Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

PATTERN GENERATION AND FAULT
 DETECTION IN DIGITAL CIRCUITS
 USING A MICROPROCESSOR

> Syed Riffat Ali Dissertation submitted to the Faculty of the Graduate School of the New Jersey Institute of Technology in partial fulfillment of the requirements for the professional degree of Electrical Engineer 1982

APPROVAL SHEET

Title of Thesis: Pattern Generation and Fault Detection in Digital Circuits Using a Microprocessor

Name of Candidate: Syed Riffat Ali
Professional Degree of Electrical Engineer, 1982

Thesis and Abstract Approval:

170345

ROBERT W. VAN HOUTEN LGBRARY NEW JERSEX IMSTITUTE OE TECHPRUTH

Name: Syed Riffat Ali.

Degree and date to be conferred: Deg. Elect. Engg., 1982.

Secondary education: Notre Dame College, 1963.
Collegiate institutions attended Dates Degree Date of Degree

East Pakistan University of
Engineering Technology. . . . 1963-1967 B.S.E.E. October 1967.
Tuskegee Institute. 1968-1971 M.S.E.E. September 1971.
New Jersey Institute of
Technology. 1972-1982 Deg.E.E. May 1982. . .

Major: Electrical Engineering.

Publications: 1. A thesis on Single Side Band Exciter (B.S.E.E. Thesis).
2. The Study of the Performance of a System Having Multiple Nonlinearities Using Describing Function Technique (M.S.E.E. Thesis).

Positions held: R \& D Engineer

Title of Thesis: Pattern Generation and Fault Detection in Digital Circuits Using a Microprocessor

Syed Riffat Ali, Professional Degree of Electrical Engineer, 1982
Thesis directed by: Assistant Professor J. Frank

The main object of this Professional Project was to establish a microcomputer based system which could detect faults in digital circuits. Hardware and software for the Motorola 6800 microcomputer system was fully developed. Node level diagnostic programs were then used to pump known "Bit Patterns" into digital circuits and responses recorded via Pseudorandom binary sequence generator using CRC code. This method also known as "Signature Analysis" was then applied to detect faults successfully in Universal Asynchronous Receiver Transmitter or UART Circuits.

TO: MY JAAN

The author wishes to acknowledge the help rendered by his advisor Dr. J. Frank, without whose constant direction, dedication and understanding this project would have been an impossibility in the true sense of the word.

The author also wishes to thank Dr. E. M. Rips and Dr. W. H. Ball for their patient attention and help.

The greatest sacrifice, however, was rendered by my dear wife Ishrat, who lived through my lack of attention, indifference to house chores, etc., during the last two years of this project. Above all I am grateful for her encouragement which finally pushed me into finishing this project.

Last, but not least, I would like to thank Ms. Judi Engelhardt for her excellent typing and proofreading of my manuscript.

TABLE OF CONTENTS

Chapter

$$
\text { I. Faults in Digital Circuits } 2
$$

Brief Survey of Techniques which can be Applied for Detection of Faults in Digital Circuits

Limitations of Conventional Techniques
II. Signature Analysis 11

Signature Analysis
Signature Analysis - Formal Definition
Pseudorandom Binary Sequence (PRBS)
PRBS Generator
Error Detection by PRBS
Top Selection of PRBS Generator
Probability of Error Detection in Signature Analysis
III. Description of a Signature Analysis System 19

Proposed System
Description of the Basic System
Description of Additional Hardware and Software Required for the Signature Analysis System
IV. Diagnostic Bus Interface 23

Peripheral Interface Adapter
Internal Organization of PIA
PIA Operating Modes
PIA Internal Registers
Parallel Interface Circuit
I/O Decoder Circuit Operational Note
Interfacing the Diagnostic Interface to the
Signature Analysis System

Page

V. Signature Analysis Module 32
System StructureDefinition of Key Signals - Stimulus, MonitoredSignals, Clock Signal, Start Signal and StopSignalProcedure for Obtaining a Signature
VI. Circuit Under Test 37Special Requirements for Circuit Under TestSpecial Schematic for the Circuit Under Test
CONCLUSION 41
APPENDIX A 42SS50 - S100 Bus Conversion Design
APPENDIX B 46
Software for the Signature Analysis System
LIST OF REFERENCES 55
Figure Page

1. A Simplified Block Diagram of the Diagnostic System 1
2. OR, and Function Tables 4
3. D-Cube Fault 5
4. Diagnostic Tree 6
5. Reduced Tree 7
6. Flow Table 7
7. Detection of $s-a-1$ Fault 8
8. Success or Tree Fault 9
9. PRB Sequence 12
10. Selection of TAP for $T(x)=x^{16}+x^{12}+x^{9}+x^{7}+1$ 14
11. 20-Bit Sequence Generating a Signature 15
12. Probability of Detection of Errors for Signature Analysis
for $K=16$ for PRBS Generator 18
13. The Signature Analysis System 20
14. MC6820 PIA I/O Diagram 23
15. I/O PORTS 25
16. Internal Registers of PIA 26
17. Control Register Interpretation 28
18. Diagnostic Interface Block Diagram 31
19. Signature Analysis Module 32
20. Signature Collection System 34
21. Signature Schematic of the Circuit Under Test 40

INTRODUCTION

The main object of the project will be to establish a Microcomputer based system which will be able to diagnose a faulty digital system by pumping a known "bit pattern" into the digital system, recording the system response at various "ștrategic points" in a "good" system and then comparing the same response in a "faulty" system, and then diagnosing the faulty component.

The proposed "Diagnostic System" must have the following capabilities:

1. It should be capable of generating test patterns.
2. It should be able to apply the patterns to a "client" system and collect responses and store them.
3. It should be able to compare the patterns of a "good" system to a "faulty" one, diagnose the faulty system and detect the faulty element.
4. Finally, the system should be able to diagnose itself, before proceeding to diagnose a faulty system.

FIG. 1
A Simplified Block Diagram of the Diagnostic System

CHAPTER 1

FAULTS IN DIGITAL CIRCUITS

The prime requirement of a digital system is the ability to operate correctly over a sufficiently long period of time. This requirement becomes stringent in communication systems and computers that operate in real time. To meet this requirement the system has to be tested from time to time to determine if it is functioning properly. The fault, if any, should be detected and the faulty unit should be repaired or replaced.

The set of tests used should be complete and should be capable of detecting any fault that is likely to occur.

The set should be made as small as possible in order to minimize the time required for this maintenance function.

The number of tests required will obviously depend on the type of circuit involved. Redundant circuits where faults are masked should also be considered in the tests.

Digital circuits are normally divided into two basic classes:

1. Combinational Circuits
2. Sequential Circuits

A Combinational Circuit has no feedback loops. A Combinational function Z_{i} of a set of variable $\left(y_{i}, y_{2}-\cdots-y_{n}\right)$ depends only on the present value of inputs, i.e., $z_{i}=f_{i}\left(y_{1}, y_{2}-\cdots-y_{n}\right)$. A Combinational Circuit can be represented by Truth table, Karnaugh map, etc.

In a Sequential Circuit the output not only depends on present values of input but also on the past values of the input. The past values of the inputs
are represented by the internal status of the Sequential circuit.

Two different models of sequential machines have been presented by Mealy and Moore.

In the Mealy machine the output at any time is dependent on the input and internal state at that time, and in the Moore machine the output is a function of only the internal state.

Brief Survey of Different Methods Used for Test Derivation for Combinational Circuits

The faults will be of the following types:

1. Stuck at zero ($\mathrm{s}-\mathrm{a}-0$)
2. Stuck at one (s-a-1)

Truth Table Method

This method compares the truth tables of normal and faulty circuits. Suppose that the inputs to a combinational circuit are $x_{1}, x_{2}---x_{n}$ and outputs are $Z_{1}, Z_{2^{-}}--Z_{m}$ where $Z_{i}=f_{i}\left(x_{1}, x_{2}---x_{n}\right), i=1,2---m$. For a set of faults F and any fault $d F$, let $Z_{i}^{d}=f_{i}^{d}\left(x_{1}, x_{2}-\cdots-x_{n}\right)$ be the value of the j th output when the fault d is present. Then an input vector $x^{j}=\left(x_{1}^{j}, x_{2}^{j}--x_{n}^{j}\right)$ is a test for detecting the fault d if and only if
$f_{i}\left(x^{j}\right) \oplus f_{i}^{d}\left(x^{j}\right)=1$ for some $i, 1 \leqslant i \leqslant m$ where \oplus represents the Exclusive - or Operator.

Method of Boolean Differences
The Boolean difference of a Function $F\left(x_{1}, x_{2}---x_{n}\right)$ with respect to one of its inputs x_{i} (denoted $a d F(x) / d x_{j}$) is defined as:

$$
\frac{d F(x)}{d x_{i}}=F\left(x_{1}, x_{2}---0,-\cdots x_{n}\right) \oplus F\left(x_{1}, x_{2}-\cdots-1,---x_{n}\right) ; \text { for the } i \text { th component. }
$$

The Boolean difference is not a derivative but a notation.
$d F(x) / d x_{j} \equiv 0$, means that F is independent of x_{i}.
and $\mathrm{dF}(\mathrm{x}) / \mathrm{dx}_{\dot{i}} \equiv 1$, means that input affects output.

The set of tests for a fault on x_{i} can be represented by the following:

$$
\begin{array}{ll}
& x_{i} \frac{d F(x)}{d x_{i}} \text { for } x_{i} \text { s-a-0 } \\
\text { and } \quad x_{i} \frac{d F(x)}{d x_{i}} \text { for } x_{i} s-a-7
\end{array}
$$

For example, consider the circuit shown in Fig. 2.

Fig. 2

The output F for the above circuit is given by:

$$
F=\left(x_{3}+x_{2}\right) \bar{x}_{1} \equiv \bar{x}_{1} h ; \quad \frac{d F}{d h}=\bar{x}_{1}
$$

Now the test for $h \mathrm{~s}-\mathrm{a}-0$ would be:

$$
h \frac{d F}{d h}=\left(x_{3}+x_{2}\right) \bar{x}_{1}=\bar{x}_{1} x_{3}+\bar{x}_{1} x_{2}
$$

And test for h s-a-1 would be:

$$
\bar{h} \frac{d F}{d h}=\left(\bar{x}_{3}+\bar{x}_{2}\right) \bar{x}_{1}=\bar{x}_{1} \bar{x}_{3} \bar{x}_{2}
$$

Path Sensitizing

Derivation of the test using Path Sensitizing is established by assigning a value opposite to the fault condition. A value of "l" is assigned to a terminal with s-a-0 fault and a "0" for a s-a-1 fault. A path is chosen from the fault to one of the output terminals. The inputs to the gates along this path are assigned values so as to propogate any change on the faulty terminal along the chosen path to the output terminal.

The path is now said to be sensitized. One or more tests for detecting the fault are obtained by determining network inputs which will produce the desired values on the gate inputs along the sensitized path. If a unique set of inputs is not obtained, the process is repeated and a different path is chosen for sensitizing.

D-Algorithm

The symbol D is used to represent a signal that is 1 in the normal circuit and 0 in the faulty circuit. The symbol \bar{D} is used to represent the signal which is normally 0 and 1 when faulty. And in using D-Algorithm, the OR and AND functions can be represented by tables shown in Fig. 2a and Fig. 2b.

+	0	1	D	\bar{D}
0	0	1	D	\bar{D}
1	1	1	1	1
D	D	1	D	1
\bar{D}	\bar{D}	1	1	\bar{D}

OR - Function
Fig. 2a

Input functions are read on the row and column sides of the tables within the bold lines. The tables shown are only good for two input gates. The mid part of the table defines the output in D-Algorithm. For example input of "0" and "D" will cause the output to be "D" for the OR-function and " 0 " for the AND-function, etc.

\cdot	0	1	\bar{D}	\bar{D}
0	0	0	0	0
1	0	1	D	\bar{D}
D	0	D	D	0
\bar{D}	0	\bar{D}	0	\bar{D}

AND - Function
Fig. 2b
Using the D-Algorithm one should identify two special types of inputs to a logic block.

The first type consists of those inputs which cause the output of the block to be different (assuming single output blocks) from its nomal value and these inputs are called PRIMITIVE D-Cubes of the fault.

And in case the fault propagates to the output, i.e., assuming that the output depends on more than one input, the inputs are called PROPAGATION D-Cubes of a block.

For example, if the output lead of a NOR gate is s-a-7, then inputs of 0 to both inputs will cause a 1 output instead of 0 . This can be represented by the following D-Cube of the fault:

a	b	c
0	0	D

Fig. 3---D-Cube Fault

Diagnosing Tree

The diagnosing tree is a direct graph whose nodes are tests. The outgoing branches from a node represent the different outcomes of the
particular test. For a single output circuit, there will be only two branches:
(a) Success of the Test
(b) Failure of the Test

And the branches will be labelled so. The diagnosing tree is continued until there is at most one fault associated with each branch.

Example:
Let three tests T_{7}, T_{2} and T_{3} be used for distinguishing between four possible faults in a circuit.

Fig. 4---Diagnosing Tree

In this example f_{1}, f_{2}, f_{3} and f_{4} are four faults picked up with test T_{1}, T_{2} and T_{3}. Note that MINIMIZATION can be affected in this method. Test T_{1} and T_{2} both detect fault f_{1}, therefore T_{1} test is redundant. And, therefore, the

Fig. 5---Reduced Tree
Brief Survey of Different Methods Used for Test Derivation for Sequential Circuits

In a sequential circuit the outputs are dependent not only on its inputs but also on its INTERNAL STATE. The internal state is represented by the combination of signals on feedback leads. The derivation of fault-detection and diagnostic tests for sequential circuits is complicated by the fact that the state signals are usually neither observable nor directly controllable. Two approaches are normally useful:

1. Circuit---Testing Approach

The normal and faulty machines are assumed to operate in a synchronous manner, i.e., there are no races or hazards

Example:

Let Mo represent the Flow Table for a normal circuit and Maj of the faulty circuit where one of the leads a is stuck at 1 . Now let a test sequence T be applied to Mo. He get four different output sequences depending on the initial state. And the same test when applied to Map will lead to different outputs.

If T starts with 0 , the first output will be 0 for all sequences under consideration except Mo initial state D. Thus this sequence is distinguished from all the Map sequences. If the second input is a 1 , the output will be 0 for all sequences except Mo, initial state C. It remains to distinguish Mo initial state A or B from the four Map sequences. If the next two inputs are 10, only the sequence generated by Mo with initial state B produces an 11 output. Finally, if the fifth input is 1 , the sequence from Mo initial state A produces a 1 output while all of the Maj sequences produce an 0 output. Thus the test sequence $T=01101$ detects a s-a-1.

The eight responses to T are shown below:

$M_{A_{C H}}$ I	Initial State	Response to $\mathrm{T}=01101$
	A	00001
Mo	B	00110
	C	01000
	D	10000

(a)

(b)

Fig. 7---Detection of s-a-1 Fault

Successor Tree

A minimal length sequence can be found by exhaustively examining all sequences of length $1,2,3$ until we find a sequence which detects all faults.

This can be done by constructing a Successor Tree as shown on the right-hand side. Machines $M o$ and M_{\top} are both started in state A. X indicates that the output of the faulty machine is no longer of interest since it was detected prior to this state. From the Successor Tree it is seen that only input sequence of length four can distinguish Map from Mo when they start at state A with either sequence 1110 and 1101, being suitable.

Fig. 8
Successor Tree Fault

Limitation of Conventional Techniques

All the methods described so far in this chapter are classical methods and there are some large machines and test facilities which do use these techniques. However, to use these techniques for a very complex L.S.I. (Large Scale Integration) is not practical. As packaging density increases fewer test points become available and the data streams at the available test points become complex and such techniques will not lead to a quick resolution of the problem. All the classical methods have at least one shortcoming. Some do not test a realistic set of input conditions, while others perform well at detecting logical errors and stuck nodes but fail to detect timing related problems. Therefore, for a complex data stream, "compression" of data becomes essential.

One method for compression of data for a "multiple - bit burst" into a form that can be handled easily by a microprocessor-based tester, is based
on "transition counting." The other method borrowed from the telecommunication field is the CRC (cyclic redundancy check code) a sort of checksum produced by a pseudorandom binary sequence (PRBS) generator.

The CRC method has the main advantage that the tester does not have to know how the particular digital circuit works; only the designer of the test itself need know the details. In classical systems the troubleshooter has to know the circuit details before he can attempt to fix the fault.

CHAPTER 2

SIGNATURE ANALYSIS

Using a known input signal, a Șignature Analysịs System generates a unique coded presentation at each point in a digital circuit. These responses are noted for a circuit which has no defects. If and when the circuit becomes defective, these points are again checked and defective nodes isolated. The resolution of this technique is excellent and can lead to a chip-level fault detection.

The difference between signature analysis and other techniques, such as transition counting, lies in the "coding" technique. The signature of a data stream is a 4-digit display of what is left in a 16 bit serial-in, parallel-out shift register (one with a specific feedback path) after the data stream has been clocked through the register. This signature is unique to the data stream, regardless of its length. Any change in the stream, so long as it continues past one clock edge, changes the signature. Therefore, in short, this is the essence of signature analysis.

The remainder of this chapter will be dedicated to the theoretical aspects of signature analysis.

Signature Analysis Formal Definition

In short signature analysis is a technique that uses cyclic redundancy check (CRC) code, a cyclic hashsum, produced by pseudorandom binary sequence (PRBS) generator.

PRBS Sequence

A pseudorandom binary sequence is a pattern of binary ones and zeros
that appear to be random, but has a very long period. After some sequential length the pattern repeats itself. The random-like sequence is statistical in nature but is predictable.

Fig. 9---PRBS Generator

A PRBS generator can be constructed by an exclusive - OR gate or a Modulo-2 adder, and Memory Elements such as D-type flip-flops. The flip-flops are connected in cascade to form a shift register. The output of these flip-flops is then fed back through the exclusive - QR gate to the Shift Register. This arrangement will then produce a pseudorandom binary sequence. By properly choosing feedback taps, maximum length linear sequences can be produced.

A shift register may be described using a transform K operator, multiplying by which is equivalent to delaying data by one unit of time. Redefining the delayed data by:

$$
k^{n} y(t)=x^{n}
$$

One has the feedback equation of Fig. 9 as:

$$
k^{4} y(t) \oplus k y(t) \oplus y(t)=0
$$

which may be written as:

$$
x^{4} \oplus x \oplus 1=0
$$

Since the feedback taps were implemented at delays of four clock cycles (F/F 4) and one clock cycle (F/F 1).

Now when the feedback shift register shown in Fig. 9 is provided with an external input, data can be overlaid on the PRBS generated by the circuit. Feeding data into a PRBS generator is the same as dividing the data by the characteristic polynomial of the generator.

Error Detection by PRBS Generator

Now different input sequences fed to the same PRBS generator will produce very different output sequences even though the input sequences may differ only by one bit. If the generators are now stopped at any time and the patterns remaining in the flip-flops are compared, they will also show different states. These remainder patterns are called "Signatures." This shows the effect of an error sequence when added to a data stream even when the error occurs only once in a long measurement window.

Therefore we have now found a simple "data compression algorithm" which could be used to detect errors in a synchronous digital circuit.

Tap Selection of PRBS Generator

The Signature for this project consists of a four-character display for a 16-bit register. The tap selection for the feedback can be accomplished $2^{16} / 2 \cdot 2^{4}$ or 2048 different ways. We will be using a feedback equation of:

$$
T(x)=x^{16}+x^{12}+x^{9}+x^{7}+1
$$

The polynomial scatters missed errors as much as possible. This arrangement also avoids evenly spaced taps at four or eight bits apart.

Fig. 10
Selection of TAP for $V(x)=x^{16}+x^{12}+x^{9}+x^{7}+1$

Pseudorandom Binary Sequence (PRBS) Generator
As discussed before the PRBS generator for this project is nothing more than a 16-bit Shift Register with feedback taps at positions 7, 9, 12 and 16 of the Register Bits. An exclusive - OR gate is inserted between the input Bit Stream and these taps. At the end of the Bit Stream the Shift Register is frozen and the Signature read.

The following figure illustrates the Shift Register arrangement along with an example of the Signature obtained for a known Bit Steam.

Fig. 11
20-Bit Sequence Generating a Signature

Figure 11 shows how the Register generates a Signature from a 20-bit sequence 1111110000011111111. Initially (time 0 through 7) the Register acts merely as a Shift Register. At time 7, the first 1 of the input sequence has reached the first feedback tap (tap 1). It is fed back and mixed with the input 0 , with the result that a " 1, " not a " 0 ," is next clocked into the Register (time 8). This behavior continues until the end of the measurement. At time 20 a residue of 16 bits 1101100101010011 is 211 that is left from the 20 -bit sequence. This residue is the Signature and will be displayed as H953 in a hexadecimal format using ($0123456789 A C F H P U$) arrangement since these characters are easy to display on 7 -segment displays rather than normal hexadecimal characters which will require alphanumeric display.

Probability of Error Detection in Signature Analysis

Assume Y is a data stream of n bits. Let S be a k-bit, PRBS generator and S^{-1} be its inverse (i.e., $S S^{-1}=1$). Let Q be a quotient and R the remainder.

Then $S(Y)=Q(Y) 2^{K}+R(Y)$

Now assume another n-bit sequence Z that is not the same as Y and therefore differs by a n-bit Error Sequence E.

Then $\quad z=y+E$
Also $S(Z)=Q(Z) \cdot 2^{K}+R(Z)$
So $\quad S(Y+E)=Q(Y+E) \cdot 2^{n}+R(Y+E)$
Since operators are linear, we can write

$$
\begin{equation*}
S(Y)+S(E)=Q(Y) \cdot 2^{n}+Q(E) \cdot 2^{n}+R(Y)+R(E) \tag{2}
\end{equation*}
$$

Subtracting (2) from (1) one obtains

$$
S(E)=Q(E) \cdot 2^{K}+R(E)
$$

For undetectable errors $R(E)=0$

$$
\begin{array}{ll}
\text { or } & S(E)=Q(E) \cdot 2^{K} \\
\text { or } & E=S^{-1} Q(E) \cdot 2^{K} \tag{3}
\end{array}
$$

Since Y, Z and E are all n-bit sequences, then $Q .2^{K}$ must be an m-bit sequence containing K final zeros. Q therefore contains ($m-K$) bits. Hence there are 2^{m-K} sequences that map into the same residue as the correct sequence and there are $\left.2^{m-K}\right]$ error sequences that are undetectable because they leave the same residue as the correct sequence. 2^{K} sequences can be generated using m-bits and only one of these is correct, therefore the probability of failing to detect an error by PRBS is

$$
P(\text { PRBS })=\frac{\text { Undetectable Errors }}{\text { Total Errors }}
$$

or

$$
\begin{aligned}
& P(\text { PRBS })=\frac{2^{m-K} 1}{2^{m}-1} \\
& \text { for } m \longrightarrow \text { Large } \\
& P(P R B S) \approx 1 / 2^{K}
\end{aligned}
$$

Fig. 12
Probability of Detection of Errors for Signature Analysis for $\mathrm{K}=16$

CHAPTER 3

DESCRIPTION OF A SIGNATURE ANALYSIS SYSTEM

The key object of this project is to design a Signature Analysis System which could collect unique Signatures at different nodes of a circuit under test. The circuit under test is first subjected to a stimulus. The response of the circuit is then collected as signatures.

This chapter will deal with the development of the system and discuss special hardware and software requirements for the Signature Analysis System.

The Signature Analysis System

The Signature Analysis System will be based on a Motorola 6800 Microprocessor System. The Microprocessor has been selected over other popular Microprocessors because of the ease by which this Microprocessor can be I/O (Input-Output) interfaced. The memory of the 6800 system is I/0 mapped. This Microprocessor also has an excellent mini-computer type instruction set and many addressing modes.

Description of the Proposed System

The basic system diagram for the Diagnostic System is shown in Fig. 13. The pattern is generated in (a) and is fed to the system under test (d) via the microprocessor (b) and hardware interface (c). The system response is shifted through the PRBS Generator (f) via the hardware interface (e). The system "Signature" is then stored in the memory. The "good" Signature is then compared with the Signature of a faulty system. The Operating System Program controls the operation described above and other system I/O functions. The Signature information is "backed up" in the Floppy Disk
storage device (h). Teletype and KCRT (g) are used to control the system and communicate with the microprocessor.

Fig. 13---The Signature Analysis System

The microcomputer system which will be used for this project has the following basic hardware and software available:

Hardware

1. 6800 Microprocessor
2. 48 K Static Memory

Hardware (cont'd)
3. One Serial Input/Output port equipped with:
(a) 1200 Baud CRT with keyboard
(b) 110 Baud Teletype unit
(c) Dual $8^{\prime \prime}$ Floppy Disk Storage
4. One parallel input/output port to be used for the pattern generator input and system response output.
5. Expansion possible to 60 K of memory and $\mathrm{I} / 0$ ports can be expanded to a total of eight ports.

Software

1. Disk Operating System (FLEX 2.0)
2. Disk Editor
3. Disk Assembler

It should be noted that the hardware and software mentioned above is for the "Development System" which was used to develop final hardware and software for the Signature Analysis System. The specịal hardware and software is discussed next.

Description of Additional Hardware and Software Required for the Signature Analysis System

As shown in Fig. 13 the Signature Analysis System required the development of the following hardware and software:

Hardware

1. A Diagnostic Bus System which will connect microcomputer to the circuit under test. This Bus System will also be used to send stimulus to the circuit under test.
2. A Shift Register with proper taps to generate maximum length PRBS sequence and combine the input from a circuit under test forming various signatures.

Software

1. A Pattern or Stimulus Output Program which sends known pattern to the circuit under test.
2. Signature Input Program which corrects Signature for various nodes of the circuit under test.
3. Signature Comparison Program which compares bad Signatures with good Signatures and detects faulty nodes.

Thus far we have only discussed very briefly the requirements for the Signature Analysis System. Now we will proceed with details of hardware and software which was developed for this project.

DIAGNOSTIC BUS INTERFACE

This part of the project is related to the software and hardware of the interface circuitry. The main component of the interface circuitry is called the Peripheral Interface Adapter and in the Motorola nomenclature it is designated MC6820.

Peripheral Interface Adapter

The MC6820 Peripheral Interface Adapter (PIA) provides a flexible method of connecting Byte-oriented peripherals to the MPU.

An input/output diagram of the MC6820 is shown below:

Fig. 14
MC6820 PIA I/O Diagram

The data flows between the MPU and the PIA on the System Data Base via eight bidịectional data lines, D0 through D7. The dịrection of data
flow is controlled by the MPU via read/write input to the PIA. The MPU sịde of the PIA alpo includes three chịp select lines, CSO, CS1 and CS2 for selecting a particular PIA. Two addressing inputs, RSO and RSI, are used in conjunction wịth a control bit within the PIA for selecting specific registers in the PIA. The MPU can read or write into the PIA's internal registers by addressing the PIA via the System Address Bus. Using these five input lines and the R/W signal from the MPU's point of view, each PIA is simply four Memory locations that are treated in the same manner as any other read/write Memory.

- The MPU also provides a timing signal to the PIA vịa the Enable input. The Enable (E) pulse is used to condition the PIA's internal Interrupt control circuitry and for the timing of Peripheral control signals. Since all data transfers take place during the $\emptyset 2$ portion of the clock cycle, the Enable pulse is normally $\emptyset 2$.

The peripheral side of the PIA includes two 8-bit bidirectional data buses (PAØ-PA7 and $P B \emptyset-P B 7$) and four interrupt/control lines; CA1, CA2,CB1 and CB2. A11 of the lines on the peripheral side of the PIA are compatible with standard TTL logic. In addition, all lines serving as outputs on the B-side of each PIA (PB $\emptyset-P B 7, C B 1, C B 2)$ will supply up to one milliamp of drive current at 15 volts.

Internal Organization

The MC6820 Peripheral Interface Adapter (PIA) provides 16 I/0 pins which may be grouped into I / O ports as shown on the following page:

Fig. 15---I/0 Ports

Control Signals CA1 and CA2 can be used with I/O Port A to generate Input data transfer with handshaking.

Control Signals CB1 and CB2 can be used with I/O Port B to generate Output data transfer with handshaking.

Input refers to data transfer from external logic to PIA. Output refers to data transfer from the PIA to external logic.

PIA Operating Modes

Operating Mode

Simple Input
Without Handshaking
Simple Output Without Handshaking

Bidirectional I/0
With Handshaking

Input With Handshaking
Output With Handshaking
Bidirectional I/O
With Handshaking

Port Availability
I/0 Port A or Port B.

I/0 Port A or Port B.

Not Available. But individual pins of either I/O Port may be separately assigned to Input or Output.

I/O Port A Only.
I/O Port B Only.
Not Available.

Internal Registers

The internal registers of the PIA is shown below:

Fig.16---Internal Registers of PIA

The PIA has six 8-bịt registers. These are organized in two nearly identical groups, designated the "A" side and the "B" side.

Let us consider the "A" side of the PIA.
The three registers are designated:
DDRA - Data Direction Register, A-Side
ORA - Output Register, A-Sịde
CRA - Control Register, A-Side
Similarly the B-Side Registers are designated DDRB, ORB and CRB. The A-Side outputs are TTL compatible while the B-Side outputs are Tri-State Buffered and Can Sink 1 Ma at 1.5 volts.

Data Direction Register

The Data Direction Register assigns the direction of each of the bidirectional lines of the 8 -bit bus to the outside world. If the given line is to be used for input, the corresponding bit must be set to a "0." And if the line is to be used for output the bit is set to a "1." This setup is likely to be done only once at the beginning of a program.

Output Register

The Output Register has 8-bit positions which correspond to the eight peripheral data lines. The program can place a byte in the Output Register. When it does, those peripheral data lines which are conditioned for output by the DDR will be set to levels corresponding to the bit pattern in the Output Register. Note that the DDR must have a " 1 " in the proper bit position to condition a peripheral data lịne for output. A bịt value of "1" in the Output Register will then cause that line to be high, while a "0" will cause it to be low. Note further that a "O" bit in the DDR conditions a line to be input and the bit in the Output Register has no effect.

When the DDR has a line conditioned for input, a high level on the line is interpreted as a "1." This "1" is sent to the Buffer for use by the MPU. In this system we refer to both input and output as the Output Register and it is accessed by the same address.

Control Register

The Control Register controls two Peripheral Control lines and some internal functions of the PIA. Each of the eight bits in the register is assigned a special meaning and these are generally set to fixed values at the beginning of the program. During execution of a program some to these bits may be changed or examined. It should be noted that the changing of a single bit in this register can only be accomplished by sending a full byte to it. Even so, certain bits of this Control Register cannot be changed by writing into this register.

Let us now examine how the individual bits of each Control Register functions:

Fig. 17---Control Register Interpretation

Interrupt Trigger
Control Register bit "0" enables or disables $\overline{\operatorname{TRQA}}$ and $\overline{\operatorname{IRQB}}$ based on signal CA1 and CB1 transition respectively.

Control Register bit "3" enables or disables IRQA and IRQB based on CA2 and CB2 transition respectively. And thus interpretation is only true when Bit $5=0$.

Transition Effect

The active transitions of Control Signals may be high to low or low to high. For CA1 and CBI the active transition is selected by the Control Register bit 1. For CA2 ans CB2 the active transition is selected by Control Register Bit 4, but only if Control Bit $5=0$.

Status of Interrupts

Irrespective of whether interrupt request signals $\overline{\text { IRQA }}$ and $\overline{I R Q B}$ have been enables or disabled Control Register Bits 6 and 7 will report the interrupt request as a Status. Control Bits 6 and 7 can only be reset to 0 when a Read Operation is performed at the Control Register address.

Handshaking

If Control Register Bit $5=1$, then the Control Register Bits 4 and 3 take on a second interpretation. If Control Register Bit 5 and 4 are both 1, then Control Signal CA2 and CB2 will output at all times with the level of "Control Register Bit 3."

Automatic Handshaking
If Control Register Bits 5 and 4 are 1 and 0, then Control Register Bit 3 specifies an automatic handshaking signal sequence.

Interfacing the Diagnostic Interface to the Signature Analysis System
The test pattern is generated via the software program and is sent to the system under test. The path to the system under test is selected through the I/0 Decoder circuit (Fig. 18). The Parallel Interface under software control then directs the output pattern to the system under test using Port B.

On receiving the test pattern the system under test now generates an output. The Port A is now activated via software and after some appropriate delay the test result is channeled to the microcomputer.

In this way a complete closed loop diagnostic bus is created and used for fault detection. If more inputs and outputs are despired up to seven more such interfaces can be added to the present system, adding 56 more input points and 56 output points. For even larger circuits the decoder circuit will require expansion.

Timing Requirements

There is no direct timing relationship between the microcomputer clock and the circuit under test, since the clock for the signature analyzer is provided by the circuit under test alone. The microcomputer software need only assure a setup time for 35 ns for the signature analyzer hardware to generate a stable signature.

Fig. 18

CHAPTER 5

SIGNATURE ANALYSIS MODULE

The Signature Analysis Module selected for this project was manufactured by Pheonix Digital. The organization of this module is shown below:

Fig. 19---Signature Analysis Module

This module was supplied for use on a $\mathrm{S}-100$ microcomputer bus system. Since we are using a Motorola 6800 Microcomputer based on SS-50 bus of Southwest Technical, a bus conversion interface card had to be designed which would convert SS-50 signals to S-100 signals.

As is evident from Fig. 19, the Signature Analysis Module requires the following signals:

1. Start Control
2. Stop Control
3. Clock Signal

This is the basic drawback of the Signature Ana lysis System. A circuit under test must be able to supply these three signals. If a circuit is already designed with this in mind there is no problem, it adds a little to the cost of the circuit but is well worth it. However, if a circuit does not have these signals, Signature Analysis cannot be applied to it without major modification.

System Structure

A Block diagram of the Signature Analysis System was shown in Fig. 13. A part of that figure is repeated here to show an expanded portion of the Signature Collection System. Fig. 20 shows that the Serial Bit Stream is picked up by the probe. The bit stream is shifted through the PRBS Generator whenever the circuit under test executes a start control. Now when the circuit under test executes a stop control the PRBS

Generator is frozen and the 4-Digit Signature displayed. This information is also saved in the Memory under software control for future use and comparison.

Fig. 20---Signature Collection System

Definition of Key Signals
Definition of Key Signals required for the Signature Analysis
System is stated below:
Stimulus: The Signature Module does not supply the stimulus or exercising bit pattern to the circuit under test. This pattern is to be generated by the circuit under test or supplied by a host microprocessor.

Monitored Signals: These are the signals which should be monitored for Stable Signatures after the Stimulus is applied to the circuit under test. Examples of these signals are: data, address and control lines of the microcomputer bus, chip enabler for various IC's, clocks, interrupt lines, reset lines and returning data lines.

Clock: The Clock Pulse has to be generated by the circuit under test also. The Clock Signal is used to shift data through the PRBS generator and eventually causes the STignature to be generated when the Stop Signal freezes the Shift Register.

Start-Stop: As mentioned before this signal is also generated by the circuit under test. The Start Signal along with the Clock Signal starts shifting the Serial Bit Stream in the Shift Register. The Stop Signal along with the Clock Signal freezes the Shift Register and hence generates the Signature via the residue in the Shift Register.

Procedure for Obtaining a Signature

A certain protocol of events is ncecssary in obtaining Signatures
from a circuit under test. These important steps are listed below:

1. Initialization of the Signature Analysis Module.
2. Enabling the Signature Analysis Module and waiting for the data,
3. Starting the Pattern Generator which would pump Stimulus into the circuit under test.
4. Shutting off the Signature Analysis module after a certain delay so that the Signatures would become stable.
5. Collecting, storing and displaying the Signatures for each important node of the circuit under test.

Once the above procedure is followed, each node can be identified in the circuit under test with specific Signatures. This kind of "good" Signature generation must obviously be done when the circuit under test is operating normally with no faults. If and when the circuit under test develops a fault, a new set of Signatures will be obtained for the defective nodes with the same stimulus. This "bad" signature will now lead to the defective components or conditions on the circuit under test.

Documentation of Signatures on each node for a known pattern is very important. Chapter 6 explains how this should be done. Appendix B lists the software for obtaining and controlling Signatures for a circuit under test. Appendix A contains the design of SS-50 to S-100 Bus Conversion Circuitry.

CHAPTER 6

CIRCUIT UNDER TEST

A Parallel to Serial and Serial to Parallel Bit Converter Circuit was selected for this project to serve as a circuit under test. The Universal Asynchronous Receiver Transmitter or UART chip AY-5-5013A was selected as the main element, ancilliary circuits like Baud Rate Generator, strobe and clocking circuits were then designed around the UART chip. This kind of circuit is used extensively in computer interfacing with printers, modems and other I/0 devices. Basically a Parallel 8-Bit Information is strobed into the UART chip. The UART then converts the Parallel Bits of information to a Serial Bit Stream with various start and stop bits inserted before and after the bit stream. This circuit is also capable of converting Serial Bit Streams into 8-Bit Paralle1 outputs. The conversion speed is governed by the Baud Rate Generator.

Special Requirements for Circuit Under Test

As mentioned earlier the circuit under test must be able to supply the following three signals for it to be Signature analyzable:

1. Clock
2. Start Signal
3. Stop Signal

Clock: The output of the Baud Rate Generator of the circuit under test was used as the clock signal. This served very well since the same clock also controlled the shifting rate in the UART chip.

Start Signal: This signal though not directly provided by the circuit under test was flagable to the Signature Analysis Module. The microcomputer was programmed to send one in Bit 8 alone as a start bit and this flagged the Signature Analysis Module to start forming a Signature. This type of arrangement did not cause a problem since Bit 8 is normally used as a Parity Bit and not an Information Bit.

Stop Signal: This signal was provided directly by the circuit under test. An 8-Bit Nand gate was provided to detect all "1"s condition on the pattern generator output. Once this condition was detected, having been sent deliberately as an end of pattern code, the stop signal was then generated and the Signature frozen for display.

Special Schematic for the Circuit Under Test

This is the main object of this project, to show that different nodes on a Schematic can be represented by Signatures not unlike wave-form diagrams on Analog circuits. In digital circuits only uni-level square waves are visible on the Scopes. In order to troubleshoot such a digital circuit a good working knowledge of the circuit becomes necessary. With Signature Analysis, however, such a knowledge is not essential and the troubleshooter can follow Signature failures to the faulty component.

A Special Schematic diagram overlaid with Signatures is shown in Fig. 21. Each important node is identified with a 4-digit Signature. Because of race and various other conditions some nodes are not capable
of producing stable Signatures. These nodes are marked with an "*" which means they are unstable Signatures.

Such a Schematic diagram is the key to Signature Analysis. The troubleshooter follows the Signature at various points until he finds a failing Signature. He then decides which component is at fault. This procedure could easily be automated for a quicker resolution of problems.

Fig. 21
Signature Schematic of the Circuit Under Test

The main object of this project was to show that a Signature Analysis System could be conceived using a microprocessor. This project showed all the steps necessary in developing such a system and pointed out the salient features of the system.

The developed system was capable of generating and comparing signals and finding faults in the circuit under test. The circuit under test was designed in such a way that Signature analysis could be applied to it. This has been the main drawback of the Signature Analysis System. It cannot be applied to a product which does not have circuitry to support Signature Analysis. This means the circuit under test has to supply 1) Clock, 2) Start Signal and 3) Stop Signal, which leads to another disadvantage, which is that Signature Analysis cannot be applied to circuits which are not clock driven.

On the pro side, once the circuit under test is capable of providing these three signals, Signature Analysis provides a very powerful means of troubleshooting it. The troubleshooter in this case does not require a detailed information of the circuit operation and yet is able to find defective components at chip levels.

APPENDIX A

SS-50 - S-100 BUS CONVERSION

The design enclosed is for changing a 50 pin SS-50 Bus to a 100 pin S-100 Microcomputer Bus.

The Address bus lines are unaffected since they are similar in nature on both of the buses. A buffer chip was inserted between them to avoid overloading of the address bus lines. This arrangement is shown in Fig. Al.

The Data Bus lines are different. In the SS-50 bus they are bidirectional while in the S-100 bus they are unidirectional. This required a gating arrangement which would switch input/output status of Tri-State Quad bus receiver chip 8 T26's via read/write control. This arrangement is shown in Fig. A2.

The other part of the conversion required development of special leads which do not exist on the SS-50 bus. The development of these leads is shown in Fig. A3. These special control leads are defined below and are essential for the $\mathrm{S}-100$ bus:

SEMR = Status for Memory Access
$\emptyset 2=$ Master Bus Timing Signal
PWR = Pulsed Write Strobe (Negative True)
M-WRITE = Pulsed Write Strobe (Positive True)
PD BIN = Data-In Bus Enable
SINP = Status for IN instruction
SOUT - Status for QUT instruction

Fig. AT
Address Bus Interface

Fig. A2---Data Bus Interface

Fig. A3---Control Bus Interface

APPENDIX B

SOFTWARE FOR SIGNATURE ANALYSIS

The attached software was developed for use with the Signature Analysis System.

The software was developed on a Motorola 6800 Microcomputer System. Assembly Language Programming was used throughout the development and a T.S.C. Assembler was used for generating the object code. All the editing, etc., was done via the T.S.C. Editor. All the information was stored and retrieved using FLEX 2.0 Disk Operating System via Dual Eight Inch Shugart Floppy Disks.

The programs which were developed for the project were divided into three functional parts and they are listed below:

1. Initialization Program: This program initializes all the functions of Signature Analysis Subsystem.
2. Pattern Generator Program: This program generates special start and stop codes to the circuit under test as well as the patterns which are used as stimulus to the circuit under test.
3. Control Program: This program displays the Signatures and controls the Signature analysis flow of logic to determine the faults.


```
        UIST
        OO1 REN THIS IS A JASIJ PRUJ彐AM HHIJH IJ UうEJ FUR PRINT ROJTINEJ
```



```
        OOO4 3E:1 FEM LUSATION UPSTART IN THE SONTROL PROGRAM.
        3005 D1:1 N1(54), 85(64),J(54),33(04)
        0006 POKE( 0040,166)
        0007 OOKE( 0041,14)
    JO10 PAINT "SIGNATUZE ANALLYSIS SYSTEA ON LINE゙'
```



```
    & 0050 INDUT MS
    * 0060 IF 15=DS THEN 300
        0070 IF AD=LD THEN 19J
        O190 PRINT "YO:J ARE IN LEAR:JING HOLE"
    O O2OJ PRINT "HOW ARNY NODES ARE YOU JOINJ TJ TEST?'"
    -0210 INDUT X
    02!2 FOQ I=1 TO X
    S O225 PRINT "TYPE S' NHEN YOU HAUE YOUR PROBE UN A NODE FJR START'"
    % 3230 INPUT Kb
    0235 IF KD=''S" THEN 240
    4-0237 GUTO 225
    0240 LET A=USER(0)
    :O241 PRINT "JO YOU W.ANT TU EETEST THIS NOJE?"
    O242 INDIJT IS
    024.3 IF 2$="YES'" THEN 225
    J25J PRINT "TYTPE NOJE NUMBER FOULLUNEJ 3Y ITS GOON SIGNATJRE"
    J270 INPUT N1(I),RD(I)
    0290 NEXT I
    \thereforeO294 PRINT "DO YOU WANT DIAGNOSTIS MODE?"
    2295 INPUT U$
    0296 IF णS="NO" THEN 475
    O300 PRINT "YOU ARE IN JIAZNOSTIL MODE'
    O3OS PZINT "TYPE D NHEN YOU HAVE YOUZ PROSE ON A NUDE FOR JIAGNOSTIJ"
    0306 INTUT TS
    0307 IF TS="J" THEN 309
    # - 0308 a0T0 190
    0309 L2T A=!jइEQ(0)
    :0310 305U3 430
    _-O320 INPUT J,B5
    - 3330 IF J>X TAES 400
    0340 IF 35=R5(J) THEN 380
```



```
    0370 כ२INT J, 3S(J),3:
    0375 30T0 390
    0380 PRINT "TESTS O.K NODE *''J'J
    0390 GOTO 305
    -0400 PRINT "NODE " OUT OF RANGこ"
    - 0410 30T0 300
    0430 ORINT "DO YOJ NANT TO RE-DIAGNOSE THIS NODE?"
    0440 INOUT RS
    0450 IF マs="YES" THEN 305
    0460 כQINT "TYPE NODE NUM3ER YOU HAVE JUST TESTED AND ITS SIGNATJRE"'
    0470 RETURN
```



```
    0480 END
    3ASIV
    #
```

1. Akers, Sheldon B. A Logic System for Fault Test Generation. IEEE Transaction on Computers, Vo1. C-25, No. 6, June 1976.
2. Daniel, H., Lindbloom, E. and Carpenter, R. G. The Weighted Random Test Pattern Generator. IEEE Transactions on Computers. Vol. C-24, No. 7, July 1975.
3. Friedman, Arthur D. and Menon, P. R. Fault Detection in Digital Circuits. New Jersey: Prentice-Hall, Inc., 1971.
4. Fromwerk, Robert A. Signature Analysis: A New Digital Field Service Method. Hewlett Packard Journal, May 1977, Volume 28, Number 9.
5. Motorola. M6800 Microprocessor Applications Manual. Motorola, Inc., 1975.
6. Motorola. M6800 Microprocessor Programming Manual. Motorola, Inc., 1976.
7. Muth, Peter. A Nine-Valued Model for Test Generation. IEEE Transactions on Computers. Vol. C-25, No. 6, June 1976.
8. Soucek, B. R. and K. O. Microprocessors and Minicomputers. New York: John Wiley and Sons, 1976.
