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ABSTRACT

This investigation was made to determine the effect on the depo­

sition of fine particles in a vertical channel and in a vertical tube 

due to the influences of electrostatic charge, diffusion, and gravity 

acting in the direction of flow. The flow considered was laminar, 

incompressible and steady.

The governing equations for the fluid phase were derived from the 

Navier-Stokes equation and the continuity equation while the equations 

for the particle phase were derived from Poisson's potential equation 

and the continuity equation. Since the governing equations are non­

linear partial differential equations the solutions were developed using 

numerical methods.

The flow patterns considered were uniform, developing and fully 

developed with symmetry about the axis of the channel or tube.

For the case of channel flow, variations in deposition were deter­

mined using an axial parameter which included a ratio of the electro­

static charge to the diffusion effect. The results were obtained along 

the channel for various values of electrostatic charge. The deposition 

due to diffusion and charge effect was studied and the range of charge 

effect was determined for which the diffusion effect may be neglected. 

Also, the deposition due to charge and gravity was investigated to 

determine the effect of the velocity profile on the deposition. It was 

found that when the velocity ratio is greater than 10 the deposition
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was not greatly affected by the velocity profile.

For the case of the vertical tube, it was found that the deposi 

tion depends on the velocity ratio of terminal velocity to the average 

fluid velocity and decreases with increasing velocity ratio. The curves 

for the fraction of deposi ion at any vt ocity ratio were found to fall 

between that for uniform ow and that for fully developed flow due to 

diffusive effect alone wh a proper dimensionless distance was used.

t
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axial component of electric field intensity
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c centerline condition

i, j coordinates on finite difference grid

o inlet condition
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free space permittivity 
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1. INTRODUCTION_

The deposition of particles in suspension of moving fluids deals 

with the mechanics of two phase fluid - solid systems. The investi­

gation of such systems is of practical importance as it has so many 

common applications. These may be experienced in such industrial appli­

cations as aerosol sprays, boiler exhaust gas, dust collection equipment, 

pollution control exhaust and particle emission of internal combustion 

engine exhaust systems. Other applicable examples are deposition of 

aerosols in the human respiratory tract and the flow of blood in the 

circulatory system. It is the deposition of the particles with which 

we are concerned. In some cases such as with dust collectors the process 

is desirable while in others such as the respiratory tract the process 

is detrimental. The significance of analytical study such as this is 

to develop a mathematical model so as to make a reliable prediction of 

the performance involved.

The main object of this study is to investigate the effect on the 

deposition of particles in a vertical tube and a vertical channel due 

to the influences of electrostatic charge, diffusion and gravity. The 

study was made for laminar, incompressible steady flow. Since the 

governing equations are non-linear partial differential equations, 

numerical methods were used to develop the solution. Due to the selection 

of vertical tubes and channels the patterns will be considered symmet­

rical about the axis. The velocity profiles were assumed to be uniform 

for plug flow and parabolic for fully developed flow. The electrostatic
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charge is considered to be generated by collision between the solid 

particles themselves and between the solid particles and the channel 

or tube wall.

In one case the vertical tube is considered with developing flow in 

the entrance of the tube. A particular object of this study is to deter­

mine the effect of the velocity development when diffusion and gravity 

are considered with no electrostatic charge.

Another particular object of this study is to determine the depo­

sition due to electrostatic charge and diffusion effects and compare 

this with that due to electrostatic charge alone. The purpose is to 

determine the range of charge effect for which the diffusive effect may 

be neglected. Since the diffusive term is the only second order term 

in the governing partial differential equation the conditions under 

which it may be eliminated will determine when the governing equation 

can be reduced to a first order equation and allow a more simple 

solution.

A third particular objective is to determine the effect of the 

terminal velocity of the particles on the deposition in a vertical 

channel or circular tube. It is intended to find the required conditions 

which if the diffusive effect is neglected and only the electrostatic 

charge and gravity effects are considered, that the deposition is not 

greatly affected by the velocity profile. Under such conditions the 

velocity profile may be simply assumed to be that for uniform flow.

In Chapter 2 a brief literature survey on the deposition of
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suspensions on the internal surfaces of tubes and channels was studied.

In Chapter 3 the laminar flow of particles in a parallel plate channel 

7i^h electrostatic charge, diffusion and gravitational effects was 

studied including the effects of the several combinations of these forces. 

In Chapter 4 the effect of the terminal velocity and also the effect of 

the velocity profile on the deposition in a vertical tube was studied. 

Conclusions are presented in Chapter 5 and suggested recommendations for 

future study are presented in Chapter 6.
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2. LITERATURE SURVEY

The flow of suspensions of particles and their deposition has been 

studied by many investigators. This survey briefly reviews the 

literature reported on the problem of flow within tubes and channels 

for laminar flows of aerosols which are influenced by the effects of 

diffusion, electrostatic force and gravity.

Taulbee ^lj studied the deposition of particles due to simultaneous 

settling and diffusion from slug or Poiseuille flow in a horizontal 

parallel plate channel. He presented solutions for deposition and bulk 

mean concentration variations along the channel for the case when 

settling is large compared to the diffusion. The bulk mean concentration

is the ratio of concentration at any distance from the axis to the

concentration at the channel entrance.

In this paper Taulbee referred to Ingham's papers [lO, llj which 

presented a Fourier series solution for slug flow, a numerical solution 

for small O'(ygh/D gravity flow parameter), and asymptotic series 

solutions which are valid for small axial distance and which conver, a 

only for small O' . Taulbee shows that Ingham's solutions for large O' 

are incorrect. Discussing solutions presented by Taulbee and Yu £l3jfor 

slug flow, Ingham shows these to be correct.

For a horizontal parallel plate channel Taulbee's equation is

W - s s  P.fr ■c’- ■+ V& —  Using Laplace transforms he obtains exactax 5 aa1
solutions near the top wall and near the bottom wall. These solutions
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are valid for all values of the gravity flow parameter o' at any axial 

distance as long as there is a core of uniform concentration between 

the top and bottom boundary layers. He compared his solution with the 

Fourier series solution giver by Taulbee and Yu ^13 J and the results 

were practically identical. Taulbee also presented a series solution 

for Poiseuille flow using similar procedures as did Ingham £llj .

Next, eliminating a term in his assumed velocity profile, since 

significant concentration variations take plac- near the walls where the 

profile is linear, he solved the equation using numerical methods which 

also give almost identical results with the series solution.

These results are valid for any axial distance and for any combina­

tion of diffusion and settling for a horizontal channel for both slug 

and Poiseuille flow.

Ingham ^ 2 j studied the diffusion of aerosols in a long cylindrical 

channel. He considered that for particles flowing through the channel 

the Brownian mot on. or diffusion, of the particles may bring them in 

contact with the tube wall where they are absorbed or lose their charge.

In his governing equation he included a term cj representing the rate of 

formation of aerosols per unit volume but in his solution assumed c[ to 

be zero. He further assumed that the diffusive mass transfer along the 

tube in the direction of the flow may be neglected and radial velocity 

to be zero. He solved the equation analytically in terms of one parameter 

V  , where V  —  OL/4U«^Lo . D =  coefficient of diffusion of

the particles, L = tube length, U = mean axial velocity of fluid, A.„ — 

tube radius. The equation was solved using a series solution for
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Poiseuille flow, plug flow, and a combination of both such that an 

allowance for slip velocity at the wall may be taken into account.

For small values of V  (0 to 0.1) Ingham compared his results for 

the ratio of mean concentration leaving the tube to the mean concentra­

tion entering the tube with Davies [ l ^ J  an<3 Gormley & Kennedy £isj .

For the case of Poiseuille flow he again solved the equation and 

compared his results with Davies, Gormley & Kennedy and Thomas £ 16J  .

Finally, assuming a velocity distribution including a slip factor 

developed by Smucek solved • ne equation and compared his

results with Tau and Hsu ^12 J  .
Hornbeck ^ 3 j analyzed numerically the laminar flow of an incompres­

sible fluid in the inlet of a pipe. Without linearizing assumptions or 

using different solutions in various regions of the flow field Hornbeck 

transformed the basic differential equation into a dimensionless form. 

Imposing a grid on the flow field he presented the equations in a finite 

difference fcrm. Working with a basis mesh size of. V  R = 0.1 in the radial 

direction, ant.’ 7  Z  = 0.( 1 ir the axial direction. he progressed 

downstream s Lving the equ%.ions. He found t nece sary to use very 

small mesh s. ’es in regions of rapid veloc: charges near the pipe wall.

( V  R = .025 c-nd V  Z = 2.5 x 10“^). He cor arte his results favorably 

with the analytical solutions of Campbell & lattery and Longhaar

M  •

Ingham ^4j considered the problem of the steady flow of suspensions
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of electrostatically charged particles with diffusion near the entrance 

of a cylindrical tube. Neglecting axial diffusion, and with zero radial 

velocity his governing equations included the steady state transport 

equation and Poisson's equation for the electrostatic field. Ingham 

solved these equations analytically near the entrance. The purpose of 

his paper was to obtain an analytic solution which was valid near the 

entrance to the tube to the same problem as described by Chen ^9j wherein 

Chen used the integral method, for both plug and Poiseuille flows.

Ingham first non-dimensionalized all quantities. For plug flow with 

the axial velocity U = 1, he assumed solutions near the entrance but 

away from the boundary layer which were independent of the radial 

distance from the axis. He then established a boundary layer to satisfy 

the condition where the non-dimensionalized particle concentration was 

zero. Substituting these assumed solutions into the governing equations 

he balanced the diffusion with the inertia term looking for a similarity 

solution. He next substituted these solutions into the governing equa­

tions and then assumed solutions in the form of a polynomial expansion. 

Finally, substituting these assumed solutions into the equation he 

collected the same order terms. Matching the boundary layer solution 

with the internal flow he arrived at new boundary conditions. The 

solution of these equations with the new boundary conditions led to a 

non-linear ordinary differential equation which he integrated numerically.

For Poiseuille flow, using a velocity profile of the form
7.

U = ( 1  j) where /1 is the tube radius, Ingham again assumed a series
A "  °

solution. The form, however, was different from that assumed by
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Chen £*)j in that Chen assumed that the particle density was independent 

of the radial position outside the boundary layer while Ingham assumed 

that it depended upon the radial distance. The results which Ingham 

obtained for zero electrostatic effect 0) compared favorably with

results published by Gormley and Kennedy £l5 j and Ingham ĵ2 j .

Increasing ot results in increasing the deposition. As the value of 

increases he found that the values of the non-dimensionalized tube length 

(X) for which the terminated series are valid decreases. For the smaller 

values of ec he found that his analytic solution was in good agreement 

with Chen's ^9j numerical solution for both plug and Poiseuille flow.

Chen £sj studied the diffusive deposition of particles in the 

entrance regior of a channel using an integral method. Previous authors 

such as Fuchs ^2rj an^ Davies £i a] had made studies on deposition of 

particles due to diffusion in a long channel and Taulbee and Yu [l3] and 

Ingham J^J had studied simultaneous diffusion and sedimentation in a 

long channel. Their solutions were based on fully developed flow. In 

this paper Chen presented the effect of developing flow in the entrance 

region ..f a channel on the diffusive deposition of particles.

Working with the diffusion equation and the continuity equation 

the author proceeded to integrate the governing equations from the center- 

line of the channel to the wall. To complete the integration it was 

necessary to know the velocity distribution across the channel in the 

entrance region under consideration. This in turn required the solution 

of the continuity equation and the momentum equation for the fluid phase. 

This had previously been solved by Gupta ^24j by an integral method
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which imposes the condition that the pressure gradient in the x - 

direction calculated from the momentum considerations is equal to 

that calculated from mechanical energy considerations.

Thus, the velocity profile was assumed to be equal to 1 for 

O / Y ^ l - M  and equal to 1 - /~Y-1 4- for 1-M/Y^l, where M is equal 

to the ratio of the hydrodynamic boundary layer to the half width of 

the channel.

A concentration profile was assumed in the form of a polynomial 

satisfying the boundary conditions. Then, the integral was reduced to 

an equation involving the diffusive deposition in the entrance region 

of the channel as a function of the Schmidt number (Peclet Number/ 

Reynolds Number = y / D ) . Chen solved the differential equations using 

numerical methods.

The results of this investigation for Uniform flow were compared 

with the series solution of Carslttw and Jaeger [23J and the differences 

were small. The results of this work for fully developed flow compared 

closely with Kennedy [l5j for small values of X (<0.1)and favorably 

with De Marcus [25j for large values of X O  0.1). In presenting the 

results for developing flow it was found that at low Schmidt numbers 

(^,0.01) the growth of the hydrodynamic boundary layer is so slow that 

the deposition approaches that of uniform flow; as X increases the 

boundary layer grows faster and deviates from that of uniform flow. At 

high Schmidt numbers 100) the deposition approaches that of fully 

developed flow since the flow becomes fully developed in a small distance 

X.
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Chen and Korjak ^6 J investigated numerically the deposition of 
aerosols with gravity in a vertical channel from the inlet to a distance 

of 50 channel widths for developing, fully developed, and uniform laminar 

flows. The purpose of this study was to determine the relative importance

of sedimentation as compared to Brownian diffusion using a parameter

O' = v„h/D where v„ is the settling velocity, h is the half channel width,
O 5

and D is the particle diffusivity.

The concentration distribution was found for various values of the 

gravity flow parameter O' and various values of the Schmidt Number 

(Pe/Re).

For a given gravity flow parameter O' , increasing the Schmidt 

Number increases the penetration or, increasing the ratio of viscous 

force to diffusive fore* increases the penetration (decreasing the 

deposition). Also, foi a giver, gravity flow parameter, for the case of 

fully developed flow (Sc =©o) th- penetration is less than for the case 

of uniform flow (Sc = 0).

As the gravity flow parameter O' increases for any given Schmidt 

Number the penetration increases. Finally, as O' approaches oo , the 

penetration approaches 1. The case of O' = 0 (no gravity flow and the 

particle motion is due solely to diffusion), the results agreed with 

those found by Ingham £?J for fully developed and uniform flow.

Ingham [ll] reported on simultaneous diffusion and sedimentation 

of aerosol particles in a rectangular tube where the tube is very wide
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compared with the distance between the other walls and the short 

dimension of the channel parallel no gravity was investigated.

Previous authors had developed results of the effects of diffusive 

and sedimentation of aerosol particles from Poiseuille flow and plug 

flow in tubes and some of these results were compared with those of this 

author, Ingham.

Ingham placed emphasis on the case when the diffusive effects are 

larger than, or of the same order as sedimentation effects and developed 

single expressions for the concentration distributions at small distances 

down the tube and also for the mean concentrations.

For Poiseuille flow the author first non-dimensionalized the 

governing partial differential equation. Using the boundary conditions 

he assumed a similarity series solution. Collecting terms of the same 

order he arrived at a set of ordinary differential equations which he 

solved numerically. The result was an equation for the mean concentra­

tion of aerosol particles consisting of five terms where the variables 

were s = depending upon the coefficient of diffusion, D; the

rate of gas flowing through the tube per unit width, Q; the half width

of the tube, h; and the axial distance, and the diffusion and sedimenta-
hvEtion parameter oc - His equation compared closely with that of

Gormley and Kennedy £ 15 j

For plug ilow. the author solved the governing equation with 

boundary condition.' and arrived at an infinite series. This series 

solution was valid for all but if 0K^ ’ 0(1) a boundary layer analysis
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can be made (original assumption that sedimentation does not dominate

over diffusion) to obtain a solution near the entrance to the tube

(u = non-dimensional distance along the tube K Z such that the
\ Qh/

series solutions may be reduced to a solution of four terms). Thus,

the mean concentration of aerosol particles was dependent on the

diffusion and sedimentation parameter (hvg) and u , the non-dimensional
2D

distance along the tube.

For both Poiseuille flow and plug flow Ingham tabulated his results 

and arrived at the following conclusions.

1. In both Poiseuille flow and plug flow the simplified expressions 

for the particle concentration were valid for small distances 

down the tube and gave accurate results with few terms required.

2. For Poiseuille flow it was impractical to take more than two terms 

for an equation he previously developed [loj flnd his simplified 

equation was more useful.

3. These simplified solutions were only valid for the case where 

diffusion dominates over sedimentation.

4. The numerical technique used was valid only for small values of 

the diffusion and sedimentation parameter O' since there were 

not sufficient mesh points in the very thin diffusion layers.

5. Finally, the equations were valid for the diffusion and sedimenta­

tion parameter o* ^  O(t) .
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Chen [8J studied the deposition of aerosols in a long channel due 

to diffusive and electrostatic charge effects by an integral method.

The fluid phase was assumed to be either uniform flow or fully developed 

flow. Two methods were presented.

In the first method the author integrated the governing equations. 

Using a third order polynomial for the particle density and with the 

use of the boundary conditions he assumed the particle density profile 

near the inlet plane to be made of a uniform center core and a polynomial 

boundary layer. Introducing a new variable to denote the ratio of the 

thickness of the particle density boundary layer to the half channel 

width, a particle density profile was developed containing this variable 

and a coefficient to be determined from the diffusion equation through 

integration and the centerline condition. The equations were solved 

numerically and compared with a second method.

In the second method the author used a fully developed particle 

density profile. The equations were again solved numerically.

The results showed that the analysis for the second method gave 

the best results for uniform flow as compared with the series solution 

by Carslaw and Jaeger ^23J , the author's first method, and a fourth 

order polynomial previously presented by Chen £5j . Comparison of 

results on fully developed flow also show that the second method was 

better than the first.

While the two methods showed considerable difference in deposition 

at oC.m o, this difference decreases as oc increases until at = 10 the
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difference is less than 0.008.

Finally, the results show that the centerline particle density, the 

penetration, and the electric field force decreased exponentially with 

the axial distance for flow far from the channel inlet.

Chen £9 j studied the effects of diffusion and electrostatic charge
in a circular tube and solvea the equations with an integral method.

Results were obtained for plug flow and Poiseuille flow. The transport

equation and Poisson's equation were first non-dimensionalized. The

transport equation was then integrated with the use of the boundary

conditions. The resulting integral was solved by assuming a density

profile such that the developing region was divided into a uniform core

and a boundary layer. For the boundary layer profile a third order
2 3polynomial was selected of the form R* = 1 - (1 + d)^ -fdK Where 

R* is the ratio of dimensionless particle density to centerline particle 

density, ^ = (/i* - 1 + M) /M, A *  is the ratio of axial distance to tube 

radius, m is the ratio of the density boundary layer thickness to the 

radius of the tube, 1 - ant* ̂  *s an arbitrary constant which

was determined so that the integral and auxiliary equations was satis­

fied when the flow was fully developed. The set of differential 

equations was solved numerically.

The results of this study showed that for any axial distance for 

both plug flow and Poiseuille flow, the deposition increased as the 

electrostatic charge parameter increased. In this analysis it was 

assumed that all particles which contacted the wall were completely 

absorbed.
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3. LAMINAR FLOW OF PARTICLES IN A 

PARALLEL-PLATE CHANNEL WITH ELECTROSTATIC CHARGE,

DIFFUSION, AND GRAVITATIONAL EFFECTS

3.1 General Description

A numerical method is presented to study the deposition of particles 

in suspension in a parallel-plate channel due to thi effects of electro­

static charge and diffusion and that of charge and gravity in the 

direction of flow. A comparison is made in the deposition due to the 

effects of electrostatic charge and gravity with the deposition due to 

the effect of electrostatic charge alone and the range of charge effect 

for which the diffusive effect may be neglected is determined.

Also, the deposition of particles in a vertical channel due to the 

effects of electrostatic charge and gravity was studied using numerical 

analysis.

The Assumptions Used In This Analysis Are:

(1) Incompressible, steady flow.

(2) Two-dimensional, laminar flow

(3) Negligible axial component of electric field intensity.

(4) Negligible axial component of diffusive force.

(5) Dilute suspension (density of fluid phase > particle

concentration).
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(6) Fluid-particle interaction follows Stokes' Drag Law 

(F = inverse of the relaxation time for momentum 

transfer = H/*. jop /x ft1 where /u is the fluid

viscosity, is the particle radius and is the 

particle density.

(7) Particle to particle interaction is negligible.

(8) Thickness of layer of deposit is much smaller than the

channel width.

(9) Negligible material density of the fluid phase as 

compared with the density of the particles in 

suspension.

(10) Constant viscosity

(11) No chemical reactions

(12) No temperature change

Referring to Fig. 3.1, rectangular cartesian coordinates are 

utilized in this analysis. The x-axis is the centerline of the channel 

and the y-axis is in the orthogonal direction, u is the axial component 

of the fluid velocity, v is the component in the y-direction. The flow 

occurs between the two fixed channel walls spaced a distance 2 h apart.

3.2 Governing Equations

a) Fluid Phase
J L S i .  + .  - _  o (Continuity Eq) (3-1)

This may be expressed in integral form as

o
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IX 3u. + v'SlX = _ J_ + /X

b) Particulate Phase

|.(pP«P) + JL(p,Vp)m0

a ex +  _ P p SL
3  x  9 « / ''Wp

Force 

on a unit 

charge

in x-direction 

Combine Eq. (1) and (3)

ix 3 P p. +  v ^ £ e  4. A . I  -
3 X  5  */ 3*L

Simplify by letting

Pp(“-P-“-) =(jf)x

(N.S.Eq. of Motion (3-2) 
*f for Newtonian Fluid)

Continuity Eq. (3-3)

Poisson's Eq. (3-4) 
for electric 
field

Electric 

Field intensity

l)] + ^ [ ( v (vp -'")]= °

Mass Flux in x-direction

p, (vP _ * ) = (jp)y Mass Flux in y-direction
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The above Eq. can be simplified to read

« - 2 £ E .  +  v l f p  ( 3 . 5 )

Fick's law for mass transfer states that the mass flux equals 

the mass diffusivity times the mass concentration gradient.

Including the actions of the external electric field force and 

the effect of gravity we have

/ y  \  _ /  SL \  ?pe<f _ D
\Jp/w " \\Mp/ f  pif

(J 4  = i - t )
?p e.;

-  ?'’ v s

Since an electrostatic field is a conservative field

_ P e
P x (3-6)

assuming that JL />- Jb- 6 and g. «. » Eq. 3-6 gives £
X L .

Thus, e is negligible when compared with e and the electrostatic x y
force in the x-direction may be neglected.
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The electric field force in the x-direction, the diffusive force 

in the x-direction, and the effect of gravity in the y-direction are 

assumed to be negligible compared with the other forces so that we have

= -L[-4 P££2| + 3. [ t>l£rl + S-ffpv,]5 x 3 y ^7 [ w p  F J 3y L 3 y  J L J
Substituting the above equation into Eq. 3-5, we get

(A.
3 X  atf " Py (3-7)

Eq. 3-7 is the steady state diffusion equation.

In Equation 3-7 the c-xiaj diffus •'ve force has been neglected 

assuming that the Peclet number is high _( } 50). Refer to Tau and 

Hsu [l2j .

Further, we assume v = Vp = 0 for all values of y.

Thus the equations which we wish to solve are

U. a
[*-

P p Gy 3 + — P  3 P p +  2 -
3 X ^7 [VMp F . 3 Y . 3 X (3-8)

9 e v _ P p %
9 £ c>m p

(3-9)



3.3 Analysis for diffusion and Electrostatic Charge

The Equation of diffusion which expresses the particle cloud 

concentration p p in the flow stream is

LA. = D i l £ r  - i . f i .  £ c £»1 (3.10)
S> Yl '3 ‘f 1>**P p J

The electrostatic field intensity is governed by Poisson's 

Equation as given in Eq. 3-9.

The boundary conditions are

At x = 0 (inlet plane) for ^p = ^ p 0 (uniform)

At y = 0 (centerline) for X  > O  c>?p _ o (symmetry)

At y = 0, ey = 0 (centerline)

At y = h, (wall) for o  / * o  (for complete absorption)

Eq. (3-9) and Eq. (3-10) in dimensionless form (See Appendix A) 

become
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Where X* = JL , the diffusive Peclet number = g, , electrostatic 

charge parameter = e< , and other variables are as defined in the 

Nomenclature.

The only variable in these equations is o C .

In non-dimensionalized form the boundary conditions are

At X = 0 (inlet plane) for O.^Y.^1 R = 1 (uniform)

At Y = 0 (centerline) for X ^ O  = 0 (symmetry)

At Y = 1 (wall) for X > 0  , R = 0 (complete absorption)

The velocity profile is considered either uniform (U = 1.) or 

parabolic flow (U = 1.5 (1-Y^) ),

Equations (3-11) and (3-12) are expressed in an implicit finite

difference representation about i ■+ l,j as follows. Refer to Hornbeck

£ 3,29 j and Quarmby [26j .

U  • fH i + i  , j R c , j  I _  R  tl-H | Jj-i —  3 . R  l 4-i 1J +  » J-la * ' J [  d X *  J "  A Y 1

—  — Ri.li, J-l 4 - e C R i , j  j j  (3- 13)
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Et+J.J+l -gc+f,j _ + j
AY (3-14)

Twenty-one mesh points across the flow from the centerline to the 

wall were used. Each increment in the Y- direction was maintained 

constant at Y = 0.05. The increments in the X- direction varied from 

A  X* = 0.00001 to 0.001 such that convergence was achieved 26 J  .
As Hornbeck ^29J indicated, the implicit representation used in 

this solution can be shown to be stable for all mesh sizes. This is in 

contrast to the explicit representation which is restricted to small 

axial increments. The increments in the axial direction were taken 

small (.00001) to start and were increased as the solution proceeded. 

The selection of the step sizes were varied from large to small until 

consistent solutions were developed.

3.4 Analysis For Electrostatic Charge Only

When the electrostatic charge effect is very strong in comparison 

with the diffusion effect, one may neglect the diffusion term in

Eq. (3-10).

i f f  _

3 X
- J L  \±. £ L f v ]  L v x p  F J (3-15)

Similarly Eq. (3-9) may be rewritten

(3-9)
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The boundary conditions are similar to those presented previously.

In dimensionless form (see Appendix A), Eq. (3-9) and (3-15) 

become

and

or

I l _ __ / E  \ 2 5  _
“  \ + < * J  2 V

(3-16)

and

3_E* = R (3-17)
9 Y

Eq. (3-16) in conjunction with Eq. (3-17) can be solved 

numerically using an explicit finite difference representation 

about i + l*j. (see Appendix C).

— j .-£i-^jRC,j _  s O  (3-18)
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Eq. (3-18) can be explicitly solved for Ri+l,j

Having calculated Ri+l,j the electrostatic field intensity may be 

calculated from Eq. (3-17) (see Appendix C) such that

E tfi, J + i = R^i, j- 4 Y  + Eiti(j (3-19)

For 0^Xi*40.04, 81 mesh points were used across the flow from 

the centerline to the wall and A Y  was held constant at 0.0125.

For Xj*^0.04, 41 mesh points ( A Y  = 0.025) were used. A  Xi* 

varied from 0.0001 to 0.01.

The mesh size has been established to assure the stability 

and convergence of the solution. Comparable mesh sizes have been used 

by previous investigators such as Hornbeck j29J , and Chen 6J .

Several trial runs were selected in this investigation before final 

step sizes were selected. Selected steps in the Y- direction were taken 

for A Y  = .025, .050, and 0.10. The increment of 0.0125 was used as 

the initial step and later increased to 0.025.
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When fine particles in suspension enter a channel a fraction

of the particles will be deposited on the wall and the remainder continue 

in suspension. The fractional penetration at the corresponding axial 

distance from the entrance is expressed as

that the closed form analytic solution for uniform flow is R = 1/(1+Xi*) 

which is also equal to the fraction of penetration. The distribution of 

R is, therefore, uniform across the flow and is a function of X^* alone. 

This result for plug flow is in agreement with the numerical analysis, 

(see Appendix C) .

3.5 Analysis for Electrostatic Charge With Gravity in the Direction of

For this case a vertical channel is considered with gravity acting 

in the direction of flow as shown in Fig. 3.1.

The governing equations derived from equations (3-8) and (3-9) 

include both the charge effect and gravity are

/ URdY.
'a

This may be integrated by using Simpson's Rule (see Appendix

C).

By substituting Eq. (3-17) into Eq. (3-16), it canbe shown

Flow.

u - l f s  _ __2 (3-20)

(3-9)
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These equations may be non-dimensionalized into the following form 

(see Appendix B).

/ S + U \  ^  s _ E   R (3-21)

= R (3-22)
3Y

Where S = — S. is the ratio of the terminal velocity of the 

particle in a still air to the mean velocity.

For vertical channel flow, the particles are assumed to maintain

a velocity of u + Vg throughout the flow.

The boundary conditions are as described for the previous cases.

The fractional penetration at the corresponding axial distance 

from the entrance is expressed as "h

Particles continuing in suspension = Jo
/ d *i
Jo
.’hParticles entering channel
............l  ( u V v' 5 ) ? '

Where (u + Vg) = particle velocity

This equation may be non-dimensionalized into

J  ( u  + ̂ R d r  
_ _

The fractional deposition can be found by (1 - fractional 

penetration).

(3-23)
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Equation (3-21) together with (3-22) can be solved numerically. 

These equations may be expressed in an explicit finite difference form 

about i+l,j (see Appendix C) as follows:

Using the same method as in the previous case, eighty-one 

rectangular mesh points were selected at the entrance. The increments 

in the Y- direction were held constant at A  Y = 0.0125. The eighty-one 

mesh points were reduced to forty-one beyond the axial distance of X^* 

equal to 0.04 and the Y increment was increased to A Y  = 0.025.

In the axial direction the increments varied from A X ^ *  = 0.0001 

to 0.01. The solution was determined explicitly.

3.6 Results and Discussion

The deposition of fine particles in channel flow has been studied 

for three cases. These involved the effects of

3.6.1 Diffusion and electrostatic charge.

3.6.2 Electrostatic charge only.

3.6.3 Electrostatic charge and gravity in the direction of flow.

These cases were studied with velocity profiles of uniform flow 

and of parabolic flow.

Consider Case (1) involving diffusion and electrostatic charge with
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a uniform velocity profile. Solving Equations (3-11) and (3-12) using 

an implicit finite difference method for any axial distance 

X (.001^ X <£100.), where X is the ratio of axial distance to the half 

width of the channel, the deposition was found to increase with increasing 

electrostatic charge effect. The results are shown in Fig. 3.3 for the 

range of 0.0, 2.5, 5.0, 10.0, 50.0 and 100. Introducing a new 

dimensionless parameter of 4 e C x / ^  where oc. and are the electrostatic 

charge and diffusion parameters respectively, the results are plotted in 

Fig. 3.4. By varying this electrostatic charge parameter (2.5, 10.0, 

100.0) it was found that for any dimensionless distance 4 the

deposition increased as the electrostatic charge parameter decreased.

The results are shown with an enlarged Detail insert. It is noted in 

comparing Fig. 3.3 and Fig. 3.4 that the new parameter has presented a 

compact set of curves and the results for 5.0 and oC = 50.0 have 

been omitted only for clarity. Also, for comparison, a curve is plotted 

in Fig. 3.4 for the case where the ciffusion term in Equation (3-12) is 

neglected leaving only the electrostatic charge. This curve is identified 

as 0<.-^oo . As indicated in Fig. 3.4, the curves show increasing and 

approaching a limit of negligible diffusion. From these curves it can 

be seen that when e*. > 50. the diffusion term may be neglected and the 

solution to Equations (3-11) and (3-12) may be based on the electrostatic 

charge only.

Similar results were found for this same case involving diffusion 

and electrostatic charge using a parabolic velocity profile. Referring 

to Fig. 3.5 the deposition increased as the electrostatic charge effect
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increased. The range was varied with « c =  0.0, 2.5, 5.0, 10.0, 50.0 

and 100. as for the uniform velocity. It is noted however, that for 

any axial distance the values of deposition are less for parabolic flow 

than for uniform flow for the corresponding curves of electrostatic 

charge. This is attributed to fully developed flow. Referring to 

Fig. 3.6 the values for the deposition were then plotted against the 

same parameter 4 X / p  and these curves were found to be even closer

together at any value of 4 X / f o r  the various selected values of

electrostatic charge. For values of 4 &- X/ (3 up to about 8.0 the curves 

_eC>10. are not distinguishable. As in the case for uniform flow we see 

that when the electrostatic charge is greater than 50 the diffusion term 

may be neglected and the solution may be considered to be dependent op 

the electrostatic charge omy.

Next, consider the Case (2) involvi g the deposition due to 

electrostatic charge only. Equations (3-16) and (3-17) were solved 

using the explicit method. The results for uniform flow are shown in 

Fig. 3.4 while the results for parabolic flow are shown in Fig. 3.6. In

each Figure these curves are identified aso^-»©o. This is the curve where

ot->oowhen both electrostatic charge and diffusion are considered and 

where the diffusion is negligible compared with effect of the electro­

static charge.

Finally, Case (3) involves electrostatic charge and gravity in the 

direction of flow. Equation (3-21) with Equation (3-22) was solved 

explicitly. For the case of uniform flow it was found by introducing an
y *axial distance parameter X2* = 1 that Equation (3-21) may be reduced
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to a form similar to Equation (3-16) where the solution is simply 

R = ___ 1-----  . This result is plotted in Fig. 3.7. It should be(1 + x2*)
noted that in this case there is only one curve for all variable S.

The deposition determined from the solution of Equation (3-21) was 

plotted with a dimensionless axial distance parameter of 4 ̂ -X/ (£+ 1)(3 

and the results are shown in Fig. 3.7. In this case a new parameter 

S  = Vg/uQ, the ratio of terminal particle velocity to mean velocity, 

is introduced. The curves show for any dimensionless axial distance 

4<*x/(£+ l ) ^  as % increases (0.0, 1.0, 10.0) the deposition increases. 

The curves also show that for any dimensionless axial distance, as S 

increases the differences in the values for the deposition decrease.

Note that this statement is based on the dimensionless axial distance 

4 ot X/(S+ 1)(J . In actual channel flow the deposition at any axial 

distance X will decrease with increasing § in both uniform and parabolic 

f lov,.

It may be seen that as S increases the deposition approaches the 

curve for uniform flow. In practical cases the value of $ will be much 

less than 1. Cal culations have been made for 0.<£ < 1 and these curves 

fall between 5 = 0  and £ = 1. As seen from the curves in Fig. 3.7 for 

values of £ > 1 0  the velocity profile of the fluid has negligible effect 

on the deposition. This is as expected since at the high velocity ratios 

the particle velocity profile (u + Vg) is relatively uniform (10.0 u near 

the wall and 11.0 u at the centerline). The compactness of this set of 

curves is due to the choice of the coordinate system and is, therefore, 

a distinct advantage of the selected dimensionless axial distance.
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4. THE EFFECT OF THE TERMINAL VELOCITY AND THE VELOCITY 

DEVELOPMENT ON THE DEPOSITION IN A VERTICAL TUBE

4.1 General Description

When fine particles enter a vertical tube, particles are deposited

on the wall due to diffusion. This study is a numerical analysis to

determine the effects on the deposition due to the velocity ratio g

for various Schmidt numbers. The velocity ratio is the ratio of the

gravity flow parameter (VgrQ/D) to the diffusive Peclet number (u0r0/D),

while the Schmidt number is the ratio of the diffusive Peclet number to

the Reynolds number (uQr0 /-j/) . The influence of the velocity ratio is

used to establish the conditions which will determine when the deposition

is not greatly influenced by the velocity profile so that the problem

may be simplified by assuming the flow to be uniform.

Also, this study will determine the effect on the deposition of
X  /flvarying the velocity ratio § with a new axial parameter ----- forS  +  l

Poiseuille flow and for uniform flow.

The assumptions used in this analysis are the same as those used in 

Chapter 3 in the analysis for flow in a parallel-plate channel. The 

effect of electrostatic charge is not included.

When a suspended solid particle enters a vertical tube at the same 

velocity of the fluid, the particle will experience gravitational 

acceleration and after a very short period of relaxation it will reach 

its steady axial velocity of u + Vg so long as the fluid velocity remains
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constant. In this analysis it is assumed that each particle enters the

velocity of the fluid, and that the particle maintains its velocity at 

u + Vg thereafter.

This assumption is more realistic than assuming an inlet velocity 

of uD for the particle since in experiment a short piece of tube is 

always present between the aerosol generator and the test tube. Further, 

this assumption is reasonable since the fluid velocity develops gradually 

in the hydrodynamic entrance region.

4.2 Governing Equations

In the entrance region the governing equations are

a) Fluid Phase

tube at a uniform velocity of uD + v , where uQ is the uniform inlet
O

o Continuity Eq. (4-1)

u,9tC +  v  ̂ U. _ _J_ 9 P
3 X  3/Z- “ ? 3 * (4-2)

N.S.Eq. of motion for Newtonian fluid.

b) Particulate Phase

Continuity Eq. (4-3)
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The procedure used in solving these equations is similar to that 

used in Chapter 3, and the diffusion equation for the particulate phase 

neglecting the axial diffusion term is given as

u.
9x a. 3/x. a x (4-4)

Where x is the axial coordinate placed along the centerline of the

vertical tube, r is the radial distance, u and v the velocities in the

x and r directions respectively, the particle density, D the particle

diffusivity and v the terminal velocity of the particles.
©

Referring to Appendix B for dimensionless quantities and parameters 

the diffusion equation in dimensionless form becomes

(fc +  u) +  e>v«L5. - 1 ^ ( a .**:e*r_ \
' a x  a a.** 5 ^ ’*' dx**'

(4-5)

Where £  = velocity ratio

U = dimensionless axial velocity

R = dimensionless particle concentration

X = dimensionless axial distance

V = dimensionless radial velocity

r* at dimensionless radial distance from axis

.(*> at diffusive Peclet number

The boundary conditions are

At X = 0  (inlet plane), for 0^[r*^ 1 R = 1

At r* = 0  (axis) for X > 0 9R
^r* = 0

(Uniform)

(Symmetry)
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At r* = 1  (wall) for X > 0  R = 0 (Complete absorption)

Equation 4-5 in conjunction with the continuity equation 4-1 may 

be written as

In this analysis the radial velocity V is assumed to be negligible,

The velocity profile is approximated as follows

For uniform flow, U = 1

For developing flow, U = Uc (1.0 - Y^)

where Uc = (1.0 + 2.0/N)

if 0v< X ^ 0 . 2 5 R e

N = 0.645 (X/Re)"0,497 +2.10 (X/Re)°-765 

if X >0.25 Re 

N = 2.0

For parabolic flow, U = 2.0 (1 - Y^)

4.3 Analysis of Solution

In this analysis the field flow is divided into small control 

volumes. A typical interior control volume with a radial increment of 

S3 and an axial increment of H as shown in Fig. 4.1 is analyzed as 

follows.

(4-6)

V = 0.
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Integrating Eq. 4-6 with respect to r* from r* = b£ to r* = bj 

gives an approximate finite difference expression.

a j ( S * V , , » ) * , . »

+  > (5H b aV ^  R *

( r 2|4 -  R a<3 + r . , 4 -  r . .s )
S 3 + S 4 ' y

-  — *=- ( R a ,3 -  Ri.l -t- R .,3 - R..1.) (4-7)Sa + S 3 /

Where Rg and R2 are the average values of R along the control 

surface b3 and b2 respectively. This average particle density may be 

obtained by linear interpolation. For example,

R 3 = —  [ +• R» ,4 +[Rj,3>I?2 ,4+ Ri.J- Ri.a)— — —  1 (4-8)
X L x / s3 + s+J

Similar control volume approach was used in this analysis for the 

control volume enclosing the centerline and that at the wall. The 

radial increment for each control volume Sj was chosen such that Sj/Sj_^ 

= 0.91523, •*> 0.107637, and S20 = 0.02. The flow field was

discretized into 21 mesh points in the radial direction and the 

increments in the X - direction varied gradually from 10”^ near the inlet
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plane of the tube to 0.002 near the end of the tube where the fractional 

penetration becomes less than 0 .02.

Equation (4-6) may be expressed in an implicit finite difference 

representation about i + l,j as follows (see Appendix C).

[ H k*i-' +  t> J-i Vj'-i S j 1 t4i , J-t

Is.” _
PHbo-i Vj-i 

2

feH bj_i Vj -i S j H b j H  b j - l  1 R  / ______— — _ — —  4.  ------- :— —r  . ..  4.  . 1
^ ^Sj_| Si'J ( S j + S J+()  ^5j-i + S j ^ J

£ + 1 , j

[
BHbjVJ feHbjVjSj f i  H b j

2-(Sj + Sj.,,) ^Sj +Sa*i)
R c4-I; j4l

J  H bi-1 
L(Sj_, 1-Sj

feH bj-
(Sj_i tS jJ  2 ( S jh + S j )

-LJ- ] R  C, J -i 
it Si)  J

r , r Q 7 s * u .  ^  feW bj-.V;, PHbj‘-i V j-/ Sj H b j
L J A  ^  a '*(S4-+Sj) "(Si+Si*,)

<3Hbj Vi S S+, 
2. ( ̂  j 4 S,4 (SjH 4-Sjj

H b j -I- 1 R;,i 
is 4-Sj) J

(3HbjVj . <3HbjYjSj+» Hb jt  ------
2- ^ ( S  j  + Sj4i )  ^Sj 4 Sj+l j

j R i( J4I (4-9)
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The fractional penetration at an axial distance corresponding 

with the solution of Eq. (4-9) is expressed as

In this analysis (J = 100 and Re = 10,100 and 1,000 corresponding 

to Schmidt Number Sc = P /Re = 10, 1 and 0.1 were employed.

4.4 Results and Discussion

parameter to the diffusive Peclet Number, which is the ratio of the 

gravity force to the inertia forcei . The Schmidt Number Sc = P / r c  is 
the ratio of the viscous forces to the diffusive forces. The effect of 

the velocity ratio $ and the Schmidt Number Sc over the axial distance

flow (e.g. Sc = 1 and S = 1) is very close to that for uniform flow 

(when Sc = 0) near the inlet plane of the tube — < .001. As the flow 

becomesmore fully developed the penetration approaches that of Poiseuille 

flow (when Sc-*oo ). This characteristic is also observed in simple 

diffusion (i.e. flow without gravitational effect). As expected the 

penetration increases for a given axial distance as the velocity ratio 

Vg/uQ is increased. From Equation 4-6 it is easily seen that for plug 

flow U = 1 a new dimensionless distance X (1 + S )  can be defined such 

that the governing equation reduces to that of the simple diffusion 

equation for the plug flow which has been solved by many investigators 

£4, 14, 15, 16J . This dimensionless distance is used in Fig. 4.4. Two

I (4-10)

The velocity ratio 5 = ^ 2 .  is the ratio of the gravity flow

0<r-<l is shown in Fig. 4.3. The fractional penetration for developing



38

Two penetration curves (Vg/uQ = 1.0 and 10.0) are also shown. The 

penetration curve for Vg/uQ = 10. for Poiseuille flow was found to 

almost coincide with the curve for plug flow. In other words, when 

the terminal velocity is about 10 times the fluid velocity, the effect 

of the velocity development becomes insignificant. This is as expected 

since at high velocities the velocity profile for the particle phase is 

relatively flat with Vg at the wall, and the flow is similar to high 

slip velocity profile. The dimensionless axial distance used in Fig. 4.4 

is desirable due to the fact that the penetration for the plug and 

Poiseuille flow with no gravity effect is well defined and readily 

available ^2, 9 J .

The deposition of suspensions in the entrance region of a parallel- 

plate vertical channel based on the fractional penetration was also 

investigated and are shown in Fig. 4.5 and Fig. 4.6.

Experimental measurements have been made by Wong Kittirock |̂28J for 

the flow of particles in a vertical tube under the influence of electro­

static charge. See Figure 3.8. The results show the effect of the 

dimensionless axial distance 4cC.X/%. on the fraction of deposition for 

a concentration range from 35 to 50 pt./cc. This is for a uniform 

velocity profile. The results of fully developed flow were close to those 

for uniform flow. While test data is not available for channel flow these 

results show close agreement with the solution for channel flow. Values 

of the fraction of deposition at 4o*-X/(b = 0, .05, .10, and .15 were 

compared and found to confirm the corresponding deposition values of

0.0, .05, .09, and .13.



39

5. CONCLUSIONS

This investigation was made to determine the effect on the 

deposition of fine particles in a vertical channel and in a vertical 

tube due to the influence of electrostatic charge, diffusion and gravity 

acting in the direction of flow.

The conclusions reached are as follows:

For a parallel-plate channel

1. Considering the influence of diffusion and electrostatic charge, 

the deposition was found to increase with increasing electrostatic 

charge.

2. Considering diffusion and electrostatic charge, for any selected 

axial distance along the channel and for the same electrostatic 

charge, the deposition was greater for uniform flow than for 

parabolic flow.

3. Considering diffusion and electrostatic charge, for uniform flow, 

and for a selected axial distance, curves plotted showing deposition 

verBus axial distance resulted in a wide band of deposition values 

as the electrostatic charge was varied from 0.0 to 100. When a

new dimensionless distance 4 was selected, the deposition

was found to decrease as the electrostatic charge parameter ec 

increased and also the wide band of curves became more closely 

packed. The result is that if the electrostatic charge parameter
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e<~ is greater than 50. then the diffusion term may be neglected 

and the deposition may be determined from the electrostatic charge 

only.

4. Similar results were found using a parabolic velocity profile and 

with the new dimensionless distance 4ocX/(3 the curves are packed 

even more closely together for the range of selected values of 

electrostatic charge. For parabolic flow it may also be concluded 

that if the electrostatic charge parameter oc is greater than 50. 

then the diffusive term may be neglected.

5. When the diffusive effect is neglected and only the effects of

electrostatic charge and gravity are considered, then for a given 

axial distance X the deposition decreases as the gravity effect 

increases. As the velocity ratio £ exceeds 1. the effect of the 

velocity profile on the deposition decreases with the curve 

approaching that of uniform flow.

6. The analysis for flow in a vertical parallel plate channel 

considered only uniform and parabolic flows. It is expected that 

the deposition will fall between these for developing flow.

7. For a vertical tube, the fractional penetration near the inlet of 

the tube (X<"0.001) was found to be very close to that for uniform 

flow. As the flow becomes more fully developed (X > 1), the 

penetration was found to approach that for Poiseuille flow.



41

8. For a vertical tube, for any given axial distance and for any 

velocity ratio $ = Vg/uQ , the penetration increases as the 

Schmidt Number Sc increases.

9. For a vertical tube, for any given axial distance and for any

value of the Schmidt Number, the penetration increases as the

velocity ratio increases.

10. For a vertical parallel-plate channel the effects of the velocity

ratio and that of the Schmidt Number are similar to that of the

vertical tube with the exception that for corresponding distances 

the penetration for the parallel-plate channel is greater than that 

for the vertical tube.

11. For a vertical tube with a uniform velocity profile a new axial 

dimensionless distance X/(l+S) was defined. The governing 

equation included the effects of both diffusion and gravity but

by introducing this new parameter the equation was reduced to that 

of the simple diffusion equation.

12. For a vertical tube with a parabolic velocity profile, curves 

were plotted showing the penetration along the axial distance for 

a range of velocity ratios of 0.1 to 10. It was found that when 

the velocity ratio is about 10. (i.e. terminal velocity = 10 times 

fluid velocity) that the effect of the velocity ratio is insignif­

icant and the penetration curve for parabolic flow almost coincides 

with that for uniform flow.
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13. For a vertical parallel-plate channel the curves are similar to 

those for a vertical tube except that for any selected axial 

distance and for any comparable velocity ratio the deposition is 

greater for flow in a circular tube.

14. For a vertical parallel-plate channel the use of the axial
x / pparameter ------ results in a more compact set of curves than forI + S

the circular tube.
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6. RECOMMENDATIONS FOR FUTURE STUDY

This investigation considered the hydrodynamics of a system of 

solid particles of uniform size and mass in a fluid suspension acting 

in a vertical conduit. Such analysis is of value and has practical 

application in the transport of waste products from various production 

processes. It also has application in human circulatory systems. 

Further study should include an extension of some of the limitations 

and restrictions imposed upon this investigation such as the use of 

the vertical channel or tube with flow in the direction of gravity. 

Further investigation may include inclining the conduit.

Also consideration may be given to the condition where more than 

one size . d mass of solid particle may be suspended in the fluid. Such 

application would be useful in internal combustion engine exhaust and 

also industrial dust collectors which frequently operate with multiple 

types of solids.

This dissertation was based on assumptions which provided that the 

flow is relatively slow. At higher velocities the boundary layer 

analysis requires that variations in density and temperature must be 

taken into account. The governing equations would have to be adjusted 

to account for compressibility of the fluid and additional equations 

would be needed such as an equation of state and an equation of 

conservation of energy in the boundary layer.
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APPENDIX A

DIMENSIONLESS QUANTITIES AND PARAMETERS

1. Dimensionless Quantities and Parameters

H

U  -

X

I e .
%PO

u.
u,0

V

y
h

v = J L
h

j L ) « x  
'  >Mp FD 1

e Y  =  ( J L  iL)e,
VWp Ft> '

oc . ( v j ^ j b »!)
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2. Additional dimensionless quantities for vertical tube

§ A *

/i* = JL.
JL o

fl /%«

ifiLdf
D

LL . Jlc>

V

3_ = _v
” IX
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3. Physical meaning of parameters

ii LR _  =. — -—  Reynolds Number
*  V

ratio of the inertia forces to the viscous forces.

oS  ss — —  Diffusive Peclet Number
P

ratio of the inertia forces to the diffusive forces of the particles, 

ya Hsr Gravity Flow Parameter

ratio of the gravity force to the diffusive force of the particles

Electrostatic Charge Parameter

ratio of the forces electrostatic charge to diffusion.

O  S V- --  -   Schmidt Number
Re P

ratio of the viscous forces to the diffusive force of the particles.
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APPENDIX B

1. Case of channel flow considering diffusion and electrostatic 

charge effects.

u -££e  - P ___2  \—  (3-11)
3 f l f J

_ S .P.3-... (3-10)

Using the dimensionless quantities in Appendix A for Eq. 3-11. 

vl2?p  _ u -eU  fp p  3R
3 x  h 3 X

D 3*P p  =  D 2 _ f i£ p )  _  P i p e  
5  7 *  h l  5 T l

/  9- ^p>3e«f _  a  ? pq R  3 E.  _  0  ( ’po
vwp i= h *  V }

> tp  /\FD/
/ i e , \ 3 p p  _  /  g- yvKpVFPN e  Ppc } R  _  D ? P 6 E 5 R
U v  f  / p v " " \ > i p F ^ a A h /  h p t  h 1- a r

Let u.» U ^pp   /0 3  R _  /DPpt>\  __ (p P p b E \ )  R
h 9 X  ”  ' h 1 ' 3 Y V V h ’- 'J'Y
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uAB.  -  3 ft _ e. 3 ft _ -f ck p .x

9(f) "9Y" > r

Li 3 R  _ _  4 o i R '  (3-12)
a x *  3*r' j'r

Where X*
■ ( f )

For Eq. 3-10

5 e if _ >vi p F P  ) E r  
“  3  h '  5 T

fr 1  _ 9 po r . dL
e„Ynp ” e .  wip

Vn p F P  3 E r  _ P po R °t
<1 h* 3 Y  £# VKip

l?JLr .  + o c r
3  r

(3-13)
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2. Case of channel flow considering electrostatic charge effect only.

- — f—  ^ - 1  (3-14)3 4  L w p  P J
(3-15)

3tj ^ e ’VMp

Using the dimensionless quantities in Appendix A and following the same 

procedure as in case 1, these equations may be non-dimensionalized to 

the following

u  3 R  _ / e  w r  re*

( - ± - ) 2 E  =  k
\4<*/

o r .
U PR _ _ E _ R x

ar

p e *  _ r
9 Y

(3-16)

(3-17)

4. «^X eWhere Xi* =  and E* =•<—
1 @  4o<

3. Case of channel flow considering charge effect with gravity.

U-^fV _ _ Jl IJL + -2 [fpVjl (3-20)} X  P V L ^ P  F  J  P  x  L  J
s  ^ - 3t-  ( 3 - 1 5 )

“3 •/ £  ©
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Using the dimensionless quantities in Appendix A Eq. 3-20 may be non- 

dimensionalized in the following form.

■u.o U  ̂ po 9 R _ / PPpoN ( 0 $p q E  ̂  a R  /(7po Uo y \ a R
h  a x  " '  h *  ' " V  h i y  ' h ' a x

which may be simplified

( U c h ) u Z R  =  _ +<x.R* _  e. _  (“ oh) £  2 R 
V O  / I X  3 Y ' D ' px

Substitute G  = P
sU 2.EL =. _ f ̂ R 1. e2£L - s s l Bv a x  3Y 3 x

sfut s') IB. = _ E^B. _ «•(* R 1 r \ /?X 3 Y

Rearranging

f$ + u ) _ £ 5 _  -  _ _ r *

(S +  u") =  -  e _  R *
' ' a x , *  3 t

4 X T?Where X-,* =  and E* =JLas for the case of electrostatic charge
1 <? + *

only.

Eq. 3-15 in non-dimensionalized for is the same as the previous case.

i!* - ed Y
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Case of vertical tube flow considering diffusion and gravity.

“ - i £ £  -L. _ 0J_  2 _ ( a 2 £ p ) _ . . 2 _ ( v 9 Pf) ( 4 -5 )
> X  3 *  A  3 A '  /  p x '  J '

Using the dimensionless quantities in Appendix A we have

fci 3 Pp -  a.® U  Ppo 3 R
J x  p

V  iLP-p _  0,0. V
3 A

D_L 2 _ f A  D_£pX _ _ D _  3 (sic XL* Ppo 3 R )
A  J / iA  3 A  ' AoJi* A c 3 a * - '  A * 3  A * * '

-  P ? po  *3 *  3R  \
~  A 0* A ~  3 A # l

 Vq^ =  „ P Pe» V  9 3 R  __ <?po ̂ ^ . 9
> X '  ' ~ 9  A ©  3 X  p A c t t ©  O X

—    P p q  S 3  ̂
@ Ac, 3 X

Substituting into Eq. 4-5

U.OU Ppo 3R U-q V $pe> 3R  O 9po 3 / a ^PR ^ ?PtU.c»S 3R
p A o  a x  A c  3 A ~ "  A © V iM3 ; t * '  9 A k / "  @ A o 3X

. a
(

A  c \ / tt c^A— -— jand substitute ^ — — J
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u i a  +  = _ L  _2_ _  g ^ E .
/i** zjt*'' in**' a x  

_ * . * Y S + u ')2 E .  +  / l “ (3 v £ R  * j _  C > !-^ R . ")
' ' } X  J A *

The continuity equation is

z i ^  + Vs) + ±  2 { * v )  _ o
2  X  A- P  /L

Non-ditnensionalize as follows

a(n.-«• v 5) _ 5 ( t c , u +  g P f) _ u.«, a ( r •**hj)

^(^.v ) _ _J  _ Up V
yL ^ Slvp- " I  X .  A.* JlcA*

Substituting

ULo s ( ^ u )  _ U p
p»^o £ X " AcA** 3 A.**

, a ( g + u )  t i _ 0
3 X  A *  3 / I * *

(4-6)

(4-1)

(4-la)
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Equation 4-6 in conjunction with the continuity Eq. 4-la may be 

written as

3
?X (4-7)

Since, expanding 4-7 we get

A ’Ys' + u) PR. + RA.V ;3X P-X
(S + u )a *J (By PB. +

P A *  P- A

_ 3 \

Divide through by r* and rearrange

-  J _  3 f A . * P R )  
“  A** P x V

And from the continuity equation

1a * P X | >  j A  P a .** }
/

3 ^  3̂ pX ? A *  J

_  <3_R_ 
A *

Ca * a(r+u
|  @ 5 X

) . 3(a *v)}
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COMPUTER PROGRAM FOR CASE #1 - CHANNEL FLOW CONSIDERING 

DIFFUSION AND ELECTROSTATIC CHARGE EFFECTS

3  E  
3Y

_ 4 * R (

These governing equations written in finite difference form are

U.<-+/, j Riti, j - Rt.j _ Rj+i.J+i - aRd4i,j R l+i,J-i
a x ** J " av*

(3-12)

-13a)

(C-l)

EC+i.J+i - £«■»», j _ 4 R £.41 , j
AY

(C-2)
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Expand these terms

tJ c + /< J j R  t +* , j   U t  + t , J  I R i (j i | _ I R  c+l, J +11 . j.
AX'* I L J a y h  J

a x '
Rc+z, J - i Oj iL . Rt+l.j+l _  E l . J  I Rc+I

a a r L  J L
, j -i

And
I

a n
c+l ,J

Simplify by letting H = A X  and S = A Y  and combine terms

-[ i±i_l R c
.9 J

c+l,J-I

L H sx(3 ^ J Us?

- H * 2 ] "u

Is Et'+i, J+i
- t h H  = h h

c + l, J

JL_ [Rc+/,J
A Y vL

L-l^c+l, 04-\

(C-3)

(C-4)



58

Let :

r a (n ) - - [ 1 +\ / Lsl0 a s p J

R6 (n )

RC (n ) [" E £, a 1 

[asp sap.

r v (n ) 1
S

RW(N ) 1
s

± £ i  Ect,ij

Rewriting Eq. (C-3) and (04)

RA(n + Rb(n )|r tf 1 Rc(i

=  u f t j  [«<,;]

R v (n  ) Ec+«,j+«j + R w (n ) Et+.^jsr

R u+i,  ̂+ • j

(C-5)

4  44 A L F A **  R t  + 1 , j  (C -6 )

Where 2 ^ j ^ 2 2  a n d 2 < .N ^ 2 2
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The finite difference coordinates were selected to correspond to 

the spatial coordinates such that i = 1 corresponds to X = 0 and j = - 

corresponds to Y = 0. The vertical increment for each step S was chusen 

as constant such that S = 0.05. The increments in X direction varied 

from H = .001 to H = 1.0

The computer flow chart is shown in Fig. 3.2

The quantities U, V, R, E, ALFA, and Beta at each point j in

column i are known. These are boundary conditions as given in Chapter 3. 

By the use of the finite difference equations as expressed in Eq. C-5 and 

C-6 the matrix equation

Ai Xi + 1 = Bi 

is generated for all points j at axial position i.

Ai is the matrix of coefficients at position i

Bi is the column vector at axial position i

Xi + 1 is the variable column vector at axial position i + 1.

Ai and Bi are expressed in terms of the quantities Ui, Vi, Ei and Ri.

Xi + 1 is expressed in terms of Ui + 1, Vi + 1, Ei 4- 1 and Ri + 1.

This matrix is sparce and appears in the tridiagonal form.

A computer program has been written to solve this program which 

uses Gaussian Elimination.

The subroutines formulated for the elimination procedure were 

LINAEQ which in turn calls upon other subroutines: LUDEC0, which 

decomposes the matrix into a triangular matrix; ELIMIN, which performs 

the elimination part of AX = B; and REFINE, which refines the solution.
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The fractional penetration at any axial distance from the 
entrance is expressed as

i
URdY

This may be integrated using Simpson's Rule

. * tZj OOP J EVE N
The fractional deposition may then be found since fractional deposition 
= (1 - fractional penetration).

/ -fO ffrl
VI -I

2. Case of channel flow considering electrostatic charge effect only.

The governing equations 3-16 and 3-17 can be written in finite 
difference form as follows:

U: j >' j B -  £ T, j ■ j j (C-7)

*  •*<
EE i4l, V+l ~  E  64-1 I j 

A Y
- R  L+i, j (C-8)

Let : S ss A Y

Then, rearranging the terms in Eq. (C-7)

A X , *
R  c + » ,o

(c-9)
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Where » 2^ j ̂  82

The finite difference coordinates were selected corresponding to 

the spacial coordinates such that i = 1 corresponds to X = 0 and j = 2 

corresponds to Y = 0. For O^X^*  ̂  0.04, 81 mesh points were used 

across the flow from the centerline to the wall and S was held constant

at 0.0125. A  X^* varied from 0.0001 to 0.01.

For X^* = 0.04, 41 mesh points (S = 0.025) were used.

Eq. (C-9) may be written as

Where :

Solving for Ri+1, j

(C-10)

Eq. (C-10) is thus the explicit solution for Ri+l,j.
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Having calculated Ri+l,j, the electrostatic field intensity may 

be calculated from Eq. (C-8) such that

E*i+1, j+1 = 2Ri+l,j S + E*i+l,j (3-19)

For the initial centerline condition:

j = 2
Ri,2 = 1.0 

Ei*+1,2 = 1.0 

Ui+1,2 = Uc

The fractional penetration at any axial distance from the entrance
ris I URdY, which is integrated using Simpson's Rule. 
Jo

Referring back to the governing Eq. (C-7) 

Ui+1,2 1-;- ̂  = - 0. - ^Ri+l,2^Ri,2

i + 1 > 2  + (  I t * )  r 1 + 1 ’ 2  -  ( - I f * )  - 0Ri+l

Ri+l, 2 =  1-----  (C-ll)* 1 + Xj*
Uc

For the condition of uniform flow, Uc = 1.0 and (C-ll) may be 

expressed as

Ri+l,2 = 1 (C-12)
1 + Xj *

For channel flow the initial condition for the fraction of 
['penetration is Jo URdy _ 1 which is equal to Eq. (C-12).
/'•UoRody ” 1 + Xj*
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3. Case of channel flow considering charge effect with gravity.

The governing equation (3-20) can be written in finite difference 

form as follows:

-  jtfc-M.jj (C-13)

and

r  ■** _  iI E  ĉ .i,J4-i —  E  c 411J I s
L AY J 141, J (C-14)

Rearranging the terms in Eq. (C-13)

i. + / j J- f—S   -f. ^  1 • J ■+■ E  1 Rc4I i J
Ux,~ AT J

—  L i —  ( r ^ j )  + _ y ± ± i t i _  ( r c ,<i ) + j - * )
La x ,* a x ,* 4 y  J

=  O  (C-15)

Similar to the other cases for parabolic flow the velocity profile 

is U = 1.5 (1-Y^) and for Uniform Flow U = 1.

Equation (C-15) may be rewritten as

( A j Ri+l,j2 + (b) Ri+l,j -_C_ = Q
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Where :

A = 2

B =

C = 2

uC+i ,J * 1 Ld.r Jf —L4X •

f ( f i c . j )  -I. U t ‘+ I , j  )  4. E t . j  ( r . 4-1, j - i )  1
L^x,* A X , *  A T  j

Solving for Ri+l,j the solution was determined explicitly.

Ri+l. j = -B + (B + AC )1/>2 
A

(016)

The fractional penetration at the corresponding axial distance

from the entrance is expressed as J U(N) ' R(N) • dY. This may be
o

integrated by using Simpson's Rule, where N varies from 1 to 81.

Thus,

& L  j ivk»

n-i
+  , C Z  f S +  S> (f O M  —  -f ‘(b)

j *■1 
j odd
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Where :

f (N) = U (N) . R (N) 1 <  N < 81

f (a) = U (1) • R (1)

f (b) = U (81) • R (81) = 0.*R (81) (wall)

f 1 (a) = 0 (symmetry at )
■PfQlN _ Gf QH\

f '(b) = - f (81) - f (80) 
S

S = A Y

Using the same method as for the previous cases, eighty-one 

rectangular mesh points were selected at the entrance. The increments 

in the Y-direction were held constant with A Y  = 0.0125. The eighty- 

one mesh points were reduced to forty-one beyond the axial distance of 

X-̂ * equal to 0.04 and A Y  = 0.025. In the axial direction the increments 

varied from A  X^* = 0.0001 to 0 .01.

4. Case of vertical tube flow considering diffusion and gravity.

The governing equation is expressed as

dx. (s+ u)

Next, integrate with respect to r* from r* = b£ to r* = b3 to 
give an approximate finite difference expression. Refer to Fig. 4.1 

which shows a typical interior control volume with a radial increment 

of S3 and an axial increment of H.



Integrating the First Term

J J [(W U) U * ] J n.

Where average value at center of control volume

=  T r [ ( J + u , . 3 K * < '  -  ( £ +  u . . * ) R . ^

( s + u, a ;

Integrating the Second Term

f ^ V R d A. ^ V R A
I

average on 3

average on 2

f
average on 3 paverage on 2r



Integrating the Third Term

/
=  -'t J>R

3 X *

average on 3

average on 2
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Combining the three terms

’( S - D , . , ) * , . , * , "  -  (S +  U „ 3) R ,3 V ]  f -5

R , b3 _  £V a R 3 b
■]

= b. [ r = . , - r ,.3 ^ r ..«-r ..3] _ b K . 3 - R 3.x-|- R ..r R ..^]
S.

Rearranging,

“* 5  ^ 3  ^ 2 ,3 ) R 2.3 ~  - ^ 3  +  ^ < > 3  ) R «.j

+  ^>H b 3V 3 R 3 -  ^ W b 2V a R z

* 8 ^  ( R - . 4 - R a . 3 - R . . ^ R ..3)

_  ( r  _ R  4- R  , - R  >
j  I  5  I  3  • ̂  a .'3- i i3  1.a ./ (C-17)
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R3 and R-2 are average values of R along the control surface 63 and 
b2 respectively. 63 may be found by linear interpolation as follows: 

(refer to Fig. 4.1)

=_ f  R a . f
S*_
2.

S3
X

S a

Ri,3 f R 1 .3 ft.,* f  R j ,4 1
"  ’- - - 1 - - - - ' J

,4- +‘ R I,4 + (^3 .3 “ ^3,4- ♦ (C-18)

Similarly,

— 3 re_ ^ 1 .3  + Rj ,3 , x I R i.z +
= 1 §* +  §3 |_ X

3,3 R | . 3  +  P

— ]

" ' ■ T (C-19)

Eq. (C-17) may be written using a finite difference grid as follows

if j + 1

J

if j"1

i + 1, j + 1

1 + 1, j

i + I, j-1



Next,

Then,
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t*S-(s + U. .)R. . S-(s + U{ :)R/ ;
J 4 \ «.♦!, J/ tfl.d J J ' •*'*

h (SHbjVjR, _  p H b ^ V ^ R , . ,

Hbj / r  . . _  r  .

sj + s;«
Cfl.d+| t+l ,j ^  B  L , J 4 1 -  R t , i )

H t> Ji (R . . _ R • • + R • ; _ R • • , )\ tf|,J t+lyd-l t,J t,,J | )

Sj-+Sj

(C-20)

Eq. (C-18)

* ( i )  = + ^ i t L

(C-21)

Eq. (C-19)

^ c 4 i  , J +  R t.J 4- —  ̂ b4i ,J

_ R  • ^ ‘-.0 J
Sj

+  Sj ) •
(C-22)
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Finally, expanding the terms of Equation C-20, C-21, C-22 and 

rearranging:

H bj.
Sj., -*■ Sj + S j)

t+i, j-i

«j(s + uu,.i) * r bjVJSjir  -^.(Sj + 5 j+i) a

H b  j

^(^0-1 * Sj) (S j +■ Sj+|) ^Sj-| + Sj )

P H bj  V j p M bj Vj S o+i H bj

3.(Sj + Sj+») (Sj + S j+()
j ̂ l+i , j+l

W bj_ |  p>H b j - i  V j - i S j  ] r .-------------- -f — ------------ ---- t . j -i
(Sj-< + Sj) a(Sj., + Sj) J

L v ' 1 a. a ( 5 jH +  S j )
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 H b j  _  (5 H b j  V  j  S j - f i ______ H k j - i  1 B i  i

(Sj + S j4i) 3.(Sj +• Sj*,) (Sj_| + Sj) J

+  -
(3H bjVj Sj +1 _ H bj 1 j + l
1 (Sj + Sj+i) (Sj -4- Sj*,) J

(4-9)

The fractional penetration of the particle phase at any given axial 

distance is

-  <le
J ( v g  +  M . ) ( M  'HA.AfL

+ u.0) f r A o  ?Po

Non-dimensionalize as follows:

% = H  o .  A * ,  - i .
U-0 U. o -*•

Substituting:

J  ( U’° S + ^  “ u ) *
S 4 u -o j Tr^te, x

a  j ( < f + u ) r ^ ^ c / a ^

( j  + i )

(C-23)



The fractional deposition is then
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u+v.

G ra v ity

Channel W a ll

FIG. 3.1 VERTICAL PARALLEL PLATE CHANNEL CONFIGURATION
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COMPUTE 
A AND B

YES

’NO

READ INPUT

NB=I

N&-NB+1

CALL
ELIMIN

START

CALL
LUDECO

CALL
REFINE

COMPUTE 
R,4 oCX/BETA, E,THRU,DEPO

PRINT 
X, 4otX/BETA, R, E 
THRU, DEPO

FIG. 3.2 COMPUTER FLOW CHART FOR FLOW IN A PARALLEL PLATE 
CHANNEL FOR DIFFUSION AND ELECTROSTATIC CHARGE.
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A  30.48 Test Section 
O 15.24 Test Section

Uniform
.15.. Parabolic

. 10..

,05..

.10 .20
4-oC X /  fl(g* /)

FIG. 3.8 COMPARISON OF EXPERIMENTAL DATA WITH THEORETICAL ANALYSIS 

FOR FRACTION OF DEPOSITION DUE TO CHARGE AND GRAVITY EFFECT FOR 

VERTICAL TUBE FOR UNIFORM FLOW AND PARABOLIC FLOW [28|.
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1,21
1,20

1,19

j

M

1,3

1,2

1,1

FIG.

WALL
2,21
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. .  2,20

2,19 Sig

Gravity

4.1 FINITE DIFFERENCE REPRESENTATION OF FLOW FIELD 

SHOWING AXIAL AND RADIAL INCREMENTS.
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YES

NO

IS  DEPO < 0 .9 9 5

STOP

START

CALL 
LEQT 1 B

COMPUTE 
A AND B

CALL
TRAP

NB=1

READ INPUT

COMPUTE 
R, X/BETA, THRU, DEPO

PRINT
X, X/BETA, R, THRU, DEPO

FIG. 4.2 COMPUTER FLOW CHART FOR FLOW IN A VERTICAL

CIRCULAR TUBE WITH DIFFUSION AND GRAVITY EFFECTS.
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