Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

Wu, Chicheng

MOTION OF VISCOUS LIQUID IN ROTATING CYLINDER

New Jersey Institute of Technology
D.Eng.Sc.

1983

University

 Microfilms International $300 \mathrm{~N} . Z$ Zee Road, Ann Arbor, Mi 88106
MOTION OF VISCOUS LIQUID

IN ROTATING CYLINDER

by
ChiCheng Wu

Dissertation submitted to the Faculty of the Graduate School of the New Jersey Institute of Technology in partial fulfillment of the requirements for the degree of Doctor of Engineering Science 1982

APPROVAL SHEET

Degree and Date to be Conferred: D. Eng. Sc., 1983

Secondary Education: Changhua High School, 1959
Collegiate Institutions Attended Dates Degree Date of Degree
Tunghai University 9/59-6/63
B.S.ch.E.

6/63

New Jersey Institute of Technology 9/72-6/82
Major: Chemical Engineering
Publications:
"Gamma-Ray Induced Polymerization of Unsaturated polyester in Red Mud" Presented at Symposium on the Utilization of Large Radiation Sources and Accelerators in Industrial Processing - International Atomic Energy Agency, Munich, Germany, August, 1969.

Positions Held:
Process Design Engineer, American Cyanamid Co., Pearl River, N.Y.
System Engineering, M. W. Kellogg Co., Hackensack, N.J.
Process Engineering, Lummus Co., Bloomfield, N.J.
Chemical Operator, Pitt-Consol Chemical Co., Newark, N.J.
Chemical Engineer, Marks Polarized Corp., New York, N.Y.
Chemical Engineer, Union Industrial Research Institute, Taiwan, China.
Chemical Engineer, Taiwan Alkali Co., Taiwan, China.

Abstract

A computer model for the withdrawl and buildup of the fluid from the pool bounded on the horizontal, rotating, cylindrical surface has been developed. For a imcompressible Newtonian fluid, the model is based upon the modified SOLA-SURF algorithm to solve the finite-difference form of Navier-Stokes equations on primitive variables. A hybird of centered and partial donor cell differencings is applied to the momentum convective flux. In each time cycle, the cell velocity is adjusted by the pressure corrector and iterates to satisfy the equation of continuity. The free surface position is approximated by a surface height function derived from kinematic equation. The flow field moves under control of constant fluid volume. When the bottom boundary is a free surface, it is necessary to make good initial guess of the velocities for the newly entered cells.

An example computation predicts the onset velocity of rimming flow within 5\% of that of an empirical correlation for unsaturated polyester. It indicates the correlation can be applied to the fluid of medium range viscosity. The fluid velocities in the vicinity of rigid boundary are close to rotating velocity. Backward velocities occur near the free surface. The transient flow phenomena is qualitatively in agreement with the experimental observations. The criterion of constant fluid volume is held within 10%. Singularity resulted in the calculation may be an indication that the assumption of no-slip boundary condition at contact line is invalid. The size of time step is found very critical to the stability of computation.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
I.A Rotational Reactive Molding 1
I.A. 1 Technology 1
I.A. 2 Advantages 5
I.B Flow Phenomena 6
II. THEORY 9
II.A Analysis of Previous Experimental Data 9
II.B Solution by Analytical Methods 10
III. FORMULATION 17
III.A Differential Equations 17
III.B Finite Difference Method 20
III.C Partial Donor Cell Formula 23
III.D Difference Equations 24
IV. COMPUTER MODEL. 27
IV.A Rigid Surface Location and Slope 28
IV.B Sign Convention. 30
IV.C Velocity Iteration 32
IV.D Free Surface Positions 33
IV.E Initial Conditions 35
IV.E. 1 Initial Top Free Surface. 35
IV.E. 2 Initial Velocities and Pressures. 36
IV.E. 3 Initial Conditions of Newly Entered Cells 36
IV.E. 4 Initial Conditions of Newly
Entered Columns 36
Chapter Page
IV.F Boundary Conditions 37
IV.F. 1 Free Surface 37
IV.F. 2 Rigid Boundary 39
IV.G Parameters and Numerical Stability. 41
IV.G.1 $\alpha, \gamma-$ Weight of Partial Donor Cell. 41
IV.G. 2 OMG - Over-Relaxation Factor 41
IV.G. $3 \in-$ Tolerance of Discrepancy 41
IV.G. 4 st - Time Increment. 42
IV.H Computation Procedures. 42
IV.I Example 48
V. DISCUSSION AND CONCLUSION 52
VI. RECOMMENDATIONS 64
APPENDIX I. FINITE DIFFERENCE REPRESENTATIONOF NAVIER-STOKES EQUATIONS65
APPENDIX II. SURFACE LOCATION AND SLOPE. 72
APPENDIX III. ADJUSTMENTS OF CELL PRESSURE AND VELOCITY 75
APPENDIX IV. PRESSURE ADJUSTMENT AT BOUNDARY 77
APPENDIX V. FREE SURFACE LOCATION 82
APPENDIX VI. COMPARISON OF DIMENSION APPROXIMATION IN EXAMPLE. 85
APPENDIX VII. NUMERICAL METHODS FOR FLUID DYNAMICS. 88
APPENDIX VIII. COMPUTER LISTING OF THE EXAMPLE 91
BIBLIOGRAPHY 92
Figure Page
1 Typical Three-Arm Rotational Molding Unit Shownin Cross-Section22 Various Flow Phenomena for Pool Starting to Rotatefrom Quiescent State A8
34
Figure Page
18 Free-Surface Boundary Conditions (a) Eqs. $41 \mathrm{a}, \mathrm{b}$, (b) Eqs. $42 \mathrm{a}, \mathrm{b}$, (c) Eqs. $43 \mathrm{a}, \mathrm{b}$ 38
19
Rigid Boundary Conditions 40
20 Overall Flow Chart 43
21
Boundary and Initial Conditions 44
22
Section Computation - Lower Section I and II 45
23 Input to Upper Section 46
24 Section Computation - Upper Section 47
25
Index in the Example Problem. Shaded Area is Excluded fromCalculation49
Comparison of numerical method with experimental results (a) cascading regime, (b) rimming regime 53
Transient Flow Phenomena of the Example Free Surface changed as cylinder rotating from time cycle $\# 0$ to 560. 54
Volume variation at time cycles 57
Phenomena of singularity 58
Contact angle (a) equilibrium 59
Finite Difference Terms for (a) ouu/ $\quad \mathrm{x}$ and (b) auv/by 67
Finite Difference Terms for (a) auv/bx and (b) bvv/ay 69
Computation of Surface Location 72
Determination of the Boundary. (a) JBL $=\mathrm{JBR}$,(b) JBL - $1=\mathrm{JBR}$, (c) JBL $-2=\mathrm{JBR}$73
Slope of Boundary. 74
Pressure Adjustment at Free Surface. (a) Top Free Surface,
(b) Bottom Free Surface. 78
Pressure Adjustment at Bottom Rigid Surface. 79
Figure Page
38 Pressure Adjustment at Top Rigid Surface 81
39 Location at Top Free Surface 82
40 Location of Bottom Free Surface 83
41 Physical Dimension of Example Problem. 85

LIST OF TABLES

Table Page
I. Input Data of Example 50
II. Comparison of Numerical Method with Experimental Results. 52
III. Total Traveling Distance in the Example 87

I. INTRODUCTION

This study was undertaken to develop a computer model to predict the incompressible, viscous, Newtonian fluid in a horizontal cylinder rotating about the major axis, a simulation of reactive rotational molding of pipe.

I.A Rotational Reactive Molding

Two types of rotational molding processes are encountered commercially, thermoplastic powder and reactive liquid. The largest quantity of product is made with the thermoplastic system. In the powder thermoplastic system, the hollow split mold is, at the beginning, charged with the ground thermoplastics, e.g., polyethylene. Then, the mold is locked close and the powder is heated until it becomes a homogeneous melt, while the mold is rotating. The size of ground powder is usually smaller than 35 mesh, but varied according to material flow properties and product shape.

Since the process involves a transient solid-liquid boundary not definable by simple function of coordinates and heat transfer is equally as important as momentum transfer, it is beyond the scope of this study. The reactive system is similar with the exception of a viscous liquid being used as the charge. It is this system that this work is directed. The horizontal cylinder is the geometry encountered when rotational molding of reactive liquid system for manufacturing pipe. Thus, the term rotational molding will be used in this work to refer to the reactive liquid system in the following discussion.

I.A. 1 Technology

The basic operation of reactive rotational molding includes three steps. The schematic diagram of the steps is shown in Fig. 1.

1. Loading

Materials of up to five components (1, 2) are placed in a two-piece mold.
a. Resin - Thermosets, e.g., polyester, epoxy, and urethane
b. Curing agent - copolymers containing double bonds, e.g.,
styrene and diallyl phthalate for polyester, and amines for epoxy
c. Catalyst (initiator) - Peroxides, e.g., methy1 ketone peroxide and benzoyl peroxide
d. Promoter (accelerator) - Compounds to reduce the curing time at room temperature, e.g., cobalt naphthenate, cobalt octoate and p-toluenesulfonic acid
e. Filler - Any material, e.g., glass fiber, cotton, wood flour, clay, coloring matter, etc., to enhance physical properties or to reduce the cost

Fig. 1 Typical three-arm rotational molding unit shown in cross-section.
2. Curing

In general, the mold is rotated biaxially about its equatorial and polar axes. For cylindrical geometries the rotation is limited to a single axis, the center of the cylinder. The liquid withdraws from the pool and coats the inner surface of the mold with curing undergoing simultaneously. Curing is a free-radical cosslinking polymerization, causing resin to change from a liquid to solid. This process results in an increase in the viscosity of the resin.

During the process, two stages of phenomenal change can be recongnized (2).
a. Setting time (Gel time) - From first initiation of free radicals to formation of soft gel
b. Maturing time - From a soft gel to the final fully cured state

The rotating speed should be set such that the liquid resin uniformly coats the entire mold surface within the gel or setting time.

Curing is an exothermic reaction. The amount of heat liberated depends upon the type of resin, degree of unsaturation and type of copolymer. The heat release rate varies according to temperature, catalyst and promoter. After a physical dimension and a chemical system are selected, temperature becomes the only process variable. As noted in other polymerization processes, curing causes the resin to densify and the part will shrink. However, the heat of polymerization raises the temperature and stretches the polymer chain. If the temperature goes higher and
higher, the polymer chain will extend more and more. On the other hand, the curing rate will increase further and cause additional shrinkage. Such a condition may cause cracks. A high temperature also increases mobility of the fluid. A spotty weakened molding may be resulted. Because the mold is rotating, bulky, and enclosed, it is a difficult task to control the curing temperature by its surrounding environment. Frequently, it is the choice of chemical system that solves the control problem. The following factors are the most important considerations (1, 2):
a. Degree of saturation - The more unsaturation present in the polymer, the higher the heat of curing, and the greater the shrinkage. A resin with high degree of unsaturation should cure at low temperature. The catalyst should accelerate the reaction at only moderate rate. When a high temperature and high reaction rate become necessary for a highly unsaturated resin, greater ratio of filler to resin may be added to absorb the heat and reduce the shrinkage so that cracking can be prevented. b. Size of batch - Resin is a poor conductor of heat. The temperature rise will increase as the batch size increases. Other than selecting a low temperature and a moderate catalyst, it is helpful to adjust the rotating speed so that the liquid coats the whole cylinder in a short time. This will increase the heat transfer area and help to uniformly spread the exotherm.
c. Conductivity of mold - A metal mold has much greater thermal conductivity than a mold made from plastics. Aluminum and copper are most widely used materials for mold construction. When a plastic mold is used for development work, the mold is usually metalized or the plastic impregnated with metalic fillers to increase conductivity, and remove heat from the system to the surroundings.
3. Unloading

The final part can either be removed from the mold in a hot condition or after some cooling. The cooling step lengthens the cycle time. However, it provides better dimensional stability and improves properties.

I.A. 2 Advantages

Rotational molding is primarily intended for the manufacture of larger objects usually made of metal and unable to be made by other plastic molding operations, e.g., injection molding, blow molding, etc. The advantages of the rotational molding process include (3):

1. Low equipment cost - It does not involve high operating pressure, high shear rate or precise metering of materials. The mold and tools are relatively low-cost and long-lasting.
2. Low operating cost - It does not involve high energy consumption for heating and compression. The scrap loss is minimal.
3. High production flexibility - It is conducive to low volume production of large articles. But it can be used to rotomold a large number of small items at a time, e.g., vinyl squeeze ear syringes. Simultaneous production of various products in one mold
is possible. It is easy to change materials and colors.
4. Special product quality - The resulting product has low residual molding stress, because no pressure is applied to the resin during process.

This study will focus on the fluid mechanics of withdrawal of the reactive liquid from the pool before curing starts. The analysis will also be limited to uni-axial rotation. The assumption is that extrapolation from one dimensional to three dimensional model is applicable in the liquid rotational molding as in powder thermoplastics molding (4).

I.B. Flow Phenomena

The flow phenomena of a horizontal rotating cylinder (5) are shown in Fig. 2. The process begins with a stationary cylinder with a pool of fluid on the bottom of the cylindrical cavity as shown in Fig. 2A. As the cylinder is rotated, the fluid adheres to the metal cylinder. Various flow regimes will be developed depending upon the angular velocity and fluid properties.

1. Withdrawl - At low rpm, a portion of liquid is drawn onto the wall, Fig. 2B.
2. Cascading - As rpm increases, the pool keeps moving upward. Some of the liquid releases from the wall and falls back to the bottom, Fig. 2C.
3. Rimming - Further increasing angular rotational velocity, the liquid is carried completely around the cylinder, Fig. 2D.
4. Collapsing - If the angular rotational velocity is decreased significantly from rimming velocity to an unstable flow, the fluid is again released to fall to the bottom, Fig. 2E.
5. Hydrocyst (Disking) - At angular velocity above that of rimming, stable thin disks perpendicular to rotating axis are formed. The disks may shift and appear at regualr intervals, Fig. 2G. There is no evidence up to now that disking occurs in biaxial rotation (6), nevertheless this is the secondary flow phenomenon to be studied and avoided in the process.
6. Solid Body Rotation (SBR) - The angular rotational velocity is further increased and makes the liquid uniformly coat the cylinder, Fig. 2F.
7. Pool Rotation - If the angular rotational velocity is increased rapidly from a stationary condition, the pool will rotate, Fig. 2 F . There are other secondary fluid flow phenomena that also occur, e.g., air pumping and air entrainment. Air pumping is a phenomenon where an air layer is developed between the pool and the cylinder surface. Air entrainment is a phenomenon where air bubbles are encapsulated in the fluid layer by physical mixing. These bubbles are well distributed in the liquid. It should be noted that the primary flow phenomena -- withdrawl, cascading, rimming and $S B R$-- can be found in any fluid. The secondary phenomena may be observed only in some fluids with a certain range of viscosity. For instance, the collapsing phenomenon happens mostly with low viscosity liquids such as water. Air pumping is, however, observed in highly viscous liquids.

Fig. 2 Various flow phenomena for pool starting to rotate from quiescent state A

The general forms of continuity and momentum equations are the basis of viscous flow in a partially liquid-filled rotating cylinder. To analyze these equations coupled with initial and rigid boundary conditions has some difficulties (25):

1. The location of the free surface is supposed to be a boundary condition, but it is changing and not known a priori.
2. The shape of the free surface has nonlinear effects on the flow.
3. A stress singularity may be resulted at the intersection of free surface and rigid boundary.

Therefore, some investigators have directed their efforts to experimental examination, which is believed more likely to gain a full understanding of the transient process. However, theoretical work is necessary for interpreting the experimental results. The following is a summary of both the experimental and theoretical studies.
II.A. Analysis Of Previous Experimental Data

Progelhof et al. (5-11) analyzed previous experimental results
(13-18) and suggested a simple correlation for each flow regime.
For polyester with viscosity in the range of 200-7400 centipoise
Cascading: $\quad \mathrm{Fr}_{\mathrm{m}}=0.8\left(\mathrm{Re}_{\mathrm{m}}\right)^{0.867}$
Rimming:
$\mathrm{Fr}_{\mathrm{m}}=1.11\left(\mathrm{Re}_{\mathrm{m}}\right)^{0.867}$
Solid Body Rotation:
$\mathrm{Fr}_{\mathrm{m}}=(2.37-0.026 \%)\left(\operatorname{Re}_{\mathrm{m}}\right)^{0.5}$
Hydrocyst: $\quad \mathrm{Fr}_{\mathrm{m}}=0.285(\mathrm{R} / \mathrm{b})\left(\mathrm{Re}_{\mathrm{m}}\right)$
For water-like liquids with viscosity less than 2 centipoise
$\begin{array}{ll}\text { Cascading: } & \mathrm{Fr}=243(\mathrm{Re})^{0.167}(1-\mathrm{b} / \mathrm{R})^{41.9} \\ \text { Rimming: } & \mathrm{Fr}=160(\mathrm{Re})^{0.19(1-\mathrm{b} / \mathrm{R})^{21.5}} \\ \text { Collapsing: } & \mathrm{Fr}=249(\mathrm{Re})^{0.062(1-\mathrm{b} / \mathrm{R})^{31.4}}\end{array}$
where $\operatorname{Fr}=$ Froude Number, $\quad \omega^{2} R^{2} / g b$
$\mathrm{Fr}_{\mathrm{m}}=$ Modified Froude Number, $\omega^{2} \mathrm{R} / \mathrm{g}$
$\operatorname{Re}=$ Reynolds Number, $\omega \mathrm{Rb} / \nu$
$\operatorname{Re}_{\mathrm{m}}=$ Modified Reynolds Number, $\omega \mathrm{b}^{2} / \nu$
$\mathrm{b}=$ Average film thickness, cm
$\mathrm{g}=$ Gravitational acceleration, $\mathrm{cm} / \mathrm{sec}^{2}$
$R=$ Diameter of cylinder, cm
$\omega=$ Speed of rotation, radians/sec
$\mathcal{V}=$ Kinematic viscosity, $\mathrm{cm}^{2} / \mathrm{sec}$
Recently, the interest in secondary flow behaviors has generated some data leading to conflicting correlations to describe the hydrocyst regime. When free surface effect was excluded, Progelhof et al. (7) proposed the following equations:

$$
\begin{array}{ll}
J=K_{1} & \operatorname{Re}_{\mathrm{m}}<\mathrm{K}_{3} \\
J=K_{2} \operatorname{Re}_{\mathrm{m}}^{N} & \operatorname{Re}_{\mathrm{m}}>\mathrm{K}_{3} \tag{8b}
\end{array}
$$

where $J=J a y$ Number, $g b / \omega \nu$
$K_{1}, K_{2}, K_{3}, N=$ constants
For polyester, $K_{1}=3.51, K_{2}=2.35, \quad K_{3}=1.5, \quad \mathrm{~N}=1$
The dimensionless group, Jay number, is defined as ratio of gravitational force ($b^{3} \rho g / g_{c}$) to viscous force $\left(b^{2} \eta w / g_{c}\right)$. Balmer and Wang (18) concluded a complex correlation which was rearranged into the following form (8) in contrast with Eqs. 8 a and 8 b .

$$
\begin{equation*}
J=2.995\left(10^{-6}\right) \mathrm{Ca}^{3}(1-\mathrm{Vf})^{-1.216}\left(\eta / \rho^{2}\right) \text { air } /\left(\eta / \rho^{2}\right) \tag{9}
\end{equation*}
$$

where $\mathrm{Ca}=$ Capillary Number, $\mathrm{R} \omega \eta / \sigma$
Vf $=$ Volume fraction of liquid in cylinder
$\eta=$ Absolute Viscosity, dyne sec/cm ${ }^{2}$
$\rho=$ Density $\quad \mathrm{gm} / \mathrm{cm}^{3}$
$\sigma=$ Surface tension, dynes/cm
II.B. Solution By Analytical Methods

Phillips (19) analyzed the momentum and continuity equations for an inviscid fluid by small perturbation theory. A criterion for stability of flow in a horizontal cylinder is found under steady gravity-induced disturbance:

$$
\begin{equation*}
w^{2} R / g>3 /(1-b / R) \tag{10}
\end{equation*}
$$

The perturbation approximation is inapplicable under the following three conditions: (1) the film thickness is very small, (2) the flow is viscosity controlled, and (3) a wave motion of large amplitude is present. This criterion is equivalent to collapsing velocity and in agreement with other experimental data (13-15) based on water. Phillip's stability condition is shown in Fig. 3.

Fig. 3. Phillips' stability criterion. (experimental data: water)

Cerro and Scriven (20) numerically solved the continuity and momentum equations for solid body rotation. With the condition of $b / R \ll 1$ (typical in rotational molding), a boundary layer approximation can be applied to these equations. Because of the unknown free surface position, the computation in a real coordinate system was very sensitive to minor changes in the boundary conditions and required considerable iterations to obtain the steady state solution.

Ruschak and Scriven (21) analyzed the steady flow as a regular perturbation from rigid body rotation. The continuity and momentum equations are transformed in terms of stream function and four dimensionless groups including Reynolds number, Froude number, Weber number and liquid loading. The general solutions is in a form a Bessel functions. Limiting cases are studied for extreme Reynolds numbers ($\operatorname{Re}_{\mathrm{m}}$) and small b/R. The location of thickest film shifts in the upper quadrant on the rising side, as shown in Fig. 4. The location of thinnest film is diametrically opposite.

Fig. 4 Angular position, θ (in radians) of thickest film as function of Reynolds number, $\operatorname{Re}_{\mathrm{m}}$, in the limit $\mathrm{b} / \mathrm{R} \rightarrow 0$ when Fr_{m} is large.

Greenspan (22) also used perturbation methods to study a variant of this problem in which the free surface is replaced by a weightless mobile rigid surface. In terms of the Jacobian and stream functions, the equation is primarily solved for a rapidly rotating flow with large b / R ratio. The onset of instability is compared with Phillips' criterion in Fig. 5.

Gans (23) studied the effects of viscosity, nonlinear interaction and finite cylinder length on flow stability for a large Froude number ($\mathrm{Fr} \mathrm{r}_{\mathrm{m}}$) and small Ekman number (E) which is defined as $\nu / \omega \mathrm{R}^{2}$. His results were comparable with Greenspan's observation (22) and Philipps' collapsing criterion (19).

Fig. 5 Greenspan's stability criterion (solid curve) comparing Phillips' criterion (dashed curve).

Deiber and Cerro (24) transformed the continuity and momentum equations to a streamline coordinate system through a modified von Mises transformation. Using finite difference scheme, the numerical method is able to obtain a steady-state solution. It can predict both film thickness and velocity profile of rimming flow. It proposed also the following correlation of solid body rotation (7):

$$
\begin{equation*}
\mathrm{Fr}_{\mathrm{m}}=\operatorname{Re}_{\mathrm{m}} \tag{11}
\end{equation*}
$$

which is different from Eq. 2. When the laminar circular streamline flow is broken, e.g., the fluid has a negative azimuthal velocity, the transformation is invalid. This region is defined discontinuous solution region which coincides the collapsing velocity. The general results are shown in Fig. 6.

Fig. 6 Flow regimes of Deiber and Cerro, as funciton of Reynolds and Froude numbers.

Orr and Scriven (25) applied a finite element method to a primitive form, i.e., variables of velocity and pressure, instead of the vorticity-stream function system, of the continuity and momentum equations. A numerical solution of steady rimming flow which includes surface tension is developed. The elements need not have uniform size and shape. The Hermite cubic triangular element of Zlamal is chosen. The trial functions are cubic polynomials including ten terms of r and θ. To determine the location of free surface, the residual in the normal-stress boundary condition is used as the criterion. One example of the computation is shown in Fig. 7.

Fig. 7 Results of finite-element method, $\operatorname{Re}_{\mathrm{m}}(\mathrm{R} / \mathrm{b})^{2}=1$. Illustrating the effect of increasing gravity on (a) the free-surface location, (b) the departure of the free-surface azimuthal velocity from $\operatorname{SBR}, \mathrm{V}_{\theta}-\overline{\mathrm{V}}_{\theta}$, and (c) the radial velocity at free surface, Vr , at various angular positions, θ, with $\bar{g}=g / w^{2} R=1 / \mathrm{Fr}_{\mathrm{m}}$.

The main drawback of the finite element method is that there is no clear indication of optimal combined choice of elements and trial functions. All of the above mentioned analytical methods start with the continuity and momentum equations. Perturbation methods have proved useful for some cases of steady solutions. But numerical methods are capable to handle more varieties of the problem. The efforts also have been directed to steady state solutions. In the following analysis the transient solution will be developed.

A transient solution of a viscous liquid flow in a horizontal rotating cylinder is quite different from a steady rimming flow. Neither of the two features for steady flow mentioned by Orr and Scriven (25) is applicable. Those two features are (1) neither an inflow nor an outflow boundary existing and (2) no gas/liquid/solid contact line. The first feature avoids the complicated boundary conditions. The second one avoids the possibility of a singularity. The flow in this work is idealized by assuming the following conditions:

1. The fluid is incompressible and Newtonian.
2. The effect of surface tension is excluded.
3. The cylinder length is infinite. (No end effects are considered). III.A Differential Equations

For a Newtonian, incompressible fluid at constant temperature, the momentum equations are the Navier-Stokes equations, which are usually expressed in vector form:

$$
\begin{equation*}
\frac{D \overrightarrow{\mathbf{u}}}{D \mathbf{t}}=-\frac{1}{\rho} \nabla \overline{\mathrm{P}}+\frac{\eta}{\rho} \nabla^{2} \overrightarrow{\mathbf{u}}+\overrightarrow{\mathrm{g}} \tag{12a}
\end{equation*}
$$

where

$$
\begin{aligned}
& \rho=\text { Density }, g / \mathrm{cm}^{3} \\
& \bar{p}=\text { Pressure, dyne } / \mathrm{cm}^{2} \\
& \eta=\text { Newtoniam viscosity, g/cm sec }
\end{aligned}
$$

The equation of continuity is

$$
\begin{equation*}
(\nabla \cdot \vec{u})=0 \tag{13a}
\end{equation*}
$$

By combining with Eq. 13a, Eq. 12a can be transformed into

$$
\begin{equation*}
\frac{\partial \overrightarrow{\mathrm{u}}}{\partial \mathrm{t}}+[\nabla \cdot \overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{u}}]=-\frac{1}{\rho} \nabla \overrightarrow{\mathrm{P}}+\frac{\eta}{\rho} \nabla^{2} \overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{g}} \tag{12b}
\end{equation*}
$$

Eq. 12 b is the equation of motion that can be derived directly from momentum balance. Therefore, its finite difference form retains explicit momentum conservation. However, the difference form of Eq. 12a does not (34). The principle of momentum conservation allows no internal contributions to the time rate of momentum change in a space interval. The contrast in these two equations can be realized by summing over many cells in the difference forms of the one-dimensional equations of Eqs. 12a, and b, for example,

$$
\begin{aligned}
& \left(u_{i}^{0}-u_{i}\right) / \delta t+\left[u_{i}\left(u_{i+\frac{1}{2}}-u_{i-\frac{1}{2}}\right)+\left(P_{i+\frac{1}{2}}-P_{i-\frac{1}{2}}\right) / \rho\right] / \delta x=0 \\
& \left(u_{i}^{0}-u_{i}\right) / \delta t+\left[\left(u_{i+\frac{1}{2}}^{2}-u_{i-\frac{1}{2}}^{2}\right)+\left(P_{i+\frac{1}{2}}-P_{i-\frac{1}{2}}\right) / \rho\right] / \delta x=0
\end{aligned}
$$

In the summation form, all the flux terms in Eq. 12 b ' can be cancelled in pairs, while some terms in Eq. 12a' can not. Since the finite difference approximation can not calculate space derivatives precisely, it becomes necessary to secure a better accuracy of approximation by using Eq. 12b instead of Eq. 12a as the starting point for deriving the difference equations. In Cartesian coordinates Eq. 12 b can be written as

$$
\begin{align*}
& \frac{\partial u}{\partial t}+\frac{\partial(u u)}{\partial x}+\frac{\partial(u v)}{\partial y}+\frac{\partial(u w)}{\partial z}=-\frac{\partial p}{\partial x}+\nu\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right]+g_{x} \tag{12c}\\
& \frac{\partial v}{\partial t}+\frac{\partial(v u)}{\partial x}+\frac{\partial(v v)}{\partial y}+\frac{\partial(v w)}{\partial z}=-\frac{\partial p}{\partial y}+\nu\left[\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right]+g_{y} \tag{12d}\\
& \frac{\partial w}{\partial t}+\frac{\partial(w u)}{\partial x}+\frac{\partial(w v)}{\partial y}+\frac{\partial(w w)}{\partial z}=-\frac{\partial p}{\partial z}+\nu\left[\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right]+g_{z} \tag{12e}
\end{align*}
$$

The continuity equation is also expressed in Cartesian coordinates, as

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \tag{13}
\end{equation*}
$$

where $u=X$-direction velocity, $\mathrm{cm} / \mathrm{sec}$
$\mathrm{v}=\mathrm{Y}$-direction velocity, $\mathrm{cm} / \mathrm{sec}$
$\mathrm{w}=$ Z-direction velocity, $\mathrm{cm} / \mathrm{sec}$
$\mathrm{p}=$ Ratio of pressure to density, $\overline{\mathrm{p}} / \mathrm{e}, \mathrm{cm}^{2} / \mathrm{sec}^{2}$
$\nu=$ Kinematic viscosity, $\eta / e, \mathrm{~cm}^{2} / \mathrm{sec}$

$$
\begin{aligned}
\mathrm{g}_{\mathrm{x}}, \mathrm{~g}_{\mathrm{y}}, \mathrm{~g}_{\mathrm{z}}= & \text { Gravitational acceleration in } \mathrm{X}, \mathrm{Y}, \mathrm{Z} \\
& \text { direction, respectively, cm/sec }
\end{aligned}
$$

Consider an infinitely long cylinder of radius R rotating around its Z axis (Fig. 8). Under this assumption the fluid will have no velocity component or functionality in the Z direction. Thus, 3-dimensional equations are simplified to a 2-dimensional system by eliminating all the z terms.

$$
\begin{align*}
& \frac{\partial u}{\partial t}+\frac{\partial(u u)}{\partial x}+\frac{\partial(u v)}{\partial y}=-\frac{\partial p}{\partial x}+\nu\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right]+g_{x} \tag{14a}\\
& \frac{\partial v}{\partial t}+\frac{\partial(v u)}{\partial x}+\frac{\partial(v v)}{\partial y}=-\frac{\partial p}{\partial y}+\nu\left[\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right]+g_{y} \tag{14b}\\
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{15}
\end{align*}
$$

These equations with initial and boundary conditions have not as yet been solved analytically. The numerical approximation methods, e.g., finite difference, can provide a practical solution.

Fig. 8 Cartesian coordinates for a rotational cylinder.
III.B Finite Difference Method

The finite difference method is based upon elementary representations of the derivatives of a smooth function in terms of appropriate difference quotients (26). The Taylor series expansion is the basis of the approximation. For example, a function of two independent variables is expanded as:

$$
\begin{align*}
u(x+\Delta x, y+\Delta y) & =u(x, y)+\frac{\partial u(x, y)}{\partial x} \Delta x+\frac{\partial u(x, y)}{\partial y} \Delta y \\
& +\frac{\partial^{2} u(x, y)}{2 \partial x^{2}} \Delta x^{2}+\frac{\partial^{2} u(x, y)}{\partial x \partial y} \Delta x \Delta y+\frac{\partial^{2} u(x, y)}{2 \partial y^{2}} \Delta y^{2} \\
& +0\left(|\Delta x|^{3}+|\Delta y|^{3}\right) \tag{16}
\end{align*}
$$

where $0\left(|\Delta x|^{3}+|\Delta y|^{3}\right)=$ Reminder of third order of magnitude
The first partial derivatives $\partial u / \partial x$ and $a u / \partial y$ are obtained by setting $\Delta y=0$ and $\Delta x=0$, respectively.

$$
\begin{align*}
& \frac{\partial u(x, y)}{\partial x}=\frac{u(x+\Delta x, y)-u(x, y)}{\Delta x}+0(\Delta x) \tag{17a}\\
& \frac{\partial u(x, y)}{\partial y}=\frac{u(x, y+\Delta y)-u(x, y)}{\Delta y}+0(\Delta y) \tag{17b}
\end{align*}
$$

The difference approximation shown above is between the forward point and the original point. These representations of the derivative are referred to as forward differencing. The approximation can also be derived from backward differencing in which the Taylor expansion is given by

$$
\begin{align*}
u(x-\Delta x, y-\Delta y) & =u(x, y)-\frac{\partial u(x, y)}{\partial x} \Delta x-\frac{\partial u(x, y)}{\partial y} \Delta y \\
& +\frac{\partial^{2} u(x, y)}{2 \partial x^{2}} \Delta x^{2}+\frac{\partial^{2} u(x, y)}{\partial x \partial y} \Delta x \Delta y \\
& +\frac{\partial^{2} u(x, y) \Delta y^{2}}{2 \partial y^{2}}+0\left(|\Delta x|^{3}+|\Delta y|^{3}\right) \tag{18}
\end{align*}
$$

Then, the first derivatives are obtained by setting $\dot{\Delta y}=0$ or $\Delta x=0$.

$$
\begin{align*}
& \frac{\partial u(x, y)}{\partial x}=\frac{u(x, y)-u(x-\Delta x, y)}{\Delta x}+0(\Delta x) \tag{19a}\\
& \frac{\partial u(x, y)}{\partial y}=\frac{u(x, y)-u(x, y-\Delta y)}{\Delta y}+0(\Delta y) \tag{19b}
\end{align*}
$$

If Eq. 16 and Eq. 18 are added and $\Delta y=0$ or $\Delta x=0$ is set, the second derivatives are found

$$
\begin{align*}
& \frac{\partial^{2} u(x, y)}{\partial x^{2}}=\frac{u(x+\Delta x, y)-2 u(x, y)+u(x-\Delta x, y)}{\Delta x^{2}}+0\left(\Delta x^{2}\right) \tag{20a}\\
& \frac{\partial^{2} u(x, y)}{\partial y^{2}}=\frac{u(x, y+\Delta y)-2 u(x, y)+u(x, y-\Delta y)}{\Delta y^{2}}+0\left(\Delta y^{2}\right) \tag{20b}
\end{align*}
$$

However, if combining Eqs. 16 and 18 without setting Δx or Δy equal to zero, the expression of mixed derivative $\partial^{2} u / \partial x \partial y$ will yield

$$
\begin{align*}
& \frac{\partial^{2} u(x, y)}{\partial x \partial y} \Delta x \Delta y=\frac{1}{2}[u(x+\Delta x, y+\Delta y)+u(x-\Delta x, y-\Delta y)-2 u(x, y) \\
& \left.-\frac{\partial^{2} u(x, y)}{\partial x^{2}} \Delta x^{2}-\frac{\partial^{2} u(x, y)}{\partial y^{2}} \Delta y^{2}\right]+0\left(\Delta x^{4}+\Delta y^{4}\right) \tag{21}
\end{align*}
$$

Because the result of adding two Taylor expansions

$$
\begin{align*}
& u(x+\Delta x, y-\Delta y)+u(x-\Delta x, y+\Delta y)=2 u(x, y)+\frac{\partial^{2} u(x, y)}{\partial x^{2}} \Delta x^{2} \\
& +\frac{\partial^{2} u(x, y)}{\partial y^{2}} \Delta y^{2}-\frac{2 \partial^{2} u(x, y)}{\partial x \partial y} \Delta x \Delta y+0\left(\Delta x^{4}+\Delta y^{4}\right) \tag{22}
\end{align*}
$$

Eq. 21 can be simplified by substituiting Eq. 22 into Eq. 21 .

$$
\begin{align*}
& \frac{\partial^{2} u(x, y)}{\partial x \partial y}=\frac{1}{4 \Delta x^{\Delta} y}[u(x+\Delta x, y+\Delta y)+u(x-\Delta x, y-\Delta y) \\
& \quad-u(x+\Delta x, y-\Delta y)-u(x-\Delta x, y+\Delta y)]+0\left(\Delta x^{2}+\Delta y^{2}\right) \tag{23a}
\end{align*}
$$

Eqs. $20 \mathrm{a}, 20 \mathrm{~b}$ and 23 a are refered to as central differencing. The first derivatives can also be expressed by central differencing technique by combining Eqs. 16 and 18.

$$
\begin{align*}
& \frac{\partial u(x, y)}{\partial x}=\frac{u(x+\Delta x, y)-u(x-\Delta x, y)}{2 \Delta x}+0\left(\Delta x^{2}\right) \tag{24a}\\
& \frac{\partial u(x, y)}{\partial y}=\frac{u(x, y+\Delta y)-u(x, y-\Delta y)}{2 \Delta y}+0\left(\Delta y^{2}\right) \tag{24b}
\end{align*}
$$

When executing numerical computations, it is necessary to define a notation such that the individual mesh points are indiced. The lattice of mesh points used in this work is shown in Fig. 9.

Fig. 9.
Lattice of mesh points

The finite difference approximation of derivatives, Eqs. 17a, b, 19a, b, 20a, b, 23a and 24a, b yield the following expressions

$$
\begin{align*}
&(\partial u / \partial x)_{1, j}=[u(i+1, j)-u(i, j)] / \delta x \tag{17c}\\
&(\partial u / \partial y)_{i, j}=[u(i, j+1)-u(i, j)] / \delta y \tag{17d}\\
&(\partial u / \partial x)_{i, j}= {[u(i, j)-u(i-1, j)] / \delta x } \tag{19c}\\
&(\partial u / \partial y)_{i, j}=[u(i, j)-u(i, j-1)] / \delta y \tag{19d}\\
&\left(\partial^{2} u / \partial x^{2}\right)_{i, j}=[u(i+1, j)-2 u(i, j)+u(i-1, j)] / \delta x^{2} \tag{20c}\\
&\left(\partial^{2} u / \partial y^{2}\right)_{i, j}=[u(i, j+1)-2 u(i, j)+u(i, j-1)] / \delta y^{2} \tag{20d}\\
&\left(\partial^{2} u / \partial x \partial y\right)_{i, j}=[u(i+1, j+1)+u(i-1, j-1) \\
&-u(i+1, j-1)-u(i-1, j+1)] / 4 \delta x \delta y \tag{23b}\\
&(\partial u / \partial x)_{i, j}=[u(i+1, j)-u(i-1, j)] / 2 \delta x \tag{24c}\\
&(\partial u / \partial y)_{i, j}=[u(i, j+1)-u(i, j-1)] / 2 \delta y \tag{24d}
\end{align*}
$$

The indices will be written in the form of subscripts in the following discussion.

III.C Partial Donor Cell Formula

Following the conventional layout of variables and Indices as shown in Fig. 10, there are at least three types of expressions that can be used to represent the momentum convective flux in the finite difference method (27).

Centered:
$u_{i}=\left(u_{i}-l_{1 / 2}+u_{i}+\frac{1_{2}^{2}}{}\right) / 2$
ZIP:
$u_{i}=\left(u_{i-1 / 2} u_{i+\frac{1}{2}}\right)^{\frac{1}{2}}$
Donor:
$u_{i}=\left[(1+\bar{\alpha}) u_{i-\frac{1}{2}}+(1-\bar{\alpha}) u_{1}+\frac{1}{2}\right] / 2$
where $\bar{\alpha}= \pm 1$
Complete Donor
$1>\bar{\alpha}>-1 \quad$ Partial Donor

Fig. 10. Conventional layout of variables and indices in the mesh.

The centered difference type has less truncation error, compared with the donor difference type, but has tendency to be numerically unstable. The ZIP technique is more accurate than the donor difference type and has better stability than the centered difference method. The donor approximation has the best stability, but the magnitude can be excessive and cause error, e.g., for flow at high Reynolds numbers. The transient fluid motion occuring in rotational molding has two characteristics.

First, it's a low Reynolds number flow and, secondly, it starts with a violent initiation in the early stage. This becomes a special circumstance to suit the donor cell flux. The partial donor cell formula providing a flexible combination of stablilty and accuracy is the choice for approximating the derivatives.
III.D Difference Equations (28)

The cross-section of cylinder is divided into rectangular cells of width δx and height δy (Fig. 11). The fictitious boundary cells (shaded area) are added to each side of the region to facilitate the computation. Since the fractional indices as shown in Fig. 10 are not allowed in a Fortran program, the indexing in Fig. 11 is written in the actual code. The density is assumed constant and, therefore, is lumped into the gravitatational and viscosity terms. The pressure term is placed at the cell center. The velocity $u(1, j)$ is in the middle of right side of the cell, and $v(i, j)$ is at the middle of the top side, Fig. 12.

Fig. 11. Mesh indexing.

By the partial donor cell differencing method, Eqs. 14a, b and 15 are approximated by the finite difference forms:

$$
\begin{align*}
& u_{i, j}^{o}=u_{i, j}-\delta t\left[\left(p_{i+1, j}-p_{i, j}\right) / \delta x-g_{x}+U U X+U V Y-V I S U\right](25 a) \\
& v_{i, j}^{o}=v_{i, j}-\delta t\left[\left(p_{i, j+1}-p_{i, j}\right) / \delta y-g_{y}+U V X+V V Y-V I S V\right](25 b) \\
& \left(u_{i, j}^{o}-v_{i-1, j}^{o}\right) / \delta x+\left(v_{i, j}^{o}-v_{i, j-1}^{o}\right) / \delta y=0 \tag{26}
\end{align*}
$$

where the momentum convective and viscous fluxes are approximated by

$$
\begin{align*}
& \text { aUX }=\partial u u / \partial x=\left[\left(u_{i, j}+u_{i+1, j}\right)^{2}+\right. \\
& \alpha\left|u_{i, j}+u_{i+1, j}\right|\left(u_{i, j}-u_{i+1, j}\right)-\left(u_{i-1, j}+u_{i, j}\right)^{2} \\
& \left.-\alpha\left|u_{i-1, j}+u_{i, j}\right|\left(u_{i-1, j}-u_{i, j}\right)\right] / 4 \delta x \\
& \mathrm{UVY}=\partial u v / \partial y=\left[\left(v_{i, j}+v_{i+1, j}\right)\left(u_{i, j}+u_{i, j+1}\right)\right. \\
& +\alpha\left|v_{i, j}+v_{i+1, j}\right|\left(u_{i, j}-u_{i, j+1}\right)-\left(v_{i, j-1}+v_{i+1, j-1}\right) x \\
& \left.\left(u_{i, j-1}+u_{i, j}\right)-\alpha\left|v_{i, j-1}+v_{i+1, j-1}\right|\left(u_{i, j-1}-u_{i, j}\right)\right] / 4 \delta y \tag{27b}\\
& \text { VISe }=\gamma\left(\partial^{2} u / \partial x^{2}+\partial^{2} u / \partial y^{2}\right)=\nu\left[\left(u_{i+1, j}-2 u_{i, j}+u_{i-1, j}\right) / \delta x^{2}\right. \\
& \left.+\left(u_{i, j+1}-2 u_{i, j}+u_{i, j-1}\right) / \delta y^{2}\right] \tag{27c}
\end{align*}
$$

Fig. 12. Locations of cell variables in a mesh.

$$
\begin{align*}
& \mathrm{UVX}=\partial u v / \partial x=\left[\left(u_{i, j}+u_{i, j+1}\right)\left(v_{i, j}+v_{i+1, j}\right)\right. \\
& +\alpha / u_{i, j}+u_{i, j+1} \mid\left(v_{i, j}-v_{i+1, j}\right)-\left(u_{i-1, j}+u_{i-1, j+1}\right) x \\
& \left.\left(v_{i-1, j}+v_{i, j}\right)-\alpha\left|u_{i-1, j}+u_{i-1, j+1}\right|\left(v_{i-1, j}-v_{i, j}\right)\right] / 4 \delta x \tag{27d}\\
& V V Y=\partial v v / \partial y=\left[\left(v_{i, j}+v_{i, j+1}\right)^{2}+\alpha\left|v_{i, j}+v_{i, j+1}\right| x\right. \\
& \left(v_{i, j}-v_{i, j+1}\right)-\left(v_{i, j-1}+v_{i, j}\right)^{2}-\alpha\left|v_{i, j-1}+v_{i, j}\right| x \\
& \left.\left(v_{i, j-1}-v_{i, j}\right)\right] / 4 \delta y \tag{27e}\\
& V I S V=\nu\left(\partial^{2} v / \partial x^{2}+\partial^{2} v / \partial y^{2}\right)=\nu\left[\left(v_{i+1, j}-2 v_{i, j}+v_{i-1, j}\right) / \delta x^{2}\right. \\
& \left.+\left(v_{i, j+1}-2 v_{i, j}+v_{i, j-1}\right) / \delta y^{2}\right] \tag{27f}
\end{align*}
$$

The superscripts in the equations denote a new time level, i.e., at time $(n+1) s t$. The terms with no superscript are at the old time level, i.e., at time nst. The coefficient α has a value from 0 to 1 . The details of deriving Eqs 25a, b and 26 are included in Appendix I.

The numerical model is based on SOLA-SURF algorithm (28), which is a simplified Marker-and-Cell (MAC) method (29). The MAC method was the first technique to use pressure and velocity as the primary variables to treat problems involving free surface. The method defines the field variables in an Eulerian mesh of calculational cells as shown in Fig. 12. The method uses weightless marker particles to specify the free surface. The pressure boundary condition is applied at the cell centers. In the later versions of the MAC method, the crude approximation of pressure is improved by satisfying the free surface stress conditions more accurately and in applying the pressure at the actual locations instead of cell centers (30). The marker particles can also be eliminated. The SOLA-SURF code includes both improvements. However, it is not directly applicable to the rotational molding geometry because of the following reasons:

1. The code is written in Eulerian concept of a fluid moving through a stationary network of cells, while a rotational cylinder may be better represented by a Lagrangian system, in which the fluid is covered by a mesh of cells whose vertices move with the fluid. Since the Eulerian technique is most useful for problems involving large fluid distortion, this study will modify the SOLA-SURF code, but keep this advantage for a moving mesh of cells.
2. The code is for uni-directional flow. In a rotational cylinder, the fluid moves along the wall. The flow field will be treated as the combination of two uni-directional flows.
3. The code is for a confined free surface with no advancing front, but on the contrary, the present problem is characterized by the
expansion of fluid covered area. Initial conditions have to be defined for each newly entered call.
4. Although cylindrical coordinates can be used in this code and makes the mathematics easier for the cells in the cylinder, it is not suitable physically for this transient problem. The cell size in cylindrical coordinate system varies, smaller for those cells near the center of the cylinder and lager for those cells near the wall. This is advantageous to the calculation of the free surface because of smaller cells. But the larger cell area is where the advancing front of fluid is entering. The large cell can not meet the requirement of high accuracy. Therefore, a Cartesian coordinates is used and, consequently, it is necessary to define the curve boundary.

The major considerations of modeling the Eqs. $25 \mathrm{a}, \mathrm{b}$ and 26 , including iteration procedure, initial conditions, boundary conditions and numerical stability, are discussed in the following sections.

IV.A Rigid Surface Location and Slope

The cell size is uniform throughout the whole cross-section area of the cylinder. The cells at a rigid boundary are partially inside the cylinder and partially outside. A criterion is necessary to determine if a specific boundary cell is "inside" the cylinder. When a boundary cell is considered "outside" the cylinder, it becomes the fictitious cell as shown in Fig. 11. In this calculation, if the inside fraction of the total cell area is greater than or equal to $\frac{1}{4}$, it is flagged "inside" (31). To calculate the inside area, a straight line (dotted line) connecting intersections of curve and Y-division lines is used in place on the curve boundary as shown in Fig. 13. The area of trapezoid GHED
approximates the bottom cell area at $X=i+1$, and FGDC the bottom cell area at $X=i$. Both have an area greater than a quarter of the uniform cell area $\delta x \delta y$. Hence, both cells (i, j) and ($i+1, j$) are considered "inside" the boundary. The BFC area is smaller than $\delta x s y / 4$ and, therefore, the cell ($1-1, j$) is not inside the boundary. The bottom cell at $X=i-1$ can be found to be (in, $j+1$).

For a curved boundary, the fictitious cells are not outside a rectangle as shown in Fig. 11. Some of the fictitious cells may be at $j=1$. Some may be at $j=2,3,4$, etc. Likewise, they are not limited to $i=1$ and IMAX. But every fictitious cell is, by definition, immediately next. to the boundary cell.

At each boundary cell, the velocity of the boundary surface is known. This velocity vector can be viewed as a combination of the two Cartesian velocity components u and v, which can be calculated from the

Fig. 13. Approximation of curved boundary.
equations.

$$
\begin{aligned}
& B U_{i}=A S \cos \left(\tan ^{-1} \mathrm{SLOB}_{i}\right) \\
& B V_{i}=A S \sin \left(\tan ^{-1} \mathrm{SLOB}_{i}\right)
\end{aligned}
$$

where $B U=u$ velocity at boundary, $\mathrm{cm} / \mathrm{sec}$
$B V=v$ velocity at boundary, cm/sec
$\mathrm{AS}=$ Rotating velocity, $\mathrm{cm} / \mathrm{sec}$
SLOB = Tangential slope at boundary
The SOLA-SURF algorithm is restricted to the cells with slopes of the surface equal to or less than the aspect ratio of cell ($6 \mathrm{y} / \mathrm{s} \mathrm{x}$). If the slope is greater than the aspect ratio, the simple boundary conditions for the free surface in sec. IV.F.l will not be applicable. The simple forms for approximating the free surface location in sec. IV.D will involve too much error. In a cylinder, it is predictable that the slope of free surface will increase rapidly as the cells approach either the left or right side boundary. This may be due to the steep slope of the rigid surface at both side boundaries. Therefore, an 1 column is excluded from the "inside" of cylinder if its rigid surface has a slope greater than $\delta y / \delta x$. This exclusion should not distort the general picture of cylinder. A 5% or less exclusion of the total area would be acceptable. Both the calculations of surface location and slope are outlined in Appendix II.

IV.B Sign Convention

The cylinder is divided into two parts: lower and upper halves. Since the 1 -indexing is following the direction of rotation, the indexing is from left to right for the lower half of the cylinder and right to left for the upper half of the cylinder if the rotation is counter-clockwise. U-velocity is positive (+) when it is following the indexing direction and
negative (-) when counter to the direction. Th \mathbf{j}-indexing is from bottom to the top. Both halves have the same indices. V-velocity is positive when it is upward and negative when it is downward. The gravitational constants g_{x} and g_{y} also have the same convention as u - and v-velocities. Hence, g_{y} being downward for all of the time has a negative sign. Fig. 14a shows these conventions. When a cell is involved in calculations of both halves, three points should be noted. First, it will have two i-indices, one for the lower half and another for the upper. Second, the u-velocity will have different signs: namely, positive for the lower half and negative for the upper, or vice verse. Third, the placing of u-velocity in the upper half is different from in the lower half because of the difference in rotation directions as shown in Fig. 14b.

(a)

(b)
(i,j)-lower
(iu, ju)-upper

Fig. 14. Sign Convention.

The velocity iteration procedure in SOLA-SURF is adopted in this model. In every time cycle, the velocities of each cell is predicted from Eqs. 25a, b. These predictions probably will not satisfy Eq. 26. The discrepancy is defined by

$$
\begin{equation*}
D=\left(u_{i, j}-u_{i-1, j}\right) / \delta x+\left(v_{i, j}-v_{i, j-1}\right) / \delta y \tag{28}
\end{equation*}
$$

When absolute value of D is less than a specified value called tolerance, the iteration is terminated for that time cycle. Otherwise, the pressure is adjusted proportional to the discripancy.

$$
\begin{equation*}
s p=-D /\left(26 t / 6 x^{2}+2 \delta t / 6 y^{2}\right) \tag{29}
\end{equation*}
$$

A new set of velocities is calculated according to the following equations:

$$
\begin{align*}
& u_{i, j}=u_{i, j}+\delta p \delta t / \delta x \tag{30a}\\
& u_{i-1, j}=u_{i-1, j}-\delta p s t / \delta x \tag{30b}\\
& v_{i, j}=v_{i, j}+\delta p s t / \delta y \tag{30c}\\
& v_{i, j-1}=v_{i, j-1}-\delta p s t / \delta y \tag{30d}
\end{align*}
$$

Returning to Eq. 28 for convergency check, these new predictions start a new iteration. This procedure repeats until $D \leq$ tolerance is satisfied in every cell of the network. A new time cycle will, then, start. The derivations of Eqs. 29 and 30a - d are described in Apprendix III.

It should be noted that Eq. 29 is applicable only to cells at interior mesh points. For cells at the free surface or a rigid boundary, the following equations are used:

Top Free Surface

$$
\text { where } \begin{align*}
\delta p & =\left(1-\eta_{T}\right) p_{i, j T-1}-p_{i, j T} \tag{31a}\\
\eta_{T} & =\delta y /\left[H_{i}-(j T-2.5) 6 y\right] \\
j T & =Y-\text { index of top cell } \\
H_{i} & =\text { height of top surface from mesh baseline }
\end{align*}
$$

Bottom Free Surface

$$
\begin{equation*}
\delta p=\left(1-\eta_{B}\right) p_{i, j B+1}-p_{i, j B} \tag{31b}
\end{equation*}
$$

where $\quad \eta_{B}=\delta y /\left[(j B-0.5) \delta y-H B_{i}\right]$
$j B=Y$ - index of bottom cell
$H B_{i}=$ height of bottom surface from mesh baseline
Top Rigid Surface

$$
\begin{align*}
\delta \mathrm{p} & =\left[v_{i, j T-1}-\left(u_{i, j T}+u_{i-1, j T}\right)\left(H_{i+1}-H B_{i-1}\right) / 46 x\right. \\
& \left.-\lambda_{T}\left(u_{i, j T}-u_{i-1, j T}\right) \delta y / \delta x\right] /\left[\left(1+2 \lambda_{T} \delta y^{2} / \delta x^{2}\right) \delta t / \delta y\right] \tag{31c}
\end{align*}
$$

where $\quad \lambda_{T}=(j T-2)-H_{i} / B y$
Bottom Rigid Surface

$$
\begin{align*}
\delta p & =\left[v_{i, j B-1}-\left(u_{i, j B}+u_{i-1, j B}\right)\left(H_{B i+1}-H B_{i-1}\right) / 46 x\right. \\
& \left.-\lambda_{B}\left(u_{i, j B}-u_{i-1, j B}\right) \delta y / \delta x\right] /\left[\left(1+2 \lambda_{B} \delta y^{2} / \delta x^{2}\right) \delta t / \delta y\right] \tag{31d}
\end{align*}
$$

where $\lambda_{B}=(j B-1)-H B_{i} / 6 y$
The derivations in details of Eqs. 3la - d are explained in Appendix IV.
IV.D Free Surface Position

After the velocity field converges in every cell, a time cycle is concluded with a set of new free surface positions. The movement of free surface can be calculated according to the kinematic equations, which involve velocities and surface slope. The velocities $u(i, j)$ and $v(i, j)$ for a particular cell are assumed applying to the center of the surface, 0 . The particle at 0 moves to an arbitrary point D during the time period t, as shown in Fig. 15(a). Paralleling to the orginial surface, a line CD is drawn as shown in Fig. 15(b). The net displacement of the free surface is from 0 to C. By a geometrical relationship,

$$
\begin{aligned}
O C & =E D=A D-A E \\
& =O B-O A(\Delta H / \delta x)
\end{aligned}
$$

That is equivalent to

$$
\begin{equation*}
H_{i}=v \delta t-u \delta t(\Delta H / \delta x) \tag{32}
\end{equation*}
$$

where $u, v=$ mid-surface velocities
Eq. 32 is expressed in finite difference form to obtain the equation for top free surface.

$$
\begin{align*}
H_{i}^{0} & =H_{i}+\delta t\left\{-\left[\left(u_{i, j T}+u_{i-1, j T}\right)\left(H_{i+1}-H_{i-1}\right)\right.\right. \\
& \left.-\gamma\left|u_{i, j T}+u_{i-1, j T}\right|\left(H_{i+1}-2 H_{i}+H_{i-1}\right)\right] / 4 \delta x \\
& \left.+\lambda_{T} v_{i, j T}+\left(1-\lambda_{T}\right) v_{i, j T-1}\right\} \tag{33a}
\end{align*}
$$

where $\quad \gamma=$ weight of partial donor cells
$\lambda_{T}=$ ratio of liquid height to δy
Similarly, the equation for bottom free surface is

$$
\begin{array}{rl}
\mathrm{HB} & 0 \\
= & H B_{i}+\delta t\left\{-\left[\left(u_{i, j B}+u_{i-1, j B}\right)\left(H B_{i+1}-H B_{i-1}\right)\right.\right. \\
& \left.-\gamma\left|u_{i, j B}+u_{i-1, j B}\right|\left(H B_{i+1}-2 H B_{i}+H B_{i-1}\right)\right] / 4 \delta x \tag{33b}\\
& \left.+\left(1-\lambda_{B}\right) v_{i, j B}+\lambda_{B} v_{i, j B-1}\right\}
\end{array}
$$

where $\quad \lambda_{B}=$ ratio of void height to δy
The derivation of Eqs. 33a, b are described in Appendix V.

(2)

Fig. 15 Kinematic equation for free surface location

The initial conditions includes (1) the top free surface before the cylinder rotation is started, (2) the velocities and pressures at the moment the cylinder is starting to rotate, and (3) the velocities and pressures for the newly entered cells.
IV.E. 1 Initial Top Free Surface

The location of the initial top free surface can be specified by either the most left or the most right contact point of the surface with the wall. For example, in Fig. 16(a), the distance of the most left point from $i=0$ is
$T X=A R-\left[A R^{2}-(A R-F L H T)^{2}\right]^{\frac{1}{2}}$
where $A R=$ radius of cylinder, cm
FLHT = initial fluid height in the cylinder, cm
Since this algorithm is inapplicable to the i column of which the thickness of liquid layer is limited in one single cell, e.g., columns i_{1} and i_{2} in Fig. 16(b). The most left column for calculation, IL, may not be exactly at TX. IL is the first i column from the left with thickness of two or more cells.

Fig. 16 Initial top free surface.

IV.E. 2 Initial Velocities and Pressures

When the cylinder starts to rotate, it is assumed that only the cells at the boundary layer move. Accordingly,

$$
\begin{align*}
u_{i, j B} & =B U_{i} \tag{35a}\\
v_{i, j B} & =B V_{i} \tag{35b}
\end{align*}
$$

The velocities at all other cells are assumed to be zero.
However, every cell filled with liquid completely or partially should have a pressure value. The initial pressure is the hydrostatic pressure.

$$
\begin{equation*}
p_{i, j}=-g_{y}\left[H_{i}-(j-1.5) \delta y\right] \tag{35c}
\end{equation*}
$$

IV.E. 3 Initial Conditions for Newly Entered Cells

After the new free surface is calculated by Eq. 33b for the upper half, velocities and pressure have to be assumed for these newly entered cells so that the new velocities can be predicted from Eqs. 25a, b in the next time cycle.

$$
\begin{align*}
& u_{i, j}=\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right) / 4 \tag{37a}\\
& v_{i, j}-\left(v_{i+1, j}+v_{i-1, j}+v_{i, j+1}+v_{i, j-1}\right) / 4 \tag{37b}\\
& p_{i, j}=g_{y}\left[(j-1.5) \delta y-H B_{i}\right] \tag{38}
\end{align*}
$$

When the calculation is in the lower half, these initial conditions are optional. The velocity iteration is able to converge with the assumption of zero pressures and zero velocities at the newly entered cells.
IV.E. 4 Initial Conditions for Newly Entered Column

The assumed velocities in newly entered columns of cells are
2nd and 4th quardrants:

$$
\begin{align*}
& u_{i, j}=u_{i-1, j} \tag{39a}\\
& v_{i, j}=v_{i-1, j} \tag{39b}
\end{align*}
$$

1st and 3rd quardrants:

$$
\begin{align*}
& u_{i, j}=2 u_{i-1, j 1}-u_{i-2, j 2} \tag{40a}\\
& v_{i, j}=2 v_{i-1, j 1}-v_{i-2, j 2} \tag{40b}
\end{align*}
$$

where $j 1$ and $j 2$ have the same distance to the top rigid surface in $i-1$ and $i-2$ columns, respectively, as j in i column. Fig. 17 illustrates the relations among $j, j 1$ and $j 2$. The pressures in the new column are calculated by Eqs. 36 and 38.

Fig. 17 Relative positions of $j, j 1$ and $j 2$.

IV.F Boundary Conditions

The boundary conditions include velocities at the boundary cells, the fictitious cells and the empty cells surrounding the free surface. A no-slip boundary condition can be applied to force the tangential velocities of the fluid at the walls to be identical to the rotational velocity at the walls. For a free surface, the continuative boundary condition will make the adjacent cell outside the fluid to have the same velocities as the cell inside the fluid.

IVF. 1 Free Surface

During the propagation of fluid movement, the image cells (i-1,j) of the front wave are assigned the velocities following continuative boundary condition.

$$
\begin{align*}
v_{i+1, j} & =v_{i, j} \tag{41a}\\
u_{i+1, j} & =u_{i, j} \tag{41a}
\end{align*}
$$

For both top and bottom free surfaces, the fluid rarely occupies a full surface cell. Thus, v velocities can be calculated from the continuity equation.

Top Free Surface

$$
\begin{align*}
& v_{i, j}=v_{i, j-1}-\left(u_{i, j}-u_{i-1, j}\right) \delta y / \delta x \tag{42a}\\
& u_{i, j+1}=u_{i, j} \tag{42b}
\end{align*}
$$

Bottom Free Surface

$$
\begin{align*}
& v_{i, j-1}=v_{i, j}+\left(u_{i, j}-u_{i-1, j}\right) \delta y / \delta x \tag{43a}\\
& u_{i, j-1}=u_{i, j} \tag{43b}
\end{align*}
$$

(a)

(b)

(c)

Fig. 18. Free surface boundary conditions (a) Eqs. 4la, b,
(b) Eqs. 42a, b, (c) Eqs. 43a, b.

IV.F. 2 Rigid Boundary

After excluding some cells from the calculation scheme as discussed in sec. IV.A, the cylinder is no longer complete circular, but a circular segment with two vertical flat portions on its right and left hand sides. It now becomes necessary to assume a rotating film occuping no space inside the wall and to make the cylinder stationary. This rotating film replaces the rotational cylinder. A Lagrangian system, thus, can be treated as a Eulerian system. Then, the horizontal velocities at the most right column for lower half and the most left column for upper half are zero. This forces the liquid to stop at the vertical walls. The vertical velocities may be assumed equal to the rotating speed of the cylinder.

Lower half:

$$
\begin{align*}
& \mathrm{u}_{\mathrm{MR}, \mathrm{j}}=0 \tag{44a}\\
& \mathrm{v}_{\mathrm{MR}, \mathrm{j}}=\mathrm{AS} \tag{44b}
\end{align*}
$$

Upper half:

$$
\begin{align*}
u_{M L U, j} & =0 \tag{45a}\\
v_{M L U, j} & =-A S \tag{45b}
\end{align*}
$$

where $M R=$ The most right column in the lower half

$$
\text { MLU }=\text { The most left column in the upper half }
$$

However, a better approach to obtain the v-velocity is by assuming a
Inear relation in the near wall area, as shown in Fig. 19(a).

$$
\begin{align*}
& \mathrm{v}_{\mathrm{MR}, \mathrm{j}}=\left(2 \mathrm{AS}+\mathrm{v}_{\mathrm{MR}-1, j}\right) / 3 \tag{44c}\\
& \mathrm{v}_{\mathrm{MLU}, \mathrm{j}}=\left(-2 \mathrm{AS}+\mathrm{v}_{\mathrm{MLU}-1, j}\right) / 3 \tag{45c}
\end{align*}
$$

For cells outside the vertical walls, the following velocities are assumed:

$$
\begin{align*}
& \mathrm{u}_{\mathrm{MR}+1, j}=0 \tag{46a}\\
& \mathrm{v}_{\mathrm{MR}+1, j}=2 \mathrm{v}_{\mathrm{MR}, \mathrm{j}}-\mathrm{v}_{\mathrm{MR}-1, j} \tag{46b}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{u}_{\mathrm{MLU+1,j}}=0 \tag{47a}\\
& \mathrm{v}_{\mathrm{MLU}+1, \mathrm{j}}=2 \mathrm{v}_{\mathrm{MLU}, \mathrm{j}}-\mathrm{v}_{\mathrm{MLU}-1, j} \tag{47b}
\end{align*}
$$

For a bottom rigid boundary as shown in Fig. 19(b), $v_{1, j-1}$ is outside the wall. It can be calculated by equation of continuity, Eq. 43a. As the rotating velocity is the combination of u and v velocities,

$$
A S=v_{i, j-1} \sin \theta+u_{i, j-1} \cos \theta
$$

$u_{i, j-1}$ is computed by

$$
\begin{equation*}
u_{i, j-i}=\left(A S-v_{i, j-1} \sin \theta\right) \cos \theta \tag{48}
\end{equation*}
$$

Fig. 19. Rigid boundary conditions.
IV.G Parameters and Numerical Stability

To insure numerical stability some parameters must be correctly chosen, e.g., the weights of partial donor cell method. Though some rules of thumb have been suggested, an optimum value can be achieved only by trial and error.
IV.G. $1 \alpha, \gamma$ - Weight of Partial Donor Cell

In Eqs. $25 \mathrm{a}, \mathrm{b}, \alpha$ has value in the range of 0 to 1 as stated previously. It is limited by the inequality

$$
\begin{equation*}
1 \geq \alpha=k \max (|u s t / \delta x|,|v s t / \delta y|) \quad k>1 \tag{49}
\end{equation*}
$$

A good choice of k is suggested 1.2 to 1.5 (28).
γ in Eqs. 33a and b is often equal to α. Its only constraint is
$1 \geq r \geq 0$
The example problem in section IV.I demonstrates the allowable difference between values of α and γ, with $\alpha=0.9$ and $\gamma=0.2$.
IV.G. 2 OMG - Over-Relaxation Factor

To accelerate the convergence of velocity iteration, OMG is incorporated into Eq. 29.

$$
\begin{align*}
p & =-(\text { OMG })(D) / 2 \delta t\left(1 / \delta x^{2}+1 / \delta y^{2}\right) \\
& =-(\text { BETA })(D) \tag{51}
\end{align*}
$$

where \quad BETA $=0 M G / 2 \delta t\left(1 / \delta x^{2}+1 / \delta y^{2}\right)$
OMG is in the range of 1 to 2 . If it is 2 , the iteration will become unstable. A value of 1.8 is often the optimum.
IV.G. $3 \in$ - Tolerance of Discrepancy

The tolerance used as the criterion of convergence test for Eq. 28 should be small enough to ensure satisfying the continuity equation. A value of 10^{-3} is typical for non-dimensional velocity in the order of 0.1 - 1 . If the value is too small, the improvement of accuracy is
minimal. But the computer time becomes excessive. For this study, a value up to 0.1% of the average velocity is adequate.
IV.G. 4 st - Time Increment

The time increment is the most important factor in stability. There are at least two criteria to be satisfied (28).

$$
\begin{align*}
& \delta t<\min (|\delta x / u|,|\delta y / v|) \tag{52a}\\
& \delta t<\delta x^{2} \delta y^{2} / 2 \delta\left(\delta x^{2}+\delta y^{2}\right) \tag{52b}
\end{align*}
$$

Another criterion suggests to include a parameter $(\varphi+1)$ in denominator of inequality 52b.

$$
\begin{equation*}
\left.\delta t<\delta x^{2} \delta y^{2} / 2(\varphi+1)\right\rangle\left(\delta x^{2}+\delta y^{2}\right) \tag{52c}
\end{equation*}
$$

where the value of ϕ is in the range of $0-2$ (30).
IV.H Computation Procedures

The input data of the calculation defines the block boundary (IMAX, JMAX), cell size (DELX, DELY), initial liquid height (FLHT), rotation velocity (AS), kinematic viscosity (NU) and gravitational acceleration (GX, GY). It includes also the above mentioned parameters $\alpha, \gamma, 0 M G, \epsilon$, and time increment. Then, the actual rigid boundary, the mesh of cells and initial free surface are drawn. Both initial profiles of velocity and pressure are set up.

A section computation is followed to calculate the fluid moving from left of right in the lower half. When the fluid reaches the right boundary, it climbs up along the wall up to the top right boundary. This is the computation in "lower section I " shown in Fig. 20. The velocities and pressure of the cells at the front of the wave are re-defined for the "upper section". Thus, the computation in upper half starts. This section is for liquid moving from right to left with a bottom free surface.

Fig. 20 Overall flow chart.

Fig. 21. Boundary and initial conditions

Fig. 22. Section computation - lower section I\&II.

Fig. 23. Input to upper section.

Fig. 24. Section computation - upper section.

These two section computations constitutes the calculation loop until the liquid reaches the left boundary and falls along the wall to the bottom rigid boundary. The computation of "lower section II" is added to the loop when the fluid touches the left bottom boundary. The front wave of lower section II will move faster to catch up the rear part of lower section I. After the liquid becomes a ring by connecting lower section I and II, the latter is consolidated into the former. The calculation loop consists of two sections -- lower I and upper -- again. But now the lower section I covers the entire area from ML to MR. The computational process will stop at specified time.

The section computations for lower and upper sections are basically the same. At the beginning the velocities are predicted by Eqs. 25a, b. Then, the boundary conditions for the rigid boundaries and free surfaces are set. If the discrepancy of continuity equation is less than tolerance, i.e., D (Eq. 28) $<\epsilon$, iteration of that time cycle is concluded. Otherwise, a new set of conditions are obtained from Eqs. 29 and 30 a - d. A test of convergency is repeated. When the velocities converge, a new free surface is located. Since the computation method requires minimum thickness of two cells in any column, it is necessary to eliminate the columns with single cell in the tail part of the fluid. On the other hand, a second cell is made to of each single-cell column in the remaining part. If the total liquid volume is less than the original, the fluid enters into a new column to keep a constant volume in the cylinder. The initial and boundary conditions of the new column are to be calculated before a new time cycle begins.
IV.I Example

An example is give with listing in Appendix VII. The cylinder
size is chosen to be comparable to a laboratory equipment. The cell size is a compromise of accuracy and computer time. The kinematic viscosity was assumed to be in the same range as the silicone oil used in laboratory experiments. The input data are listed in Table I.

The indexing of the mesh is shown in Fig. 25. The horizontal index of lower half is $1-66$, the upper 66-131. The vertical index is $1-34$. After exclusion of cells of high aspect ratio, the mesh of calculation is reduced to 4-63 and 69-128, which includes one fictitious column of cells at each side. The excluded area is 3.4% of the circular cylinder. The actual circumference of the modified cylinder is 4.2% shorter than that of the whole circular cylinder. The initial liquid height results an average film thickness 11% of the radius, comparing with the maximum value of 20% in the rotational molding. Appendix VI details the calculations of these numbers

Fig. 25. Index in the example problem. Shaded area is excluded from calculation.

TABLE I
INPUT DATA OF EXAMPLE

ITEMS		VALUES	
System			
Cylinder radius	(AR)	6.4	cm
Mesh spacing of cell X -axis	($\delta \mathrm{x}$)	0.2	cm
Mesh spacing of cell Y-axis	(sy)	0.4	cm
Rotation velocity	(AS)	220	$\mathrm{cm} / \mathrm{sec}$
Initial fluid height	(FLHT)	3.5	cm
Kinematic viscosity	(NU)	2	$\mathrm{cm}^{2} / \mathrm{sec}$
Gravitational acceleration X-axis	$\left(g_{x}\right)$	0	
Gravitational acceleration Y-axis	$\left(g_{y}\right)$	-980	$\mathrm{cm} / \mathrm{sec}^{2}$
Parameters			
Weight of partial donor cell-			
convective flux	(α)	0.9	
Weight of partlal donor cell-			
free surface	(γ)	0.2	
Over-relaxation factor	(OMG)	1.4	
Convergence criterion	(ϵ)	0.1	
Time increment	(st)	0.00	sec

NOTE: names of items in the listings

$$
\begin{array}{rlrl}
\delta \mathrm{x} & =\text { DELX } & \quad \delta \mathrm{y}=\mathrm{DELY} \\
\mathrm{~g}_{\mathrm{x}} & =\mathrm{GX} \quad \mathrm{~g}_{\mathrm{y}}=\mathrm{GY} \\
\alpha & =\text { DPLHA (lower), ULPHA (upper) } \\
\text { OMG } & =\text { OMG (lower), UMG (upper) } \\
\gamma & =\text { GAMMA } \\
\epsilon & =\text { EPSI (lower), UPSI (upper) } \\
\delta t & =\text { DELT }
\end{array}
$$

The convergence criterion can be checked by assuming a value of discrepancy to be . 01 for both u and v velocities in Eq. 28.
$D=.01 / .2+.01 / .4=0.75$
Considering a rotational velocity of $220 \mathrm{~cm} / \mathrm{sec}$, the tolerance value of 0.1 represents error in the order of $10^{-3} \%$.

The time increment is to meet with both inequalities 52a, b.
$\delta t<\min (|.2 / 220|,|.4 / 220|)=0.0009$
$\delta t<(.2)^{2}(.4)^{2} / 2(2)\left(.2^{2}+.4^{2}\right)=0.008$
A value of 0.0005 is chosen by trial-and-error.
The controlling amount of donor cell fluxing has to satisfy the inequality 49.
$1 \geq \alpha=k \max (|220 \times 0.0005 / .2|,|220 \times 0.0005 / .4|)$
By trial-and-error method the k value is selected as 1.7 and α as 0.9 . Similarly, the optimum values of γ and OMG are found to to be 0.2 and 1.4 , respectively. Each parameter may have different values for lower and upper halves.

The result of calculation indicates the time of traveling around a cylinder is 327 time cycles. With the assumption of no-slip rotation throughout the calculation, the number of time cycles is 294 (Appendix VI). Since the actual number of time cycle is greater than the hypothetical number for no-s1ip rotation, the computer model is considered valid.

Several rotating velocities have been tested in the computer program. The comparison in Table II indicates correspondence between numerical analysis and experimental results which are summarized in Eqs. 1 and 2. By numerical method, the change from cascading to rimming flow occurs at a rotational velocity of $190-200 \mathrm{~cm} / \mathrm{sec}$. Eq. 2 gives the onset velocity of rimming flow at $203 \mathrm{~cm} / \mathrm{sec}$. Eq. 1 shows that the flow in the range of $140-190 \mathrm{~cm} / \mathrm{sec}$ is cascading type. Fig. 26 shows the calculated points are

TABLE II

COMPARISON OF NUMERICAL METHOD WITH EXPERIMENTAL RESULTS

		AS (ec)			
	140	180	190	200	210	220
t (sec)	.0008	.0006	. 00055	. 00055	. 00053	. 0005
cycle (1)	337	314	310	255	271	259
cycle (2)	390	335		258	277	260
cycle (3)	400	400	315	276	318	267
ILU (3)	122	122	121	127	127	127
flow	cascad	-	(4)	rimming		\rightarrow
$\mathrm{w}(\mathrm{rad} / \mathrm{sec})$	21.88	28.13	29.69	31.25	32.81	34.38
Re_{m}	5.36	6.89	7.27	7.66	8.04	8.42
$0.8 \operatorname{Re}_{\mathrm{m}}^{0.867}$	3.43	4.27	4.47			
$1.11 \operatorname{Re}_{\mathrm{m}}^{0.867}$				6.2	6.48	7.04
Fr_{m}	3.13	5.17	5.76	6.38	7.03	7.72

Notes: (1) This is the cycle number when liquid reaches $I=121$ (upper)
(2) This is the cycle number when liquid reaches $\mathrm{I}=122$ (upper)
(3) This is the cycle number when liquid reaches $I=$ ILU (upper)
(4) The trend of results in cycles 310 to 315 shows it will not become the rimming flow.
not in the experimental range, but fit the correlation of experimental results very well. The assumption of Newtonian fluid in the low shear

Fig. 26 Comparison of numerical method with experimental results (a) cascading regime, (b) rimming regime.

Symbols Viscosity (ν)

\triangle	62.24
\mathcal{O}	42.46
\circ	29.46
\times	15.56
∇	12.45
$\mathbf{\square}$	2.0

NOTES:

1. Numerical method in this ${ }_{2}$ work is for $2 \mathrm{~cm}^{2} / \mathrm{sec}$.
2. The experimental correlations are shown by straight solid IInes.
3. The prediction by Deiber and Cerro (24) is shown by dotted line.

Fig. 27 Transient flow phenomena of the example. Free Surface changed as cylinder rotating from time cycle $\# 0$ to 560.

Fig. 27 Transient flow phenomena of the example. Free Surface changed as cylinder rotating from time cycle $\# 0$ to 560. (cont'd)
rates and low Reynolds numbers (<100) is also valid．
The transient flow phenomena of the example problem are shown in Fig． 27 （a）－（h）．In Fig． 27 （a），a quiescent pool is shown at time cycle $=0$ ，or prior to any motion．When the counter－clockwise rotation of the cylinder starts，a portion of the fluid is carried along the wall．In Fig． 27 （b），the fluid reaches the top rigid boundary at time cycle 非61． One time cycle is equivalent to one t ，or 0.0005 sec ．As the time cycle advances from $\# 61$ to $\# 261$ ，the upper boundary is covered gradually by the fluid，while the liquid layer in the lower half becomes thinner and thinner．Coming down the vertical wall，the fluid moves fast to complete a ring at time cycle $⿰ ⿰ 三 丨 ⿰ 丨 三 333$ as shown in Fig． 27 （h）．

The accurate experimental data for comparison with the results of transient flow is still in need．The fluid velocities in the vicinity of rigid boundary are close to the rotating velocity．Backward velocities occur near the free surface．Both are expected．A comparison can also be made with steady rimming flow in previous works by Scriven et at．（21，25）． From Fig．4，the thickest film should be at $\theta=1.18$ for $\operatorname{Re}_{m}=7.66$ ．From Fig．7a，which is for the value of $\operatorname{Re}_{\mathrm{m}}(\mathrm{R} / \mathrm{b})^{2}$ equal to 1 ，the thinnest spot is $\theta=\pi$ and the thickest $\theta=0$ ．In the physical dimension of the ex－ ample problem，this is equivalent to $\mathrm{Re}_{\mathrm{m}}=0.012$ ．Based on the series of change in Fig． 27 （a）－（h），the predicted thickest spot is in the range $\theta=0$ to $\pi / 2$ and the thinnest $\theta=\pi$ to $3 \pi / 2$ ．This concurs with the conclusion on page 12.

The results of calculation reveal variations of liquid volume with amount up to $\pm 10 \%$ as shown in Fig．28．The average of variation is + 0.56% ，and the standard deviation is 3.77% ．This variation reflects the

Inaccuracy in approximating the position and pressure at the free surface. The tracking of the interface location is a surface height function method method, as described on page 33. This is a simple definition requiring a minimum storage of information. Other methods, such as line segments and marker particles, provide better approximation, but require more storage. The volume of fluid method (32), under testing for this rotational cylinder problem at present, has demonstrated very powerful in approximation and required only small amount of storage. The calculation of cell center pressure at the free surface on page 32 is merely an interpolation along y - direction. This is very simple, but may result incorrect pressure and, consequently, obtain spurious velocity. The appearance of humps at the free surface is a clear indication of this error. An improved method (30) is to use the nearest neighboring full cell for interpolation when there is more than one neighboring full cell. This will make the free surface smooth and may decrease the variation of volume.

Fig. 28 Volume variation at time cycles.

In Fig. 27 (e) - (g), the tail part of the lower half results a high narrow wave. The bump stays in the tail and increases its height until a complete ring is formed. Then, it diminished rapidly. This is a phenomenon of singularity. It exists in all of the rotating velocities tested in this work. It builds up gradually as the fluid flow moves upwards and returns to a smooth surface in a later stage as shown in Fig. 29 (a). The number of time cycles to yield a smooth surface deperids on the rotating velocity. The higher the velocity, the more the time cycle. This is illustrated in Fig. 29 (b).

Singularity is a result of discontinuity. In a field computation using finite difference technique, most of the discontinuities arise from the edges and noses of curvature. To overcome this difficulty, the mesh size may be reduced to a fine enough network (35). The singularity at

Fig. 29 Phenomena of singularity.
the contact line between solid and free surface has been investigated by Huh and Scriven (36) and others (37, 38). Huh and Scriven proposed a hydrodynamic model for steady state flow over a rigid surface. In terms of stream function, the solution for a flat, no-slip solid yielded a realistic velocity field. However, the shear stress and pressure field increased to infinity as the contact line was approached. The singularity indicates the breakdown of the hydro-dynamic model and suggests discontinuity physically existing around the contact line. The most important reason for this discontinuity is the no-slip boundary condition (53), that demands the liquid immediately next to the rigid wall have no relative velocity to the wall. According to no-slip condition the advancing contact angle should be a function of wall velocity as shown in Fig. 30. But experiments indicate the contact angle increases irregularly as the velocity increases. Both rolling and sliding have been mentioned in the observations. To correct the boundary condition, the no-slip condition may be replaced by a dynamic condition which includes a slip factor or momentum transfer coefficient varying in the range of no-slip to partial slip. Unfortunately, no such a condition has been proved successfully without certain limitations (39,

Fig. 30 Contact angle. (a) equilibrium, (b) low speed,
(c) high speed.

40, 53). Other possible reasons for the singularity are cavitation, compressibility effects, breakdown of Newtonian fluid relation , etc. Due to the fact that surface tension has a significant effect on the characteristics of contact angle (54), it is impossible to obtain a complete picture of the development of singularity in any calculation excluding surface tension as in this work. Since the bump either diminishes in a later time cycle or exerts no significant effect on the result of rimming velocity, no attempt has been made to correct this difficulty.

During the development of model, various trials have been made to deduce some guidelines. The most important one, of course, is stability problem, which is inherent in all the numerical approximations. The set of parameters in the above example may not result in a convergence for other fluids of higher or lower veiscosity. In general, a set of parameters is good for a viscosity at several velocities. When the velocity changes, the main concern is time increment. Some test runs in the example indicate that a value of δt with 10% off its optimum may result in a divergence. Fortunately, the optimum ranges of parameters are not so narrow. Therefore, it is the parameters to be chosen first. If a set of parameters allows liquid to enter into the upper half, those values are adequate for the whole run.

The next important is the initial conditions in the upper half. Since the algorithm is using both the upstream and underneath cell velocities for computing discrepancy in Eq. 28, an intelligent guess of initial conditions is necessary to ensure a convergency in upper half. Eqs. 37a, b are found able to yield such a result. But other forms can be tried, too, for instance,

$$
\begin{equation*}
u_{i, j}=\left(u_{i-1, j}+u_{i, j+1}\right) / 2 \tag{53a}
\end{equation*}
$$

$$
\begin{equation*}
v_{i, j}=\left(v_{i-1, j}+v_{i, j+1}\right) / 2 \tag{53b}
\end{equation*}
$$

An acceptable initial condition usually does not relate only to a single velocity of surroundings, such as Eqs. 39a, b. The initial conditions for a whole new column are less critical.

The third is correcting the minimum thickness. As mentioned in previous sections, this algorithm applies only to columns with at least two cells. If the free surface is inside the bottom cell of lower half or the top cell of the upper half, it becomes necessary to make up a second cell, i.e., to extend the liquid into the second cell. The question is how far it should extend to. In the lower half, it is to the top edge of the bottom cell.

$$
\begin{equation*}
H_{1}=(j B-1) \delta y \tag{54}
\end{equation*}
$$

In the upper half, it is to the bottom edge of the top cell.

$$
\begin{equation*}
\mathrm{HB}_{i}=(j T-2) \delta y \tag{55}
\end{equation*}
$$

Comparison of this method with others is not available at present. (See Appendix VII for brief discussion on numerical methods for fluid dynamics.) The advantages of MAC method are basically its primitive variables and the capability to handle free surface conditions. The method has been proved extremely powerful in water wave problems. The example was run on a Amdah1 470 computer and required cpu 3 min 25.48 sec for 560 time cycles and 2 min 48.26 sec for 460 time cycles.

The accuracy of this method can be checked based on truncation and round-off errors. The truncation error in the centered differencing is second order in the spatial cell size and in the upstream differencing is first order. Since this method is using a hybird of centered and partial donor cell differencings, it can produce greater accuracy than the upstream differencing. The round-off error is minimized by double precision
in computer calculation. Although cell refinement can alleviate these error problems, it is usually impractical for engineering purposes. When the difference equations are conditional stable, the fineness of time step must satisfy the stability criteria, such as inequalities 52a and b, that involve the cell size. Therefore, a decrease in cell size may cause δt decrease not by ratio of the later size to the previous size, but by square of the ratio. The computer time will increase rapidly to accommodate to the smaller cell size and much shorter time step. Other convective modeling techniques which have error of high order while avoiding the stability problems on a comparable large cell size is recommended for better accuracy. For instance, the Leonard algorithm (46) with error of third order could be tried. With this type of high efficiency technique, a cylindrical coordinate system with larger cell size can be considered so that the error in approximating the location of rigid boundary could be eliminated.

The question of multiple solution in a free-surface flow has been investigated primarily for flow between disks and swirling flow. Some steady state problems have been solved analytically or numerically to obtain non-unique solutions. At least three situations may lead to the multiple solutions:
(1) Wrong theory or assumption (41);
(2) Physically existing conditions, such as in the transition of couette flow and steady flow between rotating disks (42, 43); and
(3) The location and shape of free surface that is unknown a priori. The last reason indicates the multiplicity of solution is inherent in the Navier-Stokes equation (44). Frequently, an approximation of the location and shape of free surface is built in the numerical method to provide assumed data of free surface. With those data, the iteration procedure
will try to satisfy the free surface conditions. Due to the highly nonlinear character of the Navier-Stokes equation, it is possible to have more than one set of location and shape satisfying the free surface conditions. Though it may be very difficult to prove uniqueness mathematically, only one of the solutins is expected physically possible, as discussed by Taylor (45). In MAC and MAC-derived techniques, it has been pointed out by B. D. Nichols, co-author of SOLA algorithm, in a private communcation that no multiple solutions have been found.

In conclusion, the model is able to predict both the transient flow and steady flow phenomena. The numerical stability problem can be solved by trial-and-error method with help of stability theorem. However, it should be noted that this is only a simpilfied model. Modifications may be necessary to fit specific problems.

To have a better simulation of liquid rotational molding, further studies are required to eliminate some of the assumptions and restrictions. Recently a SOLA-VOF program (32) has been developed to include surface tension forces. It also has a flexible mesh generator to provide cells with various different sizes. This will alleviate the aspect ratio problem. The whole circumference can be approximated by the diagonals of the cells.

Constantly changing viscosity is a phenomenon associated with curing. As viscosity increases, the parameters and time increment should be changed. An automatic time-step control in SOLA-VOF to adjust the time increment is not enough. A parameters adjustment has to be added. The relationship of time-temperature-viscosity (12) had better be a separate program. Even though the MAC method is capable to handle heat transfer differential equations, it is believed to be over-entangled., to couple heat transfer, reaction heat and fluid mechanics The main reason is, again, numerical stability.

FINITE DIFFERENCE REPRESENTATION OF NAVIER-STOKES EQUATIONS

The approximation of Eqs. $14 \mathrm{a}, \mathrm{b}$ and 15 by finite difference and partial donor cell methods is illustrated in this appendix.

The gravity constants g_{x} and g_{y} need no approximation. The velocity terms $\partial u / \partial x$ and $\partial v / \partial y$ are taking the form of backward differencing, i.e., Eqs. $19 \mathrm{c}, \mathrm{d}$. The transient and pressure terms $\partial u / \partial t, \partial v / \partial t, \partial p / \partial x$ and $\quad \mathrm{p} / \partial y$ are expressed by forward differencing similar to Eqs. $17 \mathrm{c}, \mathrm{d}$, for example,

$$
\begin{aligned}
& \partial u_{i, j} / \partial t=\left(u_{i, j}-u_{i, j}\right) / \delta t \\
& \partial p_{i, j} / \partial x=\left(p_{i+1, j}-p_{i, j}\right) / \delta x
\end{aligned}
$$

The viscous fluxes $\nu\left(\partial^{2} u / \partial x^{2}+\partial^{2} u / \partial y^{2}\right)$ and $\nu\left(\partial^{2} v / \partial x^{2}+\partial^{2} v / \partial y^{2}\right)$
including second derivatives are represented by the central differencing, i.e., Eqs. $20 \mathrm{c}, \mathrm{d}$. The partial donor cell method is applied only to convective fluxes.
A. UUX

The first derivative is given by central differencing.
$\partial u u / \partial x=$ UUX $=u\left(u_{i+\frac{1}{2}, j}-u_{i-\frac{1}{2}, j}\right) / \sigma x$

$$
\begin{equation*}
=\left(u u_{i+\frac{1}{2}, j}-u u_{i-\frac{1}{2}, j}\right) / 6 x \tag{I-1}
\end{equation*}
$$

For the first term $u_{i+\frac{1}{2}, j}$, the partial donor cell defines

$$
\begin{equation*}
u=\left[(1+\bar{\alpha}) u_{i, j}+(1-\bar{\alpha}) u_{i+1, j}\right] / 2 \tag{I-2}
\end{equation*}
$$

where $\bar{\alpha}=$ weight of donor cell with value $1 \geq \bar{\alpha} \geq-1$
IF $\quad \bar{\alpha}=\alpha\left(\operatorname{sign} u_{i+\frac{1}{2}, j}\right)$ and $1 \geq \alpha \geq 0$, then, it becomes

$$
\begin{align*}
u u_{i+\frac{1}{2}, j} & =\left[u_{i+\frac{1}{2}, j} u_{i, j}+\alpha\left(\operatorname{sign} u_{i+\frac{1}{2}, j}\right) u_{i+\frac{1}{2}, j} u_{i, j}\right. \\
& \left.+u_{i+\frac{1}{2}, j} u_{i+1, j}-\alpha\left(\operatorname{sign} u_{i+\frac{1}{2}, j}\right) u_{i+\frac{1}{2}, j} u_{i+1, j}\right] / 2 \tag{I-3}
\end{align*}
$$

Since
and

$$
\left(\operatorname{sign} u_{i+\frac{1}{2}, j}\right) u_{i+\frac{1}{2}, j}=\left|u_{i+\frac{1}{2}, j}\right|
$$

$$
u_{i+\frac{1}{2}, j}=\left(u_{i, j}+u_{i+1, j}\right) / 2
$$

Eq. I-3 is finalized as

$$
\begin{equation*}
u u_{i+\frac{1}{2}, j}=\left[\left(u_{i, j}+u_{i+1, j}\right)^{2}+\alpha / u_{i, j}+u_{i+1, j} \mid\left(u_{i, j}-u_{i+1, j}\right)\right] / 4 \tag{I-4}
\end{equation*}
$$

For the second term $u_{i-\frac{1}{2}, j}$, the partial donor cell representation of Eq. I-5 is developed through steps similar to Eqs. I-2, I-3 and I-4. By setting

$$
u=\left[(1+\bar{\alpha}) u_{i-1, j}+(1-\bar{\alpha}) u_{i, j}\right] / 2 \quad(1 \geq \bar{\alpha} \geq-1)
$$

and

$$
\bar{\alpha}=\alpha\left(\operatorname{sign} u_{i-\frac{1}{2}, j}\right) \quad(1 \geq \alpha \geq 0)
$$

then

$$
\begin{aligned}
u u_{i-\frac{1}{2}, j} & =\left[u_{i-\frac{1}{2}, j} u_{i-1, j}+\alpha\left(\operatorname{sign} u_{i-\frac{1}{2}, j}\right) u_{i-\frac{1}{2}, j} u_{i-1, j}\right. \\
& \left.+u_{i-\frac{1}{2}, j} u_{i, j}-\alpha\left(\operatorname{sign} u_{i-\frac{1}{2}, j}\right) u_{i-\frac{1}{2}, j} u_{i, j}\right] / 2
\end{aligned}
$$

Since

$$
\left(\operatorname{sign} u_{i-\frac{1}{2}, j}\right) u_{i-\frac{1}{2}, j}=\left|u_{i-\frac{1}{2}, j}\right|
$$

and

$$
u_{i-\frac{1}{2}, j}=\left(u_{i-1, j}+u_{i, j}\right) / 2
$$

therefore

$$
\begin{align*}
u u_{i-\frac{1}{2}, j}= & {\left[\left(u_{i-1, j}+u_{i, j}\right)^{2}+\alpha\left|u_{i-1, j}+u_{i, j}\right| x\right.} \\
& \left.\left(u_{i-1, j}-u_{i, j}\right)\right] / 4 \tag{I-5}
\end{align*}
$$

Combining Eqs. I-1, I-4, and I-5 results

$$
\begin{align*}
\text { UUX } & =\left[\left(u_{i, j}+u_{i+1, j}\right)^{2}+\alpha\left|u_{i, j}+u_{i+1, j}\right|\left(u_{i, j}-u_{i+1, j}\right)\right. \\
& \left.-\left(u_{i-1, j}+u_{i, j}\right)^{2}-\alpha\left|u_{i-1, j}+u_{i, j}\right|\left(u_{i-1, j}-u_{i, j}\right)\right] / 4 \delta x \tag{27a}
\end{align*}
$$

B. UVY

Following central differencing scheme, the first derivative is

$$
\begin{align*}
\partial u v / \partial y= & U V Y=u\left(v_{i+\frac{1}{2}, j}-v_{i+\frac{1}{2}, j-1}\right) / \delta y \\
& =\left(u v_{i+\frac{1}{2}, j}-u v_{i+\frac{1}{2}, j-1}\right) / \delta y \tag{I-6}
\end{align*}
$$

It should be noted that the X index of v terms is not i, but rather $i+\frac{1}{2}$. The reason can be visualized in Fig. 31. The terms of the first derivative have to be on the same line, either horizontally or vertically. In Fig. $31(\mathrm{a})$, the terms for $\partial u \mathrm{u} / \partial \mathrm{x}$ are on a horizontal line. To represent วuv/ay every term is on a vertically line as shown in Fig. 31 (b).

Applying partial donor cell method to the first term $u v_{i+\frac{1}{2}, j}$ in
Eq. I-6,

$$
u=\left[(1+\bar{\alpha}) u_{i, j}+(1-\bar{\alpha}) u_{i, j+1}\right] / 2 \quad(1 \geq \bar{\alpha} \geq-1)
$$

and setting

$$
\bar{\alpha}=\alpha\left(\operatorname{sign} v_{i+\frac{1}{2}, j}\right) \quad(1 \geq \alpha \geq 0)
$$

it becomes

$$
\begin{align*}
& u v_{i+\frac{1}{2}, j}=\left[u_{i, j} v_{i+\frac{1}{2}, j}+\alpha\left(\operatorname{sign} v_{i+\frac{1}{2}, j}\right) v_{i+\frac{1}{2}, j} u_{i, j}\right. \\
& \left.+u_{i, j+1} v_{i+\frac{1}{2}, j}-\alpha\left(\operatorname{sign} v_{i+\frac{1}{2}, j}\right) v_{i+\frac{1}{2}, j} u_{i, j+1}\right] / 2 \tag{I-7}
\end{align*}
$$

(a)

Fig. 31. Finite difference terms for (a) $\partial u u / \partial x$ and (b) $\partial u v / \partial y$.

By definition of

$$
\left(\operatorname{sign} v_{i+\frac{1}{2}, j}\right) v_{i+\frac{1}{2}, j}=\left|v_{i+\frac{1}{2}, j}\right|
$$

and a centered convective flux

$$
v_{i+\frac{1}{2}, j}=\left(v_{i, j}+v_{i+1, j}\right) / 2,
$$

Eq. I-7 results

$$
\begin{align*}
u v_{i+\frac{1}{2}, j} & =\left[\left(u_{i, j}+u_{i, j+1}\right)\left(v_{i, j}+v_{i+1, j}\right)\right. \\
& \left.+\alpha\left|v_{i, j}+v_{i+1, j}\right|\left(u_{i, j}-u_{i, j+1}\right)\right] / 4 \tag{I-8}
\end{align*}
$$

Similarly, the second term $u v_{i+\frac{1}{2}, j-1}$ of Eq. I-6 obtains the expression Eq. I-9. By setting

$$
u=\left[(1+\bar{\alpha}) u_{i, j-1}+(1-\bar{\alpha}) u_{i, j}\right] / 2 \quad(1 \geq \bar{\alpha} \geq-1)
$$

and

$$
\bar{\alpha}=\alpha\left(\operatorname{sign} v_{i+\frac{1}{2}, j-1}\right) \quad\left(1 \geq \alpha^{2} 0\right)
$$

and by definition

$$
\left(\operatorname{sign} v_{i+\frac{1}{2}, j-1}\right) v_{i+\frac{1}{2}, j-1}=\left|v_{i+\frac{1}{2}, j-1}\right|
$$

then by setting

$$
v_{i+\frac{1}{2}, j-1}=\left(v_{i, j-1}+v_{i+1, j-1}\right) / 2
$$

the result is

$$
\begin{align*}
u v_{i+\frac{1}{2}, j-1} & =\left[\left(u_{i, j-1}+u_{i, j}\right)\left(v_{i, j-1}+v_{i+1, j-1}\right)\right. \\
& \left.+\alpha\left|v_{i, j-1}+v_{i+1, j-1}\right|\left(u_{i, j-1}-u_{i, j}\right)\right] / 4 \tag{I-9}
\end{align*}
$$

Combining Eqs. I-6, I-8 and I-9 yields

$$
\begin{align*}
\text { UVY }= & {\left[\left(u_{i, j}+u_{i, j+1}\right)\left(v_{i, j}+v_{i+1, j}\right)+\alpha\left|v_{i, j}+v_{i+1, j}\right| x\right.} \\
& \left(u_{i, j}-u_{i, j+1}\right)-\left(u_{i, j-1}+u_{i, j}\right)\left(v_{i, j-1}+v_{i+1, j-1}\right) \\
& \left.-\alpha\left|v_{i, j-1}+v_{i+1, j-1}\right|\left(u_{i, j-1}-u_{i, j}\right)\right] / 4 \delta y \tag{27b}
\end{align*}
$$

C. UVX

The derivation for $\partial u v / \partial x$ is basically the same step by step of operation as for ouv/ay. From Fig. 32(a), the terms on a horizontal line are to be used in the central differencing.

$$
\begin{align*}
\partial u v / \partial x & =U V X=v\left(u_{i, j+\frac{1}{2}}-u_{i-1, j+\frac{1}{2}}\right) / \delta x \\
& =\left(v u_{i, j+\frac{1}{2}}-v u_{i-1, j+\frac{1}{2}}\right) / \delta x \tag{I-10}
\end{align*}
$$

For the first term $v u_{i, j+\frac{1}{2}}$, setting

$$
v=\left[(1+\bar{\alpha}) v_{i, j}+(1-\bar{\alpha}) v_{i+1, j}\right] / 2 \quad(1 \geq \bar{\alpha} \geq-1)
$$

and

$$
\bar{\alpha}=\alpha\left(\operatorname{sign} u_{i, j+\frac{3}{2}}\right) \quad\left(1 \geq \alpha^{\geq} 0\right)
$$

then

$$
\begin{align*}
v u_{i, j+\frac{1}{2}} & =\left[u_{i, j+\frac{1}{2}}\left(v_{i, j}+v_{i+1, j}\right)\right. \\
& \left.+\alpha\left(\operatorname{sign} u_{i, j+\frac{1}{2}}\right) u_{i, j+\frac{1}{2}}\left(v_{i, j}-v_{i+1, j}\right)\right] / 2 \tag{I-11}
\end{align*}
$$

By definition

$$
\left(\operatorname{sign} u_{i, j+\frac{1}{2}}\right) u_{i, j+\frac{1}{2}}=\left|u_{i, j+\frac{1}{2}}\right|
$$

then, setting

$$
u_{i, j+\frac{1}{2}}=\left(u_{i, j}+u_{i, j+1}\right) / 2
$$

Eq. I-11 becomes

$$
\begin{align*}
& v u_{i, j+\frac{1}{2}}=\left[\left(u_{i, j}+u_{i, j+1}\right)\left(v_{i, j}+v_{i+1, j}\right)\right. \\
& \left.+\alpha\left|u_{i, j}+u_{i, j+1}\right|\left(v_{i, j}-v_{i+1, j}\right)\right] / 4 \tag{I-12}
\end{align*}
$$

(a)

(b)

Fig. 32. Finite difference terms for (a) $\partial u v / \partial x$ and (b) $\partial v v / \partial y$.

For the second term $v u_{i-1, j+\frac{1}{2}}$ in Eq. I-10, the similar procedures are followed to yield Eq. I-13.

By setting

$$
\mathrm{v}=\left[(1+\bar{\alpha}) \mathrm{v}_{\mathrm{i}-1, j}+(1-\bar{\alpha}) \mathrm{v}_{\mathrm{i}, \mathrm{j}}\right] / 2 \quad(1 \geq \bar{\alpha} \geq-1)
$$

and

$$
\bar{\alpha}=\alpha\left(\operatorname{sign} u_{i+1, j+\frac{1}{2}}\right)
$$

then

$$
\left(\operatorname{sign} u_{i-1, j+\frac{1}{2}}\right) u_{i-1, j+\frac{1}{2}}=\left|u_{i-1, j+\frac{1}{2}}\right|
$$

setting

$$
u_{i-1, j+\frac{1}{2}}=\left(u_{i-1, j}+u_{i, j+1}\right) / 2
$$

then

$$
\begin{align*}
v u_{i-1, j+\frac{1}{2}} & =\left[\left(u_{i-1, j}+u_{i-1, j+1}\right)\left(v_{i-1, j}+v_{i, j}\right)\right. \\
& \left.+\alpha\left|u_{i-1, j}+u_{i-1, j+1}\right|\left(v_{i-1, j}-v_{i, j}\right)\right] / 4 \tag{I-13}
\end{align*}
$$

Combining Eqs. I-10, I-12 and I-13 obtains

$$
\begin{align*}
U V X & =\left[\left(u_{i, j}+u_{i+1, j}\right)\left(v_{i, j}+v_{i+1, j}\right)\right. \\
& +\alpha\left|u_{i, j}+u_{i, j+1}\right|\left(v_{i, j}-v_{i-1, j}\right) \\
& -\left(u_{i-1, j}+u_{i-1, j+1}\right)\left(v_{i-1, j}+v_{i, j}\right) \\
& \left.-\alpha\left|u_{i-1, j}+u_{i-1, j+1}\right|\left(v_{i-1, j}-v_{i, j}\right)\right] / 4 \delta x \tag{27d}
\end{align*}
$$

D. VVY

This derivation is closely similar to that in section A for oun/ax. All the terms involved are shown in Fig. 32(b).

$$
\begin{align*}
\partial v v / \partial y & =v V Y=v\left(v_{i, j+\frac{1}{2}}-v_{i, j-\frac{1}{2}}\right) / \delta y \\
& =\left(v v_{i, j+\frac{1}{2}}-v v_{i, j-\frac{1}{2}}\right) / \delta y \tag{I-14}
\end{align*}
$$

For the first term $v v_{i, j+\frac{1}{2}}$, since

$$
v=\left[(1+\bar{\alpha}) v_{i, j}+(1-\bar{\alpha}) v_{i, j+1}\right] / 2 \quad(1 \geq \bar{\alpha} \geq-1)
$$

and

$$
\bar{\alpha}=\alpha\left(\operatorname{sign} v_{i, j+\frac{1}{2}}\right)
$$

and by definition

$$
\left(\operatorname{sign} v_{i, j+\frac{1}{2}}\right) v_{i, j+\frac{1}{2}}=\left|v_{i, j+\frac{1}{2}}\right|
$$

and by centered differencing

$$
v_{i, j+\frac{1}{2}}=\left(v_{i, j}+v_{i, j+1}\right) / 2
$$

the result is

$$
\begin{align*}
v v_{i, j+\frac{1}{2}}= & {\left[\left(v_{i, j}+v_{i, j+1}\right)^{2}+\alpha\left|v_{i, j}+v_{i, j+1}\right| x\right.} \\
& \left.\left(v_{i, j}-v_{i, j+1}\right)\right] / 4 \tag{I-15}
\end{align*}
$$

Similarly, the second term $v_{i, j-\frac{1}{2}}$ is expanded and consolidated. Since

$$
v=\left[(1+\bar{\alpha}) v_{i, j-1}+(1-\bar{\alpha}) v_{i, j}\right] / 2 \quad(1 \geq \bar{\alpha} \geq-1)
$$

and

$$
\bar{\alpha}=\alpha\left(\operatorname{sign} v_{i, j-\frac{1}{2}}\right) \quad(1 \geq \alpha \geq 0)
$$

and by definition

$$
\left(\operatorname{sign} v_{i, j-\frac{1}{2}}\right) v_{i, j-\frac{1}{2}}=\left|v_{i, j-\frac{1}{2}}\right|
$$

and by centered differencing

$$
v_{i, j-\frac{1}{2}}=\left(v_{i, j-1}+v_{i, j}\right) / 2
$$

the result is

$$
\begin{align*}
v v_{i, j-\frac{1}{2}}= & {\left[\left(v_{i, j-1}+v_{i, j}\right)^{2}+\alpha\left|v_{i, j-1}+v_{i, j}\right| x\right.} \\
& \left.\left(v_{i, j-1}-v_{i, j}\right)\right] / 4 \tag{I-16}
\end{align*}
$$

Combining Eqs. I-14, I-15 and I-16 results

$$
\begin{align*}
V V Y & =\left[\left(v_{i, j}+v_{i, j+1}\right)^{2}+\alpha\left|v_{i, j}+v_{i, j+1}\right| x\right. \\
& \left(v_{i, j}-v_{i, j+1}\right)-\left(v_{i, j-1}+v_{i, j}\right)^{2} \\
& \left.-\alpha\left|v_{i, j-1}+v_{i, j}\right|\left(v_{i, j-1}-v_{i, j}\right)\right] / 4 \delta y \tag{27e}
\end{align*}
$$

SURFACE LOCATION AND SLOPE

In this appendix, several cases of surface determination are discussed. Also described is the slope of the surface. Since one quadrant is mirror image of any other, the calculation is performed for third quadrant only.

A. Surface Location

In Fig. 33(a), a curved boundary line is crossing a cell (i, j), which is located by $B X$ and $B Y$.

$$
\begin{equation*}
B X=(i-1) \delta x \tag{II-1}
\end{equation*}
$$

From geometrical relationship, it yields

$$
(A R-B Y)^{2}=A R^{2}-(A R-B X)^{2}
$$

Rearranging the equation for $B Y$, it results

$$
\begin{equation*}
B Y=A R-\left[2(A R)(B X)-B X^{2}\right]^{\frac{1}{2}} \tag{II-2}
\end{equation*}
$$

At least four different relationships between JBL and JBR, which are defined in the followings, should be discussed as shown in Fig. 33(b).

(a)

(b)

Fig. 33 Computation of surface location.

$$
\begin{aligned}
& B L=C Y / \delta y \\
& J B L=I N T(B L) \\
& B R=B Y / \delta y \\
& J B R=I N T(B R) \\
& \text { 1. } \mathrm{JBL}=\mathrm{JBR} \quad \text { (Fig. } 34(\mathrm{a}) \text {) } \\
& \text { If }(B R-J B R)+(B L-J B L) \geq 1.5, J B R+1 \text { is the boundary cell. } \\
& \text { Otherwise, JBL }+2 \text { is the boundary. } \\
& \text { 2. JBL }-1=\mathrm{JBR} \text { (Fig. } 34 \text { (b)) } \\
& (B L-J B L) /[1-(B R-J B R)]=(1-P X) / P X=B K \\
& \text { Let } R B X=1 /(1+B K)=P X \\
& \text { If } 0.5[1-(B R-J B R)] /(1+B K) \geq \frac{1}{4}, J B R+1 \text { is the boundary. } \\
& \text { Otherwise, } \mathrm{JBL}+1 \text { is the boundary } \\
& \text { 3. } J B L-2=J B R \\
& \text { In either line } A \text { or line } B \text { of Fig. } 34(c) \text { the boundary is the cell } \\
& \text { of JBL }+2 \text {. The triangular area in the cell of JBL }+1 \text { is always } \\
& \text { less than } \frac{1}{4} \text { of a cell. } \\
& \text { (a) } \\
& \text { (b) } \\
& \text { (c) }
\end{aligned}
$$

Fig. 34 Determination of the boundary.
(a) $J B L=J B R$, (b) JBL $-1=J B L$, (c) JBL $-2=J B R$.

4. JBL $-3 \geq$ JBR

For a steep slope boundary the boundary cell is at the midpoint of BY and CY .
B. Slope of Boundary

By connecting the center of drum, 0 , to mid-point of bottom surface of cell i and defining $X_{i}=B X-X / 2$, the angle θ can be computed. $\theta=\tan ^{-1}\left[\left(A R-X_{i}\right) /(A R-H B)\right]$

The slope of boundary at cell i is
$\mathrm{SLOB}_{i}=\tan \theta$

Fig. 35 Slope of boundary.

APPENDIX III

ADJUSTMENTS OF CELL PRESSURE AND VELOCITY
The derivations of Eqs. 29 and 30a - d in Sec. IV.C Velocity Iteration are described in this appendix.

The momentum equation 25 a is re-written in two groups of variables; one group contains pressure item, another group does not.

$$
\begin{align*}
u_{i, j}^{o} & =u_{i, j}+\delta t\left(g_{x}-U U X-U V Y-V I S U\right)-\left(p_{i+1, j}-p_{i, j}\right) \delta t / \delta x \\
& =U C O N_{i, j}-\left(p_{i+1, j}-p_{i, j}\right) \delta t / \delta x \tag{III-la}
\end{align*}
$$

where $U C O N_{i, j}=u_{i, j}+\delta t\left(g_{x}-U U X-U V Y-V I S U\right)$
Since $U_{i, j}{ }_{i, j}$ consists of the terms in old time level, it is a constant in the new time level. Similary, Eq. $25 b$ ia re-written.

$$
\begin{equation*}
v_{i, j}^{o}=\operatorname{VCON}_{i, j}-\left(p_{i, j+1}-p_{i, j}\right) \delta t / \delta y \tag{III-1b}
\end{equation*}
$$

Two more equations in the same form are needed.

$$
\begin{align*}
& u_{i-1, j}^{\circ}=\operatorname{UCON}_{i-1, j}-\left(p_{i, j}-p_{i-1, j}\right) \delta t / \delta x \tag{III-1c}\\
& v_{i, j-1}^{\circ}=\operatorname{VCON}_{i, j-1}-\left(p_{i, j}-p_{i, j-1}\right) \delta t / \delta x \tag{III-Id}
\end{align*}
$$

From the above four equations III-la thru ld, the following derivatives are resulted:

$$
\begin{align*}
& \partial u_{i, j}^{o} / \partial p_{i, j}=\delta t / \delta x \tag{III-2a}\\
& \partial u_{i-1, j}^{o} / \partial p_{i, j}=-\delta t / \delta x \tag{III-2b}\\
& \partial v_{i, j}^{o} / \partial p_{i, j}=\delta t / \delta y \tag{III-2c}\\
& \partial v_{i-1, j}^{o} / \partial p_{i, j}=-\delta t / \delta y \tag{III-2d}
\end{align*}
$$

Eqs. III-2a thru 2 d can be expressed in difference form in respect to iteration cycle.

$$
\begin{align*}
u_{i, j}^{n+1} & =u_{i, j}^{n}+\left(p_{i, j}^{n+1}-p_{i, j}^{n}\right) \delta t / \delta x \\
& =u_{i, j}^{n}+\delta p \delta t / \delta x \tag{III-3a}
\end{align*}
$$

$$
\begin{align*}
u_{i-1, j}^{n+1} & =u_{i-1, j}^{n}-\left(p_{i, j}^{n+1}-p_{i, j}^{n}\right) \delta t / \delta x \\
& =u_{i-1, j}^{n}-\delta p \delta t / \delta x \tag{III-3b}\\
v_{i, j}^{n+1} & =v_{i, j}^{n}+\left(p_{i, j}^{n+1}-p_{i, j}^{n}\right) \delta t / \delta y \\
& =v_{i, j}^{n}+\delta p \delta t / \delta y
\end{aligned} \quad \begin{aligned}
& n+1 \tag{III}\\
& v_{i, j-1}^{n+1}=v_{i, j-1}^{n}-\left(p_{i, j}^{n+1}-p_{i, j}^{n}\right) \delta t / \delta y \\
&=v_{i, j-1}^{n}-\delta p \delta t / \delta y \tag{III-3d}
\end{align*}
$$

where $\quad \delta p=p_{i, j}^{n+1}-p_{i, j}^{n}$

$$
\mathrm{n}, \mathrm{n}+1=\text { Iteration cycles in new time level. }
$$

The velocities u and v are both in the new time level but different iteration cycles as indicated by the superscripts. Substituting

Eqs. III - 3a thru 3d into discrepancy equation similar to
Eq. 28 yields

$$
\begin{align*}
D^{n+1} & =\left(u_{i, j}^{n+1}-u_{i-1, j}^{n}\right) / \delta x+2 \delta p \delta t / \delta x^{2} \\
& +\left(v_{i, j}^{n}-v_{i, j-1}^{n}\right) / \delta y+2 \delta p \delta t / \delta y^{2} \tag{III-4}
\end{align*}
$$

Because a convergence has not been reached in the nth iteration, the discrepancy is

$$
D^{n}=\left(u_{i, j}^{n}-u_{i-1, j}^{n}\right) / \delta x+\left(v_{i, j}^{n}-v_{i, j-1}^{n}\right) / \delta y
$$

Eq. III-4 is simplified.

$$
\begin{equation*}
D^{n+1}=D^{n}+\delta p\left(2 \delta t / \delta x^{2}+2 \delta t / \delta y^{2}\right) \tag{III-5}
\end{equation*}
$$

To diminish the discrepancy in $(n+1)$ th iteration, i.e., $D^{n+1}=0$, the pressure is adjusted by an amount of $s p$.

$$
\begin{align*}
& \delta \mathrm{p}=-\mathrm{D}^{\mathrm{n}} /\left(2 \delta \mathrm{t} / \delta \mathrm{x}^{2}+2 \delta \mathrm{t} / \delta \mathrm{y}^{2}\right) \tag{III-6}\\
& \mathrm{p}^{\mathrm{n}+1}=\mathrm{p}^{\mathrm{n}}+\delta \mathrm{p} \tag{III-7}
\end{align*}
$$

Eq. III-6 is identical to Eq. 29. Eqs. III-3 a, b, c, d are the same as Eqs. 30 a - d, respectively.

PRESSURE ADJUSTMENT AT BOUNDARY

This appendix details the pressure adjustment at exterior of the mesh, either rigid boundary or free surface, i.e., Eqs. 30a - d.

A Free Surface

The pressure at free surface cell is computed from the cells above and below the surface by a linear interpolation.
A. 1 Top Free Surface

The pressure at mid-surface is p_{s}.

$$
\begin{align*}
p_{S} & =p_{i, j T}-\left(p_{i, j T-1}-p_{i, j T}\right) \Delta y / \delta y \\
& =(1+\Delta y / \delta y) p_{i, j T}-p_{i, j T-1} \Delta y / \delta y \\
& =p_{i, j T} / \eta_{T}+\left(1-1 / \eta_{T}\right) p_{i, j T-1} \tag{IV-1}
\end{align*}
$$

where

$$
1 / \eta_{T}=1+\Delta y / s y
$$

Re-arranging Eq. IV-1 for $p_{i, j T}$ results

$$
\begin{equation*}
p_{i, j T}=\eta_{T} p_{S}+\left(1-\eta_{T}\right) p_{i, j T-1} \tag{IV-2}
\end{equation*}
$$

The factor of surface location is included in the η_{T} term,

$$
\begin{aligned}
\eta_{T} & =\delta y /(\delta y+\Delta y) \\
& =\delta y /\left(\delta y+H_{i}-H_{c}\right) \\
& =\delta y /\left[\delta y+H_{i}-(j T-1.5) \delta y\right]
\end{aligned}
$$

where $\Delta y=H_{i}-H_{c}$

$$
H_{c}=(j T-1.5) \delta y
$$

When uniform pressure is applied at the free surface, it is convenient to set $p_{S}=0$. Then, Eq. IV-2 becomes

$$
\begin{equation*}
p_{i, j T}=\left(1-\eta_{T}\right) p_{i, j T-1} \tag{IV-3}
\end{equation*}
$$

A value of $p_{i, j T}$ computed by Eq. IV-3 is the correct one. Therefore, the pressure adjustment, $\boldsymbol{\delta}$ p, is

$$
\begin{equation*}
\delta p=\left(1-\eta_{T}\right) p_{i, j T-1}-p_{i, j T} \tag{3la}
\end{equation*}
$$

Fig. 36
Pressure adjustment at free surface
(a) Top free surface, (b) Bottom free surface

A. 2 Bottom Free Surface

The steps of dirivation is similar to top free surface. The terms are shown in Fig. 36(b).

$$
\begin{align*}
p_{S} & =p_{i, j B}+\left(p_{i, j B}-p_{i, j B+1}\right) \Delta y / \delta y \\
& =(1+\Delta y / \delta y) p_{i, j B}-p_{i, j B+1} \Delta y / \delta y \\
& =p_{i, j B} / \eta_{B}+\left(1-1 / \eta_{B}\right) p_{i, j B+1} \tag{IV-4}\\
\text { where } \quad 1 / \eta_{B} & =1+\Delta y / \delta y \\
\text { and } \quad \eta_{B} & =\delta y /(\Delta y+\delta y) \\
& =\delta y /\left[\delta y+(j B-1.5) \delta y-H B_{i}\right]
\end{align*}
$$

Re-arranging Eq. IV-4 for $p_{i, j B}$,

$$
\begin{equation*}
p_{i, j B}=\eta_{B} p_{s}+\left(1-\eta_{B}\right) p_{i, j B+l} \tag{IV-5}
\end{equation*}
$$

When $P_{S}=0, A$ correct $P_{i, j B}$ is

$$
p_{i, j B}=\left(1-\eta_{B}\right) p_{i, j B+1}
$$

The pressure adjustment is

$$
\begin{equation*}
\delta p=\left(1-\eta_{B}\right) P_{i, j B+1}-p_{i, j B} \tag{31b}
\end{equation*}
$$

B. Rigid Surface

The surface pressure at rigid surface will make the normal velocity equal to zero.

$$
\begin{align*}
& u_{n}=u \cdot n=0 \\
&=(i u-j v)(-i \sin \theta+j \cos \theta) \\
&=-u \sin \theta+v \cos \theta \\
& u_{n} / \cos \theta=-u \tan \theta+v \tag{IV-6}
\end{align*}
$$

B. 1 Bottom Rigid Surface

The horizontal velocity at mid-surface is the average of two
cell velocities.

$$
\begin{equation*}
u=\left(u_{i, j B}+u_{i-1, j B}\right) / 2 \tag{IV-7}
\end{equation*}
$$

The vertical velocity can be found by interpolation shown in Fig. 37.

$$
\begin{equation*}
v=v_{i, j B-1}+\left(v_{i, j B}-v_{i, j B-1}\right) \Delta y / 6 y \tag{IV-8}
\end{equation*}
$$

The slope of surface is

$$
\begin{equation*}
\tan \theta=\left(\mathrm{HB}_{i+1}-\mathrm{HB}_{i-1}\right) / 2 \delta x \tag{IV-9}
\end{equation*}
$$

Substituting Eq. IV-7, IV-8 and IV-9 into Eq. IV-6 results

Fig. 37 Pressure adjustment at bottom rigid surface.

$$
\begin{align*}
u_{n} / \cos \theta= & -\left(u_{i, j B}+u_{i-1, j B}\right)\left(H B_{i+1}-H B_{i-1}\right) / 4 \delta x \\
& +v_{i, j B} \Delta y / \delta y+v_{i, j B-1}(1-\Delta y / \delta y) \tag{IV-10}
\end{align*}
$$

Since $\mathrm{v}_{\mathrm{i}, \mathrm{jB}-1}$ is inside the rigid boundary, it would be eliminated by equation of continuity, i.e.,

$$
\begin{equation*}
v_{i, j B-1}=v_{i, j B}+\left(u_{i, j B}-u_{i-1, j B}\right) \delta y / \delta x \tag{IV-11}
\end{equation*}
$$

Eq. IV-10 is expanded and re-arranged to the following:

$$
\begin{align*}
u_{n} / \cos \theta= & -\left(u_{i, j B}+u_{i-1, j B}\right)\left(H B_{i+1}-H B_{i-1}\right) / 4 \delta x+v_{i, j B} \\
& +\left(u_{i, j B}-u_{i-1, j B}\right)(1-\Delta y / \delta y)(\delta y / \delta x) \tag{IV-12}
\end{align*}
$$

The only term to be computed in the right hand size of Eq. IV-12 is y.

$$
\begin{align*}
1-\Delta y / \delta y & =1-\left[\mathrm{HB}_{i}-(j B-2) \delta y\right] / \delta y=(j B-1)-H B_{i} / \delta y \\
& =\lambda_{B} \tag{IV-13}
\end{align*}
$$

The velocity is function of pressure as expressed in Eq. III-2a. The increment of pressure can be found by Newton-Ralphson method.

$$
\begin{align*}
\delta p & =-u_{n} /\left(\partial u_{n} / \partial p\right) \\
& =-\left(u_{n} / \cos \theta\right) /\left[\partial\left(u_{n} / \cos \theta\right) / \partial p\right] \tag{IV-14}
\end{align*}
$$

The denominator is, from Eqs. IV-12 and IV-13,

$$
\begin{align*}
& \partial\left(u_{n} / \cos \theta\right) / \partial p=-\left(\partial u_{i, j B} / \partial p+\partial u_{i-1, j B} / \partial p\right)\left(H B_{i+1}-H B_{i-1}\right) /\langle\delta x \\
& +\partial v_{i, j B} / \partial p+\left(\partial u_{i, j B} / \partial p-\partial u_{i-1, j B} / \partial p\right) \lambda_{B}(\delta y / \delta x) \tag{IV-15}
\end{align*}
$$

where

$$
p=p_{ \pm, j B}
$$

Substituing Eqs. III-2a thru d into Eq. IV-15 yields

$$
\begin{align*}
\partial\left(u_{n} / \cos \theta\right) / \partial p & =\delta t / \delta y+2 \lambda_{B}(\delta t / \delta x)(\delta y / \delta x) \\
& =\left[1+2 \lambda_{B}(\delta y / \delta x)^{2}\right] \delta t / \delta y \tag{IV-16}
\end{align*}
$$

Substituting Eqs. IV-12, IV-13 and IV-16 into IV-14 results Eq. 31d.

B. 2 Top Rigid Surface

Similar to the step of derivation in above section for bottom rigid surface, the terms are shown in Fig. 38.

The velocities at mid-surface are

$$
\begin{align*}
u & =\left(u_{i, j T}+u_{i-1, j T}\right) / 2 \tag{IV-17}\\
v & =v_{i, j T-1}+\left(v_{i, j T}-v_{i, j T-1}\right) \Delta y / \delta y \\
& =v_{i, j T-1}(1-\Delta y / \delta y)+v_{i, j T} \Delta y / \delta y \tag{IV-18}
\end{align*}
$$

The slope of surface is

$$
\begin{equation*}
\tan \theta=\left(H_{i+1}-H_{i-1}\right) / 2 \delta x \tag{IV-19}
\end{equation*}
$$

The term of $v_{i, j}$ is eliminated by continuity equation.

$$
\begin{equation*}
v_{i, j T}=v_{i, j T-1}-\left(u_{i, j T}-u_{i-1, j T}\right)(\delta y / \delta x) \tag{IV-20}
\end{equation*}
$$

Eq. IV-18 becomes

$$
\begin{equation*}
v=v_{i, j T-1}-\left(u_{i, j T}-u_{i-1, j T}\right)(\delta y / \delta x)(\Delta y / \delta y) \tag{IV-21}
\end{equation*}
$$

$\Delta y / \delta y$ is the only term requiring computation in right hand side of Eq. IV-21.

$$
\begin{align*}
\Delta y / \delta y & =\left[H_{i}-(j T-2) \delta y\right] / \delta y=H_{i} / \delta y-(j T-2) \\
& =\lambda_{T} \tag{IV-22}
\end{align*}
$$

Eq. IV-6 becomes

$$
\begin{align*}
& u_{n} / \cos \theta=-\left(u_{i, j T}+u_{i-1, j T}\right)\left(H_{i+1}-H_{i-1}\right) / 4 \delta x \\
& +v_{i, j T-1}-\lambda_{T}\left(u_{i, j T}-u_{i-1, j T}\right) \delta y / \delta x \tag{IV-23}
\end{align*}
$$

The denominator of Eq. IV-14 is

$$
\begin{align*}
\partial\left(u_{n} / \cos \theta\right) / \partial p & =-\delta t / \delta y-2 \lambda_{T}(\delta t / \delta x)(\delta y / \delta x) \\
& =-\left[1+2 \lambda_{T}(\delta y / \delta x)^{2}\right] \delta t / \delta y \tag{IV-24}
\end{align*}
$$

Substituting Eqs. IV-23 and IV-24 into Eq. IV-14 results in Eq. 31 c.

Fig. 38 Pressure adjustment at top rigid surface

APPENDIX V

FREE SURFACE LOCATION
To Express Eq. 32 in finite difference form for top free surface and bottom free surface is explained in this appendix.

A. Top Free Surface

The vertical velocity at free surface is found by interpolation shown in Fig. 39

$$
\begin{align*}
v & =v_{i, j T-1}+\left(v_{i, j T}-v_{i, j T-1}\right) \Delta y / \delta y \\
& =v_{i, j T} \Delta y / y+v_{i, j T-1}(1-\Delta y / \delta y) \\
& =v_{i, j T} \lambda_{T}+v_{i, j T-1}\left(1-\lambda_{T}\right) \tag{V-1}
\end{align*}
$$

where $\lambda_{T}=\mathrm{Eq}$. IV-22
The horizontal velocity is the average of upstream and downstream ones.

$$
\begin{equation*}
u=\left(u_{i, j T}+u_{i-1, j T}\right) / 2 \tag{V-2}
\end{equation*}
$$

Similar to Eq. I-2, the H terms are defined by partial donor cell method.

$$
\begin{align*}
& \mathrm{H}=\mathrm{H}_{\mathrm{i}+1 / 2}-\mathrm{H}_{\mathrm{i}-1 / 2} \tag{V-3}\\
& \mathrm{H}_{\mathrm{i}+1 / 2}=\left[(1+\bar{\gamma}) \mathrm{H}_{\mathrm{i}}+(1-\bar{\gamma}) \mathrm{H}_{\mathrm{i}+1}\right] / 2 \tag{V-4}\\
& \mathrm{H}_{\mathrm{i}-1 / 2}=\left[(1+\bar{\gamma}) \mathrm{H}_{\mathrm{i}-1}+(1-\overline{\boldsymbol{\gamma}}) \mathrm{H}_{\mathrm{i}}\right] / 2 \tag{V-5}
\end{align*}
$$

where $\bar{\gamma}=$ weight of donor cell with value $1 \geq \bar{\gamma} \geq-1$

Fig. 39 Location of top free surface

$$
\begin{align*}
u \Delta H= & \left(u_{i, j T}+u_{i-1, j T}\right)\left(H_{i+1 / 2}-H_{i-1 / 2}\right) / 2 \\
= & \left(u_{i, j T}+u_{i-1, j T}\right)\left[H_{i+1}-H_{i-1}\right. \\
& \left.-\bar{\gamma}\left(H_{i+1}-2 H_{i}+H_{i-1}\right)\right] / 4 \tag{V-6}
\end{align*}
$$

Same reasoning as in Appendix I, if

$$
\bar{\gamma}=r\left(\operatorname{sign} u_{i-1 / 2, j T}\right) \quad(1 \geq r \geq 0)
$$

Eq. V-6 is simplified.

$$
\begin{align*}
u \Delta H= & {\left[\left(u_{i, j T}+u_{i-1, j T}\right)\left(H_{i+1}-H_{i-1}\right)-\gamma\left|u_{i, j T}+u_{i-1, j T}\right| x\right.} \\
& \left.\left(H_{i+1}-2 H_{i}+H_{i-1}\right)\right] / 4 \tag{V-7}
\end{align*}
$$

Substituting Eqs. V-1 and V-7 into Eq. 32 results Eq. 33 a
B. Bottom Free Surface

The procedure of derivation of Eq. $33 b$ is similar to the above
section. The vertical velocity is

$$
\begin{align*}
v & =v_{i, j B-1}+\left(v_{i, j B}-v_{i, j B-1}\right) \Delta y / \delta y \\
& =v_{i, j B} \Delta y / \delta y+v_{i, j B-1}(1-\Delta y / \delta y) \\
& =\left(1-\lambda_{B}\right) v_{i, j B}+\lambda_{B} v_{i, j B-1} \tag{V-8}
\end{align*}
$$

where $\lambda_{B}=E q$. IV-13
The horizontal velocity is

$$
\begin{equation*}
u=\left(u_{i, j B}+u_{i-1, j B}\right) / 2 \tag{V-9}
\end{equation*}
$$

The partial donor cell scheme is applied to $H B$ terms, as shown in Fig. 40.

Fig. 40 Location of bottom free surface.

$$
\begin{align*}
& \Delta H=H B_{i+1 / 2}-\mathrm{HB}_{i-1 / 2} \tag{V-10}\\
& \mathrm{HB}_{\mathrm{i}+1 / 2}=\left[(1+\bar{\gamma}) \mathrm{HB}_{i}+(1-\bar{\gamma}) \mathrm{HB}_{i+1}\right] / 2 \tag{V-11}\\
& H B_{i-1 / 2}=\left[(1+\overline{\mathbf{r}}) \mathrm{HB}_{\mathrm{i}-1}+(1-\bar{\gamma}) \mathrm{HB}_{i}\right] / 2 \tag{V-12}
\end{align*}
$$

Substituting Eqs. V-11 and V-12 into Eq. V-10 and setting

$$
\bar{\gamma}=r\left(\operatorname{sign} u_{i-1 / 2, j B}\right)
$$

result the following expression:

$$
\begin{align*}
u \Delta H & =\left[\left(u_{i, j B}+u_{i-1, j B}\right)\left(H B_{i+1}-H B_{i-1}\right)-\right. \\
& \left.\quad\left|u_{i, j B}+u_{i-1, j B}\right|\left(H B_{i+1}-2 H B_{i}+H B_{i-1}\right)\right] / 4 \tag{V-13}
\end{align*}
$$

Again, substituting Eqs. $V-8$ and $V-13$ into Eq. 32 yields Eq. 33 b .

COMPARISON OF DIMENSION APPROXIMATION IN EXAMPLE

Because of an approximation of physical dimension taken in the example, its effect has to be checked and be sure in negligible range.

A. Excluded Area

The excluded area can be found from table of circular segments
(33) as shown in Fig. 41.
$R=6.4 \mathrm{~cm}$
$h=(5-2) \delta x=0.6 \mathrm{~cm}$
$h / R=0.09375$
From the table of circular segments, the area is found
shaded area $/ R^{2}=0.0533$
Because there are two shaded areas,
ratio of excluded area $=2(0.0533) R^{2} / \pi R^{2}=3.4 \%$
The excluded area is 3.4% of the cylinder.

Fig. 41 Physical dimension of example problem.

B. Shortening of Circumference

The circumference of flat wall is also calculated from table of circular segments (33). As ratio of h / R is 0.09375 in above section, it is found
$c / R=0.845$
Therefore, the flat wall (chord) is 5.41 cm and the central angle is 50°.
The segment of circumference is
$2 \pi R(50 / 360)=5.58$
The difference between the complete and the shortened circumferences is $2(5.58-5.41) / 2 \pi R=0.0085$
or 0.85%, which is negligible.
C. Fluid Occupied Area

The segment area occupied by fluid is computed by the same table
(33) as in the above section A.

$$
\begin{aligned}
& H / R=3.5 / 6.4=0.547 \\
& \text { area } / R^{2}=0.695 \\
& \text { area }=0.695(6.4)^{2}=28.47 \mathrm{~cm}^{2}
\end{aligned}
$$

The result of numerical approximation is $28.32 \mathrm{~cm}^{2}$, or 99.5% of the theoretical value.
D. Film Thickness

The film thickness, b, is computed by assuming uniform thickness around the circumference.

$$
\mathrm{b}=28.32 / 2 \pi \mathrm{R}=0.7 \mathrm{~cm}
$$

The ratio of thickness to the radius of drum is

$$
b / R=0.11
$$

Which is smaller than 20% but enough to cover more than a layer of single cell, i,e., 0.4 cm thickness in this example.

E. Time To Cover The Whole Circumference

In the example, the fluid travels from $I=59$ to the upper half and returns to the lower half. Two portions in the lower half meet at $I=31$. The total distance can be divided into five parts, as listed in the following table.

Table III

Total Traveling in the Example

Parts	From $I=$	To $I=$	Distance (cm)
(1)	59	62	$* 1$
(2)	62	70	$5.41 * 2$
(3)	70	127	$14.51 * 3$
(4)	127	5	$5.41 * 2$
(5)	5	31	$7.25 * 1$

Notes:

1. The total number of cells traveled thru is 29 , which is approximated half of the distance in part (3)
2. The chord length computed in sec. (b)
3. The segment for central angle 130° is $2 \pi R(130 / 360)=14.51 \mathrm{~cm}$

The total traveling is approximately 32.58 cm . The minimum time to cover the whole circumference is $32.58 / 220=0.148 \mathrm{sec}$ for rotating velocity $220 \mathrm{~cm} / \mathrm{sec}$. That is $0.148 / 0.0005=296$ cycle. The numerical method results a complete ring at 327 th cycle.

NUMERICAL METHODS FOR FLUID DYNAMICS

As the physical law in fluid dynamics is expressed by differential equations, the best method of solution is including the most of theoretical method and the least of premanipulation, such as complex variables. But when the problem is more complex, more approximate procedure, e.g., boundary layer, perturbation method, etc., becomes necessary. To even more complicate problem involving odd boundary shape or three dimensions, only the direct numerical method is applicable. In this very last catagory of problems, a question often raised is how to select a numerical method. This appendix is discussing the criteria of numerical modeling and the applications of the important numerical approaches.

Harlow (47) compiled and classified the numerical methods for transient flow according to the flow speed, coordinate systems, and solution methods. For the high-speed flow, several approaches including Eulerian, Lagrangian, combined Eulerian and Lagrangian, Fourier series, Monte Carlo method, etc., have been tried. For the low-speed flows, the Eulerian approach is dominant. Other methods, such as Lagrangian and Fourier solution, need more studies to improve and extend applications. The Eulerian approach allows the fluid undergoing great distortions without loss of accuracy, but it looses the sharp definition of contact surface. On the contrary, Lagrangian method can easily apply fine zoning at the interface and arbitrary curve shape of rigid boundary, but it is less accurate when the cells are hgihly distorted. In the Eulerian approach, the primitive variable method has the advantage of easy applying free surface boundary condition. This gain is offset by the difficulty of
accurate pressure iteration. The vorticity-stream function method eliminates the problems of pressure term and continuity equation. However, it is difficult to encounter with unknown boundary condition on vorticity.

A series of comparisons among nine methods for incompressible, viscous, steady flow in a driven cavity was prepared by Langley Research Center (48). The Reynolds number of the test case was 100. The results indicate that the vorticity - stream function methods have better accuracy and more rapid convergency. The primitive variable methods including SMAC, Spalding, Crocco, and Chorin methods have accuracy very sensitive to the convergency tolerance in the pressure iteration. If the tolerance is refined, computational time will excalate. The reason is the inadequate pressure iteration scheme. Therefore, the pressure are not in good agreement with those yielded from other methods. But accurate velocities can be obtained, because of the high accuracy in predicting the pressure gradients. Since the techniques were not optimized, the comparison was not definitive.

Recently, Cebeci et al (49) used problems of driven cavity and entrance flow in a channel to compare Spalding method, vorticity - stream function method (by ADI - SOR solution procedure) and stream function method (by biharmonic formulation). The test cases covered a Reynolds number in the range of 50 to 3200 . The conclusion is that the biharmonic method is superior to the other two techniques. However, the main drawbacks are the large storage requirement and longer computer time for the matrix computation.

For the free surface flows, Yeung (50) surveyed the methodologies of stream function. Three major methods were reviewed: finite differences, finite elements, and boundary - intergral equations. The finite difference
is used inevitably in transient problems. The finite element has more flexibility to deal with arbitrary boundary geometry with little loss of accuracy. This is the newest method of the above mentioned three. More storage is required and some difficulities as mentioned on page 16 have to be resolved. The integral - equation formulation is able to reduce the space dimension by one and requires less storage. However, there is no accurate and efficient means to integrate the Green function.
The most important criteria of numerical modeling are stability, accuracy, and convergence. The next is size of data-storage. Emmons (51) and Orszag and Israeli (52) discussed those criteria for numerical simulation and served as the excellent starting point in selection of method.

APPENDIX VIII

COMPUTER LISTING OF THE EXAMPLE
LEVEL 1.1.0 (APRIL 81)

웅 F̛ F

$C *$ COMPUTE CONSTANT TERMS AND INITIALIZE NECESSARY VARIABLES

ILU $=0$
$I R U=0$
\%

 ROX=1.0;DELX RDY=1.0/DELY

JM2 $2=2 * J M 1$
IMX=IMAX/
 TWPRT=9.*DELT

SIGNL=0
TTU $=0$.
CUPRT $=50$
TUPRT=17. *DELT

FVOU $=0$.
$F L O L=0$.
LYCLE
TTD $=0$.
CLPRT $=10$.
TLPRT=8.*DELT
c * * detremine bottom boundary location

c * * COMPUTE INITIAL TOP SURFACE CONfIGURATION

DO $230 \mathrm{I}=1, \mathrm{ImAX}$

c * top boundary for lower half portion

C MLI=ML-1

PAGE:

NAME: MAIN TIME: 16:54:39

Level 1.1.0 (APRIL 81) FORTRAN DATE: MAY 13, 1982
c * * top boundary for upper half portion

H(IU)=HTU(IU)
JB(IU)=JT(IU)
HB(IU)=H(IU)
HBN(IU)=HB(IU)
600 CONTINUE
$J B U(I U)=J B(I)$
$\operatorname{HTU}(\operatorname{IU})=\mathrm{HTU}(I)$
$\mathrm{HBU}(I U)=\mathrm{HB}(I)$
$\mathrm{JBU}(I U)=\mathrm{JB}(I)$
IU=2*IMAX-I
TV(IU) $=B V(I)$
$\operatorname{TVCOS}(\operatorname{IU})=\operatorname{VCOS}(I)$
$\operatorname{TVSIN}(\mathrm{IU})=\operatorname{VSIN}(I)$
TVSIN(IU $)=V S I N$
JTU(IU $)=J T U(I)$

C * initial velocities and pressure in upper half

ω

$D 0610$ I=ILI, IMI
$I U=2 * I M A X-I$
$D 0610 \mathrm{~J}=2, J M 2$
$U(I U, J)=0$.
$V(I U, J)=0$
$\mathrm{P}(I U, J)=0$.
610 CONTINUE

M Ư

$I F$
$\mathrm{DO}=\mathrm{JB}(I)$
$\operatorname{VTM}=R D Y *(H B(I)-(J-2) * D E L Y)$
VTM=RDY*(HB(I)-(J-2)*DELY)
ILS $=I L$
IRS $=I R$
$M R S=M R$
$I T B=0$
$C O N T I N U E$
-0=97」
$\mathrm{ITB}=I T B+1$
IF ITB .GE. 51) GO TO 670
号
C * BOTTOM BOUNDARY CONDITIONS

M
N

TIME: 16:54:39

DELP=-F/TFDP

 CORP=DELP/PITI, GE IF(DABSICORP). GE. $\mathrm{U}(\mathrm{I}-1, J)=\mathrm{U}(\mathrm{I}-1, J)-\mathrm{DELT}$ \#RDX*DEL
$\mathrm{V}(\mathrm{I}, \mathrm{J}-1)=\mathrm{V}(\mathrm{I}, \mathrm{J}-1)-0 E L T * R D Y * D E L P$ $V(I, J)=V(I, J)=V(I, J)+D E L T * R P Y D E L P$
$V(I)$
$U(I, J)=U(I, J)+D E L T * R D X * D E L P$

660 CONTINUE . 0.1 to 60 GO TO 650
CONTINUE

c
c
c
$\begin{array}{ll}\text { C } & \text { DO } 20300 \text { CYCLE }=1,561 \\ & \text { FLG=1. } \\ & \text { ALPHA }=\text { dLPHA } \\ c \\ c \\ c & * \\ \text { COMPUTE TEMPORARY } U \text { AND } V\end{array}$
JT1= JTII

$\mathrm{JB1}=\mathrm{JB}(I)+1$
IF(I EQ. MRS) GO TO 1050
FUX $=((\operatorname{UN}(I, J)+U N(I+1, J)) *(U N(I, J)+U N(I+1, J))+A L P H A * D A B S(U N(I, J)$

그ㅂㅜㅜn

$$
\ldots
$$

NAME: MAIN
PAGE:

品

面

$\begin{aligned} & V(I, J T I)=V(I ; J T I-1)-D E L Y * R D X *(U(I, J T I)-U(I-1, J T I)) \\ & U(I, J T I+I)=U(I, J T I)\end{aligned}$
2620 CONTINUE
C

品

GO TO 3300
3200 CONTINUE
D $=$ RDX $*$ (UCI
$\mathrm{D}=\operatorname{RDX*(U(I,J)-U(I-I,J))+RDY*(V(I,J)-V(I,J-I))}$
$I F(D A B S(D) \quad, G E . E P S I) F L G=1.0$
DELP=-BETA*D
$\mathrm{D}=0$.
$\mathrm{JTI}=\mathrm{J}$
$\mathrm{JT} 1=\mathrm{JT}(\mathrm{I})$
$\mathrm{JTI}=\mathrm{JT}(\mathrm{I})-1$
$\operatorname{IF}(\operatorname{CODTB}(I) . E Q .1) \mathrm{JTI}=J T 11$

002 EL 09 (tir • $3 \mathrm{~N}^{\prime}$ C)AI

8

FIp CONTINUE
IF (I.EQ.
U(I-I,J)

U(I-1,J)=U(I-1,J)-DELT*RDX*DELP
CONTINUE
$V(I, J)=V(I, J)+D E L T * R D Y * D E L P$
3450 CONTINUE \quad V(I,J)=V(I,J)+DELT*RDY*DELP $V(I, J-1)=V(I, J-1)-D E L T * R D Y * D E L P$

3500 CONTINUE
IFIFLG .EG. O. 1 GO TO 4000
3600 CONTINUE
C * * COMPUTE NEW SURFACE POSITION
4000 CONTINUE
DO 4100 I=IL,IR
IF(I .EQ. MR) GO TO 4050
HV=RDY*(HN(I)-DFLOAT(JT1-2)*DELY)

$-\operatorname{UAV} * H N(I-1)-G A M M A * D A B S(U A V) *(H N(I-1)-H N(I))))$
$I F(H(I) . L T . H B(I)) H(I)=H B(I)$
GO TO 4080
CONTINUE
$H(I)=H N(I)+A S * D E L . T$
4080 CONTINUE
IFIH(I).GT. HTU(I)) H(I)=HTU(I)
RLH(I)=H(I)-HB(I)
4100 CONTINUE

ํํํํํํํํํํํํํ

....7.*......... 8

* * calculate cell in which surface is located and update array
c
c
c
.

 in

4750 ITU=ITU 1

IFLG=0. CE .50) 60 TO 4770
DO 4760 I=ILS,IRS
$j=J T(I)$

$\operatorname{IF}(D A B S(C O R P) . G E . \quad .05)$ UFLG=1.
$P(I, J)=P(I, J)+D E L P$
$V(I, J-1)=V(I, J-1)-D E L T * R D Y * D E L P$
VTH=RDY*(HTU(I)-(J-2)*DELY)
$1-V T M * D E L Y * R D X *(U(1, J)-U(I-1, J))$
DFDP $=-D E L T * R D Y *(1 .+2 . * V T M * D E L Y * * 2 * R D X * * 2)$
$D E L P=-F / D F D P$ $V(I, J)=V(I, J)+D E L T * R D Y * D E L P$
$U(I-1, J)=U(I-1, J)-D E L T * R D X * D E L P$

CONTINUE

c **IR VELOCIties
4770 CONTINUE
-11) $=$ zir
IF(IR .LT. MR) GO TO 4790
$004789 \mathrm{~J}=\mathrm{JB2}, \mathrm{JT2}$
V(IR+1,J)=V(IR,J)*2.-V(IR-1,J)
$4780 \begin{aligned} & \text { CONTINUE } \\ & \text { GO TO } 4798\end{aligned}$
GO TO 4798
DO $4795 \mathrm{~J}=\mathrm{JB2}, \mathrm{JT} 2$
IF(J.EQ. JB(IR+1)) 60 TO 4795
$V(I R+I, J)=V(I R, J)$
$I F(I R+1$. EQ. MR) GO ro 4795

V(IR+1,JB2+1)=BV(IR+1)
U(IR+1,JB2+1)$=\mathrm{BU}(\operatorname{IR}+1)$
4798 CONTINUE
C * * free surface condition
$\stackrel{8}{\circ}$

DO 4800 I=IL,IR
IF(H(I) .GE. HTU(I)) 60 TO 4800 JTI=JTII)

IF (I .LE. ${ }^{6}$) GO TO 4799
$\operatorname{IF}(J T(I+1) . L T . J T(I)) U(I, J T I)=U(I, J T 1-1)$
4799 CONTINUE
$V(I, J T 1)=V(I, J T 1-1)-D E L Y * R D X *(U(I, J T 1)-U(I-1, J T 1))$
$U(I, J I+1)=U(I, J T 1)$
4800 CONTINUE
$F=-.25 * R D X *(H \operatorname{Hi}(I+1)-H T U(I-1)) *(U(I, J)+U(I-1, J))+V(I, J-1)$
$1-V T M * D E L Y * R D X *(U(I, J)-U(I-1, J))$

5000 CONTINUE
FVOL $=0$.
FVOL $=0.1$ I＝IL，IR
DO $5100 ~$
CODBB（I）$=1$
671
672
673
674
671
672
673
674
C＊
c calculate velocity vector
5200 CONTINUE

 IF（DABSIU（I，J）．LE．1．E－6）U（I，J）＝1．E－6

ANG（ I, J ）$=57.3 *$ DATAN（ $V(I, J) / U(I, J))$
IF（U（I，J）．EQ．1．E－6）U（I，J）＝0．
c＊＊LIST VELOCITY，PRESSURE，AND SURFACE POSITION
PRINT 35
PRINT 47
DO 5900 I＝IL，IR
DO 5900
$J T I=J T(I)$

登员只

＊＊SET THE ADVANCE TIME VElocitites U and v INTO the un and VN arrays c＊＊AND THE ADVANCE time surface height h into the hn array
$J B 1=J B C 1$
$J B 2=J B 1-1$
PRINT $48, I, J, U(I, J), V(I, J), P(I, J), \quad H(I), J T 1, J B 1, U V(I, J), A N G(I, J)$
5900 CONTINUE
员吴읏

J2 $=J+J T($ IRUU-2 $)-J T(I R U) ~-U(I R U-2, J 2)$

$\operatorname{coDTB}($ IRU) $=1$
$\mathrm{U}(\operatorname{IRU}, J T I)=T \mathrm{TV}(\mathrm{IRU})$
$V(I R U, J T 1)=T V(\operatorname{IRU})$
C * * top boundary conditions

6250 CONTINUE

6300 ITU=ITU+1

IF
品
DO $6350 \mathrm{I}=\mathrm{IRU}, \mathrm{ILU}$

$I F(D A B S(U(I-1, J)), 1 L E .1 . E-6) U(I-1, J)=U(I, J)$
$F=-0.25 * R D X(H(I+1)-H(I-1))(U(I, J)+U(I-1, J))+V(1)$
$F=-0.25 * R D X *(H(I+1)-H(I-1)) *(U(I, J))+U(I-1, J))+V(I, J-1)$
$-V T M * D E L Y * R D X *(U(I, J)-U(I-1, J)$

$1-V T M * D E(Y * R D X *(U(I, J)-U(I-1, J)$
$D F D P=-D E L T * R D Y *(1,0+2.0 * V T M * D E L Y * * 2 * R D X * * 2$
IF(DABS CORP) .GE. 0.05 . AND. DABS(DELP) .GE. 200.) UFLGEI.
$P(I, J)=P(I, J)+D E L P$
P V(I, J-1)=V(I, J-1)-DELT*RDY*DELP
$V(I, J)=V(I, J)+D E L T * R D Y * D E L P$
$U(I, J)=U(I, J)+D E L T * R D * D E L P$
IFII .EQ. IRU) GO TO 6350
U(I-1,) =U(I-1,J)-DELT*RDX*DELP
6350 CONTNUE
IFTUFLE.EQ. 0.) GO TO 6400
GO TO 6300
2
0
0
0
0
500) 60 T0 6410

6410 PRINT 25
6420 CONTINUE

が

帯志

嬅䝆
解解解页面面页

 CONTINUE
IRU＝IRUT

8

C $\% *$ START CYCLE
11000 CONTINUE
FLG＝1．
ALPHA $=$ ULPHA
c ALPHA＝ULPHA
C
C＊COMPUTE TEMPORARY U AND V
C DO $11100 \mathrm{I}=\mathrm{IRU}, \mathrm{ILU}$
$\mathrm{JTI}=\mathrm{JT}(I)-1$
$\mathrm{JBI}=\mathrm{JB}(\mathrm{I})$
$\mathrm{JB1}=\mathrm{JBCI}$
DO
I
$1100 \mathrm{~K}=\mathrm{JB1}, \mathrm{JT1}$
$J=J T 1+J B 1-K$

DO 11600 I=IRU,ILU
$J T 1=J T(I)$
$J T 2=J T 1+1$
$U(I, J T 2)=U(I, J T I)$
V(I,JT2)=V(I, JTI)
CONTINUE

IFII EQ.
11750 CONTINUE

$\stackrel{N}{N}$
ISN

DO 13800 ITER=1,500

JB2=JB(ILU) -1
JT2=JT(ILU) +1
JT2 $2=\mathrm{JT}(I L U)$ +1
IF(ILU . LT. MLU) $60 ~ T O ~$
11850
$V(I L U+1, J)=2 . * V(I L U, J)-V(I L U-1, J)$
11800 CON'TO 11900
GO
11850 CONTINUE

解解页页预

	V(ILU,J)=V(ILU-1,J)
	P(ILU,J)=GY*((DFLOAT(J)-1.5)*DELY-HB(ILU))
	IFIU(ILU, J) .EQ. O. .OR. V(ILU,J) .EQ. O.l Go to 14322
14312	CONTINJE
	GO TO 14324
14315	CONTINEE
	DO 14320 JE=J81, JT1
	$\mathrm{J}=\mathrm{JBl}+\mathrm{JTl}$-JE
	Jl=J+JT(ILU-1)-JT(ILU)
	$J 2=J+J T(I L U-2)-J T(I L U) ~$
	$U(I L U, J)=2 . * U(I L U-1, J l)-U(I L U-2, J 2)$
	$V(I L U, J)=2 . * V(I L U-1, J 1)-V(I L U-2, J 2)$
	IFIU(ILU, J) .EQ. O. .OR. V(ILU, J) .EQ. 0.1 60 TO 14322
14320	CONTINUE
	G0 TO 14324
14322	JB(ILU)=J+1
	HB(ILU) $=($ DFLOAT(J)-1. $) *$ DELY
	PRINT 27
14324	CONTINUE
	U(ILU, JTl $)=$ TU (ILU)
	$V(I L U, J T 1)=T V(I L U)$
	IF(ILU .EQ. MLU) GO TO 14325
	60 TO 14340
14325	CONTINUE
	JT11=.JT(ILU)
	DO $14330 \mathrm{~J}=\mathrm{JB1}, \mathrm{JT13}$
	$\mathrm{U}(\mathrm{ILU}, \mathrm{J})=0$.
	V(ILU,J)=-AS
14330	CONTINUE
14340	CONTINUE
	RLH(ILU)=H(ILU)-HB(ILU)
14400	CONTINUE
	$1 L U 1=I L U+1$
	JTl= JTU (ILUI)
	U(ILUS, JT1 $=$ TU(ILU1)
	V(ILUL, JTl)=TV(ILUL)
	P(ILUl, JTl $)=\mathrm{P}(1 \mathrm{LU}, \mathrm{JTI})$
14500	CONTINUE

C
C * TOP RGDID BOUNDARY CONDITIONS

3
\vdots
 DD 14850 I＝IRU，ILU
$J T 1=J T(I)$
$J T 2=J T 1+1$
$U(I, J T 2)=U(I, J T 1)$ $U(I, J T 2)=U(I, J T 1)$
$V(I, J T 2)=V(I, J T 1)$ CONTINUE $\begin{array}{ll}J B 2=J B(I L U+1) & -1 \\ J T 2=J T(I L U+1) & +1\end{array}$ 1206 －IF（ILU＋1－HLU）14885，14865，14855

予甹页

$\underset{\substack{\mathrm{N} \\ \mathrm{N} \\ \mathrm{N}}}{ }$

Rs
IF(TTU+1.E-6 . LT. TUPRT) GO TO 16000
TUPRT $=$ TUPRT+CUPRT*DELT
DO $15300 I=I R U, I L U$
$J B 2=J B(I)-1$
DO $15300 \mathrm{~J}=\mathrm{JBZ}, \mathrm{JT2}$
$\operatorname{UV}(I, J)=\operatorname{DSQRT}(U(I, J) * U(I, J)+V(I, J) * V(I, J))$
$\operatorname{IF}(D A B S(U(I, J))$. LE $1, E-6) U(I, J)=1 . E-6$
$\operatorname{ANG}(I, J)=57.3 * \operatorname{DATAN(V(I,J)\sim U(I,J))}$
15300 CONTINUE
C * LIST VELOCITY, PRESSURE, AND SURFACE POSITION
い U
PRINT 35
DO 15900 I=IRU,ILU
JBI=JB(I)
$I B=2 * I M A X-I$

$\underset{H}{2}$

LEVE	.1.0	PRIL 81) VS FORTRAN	DATE: MAY 13, 1982	TIME: 16:54:39	NAME:	MAIN	PAGE:	28
	1..........2.......... 3.	4.........5..	6..........7.*.				
ISN	1306		$J B 2=J B(I)-1$						
ISN	1307		JT2 $=\mathrm{JT}(\mathrm{I})+1$						
ISN	1308		DO $15900 \mathrm{~J}=\mathrm{JB2,JT2}$						
ISN	1309		PRINT 38,I,IB,J,U(I,J),V(I,J), ANG(I,J)	(I,J), HB(I),JTI,JB	$V(I, J),$				
ISN	1310	$\begin{aligned} & 15900^{-} \\ & \mathrm{C} \\ & \mathrm{C} * * \\ & \mathrm{C} * * \\ & \mathrm{C} \end{aligned}$	CONTINUE set the advance time velocitit and the advance time surface	U AND V INTO THE UN IGHT H INTO THE HN	ND VN ARRAYS ar				
ISN	1311	16000	CONTINUE						
ISN	1312		IRUI $=12 \mathrm{U}-1$						
ISN	1313		riUl $=1.10+1$						
ISN	1314		DO 16100 I=IRUI, ILUI						
ISN	1315		TTM (I$)=0$.						
ISN	1316		$J 82=J B(I)-1$						
ISN	1317		$\mathrm{JT} 2=\mathrm{JT}(\mathrm{I})+1$						
ISN	1318		DO $16100 \mathrm{~J}=\mathrm{JB2,JT2}$						
ISN	1319		$\operatorname{UN}(1, J)=U(I, J)$						
ISN	1320		$\operatorname{VN}(1, J)=V(1, J)$						
ISN	1321		HBN(I)=HB(I)						
ISN	1322	$\begin{aligned} & 16100 \\ & \mathrm{c} \\ & \mathrm{c} * * \\ & \mathrm{c} \end{aligned}$	CONTINUE adVance time t=t+delt						
ISN	1323		TTU $=$ TTU + DELT						
ISN	1324		SIGNL=SIGNL+1						
ISN	1325	$\begin{aligned} & 16200 \\ & \mathbf{c} \\ & \mathbf{c} * * 1 \\ & \text { c } \end{aligned}$	continue INPUT TO LOWER SECTION						
ISN	1326		IF(ILLI .EQ. O) GO TO 20000						
ISN	1327		IF(MEET .EQ. O) GO TO 16300						
ISN	1328		IL=ILLl +1						
ISN	1329		LL=IL						
ISN	1330		FLOL=0.						
ISN	1331		G0 1020000						
ISN	1332	16300	CONTINUE						
ISN	1333		TDVOL=FFVOL-FVOL-FVOU-FLOL						
ISN	1334		ILL=ILLI+1						
ISN	1335		IF(ILL .LE. LR) GO TO 17000						
ISN	1336	16400	CONTINUE						
ISN	1337		IF(TDVOL .LE. O.) GO TO 20000						
ISN	1338		H(ILL) $=\mathrm{HB}(\mathrm{ILL}$) + TDVOL*RDX						
ISN	1339		$J T(I L L)=H(I L L) * R D Y+1 . E-6+2$.						
ISN	1340		PRINT 29, ILLl, JT(ILL), $\mathrm{H}(\mathrm{ILL})$						
ISN	1341		IF(JT(ILL) .EQ. JB(ILL)) 60 TO	20000					
ISN	1342		LL=ILL						
ISN	1343		HN(LL)=H(LL)						
ISN	1344		LR=LL						
ISN	1345		JT1=JT(LL)						
ISN	1346		JBI=JB(LL)						
ISN	1347		IF(ILLI . NE. ML) GO TO 16470						
ISN	1348		DO $16450 \mathrm{~J}=\mathrm{JB1}$, JT1						
ISN	1349		$U(E L, J)=0.5 * U(M L, J)$						
ISN	1350		$V(L L, J)=0.5 * V(M L, J)$						

$J 2=J-J B(L L)+J B(L L-2)$
$U(L L, J)=2, * U(L L-1, J 1)-U(L L-2, J 2)$
$V(L L, J)=2 . * U(L L-1, J)-U(L L-2, J 2)$
P(LL,J)=-GY*(H(LL)-(DFLOAT(J)-1.5)*DELY)
CONTINUE
虽

$\stackrel{\infty}{\stackrel{\infty}{\circ}}$

DO 17100 I＝LL，LR

VTM $=$ RDY＊（ $H B(I)-(J-2) * D E L Y)$ VBM＝RDY＊（（J－1）＊DELY－HB（I）
$F=-0.25 * R D X *(H B(I+1)-H B(I-1)) *(U(I, J)+U(I-1, J))+V(I, J) * V T M$
$1+V B M *(V(I, J)+D E L Y * R D X *(U(I, J)-U(I-1, J))$
DFDP $=$ DELT＊RDY＊（1．0＋2．0＊VBM＊DELY＊＊2＊RDX＊＊2）
DELP＝－F／DFDP

N
ज
 ～～～

N N N
$\underset{\sim}{*}$

～～N

焦号

$\underset{\sim}{3}$
䂞芯
$\underset{\sim}{\mathbf{n}}$
$\underset{\sim}{3}$
页页

岩勾

\qquad
우Nunc

$J T 1=J T(L R)$
$J B 1=J B(L R)$
$D 018710 \mathrm{~J}$
$P(L R, J)=-G Y *(H(L R)-(D F L O A T(J)-1.5) * D E L Y)$
$U(L R, J)=0.5 *(U(L R-1, J)+U(L R+1, J))$
$V(L R, J)=0.5 *(V(L R-1, J)+V(L R+1, J))$
NIR $=J T(L R)-J B(L R)$
IF(NIR .LE, 0$)$ GO
IFIR ${ }^{2}$.L.E. O) GO TO 18900
IF(LR+2.LT. IL) GO TO 18730
MEET=1
$H(L R+1)=0.5 *(H(L R)+H(I L)$
$J T(L R+1)=H(L R+1) * R D Y+2$.
$L R=L R+1$
$V(L R, J B 1)=B V(L R)$
$V(L R, J B 1-1)=V(L R, J B 1)+(U(L R, J B 1)-U(L R-1, J B 1)) * D E L Y * R D X$
$U(L R, J B 1-1)=(A S-V(L R, J B 1-1) * V S I N(L R)) / V C O S(L R)$
GO TO 19100
CONTINUE
H(LR+1) $=\mathrm{HB}$
PRINT 42, LR,JT(LR),H(LR)
CODBB(LR) $=1$
CODBB(LR)=1
U(LR, JBI) $=B U(L R$ (LR, JB1-1) $=($ AS-V(LR, JB1-1) $* V \operatorname{VSIN}($ LR $)$)/VCOS (LR)
18730 (RN 1$)$ (R+1)+(FFVOL-FYOL-FVOU-FLOL)*RDX
$\operatorname{IF}(J T(L R+1) . L E . J B(L R+1)) 60$ TO 19000
LR $=L R+1$
CODBBILR)=1
$J T 1=J T(L R)$
$J B 1=J B(L R)$
DO $18800 \quad J=J B 1, J T 1$
PRINT 42, LR, JT(LR),H(LR)
$P(L R, J)=-G Y(H(L R)-$
U(LR, 1) $=$ U(LR-1,J)
$V(L R, J B 1)=B V(L R)$
RLH $(L R)=H(L R)-H B(L R)$
$V(L R, J B 1-1)=V(L R, J B 1)+(U(L R, J B 1)-U(L R-1, J 81)) * D E L Y * R D X ~$ U(LR, JB1-1) $=($ AS-V LR, JB1-1)*VSIN(LR $)) / V C O S(L R)$
$18900 \operatorname{CODBB}(L R)=0$

V(LR,J)=V(LR-1,J)
CONTINUE
U(LR,JB1 $)=B U(L R)$
JBI $=$ JB (LR1)

$\mathbf{8}$
$\mathbf{\circ}$
$\mathbf{-}$

ISN	1530		P(I, J)=-GY*(H(I)-(DFLOAT(J)-1.5)*DELY)
ISN	1531	18600	CONTINUE
ISN	1532		FLOL=0.
ISN	1533		DO $18700 \mathrm{I}=\mathrm{LL}, \mathrm{LR}$
ISN	1534		FLOL=FLOL + (H(I)-HB(I))*DELX
ISN	1535	$\begin{aligned} & 18700 \\ & C \\ & C \\ & C \end{aligned}$	CONTINUE NEW IR LOCATION
ISN	1536		NIR=JT(LR)-JB(LR)
ISN	1537		IF(NIR .L.E. O) GO TO 18900
ISN	1538		IF(LR+2 .LT. IL) GO TO 18730
ISN	1539		MEET=1
ISN	1540		H(LR+1) $=0.5 *(H(L R)+H(I L))$
ISN	1541		$J T(L R+1)=H(L R+1) * R D Y+2$.
ISN	1542		$L R=L R+1$
ISN	1543		PRINT 42, LR, JT(LR), H(LR)
ISN	1544		CODBB (LR) $=1$
ISN	1545		JT1=JT(LR)
ISN	1546		$J B 1=J B(L R)$
ISN	1547		DO $18710 \mathrm{~J}=\mathrm{JB1}, \mathrm{JT1}$
ISN	1548		P(LR, J) $=-\mathrm{GY}$ ($\mathrm{H}(\mathrm{LR})-(\mathrm{DFLOAT}(J)-1.5) * D E L Y)$
ISN	1549		$U(L R, J)=0.5 *(U(L R-1, J)+U(L R+1, J))$
ISN	1550		$V(L R, J)=0.5 *(V(L R-1, J)+V(L R+1, J))$
ISN	1551	18710	CONTINUE
ISN	1552		$\mathrm{U}(L R, J B L)=B U(L R)$
ISN	1553		$V(L R, J B 1)=B V(L R)$
ISN	1554		
ISN	1555		U(LR, JBl-1) $=($ AS-V(LR, JB1-1)*VSIN(LR) $) / V C O S(L R)$
ISN	1556		GO TO 19100
ISN	1557	18730	CONTINUE
ISN	1558		H LR + 1) $=\mathrm{HB}(\mathrm{LR}+1)+($ FFVOL-FVOL-FVOU-FLOL $) * R D X$
ISN	1559		$J T(L R+1)=H(L R+1) * R D Y+2$.
ISN	1560		IF(JT(LR+1) . LE. JB(LR+1)) 60 TO 19000
ISN	1561		$L R=L R+1$
ISN	1562		PRINT 42, LR, JT(LR), H(LR)
ISN	1563		CODBB(LR) $=1$
ISN	1564		JTI=JT(LR)
ISN	1565		JBI=JB(LR)
ISN	1566		DO $18800 \mathrm{~J}=\mathrm{JBl}, \mathrm{JT1}$
ISN	1567		P(LR, J) $=-G Y *(H(L R)-(D F L O A T(J)-1.5) * D E L Y) ~$
ISN	1568		U(LR, J) $=\left(1 L^{(R-1, J)}\right.$
ISN	1569		V(LR,J) $=V(L R-1, J)$
ISN	1570	18800	CONTINUE
ISN	1571		U(LR, JB1)=BU(LR)
ISN	1572		V(LR, JBI) $=$ BV(LR)
ISN	1573		RLH (LR) = ${ }^{(L R}$)-HB(LR)
ISN	1574		
ISN	1575		U(LR, JB1-1) $=($ AS-V(LR, JB1-1)*VSIN(LR) $/$ /VCOS $($ LR)
ISN	1576		GO TO 19000
ISN	1577	18900	CODBB (LR) $=0$
ISN	1578		$L R=L R-1$
ISN	1579		IF (JT(LR)-JBILR) .LT. 1) G0 TO 18900
ISN	1580	19000	CONTINUE
ISN	1581		LRI $=\mathrm{LR}+1$
ISN	1582		JB1 $=$ JB(LR1)

式页页

\circ \sim \sim \sim

$\stackrel{\wedge}{\circ}$
号号
N
む
す

$V(I, J T 1)=V(I, J T 1-1)-D E L Y * R D X *(U(I, J T 1)-U(I-1, J T 1))$
$U(I, J T 1+1)=U(I, J T 1)$
19600 CONTINUE
19600 CONTINUE
c＊＊calculate total volume

品品 1610
1611

1612
1613
ज
～～
M
-1
0
0
-1

19570 CONTINUE

		c	
ISN	1629	19700	CONTINUE
ISN	1630		FLOL=0.
ISN	1631		DO 19800 I=LL, LR
ISN	1632		$\operatorname{CODBB}(1)=1$
ISN	1633		FLOL=FLOL+(HII)-HB(I) ${ }^{\text {(}}$ (DELX
ISN	1634	19800	CONTINUE
ISN	1635		PRINT49,ITER, TTD,LYCLE, FLOL
		$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{C} \end{aligned}$	TRANSFER TO UPPER SECTION
ISN	1636		$\mathrm{I}=\mathrm{LL}$
ISN	1637		IU=2*IMAX-I
ISN	1638		JB2=JB(I)-1
ISN	1639		$\mathrm{JT} 2=\mathrm{JT}(\mathrm{I})+1$
ISN	1640		DO 19850 J=JB2, JT2
ISN	1641		$\mathbf{U}(10, J)=-U(I-1, J)$
ISN	1642		$V(I U, J)=V(I, J)$
ISN	1643	$\begin{aligned} & 19850 \\ & \mathrm{C} \\ & \mathrm{C} \text { (} \\ & \mathrm{C} \end{aligned}$	continue
ISN	1644		IF (TTD+1.E-6 .LT. TLPRT) 60 TO 19930
ISN	1645		TLPRT $=$ TLPRT+CLPRT*DELT
ISN	1646		DO 19900 I=ILLI, LR
ISN	1647		JB2=JB(I)-1
ISN	1648		$\mathrm{JT} 2=\mathrm{JT}(\mathrm{I})+1$
ISN	1649		DO 19900 J=JB2,JT2
ISN	1650		$\operatorname{UV}(\mathrm{I}, \mathrm{J})=\mathrm{DSQRT}(\mathrm{U}(\mathrm{I}, \mathrm{J}) * \mathrm{U}(\mathrm{I}, \mathrm{J})+\mathrm{V}(\mathrm{I}, \mathrm{J}) * V(I, J))$
ISN	1651		
ISN	1653		$\operatorname{ANG}(\mathrm{I}, \mathrm{J})=57.3 * \operatorname{DATAN(V}(\mathrm{I}, \mathrm{J}) / \mathrm{U}(\mathrm{I}, \mathrm{J})$)
ISN	1654		IF(U) I, J) .EQ. 1.E-6) U(I,J)=0.
ISN	1656	$\begin{aligned} & 19900 \\ & \mathrm{c} \\ & \mathrm{c} * * \\ & \mathrm{c} \end{aligned}$	CONTINUE
ISN	1657		PRINT 35
ISN	1658		PRINT 47
ISN	1659		DO 19920 I=ILLI,LR
ISN	1660		$J T 1=J T(1)$
ISN	1661		JT2 $=\mathrm{JT} 1+1$
ISN	1662		$\mathrm{JBI}=\mathrm{JBC}$ ()
ISN	1663		JB2=J81-1
ISN	1664		DO $19920 \mathrm{~J}=\mathrm{JB2}$, JT2
ISN	1665		
ISN	1666	$\begin{aligned} & 19920 \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	continue set the advance time velocities u and V into the un and vn arrays and the advance time surface height h into the hn array
ISN	1667	19930	CONTINUE
ISN	1668		LR1 $=$ LR+1
ISN	1669		DO 19940 I=ILLI, LR1
ISN	1670		$J T 2=J T(1)+1$
ISN	1671		JB2=JB! 1)-1
ISN	1672		DO $19540 \mathrm{J=JB2,JT2}$

$$
\frac{\underset{y y y}{*}}{\frac{Z}{2}}
$$

LEVEL 1.1 .0 (APRIL 81$)$

[^0]PRO日RAM SIZE =
$$
381744 \text { BYTES, PROGRAM NAME }
$$
$$
\text { PAGE: } \quad 1 .
$$
$$
\text { PAGE : } 36
$$
N甘AL\&DS SA

1. Bjorksten Research Laboratories, Polyesters and Their Applications. New York: Reinhold Publishing Corp., 1956.
2. Parkyn.B., Lamb, F., and Clifton, B.V., Polyester, Vo1.2, Unsaturated Polyesters and Ployester Plasticisers. New York: American Elsevier Publishing Co., Inc. 1967.
3. Ramazzotti, D.J., "Rotational Molding," Modern Plastics Encyclopedia, 1978-1979, 372.
4. Rao, M.A and Throne, J.L., Polym. Eng. Sci., 12(1972), 237-264.
5. Progelhof, R.C. and Throne, J.L., Polym. Eng. Sci., 16(1976) 680-686.
6. , paper presented at First Internations Conference on Polymer Processing, MIT, August, 1977.
7. Throne, J.L., Gianchandani, J., and Progelhof, R.C., Proc. Second World Congress of Chemical Engineering, Vol. VI, Montreal, October 4-9, 1981, 465-471.
8. Throne, J.L., and Gianchandani, J., Polym. Eng. Sci., 20(1980) 899-919.
9. Progelhof, R.C. and Throne, J.L., Polym. Eng. Sci., 15(1975) 690-695.
10. Throne. L.J., Polym. Eng. Sci., 16(1976) 257-264.
11. \qquad , Polym. Eng. Sci., $12(1972)$ 335-339.
12. Broyer, E. and Macosko, C.W., AIChE, J., 22(1976) 268-276.
13. White, R.E., Tappi 39(1956) 228.
14. White, R.E., and Higgins, T.W., Tappi, 41 (1958) 71.
15. Malkin, B.A., Dominion Eng., March (1937)
16. Balmer, R.T., Nature, 227 (1970) 600-601.
17. Karweit, M.J. and Corrsin, J., Phys. Fluids, 18(1975) 111-112.
18. Balmer, R.T. and Wang, P.G., J. Fluid Eng., 98 (1976) 688-694.
19. Phillips, O.M., J. Fluid Mech., 7(1960) 340-352.
20. Cerro, R.L. and Scriven, L.E., AIChE Regional Meeting, Bloomington, Minn., Feb. 1971.
21. Ruschak, K.J. and Scriven, L.E., J. Fluid Mech., 76(1976) 113-125.
22. Greenspan, H.P., J. Fluid Mech., 74 (1976) 335-351.
23. Gans, R.F., J. Fluid Mech., 82(1977) 415-427.
24. Deiber, J.A. and Cerro, R.L., Ind. Eng. Chem., Fundam. 15(1976) 102-110.
25. Orr, F.M., and Scriven L.E., J. Fluid Mech., 84 (1978) 145-165.
26. Garabedian, P.R., Partial Differential Equations. New York: John Wiley \& Sons, Inc., 1964.
27. Harlow, F.H. and Amsden A.A., J. Comput. Phys. 8(1971) 197-213.
28. Hirt, C.W., Nichols, B.D., and Romero, N.C., SOLA - A Numerical Solution Algorithm for Transient Fluid Flows, Los Alamos Scientific Laboratory report LA-5852 (Apri1 1975)
29. Welch, J.E., Harlow, F.H., Shannon, J.P., and Daly, B.J., The MAC Method: A Computing Technique for Solving Viscous, Incompressible, Transient F1uid - Flow Problems Involving Free Surfaces, Los Alamos Scientific Laboratory report LA-3425 (January 1969)
30. Nichols, B.D. and Hirt, C.W., J. Comput. Phys., 8(1971) 434-448.
31. Viecelli, J.A., J. Comput. Phys. 8(1971) 119-143.
32. Nichols, B.D., Hirt. C.W., and Hotchkiss, R.S., SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries, Los Alamos Scientific Laboratory Report LA-8355 (August 1980)
33. Chilton, C.H., Chemical Engineers' Handbook, 5th ed., Edited by R.H. Perry and C.H. Chilton, New York: McGraw - Hill Book Co. 1973.
34. Harlow, F.A. and Amsden, A.A., Fluid Dynamics, Los Alamos Scientific Laboratory Report LA-4700 (June 1971)
35. Thom, A. and Apelt, C.J., Field Computations in Engineering and Physics. Princeton, N.J. : D. Van Nostrand Co., Inc., 1961.
36. Huh, C. and Scriven, L.E., J. Colloid and Interface Sci., 35 (1971) 85-101.
37. Dussan, V., E.B. and Davis, S.H., J. Fluid Mech., 65 (1974) 71-95.
38. Ngan, C.G. and Dussan, V., E.B., J. Fluid Mech., 118 (1982) 27-40.
39. Huh, C. and Mason, S.G., J. Fluid Mech., 81 (1977) 401-419.
40. Rushak, K.J., J. Fluid Mech., 119 (1982) 107-120.
41. Spiers, R.P. and Wilkinson, W.L., Chem. Eng. Sci., 29 (1974) 1821-1825.
42. Coles, D., J. Fluid Mech., 21 (1965) 385-425.
43. Holodniok, M., Kubicek, M., and Hlavacek, V., J. Fluid Mech., 108 (1981) 227-240.
44. Nguyen, N.D., Ribault, J.P., and Florent, P., J. Fluid Mech., 68 (1975) 369-388.
45. Taylor, G.I., J. Fluid Mech., 16 (1963) 595-619.
46. Leonard, B.P., Computer Methods in App1. Mech. \& Eng., 19 (1979) 59-98.
47. Harlow, F.H., Numerical Methods for Fluid Dynamics, an Annotated Bibliography, Los Alamos Scientific Laboratory report LA-4281 (September 1969)
48. Langley Research Center, Numerical Studies of Incompressible Viscous Flow in a Driven Cavity. Washington, D.C.: National Aeronautics and Space Adiministration, 1975.
49. Cebeci, T., Hirsh, R.S., Keller, H.B., and Williams, P.G., Computer Methods in Appl. Mech. \& Eng., 27 (1981) 13-44.
50. Yeung, R.W., Ann. Rev. Fluid Mech., 14 (1982) 395-442.
51. Emmons, H.W., Ann. Rev. Fluid Mech., 2 (1970) 15-36.
52. Orszag, S.A. and Israeli, M., Ann. Rev. Fluid Mech., (1974) 281-318.
53. Dussan, V., E.B., Ann. Rev. Fluid Mech., 11 (1979) 371-400.
54. Gutoff, E.B. and Kendrick, C.E., AIChE, J., 28 (1982) 459-466.

[^0]: *STATISTICS* ND DIAGNDSTICS GENERATED.
 ****** END OF COMPILATION 1 \#\#*****

