Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

```
    by
| Fred Jyh-Woei Cheng
```

Thesis submitted to the Faculty of the Graduate School of the New Jersey Institute of Technology in partial fulfillment of the requirement for the degree of Master of Science in Chemical Engineering 1981

APPROVAI SHEET

of Thesis: Mathematical Modeling of Jet Bubbling Reactor

Name of Candidate: Fred Jyh-Woei Cheng
Master of Science in Chemical Engineering, 1981

Thesis and Abstract Approved:

Dr. C.R. HUANG
Fuil Professor
Department of Chemical
Engineering.

VITA

Name: Fred Jyh-Woei Cheng
Permanent address:
Degree and date to be conferred: M.S. in Chem. Eng., 1981
Date of birth:
Place of birth:
Secondary education:
Collegiate institutions Dates Degree Date of Degreeattended

Major: Chemical Engineering
Positions held: Associated EngineerIBM CorporationRt. 52, Hopewell Junction, N.Y. I2533

ABSTRACT

Title of Thesis: Mathematical Modeling of Jet Bubbling Reactor
Freá Jyh-Woei Cheng, Master of Science, 1981
Thesis directed by: Dr. C. R. HUANG
Full Frofessor, Department of Chemical Engineering

A jet bubbling reactor for flue gas desulfurization is described by a mathematical model with the concept of two-stages mass transfer with chemical reactions. The model consists of two coupling differential equations which are solved simultaneously. The result from the theoretical model is agreeable SO_{2} removal data obtained from a pilot plant reactor.
Section Page
I. INTRODUCTION. 1
II. DESCRIPTION OF CHEMICAL PROCESS 3
III. DESCRIPTION OF THE REACTOR 5
IV. MATHEMATICAL MODEL OF THE REACTOR 7
V. Desckiption of quantities in The DIFFERENTIAL EQUATION 20
A. The Interfacial Area and The Gas-Side Mass Transfer Coefficient in both Jet Bubbling Zone and Rising Bubble Zone 20
B. The Submergence Depth and Bubble Penetration Length 21
C. The Physical Properties of The Reactor System 23
D. Pressure Drop 24
VI. RESULTS AND DISCUSSION. 25
vil. SYMBOLS USED 30
APPENDIX A 33
SELECTED BIBLIOGRAFHY 36

I. INTRODUCTION

Gas absorption accompanied by chemical reaction is of great industrial importance. A lime and limestone based system for the flue gas desulfurization process, falls into this category. All the usual types of gasliquid reactors, such as bubble columns; plate columns; packed columns mechanically agitated contactors; etc., are employed in industry for carrying out gas-liquid reactions. Bubble columns are widely used in industry due to the simple design, the absence of moving parts eliminating the need for seals and large liquid hold-up time. However, bubble columns do suffer from the disadvantage of high pressure drop due to the hydrostatic head of the liquid. The gas dispersion in plate columns and packed columns are coarse and there some tendency for channels of gas to be formed which will reduce the effective interfacial area. The effective interfacial area is a very important variable when the reactor design is based on mass transfer considerations. Also, when a soluble gas is to be absorbed in slurry or a clear liquid with solid deposition in the absorption device which could create unreliability and unscheduled shutdown problem.

In general, industry desires the following of an absorption device in a flue gas desulfurization system for the following reasons: operational reliability; high
liquid-to-gas ratio; low pressure drop characteristics; high absorption efficiency potential; high specific surface area; good byproduct utilization; low investment and operating costs; and easy operation without scaling and plugging condition.

In Japan, Chiyoda Chemical Engineering and construction Co. Ltd. has developed a jet bubbling reactor which has high specific surface, low pressure drop and high liquid-to-gas ratio capabilities. The reactor is equipped with a gas sparging device to create a jet bubbling layer. In this layer, a large gas-liquid interface area and tubulent motion of liquid provide effective SO_{2} removal. This reactor replaced the usual type of scrubber in limestonebased system which uses a solution instead of a slurry to renove both SO_{2} and particulates with great efficiency. This system is able to avoid the problem of scaling and plugeing and produces a gypsum that may be used for wallboard and as an additive for portland cement. The system was tested wver a period of years with minimal process difficulty. This reactor has been analyzed matheinatically in the jet bubbling zone with the assumption of plug flow in the gas phase and back mixing in liquid phase. The objective of this research is to focus our attention on the jet bubbling zone with a description of the reactor of jet bubbling type by a mathematical model with the concept of two-stages mass transfer with chemical reactions.
II. DESCRIPTION OF CHEMICAL PROCESS

The jet bubbling flue gas desulfurization process uses a solution instead of a slurry to absorb SO_{2}. The principal absorption reaction for this system is given by:

$$
\mathrm{SO}_{2}+\mathrm{CaCO}_{3}+\frac{1}{2} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

The essential reactions governing this system in the jet bubbling zone are:

$$
\begin{align*}
& \mathrm{SO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{aq}) \\
& \mathrm{SO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{3} \\
& \mathrm{H}_{2} \mathrm{SO}_{3} \rightleftharpoons \mathrm{HSO}_{3}^{-}+\mathrm{H}^{+} \\
& \mathrm{HSO}_{3}{ }^{-}+\frac{\mathrm{I}}{2} \mathrm{O}_{2}(\mathrm{aq}) \longrightarrow \mathrm{SO}_{4}^{--}+\mathrm{H}^{+} \\
& \mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaCO}_{3}(\mathrm{aq}) \\
& - \text {-(R-2) } \\
& --(\mathrm{R}-3) \\
& --(\mathrm{R}-4) \\
& -(\mathrm{R}-5) \\
& \mathrm{CaCO}_{3}(\mathrm{aq})+\mathrm{H}^{+} \Longrightarrow \mathrm{Ca}^{++}+\mathrm{HCO}_{3}^{-} \\
& --(R-6) \\
& \mathrm{HCO}_{3}{ }^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \\
& --(\mathrm{R}-7) \\
& \mathrm{Ca}^{++}+\mathrm{SO}_{4}^{--}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \tag{R-8}
\end{align*}
$$

In this zone, gas-phase mass transfer of SO_{2} and dissolution of CaCO_{3} are the controlling steps (Ref. (I)).

Control of scaling in the reactor walls is achieved by keeping gypsum crystal concentration in the range of 10 to $20 \mathrm{wt} . \%$ and having sufficient liquid volume in the reactor. The utilization of limestone is governed by the pH value of the slurry. Therefore, weak sulfuric acid of $2 \mathrm{wt} . \%$ is charged to the reactor continuously to give the desired pH value. Gypsum byproduct from this system is chemically stable and is of high quality and can be used in many catesories.
III. DESCRIPTION OF THE REACTOR

A sketch of a jet bubbling reactor is shown in Fig. 1. The reactor consists of two zones: jet bubbling zone and reaction zone. The reactor is equipped with a gas sparging device which has slot open ends 100 mm . to 400 mm . (refer to Fig. I) below the liquid surface. Flue gas was injected norizontally through the slots into the liquidphase with a velocity of $5 \mathrm{~m} . / \mathrm{sec}$. to $20 \mathrm{~m} . / \mathrm{sec}$. Then, the gas was split into bubbles by the turbulent motion of liquid. A gas jet of bubbles was formed horizontally near the slots and then deflected upward due to the buoyant force. In this zone, the gas bubbles are finely broken by liquid motion and a large gas-liquid interface area is created to provide for effective SO_{2} removal. Residence time for the gas-phase is very short (0.5 sec . to 1.5 sec .) in this zone.

In the reaction zone, air is pumped into the reactor from the bottom and a mechanical agitator is stirred to keep proper liquid circulation. In this zone, air is dissolved into the liquid as the source of oxygen and a proper amount of suspending solid and sufficient residence time permit the gypsum to grow to the desired size.

Cutaway view of the jet bubbling reactor

Iiquid flow pattern in the jet bubbling reactor

Schematic of the gas sparger in operation

Schematic of jet bubbling zone

Figure 1. Sketch of the jet bubbling reactor (reference (I))

IV. MATHEMATICAL MODEL OF THE REACTOR

The gas bubble reactor in which flue gas is bubbled through a gas sparging device generates a jet bubbling layer near the device. This region of gas is dominated by gas momentum. Beyond this region, the dispersed gas bubbles rise up by buoyant force. Therefore, the mathematical modeling of this reactor will be divided into two portions: A). modeling of the jet bubbling zone, and B). modeling of the rising bubble zone.
A). Modeling of the Jet Bubbling Zone:

The rate of SO_{2} transfer between phase is

$$
W=K_{G} A\left(P_{\mathrm{SO}_{2}}-P_{\mathrm{SO}_{2}}^{*}\right)
$$

where \mathbb{K}_{G} is the gas-side mass transfer coefficient, A is the interphase area, $\mathrm{P}_{\mathrm{SO}_{2}}$ is the gas phase partial pressure of SO_{2}, and $\mathrm{P}_{\mathrm{SO}_{2}}^{*}$ is the equilibrium vapor pressure of SO_{2} with respect to the liquid SO_{2} concentration. The interphase area A is defined as $A=N a V$, where \mathbb{N} is the number of slots, a is the specific interface area, V is the volume of jet bubbling zone per slot (refer to Fig. I). Then, equation (1) becomes:

$$
\begin{equation*}
\mathrm{dW}=\mathrm{K}_{\mathrm{G}} \operatorname{aN}\left(\mathrm{P}_{\mathrm{SO}_{2}}-\mathrm{P}_{\mathrm{SO}_{2}}^{*}\right) \mathrm{dV} \tag{2}
\end{equation*}
$$

- ? -

The mass balance of SO_{2} in the gas phase is

$$
\begin{equation*}
d W=M_{g}^{\prime} \alpha\left(\frac{y}{I-y}\right)=M_{E} \frac{d y}{I-y} \tag{3}
\end{equation*}
$$

where M_{g}^{\prime} is molar flow rate of carrier gas, y is the mole fraction of SO_{2} in flue gas, and M_{g} is the molar flow rate of flue gas. Using equation (3), equation (2) becomes:

$$
\begin{equation*}
M_{g} \frac{d y}{1-y}=K_{G} \operatorname{aN}\left(P_{S_{2}}-P_{S_{2}}^{*}\right) d V \tag{4}
\end{equation*}
$$

The volume of jet bubbling zone is assumed as:

$$
V=I_{p} * S \quad \cdots \cdots \cdots-\cdots-\cdots-\cdots(5)
$$

where S is the average cross-sectional area of jet bubbling zone, I_{p} is the bubble penetration length. Since the pencetration length of bubble is linear with respect to the volumetric flow rate of gas :

$$
\begin{equation*}
I_{p}=b_{0}+b\left(\frac{V_{g}}{\mathbb{N}}\right) \tag{6}
\end{equation*}
$$

where b_{0} and b are the intercept and slope of the curve respectively which can be obtained from Fig. 2, V_{g} is the volumetric flow rate of flue gas. Using equation (5) and (6) and applying the ideal gas law, $P_{\text {tot }} V_{g}=G A_{s} N R T$, equation (4) becomes

Figure 2. Effect of gas flow rate on bubble penetration length. (reference (I))

$$
\begin{equation*}
M_{g} \frac{d y}{I-y}=K_{G} \operatorname{aNF}\left(P_{S_{2}}-P_{S_{2}}^{*}\right) \frac{b R T}{P_{\text {tot }}} A_{S} S d G \tag{7}
\end{equation*}
$$

where A_{S} is the slot cross-sectional area, R is the gas law constant, T is the flue gas temperature, $P_{\text {tot }}$ is the total pressure of the reactor and G is the molar velocity of gas based on the slot cross-sectional area. Since gas phase mass transfer of SO_{2} is the controlling step, when we apply Henry's law to the liquid phase, $\mathrm{P}_{\mathrm{SO}_{2}}^{*}=\mathrm{K}_{\mathrm{H}^{\mathrm{CO}}}^{2}$ (aq), we find that the concentration of SO_{2} in the liquid phase $\mathrm{C}_{\mathrm{SO}_{2}}$ (aq) is affected by the concentration of O_{2} in the liquid phase $\mathrm{C}_{\mathrm{O}_{2}}$; the pH value of the liquid phase $\mathrm{C}_{\mathrm{H}}+$; and the concentration of Ca^{++}in the liquid phase ${ }^{\mathrm{C}} \mathrm{Ca}^{++}$. Here, the concentration of SO_{2} in the liquid phase is obtaine from the following:

Refer to Section II ($\mathrm{R}-2$) and ($\mathrm{R}-3$), we have $\mathrm{C}_{\mathrm{SO}_{2}}(\mathrm{aq})=\mathrm{K}_{1}$ $\left(\mathrm{C}_{\mathrm{HSO}_{3}}-\right)\left(\mathrm{C}_{\mathrm{H}^{+}}\right)$. From (R-4), $\mathrm{C}_{\mathrm{HSO}_{3}}$ - can be expressed as $\left(\mathrm{C}_{\mathrm{SO}_{4}}{ }^{-}-\right)\left(\mathrm{C}_{\mathrm{H}^{+}}\right) /\left(\mathrm{C}_{\mathrm{O}_{2}}^{\frac{1}{2}}\right)$, and from $(\mathrm{R}-8), \mathrm{C}_{\mathrm{SO}_{4}}$-- can be replaced by $1 / \mathrm{C}_{\mathrm{Ca}}{ }^{++}$, where $\mathrm{C}_{\mathrm{HSO}_{3}}{ }^{-}$is the concentration of $\mathrm{HSO}_{3}{ }^{-}$in the liquid phase, $\mathrm{C}_{\mathrm{SO}_{4}{ }^{++}}$is the concentration of SO_{4}^{++}in the liquid phase, and K_{I} is the reaction rate constant. Therefore, we get $\mathrm{C}_{\mathrm{SO}_{2}}(\mathrm{aq})=\mathrm{K}_{3}\left(\mathrm{C}_{\mathrm{H}}^{2}+\right) /\left(\mathrm{C}_{\mathrm{Ca}^{++}}\right)\left(\mathrm{C}_{\mathrm{O}_{2}}^{\frac{1}{2}}\right)$ and then:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{SO}_{2}}^{*}=\mathrm{K}_{\mathrm{H}^{\mathrm{K}}} \frac{\mathrm{C}_{\mathrm{H}^{+}}^{2}}{\left(\mathrm{C}_{\mathrm{Ca}^{++}}\right)\left(\mathrm{C}_{\mathrm{O}_{2}^{2}}^{\frac{1}{2}}\right)} \tag{8}
\end{equation*}
$$

Therefore, equation (7) becomes:
$M_{g} \frac{d y}{1-y}=K_{G} \operatorname{aN}\left(P_{\text {tot }} y-\frac{K_{H^{*}} \cdot K_{3} \cdot C_{H_{H}^{+}}^{2}}{\left(C_{C a}++\left(C_{O_{2}^{2}}^{\frac{1}{2}}\right)\right.}\right) \frac{b R T}{P_{\text {tot }}} A_{s} S d G$
where K_{H} is the Henry's law constant, K_{3} is the reaction rate constant. For the calculation of K_{G} a, the data in reference (2) and (3) indicates that the following relationship is likely to hold:

$$
K_{G} a \propto D_{g}^{0.5} U^{0.75} H^{-0.67} \ldots-(10)
$$

where D_{g} is the diffusion coefficient for the SO_{2}-Air system, U is the flue gas flow rate, and H is the submergence depth. ZABBAN and DODGE (4) have found that at a given mass flow rate of the gas, the gas-side mass trans. fer coefficient is inversely proportional to the totat pressure, i.e.: $K_{G} a \propto 1 / P_{\text {tot }}$ Therefore, the gas-side mass transfer coefficient becomes:

$$
\begin{equation*}
K_{G} a=B_{0}(S c)^{-\frac{1}{2}}(\mathrm{Re})^{\frac{3}{4}}(\mathrm{Hi})^{-\frac{2}{3}}=A_{0} G^{\frac{3}{4}} \tag{11}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
A_{0} & =B_{0}(S c)^{-\frac{1}{2}}\left(\frac{D_{b}}{\mu}\right)^{\frac{3}{4}} \\
B_{0} & =\text { constant } \\
S c & =\text { Schmidt Number }=\frac{\mu}{\rho D_{g}}
\end{aligned}
$$

$$
\operatorname{Re}=\text { Reynolds Number }=\frac{G D_{b}}{M}
$$

$$
\begin{aligned}
& H i=\text { constant }=\frac{H P_{\mathrm{L}} \mathrm{G}}{\mathrm{P}_{\text {tot }^{\circ} g_{C}}} \\
& D_{\mathrm{b}}=\text { gas bubble diameter } \\
& \mu=\text { viscosity of gas } \\
& P=\text { density of gas } \\
& P_{\mathrm{I}}=\text { density of liquid } \\
& g^{g}=\text { gravitational acceleration } \\
& g_{c}=\text { gravitational conversion factor }
\end{aligned}
$$

Substitute equation (11) into equation (9), we have:

$$
\begin{equation*}
M_{g} \frac{d y}{1-y}=A_{0} G^{\frac{3}{4}} N\left(P_{\text {tot }} \cdot y-\frac{K_{H} \cdot K_{3} \cdot C_{H}^{2}}{\left(C_{C a}++\right)\left(C_{O_{2}}^{2}\right)}\right) \frac{b R T}{P_{\text {tot }}} A_{S} S a G \tag{12}
\end{equation*}
$$

Since $M_{g}=N_{s} G$, therefore:

$$
\begin{equation*}
\frac{d y}{\left(y-y^{*}\right)(1-y)}=A_{0} b \operatorname{RTSG}^{-\frac{1}{4}} d G \tag{13}
\end{equation*}
$$

where $y^{*}=\frac{\mathrm{K}_{\mathrm{H}} \cdot \mathrm{K}_{3} \cdot \mathrm{C}_{\mathrm{H}^{+}}^{2}}{\left(\mathrm{C}_{\mathrm{Ca}^{++}}\right)\left(\mathrm{C}_{\mathrm{O}_{2}^{2}}^{2}\right)\left(\mathrm{P}_{\text {tot }}\right)}$

Equation (13) integrate from $y=y_{i}$ to $y=y_{f}$ at $X=0$ to $X=I_{p}$ and $G=G_{i}$ to $G=G_{f}$, where $G_{i}=\left.G\right|_{X=L_{p}=0}$ and $G_{f}=\left.G\right|_{X=I_{p}}$, we have:

$$
\begin{equation*}
\left.\frac{I}{I-y^{*}} \ln \left(\frac{y-y^{*}}{1-y}\right)\right|_{y=y_{i}} ^{y=y_{f}}=\left.\frac{4}{3} A_{o} \mathrm{bRTSG}^{\frac{3}{4}}\right|_{G=G_{i}} ^{G=G_{f}} \tag{14}
\end{equation*}
$$

and then:

$$
\frac{I}{I-y^{*}} \ln \left(\frac{y_{f}-y^{*}}{1-y_{f}} * \frac{1-y_{i}}{y_{i}-y^{*}}\right)=\frac{4}{3} A_{0} \operatorname{bRTS}\left(G_{f}^{\frac{3}{4}}-G_{i}^{\frac{3}{4}}\right)---(15)
$$

If we let $Y_{c}=\frac{1-y_{i}}{y_{i}-V^{*}}$

$$
G_{c}=\left(1-y^{*}\right) \frac{4}{3} A_{0} \operatorname{bRTS}\left(G_{f}^{\frac{3}{4}}-G_{i}^{\frac{3}{4}}\right)
$$

\therefore where $G_{i}=G I_{X=I_{p}=0}=-\frac{P_{\text {tot }}}{b R T A_{s}} b_{o}$
equation (15) can be expressed as follows:

$$
\begin{equation*}
\ln \left(\frac{y_{f}-y^{*}}{I-y_{f}} * Y_{c}\right)=G_{c} \tag{16}
\end{equation*}
$$

Finally, we can get the mole fraction of SO_{2} in the flue gas at jet bubbling zone:

$$
\begin{equation*}
y_{f}=\frac{y^{*} \cdot Y_{c}+e^{G} c}{Y_{c}+e^{G} c} \tag{17}
\end{equation*}
$$

Since the pressure drop in the reactor for a given gas rate may be calculated by simply multiplying the summerfence depth H by the holdup of liquid Z_{I} (Ref. (6)):

$$
\begin{equation*}
\Delta \mathrm{P}=\mathrm{H} * \mathrm{Z}_{\mathrm{L}} \tag{18}
\end{equation*}
$$

G_{c} can be expressed as:

$$
\begin{align*}
G_{C} & =\frac{4}{3} b R T S B \\
0 & \left(G_{f}^{\frac{3}{4}}-G_{i}^{\frac{3}{4}}\right)(S C)^{-\frac{1}{2}}\left(\frac{D_{b}}{\mu}\right)^{\frac{3}{4}}\left(\frac{P_{L} \cdot g}{P_{\operatorname{tot}^{\cdot} \cdot g_{c} \cdot Z_{L}}}\right)^{-\frac{2}{3}}\left(1-A_{1} C_{H}^{2}+\right)(\Delta P)^{-\frac{2}{3}} \tag{19}\\
& =A_{2}\left(1-A_{1} C_{H}^{2}+(\Delta P)^{-\frac{2}{3}} \ldots \ldots(19)\right.
\end{align*}
$$

where $A_{I}=\frac{\mathrm{K}_{\mathrm{H}} \cdot \mathrm{K}_{3}}{\left(\mathrm{C}_{\mathrm{Ca}^{++}}\right)\left(\mathrm{C}_{\mathrm{O}_{2}^{\frac{1}{2}}}\right)\left(\mathrm{P}_{\text {tot }}\right)}$

$$
A_{2}=\frac{4}{3} b^{R_{T S B}}\left(G_{f}^{\frac{3}{4}}-G_{i}^{\frac{3}{4}}\right)(S c)^{-\frac{1}{2}}\left(\frac{D_{b}}{\mu}\right)^{\frac{3}{4}}\left(\frac{P_{I} \cdot g}{P_{\text {tot }} \cdot g_{c} \cdot Z_{L}}\right)^{-\frac{\pi}{3}}
$$

Substitute equation (19) into equation (17), y_{f} can be expressed as function of concentration of H^{+}in the liquid phase $C_{H^{+}}$, and pressure drop across the reactor ΔP :

$$
y_{f}=\frac{A_{1} C_{H}^{2}+\left(1-y_{i}\right)+\left(y_{i}-A_{1} C_{H}^{2}+\right) e^{A_{2}\left(1-A_{1} C_{H}^{2}\right)(\Delta P)^{-\frac{2}{3}}}}{\left(1-y_{i}\right)+\left(y_{i}-A_{1} C_{H}^{2}+\right) e^{A_{2}\left(1-A_{1} C_{H}^{2}+\right)(\Delta P)^{-\frac{2}{3}}}--(20)}
$$

B). Modeling of the Rising Bubble Zone:

In this model it is assumed that the change in volume due to the absorption of the SO_{2} is small because the bubbile is predominantly inserts, the change of hydrostatic head during the bubble rise is also small, and to some extent the two effects offset one another.

A mass balance on a spherical shell leads to

$$
\begin{equation*}
-\frac{d}{d r}\left(r^{2} \cdot \mathbb{N}_{\mathrm{SO}_{2}, r}\right)=r^{2} \frac{\partial C_{\mathrm{SO}_{2}}}{\partial t} \tag{21}
\end{equation*}
$$

since the molar flux $N_{S_{2}, r}=-D_{g} \frac{\partial C_{S_{2}}}{\partial r}$, therefore

$$
\begin{equation*}
D_{g} \frac{d}{d r}\left(r^{2} \frac{\partial C_{S O_{2}}}{\partial r}\right)=r^{2} \frac{\partial C_{S O_{2}}}{\partial t} \tag{22}
\end{equation*}
$$

This equation is to be solved with the following initial and boundary conditions:
I.C. : at $t=0, C_{S O_{2}}=C_{f}$ for all r
B.C.I.: at $r=0, C_{S_{2}}=$ finite, or $\frac{\partial C_{\mathrm{SO}_{2}}}{\partial r}=0$
B.C.2.: at $r=R, N_{S_{2}, r},\left.r\right|_{r=R}=k_{G}\left(C_{S_{2}} \mid r-C_{S_{2}}^{*}\right)$
where $\quad C_{f}=\begin{gathered}\text { concentration of } \\ \text { rises }\end{gathered} \mathrm{SO}_{2}$ in the bubble before it

Now, we introduce the following dimensionless quantities:
$\theta=\frac{C_{\mathrm{SO}_{2}}-\mathrm{C}_{\mathrm{SO}_{2}}^{*}}{\mathrm{C}_{\mathrm{f}}-\mathrm{C}_{\mathrm{SO}_{2}}^{*}}=$ dimensionless concentration
$\xi=\frac{r}{R}=$ dimensionless radial coordinate
$\tau=\frac{D_{g} \cdot t}{R^{2}}=$ dimensionless time

Then, equation (22) may be restated as:

$$
\begin{equation*}
\frac{1}{\xi^{2}} \frac{\partial}{\partial \xi}\left(\xi^{2} \frac{\partial \theta}{\partial \xi}\right)=\frac{\partial \theta}{\partial \tau} \tag{23}
\end{equation*}
$$

this equation is to be solved with the condition that
I. C. : at $\tau=0, \theta=1$
B.C.I.: at $\xi=0, \theta=$ finite, or $\frac{\partial \theta}{\partial \xi}=0$
B.C.2.: at $\xi=1,\left.\frac{\partial \theta}{\partial \xi}\right|_{\xi=1}=-\left.\frac{k_{G} R}{D_{g}} \cdot \theta\right|_{\xi=1}$

Let $f(\xi, \tau)=\xi \cdot \theta(\xi, \tau)$, then equation (23) becomes:

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial \xi^{2}}=\frac{\partial f}{\partial \tau} \tag{24}
\end{equation*}
$$

with I.C. : at $\tau=0, f=1 \quad \xi=\xi$

$$
\begin{aligned}
& \text { B.C.I.: at } \xi=0, f=0 \quad \xi=0 \\
& \text { B.C.2.: }
\end{aligned}
$$

The above partial differential equation can be solved by separation of variables:

$$
\begin{equation*}
f=\sum_{n=1}^{\infty} c_{n} \cdot e^{-\alpha_{n}^{2} \tau} \cdot \sin \alpha_{n} \xi \tag{25}
\end{equation*}
$$

Then, we have to find C_{n} by using orthogonal properties

$$
c_{n}=\frac{2 \cdot \operatorname{sh} \cdot \cos \alpha_{n}}{\alpha_{n}\left(\sin ^{2} \alpha_{n}-\operatorname{sh}\right)}
$$

Since $\theta=\frac{f}{\xi}=\frac{C_{S O_{2}}-C_{S O_{2}}^{*}}{C_{f}-C_{S O_{2}}^{*}}$, then we can find the concentration of SO_{2} in the gas at the outlet of the reactor ${ }^{\mathrm{C}_{\mathrm{SO}_{2}}}$, assuming the average concentration of SO_{2} in the gas is close to the SO_{2} concentration on the spherical surface, i.e. at $\xi=1$:
$\frac{c_{S_{2}}-C_{S O_{2}}^{*}}{c_{f}-C_{S O_{2}}^{*}}=\frac{2 \cdot S h}{\xi} \sum_{n=1}^{\infty} \frac{\cos \alpha_{n}}{\alpha_{n}\left(\sin ^{2} \alpha_{n}-\operatorname{Sh}\right)} e^{-\alpha_{n}^{2} \tau} \cdot \sin \alpha_{n} \xi$
where $\alpha_{n}=$ eigen value ($n=1,2,3,4,5, \ldots$)
Sh $=$ Sherwood Number $=k_{G}$ R $/ D_{g}$
If we let " F " equal to right-hand-side of equation (26),
i.e.: $\frac{C_{\mathrm{SO}_{2}}-\mathrm{C}_{\mathrm{SO}_{2}}^{*}}{\mathrm{C}_{\mathrm{f}}-\mathrm{C}_{\mathrm{SO}_{2}}^{*}}=\|\mathrm{F}\|$, the fraction of SO_{2} in the
outlet of the flue gas will be written:

$$
\begin{equation*}
\frac{{ }^{\mathrm{C}_{\mathrm{SO}_{2}}}}{\mathrm{C}}=\mathrm{F} * \mathrm{y}_{\mathrm{f}}+\mathrm{E} \tag{27}
\end{equation*}
$$

where $E=(I-F) \frac{C_{S_{2}}^{*}}{C}$

$$
\mathrm{C}=\text { total concentration of } \mathrm{SO}_{2} \text { in the flue gas }
$$

Then, SO_{2} removal is:

$$
\begin{array}{r}
\eta_{\mathrm{SO}_{2}}=1-\left(\frac{\mathrm{C}_{\mathrm{SO}_{2}}}{\mathrm{C}}\right)\left(\frac{1}{\mathrm{y}_{\mathrm{i}}}\right)=1-\left(\mathrm{F} * \mathrm{y}_{\mathrm{f}}+\mathrm{E}\right)\left(\frac{1}{\mathrm{y}_{\mathrm{i}}}\right) \\
\ldots \ldots-(28)
\end{array}
$$

Combine equation (20) with equation (28), then the SO_{2} removal is obtained by:

$$
\begin{equation*}
\eta_{S_{2}}=1-\frac{A_{3} C_{H}^{2}+A_{4}+A_{5}\left(y_{i}-A_{1} C_{H}^{2}\right) e^{A_{2}\left(I-A_{1} C_{H}^{2}\right)(\Delta P)^{-\frac{2}{3}}}}{y_{i}\left(1-y_{i}\right)+y_{i}\left(y_{i}-A_{1} C_{H}^{2}+\right) e^{A_{2}\left(1-A_{1} C_{H}^{2}\right)(\Delta P)^{-\frac{2}{3}}}} \tag{29}
\end{equation*}
$$

$$
A_{5}=F+E=F+(1-F) \frac{C_{S O_{2}}^{*}}{C}
$$

V. DESCRIPTION OF QUANTITIES

A. The Interfacial Area and The Gas-Side Mass Transfer Coefficient in both Jet Bubbling Zone and Rising Bubble Zone
SO_{2} absorption in limestone solution is a very fast irreversible reaction and therefore the mass transfer in the gas phase is most probably the rate determining step. For the calculation of K_{G} a in the jet bubbling zone, much information available literatures (2), (3) shows that K_{G} a varies as 0.5 power of the diffusivity D_{g}, it also shows that the gas-side mass transfer coefficient varies as -0.67 power of the submergence H, and as 0.75 power of the gas flow rate U. Therefore, the following relationship is likely to be hold:

$$
K_{G} a \propto D_{g}^{0.50} U^{0.75} H^{-0.67}
$$

VIDWAFS and SHARMA (5) have found that when the pressure is increased for a particular system the diffusivity varies inversely as the pressure and therefore the mass transfer coefficient should decrease with increase in pressure at a given superficial velocity of gas. i.e.: $K_{G} a \propto I / P_{\text {tot }}$ I.l While according to ZABBAN and DODGE (4) K_{G} a is proportional to $I / F_{\text {tot }}$. Therefore, the mass transfer coefficient may be calculated from the following equation:

$$
\mathrm{K}_{\mathrm{G}} \mathrm{a}=\mathrm{B}_{0}(\mathrm{Sc})^{-\frac{1}{2}}(\mathrm{Re})^{\frac{3}{4}}(\mathrm{Hi})^{-\frac{2}{3}}
$$

For the calculation of gas-side mass transfer coefficient $k_{G} a^{\prime}$ in the rising bubble zone, the liquid-side resistance can be eliminated by absorbing the gas into a solution of a reagent with which it reacts instantaneously. It is necessary to base on the araalysis of the outgoing gas stream. VIDWANS and SHARMA (5) have shown that an insignificant error in the analysis can affect the value of the gas-side mass transfer coefficient very significantly. The gas-side mass transfer coefficient $k_{G} a^{\prime}$ for the airsulfuric dioxide system is about $6.54 * 10^{-5} \frac{\mathrm{~g}-\mathrm{mole}}{\mathrm{cm}^{3}-\mathrm{atm}-\mathrm{sec}}$.
B. The Submersence depth and Bubble Penetration Length IDEMURA, KANAI, and YaNAGIOKA (1) have shown that at a given gas sparging velocity an increase in the submergence depth results in an increase in bubble penetration length. The liquid submergence depth varies from 0 mm to 200 mm (0 to 0.2 m.). When flue gas was injected horizontally into the liquid-phase through the slots with the velocity of $5 \mathrm{~m} / \mathrm{sec}$ to $20 \mathrm{~m} / \mathrm{sec}\left(1.8 * 10^{4}\right.$ to $\left.7.2 * 10^{4} \mathrm{~m} / \mathrm{hr}\right)$, the bubble penetration length varies from 10 mm to 80 mm (0.01 to 0.08 m) depends on different submergence depth. From Fig. 2, the penetration length of bubble is linear with respect to the volumetric rate of flue gas:

$$
I_{p}=b_{o}+b\left(\frac{V_{N}}{N}\right)
$$

where $b_{0}=$ intercept of the curve in Fig. 2

$$
b=\text { slope of the curve in Fig. } 2
$$

$$
V_{g}=\text { volumetric flow rate of flue gas }
$$

$$
\mathbb{N}=\text { number of slots in the gas spargers }
$$

Since $P_{\text {tot }} \cdot V_{g}=M_{g} R T$, therefore

$$
I_{p}=b_{o}+\frac{b R T}{P_{\text {tot }}}\left(\frac{M}{\mathbb{N}}\right)
$$

Let $G=M_{G} / N_{S}=\begin{aligned} & \text { molar velocity of gas based on slot cross- } \\ & \\ & \text { sectional area }\end{aligned}$
where $A_{S}=$ slot cross-sectional area

$$
M_{g}=\text { molar flow rate of flue gas }
$$

then:

$$
I_{p}=b_{0}+\frac{b R T}{P_{\text {tot }}} \cdot A_{s} \cdot G
$$

The penetration length of bubble is a function of molar velocity of gas, b_{o} and b are constants to be determined from Fig. 2, while the submergence depth is determined in a reactor and A_{S} is the slot cross-sectional area which can be measured in the reactor system. The reactor temperature and pressure are known. G is calculated from the gas velocity through the slot and then the penetration Iength I_{p} can be calculated.
C. The Physical Properties of The Reactor System

The diffusion coefficient for the $\mathrm{Air}-\mathrm{SO}_{2}$ system and the density of flue gas were calculated according to the following equations (Perry--Chemical Engineers' Handbook-5 th edition, Ref.(7)).

Diffusion coefficient for the $\mathrm{Air}-\mathrm{SO}_{2}$ system:

$$
D_{\mathrm{g}}=\frac{B \cdot T \cdot \sqrt{\frac{I}{M_{1}}+\frac{1}{M_{2}}}}{P \cdot r_{1,2}^{2} \cdot I_{D}}
$$

where $D_{g}=$ gas diffusivity, $\mathrm{cm}^{2} / \mathrm{sec}$

$$
\begin{aligned}
& B=\left(1.0-2.46 \sqrt{\frac{I}{M_{1}}+\frac{1}{M_{2}}}\right) * 10^{-4} \\
& T=\text { absolute temperature, }{ }^{\circ} \mathrm{K} \\
& M_{1}, M_{2}=\text { molecular weights of component } I \text { and } 2 \\
& P=\text { absolute pressure, atm } \\
& r_{1,2}=\text { collision diameter, } \stackrel{\circ}{A}=\frac{\left(r_{0}\right)_{1}+\left(r_{0}\right)_{2}}{2} \\
& r_{0}=1.18 V_{b}^{\frac{1}{3}} \\
& V_{b}=\begin{array}{c}
\text { molal } \\
\mathrm{cc} / \mathrm{g}-\mathrm{mole}
\end{array} \mathrm{volume} \text { of liquid at normal boiling point, } \\
& I_{D}=\begin{array}{c}
\text { collision integral for diffusion, } \\
\text { function of } k T / \varepsilon_{1,2}
\end{array} \\
& \varepsilon_{1,2} / k=\left(\varepsilon_{1} / k\right)\left(\varepsilon_{2} / k\right) \\
& \mathrm{k}=\text { Boltzrann constant }=1.38 * 10^{-6} \text {, erg } /{ }^{\circ} \mathrm{K} \\
& \varepsilon_{1,2}=\text { energy of molecular interaction, ergs }
\end{aligned}
$$

The value of D_{g} increases as the flue gas temperature is increased, but, when the system pressure is increased, the diffusivity coefficient varies inversely as the pressure.

Density of flue gas:

$$
P=\frac{\mathrm{MP}_{\text {tot }}}{10.72 \mathrm{ZT}}
$$

where $P=$ density of flue gas, $l b / f^{3}$

$$
\begin{aligned}
& M=\text { molecular weight } \\
& Z=\text { compresibility } \\
& T=\text { temperature, } o_{R} \\
& P_{\text {tot }}=\text { total pressure, psia }
\end{aligned}
$$

D. Pressure Drop

The pressure drop across the reactor was found to be expressed as feet of liquid per foot of submergence depth. This means the pressure drop due to the liquid is equal to the liquid holdup expressed as cubic feet of liquid per cubic foot of reactor volume. SHULMAN and MOLSTAD (6) have found that the pressure drop, due to the liquid, for a given gas rate may be calculated by simply multiplying the submergence depth by the holdup of liquid, in which the units of $\Delta P, H$, and Z_{I} are $m m(a q), \mathrm{mm}$, and m^{3} of liquid/ m^{3} of reactor volume, respectively.

$$
\Delta P=H * Z_{\mathbf{L}}
$$

VI. RESULTS AND DISCUSSION

Using equation (26), a concentration profile across the gas bubble was plotted as a function of two dimensionless terms of ξ-radial coordinate and τ-time. It shows in Fig. 3 that the concentration of SO_{2} at the outlet of the reactor may be calculated once we know the concentration of SO_{2} at the jet bubbling zone and the time of bubble rising at the rising bubble zone. Fig. 3 shows that when the bubble rising time is up to $3.0 \mathrm{sec} .(\tau=2.0)$, the SO_{2} concentration gradient within the bubble is very small. we have found that the mole fraction of SO_{2} at the jet bubbling zone can be expressed as function of both pH value of the system and pressure drop due to the passage of gas through the liquid phase. Therefore, SO_{2} removal is dependent on pH value of the system and pressure drop across the reactor.

The present model was predicted based on the following reported or estimated values from IDEMURA, KANAI, and YANAGIOKA (1): The volumetric flow rate of flue gas is $1000 \mathrm{~N} \mathrm{~m}^{3} / \mathrm{hr}$, the flue gas was injected into the liquid phase through the slots with the velocity of 5 to $20 \mathrm{~m} / \mathrm{sec}$ or $1.8 * 10^{4}$ to $7.2 * 10^{4} \mathrm{~m} / \mathrm{hr}$, the slot cross-sectional area was estimated as $A_{s}=1.0 * 10^{-5} \mathrm{~m}^{2}$, a gas jet of bubbles zone were formed horizontally near the slots, assuming, S, the cross-sectional area of this zone, is about ten times of A_{s}

The submergence depth H varies from 0 mm to 200 mm , or 0 m to 0.2 m , gas bubble diameter D_{b} equivalent to spheres ranged from 3 mm to 20 mm , or 0.003 m to 0.02 m . From Fig. 1 the slope of the curve was estimated as $b=0.776 * 10^{-3}$ $\mathrm{hr} / \mathrm{m}^{2}$, and the intercept of the curves b_{o} varies from 15 mm to 55 mm . The incoming gas is considered at $\mathrm{T}=300^{\circ} \mathrm{F}$, or $149{ }^{\circ} \mathrm{C}$, or $422^{\circ} \mathrm{K}$, and $\mathrm{F}_{\text {tot }}=1 \mathrm{~atm}$, the diffusivity of SO_{2} and the density of flue gas were estimated as $0.238 \mathrm{~cm}^{2} / \mathrm{sec}$ or $0.08568 \mathrm{~m}^{2} / \mathrm{hr}$, and $0.86 \mathrm{Kg} / \mathrm{m}^{3}$, respectively, and then Sc-Schmidt Number was obtained as 1.124 based upon the value of $\mu=8.28 * 10^{-2} \mathrm{Kg} / \mathrm{m}-\mathrm{hr}$.

The concentration of SO_{2} in the incoming flue gas is $1000 \mathrm{p} . \mathrm{p} . \mathrm{m} .$, or $4.1 * 10^{-5} \mathrm{Kg}-\mathrm{mole} / \mathrm{m}^{3}$, and the initial mole fraction of $\mathrm{SO}_{2} \mathrm{y}_{\mathrm{i}}$ is equal to 0.053 . Therefore, the mole fraction of SO_{2} in the flue gas at jet bubbling zone was calculated from equation (20) with the conditions of $\Delta P=$ 370 mm aq., and $\mathrm{pH}=5$, or $\mathrm{C}_{\mathrm{H}^{+}}=10^{-5}$. The results show that y_{f} is equal to 0.00636 , the prediction of SO_{2} removal at this stage is about 88%. Then, the total SO_{2} removal can be calculated from equation (29), and we have $y_{f}=0.002652$, or $\eta_{\mathrm{SO}_{2}}=95 \%$. (see Appendix A for detailed calculation) The comparison of predictions of the present model and those of the model proposed by IDEMURA, KANAI, and YANAGIOKA (1) are presented in Fig. 4 and 5. It is seen that there are a good agreement between the predicted curves and experiment data points.

Figure 3. SO_{2} concentration profile across the gas bubble (refer to equation (26))

Figure 4. Sulfur dioxide removal vs. pH of absorbent.

VII. SYMBOLS USED

g_{c}	= gravitational conversion factor,
H	$=$ the slot submergence depth, m
$\mathrm{K}_{1}, \mathrm{~K}_{3}$	$=$ reaction rate constant, $\mathrm{m}^{3} / \mathrm{Kg}-\mathrm{mole}-\mathrm{hr}$
K_{H}	$=$ Henry's Law constant,
K_{G}	= gas-side mass transfer coefficient in jet bubbling zone, $\mathrm{Kg}-\mathrm{mole} / \mathrm{m}^{2}$-hr-atm
k_{G}	$\begin{aligned} &= \text { gas-side mass transfer coefficient in rising } \\ & \text { bubble zone, } \mathrm{Kg}-\mathrm{mole} / \mathrm{m}^{2} \text {-hr-atm } \end{aligned}$
L_{p}	$=\mathrm{bubble}$ penetration length, m
$\mathrm{M}_{\mathrm{O}}^{\text {i }}$	= molar flow rate of flue gas, Kemole/hr
M_{g}	= molar flow rate of carrier gas, Kg -mole/hr
N	$=$ number of slots in the gas sparger,
$\mathrm{N}_{\mathrm{SO}_{2}, \mathrm{r}}$	$=$ molar flux of SO_{2} with respect to stationary coordinates, $\mathrm{Kg}-\mathrm{mole} / \mathrm{m}^{2}-\mathrm{hr}$
$P_{\text {tot }}$	$=$ total pressure of the flue gas, atm
$\mathrm{P}_{\mathrm{SO}_{2}}^{*}$	$=$ the equilibrium vapor pressure of SO_{2} with respect to the liquid SO_{2} conc., atin
R	= gas law constant,
R, r	```= radial distance in both cylindrical & spherical coordinates, m```
S	$\begin{aligned} = & \text { average cross-sectional area of jet bubbling } \\ & \text { zone, } \mathrm{m}^{2} \end{aligned}$
T	$=$ flue gas temperature, ${ }^{o_{K}}$
t	= time, hr
U	= gas flow rate, $\mathrm{m}^{3} / \mathrm{hr}$
V	$=$ volume of the jet bubbling zone per slot, $\mathrm{m}^{3} / \mathrm{slot}$
V_{g}	$=$ volumetric flow rate of flue gas, $\mathrm{m}^{3} / \mathrm{hr}$

$$
\begin{aligned}
& =\text { mass transfer rate of } \mathrm{SO}_{2} \text { between phase, } \\
& \text { Kg-mole/hr } \\
& \mathrm{X} \quad=\text { rectangular coordinates, } \\
& \mathrm{y} \quad=\text { mole fraction of } \mathrm{SO}_{2} \text { in the flue gas, } \\
& y_{i} \quad=\text { initial mole fraction of } \mathrm{SO}_{2} \text { in the flue gas, } \\
& y_{f} \quad=f i n a l \text { mole fraction of } \mathrm{SO}_{2} \text { in the flue gas at } \\
& \text { jet bubbling zone, } \\
& Z_{\mathrm{L}} \quad=\text { liquid holdup, } \\
& \eta_{\mathrm{SO}_{2}}=\mathrm{SO}_{2} \text { removal fraction, } \\
& \mu \quad=\text { viscocity of gas, } \mathrm{Kg} / \mathrm{m}-\mathrm{hr} \\
& \mathrm{p} \quad=\text { density of gas, } \mathrm{Kg} / \mathrm{m}^{3} \\
& P_{L} \quad=\text { density of liquid, } \mathrm{Kg} / \mathrm{m}^{3}
\end{aligned}
$$

APPENDIX A

The procedures of calculation are shown below:

1. Reported or calculated values from Ref. (1), (6), (7): volumetric flow rate of flue gas: $1000 \mathrm{~N} \mathrm{~m}^{3} / \mathrm{hr}$ flue gas velocity through the slot: $5 \mathrm{~m} / \mathrm{sec}$ to $20 \mathrm{~m} / \mathrm{sec}$ or $1.8 * 10^{4} \mathrm{~m} / \mathrm{hr}$ to $7.2 * 10^{4} \mathrm{~m} / \mathrm{hr}$
concentration of SO_{2} in the incoming flue gas: 1000 ppm

$$
\text { or } 4.1 * 10^{-5} \mathrm{Kg}-\mathrm{mole} / \mathrm{m}^{3}
$$

bubble diameter $D_{b}: 3 \mathrm{~mm}$ to 20 mm , or 0.003 m to 0.02 m submergence depth $\mathrm{H}: 0 \mathrm{~mm}$ to 200 mm , or 0 m to 0.2 m estimated: gas velocity $=7.2 * 10^{4} \mathrm{~m} / \mathrm{hr}$

$$
\begin{aligned}
& D_{b}=1.2 * 10^{-2} \mathrm{~m} \\
& H=200 \mathrm{~mm} \text {, or } 0.2 \mathrm{~m} \\
& A_{S}=10^{-5} \mathrm{~m}^{2} \\
& S=10^{-4} \mathrm{~m}^{2} \\
& Z_{\mathbf{L}}=0.6-0.7 \\
& T=300^{\circ} \mathrm{F} \text {, or } 149^{\circ} \mathrm{C}=422{ }^{\circ} \mathrm{K} \\
& P_{\text {tot }}=1 \mathrm{~atm} \\
& C_{\mathrm{SO}_{2}}^{*}=1.73 * 10^{-6} \mathrm{Kg}-\mathrm{mole} / \mathrm{m}^{3}
\end{aligned}
$$

calculated: $\mathrm{b}_{\mathrm{o}}=0.057 \mathrm{~m}$

$$
\begin{aligned}
\mathrm{b} & =0.776 * 10^{-3} \mathrm{hr} / \mathrm{m}^{2} \\
P & =0.86 \mathrm{Kg} / \mathrm{m}^{3} \\
\mu & =8.28 * 10^{-2} \mathrm{Kg} / \mathrm{m}-\mathrm{hr} \\
D_{g}=0.238 \mathrm{~cm}^{2} / \mathrm{sec} & =0.08568 \mathrm{~m}^{2} / \mathrm{hr} \\
B_{0}\left(P_{I} g / P_{\text {tot }^{E}} \mathrm{c}_{\mathrm{Z}}\right)^{-\frac{2}{3}} & =2.5 * 10^{-4} \mathrm{~g}-\mathrm{mole} / \mathrm{cm}^{3}-\mathrm{atm}-\mathrm{sec} \\
& =9.0 * 10^{2} \mathrm{Kg}-\mathrm{mole} / \mathrm{m}^{3}-\mathrm{atm}-\mathrm{hr}
\end{aligned}
$$

$$
\begin{aligned}
& C=7.736 * 10^{-4} \mathrm{Kg}-\mathrm{mole} / \mathrm{m}^{3} \\
& G=2120 \mathrm{Kg}-\mathrm{mole} / \mathrm{m}^{2}-\mathrm{hr} \\
& \mathrm{~L}_{\mathrm{p}}=0.0575696 \mathrm{~m} \\
& G_{i}=-2.12 * 10^{5} \mathrm{Kg}-\mathrm{mole} / \mathrm{m}^{2}-\mathrm{hr} \\
& G_{f}=2120 \mathrm{Kg}-\mathrm{mole} / \mathrm{m}^{2}-\mathrm{hr} \\
& \mathrm{~A}_{2}=-4.866 \\
& \mathrm{~A}_{4}=1.909 * 10^{-3} \\
& \mathrm{~A}_{5}=0.102016
\end{aligned}
$$

2. Calculation of Point 1:

Point l is calculated with the following conditions:
$\Delta P=370 \mathrm{~mm}$ aq.
$\mathrm{C}_{\mathrm{H}^{+}}=10^{-\mathrm{pH}}=10^{-5}$
$A_{1}=6.36 * 10^{7}$
$A_{3}=6.023 * 10^{6}$
mole fraction of SO_{2} in the flue gas at jet bubbling zone is obtained from equation (20):

$$
\begin{aligned}
y_{f} & =\frac{6.023 * 10^{-3}+(0.04664) e^{-4.866(0.99364)(9.2043)}}{0.947+(0.04664) e^{-4.866(0.99364)(9.2043)}} \\
& =\frac{0.006023+2.194 * 10^{-21}}{0.947+2.194 * 10^{-21}} \\
& =0.00636
\end{aligned}
$$

and SO_{2} removal at this stage is: $\frac{0.053-0.00636}{0.053}$

$$
=0.88, \text { or } 88 \%
$$

Then, the final SO_{2} removal is calculated from equation (29):

$$
\begin{aligned}
\eta_{\mathrm{SO}_{2}} & =1-\left(\frac{1}{0.053}\right)\left(\frac{6.023 * 10^{-4}+1.909 * 10^{-3}+2.238 * 10^{-22}}{0.947+2.194 * 10^{-21}}\right) \\
& =1-\left(\frac{1}{0.053}\right)\left(\frac{0.002511}{0.947}\right) \\
& =1-\left(\frac{2.652 * 10^{-3}}{0.053}\right) \\
& =1-0.05 \\
& =0.95, \text { or } 95 \%
\end{aligned}
$$

3. Calculation of Point $2 \& 3$:

The procedures of calculation of Point 2 and 3 are similar to step 2.

Point 2: $\Delta \mathrm{P}=270 \mathrm{~mm}$ aq.

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{H}^{+}}=10^{-4} \\
& \mathrm{~A}_{1}=5.14 * 10^{6} \\
& A_{3}=4.87 * 10^{5}
\end{aligned}
$$

Then, we have: $\mathrm{y}_{\mathrm{f}}=0.0159$
SO_{2} removal at this stage $=70 \%$ final SO_{2} removal $\eta_{\mathrm{SO}_{2}}=86.5 \%$
Point 3: $\Delta P=450 \mathrm{~mm}$ aq.

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{H}^{+}}=10^{-6} \\
& \mathrm{~A}_{1}=3.69 * 10^{9} \\
& \mathrm{~A}_{3}=3.49 * 10^{8}
\end{aligned}
$$

Then, we have: $y_{f}=0.00369$
SO_{2} removal at this stage $=93 \%$ final SO_{2} removal $\eta_{\mathrm{SO}_{2}}=95.7 \%$

SELECTED BIBLIOGRAPHY

(I). H. Idemura, T. Kanai, and H. Yanagioka
"Jet Bubbling Flue Gas Desulfurization"
Chemical Engineering Processing
February, 1978, pp. 46-50
(2). M.M. Sharma, R.A. Mashelkar, and V.D. Mehta
"Mass Transfer in Plate Columns"
British Chemical Engineering
Vol. 14, No. I. January, 1969, pp. 70-76
(3). V.D. Mehta and M.M. Sharma
"Effect of Diffusivity on Gas-Side Mass Transfer Coefficient"
Chemical Engineering Science
Vol. 21, 1966, pp. 361-365
(4). W. Zabban and B.F. Dodge

Chemical Engineering Progress 1954, 50, 61, (symposium series)
(5). A.D. Vidwans and M.M. Sharma
"Gas-Side Mass Transfer Coefficient in Packed Columns"
Chemical Engineering Science
Vol. 22, 1967, pp. 673-684
(6). H.I. Shulman and M.C. Molstad "GasmBuble Colums for Gas-Liquid Contacting" Industrial and Engineering Chemistry
Vol. 42, No. 6, June, 1950, pp. 1058-1070
(7). R.H. Ferry and C.H. Chilton "Chemical Engineers' Handbook" 5th edition, New Iork, McGraw-Hill

