2} bottom reservoir, through the cation coiumn to the P_{1} middle reservoir; from the P_{1} middle reservoir, through the anion column to the P_{2} top reservoir. The protein B having the lower isoelectric point(I.P.) will migrate from the P_{2} top reservoir, through the anion column to the P_{3} middle reservoir; and from the P_{3} middle reservoir through the cation column to the P_{2} bottom reservoir. Thus the enriched concentration of protein A and protein B will be found from the P_{2} top reservoir and the P_{2} bottom reservoir respectively.

Once the system operates for anumber of cycles, the steady state values of protein A and B reached, the results shown in Figures 53 and 54 as protein A and B are moved in the opposite direction indicate, that where protein A migrates upward to the top reservoir ($\mathrm{pH}=\mathrm{P}_{2}$), protein B moves downward to the bottom reservoir ($\mathrm{pH}=\mathrm{P}_{2}$).

The separation factor of protein is defined as $<\mathrm{y}_{\mathrm{T}}>_{\infty} /<\mathrm{y}_{\mathrm{B}}>_{\infty}$. For any protein mixture, to which this process can be applied, the S.F. (separation factor) will be high or low depending upon the value of the equilibrium constants for anion and cation exchanger which correspond to the pH in the top and bottom reservoirs, $\mathrm{k}_{\mathrm{P}_{2}}^{+}$and $\mathrm{k}_{\mathrm{P}_{2}}^{-}$ respectively.

Figures 55 and 56 show the plot of S.F. versus the number of cycles at a different value of β for the protein A and B respectively. As β increases the S.F. is also increases. Figures 53 and 54 also show the results where both top product, $\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\infty}$ and bottom product, $\left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\infty}$ of the proteins A and B are located.

Two Proteins - Multi Column:

This section investigates how the S.F. is effected if the number of columns is increased. Figures 57 and 58 show that as we increase the number of columns, the top and the bottom products of protein A are increasing and decreasing

FIGURE $55-\underset{\text { PFFECT OFIN A }}{\operatorname{PFR}} \boldsymbol{\beta}$ ON CONCENTRATION TRANSIENTS FOR

FIGURE $56-\underset{\text { PFFECT OTEIN }}{\operatorname{PF}} \boldsymbol{\beta} \boldsymbol{\beta}$ ON CONCENTRATION TRANSIENTS FOR

respectively compare with the two-column system as shown in Figures 53 and 54. Bottom product of protein B is also increasing while the top product is decreasing as we increase the number of columns. Figures 57 and 58 show that where the top and bottom products of both proteins A and B are located, and also locates the concentrations of protein A and protein B for each correspondind column.

Figures 53 and 54 show the straight lines which are connected from a point T to a point M^{+}, from M^{+}to M^{-}and from a point M^{-}to a point B. Then, the line which connects the point T and M^{+}, represents the anion exchanger column while the other line which connects the point M^{-}and B, represents the cation exchanger column. From this step, the two "Assymtotic lines" can be drawn by conecting the origin to the point M^{-}and the origin to the point M^{+}where their slopes are $\overline{\mathrm{k}}^{-}$and $\overline{\mathrm{k}}^{+}$respectively.

If we fix all those parameters except the number of columns, then the two assymtotic lines are drawn at a slopes of $\overline{\mathrm{k}}^{-}$and $\overline{\mathrm{k}}^{+}$(see Figures 57 and 58). Once either top or bottom product is known, then we are able to graph and predict the other product. The example of this graphical method, to predict the bottom product where top product is known, is shown in Figure 59 for a six-column system. The known top product is located at point T on the equilibrium line, slope is equal to $\mathrm{k}_{\mathrm{P}_{2}}^{+}\left(=\mathrm{k}_{\mathrm{P}_{3}}^{+}\right)$. The horizontal line

$T\left(\mathrm{MR}_{1}^{+}\right)$represents the column $1\left(\mathrm{R}^{+}\right)$where the point X_{1}^{+} indicates the solute concentration in the solid phase. The vertical line $\left(M R_{1}\right)^{+}\left(M R_{1}\right)^{-}$is drawn where $M R_{1}^{+}$and $M R_{1}^{-}$are the average concentrations of the middle reservoirs as mentioned previously. Next, we draw the horizontal line $\left(M R_{1}\right)^{-}\left(M R_{2}\right)^{-}$ which represents column $2\left(\mathrm{R}^{-}\right)$while X_{2}^{-}is the concentration of protein in the solid phase. The concentration of protein in MR_{2} reservoir be located at Y_{2} by drawing a vertical line from the point $\left(M R_{2}\right)^{-}$to the y-axis, the intersection of this vertical line and the line $\mathrm{k}_{\mathrm{P}_{2}}^{+}=\mathrm{k}_{\mathrm{P}_{3}}^{+}$is $\left(\mathrm{MR}_{2}\right)^{+}$. In the same we can draw the lines $\left(M R_{2}\right)^{+}\left(M R_{3}\right)^{+},\left(M R_{3}\right)^{+}\left(M R_{3}\right)^{-},\left(M R_{3}\right)^{-}\left(M R_{4}\right)^{-}$ and so on until the last line $\left(\mathrm{MR}_{5}\right)^{-} \mathrm{B}$ is drawn. Once B is known then the bottom product $<y_{B}>_{\infty}$ can be located. Clearly shown in Figure 60, the plot of S.F. versus M (number of columns) on semi-log scale. As the number of columns is increasing, the S.F. intends to increase a great deal.

Four Proteins - Multi Column:

This process operates similar to the separation of two proteins as described in the previous section, the different is the number of proteins, which is increased to four components: A, B, C and D. If the system considers the separation of these four proteins individually as the major products, then the separation process can operate based on the selection of pH levels as $\operatorname{explained}$ in Chapter V.

FIGURE 60 - STEADY STATE SEPARATION FACTORS OF TWO PROTEINS vs. NUMBER OF COLUMNS (M).

Case I The isoelectric points of this protein mixture can stated as:

$$
P_{5}<I_{D}, I_{C} \text { and } I_{B}<P_{2}<I_{A}<P_{1}
$$

where we let B, C and D be the group of proteins with their isoelectric points $\left(I_{B}, I_{C}\right.$ and $\left.I_{D}\right)$ in between P_{5} and P_{2}. The pH levels $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{5} are chosen for this first separation process. As the protein A having the higher isoelectric compared with the rest, A will migrate from the P_{2} bottom reservoir ($B R$), through the cation column (M) to the P_{1} middle reservoir $\left(M_{M-1}\right)$. Again from reservoir, $\mathbb{R R}_{M-1}$, protein A will migrate through the anion column ($M-1$) to the P_{2} reservoir (R_{M-2}) and keep repeating the flow step by migrating up through cation column ($M-2$) to the P_{1} middle reservoir $\left(M R_{M-3}\right)$ and so on until protein A reaches the top reservoir. As A is moving upward, proteins B, C and D having the lower isoelectric point s, compared with protein A, will migrate down from the P_{2} top reservoir through anion column ($M=1$) to the P_{5} middle reservoir $\left(M_{1}\right)$. Then from the reservoir $M L_{1}$, protein mixture B, C and D migrate through cation column $(M=2)$ to the P_{2} reservoir $\left(R_{2}\right)$. In the same manner as protein A, the mixture of B, C and D will migrate down through anion column $(M=3)$ to P_{5} reservoir $\left(M L_{3}\right)$ and through cation column $(M=4)$ to P_{2} reservoir $\left(R_{4}\right)$ and so on until these protein mixtures reach the P_{2} bottom reservoir. Graphical solution of both protein A and the mixture of B, C
and D are shown in the Figures 61 and 62 respectively. At the steady state condition, the enriched concentration of protein A will be found in the top reservoir while the bottom reservoir will obtain the enriched concentration of proteins B, C and D. The separation factor of protein A and the mixtures of B, C and D are plotted and shown in Figure 63. Up to this point, protein A is separated while protein B, C and D still mixed together and are ready to be separated on the first extension unit.

The isoelectric points of protein mixtures can be expressed and related to the pH level in terms of:

$$
P_{5}<I_{D} \text { and } I_{C}<P_{3}<I_{B}<P_{2}
$$

For this first extension unit, the P_{2}, P_{3} and P_{5} to be used, are selected as explained earlier in this chapter. Protein B having a higher isoelectric point, it will migrate from the P_{3} bottom reservoir through cation column (M) to the P_{2} middle reservoir $\left(\mathrm{MR}_{\mathrm{M}-1}\right)$ and through anion column ($\mathrm{M}-1$) to the P_{3} reservoir (R_{M-2}) and continue flowing until the protein B reaches the P_{3} top reservoir. Protein mixtures C and D having a lower isoelectric points, will migrate down from the P_{3} top reservoir through anion column ($M=1$) to the P_{5} middle reservoir (ML_{1}) and through cation column $(M=2)$ to the P_{3} reservoir which locates toward to the bottom of this extension unit, until the movement reaches the P_{3} bottom reservoir. Figures 64 and 65 show clearly the

graphical analysis and predict the top and the bottom products for both proteins B and mixtures of C and D. Once again, when the steady atate is reached the enriched concentration of protein B will be obtained from the top reservoir while the enriched concentration of protein mixtures C and D is found from the bottom reservoir and another extension unit is need to separate C and D. The transient concentrations of protein B and a mixture of C and D are shown in Figure 66.

For this second extension unit, the unit will be the last which is added into the system due to the number of solutes which remain (protein C and D). The isoelectric points of C and D can correlate with the pH level and be stated as:

$$
P_{5}<I_{D}<P_{4}<I_{C}<P_{3}
$$

The pH levels $\mathrm{P}_{3}, \mathrm{P}_{4}$ and P_{5} are chosen for this second extension unit. As we explained in the earlier part of the chapter, protein having a higher isoelectric point will migrate from the P_{4} bottom reservoir through cation column (M) to the P_{3} middle reservoir $\left(M R_{M-1}\right)$ and through anion column ($M-1$) to the P_{4} reservoir (R_{M-2}) until this flow movement reaches the P_{4} top reservoir. However, while protein C is moving, protein D which has a lower isoelectric point will migrate from the P_{4} top reservoir through anion column ($M=1$) to the P_{5} middle reservoir $\left(M_{1}\right)$ and migrate

through cation column $(M=2)$ to the P_{4} reservoir toward to the bottom of the unit until the movement of flow reaches the P_{4} bottom reservoir. Figures 67 and 68 show the graphical solution of both proteins C and D respectively. Also the transient concentration of proteins C and D are plotted versus the number of cycles and shown in Figure 69

Case II In this case, P_{3} is selected for reservoirs $T R$, $R_{2}, R_{4} \ldots \ldots . R_{M-2}$ and $B R$. Then the P_{3} will split the proteins into two groups; A, B and C, D. The isoelectric point can express as:

$$
P_{5}<I_{D} \text { and } I_{C}<P_{3}<I_{B} \text { and } I_{A}<P_{1}
$$

The pH level P_{1} is chosen for the middle reservoirs ML_{1}, ML_{3} $\ldots . . .{ }^{M L}{ }_{M-1}$ and the P_{5} is chosen for $M R_{1}, M R_{3} \ldots \ldots$. $\mathrm{MR}_{\mathrm{M}-1}$. The protein mixtures A and B having the higher isoelectric points than the P_{3} and protein C and D, will migrate from the P_{3} bottom reservoir ($B R$), through the cation column (M) to the P_{1} middle reservoir ($M L_{M-1}$). From this middle reservoir, protein mixtures A and B will continue migrating through the anion column $(\mathrm{M}-1)$ to the P_{3} reservoir $\left(\mathrm{R}_{\mathrm{M}-2}\right)$ and migrating further in the same manner until the mixture of A and B reach the P_{3}, top reservoir (TR). As proteins A and B are moving upward, the mixture of proteins C and D will migrate in the opposite direction of A and B due to the fact that, their isoelectric points are lower than the P_{3} and

FIGURE 69 - THE CONCENTRATION TRANSIENTS OF PROTEIN C AND PROTEIN D vs. NUMBER OF CYCLES.
proteins A and B. The proteins C and D will migrate down from the P_{3} top reservoir ($T R$) through anion column ($M=1$) to the P_{5} middle reservoir $\left(M R_{1}\right)$. Then from reservoir $M R_{1}$, proteins C and D migrate through cation column ($M=2$) to the P_{3} reservoir $\left(R_{2}\right)$ and so on until this flow movement of the protein mixture reaches the P_{3} bottom reservoir. Figure 70 shows the graphical solution for protein mixtures A and B, where the graphical solution for proteins C and D is clearly shown in Figure 71. As the steady state condition is reached, the enriched concentration of proteins A and B will be obtained from the top reservoir while the bottom reservoir collects the enriched concentration of the mixture of proteins C and D. The concentration transients of the mixture A and B, and the mixture C and D are plotted versus the number of cycles and show in the Figure 72.

The next step is the separation of the mixture A and B or C and D. At the beginning we had a mixture of four proteins for separation ; up to this point the mixture of proteins is reduced down to two components, either A and B or C and D. The separation of two proteins via multi column has been explained, also the graphical solution of proteins A and B, and proteins C and D are shown and discussed earlier in this chapter.

For mixtures of proteins of more than four components, the separation process begins in the same manner as for the

FIGURE 72 - THE CONCENTRATION TRANSIENTS OF PROTEINS A \& B AND PROTEINS C \& D vs. NUMBER OF CYCLES.
four components of proteins mixture. First of all, we are grouping the mixture into two groups of proteins by selecting the pH level, one is the highest (higher than the highest isoelectric point of protein component), one is the lowest (lower than the lowest isoelectric point of the protein component) and the last one is the middle one (the one which separates proteins into two groups). Once the process is completed, both top and bottom products are obtained and then we repeat the same step again, by taking either top or bottom product to separate until the separation of the desired product(s) is reached.

E. A Theoretical Study Via Mathematical Farmalism Based On E1ementary Matrix Algebra

This work can not complete without discussion on this title. After we have been investigated on the subject for a length of time. The experiment was performed and dicussed in the earlier part of this chapter for Mode 4. Figures 73 and 74 show the calculation curves of protein concentrations in the six sections of liquid phase (five columns and one top reservoir), and five sections (columns) of solid phase respectively. The calculations were made at the beginning of the cycles, after equilibration at the low pH. The parameters used, were given in the Appendix A and also showr on the figures. Similarly, Figures 75 and 76 show the results of a different parameters used. As expected from the smaller

value of β, the maximal separation (see Figures 75 and 76) are smaller than the results show on Figures 73 and 74. More detail of extending the study of this subject is explained and discussed in Appendix A.

The technique of separation of protein via a pH-parametric pumps seem to work well as discussed in this chapter from Mode 1 through Mode 4. We also established that, Mode 2 and Mode 4 are able to extend the model into a multi-column system. The advantage of Mode 2 is, unlimit on the number of protein components for the separation process. This work is only study on the Batch operation basis and also found the difficulty of extending this work into either SemiContinuous or Continuous process. Mode 4 is able to run either Batch or Semi-Continuous for a multi-column system. The limitation of work is the pH level. As we observed, the pH level used for this mode is two (either P_{1} and P_{2} or P_{2} and P_{3}), the protein can purify, must has its isoelectric point fall in the range of P_{1} and P_{2}. But some how, this process is work well for recovery any protein component.

The extendind of this work still carry on both experimental study and theoretical study by Chen and his students.

Chapter VIII

SUMMARY OF CONCLUSIONS

This work establishes the reliability of the model equations for predicting the behavior of batch and semicontinuous equilibrium via a pH-parametric pumps. We have examined one-, two- and multi-column system by both experimental and theoretical study. The model is based on the linear equations of change for the liquid -solid system with the diffusion term of negligible importance, a liquid-film controlling mass transfer rate expression, and a linear equilibrium relation between the liquid and solid phases.

This work further establishes the reliability of the method of graphical and the method of using the elementary matrix algebra to predict the concentration curve on protein separation.

There is little to choose between this two computational schemes. The graphical method is more fundamental and more efficient on predicting the steady state value while the matrix algebra method can give us more detail in a transient state.

The agreement between the experimental results and the behavior predicted by computational methods is good. The
qualitative differences between separations achieved under varying operating conditions is correctly predicted by both experiments and calculations.

For the process designning on both batch and semicontinuous pH-parametric pumps, the following were noted:

1. Any separation process in this paper, the process is worked on either one component or two components of solute.
2. The separation system is required to use either two or three pH levels at a time.
3. Literally, scaling up column parameters results in no improved separation.
4. Decreasing the reservoir dead volume, decreases the time of operating to reach the steady state condition

NOMENCLATURE

V_{B}	bottom reservoir dead volume, cm^{3}
$V_{M R}$	midde reservoir dead volume, cm^{3}
V_{T}	top reservoir dead volume, cm

Greek Letters

$$
\begin{aligned}
& \alpha \quad \text { (reservoir displacement)/(column } \\
& \text { void volume) } \\
& \beta \\
& \pi / \omega \\
& \rho \\
& \gamma \\
& \text { (reservoir displacement)/(column } \\
& \text { void volume) } \\
& \mathrm{k}_{\mathrm{P}_{\mathrm{i}}}^{-} / \mathrm{k}_{\mathrm{P}_{\mathrm{i}}}^{+} \quad \text { (dimensionless) } \\
& \text { duration of upflow or down flow, } \\
& \mathrm{sec} \\
& \text { eigenvalues of matrix [M] } \\
& \text { (dimensionless) } \\
& \text { ratio of volumes of liquid phase } \\
& \text { to solid phase (dimensionless) } \\
& \text { dead volume ratio, defined by } \\
& \text { Eqn. A-4.1 (dimensionless) }
\end{aligned}
$$

Vector and matrix quantities

$\left[A_{i}\right]$	matrice defined by Eqn. 3.20
C	column vector defined by Eqn. A-3.1
$\underset{\sim}{F},{ }_{\sim}^{F}$	feed vectors in open parapump, defined by Eqns. A-4.3 and A-4.4
[İ]	unity matrix
$[\underset{\sim}{M}],[\underset{\sim}{e}]$	matrices of coefficients in material balance equations, defined by Eqns. 3.8, 3.10 and 3.12
$[\underset{\sim}{S}],\left[{\underset{\sim}{s}}^{-1}\right]$	matrix of column eigenvectors of [M], and inverse

[D]

 diagonal matrix of eigenvaluesIndices, Subscripts and Superscripts

+	anion exchanger
R^{+}	cation exchanger
R^{-}	anion exchanger
$*,(\infty)$	cation exchanger
$1, \mathrm{~h}$	define the cyclic steady state
	designate variables defined at the
	low pH and at the high pH respec-
	tively

APPENDIX A

ANALYTICAL DETAILING

The following material is the information and detailing for a mathematical formalism based on elementary matrix algebra which explained in Chapter III. There follow, in order,

Exhibit A-1, Calculation of Eigenvalues of [M].
Exhibit A-2, The structure of $[\underset{\sim}{M}]^{\infty}$.
Exhibit A-3, Example of analysis of transient region.
Exhibit A-4, Extension of the theoretical approach.
Exhibit A-5, Tables of the computational results for Five-Column system

Exhibit A-1

CALCULATION OF EIGENVALUES OF [$\underset{\sim}{M}$]

The eigenvalues of M are calculated from the equation

$$
\begin{align*}
& P_{N}(\lambda)=\operatorname{det}[\underset{\sim}{M}-\lambda \underset{\sim}{I}]= \\
& \left|\begin{array}{cccccc}
d-p \lambda & e & 0 & 0 & 0 & 0 \\
a & b-p \lambda & c & 0 & 0 & 0 \\
0 & a & b-p \lambda & c & 0 & 0 \\
0 & 0 & a & b-p \lambda & c & 0 \\
0 & 0 & 0 & a & b-p \lambda & c \\
0 & 0 & 0 & 0 & 0 & a+b-p \lambda
\end{array}\right| \tag{A-1.1}
\end{align*}
$$

Since the determinant is tridiagonal, it may be expanded easi$1 y$, by elements of the last column for example. Let $P_{N-1}(\lambda)$ be the determinant obtained by deleting the last row and the last column, and let $P_{N-j}(\lambda)$ be the determinant obtained by deleting the j last rows and columns. We then have (with N = 6) :

$$
\begin{align*}
& \mathrm{P}_{6}(\lambda)=(\mathrm{a}+\mathrm{b}-\mathrm{p} \lambda) \mathrm{P}_{5}(\lambda)-\mathrm{ac} \mathrm{P}_{4}(\lambda) \\
& \mathrm{P}_{5}(\lambda)=(\mathrm{b}-\mathrm{p} \lambda) \mathrm{P}_{4}(\lambda)-\mathrm{ac} \mathrm{P}_{3}(\lambda) \\
& \mathrm{P}_{4}(\lambda)=(\mathrm{b}-\mathrm{p} \lambda) \mathrm{P}_{3}(\lambda)-\mathrm{ac} \mathrm{P}_{2}(\lambda) \\
& \mathrm{P}_{3}(\lambda)=(\mathrm{b}-\mathrm{p} \lambda) \mathrm{P}_{2}(\lambda)-\mathrm{ac} \mathrm{P}_{1}(\lambda) \tag{A-1.2}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{P}_{2}(\lambda)=(\mathrm{b}-\mathrm{p} \lambda) \mathrm{P}_{1}(\lambda)-\text { ae } \mathrm{P}_{0}(\lambda) \\
& \mathrm{P}_{1}(\lambda)=(\mathrm{d}-\mathrm{p} \lambda) \mathrm{P}_{0}(\lambda) \\
& \mathrm{P}_{0}(\lambda)=1
\end{aligned}
$$

A trial value of λ is assumed and the successive expressions $P_{i}(i=1$ to $N)$ are calculated. An eigenvalue is found when $P_{N}(\lambda)=0$.

The localsation of the eigenvalues, and thus the trial values, is facilitated by the fact that the expressions P_{i} form a series, which permits the following test:

Assume a value $\boldsymbol{\lambda}^{\prime}$ and calculate the sequence $\mathrm{P}_{0} \quad \ldots .$. $\ldots P_{N}$. Let $V\left(\boldsymbol{\lambda}^{\prime}\right)$ be the number of sign changes in this series. Assume an other trial value $\lambda^{\prime \prime}$ and determine in the same way the number of sign changes in the sequence $V\left(\lambda^{\prime}\right)$. The differrance $V\left(\lambda^{\prime}\right)-V\left(\lambda^{\prime}\right)$ gives the number of real eigenvalues in the interval ($\left.\lambda^{\prime}, \lambda^{\prime \prime}\right)$. This property may be used to show that all eigenvalues are real. We assume λ^{\prime} very large and positive and $\lambda^{\prime \prime}$ very large and negative. It is then easy to see that

$$
\begin{array}{ll}
\lambda^{\prime} \gg 0 & \lambda^{\prime \prime} \ll 0 \\
P_{0}=1>0 & P_{0}=1>0 \\
P_{1}=d-p \lambda<0 & P_{1}=d-p \lambda>0 \\
P_{2}=(b-p \lambda) P_{1}-a c>0 & P_{2}=(b-p \lambda) P_{1}-a c>0 \\
P_{3}<0 & P_{3}>0
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{P}_{4}>0 & \mathrm{P}_{4}>0 \\
\mathrm{P}_{5}<0 & \mathrm{P}_{5}>0 \\
\mathrm{P}_{6}>0 & \mathrm{P}_{6}>0
\end{array}
$$

The numbers of sign changes are $V\left(\boldsymbol{\lambda}^{\prime}\right)=N$ and $V\left(\boldsymbol{\lambda}^{\prime \prime}\right)=0$ and the number of real eigenvalues, positive or negative, is N. Thus all eigenvalues are real.

The sturm sequence A-1.2 may also conveniently be used to show that $\boldsymbol{\lambda}=1$ is an eigenvalue. For $\boldsymbol{\lambda}=1$, we have

$$
\begin{aligned}
& P_{0}=1>0 \\
& P_{1}=d-p=-k^{h}\left(\rho+k^{1}\right)<0 \\
& P_{2}=(b-p) P_{1}-a c=-a P_{1} \\
& P_{3}=(b-p) P_{2}-a c P_{1}=-a P_{2}-c P_{2}-a c P_{1}=-a P_{2} \\
& P_{j}=(b-p) P_{j-1}-a c P_{j-2}=-a P_{j-1}-c P_{j-1}-a c P_{j-2} \\
& \text { and since } P_{j-1}=-a P_{j-2}
\end{aligned}
$$

we have

$$
P_{j}=-a P_{j-1}
$$

For the last polynomial P_{N}, which represents the characteristic equation, we have:

$$
P_{N}=(a+b-p) P_{N-1}-a c P_{N-2}
$$

with $a+b-p=-c$
and $\quad P_{N-1}=-a P_{N-2}$
thus $\quad \mathrm{P}_{\overline{\mathrm{N}}}=0$
and $\lambda=1$ satisfies the characteristic equation and is thus eigenvalue, independently of the values of the parameters. Incidentally, this calculation shows that $V\left(\lambda^{\prime \prime}=1\right)=N-1$. Since $V\left(\lambda^{\prime} \gg 0\right)=N$, there is a single real root in the interval ($+1,+\infty$) which is precisely $\lambda=1$. No eigenvalues can thus have a value larger than one. A somewhat more tedious calculation can be made for $\lambda^{\prime \prime}=0$, showing that $V\left(\lambda^{\prime \prime}=0\right)=0$. This ensures that all eigenvalues are positive, and finally, we must have

$$
0 \leqslant \lambda_{0} \leqslant \lambda_{1} \leqslant \cdots \leqslant \lambda_{N}=1
$$

Figure A-1.1 shows the plot of ${ }_{i}$ as a function of the number of cycles (n) on the Semi-Logarithmic ordinate.

FIGURE A-1.1 - THE PLOT OF $\lambda_{\dot{i}}^{n}$ vs. NUMBER OF CYCLES.

Exhibit A-2

THE STRUCTURE OF $[M]^{\infty}$

For large values of n, that is at cyclic steady state, M^{n} must satisfy for $N+1$ equations

$$
\begin{equation*}
\operatorname{limit}_{\mathrm{n} \rightarrow \infty}[\mathrm{M}]^{\mathrm{n}} \underset{\sim}{Y}(0)=\underset{\sim}{Y}(\infty) \tag{A-.2.1}
\end{equation*}
$$

independently of the initial distribution $\mathbb{Y}(0)$. The concentrations $\left(w_{0}, w_{1}, \ldots . . w_{N}\right)$ of $\underset{\sim}{Y}(0)$, and the concentration $\left(y_{0}^{*}, y_{1}^{*}, \ldots . . y_{N}^{*}\right)$ of $Y(\infty)$ are related only by the condition of conservation of mass of solute in the whole system. This condition is expressed by:

$$
\begin{align*}
w & =\bar{v}\left(\rho w_{0}+\sum_{i=1}^{N}\left(\rho+k^{1}\right) w_{i}\right) \\
& =\bar{v}\left(\rho y_{0}^{*}+\sum_{i=1}^{N}\left(\rho+k^{1}\right) y_{i}^{*}\right) \tag{A.-2.2}
\end{align*}
$$

Replacing y_{i}^{*} by $y_{0}^{*} \beta^{-i}$, from Equation 3.24, factoring out y_{0}^{*} in the right hand side and re-managing, we obtain

$$
\begin{equation*}
y_{0}^{*}=A w_{0}+B \sum_{j=1}^{N} w_{j} \tag{A-2.3}
\end{equation*}
$$

where:

$$
\begin{equation*}
A=\frac{\rho}{\rho+\left(\rho+k^{1}\right) \sum_{q=1}^{N} \beta^{-q}} ; \quad B=\frac{\rho+k^{1}}{\rho} A \tag{A-2.4}
\end{equation*}
$$

Cleary the $N+2$ equations $A-2.1$ and $A-2.3$ may hold for any set of w_{j} only if they are redundant: we may thus identify, for example Equation A-2.3 with the $i^{\text {th }}$ equation of A-2.1, which we write (i $=0,1, \ldots \ldots$)

$$
\begin{equation*}
m_{i 0}{ }^{w} 0+m_{i 1} w_{1}+\ldots . m_{i N} w_{N}=y_{i}^{*}=y_{0}^{*} \beta^{-i} \tag{A-2.5}
\end{equation*}
$$

and we obtain

$$
m_{i j} \beta^{i}=\left\lvert\, \begin{array}{ll}
A & \text { for } j=0 \tag{A-2.6}\\
B & \text { for } j=1,2, \ldots \ldots N
\end{array}\right.
$$

The elements $m_{i j}$ of $[\underset{\sim}{M}]^{\infty}$ are thus completely identified by Equation A-2.6, together with A-2.4. [\mathcal{N}^{N} may be visualized as:

$$
[M]^{\infty}=\left|\begin{array}{llll}
A & B & B \cdots & B \tag{A-2.7}\\
A \beta^{-1} & B \beta^{-1} & B \beta^{-1} & B \beta^{-1} \\
A \beta^{-2} & B \beta^{-2} & B \beta^{-2} & B \beta^{-2} \\
\vdots & & & \\
\vdots & & & B \beta^{-N}
\end{array}\right|
$$

It may be verified that this matrix is invariant on multiplication on the left or on the right by [M].

It is interesting to look at the other possible approach starting from Equation 3.17

$$
\begin{equation*}
[\underset{\sim}{M}]^{\infty}=[\underset{\sim}{s}][\underset{\sim}{D}]^{\infty}[\underset{\sim}{S}]^{-1} \tag{A-2.8}
\end{equation*}
$$

Clearly [D] $]^{\infty}$ reduces to the single element 1 in the last row and last column, all other element being zero. The product $[\underset{\sim}{S}][\underset{\sim}{D}]^{\infty}$ is a matrix with the first N columns of zeroes, the last column being the last column of $[\underset{\sim}{S}]$, that is the eigenvector belong to $\lambda=1$, Multiplying this matrix by $[\underset{\sim}{S}]^{-1}$, we should recover the result of Equation $A-2.7$. It is easy to show that the only elements of $[\underset{\sim}{S}]^{-1}$ that appear in the product are the elements of the last row, which are the cofactors of the above mentioned eigenvector in [s]. Identifying with Equation $\mathrm{A}-2.7$, we conclude that the last row of $\left[\mathrm{S}^{-1}\right.$ is (A B B B B).

Exhibit A-3

EXAMPLE OF ANALYSIS OF TRANSIENT REGIME

The equilibrium constants (Figure 21) are charaterized by the following values of the slopes

$$
\begin{array}{rlrl}
\text { at Low } \mathrm{pH}: & \mathrm{k}^{1} & =0.70 \\
\text { at H:gh pH: } & \mathrm{k}^{\mathrm{h}} & =0.52 \\
\beta=\frac{\mathrm{k}^{1}}{\mathrm{k}^{\mathrm{h}}} & =1.346
\end{array}
$$

This corresponds to the experimental conditions of Run . We also have:

$$
\rho=\frac{V}{\bar{V}}=\frac{26 \text { cc fluid }}{26 \text { cc solid }}=1
$$

and $N=5$ since there are five stages. With these values, the matrix $[\underset{\sim}{M}]$ is written (Equations 3.12 and 3.13)

$$
\left.[\underset{\sim}{M}]=-2.50 \begin{array}{ccccc}
1.70 & 1.19 & 0 & 0 & 0 \\
0.52 & 1.364 & 0.70 & 0 & 0 \\
0 \\
0 & 0.52 & 1.364 & 0.70 & 0 \\
0 & 0 & 0.52 & 1.364 & 0.70 \\
0 & 0 & 0 & 0.52 & 1.364 \\
0 & 0.70 \\
0 & 0 & 0 & 0 & 0.52 \\
1.884
\end{array} \right\rvert\,
$$

The eigenvalues, calculated as outlined in Chapter III, are:

$$
\begin{array}{ll}
\lambda_{0}=0.1050 & \lambda_{3}=0.7336 \\
\lambda_{1}=0.2522 & \lambda_{4}=0.9239 \\
\lambda_{2}=0.4838 & \lambda_{5}=1.0000
\end{array}
$$

(NOTE: Calculations were performed with 8 significant figures) In Run , the initial condition is that all fluid fractions are identical, and in equilibrium with the solid phase fractions with the following protein concentrations (i=0, 1 , N) :

$$
\left.\begin{array}{rl}
\mathrm{w}=\mathrm{y}_{\mathrm{i}}(0) & =1.18 \mathrm{gm} / \text { liter } \\
\mathrm{x}_{\mathrm{i}}(0) & =0.826 \mathrm{gm} / 1 \mathrm{t} \text { er }
\end{array}\right\} \quad \begin{aligned}
& \text { equilibrium at } \\
& \text { Low } \mathrm{pH}
\end{aligned}
$$

so that the total amount of protein is:

$$
W=0.290 \text { gm of protein }
$$

then from Equation 3.28, we calculate

$$
y_{0}^{*}=2.324 \text { gm protein/liter }
$$

The final steady state is then given by Equation 3.26

$$
{\underset{\sim}{Y}}^{1}(\infty)=\left|\begin{array}{ll}
\mathrm{y}_{0}^{*} & =2.324 \\
\mathrm{y}_{1}^{*} & =1.726 \\
\mathrm{y}_{2}^{*} & =1.282 \\
\mathrm{y}_{3}^{*} & =0.953 \\
\mathrm{y}_{4}^{*} & =0.708 \\
\mathrm{y}_{5}^{*} & =0.526
\end{array}\right|
$$

Now, we should like to know the composition at an arbitrary cycle n. In principle, we would have to calculate $[\underset{\sim}{S}]^{-1}$ in order to use Equations 3.17 and 3.18 , or calculate the $\left[\mathrm{A}_{\mathrm{j}}\right]$ in order to use Equations 3.19 and 3.20. We shall see that these tedious calculations may be partly avoided if only estimations are sought, and for n sufficiently large. Equation 3.17 or 3.19, when developed, lead to expressions of the form:
the last column corresponds to ${\underset{\sim}{r}}^{1}(\infty)$. The examination of the successive powers of the λ 's shows that the contribution of the smallest eigenvalues becomes rapidly negligible. This is illustrated on Figure $A-1$ where $1 n \lambda_{i}^{n}$ is plotted against n. We observe that λ_{0}^{n} becomes neligible with respect to $1\left(\lambda_{0}^{n}\right.$ $<10^{-3}$, as early as the third cycle, λ_{1}^{n} around the fifth cycle, $\boldsymbol{\lambda}_{2}^{\mathrm{n}}$ around the tenth cycle. The contribution of $\boldsymbol{\lambda}_{3}$ persists until the $20^{\text {th }}$ cycle, and that of $\boldsymbol{\lambda}_{4}$ until the $90^{\text {th }}$ cycle. These contributions are somewhat modified by the factors $a_{i j}$, but these actually reinforce the importance of the largest eigenvalues. Figure $\mathrm{A}-2$ shows a comparison between the
rigorous curve (full line) and the approximation obtained by neglecting the contributions of $\lambda_{1}, \lambda_{2}, \lambda_{3}$. This relation is expressed by:

$$
\begin{equation*}
\underset{\sim}{Y}(n)-\underset{\sim}{Y}(\infty)=w \underset{\sim}{C} \lambda_{4}^{n} \tag{A-3.1}
\end{equation*}
$$

with

$$
\underset{\sim}{C}=\left|\begin{array}{l}
-1.024 \\
-0.563 \\
-0.090 \\
+0.339 \\
+0.540 \\
+0.615
\end{array}\right| \quad \text { and } w=1.18 \mathrm{gm} / 1 \mathrm{iter}
$$

It is seen that this approximation, besides showing the correct trend; gives an estimate better than 10% for $n \geqslant 3$, better than 5% for $n \geqslant 10$, and better than 1% for $n \geqslant 20$. For all practical purposes, it seems thus sufficient to calculate the matrix $\left\{\underset{\sim}{A}{ }_{j}\right\}$ corresponding to $\lambda_{j}=\lambda_{4}$ in Equation 3.19, or in other terms, to calculate the two lines in $[\underset{\sim}{S}]^{-1}$ that correspond to the two largest eigenvalues.

Note that Equation A-3.1 is comparable to a result established by Pigford et al (1969) for linear packed bed parapumps after a certain start-up period. Using their notation, their Equations 3.16 and 3.17 may be put in the form:

$$
\left(y_{T}\right)_{n}-\left(y_{T}\right)_{\infty}=\left(y_{B}\right)_{n}-\left(y_{B}\right)_{\infty}=\left(\frac{1-b}{1+b}\right)^{n} y_{0}
$$

which expresses, that the "distance" from the steady state

for top and bottom reservoir concentrations is a power function of the number of cycles.

Exhibit A-4

EXTENSION OF THE THEORETICAL APPROACH

The discussion illustrates that in any experiment, we would be faced with imperfect phase transfer, volume variations of the fractions, volume differences in the stages, and so forth. In addition, the mode of parametric pumping considered here is restrictive: it ignores partial reflux and multiple transfers per half-cycle, situations studied elsewhere (Grevillot, G., and Tondeur D. 1977, 1980) from the point of view of the cyclic steady state. We should like to give a hint on how the present approach can be extended, without major difficulty, to account for some of the situations mentioned above. For this purpose, we shall examine how the basic equations are altered separately by the different effects.

Existence of a dead volume

In the experiments presented, we mentioned that some of solute (protein) was not transferred when the apparatus was connected to the reservoirs and pH -converters. Let us characterize this "dead volume" V_{T} or V_{B}, by its ratio γ to the volume of the solid phase fractions.

$$
\begin{equation*}
\gamma=\mathrm{V}_{\mathrm{T}} / \overline{\mathrm{V}}=\mathrm{V}_{\mathrm{B}} / \overline{\mathrm{V}} \tag{A-4.1}
\end{equation*}
$$

and we assume this ratio is constant and equal for all stages, in transfer up and transfer down. When the material balances (Equation 3.1) are re-written, taking this hold up into account, one obtains the same form as Equation 3.5, but with ρ replaced by $\rho-\gamma, k^{1}$ by $k^{1}+\gamma$ and k^{h} by $k^{h}+\gamma$; (so that the denominator $\rho+\mathrm{k}^{\mathrm{h}}$ in Equation 3.5 is unchanged). A similar property holds for the transfer up half-cycle, and finally the whole approach outlined so far remains valid providing the substitutions indicated above are made in the elements of matrix [$\underset{\sim}{M}$]. The discontinuous lines on Figure A-4.1 show the resultof such a calcultion, made with a 10% dead volume of solvent ($\gamma=0.1$) which slightly overestimates the reality.

Intuitively, the effect of γ can be foreseen by considering the system as having a lower ρ, and higher k 's, but a lower effective β. The effect on the cyclic steady state is seen immediately from Fenske's equation (Equation 3.25), with data given:

$$
\frac{y_{0}^{*}}{y_{N}^{*}}=\beta^{5} \text { effective }=\left[\frac{k^{1}+\gamma}{k^{h}+\gamma}\right]^{5} \quad\left[\begin{array}{l}
=3.29 \text { for } \gamma=0 \\
=2.77 \text { for } \gamma=0.1
\end{array}\right.
$$

The effect of a smaller ρ and larger k 's is favorable to speed of convergence but may be offset by the decrease in β.

Unequal volume of fractions

A simple modification accounts for the volume of solid phase being different in each stage, and the volumes of each
fluid phase fraction being different, providing these volumes are constant (same volume transferred up and down). It suffices to take a different ρ_{q} for each stage and for equilibrations at different pH levels. In the transfer down matrix $\left[\theta_{h}\right]$ (Equation 3.8), the unique ρ will be replaced by ρ_{q}^{h}, different in each line, and similarly, in matix $\left[{\underset{\sim}{\theta}}_{1}\right], \rho \frac{1}{q}$ will be introduced. The product matrix [$\underset{\sim}{M}]$ remains tridiagonal, and the methods for eigenvalues and eigenvector calculations are unchanged. All the other properties mentionned still hold. Volume variations of phases

As discussed earlier, important variations of the volume of the fluid fractions may be caused by geometric dissymmetry of the apparatus in transferdown versus transfer up, and by dilatation of the solid phase. These effects can be quantified and accounted for in writing the material balances. Unfortunately, they will cause the value of ρ to change each stage and at each cycle. Therefore, there is no unique matrix [$\underset{\sim}{M}$] and the approach presented fails to apply.

Several transfers per half-cycle

Suppose the apparatus used in the present work was equipped with an additional reservoir in series at each end. Then seven fluid phase fractions would be used, and there would be two successive transfers in the same direction at each pH leve1. The cyclic steady state of such system has been extensively studied (Chen, H. T., et al 1980). The matrix formal-
ism can be used conveniently by noting that each transfer of fluid. phase follwed by an equilibration is described by a bidiagonal matrix similar to $\left[{\underset{\sim}{\theta}}_{1}\right]$ or $\left[\Theta_{\sim}\right]$. Let us consider for example a parapump with two stages and four fluid phase fractions thus two transfers per half cycle. The matrix [M] describing the complete cycle is the product of successive bidiagonal matrices describing each transfer;
$\left[\begin{array}{lll}\Theta_{\sim 12}\end{array}\right]\left(\rho+k^{1}\right) \quad\left[{\underset{\sim}{\theta}}_{11}\right]\left(\rho+k^{h}\right) \quad\left[{\underset{\sim}{\theta}}_{h 2}\right]\left(\rho+k^{h}\right) \quad\left[\underset{\sim}{\theta_{h 2}}\right]\left(\rho+k^{1}\right)$
$\left|\begin{array}{ccc}\rho+k^{1} \cdot 0 & 0 & 0 \\ 0 & \rho+k^{1} & 0 \\ 0 & k^{h} & \rho \\ 0 & 0 & k^{h} \\ 0\end{array}\right|\left|\begin{array}{cccc}\rho+k^{h} & 0 & 0 & 0 \\ k^{h} & \rho & 0 & 0 \\ 0 & k^{h} & \rho & 0 \\ 0 & 0 & 0 \rho+k^{h}\end{array}\right|\left|\begin{array}{cccc}\rho & k^{1} & 0 & 0 \\ 0 & \rho & k^{1} & 0 \\ 0 & 0 & \rho+k^{h} & 0 \\ 0 & 0 & 0 & \rho+k^{h}\end{array}\right|\left|\begin{array}{cccc}\rho+k^{1} & 0 & 0 & 0 \\ 0 & \rho & k^{1} & 0 \\ 0 & 0 & \rho & k^{1} \\ 0 & 0 & 0 & \rho+k^{1}\end{array}\right|$ and

$$
\begin{equation*}
[M] \sim \frac{\left[\Theta_{12}\right]\left[\Theta_{11}\right]\left[\Theta_{h 2}\right]\left[\Theta_{h 1}\right]}{\left(\rho+k^{1}\right)^{2}\left(\rho+k^{h}\right)^{2}} \tag{A-4.2}
\end{equation*}
$$

[M]is no longer tridiagonal, but in the present case, comprises 5 diagonals. The simple numerical methods for calculating eigenvalues and eigenvectors of tridiagonal matrices no longer apply, but otherwise the general method is unchanged. Also notice that different definitions of $[\underset{\sim}{M}]$ may be introduced, depending on how the beginning of the cycle is defined. These various forms differ from each other by a circular permutation on the bidiagonal matrices $[\underset{\sim}{\Theta}]$.

Partial reflux parapump

We adopt the description given by Chen; H.T: et al (1980) for one transfer per half-cycle, in a pump where fresh feed is added at each half-cycle in an intermediat stage, and with a different reflux ratio at each end. The operating scheme of such a pump is summarized on Figure A-4.1. The equations describing the operation of the lower section during the low pH half-cycle, and the upper section during the high pH halfcycle are that of the simplest case, that is, Equation 3.1 to 3.10. The other equations are that for a holdup in each stage, as explained in a previous paragraph (ρ replaced by $\rho-\gamma, k$ by $k+\gamma)$. Special material balances must be written for the feed stage. The result may be written in the following form:

$$
\begin{equation*}
{\underset{\sim}{Y}}^{h}(n)=\left[{\underset{\sim}{X}}_{h}\right]{\underset{\sim}{Y}}^{1}(n)+\underset{\sim}{F_{h}} \tag{A-4.3}
\end{equation*}
$$

and

$$
\begin{aligned}
& {\underset{\sim}{Y}}^{1}(n+1)=\left[{\underset{\sim}{\Theta}}_{1}\right] \underset{\sim}{Y^{h}}(n)+\underset{\sim}{F}{ }_{1}
\end{aligned}
$$

where $\left[{\underset{\sim}{\Theta}}_{h}\right]$ and $\left[\Theta_{1}\right]$ are bidiagonal matrices and ${\underset{\sim}{F}}$ and $\underset{\sim}{F} \underset{1}{ }$ are column vectors representing the feed contribution. Table A-4.1 give the elements of these matrices and vectors, as corresponding to the stages in which the conservation and equilibrium relations are written. All other elements are zero. y_{F} is the feed composition, assumed constant. The feed vec-
Table A-4.1

	0	\bigcirc	$\stackrel{\text { ¢ }}{\substack{\text { a }}}$	\bigcirc	
		${ }_{\text {F }}$	${ }_{\sim}^{\text {s }}$	$\begin{aligned} & x^{r-1} \\ & + \\ & f^{-} \end{aligned}$	
	$\begin{gathered} r_{n} \\ + \\ + \\ 0 \end{gathered}$		$\begin{aligned} & \omega^{-1} \\ & 1! \\ & a_{n} \end{aligned}$	$\begin{aligned} & 0^{-1} \\ & 1 \\ & \text { en } \end{aligned}$	
		\bigcirc	(\bigcirc	\bigcirc
		$\begin{gathered} 30^{-4} \\ + \\ - \pm \end{gathered}$	${ }_{\sim}^{1}$	${ }^{\sim}$	
		$\begin{aligned} & 30^{5} \\ & 1 \\ & a^{1} \end{aligned}$	$\begin{aligned} & x_{0}^{x} \\ & \text { a } \end{aligned}$	on	$\begin{gathered} f_{n} \\ + \\ \text { on } \end{gathered}$
			$\begin{aligned} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ w 10 \\ 0 \end{aligned}$		
		$\begin{gathered} \overrightarrow{7} \\ 4 \\ \vdots \\ \vdots \\ \cdots \\ \sim \end{gathered}$	®ิ ¢ 4 4		

tors $\underset{\sim}{F}{ }_{h}$ and $\underset{\sim}{F}{ }_{1}$ have each a single non-zero element, owing to the fact that the feed is added in a given single stage. The non-zero element is not on the line in the two vectors because the feed is mixed with a different mobile phase fraction, in the high pH and low pH steps. Note that a feed distributed over several stages can be accounted for by the same Equations A-4.3 and $\mathrm{A}-4.4$, but different elements in the matrices $\left[\hat{\theta}_{\mathrm{h}}\right]$ and $\left[{\underset{\sim}{~}}_{1}\right]$, and additional non-zero elements in $\underset{\sim}{F} \underset{1}{ }$ and $\underset{\sim}{F}{ }_{h}$.

The general solution of the first-order recurrence of Equations $A-4.3$ and $A-4.4$, relating ${\underset{\sim}{Y}}^{1}(n+1)$ to $\underset{\sim}{Y}(n)$, is easi1y seen to be:

$$
\begin{aligned}
& \text { (A-4.5) }
\end{aligned}
$$

where $[\underset{\sim}{M}]=\left[\Theta_{\sim}\right]\left[\Theta_{\sim}\right]$. Equation $A-4.5$ is to be compared to Equation 3.14 (Note: that $[\underset{\sim}{M}]$ is not the same in these two Equations). The matrix $[\underset{\sim}{M}]$ is still tridiagonal and the methods for calculating the eigenvalues remain valid. The geometric matrix series $\left[\underset{\sim}{I}+\underset{\sim}{M}+{\underset{\sim}{M}}^{2}+\ldots . .+{\underset{\sim}{M}}^{n-1}\right]$ can be rewritten by applying Sylvester's theorem (Equations 3.19 and 3.20) to each term, so that a scalar geometric series appears on each eigervalue. If all 's are different from 1, Equation A-4.5 becomes

$$
\begin{equation*}
\underset{\sim}{Y}(n)=\sum_{j=0}^{N}[\underset{\sim}{A}]\left[\lambda_{j}^{n} \underset{\sim}{Y}(0)+\frac{1-\lambda_{j}^{n}}{1-\lambda_{j}^{F}}\right] \tag{A-4.6}
\end{equation*}
$$

where $\left[\underset{\sim}{A_{j}}\right]$ are matrices obtained from $[\underset{\sim}{M}]$ by applying Equation 3.20 , and $\underset{\sim}{F}$ is the overall feed vector, given by:

$$
\underset{\sim}{F}=\underset{\sim}{F} I+\left[\Theta_{\sim} 1\right]_{\sim}^{F} \underset{h}{ }=\frac{y_{F}}{\left(\rho+k^{I}\right)\left(\rho+k^{h}\right)}\left|\begin{array}{c}
0 \\
\vdots \\
\rho \gamma_{h} \\
\gamma_{1}\left(\rho+k^{h}\right)+\gamma_{h} k^{h} \\
0 \\
\vdots \\
0
\end{array}\right|
$$

the two non-zero elements of $\underset{\sim}{F}$ are on lines f and $f+1$.

If any eigenvalue was larger than or equal to one, the series $\left[\underset{\sim}{I}+\underset{\sim}{M}+{\underset{\sim}{M}}^{2}+\ldots .{\underset{\sim}{M}}^{\underline{n}-1}\right]$ would not converge and no steady state would be reached. On physical grounds, we may thus state that all eigenvalues are smaller than 1 . Under these conditions, the cyclic steady-state is not obtained directly as an eigenvector of $[\underset{\sim}{M}]$, but by letting $\underset{\sim}{Y}(n+1)=\underset{\sim}{Y}(n)$ in Equation $A-4.4$, or $n \rightarrow \infty$ in Equation $A-4.6$:

$$
\begin{equation*}
{\underset{\sim}{Y}}^{1}(\infty)=[\underset{\sim}{I-M}]^{-1} \cdot \underset{\sim}{F}=\sum_{j=0}^{N} \frac{\left[A_{j}\right]}{1-\lambda_{j}} \cdot \underset{\sim}{F} \tag{A-4.7}
\end{equation*}
$$

We know that the cyclic steady state can be geometrically represented by a Mc Cabe-Thiele diagram somewhat more complicated than that of total reflux, and that the analytical expressions for the separation factor are quite involved. There is thus little hope to bring Equation A-4.7 to a more analytical
form by simple manipulations.

Exhibit A-5

Conditions for Computational the Results with variable parameter:

Operating Variable

Volume of Fluid Phase per Column Volume of Solid Phase per Column Equilibrium Constant at Low pH Equilibrium Constant at High pH β ρ

Cases I
$26.0 \mathrm{~cm}^{3}$
$26.0 \mathrm{~cm}^{3}$
0.70
0.52
1.346
1.0

Case II
$30.0 \mathrm{~cm}^{3}$
$30.0 \mathrm{~cm}^{3}$
0.75
0.60
1.250
1.0

x^{n}	$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { Rn } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{+} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{8}{+} \\ & \dot{\circ} \end{aligned}$	\xrightarrow{n}	-1 0 0 0
x^{7}	$\stackrel{8}{\circ}$	N O 0 0	$\begin{aligned} & -1 \\ & i \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \sim \\ & 0 \end{aligned}$	-1 0 0 0	$\xrightarrow{+}$
x^{m}	$\begin{aligned} & 8 \\ & 0 . \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{n}{\sim}$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	N \sim 0	+1 0 0 0
x^{N}	$\begin{aligned} & 0 \\ & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { n} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \infty \\ & \hline 0 \end{aligned}$	N ∞ ∞ 0 0	∞ ∞ ∞ 0 0	on ∞ ∞ 0 0
\sqrt{x}	\bigcirc	$\begin{gathered} m \\ 0 \\ \hline-i \end{gathered}$	$\begin{aligned} & N \\ & H \\ & H \\ & \sim \end{aligned}$	$\begin{aligned} & \text { in } \\ & \underset{r}{n} \\ & \underset{r}{2} \end{aligned}$	$\stackrel{\underset{\sim}{\lambda}}{\underset{\sim}{r}}$	R10 \sim \sim \sim
\cdots	\circ \sim \sim \sim	$\stackrel{n}{\infty}$	N \vdots 0	-	\xrightarrow{H}	!
λ^{+}	\circ $\stackrel{0}{+}$ $\stackrel{-}{-1}$	$\begin{aligned} & \text { in } \\ & \underset{\sim}{\Omega} \\ & \dot{\circ} \end{aligned}$	\pm - 0 0	$\xrightarrow{0}$	$\stackrel{\sim}{\mathrm{N}}$	$!$
\cdots	$\stackrel{+}{\infty} \stackrel{+}{+}$	®2 O 0 -	- O - -	N o 0 0 0	-	!
\sim^{N+}	\circ \sim \sim -1	$\begin{aligned} & \infty \\ & \stackrel{\infty}{-} \\ & \underset{\sim}{-} \end{aligned}$	+ \vdots \sim \sim	$\xrightarrow[N]{\sim}$	\xrightarrow{N}	!
$\stackrel{\sim}{1}$	\circ \sim \sim \sim	$\stackrel{\underset{\sim}{n}}{\substack{\text { n } \\ \hline}}$	$\begin{aligned} & \text { N } \\ & \text { n } \\ & \text { rín } \end{aligned}$	N N -	Ln 0 0 -1	I
0	0 + + -1	N - rid	¢	N N N	N \sim \sim \sim	!

$$
\begin{gathered}
\begin{array}{c}
\text { Number of } \\
\text { Cycles, } \\
\text { n }
\end{array} \\
\hline 1 \\
11 \\
21 \\
30 \\
40 \\
50
\end{gathered}
$$

APPENDIX B

EXPERIMENTAL DATA

Information and Condition of the experimental results are as follow.

Exhibit B-1, Sample of CalculationExhibit B-2, Single Column System
Exhibit B-3, Two Column System: Mode 1
Exhibit B-4, Two Column System: Mode 2
Exhibit B-5, Two Column System: Mode 3
Exhibit B-6, Two Column System: Mode 4

Exhibit B-1

Sample Calculation:

1. To calculate the concentration of Haemoglobin. (using a 0.02 weight percent solution)
a). Via 403μ Reading: (Any pH Value)
$\frac{\text { Reading of Sample at } 403 \mu}{\text { Initial Reading of Feed at } 403 \mu}=\frac{R_{S} 403}{R_{F} 403}$
$=$ Concentration of Haemoglobin
b). Via $560 \mu, 576 \mu$ and $630 \mu\left(A_{1}, A_{2}\right.$ and A_{3} respectively)

Concentration of Haemoglobin $=\frac{\sum_{C \text { Sample }}}{\sum \mathrm{C} \text { Initial }}$

$$
\mathrm{pH}=\mathrm{P}_{3}(4.0) ;
$$

$$
\mathrm{C}_{4.0}=\left(2.593 \times 10^{-5}\right) \mathrm{A}_{1}+\left(4.483 \times 10^{-5}\right) \mathrm{A}_{2}+\left(1.741 \times 10^{-4}\right) \mathrm{A}_{3}
$$

$$
\mathrm{pH}=\mathrm{P}_{2}(6.2) ;
$$

$$
\mathrm{C}_{6.2}=\left(2.505 \times 10^{-5}\right) \mathrm{A}_{1}+\left(4.525 \times 10^{-5}\right) \mathrm{A}_{2}+\left(1.808 \times 10^{-4}\right) \mathrm{A}_{3}
$$

$\mathrm{pH}=\mathrm{P}_{1}(8.5)$
$\mathrm{C}_{8.5}=\left(1.958 \times 10^{-5}\right) \mathrm{A}_{1}+\left(4.789 \times 10^{-5}\right) \mathrm{A}_{2}+\left(2.214 \times 10^{-4}\right) \mathrm{A}_{3}$
Thus, the concentration of Haemoglobin $\left(y_{H}\right)$ can express as:

$$
y_{\mathrm{H}}=\frac{\mathrm{C}_{\mathrm{pH}} \text { of Sample at } 560 \mu, 576 \mu \text { and } 630 \mu}{\mathrm{C}_{\mathrm{pH}} \text { of Initial Feed Reading of } 560 \mu, 576 \mu \text { and } 630 \mu}
$$

2. To calculate the concentration of Albumin. (using a 0.02 weight percent solution)

Reading at $595 \mu=$ Total Protein Concentration ($y_{A H}$) $=$ Albumin Concentration $\left(y_{A}\right)+$ Haemoglobin Concentration (y_{H})
Thus:

$$
\mathrm{y}_{\mathrm{A}}=\mathrm{y}_{\mathrm{AH}}-\mathrm{y}_{\mathrm{H}}
$$

Let, $\quad R_{\text {S595 }}=$ Reading of Sample at 595μ

$$
\mathrm{R}_{\mathrm{B} 595}=\text { Dye Reading at } 595 \mu
$$

$$
\mathrm{R}_{\mathrm{F} 595}=\text { Reading of Feed at } 595 \mu
$$

$$
\mathrm{R}_{\mathrm{S} 403}=\text { Reading of Sample at } 403^{*} \mu
$$

$$
\mathrm{R}_{\mathrm{F} 403}=\text { Reading of Feed at } 403^{*} \mu
$$

$$
0.04=\text { Total weight percent of Haemoglobin and }
$$ Albumin

$0.02=$ Component weight percent

$$
\frac{\left|\frac{R_{S 595}-R_{B 595}}{R_{F 595}-R_{B 595}}\right|(0.04)-\left|\frac{R_{S 403}}{R_{F 403}}\right|(0.02)}{(0.02)}
$$

* NOTE: One can use the calculated value of Haemoglobin via $560 \mu, 576 \mu$ and 630μ also.
Exhibit B-2
For all run: column length $=0.15 \mathrm{~m} ; \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{B}}=10 \mathrm{~cm}^{3} ; P_{1}=8.5$ and $P_{2}=6.2$
TABLE B-1

y_{H}	Run \#2			
	Anion Column, Albumin$\operatorname{TR}\left(\mathrm{P}_{1}\right)=8.5, \quad \mathrm{BR}\left(\mathrm{P}_{2}\right)=6.2$			
	$\underline{\text { Cycle,n }}$	595* μ	$\underline{y_{A}}$	595* μ
1.00	I.C.	0.998	1.00	1.059
0.53	1	0.755	0.62	0.901
0.38	2	0.903	0.91	0.960
0.27	3	0.941	1.02	1.250
0.13	4	0.989	1.11	1.255
0.08	5	1.019	1.18	1.528
0.06	6	1.039	1.29	1.206
0.03	7	1.059	1.33	1.214
0.24	8	1.039	1.26	0.976
0.05	9	0.989	1.16	1.131
0.03	10	0.975	1.16	1.127
	$595{ }^{*} \mu$	0.1 cc	mple	cc Dy

Run \#1			
Anion Column, Haemog1obin $\operatorname{TR}\left(P_{1}\right)=8.5, \quad \operatorname{BR}\left(P_{2}\right)=6.2$			
Cycle,n	403μ	y_{H}	403μ
I.C.	0.003	0.00	0.433
1	0.091	0.21	0.283
2	0.161	0.37	0.166
3	0.167	0.39	0.117
4	0.189	0.44	0.058
5	0.198	0.46	0.033
6	0.184	0.43	0.024
7	0.191	0.44	0.014
8	0.195	0.45	0.105
9	0.169	0.39	0.022
10	0.171	0.40	0.013

TABLE B-2

TABLE B-4

TABLE B-5

y_{H}	Run \#12			
	Anion Column, Albumin$\operatorname{TR}\left(P_{2}\right)=6.2, \quad B R\left(P_{3}\right)=4.0$			
	Cycle,n	$595{ }^{*} \mu$	$\mathrm{y}_{\text {A }}$	595*
0.00	I.C.	0.436	0.00	1.113
0.15	1	0.598	0.25	0.737
0.25	2	0.722	0.54	0.635
0.27	3	0.752	0.61	0.588
0.25	4	0.762	0.66	0.525
0.26	5	0.776	0.69	0.493
0.21	6	0.739	0.63	0.495
0.24	7	0.826	0.87	0.483
0.29	8	0.932	1.15	0.489
0.26	9	0.866	0.98	0.492
0.27	10	0.873	0.98	0.487
$595^{*} \mu$: 0.1 cc Sample/3.0 cc Dye				

Run \#11			
Cation Column, Haemoglobin $\operatorname{TR}\left(P_{1}\right)=8.5, \quad \operatorname{BR}\left(P_{2}\right)=6.2$			
$\underline{\text { Cycle,n }}$	403μ	y_{H}	403μ
I.C.	0.415	1.00	0.002
1	0.172	0.42	0.063
2	0.092	0.22	0.103
3	0.053	0.13	0.111
4	0.032	0.08	0.105
5	0.023	0.06	0.108
6	0.018	0.04	0.088
7	0.015	0.04	0.098
8	0.024	0.06	0.120
9	0.032	0.08	0.106
10	0.029	0.07	0.112

TABLE B-7

Run \#13
Cation Column, Haemoglobin
$\operatorname{TR}\left(P_{1}\right)=8.5, \quad B R\left(P_{2}\right)=6.2$

Cycle, n	403μ	y_{H}	403μ	y_{H}
I.C.	0.871	1.00	0.003	0.00
1	0.584	0.67	0.475	0.55
2	0.432	0.50	0.798	0.92
3	0.336	0.39	0.906	1.04
4	0.264	0.30	0.890	1.02
5	0.200	0.23	0.889	1.02
6	0.167	0.19	0.829	0.95
7	0.111	0.13	0.826	0.95
8	0.078	0.09	0.853	0.98
9	0.056	0.06	0.780	0.90
10	0.041	0.05	0.769	0.88

Tab1e Ex-B-2.1
 SUMMARY OF THE EXPERIMENTAL RESULTS ONE-COLUMN: BATCH OPERATION

Haemoglobin-Albumin System

Haemoglobin

Number of Cycles, n	Top y_{H}	Bottom y_{H}	Top $y_{\text {A }}$	Bottom y_{A}
1	0.881	1.053	---	---
2	0.840	1.122	---	---
3	0.797	1.131	---	---
4	0.775	1.140	---	---
5	0.763	1.165	0.996	---
6	0.754	1.145	0.998	0.955
7	0.744	1.160	---	---

Table Ex-B-2. 2

Table Ex-B-2. 3

$\begin{array}{l}\text { Number of } \\ \text { Cycles, } n\end{array}$
1
2
3
4

Haemoglobin-Cation-Column

| | 1. | $\mathrm{P}_{1}=8.0, \mathrm{P}_{2}=6.0$ |
| :---: | :---: | :---: |\quad 2. $\mathrm{P}_{1}=8.5, \mathrm{P}_{2}=6.2$

Exhibit B-3

$$
\begin{aligned}
& \frac{403 \mu}{} \\
& 0.868 \\
& 0.962 \\
& 1.094 \\
& 1.079 \\
& 1.129 \\
& 1.060 \\
& 1.086 \\
& 1.096
\end{aligned}
$$

$$
0.1 \text { cc Sample/5.0 }
$$ $B R\left(P_{1}\right)=8.5$

$8{ }^{\circ} 0$	0サ・「	8 $19^{\circ} 0$	ZT0＊T	L
ヶ¢ 0	エサ・	$209^{\circ} 0$	020＊T	9
とサ・0	OS＊L	6［9＊0	280 ${ }^{\text {T }}$	¢
$\angle \varepsilon^{\circ} 0$	79＊	LL9 0	$\angle 8 \mathrm{~T}^{\circ} \mathrm{T}$	\dagger
$\varepsilon \varepsilon^{\circ} 0$	$7 L^{\circ}$ T	LIL＇0	ヶ¢で「	ε
ササ・0	86° T	99100	0 ¢ ${ }^{\text {• }}$ T	\checkmark
$0 \chi^{\circ} 0$	$\varepsilon 9^{\circ} \mathrm{Z}$	¢ $28^{\circ} 0$	$668{ }^{\text {T }}$	I
$00^{\circ} \mathrm{I}$	00° L	工79＊0	てZし＇0	$\cdot{ }^{\circ} \mathrm{I}$
$\overline{\bar{V}_{K}}$	$\overline{\mathrm{H}_{K}}$	${ }_{*}^{*} 565$	$\overline{\sqrt{807}}$	凹＇əTっKう

TABLE B-10

BR $\left(P_{1}\right)=8.5$	
403μ	$595^{*} \mu$
0.390	0.640
0.148	0.596
0.110	0.541
0.191	0.566
0.101	0.513
0.094	0.501
0.078	0.473
0.079	0.488

Run \#17
$\operatorname{TR}\left(P_{1}\right)=8.5$

 TABLE B－12
$\operatorname{BR}\left(P_{1}\right)=8.5$ TABLE B－12
$\operatorname{BR}\left(P_{1}\right)=8.5$ TABLE B－12
$\operatorname{BR}\left(P_{1}\right)=8.5$

3
$*$
n_{n}
n
n

60° I	EG＊0	86て＇T	6てて＊0	$0 T$
T0＊	${ }_{7 S} \cdot 0$	8SE＊	S\＆て＊0	6
Sて＇I	2S＊0	L9［ ${ }^{\text {T }}$	Lてて＊0	8
ワワ・I	Sc．0	9¢7•T	6とて＇0	L
ヶて「	TS． 0	とてワ・T	0てて＊0	9
とて＇I	$95^{\circ} 0$	SSE•T	てヵて「0	\bigcirc
6I•T	$79^{\circ} 0$	しで「	89て＊ 0	†
［6\％	$29^{\circ} 0$	297＊	692＊0	ε
$50^{\circ} \mathrm{L}$	$08^{\circ} 0$	805＊${ }^{\text {L }}$	87¢ 0	ζ
$79^{\circ} 0$	18．0	025＊T	L¢E＊0	［
$00^{\circ} 0$	$00^{\circ} \mathrm{L}$	267＊	サど「0	$\cdot D^{\prime}$ I
$\overline{\nabla_{K}}$	$\overline{\mathrm{H}_{K}}$	$\sqrt[n]{x}^{565}$	$\sqrt{\sqrt{807}}$	－${ }^{\text {a }}$

TABLE B-13

Exhibit B-4

Ionic Concentration in Molarity, M

Middle $\left(\mathrm{P}_{3}\right)$
Buffer NaCl
$\begin{array}{llll}n & n & n & n \\ 0 & n & n \\ 0 & n & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0\end{array}$
$\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ \cdots & ! & H \\ 0 & 0 & 0 & 0 & 0 \\ 0\end{array}$ Middle (P_{1})
Buffer NaCl
$\begin{array}{llll}n & n & n & n \\ 0 & n & n \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0\end{array}$
$\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ \Gamma & \ddots & H & H & H \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & & 0\end{array}$

an

NOTE:

 TABLE B-14
$\mathrm{BR}\left(\mathrm{P}_{2}\right)=6.2$

IABI，F B－14（Cont＇d）

	4	
	페	
	迢	－io rióo io ojo
$\stackrel{n}{\infty}$	啻	
	哭	

$$
\begin{array}{lllllll}
\leftrightarrow & 0 & 4 & 0 & 0 & 0 & 0 \\
M & 0 & n & J & \ddots & N & \ddots \\
& 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{lllllll}
H & 0 & 0 & N & N & \infty & 0 \\
N & 0 & H & H & H & H & H
\end{array}
$$

$$
\begin{array}{l|cccccc}
3 & N & \sim & 0 & 0 & N & N \\
m & 0 & \infty & 0 & N & \sim & 0 \\
0 & 0 & H & N & N & N & H \\
\hdashline & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{lllllll}
& 0 & n & \cdots & \cdots & \cdots & H \\
H & 0 & \Gamma & N & N & N & N \\
i & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& \text { cc Dye }
\end{aligned}
$$

（Cont＇d）
TABLE B－15

クサ・0	80%	L65．0	LS0＊0
Sヶ＊0	てI•0	［09＊0	2 $20^{\circ} 0$
とヶ・0	2I．0	965＊0	7 20.0
ZL＇0	9T＊0	$689{ }^{\circ}$	$660^{\circ} 0$
96．0	92°	$6 \angle L \cdot 0$	LST＊0
00° T	00°［	886.0	L09．0
$\overline{\bar{W}_{K}}$	$\overline{\mathrm{H}_{\Lambda}}$	$\overline{\sqrt{*}^{5} 565}$	\bar{n} ¢ 0^{7}

	ه1		
	禹		®
	＊${ }_{\text {N }} \times$		$\xrightarrow{0}$
$\stackrel{\square}{\infty}$	$\underset{\substack{\$ \\ \hline \\ \hline}}{ }$		U
11			0
$\begin{gathered} \underset{\sim}{*} \\ \underset{\sim}{*} \\ \text { Bix } \end{gathered}$	E 0 \sim 0 0 0	$\dot{H} \rightarrow N m ナ n$	－

$$
\begin{aligned}
& \text { N} \\
& \stackrel{1}{0} \\
& \text { "1 } \\
& \underset{\sim}{\sim} \\
& \stackrel{\sim}{\sim}
\end{aligned}
$$

	\triangle	rióo o o óo ó rio
	風	－$\dot{\circ} \dot{\circ} \dot{\circ} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{\circ}$
$\begin{aligned} & 0 \\ & \dot{f} \\ & u \end{aligned}$	$\begin{gathered} * \\ N_{n}^{*} \\ \text { N } \end{gathered}$	
$\begin{aligned} & \widehat{e^{m}} \\ & \text { 年 } \end{aligned}$	$\stackrel{\bigcirc}{\substack{1 \\ \hline}}$	$\therefore \dot{\circ} \dot{\circ} \dot{\circ} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0}$

	\triangle	
	禹	
	＊${ }_{\text {in }}$	
$\begin{aligned} & n \\ & \infty \\ & \end{aligned}$	$\begin{gathered} \stackrel{s}{\prime} \\ \stackrel{\rightharpoonup}{\prime} \end{gathered}$	 －$\dot{\circ} \dot{0} \dot{0} \dot{o} \dot{0} \dot{\circ} \dot{0} \dot{0} \dot{0}$
	타 0 \sim 0 0 0	

$$
\widehat{\sim}
$$

$$
\begin{array}{lllllllll}
m=1 & 0 & 0 & n & n & 0 & \pi & 0 & 0 \\
\infty & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{aligned}
& \text { Run } \# 23 \\
& \operatorname{TR}\left(P_{2}\right)=6.2
\end{aligned}
$$

$$
\begin{aligned}
& 403 \mu \\
& \hline 0.001 \\
& 0.052 \\
& 0.068 \\
& 0.092 \\
& 0.097 \\
& 0.094 \\
& 0.092 \\
& 0.092 \\
& 0.086 \\
& 0.070 \\
& 0.064
\end{aligned}
$$

$$
\begin{array}{llllllllllll}
\| & 0 & 0 & \infty & 0 & N & 0 & 0 & n & n & 0 & \pm \\
n & \infty & 0 & n & n & + & \ddagger & n & n & n & n
\end{array}
$$

Cycle,n

TABLE B-17 (Cont'd)

TABLE B-18

\sim
\bullet
11

7
x^{7}
n
in

 Y̌a
$\left(P_{2}\right)$

$\underline{C y c l e, n}$

L0＇0	$90^{\circ} 0$	LZS．0	ゅ20＊0	$6 \neq 0 \quad I I \cdot 0$				
						¢I8＊0	$\angle ゅ I \cdot 0$	01
£ $0 \cdot 0$	$90^{\circ} 0$	$605 \cdot 0$	$970 \cdot 0$	Ts．0	ZI＇0	乙Е8．0	†SI•0	6
01.0	LO． 0	$8 \pm ¢ * 0$	乙¢0．0	カッ・0	$\varepsilon \tau \cdot 0$	$66 L^{\circ} 0$	9LI•0	8
90.0	50.0	8 IS．0	£ 20×0	$09 \cdot 0$	$\varepsilon[\bigcirc 0$	$168^{\circ} 0$	$\varepsilon \angle T \cdot 0$	L
60.0	$90^{\circ} \mathrm{C}$	LES 0	$\angle 20 \% 0$	¢s．0	サI＊0	$698{ }^{\circ} 0$	08I．0	9
IT．0	$10^{\circ} \mathrm{O}$	2S5．0	Lع $0^{\circ} 0$	L＇0 0	$\varepsilon I \cdot 0$	¢58．0	891．0	¢
£I．0	$60 \cdot 0$	$\varepsilon \angle 5 \cdot 0$	£ $\ddagger 0^{\circ} 0$	$\angle 9^{\circ} 0$	\＆I＇0	$06^{\circ} 0$	69T＊0	7
¢ $\varepsilon^{\circ} 0$	6T•0	97L＊0	$280^{\circ} 0$	［L＇0	¢I．0	$0 \angle 6{ }^{\circ} 0$	202•0	ε
zs．0	โع．0	798.0	\dagger ¢ ${ }^{\circ} 0$	$89 \cdot 0$	Lて．0	L86．0	Siz＊0	Z
$96^{\circ} 0$	［5＊0	TLT＇${ }^{\text {I }}$	ててZ•0	てて・	9サ・0	05ヶ＊L	909.0	I
00.1	$00 \cdot$ T	267．	ทモ゙・0	$00^{\circ} \mathrm{I}$	$00 \cdot$ T	709．T	$00{ }^{\circ} \mathrm{I}$	$\cdot{ }^{2} \cdot 1$
$\overline{V_{\Lambda}}$	$\overline{\mathrm{H}_{\Lambda}}$	$\bar{\downarrow} 565$	$\overline{\sqrt{807}}$	$\overline{\mathrm{V}_{K}}$	$\overline{\mathrm{H}_{\Lambda}}$	$\overline{n_{4} 56 \mathrm{~S}}$	$\overline{\sqrt{807}}$	
	$0 \cdot \square=\left(\varepsilon_{\text {d }}\right)$ yg							

$$
\begin{array}{llllllllllll}
& 0 & -1 & -1 & g & g & 0 & 0 & n & \hat{0} & 0 & 0 \\
& \dot{\sim} & 0 & \dot{0} & 0 \\
0
\end{array}
$$

TABLE B-18 (Cont'd)
$\frac{\text { Table Ex-B-4.1 }}{}$
SUMMARY OF THE EXPERIMENTAL RESULTS
TWO-COLUMN SYSTEM: MODE 2 BATCH OPERATION

Number of
Cycles, n

SUMMARY OF THE EXPERIMENTAL RESULTS
TWO-COLUMN SYSTEM: MODE 2 SEMI-CONTINUOUS OPERATION
Table Ex-B-4. 2
Haemoglobin

Table Ex-B-4. 3

SUMMARY OF THE EXPERIMENTAL RESULTS

TWO-COLUMN SYSTEM: MODE 2 SEMI-CONTINUOUS OPERATION

$\begin{array}{l}\text { Number of } \\ \text { Cycles, } \\ n\end{array}$

$\cdots N \rightarrow N+\infty$

Ionic Concentration in Molarity, M												
Feed (wt \%)			Top (P_{1})		Top (P_{3})		Midd1	$\left(\mathrm{P}_{2}\right)$	Bot	(P_{1})	Bottom (P_{3})	
Run	Haemoglo	bumi	Buffer	NaCl								
25	0.02	0.02	0.15	0.05	0.15	0.05	0.15	0.05	0.15	0.05	0.15	0.05
26	0.02	0.02	0.20	0.05	0.20	0.05	0.20	0.05	0.20	0.05	0.20	0.05
27	0.01	0.01	0.20	0.05	0.20	0.40	0.20	0.05	0.20	0.05	0.20	0.05
28	0.02	0.02	0.05	0.05	0.20	0.40	0.15	0.05	0.20	0.40	0.05	0.05

[^2]

 $5 \cdot 8=\left({ }^{{ }_{\mathrm{d}}^{\mathrm{d}}}\right.$) पृष

TABLE B-19

$\square$$\dot{j} \dot{j} \times m \rightarrow \ln \sim \wedge \infty$

∞	$E-1$	O	-1	n	\hat{n}	0	0	0	0	-	0

Run \#26				
$\operatorname{TR}\left(\mathrm{P}_{1}\right)=8.5$				
Cycle,n	403μ	595* μ	y_{H}	$\mathrm{y}_{\text {A }}$
I.C.	0.892	1.239	1.00	1.00
1	0.851	1.182	0.95	0.90
2	0.744	1.112	0.83	0.85
3	0.632	1.012	0.71	0.71
4	0.555	0.912	0.62	0.54
5	0.485	0.869	0.51	0.54
6	0.438	0.845	0.49	0.50
7	0.392	0.767	0.44	0.35
8	0.350	0.804	0.39	0.49
9	0.281	0.755	0.33	0.43
10	0.284	0.749	0.32	0.42

TABLE B-20 (Cont'd)

TABLE B-20 (Cont'd)

$$
\begin{aligned}
& \begin{array}{l}
\text { N. } \\
\bullet \\
\bullet \\
״
\end{array} \\
& \text { Run \#26 }
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& \dot{J} \\
& \|
\end{aligned}
$$

Run 非27

$\operatorname{TR}\left(\mathrm{P}_{3}\right)$

Cyc1e,n

$$
\begin{aligned}
& \sim \\
& 0
\end{aligned}
$$

TABLE B-21(Cont'd)

$$
\begin{aligned}
& \text { Dye } \\
& \stackrel{\sim}{\bullet} \\
& \operatorname{MR}\left(P_{2}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& 595^{*} \mu: 0.2 \text { cc Sample/5.0 }
\end{aligned}
$$

$\stackrel{.}{-}$
$\operatorname{TR}\left(P_{3}\right)=$
Run 非28
Table Ex-B-5.1
SUMMARY OF THE EXPERIMENTAL RESULTS
TWO-COLUMN SYSTEM: MODE 3 BATCH OPERATION

Number of Cycles, n	Haemoglobin-Albumin: $\mathrm{P}_{1}=8.5, \mathrm{P}_{2}=6.2$ and $\mathrm{P}_{3}=4.0$											
	Case I.				Case II.				Case III.			
	Dead Vol. = 0 cc. Top Bottom				$\begin{array}{ll} \text { Dead Vol. } & =30 \mathrm{cc} . \\ \text { Top } & \text { Bottom } \end{array}$				Dead Vol. $=40 \mathrm{cc}$. Top Bottom			
	$\frac{y_{H}}{y_{0}}$	$\frac{y_{A}}{y_{0}}$	$\frac{\mathrm{y}_{\mathrm{H}}}{\mathrm{y}_{0}}$	$\frac{y_{A}}{y_{0}}$	$\frac{y_{H}}{y_{0}}$	$\frac{y_{A}}{y_{0}}$	$\frac{\mathrm{y}_{\mathrm{H}}}{\mathrm{y}_{0}}$	$\frac{\mathrm{y}_{\mathrm{A}}}{\mathrm{y}_{0}}$	$\frac{\mathrm{y}_{\mathrm{H}}}{\mathrm{y}_{0}}$	$\frac{\mathrm{y}_{\mathrm{A}}}{\mathrm{y}_{0}}$	$\frac{\mathrm{y}_{\mathrm{H}}}{\mathrm{y}_{0}}$	$\frac{y_{A}}{y_{0}}$
1	0.715	1.193	1.296	0.843	0.694	1.270	1.431	0.992	0.403	0.922	1.303	0.889
2	0.570	1.344	1.469	1.140	0.502	1.265	1.514	0.821	0.202	0.972	1.334	0.760
3	0.481	1.381	1.564	0.592	0.443	1.373	1.668	1.012	0.150	0.851	1.637	0.622
4	0.498	1.403	1.593	0.741	0.415	1.451	1.603	1.359	0.151	0.893	1.538	0.514
5	0.384	1.383	1.690	0.679	0.361	1.450	1.595	1.385	0.045	0.901	1.613	0.572
6	0.650	1.411	1.677		0.341	1.395	1.526	1.233	0.044	1.002	1.564	0.571
7	0.502	1.640	1.494		0.294	1.292	1.454	1.105	0.152	1.048	1.472	0.585
8	0.484	---	---		0.385	1.284	1.333	0.773	0.101	0.920	1.405	0.580
9	---		---	---	0.280	1.022	1.238	0.882	0.040	1.001	1.325	0.531
10	---	--	---	---	0.256	1.204	1.235	0.964	0.115	0.904	1.144	0.567

Exhibit B-6

Run	Feed (wt \%)		Ionic Concentration in Molarity, M					
	Haemoglobin	Albumin	Buffer	$\mathrm{NaC1}$	Buffer	$\mathrm{NaC1}$	Buffer	NaCl
29	0.015	0.015	0.10	0.05	0.15	0.05	----	----
30	0.010	0.010	0.10	0.00	0.15	0.05	----	
31	0.020	0.020	0.15	0.05	0.20	0.05	----	----
32	0.020	0.020	0.15	0.00	0.20	0.05	----	----
33	0.020	0.020	----	----	0.15	0.05	0.15	0.05
34	0.020	0.020	----	----	0.15	0.05	0.15	0.05
35	0.020	0.020	----	----	0.15	0.05	0.15	0.05

ָ
॥
我|

Run \#31
TR $\left(P_{1}\right)=8.5$
Cycle,n
I.C.
1
2
3

$$
\begin{array}{c|cccc}
\text { En } & \infty & 8 & \text { n } & 8 \\
\hline
\end{array}
$$

Run \#32
$\operatorname{TR}\left(P_{1}\right)=8.5$
Cycle,n
I.C.
1
2
3

TABLE B-28

$\begin{array}{lllllllll} & 0 & N & 0 & N & M & 0 & \pm & N \\ 0 & N\end{array}$
0
\dot{y}
$i 1$
品

TABLE B-29

$595^{*} \mu: 0.1$ cc Sample/5.0 cc Dye

Table Ex-B-6.1

SUMMARY OF THE EXPERIMENTAL RESULTS

TWO-COLUMN SYSTEM: MODE 4 BATCH OPERATION

Haemoglobin and Albumin

	Haemoglobin	Albumin
	$\mathrm{P}_{1}=8.5, \mathrm{P}_{2}=6.2$	$\mathrm{P}_{2}=6.2, \mathrm{P}_{3}=4.0$
Number of	$\left\langle y_{T}\right\rangle_{n}$	$\left\langle y_{T}\right\rangle_{n}$
Cycles, n	$\left\langle\mathrm{Y}_{\mathrm{B}}\right\rangle_{\mathrm{n}}$	$\overline{\left\langle Y_{B}\right\rangle_{n}}$
1	3.817	3.051
2	8.779	7.224
3	13.258	11.258
4	14.269	11.650
5	14.901	12.572

Table Ex-B-6. 2
SUMMARY OF THE EXPERIMENTAL RESULTS
TWO-COLUMN SYSTEM: MODE 4 SEMI-CONTINUOUS OPERATION

APPENDIX C
 COMPUTER PROGRAM ON EQUILIBRIUM THEORY:
 SEPARATION OF MULTI-COMPONENT VIA
 PH-PARAMETRIC PUMPING

The following material is appended to this work to detail the computational operations discussed in Chapters II and V. There follow, in order,

Table C-1, Nomenclature for Computer Program Input and Output

Exhibit C-1, The Computer Program
Exhibit C-2, Sample Input
Exhibit C-3, Sample Output, First 5 Cycles of Operation

TABLE C-1

NOMENCLATURE FOR COMPUTER PROGRAM INPUT AND OUTPUT

Program Symbol	Text Symbo1	Destination
YHCOL1	--	average solute concentration of a higher isoelectric point in the fluid phase for a column, duration t_{I}
YACOL 2	--	average solute concentration of a lower isoelectric point in the fluid phase for a column, duration $t_{\text {II }}$
YHRS 3	--	average solute concentration of a higher isoelectric point in the reservoir, duration t_{I}
YARS 4	--	average solute concentration of a lower isoelectric point in the reservoir, duration $t_{I V}$
YHRSL5	$\mathrm{y}_{\text {ML }}$	average solute concentration of a higher isoelectric point in the middle reservoir, $M L$, duration t_{V}
YARSL6	$\mathrm{y}_{\text {ML }}$	average solute concentration of a lower isoelectric point in the middle reservoir, ML, duration $t_{V I}$
YHRSR7	y_{MR}	average solute concentration of a higher isoelectric point in the middle reservoir, MR, duration $t_{V I I}$
YARSR8	y_{MR}	average solute concentration of a lower isoelectric point in the middle reservoir, MR, duration $t_{V I I I}$
YHAO	y_{0}	initial solute concentration of a higher isoelectric point in an anion exchanger column
YAAO	y_{0}	initial solute concentration of a lower isoelectric point in an anion exchanger column
YHCO	y_{0}	initial solutie concentration of a higher isoelectric point in a cation exchanger column

TABLE C-1 (Cont'd)

Program Symbo1	Text Symbol	- Designation
YACO	y_{0}	initial solute concentration of a lower isoelectric point in a cation exchanger column
YHO	y_{0}	solute concentration of a higher isoelectric point in the feed
YAO	y_{0}	solute concentration of a lower isoelectric point in the feed
V	V	volume of fluid phase in the column
VDEAD	$\mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{T}}$	reservoir dead volume
V_{B}	V	volume of solid phase in the column
HAKP1	$\mathrm{k}_{\mathrm{p}_{1}}^{-}$	anion exchanger equilibrium constant for a higher isoelectric point solute at $\mathrm{pH}=\mathrm{P}_{1}$ (high pH level)
HCKP 1	$\mathrm{k}_{\mathrm{p}_{1}}^{+}$	cation exchanger equilibrium constant for a higher isoelectric point solute at $\mathrm{pH}=\mathrm{P}_{1}$ (high pH level)
AȦKP 2	$k_{p_{2}}^{-}$	anion exchanger equilibrium constant for a lower isoelectric point solute at $\mathrm{pH}=\mathrm{P}_{2}$ (middle pH level)
ACKP 3	$\mathrm{k}_{\mathrm{p}_{3}}^{+}$	cation exchanger equilibrium constant for a lower isoelectric point solute at $\mathrm{pH}=\mathrm{P}_{3}$ (low pH level)
YHOO	y_{0}	initial solute concentration of a higher isoelectric point in the middle reservoir, MR
YAOO	y_{0}	initial solute concentration of a lower isoelectric point in the middle reservoir, MR
$\left.\begin{array}{l} \operatorname{YHRSI}(I=I) \\ \operatorname{YARSI}(I=1) \end{array}\right\}$	$\left\langle y_{T}\right\rangle$	the product(s) in the top reservoir
$\left.\begin{array}{l} \operatorname{YHRSI}(\mathrm{I}=\mathrm{M}) \\ \operatorname{YARSI}(\mathrm{I}=\mathrm{M}) \end{array}\right\}$	$\left\langle y_{B}\right\rangle$	the product(s) in the bottom reservoir

Jǖ
4

PhRAMETRIL FIJMPING

EXHIBIT C-1

CINENSIUH		
1 YHCOL 1 ($10,2(10)$, YHCOL $2(10,200\rangle$, YHCOL 3610,200$)$, YHCOL 4 (10,200$)$,		
$2 \mathrm{YHCOLS}\{10,200$), YHCOLE $(10,200), Y H C O L T(10,200), Y H C O L 8\langle 10,200\rangle$, 		
4YACOLS (10,200), YACOLE (10,200), YALOLT: 10,200$), Y A C O L 8(10,200)$, DIMENSIOH		
1YHRSK $10,20(1), Y H R S Z(10,200), Y H R S 3\{10,200\rangle$, YHRS $4(10,200)$, $2 Y H R S 5(10,200), Y H R S G(10,200), Y H R S 7(10,200), Y H F S 8(10,200)$, 3 YARS $\langle(10,200\rangle$, YARS $2(10,200\rangle$, YaRS $3(10,200)$, YaRS $4(10,200)$, DIMENSIUH		
1YHRSLI< 10,200$)$, YHRSL2 10,200$)$, YHRSL 3 (10,200$)$, YHRSL $4(10,200)$,		
3YARSL1 (10,200), YARSL 2 (10,200), YARSL 3 (10,200$)$, YARSL4 10,200$)$,		
4YARSLS (10,200), YARSL6 (10,200), YARSLT(10,200$)$, YARSL8 (10,200), DIMENSIOH		
1 YHRSR1 (10,200$), Y 4 R S R 2(10,200), Y H R S R 3<10,200), Y H R S R 4(10,200)$,		
2YHRSRS 10,200$), Y H R S R 6(10,200), Y H R S R T(10,200), Y H R S R E(10,200)$,		

FORHAT (5N, 'YHRS3=', E25.5, 'YARS3=', E25.5) $1, \mathrm{M}$

351 YHCOL $4(I, J)=\langle V * Y H R S R 3(I+1, J\rangle+V B * H A K P 2 * Y H C O L 3(I, J))(V+V B * H A K P 3)$

 WRITE(6, 2222)I

 YHFSR4(I, 1$)=Y H R S R Z(I, d)$ YARSR4(I, J)=YARSR3(I, J)
YHFSL4(I, 1) $=$ YHRS $6 \mid 3(1, d)$ YARSL4(I, d)=YARSL3(I, d) URITE 6,2222$)$ I
$\begin{aligned} & \text { FORMAT } 5 \mathrm{SK}, \\ & \text { GO TO } 350\end{aligned}$
2

COHTIMUE
YHRS4くMM,

[^3]$$
\dot{\hat{H}}=\dot{i}-1 j \text { 小水 } I
$$
$$
I F(A) 451,451,452
$$
\[

$$
\begin{aligned}
& 1 \text { (H)4JI, 4J1, 4J® } \\
& \text { YHKS5 I , J })=Y \text { HRS4i }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { YHRSS(I, J }=Y \text { YHRS4 } \\
& \text { YARSS I , J })=Y \text { 'ARS4 }
\end{aligned}
$$

$$
I F(I-1) 4510,451
$$

$$
\begin{aligned}
& N \\
& w \\
& w \\
& N \\
&
\end{aligned}
$$

$$
\text { URITER } 6,999 \text { JY'HESS }\{1, J\rangle, \text { 'ARSS }\{1, J\rangle
$$

$$
\text { YHRSSS }(I+1, d)=Y \text { HCOLS }(I, J)
$$

$$
\begin{aligned}
& \text { Y'ARSRS(I + } 1, J)=\text { YHCOLS }(I, J) \\
& \text { YHRSLS }(I+1, J)=Y H R S L 4(I+1, J)
\end{aligned}
$$

$$
I I=I+1
$$

$$
\text { () }(V+V D E A D+V B+A C K F C)
$$

$$
\text { YHRS5\{I + } 1, J \text {) }=\text { YHEULST } I, ~ d\}
$$

$$
\text { YARS5 (I }+1, J)=\forall H C O L 5(I, d)
$$

$$
I I=I+1
$$

	$\stackrel{10}{10}$		\cdots			NTM	

WRITE（6，玉こえこ）MM

1008 FORNAT（SK，＇YHRS8＝＇，E25．5，＇YARSA＇，Eट5．5） $L=J$
$00850 \quad 1=1$ ，M
$A=\{-1) *: 4$

851 YHRS $(\langle 1, J\rangle=$ YHRS8 $(I, L$ ）
YARSI（I，J）＝YARSB（I，L）
15（1－1 $38510,8510,8520$
851 ū URITEく6，2ここ2）I

QL ）

QL ）$)$（V $V+V D E A D+V B * A G K P I)$
YHRSL $1\langle I+1, J\rangle=Y$ CCOL $\langle(1, j\rangle$
YARSL $(I+1, j)=Y$＇HRSRR $I+1, L$ ．
YARSRI（I＋1，J）＝YARSRZ $(I+1, L$ ） $I I=I+1$

WRITE（6，2222）II

URITE（6， 1009 YHRSL $1(I+1, J)$ ，YARSLi（I＋1，J）， 1 YHRSR1〈 $1+1, j$ ），YARSR1〈 $1+1, j\rangle$
1009 FURMATSSX，＇＇YHRSLI＝＇，E20．5．

GO TO 650

1 ）KVDEAD＋＇V＋VB：KHC．KP 2 ．

 242
243
244
245

EXHIBIT C-2

SAMPLE INPUT

		$\begin{gathered} M \\ 4 \end{gathered}$		$\begin{gathered} \text { NCYCL } \\ 30 \end{gathered}$				
$\begin{aligned} & \text { YHAO } \\ & 1.000 \end{aligned}$	$\begin{aligned} & \text { YAAO } \\ & 1.000 \end{aligned}$	$\begin{aligned} & \mathrm{YHCO} \\ & 0.497 \end{aligned}$	$\begin{aligned} & \text { YACO } \\ & 0.660 \end{aligned}$	$\begin{aligned} & \text { YHO } \\ & 0.692 \end{aligned}$	$\begin{aligned} & \text { YAO } \\ & 0.941 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & 30.000 \end{aligned}$	$\begin{aligned} & \text { VDEAD } \\ & 30.000 \end{aligned}$	$\begin{aligned} & \text { VB } \\ & 20.000 \end{aligned}$
$\begin{aligned} & \text { HAKP1 } \\ & 2.500 \end{aligned}$	HCKP 1.50		$\begin{aligned} & \text { AAKP1 } \\ & 4.000 \end{aligned}$	$\begin{aligned} & \text { ACKP1 } \\ & 1.300 \end{aligned}$				
$\begin{aligned} & \text { HAKP2 } \\ & 0.600 \end{aligned}$	HCKP 3.00		$\begin{aligned} & \text { AAKP2 } \\ & 4.000 \end{aligned}$	$\begin{aligned} & \text { ACKP2 } \\ & 1.500 \end{aligned}$				
$\begin{aligned} & \text { HARP3 } 3 \\ & 0.300 \end{aligned}$	HCKP 4.00		$\begin{aligned} & \text { AAKP3 } \\ & 2.000 \end{aligned}$	$\begin{aligned} & \text { ACKP } \\ & 4.500 \end{aligned}$				

0.10000 E	01 YARSR2=	0,10000E 01
O.10000E	01 YARSL3 $3=$	0.84100E 00
0.10000 E	0) YARSL4 $=$	0,84100E 00
0.10000 E	01 YARSL5 $=$	0.84100E 00
0.10000 E	01 YARSL6 $=$	0.84100 E 00

SENTRY		
$\cdots \cdots J=$		
$1=$		1
	YHHSC $=$	
I $=$		2
	YHRSL2 =	
$\mathrm{I}=$		3
	YHRSZ $=$	
I $=$		1
	YHKS 3 =	
$1=$		2
	YHRSH3=	
$I=$		3
	YHAS $3=$	
$1=$		1
	YHKS4=	
$1=$		2
	YHKSR4=	
$1 \pm$		3
	YHKS $4=$	
$1=$		1
	YMHSS=	
$1=$		2
	YHKSRS=	
$1=$		3
	YHKS $5=$	
$1=$		1
	YHKSOE	
$1=$		2
	YHHSRG $=$	
12		3
	YHHSO $=$	
$1=$		1
	YHWS7 $=$	
$1=$		2

$$
\text { U. } 70193 E \text { UOYHHSKT }=
$$

$$
0.76193 E \text { OOYHRSH } 8=
$$

$$
0.12636 E 01
$$

$$
\begin{array}{r}
0.13361 E 01 \\
0.10803 E 01 \\
0.67582 E \text { OOYHRSR?= }
\end{array}
$$

0.74753 E	UOYAKSH7 $=$	$0.94550 E 00$
0.74753 E	OOYARSRB＝	0.94550 E 00
0.74753 E	00YARSRI $=$	0.94550 E 00
0.74753 E	00 YARSRZ $=$	0.94550 E 00
$0.98227 E$	oOYARSL3 $=$	0.67582 E 00
$0.98227 E$	00 YARSLA $=$	0．67582E OO
$0.98227 E$	007ARSL5 $=$	0.67582 E 00
$0.98227 E$	00YARSL6＝	0.67582 E 00
$0.62197 E$	OOYARSR7 $=$	$0.91828 \mathrm{E} \quad 00$
$0.62197 E$	OOYARSRE $=$	$0.91828 E 00$

$0.11085 E 01$ ＝8HSEHA00 $366079^{\circ} 0$ 10 HLいいロじい

$$
\begin{aligned}
& =\angle 85+4100366074^{\circ} 0 \\
& 10358011^{\circ} 0 \\
& 103 \angle 1171^{\circ} 0 \\
& =9758 H 100382816^{\circ} 0
\end{aligned}
$$

$$
\begin{aligned}
& =9754 \text { Hh00 } 382816^{\circ} 0 \\
& 10326511^{\circ} 0 \\
& 103 \angle 11511^{\circ} 0
\end{aligned}
$$

$$
\begin{aligned}
& =5754 H A 00 \text { ЭH2816 } 0 \\
& \text { i0 } 326511^{\circ} 0 \\
& 10319551^{\circ} 0
\end{aligned}
$$

$$
\begin{aligned}
& =67 S H H A 00 \text { 36629400 } \\
& 10326511^{\circ} 0 \\
& 10 \exists 19551^{\circ} 0
\end{aligned}
$$

$$
=1 \text { HS } B H A O O \text { 3285 } \angle 9^{\circ} 0
$$

$$
1.0350801^{\circ} 0
$$

$$
\begin{aligned}
& 10350801^{\circ} 0 \\
& 1039 £ 421^{\circ} 0
\end{aligned}
$$

BE 00
$0.91828 E 00$
B2E 00
$0.58282 E 00$
$00351506^{\circ} 0$

	8
8	～
	\bigcirc

0.5301 LE 00
0.5301 AE 00
$0.89905 E 00$
$0.89905 E 00$
$0.89905 E 00$
$00350668^{\circ} 0$
\circ
0
w
un
0
0
0
0
0
＝2tsera
$0.55730 E 00$
$0.96131 E$ OOYARSL $3=$
$0.96131 E 00$
＝S7SUVA00 Э15196＊0
$=9758 \vee 100$ 3iร196＊0
$=\angle y S a \forall 100$ 379225＊0
＝ダS
$00.350668^{\circ} 0$
$00350668^{\circ} 0$

0
0
0
$=$ โ758『100 $352056^{\circ} 0$

0．53014E 00YHKSR2＝
0.15155 F 01

10 3E0511＂0

$10355151^{\circ} 0$
10 E20SIIO

$=\angle$ SSAHANO $36 カ 955^{\circ} 0$
$10376601^{\circ} 0$
$10302 \angle 51^{\circ} 0$ $=885+H R 0036 カ 955^{\circ} 0$
$10376601^{\circ} 0$
$10302 \angle 51^{\circ} 0$ ＝88Sthr00 36カ955 ${ }^{\circ} 0$ $10302 \angle 51^{\circ} 0$ $=1$ HS सHAOO $359005^{\circ} 0$
$10376601 \circ 0$ $10329951^{\circ} 0$
$10376601^{\circ} 0$ ＝2ASAHAOO $350005^{\circ} 0$ 10 32995 $5^{\circ} 0$

 $=1758 \forall 100$ 352い56＊0

 $0.95025 \mathrm{ouyakSLe}=$

131E BIYARSLZ＝
0．GAZ2SF OUYAKSP＝
10.1 Hza7E OMYAKSS O．1H297E UIYARSS $=$
O．SITHAE OOYARSNS＝ $=$＝รSHVAOO 75ट299＊0
 ＝カSHVADO Зك228900 0．1月？97E 01YARSS＝

 $=\angle S 甘 \forall \lambda 10$ 35S28100 $=\angle 7 S H \forall A T 0$ 308LOTO

$$
0.194 \text { ?4t OIYAHS4 }=
$$

$$
\begin{aligned}
& 0.61882 E \text { OUYARS4 }= \\
& 0.19424 E \text { OIYARSS }=
\end{aligned}
$$

$$
=54 S+8 A 00 \quad 305 \sum 05^{\circ} 0
$$

$$
0.65195 E \text { OUYARS5 }=
$$

$$
0.19424 E \text { O1YAKSH= }
$$

$$
0.05195 E \text { OUYARST }=
$$

$$
0.19231 E \text { 01rarsi }=
$$

$$
\begin{aligned}
& 0.10542 E \text { OIYARSLA }= \\
& 0.65195 E \text { OUYARSB= } \\
& 0.19231 E \text { OIYARSI }=
\end{aligned}
$$

$$
\begin{aligned}
& 0.93 \text { YRIE 0UYAHSLI }= \\
& 0.56665 F \text { OUYAKSI }= \\
& 11.19231 E \text { 01YARSZ }=
\end{aligned}
$$

$$
0.93881 E \text { 0OYARSLE }=
$$

$$
\begin{aligned}
& \text { U.5h66SE 00YARSC= } \\
& \text { U.20289E 01YARSS= }
\end{aligned}
$$

$$
\begin{gathered}
0.20289 E \text { OIYARS } 3= \\
0.45975 E \text { 0UYARSKS }= \\
0.56665 E \text { OUYARS } 3= \\
0.20289 F \text { OIYARS4 }= \\
0.45975 E \text { 00YARSR4 }=
\end{gathered}
$$

$$
\begin{aligned}
& 0.56665 E \text { OUYAKS4 }= \\
& 1.202 B G F \text { OIYAKSS }=
\end{aligned}
$$

0.95025E	$00 \quad$ YARSL4 $=$	0.50005 O O
0.95025 E	00 YARSL $5=$	0.50005 E 00
$0.95025 E$	OOYARSL6 $=$	0.50005 E 00
0.50330 E	OCYARSNT $=$	0.89642E 00
0.50330 E	00YARSR8=	0.89642E 00
$0.50330 E$	OOYARSR1 $=$	0,89642E 00
0.50330 E	00 YARSR2=	0.89642 E 00
0.93881 E	OOYARSL $3=$	0.48268E 00
0.93881 E	00 YARSL4 $=$	$0.48268 E 00$

$$
\begin{aligned}
& 0.11472 E \text { 01YARSt }= \\
& 0.10139 E 01 \text { YARSRG }=
\end{aligned}
$$

$$
\begin{aligned}
& 0.10000 E \text { OIYARSG }= \\
& 0.11539 E \text { 01YARS7 }=
\end{aligned}
$$

$$
\begin{aligned}
& 0.11539 \mathrm{E} 01 \text { YARS7 }= \\
& 0.11994 \mathrm{E} \text { 01YARSLT }=
\end{aligned}
$$

$$
\begin{array}{r}
0.10000 \mathrm{E} \text { 01YARS7= } \\
0.11539 E \text { 01YARSB }= \\
0.11994 E \text { 01YARSLB= }
\end{array}
$$

$$
\begin{aligned}
& =875 \Delta \forall A 10319911^{\circ} 0 \\
& =8 S \text { BVAIO } 365515^{\circ} 0
\end{aligned}
$$

$$
\begin{aligned}
& =\angle 758 \forall A 103 \angle 9911^{\circ} 0 \\
& =\text { LS甘VA10 } 365511^{\circ} 0
\end{aligned}
$$

$$
\begin{gathered}
0.10000 E \text { 01YARSR }= \\
0.11539 E \text { O1YARSI }= \\
0.10248 E \text { 01YARSLI }= \\
0.99233 E \text { OOYARSI }= \\
0.99909 E \text { OOYARSLI= }
\end{gathered}
$$

$$
0.86905 \mathrm{E} \text { OOYARS } 1=
$$

0.11539E 01YARSZ= U.10248E 01YARSLZ $=$
0.10658 E 0/YARS2= $0.99909 \mathrm{EOYARSL} 2=$
0.86905E OOYARSZ $=$

n

$003158 \angle 6^{\circ} 0$
$003158 \angle 6^{\circ} 0$

8	8	용	8	$\overline{0}$	$\bar{\square}$	$\stackrel{\square}{0}$	$\overrightarrow{0}$	$\overrightarrow{0}$	$\overrightarrow{0}$
出	$\underset{\sim}{\sim}$	$\stackrel{4}{\square}$	in	$\underset{\square}{\square}$	$\underset{\sim}{\sim}$	$\stackrel{\text { w }}{\sim}$	\％	W	w
$\stackrel{\sim}{\infty}$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	N1	8	$\stackrel{3}{8}$	－	$\underset{\sim}{\sim}$	3
0	0	$\stackrel{0}{0}$	${ }_{0}$	\cdots	\because	\because	\because	\because	－
\bigcirc	\bigcirc	\bigcirc	0	－	－	－	\bigcirc	\bigcirc	\bigcirc

$=675884$
$=0754 \vee A$
$00360666^{\circ} 0$
$1038 \mathrm{O} 05^{\circ} 0$

$=975$ \＆VA00 $360666^{\circ} 0$
$=97 S$ YVAlO $396201^{\circ} 0$
＝＝8BS甘VAIO 3LDEOI゚O
＝84Savalo $389001^{\circ} 0$
$=I 8 S \Delta \forall A 10389001^{\circ} 0$
$=I 8 S 甘 \forall A 10 ~ 3 L 7501^{\circ} 0$

$$
\begin{aligned}
& 0.13140 \mathrm{E} \text { 01YARS4= }
\end{aligned}
$$

$$
\begin{aligned}
& =5 S H V A O O \text { 35DE6 } 00^{\circ} 0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
0.12907 E \text { 01YARS } 8= \\
0.12431 E \text { 01YARSLA }=
\end{array} \\
& \begin{array}{l}
\text { U.12488E 0IYARSGF } \\
0.11392 E \text { 01YARSLB= }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 0.12907 E \text { 01YARSI= }
\end{aligned}
$$

0.10347 E	01 Y	YARSR2E	0.10244 E 01
0.10068 E	01 r	YARSR2＝	0.10413 E 01
0.10689 E	01YARSL3 $=$		$0.93708 E 00$
0.98428 E	00YARSL3 $3=$		0.95205 E 00
$0.10689 E$	01	YARSL4E	0.93708 E 00
$0.98428 E$	00	YARSL4 $=$	0.95205 E 00
0.10689 E	01 Yarslst		0．93708E 00
0.98428 E	ooyarslse		0．95205E 00
0.10689 E	01 Yarsle $=$		0．93708E 00
0.98428 E	00YARSL6 $=$		0.95205 E 00

$$
\begin{aligned}
& 0.78335 E \text { OUYARSI }= \\
& 0.12907 E \text { OIYARSZ }=
\end{aligned}
$$

 ＝ワS४४人nO 35558 $1^{\circ} 0$ 0.14504 E 01YARS5 $=$

$$
\text { =ESavalo } 3205 \varepsilon 1^{\circ} 0
$$ 0．12842E 01YARS5＝ $=5 स S 甘 \forall A 00$ 35516600 ＝SSタVAOO $386028^{\circ} 0$

 ＝9女Savalo 32910100

$$
=2 s a v a l o \quad 3 \varepsilon t s 11^{\circ} 0
$$

$$
\begin{aligned}
& \text { =27S8VAIO } 368901^{\circ} 0 \\
& =\text { 2SGVAIO } 3 \angle 0621^{\circ} 0
\end{aligned}
$$

$$
0.95895 \mathrm{E} \text { 00YARSR3 }=
$$

$$
0.13502 \mathrm{E} \text { O1YARS4 }=
$$ $0.99155 E$ 00YARSRG＝ 0.82098 E OVARS6 $=$ $0.14192 E$ 01YARS7＝ 0.13009 E 01 YARSLT $=$

$$
\begin{aligned}
& \begin{array}{l}
0.12302 E 01 \\
0.76864 E 00
\end{array} \\
& \text { 2ट甘S8HAOO } 380 \angle 56^{\circ} 0 \\
& \begin{array}{r}
0.78138 E 00 \\
0.95205 E \text { 00YHRSHZ }=
\end{array} \\
& \begin{array}{r}
0.12302 E 01 \\
0.80474 E 00 \\
0.86124 E \text { UOYHRSL } 0
\end{array} \\
& 0.81384 E 00 \\
& =\text { ETSAHA00 } 300906^{\circ} 0 \\
& 0.12302 \mathrm{E} 01 \\
& 0037 \angle 009^{\circ} 0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
0 \\
0 \\
w \\
\hline \\
\hline \\
\hline \\
\hdashline \\
0 \\
0 \\
0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 10 \text { 320をट1"0 } \\
& 00 \text { 3ヵ二ワO日* } 0 \\
& \text { =STSTHADO } 359066^{\circ} 0 \\
& \begin{array}{l}
=5758 H A 1030 ワ \Sigma 01^{\circ} 0 \\
003 \Sigma \Sigma 196^{\circ} 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
0.89429 E 00 \\
0.10340 E \text { O1YHRSLG } 0
\end{array} \\
& 0.13542 \mathrm{E} 01 \\
& \begin{array}{l}
=\text { LHSHHAON JOIGEG号O } \\
0035050 L^{\circ} 0
\end{array} \\
& 00 \text { 子たちと1ぐ0 }
\end{aligned}
$$

$$
0.132 G 3 E 01 \text { YARS } 8=
$$

$$
0.11075 E \text { OIYARSLB }=
$$

$$
\begin{aligned}
& 0.14192 E \text { OIYARSI }= \\
& 0.11235 E \text { 01YARSLI }=
\end{aligned}
$$

$$
0.9644 B E \text { ooyarslil }=
$$

$$
\begin{aligned}
& \text { 0.14192E 01YARS2= } \\
& 0.11235 E \text { 01YARSLZ }=
\end{aligned}
$$

$$
0.96448 \mathrm{E} \text { 00YARSLZ }=
$$

$$
\begin{aligned}
& 0.72416 E \text { OOYARS2 = } \\
& 0.15818 E \text { O1YARS3= }
\end{aligned}
$$

$$
\begin{aligned}
& 0.15818 \mathrm{E} \text { 01YARS3: } \\
& 0.10878 \mathrm{E} \text { 01YARSR3: }
\end{aligned}
$$

$$
0.14082 E \text { O1YARS3 }=
$$

0.98556E OOYHRSK8=
 $0.88852 E$ OOYHRSHI $=$
$0.73211 E 00$
$0.92721 E$ OOYHRSRI= $0.13234 E 01$
$0.70305 E 00$
$0.88852 E$ 00YHRSRZ 0 $0.72356 E 00$
0.9272 IE OOYHRSRZ= $0.13234 E 01$
$0.74280 E 00$
$0.83066 E$ OOYHRSL3= $00308291^{\circ} 0$ = £ 7SHHAOO 326906*

$0.99065 E 00$
$0.10340 E 01$
$0.88852 E 00$
0.9272 IE 00

[^4]
$0.11235 E$ 01YARSL $3=$
$0.96448 E$ OOYARSL $3=$

0.99155 E OYARSR7 $=$
0.10762 E OIYARSR8 $=$
$0.99155 E$ OOYARSR8 $=$ 0.10362 E OI
0.99155 E 00 $0.11235 E 01$
$0.96448 E 00$
$$
0.13009 E 01 \text { YARSL } 8=
$$
$$
=8 S \forall \forall 100386028^{\circ} 0
$$
$$
0.11303 \mathrm{E} \text { 01YARSI }=
$$
$$
0.12166 E \text { OIYARSC= }
$$ YARSRE
= IS甘YADO 391カटL०0

$0.11235 E$	O1YARSLS $=$
0.96448 E	00YARSL5 $=$
$0.11235 E$	01 YARSL6 $=$
0.96448 E	OOYARSL6:
0.11290 E	01 YARSK? $=$
0.97375 E	00YARSR7 $=$
0.11290E	01YARSR8=
0.97375 E	OOYARSR $8=$
0.11290 E	01 YARSR1 $=$
$0.97375 E$	OOYARSR1 $=$
0.11290 E	01
0.97375 E	00

0.17110 E O1YARS3＝ $0.11589 E$ 01YARSR3 $=$ ＝ESGValo 368カサi゚o． $=$＝̧sava00 3＜0116＂O $0.68124 E$ OUYARS3Z 0．17110E 01PARS4＝ ＝tasavalo 3685150 ＝力S甘VAIO 368カロ1•0 $0.91107 E$ 00YARSR4＝
 $0.17110 E$ OIYARS5 $=$
$0.11866 E$ OIYARSR5＝ ＝SS甘甘ス10 3528を50 ＝54SUVADO $368556^{\circ} 0$

 0．14127E 01YARS6＝ $=98 S$ yvano $368556^{\circ} 0$ $0.73049 E$ OUYARSG $=$ $0.16673 E$ 01YARS7 $=$
 0.14078 E 01YARS7＝ 0．10477E O！YARSL7＝ $=\angle S 甘 \forall 100$ 36カOEL゚O $0.16673 E$ 01YARSB＝ $0.14297 E$ 01YARSLA $=$
$0.14078 E$ 01YARSB $=$
$0.10477 F$ 01YAHSLO $=$

12		1
	YHKS $3=$	
$1=$		2
	YHKSR 3 $=$	
$1=$		3
	YHRS $=$	
$\mathrm{I}=$		4
	YHKSH3＝	
12		5
	YHHS3＝	
$I=$		1
	YHRS4＝	
$1=$		2
	YHHSR4＝	
$I=$		3
	YHKS4 $=$	
$1 \approx$		4
	YHRSR4 $=$	
$1=$		5
	YHRS4＝	
12		1
	YHKS $5=$	
$I=$		2
	YHRSR5＝	
I $=$		3
	YHRSS $=$	
$I=$		4
	YHRSR5＝	
$I=$		5
	YHRS5 $=$	
$\mathrm{I}=$		1
	YHRS6 $=$	
$1=$		2
	YHRSR6＝	
$I=$		3
	YHRS6＝	
$I=$		4
	YHRSH6＝	
$1=$		5
	YHKS6＝	
$\underline{I}=$		1
	7 HRS $7=~_{\text {\％}}$	
$I=$		2
	YHKSL $7=$	
$1=$		3
	YHKS7＝	
$\mathrm{I}=$		4
	YHASL7 $=$	
$1=$		5
	YHRS7＝	
$I=$		1
	YHRS8＝	
$1=$		2
	YHKSL8＝	
$I=$		5
	YHKS $8=$	
$1=$		4
	YHHSL $=$	

$0.15098 E 01$
$0.60761 E 00$ 0.79096 E OYHRSRI $=$
0.65905 E 00
$0.88919 \mathrm{O} \quad 0$ YHRSHI $=$
0.14637 E 01
$0.60761 E 00$ $=2$ HSUHAOO $396064^{\circ} 0$ $00355159^{\circ} 0$ $=$ CBSHHAOO $361688^{\circ} 0$ $00306969^{\circ} 0$
$103 \angle 5961^{\circ} 0$
 $=\Sigma 75 H H A 00365 L 68^{\circ} O$
$00365869^{\circ} 0$ －
 $003069 \not$ 月 $^{\circ} 0$
$103 \angle \Sigma 9 カ 1^{\circ} 0$ $=575$ \＆HAOO 7L2558＊ $=575$ HHAOO $3 \Sigma T \angle 66^{\circ} 0$
$00386828^{\circ} 0$ $10319955^{\circ} 0$ $00306979^{\circ} 0$ $=975$ HHAOO J9Z5SG＊0

$$
\begin{aligned}
& 0.73049 E \text { OOYARSI }= \\
& 0.16673 E \text { OIYARSI }=
\end{aligned}
$$

$$
\begin{gathered}
0.16673 E \text { OIYARSI }= \\
0.12424 E 01 \text { YARSLI }= \\
0.12083 E \text { 0IYARSI }=
\end{gathered}
$$

0.11866 E	01 YARSR1 $=$	0．90024E 00
0.95589 E	DoyARSRIE	$0.10093 E 01$
0.11866 E	01 YARSRE＝	0，90024E 00
0.95589 E	00 YARSREx	0.10093 El
0.12424 E	01 YARSL $3=$	$0.79096 E 00$
0．92377E	OOYARSL3 $=$	0.88919 O 0
0．12424E	01 YARSL4E	0．79096E 00
$0.92377 E$	00 YARSLAE	0．88919E 00
$0.12424 E$	01YARSL5E	0．79096E 00
0．92377E	OOYARSL5 $=$	0.88919 O 0
$0.12424 E$	O1YARSLG $=$	0．79096E 00

$=1788 \forall \lambda 003 \angle \angle E ट 6^{\circ} 0$
$=$ こS甘VAIO $3 £ \angle 991^{\circ} 0$
EIS甘VA00 $36 \angle 8+9^{\circ} 0$

 $0.70050 E$ OOYARSS＝
 \bullet

0.10000 E O1
0.10000 E 01
0.10000 E 01
$0.10000 \mathrm{E} \quad 01$
$0.10000 \mathrm{E} \quad 01$
0.10000 E 01

0.10000E	01	YARSR2=
0.10000 E	01	YARSR2=
0.10000 E	01	YARSRE=
0.10000 E	01 PARSL3	$=$
0.10000 E	01 Yarst3	$=$
0.10000 E	01 Yarst 3	$=$
$0.10000 t$	01	YARSL4 $=$
0.10000 E	01	YARSL4 $=$
0.10000 E	01	YARSL4 $=$

$\cdot \square$	$\overrightarrow{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\square}{0}$	\square	$\overrightarrow{0}$	\square	$\stackrel{\square}{0}$	$\overrightarrow{0}$	\square	$\overline{0}$	$\overrightarrow{0}$	$\overrightarrow{0}$
$\begin{aligned} & \text { w } \\ & \text { 。 } \\ & \hline 8 \end{aligned}$	W	$\begin{aligned} & \text { 山⿸丆口广。 } \\ & \stackrel{0}{\circ} \end{aligned}$	14 8 8 8 8	4 8 8 8	$\begin{aligned} & \text { 山⿱夂口犬 } \\ & \text { B } \end{aligned}$		$\underset{\sim}{\boldsymbol{N}}$	W N゙ 0	$\underset{\substack{w \\ \\ \hline \\ \hline}}{ }$	$\begin{aligned} & w \\ & \text { in } \\ & \end{aligned}$	$\underset{\substack{\text { N }}}{\substack{\text { N }}}$	$\underset{\substack{n \\ \sim \\ n}}{\sim}$
－	\cdots	\cdots	$\stackrel{-}{-}$	\cdots	\cdots	\cdots	\bigcirc	\cdots	－	\cdots	\cdots	
0	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc

0.10000 E 01YARSL5＝
0.10000 E 01 YARSLS $=$
0.10000 E 01 YARSLS $=$
$0.10000 E$ OIYARSLG＝
＝97S4VA10 $300001^{\circ} 0$
$=9758 \vee 110300001^{\circ} 0$

$0.10139 \mathrm{E} 01 \mathrm{YARSRB}=$
$0.10139 E$ 01YARSR $8=$
＝8yStulio 365ioto

> $0.10357 E 01$ YHRSL5 $=$
> $1030151^{\circ} 0$
> ＝575HHATO 3LSEO1＊O
> $=595$ HHAIO 3LSEO1＂O
$10301511^{\circ} 0$
> $=975$ HHAIO 3L550100
$10300001^{\circ} 0$
$10301 £ 11^{\circ} 0$
> $=975 H H A I O$ 3LSEOTO
$103 カ 1 \angle O 1^{\circ} 0$
> $=978$ सHAIO 3LSEOICO

10 ЭHTLOI＇O | $00369658^{\circ} 0$ |
| :--- |
| 10 |
| $701511^{\circ} 0$ |

> $=2$ HSGHATO $360101^{\circ} 0$ $=\angle H S 8 H A 10 \quad 360101^{\circ} 0$
$00369658^{\circ} 0$ ＝LHSBHA10 $360101^{\circ} 0$ $=\angle 8 S 8 H A I O \quad 36010 I^{\circ} 0$
$00369658^{\circ} 0$ $1030151^{\circ} 0$ $=88 S G H A I O$ 36010
$00369658^{\circ} 0$ ＝8ySGHAIO $36010 I^{\circ} 0$ $0.85969 E 00$ ＝8HSyHA10 $360101^{\circ} 0$ $00369658^{\circ} 0$ ＝98Sth人10 $360105^{\circ} 0$ 0.11310 E 01 $00369658^{\circ} 0$ ＝IHSAHAON 3ISHL6 ${ }^{\circ} 0$

	11				11				11					11				11				11						11				11																		$\begin{aligned} & 11 \\ & 0 \end{aligned}$					
	0		11		Ω		11		N	11		11		$\frac{0}{2}$		11		0		11		0		11		11		\cdots		11		\cdots		11		\cdots		11		11 x		\propto		$\begin{aligned} & 11 \\ & 0 \end{aligned}$		∞		14		$\xrightarrow{\square}$		10		11	－
	$\underline{\sim}$		0		Υ		1		$\underset{\sim}{\sim}$	un		0		2		0		2		0		\square		0		\cdots		$\frac{1}{0}$		en		－1		N		\cdots		e				$\frac{1}{n}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		\vec{n}		c．		$\frac{1}{n}$		5		ת	号
	\sim		\sim		＋		\cdots		$\stackrel{\sim}{0}$	$\stackrel{\square}{0}$		0		9		$\sqrt{3}$		$\stackrel{\sim}{\sim}$		\cdots		0		\cdots		$\stackrel{\sim}{7}$		$\stackrel{\sim}{\sim}$		0		$\underset{\sim}{\sim}$		$\stackrel{n}{2}$		$\xrightarrow{0}$		$\underset{\sim}{6}$		$\underset{\sim}{\sim}$		$\underset{\sim}{\boldsymbol{n}}$		$\xrightarrow[1]{n}$		$\underset{\sim}{n}$		$\underset{x}{x}$		\boldsymbol{r}		0		x	$\underline{1}$
	$\underline{2}$		$\underline{2}$		$\underline{2}$		$\frac{2}{5}$		$\underset{\sim}{\sim}$	\underline{T}		\underline{I}		$\frac{\mathbf{I}}{\mathbf{I}}$		$\underset{I}{\mathbf{I}}$		$\frac{\pi}{I}$		$\frac{\mathbf{I}}{\boldsymbol{I}}$		$\frac{\mathbf{x}}{\mathbf{T}}$		$\underset{I}{\infty}$		$\underset{J}{x}$		$\underset{I}{I}$		$\underset{I}{\alpha}$		\mathbf{x}		$\frac{I}{I}$		$\frac{\mathbf{r}}{I}$		$\frac{\mathbf{I}}{\mathbf{I}}$		$\frac{I}{I}$		$\frac{\pi}{I}$		$\frac{\mathbf{r}}{\mathbf{I}}$		$\frac{\text { I }}{\text { I }}$		$\frac{x}{x}$		$\frac{\mathbf{I}}{\mathbf{I}}$		I		I	エ
	2		\pm		$\frac{1}{2}$		$\frac{5}{2}$		$\frac{\text { I }}{2}$	\pm		2		2		2		\pm		$\frac{2}{2}$		2		2		2		\sum		\％		2		\％		\pm		\geqslant		2		－		2		2		2		2		2		\geqslant	＞
14		11		1		11		11		11	14		11		11		14		11		11		11		11		1		13		11		1		1		1		11		11		1		11		1		11		11		11		$\stackrel{11}{-}$
																			\cdots		\cdots		－		\cdots		\cdots		\cdots												\cdots														

$103 \angle 5501^{\circ} 0$
$103 \angle 5501^{\circ} 0$

$003158 \angle 6^{\circ} 0$
$003158 \angle 6^{\circ} 0$
$00315826^{\circ} 0$
8
0
\sim
\sim
∞
8
0
0
$0.97851 E 00$

$0.10248 E$ 01YARSL $3=$
$0.10248 E$ 01YARSL $3=$
$0.99909 E$ 00YARSL $3=$
$0.10248 E$ 01YARSL $3=$
$0.10248 E$ 01YARSL $3=$
$0.99909 E$ 00YARSL $3=$
0.10248 E 01YARSL $3=$
0.10248 E 01 YARSL $3=$
$0.99909 E$ 00YARSL $3=$
ェทารษทィ
YARSL4 $4=$

＝575＊マス10 78ロて01＂0

＝SyStrlio H2bsol＊o
＝ssurato 3orlsion
＝¢S＊VAnO 350699＊0
＝tsturlo 3rolefon
＝tsavaio grcletoo
＝¢¢SHVAIO 38600100
－5SUVAOO $350698^{\circ} 0$
＝¢HSavito 356001＊0
－玉S＊VATO 3RLLRI＊O
－ESHVAIO 30tIET00
＝2S4V100 350698＊0
ここ754＊400 3¢0666＊0
＝2S＊VAIO 38590t＊0
＝2suraio $385901{ }^{\circ} 0$
＝27s8vato 38ヶて0i＊o
＝2s＊Vato $365511^{\circ} 0$
IISuVa00 3506980
＝17S४マイ00 $360666{ }^{\circ} 0$
＝ISUVAOO 3EEZ66＊
＝17s女母ato 38ロマoI＊0

ก

0.10248 E	O1YARSLS $=$	0,97851E 00
$0.99909 E$	00YARSL5 $=$	0.97851 E 00
0.10248 E	01 YARSL6=	0.97851E 00
0.10248E	01 YARSL6 6	$0.97851 E 00$
0.99909 E	OOYARSL6=	0.97851E 00
$0.10347 E$	01 YARSR7E	0.10244 El
$0.10316 E$	01 YARSR7 $=$	0.10250E 01
$0.10068 E$	01 YARSR7 $=$	0.10413 E 01
$0.10347 E$	01 YARSRBE	$0.10244 E 01$
0.10316 E	01 YARSR ${ }^{\text {a }}=$	0.10250 E 01
0.10068 E	01 YARSREz	0.10413 El
$0.10347 E$	01 YARSRI $=$	0.10244 El

060

 000
 $003 ヵ 206^{\circ} 0$

$$
\begin{aligned}
& \text { =t } 7 \text { S甘HAOO } 326906^{\circ} 0 \\
& 00318292^{\circ} 0
\end{aligned}
$$

$$
\begin{aligned}
& =\boxed{7 S 8 H A 00} 310258^{\circ} 0 \\
& 00350051^{\circ} 0
\end{aligned}
$$

 ＝5SHもAIO JIGEEI゚0

 $0.72416 E$ OOYARS $3=$
$0.15833 E$ OLYARS4 $=$ $0.15833 E$ OIYARS4 $=$
$0.10942 E$ 01YARSR4 $=$

$0.96448 t$	0orarsts：	0．92721E 00．
0.112858	01 YARSL6 $=$	0．88828E 00
$0.11168 E$	01 YARSL6 $=$	$0.88971 E 00$
0.96448 E	00YARSL6＝	0．92721E 00
0.11350 E	O1YARSR7 $=$	0.94670 E 00
0.11140 E	OIYARSR7＝	0．950！9E 00
$0.97375 E$	00YARSRT $=$	$0.10220 E 01$
0.11350 E	O1YARSR6＝	0．94679E 00
0.11140 E	01 YARSR8 $=$	0.95019 O
0.97375 E	OOYARSR8＝	$0.10220 E 01$
0.11350 E	01 YARSR1 $=$	0.94670 E 00
0.11140 E	01 YARSR1＝	0．95019E 00
$0.97375 E$	DOYARSRI＝	0.10220 E 01

$$
\begin{aligned}
& \begin{array}{l}
01 \text { yHRSLS }= \\
0.14399 E \text { O1 } \\
0.74274 E 00
\end{array} \\
& 0.74274 \mathrm{E} \mathrm{OU} \\
& =975 \text { सHAOO } 30 \angle 9766^{\circ} 0 \\
& 00.341628^{\circ} 0 \\
& =9758 H A O O \text { 361056 } 0 \\
& \begin{array}{l}
=975 \text { HHAIO 30ट20t.0 } \\
00365178^{\circ} 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\angle 8 S 甘 H A O O ~ 3 \angle 1168^{\circ} 0 \\
00361 \angle 59^{\circ} 0
\end{array} \\
& \begin{array}{l}
=\angle 甘 S H H A O N ~ 376696^{\circ} 0 \\
00 \text { 35E2 } \angle 9^{\circ} 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=88 S 8 H 2003 L 1168^{\circ} 0 \\
n 0361 \angle 59^{\circ} 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 10 \text { 3665\%100 }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=18 S H H A O O \text { 3HOLHIOO } \\
003059 \angle 9^{\circ} 0
\end{array}
\end{aligned}
$$

0.11350E	01 r	YARSR2=	$0.94670 E 00$
0.11140 E	01	YaRSR2=	0.95019 OO
0.97375 E	00	YARSH2x	$0.10220 E 01$
0.11967 E	OIYARSL 3 =	=	0.83792 EO
0.11704E	01 YARSL3 $=$	$=$	0.84103 EO
0.94374 E	OOYARSL3 $=$	$=$	$0.90617 E 00$
0.11967 E		YARSL4 $=$	0.83792 EO
0.11704 E	01	Yarslis	0.84103E 00
0.94374 E	00	YARSL4 $=$	0.90517E 00
0.11967 E	O1YARSLS $=$		0.83792E 00
0.11704 E	01 YARSL5 $=$		0.84103E 00
0.94374 E	00YARSLS $=$		$0.90617 E 00$

0.68124E OUYARSI=	0.14007E 01
0.15460E OIYARS2=	$0.65120 E 00$
0.11907E 01YARSLZ $=$	0.83792E GOYHKSR2=
U.13289E OIYARS2=	$0.66772 E 00$
0.11704E 01YARSLZ $=$	0.B4103E UOYHRSFえ̇=
0.12645E 01YARS2=	0.68230E OO
0.94374E 00YARSLE $=$	0.90617E OOYHKSK2=
0.68124E OOYARS2=	0.14007 E 01
0.17163E 01YARS3=	$0.69121 E 00$
$0.11560 \mathrm{e} 01 \mathrm{YARSR} 3=$	$0.79216 E$ 00YHRSL $3=$
0.15682E 01YARS3:	$0.70035 E 00$
0.1127IE 01YARSR3=	0.79590 E UOYHKSL3 $=$
0.14488E O1YARS3 $=$	$0.72601 E 00$
0.91107E OUYARSR3 $=$	0.90309E 00YHKSL3 $=$
$0.68124 E$ OOYARS3 $=$	0.14007 E 01
0.17163E 01YARS4 $=$	$0.69121 E 00$
0.11560E 01YARSR4=	0.79216E UOYHRSL4F
U.15682E 01YARS4=	0.70035 E 0
0.11271E 01YARSR4=	0.79590E UOYHRSL4 $=$
0.14488 E O1YARS4 $=$	$0.72601 E 00$
0.91107E 00YARSR4 $=$	0.90309 E 00YHRSL4 $=$
$0.68124 E$ OUYARS4=	0.14007 E 01
0.17163E O1YARSS $=$	$0.69121 E 90$
0.12027E OIYARSRS $=$	0.89895 E 00YHRSLS $=$
0.14799E OIYARSS $=$	0.84003 EO
0.11638 E OIYARSRS $=$	0.90466E 00YHRSLS $=$
0.13798E 01YARS5 $=$	0.86448 E 00
0.95587E OOYARSRS $=$	0.10093E 01YHRSLS $=$
0.73049E 00YARS5 $=$	0.15098 El

0.11967 E	OIYARSL6 $=$	0.83792 EO
0.11704 E	01 YARSL6=	0.84103E 00
$0.94374 E$	OOYARSL6 ${ }^{\text {a }}$	0.90617E 00
$0.12027 E$	01 YARSR7 $=$	$0.89895 E 00$
0.11638 E	01YARSR $7=$	0.90466 E 00
0.95587 E	OOYARSR $7=$	0.10093 E 01
0.12027 E	01 YARSR8=	0.89895 EO
0.11638 E	01 YARSR8 $=$	0,90466E 00
0.95587 E	OOYARSR $8=$	0.10093 E 01
$0.12027 E$	01 YARSRI $=$	0.89895E 00
0.11638 E	01 YARSR1 $=$	0.90466 E 00
0.95587E	OOYARSRI=	0.10093 El

0.17163E 01YARS6=	$0.69121 E 00$
0.12027e 01YARSRG=	0.89895E OOYHRSL6 $=$
0.15200 E 01YARS6=	0.77654 E 00
$0.11638 \mathrm{E} 01 \mathrm{YARSRG}=$	0.90466E OOYHRSL6 $=$
0.14112E 01YARS6=	0.80154E 00
0.95587E OOYARSRG=	0.10093E U1YHKSL6=
0.73049 E OYYARSG=	0.15098E 01
0.16735E 01YARS7 $=$	0.60731 E 00
0.14670E 01YARSL7 $=$	0.83809 EO OHRSR7 $=$
0.1534SE 01YARS7 $=$	0.61489 EO
0.14178E 01YARSLT $=$	0.84299E OOYHRSK7=
0.14077E 01YARS7=	$0.64253 E 00$
0.10477E 01YARSLT=	0.95647E OOYHRSR7=
0.73049 E 00YARS $7=$	$0.15098 E 01$
$0.16735 E$ 01YARS8=	0.60731 E 00
0.14670E 01YARSLB $=$	0.83809E OOYHRSK8=
0.15345 E OIYARS8=	0.61489 E 0
0.14178E 01YARSL8=	0.84299E OOYHRSR8 $=$
0.14077E 01YARS8=	$0.64253 E 00$
0.10477E 01YARSL $8=$	0.95647E OOYHRSH8=
0.73049E OOYARS8=	0.15098 El
0.16735 E 01 YARS1 $=$	0.60731 E 00
0.12722E 01YARSL! $=$	0.78864E OUYHRSR1=
0.13105E 01YARS1=	0.63349 EO
0.12236E 01YARSLI $=$	0,79411E OOYHRSK1E
$0.12073 E$ 01YARSI=	0.65923 E U0
$0.92576 E$ OUYARSLI $=$	0.88919E 00YHHSR1=
$0.64879 E$ OUYARSI $=$	0.14637 E 01

$0.10000 E O 1$
$0.10000 E 01$
$0.10000 E 01$
$0.10000 E 01$
$0.84300 E 00$
$0.84300 E 00$
$0.84300 E 00$
$0.84300 E 00$
YARSR2=
YARSRZ $=$
YARSRZ $=$
YARSR2 $=$ 0.79200 E OYARSL $3=$
0.79200 E 0 YYARSL $3=$
0.79200 E OYYARL $3=$
0.79200 O OYYARSL $=$

$0.84642 t 00$		
0．8876UE OOYHRSR7＝	0.95775 CO OARSR7 $=$	0.10010801
0.84642 E 0		
O．88724E OOYHRSRT：	0．95175E 00YARSR7 $=$	0．10010E 01
0．11069E 01		
0．8708BE 00		
0．88760t OOYHKSR8 $=$	$0.97038 \mathrm{EOYARSR8}=$	0.10061 E 01
0.84642 E 00		
0．88760E OOYHRSH8＝	0.95775 E 00YARSR8＝	0．10010E 01
0，84642E 00		
0．88760E OOYHKSK8＝	0.95775 E OYARSR8E	0.10010 E 01
0．84642E 00		
O．BB724E 00YHRSRBE	0．95775E 00YARSR8 $=$	0．10010E 01
0．11069E 01		
0.87088 E 00		
0．8586IE OOYHRSRI＝	0.97038 E OOYARSR1 $=$	0.10061 E 01
0．81794E 00		
0．85496E 00YHRSR1 $=$	0.95775 C 00YARSRI $=$	0．10010E 01
0.81794 EO		
$0.85496 E$ OOYHRSR1E	0．95775E 00YARSRI $=$	0.10010 E 01
0．81794E 00		
0．85467E OOYHKSRIE	0.95775 E 00YARSR14	0．10010E 01
0．10649E 01		
0．87088E 00		
0．85861E 00YHHSF2	0．97038E $00 \quad$ YARSR2 $=$	0.10061201
0．83087E 00		－
0．85496E OOYHRSR2＝	0.95775 O 00 YARSRE＝	0.10010 E 01
0．830B4E 00		

$0.94598 E$ OUYARS7 $=$
$0.10 \cup 30 \mathrm{E} 01$ YARSL $7=$ $=\angle S 甘 \forall 1003865766^{\circ} 0$.
 $=875 \Delta \forall \lambda I 030 \varepsilon 001^{\circ} 0$ $=858 \forall A 003865776^{\circ} \mathrm{n}$ $=8758 \forall A 1030 \varepsilon 00 t^{\circ} 0$ $=85 \forall \forall A \cap 0 \quad 3865766^{\circ} 0$ ＝タフS\＆षAno 32ここく6＂n ＝gSUVA00 $350026^{\circ} 0$ ＝IS甘VA10 ヨE8LO10 $=\{7 S 甘 \forall A 00$ 3LOID 0 ＝ISसVA00 $385008^{\circ} 0$
 ＝IS甘VAOO JRG008＊0 $=17$ S甘V人OO ヨ9รR08＊0 0.7784 SE OUYARSI＝ U． $10783 E$ OLYARS2＝ 0．84107E 00YARSL2＝ ＝2S甘マイกO $1 \angle 9990^{\circ} 0$ U．४318日t 0UYARSLC＝ 0．Hnoblt 0uyatise $=$
ก

	$\begin{aligned} & \stackrel{u}{u} \\ & \stackrel{y}{\infty} \\ & \stackrel{\sim}{2} \\ & \underset{x}{2} \end{aligned}$	

$0.94875 E$ OOYARSR1 =
$0.92605 E$ OOYARSR1 =
$0.92605 E$ OOYARSRI =
$0.92119 E$ OOYARSRI $=$
$0.94875 E 00$
$0.92605 E 00$
$0.92605 E 00$
$0.92119 E 00$
$0.89083 E$ 00YARSL 3 a
$0.87373 E$ ooyARSL $3=$
$0.87271 E$ oorarsl3 $=$ 0.81184 E GOYARSL3 $=$
> 0.78040 U 00

\％	용	8											
w w 0 0 0 0 0	w ∞ 0 0 0 0 0		8	8	8	8	－	8	용	응	8	8	
0	0°	0	$\begin{aligned} & w \\ & 0 \\ & \boldsymbol{N} \\ & \boldsymbol{n} \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \omega \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mu \\ & \text { un } \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	w \vec{J} \vec{J} \mathbf{N} 0 0 0	0 o M M n 0 0 0		山 M ∞ 0 0 ∞ 0 0			山 0 0 0 0 0 0 0	
	$\begin{aligned} & \frac{1}{3} \\ & \frac{1}{n} \\ & \frac{x}{x} \\ & x \end{aligned}$	$\begin{aligned} & \\| \\ & \frac{10}{3} \\ & \frac{1}{2} \\ & \frac{x}{4} \end{aligned}$											
18	8	8		$\begin{aligned} & n \\ & \substack{n \\ \sim \\ \\ \\ \vdots \\ 0 \\ 0} \end{aligned}$	$\begin{aligned} & \text { n1 } \\ & \stackrel{10}{60} \\ & \frac{2}{4} \\ & \frac{0}{8} \end{aligned}$	$\begin{aligned} & \text { 足 } \\ & \text { n } \\ & \frac{\pi}{x} \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & \\ & \frac{2}{2} \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { u } \\ & 0 \\ & \text { D } \\ & \text { D2 } \\ & \frac{2}{2} \\ & 8 \\ & \hline \end{aligned}$		＂ 0 0 0 0 0 0 8 8 8	$\begin{aligned} & \text { H } \\ & \stackrel{\alpha}{\alpha} \\ & \frac{\alpha}{\alpha} \\ & \frac{\alpha}{2} \\ & 0 \end{aligned}$		
		$\begin{aligned} & \underset{\Xi}{\infty} \\ & \underset{\sim}{\infty} \\ & \underset{\infty}{\infty} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { u } \\ & \text { D } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\infty}{\underset{\sim}{0}} \\ & \vdots \\ & \vdots \end{aligned}$		$\begin{aligned} & w \\ & \underset{\sim}{n} \\ & \infty \\ & \stackrel{\infty}{0} \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \stackrel{N}{\infty} \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & \text { w } \\ & \text { ® } \\ & \underset{\infty}{\infty} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 山 } \\ & \underset{\sim}{N} \\ & \text { in } \\ & 0 \\ & 0 \end{aligned}$	w	

＝ 2 SSHAAII	नigiqu＊
00 Э ¢ $166^{\circ} 0$	
＝LHSHHAOO	352\％8＊＊
00 320ヶlく＊0	
10 30942100	
z97SHADOO	319196 0
00 38 $2128^{*} 0$	
$=9754 \mathrm{taO}$	$3980766^{\circ} 0$
00 39102800	
＝976 HHAOO	3980ヶ6 $6^{\circ} 0$
$00350128^{\circ} 0$	
m97SHAR00	31ヶ256＊0
00 3 $08 \angle 18^{\circ} 0$	
10 309821＊0	
＝57sarloo	319196＊0
00 326956＊0	
＝57Stha00	$3980766^{\circ} 0$
00 3ヵら556＊0	
＝STSHHROO	399076 ${ }^{\circ} 0$
$00396956{ }^{\circ} 0$	
$=5758 \mathrm{Ha} 00$	310256＊0
$00368218^{\circ} 0$	
$10355511^{\circ} 0$	
＝tisataoo	3126680
00 31956100	
ごтาsarィ00	355228＊0
00 3ヶ616 ${ }^{\circ} \mathrm{O}$	
\＃7 7 8HA00	355228°
$00396161^{\circ} 0$	

0.1074 6t 01 YARS7 $=$
$0.69182 E ~$
00
$0.91918 E$ OOYARSRT $=$
$0.89037 E$ OOYARSRT $=$
0.95152 E OUYARSR $=$

E8GSyydoo $381026^{\circ} 0$
＝88StyA00 $381616^{\circ} 0$
28ySyyd00 3L5068 0 चITSyロA00 325156＊0 ＝İSGVA00 $381026^{\circ} 0$

चโタsuva00 $381616^{\circ} 0$

EIGSBVA00 $3 \angle \Sigma 068^{\circ} 0$
$0.95241 E 00$
0.94086 E 00

YARSR2＝
YARSR2 $=$
0.95152 E 00
0.92018 EO
$0.96761 E 00$
$0.95241 E 00$
$0.94086 E 00$

8	8	8	8	8	앙	8	8	8
\pm	\pm	${ }_{0}$	${ }_{0}$	$\underset{\sim}{\sim}$	\because	－	${ }^{\text {wob }}$	$\underset{\sim}{\text { ■ }}$
$\stackrel{0}{0}$	$\underset{\sim}{3}$	$\stackrel{\circ}{\circ}$	－	－	宕	8	$\stackrel{\infty}{\circ}$	$\stackrel{\square}{\sim}$
\％	$\underset{\sim}{\text { U }}$	${ }_{0}$	\％	0	～	$\underset{0}{ }$	${ }_{0}^{8}$	$\stackrel{\circ}{\circ}$
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\stackrel{\circ}{\circ}$	$0 \cdot$	\bigcirc

$0.91551 E$ OUYARSLS＝
＿U．
$0.80799 E$ OOYARSLZ $=$ ＝2S\＆VAno 302689．0． ＝ESAVA10 39865100 $=\varsigma 甘 S \Delta \forall \wedge 003256 \angle 8^{\circ} 0$

 0.85206 E 00YARSR3 $=$
 ＝şSava00 38L06 $1^{\circ} 0$ 0.68920 E 0YARS3＝ ＝ロSTVAIO 3986E100 0.87952 E 00YARSR4 $=$ ＝ロSavalo 3LLOCIO
 ＝bSavalo 36502100 $0.85206 E$ VOYARSR4＝
 ＝bUSBVAOO 3RLOGLO
 ＝5S4VA10 3986\＆100
 ＝SS甘マイ10 32002ion $0.93217 E$ OUYARSRS＝
 $=5$ HSH甘A0I $356<26^{\circ} 0$

00	$345668^{\circ} 0$
00	$3676688^{\circ} 0$
00	396216＊
00	$3615176^{\circ} 0$
00	$325668^{\circ} 0$
00	$367668^{\circ} 0$
00	396216＊0
00	$3656788^{\circ} 0$
00	3021280
00	3¢さくて8＊0
00	3ELSE8＊
00	$365668{ }^{\circ} 0$

0．80799E OUYARSL5 $=$
．－．．．．．．．．．
0．94204E 00YARSL6
0．91779E 00YARSL6 $=$
0．91351E 00YARSL6 $=$
0．80799E 00YARSL6 $=$
0.97134 E 00YARSR7 $=$
0．93217E OOYARSR7 $=$
$0.92795 E$ OOYARSR7 $=$
$0.86453 E$ 00YARSR7 $=$
0．97134E OOYARSR8＝
0．93217E 00YARSR8＝
0．92795E 00YARSR8 $=$
0．86453E OOYARSREE

$0.94579 E$ OOYHKSLS $=$
$0.13588 E 01$
$0.75846 E 00$
$0.91296 E \quad 00 Y H K S L G=$
$0.81090 E 00$
$0.89949 E$ UOYHRSLG $=$
$=9758 H A O O$ 3L5668 0
On $3 £ \angle 6 O 8^{\circ} 0$
$=975$ HHAOO $36 \angle 576^{\circ} n$
$003 L 5518^{\circ} 0$ 0.13588 E 01
0.66284 E 00
0.86769 E OUHRSR7 $=$
$0.64167 E 00$
0.85913 E OOYHRSR7 $=$ $=\angle A S y H A O O ~ 36765 \theta^{\circ} 0$
$00359179^{\circ} 0$ $=\angle$ SSGHAOO $\exists 20 \angle 06^{\circ} 0$
$00329 \angle 79^{\circ} 0$ 10 3885E100 00 3ヶ8て．99＊0 $=8$ HSTHAOO $369 \angle 98^{\circ} 0$ $0.64167 E 00$
$0.85913 E$ OOYHRSKB＝ $0.64165 E 00$
$0.85949 E$ OOYHIRSRB $=$

$$
\begin{aligned}
& 1= \\
& \begin{array}{l}
\\
n \\
0 \\
n \\
x \\
x \\
x \\
n
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\text { LTSAHA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { = LSHHA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { YHKSB= }
\end{aligned}
$$

$$
\begin{aligned}
& \text { YHHS8 }= \\
& \text { YhKSLB= } \\
& \begin{array}{l}
\text { n } \\
\infty \\
\infty \\
\infty \\
x \\
x \\
\\
\\
\hline
\end{array}
\end{aligned}
$$

[^5]

APPENDIX D

TABLES: pH-PARAMETRIC PUMPING

Conditions for Computational the Results with variable parameters:

Operating Variable	Value
Volume of Fluid Phase per Column	$30.0 \mathrm{~cm}^{3}$
Volume of Solid Phase per Column	$20.0 \mathrm{~cm}^{3}$
Initial Solute Concentration (Normalized)	$1.0 \mathrm{~kg} \mathrm{~mole} / \mathrm{cm}^{3}$
Dead Volume of Top Reservoir	$30.0 \mathrm{~cm}^{3}$
Dead Volume of Middle Reservoir	$30.0 \mathrm{~cm}^{3}$
Dead Volume of Bottom Reservoir	$30.0 \mathrm{~cm}^{3}$
Number of Cycles	30

TABLE D-1

SEPARATION OF PROTEIN A Via TWO-COLUMNS

$$
\beta=2.14
$$

$$
\mathrm{k}_{\mathrm{P}_{1}}^{-}=0.6, \mathrm{k}_{\mathrm{P}_{1}}^{+}=1.2, \mathrm{k}_{\mathrm{P}_{2}}^{-}=\mathrm{k}_{\mathrm{P}_{3}}^{-}=1.5, \mathrm{k}_{\mathrm{P}_{2}}^{+}=\mathrm{k}_{\mathrm{P}_{3}}^{+}=0.7
$$

Number of Cycles, n	Top Product $\left\langle y_{T}\right\rangle_{n}$	$\begin{aligned} & \text { Bottom Product } \\ & \left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\mathrm{n}} \end{aligned}$	$\frac{\left\langle y_{\mathrm{T}}\right\rangle_{\mathrm{n}}}{\left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\mathrm{n}}}$
1	1.0783	0.7639	1.4007
2	1.1489	0.7213	1.5928
3	1.2100	0.6882	1.7583
4	1.2615	0.6621	1.9053
5	1.3043	0.6416	2.0330
6	1.3392	0.6253	2.1417
7	1.3675	0.6125	2.2327
8	1.3902	0.6024	2.3079
9	1.4038	0.5945	2.3691
10	1.4227	0.5882	2.4186
11	1.4340	0.5834	2.4580
12	1.4429	0.5796	2.4894
13	1.4498	0.5767	2.5139
14	1.4553	0.5744	2.5334
15	1.4595	0.5727	2.5485
16	1.4627	0.5713	2.5602
17	1.4653	0.5703	2.5694
18	1.4672	0.5695	2.5763
19	1.4687	0.5689	2.5817
20	1.4699	0.5684	2.5860
25	1.4726	0.5673	2.5959
30	1.4734	0.5670	2.5987

TABLE D-2

SEPARATION OF PROTEIN A Via TWO-COLUMNS

$$
\beta=3.00
$$

$k_{P_{1}}^{-}=0.6, \mathrm{k}_{\mathrm{P}_{1}}^{+}=1.2, \mathrm{k}_{\mathrm{P}_{2}}^{-}=\mathrm{k}_{\mathrm{P}_{3}}^{-}=1.5, \mathrm{k}_{\mathrm{P}_{2}}^{+}=\mathrm{k}_{\mathrm{P}_{3}}^{+}=0.5$

Number of Cycles, n	Top Product $\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\mathrm{n}}$	$\begin{gathered} \text { Bottom Producy } \\ \left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\mathrm{n}} \end{gathered}$	$\frac{\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\mathrm{n}}}{\left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\mathrm{n}}}$
1	1.1539	0.8691	1.3278
2	1.2827	0.7834	1.6375
3	1.3873	0.7247	1.9142
4	1.4706	0.6832	2.1526
5	1.5363	0.6529	2.3530
6	1.5378	0.6304	2.5187
7	1.6279	0.6135	2.6535
8	1.6590	0.6007	2.7619
9	1.6831	0.5909	2.8485
10	1.7017	0.5834	2.9170
11	1.7161	0.5777	2.9708
12	1.7272	0.5732	3.0131
13	1.7358	0.5699	3.0461
14	1.7424	0.5673	3.0717
15	1.7474	0.5653	3.0914
16	1.7513	0.5637	3.1067
17	1.7543	0.5625	3.1185
18	1.7566	0.5616:	3.1277
19	1.7584	0.5609	3.1347
20	1.7598	0.5604	3.1403
25	1.7630	0.5591	3.1532
30	1.7638	0.5588	3.1564

TABLED-3

SEPARATION OF PROTEIN A Via TWO-COLUMNS

$$
\boldsymbol{\beta}=3.20
$$

$k_{P_{1}}^{-}=1.0, k_{P_{1}}^{+}=1.2, k_{P_{2}}^{-}=k_{P_{3}}^{-}=1.6, k_{P_{2}}^{+}=k_{P_{3}}^{+}=0.5$

Number of Cycles, n	Top Product $\left\langle\mathrm{Y}_{\mathrm{T}}\right\rangle_{\mathrm{n}}$	Bottom Product $\left.<\mathrm{y}_{\mathrm{B}}\right\rangle_{\mathrm{n}}$	$\frac{\left\langle y_{\mathrm{T}}\right\rangle_{\mathrm{n}}}{\left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\mathrm{n}}}$
1	1.1539	0.8691	1.3278
2	1.2907	0.7834	1.6477
3	1.4192	0.7242	1.9598
4	1.5441	0.6812	2.2667
5	1.6673	0.6488	2.5699
6	1.7895	0.6234	2.8706
7	1.9103	0.6029	3.1686
8	2.0290	0.5859	3.4629
9	2.1448	0.5716	3.7523
10	2.2571	0.5592	4.0362
11	2.3653	0.5483	4.3136
12	2.4688	0.5386	4.5836
13	2.5673	0.5298	4.8455
14	2.6606	0.5218	5.0992
15	2.7486	0.5143	5.3444
16	2.8312	0.5073	5.5807
17	2.9086	0.5007	5.8087
18	2.9807	0.4945	6.0278
19	3.0479	0.4885	6.2389
20	3.1101	0.4828	6.4415
25	3.3545	0.4571	7.3380
30	3.3546	0.4570	7.3400

TA ELE D-4

SEPARATION OF PROTEIN A Via TWO-COLUPNS

$$
\beta=3.50
$$

$$
k_{P_{1}}^{-}=0.8, k_{P_{1}}^{+}=1.2, k_{P_{2}}^{-}=k_{P_{3}}^{-}=1.4, k_{P_{2}}^{+}=k_{P_{3}}^{+}=0.4
$$

Number of Cycles, n	Top Product $\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\mathrm{n}}$	Bottom Product $\left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\mathrm{n}}$	$\frac{\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\mathrm{n}}}{\left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\mathrm{n}}}$
1	1.1250	0.8214	1.3697
2	1.2421	0.7691	1.6151
3	1.3528	0.7105	1.9040
4	1.4576	0.6534	2.2310
5	1.5568	0.6009	2.5909
6	1.6500	0.5542	2.9773
7	1.7375	0.5133	3.3848
8	1.8190	0.4779	3.8066
9	1.8948	0.4472	4.2367
10	1.9650	0.4208	4.6692
11	2.0297	0.3981	5.0986
12	2.0893	- 0.3785	5.5203
13	2.1440	0.3615	5.9302
14	2.1940	0.3469	6.3246
15	2.2398	0.3342	6.7016
16	2.2815	0.3232	7.0587
17	2.3195	0.3137	7.3952
18	2.3541	0.3053	7.7103
19	2.3855	0.2981.	8.0034
20	2.4140	0.2917	8.2753
25	2.5209	0.2699	9.3398
30	2.5853	0.2583	10.0093

TABLE D-5

SEPARATION OF PROTEIN A Via TWO-COLUMNS

$\boldsymbol{\beta}=4.00$
$k_{P_{1}}^{-}=0.8, k_{P_{1}}^{+}=1.0, k_{P_{2}}^{-}=k_{P_{3}}^{-}=1.6, k_{P_{2}}^{+}=k_{P_{3}}^{+}=0.4$

Number of Cycles, n	Top Product $\left\langle y_{T}\right\rangle_{n}$	Bottom Product $\left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\mathrm{n}}$	$\frac{\left\langle y_{T}\right\rangle_{n}}{\left\langle y_{B}\right\rangle_{n}}$
1	1.1860	0.8214	1.4440
2	1.3548	0.7634	1.7746
3	1.5100	0.6978	2.1640
4	1.6534	0.6339	2.6085
5	1.7855	0.5755	3.1023
6	1.9070	0.5240	3.6390
7	2.0182	0.4793	4.2104
8	2.1196	0.4409	4.8073
9	2.2116	0.4080	5.4203
10	2.2949	0.3799	6.0405
11	2.3700	0.3559	6.6588
12	2.4375	0.3354	7.2668
13	2.4981	0.3179	7.8579
14	2.5523	0.3029	8.4259
15	2.6007	0.2901	8.9661
16	2.6439	0.2790	9.4753
17	2.6823	0.2695	9.9514
18	2.7165	0.2614	10.3929
19	2.7468	0.2543	10.7997
20	2.7737	0.2483	11.1721
25	2.8683	0.2282	12.5703
30	2.9191	0.2183	13.3738

TABLE D-6

SEPARATION OF PROTEIN A Via TWO- COLUNNS
$\beta=5.67$
$k_{P_{1}}^{-}=0.6, k_{P_{1}}^{+}=1.0, k_{P_{2}}^{-}=k_{P_{3}}^{-}=1.7, k_{P_{2}}^{+}=k_{P_{3}}^{+}=0.3$

Number of Cycles, n	Top Product $\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\mathrm{n}}$	Bottom Product $\left\langle y_{B}\right\rangle_{n}$	$\frac{\left\langle y_{T}\right\rangle_{\mathrm{n}}}{\left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\mathrm{n}}}$
1	1.2746	0.8214	1.5518
2	1.5133	0.7556	2.0027
3	1.7248	0.6806	2.5343
4	1.9136	0.6081	3.1471
5	2.0821	0.5427	3.8368
6	2.2321	0.4857	4.5956
7	2.3653	0.4369	5.4133
8	2.4831	0.3956	6.2768
9	2.5869	0.3607	7.1715
10	2.6780	0.3314	8.0818
11	2.7577	0.3067	8.9924
12	2.8272	-0.2859	9.8888
13	2.8878	0.2684	10.7585
14	2.9404	0.2537	11.5905
15	2.9860	0.2413	12.3757
16	3.0255	0.2308	13.1082
17	3.0596	0.2220	13.7838
18	3.0890	0.2145	14.4016
19	3.1144	0.2082	14.9609
20	3.1363	0.2028	15.4635
25	3.2073	0.1861	17.2380
30	3.2403	0.1787	18.1367

TABLE D-7

SEPARATION OF PROTEIN B Via TWO-COLURNS

$$
\beta=0.18
$$

$k_{P_{1}}^{-}=k_{P_{2}}^{-}=0.3, k_{P_{1}}^{+}=k_{P_{2}}^{+}=1.7, k_{P_{3}}^{-}=2.0, k_{P_{3}}^{+}=0.3$

Number of Cycles, n	Top Product $<y_{T}>_{n}$	Bottom Product $<y_{B}>_{n}$	$\frac{\left\langle y_{T}\right\rangle_{n}}{\left\langle y_{B}\right\rangle_{n}}$
1	1.0803	1.3361	0.8086
2	1.1085	1.4436	0.7679
3	1.1103	1.5155	0.7326
4	1.0994	1.5662	0.7020
5	1.0832	1.6037	0.6754
6	1.0656	1.6327	0.6527
7	1.0484	1.6558	0.6332
8	1.0326	1.6748	0.6166
9	1.0184	1.6906	0.6024
10	1.0060	1.7039	0.5904
11	0.9952	1.7152	0.5802
12	0.9859	1.7248	0.5716
13	0.9779	1.7330	0.5643
14	0.9710	1.7400	0.5580
15	0.9651	1.7459	0.5528
16	0.9601	1.7510	0.5483
17	0.9559	1.7554	0.5445
18	0.9522	1.7591	0.5413
19	0.9491	1.7622	0.5386
20	0.9465	1.7649	0.5363
25	0.9381	1.7735	0.5290
30	0.9343	1.7773	0.5257

TABLE D-8

SEPARATION OF PROTEIN B Via TWO-COLUNNS

$$
\beta=0.33
$$

$$
\mathrm{k}_{\mathrm{P}_{1}}^{-}=\mathrm{k}_{\mathrm{P}_{2}}^{-}=0.5, \mathrm{k}_{\mathrm{P}_{1}}^{+}=\mathrm{k}_{\mathrm{P}_{2}}^{+}=1.5, \mathrm{k}_{\mathrm{P}_{3}}^{-}=1.6, \mathrm{k}_{\mathrm{P}_{3}}^{+}=0.4
$$

Number of Cycles, n	Top Product $\left\langle y_{T}\right\rangle_{n}$	Bottom Product $<y_{B}>_{n}$	$\frac{\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\mathrm{n}}}{\left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\mathrm{n}}}$
1	0.8709	1.0788	0.8073
2	0.7807	1.1689	0.6679
3	0.7163	1.2492	0.5734
4	0.6693	1.3194	0.5073
5	0.6342	1.3798	0.4597
6	0.6075	1.4312	0.4245
7	0.5869	1.4747	0.3980
8	0.5706	1.5113	0.3776
9	0.5577	1.5420	0.3617
10	0.5472	1.5676	0.3491
11	0.5388	1.5891	0.3391
12	0.5319	1.6070	0.3310
13	0.5263	1.6219	0.3245
14	0.5216	1.6343	0.3192
15	0.5178	1.6447	0.3148
16	0.5146	1.6533	0.3113
17	0.5120	1.6605	0.3083
18	0.5098	1.6665	0.3059
19	0.5080	1.6714.	0.3039
20	0.5064	1.6756	0.3022
25	0.5019	1.6879	0.2974
30	0.5001	1.6929	0.2954

TABLE D-9

SEPARATION OF PROTEIN B Via TWO-COLUMNS

$$
\beta=0.40
$$

$k_{P_{1}}^{-}=k_{P_{2}}^{-}=0.6, k_{P_{1}}^{+}=k_{P_{2}}^{+}=1.5, k_{P_{3}}^{-}=1.5, k_{P_{3}}^{+}=0.5$

Number of Cycles, n	Top Product $\left\langle\mathrm{y}_{\mathrm{T}}\right\rangle_{\mathrm{n}}$	Bottom Product $\left\langle\mathrm{y}_{\mathrm{B}}\right\rangle_{\mathrm{n}}$	$\frac{\left\langle y_{T}\right\rangle_{n}}{\left\langle y_{B}\right\rangle_{n}}$
1	0.8597	1.1209	0.7670
2	0.7698	1.2302	0.6258
3	0.7092	1.3233	0.5359
4	0.6665	1.4002	0.4760
5	0.6355	1.4625	0.4345
6	0.6123	1.5123	0.4049
7	0.5948	1.5519	0.3833
8	0.5815	1.5831	0.3673
9	0.5712	1.6076	0.3553
10	0.5633	1.6268	0.3462
11	0.5571	1.6418	0.3393
12	0.5524	1.6535	0.3340
13	0.5487	1.6626	0.3300
14	0.5459	1.6696	0.3270
15	0.5437	1.6751	0.3246
16	0.5420	1.6793	0.3228
17	0.5407	1.6826	0.3213
18	0.5397	1.6851	0.3203
19	0.5389	1.6871	0.3194
20	0.5383	1.6886	0.3188
25	0.5368	1.6923	0.3172
30	0.5365	1.6932	0.3168

l!umber of lycles, n
1
5
10
15
20
25
30

TABLE D-11
SEPARATION OF PROTEIN MIXTURE C AND D Via MULTI-COLUMN
$\begin{gathered}\text { Protein } D \\ \left\langle y_{B}\right\rangle_{n} \\ 1.1209 \\ 1.4637 \\ 1.6334 \\ 1.6862 \\ 1.7008 \\ 1.7022 \\ 1.7025\end{gathered}$
${ }_{k_{P_{3}}^{+}=}=$ $0.5, k_{P_{3}}^{+}=k_{P_{4}}^{4}=$
 $\frac{\left\langle y_{T}\right\rangle_{n}}{\left\langle y_{B}\right\rangle_{n}}$
(Prot. C) 1.3278
2.5699 4.0362 5.3444 6.4415 7.3380 7.4100

$$
\begin{aligned}
& \begin{array}{r}
\text { Bumber of } \\
\text { Bycles, } n \\
1 \\
5 \\
10 \\
15 \\
20 \\
25 \\
30
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\begin{array}{c}
\text { !umber of } \\
\text { !ycles, }
\end{array} \\
\hline 1 \\
5 \\
10 \\
15 \\
20 \\
25 \\
30
\end{gathered}
$$

APPENDIX D

GLOSSARY

batch	a parametric pump with no feed input or product withdrawals		
continuous			
cycling zone adsorption		\quad	operation with feed during all
:---			
parts of the cycle			

LITERATURE CITED

1. Aris, Rutherford, "Equilbrium Theory of Parametric Pump," Industrial and Engineering Chemistry Fundamentals, Vol. 8, 603 (1969).
2. Butts, T.J., R. Gupta, and N.H. Sweed, "Parametric Pumping Separations of Multicomponent Mixtures," Chemical Engineering Science, Vol. 37, 855 (1972).
3. Butts, T.J., N.H. Sweed and A.A. Camero, "Batch Fraction of Ionic Mixtures By Parametric Pumping,' Industrial and Engineering Chemistry Fundamentals, Vol. 12, 467 (1973).
4. Camero, A.A., and N.H. Sweed, "Separation of Nonlinearly Sorbing Solutes by Parametric Pumping," AIChE Journa1, Vol 22, 369 (1976).
5. Chen, H.T. and F.B. Hill, "Characteristics of Batch, Semicontinuous and Continuous Equilibrium Parametric Pumps," Separation Science, Vol. 6, 411 (1971).
6. Chen, H.T., J.L. Rak, J.D. Stokes, and F.B. Hill, 'Separation Via Continuous Parametric Pumping," AIChE Journal, Vol. 18, 356 (1972).
7. Chen, H.T., E.H. Reiss, J.D. Stokes, and F.B. Hill, "Separation Via Semicontinuous Parametric Pumping," AIChe Journal, Vol.19, 589 (1973).
8. Chen, H.T., J.A. Park, and J.L. Rak, "Equilibrium Parametric Pumps," Separation Science, Vol. 9, 35 (1974a).
9. Chen, H.T., and J.A. Manganaro, 'Optimal Performance of Equibrium Parametric Pumps," AIChE Journal, Vol. 22, $10 ? 0$ (1974c).
10. Chen, H.T., W.W. Lin, J.D. Stokes, and W.R. Fabisiak, "Separation of Multicomponent Mixtures Via Thermal Parametric Pumping," AIChE Journal, Vol. 20, 306 (1974b).
11. Chen, H.T. and V.J. D'Emidio, "Separation of Isomers Via Thermal Parametric Pumping," AIChE

Journal, Vo1. 21, 813 (1975).
12. Chen, H.T., A. Rastogi, A. Kim, and J.L. Rak, 'NonEquilibrium Parametric Pumps," Separation Science, Vol. 11, 333 (1976).
13. Chen, H.T., T.K. Hsieh, H.C. Lee, and F.B. Hill, "A Study of Semicontinuous pH-Parametric Pumping in the Model System HaemoglobinAlbumin on Sephadex Ion Exchangers," Proceedings of the 2nd Pacific Chemical Engineering Congress, Vol. 1, p. 54 (1977a).
14. Chen, H.T., T.K. Hsieh, H.C. Lee, and F.B. Hill, "Separation of Proteins Via Semicontinuous pH-Parametric Pumping," AIChE Journal, Vol. 23, 695 (1977b).
15. Chen, H.T., Y.W. Wong, and S. Wu, "Continuous Fraction of Protein Mixtures by pH-Parametric Pumping: Experiment," AIChE Journa1, Vo1. 25 320 (1979b).
17. Chen, H.T., U. Pancharoen, W.T. Yang, C.O. Kerobo, and R.J. Parisi, "An Equilibrium Theory of the pH-Parametric Pump," Separation Science, Vol. 15, 1377 (1980).
18. Chen, H.T., W.T. Yang, U. Pancharoen, and R.J. Parisi, "Separation of Proteins Via MultiColumn pH-Parametric Pumping," AIChE Journal, Vol. 26, 839 (1980).
19. Colowick, S.P., N.O. Kaplan, Methods in Enzymology, Vol. 1, p. 143, Academic Press, New York (1955).
20. Gregory, R.A., and N.H. Sweed, "Parametric Pumping: Behavior of Open Systems Part I: Analytical Solutions," Chemical Engineering Journal, Vol. 1, 207 (1970).
21. Gregory, R.A., and N.H. Sweed, 'Parametric Pumping: Behavior of Open Systems Part II: Experiment and Computation," Chemical Engineering Journal, Vol. 4, 139 (1972).
22. Grevillot, G., and Tondeur D. Tquilibrium Staged Parametric Pumping," AIChE Journal, Vol. 22, 1055 (1976).
23. Grevi1lot, G., and D Tondeur, 'Equilibrium Staged

Parametric Pumping," AIChE Journal, Vol. 23, 840 (1979).
24. Horn, F.J.M., and C.M. Lin., "On Parametric Pumping in Linear Columns Under Conditions of Equilibrium," Ber. Bunsengers. Physical Chemistry, Vol. 73, 575 (1969).
25. Jenczewski, T. J., and A.L. Myers, "Parametric Pumping Separates Gas Phase Mixtures, "AIChE Journal, Vol. 14, 509 (1968).
26. Jenczewski, T. J., and A.L. Myers, "Separation of Gas Mixtures by Pulse Adsorption, "Industrial and Engineering Chemistry Fundamentals, Vol. 9, 216 (1970).
27. Koeler, D.E., and R.H. Kadlec, 'The Optimal Control of a Periodic Adsorber," AIChE Journal, Vol. 18, 1207 (1972).
28. Pancharoen, U., 'The Batch Equilibrium of The pHParametric Pumps: Applied Graphical Method for Separation of Proteins," Master Thesis, New Jersey Institute of Technology, Newark, N.J., May 1981.
29. Pigford, R.L., B. Baker, and D.E. Blum, "An Equilibrium Theory of the Parametric Pump," Industrial and Engineering Chemistry Fundamentals, Vol. 8, 144 (1969).
30. Phamacia Fine Chemicals, Sephadex Ion Exchangers, (1975).
31. Rice, R.G., "Progress in Parametric Pumping," Separation and Purification Methods, Vol. 5(1), 139 Marcel Dekker (1976).
32. Rolke, R.W., and R.H. Wilhelm, "Recuperative Parametric Pumping: Model Development and Experimental Evaluation," Industrial and Engineering Chemistry Fundamentals, Vol. 8, 235 (1969).
33. Sabade11, J.E., and N.H. Sweed, 'Parametric Pumping with $\mathrm{pH}, "$ Separation Science, Vol. 5, 171 (1970).
34. Shaffer, A.G., and C.E. Hamrin, 'Enzyme Separation by Parametric Pumping," AIChE Journal, Vol. 21, 782 (1975).
35. Shendalman, L.H., and J.E. Mitchell, "A Study of

Heatless Absorption in the Model System CO_{2} in He," Chemical Engineering Science, Vol. 27, 1449 (1972).
36. Stokes, J.D. and H.T. Chen, "Design and Scale-Up of A Thermal Parametric Pumping Systems,' IEC Process Design and Development, Vol. 18, 147 (1979c).
37. Sweed, N.H., and R.A. Gregory, "Parametric Pumping: Modeling Direct Thermal Separation of Sodium Chloride-Water in Open and Closed Systems," AIChE Journal, Vo1. 17, 171 (1971).
38. Sweed, N.H., "Parametric Pumping," Progress in Separation and Purification, Vol. 4, Wiley (Interscience), (1971).
39. Sweed, N.H., and J. Rigaudeau, 'Equilibrium Theory and Scale-Up of Parametric Pumps," AIChE Symposium Ser. No. 152, p.1 (1975).
40. Turnock, P.H., and R.H. Kadlec, "Separation of Nitrogen and Methane Via Periodic Adsorption," AIChE Journal, Vol. 17, 335 (1971).
41. Wankat, P.C., "Cyclic Separation Process," Separation Science, Vol. 9, 85 (1974a).
42. Wankat, P.C., "Thermal Wave Cycling Zone Separation," Journal of Chromatography, Vol. 88, 211 (1974b).
43. Wankat, P.C., "Continuous Recuperative Mode Parametric Pumping," Chemical Engineering Science, Vol. 33, 723 (1978).
44. Weaver, K., and C.E. Hamrin, "Separation of Hydrogen Isotopes by Heatless Adsorption," Chemical Engineering Science, Vol. 29, 1873 (1974)
45. Wilhelm, R.H., A.W. Rice, and A.R. Bendelius "Parametric Pumping: A Dynamic Principle for Separating Fluid Mixtures," Industrial and Engineering Chemistry Fundamentals, Vo1. 5, 141 (1966).
46. Wilhelm, R.H., and N.H. Sweed, "Parametric Pumping: Separation of Mixture of Toluene and n-Heptane," Science, Vol. 159, 522 (1968).
47. Wilhelm, R.H., A.W. Rice, D.W. Rolke, and N.H. Sweed, "Parametric Pumping," Industrial and Engineering Chemistry Fundamentals, Vol. 7, 337 (1968).
48. Wu, S.I., "Separation of Proteins Via Continuous Parametric Pumping," Doctoral Dissertation, New Jersey Institute of Technology, Newark, N.J., May 1981.
49. Denis Rachez, Gerard Delavean, Georges Grevillot and Daniel Tondeur, private communication.

[^0]: FIGURE 41 - THE CONCENTRATION TRANSIENTS OF HAEMOGLOBIN AND ALBUMIN vs. NUMBER OF CYCLES: MODE 2. (CASE III)

[^1]: FIGURE 48 - THE CONCENTRATION TRANSIENTS OF HAEMOGLOBINALBUMIN vs. NUMBER OF CYCLES: MODE 3. (CASE II)

[^2]: Rate $1 \mathrm{cc} / \mathrm{min}$
 3
 0
 0
 0
 0
 i
 j
 è
 12

 j
 j
 e
 11

 For all run:

[^3]: iv M
 35
 136
 137
 138
 139
 140

[^4]: $\begin{array}{ll}0 & 8 \\ 0 & 0 \\ \mu & \omega \\ \sim & N \\ \infty & N \\ \infty & N \\ \infty & 0 \\ 0 & 0\end{array}$

 > ?

[^5]: $0.68701 E 00$
 0.75502 E 00YHRSL4 $00320289^{\circ} 0$
 0.75534 E OOYHKSL4Z $00345669^{\circ} 0$

 0.13042 E 01
 $=5784 H A D O$ 3LEIL8．0
 $003 \Varangle 9016^{\circ} 0$

 ＝575HHROO 3L5958．0 $0.82071 E 00$

 0．85688E 00YHKSL5： $0036 \mathrm{~b} 28^{\circ} 0$
 ＝57544ス00 39ヶ力2600 $\overrightarrow{0}$
 \cdots
 $\vec{~}$
 $\stackrel{3}{3}$
 0 $0035901 L^{\circ} 0$ ＝975 HHADO 3951 $18^{\circ} 0$ 00 39219100
 0.75994 EO ＝9754HADO $388959^{\circ} 0$ $003861 \mathrm{LL}^{\circ} 0$ ＝975AHA00 39力カ26．0
 00 ヨレーにで。 0

 ～
 N

 m
 ル 0
 YHRSG $=$

 | n |
 | :--- |
 | n |
 | n |
 | n |
 | |
 | |

