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ABSTRACT

Mathematical models describing the temporal and spatial d is tr ib u t io n  

of Dissolved Oxygen (DO) and Biochemical Oxygen Demand (BOD) fo r  both pervious 

and impervious channel conditions in 3-dimensions have been constructed, and 

th e ir  analytica l solutions were obtained. The solutions were implemented 

through the application of a d ig i ta l  computer, and th e i r  results are pre­

sented.

I t  has been found tha t  there are s ig n if ican t differences in terms of 

DO and BOD d is tr ib u t io n  with respect to time and space in r e la t iv e ly  deep and 

wide channels, thus necessitating the use of a 3-D, unsteady-state model.
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I .  INTRODUCTION

An accurate prediction of the concentration levels of water qua lity  

parameters in the receiving body of water ( r i v e r ,  lakes, e tc . )  has been one of 

the central topics in the w ater-quality  engineering f ie ld  fo r  many reasons. 

This is p a r t ic u la r ly  true of dissolved oxygen (DO) in the receiving water 

because i t  sustains a l l  aquatic l i f e  (hence the most important parameter). In 

order fo r the receiving body of water to support aquatic l i f e ,  i t  must f i r s t  

and foremost have an adequate supply of DO. I f  there were no organic pollu­

tants being introduced into the receiving water from wastewater treatment 

plants and other outside sources, the DO concentration would always be at the 

saturation le v e l ,  thus supplying more than enough oxygen to the aquatic  

environment.

All man-made pollutants eventually end up in the ocean via streams 

and r ive rs .  Domestic sewage and industria l wastes are being treated in order 

to reduce th e i r  oxygen-consuming capacity before they are discharged into the 

receiving water. The more treatment they receive (hence more c o s t ly ) ,  the 

less oxygen they w i l l  deplete in the r iv e r ,  and vice versa.

The most co s t-e f fe c t iv e  treatment is  fo r  the waste to be treated to 

such a degree th a t the depletion of oxygen due to the decomposition of treated 

eff luents  in the r iv e r  is the maximum allowed by the regulatory agencies. 

That is to say that the wastes are being treated jus t enough to maintain the 

minimum DO standards which have been imposed by the regulatory agencies. In 

order fo r the optimum degree of treatment to be determined, an accurate pre­

d ic tion  of DO concentrations along the r iv e r  under the given r iv e r  geometry,
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hydraulic regime and oxygen depleting capacity (ca lled  Biochemical Oxygen 

Demand, abbreviated BOD and denoted L hereafter) must be made.

In the past the determination of DO (denoted C hereafter)  and BOD 

(L) concentrations along the r iv e r  re l ie d  mostly on the 1-dimensional mathe­

matical model (e i th e r  steady s tate  or unsteady s ta te ) .  Because of the d i f f i ­

cu lt ies  in obtaining ana ly tica l solutions of 1-D, unsteady state  mathematical 

models, numerical solutions were widely used in predicting DO and BOD d is ­

tr ib u t io n  along the r iv e r .

One-dimensional mathematical models are not adequate when r iv e r  

geometry (such as deep and wide) and/or hydraulic regimes (low v e lo c ity ,  fo r  

instance) are both not favorable to the 1 -dimensional assumptions.

Furthermore, numerical solutions have suffered various maladies, 

such as in s t a b i l i t y ,  computation time, etc . The exact check of numerical 

solutions with respect to t h e i r  s t a b i l i t y  has been d i f f i c u l t  without having 

analytica l solutions. In recent years the modeling of water q u a lity  in r ivers  

has advanced from simple, one-dimensional analysis to the more accurate and 

also more complicated two- and three-dimensional approaches (Cleary, 1976). 

I t  has been shown that the d is tr ib u t io n  of dye concentrations along the r iv e r  

is  considerably d i f fe re n t  in three d irec t io n s , hence ju s t i fy in g  the use of 3-D 

models (Cleary, 1973). Analytical solutions of 3-D, convective-dispersive  

equations with instantaneous discharges (Dirac Delta function) describing the 

d is tr ib u t io n  of dye along the r iv e r  was obtained fo r  the f i r s t  time by the 

in tegral transform method (Cleary, 1973). Later (1975) th is  method was used 

to solve 3-D, convective-dispersive equations having generalized discharge
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conditions (not instantaneous) with generalized boundary conditions 

(D ir ic h le t ,  Neumann and Robin or mixed).

The purpose of th is  research is to f i r s t  construct the mathematical 

models then find the analytica l solutions of both BOD and DO equations under 

3-D (both convection and dispersion) ,  unsteady-state flow regimes having ap­

propriate boundary conditions.

Complete derivation of 3-D unsteady-state BOD and DO equations based 

on physical and k in e t ic  principles has not yet been achieved. Furthermore, 

the current analytica l solutions of the BOD equation do not give due regard to 

the channel conditions ( i . e . ,  pervious and impervious); hence the e ffec t  of  

channel conditions to the leve ls  of BOD (hence DO), which are very s ig n f ican t ,  

is ignored.

The analytica l solutions of general DO equations are not ava ilab le  

at the present time (Cleary, personal communication, 1978).

I t  is believed that deriving general BOD and DO equations based on 

the physical princip les and th e ir  ana ly tica l solutions w i l l  advance the a r t  

and science of stream modeling.
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I I .  LITERATURE REVIEW

L ite ra tu re  on multi-dimensional unsteady-state BOD and DO models are 

notably lacking. There is ,  however, ample l i t e r a tu r e  on multi-dimensional dye 

equations (without the f i r s t -o r d e r  term) with analytica l solutions. Because 

of the inclusion of f i r s t -o r d e r  terms in the BOD and DO equations, m u lt i­

dimensional dye equations and t h e i r  solutions are not useful to the current 

investigation and hence are excluded from the current l i t e r a tu r e  review. Also 

excluded were numerical solutions on th is  subject.

The most representative work on the subject was that of C leary 's  

(1 ) .  In his paper (1) Cleary solved 3-D, unsteady-state BOD equations using 

integral transformation without due regard to the channel conditions.

Cleary, as others, did not investigate the solution of general DO

equations.

The classical work of Carslaw and Jaeger (2) in th e i r  tex t  e n t i t le d  

"Conduction of Heat in  Solids" contains the most ample reference on the  

t ran s fe r  of heat. However, again, since the heat equation does not contain a 

f i r s t -o r d e r  term, t h e i r  work offered l i t t l e  help to the current subject.

The excellent work of Crank (3) on the "Mathematics of D iffusion"  

was a s im ila r  case of the above. However, the above two references shed great 

insight on the mechanism of d if fu s io n .



I I I .  SPECIFICSTATEMENT OF THE PROBLEM

The specific  objectives of the current investigations are:

Derive equations describing temporal and spatial d is tr ib u t io n  of Biochem­

ical Oxygen Demand (BOD) and Dissolved Oxygen (DO) in three dimensions 

based upon physical p r inc ip les ,

Find th e i r  analytical so lutions, and

Implement the solutions using d ig i ta l  computer.
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IV . DERIVATION OF BOD AND DO EQUATIONS

1. Assumptions

(1) PRINCIPLES OF LINEAR SYSTEMS

The transport of any po llu tant in the environment is caused by two 

major mechanisms--that i s ,  advection (convection) and dispersion. Advection 

is  transport due to the f lu id  motion, whereas dispersion is due to the random 

motion of the po llu tan ts ' molecules (molecular d if fus ion ) and the turbulent  

action of the f lu id  car ry ing  the pollutants (turbu lent d if fu s io n ) .  Molecular 

diffus ion  occurs where there is  a concentration gradient of the pollutants in 

the f lu id  whether the f lu id  is gas or l iq u id .  S t r ic t ly  speaking, the rate of 

molecular d iffus ion  is  not constant, but i t  depends upon the concentration of  

pollutants ex is ting  in the f lu id .

For instance, d iffus ion  in high polymers depends markedly on concen­

t ra t io n .  However, molecular d iffusion in a d ilu ted  realm such as mixing of 

pollutants with receiving waters ( lake , stream, e t c . )  can reasonably be taken 

as constant. However, molecular d iffus ion  in the receiving waters due to the 

discharge of pollu tants  is  quite small compared to turbulent d if fu s io n ;  thus 

i t  can be safely ignored.

Turbulent d iffus ion  is due to ve loc ity  gradients. Because of the  

boundary layer in the f lu id  flow, there exists  ve loc ity  gradients which causes 

turbulent d if fu s io n .  Turbulent d if fu s io n ,  also frequently referred to as eddy 

d if fu s io n ,  is the major d iffus ion  phenomena in the receiving waters because of 

i t s  dominance in magnitude over molecular d if fu s io n .
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When conservative po llu tan ts , such as chloride ion, is discharged 

into the receiving waters, only advection and d if fus io n  govern the d is t r ib u ­

tion  in the receiving stream. However, when non-conservative p o llu tan ts ,  

ty p i f ie d  by Biochemical Oxygen Demand (BOD), are introduced into the receiving  

stream, they not only transport by advection and d iffus ion  but also decay with  

time. Thus the d is tr ib u t io n  of such pollutants must take into account th is  

decay phenomena. Therefore, the d is tr ib u t io n  of any non-conservative 

pollutants in the stream is  due to three major mechanisms—that i s ,  advection, 

turbulent d if fu s io n , and decay.

I t  is known that the above three mechanisms do not in te rac t with  

each other, i . e .  they are independent of each other. Hence the p r in c ip le  of 

superposition of the l in e a r  systems can be applied in evaluating the d i s t r i ­

bution of pollutants in the receiving waters.

Under th is  assumption the d is tr ib u t io n  of pollutants in the 

receiving waters is merely a combined e f fe c t  of advection, d if fu s io n ,  and 

decay. There w i l l  be no product e f fe c t .  S t r ic t ly  speaking, no natural 

phenomena is l in e a r .  I f  we human beings understand them as being l in e a r ,  i t  

is  due to in s e n s i t iv i t ie s  from our p a r t ,  whether they are in sens it ive  

instruments or insensit ive  perceptions. Our basic understanding is  th a t  even 

though the actual transport phenomena of the pollutants in the receiving  

waters are non-linear, i t  is s u f f ic ie n t  enough fo r  us to assume them as l in e a r  

for the sake of engineering approximation.
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(2) IRREVERSIBLE FIRST-ORDER KINETICS 

When pollutants decay in the receiving waters, i t  is  generally  

believed that the rate o f decay with respect to time is  proportional to the 

f i r s t  power o f the amount o f  po llu tan t present at the time. This is  called  

f i r s t -o r d e r  reaction k in e t ics . I t  is known that Biochemical-Oxygen-Demanding 

material c losely follows f i r s t -o r d e r  reaction k inetics  in t h e i r  decay process. 

The decay of pollutants in the receiving waters is also i r re v e rs ib le .  Simply 

speaking, th is  means that once the pollu tants  degrade to form other products, 

the products hence formed w i l l  not react again to form o rig ina l substances. 

Mathematically, the expression fo r  decay is as follows:

= -  KiP ( f i r s t -o r d e r  reaction)
at

P   Pj + ? 2  + • • • • +  Pn, ( i r re v e rs ib le  reaction)

Where:
P = concentration of pollutants

Kj = reaction constant

Pl» Pn = Products formed

Negative sign indicates P is  decreasing with time.

2. DERIVATION OF BIOCHEMICAL OXYGEN DEMAND (BOD) EQUATION

Before deriving the BOD and DO equations, i t  is  assumed th a t ,  in the 

in t e r io r  of the r iv e r  channel, BOD and DO are a continuous function of x, y ,  

z ,  and t  and that th is  holds also for the f i r s t  d i f fe r e n t ia l  c o e f f ic ie n t  with 

regard to t  and fo r  the f i r s t  and second order d i f fe r e n t ia l  coe ff ic ien ts  with 

regard to x, y ,  and z. The p r in c ip le  of l in e a r  systems is  the basis of our 

derivation  fo r the BOD and DO equation. F i r s t ,  convection terms are derived 

assuming th a t  th is  is the only transport mechanism.
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In doing so, plug-flow conditions are assumed. Secondly, d iffus ion  

terms are derived under the  assumption that th is  is the only transport  

mechanism in the receiving waters. F i n a l l y ,  the ir re v e rs ib le  f i r s t -o r d e r  

reaction term is  der ived assuming th a t  the re  i s  no convection and d if fu s ion  in 

the receiving waters.  A fter deriving a l l  the three terms, they are added up 

(or superimposed) assuming that the d is tr ib u t io n  of pollu tants  in the 

receiving waters follows the p r inc ip le  of l in e a r  systems.

(1 ) Convection Terms 

I t  is  assumed that convection is the only transport mechanism, that  

i s ,  a plug flow condition.

Q,P

A X

FIGURE 1 -  ELEMENT OF VOLUME

Suppose th a t the above figure  is  an exaggerated in f in ite s im a l

element of a receiving water. Q denotes the rate of flow, and P denotes

pollutant concentration. Applying the continu ity  equation fo r an

incompressible f lu id  fo r an infin itesm al period of time (A t ) ,

Input-Output = Change in storage

Q*P* A t  -  Q(P+®P • A X ) A t  = V*AP  
aX

Where V denotes the volume of the element.
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Upon s im plify ing ,

-  «!1 *Q* AX*A t  = V-AP  
9 X

AP =  -  .2 • AX • ( jP )
A t  V aX

Let A denote the cross-sectional area of the element perpendicular to the 
direction  of flow,

A • A X  = V

AP = _  Q • A X ( i t )  = _  2  ( ®P)
A t  A-AX aX A aX

Define mean ve loc ity  of the channel in the X d ire c t io n ,

n = Q
A

I t  is of great importance to note that although u appears as a

constant, the varia tions of ve loc ity  within the cross section are not ignored

but are accounted fo r in the magnitudes of the d if fu s ion  co eff ic ien ts  (Dj ,

D2 , D3 ) ,  whose discussion wi l l  appear in the next section.

By using mean v e lo c ity ,  we w rite

a£ = -  u _aP for X d irection
at aX

By the same fashion, we w rite

aP = -  v aP for Y d irec tion
at aY

eP = - 5  aP fo r  Z d irec tion
at a Z

Where

v and w denote mean velocity  in the Y and Z d irec t io n s ,

respective ly . For s im p l ic i ty ,  hereafter the bar ( - )  is  dropped in describing 

mean ve lo c ity .
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Combining the above,

( 3 ? ) = -  u aP -  v aP - w aP
at convection aX aY aZ

(2) D iffusion terms

(1)

2dy

4 d y d z ( F x - - ^ J - d x )
2dz

2 d x

4 d y d z ( F x  + - ^ * d x )3 X

FIGURE 2 -  DIFFUSION THROUGH CHANNEL

I t  is  assumed th a t  d iffus ion  is the only transport mechanism.

Again, consider an element of volume in the form of a rectangular

para lle lep iped  whose sides are p a ra l le l  to the axis of coordinates and are o f  

length 2dx, 2dy, 2dz. Let the concentration of d if fus in g  substance be P.

According to Fick's law,  the rate of tran s fe r  of d iffus ing  substance

through a unit area of a section is  proportional to the concentration gradient

measured normal to the section, i . e . ,

F = -Dx aP

Where

Dx is a p rop ort io na lity  constant.

The negative sign indicates that the d iffus ion  occurs in the

d irection  opposite to that of increasing concentration. The rate at which the 

d iffus ing  substance enters the element through the face ABDC is  given by
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4dydz (Fx -  aFx dx) 
aX

Where Fx is  the rate of t ran s fe r  through the unit area of the 

corresponding plane G (x , y ,  z) where G is  the center o f the element.

S im ila r ly ,  the rate of loss of d if fus in g  substance through the face A'B'C'D'

is given by

4dydz (Fx + aFx dx) 
aX

Thus, the contribution to the rate of increase of d iffus ing

substance in the element from these two faces is ,

4dydz (Fx -  aFx dx) -  4dydz (Fx + aFx dx) = - 8 dxdydz aFx 
ax ax ax

S im ila r ly  from other faces we obtain

- 8 dxdydz aFy and - 8 dxdydz aFz 
ay az

But the rate at which the amount of d iffus ing  substance in the

element increases is  also given by

8 dxdydz _aP 
at

Hence we must have,

8 dxdydz = - 8 dxdydz aFx - 8 dxdydz aFy - 8 dxdydz aFz
at ax ay az

or

aP + aFx + aFy + aFz = 0
at ax ay az

I f  the d iffus ion  c o e f f ic ie n t  D is  constant, which is true for a

dilu ted realm such as receiving waters, we have

Fx = -D Fy = -D jaP and Fz = -D aP
ax ay az



Where (Del) is  a Laplacian operator.

The above is fo r molecular d if fu s ion .

In the case of turbulent d iffus ion  the same approach is used;

however, the d if fus io n  co eff ic ien ts  are no longer the same in the x ,  y ,  and z 

directions . In th is  sense turbulent dispersion is viewed as molecular

d iffus ion  processes, i . e . ,  dispersion by ve loc ity  gradients (turbulent

dispersion) is governed by concentration gradients. This view has been 

confirmed by many researchers in the past, including Taylor (1954), Elder

(1959), Vanoni (1953) and Glover (1964). Taylor and Elder noticed that the 

diffus ion  of momentum by turbulence is of fundamental importance in 

streamflow. Through a f lu id  mechanics approach Taylor and Elder showed that  

the mechanism of turbulence can be described by a v ir tu a l c o e f f ic ie n t  of 

diffus io n .

Introducing D j,  D2 , and D3  as turbu lent d iffus ion  co e ff ic ien ts  

in the x , y ,  and z d irec t io n s , we w r ite ,

aP = Dj _£P + D2  afP + D3 _£P (3)
a t ax2 ay2 ax2

Since EQ. (3) is much greater than EQ. (2 )  in magnitude as i l l u s ­

tra ted  previously, we w r i te ,

aj> = Di £_P + D2 a^P + D3 ef_P (4)
' at ' d iffus ion  ax2 ay 2 az2
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(3 ) IRREVERSIBLE FIRST-ORDER DECAY

Assume that there is  only decay in the receiving water and the 

po llu tan ts ' decay is proportional to the concentration present.

Where,

P is  the pollutant concentration and P i , * * * * ,  Pn are the f in a l  

products formed from decomposed po llu tan ts .

Then

an integer but generally is a positive  real number. I f  n is a positive  real 

number, the reaction is ca lled  fra c t io n a l-o rd e r .

Furthermore, i f  the reaction is f i r s t -o r d e r ,  

n = 1

Thus, an ir re v e rs ib le  f i r s t -o rd e r  reaction which describes a 

po llu tan ts ' decay in receiving waters is  expressed as,

The above discussions related to the derivation  of individual 

terms— namely, convection, d i f fu s io n ,  and decay.

I f  convection, d if fu s io n ,  and decay occur simultaneously, one can 

w rite  in accordance with the superposition p r inc ip le  the following equation:

P Pi + P2  + Pp

, aP. = Ki Pn
' a<- 'at

Here the superscript n is pos it ive . The term, n , is  not necessarily

 ̂ a t   ̂ decay -  “ ^ 1  P (5)

I P )
a t  d iffus ionat Total a t  convection + d iffus ion  + ^at^ decay

Combining EQS. ( 1 ) ,  ( 4 ) ,  and (5) one obtains the fo llow ing:

a£ = -u a£ -v _aP -w + ^ 1  92P + ^2 92P + & 3  a2P -  K].P ( 6 )
a t  ax ay az axz ayz az 2
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The above is a general 3-dimensional, unsteady state model fo r the 

d is tr ib u t io n  of nonconservative po llu tan ts , such as BOD-material in receiving  

waters ( lakes , streams, e tc . )  with ir re v e rs ib le  f i r s t  order decay. EQ. ( 6 ) is 

a l in e a r ,  second order, parabolic p a r t ia l  d i f fe r e n t ia l  equation. Generally u, 

v, w, D j, D2 , and D3  are not constants, but rather a function of both 

time and space (x ,  y ,  z ,  t ) .  D iffusion co e ff ic ien ts  in p a r t ic u la r  are ex­

pressed as d if fus io n  tensors in general. By ju d ic ious ly  d iv id ing the receiv­

ing water into several segments, the terms u, v, w, D j, D2 , and D3  can 

be made s u f f ic ie n t ly  close to constant values.

I t  must be emphasized that EQ. ( 6 ) is  not the BOD (Biochemical 

Oxygen Demand) equation y e t .  Since BOD is  measured by the oxygen consumed or 

exerted by the decaying po llu tan ts , EQ. ( 6 ) must accordingly be modified. I f  

M denotes the to ta l  amount of pollutants  discharged at a given time into the 

receiving water, the amount already exerted a f te r  a certa in  time has elapsed 

can be expressed as,

M -  P ( x ,y , z , t )  (7 )

Since M is  the to ta l  amount of po llu tant present at time 0 and P is  

the amount of pollu tants l e f t  (or present) at time t ,  EQ. (7) indicates the 

amount already decomposed (or exerted ), i . e . ,  BOD. T ra d it io n a l ly ,  BOD is  

expressed not as the concentration o f pollutants i t s e l f  a lready  decomposed but 

as the "equivalent amount o f  oxygen" consumed to  decompose the p o llu tan ts . In 

th is  sense, M is  in terpreted as the to ta l  amount of oxygen to completely 

decompose M. This to ta l  amount of oxygen is known as the u ltimate BOD (BODu) 

and generally expressed as Lo. Thus the general 3-D, unsteady state BOD 

equation is ,
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L ( x , y , z , t )  = M -  P ( x ,y , z , t )  = Lo - P ( x , y , z , t ) (8 )

Where,

aP = -u ap̂  -v a_P -w £P + D̂  a2P + D2  92 P + D3  a2 P -  K^P
at ax ay az ax2 ay 2 az 2

and L is the BOD as a function of both time and space. Since L is usually ex­

pressed as an equivalent amount of oxygen needed to degrade p o llu tan ts , M and 

P must also be expressed in th is  manner.

3. DERIVATION OF THE DISSOLVED OXYGEN (DO) EQUATION

All the assumptions used to develop the BOD equation apply in the  

derivation of the DO equation. In order to derive the DO equation in re­

ceiving waters, i t  is necessary to understand the general mechanisms of DO as 

to  i t s  depletion (sink) and replenishment (source).

atmosphere through d if fu s io n  (reaeration) and from the photosynthetic a c t iv i ty  

of algae. DO supply by reaeration is c h ie f ly  governed by the driv ing force at 

the in terface of gas ( a i r )  and l iq u id  (w ater) .  This driving force from the  

atmosphere is proportional to the DO d e f ic i t  of the receiving water. DO 

d e f ic i t  is defined as the difference between the saturation value of the DO 

(Cs) and the actual DO concentration present in the water body. Mathemat­

ic a l ly ,

Where,
C = DO concentration

Cs = Saturation value of DO, constant at a given temperature, 
pressure and s a l in i ty .

(1) The Sources of DO

DO is  supplied to the receiving water in two ways--from the

reaeration = ^ 2  (^s ” C)
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Kg = a p roportiona lity  constant, known as the reaeration  
c o e ff ic ien t

DO is  also supplied by algal a c t iv i t y  (photosynthesis) in the re­

ceiving water. Since algal a c t iv i ty  is  only possible during sunlight rad ia ­

t io n ,  DO supplied by algal a c t iv i ty  is diurnal in nature .  Mathematically,

gC
^ITt'* algae = M * )

Where A (t)  denotes algal a c t iv i t y  as a function o f time.

(2) The Sinks o f DO

DO is c h ie f ly  depleted by the decomposition of biochemically 

degradable organic m ate r ia l .  Other sinks are benthal oxygen demand and a lgal

resp ira t io n . Generally, these two are very small in magnitude compared to

oxygen depletion by biodegradable organic m ater ia l;  thus, the sinks o f DO can 

be w ritten  as,

= -  K jP (x ,y ,z , t )
a t

The negative sign indicates that ROD-material depletes DO. Kj has

been previously defined. Combining above with the assumption th a t l in e a r i t y

s t i l l  holds, we w rite

i aC i « aC \ i aC * » sC»
'"at Total = ' a t  ' reaeration + a t '  algae + a t '  BOD-material

( a l K  K2 (Cs -  C) + A ( t )  -  K iP (x ,y ,z , t )

Since

P ( x ,y ,z , t )  = Lo -  L ( x ,y , z , t )

I t  follows th a t ,  

aC
at = k2 ( cs -  C) + A (t)  -  Ki[Lo -  L ( x , y , z , t ) ]  (9)
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Upon examining EQS. ( 8 ) and (9) i t  is  found that the BOD equation 

must be solved in order to obtain an ana ly tica l solution o f DO.
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V. ANALYTICAL SOLUTIONS OF UNSTEADY-STATE, 3-D EQUATIONS

1. Analytical solution of BOD equation

One must f i r s t  solve Equation ( 6 ) in order to solve Equation ( 8 ) .

Rewriting EQ. ( 6 ) ,

eP = -u 3_P -v -w _eP + a2P + Dg aaP + D3  a2P -  K̂ P ( 6 ) 
at ax ay az ax2 a y 2 az 2

Here P is  the p o l lu ta n t 's  concentration (not BOD) in the receiving

water as a function of time and space. In order to solve the equation above,

the boundary conditions and the coordinates system chosen are stated below.

FIGURE 3 - COORDINATES SYSTEM OF RIVER CHANNEL

Suppose the above figure  is  an exaggerated in fin tes im al element o f  a 

r iv e r  channel. W is  the width of channel, and H is  the depth of flow. The 

center of coordinates is  located at the center o f the para lle lep iped . Equa­

tio n  ( 6 ) is  solved f i r s t  by assuming the po llu tan t is  discharged at location  

(0 ,0 ,0 )  at time zero. The solution for a discharge point other than (0 ,0 ,0 )  

can be determined from th is  solution by simply transforming the coordinates 

system.
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The dimensions of x ,.v ,z, and t  are as follows:

-  OCX x < 00

-  W < y < W
2 “  “  2

-  i i  < z < J1
2 -  “  2

and

t  2  0

(1) INITIAL AND BOUNDARY CONDITIONS

1. The po llu tan ts ' concentration must be zero at a l l  points except (0 ,0 ,0 )  

where pollutants  are discharged at t=0. I f  pollutants are discharged at  

(Xo,Yo,Zo), they must be zero at a l l  points but (Xo,Yo,Zo) at t=0. Mathe­

m a tic a l ly ,  th is  can be w rit ten  as,

P = 0  as t --- * 0 ,  fo r  ( x ,y ,z )  ^ (0 ,0 ,0 )
( 10)

P = 0 0  as t ---- 0 , i f  ( x ,y ,z )  = ( 0 , 0 , 0 )

2. No f lux  across the surface -  Since no pollutants are introduced across the

surface of the r iv e r  channel, i . e . ,  from the v e r t ic a l  (normal) d irection

across the surface, we w rite

= 0  @ a l l  points o f the surface (x ,y ,z )  ( 1 1 )
an

where %  n denotes the d i f fe re n t ia t io n  in the d irec t io n  of the outward 

normal to the surface.

3. Since there is no concentration gradient of pollutants  at the boundaries 

of the r iv e r  channel, we w r i te ,
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_aP
0 X

aP
ay

aP
az

0

0

0

as t  -

@ y- 

@ z-

00

+ W
— 2  , and ( 12)

PERVIOUS STREAM CHANNELS 

Organic, biodegradable pollutants are usually absorbed through the  

bottom and side banks of the channel which in turn trave l fu r th e r  through the 

porous medium o f the ground. This is  especia lly  true fo r BOD-material which 

contains substantial amounts of dissolved solids. In such cases, the stream 

geometry is  stretched from a l im ited  geometry into th a t of unlimited  

(unbounded) geometry. Let M equal the to ta l  amount of po llu tants  introduced, 

then

m
oo

P ( x ,y , z , t )  dxdydz (13)

-00  - 0 0  -oo

for an instantaneous point source. For continuous sources, we w r i te ,

t oo oo oo
m (t)dt = J  J  J  P ( x ,y , z , t )  dxdydz (14)

o -co -oo -oo

where m(t) is  continuous sources mentioned above discharged within time d t .

m(t) can be constant or per iod ic , such as a sinusoidal input.

The solutions w i l l  be investigated on both cases of EQS. (13) and

(1 4 ) .  Note that the l e f t  hand side of EQ. (14) indicates the to ta l  amount of

pollutants introduced during a time period of dt for a duration of t .
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IMPERVIOUS STREAM CHANNELS

Suppose the bottom and banks of the stream channels are impervious

due to man-made construction. An increasing number of streams are made 

impervious in order for the pollutants not to reach groundwater sources as 

well as to prevent erosion  of channels. In such cases, EQS. (13) and (14) are 

modified as follows:

CHANGE OF VARIABLES 

Let P ( x ,y , z , t )  = exp(ax + by + cz) • P ( x , y , z , t ) ,  where a , b, and c 

are a rb i t ra ry  constants. Denote fu r th e r  that E=E(x,y,z) = exp(ax + by + cz) 

in order to make the notation simple. Note that both P and P are a function  

of both time and space but exp(ax + by + cz) is  only a function o f space.

M P ( x ,y , z , t )  dxdydz

-oo -w/2 -H/2

(15)

and

oo w/2 h/2

P ( x ,y , z , t )  dxdydz (16)

Note th a t  x is  integrated from -  00 to 00 in both cases.

(2) SOLUTION PROCEDURES

Equation ( 6 ) w i l l  be solved f i r s t .  Rewriting here,

aP = -u aP -v a_P -w sP + Dj a2P + D2  a2P + D3  a2P -  K̂ P ( 6 )
a t  ax ay az ax2 a y 2 az2

Then,
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= E Pt
a t
aP 
at

u aP = u (EP* + aEP)
ax

V 3P = v (EPy + bEK)
ay

w I t  = w (eT2  + cEP) 
az

and

Dj a P = Dj (EPXX + 2aEPx + a^EP) and so on. 
a x 2

The subscripts denote the d i f fe r e n t ia ls  with respect to P. In s e rt ­

ing above to EQ. ( 6 ) ,  d ivid ing both sides of the equation by E(^0) and upon 

s im plify ing , we obtain

P» " Di Pxx '  D2 ’Pyy“ D 3 p '„ * - (a u *b v *c w -a 2 D|- b BD2 - c aD34K|) p ^ ( - u * 2 a D , ) «  py 

(-v + 2b D z ) *pr ( -w *2cD 3 )

The following equations are required in order to e lim inate  new 

convection terms, i . e . ,  Px, Py, and Pz.

Hence,

-u + 2aDj = 0

-v + 2 bD2  = 0

-w + 2 CD3  = 0

I t  follows th a t ,

a = u / 2 Di

b = V /2 D2 , and

c = W/2 D3
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Note th a t since a, b, c, D j, Dg, and D3  are a l l  constants 

there is no d i f f i c u l t y  whatsoever in selecting a, b, and c to elim inate  

convection terms. With the values a, b, and c defined above, we w r i te ,

Pt = DlPxx + °2Pyy + °3PZz “ (u2 /4Di + va/ 4 D2  + wa/4D3 ) P

Since the c o e ff ic ie n t  of P is  constant, we l e t ,

Ki = u2/4Dj + v2/4D2 + w2/4D3  + Ki 

I t  follows th a t ,

Pt " DiPxx + ^2Pyy + ^ P z z  “ ^lP

By fu r th e r  le t t in g ,

x = / [T f  x

y = /Djj y .  and

z = / D j  z

Thus,

Dipxx = Di 

I t  follows th a t ,

Dl pxx = pxx. ° 2 pyy = pyy . and so on 

Summarizing the above resu lts ,

Pt = Pxx + Pyy + P?z -  KlP ( x . y . z . t ) (17)

Note that the coordinate system is now changed from 

( x , y , z , ) to  (x ,y ,z )

TREATMENT OF DECAY TERM

Let

P ( x , y , z , t )  = exp(iTit) P ( x , y , z , t )
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Then

= p ( -  K, exp ( -K,  t )) *exp  ( - K , t ) - | - y

and so on.

Inserting above to EO. (1 7 ) ,  we get

- K ,  e x p ( - K , t ) p + exp(-K,  t )  = ex p( -K f , t ) ( a2P , a2P , a2P 
a 5f2 a y 2 a z 2■ j - k ) -  K, e x p ( - K , t ) p

Dividing both sides of the above equation by exp (-K ]t )  (^0 ) ,  we get

i f .  = ifJL + ®Zp + i f £
a t  ax 2 a y 2 az 2

( 1 8 )

Equation (18) can be solved by a number of ways, including in tegra l  

transforms. Equation (18) w i l l  be solved by the method of separation of 

variab les . Let the solution be o f the form,,

P (x ,y ,T , t )  = f i ( x , t )  f 2 (y» t)  f 3 ( z , t )  = f i f 2 f 3  (19)

Note that P is  expresed as a product of solution.

Then,

i f .  = f 2 f 3  1 + f]_f3  + f \ f 2  9 f 3 » and so on
at at at at

Inserting above to EQ. (1 8 ) ,

(20)

Since,

f 2 f 3  i  0 , f ! f 3  f  0 , and f x f 2  f  0

We must have
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(21) 

(22)

(23)

in order fo r  the l e f t  hand side of EQ. (20) to be zero. Note that since f j  

is only a function of ( x , t ) ,  f 2  a function of ( y , t ) ,  and f 3  a function of 

(z ' . t )  there is  no other combination among EQS. (2 1 ) ,  (2 2 ) ,  and (23) which can 

make the l e f t  hand side of EQ. (20) zero.

The solutions of EQS. (2 1 ) ,  (2 2 ) ,  and (23) are,

f l  = B it ' /Z exp(-xz/4 t )

"  I / 2

f 2  = B2 t  e x p ( -y z/ 4 t ) ,  and

f3 = B3 t /Z e x p ( -zz/4.t)

where B j,  B2 , and B3  are a rb i t ra ry  in tegra l constants.

Insert in g  the above to EQ. (1 9 ) ,

P ( x . y / z . t )  = BtVz exp (-xz/4 t  -  y z/ 4 t  - 7 z/ 4 t )

where

B = B1 B2 B3  

Transforming from P to  P we w r i te ,
1

PCx.y'ji'.t) = Bt3/Z e x p ( -K it )  exp (-xz/4 t  -  y z/ 4 t  -  z 2 / 4 t )

Transforming back to the o r ig in a l coordinates ( x ,y , z ) ,

P^(x,y,z ,t)  = Bt3/Z e x p (-K it )  exp (-xz/4 D it  -  y z/ 4 D2 t  -  z z/ 4 D3 t )

F in a l ly  converting from P to  P,

afi -  9%  = 0
a t  a x z

9fz_  .  _affz_ = 0 , and
a t  a y 2

af3 _ a2fs = 0  

a t  a ? 2



27

P ( x , y , z , t )  = B t^ ex pt -K ,  t ) exp (ox + by *cz) e x p ( - x z/ 4 D ,  t -  y z/ 4 D z t  -  zz/ 4 D 3t ) ........ ( 2 4 )

where,

B = a rb i t ra ry  in tegra l constant 

Kl = Kj + uz/4Di + vz/4D2 + wz/4D3 

a = u/2Dx> b = v / 2 D2 , and C = W/2 D3

Note th a t  EQ. (24) is of product form and each term weighs the

others in order to take into account specif ic  e f fe c ts ,  such as f i r s t -o r d e r

decay, convection, etc .

EQ. (24) is  fu r th e r  s im plif ied  as follows.

F ir s t  co llec t in g  exponents of the above equation fo r  those re la ted  to x,

-uzt / 4 D ,  + u x / 2 0 ,  -  xz/ 4 D ,  t = -  I /  4  D, t ( x z- 2 u t x  * uz t z) = -  I / 4 D ,  t  ( x - u t ) z

By the same fashion, we obtain expressions fo r  the exponents re la ted  to y and 

z as

-  l / 4 D2 t  (y -  v t)^  and -  l / 4 D3 t  (z -  w t ) 2  

EQ. (24) is  now rew ritten  as,

~ 3/2 o 9 9
P ( x , y , z , t ) = B t  exp (- K , t ) e x p ( - ( x - u t )  / 4 D ,  t - ( y - v t )  / 4 D 2 t - ( z - w t )  / 4 D 3t )
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DETERMINATION OF INTEGRAL CONSTANT 
AND SOLUTIONS FOR BOD EQUATION FOR 

PERVIOUS STREAM CHANNEL UNDER 
INSTANTANEOUS POINT sOURCT-

Since the to ta l  pollutants introduced must be contained somewhere in 

the system where there is no decay or where the decay constant is  small, we 

w rite ,

co oo oo

M = P ( x ,y , z , t )

-00 -00 -00
1 im 
K2  - 0

dxdydz (25)

The above must hold for an instantaneous point source. 

Rewriting EQ. (2 5 ) ,

r f°° f°?a r °?2 2
( t ' / e xp ( - ( x -u t ) 2 / 4 D , t  )dx • / t / e x p ( - ( y - v t ) 2/ 4 D 2t ) d y  /  t " e x p ( - ( z - w t ) 2/ 4 D 3t ) d z  

-00  -  00 -00

= M 

—  (26)

The f i r s t  in tegral is  
/-OO
/ t _ 1 ^ 2  exp(- ( x - u t ) 2 /4D jt )d x  (27)

Since EQ. (26) must hold for zero or i n f in i t e l y  small convection 

term (or in general fo r  a l l  values of u ) ,  we w rite  from EQ. (2 7 ) ,

-oo.

-00 oo

l-o f  exp ( - ( x-ut f / 4 D ,  t ) dx= J  t ' / exp(-x2/4 D ,  t ) d x .... (28)

-OO -00

Introducing the erro r  function,

,  r *  .  ,  <2 9 >
erf x = -— 3- / exp (- 5 ) d 5

* *  i
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so th a t ,

e r f  oo = 1

and

e r f ( - x )  = - e r f ( x )  (odd function) (30)
2

For small values of x we use the series fo r  e x p ( -^  ) in EQ. (29) 

and thus obtain,

erf x = -pzz f  exp(-5) d5 = —  f ( T l   ̂ ^  J  ) d 5 (3 | )
S W  J  S W  J  n-o n I

0  0

The above series is  uniformly convergent. I t  may be integrated term 

by term and there fore ,

_  / .\n  2n * i

erf x = -==■ V "    <3 2 )
S r t  ^  (2 n t|)n j

Going back to EQ. (28) and l e t t in g ,

-x 2 /4Dxt = £  2

then

?  00 3 S  X ------------* -_+  oo

and

( l / 4 D ] t )  2xdx -  2?d^ = x(D1 t ) ~ 1 / 2 dg

dx = 2Dxt  . (Dxt ) 1 / 2  d f  = 2 (D x t) 1 / 2 d^  

Thus, EQ. (28) becomes,

oo oo oo
J  f /Zexp ( - x Z / 4 D ,  t ) dx = J  t ' ^ e x p l - ? 2) • 2 (  D, t)'/Z d§ = 2 D J  exp (-51 d$

-oo -oo -oo

The r igh t hand side o f the above equation is  now the error function  

defined previously.



30

Since,

e x p ( - 5 Z) d 5  = -  J e x p ( - ^ 2 )d^  + J  exp ( -$*)  d$

I t  follows th a t ,
oo oo
exp(-5Z)d5 = 2  f exp(-5 Z)d ^I

-00 0  

Recalli ng,
a

e r f  oo = 1  = 2/J7r~f e x p ( - § ‘  ) d ?
“'O

Hence,
0

/ exp(- % )d% = J k / 2

Thus
00

/•exp(- §  )d §  = J W

I t  follows th a t ,  

0000 00 

J  t' / Z e x p ( - x z / 4 D ,  t ) d x  = 2D'(ZJ  e x p ( - £ z ) d ^  = 2  VD, 7C 

-oo -oo

Second and th ird  in tegrals  of EQ. (26) are evaluated by the same fashion. 

Thus EQ. (25) now becomes,

00 00. 00

P( x, y,  z, t ) d x d y d z

-oo -oo -oo
lim , lim 
K , - * o  u,v,w—- o

I t  follows th a t ,
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B =  U____.-------------------------------3/2
J  8  D1 D2 D3  T̂"

Thus t h e  s o l u t i o n  f o r  I n s t a n t a n e o u s  p o i n t  s o u r c e  b e c o m e s ,

- 3 /2

P ( x , y , z  , t  ) =  ■ M ■—  e x p ( - K . t )  e x p ( - ( x - u t ) Z/ 4 D . t  - ( y - v t ) Z/ 4 D  t - (  z - w t ) / 4 D  t (33) 
8  D, D2D37T i/z  2

S i n c e  BOD ( L )  i s  r e l a t e d  w i t h  p o l l u t a n t  c o n c e n t r a t i o n  by  EQ. ( 8 ) ,  

t h e  s o l u t i o n  o f  t h e  g e n e r a l ,  3 - D ,  u n s t e a d y  s t a t e  e q u a t i o n  u n d e r  i n s t a n t a n e o u s  

p o i n t  d i s c h a r g e  i s ,

L ( x , y , z , t )  = M -  P ( x , y , z , t )  = Lo -  P ( x , y , z , t )  ( 8 )

t h u s ,

L ( x , y , z , t ) = Lo

- 3/2 2 2 2
I  t  e~K,t  e - ( x - u t ) / 4 D , t - ( y - v t ) / 4 D 2t - ( z - w t ) / 4 D 3t

«/8 D, D2D37T3/2

I t  i s  o f  g r e a t  i m p o r t a n c e  t o  n o t e  t h a t  t h e  s e c o n d  t e r m  o f  t h e  a b o v e  

e q u a t i o n  bec ome s z e r o  as t — - 00— t h a t  i s ,  p o l l u t a n t s '  c o n c e n t r a t i o n  becomes

z e r o  a s  t  - 0 0 .  T h i s  i s  t r u e  f r o m  a b i o c h e m i c a l  p o i n t  o f  v i e w  i n  t h a t  a l l

t h e  b i o d e g r a d a b l e  p o l l u t a n t s  w i l l  e v e n t u a l l y  be d e g r a d e d ,  l e a v i n g  no p o l l u ­

t a n t s  i n  t h e  s t r e a m .  H o w e v e r ,  t h e  BOD m us t  a p p r o a c h  Lo ( u l t i m a t e  BOD) a s  

t — - 0 0 —  t h a t  i s ,  t h e  o x y g e n  r e q u i r e d  t o  d e g r a d e  a l l  t h e  p o l l u t a n t s  ( u l t i m a t e  

BOD) w i l l  r e a c h  t h e  maximum v a l u e ,  i . e . ,  L o .  T h i s  i s  so s i n c e  t h e  s e c o n d  t e r m  

o f  EQ.  ( 3 3 )  bec ome s z e r o  a s  t  * - o o ,  m a k i n g  L — “ Lo a s  t —— 0 0 .
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SOLUTION FOR IMPERVIOUS CHANNEL 
UNDER INSTANTANEOUS POINT SOURCE

I f  the stream channel is  impervious, the solution must be modified 

accordingly. Increasing numbers of stream channels are made impervious in  

order to prevent seepage and leaking of pollutants as well as fo r  erosion 

contro l. Under th is  condition the to ta l  pollutants must be contained within  

the bounded geometry. Accordingly, the in tegral constant B must be changed. 

Thus we must have,

00 W/2 H /2

M = B J  J  J  P ( x ,y , z , t )
- 0 3  - W / 2  - H / 2

dxdydz
lim , lim  
Ki— - 0  u ,v ,w — ' 0

Using a previous evaluation on the e rro r  function, the second 

in tegra l of the above equation is  w r it ten  as follows:

w/ 2  w /4 7 D 2t

J  t ' /Zexp( - y2 / 4 D zt ) dy = 47DZ J  exp(-§2) d f  (34)

- W / 2  o

There are two cases that must be considered in evaluating the  

d e f in i te  in tegra l of EQ. (34 ).  The reason of th is  w i l l  be made c lear in the  

subsequent developments.

(1) CASE 1 -  The upper l im i t  of in tegra l (w/4JD2 t ) is small (< .4 8 ) .  

Using EQ. (32) we get,

/ * X2 00 / I>n 2n<|
e d f = _ i _ 5 — ' H > x .

T 7zT TTS-1 (2 nt|)n j
u

w/ 2  w / 4 / D j

f  t'/Zexp(-y2/4D 2 t )  dy = 4 /D 7  T e“? d 5 = 4 / D ^  f 2-*  H ) n (w/4/PTt )2n>'
J  J  T7o  (2 n +1) n [

- W / 2  0
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(2) CASE 2 -  The upper l im i t  of in tegral is  large (> .4 8 ) .

As seen from the above, i f  the q u an t ity ,w /4  ,/D2t , is greater than

.48, the in f in i t e  series does not converge because the numerator of the series

increases much fa s te r  than the denominator as n ►oo.

That is ,

( — yy )Zn*' 3 >( 2  n + I) n ! , as n   oo
4 / T £ T

Any in f in i t e  series used in  any engineering or mathematical evalua­

t io n  must not diverge but converge very rap id ly .

For large values of w/4JD2t , we proceed as follows;

R ecalling ,

e r f  x = ^  f  e 
JTC

o
For large values of x we w r i te ,

X 00

0 X

A single in tegration  by parts of
00

X

gi ves

and repeating the process n times we f ind

00

X GO

X
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This series does not converge since the ra t io  of the nth term to the 

(n - l ) th  does not remain less than un ity , as n increases.

However, i f  we take n terms of the series, the remainder--namely,
00 . 2

1-3 ( 2 n - l )  f  e'S~ d s
2  n J  ^ 2 n ^

is less than the nth term, since
CO 00.2

/ e'g d£ <  e-x /  J 3  .
J  I 2" J  f 2n

X X

We can thus stop at any term and take the sum of the terms up to

th is  term as an approximation fo r  the function, the erro r  being less than in

absolute value than the las t  term we have retained.

Thus i t  follows th a t ,

er f  v = _ i _  e'1*2 <-!_____L  +   + _ L J _________\
J W  ( * 2X3+ 2*. x5 }

The above series rap id ly  converge fo r  large x.

F in a l ly ,  we w rite  fo r large x
}

J e- r dr -  J_ e*x2 ( J i^ 3_
e 2  ' x 2 x 3 2 2 x5

For large W/4 /c>2 t  we then w rite

W/2

P (- , V 4 D! t ) d >  - * n r t ^

- W /2

The th ird  in tegra l of EQ. (26) is  evaluated by the same fashion.
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A great deal of care must be exercised in using the in f in i t e  series  

discussed so fa r  in evaluating the actual integral constant. Since the 

i n f in i t e  series evaluated above become denominators, in the actual determina­

t ion of in tegral constant Case 1 and Case 2 must be reversed. The problem is  

fu r th e r  complicated from the fac t  that there are double in f in i t e  series  

involved in determining the in teg ra l constant. Our objective is that both 

series used in the evaluation of in tegra l constant must converge. I f  only one 

series converge while other series diverge, we cannot guarantee as to the  

convergence of th e i r  product. We w i l l  examine th is  in d e ta il  in the following  

developments.

1. Both W/4JD2 t  and H/4 jD 3 t  are small;

We w r i te ,

M=  B < 2 / i y t 4 / d 7 ( - L  e x p ( - w / 4 j D 2t  f  ( — -7
2 ' ' / 4 7 D ^  2 ( w / 4 / D ^ t ) 3

( 2  exP ( - H/ 4 ^ )  <H /4 !r0T  2(H /4Jm )3"

47d7  (

Upon s im plify ing ,

M = B 8  J d . D . D jTT e x p ( - (  w / 4 / D 7 t ) Z - ( H / 4  J D T t f ) (  1 ) ( -
I

w / 4 J D z t  H / 4 J D , t

I t  follows th a t ,
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B = M
S ' / D ,  D2 D3TC

exp (( w / 4 / D T T ) *  ( H / 4 / D 7 t  ) Y (
w / 4 7  Dzt H / 4 > /  D3 t

I t  is  now c lear that the above double in f in i t e  series are uniformly 

convergent for values of both ( W/4 </D2 t ) and (H/^VD^i )  which are large.

I t  must be c le a r ly  understood that in the above process we used the

in f in i t e  series of Case 2 (W/4>/0 2 t  and H /4 /D j t  are both la rg e ) .  Again, 

the reason is  tha t  those double in f in i t e  series become denominators in evalua­

t ing integral constants; thus we must reverse Case 1 and Case 2.

2. For both W/4 ^D2 t  and H/4 ^D3 t  are large;

Now we use Case 1 in th is  case instead of Case 2 fo r  the reason repeated 

previously.

We w rite

Thus,

£ L ,  { H ) n( w / 4  _

n*-o ( 2 n « l )  n j

l - l f  (H /4 y p ^ t

]
-i

I 2 3 ( 2 n t | )  n j
( 3 4 - 2 )

Again, i t  is evident that when l / l /4 /D^t  and H/A/D jjt are la rg e ,  

the above series rapidly converges because denominators o f the series increase 

much fa s te r  than the numerator.
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There are cases where only W /^/Djjt-  is small, and H/4 /D 3 F is  

large or vice versa. In th is  case, we have to select the series appropriately  

so that the product of the two series converge.

3. W/4 7 D2 t  is  small and H/4 /D 3 F  is  large  

We w rite

M = B (2n+l)n

I t  follows th a t ,

B = M
n ____  z r n l .,-1

, , 1  , “  , ( ' I )  ( H / 4 / C M )exp ( w / 4 j  Dat )  — = = -------------) -------- — — — - f —
w/4J D,t z— 1 (2n +l )n l

6 n =0

(34-3)

4. W/4 jD 2 t  is  large and H/4jD3 t  is  small 

This is  the reverse case of the previous one.

M = B 2 i p ' 4 C f  H V J ^ j g T L  . 4 / ^ ( 1  e x p < - H / 4 / D ~ F H  '
DaO (2n+l) n!

• ) )

Thus,

B = M
16 J D. D , D , / r

exp( H/47D71)
03

n * o

n    2n* i
(-1) (w /4 /DTt)  

(2n H ) n I H / 4 / D ^ T
(34-4)
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As i t  is seen above, in  the case of impervious channels the problem 

is enormously complicat coupled with the magnitude of traverse and ve rt ica l  

diffus io n  co e ff ic ien ts  , D3 ) .  Thus, in the case of impervious channel 

the BOD (and thus DO) musu be evaluated by d i f fe re n t  equations (1 out of 4 in  

the above) each time t  va r ies . In other words, no one fixed formula can be 

used even under the same discharge condition and same o rig ina l pollutant con­

centra tion .

The net e f fec t  of th is  is to  allow use of greater t  (time) in  

evaluating unsteady-state conditions, not l im it in g  upper l im its  of the time 

scale used in the unsteady-state condition only to  the time when the pollu tant  

reaches the bank.

All of the above cases of d if fe re n t  in tegra l constants w i l l  be 

d e lib e ra te ly  incorporated in  the subsequent computer program to be used in the 

current model.

F in a l ly ,  the solution fo r  the general BOD equation under impervious 

channel conditions is  w rit ten  as;

L ( x , y , z , t ) =  Lo I -  B • t / Z - e K|t • e x p ( - ( x - u t ) a/ 4 D , t - ( y - v t ) a/ 4  D2t -  ( z - w t ) 2/ 4 D 3t ) (35)

Where B is defined as previously shown (EQ. (3 4 ) ) .  Again, B can change at 

d if fe re n t  elapsed times as mentioned previously.
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Solutions Under Continuous Sources

For the above case we can generally w rite  the to ta l  pollutants  

contained in the system under input of m (t) per dt as,

t

j f  m (t)dt (36)

o

Note that m(t) can be any function desired. One example would be a 

periodic function.

EQ. (36) w i l l  be used in  place of M(=Lo) in  determining the integral 

constant. Thus the solutions are as follows:

1 -  -3/2
. f . T .  t'  _ K , t ,  ( - | x - u t ) £ / 4 D , f - ( y - v t ) 2/ 4 D „ t - ( z - w t ) z/ 4 D . t )

L ( x , y , z , t ) -  / m( t )dt  I -  8y D p'g[y r 3/e e e 1 2 s (37)

fo r a pervious stream channel and

t
L ( x , y , z , t ) = J  m( t ) d t

o

. i-j ,~3/2 -K ,t ( - ( x - u t ) / 4 D . t - ( y - v t ) / 4 D , t - U - w t ) / 4 D  t )
I -  B t  e e 1 *  3 (38)

for impervious stream channels.

B has been defined previously (EQS. (34-1 , 2 , 3 , 4 ) ) .  The general 

BOD solutions obtained so fa r  are then inserted to the DO equation in order to  

get general solutions of DO.

For solutions of the BOD equation when pollutants discharge at 

points other than (0 , 0 , 0 ) ,  one merely changes the coordinate system for  

solution purposes. For instance, i f  the discharge point is  (Xo,Yo,Zo) at
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t= to ,  we simply use (X-Xo), (Y-Yo), (Z-Zo) and ( t - t o )  in place of x, y ,  z , and

t  in a l l  of the above solutions.

2. Analytical Solution of the DO Equation

The general 3-D, unsteady-state DO (dissolved oxygen) equation is 

EQ. (9 ) ,  as has been previously derived. Rewriting EQ. (9) here,

= K2 (Cs-c) + A ( t ) -  K i [ L o - L ( x ,y , z , t ) ]  (9)
a t

Where

C = DO concentration

Cs = DO saturation constant

l< 2  = reaeration constant

A ( t )  = DO supplied by algal a c t iv i ty

Ki = Po llu tants ' oxidation ra te

Lo = M = u ltim ate BOD or i n i t i a l  ( to ta l )  po llu tan ts ' conc.

L ( x , y , z , t )  = BOD as a function of time and space

Note th a t a l l  3-dimensional space variables are carried  by BOD as 

L ( x , y , z , t ) .  This means that the DO concentration at a given location under a 

given time w i l l  be governed by BOD at tha t  loca tion .

Let,

Cs-C = D

so th a t ,

dD = _ dc 
dt dt

Thus EQ. (9) is now rew ritten  in terms of D, where D denotes DO 

d e f ic i t  as a function of time and space.
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We w r i te ,

aD = .  k2D -  A ( t )  + Ki[Lo -  L ( x , y , z , t ) ]  (39)
a t

In i t i a l  and boundary conditions are;

D---------- -Do ( i . e . ,  C -----------“ Co) as t ---------- - o ,  and
(40)

D---------- “ 0 ( i . e . ,  C ---------- -Cs) as t ------------co

Where D and Co are i n i t i a l  DO d e f ic i t  and i n i t i a l  DO concentration, respect­

ive ly .

The above boundary condition holds only when A (t )  = 0. However, 

when there is algal a c t iv i ty  (A ( t )   ̂ 0 ) ,  D (hence C) w i l l  be governed by 

A (t)  as a sole contributor of DO.

When t  “ oo, there should be no DO d e f ic i t  and the DO concentra­

t ion  w i l l  approach the saturation concentration, i . e . ,  Cs.

This is so because the po llu tan ts ' concentration approaches 0 (or  

BOD approaches maximum value, Lo) when t ----------- -oo . When p o llu tan ts ' concen­

tra t io n  reaches 0 due to degradation, DO is  no more depleted, allowing i t  to 

approach saturation concentration.

SOLUTION STRATEGY

By observing the ana ly tica l solutions of BOD equations, i t  is seen 

tha t i t  is  p ra c t ic a l ly  impossible to carry these "long terms" associated with 

BOD solutions in to  the DO equation in order to obtain an an a ly t ica l solution  

o f DO. I t  seems that the an a ly t ica l solution of DO by d i re c t ly  carrying BOD 

solutions is  e i th e r  impossible or p ro h ib it iv e ly  complicated.
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In order to a l le v ia te  th is  problem, associated BOD values are 

obtained f i r s t  (depending upon channel conditions) from various BOD solutions  

under a given tim e, then these vai ■'S are entered into the DO equation. Thus 

the th ird  term in EQ. (39) becomes constant.

The same thing is done for DO supply by algal a c t iv i t y .  A fter these 

have been accomplished, EQ. (39) becomes a simply ordinary d i f fe r e n t ia l  

equation.

Mathematically,

30 = -  K2D -  A (t )  + KxCLo -  L ( x , y , z , t ) ]  (39)
at

Let A (t)  = Ac @ a given location and given tim e, and 

[ L o - L ( x ,y , z , t ) ]  = Pc @ a given location and given time.

Where Ac and Pc are now constants.

Thus,

J |  = - k2D -  Ac + iqPc

or

| j r  = -K2D -  Ac + iqPc (41)

The treatment o f Ac (DO supply by algal a c t iv i ty  at a given time and 

space) and Pc (oxygen-equivalent po llu tan ts ' concentration or BOD not exerted  

at a given time and space) as constants is  ju s t i f ie d  from the mathematical 

point of view on the basis th a t DO supply by algal a c t iv i ty  and DO depletion  

by pollu tants ' decomposition are not a function o f the DO equation. That i s ,  

the functions describing the temporal and spatia l d is tr ib u t io n  of algal 

a c t iv i t y  and BOD stand by themselves.
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STREETER-PHELPS EQUATION 

In order to put the 3-D, unsteady-state DO model and i t s  solution  

in to  the proper perspective, i t  is  worthwhile to c losely examine the classical  

1-D, steady-state DO model known as the Streeter-Phelps equation. The fo llow ­

ing is the orig ina l form of the equation;

^  = KxL -  K2D (42)

EQ. (42) has been known as a 1-D, steady-state DO model.

STEADY-STATE vs. UNSTEADY-STATE 

When i t  comes to steady-state or unsteady-state, time is the

c r i te r io n  while space is  the c r i te r io n  when i t  comes to uniform or non-uniform

( f l  ow).

Steady-state means th a t  at a given location of a channel the change 

o f any parameters under consideration with respect to time is constant. That 

i s ,  when "space" is f ix e d ,  the varia tion  of any parameters in terms o f concen­

t ra t io n  is constant around the clock. Unsteady-state is  exactly  the opposite 

of th is .  I f  the given location (space is  f ixed ) can be represented by a 

single value, whether i t  is  the x, y ,  or z value in the cartesian coordinates, 

for instance, i t  is  1-dimensional. This is then expanded to  2-D and 3-D. By 

closely examining EQ. (42) i t  is noted that dD/dt appears in the le ft-hand  

side o f the equation and i t  is  not zero in th is  steady-state model. However, 

in almost a l l  steady-state DO models, dD/dt is  set to zero on the basis that  

the DO varia tion  with respect to time is  constant; hence dD/dt = 0. One

typical case of th is  appears in Wastewater Engineering ( 6 ) .  The two e n t ire ly
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opposite views on dD/dt between the orig inal Streeter-Phelps equation (dD/dt 

/  0) and a l l  other work (dD/dt = 0) stems from gross misunderstandings of  

the subject in terms of steady-stateness and unsteady-stateness. In the 

orig ina l Streeter-Phelps equation, dD/dt was meant to be used "dD/dt in the 

d irec tio n  of flow (usually  lo n g itu d in a l) , "  but not in the cross-section of the 

channel. This view o r ig in a l ly  implied in the Streeter-Phelps equation is  

correc t,  thus "dD/dt along the channel under a given po llu tan t discharge."

The following f ig ure  w i l l  help to precisely  explain the above.

dD

FLO W

D IR E C TIO N  OF

FIGURE 4

GRAPHICAL REPRESENTATION OF TEMPORAL AND SPATIAL 
DISTRIBUTION OF DO IN THE RIVER CHANNEL

In the above Figure 4 , dD/dt appeared in the Streeter-Phelps equa­

t ion is  [d D /d t ] ]n, where subscript In denotes " longitudinal"  d ire c t io n .  

However, [d D /d t (x ,y ,z , t ) ]c n »  where Cn denotes cross-sectional areas of the 

channel is  e n t ire ly  d i f fe re n t  from [d D /d t ] in. In e f f e c t ,  there are two 

d if fe re n t  dD/dt, one along the r iv e r  char'ufi . [dD /d t]- |n, and the other 

through the cross-section of channel, [d D /d tfx^ /jZ .tJJcn *
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(1) Under steady-state conditions [dD/dt ( x , y , z , t ) ] c n = 0, not 

[d D /d t ] ]n = 0. In fa c t ,  [d D /d t ] ]n never becomes zero. I f  th is  is set to 

zero, i t  means that there is  no DO var ia t ion  along the r iv e r  channel. That 

i s ,  regardless o f the location of the channel there is  no var ia tion  of DO or 

ju s t  one value of DO fo r  the e n t ire  channel. I f  i t  is  so, why bother to do a 

DO analysis in the channel? Under a given po llu tan t discharge there j_s DO 

v ar ia t io n  along the channel, thus making [d D /d t ] ]n (which is commonly 

re ferred  to as dD/dt) zero would not make any sense at a l l .

(2 )  Under unsteady-state condition both [d D /d t ] ]n and [dD/dt

( x , y , z , t ) ] c n are not zero. Thus there is  "DO varia t ion  not only along the 

channel (a d i f fe re n t  location of the channel w i l l  have d i f fe re n t  DO va lue ),  

but also at a given location DO varies with time (unsteady-state) and space 

(2-D or 3 -D )."

Summarizing the above re s u lts ,

1-D, steady state  DO model;

dD/dt = K]L -  K2 D /  0 (Streeter-Phelps) (42)

dD/dt = KjL -  K2D -  v dD/dx = 0 (Others) (43)

Note th a t in the Streeter-Phelps equation, dD/dt /  0, which is

correct. In other works, dD/dt = 0 and fu rther there is  an additional term, 

-vdD/dx, where v is  the f lu id  ve lo c ity  along x axis .

Since dv = dx/dt and vdD/dx = dx/dt . dD/dx = dD/dt, (43)

happens to be identical to EQ. (4 2 ) ,  hence is  the solution. Convection term 

(v) must not ente r  into the DO formulation, as is  the case o f Streeter-Phelps  

equation. The fa l la c y  of EQ. (43) is  evident from two respects. F i r s t ly ,  i f

the convection terms are carried  into DO formulation as w e l l ,  i t  results in
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two convection terms in one DO equation because there are convection terms in 

the BOD equation already. Secondly, since K j, K2 , and v are constants, L 

(residual BOD) and D (D d e f i c i t )  are only a function of x only, which is  not 

tru e .  As known, L = f ( t )  in the 1-D, steady-state model, i . e .  . L = 

Lo-Loe_^ l^ . Furthermore, since x is the only independent variable in EQ. 

(4 7 ) ,  there is  no way to obtain D as well as L as a function of t_ along the 

channel.

SOLUTION OF 3-D, UNSTEADY-STATE DO MODEL

Recalling EQ. (41 ) ,

dD/dt = -K2D + KjPc-Ac

Note that Pc and Ac are constants under a given location and given 

tim e, as has previously been explained.

Direct in tegration  between Do ( i n i t i a l  d e f i c i t ,  i . e . ,  D = Do at t  = 

to )  and D (t )  y ie ld s ;

D t

Do to

Let to  = 0 ( i n i t i a l  t im e ) ,  then

D = (Do -  K!/K2 Pc + Ac/K2 )e"K2t + Kx/K2Pc -  Ac/K2

Since

D = Cs -  C
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and

Do = Cs -  Co 

I t  follows th a t ,

C = Cs - [(Cs -  Co -  Kj/I^Pc + Ac/K2 ) e - K2t  + Kx/K2Pc -  Ac/K2]

or

C ( x ,y , z , t )  = Cs-[(Cs -  Co -  Kx/K2 P c ( x ,y ,z , t )  + A c ( t ) /K 2 )e“K2t

+Kj/K2  P c (x ,y ,z , t )  -  A c ( t ) /K 2]  (44)

EQ. (44) is  a general solution fo r  DO under 3-D, unsteady state  conditions.

TREATMENT OF THE PHOTOSYNTHETIC TERM (A c ( t ) )

I t  is  known th a t  DO supply by photosynthetic a c t iv i ty  of algae may 

be one of the major sources of DO in a receiving water. In many cases 

photosynthetic oxygen supply is  the only major source o f dissolved oxygen (DO) 

in the stream. In what is believed to be Camp's la s t  published paper (7) 

among his many orig ina l and crea t ive  research papers published through his 

i l lu s t r io u s  career, he concluded that "DO supply by photosynthesis is 

considerably higher than th a t  by atmospheric reaera tion ."

This is  especia lly  true fo r a wide and deep stream channel where 

atmospheric reaeration is  not s ig n if ic a n t  in terms of DO supply. For th is  

reason, many wastewater treatment plants (WWTPs) maintain " te r t ia r y  ponds" 

a f t e r  regular treatment processes. The main function o f these ponds is  to  

raise DO leve ls  through algal a c t iv i ty  in the ponds.

By doing so, the DO from the pond e f f lu e n t  s ig n if ic a n t ly  increases, 

thus providing a better opportunity fo r  the WWTPs to meet the DO c r i t e r i a  

imposed by regulatory agencies.
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Without photosynthesis the DO concentration in the water would never

exceed the saturation level which is  a constant value at a given temperature

and pressure, obeying Dalton's and Henry's law on p a rt ia l  pressure. The

author observed as high as 35 mg/1 DO at 20°C and 1 atmosphere from the

Chatham Township t e r t i a r y  pond in New Jersey. For an average stream the DO

level can r ise  to  15 mg/1 during the maximum period o f  sunlight. Thus i t  is

o f  great importance to c losely  examine the DO supply through photosynthetic

a c t iv i t y  o f algae.

The findings of a study conducted by O'Connor and DiToro ( 8 ) on th is

subject is  generally used for the calculation o f DO supply by algal a c t iv i t y .

Generally, the photosynthetic source o f DO depends upon many fac tors  such as

sun ligh t, temperature, mass of algae and nutrients (espec ia lly  phosphates and

nitrogen in the form of ammonia and n i t r a t e ) .  I f  the photosynthetic rate is

assumed to vary as the sunlight in ten s ity  during the day, and is fu r th e r

assumed to be zero at n igh t, then th is  source according to O'Connor ( 8 ) may be

defined by the following periodic function.

A c(t) = A c(ts ) = Pm[2P/7T + 2 E l ]  An COS((tfi- P / 2  ) • 2/rn)] (45)
n= i

where

p = period of sunlight

Pm = the maximum ra te  of A c(t)(=A c(tm ))

ts  = time from beginning of sunlight

Mathematically, EQ. (45) is a Fourier series used for Fourier

analysis.

Usually, only the f i r s t  few terms are enough to approximate EQ. 

(45 ) .  The speed of convergence is found by ca lcu la ting  explained variance
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from the series obtained and comparing that with tha t  found from observed data 

sets. I t  is  of importance to note that the independent variab le  t ( t s )  in EQ. 

(45) is  not the same as t  in EQ. (4 4 ) .  The former is measured from the begin­

ning of sunlight and the l a t t e r  is  ju s t  clock time measured from the beginning 

o f  po llu tan t discharge. Furthermore, ts  becomes zero as soon as there is no 

sunlight rad ia t io n . I f  there is  no algal a c t iv i t y  in certa in  reaches o f the 

stream, one merely sets th is  term to zero fo r  tha t specif ic  segment and so 

fo r th .  In terms of ca lcu la tio na l processes, Ac(t) is  calculated separately  

with due regard to t ,  i . e .  s ta rt in g  from the beginning of sunlight independent 

from pollutant discharge.



50

V I. DIGITAL COMPUTER IMPLEMENTATION

A d ig ita l  computer program was w ritten  in order to implement the 

ana ly t ica l  solutions o f the general  BOD and DO equations.

1. PREPARATION OF COMPUTER IMPLEMENTATION

(1) Stream Geometry 

According to the classical study of Leopold and Maddock, J r .  ( 9 ) ,  

there are certa in  relationships which corre la te  well between stream flow (Q) 

and various channel parameters related to geometry (such as width and depth) 

as well as ve loc ity  of flow. The following relationships were obtained by the 

authors a f te r  observing numerous collected data fo r  many streams in the United 

States.

W = nrjQa 

H = m2Qb 

V = m3 Qc

where mj, m2 , m3 , a , b, and c are a rb i t ra ry  constants. W, H, and V are

the width, depth and mean ve lo c ity  o f the channel.

Since, W*H*V = Q = mi*m2 *m3 Qa+b+c 

i t  follows th a t ,

mi*m2 *m3  = 1 , and 

a+b+c = 1

Thus i f  mj and m2  are specified so is m3 . Also, i f  a and b

are sp ec if ied , so is  c. Generally, i f  one knows any two constants out o f  

th ree , the remaining one can be determined by the above re la tionships.
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In the above c ited  reference the authors published data on channel 

geometry and ve loc ity  along with the flow rate on major r ivers  in the U.S. 

For the current computer implementation the author used data d ire c t ly  from 

th is  reference instead of creating hypothetical r iv e r  geometry for meaningful 

resu lts .  Using the above mentioned re la tionships , one can apply any observed 

r iv e r  data fo r computer simulation purpose.

(2) Other Input Data

All other input data was prepared in such a way that they are 

typ ica l values reported in the l i t e r a t u r e .

In ca lcu lating  dispersion coe ff ic ien ts  the author consulted those 

references considered excellent ones in th is  f ie ld  (10, 11, 12, 13).

In ca lcu la ting  D j,  D2 , D3 , hydraulic radius (R) and "C" (Chezy 

C ), values were calculated from the given stream geometry with varying "n" 

(Manning's). Then shear ve lo c ity  is obtained from th is .  A fter these have 

been done the following ra tios  were then obtained from appropriate references 

(10-13).

D i/Ru*  and Dg/Ry*

where

u* is  the shear ve loc ity

From th is  Dj and D2  are computed from the computer program 

provided herein. Assuming vert ica l dispersion is a function of the following  

( 1 2 ) ,  i . e .

D3  = f ( u s/u ,  W/H, DZ)
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where us is  the horizontal ve loc ity  of the channel at the location of the 

sampling s i te .

The following re la tionsh ip  suggested by Bsltaos (11) has been used 

■ to ca lcu la te  D3 ;

d3 = d 2 / ( u s / u ) 2 (W/H) 2

(3) Planning for Computer Output 

The author wrote the computer programs in such a way that i t  can be

used and/or adopted e a s i ly  fo r general purposes.

The input data consists of the following:

1. Mode of Discharge (instantaneous or continuous)

2. River geometry (w idth, depth, Q, cross-sectional area, u,v,w) and
Manning's "n"

3. Ultimate BOD and Kj

4. Cs and Co

5. Data for photosynthesis evaluation (P, Pm, t s )

6 . Time in terva l

7. X in terva l

8 . Y in te rva l

9. Z in te rva l

The following information is  provided to aid the users regarding the 

preparation o f the input data to be used in the current computer program. The 

user information regarding the computer program and input data requirements is  

also f u l l y  explained in the program.

The unique feature of the program is that i t  exclusively uses 

"FUNCTION SUBPROGRAMS", and each term in the general BOD and DO solutions is
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treated  as a separate function subprogram. This sub stan tia lly  s im p lif ies  the 

program, reduces the computation t im e, and makes the expansion and modifica­

t io n  of the program easy.

The program also uses a minimum size o f arrays to save the memory 

requirement of the computer.

The input data is  prepared in FREE FORMAT.

ORDER OF READ
STATEMENTS DESCRIPTION OF READ STATEMENTS

1 TITLE OF RIVER (up to 40 alphanumeric characters)

2 MODE OF DISCHARGE (INST fo r  instantaneous discharge; 
CONT fo r  continuous discharge)

3 WIDTH, DEPTH, CROSS-SECTIONAL AREA, FLOW in CFS and 
DURATION OF THE RECORD in four d ig its

4 Manning's "n"

5 U, Us, V, and W in f t /s e c

6  RATIO fo r  Di/Ru*  and D2 /Ru*

7 ULTIMATE BOD in lbs. and q  in DAY- 1

8  m(t) in lbs /sec , and amplitude of m(t)

9 Cs, Co, in mg/1 and q  in DAY- 1

10 P, Pm in mg/1/day

11 NUMBER OF TIME INTERVAL

12 TIME INTERVAL in seconds

13 NUMBER OF X INTERVAL

14 X INTERVAL IN f t

15 NUMBER OF Y INTERVAL

16 Y INTERVAL IN f t

17 NUMBER OF Z INTERVAL

18 Z INTERVAL IN f t
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In the current computer simulation, ve loc ity  of the flow in the V 

and Z d irections is assumed zero.

The output is  designed in the following way to fu l ly  re a l ize  the 

3-D, unsteady-state condition;

1. F irs t  the mode o f discharge is selected (instantaneous 
or continuous).

2. At a fixed tim e,

x (downstream distance) is f i r s t  selected  
y ( la te ra l  location of channel) is  selected next 
f in a l ly  z (depth of channel) is  selected

Thus at a given time and x location there can be several values of

BOD and DO with varying width and depth.

Then x is changed followed by y and z values.

A fter the above cycle , time is  then changed and the calculations  

repeat again.

Note that the above means of calculation is  necessary in order to  

f u l l y  appreciate the meaning of 3-D, unsteady-state conditions.

2. INTERPRETATION OF THE COMPUTER OUTPUT

(1) General Explanation of the Computer Output 

As one can imagine, there exists a "deluge" of data from the 3-D, 

unsteady-state computer simulation. There are four independent variables (x ,  

y , z , t )  and two dependent variables (DO & BOD). The number of output data for  

a simple run is  as follows:

z -  mid-depth, 1/4 o f depth from surface or bottom (z=2)

y -  mid-width, 1 /4  of width from l e f t  or r ig h t  bank (y=2)

x -  say 1 0  locations (x=1 0 )

t  -  say 1 0  d i f fe re n t  elapsed times ( t =1 0 )
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Thus the to ta l number of output w i l l  be 2x2x10x10 = 400 fo r  one 

parameter (DO or BOD).

For the current computer simulation the author used 50 d i f fe re n t  x 's  

and 50 d i f fe re n t  t ' s ,  resu lt ing  in a to ta l  o f 10,000 d i f fe re n t  output.

TABLE 1 contains input and base-data fo r the current simulation. A

to ta l  of eight graphs were constructed using only a part of the output data.

FIGURES 5 through 8  represent the re la tionship  between elapsed time

( t )  and resu ltant DO under d i f fe re n t  channel conditions.

FIGURES 9 through 12 describe the level of DO under d i f fe re n t

channel conditions (pervious and impervious channel) for the same discharge

conditions.

Individual in te rp re ta t io n  o f each graph fo llows.

(2) DO vs. Time

FIGURE 5 -  DO under elapsed time of 500 seconds is shown for both

pervious and impervious channels. At a given elapsed time (500 seconds in

th is  case) and x location , four  d i f fe re n t  DO's were ca lcu lated . The coordin­

ates of these four locations are as follows (these four coordinates have been 

used throughout the current s im ulation);

1 . ( x , 0 , 0 )

2 . ( x , 0 , l )

3. (x ,20 ,0 )

4. ( x , 2 0 , l )

Coordinate No. 1 ind icates the center of channel; No. 2, 1/4 depth

from surface (or bottom) in the center of the channel; and so on.
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Since the slug of po llu tan t moves fastest through the center of the 

channel, DO in the center of the channel w i l l  be the lowest. By s im ilar

reasoning, the po llu tan t w i l l  move, or reach the slowest through coordinate 

No. 4, i . e .  ( x , 2 0 , l ) ; hence resu lting  in the highest DO. This is  shown in 

FIGURE 5.

At (x ,0 ,0 )  DO has been depleted immediately a f t e r  the introduction  

of the p o l lu ta n t ,  i . e ,  x = 500 f e e t .  However, at ( x , 2 0 , l )  there is  almost no

DO depletion at a l l ,  while (x ,2 0 ,0 )  shows the second lowest DO and ( x , 0 , l )

exh ib its  the second highest DO.

This is  expected due to the fac t  th a t  traverse d iffus ion  is greater

in magnitude than that of ve rt ic a l  d if fu s io n ;  hence DO a t (x ,2 0 ,0 )  is  less

than DO @ ( x , 0 , l ) .

As is seen from the f ig u re ,  there is more than 10 fo lds difference  

in DO under the same x location , a c lear  benefit  of 3-D, unsteady-state model.

I t  is  in teresting  to note that DO at  an elapsed time of 500 seconds 

exhib its  no d ifference between a pervious and impervious channel. This is  

mainly due to the short elapsed time. Physically th is  indicates that the loss 

of pollutants through the pervious layers of the channel is  minimal because o f  

the short elapsed time.

With longer elapsed t im e, the loss becomes s ig n if ic a n t  enough to  

cause a d ifference in DO between pervious and impervious channels. In the 

current simulation the elapsed time which gives the d ifference in the DO level 

has been about 1 0 0 0  seconds.

The mathematical treatment regarding th is  matter w i l l  follow la t e r .
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FIGURE 6  through FIGURE 8  -  the general configuration of the DO

levels  are s im ila r  to those of FIGURE 5. However, at location (x ,0 ,0 )  there

is  a sign of DO recovery s ta r t in g  from FIGURE 6 . This is  evidenced by two 

fac ts .  F i r s t ,  the slope o f DO l ines  become less steep and, secondly the 

actual DO values become greater .

This is  p r im arily  due to the fact that the slug o f the pollutant has

ju s t  passed the specific  location under our consideration. At location

(x ,2 0 ,0 )  DO leve ls  do not recover un til  a f te r  1500 seconds of elapsed time,  

ind icating that the slug of po llu tan t s t i l l  did not pass under that indicated  

period o f  time. This is  a t t r ib u ta b le  to the time required to carry the po llu ­

tants  through d if fu s io n .

By the same reasoning, DO levels  at locations o f ( x , 0 , l )  and

( x ,2 0 , l )  go down slowly, s ta r t in g  from FIGURE 6

Note th a t  as time progresses DO levels at the above two locations  

decrease, in tens ify ing  DO sags. As seen from FIGURE 8  (a t  an elapsed time of 

3500 seconds) the DO sag a t ( x , 0 , l )  and (x ,2 0 , l )  are quite  noticeable. Again, 

th is  indicates the "lag" time required to disperse the pollu tant to the

adjacent layers . F in a l ly ,  i t  is  worthwhile to observe th a t DO levels  in the

channel are of the following order;

DO @ ( x ,0 ,0 ) < ( x , 2 0 , 0 ) < ( x , 0 , l ) < ( x , 2 0 , l )

The above order o f DO leve ls  were expected and re f le c ts  the greater  

magnitude o f traverse d if fu s io n  over th a t  of v e r t ic a l  d if fu s io n .

(3 ) DO Under D if fe re n t  Channel Conditions

FIGURE 9 through FIGURE 12 indicate the e f fe c t  o f channel condition

on the DO le v e ls .
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As mentioned previously, DO leve l d ifferences in pervious and imper­

vious channels become s ig n if ic a n t  approximately a f te r  1000 seconds, ind icating  

th a t  the loss of po llu tan t through pervious layers of channel becomes notice­

able. Generally, the loss is  mainly affected by the elapsed time. However, 

the change of DO levels  w i l l  not l in e a r ly  increase/decrease with that of the 

loss. This is so because the DO levels  are not only a ffected  by the loss but 

also affected by the " red is tr ibu tion "  of pollutant from the adjacent layers 

which is  a function of both time and the magnitude of d iffus ion  c o e f f ic ie n ts .

This phenomena are indicated in FIGURES 9 through 12, where the  

difference in  DO levels between pervious and impervious channels increases 

with increasing elapsed time to  a certa in  extent. This can be examined from 

the mathematical point of view.

I t  is worthwhile to note that the DO sags under the 3-D, unsteady- 

sta te  condition consists of m ultip le  sags, (FIGURES 9 -1 2 ) .  This is  a d rastic  

difference from those of 1-D, steady-state conditions under which there is 

only one sag.

The reason fo r  th is  w i l l  be pursued from a mathematical point of 

view in the subsequent section.

(4 ) D ifference between Pervious and Impervious Channel

1. Pervious Channel 

From EQ. (25)

OO QO 00
M = B J J J  f ,' V xV4lV -t ',/* e*! e : dx dy dz (25)

Where,

8  J D , D2 D3 7T 3/2
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2. Impervious Channel

For impervious channel we must have,

CD W /2  H /2
- 1/2 - x / 4 D , t  - i / 2  - y / 4 D , t  - i / 2  - z  / 4 D , t

M = 8 J  J  J  t e  ‘ 1 • t ”  e

-0 3  -W /2 - H /2

t e 3 dx dy dz

W/2
r w  2  r  .-i/a -y/4o2t

2 /T F
t  e 2 dy

H /2

nr 2
2  /  7 T

- i / 2  - z 7 4 D , t  ,
t  e 3 dz

-W /2 - H /2

Since,

W/2

-W /2

- i / 2  -  y /4 D , t
W/2

-1/2 - y 7 4 D , t
t e 2 dy = 2 / t e dy  , etc

I t  follows th a t ,

M = B  ( 2 / D ^ r ) ( / F 7 2 ) ( / 7 T ' / 2 )

W /2

A / r — f  *-,/2 - y ^ 4 D2* i 4 / 7 F /  t  e dy

H /2

„ //—f  I l/Z "z2/4D3t . 4//7rf t  e 3 dz

By le t t in g ,

§  = y /y 5 D it

We get,

dy = 2jD^t  , e tc .
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I t  follows th a t ,

W/4/EJ
V  d| [ 2  iJrc

1

H/4yo^r

M =B(2/D^r)(Tr/4)-4/T37- 4 /W A Z /M

0 0

M = B • 8  J  D D D 7T  3/2 (er  f ( w / 4 ^ T T 7 T ) )  ( e r f  ( H / 4 / T J ^ T ))| g 3 c.

F in a l ly ,

R _ M______________  !__________________
8 / D, D2 D 3 TV 3/2 e r f ( w / 4 / D ^ t )  e r f ( H / 4 / o J )

Note th a t the f i r s t  term at the r ig h t  hand side of the above equation is  the 

same as the in tegra l constant o f  the pervious channel.

Since,

the impervious channel is  greater than that of the pervious channel under the 

same conditions, o r ,  BOD becomes sm aller, the d if fe rence  of which i s ,

This fa c to r  is  a function o f W, H, Dg, D3 , and t .

Now, i f

W/1/DW  or H /V B j t  >. 2

then the fac to r  becomes u n ity ,  hence no d iffe rence  between channel conditions.  

Since W, H, D2 , and D3  are constants, the deciding fac to r  is  time.

Now, i f  t  increases the quantity  and H/4 / D 3 t  decreases; hence e r f

(U /4 S&2 t )  and e r f  (H /^yS jt)  decrease.

e r f  x _< 1

B(in impervious channel) = B(in pervious channel) x greater than 1 

The net e f fe c t  o f  th is  is  th a t  remaining po llu tan t concentration in

erf ( w / 4 / T h X )  erf ( H M A dJi )
{ >  t ) t imes that ot pervious channel
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This w i l l  in turn increase the fa c to r ,  i . e . ,  the d ifference between 

the pervious and the impervious channel, or vice versa.

I t  is  in te res ting  to note th a t the d if fe rence  between the pervious

and impervious channel in terms of DO and BOD is  re la ted  to the erro r  func­

t io n .

In the following section the DO sags under 3-D, unsteady s ta te

conditions w i l l  be examined and w i l l  see how they are d i f fe re n t  from those of

1-D, s teady-state .

(5) DO Sag in 3-D, Unsteady-State Conditions

In the 1-D, s teady-state  model the DO sag curve is  a smiple form,

i . e . ,  DO leve l goes down r ig h t  a f t e r  the discharge o f  p o l lu ta n t .  Then a f te r  

reaching the lowest level o f DO ( c r i t i c a l  d e f i c i t )  the DO level goes up,

f i n a l l y  reaching the highest point (saturation l e v e l ) .  Functionally , the DO 

sag curve resembles a simple quadratic form.

There is only one sag in th is  case.

However, in the 3-D, unsteady-state model the DO sag curve consists  

o f  m u lt ip le  sags, and i t  no longer resembles a quadratic form from a

functional standpoint. The DO sag curve is  closer to a multi-degree

polynomial form. This is  so since DO is  a function of many independent

var iab les , i . e . ,

DO ( x, y,  z , t ) = f ( t ' v z  , , e r f  ( w /4 /~ D ^ C  ) , e r f  (H ) )

Physica lly , th is  is  due to the p o l lu ta n t 's  re d is tr ib u t io n  or second­

ary migration from adjacent depths and widths. In other words, the d is t in c t  

d iffe rence  in po llu tan ts ' d is t r ib u t io n  at a given cross-section la te r  smoothes
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out due to the dispersion in 3-D (caused mainly by v e lo c ity  d if fe ren ce  at  a 

given cross-section due to the shear la y e r ) .  Due to th is  "smoothing" a c t i o n ,  

the DO sag a f t e r  the f i r s t  "major" sag is not d is t in c t  in the second and 

subsequent sags. As the time goes by, the sags become less and less. In a 

physical sense, th is  phenomena can be described as a tra n s ie n t  disturbance 

caused by s ta r t in g  the o s c i l la t io n s  by introducing the p o llu tan ts .
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V I I .  CONCLUSIONS

The following conclusions were derived during the current research:

1. Generally, there is a d is t in c t  d if fe ren ce  in the DO leve ls  with d i f fe re n t  

locations o f the channel (both lo n g itu d in a l ly  and c ro ss -sec tion a lly )  under 

a given elapsed time. The magnitude o f  the d iffe rence  can be s ig n i f ic a n t ,  

and the magnitude depends upon the lo ca t io n , elapsed time and i n i t i a l  

pollu tant concentration.

Accordingly the representative DO value at a given cross-seciton o f  the 

channel must be width, as well as depth, averaged instead o f  taking the DO 

value calculated only a t  a single point o f the channel.

2. Generally, DO leve ls  can markedly d i f f e r  with d i f fe re n t  channel conditions

i . e . ,  pervious and impervious. DO leve ls  under the pervious channel con­

d it ions can be s ig n i f ic a n t ly  higher than those of impervious channels 

under the same conditions, the magnitude o f which is  p r im ari ly  a function  

o f time.

3. There are m u lt ip le  DO sags in the 3-D, unsteady-state conditions.



V I I I  RECOMMENDATIONS FOR FUTURE RESEARCH

The current mathematical models on DO and BOD under 3-D, unsteady state  

conditions can be applied to other areas, such as pred icting  the concentra­

tions o f  rad ioactive  m ateria l in  the receiving waters.

Future applications in  these areas are highly recommended.

The current models can also be applied as to the determination of the 

v a l id i t y  o f  stream improvements, i . e . ,  whether or not the stream improvements 

through the channel reconstruction (impervious) can be j u s t i f i e d  from the 

standpoint o f  DO le v e ls .
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