Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

> Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

of Thesis: Temperature Dependency of the Group Interaction Parameters in the AGSM and UNIFAC Models for the Prediction of Heats of Mixing

Ignatius Ojini, Master of Science, 1980
Thesis directed by: Dr. Dimitrios Tassios Professor of Chemical Engineering

A four-parameter group-contribution model (UNIFAC) has been developed for the prediction of heats of mixing of nonelectrolyte mixtures. Both the UNIFAC and AGSM models are evaluated over a wide range of temperature dependencies of the group interaction parameters. The UNIFAC model has been chosen over the AGSM model and an optimum parameter-temperature relationship has been established.

Adopting the optimum temperature dependency, group interaction parameters have been calculated using UNIFAC for the prediction of four types of mixtures: n-Alcohols/n-Alkanes; Benzene/n-Alkanes; Nitriles/n-Alkanes; Amines/n-Alkanes.

TEMPERATURE DEPENDENCY OF THE GROUP INTERACTION PARAMETERS IN THE AGSM AND UNIFAC MODELS
 FOR THE PREDICTION OF HEATS OF MIXING

by
Ignatius Okoronkwo Ojini

Thesis submitted to the Faculty of the Graduate School of the New Jersey Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering

Title of Thesis:	Temperature Dependency of the Group Interaction Parameters in the AGSM and UNIFAC Models for the Prediction of Heats of Mixing
Name of Candidate: \quadIgnatius Okoronkwo Ojini Master of Science, 1980	

Thesis and Abstract Approved:
Dr. Dimitrios Tassios Professor
Department of Chemical Engineering and Chemistry

Dr. Deran Hanesián
Professor
Chairman, Department of Chemical Engineering and Chemistry

Dr. Mahmoud Abd-el-Bary
Assistant Professor
Department of Chemical Engineering and Chemistry

Date Approved: \qquad

DEDICATION

This work is being dedicated to my Mother, Virginia Akunna Ojini. All along, her advice and prayer constituted the great pillar beneath this endeavor. I share this sense of accomplishment, heart-to-heart, with her, for that special care and inspiration.

ACKNOWLEDGEMENT

I am very grateful to my advisor, Dr. Dimitrios Tassios. His views, all through the period of this work, were a constant source of motivation; his sustained interest, an invaluable asset.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENT iii
I. INTRODUCTION 1
II. THEORY 8
III. GROUP CONTRIBUTION METHODS 12
A. The Analytical Group Solution Iodel (AGSM). 14
B. The UNIFAC Method 18
C. Temperature Dependency of the Group Interac- tion Parameters in the AGSM and UNIFAC Models 24
IV. RESULTS AND DISCUSSION 29
V. CONCLUSIONS 36
APPENDIX 1. DERIVATION OF THE HEAT-OF-MIXING EQUATION FOR THE UNIFAC MODEL 74
APPENDIX 2. COMPUTER PROGRAMS 81

1. UNIFAC Two-Parameter Program, HMIX2 83
2. UNIFAC Four-Parameter Program, HMIX4 88
3. AGSM, Main Program, AGSM 93
4. Non-linear Regression Subroutine, REG 96
NOMENCLATURE 99
SELECTED BIBLIOGRAPHY 102
INDEX 105
I Effect of the value of n on the performance
of the UNIFAC model for the four systems:
n-Octanol-n-Heptane; Benzene-n-Octane;
Nitroethane/2,2-Dimethylbutane; butylamine-n-Heptane
II Effect of the value of n on the performance of the AGSM model for the four systems: n -Octanol-n-heptane; Benzene-n-Octane; Nitro-ethane/2,2-Dimethylbutane; Butylamine-nHeptane

III Group interaction parameters for the UNIFAC model with $\mathrm{n}=+1 / 2$

IV Systems used in generating final group interaction parameters for $n=+1 / 2$
V Multiplicity of roots for the system, nitro-ethane/2,2-Dimethylbutane at $20^{\circ} \mathrm{C}$ and n -propanol-n-Heptane at $30^{\circ} \mathrm{C}$ with exponents, $\mathrm{n}=+1 / 2, \mathrm{n}=-1$, respectively

VI Parameters for n -Octanol-n-Heptane at $30^{\circ} \mathrm{C}$ (UNIFAC)

VII Parameters for Nitroethane/2,2-Dimethylbutane 45 at $20^{\circ} \mathrm{C}$ (UNIFAC)
V VII Parameters for Benzene-n-Octane at $25^{\circ} \mathrm{C}$ (UNIFAC) 46
IX Parameters for n-Butylamine-n-Heptane at $35^{\circ} \mathrm{C} \quad 47$ (UNIFAC)

X Parameters for n -Octanol-n-Heptane at $30^{\circ} \mathrm{C}$ (AGSM)

XI Parameters for Nitroethane/2,2-Dimethylbutane at $20^{\circ} \mathrm{C}$ (AGSM)

XII Parameters for Benzene-n-Octane at $25^{\circ} \mathrm{C}$ (AGSM) 50
XIII Parameters for n-Butylamine-n-Heptane at $35^{\circ} \mathrm{C} \quad 51$ (AGSM)

XIV Data used in the study

LIST OF FIGURES

Figure
Page
1 Comparison of predicted and experimental heat-of-mixing data for the systems Octanol-n-Nonane at $30^{\circ} \mathrm{C}, 45^{\circ} \mathrm{C}$, using UNIFAC's two- and fourparameter versions

2 Prediction of system, n-Butanol-n-Heptane at $45^{\circ} \mathrm{C}$ using linear temperature dependency for UNIFAC parameters

3 Predicted heats of mixing for n-Octanol-nHeptane at $55^{\circ} \mathrm{C}$ and Benzene-n-Octane at $50^{\circ} \mathrm{C}$ for $n=+2.0$

4 Predicted heats of mixing for n-Octanol-nHeptane at $55^{\circ} \mathrm{C}$ and Benzene-n-Octane at $50^{\circ} \mathrm{C}$ for $n=-1.0$

5 Plot of percentage overall average error versus temperature exponent for UNIFAC

6 Plot of percentage overall average error versus 70 temperature exponent for AGSM

7 Difference in experimental heats of mixing for 2-propanol-n-Heptane and n-propanol-n-Heptane, a5 $30^{\circ} \mathrm{C}$

8 Comparison of predicted and experimental heat-of-mixing data for the system, 2 -propanol-nHeptane at $30^{\circ} \mathrm{C}$ by AGSM and UNIFAC ${ }^{\left(Q_{\mathrm{CHOHCH}}^{3}\right.}$ $=$ 1.660)

9 Comparison of predicted and experimental heat-of-mixing data for the systems, ethanol-hexane and ethanol-nonane at $45^{\circ} \mathrm{C}$ by AGSM and UNIFAC $\left.{ }^{(} \mathrm{Q}_{\mathrm{CH}_{3}} \mathrm{CH}_{2} \mathrm{OH}=1.5\right)$

I. INTRODUCTION

In the chemical process industry several processes involve the separation of liquid mixtures. The design of separation equipment often requires knowledge of the heats of mixing of the liquid mixtures.

Often, it is very difficult to get data for the numerous liquid mixtures encountered in the chemical industry. It therefore becomes imperative to correlate available data to obtain parameters which could be used to predict heats of mixing for systems where no experimental data are available. Determination of these parameters could be done using the concept of functional group contributions. The idea here is to consider a molecule as being made up of functional groups such as aromatic, amino, nitro, keto, carbonyl, methylene, etc. Thus, for the calculation of the required data, it is the groups, not the molecules in the liquid mixtures, that are used.

This approach has the advantage that whereas there are several molecules which in turn make up thousands of mixtures used in chemical processes, the number of functional groups they contain are much smaller. A basic assumption of this approach is that a functional group appearing in one liquid mixture will have the same chemical effect in another mixture containing the same group but different molecules, the group
contribution in the mixture being only a function of the group concentrations and temperature. A second assumption is that the group contributions to a thermodynamic property is considered as the sum of the individual contributions of the groups forming the molecule of the chemical compound.

For heats of mixing, parameters characterizing the energy of interaction among the groups in the mixture must be determined and related to temperature. As temperature increases, heats of mixing of liquid mixtures either increase or decrease. It therefore follows that a sound relationship between the group parameters and temperature could account for this reverse trends in liquid mixtures.

Group contribution, and other thermodynamic, models have been used considerably to correlate and predict heats of mixing and other thermodynamic properties of mixtures.

Nagata and Yamada ${ }^{(20)}$ calculated heat-of-mixing data by using the Wilson, Heil and NRTL equations in which the binary parameters were made temperature dependent. When these parameters, calculated from either excess Gibbs energy or heat-ofmixing data, were used to estimate the other data, the results were not satisfactory. However, using the three (Wilson, Heil and NRTL) equations, they recalculated the parameters based on a simultaneous correlation of g^{E} and h^{E} data of 13 binary systems. Good heat-of-mixing data were obtained for five predicted ternary systems.

Abrams and Prausnitz ${ }^{(1)}$ by inclusion of the Local Area Fraction Theory into Guggenheim's quasi-chemical theory, developed the UNIQUAC (Universal Quasi-Chemical) model, for the calculation of the excess Gibbs energy, and hence, vapor-liquid and liquid-liquid equilibria of both binary and multi-component liquid mixtures using two adjustable molecular parameters per binary. By using the model to reduce binary experimental data through non-linear regression, they obtained binary molecular parameters with reasonable goodness-of-fit. The parameters were then used to predict ternary vapor-liquid equilibria. The accuracy obtained was comparable to that attained by using the Wilson or the NRTL (Non-Random-Two-Liquid) equations.

Ratcliff and Chao ${ }^{(29)}$ developed a modified group solution model for the prediction of thermodynamic properties of liquid mixtures. To characterize the effect of molecular size in a solution, they replaced the Flory-Huggins' relation earlier used by Wilson and Deal ${ }^{(4)}$ with the Bronsted-Koefoed Congruence Principle. They attained reasonable predictions of vaporliquid equilibria by representing mixtures containing n-alkanes, n-alcohols and water at $40^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$ with the methylene and hydroxyl groups. Their work did not include predictions of heats of mixing of liquid mixtures.

The Group Contribution Method was also used in 1971 by Maripuri and Ratcliff ${ }^{(17)}$ in which they extended the work of Ratcliff and Chao ${ }^{(29)}$ on the prediction of excess free energies to mixtures containing alkanes and ketones. By considering
the groups CH_{2} : CO , group interaction parameters were generated from experimental data on acetone/n-heptane mixtures at $65^{\circ} \mathrm{C}$. They were used to predict excess free energies of binary and multi-component mixtures containing alkanes and ketones at $65^{\circ} \mathrm{C}$. Good results were obtained.

In 1971, Nguyen and Ratcliff ${ }^{(22)}$ applied their Analytic Group Solution Model (AGSM) to the prediction of excess enthalpy of normal alcohol and hydrocarbon mixtures. The model entailed the use of partial molar enthalpies which had to be determined by the differentiation of the experimental data, a procedure with high built-in errors. To reduce such errors, they applied the Spline-fit method of Van Ness, (36) a procedure which fits the function $\Delta H / X_{1} X_{2}$, as a function of composition. They also calculated group contributions due to group sizes and shapes by using data on the heats of mixing of higher alkanes. Using the fitted parameters to predict fourteen binary systems, an average prediction error of 10% was attained. Also, fairly good results were obtained for predictions of ternary alcohol/alkane systems but only at the same temperature range at which the parameters were fitted.

The authors also used the same model on mixtures containing aliphatic hydrocarbons and ketones. But, this time, group skeletal contribution was neglected because it was considered too small. Using the Forsythe method ${ }^{(21)}$ to obtain polynormial expressions relating the group excess enthalpies to group composition, and splitting the group composition range into three parts for better fits, group parameters were determined.

Predictions of heats of mixing of other ketone/n-alkane systems gave fair results. Again, predictions were within the same temperature range used in the fitting.

In 1974, Nguyen and Ratcliff ${ }^{(23)}$ developed an Analytical Group Solution Model (AGSM) for prediction of heats of mixing using the Wilson equation. Using experimental heats-of-mixing data between $15^{\circ} \mathrm{C}$ and $55^{\circ} \mathrm{C}$ from a wide range of n -alcohol/nalkane mixtures, they calculated temperature-independent coefficients for the methylene/hydroxyl group energy interactions. These coefficients were used to predict heats of mixing of binary and ternary liquid mixtures containing the two structural groups $\left(\mathrm{CH}_{2}, \mathrm{OH}\right)$. The results obtained were good for mixtures with components high in the homolgous series but poor for those in the lower series. For example, mixtures containing Ethanol showed poor results.

Siman and Vera, ${ }^{(32)}$ extended the Analytical Group Solution Model (AGSM). By combining both the heat-of-mixing and vaporliquid equilibrium, data of some n-alcohol/n-alkane mixtures between temperatures of $20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$, and considering heat-of-mixing data alone for amylamine/n-alcohol mixtures, they calculated temperature-independent coefficients with the extended AGSM. They predicted some n-amine/n-alcohol and n-alcohol/n-alkane systems within the same temperature range; good results were obtained generally, but poor results were obtained for those mixtures whose alcohol components constitute first members of the homologous series. No predictions
were done for mixtures at temperatures higher than those at which the fitting was done. Their work did not distinguish between those mixtures for which the heats of mixing increase or decrease with increasing temperature.

Using five types of binary mixtures, each containing a normal alkane, over a given range of temperature, and assuming the group energy interaction parameters to be linearly dependent on temperature in the UNIFAC model, Nagata and Ohta, (18) calculated binary parameters with which they predicted heat--of-mixing data for selected binary and ternary mixtures within the same temperature range with good accuracy.

By retaining two parameters per binary pair of molecules or groups in the original UNIQUAC and UNIFAC models, and letting the lattice coordination number (z) be dependent on temperature, Skjold-Jørgensen et al., (33) developed an expression for $Z(T)$ from simultaneous fitting of vapor-liquid equilibrium (VLE), and heat-of-mixing, data. This modification enabled the authors to predict VLE data from binary parameters based on heat-of-mixing data with high accuracy for systems with non-associating molecules. The reverse case also gave satisfactory results.

The present work is divided into two phases: the first phase involves the introduction of temperature dependent interaction parameters in the UNIFAC model, for the prediction of heats of mixing of liquidmixtures. Then, an extensive study of the temperature dependency of heat-of-mixing group energy interac-
tion parameters is conducted using both the AGSM and the UNIFAC models; the purpose here being to compare the two models and select the one that gives the best predictions with the best parameter-temperature relationship.

The second phase would then entail the use of the chosen model to reduce experimental heat-of-mixing data in order to generate group energy interaction parameters to be subsequently utilized in the prediction of mixtures for which no experimental heat-of-mixing data exist, and at temperatures where most industrial separations occur. This work is concerned with the first phase.
II. THEORY

The heats of mixing (excess enthalpy) expression can be derived from Gibbs Energy functions. An excess property of a solution is that which is in excess of that of an ideal solution at the same conditions of temperature, pressure and composition. Hence, Gibbs excess free energy is represented by:

$$
\begin{equation*}
\left.G^{E}=G_{(\text {real solution })}-G_{(\text {at } T, P, x)}^{(\text {ideal solution })} \text { (at } T, P, x\right) \tag{1}
\end{equation*}
$$

The partial excess Gibbs energy is given by:

$$
\begin{equation*}
\left.\frac{\partial N_{T}{ }^{E}}{\partial N_{j}}\right]_{P, T, N_{i \neq j}}=\bar{g}_{j}^{E} \tag{2}
\end{equation*}
$$

where $N_{j}=$ number of moles of species, j

$$
N_{T}=n_{2}+n_{2}+n_{3} \ldots n_{M}=\sum_{i=1}^{M} n_{i}
$$

$M=$ number of components in the mixture.
From the definition of excess functions:

$$
\begin{equation*}
\bar{G}_{i}^{E}=\bar{G}_{i(\text { real })}-\bar{G}_{i(i d e a l)} \tag{3}
\end{equation*}
$$

which is related to the fugacity of component i in a mixture.

$$
\begin{equation*}
\bar{G}_{i(\text { real })}-\bar{G}_{i(i d e a l)}=\operatorname{RT}\left(\ln \hat{f}_{i(r e a l)}-\ln \hat{f}_{i(i d e a l)}\right) \ldots \tag{4}
\end{equation*}
$$

where $\hat{f}_{i}=$ fugacity of species i in solution

Thus,

$$
\begin{align*}
\overline{\bar{G}}_{i}^{E} & =\operatorname{RT}\left(\ln \hat{\mathrm{f}}_{i(\text { real })}-\ln \hat{f}_{i(i d e a l)}\right) \tag{5}\\
& =\operatorname{RT} \ln \frac{\hat{f}_{i(\text { real })}}{\hat{f}_{i(\text { ideal })}}
\end{align*}
$$

where

$$
\begin{aligned}
x_{i}= & \text { mole fraction of species } i \text { in solution } \\
f_{i}^{0}= & \text { standard state fugacity of pure liquid } i \text { at solution } \\
& \text { temperature and pressure. }
\end{aligned}
$$

then,

$$
\begin{equation*}
\bar{G}_{i}^{E}=\operatorname{RT} \ln \frac{\hat{f}_{i(\text { real }}}{f_{i}^{0} X_{i}} \tag{7}
\end{equation*}
$$

By definition, the activity coefficient of species i, γ_{i}, is

$$
\begin{equation*}
\gamma_{i}=\frac{\alpha_{i}}{x_{i}} \tag{8}
\end{equation*}
$$

where α_{i} is the activity of species i in solution.
Thus,

$$
\begin{equation*}
\alpha_{i}=x_{i} \gamma_{i} \tag{9}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\alpha_{i}=\frac{\hat{\mathbf{f}}_{i}}{f_{i}^{0}} \tag{10}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\alpha_{i}=x_{i} \gamma_{i}=\frac{f_{i}}{f_{i}^{0}} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{i}=x_{i} \gamma_{i} f_{i}^{0} \tag{12}
\end{equation*}
$$

substituting equation (11) into equation (7).

$$
\begin{equation*}
\bar{G}_{i}^{E}=\operatorname{RT} \ln \gamma_{i} \tag{13}
\end{equation*}
$$

Following from Euler's Theorem,

$$
\begin{equation*}
M^{E}=\Sigma n_{i} \bar{m}_{i}^{E} \tag{14}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
G^{E}=\sum_{i} x_{i} \bar{G}_{i}^{E}=\operatorname{RT} \Sigma x_{i} \ln \gamma_{i} \tag{15}
\end{equation*}
$$

At constant pressure and composition, a partial differential of the Gibbs equation with respect to temperature results in the Gibbs-Helmholtz expression for heats of mixing (excess enthalpy):

$$
\begin{equation*}
\left(\frac{\partial\left(G^{E} / T\right)}{\partial T}\right)_{P, X}=-\frac{H^{E}}{R T^{2}} \tag{16}
\end{equation*}
$$

Equation (15) describes how Gibbs free energy can be calculated by molecular approach. According to the functional group contribution method, the activity coefficient consists of two parts: the combinatorial part due to differences in sizes and shapes of the molecules, and the residual part due to the energy interactions of the functional groups contained in the mixture. Thus, equation (15) takes the form

$$
\begin{equation*}
G^{E} / R T=\sum_{i} x_{i}\left(\ln \gamma_{i}^{R}+\ln \gamma_{i}^{C}\right) \tag{17}
\end{equation*}
$$

III. GROUP CONTRIBUTION METHODS

Group contribution methods have been extensively used to determine thermodynamic properties of liquid mixtures. Langmuir ${ }^{(15)}$ had pioneered work in the area, but little recognition was given to it then. However, Derr and co-workers (5) later utilized the idea to correlate heats of mixing of liquid mixtures. Wilson and Deal ${ }^{(4)}$ then conceptualized the 'Solution-of-Groups' method for calculating activity coefficients. Ratcliff and co-workers (21) applied the Analytical Solution of Groups (ASOG) model to calculate heats of mixing. They later modified the Wilson equation and came up with a more accurate method, the Analytical Group Solution Model (AGSM) for correlating heat-of-mixing data.

The basic assumptions of 'solution-of-groups' methods are:

1. The logarithm of the activity coefficient is divided into two parts: combinatorial and residual. The combinatorial part is characterized by differences in size and shape of the molecules in the mixture; the residual part is due to molecular energy interactions.

For molecule i in a solution:

$$
\begin{equation*}
\underset{\ln \gamma_{i}}{ }=\ln \gamma_{i}^{C}+\ln \gamma_{i}^{R} \tag{1}
\end{equation*}
$$

The distinction between the two kinds of contribution to the logarithm of the activity coefficient is necessary since the
liquid phase non-idealities caused by size and shape effects cannot be associated with group energy interactions.
2. The residual part, which is due to group energy interactions, is assumed to be the sum of the individual contributions of each solute group in the solution less the sum of the individual contributions in the pure-component environment:

$$
\begin{equation*}
\ln \gamma_{i}^{R}=\sum_{i=1} V_{k}^{(i)}\left[\ln \Gamma_{k}-\ln \Gamma_{k}^{(i)}\right] \tag{2}
\end{equation*}
$$

$$
k=1,2 \ldots N
$$

$\Gamma_{k}^{(i)}=$ the residual group activity coefficient of group k in a reference solution containing only molecules of type i. It is used to normalize the activity coefficient, that is, γ_{i} becomes unity as $x_{i} \rightarrow 1$.
$\Gamma_{k}=$ the residual group activity coefficient of group k in a solution
$\mathrm{V}_{\mathrm{k}}^{(\mathrm{i})}=$ the number of groups of kind k in molecule i.
3. Individual group contribution to a 'solution of groups' is only a function of group concentrations and temperature of mixture:

$$
\left.\begin{array}{l}
\Gamma_{k} \\
\Gamma_{k}^{(i)} \tag{3}
\end{array}\right)=f\left(x_{1}, x_{2} \ldots x_{n}, T\right) \ldots
$$

The two major group contribution methods: AGSM and UNIFAC, are discussed next.

A. The Analytical Group Solution Model (AGSM)

The Analytical Group Solution Model (AGSM) was developed by Ratcliff and co-workers. (17) Like all other group contribution methods, it attempts to characterize heats of mixing of liquid mixtures by a consideration not of the molecules in the mixture but of the functional groups making up the mixture. Also, its basic assumption is that the contribution of each functional group to the residual thermodynamic properties of a mixture is independent of other structural groups forming the molecule. And, that the contribution to heats of mixing of a given component of a mixture is accounted for by summing the contributions of the separate functional groups making up the molecule of the chemical compound, thus,

$$
\begin{equation*}
\Delta \bar{H}_{i}=\sum_{k} N_{k}^{(i)}\left(H_{k}-H_{k}^{(i)}\right) \tag{4}
\end{equation*}
$$

Where the heat of mixing is given by

$$
\begin{equation*}
\Delta \mathrm{H}=\sum_{i} \mathrm{X}_{i} \Delta \overline{\mathrm{H}}_{i} \cdots \cdots \tag{5}
\end{equation*}
$$

The group heat of mixing (H_{k}) is given by

The standard state heats of mixing of group k in pure component $i, H_{k}^{(i)}, i$

$$
\begin{equation*}
\frac{H_{k}^{(i)}}{R T^{2}}=\frac{\sum_{j}^{(i)} X_{j}^{(i)} b_{k j}}{\sum_{j} x_{j}^{(i)} a_{k j}}+\sum_{j} \frac{x_{j}^{(i)} b_{j k}}{\sum_{m} X_{m}^{(i)} a_{j m}}-\sum_{j} \frac{x_{j}^{(i)} a_{j k}}{\left(\sum_{m}^{(i)} a_{j m}\right)^{2}} \sum_{m}^{\sum X_{m}^{(i)} b_{j m}} \cdots \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{m}=\frac{\sum_{i=j}^{J} x_{i} N_{j}^{(i)}}{\sum_{i m} x_{i} N_{m}^{(i)}} \quad \cdot \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{j}^{(i)}=N_{j}^{(i)} / \sum_{m}^{N}(i) \tag{9}
\end{equation*}
$$

The group temperature dependent parameters $a_{j k}, a_{k j}$,
$b_{j k}, b_{k j}$ are related to each other as

$$
\begin{equation*}
b_{j k}=\frac{\partial a_{j k}}{\partial T} \tag{10}
\end{equation*}
$$

And, in order to increase the analytical flexibility of the AGSM model, a temperature dependence of the parameters of the following type has been considered

$$
\begin{equation*}
a_{j k}=\operatorname{EXP}\left(A_{j k}+B_{j k} / T\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{j k}=\operatorname{EXP}\left(A_{j k}+B_{j k} / T\right)\left(-B_{j k} / T^{2}\right) \tag{12}
\end{equation*}
$$

The AGSM model as presented above can be used to correlate heat of mixing of liquid mixtures by using available heat-ofmixing data to determine the temperature independent parameters (coefficients), $A_{j k}, A_{k j}, B_{j k}, B_{k j}$, and then applying them in the prediction of heats of mixing of mixtures containing the same groups, j, k.

The group energy interaction parameters are determined by heat-of-mixing data reduction using a non-linear regression subroutine ${ }^{(26)}$ with the AGSM model.

They are then used to predict heats of mixing of mixtures having the same groups, j, k but may not have experimental data available. The quality of prediction depends on how accurate the parameters are. This accuracy depends in turn on the accuracy of the experimental heat-of-mixing data used in the parameter calculations and, of course, the accuracy of the model.

AGSM does not differentiate between normal chemical compounds and isomeric ones. For example, it will use the same parameters to predict heats of mixing of, say, n-octanol/nheptane and 3-octanol/n-heptane.

The determination of AGSM parameters id done using binary group mixtures. For example; in using the mixture n-octanol/ n-heptane, chosen groups may be $\mathrm{CH}_{3}, \mathrm{CH}_{2}$, OH (where the interactions involving groups $\mathrm{CH}_{3}, \mathrm{CH}_{2}$ are considered the same).

The group temperature independent interaction parameters then become $\mathrm{A}\left(\mathrm{CH}_{2}, \mathrm{OH}\right), \mathrm{A}\left(\mathrm{OH}, \mathrm{CH}_{2}\right) ; \mathrm{B}\left(\mathrm{CH}_{2}, \mathrm{OH}\right), \mathrm{B}\left(\mathrm{OH}, \mathrm{CH}_{2}\right)$ where $\left(\mathrm{A}\left(\mathrm{CH}_{3}, \mathrm{OH}\right)=\mathrm{A}\left(\mathrm{CH}_{2}, \mathrm{OH}\right) ; \mathrm{B}\left(\mathrm{CH}_{3}, \mathrm{OH}\right)=\mathrm{B}\left(\mathrm{CH}_{2}, \mathrm{OH}\right)\right)$. To calculate these, the AGSM is fitted to heat-of-mixing data; the final values are obtained at the point of minimum error of regression.

But determination of some group interaction parameters requires, often, the use of more than one binary group mixture; for example, in characterizing group interactions for the mixture type, say, n-alcohol-n-amine, chosen groups could be $\mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)$, $\mathrm{OH}, \mathrm{NH}_{2}$. Hence, 12 coefficients will have to be calculated from the three binary group pairs, $\mathrm{CH}_{2} / \mathrm{OH}, \mathrm{CH}_{2} / \mathrm{NH}_{2}$, $\mathrm{NH}_{2} / \mathrm{OH}$ (for each binary group pair there are four coefficients). That number of coefficients is too large to be computed at one time considering the limited amount of data available for any one system type; it also calls into question the ability of the regression program to handle massive amounts of data even when these are available.

It becomes imperative, then, to calculate the twelve parameters, four at a time. Firstly, the four coefficients of the group pair, $\mathrm{CH}_{2} / \mathrm{OH}$, are calculated with data for an n-alcohol-n-alkane system; the next four coefficients for the pair, $\mathrm{CH}_{2} / \mathrm{NH}_{2}$, are calculated using an n-amine-n-alkane system, bringing the total to eight coefficients. These are called primary coefficients because their computation does not involve coefficients calculated elsewhere. Finally, for the group pair, $\mathrm{NH}_{2} / \mathrm{OH}$, the eight primary coefficients are used together with data for a normal alcohol-n-amine system to compute the four temperature independent coefficients, namely:

$$
\mathrm{A}\left(\mathrm{NH}_{2}, \mathrm{OH}\right), \mathrm{A}\left(\mathrm{OH}, \mathrm{NH}_{2}\right) ; \quad \mathrm{B}\left(\mathrm{NH}_{2}, \mathrm{OH}\right), \mathrm{B}\left(\mathrm{OH}, \mathrm{NH}_{2}\right)
$$

These are called secondary coefficients because in their determination the eight primary coefficients computed earlier are used.

B. The UNIFAC Method

The UNIQUAC equation, as developed by Abrams and Prausnitz, (1) has been shown to provide good representation of both vapor-liquid and liquid-liquid equilibria for binary and multicomponent mixtures containing non-electrolytes such as water, hydrocarbons, ketones, esters, amines, alcohols, nitriles, etc. The UNIQUAC equation for calculating the molecular component (i) activity coefficient is:

$$
\begin{equation*}
\ln \gamma_{i}=\ln \gamma_{i}^{C}+\ln \gamma_{i}^{R} \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
& \ln \gamma_{i}^{C}=\ln \frac{\Phi_{i}}{X_{i}}+\frac{z}{2} q_{i} \ln \frac{\theta_{i}}{\Phi_{i}}+L_{i}-\frac{\Phi_{i}}{X_{j}} \Sigma X_{j} L_{j} \tag{14}\\
& \ln \gamma_{i}^{R}=q_{i}\left[1-\ln \left(\Sigma_{j} \theta_{j} J_{j i}\right)-\Sigma_{j}\left(\theta_{j} J_{i j} / \Sigma_{k} \theta_{k} J_{k j}\right)\right] \tag{15}\\
& L_{i}=\frac{z}{2}\left(r_{i}-q_{i}\right)-\left(r_{i}-l\right) ; z=10 \tag{16}\\
& \theta_{i}=\frac{q_{i} x_{i}}{\sum_{j=1} q_{j} X_{j}} \tag{17}\\
& \Phi_{i}=\frac{r_{i} x_{i}}{M} \\
& \sum_{j=1}^{M} r_{j} X_{j} \tag{18}\\
& \tau=\operatorname{EXP}-\left[\frac{U_{j i}-U_{i i}}{R T}\right] \tag{19}
\end{align*}
$$

The combinatorial part of the group activity coefficient is independent of temperature. Also, its contribution to activity coefficient is small as compared to that of the residual part. However, when the molecules of the mixture differ markedly in size and shape, the combinatorial share becomes significant.

For the UNIFAC model, only the combinatorial part of the UNIQUAC activity coefficient, (equation 14) is used directly. Only pure-component properties calculated from molecular structure data enter into this equation. The pure-component volume and area parameters, r and q, respectively are calculated as the sum of the group volume and area parameters, R_{k}, Q_{k}.

$$
\begin{equation*}
r_{i}=\sum_{k=1}^{N} V_{k}^{(i)} R_{k} \quad ; \quad q_{i}=\sum_{k=1}^{N} V_{k}^{(i)} Q_{k} \tag{20}
\end{equation*}
$$

where N is the number of groups in molecule i.
$\mathrm{v}_{\mathrm{k}}^{(\mathrm{i})}$, an integer, is the number of type k group in component i.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{k}}=\mathrm{V}_{\mathrm{wk}} / 15 \cdot 17 \quad ; \quad \mathrm{Q}_{\mathrm{k}}=\mathrm{A}_{\mathrm{wk}} /\left(2.5 \cdot 10^{9}\right) \tag{21}
\end{equation*}
$$

where R_{k} and Q_{k} are group volume and area parameters obtained from Van der Waals group volumes and surface areas, V_{wk}, and $A_{w k}$ given by Bondi. (2) The normalization factors 15.17 and $2.5 .10^{9}$ are given by Abrams and Prausnitz.

Unlike the ASOG method in which "size counts" are determined arbitrarily and used to signify group sizes and surface areas, the UNIFAC method uses well-established, rational procedures; once a group has been established, it retains that structure and its assigned volume and surface area throughout its use.

The residual part of UNIQUAC (equation 15) is replaced in the UNIFAC model by the solution-of-groups concept

$$
\begin{equation*}
\ln \gamma_{i}^{R}=\sum_{k=1}^{N} V_{k}^{(i)}\left[\ln \Gamma_{k}-\ln \Gamma_{k}^{(i)}\right] \tag{22}
\end{equation*}
$$

where N is the number of groups in molecule i.

$$
\begin{align*}
& \Gamma_{k}=Q_{k}\left[1-\underset{m}{\ln \left(\sum \theta_{m} \psi_{m k}\right)}-\sum_{m}^{\sum\left(\theta_{m} \psi_{k m} / \sum_{n} \theta_{n} \psi_{n m}\right)}\right. \tag{23}\\
& \Gamma_{k}^{(i)}=Q_{k}\left[1-\ln \left(\sum_{m} \theta_{m}^{(i)} \psi_{m k}\right)-\sum_{m}\left(\theta_{m}^{(i)} \psi_{k m} / \sum_{n} \theta_{n}^{(i)} \psi_{n m}\right)\right. \tag{24}\\
& \theta_{m}=\frac{Q_{m} x_{m}}{\sum_{n=1}^{N} Q_{n} X_{n}} \quad ; \quad \theta_{m}^{(i)}=\frac{Q_{m} X_{m}^{(i)}}{\sum_{n=1}^{N} Q_{n} x_{n}^{(i)}} \tag{25}\\
& x_{m}=\frac{\sum_{j=1}^{\sum v_{m}^{(j)} x_{j}}}{\sum \sum \sum V_{n}^{(j)} x_{j}} \quad ; \quad x_{m}^{(i)}=\frac{v_{m}^{(i)}}{n V_{n}^{(j)}} \tag{26}
\end{align*}
$$

m and $n=1,2 \ldots N$ (all groups)

Substituting equation (22) into equation (17) of Chapter 2, gives $G^{E} / R T=\sum_{i} X_{i}\left(\sum V_{k}^{(i)}\left(\left[\ln \Gamma_{k}-\ln \Gamma_{k}^{(i)}\right]+\ln \gamma_{i}^{C}\right)\right)$

Complete derivation of equation (27) is presented in the appendix.

The activity coefficient of group k in molecule i depends on the molecule in which k is situated. For example, $\Gamma_{k}^{(i)}$ for the CCOH group in n-pentanol refers to a solution containing twenty-five group percent CCOH , fifty group percent CH_{2}, and twenty-five group percent CH_{3}.

In equations (23) and (24), the parameter ψ_{nm}, is temperature dependent:

$$
\begin{equation*}
\psi_{\mathrm{nm}}=\operatorname{EXP}\left[-\frac{a_{\mathrm{nm}}}{\mathrm{~T}}\right] \tag{28}
\end{equation*}
$$

where $a_{n m}$ characterize the energy interactions between a group n and a group m. $a_{n m} \neq a_{m n}$ and each is assumed temperatureindependent. Thus, there are two group interaction parameters for each pair of groups. As in the UNIQUAC case, no ternary or higher parameters are needed; and the parameters must be evaluated from phase equilibrium data. They have the units of degrees Kelvin.

The combinatorial contribution to the activity coefficient (equation 14) depends only on the sizes and shapes of the
molecules present. For large chain molecules, $q_{i} / r_{i} \rightarrow 1$, and in that limit equation (14) reduces to the Flory-Huggins equation used in the ASOG method.

The residual contribution to the activity coefficient (equations $22,23,24$) depends on group areas and group interactions. When all groups are equal, equations (22), (23), and (24) are similar to those used in the ASOG method.

From a main group of, say, CH_{2}, (in a hydrocarbon) subgroups $\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}$, are formed. While each group has its own calculated values of R and Q, the subgroups within the same main group are assumed to have identical group energy interaction parameters. Also, by the use of subgroups of the same main group, the UNIFAC method can predict systems containing isomeric components. For example, by using group interaction parameters $\left(\mathrm{A}\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{A}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2}\right)\right)\right.$ determined from a n-alcohol/n-alkane system, an isomeric system containing the groups $\mathrm{CH}_{3}, \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CHOH}$, can be predicted by only accounting for the new values of $\mathrm{R}_{\mathrm{CH}_{2} \mathrm{CHOH}}$ and ${ }^{Q} \mathrm{CH}_{2} \mathrm{CHOH}$ since $\mathrm{a}_{\mathrm{CH}_{2}}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}=$ ${ }^{\mathrm{C}} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CHOH}$. Certain advantages have been attributed to the UNIFAC method:

1. Flexibility, because UNIFAC has a well-founded basis for establishing group sizes and shapes.
2. Simplicity, because UNIFAC parameters can be considered nearly independent of temperature for reasonable temperature ranges and for vapor-liquid equilibrium calculations.
3. Large range of applicability, because UNIFAC parameters are now available for a considerable number of different functional groups.

The UNIFAC model may be applied to non-electrolyte binary and multi-component mixtures at conditions where the UNIQUAC model applies, that is, removed from the critical region. Furthermore, all components must be condensable. The temperature range considered is typically $30-125^{\circ} \mathrm{C}$.

C. Temperature Dependency of the Group Interaction Parameters
 in the AGSM and UNIFAC Models

Fredenslund et al. applies the two-parameter version of UNIFAC (equation 5, Appendix 1) for correlation and prediction of heat-of-mixing data. The two parameters, $a_{i j}, a_{j i}$, are independent of temperature.

Initially, in this work, the application of this version and the four-parameter version with linear temperature dependency of the parameter, $a_{i j},(a=A T+B)$, proved unsatisfactoty (Section IV). Further complication to the heat-of-mixing picture is caused by the occurrence of two types of mixtures; while, on the one hand, the heats of mixing of some mixtures, for example, alcohol mixtures, increase with increasing temperature, those of other mixtures, like benzene systems, on the other hand, decrease with increasing temperature. Here, the former type will be called 'TYPE I' and the latter, 'TYPE II.'

In the light of this phenomenon therefore it becomes necessary to develop a model in which the parameters assume a temperature dependency capable of, not only improving the poor results encountered with the linear dependency, but, also, of predicting the heats of mixing of the two types of mixtures, within a reasonable degree of accuracy.

To achieve this aim, the group energy interaction parameters in both the AGSM and UNIFAC models were assumed to vary according to the relation:

$$
\begin{equation*}
a_{i j}=A_{i j} T_{n}+B_{i j} \tag{29}
\end{equation*}
$$

where $A_{i j}$ and $B_{i j}$ are the temperature independent parameters and n is the temperature exponent.

Our preliminary work indicated (Section IV) that when positive values were assumed for n, better results were obtained for Type I mixtures than for Type II mixtures. However, the above results were reversed for negative values of n. In order to account for these tendencies, eight values of $n(+1 / 2,+1,+1$ $1 / 2,+2,-1 / 2,-1,-11 / 2,-2)$, two Type I and two Type II, systems, were selected. The systems were: n-Octanol-n-Heptane (24) (Type I), Nitroethane/2,2-dimethylbutane (12) (Type I), Benzene-n-Octane (8) (Type II) and Butylamine-n-Heptane (14) (Type II), at $303,293,298,308$ degrees Kelvin, respectively. The purpose, here, was to use both the AGSM and UNIFAC models with heat-of-mixing data of the selected systems to calculate the temperature independent group interaction parameters (equation 29) for each of the selected values of the n. Then, the parameters calculated for each system were used to predict its heat-of-mixing data at a temperature higher than that at which the parameters were determined. Thus, the best exponent would be that for which the lowest prediction error was attained.

In selecting the four systems, certain criteria were followed. Each system should contain an alkane so that only primary, and no secondary parameters should appear in their computations; this was necessary in order to avoid complications usually encountered with secondary parameters. Each of the two systems representing each mixture type should be different from the other so as to adequately spread the representation of that type; for example, on selecting the system, n-Octanol-n-Heptane (Type I), it was necessary to choose a second system that did not contain an alcohol. Thus, the system Nitroethane/2,2Dimethylbutane (Type I).

It was also important that each selected system must have its data reported for at least two temperatures. This would ensure that group interaction parameters for each system are calculated at low temperature where most of the literature data are available, and, then, be used to predict the same system at the higher temperature where most of the practical needs occur.

After selecting the values of n and the four systems for the study, the following procedure was used to determine the group model and the exponent which would achieve the best performance in the prediction of heat-of-mixing data for both Type I and Type II mixtures:

First, for each exponent and system, and using each of the two group models (AGSM and UNIFAC), the group energy
interaction parameters were calculated by regression analysis. The heat-of-mixing data used for each system were those reported at the respective temperatures $303,293,298,308$, degrees Kelvin, for the four systems as mentioned earlier. Then, for each group model and value of n, the calculated parameters were used to predict the heat-of-mixing data of the systems at higher temperatures. The percentage prediction errors were computed as follows:

$$
\begin{equation*}
\operatorname{ERROR}(\%)=\frac{1}{\mathrm{P}} \sum_{i=1}^{i=\mathrm{P}}\left|\frac{\left(\Delta \mathrm{H}_{E X P}\right)_{i}-\left(\Delta \mathrm{H}_{\mathrm{CAL}}\right)_{i}}{\left(\Delta \mathrm{H}_{\mathrm{EXP}}\right)_{i}}\right| \text { (100) } \tag{30}
\end{equation*}
$$

where $P=$ number of experimental data points for each system.
Average prediction errors were calculated for each mixture Type as:

AVERAGE ERROR (\%) $=\frac{1}{2} \sum_{1}^{m} \underset{\mathrm{P}}{\mathrm{P}} \sum_{\mathrm{i}=1}^{\mathrm{i}=\mathrm{P}}\left|\frac{\left(\Delta \mathrm{H}_{\mathrm{EXP}}\right)_{\mathrm{i}}-\left(\Delta \mathrm{H}_{\mathrm{CAL}}\right)_{\mathrm{i}}}{\left(\Delta \mathrm{H}_{\mathrm{EXP}}\right)_{i}}\right|$
where $m=2$ since there are two systems for each type of mixture and $\quad P=$ number of experimental data points for each of the two systems.

The average error is necessary in order to prepare plots of Average Prediction Error (\%) versus n. Such plots should indicate how satisfactorily the positive and negative values of n affected the predicted results of the Type I and Type II mixtures, respectively.

The overall prediction error was calculated for each value of n as follows:

OVERALL ERROR (\%) $\left.=\frac{1}{4} \sum_{1}^{\mathrm{m}}{\underset{\mathrm{P}}{\mathrm{i}}}_{\mathrm{T}}^{\mathrm{i}=\mathrm{P}}| | \frac{\left(\Delta \mathrm{H}_{\mathrm{EXP}}\right)_{i}-\left(\Delta \mathrm{H}_{\mathrm{CAL}}\right)_{i}}{\left(\Delta \mathrm{H}_{\mathrm{EXP}}\right)_{i}} \right\rvert\,$ (100)
Here, $m=4$ and $P=$ number of experimental data points for each of the four selected systems.

In this case, the prediction errors calculated from Equation 30 for all four systems were added together for each value of n. Thus, since there are eight values of n, there will be eight overall errors. These were to be used in the plot of Overall Prediction Error (\%) versus n. This plot is called the "Overall Plot" or "Grand Plot" because it lumps all four systems together for each value of n. From it, the exponent that corresponds to the minimum prediction error for each model is determined. Since there are two models (AGSM and UNIFAC) being used, there will be two of such exponents, one for each model. Thus, the preferred model is that for which the minimum prediction error is lower, and the exponent corresponding to that minimum prediction error is called the optimum exponent. The minimum prediction error ($\%$) and the optimum exponent yield the optimum minimum point on the "Grand Plot" (Section IV).

IV. RESULTS AND DISCUSSION

In our preliminary work, both the two and four-parameter versions of the UNIFAC model were fitted to the data for n -propanol-n-heptane at $30^{\circ} \mathrm{C}$; the final parameters were used to predict other alcohol-alkane mixtures at different temperatures. On comparing results, the four-parameter version achieved better results than the two-parameter version (figure 1). But, while on the one hand, the four-parameter program proves superior to the two-parameter one, on the other hand, it does not always predict other mixtures within reasonable accuracy. For example, using the final parameters mentioned above to predict the system, n-butanol-n-heptane, a large average error of 19.0% was obtained (figure 2).

Our preliminary work also indicated that the value of n that gave good results for mixtures for which heats of mixing increase with temperature (Type I) failed to give good results with Type II mixtures. For example, when the UNIFAC model was used to predict heats of mixing of n-octanol/n-heptane mixture at 55° (from parameters obtained from data at $30^{\circ} \mathrm{C}$) using a value of $n=+2.0$, the average prediction error was 1.2%. But, when the group parameters for the benzene-n-octane mixture (Type II) were calculated at $25^{\circ} \mathrm{C}$ by similarly assuming $\mathrm{n}=+2.0$, prediction of heat-of-mixing data at $50^{\circ} \mathrm{C}$ resulted in an average percentage error of 17.6% (figure 3).

On the other hand, when $n=-1.0$ for the same two systems above, the respective average prediction errors were 24% for Type I and 6\% for Type II (figure 4).

The above results reflect some tendencies general to either Type I or Type II mixtures. That is, as the exponent involves more positive values, ($+1 / 2,+1,+11 / 2,+2$) for Type I mixtures, and more negative values, (-1/2, $-1,-11 / 2$, -2), for Type II mixtures, better results are attained for the respective mixtures. This implies that exponents involving more positive values for Type II mixtures, will attain poor results for those mixtures.

Detailed results for UNIFAC are presented in Table I and plotted in figure (5). The results for the AGSM are presented in Table II, with an overall plot in figure (6). Minimum prediction errors of 7.7% and 13.0%, occurred at the exponent values of $n=+1 / 2$ and $n=-2$, for the UNIFAC and AGSM, models, respectively; hence UNIFAC was preferred over AGSM since it has the lower prediction error.

Heat-of-mixing group energy interaction parameters, determined, using UNIFAC, for the n-alcohol/n-alkane, benzene/n-alkane, nitrile/nalkane, and n-amine/n-alkane, mixtures, with $n=+0.5$, are presented in Table III. References for the data used for calculating these parameters are presented in Table IV. Groups chosen to represent the above mixtures were, respectively: $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2}, \mathrm{CH}_{3} ; \mathrm{ACH}, \mathrm{CH}_{2}, \mathrm{CH}_{3} ; \mathrm{CH}_{2} \mathrm{NO}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{3} ; \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{3}$.

The nonlinear regression subroutine, "REG,"(26) was used in the data-reduction calculations.

All computer programs and data used in the study are presented in the Appendix.

A look at the results reveal certain trends; in the positive region of figure (5), plots (D) and (F) follow the expected pattern of results: better predictions are obtained for Type I mixtures as the exponent, n, takes values in the order, $+1 / 2,+1,+11 / 2,+2 ;$ except for the +1 exponent where results show an unusually high error. Type II mixture results improved with the exponent order, $+2,+11 / 2,+1,+1 / 2$. Addition of both plots yielded plot (E), the "Overall Plot," so called because it lumps all four mixtures together. The minimum-error point of plot (E), 7.5% at $n=+1 / 2$, compares favorably with the minimum-error point of plot (C), 8.6\% at $n=$ $-11 / 2$.

In the negative region of AGSMs' figure 6, Type II mixtures performed well with good results in the exponent order, $-1 / 2,-1,-11 / 2,-2$. Type I mixtures, (plot H), performed poorly as expected in this region. A minimum error of 13.0% at $\mathrm{n}=-2.0$ was obtained for the "Overall Plot," (plot G). Some points in the positive region (particularly at $n=+1 / 2$) were not determined. This was due to the program's inability to converge to final parameters. Overall performance of UNIFAC as shown on figure (5) is better than AGSM's performance on figure (6).

Heats of mixing of mixtures containing isomeric compounds differ from those of normal systems. In some cases the differences are small while in other cases they are substantially high. For example, while on the one hand the heats of mixing of the mixtures, chloroalkane-alkane and 2-chloroalkane-alkane differ very little, on the other hand, those between, say, n-propanol/n-heptane and 2-propanol/n-heptane differ substantially in excess of about 25\% (figure 7).

By using group surface area parameters, the UNIFAC model has the flexibility to account for both isomeric and normal mixtures.

However, the degree of this accountability is questioned in the light of the results obtained with the model on isomeric systems; for example, the system, 2 -propanol-n-heptane, with parameters calculated using n-propanol-n-heptane data at $30^{\circ} \mathrm{C}$ and with group surface area parameter values (Q) of 1.664 and 1.660 for the groups $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and CHOHCH_{3}, respectively, was predicted at $30^{\circ} \mathrm{C}$.

Results (figure 8) indicated, that similar to the AGSM, UNIFAC's surface area parameter value $\left(Q_{\mathrm{CHOHCH}_{3}}=1.660\right)$, computed from pure component molecular structure data, did not account for the change in heats of mixing between the normal and isomeric mixtures.

There is a possibility, that by calculating the surface area parameters by another method, for example, by correlation
of heat-of-mixing data, results might be improved. But such parameters will not correctly reflect the structural (physical) nature of the groups they are meant to define. Another approach could be, namely, to determine separate parameters for isomeric group interactions. The shortfall here is that it will be quite cumbersome to calculate such large numbers of parameters for the numerous isomeric groups which exist in many different kinds of mixtures.

However, further work in this area is vital as that would underline more concretely the ability of UNIFAC to adequately represent those systems containing isomers.

Another area of significant interest in the calculation of heat-of-mixing data is the family of mixtures appearing in the lower homologous series, for example, low alcohol mixtures. Poor results have, consistently, been reported for ethanol mixtures. Ratcliff et al., (23) using the AGSM, and, reporting heat-of-mixing data predicted for the systems, ethanol-nhexane and ethanol-n-nonane, at $45^{\circ} \mathrm{C}$, obtained average errors of 11% and 22% respectively. Fredensland et al., (10) using UNIFAC in their work on vapor-liquid equilibria (VLE) of low alcohol mixtures, reported substantial prediction errors for ethanol mixtures. They considered ethanol as a group by itself with a surface area value of 1.972 , calculated from pure molecular structural data. But by correlating VLE data of several ethanol-alkane mixtures, they recalculated an optimum
value for the group surface area parameter, ${ }^{Q} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ to be 1.50. On predicting VLE data of ethanol systems not included in the correlation data base, much improved results were obtained. (10)

For this research, the latter optimum value for the ethanol group surface area was used together with UNIFAC's heat-ofmixing program to predict data for the same systems predicted by Ratcliff. Results are compared in figure (9); it is evident that UNIFAC has produced better results than AGSM, this being attributable to the former's additional ability to improve performance by adaption of the group surface area parameter.

The energy interaction parameters used in figure (9) were made linearly dependent on temperature; those of AGSM were computed by correlating data from several alcohol systems at different temperatures while those of UNIFAC were calculated from only n-propanol-n-heptane data at $30^{\circ} \mathrm{C}$.

A couple of problems were encountered in this work. There was the problem of the number of data points needed for accurate calculation of the group parameters.

The n-octanol/n-heptane and the benzene/n-octane mixtures had 18 and 20 data points, respectively. $(32,8)$ These were fairly more adequate for the parameter determinations than the 10 and 8 data points for the butylamine/n-heptane and the nitroethane/2,2-dimethylbutane systems, respectively. (14,12)

The latter points were hardly sufficient for use in the group parameter calculations. However, they were the only available number of data points for those systems.

The magnitude of the prediction error attributable to inadequacy of data points, can be improved by including data points obtained at other temperatures. This approach was not adopted at this stage of the study because the main purpose here was to investigate group parameter variations with temperature. Since most heat-of-mixing data are reported at only one or two temperatures, the object of these investigations can only be achieved by calculating the group parameters using data at one temperature and then predicting the heats of mixing data at the second temperature.

A second source of problem could be due to the presence of multiple roots. It was observed that with different starting values for the parameters, different final values were obtained (Table V). Thus, since the minimized objective functions, (FMIN), for each set of starting values were adequately low, (Tables VI-XIII), it became quite difficult to select the set of final parameters (roots) which best fitted the systems. However, those parameters obtained at the lowest error of regression were chosen. All data used in this study are presented in Table XIV.

V. CONCLUSIONS

With optimum exponents of, $n=+1 / 2, \mathrm{n}=-2$, overall average prediction errors of, 7.7% and 13.0%, were obtained for the UNIFAC and AGSM models, respectively. Hence UNIFAC achieves better accuracy than AGSM.

Also, by using the group surface-area concept, UNIFAC retains an additional flexibility which allows it some means of accommodating the significant differences that exist between heats of mixing of normal and isomeric mixtures.

Group energy interaction parameters, based on the UNIFAC optimum exponent of $n=+1 / 2$, have been determined by data correlation (Table I).

TABLE I
Effect of the value of n on the performance of the UNIFAC model for the four systems: n-Octanol-n-Heptane; Benzene-n-Octane; Nitroethane/2,2-Dimethylbutane; Butylamine-n-Heptane

Types	Systems	$$		Temperature Exponents							
				+2.0	+1.5	+1.0	+0.5	-2.0	-1.5	-1.0	-0.5
				Average Absolute Prediction Error (\%)							
I	$\begin{aligned} & \text { n-Octanol-n- } \\ & \text { Heptane } \end{aligned}$	30	55	1.2	4.5	18.0	12.1	21.1	22.0	24.0	43.0
II	$\begin{array}{\|l} \text { Benzene-n- } \\ \text { Octane } \end{array}$	25	50	17.6	13.6	9.3	9.6	7.2	5.6	5.9	7.8
II	Butylamine-n-Heptane	35	45	10.2	8.1	6.2	5.0	8.6	5.0	2.4	1.7
I	Nitroethane/ 2,2-Dimethyl butane	20	40	10.6	7.0	12.5	4.0	3.0	3.0	3.0	2.17
				Overall Average Absolute Prediction Error (\%)							
				10.0	8.3	11.5	7.7	9.99	8.9	8.8	13.7

TABLE II
Effect of the value of n on the performance of the AGSM model for the four systems: n-Octanol-n-Heptane; Benzene-n-Octane; Nitroethane/2,2-Dimethylbutane; Butylamine-n-Heptane

Types	Systems			Temperature Exponents							
				+2.0	+1. 5	+1.0	+0.5	-2.0	-1.5	-1.0	-0.5
				Average Absolute Prediction Error (\%)							
I	$\begin{aligned} & \text { n-Octanol-n- } \\ & \text { Heptane } \end{aligned}$	30	55	13.94	NA	5.52	$N A^{*}$	31.73	30.84	53.0	31.90
II	$\begin{aligned} & \text { Benzene-n- } \\ & \text { Octane } \end{aligned}$	25	50	NA	78.55	13.46	NA	NA	24.29	17.53	14.20
II	Butylamine-n-Heptane	35	45	59.61	24.80	57.46	NA	6.30	4.98	26.80	1.83
I	Nitroethane/ 2,2-Dimethylbutane	20	40	14.38	10.94	8.23	NA	1.02	NA	2.57	23.94
				Overall Average Absolute Prediction Error (\%)							
				29.31	38.10	21.14	NA	13.02	20.04	24.98	17.97

*NA = not available; program did not converge for any of the different starting parameter values used.
TABLE III

Systems	Groups	Group Surface Area (Q)		Group Interact	ion Parameters	
$\frac{\mathrm{n} \text {-Alcohol }}{\mathrm{n}-\mathrm{Al} \text { kanes }}$	$\begin{aligned} & \mathrm{CH}_{2} \\ & \mathrm{CH}_{3} \\ & \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \end{aligned}$	$\begin{aligned} & 0.540 \\ & 0.848 \\ & 1.664 \end{aligned}$	${ }^{\mathrm{A}} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	${ }^{\mathrm{A}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2}$	${ }^{\mathrm{B}} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	${ }^{\mathrm{B}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2}$
			158.852	32.755	-4540.016	-384.138
$\frac{\text { Nitroalkane }}{\text { Alkanes }}$	CH_{2} CH_{3} $\mathrm{CH}_{2} \mathrm{NO}_{2}$	$\begin{aligned} & 0.540 \\ & 0.848 \\ & 1.560 \end{aligned}$	${ }^{\mathrm{A}} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{NO}_{2}$	$\mathrm{A}_{\mathrm{CH}_{2} \mathrm{NO}_{2}, \mathrm{CH}_{2}}$	${ }^{\mathrm{B}} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{NO}_{2}$	$\mathrm{B}_{\mathrm{CH}_{2} \mathrm{NO}_{2}, \mathrm{CH}_{2}}$
			0.389888	55.271698	-1176.1895	-962.5103
$\frac{\text { Benzene }}{\text { n-Alkanes }}$	$\begin{aligned} & \mathrm{CH}_{2} \\ & \mathrm{CH}_{3} \\ & \mathrm{ACH} \end{aligned}$	0.540	${ }^{\text {A }} \mathrm{CH}_{2}, \mathrm{ACH}$	${ }^{\text {A }}$ ACH, CH_{2}	${ }^{\mathrm{B}} \mathrm{CH}_{2}, \mathrm{ACH}$	$\mathrm{B}_{\mathrm{ACH}}, \mathrm{CH}_{2}$
			. 003068	0.101509	-82.5032	-66.6500
		0.848				
		0.400				

TABLE III (Cont'd.)

| Systems | Groups | Group
 Surface
 Area (Q) | | Group Interaction Parameters |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

TABLE IV
Systems used in generating final group interaction parameters for $n=+1 / 2$

Systems	T (K)	Number of Data Points	Ref.
N-Alcohols-N-Alkanes			
Iso-Pentanol/2,2-Dimethylbutane	298	5	25
n-Propanol-n-Heptane	$\begin{aligned} & 298 \\ & 303 \\ & 318 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 28 \\ & 32 \\ & 32 \end{aligned}$
Octanol-n-Heptane	$\begin{aligned} & 288 \\ & 328 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$
n -Pentanol-n-Hexane	318	4	32
n-Butanol-n-Heptane	328	3	25
n -Butanol-n-Octane	328	4	25
Nitroalkane-N-Alkanes			
Nitroethane/2,2-Dimethylbutane	$\begin{aligned} & 303 \\ & 313 \end{aligned}$	$\begin{array}{r} 10 \\ 4 \end{array}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$
Nitroethane/3-Pentane	$\begin{aligned} & 303 \\ & 313 \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$
Benzene-N-Alkanes			
Benzene-n-Heptane	$\begin{aligned} & 298 \\ & 318 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$
Benzene-n-Hexadecane	$\begin{aligned} & 298 \\ & 323 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$
Benzene-n-Octane	$\begin{aligned} & 298 \\ & 323 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
Benzene-Iso-Octane	298	4	16
Alkylamine-N-Alkanes			
Butylamine-n-Heptane	$\begin{aligned} & 298 \\ & 318 \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$

TABLE V
Multiplicity of roots for the systems, nitroethane/2,2Dimethylbutane at $20^{\circ} \mathrm{C}$ and n -Propanol-n-Heptane at $30^{\circ} \mathrm{C}$ with exponents, $\mathrm{n}=+1.5, \mathrm{n}=-1$, respectively

System: Nitroethane/2,2-Dimethylbutane at $20^{\circ} \mathrm{C}$
$\mathrm{n}=+1.5$

	Initial Parameters	Final Parameters	Regression Error
${ }^{\mathrm{A}} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{NO}_{2}$. 002930	. 120228	
${ }^{\mathrm{A}} \mathrm{CH}_{2} \mathrm{NO}_{2}, \mathrm{CH}_{2}$. 000285	. 068700	6.000\%
${ }^{\mathrm{B}} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{NO}_{2}$. 999999	99.272800	
${ }^{\mathrm{B}} \mathrm{CH}_{2} \mathrm{NO}_{2}, \mathrm{CH}_{2}$	1.89000	-77.594000	
${ }^{\mathrm{A}} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{NO}_{2}$. 002930	. 048138	
${ }^{\mathrm{A}} \mathrm{CH}_{2} \mathrm{NO}_{2}, \mathrm{CH}_{2}$. 000285	-. 006764	6.000\%
${ }^{\mathrm{B}} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{NO}_{2}$	-733.06396	-535.95920	
$\underline{\mathrm{B}_{\mathrm{CH}_{2} \mathrm{NO}_{2}}, \mathrm{CH}_{2}}$	-778.00000	-325.35000	

System: n-Propanol-n-Heptane at $30^{\circ} \mathrm{C}$

${ }^{\mathrm{A}} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{NO}_{2}$	-1409.00000	-1410.073	
${ }^{\mathrm{A}} \mathrm{CH}_{2} \mathrm{NO}_{2}, \mathrm{CH}_{2}$	421.500	421.907	0.600\%
$\mathrm{B}_{\mathrm{CH}_{2}}, \mathrm{CH}_{2} \mathrm{NO}_{2}$	87764.850	87805.000	
${ }^{\mathrm{B}} \mathrm{CH}_{2} \mathrm{NO}_{2}, \mathrm{CH}_{2}$	-73087.400	-73159.750	
${ }^{\mathrm{A}} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{NO}_{2}$	-196.000	-1133.854	
${ }^{\mathrm{A}} \mathrm{CH}_{2} \mathrm{NO}_{2}, \mathrm{CH}_{2}$	45.750	257.382	0.700\%
${ }^{\mathrm{B}} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{NO}_{2}$	-187000.000	18835.289	
${ }^{\mathrm{B}} \mathrm{CH}_{2} \mathrm{NO}_{2}, \mathrm{CH}_{2}$	10700.000	-160511.938	

TABLES VI to XIII

UNIFAC and AGSM interaction parameters determined for the mixtures: (1) n-octanol-n-Heptane;
(2) Nitroethane/2,2-Dimethylbutane;
(3) Benzene-n-octane;
(4) n-Butylamine-n-Heptane, at $30^{\circ}, 20^{\circ}, 25^{\circ}$, and $35^{\circ} \mathrm{C}$, respectively.
TABLE VII
Parameters for Nitroethane/2,2-Dimethylbutane at $20^{\circ} \mathrm{C}$ (UNIFAC)

TABLE VIII
Parameters for Benzene-n-Octane at $25^{\circ} \mathrm{C}$ (UNIFAC)

,	$\mathrm{n}=+2.0$	$n=+1.5$	Temperatu $\mathrm{n}=+1$	Exponent $\mathrm{n}=+0.5$	$\begin{gathered} a_{j k}=A_{j k} T^{r} \\ n=-2.0 \end{gathered}$	$\begin{gathered} \left.+B_{j k}\right) \\ n=-1.5 \end{gathered}$	$\mathrm{n}=-1.0$	$\mathrm{n}=-0.5$
Regression Error (\%)	. 32	. 33	. 33	. 65	. 34	. 54	. 52	. 57
FMIN	.000390	.000395	. 00039	.00109	. 000416	. 000821	.000762	. 000866
${ }^{\mathrm{A}} \mathrm{CH}_{2}, \mathrm{ACH}$. 000628	. 000710	. 02640	. 002854	$\begin{gathered} -.46088570 \\ 10^{7} \end{gathered}$	$\begin{gathered} .65513844 \\ 10^{5} \end{gathered}$	124.429	7.715
$\mathrm{A}_{\mathrm{ACH}}, \mathrm{CH}_{2}$	-. 063721	.015134	.38333	. 094427	$\begin{gathered} -.15390825 \\ 10^{6} \end{gathered}$	$\begin{gathered} -.14911681 \\ 10^{6} \end{gathered}$	-9622.766	-725.448
${ }^{\mathrm{B}} \mathrm{CH}_{2}, \mathrm{ACH}$	-95.229	-55.204	-59.348	-103.129	$\begin{array}{r} .92996 \\ 10^{1} \end{array}$	$\begin{gathered} -.11591974 \\ 10^{3} \end{gathered}$	-95.192	-98.407
$\mathrm{B}_{\mathrm{ACH}}, \mathrm{CH}_{2}$	18.1401	-45.3967	-82.410	-62.056	$\begin{array}{r} -.87364 \\ 10^{-1} \end{array}$	-282951	-0.246	-. 304

TABLE IX
Parameters for n -Butylamine- n -Heptane at $35^{\circ} \mathrm{C}$ (UNIFAC)

	$\begin{array}{lll} & \text { Temperature Exponent } \quad\left(a_{j k}=A_{j k} T^{n}+B_{j k}\right) \\ \mathrm{n}=+2.0 \quad \mathrm{n}=+1.5 & \mathrm{n}=+1.0 \quad \mathrm{n}=+0.5 \quad \mathrm{n}=-2.0 \quad \mathrm{n}=-1.5 \quad \mathrm{n}=1.0 \quad \mathrm{n}=-0.9 \end{array}$							
Regression Error (\%)	1.3	1.4	1.4	1.4	1.2	1.3	1.5	1.3
FMIN	. 0027126	. 0029421	. 00293	. 003063	. 00243	. 00257	. 00346	. 00243
${ }^{\mathrm{A}} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{NH}_{2}$. 002968	. 060483	1.59388	50.37349	$\begin{gathered} -.46148272 \\ 10^{8} \end{gathered}$	$\begin{gathered} -.24989370 \\ 107 \end{gathered}$	$\begin{gathered} -40237788 \\ 10^{6} \end{gathered}$	-32355.6
${ }^{\mathrm{A}} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{CH}_{2}$	-. 003767	. 000321	-. 3066	-5.7966	$\begin{gathered} 9448488 \\ 107 \end{gathered}$	$\begin{gathered} .37638181 \\ 106 \end{gathered}$	$\begin{gathered} -.398639 \\ 10^{5} \end{gathered}$	7109.016
${ }^{\mathrm{B}} \mathrm{CH}_{2}, \mathrm{NH}_{2} \mathrm{CH}_{2}$	-684.03345	-758.718	-918.6565	-1329.245	$\begin{gathered} 1784157 \\ 10^{3} \end{gathered}$	$\begin{gathered} 10556863 \\ 10^{3} \end{gathered}$	-161.421	1523.993
${ }^{\mathrm{B}} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{CH}_{2}$	-5.98369	-6.947	0.31772	-27.83107	$\begin{gathered} .258232 \\ 10^{2} \end{gathered}$	$\begin{array}{r} 578939 \\ 10^{+1} \end{array}$	-10.579	-305.900

TABLE X

TABLE XIParameters for Nitroethane $/ 2,2$-Dimethylbutane at $20^{\circ} \mathrm{C}$ (AGSM)									
	$n=+2.0$	$\mathrm{n}=+1.5$	Temperatur $\mathrm{n}=+1.0$	Exponent $n=+0.5$	$\begin{array}{r} \left(a_{j k}=A_{j k}\right. \\ n=-2.0 \end{array}$		$B_{j k}{ }^{\prime}$ $=-1.5$	$\mathrm{n}=-1.0$	$\mathrm{n}=-0.5$
Regression Error (\%)	7.14	7.83	8.43	NA	4.94		NA	7.54	7.23
FMIN	. 066	. 0748	NA	NA	. 0291	NA		NA	NA
${ }^{\mathrm{A}} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{NO}_{2}$. 003952	. 0939	-9.911	NA	$\begin{gathered} -3.1249 \\ 10^{7} \end{gathered}$	NA		$\begin{gathered} .69976375 \\ 10^{5} \end{gathered}$	-26232.7
${ }^{\mathrm{A}} \mathrm{CH}_{2} \mathrm{NO}_{2}, \mathrm{CH}_{2}$. 004745	-. 325	2.7879	NA	$\begin{gathered} 2.009 \\ 10^{6} \end{gathered}$	NA		$\begin{gathered} -.256043 \\ 10^{5} \end{gathered}$	-13081.34
${ }^{\mathrm{B}} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{NO}_{2}$	84.912	-48.33	-1279.007	NA	468.239	NA		-3261.364	2185.9
${ }^{\mathrm{B}} \mathrm{CH}_{2} \mathrm{NO}_{2}, \mathrm{CH}_{2}$	108.948	-368.089	-1347.51	NA	-894.995	NA		-3261.364	440.871

TABLE XII
Parameters for Benzene-n-Octane at $25^{\circ} \mathrm{C}$ (AGSM)

	$n=+2.0$	$n=+1.5$	Temperatu $\mathrm{n}=+1.0$	Exponent $\mathrm{n}=+0.5$	$\begin{gathered} \left(a_{j k}+A_{j k} T\right. \\ n=-2.0 \end{gathered}$	$\begin{aligned} & \left.+B_{j k}\right) \\ & n=-1.5 \end{aligned}$	$\mathrm{n}=-1.0$	$\mathrm{n}=-0.5$
Regression Error (\%)	. 32	1.16	0.33	1.54	. 4000	. 3000	0.34	1.00
FMIN	. 000249	. 00337	. 00039	. 0049	. 00043	. 000237	. 00039	. 0025
${ }^{\mathrm{A}} \mathrm{CH}_{2}, \mathrm{ACH}$. 005154	. 092	-13.068	15.302	$\begin{gathered} 2.14683 \\ 10^{7} \end{gathered}$	$\begin{gathered} -2.34926 \\ 10^{5} \end{gathered}$	8227.8	-82.069
$\mathrm{A}_{\mathrm{ACH}}, \mathrm{CH}_{2}$	-. 010693	-. 135	-. 274	-15.651	$\begin{gathered} -1.13821 \\ 10^{8} \end{gathered}$	$\begin{array}{r} -3.3573 \\ 106 \end{array}$	24430.74	-4.313
$\mathrm{B}_{\mathrm{CH}_{2}}, \mathrm{ACH}$	-84.33	-169.89	-747.49	-. 0349	96.831	409.719	-3897.900	38.665
$\mathrm{B}_{\mathrm{ACH}}, \mathrm{CH}_{2}$	591.34	436.504	-362.294	. 0907	930.784	268.541	-526.238	-384.53

TABLE XIII

	$\mathrm{n}=+2.0$	$\mathrm{n}=+1.5$	Temperature $\mathrm{n}=+1.0$	Exponent $\mathrm{n}=+0.5$	$\begin{array}{r} \left(a_{j k}=A_{j k}\right. \\ n=-2.0 \end{array}$	$\begin{aligned} & \left.+B_{j k}\right) \\ & n=-1.5 \end{aligned}$	$\mathrm{n}=-1.0$	$\mathrm{n}=-0.5$
Regression Error (\%)	1.250	1.460	1.76	2.13	1.410	1.380	1.38	1.38
FMIN	. 00245	. 00315	. 0044	NA	. 00292	. 00292	NA	NA
${ }^{\text {A }} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{NH}_{2}$. 005	. 1012	8.102	-15.925	$\begin{array}{r} -1.22859 \\ 10^{8} \end{array}$	$\begin{gathered} 2.2372 \\ 10^{6} \end{gathered}$	$\begin{gathered} -.1475773 \\ 10^{6} \end{gathered}$	8770.105
${ }^{\mathrm{A}} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{CH}_{2}$	-. 010	. 0392	. 795	6.389	$\begin{gathered} -2.92557 \\ 10^{7} \end{gathered}$	$\begin{gathered} -2.27713 \\ 106 \end{gathered}$	$\begin{gathered} -.16868863 \\ 10^{6} \end{gathered}$	$\begin{gathered} -.2277155 \\ 10^{5} \end{gathered}$
${ }^{\mathrm{B}} \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{NH}_{2}$	269.471	122.223	-2623.50	-. 31496	-837.775	-957.957	974.07	$\begin{gathered} -.153155 \\ 105 \end{gathered}$
${ }^{\mathrm{B}} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{CH}_{2}$	-283.995	-121.020	-1038.433	. 1322	-284.422	-166.134	-55.061	707.823

TABLE XIV
Data used in the study

System: n-Propanol-n-Heptane ${ }^{(32)}$ at $30^{\circ} \mathrm{C}, 45^{\circ} \mathrm{C}$		
Mole Fraction Alcohol (X)	Heats of Mixing (Joule/C mole) at 30°	at $45^{\circ} \mathrm{C}$
0.0100	189.0000	206.0000
0.0200	282.0000	347.0000
0.0300	338.0000	439.0000
0.0400	378.0000	506.0000
0.0500	411.0000	553.0000
0.0750	479.0000	646.0000
0.1000	529.0000	720.0000
0.1250	570.0000	778.0000
0.1500	603.0000	824.0000
0.1750	631.0000	859.0000
0.2000	654.0000	890.0000
0.3000	708.0000	958.0000
0.4000	708.0000	958.0000
0.5000	668.0000	900.0000
0.6000	590.0000	797.0000
0.7000	485.0000	657.0000
0.8000	353.0000	477.0000
0.9000	194.0000	258.0000

TABLE XIV (Cont'd.)
System: 2-Propanol-N-Heptane at $30^{\circ},(16) 45^{\circ} \mathrm{C}$

Mole Fraction Alcohol (X)	$\begin{gathered} \Delta \mathrm{H}_{\text {mix }} \mathrm{J} / \mathrm{G} \text { mole } \\ 30^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \Delta \mathrm{H}_{\operatorname{mix}} \mathrm{J} / \mathrm{G} \text { mole } \\ 45^{\circ} \mathrm{C} \end{gathered}$
0.0019	47.0000	52.0000
0.0061	134.0000	111.0000
0.0121	224.0000	157.0000
0.0188	292.0000	448.0000
0.0250	339.0000	566.0000
0.0400	420.0000	739.0000
0.0642	511.0000	852.0000
0.1157	643.0000	1008.0000
0.1931	777.0000	1097.0000
0.2614	855.0000	1155.0000
0.3126	893.0000	1186.0000
0.3676	915.0000	1185.0000
0.4195	918.0000	1160.0000
0.5086	887.0000	1122.0000
0.5744	834.0000	1080.0000
0.6140	793.0000	1029.0000
0.6425	761.0000	978.0000
0.6666	729.0000	890.0000
0.7122	660.0000	845.0000
0.7590	580.0000	735.0000
0.7938	514.0000	642.0000
0.8466	403.0000	572.0000

TABLE XIV (Cont'd.)

TABLE XIV (Cont'd.)

TABLE XIV (Cont'd.)

System	Mole Fraction Alcohol (X)	$\begin{gathered} \Delta H_{\text {mix }} \\ \mathrm{J} / \mathrm{G} \text { mole } \end{gathered}$	T	Ref.
Iso-Pentanol/2,2Dimethylbutane	0.5500	455.0000	298°	25
	0.6500	366.0000	$298{ }^{\circ}$	25
	0.7500	266.0000	$298{ }^{\circ}$	25
	0.8500	158.0000	$298{ }^{\circ}$	25
	0.9500	52.0000	$298{ }^{\circ}$	25
n-Propanol-n-Heptane	0.0703	371.0000	298°	28
	0.1309	465.0000	$298{ }^{\circ}$	28
	0.2314	552.0000	$298{ }^{\circ}$	28
	0.3754	585.0000	$298{ }^{\circ}$	28
	0.5124	545.0000	$298{ }^{\circ}$	28
	0.6096	577.0000	303°	32
	0.7089	473.0000	303°	32
	0.7519	419.0000	303°	32
	0.8580	265.0000	303°	32
	0.9171	163.0000	303°	32
	0.0500	553.0000	318°	32
	0.1000	720.000000	318°	32
	0.2000	890.0000	318°	32
	0.3000	958.0000	318°	32
	0.4000	958.0000	318°	32
Octanol-n-Heptane	0.0500	244.0000	288°	25
	0.1500	337.0000	288°	25
	0.2500	377.0000	288°	25

TABLE XIV (Cont'd)

System	Mole Fraction Alcohol (X)	$\begin{gathered} \Delta H_{\mathrm{mix}} \\ \mathrm{~J} / \mathrm{G} \text { mole } \end{gathered}$	T	Ref.
Octanol-n-Heptane	0.3500	392.0000	288°	25
	0.4500	382.0000	288°	25
n-Octanol-n-Heptane	0.5500	715.0000	328°	25
	0.6500	596.0000	328°	25
	0.7500	450.0000	328°	25
	0.8500	281.0000	$328{ }^{\circ}$	25
n-Pentanol-n-Hexane	0.5000	720.0000	318°	32
	0.6000	619.0000	318°	32
	0.7000	487.0000	318°	32
	0.9000	168.0000	318°	32
n-Butanol-n-Heptane	0.1500	957.0000	328°	25
	0.2500	1074.0000	328°	25
	0.3500	1107.0000	328°	25
n-Butanol-n-Octane	0.5500	1069.0000	328°	25
	0.6500	910.0000	328°	25
	0.7500	700.0000	328°	25
	0.9500	160.0000	$328{ }^{\circ}$	25
Benzene-n-Heptane	0.6868	939.0000	$298{ }^{\circ}$	14
	0.7602	836.0000	$298{ }^{\circ}$	14
	0.8216	690.0000	$298{ }^{\circ}$	14
	0.3550	773.0000	318°	14
	0.6020	946.0000	318°	14
	0.6100	955.0000	318°	14

TABLE XIV (Cont'd)

System	Mole Fraction Alcohol (X)	$\begin{gathered} \Delta H_{\text {mix }} \\ \mathrm{J} / \mathrm{G} \text { mole } \end{gathered}$	T	Ref.
Benzene-n-Hexadecane	0.6670	797.0000	$298{ }^{\circ}$	16
	0.6890	809.0000	$298{ }^{\circ}$	16
	0.6950	752.0000	$298{ }^{\circ}$	16
	0.7950	620.0000	$298{ }^{\circ}$	16
	0.1454	476.0000	32°	16
	0.2689	816.0000	323°	16
	0.3499	1013.0000	323°	16
	0.4289	1145.0000	323°	16
Benzene-n-Octane	0.7142	1135.0000	$298{ }^{\circ}$	8
	0.8049	986.0000	$298{ }^{\circ}$	8
	0.8744	766.0000	$298{ }^{\circ}$	8
	0.9721	244.0000	$298{ }^{\circ}$	8
	0.4744	955.0000	323°	8
	0.5636	991.0000	$323{ }^{\circ}$	8
	0.6469	968.0000	323°	8
	0.7438	858.0000	$323{ }^{\circ}$	8
	0.8224	697.0000	$323{ }^{\circ}$	8
	0.9531	231.0000	323°	8
Benzene-120-Octane	0.0600	160.0000	$298{ }^{\circ}$	16
	0.1607	413.0000	$298{ }^{\circ}$	16
	0.2546	591.0000	$298{ }^{\circ}$	16
	0.3483	763.0000	$298{ }^{\circ}$	16

TABLE XIV (Cont'd)

System	Mole Fraction Alcohol (X)	$\stackrel{\Delta H_{\text {mix }}}{\mathrm{J} / \mathrm{G} \text { mole }}$	T	Ref.
Nitroethane-3-Penatane	0.1707	1199.0000	$303{ }^{\circ}$	12
	0.3218	1553.0000	$303{ }^{\circ}$	12
	0.3946	1618.0000	303°	12
	0.04425	1651.0000	303°	12
	0.4945	1653.0000	303°	12
	0.6128	1608.0000	303°	12
	0.7494	1365.0000	$303{ }^{\circ}$	12
	0.3908	1700.0000	313°	12
	0.5050	1739.0000	313°	12
	0.6164	1663.0000	313°	12
Nitroethane-2,2Dimethylbutane	0.1674	1147.0000	$303{ }^{\circ}$	12
	0.1796	1180.0000	303°	12
	0.3242	1504.0000	$303{ }^{\circ}$	12
	0.4051	1579.0000	303°	12
	0.5057	1610.0000	$303{ }^{\circ}$	12
	0.6151	1533.0000	303°	12
	0.7109	1406.0000	303°	12
	0.7889	1176.0000	$303{ }^{\circ}$	12
	0.9282	503.0000	303°	12
	0.9703	223.0000	303°	12
	0.3202	1563.0000	313°	12
	$0.3902 \ldots$	1645.0000	$313{ }^{\circ}$	12
	0.5108	1696.0000	313°	12
	0.6195	1592.0000	313°	12

TABLE XIV (Cont'd)

System	Mole Fraction Alcohol (X)	$\begin{gathered} \Delta H_{\operatorname{mix}} \\ \mathrm{J} / \mathrm{G} \text { mole } \end{gathered}$	T	Ref.
Butylamine-n-Heptane	0.3350	1254.0000	$298{ }^{\circ}$	14
	0.3740	1296.0000	298°	14
	0.4020	1305.0000	$298{ }^{\circ}$	14
	0.5520	1311.0000	$298{ }^{\circ}$	14
	0.6210	1151.0000	$298{ }^{\circ}$	14
	0.6280 .	1156.0000	$298{ }^{\circ}$	14
	0.7320	907.0000	$298{ }^{\circ}$	14
	0.7410	868.0000	$298{ }^{\circ}$	14
Butylamine-n-Heptane	0.3250	1200.0000	318°	14
	0.4420	1281.0000	318°	14
	0.4840	1275.0000	318°	14
	0.5160	1241.0000	318°	14
	0.5490	1225.0000	318°	14
	0.6880	1003.0000	318°	14
System: n-Butanol-n-Heptane ${ }^{(32)}$ at $30^{\circ}, 45^{\circ} \mathrm{C}$				
Mole Fraction Alcohol (X)	at 15°	Heats of Mixing (Joule/C Mole) at $55^{\circ} \mathrm{C}$		
0.0100	182.0000		203	
0.0200	274.0000		341	
0.300	331.0000		430	
0.0400 ..	$373.0000 \ldots$		498	
0.0500	407.0000		547	

TABLE XIV (Cont'd.)

System: Ethanol-n-Hexane at $30^{\circ}, 45^{\circ} \mathrm{C}$
0.0100
0.0200
0.0300
0.0400
0.0500
0.0750
0.1000
178.0000
256.0000
303.0000
339.0000
369.0000
427.0000
470.0000
201.0000
323.0000
398.0000
452.0000
495.0000
577.0000
637.0000

TABLE XIV (Cont'd.)

System: Ethanol-n-Hexane at $30^{\circ}, 45^{\circ} \mathrm{C}$		
Mole Fraction Alcohol (X)	at 30°	Heats of Mixing (Joule/C Mole) at $45^{\circ} \mathrm{C}$
0.1250	505.0000	684.0000
0.1500	534.0000	723.0000
0.1750	557.0000	754.0000
0.2000	578.0000	779.0000
0.3000	622.0000	832.0000
0.4000	629.0000	830.0000
0.5000	603.0000	790.0000
0.6000	554.0000	713.0000
0.7000	477.0000	605.0000
0.8000	368.0000	459.0000
0.9000	219.0000	264.0000
System: Ethanol-n-Nonane at $30^{\circ}, 45^{\circ} \mathrm{C}$		
0.0100	194.0000	208.0000
0.0200	291.0000	356.0000
0.0300	349.0000	451.0000
0.0400	394.0000	519.0000
0.0500	431.0000	574.0000
0.0750	498.0000	674.0000
0.1000	544.0000	745.0000
0.1250	583.0000	800.0000
0.1500	617.0000	847.0000
0.1750	754.0000	882.0000

TABLE XIV (Cont'd)

	System: Ethanol-n-Nonane at $30^{\circ}, 45^{\circ} \mathrm{C}$	
Mole Fraction Alcohol (X)	at 30°	Heats of Mixing (Joule/C Mole)
0.2000	670.0000	912.0000
0.3000	731.0000	981.0000
0.4000	746.0000	991.0000
0.5000	730.0000	955.0000
0.6000	684.0000	881.0000
0.7000	607.0000	767.0000
0.8000	491.0000	602.0000
0.9000	311.0000	368.0000

	System:	n-Octanol-n-Nonane at $30^{\circ}, 35^{\circ} \mathrm{C}$
0.0100	184.0000	200.0000
0.0200	282.0000	346.0000
0.0300	338.0000	440.0000
0.0400	398.0000	500.0000
0.0500	411.0000	544.0000
0.0150	467.0000	629.0000
0.1000	506.0000	688.0000
0.1250	536.0000	730.0000
0.1500	559.0000	760.0000
0.1750	578.0000	784.0000
0.2000	592.0000	802.0000
0.3000	624.0000	832.0000

TABLE XIV (Cont'd)
System: n-Octanol-n-Nonane at $30^{\circ}, 35^{\circ} \mathrm{C}$

Mole Fraction Alcohol (X)	at 30°	Heats of Mixing (Joule/C Mole)
0.4000	622.0000	816.0000
0.5000	588.0000	763.0000
0.6000	511.0000	677.0000
0.7000	414.0000	552.0000
0.8000	291.0000	392.0000
0.9000	150.0000	205.0000

$$
\begin{aligned}
& \text { EIGURE 2: Prediction of n-Butanol-n-Heptane } \\
& \text { data using linear temperature de- } \\
& \text { pencency for LNIFAC parameters. } \\
& \text { Parameters were obtained from } n- \\
& \text { propanol-n-heptane data at } 30^{\circ} \mathrm{C} .
\end{aligned}
$$

FIGURE 8: Comparison of predicted and experimental heat-of-mixing data for the system. 2-Fropanol-n-Heptane at $30^{\circ} \mathrm{C}$ by AGSM and UNIFAC (Q CHOHCH3 $=1.660$)
Parameters were obtained from n -Propanol-r-heptane ciata at $30^{\circ} \mathrm{C}$.

APPENDIX 1

DERIVATION OF THE HEAT-OF-MIXING EQUATION
FOR THE UNIFAC MODEL

In chapter III, the relationship between Gibbs Excess Free Energy and the group activity coefficient is expressed in equation (27). Here, the essential steps are presented for the derivation of the UNIFAC model used for heat-of-mixing work.

Applying the Gibbs-Helmholtz relation to equation (27) of chapter III,

$$
\begin{align*}
\left(\frac{\delta\left(G^{E} / R T\right)}{\partial T}\right)_{p, x} & =\left(\frac{\sum^{i} x_{i}\left(\sum V_{k}^{(i)}\left[\ln \Gamma_{k}-\ln \Gamma_{k}^{(i)}\right]+\ln \gamma_{i}{ }^{c}\right)}{\partial T}\right)_{p, x} \tag{1}\\
\left(\frac{\partial\left(G^{E} / R T\right)}{\partial T}\right)_{p, x}= & \left(\frac{\delta \sum x_{i}\left(\sum V_{k}^{(i)}\left[\ln \Gamma_{k}-\ln \Gamma_{k}^{(i)}\right]\right)}{\partial T}\right)_{p, x}+\left(\frac{\partial \ln \gamma_{i}{ }^{c}}{\partial T}\right)_{p, x} \tag{2}
\end{align*}
$$

Since the combinatorial part of the group activity coefficient is independent of temperature, and therefore has little or no significant effect on heats of mixing, it is only the residual contribution that enters into heat-of-mixing calculations. Thus, equation (2) becomes
or

Therefore,

$$
\begin{equation*}
H^{E}=-\operatorname{RT} \sum \sum x_{i} V_{k}^{(i)}\left[T\left(\frac{\partial \ln \Gamma_{k}}{\partial T}\right)_{p, x}-T\left(\frac{\partial \ln \Gamma_{k}^{(i)}}{\partial T}\right)_{p, x}\right] \tag{5}
\end{equation*}
$$

where

$$
\ln \Gamma_{k}=Q_{k}\left[1-\ln \left(\sum_{m} \theta_{m k}\right)-\stackrel{m}{\left.\left(\Sigma \theta_{m} \psi_{k m} / \Sigma \theta_{n} \psi_{n m}\right)\right]}\right.
$$

From equation (28) of Chapter III,

$$
\begin{equation*}
-\ln \psi_{m n}=\frac{a_{m n}}{T} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d \psi_{m n}}{d t}=\exp \left(-\frac{a_{m n}}{T}\right)\left[\frac{a_{m n}}{T^{2}}\right] \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
=-\frac{\psi_{m n} \ln \psi_{m n}}{T} \tag{8}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
& \begin{aligned}
& T\left(\frac{\partial \ln \Gamma_{k}}{\partial T}\right)_{p, x}=Q_{k} T\left(\frac{\left.\partial\left[1-\ln \left(\Sigma \theta_{m} \psi_{m k}\right)-\sum_{m} \theta_{m} \psi_{k m} / \Sigma \theta_{n} \psi_{n m}\right)\right]}{\partial T} p_{r} x\right. \\
&=Q_{k} T\left(\frac{\partial\left(-\ln \left(\Sigma \theta_{m} \psi_{m k}\right)\right.}{\partial T} p_{1} x-\frac{\partial\left(\Sigma \theta_{m} \psi_{k m} / \Sigma \theta_{n} \psi_{n m}\right)}{\partial T}\right) \\
& p, x \\
&=Q_{k} T\left(-\frac{1}{\sum_{m} \theta_{m} \psi m k} \frac{\sum_{m}}{\sum_{m} \psi_{m k} \ln \psi_{m k}}\right. \\
& T
\end{aligned} \tag{9}\\
& \frac{-\left(\sum_{m}^{m}-\psi_{k m}{ }^{\ln } \psi_{k m}{ }^{n}\left(\Sigma \theta_{n} \psi_{n m}\right)\right.}{T} \\
& \left.\left.-\frac{\sum_{n}^{n}-\theta_{n m} \ln \psi_{n m}\left(\sum \theta_{m} \psi_{k m}\right)}{T\left(\sum \theta_{n} \psi_{n m}\right)^{2}}\right)\right) \tag{11}
\end{align*}
$$

$$
\begin{align*}
& T\left(\frac{\partial \ln \Gamma_{k}}{\partial T}\right)_{P, X}=Q_{k} \sum \theta_{m}\left[\frac{\psi_{m k} 1 n \psi_{m k}}{\sum \sum \theta_{m} \psi_{m k}}+\frac{\psi_{k m}\left[\sum_{n}^{n} \psi_{n m}\left(1 n \psi_{k m}-\ln \psi_{n m}\right)\right]}{\left[\sum \theta_{n} \psi_{n m}\right]^{2}}\right] \tag{12}
\end{align*}
$$

$$
\begin{aligned}
& \text { Similarly, }
\end{aligned}
$$

Substitution of equations (14), (15) into (5) gives the 2-parameter version of the heat-of-mixing expression for UNIFAC where $\psi_{m n}, \psi_{m n}$ take the expressions in equation (28) of chapter III.

In the derivation of equations (14) and (15) $\psi_{n m} \psi_{m n}$ are the temperature dependent group energy interaction parameters for the pair of groups m and $n ; a_{n m}, a_{m n}$, are assumed to be independent of temperature. Thus, equations (14) and (15) are based on the two-parameter version of the UNIFAC model in which $\psi_{\mathrm{nm}}{ }^{\prime} \psi_{\mathrm{mn}}$, are exponentially related to $a_{\mathrm{mn}}, a_{\mathrm{nm}}$.

In order to enhance the flexibility and, hence, the accuracy of the model in characterizing functional group energy interactions in heats of mixing of liquid mixtures, the two
parameters, $a_{m n}, a_{n m}$, are made temperature dependent. The following temperature dependency is investigated in this study:

$$
\begin{equation*}
-a_{m n}=A_{m n} T^{n}+B_{m n} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
-a_{n m}=A_{n m} T^{n}+B_{n m} \tag{17}
\end{equation*}
$$

where

$$
n=-2,-1, \ldots+2
$$

Therefore,

$$
\begin{align*}
& \psi_{n m}=\operatorname{EXP}\left(-\frac{{ }_{\mathrm{nm}}}{\mathrm{~T}}\right) \tag{18}\\
& \psi_{n m}^{*}=\operatorname{EXP}\left(A_{n m} T^{n-1}+B_{n m} T^{-1}\right) \tag{19}\\
& \psi_{m n}=\operatorname{EXP}\left(A_{m n} T^{n-1}+B_{m n} T^{-1}\right) \tag{20}
\end{align*}
$$

In equations (19) and (20) the two parameters $\psi_{\mathrm{mn}}, \psi_{\mathrm{nm}}$ have been replaced by the four parameters, nanely, $A_{m n}, A_{n m}, B_{m n}, B_{n m}$. Therefore it requires two additional equations to make a total of four, in order to solve for the four unknown parameters mentioned above.

The two additional equations are defined by the relationship

$$
\begin{align*}
& \mathrm{b}_{\mathrm{mn}}=\frac{\delta\left(\psi_{\mathrm{mn}}\right)}{\partial \mathrm{T}} \tag{21}\\
& \mathrm{~b}_{\mathrm{nm}}=\frac{\delta\left(\psi_{\mathrm{nm}}\right)}{\partial \mathrm{T}} \tag{22}
\end{align*}
$$

Differentiating equations (19) and (20) with respect to temperature give

$$
\begin{align*}
& b_{m n}=\frac{\partial\left[\operatorname{EXP}\left(A_{m n} T^{n-1}+B_{m n} T^{-1}\right)\right]}{\partial T} \tag{23}\\
& b_{m n}=\operatorname{EXP}\left[A_{m n} T^{n-1}+B_{m n} T^{-1}\right]\left[(n-1) A_{m n} T^{n-2}-B_{m n} T^{-2}\right] \tag{24}\\
& b_{n m}=\frac{\partial\left[\operatorname{EXP}\left(A_{n m} T^{n-1}+B_{n m} T^{-1}\right)\right]}{\partial T} \tag{25}\\
& b_{n m}=\operatorname{EXP}\left[A_{n m} T^{n-1}+B_{n m} T^{-1}\right]\left[(n-1) A_{n m} T^{n-2}-B_{n m} T^{-2}\right] \tag{26}
\end{align*}
$$

Where the four parameters, $A_{m n}, A_{n m}, B_{m n}, B_{n m}$ are independent of temperature.

The equation for $T\left(\frac{\delta \ln \Gamma_{k}}{\partial T}\right)$ becomes
$T\left(\frac{\delta \ln \Gamma_{k}}{\partial T}\right)_{p, x}=T Q_{k}\left[\frac{\delta\left(-\ln \left(\Sigma \theta_{m} \psi_{m k}\right)\right)}{\partial T}\right]-\left(\frac{\left.\frac{\delta\left(\sum\left[\frac{n}{m} \psi_{k m}\right]\right)}{\sum \theta_{n} \psi_{n m}}\right)}{\partial T}\right)$

Let

$$
\begin{equation*}
C=\frac{\partial\left(\ln \left(\sum_{\mathrm{m}}^{\mathrm{m}} \psi_{\mathrm{mk}}\right)\right)}{\partial T} \tag{28}
\end{equation*}
$$

and

$$
D=\frac{\left.\begin{array}{c}
\mathrm{m} \theta_{\mathrm{m}} \psi_{\mathrm{km}} \\
\mathrm{n}\left(\sum \theta_{\mathrm{n}} \psi_{\mathrm{nm}}\right. \tag{29}
\end{array}\right)}{\partial \mathrm{T}}
$$

equation (27) then becomes

$$
\begin{equation*}
T\left(\frac{\partial \ln \Gamma_{k}}{\partial T}\right)_{p, x}=T Q_{k}(-C-D) \tag{30}
\end{equation*}
$$

From equation (28)

$$
\begin{equation*}
c=\frac{1}{m} \sum_{\sum \theta_{m} \theta_{m k}}^{m} \frac{\partial \psi_{m k}}{\partial T} \tag{31}
\end{equation*}
$$

Substitution of equation (21) into (31) gives

$$
\begin{equation*}
C=\frac{\sum_{m}^{m} \theta_{m k}}{\sum \theta_{m} \psi_{m k}} \tag{32}
\end{equation*}
$$

Expanding on equation (29) gives

Substituting equations (32) and (33) into (30) gives

$$
\begin{equation*}
T\left(\frac{\partial 1 n r_{k}}{\partial T}\right)_{p, x}=T Q_{k}{ }^{m} \theta_{m}\left[-\frac{b_{m k}}{\sum \theta_{m} \psi_{m k}}-\frac{b_{k m}^{\sum \theta_{n} \psi_{n m}-\psi_{k m} \theta_{n} \theta_{n m} \psi_{n m}}}{\left(\sum \theta_{n} \psi_{n m}\right)^{2}}\right] \tag{34}
\end{equation*}
$$

Substituting equations (20) and (24) into (34) gives

$$
\begin{gathered}
T\left(\frac{\left.\partial \ln \Gamma_{k}\right)}{\partial T}\right)_{p, x}=\operatorname{TO}_{k} \sum_{m}^{m}\left(-\frac{\operatorname{EXP}\left(A_{m k} T^{n-1}+B_{m k} T^{-1}\right)\left((n-1) A_{m k} T^{n-2}-B_{m k} T^{-2}\right)}{\sum_{m} \theta_{m} \operatorname{EXP}\left(A_{m k} T^{n-1}+B_{m k} T^{-1}\right]}\right. \\
-\frac{\left(E X P\left(A_{m k} T^{n-1}+B_{m k} T^{-1}\right)\left((n-1) A_{m k} T^{n-2}-B_{m k} T^{-2}\right)-\sum_{n}^{n} \operatorname{EXP}\left(A_{m k} T^{n-1}+B_{m k} T^{-1}\right)\right)}{\left[\sum_{n}^{n} \operatorname{EXP}\left(A_{m k} T^{n-1}+B_{m k} T^{-1}\right)\right]^{2}}
\end{gathered}
$$

$$
\begin{equation*}
-\frac{\left(E \operatorname{XP}\left(A_{k m^{T}}{ }^{n-1}+B_{k m^{T}} T^{-1}\right) \cdot \sum \theta_{n} \cdot \operatorname{EXP}\left(A_{n m^{T}} T^{n-1}+B_{n m^{T}} T^{-1}\right)\right.}{\left\{\sum \theta_{n} \cdot \operatorname{ExP}\left(A_{m k} T^{n-1}+B_{m k} T^{-1}\right)\right]^{2}} ; \tag{35}
\end{equation*}
$$

Similarly, following equation (34)
where $b_{j k}, b_{k j}$ retain their definitions in equations (21), (22) and $\theta_{m}^{(i)}=$ the group surface area fraction of group m in pure component i.

Substitutions of equations (19), (20), (24) and (26) into (36) gives the complete expression for that equation. Substituting equations (35) and (36) into (5), gives the heat-ofmixing expression for group k.

Check: the correctness of the heat-of-mixing expressions (equation 5) can be verified by substituting $A_{m n}=0, B_{m n}=$ $a_{m n}$, into the four-parameter version; this substitution should revert the four-parameter version to the two-parameter version.

APPENDIX 2

COMPUTER PROGRAMS

The Fortran programs for heat-of-mixing calculations are presented in this section. Also included is the nomenclature for the actual use of the programs. There are three main programs and one subroutine for obtaining parameters for the various correlations.

Main Program Titles

HM1X2 UNIFAC two-parameter program, calculates heats of mixing

HM1X4 UNIFAC four-parameter program, calculates heats of mixing

AGSM AGSM Program calculates heats of mixing REG Non-linear Regression Subroutine used with each of the above main programs to calculate the group interaction parameters

Nomenclature for Main Programs \& Variables in Common
$A(J, K), B(J, K) \quad G r o u p ~ t e m p e r a t u r e ~ i n d e p e n d e n t ~ c o e f f i c i e n t s ~ f o r ~$ groups j and k interactions

ERROR Percentage difference between calculated and experimental heats of mixing

HEMIX(I) Calculated heats of mixing of component i in solution HK (K) Heats of mixing of group k in the solution HKS (K, I) Standard heats of mixing of group k in component i

HMIXE	Experimental heats of mixing
HMIX	Calculated heats of mixing
HSUM (I)	Partial molar heats of mixing of component i in
	solution
I	Molecular components
J, K	Groups
NDATA	Number of data points
$N(K, I)$	Number of groups of type K in component i
$Q(J)$	Group J group area parameter
R	Universal gas constant
T	Absolute temperature in degrees Kelvin
TH (J)	Group J surface area fraction
THS (J, I)	Group surface area fraction of group J in pure
$U(J, K)$	UNIFAC binary temperature dependent parameters
$W_{\text {SUM }}$	Sum of group surface areas for all groups in solution
$\mathrm{X}(\mathrm{J})$	Group fraction of group J
XM (I)	Mole fraction of component i
XT	Group interaction parameter determined by data reductio

HM1X2

$\begin{array}{r} 1 \mathrm{C} \\ 2 \mathrm{C} \\ \hline \end{array}$	program using unifac regression subruotine MAIN PROGRAM
3 C	BUTANOL/HEPTANE SYSTEM
4	COMMON XMI (40), HM\XE(40), HMIX(40), ERROR(40), NDATA,
5	DIMENSION X ${ }^{\text {(15,15) }}$
6	REAL. 8 NAME1, NAMEZ, NAME3
7	INTEGER F.H
8	READ 12, NAME1, NAME2,NAME3
912	FORPAT (3A8)
10	PRINT 12,NAME1,NAME2, NAME3
11	READ-L - NDAIA
121	FORMAT (lio)
13	READ 11. ${ }^{\text {P }}$
14 11	Formal (510.5)
15	READ 2,(XM1(l),HMIXE(!),IPL,NDATA)
162	FORMAT(F5.3.F10.4)
12	READ-L ARAR
18	NN=NPAR+1
19	$N=N P A R$
20	
21702	FORMAT (F15.7)
22	SA=1,E-6
23	DOL20.JE2,NN
24	DO 20 I=1, N
25	1F(J-1-1)2002,2003,2002
262003	$\times T(1.1)=1.1 \times 1{ }^{(1.1)}$
27	60 10 20
282002	XT(J.1) \times XT(1.1)
29.20	CONTINUE
30	PRINT 4
314	format ('-1.10x, 'fnitial parameters')
32	PRINT 301, (XTC1, 11, 191, N$)$
33301	formaticoi.10X,F10.6)
34	$A L F A=1$.
35	日EIA $0_{0} 5$
36	GAMMA $=2$.
37	CALL REG(NPAR, XT, ALFA, BETA, GAMMA, SA, NN, N)
38	
399	FORMAT (4F15,5) .
40	Stop
41	END

\qquad END

FORTRAN IV (VER 45) SOURCE LISTING: FMIN SUBROUTINE 02/14/79 17i3:

1
\qquad
\because

- 1
-

FQRMAT(F10.5)
$\operatorname{REAL}(5,2)(X M 1(I), \operatorname{HMIXE}(I), I=1$, NDATA)
2 FOFMAT (F6.4,F8.1)
FEAII(5,1)NFAF
$N N=N F A F i+1$
$N=N F \cdot A F$
SA=1.E-6
REALI 5,702)(XT(1,I),I=1,NFAR)
FOFIMAT (F15.7)
リ1 $20 \mathrm{~J}=2 \mathrm{NN}$
IO $20 \mathrm{I}=1, \mathrm{~N}$
IF (J-I-1)20(2,2003,2002
2003 XT(J,I;=1.1*XT(1,I)
GO TO 20
$2002 \mathrm{XT}(\mathrm{J}, \mathrm{I})=\mathrm{XT}(1, I)$
20
CONTINUE
WFITE $(6,4)$
4 FOFMAT ('-',10X,'NITIAL PAFAMETERS')
WFITE $(6,301)(X T(1, I), I=1, N)$
301 FOFMMA (///,10X,F15.7)
ALFA=1.
$B E T A=0.5$
GAMMA=2.
CALL FEG (NFAF, XT,ALFA, EETA,GAMMA,SA,NN,N)
WFITE 6,9$)(X M 1(J), \operatorname{HMIXE}(J), H M I X(J), E F F O R I(J), J=1, N I A T A)$
9 FOFMAT (4F15.5)
STOF'
ENI
SUEFIOUTINE FMIN(XT,FF)
COMMON XM1 (40), HMIXE (40), $\operatorname{HMIX}(40)$, EFFFOF (40), NIIATA,T
C. UNIFAC---TEMFEFATUFE-INIEFENIENT FAFAMETERS

DIMENSIONHS (10), ES (10,10), HEAT (10,10) , HEMIX(50)
IIMENSION $A(10,10), A X(10), \operatorname{HK}(10), \operatorname{HKS}(10,10), \operatorname{IN}(10,10), \operatorname{BSUM}(10)$
IIMENSION IS $(10,10), C S(10,10), E S(10), F S(10),(G S(10)$
IIIMENSION $C(10,10), \amalg(10,10), E(10), F(10), G(10), H(10), B(10,10)$
IIIMENSION EX(10), XM(10),N(10,10),X(10), H1(10),H1S(10)
IIIMENSION CSUM (10),F(10,10),YSUM(10), CSSUM(10),ESSUM (10)
IIMENSION HSUM (10).
IIIMENSION WSUM (10), TH(10), THS (10,10), Q(10)
IIMENSION USUM(10)
IIMENSION XT(10)
$Y S=0$.
$K A=4$
$I S=3$
IA $=3$
$M A=4$
$J A=4$
IE=3
$J B=4$
$M B=4$
$J S=4$
$K S=4$
$M S=4$
IH=-
KH=4
$\mathrm{JC}=4$
$M C=4$
$I D=3$
$j I I=4$
$M I=4$
$Q(2)=0.540$
$Q(3)=0.843$
$Q(4)=1.664$
$N(2,2)=5$
$N(3,2)=1$

```
        N(2,3)=5
            N(3,3)=2
        N(4,3)=0
        R=8.314
        A(2,2)=0.
        A(3,3)=0.
        B(2,2)=0.
        B(3,3)=0.
        A(4,4)=0.
        A(2,3)=0.
        A(3,2)=0.
        B(2,3)=0.
        B(3,2)=0.
        E(4,4)=0.
        A(2,4)=XT(1)
        A(4,2)=XT(2)
        B(2,4)=XT(3)
        B(4,2)=XT(4)
        A(3,4)=A(2,4)
        A(4,3)=A(4,2)
        B(3,4)=B(2,4)
        B(4,3)=B(4,2)
        HO }777\textrm{KFN}=1,N[IAT
    XM(2)=XM1 (KF'N)
    XM(3)=1,-XM(2)
    EX(1)=0.
    AX(1)=0.
    AXSUM=O.
    10 30 M=2,MA
    DO 40 I=2,IA
    DO 50 K=2,KA
    AX(K)=AX(K-1)+XM(I)*N(K,I)
    CONTINUE
    EX(I)=EX(I-1)+XM(I)*N(M,I)
    AXSUM=AXSUM+AX(KA)
    40 CONTINUE
    X(M)=EX(IA)/AXSUM
    AXSUM=0.
    30 CONTINUE
    WSUM(1)=0.
    DO 99 J=2,JC
    HO 88 M=2,MC
    WSUM(M)=WSUM(M-1)+Q(M)*X(M)
    CONTINUE
    TH(J)=Q(J)*X(J)/WSLM(MC)
    CONTINUE
    D (1,1)=0.
    C(1,1)=0.
    F(1)=0.
    E(1)=0.
    G(1)=0.
    H(1)=0.
    B(1;1)=0.
    CSLiM(1)=0.
    ESUM(1)=0.
    nO 3 K=2,KA
    DO 1 J=2,jA
    DO 2 M=2,MA
    C(J,M)=TH(M)*EXF(A(M,J)+E(M,J)/T)*(-E(M,J)/(T*T))
    F(J,M)=TH(M)*EXF}(A(M,J)+B(M,J)/T
    CSUM(M)=CSLM(M-1)+C(J,M)
    ESUM(M)=ESUM(M-1)+P(J,M)
    II}(J,M)=(AES(ESUM(M)))**2.
    CONTINUE

\section*{GMA)}
\(F(J)=F(J-1)+T H(J) * E X P(A(K, J) \neq E(K, J) / T) *(-B(K, J) /(T *\) GT))/ESUM(MA)
\(G(J)=G(J-1)+T H(J) * E X F(A(J, K)+E(J, K) / T) *(-E(J, K) \%(T *\) GT)
\(H(J)=H(J-1)+T H(J) * E X F(A(J, K)+B(J, K) / T)\)
1 CONTINUE
\(H 1(J A)=G(J A) / H(J A)\)
HK(K)=Q(K)*(H1(JA)+F(JA)-E(JA))*F*T*T
3 CDNTINUE
YSUM (1)=0.
IIO : \(I=2, I B\)
[10 . 0 J=2, JF
UD \(20 \mathrm{M}=2, \mathrm{MB}\)
\(\operatorname{YSUM}(M)=N(M, I)+Y S U M(M-1)\)
CDNTINUE
UN(J,I)=FLOAT(N(J,I))/YSUM(ME)
10 CONTINUE
5 CDNTINLE
\(\operatorname{USUM}(1)=0\).
IO \(77 \mathrm{I}=2\), III
10 \(66 \mathrm{~J}=2\), J山
IO \(55 \mathrm{M}=2, \mathrm{MD}\)
\(\operatorname{USUM}(M)=U S U M(M-1)+Q(M) * I N(M, I)\)
55 CONTINUE
\(\operatorname{THS}(J, I)=Q(J) * I N(J, I) / U S U M(M D)\)
66 CONTINUE
77 CONTINUE
\(\operatorname{US}(1,1)=0\).
\(\operatorname{CS}(1,1)=0\).
\(\operatorname{ES}(1)=0\).
\(\operatorname{FS}(1)=0\).
GS(1) \(=0\).
HS \((1)=0\).
\(\mathrm{E} S(1,1)=0\).
CSSUM(1) \(=0\).
\(\operatorname{FSSUM}(1)=0\).
LiO \(44 \quad I=2,15\)
IO \(33 \mathrm{~K}=2, \mathrm{KS}\)
[10 11 Jm2y
IO \(22 \mathrm{M}=2, \mathrm{MS}\)
CS(J,M)=THS(M,I)*EXF(AiM,J)+E(M,J)/T)*(-H(M;J)/iT*T
G) )

ES \((J, M)=\operatorname{THS}(M, I) * E X F(A(M, J)+B(M, J) / T)\)
\(\operatorname{CSSUM}(M)=\operatorname{CSSLM}(M-1)+\operatorname{CS}(J, M)\)
ESSLM(M)=ESSUM(M-1)+ES(J.M)
HS(J.M)=(AES(ESSUM(M)))**2.
22 CONTINUE
ES(J)=ES(J-1)+THS(J,I)*EXF(A(K,J)+E(K,J)/T)*CSSUM(M GS)/IIS(J.MS)
FS (J)=FS(J-1)+THS \((J, I) * E X F(A(K, J)+E(K, J) / T) *(-B(K, J)!\)
G/(T*T))/ESSUM(MS)
GS(J)=GS(J-1)+THS(J,I)*EXF (A(J,K)+E(J,K)/T)*(-E(J,K)
G/(T*T))
HS(J)=HS(J-1)+THS(J,I) *EXF(A(J,K)+E(J,N゙)/T)
11 CONTINUE
iH1S(JS) =GS(JS)/HS(JS)
:
33 CONTINUE
44 CONTINUE
HEMIX(1)=0.
HSUM (1)=0.
\(\operatorname{HEAT}(1,1)=0\).
LiO \(60 \mathrm{I}=2, \mathrm{IH}\)
Iio \(70 \mathrm{~K}=2, \mathrm{KH}\)

70 CONTINUE
\(\operatorname{HEMIX}(I)=X M(I) * \operatorname{HSUM}(K H)+\operatorname{HEMIX}(I-1)\)
60 CDNTINUE
HEMIX(3) \(=\) HEMIX(IH)
HMIX(KPN) = HEMIX(3)
EFFOR (KFN) = 100.* (HMIXE (KFN)-HMIX(KFN))/HMIXE(KFN)
UIFF=ABS (HMIXE (KFN)-HMIX(KFN))
\(Y=(U I F F / H M I X E(K F N)) * * 2\)
\(Y S=Y S+Y\)
777. CONTINUE
\(F F=Y S\)
RETUFN
ENU

\section*{\(\$\)}
```

C AGSM
IIMENSIONHS(10);ES(10,10),HEAT(10,10), HEMIX(50)
IIIMENSION A(10,10),AX(10),HK(10),HKS(10,10), INN(10,10),ESUM(10)
IIMENSION IS(10,10),CS(10,10),ES(10), FS(10),GS(10)
IIMENSION C(10,10),II(10,10),E(10),F(10),G(10),H(10),E(10,10)
IIMENSION EX(10), XM(10),N(10,10),X(10), H1(10),H1S(10)
IIMFNSION CSUM(10),F(10,10),YSUM(10),CSSUM(10),ESSUM(10)
IIMENSION HSUM(10)
XM(2)=0.
XM(2)=XM(2)+0.1
IF(XM(2)-1.) 300,200,200
300
XM(3)=1.-XM(2)
KA=3
IS=3
IA=3
MA=3
JA=3
IE=3
JE=3
ME=3
JS=3
KS=3
MS=3
IH=3
KH=3
N(2,3)=7
N(3,2)=1
N(2,2)=3
N(3,3)=0
R=8.314
T=303.15
A(2,2)=0.
A(3,3)=0.
E(2,2)=0.
B(3,3)=0.

```
```

 B(3,2)=-3316.1
 BX(1)=0.
 AX(1)=0.
 AXSUM=O.
 IIO 30 M=2,MA
 ID 40 I=2,IA
 ID 50 K=2,KA
 AX(K゙)=AX(K-1)+XM(I)*N(K,I)
 Su CONTINUE
EX(I)=EX(I-1)+XM(I)*N(M,I)
AXSUM=AXSUM+AX(KA)
40 CONTINUE
X(M)=EX(IA)/AXSUM
AXSUM=O.
30 CONTINUE
IN(1,1)=0.
C(1,1)=0.
F(1)=0.
E(1)=0.
G(1)=0.
H(1)=0.
E(1,1)=0.
CSUM(1)=0.
BSUM(1)=0.
IO 3 K=2,KA
110 1 J=2!JA
no 2 M=2,MA
C(J,M)=X(M)*EXF'(A(J,M)+E(J,M)/T)*(-E(J,M)/(T*T))
P(J,M)=X(M)*EXF'(A(J,M)+E(J,M)/T)
CSUM(M)=CSUM (M-1)+C(J,M)
BSUM(M)=BSUM(M-1)+F(J,M)
- D(J.M)=(AES(ESUM(M)))**2.
2. CONTINUE
(E E(J)=E(J-1)+X(J)*EXF(A(J,K゙)+E(J,N゙)/T)*CSUM(MA)/D(J,M
1A)
F(J)=F(J-1)+X(J)*EXF'(A(J,K゙)+E(J,K)/T)*(-F(J,N゙)/(T*T)
1)/ESUM(MA)
G(J)=G(J-1)+X(J)*EXF(A(K,J)+E(K,!J)/T)*(-E(K,J)/(T*T)
1)
H(J)=H(J-1)+X(J)*EXF(A(K,gJ)+E(K゙,J)/T)
H1(J)=G(J)/H(J)
1 CONTINUE
HK゙(K)=(H1(JA)+F(JA)-E(JA))*R*T*T
3 CONTINUE
YSUM(1)=0.
LO 5 I=2,IE
IN 10 J=2.JE
10 20 M=2,ME
YSUM(M)=N(M,I)+YSUM(M-1)
O CONTINUE
INN(J,I)=FLOAT(N(J,I))/YSUM(MR)
10 CONTINUE
5 CONTINUE
IS(1,1)=0.
CS(1,1)=0.
ES(1)=0.
FS(1)=0.
GS(1)=0.
HS(1)=0.
RS(1,1)=0.
CSSUM (1)=0.
ESSUM(1)=0.
IO 44 T=2,IS

```
```

 IO 33 K=2,NS
 HO 11 J=2,JS
 10 22 M=2,MS
 CS(J,M)=\operatorname{IN}(M,I)*EXF(A(J,M)+E(J,M)/T)*(-E(J,M)/(T*T))
 ES(J,M)=[NN(M,I)*EXF(A(J,M)+E(J,M)/T)
 CSSUM(M)=CSSUM(M-1)+\operatorname{Cs}(J,M)
 ESSUM(M)=FSSUM(M-1)+ES(J,M)
 IIS(J,M)=(AES(ESSUM(M)))**2.
 22 CONTINUE
 ES(J)=ES(J-1)+INN(J,I)*EXF(A(J,K)+E(J,K゙)/T)*CSSUM(MS)
 1/IIS(J,MS)
 FS(J)=FS(J-1)+IIN(J,I)*EXF'(A(J,N゙)+E(J,K)/T)*(-E (J,K')/
 1(T*T))/ESSUM(MS)
 GS(J)=GS(J-1)+[IN(J,I)*EXF'(A(K,J)+E(K,J)/T)*(-E(K,J)/
 1(T*T))
 HS(J)=HS(J-1)+INN(J,I)*EXFP(A(K,J)+E(K,J)/T)
 H1S(J)=GS(J)/HS(J)
 11 CONTINUE
HKS(K,I)=(H1S(JS)+FS(JS)-ES(JS))*R*T*T
33 CONTINUE
44 CONTINUE
HEMIX(1)=0.
HSUM(1)=0.
HEAT (1,1)=0.
IO 60 I=2,IH
IO }70\textrm{K}=2,\textrm{KH
HEAT(K,I)=N(K,I)*(HK(K)-HKS(K,I))
HSUM(K)=HSUM(K-1)+HEAT (K,I)
70 CONTINUE
HEMIX(I)=XM(I)*HSUM(KH)+ HEMIX(I-1)
60 CONTINUE
HEMIX(3)=HEMIX(IH)
WFITE(2,400) XM(2),HEMIX(3)
400
FORMAT (F5.3,F15.5)
GO TO 100
200 STDF:
ENI|

```
```

 REG
 SUEFOUTINE FEG(NFAF,X,ALFA,BETA,GAMMA,SA,NN,N)
 IIMENSION X(17,20),F(10),XS(10),XM(10),XE(10),XX(10)
 IIIMENSIDN XR(10);XN(10):XE(10)
 NF:=6
 DO 1 J=1,NN
 LO 21 I=1,N
 21 XX(I)=X(J,I)
CALL FMIN(XX,FF)
1 F(J)=FF
NF=NN
C NF IS THE NUMEER OF CALCULATIONS OF F
ALFA=1.
BETA=0.5
GAMMA=2.
ITER=0
JFF=O
400 FOFMMAT(BF16.7)
ESTIMATION OF THE LONEST UALUE DF F=FE
FE=F(1)
10 98 I=1,N
9B XE(I)=X(1;I)
JB=1
DD 31 J=2,NN
'IF(FE-F(J))31,31,108
FE=F(J)
JE=J
[0 41 I=1,N
XE(I)=X(J.I)
41 CONTINUE
C ESTIMATION OF THE HIGHEST UALUE OF F=FS
FS=F(1)
IO 51 I=1,N
51 XS(I)=X(1,I)
JS=1
IUO 61 J=2,NN
IF(FS-F(J))111,61,61
-111 FS=F(J)
JS=\
IO 71 I=1,N
71 XS(I)=X(U,I)
61 CONTINUE
C CALCULATION OF THE CENTNOIL XM(I) OF FOINTS
C . EXCLUIING XS(I)
IO 81 I=1,N
81 XM(I)=-XS(I)
IIO 9 J=1;NN
n0 122 I=1;N
XM(I)=XM(I)+X(J,I)
122 CM(I)=XM
ID 121 I=1,N
XM(I)=XM(I)/FLOAT(N)
FEFLECTION

```
\(N F=N F+1\)
C EXFANSION
IF（FR－FE）141，151，151
141 DO \(161 \mathrm{I}=1, \mathrm{~N}\)
161 XE（I）\(=X M(I)+G A M M A *(X F(I)-X M(I))\)
CALL FMIN（XE，FE）
\(N F=N F+1\)
IF（FE－FB） \(17,18,18\)
17 以U \(19 I=1, N\)
\(X(J S, I)=X E(I)\)
\(19 \mathrm{XS}(I)=\mathrm{XE}(I)\)
\(F(J S)=F E\)
C CALCULATION OF THE HALTING CRITEFION
\(27 \quad F M=0\) ．
UO \(20 \mathrm{~J}=1\) ，NN
\(20 \quad F M=F M+F(J)\)
FM＝FM／FLDAT（NN）
FF：MS＝0．
HO \(22 \mathrm{~J}=1, \mathrm{NN}\)
22 FFMS＝（F（J）－FM）＊＊2＋FFMS
FMS＝SQRT（FTiイS／FiLGATiN））
ITER＝ITEF +1
JF＇ス＝JFR＋1
IF（ITEF．EQ．101）GOTO 23
500 CONTINUE
IF（JFF－1）902，902，903
903 COMTINUE
IF（JFF－6）901，904，904
\(904 \quad \mathrm{JFR}=1\)
902 CONTINUE
WRITE（NF，107）ITER，NF
 GUTINE＇，I5）
WFITE（NF，109）
109 FOFMAT（＇FAFAMETERS＇）
WFITE（NF，400）（X（JS，I），I＝1，N）
WFITE（NF，106）F（JS），FiMS
106 FORMAT（1H．＇FMIN＝＇，E14．J．＇SII＝＇，E14．J）
901－CONTINUE
IF（RMS－SA）23，23，25
C NEW SIIAFLEX
C FE GREATER THAN FE
18 IO 20ं \(I=1, N\)
\(X(J S, I)=X R(I)\)
\(26 \mathrm{XS}(\mathrm{I})=\mathrm{XF}(I)\)
F（JS）＝FF
FS \(=\) FR
GO TO 27
c NEW SIMFLEX
C FR GREATER THAN FE
151 ［10 \(30 \mathrm{~J}=1\) ，NN
IF（J－j5）28，30，28
\(28 \mathrm{IF}(\mathrm{FR}-\mathrm{F}(\mathrm{J})) 18,18,30\)
30 CONTINUE
IF（FR－FS）91，91，32
\(91 \quad\) 10 \(33 \quad \mathrm{I}=1 \mathrm{~N}\)
\(X(S S, I)=X F i(I)\)
33 XS（I）＝XF（I）
F（JS）＝FR．
FS：FF
32 I10 \(34 \mathrm{I}=1, \mathrm{~N}\)
34 XK（I）\(=X M(I)+\) EETA＊\((X S(I)-X M(I))\)
CALL FMIN（XK，FK）

C NEW SIMPLEX
C AFTEF CONTFACTION
IF (FK-FS) \(35,35,36\)
35 LO \(37 I=1, N\)
\(X(J S, I)=X K(I)\)
\(X S(I)=X K(I)\)
\(F(J S)=F K\)
\(F S=F K\)
GO TO 27
U0 \(38 J=1, N N\)
100 \(39 I=1, N\)
\(X(J, I)=(X(J, I)+X E(I)) / 2\).
CONTINUE
GO TO 27
WFITE (NF,905)
FOFMAT (1HO, FINAL F'AFAMETEFS')
WFITE (NF, 400) (X (JS,I),I - 1 y \(N\) )
WFITE (NF;106)F(JS), FMS
833 CONTINLE
FETUFN
ENiI

\section*{NOMENCLATURE}

Arabic Numerals
\[
\begin{aligned}
\Delta H_{E X P} & =\text { Experimental heats of mixing per mole of mixture } \\
\Delta H_{C A L} & =\text { Calculated heats of mixing per mole of mixture } \\
\Delta H & =\text { Heats of mixing per mole of mixture } \\
\Delta \bar{H}_{i} & =\text { Partial molar heats of mixing of component } i \\
V_{k}^{(i)} & =\text { Number of groups of type } k \text { in component } i \\
X_{i} & =\text { Mole fraction of component } i \\
H_{k} & =\text { Group heats of mixing of group } k \\
H_{k}^{(i)} & =\text { Standard state heats of mixing of group } k \text { in com- } \\
X_{m} & =\text { Group fraction of group m } \\
P & =\text { Pressure } \\
T & =\text { Temperature } \\
a_{j k}, b_{j k} & =\text { UNIFAC group parameters (temperature dependent) } \\
A_{j k}{ }^{B}{ }_{j k} & =\text { Group parameters (temperature independent) } \\
Q_{k} & =\text { Group } k \text { surface area parameter } \\
R & =\text { Universal gas constant } \\
U_{k j}, U_{j k} & =\text { UNIFAC binary interaction parameters } \\
G^{E} & =\text { Excess Gibbs Energy } \\
F_{M I N} & =\text { Function minimized by data reduction }
\end{aligned}
\]

\section*{Greek Letters}
\[
\begin{aligned}
& \gamma_{i}^{R}=\begin{array}{l}
\text { Residual activity coefficient of component } i \text { in } \\
\text { mixture }
\end{array} \\
& \gamma_{i}=\text { Activity Coefficient of component } i
\end{aligned}
\]
\[
\begin{aligned}
& \Gamma_{k}=\text { Activity coefficient of group } k \\
& \Gamma_{k}^{(i)}=\text { Activity coefficient of group } k \text { in pure component } i \\
& \theta_{m}=\text { Area fraction of group } m \\
& \theta_{m}^{(i)}=\underset{\text { pronent }}{(i} \text { surface }^{(i)} \text { area fraction of group } m \text { in pure com- } \\
& \text { ponent i } \\
& \gamma_{i}^{C}=\text { the combinatorial activity coefficient which is } \\
& \text { independent of temperature } \\
& \tau_{i j}, \tau_{j i}=\text { the two adjustable parameters obtained by data } \\
& \text { reduction. No ternary or higher parameters are } \\
& \text { needed for multicomponent systems. } \\
& \Phi_{i}=\text { molecular volume fraction } \\
& \theta_{i}=\text { molecular surface area fraction } \\
& x_{i}=\text { component } i \text { mole fraction } \\
& z=\text { lattice combination number (here equal to } 10 \text { ) } \\
& q_{i}=\text { van der Waals surface area for component } i \\
& r_{i}=\text { van der Waals volume for component } i \\
& 1_{i}=\text { pure component (i) constant } \\
& \mathrm{k}=1,2 \ldots \mathrm{~N} \\
& N=\text { number of groups in molecule } i \\
& j=1,2 \ldots M \\
& \mathrm{M}=\text { number of components in mixture } \\
& \mathrm{M}^{\mathrm{E}}=\text { excess property (extensive) } \\
& m_{i}^{-E}=\text { partial excess property } \\
& n_{i}=\text { number of moles of } i \\
& i=1,2 \ldots M \\
& \mathrm{M}=\text { number of components in the mixture } \\
& G^{E}=\text { Gibbs free energy } \\
& \mathrm{N}=\text { number of different groups in the mixture }
\end{aligned}
\]
```

 T = temperature in degrees Kelvin
 x
 \gammai}= component i activity coefficient in mixture
 j,k,m=groups in the mixture
x}\mp@subsup{j}{}{(i)}=\mathrm{ group fraction of group j in pure component i
N}\mp@subsup{N}{k}{(i)}=\mathrm{ number of the group type k in component i

```

\section*{SELECTED BIBLIOGRAPHY}
(1) Abrams, D.S. and Prausnitz, J.M., AICHE J., 21 (1) 116 (1975).
(2) Bondi, A., Physical Properties of Molecular Crystals, Liquids and Glasses, Wiley, New York (1968).
(3) Brown, I., Fock, W. and Smith, F., Chem. Thermo. 1, 27 (1969).
(4) Deal, C.H. and Wilson, G.M., Ind. Chem. Fundam. I (1) 20 (1962).
(5) Derr, E.L. and Deal, C.H., Shell Development Company, Emerville, California, U.S.A.
(6) Derr, E.L. and M. Papadopoulos, "Group Interaction II-A Test of the Group Model on Binary Solution of Hydrocarbons," J. Am. Chem. Soc., 812285 (1959).
(7) Diaz, Pena, M. and Menduina, C., J. Chem. Thermo, 6, 387 (1974).
(8) Diaz, Pena, M. and Menduina, C., J. Chem. Thermo., 6, 1097 (1974).
(9) Fredenslund, A., Jones, R.L. and Prausnitz, J.M., AICHE J., 21 (6), 1086 (1975).
(10) Fredenslund, A., Amehling, J. and Rasmussen, Vapor-Liquid Equilibria Using UNIFAC, Elsevier, Amsterdam, 1977.
(11) Grolier, J.E., Ballet, D. and Viallard, A., J. Chem. Thermodynamics 6, 895 (1974).
(12) Handa, Y.P., Knobler, C.M. and Scott, R.L., J. Chem. Eng. Thermo. 9, 451 (1977).
(13) Larkin, J.A., J. Chem. Thermo. 7, 137 (1975).
(14) Letcher, T.M. and Bayles, J.W., J. Chem. Eng. Data \(16 ;\) (3) 266 (1971).
(15) Langmuir, I., "The Distribution and Orientation of Molecules," Third Colloid Symposium Monograph. The Chemical Catalog Co., Inc. New York (1925).
(16) Lundberg, A.W., J. Chem. Eng. Data 9 (2) 193 (1964).
(17) Maripuri, V.C. and Ratcliff, G.A., Can. J. Chem. Eng. 49, 375 (1971).
(18) Nagata, I. and Ohta, T., Chemical Engineering Science 33, 177 (1978).
(19) Nagata, I., Yamada, T. and Nakagawa, S., J. Chem. Eng. Data 20, (3) 27 (1975).
(20) Nagata, I. and Yamada, T., Ind. Eng. Chem. Process Develop. 11, (4) 574 (1972).
(21) Nguyen, T.H. and Ratcliff, G.A., Can. J. Chem. Eng. 49, 120 (1971).
(22) Nguyen, T.H. and Ratcliff, G.A., Can. J. Chem. Eng. 49, 889 (1971).
(23) Nguyen, T.H. and Ratcliff, G.A., Can. J. Chem. Eng. 52, 641 (1974).
(24) Nguyen, T.H. and Ratcliff, G.A., J. Chem. Eng. Data 20, (3) 252 (1975).
(25) Nguyen, T.H. and Ratcliff, G.A., J. Chem. Eng. Data 20, (3) 256 (1975).
(26) Nelder, J.A., Mead, R., Computer Journal, 7, 308 (1965).
(27) Nicolaides, G.L. and Eckert, C.A., Ind. Eng. Chem. Fundam. 17, (4) 331 (1978).
(28) Ramalho, R.S. and M. Ruel, Canadian J. Chem. Eng., 46, 456 (1968).
(29) Ratcliff, G.A. and Chao, KNC., Can. J. Chem. Eng. 47, 148 (1969).
(30) Ronc, M. and Ratcliff, G.A., "Prediction of Excess Free Energies of Liquid Mixtures by an Analytical Group Solution Model," Can. J. Chem. Eng., 49, 875 (1971).
(31) Savini, C.G., Winterhalter, D.R. and Van Ness, H.C., J. Chem. Eng. Data 10, 171 (1965).
(32) Siman, E.J. and Vera, H.V., Can. J. Chem. Eng. 57, 355 (1979).
(33) Skjold-Jorgensen, S., Kolbe, B., Gmehling, J. and Rasmussen, P., Ind. Eng. Chem. Process Des. Dev., 18, (4) 714 (1979).
(34) Skjold-Jorgensen, S., Rasmussen, P. and Fredenslund, A., Submitted for Publication to Chem. Eng. Science (1980).
(35) Van Ness, H.C. and Klaus, R.L., AICHE Journal 13 (6), 1132 (1967).
(36) Van Ness, H.C., Soczek, C.A. and Kochar, N.K., J. Chem. Eng. Data 12, (3) 346 (1967).

Acknowledgement, iii
Activity Coefficient: 9-10, 12
Combinatorial, 12, 18
Residual, 13, 18
Analytical group solution model, 5, 14-17
Appendices, 74-98

Area parameters, pure component, 19
ASOG, 12,20
Bibliography, selected, 102
Computer main programs:
AGSM, 93-95
HMIX2, 83-87
HMIX4, 88-92
Computer subroutine(s):
REG, , 96-98
Dedication, ii
Ethanol mixtures, 33-34, 73
Excess Gibbs Free Energy, 8-11
Figures, vi
Fugacity, standard state, 8-10
Gibbs-Helmholtz relations, 10, 74
Group parameters:
temperature dependent, 24, 77
temperature independent (coefficients), 24.77
Heat of mixing: 14
of groups, 14
of molecular species, 10
partial molar, 8
standard state, 14
Introduction, 1-7
Isomeric mixtures, 22, 32-33, 72
Lattice coordination number, \(Z, 6,18\)

Mixtures:
TYPE I, 24
TYPE II, 24
Multiple roots, 35
Nomenclature, 99-101
Objective function, minimized (FMIN), 35, 44
Primary coefficients, 17
Secondary coefficients, 17
Tables, \(v\)
Temperature exponent, \(n, 25,37,38,69,70,74\)
UNIFAC model, 6, 14-23, 74-80
UNIQUAC model, 3, 19-20
Van Der Waals surface area, 19
Van Der Waals volume, 19
Volume parameters, groups, 19```

