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ABSTRACT

Mathematical models describing the temporal and spatial distribution
of Dissolved Oxygen (DO) and Biochemical Oxygen Demand (BOD) for both pervious
and impervious channel conditions in 3-dimensions have been constructed, and
their analytical solutions were obtained. The solutions were implemented
through the application of a dfgital computer, and their results are pre-
sented.

It has been found that there are significant differences in terms of
DO and BOD distribution with respect to time and space in relatively deep and

wide channels, thus necessitating the use of a 3-D, unsteady-state model.
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[. INTRODUCTION

An accurate prediction of the concentration levels of water quality
parameters in the receiving body of water (river, lakes, etc.) has been one of
the central topics in the water-quality engineering field for many reasons.
This is particularly true of dissolved oxygen (DO) in the receiving water
because it sustains all aquatic life (hence the most important parameter). In
order for the receiving body of water to support aquatic 1ife, it must first
and foremost have an adequate supply of DO. If there were no organic pollu-
tants being introduced into the receiving water from wastewater treatment
plants and other outside sources, the DO concentration would always be at the
saturation Tlevel, thus supplying more than enough oxygen to the aquatic
enviranment.

A1l man-made pollutants eventually end up in the ocean via streams
and rivers. Domestic sewage and industrial wastes are being treated in order
to reduce their oxygen-consuming capacity before they are discharged into the
receiving water. The more treatment they receive (hence more costly), the
less oxygen they will deplete in the river, and vice versa.

The most cost-effective treatment is for the waste to be treated to
such a degree that the depletion of oxygen due to the decomposition of treated
effluents in the river is the maximum allowed by the regulatory agencies.
That is to say that the wastes are being treated just enough to maintain the
minimum DO standards which have been imposed by the regulatory agencies. In
order for the optimum degree of treatment to be determined, an accurate pre-

diction of DO concentrations along the river under the given river geometry,



hydraulic regime and oxygen depleting capacity (called Biochemical Oxygen
Demand, abbreviated BOD and denoted L hereafter) must be made.

In the past the determination of DO (denoted C hereafter) and BOD
(L) concentrations along the river relied mostly on the l-dimensional mathe-
matical model (either steady state or unsteady state). Because of the diffi-
culties in obtaining analytical solutions of 1-D, unsteady state mathematical
models, numerical solutions were widely used in predicting DO and BOD dis-
tribution along the river.

One-dimensional mathematical models are not adequate when river
geometry (such as deep and wide) and/or hydraulic regimes (low velocity, for
instance) are both not favorable to the l-dimensional assumptions.

Furthermore, numerical solutions have suffered various maladies,
such as instability, computation time, etc. The exact check of numerical
solutions with respect to their stability has been difficult without having
analytical solutions. In recent years the modeling of water quality in rivers
has advanced from simple, one-dimensional analysis to the more accurate and
also more complicated two- and three-dimensional approaches (Cleary, 1976).
It has been shown that the distribution of dye concentrations along the river
is considerably different in three directions, hence justifying the use of 3-D
models (Cleary, 1973). Analytical solutions of 3-D, convective-dispersive
equations with instantaneous discharges (Dirac Delta function) describing the
distribution of dye along the river was obtained for the first time by the
integral transform method (Cleary, 1973). Later (1975) this method was used

to solve 3-D, convective-dispersive equations having generalized discharge



conditions {(not instantaneous) with generalized boundary conditions
(Dirichlet, Neumann and Robin or mixed).

The purpose of this research is to first construct the mathematical
models then find the analytical solutions of both BOD and DO equations under

3-D (both convection and dispersion), unsteady-state flow regimes having ap-

propriate boundary conditions.

Complete derivation of 3-D unsteady-state BOD and DO equations based
on physical and kinetic principles has not yet been achieved. Furthermore,
the current analytical solutions of the BOD equation do not give due regard to
the channel conditions (i.e., pervious and impervious); hence the effect of
channel conditions to the levels of BOD (hence DO), which are very signficant,
is ignored.

The analytical solutions of general DO equations are not available
at the present time (Cleary, personal communication, 1978).

It is believed that deriving general BOD and DO equations based on
the physical principles and their analytical solutions will advance the art

and science of stream modeling.



II. LITERATURE REVIEW

Literature on multi-dimensional unsteady-state BOD and DO models are
notably lacking. There is, however, ample literature on multi-dimensional dye
equations (without the first-order term) with analytical solutions. Because
of the inclusion of first-order terms in the BOD and DO equations, multi-
dimensional dye equations and their solutions are not useful to the current
investigation and hence are excluded from the current literature review. Also
excluded were numerical solutions on this subject.

The most representative work on the subject was that of Cleary's
(1). In his paper (1) Cleary solved 3-D, unsteady-state BOD equations using
integral transformation without due regard to the channel conditions.

Cleary, as others, did not investigate the solution of general DO
equations.

The classical work of Carslaw and Jaeger (2) in their text entitlied
“Conduction of Heat in Solids" contains the most ample reference on the
transfer of heat. However, again, since the heat equation does not contain a
first-order term, their work offered little help to the current subject.

The excellent work of Crank (3) on the "Mathematics of Diffusion"
was a similar case of the above. However, the above two references shed great

insight on the mechanism of diffusion.
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3.

1II. SPECIFIC STATEMENT OF THE PROBLEM

The specific objectives of the current investigations are:

Derive equations describing temporal and spatial distribution of Biochem-

ical Oxygen Demand (BOD) and Dissolved Oxygen (DO) in three dimensions

based upon physical principles,

Find their analytical solutions, and

Implement the solutions using digital computer.



IV. DERIVATION OF BOD AND DO EQUATIONS

1. Assumptions 7
(1) PRINCIPLES dF LINEAR SYSTEMS

The transport of any pollutant in the environment is caused by two
major mechanisms--that is, advection (convection) and dispersion. Advection
is transport due to the fluid motion, whereas dispersion is due to the random
motion of the pollutants' molecules (molecular diffusion) and the turbulent
action of the fluid carrying the pollutants (turbulent diffusion). Molecular
diffusion occurs where there is a concentration gradient of the pollutants in
the fluid whether the fluid is gas or liquid. Strictly speaking, the rate of
molecular diffusion is not constant, but it depends upon the concentration of
pollutants existing in the fluid.

| For instance, diffusion in high polymers depends markedly on concen-
tration. However, molecular diffusion in a diluted realm such as mixing of
pollutants with receiving waters (lake, stream, etc.) can reasonably be taken
as constant. However, molecular diffusion in the receiving waters due to the
discharge of pollutants is quite small compared to turbulent diffusion; thus
it can be safely ignored.

Turbulent diffusion is due to velocity gradients. Because of the
boundary layer in the fluid flow, there exists velocity gradients which causes
turbulent diffusion. Turbulent diffusion, also frequently referred to as eddy
diffusion, is the major diffusion phenomena in the receiving waters because of

its dominance in magnitude over molecular diffusion.



When conservative pollutants, such as chloride ion, is discharged
into the receiving waters, only advection and diffusion govern the distribu-
tion in the receiving stream. However, when non-conservative pollutants,
typified by Biochemical Oxygen Demand (BOD), are introduced into the receiving
stream, they not only transport by advection and diffusion but also decay with
time. Thus the distribution of such pollutants must take into account this
decay phenomena, Therefore, the distribution of any non-conservative
pollutants in the stream is due to three major mechanisms--that is, advection,
turbulent diffusion, and decay.

It is known that the above three mechanisms do not interact with
each other, i.e. they are independent of each other. Hence the principle of
superposition of the Tinear systems can be applied in evaluating the distri-
bution of pollutants in the receiving waters.

Under this assumption the distribution of pollutants in the
receiving waters is merely a combined effect of advection, diffusion, and
decay. There will be no product effect. Strictly speaking, no natural
phenomena is linear. If we human beings understand them as being linear, it
is due to insensitivities from our part, whether they are insensitive
instruments or insensitive perceptions. Our basic understanding is that even
though the actual transport phenomena of the pollutants in the receiving
waters are non-linear, it is sufficient enough for us to assume them as linear

for the sake of engineering approximation.



(2) [IRREVERSIBLE FIRST-ORDER KINETICS

When pollutants decay in the receiving waters, it is generally
believed that the rate of decay with respect to time is proportional to the
first power of the amount of pollutant present at the time. This is called
first-order reaction kinetics. It is known that Biochemical-Oxygen-Demanding
material closely follows first-order reaction kinetics in their decay process.
The decay of pollutants in the receiving waters is also irreversible. Simply
speaking, this means that once the pollutants degrade to form other products,
the products hence formed will not react again to form original substances.

Mathematically, the expression for decay is as follows:

KL €1 (first-order reaction)

P——=Py + Py #eees+ Pn, (irreversible reaction)

Where:
P = concentration of pollutants

K1 = reaction constant

Pis Pp,*ee+, Pn = Products formed

Negative sign indicates P is decreasing with time.
2. DERIVATION OF BIOCHEMICAL OXYGEN DEMAND (BOD) EQUATION

Before deriving the BOD and DO equations, it is assumed that, in the
interior of the river channel, BOD and DO are a continuous function of x, y,
z, and t and that this holds also for the first differential coefficient with
regard to t and for the first and second order differential coefficients with
regard to x, ¥, and z. The principle of linear systems is the basis of our
derivation for the BOD and DO equation. First, convection terms are derived

assuming that this is the only transport mechanism.



In doing so, plug-flow conditions are assumed. Secondly, diffusion
terms are derived under the assumption that this is the only transport
mechanism in the receiving waters, Finally, the irreversible first-order
reaction term is derived assuming that there is no convection and diffusion in
the receiving waters. After deriving all the three terms, they are added up
(or superimposed) assuming that the distribution of pollutants in the
receiving waters follows the principle of linear systems.

(1) Convection Terms
It is assumed that convection is the only transport mechanism, that

is, a plug flow condition.

o
0

¥

)
|
:
)
Qp—m—m——b } ———— ) P+
A

[+
x

FIGURE 1 - ELEMENT OF VOLUME

Suppose that the above figure 1is an exaggerated infinitesimal
element of a receiving water. Q denotes the rate of flow, and P denotes
pollutant concentration. Applying the continuity equation for an
incompressible fluid for an infinitesmal period of time (At),

Input-Output = Change in storage

Q:P-At - Q(P+ 8P -aX)at = V-AP
aX

Where V denotes the volume of the element.
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Upon simplifying,
- 8P Q- AXAt = VAP

aX
AP = . Q .ax - (2R)
Aot v aX

Let A denote the cross-sectional area of the element perpendicular to the
direction of flow,

A AX =V
AP - __Q . ax (2P = _Q (2R
At A AX aX A X

Define mean velocity of the channel in the X direction,

It is of great importance to note that although u appears as a
constant, the variations of velocity within the cross section are not ignored
but are accounted for in the magnitudes of the diffusion coefficients (D1,
Do, D3), whose discussion will appear in the next section.

By using mean velocity, we write

aP = U aP for X direction

By the same fashion, we write

8P = -V 3P for Y direction
at aY
8P = -Ww aP for Z direction
ot al

Where
v and W denote mean velocity in the Y and Z directions,
respectively. For simplicity, hereafter the bar (-) is dropped in describing

mean velocity.
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Combining the above,

aP = -y P -v 8P -w 9P (1)

at’ convection aX 3V YA

(2) Diffusion terms

C c'
2dy 27

D ! D'

]
adydz(Fx--2E% ax) L - ! G T = adydz(Fx+L2ax)
2dz - ———
-
A 2dx A

FIGURE 2 - DIFFUSION THROUGH CHANNEL

It 1is assumed that diffusion is the only transport mechanism.
Again, consider an element of volume 1in the form of a rectangular
parallelepiped whose sides are parallel to the axis of coordinates and are of
length 2dx, 2dy, 2dz. Let the concentration of diffusing substance be P.

According to Fick's Taw, the rate of transfer of diffusing substance
through a unit area of a section is proportional to the concentration gradient
measured normal to the section, i.e.,

F = -Dx aP
)

Where
Dy is a proportionality constant.
The negative sign dindicates that the diffusion occurs in the
direction opposite to that of increasing concentration. The rate at which the

diffusing substance enters the element through the face ABDC is given by
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4dydz (Fx - aFx dx)
aX

Where Fx is the rate of transfer through the unit area of the
corresponding plane G (x, y, z) where G is the center of the element.
Similarly, the rate of loss of diffusing substance through the face A'B'C'D'
is given by

4dydz (Fx + aFx dx)
X

Thus, the contribution to the rate of increase of diffusing

substance in the element from these two faces is,

4dydz (Fx - aFx dx) - 4dydz (Fx + aFx dx) = -8dxdydz afx
ax ax ax

Similarly from other faces we obtain

-8dxdydz aFy and -8dxdydz afz
ay 9z

But the rate at which the amount of diffusing substance in the
element increases is also given by

8dxdydz 8P
at

Hence we must have,

8dxdydz 8P = ~8dxdydz aFx ~8dxdydz aFy -8dxdydz aFz
at ax ay az

or

3P + oFx + ofy + aFz = O

at ax ay a9z
If the diffusion coefficient D is constant, which is true for a
diluted realm such as receiving waters, we have

Fx = -D P Fy = -D oP and Fz = -D &P
ax 8y Y
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Thus
P + 8 (-DePy+ o (-DoPy+ & (-DaPy =0
at axX ax ay ay EYA 9z
or
aP = D(8%P + %P + P ) = D V?P (2)
at X2 Tay2 az?

Where (Del) is a Laplacian operator.
The above is for molecular diffusion.

In the case of turbulent diffusion the same approach is used;
however, the diffusion coefficients are no longer the same in the x, y, and 2
directions. In this sense turbulent dispersion is viewed as molecular
diffusion processes, i.e., dispersion by velocity gradients (turbulent
dispersion) 1is governed by concentration gradients. This view has been
confirmed by many researchers in the past, including Taylor (1954), Elder
(1959), Vanoni (1953) and Glover (1964), Taylor and Elder noticed that the
diffusion of momentum by turbulence is of fundamental importance in
streamflow. Through a fluid mechanics approach Taylor and Elder showed that
the mechanism of turbulence can be described by a virtual coefficient of
diffusion.

Introducing Dj, D, and D3 as turbulent diffusion coefficients
in the x, y, and z directions, we write,

8P = Dy &% + Dp 8P + D3 %P (3)
at ax2 ay? axz

Since EQ. (3) is much greater than EQ. (2) in magnitude as illus-
trated previously, we write,

(2P = Dy 2P + Dp P + D3 &P (4)
at ' diffusion ax? ay? az?
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(3) IRREVERSIBLE FIRST-ORDER DECAY
Assume that there is only decay in the receiving water and the
pollutants' decay is proportional to the concentration present.
P——————>P1 + Pp eeec + P,
Where,
P is the pollutant concentration and P1,°***, P are the final
products formed from decomposed pollutants.
Then

aP, = Ky PN
(38!

Here the superscript n is positive. The term, n, is not necessarily
an integer but generally is a positive real number. If n is a positive real
number, the reaction is called fractional-order.

Furthermore, if the reaction is first-order,

n=1
Thus, an irreversible first-order reaction which describes a

pollutants® decay in receiving waters is expressed as,

(EEW = K1 P
at ' decay 1 (5)
The above discussions related to the derivation of individual
terms--namely, convection, diffusion, and decay.
If convection, diffusion, and decay occur simultaneously, one can
write in accordance with the superposition principle the following equation:

aP aP aP, - aP
(3t) Total ='5%) convection * (3% diffusion * (3%’ decay

Combining EQS. (1), (4), and (5) one obtains the following:
u

-v 8P -w aP + Dy 8P + Dp 3%P + D3 82P - KyP (6)

8P = -u 2P
at ax ay az axe aye 982z2
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The above is a general 3-dimensional, unsteady state model for the
distribution of nonconservative pollutants, such as BOD-material in receiving
waters (lakes, streams, etc.) with irreversible first order decay. EQ. (6) is
a linear, second order, parabolic partial differential equation. Generally u,
v, w, Dy, Dy, and D3 are not constants, but rather a function of both
time and space (x, y, z, t). Diffusion coefficients in particular are ex-
pressed as diffusion tensors in general. By judiciously dividing the receiv-
ing water into several segments, the terms u, v, w, D3, Do, and D3 can
be made sufficiently close to constant values.

It must be emphasized that EQ. (6) is not the BOD (Biochemical
Oxygen Demand) equation yet. Since BOD is measured by the oxygen consumed or
exerted by the decaying pollutants, EQ. (6) must accordingly be modified. If
M denotes the total amount of pollutants discharged at a given time into the
receiving water, the amount already exerted after a certain time has elapsed
can be expressed as,

M - P(X,y,z,t) (7)

Since M is the total amount of pollutant present at time 0 and P is
the amount of pollutants left (or present) at time t, EQ. (7) indicates the
amount already decomposed (or exerted), i.e., BOD. Traditionally, BOD is
expressed not as the concentration of pollutants itself already decomposed but
as the "equivalent amount of oxygen" consumed to decompose the pollutants. In
this sense, M is interpreted as the total amount of oxygen to completely
decompose M. This total amount of oxygen is known as the ultimate BOD (BODu)
and generally expressed as Lo. Thus the general 3-D, unsteady state BOD

equation is,
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L (X,_Y,Z,t) =M - P(Xny,Z:t) = Lo —P(x,y,z,t) (8)
Where,

3 = -u P -v 8P -w 9P +Dp 9P + D 3%P + D3 8°P - KiP
at X ay ¥4 axe ay? az2

and L is the BOD as a function of both time and space. Since L is usually ex-
pressed as an equivalent amount of oxygen needed to degrade pollutants, M and
P must also be expressed in this manner.
3. DERIVATION OF THE DISSOLVED OXYGEN (DO) EQUATION

A1l the assumptions used to develop the BOD equation apply in the
derivation of the DO equation. In order to derive the DO equation in re-
ceiving waters, it is necessary to understand the general mechanisms of DO as
to its depletion (sink) and replenishment (source).

(1) The Sources of DO

DO is supplied to the receiving water 1in two ways--from the
atmosphere through diffusion (reaeration) and from the photosynthetic activity
of algae. DO supply by reaeration is chiefly governed by the driving force at
the interface of gas (air) and liquid (water). This driving force from the
atmosphere is proportional to the DO deficit of the receiving water. DO
deficit is defined as the difference between the saturation value of the D0

{Cs) and the actual DO concentration present in the water body. Mathemat-

ically,
&)
ot / reaeration = K2 (Cs - C)
Where,
C = DO concentration
Cg = Saturation value of DO, constant at a given temperature,

pressure and salinity.
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Ko = a proportionality constant, known as the reaeration
coefficient

DO is also supplied by algal activity (photosynthesis) in the re-
ceiving water. Since algal aétivity is only possible during sunlight radia-

tion, DO supplied by algal activity is diurnal in nature. Mathematically,

aC
(3T) algae = A(t)

Where A(t) denotes algal activity as a function of time.

(2) The Sinks of DO

DO is chiefly depleted by the decomposition of biochemically
degradable organic material. Other sinks are benthal oxygen demand and algal
respiration. Generally, these two are very small in magnitude compared to
oxygen depletion by biodegradable organic material; thus, the sinks of DO can

be written as, -

aC = L kP X,Y,Z,t
3t ]_(.y’ )

The negative sign indicates that B0D-material depletes DO. Kj has
been previously defined. Combining above with the assumption that Tinearity
sti]l.ho1ds, we write

(2 S e (2 TS NN
at’ Total at reaeration at’ algae at ' BOD-material
(%%)= Ko(Cg = €C) + A(t) - KiP(x,¥y,z,t)
Since
P(X,¥,2,t) = Lo - L(x,y,z,t)
It follows that,

aC
at = Ka(Cs - C) + A(t) - Ki[lo = L(x,y,z,t)] (9)
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Upon examining EQS. (8) and (9) it is found that the BOD equation

must be solved in order to obtain an analytical solution of DO.
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V. ANALYTICAL SOLUTIONS OF UNSTEADY-STATE, 3-D EQUATIONS

1. Analytical solution of BOD equation
One must first solve Equation (6) in order to solve Equation (8).

Rewriting EQ. (6),

3P = -u 3P -v 9P -w 3P + Dy 2P +Dp 2P + D3 3P - KiP  (6)
at aX 2y az ox2 ay? az2

Here P is the pollutant's concentration (not BOD) in the receiving
water as a function of time and space. In order to solve the equation above,

the boundary conditions and the coordinates system chosen are stated below.

4 /y
1 -

H -0 ’,/LIQ.Q;Q)._ w/v_
l ad '

oo X
+Q0

FIGURE 3 - COORDINATES SYSTEM OF RIVER CHANNEL
Suppose the above figure is an exaggerated infintesimal element of a
river channel. W is the width of channel, and H is the depth of flow. The
center of coordinates is located at the center of the parallelepiped. Equa-
tion (6) is solved first by assuming the pollutant is discharged at Tocation
(0,0,0) at time zero. The solution for a discharge point other than (0,0,0)
can be determined from this solution by simply transforming the coordinates

system,
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dimensions of x,v,z, and t are as follows:

- 00¢ x <00

- oy X
7 =Y =2 3

- H ¢cz¢ 8
7 - = 72
t>0

(1) INITIAL AND BOUNDARY CONDITIONS
The pollutants' concentration must be zero at all points except (0,0,0)
where pollutants are discharged at t=0. If pollutants are discharged at
(Xo,Y0,Z0), they must be zero at all points but (Xo,Yo,Zo) at t=0. Mathe-
matically, this can be written as,
P=0 as t——0, for (x,y,z) #(0,0,0)
P=00 as t—=0, if (x,y,z) = (0,0,0) (10)
No flux across the surface - Since no pollutants are introduced across the
surface of the river channel, i.e., from the vertical (normal) direction

across the surface, we write

2% = 0 @ all points of the surface (x,y,z) (11)
)

where 9, n denotes the differentiation in the direction of the outward

normal to the surface.

Since there is no concentration gradient of pollutants at the boundaries

of the river channel, we write,
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® = as t ———= 0
ax
P -0 8 y—— ¥
ay y -2, and (12)
3 = 9 @ 2 —— + H
z -2

PERVIOUS STREAM CHANNELS

Organic, biodegradable pollutants are usually absorbed through the
bottom and side banks of the channel which in turn travel further through the
porous medium of the ground. This is especially true for BOD-material which
contains substantial amounts of dissolved solids. In such cases, the stream
geometry is stretched from a 1limited geometry into that of unlimited
(unbounded) geometry. Let M equal the total amount of poliutants introduced,

then

® 0 00
M = J[ J[ ‘/’ P(x,y,Z,t) dxdydz (13)

-0 - -0

for an instantaneous point source. For continuous sources, we write,

t © o 00
fm(t)dt = f[] P(x,y,z,t) dxdydz (14)
0

-0 - -00
where m(t) is continuous sources mentioned above discharged within time dt.
m(t) can be constant or periodic, such as a sinusoidal input.

The solutions will be investigated on both cases of EQS. (13) and
(14). Note that the left hand side of EQ. (14) indicates the total amount of

pollutants introduced during a time period of dt for a duration of t.
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IMPERVIOUS STREAM CHANNELS

Suppose the bottom and banks of the stream channels are impervious
due to man-made construction. An increasing number of streams are made
impervious in order for the pollutants not to reach groundwater sources as
well as to prevent erosion of channels. In such cases, EQS. (13) and (14) are

modified as follows:

/2 H/2
M = P(x,¥,z,t) dxdydz (15)
-0 -w/2 -H/2
and
t 0 w/2 H/2
J[ m(t)dt = P(x,y,z,t) dxdydz (16)
0 -0 -W/2-H/2

Note that x is integrated from - OO to 0O 1in both cases.
(2) SOLUTION PROCEDURES
Equation (6) will be solved first. Rewriting here,

9P = -u 8P -v 8P -w P + D) 8% + Dy &°P + D3 P - KIP  (6)
at ax ay az axz aye az2

CHANGE OF VARIABLES

Let P(x,y,z,t) = exp(ax + by + cz) * P(x,y,z,t), where a, b, and ¢
are arbitrary constants. Denote further that E=E(x,y,z) = exp{ax + by + cz)
in order to make the notation simple. Note that both P and P are a function
of both time and space but exp(ax + by + cz) is only a function of space.

Then,
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P - EP

o3 t

udP =y (Eﬁ; + aEﬁj
ax

val = (Eﬁ& + bE53

ay
wal = y (EF; + CES)
az
and
D1 3122 = Dy (EPyx + 2aEP, + a2EP) and so on.
a X

The subscripts denote the differentials with respect to P. Insert-
ing above to EQ. (6), dividing both sides of the equation by E(#0) and upon
simplifying, we obtain

Py =D Pyx ~ D, Py D, Py -(auebvicw-a®D,-b%D,- c*Dy#K,) B +p{-u+2aD,)+ P,

(-v+2bD,) p,(-we+2cD,)

The following equations are required in order to eliminate new

convection terms, i.e., Px, Py, and Pz.

Hence,
-u + 20y = O
-v + 2bDp = O
-w + 2cD3 = 0

It follows that,
a = u/2D0j
b = v/2Dp, and
c = w/203



Note that since a, b, ¢, D;, D2, and D3 are all

there is no difficulty whatsoever in selecting a, b,

convection terms. With the values a, b, and ¢ defined above, we write,

Py = Dlﬁxx + Dgf’-yy + 03327_ - (u?/4D1 + v?/4Dp + w?/4D3) P

Since the coefficient of P is constant, we let,
K1 = u/4Dy + v2/4Dp + wl/4D3 + K1
It follows that,

Py = D1Pyx *+ DaPyy + D3P,, - K1
By further letting,

x = /01 X
y = ‘/_D_Z- 37’ and
z = /b3 7

Thus,

~ ) aP o) aP . 1
0P = 01 3% * (5x) = o s Gmrsr) o (o)

It follows that,

Dlﬁxx = A§g; Dgﬁyy = ‘§y; and so on
Summarizing the above results,

Py = Py + Fy;; + Py - KIP (X.7,Z,t)
Note that the coordinate system is now changed from

(xs¥,2,) to (X,¥,Z)

TREATMENT OF DECAY TERM

Let
exp(R1t) P(%,7.Z,t)

P(%,¥>2,t)

24

constants

and ¢ to eliminate

a°P
q’z

ax
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Then
22 = B-K, exp(-K t Deexp (<K, 1) ¢
a%p and so on.

a?(a—( K t) _'72

Inserting above to EQ. (17), we get,

o~

25

2*—:—-;2)-7(, exp(-K,t )P

a2

3

©h

-Kexp(xnmexp(xt)——f xp(-K, )2

<)

Dividing both sides of the above equation by exp(-E&t) (#0), we get,

oP . 0% , 8P 4 %P (18)
at axe ay? az2

Equation (18) can be solved by a number of ways, including integral
transforms. Equation (18) will be solved by the method of separation of
variables. Let the solution be of the form,

PIRT.E,t) = fi(%,t) fa(fht) f3(5,t) = fifsfz (19)

Note that ?f is expresed as a product of solutijon.
Then,

of - fof3 2fL + f1f32f2 + f1fp 2f3, and so on

at at at at

Inserting above to EQ. (18),

2 2
(2Ae_ofey o ¢ (2 _2fsy . (20)

of1i 92fi
ff(—-—)+ =)+
2fsl t o ) at ayz ' % gt o732

Since,
fof3 # 0, fi1f3 # 0, and f1fp # 0

We must have,
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]
Q
&
1
o
—
N
—
~—

[}
@
]
N

t

afi
at
%:L 2%z = 0, and (22)
afs
at

.8 = 0 (23)

in order for the left hand side of EQ. (20) to be zero. Note that since fj
is only a function of (X,t), fo a function of (¥,t), and f3 a function of
(Z,t) there is no other combination among EQS. (21), (22), and (23) which can
make the left hand side of EQ. (20) zero.

The solutions of EQS. (21), (22), and (23) are,

f1 = B].t;l/2 exp(~x2/4t)

-1/72 s
fo = Bpt exp(-y*©/4t), and
f3 = B3’E'/a exp(-Z2/4t)

where By, B2, and B3 are arbitrary integral constants.

Inserting the above to EQ. (19),

oY

(X, 7,5,t) = BE'®  exp(-X°/4t - §°/4t - Z%/4t)
where
B = BjByB3
Transforming from P to P we write,
P(X,¥,Z,t) = Bt exp(-K1t) exp(~-X2/4t 1-7"/41: - 7%/4t)
Transforming back to the original coordinates (X,y,z),
P(x,y,z,t) = Bt exp(-K1t) exp(-x3/4D1t - y?/4Dot - z%/4D3t)

Finally converting from P to P,
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P(x,y,z,t) = B-t?‘/zexp(-'lzI t) exp (ox+by+cz) exp(- x2/4Dlt - y¥4D,t - 2°/4 Dyt) ..., (24)
where,

B = arbitrary integral constant

K1 = Ky + u®/4Dy + v®/4Dp + w/4D3

a = u/2D;, b= v/2Dp, and C = w/2D3

Note that EQ. (24) 1is of product form and each term weighs the
others in order to take into account specific effects, such as first-order
decay, convection, etc.

EQ. (24) is further simplified as follaws.

First collecting exponents of the above equation for those related to x,
2 2 - 2 2.2y o 2
-u“t /40, + ux/2D, - x°/4D,t = -1/4D;t (x™- 2utx+u"t") = -1/4D,t (x-ut)

By the same fashion, we obtain expressions for the exponents related to y and
z as
- 1/4Dot (y - vt)2 and - 1/4D3t (z - wt)?

EQ. (24) is now rewritten as,

P(x,y,z,t}= B-tmexp (-K,t) exp(-(x-ut)®/4D,t -(y-vt)®/4D,t -(z-wt)?/4D,t)
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DETERMINATION OF INTEGRAL CONSTANT
AND SOLUTIONS FOR BOD EQUATION FOR

PERVIOUS STREAM CHANNEL UNDER
INSTANTANEOUS POINT SOURCE

Since the total pollutants introduced must be contained somewhere in
the system where there is no decay or where the decay constant is small, we

write,

Qo o 0
M =fjf P(X,y,Z,t) dxdydz (25)

-0 -0 -©

Tim
K1—=0
The above must hold for an instantaneous point source.

Rewriting EQ. (25),

(03] (8 0] Q0
B [ ffi’éxp (-(x-ut)2/4D|t )dx ;/‘tmexp(-(y-vt)2/4th)dy-[i'/gxp(-(z-wt)2/4Dst)dz] =M
00 -00 _to ....(26)

The first igg:egral is

[ t'l/2 exp(- (x-ut)2/4Dlt)dx (27)
"Osince EQ. (26) must hold for zero or infinitely small convection

term (or in general for all values of u), we write from EQ. (27),

o]

fim [i'/zexp(-(x-ut)2/40|t)dx=jf'/zexp(-x2/4D,t)dx.... (28)

-0 -0

Introducing the error function,

X \ (29)
erf x = —2— exp(-5) d5
T
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so that,
erfoo = 1
and
erf(-x) = -erf(x) (odd function) (30)
For small values of x we use the series for exp(-§2 ) in EQ. (29)

and thus obtain,

erf x = —[exp(~ )d§ = j(z S—”————)d% (31

The above series is uniformly convergent. It may be integrated term
by term and therefore,

erf X = ._2.— 2 .S:I_)H_X_Z:: (32)
JT 2= (2nehnl

Going back to EQ. (28) and letting,

-x2/401t = g2
then
§—-——>_-l_-oo as X-—-_tm
and
_ =172
(1/4D1t) 2xdx - 26d§ = x(Dt) d§

=gt . (0qt)/2 a5 = 2 (Dgt)1 24
Thus, EQ. (28) becomes,

CD/ Q [0 0]
-1/2 -
ft exp(-x°/4D, t)dx =ft"2exp(-§’) . 2(D, 1) a5 = ZD:/Z—[exp(-gs d5

-00 -0 -00

The right hand side of the above equation is now the error function

defined previously.
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Since,

0] - o0
Iexp<-sz>ds =-fexp(-§2)dé+fexp<-52)ds
- 0 [s)

It follows that,

w 2 [¢]
fexp(—s )dE = 2fexp(-§2)d§
-0 [o]

Recalling,

o]
erfm =1 = 2/,[;7[ exp(-é2 }d&

Hence,
s o]
/exp(-%z)aé - )2
Q
Thus
03]
fexp(-sz)dg - =
-
It follows that,
w w
fivzexp(—xz/ﬂrD,t)dx=20',/i[ exp(-£°)d8 = 2 /D, 7
o -

Second and third integrals of EQ. (26) are evaluated by the same fashion.

Thus EQ. (25) now becomes,

Q.

©
B P{x,y,z,1)dxdydz
fim , lim

-0 -0 -00 Ky~o uvw—o

3/2
] =M = 8 /D,D,D,7- B

It follows that,
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B = M
J 8 Dipob3 TC

3/2

Thus the solution for instantaneous point source becomes,

-3/2
M-t 2 2 2
P(x,y,2,t)= ——————  exp{-K t)exp(-(x-ut) /4Dt -(y-vt) /4D t-{z-wt) /4Dt (33)
" /BD,0,0, v ! ! ? ?

Since BOD (L) is related with pollutant concentration by EQ. (8),
the solution of the general, 3-D, unsteady state equation under instantaneous'
point discharge is,

L{x,y,z,t) = M - P(x,¥,z,t) = Lo - P(x,¥,z,t) (8)

thus,
Lixyaz.t)=Lo1- % oKt -(x-utl74Dt-(y-vt) 74D, -(z- wt) 74Dyt
R /8D,D,0,1C 2

It is of great importance to note that the second term of the above
equation becomes zero as t—-=oo--that is, pollutants' concentration becomes
zero as t——=o00. This is true from a biochemical point of view in that all
the biodegradable pollutants will eventually be degraded, leaving no pollu-
tants in tne stream. However, the BOD must approach Lo (ultimate BOD) as
t—=o00-~ that is, the oxygen required to degrade all the pollutants (ultimate
BOD) will reach the maximum value, i.e., Lo. This is so since the second term

of EQ. (33) becomes zero as t——o00, making L—~Lo as t —m.
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SOLUTION FOR IMPERVIOQUS CHANNEL
UNDER INSTANTANEQUS POINT SOURCE

If the stream channel is impervious, the solution must be modified
accordingly. Increasing numbers of stream channels are made impervious in
order to prevent seepage and leaking of pollutants as well as for erosion
control. Under this condition the total pollutants must be contained within
the bounded geometry. Accordingly, the integral constant B must be changed.
Thus we must have,

w/2  H/2

M = B J/’ J( J[ P{x,y,2,t) .dxdydz

- Wz -f/2 Tim s lim

K1—=0 u,v,w—>0

Using a previous evaluation on the error function, the second

integral of the above equation is written as follows:

w/2 w/4/Dt
t"/zexp(-yz/4th)dy = 4/D, f exp(-gz)dg (34)
Tz 0

There are two cases that must be considered in evaluating the
definite integral of EQ. (34). The reason of this will be made clear in the

subsequent developments.

(1) CASE 1 - The upper limit of integral (w/4JD.t) is small (<.48).

Using EQ. (32) we get,

X
52
erfx = _2 e’ ds
T o]

w/2 w/4 ’ Da'
2n+

f f'/zexp(-y2/4th) dy 4@[ e_52 d§ = 4/D, f:' ()" (w/4JDz1 )

nzo (2n+1) n|
-w/2 o

® A znel
2 (-1)_x
J7T g: (2n+i)nl

n
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(2) CASE 2 - The upper limit of integral is large (>.48).

As seen from the above, if the quantity,w/4 /D,t , is greater than

.48, the infinite series does not converge because the numerator of the series

increases much faster than the denominator as n——= o0.

That is,

( w )Zn‘l >>(2n¢|)n! , as n—- o

4/D,t

Any infinite series used in any engineering or mathematical evalua-

tion must not diverge but converge very rapidly.

For large values of w/4JD2t, we proceed as follows;

Recalling,
X

.2 -€°
erf x = = | e dg
It
[+}

For large values of x we write,

X 2 o] 2
fe's d§ =f et d§
[¢] X

A single integration by parts of

gives
s o} 2 [41] 52
-5 = 1 ez L -
fe d§ > e 5 f g dg§
X X

" (e)

n-t -3 (2n-3) | 0 13 (20-])

2n-| xzﬂ-l 2"
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This series does not converge since the ratio of the nth term to the

(n=1)th does not remain less than unity, as n increases.

However, if we take n terms of the series, the remainder--namely,
a

2
-3 (2n-1) f es a5
e2n 52"

X

is less than the nth term, since
o0

w
-E? -x2
f’é‘wd5<e [ —%527
X X

We can thus stop at any term and take the sum of the terms up to
this term as an approximation for the function, the error being less than in
absolute value than the last term we have retained.

Thus it follows that,

erf x =

A
JT
The above series rapidly converge for large x.

F%na11y, we write for large x
X

2

R S IS L R IR N - B
[ ™ db= s ° ( X 2xs NPT
0

For large W/4JDgt we then write

—~—

w/2
-i/2 2 - ’ I I i
- D dt = - —_t — e
t “exp(-y/4D,t)dt = 4D, 2 exp (-w/4/D,t)( 5K +2( y j_ma+ .)]

-w/2

The third integral of EQ. (26) is evaluated py the same fashion.
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A great deal of care must be exercised in using the infinite series
discussed so far in evaluating the actual integral constant. Since the
infinite series evaluated above become denominators, in the actual determina-
tion of integral constant Case 1 and Case 2 must be reversed. The problem is
further complicated from the fact that there are double infinite series
invoTlved in determining the integral constant. Our objective is that both
series used in the evaluation of integral constant must converge. If only one
series converge while other series diverge, we cannot guarantee as to the
convergence of their product. We will examine this in detail in the following

developments.

1. Both W/4IEE€ and H/4ID3t are small;

We write,

M=B 2/_D—7E4IB_—|— -/4.01,2 I - I ]l: D
{ ! [ 7 elw/alDt) w/alDgt  2(w/alDgy N 4D {

N B
Upon simplifying,

=B | 8 [D.D,D.% exp(-(w/4ID1)° —(H Y —
[ D07 exp(-(w/4iD,1)° (/4r—>)(wm__ S ryomy )]

It follows that,
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| 2 2 -1 | - I <l
B=M] ——m—— ((w/4V/D,t ) (H/4/D,t) ) ( =) =)
[efo“."o"zoﬁ exp(( v 2 : w/4/ DX H/4/D1 ] (34-1)

It is now clear that the above double infinite series are uniformly
convergent for values of both (W/4/5§E) and (H/4J5§E) which are large.

It must be clearly understood that in the above process we used the
infinite series of Case 2 (W/4Jﬁ§f and H/4JTE€ are both large). Again,
the reason is that those double infinite series become denominators in evalua-

ting integral constants; thus we must reverse Case 1 and Case 2.

2. For both W/4/D3t and H/4/D3t are large;

Now we use Case 1 in this case instead of Case 2 for the reason repeated

previously.
We write

o0 n na n 2n+|
M=B zm 'le'/_'zﬁa s (('l) (w/4/thi ) & ((~l) (H/4 /Dst) )

n:0 {2n+!)n} n:o {2n+l)n|
Thus,

n N+l n 2n+| -t
g = M o (LN (w/4/DaL) . (1) (H/4/Dat | (34-2)
32/D,0,0, 7T n:o (2n+1) n| (2n+1) n|

Again, it is evident that when W/4/Dt and H/4JD3t are large,
the above series rapidly converges because denominators of the series increase

much faster than the numerator.
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There are cases where only W/4/Dpt is small, and H/4 /D3t is

Targe or vice versa. In this case, we have to select the series appropriately

so that the product of the two series converge.

3. W/4/Dt is small and H/4/D3t is large

We write

= O - 1 W/ (— e e
M=B [2 0,7t -4/D, (5 exp(-w/4 th)(w/4m:t‘

It follows that,

= _._..._M____ o1 2 I - e
B 6T b.0r [exp("’M D) (e

4. W/4[Dpt is large and H/4[D3t is small

This is the reverse case of the previous one.

2N+|

n

5 (2n+1)nl

Thus,

- 405 (%

o (1) (H/ADT)

)- 4D, S

n=o0

{(2n+1)n!

-f

{(2n+1)nl

n=0

2
exp{-H/4/D;t )'(W -

exp(H/OJD_;,t)2 i}

M 0" (waloai) oy
16 /D, DO > (2n*iin! H/4dD,1

!

n 2nii
) & (1) (H/4/D) ](34-3)

!
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As it is seen above, in the case of impervious channels the problem
is enormously complicat coupled with the magnitude of traverse and vertical
diffusion coefficienfs » D3). Thus, in the case of impervious channel
the BOD (and thus DO) mus. be evaluated by different equations (1 out of 4 in
the above) each time t varies. In other words, no one fixed formula can be
used even under the same discharge condition and same original pollutant con-
centration.

The net effect of this is to allow use of greater t (time) in
evaluating unsteady-state conditions, not limiting upper Timits of the time
scale used in the unsteady-state condition only to the time when the pollutant
reaches the bank.

A1l of the above cases of different integral constants will be
deliberately incorporated in the subsequent computer program to be used in the
current model.

Finally, the solution for the general BOD equation under impervious
channel conditions is written as;

L(x,y,z,1)= Lo [u-a-{”z & exp(-(x-ut)74D,t - (y-vt)2/4 Dyt -(z-wt)2/4D3t):] (35)

Where B is defined as previously shown (EQ. (34)). Again, B can change at

different elapsed times as mentioned previously.
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Solutions Under Continuous Sources

For the above case we can generally write the total pollutants
contained in the system under input of m(t) per dt as,
t
f m(t)dt (36)
0
Note that m{t) can be any function desired. One example would be a
periodic function.
EQ. (36) will be used in place of M(=Lo) in determining the integral

constant. Thus the solutions are as follows:
t

-3/2 tx-ut)? P c(p-wh)2
Lix,y,z,t)= [m(t)dt I: |- _8 = :) =32 eK"e( Ex-ut)/4 Dt - (y-vt)/4D,t ~(2-wt) /4D3t)] (37)
17273

0

for a pervious stream channel and

t
- - -(x~ ~{y- -(z- Dt
L(x,y,z,t)=fm(t)dt {l- B2 oMty (x-ut) /4Dt ~(y-vt) /4D,t ~(z-wt) /4D, )] (38)

for impervious stream channels.

B has been defined previously (EQS. (34-1, 2, 3, 4)). The general
BOD solutions obtained so far are th’en inserted to the DO equation in order to
get general solutions of DO.

For solutions of the BOD equation when pollutants discharge at
points other than (0,0,0), one merely changes the coordinate system for

solution purposes. For instance, if the discharge point is (Xo,Yo,Zo) at
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t=to, we simply use (X-Xo), (Y-Yo), (Z-Zo) and (t-to) in place of x, y, z, and

t in all of the above solutions.

2. Analytical Solutijon of the DO Equation
The general 3-D, unsteady-state DO (dissolved oxygen) equation is

EQ. (9), as has been previously derived. Rewriting EQ. (9) here,

g%.= K2 (Cs-c) + A(t) - Ky[Lo-L(x,y,z,t)] (9)
Where

c = DO concentration

Cs = DO saturation constant

K2 = reaeration constant

A(t) = 0O supplied by algal activity

K1 = Pollutants' oxidation rate

Lo M = ultimate BOD or initial (total) pollutants' conc.
L(x,y,z,t) = BOD as a function of time and space
Note that all 3-dimensional space variables are carried by BOD as

L(x,y,z,t). This means that the DO concentration at a given location under a

given time will be governed by BOD at that location.

Let,
Cs-C =D
so that,
d - . de
dt dt

Thus EQ. (9) is now rewritten in terms of D, where D denotes DO

deficit as a function of time and space.
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We write,

D - - kgD - A(t) + Killo - L(x,y2,t)] (39)

Initial and boundary conditions are;

p———=Do (i.e., ( ————=Co) as t——o, and
(40)

D——0 (i.e., C——=Cs) as t )
Where D and Co are initial DO deficit and initial DO concentration, respect-
jvely.

The above boundary condition holds only when A(t) = 0. However,
when there is algal activity (A(t) # 0), D (hence C) will be governed by
A(t) as a sole contributor of DO.

When t ———o00, there should be no DO deficit and the DO concentra-
tion will approach the saturation concentration, i.e., Cs.

This is so because the pollutants' concentration approaches 0 (or
BOD approaches maximum value, Lo) when t———=o00. When pollutants' concen-

tration reaches 0 due to degradation, DO is no more depleted, allowing it to

approach saturation concentration.

SOLUTION STRATEGY

By observing the analytical solutions of BOD equations, it is seen
that it is practically impossible to carry these "long terms" associated with
BOD solutions into the DO equation in order to obtain an analytical solution
of DO. It seems that the analytical solution of DO by directly carrying BOD

solutions is either impossible or prchibitively complicated.
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In order to alleviate this problem, associated BOD values are
obtained first (depending upon channel conditions) from various BOD solutions
under a given time, then these val -s are entered into the DO equation. Thus
the third term in EQ. (39) becomes constant.

The same thing is done for DO supply by algal activity. After these
have been accomplished, EQ. (39) becomes a simply ordinary differential
equation,

Mathematically,

aD =

= KaD - A(t) + Ki[Lo - L(x,y,z,t)] (39)

Let A(t) = Ac @ a given location and given time, and

[Lo-L(X,y,z ,t)]

Where Ac and Pc are now constants.

Pc @ a given location and given time.

Thus,
aD
3T -KoD - Ac + KpPc
or
dD
T -KoD - Ac + KpPc (41)

The treatment of Ac (DO supply by algal actiQity at a given time and
space) and Pc (oxygen-equivalent pollutants' concentration or BOD not exerted
at a given time and space) as constants is justified from the mathematical
point of view on the basis that DO supply by algal activity and DO depletion

by pollutants' decomposition are not a function of the DO equation. That is,

the functions describing the temporal and spatial distribution of algal

activity and BOD stand by themselves.
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STREETER-PHELPS EQUATION

In order to put the 3-D, unsteady-state DO model and its solution
into the proper perspective, it is worthwhile to closely examine the classical
1-D, steady-state DO model known as the Streeter-Phelps equation. The follow-
ing is the original form of the equation;

D =KL - KD (42)

EQ. (42) has been known as a 1-D, steady-state DO model.

STEADY-STATE vs. UNSTEADY-STATE

When it comes to steady-state or unsteady-state, time 1is the
criterion while space is the criterion when it comes to uniform or non-uniform
(flow).

Steady-state means that at a given location of a channel the change
of any parameters under consideration with respect to time is constant. That
is, wiien "space" is fixed, the variation of any parameters in terms of concen-
tration is constant around the clock. Unsteady-state is exactly the opposite
of this. If the given location (space is fixed) can be represented by a
single value, whether it is the x, y, or z value in the cartesian coordinates,
for instance, it is l-dimensional. This ic then expanded to 2-D and 3-D. By
closely examining EQ. (42) it is noted that dD/dt appears in the left-hand
side of the equation and it is not zero in this steady-state model. However,
in almost all steady-state DO models, dD/dt is set to zero on the basis that
the DO variation with respect to time is constant; hence dD/dt = 0. One

typical case of this appears in Wastewater Engineering (6). The two entirely
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opposite views on dD/dt between the original Streeter-Phelps equation (dD/dt
# 0) and all other work (dD/dt = 0) stems from gross misunderstandings of
the subject in terms of steady-stateness and unsteady-stateness. In the
original Streeter-Phelps equation, dD/dt was meant to be used "dD/dt 1in the
direction of flow (usually longitudinal)," but not in the cross-section of the
channel. This view originaily implied in the Streeter-Phelps equation is
correct, thus "dD/dt along the channel under a given pollutant discharge."

The following figure will help to precisely explain the above.

—(x.y.z t)]
/—Q‘J\-—{—D— X,¥,2, t):l

FLOW dD
:I /di:"
[ ——— ll\ -

—
\]@a;\\/

Q.

DIRECT F [dD
ION O [At]

D B I

FIGURE 4

GRAPHICAL REPRESENTATION OF TEMPORAL AND SPATIAL
DISTRIBUTION OF DO IN THE RIVER CHANNEL
In the above Figure 4, dD/dt appeared in the Streeter-Phelps equa-
tion is [dD/dt]y,, where subscript 1n denotes "1onjitudina1" direction.
However, [dD/dt(x,y,z,t)]cn, where Cn denotes cross-sectional areas of the
channel is entirely different from [dD/dt]yp,. In effect, there are two
different dD/dt, one along the river charazi. [dB/dtly,, and the other

through the cross-section of channel, [dD/dt(x,y.z,t)]cn.
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(1) Under steady-state conditions [dD/dt (x,y,z,t)Ilch = 0, not
[dD/dt]y, = 0. In fact, [dD/dt]y, never becomes zero. If this is set to
zero, it means that there is no DO variation along the river channel. That
is, regardless of the location of the channel there is no variation of DO or
just one value of DO for the entire channel. If it is so, why bother to do a
DO analysis in the channel? Under a given pollutant discharge there is DO
variation along the channel, thus making [dD/dt];, (which is commonly
referred to as dD/dt) zero would not make any sense at all.

(2) Under unsteady-state condition both [dD/dtly, and [dD/dt
(x,¥,z,t)]cn are not zero. Thus there is "DO variation not only along the
channel (a different location of the channel will have different DO value),
but also at a given Tocation DO varies with time (unsteady-state) and space
(2-D or 3-D)."

Summarizing the above results,

1-D, steady state DO model;

dD/dt KiL - KD # 0 (Streeter-Phelps) (42)

dD/dt

KiL - KoD - v dD/dx = 0 (Others) (43)

Note that in the Streeter-Phelps equation, dD/dt # 0, which is
correct. In other works, dD/dt = 0 and further there is an additional term,
-vdD/dx, where v is the fluid velocity along x axis.

Since dv = dx/dt and vdD/dx = dx/dt . dD/dx = dD/dt, LI (43)
happens to be identical to EQ. (42), hence is the solution. Convection term
(v) must not enter into the DO formulation, as is the case of Streeter-Phelps
equation. The fallacy of EQ. (43) is evident from two respects. Firstly, if

the convection terms are carried into DO formulation as well, it results in
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two convection terms in one DO equation because there are convection terms in
the BOD equation already. Secondly, since Ki, Kz, and v are constants, L
(residual BOD) and D (D deficit) are only a function of x only, which is not
true. As known, L = f(t) in the 1-D, steady-state model, i.e. .L =
Lo-Loe-Kit,  Furthermore, since x is the only independent variable in EQ.
(47), there is no way to obtain D as well as L as a function of t along the

channel.

SOLUTION OF 3-D, UNSTEADY-STATE DO MODEL

Recalling EQ. (41),

dD/dt = -KoD + KiPc-Ac

Note that Pc and Ac are constants under a given location and given
time, as has previously been explained.

Direct integration between Do (initial deficit, i.e., D = Do at t =

to) and D(t) yields;

D t

J[ db = Jr dt= —— (1p KeD*KiPerhc )y,
(-K,D + K, Pe-Ac) K. -K2Do* K| Pc -Ag

Do °

Let to = 0 (initial time), then
-Kat

IH

D = (Do - K1/KoPc + Ac/Ko)e + K1/KoPc - Ac/K2

Since

o
1

Cs - C
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and
Do = Cs - Co
It follows that,
C=Cs - [(Cs - Co - Ky/KoPc + Ac/Kp)e-Kat + K1/KgPe - Ac/Kpl
or
C(X,Y,Z,t) = Cs-[(Cs = Co - Ky/KaPc(x,y,z,t) + Ac(t)/Kp)e-Kat
+K1/Kp Pc(x,y,z,t) - Ac(t)/K2] (44)

EQ. (44) is a general solution for DO under 3-D, unsteady state conditions.

TREATMENT OF THE PHOTOSYNTHETIC TERM (Ac(t))

It is known that DO supply by photosynthetic activity of algae may
be one of the major sources of DO in a receiving water. In many cases
photosynthetic oxygen supply is %he only major source of dissolved oxygen (DO)
in the stream. In what is helieved to be Camp's last published paper (7)
among his many original and creative research papers published through his
i1lustrious career, he concluded that "DO supply by photosynthesis is
considerably higher than that by atmospheric reaeration."

This is especially true for a wide and deep stream channel where
atmospheric reaeration is not significant in terms of DO supply. For this
reason, many wastewater treatment plants (WWTPs) maintain “tertiary ponds"
after regular treatment processes. The main function of these ponds is to
raise DO levels through algal activity in the ponds.

By doing so, the DO from the pond effluent significantly increases,
thus providing a better opportunity for the WWTPs to meet the DO criteria

imposed by regulatory agencies.



48

Without photosynthesis the DO concentration in the water would never
exceed the saturation level which is a constant value at a given temperature
and pressure, obeying Dalton's and Henry's law on partial pressure. The
author observed as high as 35 mg/1 DO at 20°C and 1 atmosphere from the
Chatham Township tertiary pond in New Jersey. For an average stream the DO
level can rise to 15 mg/1 during the maximum period of sunlight. Thus it is
of great importance to closely examine the DO supply througr photosynthetic
activity of algae.

The findings of a study conducted by 0'Connor and DiToro (8) on this
subject is generally used for the calculation of DO supply by algal activity.
Generally, the photosynthetic source of DO depends upon many factors such as
sunlight, temperature, mass of algae and nutrients (especially phosphates and
nitrogen in the form of ammonia and nitrate). If the photosynthetic rate is
assumed to vary as the sun]gght intensity during the day, and is further
assumed to be zero at night, then this source according to 0'Connor (8) may be
defined by the following periodic function.

Ac(t) = Ac(tg) = Pm[2P/m + 2% An  COS((t,-P/2)-2rn)] (45)

where

p period of sunlight

Pm = the maximum rate of Ac(t)(=Ac(tm))

ts

time from beginning of sunlight

Mathematically, EQ. (45) 1is a Fourier series used for Fourier
analysis.

Usually, only the first few terms are enough to approximate EQ.

(45). The speed of convergence is found by calculating explained variance
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from the series obtained and comparing that with that found from observed data
sets. It is of importance to note that the independent variable t(ts) in EQ.
(45) is not the same as t in EQ. (44). The former is measured from the begin-
ning of sunlight and the latter is just clock time measured from the beginning
of pollutant discharge. Furthermore, ts becomes zero as soon as there is no
sunlight radiation. If there is no algal activity in certain reaches of the
stream, one merely sets this term to zero for that specific segment and so
forth. In terms of calculational processes, Ac(t) is calculated separately
with due regard to t, i.e. starting from the beginning of sunlight independent

from pollutant discharge.
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VI. DIGITAL COMPUTER IMPLEMENTATION

A digital cﬁmputer program was written in order to implement the
analytical solutions of -the general BOD and DO equations.

1. PREPARATION OF COMPUTER IMPLEMENTATION

(1) Stream Geometry

According to the classical study of Leopold and Maddock, Jr. (9),
there are certain relationships which correlate well between stream flow (Q)
and various channel parameters related to geometry (such as width and depth)
as well as velocity of flow. The following relationships were obtained by the

authors after observing numerous collected data for many streams in the United

States.
W= mQad
H = mpQb
V = m3QC¢

where my, mp, m3, a, b, and c are arbitrary constants. W, H, and V are
the width, depth and mean velocity of the channel.
Since, WeHeV = Q = myempem3Qa+b+c
it follows that,

mpemp-m3 = 1, and

atb+¢ =1

Thus if m; and mp are specified so is m3. Also, if a and b
are specified, so is c. Generally, if one knows any two constants out of

three, the remaining one can be determined by the above relationships.
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In the above cited reference the authors published data on channel
geometry and velocity along with the flow rate on major rivers in the U.S.
For the current computer implementation the author used data directly from
this reference instead of creating hypothetical river geometry for meaningful
results. Using the above mentioned relationships, one can apply any observed
river data for computer simulation purpose.

(2) Other Input Data

A11 other input data was prepared in such a way that they are
typical values reported in the literature.

In calculating dispersion coefficients the author consulted those
references considered excellent ones in this field (10, 11, 12, 13).

In calculating Dj, Dp, D3, hydraulic radius (R) and "C" (Chezy
C), values were calculated from the given stream geometry with varying '"n"
(Manning's): Then shear velocity is obtained from this. After these have
been done the following ratios were then obtained from appropriate references
(10-13).

Di/Ry» and Dp/Ryx
where

u* is the shear velocity

From this D3 and Dp are computed from the computer program
provided herein. Assuming vertical dispersion is a function of the following
(12), i.e.

D3 = f(ug/u, W/H, D)
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where ug is the horizontal velocity of the channel at the location of the
sampling site.

The foliowing relationship suggested by Bzltaus (11) has been used
- to calculate D3;

D3 = D2/(us/u)2 (u/H)2

(3) Planning for Computer Output

The author wrote the computer programs in such a way that it can be
used and/or adopted easily for general purposes.

The input data consists of the following:
1. Mode of Discharge {instantaneous or continuous)

2. River geometry (width, depth, Q, cross-sectional area, u,v,w) and
Manning's “n"

3. Ultimate BOD and Kj
4, Cs and Co
5. Data for photosynthesis evaiuation (P, Pm, ts)
6. Time interval
7. X interval
8. Y interval
9. Z interval
The following information is provided to aid the users regarding the
preparation of the input data to be used in the current computer program. The
user information regardina the computer program and input data requirements is
also fully explained in the program.
The unique feature of the program 1is that it exclusively uses

“FUNCTION SUBPROGRAMS", and each term in the general BOD and DO solutions is
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treated as a separate function subprogram. This substantially simplifies the
program, reduces the computation time, and makes the expansion and modifica-
tion of the program easy.

The program also uses a minimum size of arrays to save the memory
requirement of the computer.

The input data is prepared in FREE FORMAT,
ORDER OF READ

STATEMENTS DESCRIPTION OF READ STATEMENTS
1 TITLE OF RIVER (up to 40 alphanumeric characters)
2 MODE OF DISCHARGE (INST for instantaneous discharge;
CONT for continuous discharge)
3 WIDTH, DEPTH, CROSS-SECTIONAL AREA, FLOW in CFS and
DURATION OF THE RECORD in four digits

4 Manning's "n"

5 U, Us, V, and W in ft/sec

6 RATIO for Dy/Ry* and Da/Ry*

7 ULTIMATE BOD in 1bs. and Ki in DAY-l

8 m(t) in 1bs/sec, and amplitude of m(t)

9 Cs, Co, in mg/1 and Ko in DAY-1
10 P, Pm in mg/1/day
11 NUMBER OF TIME INTERVAL
12 TIME INTERVAL in seconds
13 NUMBER OF X INTERVAL
14 X INTERVAL IN ft
15 NUMBER OF Y INTERVAL
16 Y INTERVAL IN ft
17 NUMBER OF Z INTERVAL

18 Z INTERVAL IN ft
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In the current computer simulation, velocity of the flow in the Y
and Z directions is assumed zero.

The output is designed in the following way to fully realize the
3-D, unsteady-state condition;

1. First the mode of discharge is selected (instantaneous
or continuous).

2. At a fixed time,
x (downstream distance) is first selected
y (lateral location of channel) is selected next
finally z (depth of channel) is selected
Thus at a given time and x location there can be several values of
BOD and DO with varying width and depth.
Then x is changed followed by y and z values.
After the above cycle, time is then changed and the calculations
repeat again.

Note that the above means of calculation is necessary in order to

fully appreciate the meaning of 3-D, unsteady-state conditions.

2. INTERPRETATION OF THE COMPUTER QUTPUT
(1) General Explanation of the Computer Output

As one can imagine, there exists a "deluge" of data from the 3-D,
unsteady-state computer simulation. There are four independent variables (x,
v,Z,t) and two dependent variables (DO & BOD). The number of output data for
a simple run is as follows:

z - mid-depth, 1/4 of depth from surface or bottom (z=2)
mid-width, 1/4 of width from left or right bank (y=2)

<
1

X - say 10 Tocations (x=10)

t - say 10 different elapsed times (t=10)
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Thus the total number of output will be 2x2x10x10 = 400 for one
parameter (DO or BOD).

For the current computer simulation the author used 50 different x's
and 50 different t's, resulting in a total of 10,000 different output.

TABLE 1 contains input and base-data for the current simulation. A
total of eight graphs were constructed using only a part of the output data.

FIGURES 5 through 8 represent the relationship between elapsed time
(t) and resultant DO under different channel conditions.

FIGURES 9 through 12 describe the level of DO  under different
channel conditions (pervious and impervious channel) for the same discharge
conditions,

Individual interpretation of each graph follows.

(2) 0O vs. Time

FIGURE 5 - DO under elapsed time of 500 seconds is shown for both
pervious and impervious channels. At a given elapsed time {500 seconds in
this case) and x location, four different DO's were calculated. The coordin-
ates of these four locations are as follows (these four coordinates have been
used throughout the current simulation);

1. (x,0,0)

2. (x,0,1)

3.  (x,20,0)

4, (x,20,1)

Coordinate No. 1 indicates the center of channel; No. 2, 1/4 depth

from surface (or bottom) in the center of the channel; and so on.
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Since the slug of pollutant moves fastest through the center of the
channel, DO in the center of the channel will be the lowest. By similar
reasoning, the pollutant will move, or reach the slowest through coordinate
No. 4, i.e. (x,20,1); hence resulting in the highest DO. This is shown in
FIGURE 5.

At (x,0,0) DO has been depleted immediately after the introduction
of the pollutant, i.e, x = 500 feet. However, at (x,20,1) there is almost no
DO depletion at all, while (x,20,0) shows the second lowest DO and (x,0,1)
exhibits the second highest DO.

This is expected due to the fact that traverse diffusion is greater
in magnitude than that of vertical diffusion; hence DO at (x,20,0) is less
than DO @ (x,0,1).

As is seen from the figure, there is more than 10 folds difference
in DO under the same x location, a clear benefit of 3-D, unsteady;state model.

It is interesting to note that DO at an elapsed time of 500 seconds
exhibits no difference between a pervious and impervious channel. This is
mainly due to the short elapsed time. Physically this indicates that the loss
of pollutants through the pervious layers of the channel is minimal because of
the short elapsed time.

With longer elapsed time, the loss becomes significant enough to
cause a difference in DO between pervious and impervious channels. In the
current simulation the elapsed time which gives the difference in the DO level
has been about 1000 seconds.

The mathematical treatment regarding this matter will follow later.
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FIGURE 6 through FIGURE 8 - the general configuration of the DO
levels are similar to those of FIGURE 5. However, at location (x,0,0) there
is a sign of DO recovery starting from FIGURE 6. This is evidenced by two
facts. First, the slope of DO lines become less steep and, secondly the
actual DO values become greater.

This is primarily due to the fact that the slug of the pollutant has
just passed the specific location under our consideration. At location
(x,20,0) DO levels do not recover until after 1500 seconds of elapsed time,
indicating that the slug of pollutant still did not pass under that indicated
period of time. This is attributable to the time required to carry the pollu-
tants through diffusion.

By the same reasoning, DO levels at locations of (x,0,1) and
(x,20,1) go down slowly, starting from FIGURE 6

Note that as time progresses D0 levels at the above two locations
decrease, intensifying DO sags. As seen from FIGURE 8 (at an elapsed time of
3500 seconds) the DO sag at (x,0,1) and (x,20,1) are quite noticeable. Again,
this indicates the "lag" time required to disperse the pollutant to the
adjacent layers. Finally, it is worthwhile to observe that DO levels in the
channel are of the following order;

DO @ (x,0,0)¢<(x,20,0)<(x,0,1)<(x,20,1)

The above order of DO levels were expected and reflects the greater
magnitude of traverse diffusion over that of vertical diffusion.

(3) DO Under Different Channel Conditions
FIGURE 9 through FIGURE 12 indicate the effect of channel condition

on the DO levels.
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As mentioned previously, DO level differences in pervious and imper-
vious channels become significant approximately after 1000 seconds, indicating
that the Toss of pollutant through pervious layers of channel becomes notice-
able. Generally, the loss is mainly affected by the elapsed time. However,
the change of DO levels will not linearly increase/decrease with that of the
loss. This is so because the DO levels are not only affected by the Toss but
also affected by the "redistribution" of pollutant from the adjacent layers
which is a function of both time and the magnitude of diffusion coefficients.

This phenomena are indicated in FIGURES 9 through 12, where the
difference in DO levels between pervious and impervious channels increases
with increasing elapsed time to a certain extent. This can be examined from
the mathematical point of view.

It is worthwhile to note that the DO sags under the 3-D, unsteady-
state condition consists of multiple sags, (FIGURES 9-12). This is a drastic
difference from those of 1-D, steady-state conditions under which there is
only one sag.

The reason for this will be pursued from a mathematical point of
view in the subsequent section.

(4) Difference between Pervious and Impervious Channel
1. Pervious Channel

From EQ. (25)

® O ® 2
M=8B f[[ £2e7% /4D‘f.t'I/2 e‘Y?“th . t—u/z e—zz/403t dx dy dz (25)
-® -0 -©

Where ,

M
8 /D, D, D, T
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2. Impervious Channel

For impervious channel we must have,

® w2 w2 » 24 2301

M=B NG e—x/4D|t . {1/2 e-y/ D,t -t—'/zez Dy dx dy dz

- -W/2 -H/2

w/2 2/4 . H/2 2
M=B (2/0,77) JT 2 {/? &V70, dy 7 2 g e—z/403t dz
2 [T 2 /T
-w/2 ' -H/2
Since,
w2 2 w2 2

- - =i/ -y7/4D,t
f t|/2.ey/402tdy=2j' tlz ey/ 4y et
-w/2 o]

It follows that,

w/2 H/2
. .2
M=B (2/D,7)J7Z /272 /2)[ 4/~/'7i‘_/ {72 & 1740t dyH 4//‘,?[ 2 gT7A0st }
o 0

By letting,

§= y//iDyt

We get,

dy 2/0pt d§ , etc.
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It follows that,
w/a/of H/4/BE
M = B(2/DF)(r/4) - 4/T; - 4/@[2//5]’ g ds][z/ﬁ%‘f
o o

& ds]

M=B-8 /D D,0,7C #2 (erf(w/4/ D, t))(erf(H/4/Dyt))

Finally,

M |
B=
8/D,D,D, 7T 372 erf(w/4/D,t) erf(H/4 /D,t)

Note that the first term at the right hand side of the above equation is the
same as the integral constant of the pervious channel.
Since,

erf x <1

B(in impervious channel) = B(in pervious channel) x greater than 1

The net effect of this is that remaining pollutant concentration in
the impervious channel is greater than that of the pervious channel under the

same conditions, or, BOD becomes smaller, the difference of which is,

I (=1) times that ot pervious channel

erf(w/4 /Dyt ) erf (H/4/ Dst)

This factor is a function of W, H, Dy, D3, and t.
Now, if
W/4/Dot or H/4/D3t > 2
then the factor becomes unity, hence no difference between channel conditions.
Since W, H, Do, and D3 are constants, the deciding factor is time.

Now, if t increases the quantity W/4/Dat and H/4 /D3t decreases; hence erf
(W/4/05t) and erf (H/4/03t) decrease.
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This will in turn increase the factor, i.e., the difference between
the pervious and the impervious channel, or vice versa.

It is interesting to note that the difference between the pervious
and impervious channel in terms of DO and BOD is related to the‘error func-
tion.
- In the following section the DO sags under 3-D, unsteady state
conditions will be examined and will see how they are different from those of
1-D, steady-state.

(5) DO Sag in 3-D, Unsteady-State Conditions

In the 1-D, steady-state model the DO sag curve is a smiple form,
i.e., DO level goes down right after the discharge of pollutant. Then after
reaching the lowest level of DO (critical deficit) the DO level goes up,
finally reaching the highest point (saturation level). Functionally, the DO
sag curve resembles a simple quadratic form.

There is only one sag in this case.

However, in the 3-D, unsteady-state model the DO sag curve consists
of multiple sags, and it no longer resembles a quadratic form from a
functional standpoint. The DO sag curve 1is closer to a multi-degree

polynomial form. This is so since DO is a function of many independent

variables, i.e.,
2
DO(x,y,z,0)=f(t™¥%,&*/*O  erf(w/4/ D, ),erf(H/4/0,1))

Physically, this is due to the pollutant's redistribution or second-

ary migration from adjacent depths and widths. In other words, the distinct

difference in pollutants' distribution at a given cross-section later smoothes
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out due to the dispersion in 3-D (caused mainly by velocity difference at a
given cross-section due to the shear Tayer). Due to this "smoothing" action,
the DO sag after the first "major" sag is not distinct in the second and
subsequent sags. As the time goes by, the sags becéme less and less. In a

physical sense, this phenomena can be described as a transient disturbance

caused by starting the oscillations by introducing the pollutants.
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VII. CONCLUSIONS

The following conclusions were derived during the current research:

1.

2.

3.

Generally, there is a distinct difference in the DO levels with different
lTocations of the channel (both longitudinally and cross-sectionally) under
a given elapsed time. The magnitude of the difference can be significant,
and the magnitude depends upon the 1location, elapsed time and initial

pollutant concentration.

Accordingly the representative DO value at a given cross~-seciton of the
channel must be width, as well as depth, averaged instead of taking the DO

value calculated only at a single point of the channel.

Generally, DO Tevels can markedly differ with different channel conditions
i.e., pervious and impervious. DO levels under the pervious channel con-
ditions can be significantly higher than those of impervious channels
under the same conditions, the magnitude of which is primarily a function

of time.

There are multiple DO sags in the 3-D, unsteady-state conditions.
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VIIT RECOMMENDATIONS FOR FUTURE RESEARCH

The current mathematical models on DO and BOD under 3-D, unsteady state
conditions can be applied to other areas, such as predicting the concentra-
tions of radioactive material in the receiving waters.

Future applications in these areas are highly recommended.

The current models can also be applied as to the determination of the
validity of stream improvements, i.e., whether or not the stream improvements
through the channel reconstruction (impervious) can be justified from the

standpoint of DO levels.
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