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ABSTRACT 

Unsteady-state heat conduction in a cylinder of 

finite dimensions with constant physical and thermal 

properties was analyzed with the finite element method. 

Symmetry of the cylinder and application of Newman's 

method reduced the problem to two independent one-

dimensional problems. Finite element equations for 

the axial and radial dimensions were developed utilizing 

Galerkin's method of weighted residuals. Crank-Nicholson 

approximations were used for time derivatives. A 

computer program was written for solution of the finite 

element equations. 

Solutions obtained were conditionally stable; 

dependent on the value of the ratio K∆t/ρCpl2. For 

values of the ratio less than 1/3, errors in solutions at 

small times result. For values of the ratio greater than 

2.0, very large errors result. The magnitude of the 

errors increase with increasing values of the ratio. 

For proper values of the ratio K∆at/ΡCpl2, finite 

element solutions converge to the analytical solutions 

by increasing the number of finite elements in the problem. 
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1. 

1.0 INTRODUCTION 

1.1  Backt4round 

The analytical solution to an unsteady-state heat 

conduction problem requires the development of explicit 

functions containing infinite series for the dependent 

variable. Evaluation of the explicit function at a given 

time and position may be tedious and, time-consuming. The 

finite element method of analysis is a numerical method 

for the solution of differential equations that is simpler 

than the analytical route and yet permits material hetero-

genities and more than one boundary condition within a 

given problem. 

1.2 Problem Definition 

The subject of this thesis is the solution of a three-

dimensional unsteady-state heat conduction problem using 

the finite element method of analysis. 

The physical object under examination is a cylinder 

of finite dimensions. c;ylindrical cf.lordinates, as shown 

in Figure 1.2-1 are employed. Any point within the 

cylinder may be identified by coordinates ( x, r,0). The 

cylinder may be considered to be of length L and radius R. 

In this development, the cylinder is assumed to be of a 

homogeneous material, with a constant thermal conductivity, 

density, and heat capacity throughout. 
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Figure 1.2-1  

Cylinder and Coordinate System 

The unsteady-state heat conduction problem to be ex-

amined is that of a cylinder at an initial temylrature T0 

throughout whose surface is instantaneously brought to the 

temperature T1 at time zero and thereafter maintained at 

temperature T. It is then desired to find the temperature 

distribution throughout the cylinder, or the temperature at 

a specific location within the cylinder, at a specific time. 

1.3 Approach 

The problem may be readily reduced to a two-dimensional 

problem in terms of x and r. Due to the symaetry of the 

cylinder about the x-axis, there is no variation of temper-

ature with e, angular position. That is, avae = 0. 
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Application of Newman's method further reduces the 

two-dimensional problem to that of two one-dimensional 

problems. In Newman's method, the dimensionaless solution 

at any point within the object is the product of the 

dimensionaless solutions of that point in each dimension. 

Therefore, the differential equations for unsteady-state 

heat conduction in the t dimension and the r dimension, 

a2 T a T  
K 
0' 

- F)Cp 
d 

=0 
x t 

and 

(1) T) 3 T 
K - p Cp = 0, 
r r t 

(1.3-1) 

(1.3-2) 

must be solved independently usinz the finite element 

method of analysis. 
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2.0 FUNDAMENTALS OF THE FINITE ELEMENT METHOD 

2.1 General 

The concept underlying the finite element method of 

analysis is that of discretization. By discretization, 

it is meant that the extent or domain of a problem is 

broken down into smaller, more manageable pieces. Each 

piece of the problem may be termed a finite element. The 

solution to the problem may be formulated within each 

element easier than in the larger composite problem. 

Assembly of the solutions in each element and the appli-

cation of the appropriate boundary conclitions alloqs 

solution of the larger composite problem. It is the 

formulation of the solution to the problem within the 

individual finite elements that is the power of the finite 

element method in engineering analysis. Irregular 

geometries, heterogeneities in material properties, and 

several different boundary conditions in the same problem 

may be accomodated with the use of finite elements. 

2.2 Discretization 

In the one-dimensional heat conduction problem, the 

extent, or domain, of the problem, L, may be divided into 

n finite elements, each of length L/n. The end of an 

element, or intersection of two elements, is called a node. 

A problem having n elements therefore has n+1 nodes. The 

disoretizatIon of a one-dimensional ,oroblem into four 
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finite elements is shown in Figure 2.2-1. 

Figure 2.2-1 

One-dimensional Finite Elements 

2.3  Localized  Coordinates 

It is useful to define a non-dimensional, localized 

coordinate system within an element. A localized coor-

dinate system allows analysis of a finite element as an 

entity in itself without the influence of neighboring 

elements; the non-dimensional nature of the coordinate 

system greatly facilitates the calculus in the derivation 

of the finite element equations. A one-dimensional element 

of length 1 is shown in Figure 2.3-1. 4ithin this element, 

there are two reference points, node 1 and node 2, which 

may act as the basis for the coordinate system. With 

respect to node 1, the coordinate, si, of a point within 

the node may be defined as si = (x2-x) / (x2-x1) or 

si = (x2-x) / 1. Similarly, with respect to node 2, 
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s2 = (x-x1) (x2-x1) or s2 = (x-x1) / 1. Expressed in 

this manner, the localized coordinate is non-limensional 

and always has a value between 0 and 1. 

Figure  

Localized Coordinates 

2.4 Approximation Model and Interpolation,  Functions 

An approximation model which represents the shape or 

form of the temperature profile within the element must be 

selected. The approximation model must be continuous 

within an element and may be linear, parabolic, or of 

higher order. The approximation model is defined in terms 

of two, or more, unknown nodal temperatures. For the one-

dimensional heat conduction problem, a linear approximation 

may be used. 

Interpolation functions, derived from the non-dimen-

sional localized coordinate system, are used in t'ie con-

struction of the approxiation model. An interpolation 

function is associated with a particular node and is 
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defined only in the two adjacent elements on either side of 

the node. At all other locations within the domain of the 

problem, the interpolation function is equal to zero. 

Consider the two elements, each of length 1, shown in 

Figure 2.4-1. 

Figure 2.4-1  

Interpolation Functions 

Within element 1, N1 and N2 are defined and vary between 0 

and 1. However, N3 is not defined in element 1 and there-

fore equal to zero in element 1. N
2 
is defined in both 

elements 1 and 2 and also ranges between 0 and 1. 

A linear approximation model for temperatures within 

element 1 of Figure 2.4-1 may be expressed as 

T = N1
T1 + N2T2 

(2.4-1) 

where N1 and N2 are the interpolation functions defined 

within the element, and T1 and 7'2 are the unknown tempera-

tures at nodes 1 and 2, respectively. txtending this model 



or 

n+1 

T = NiTi 
1=1 

(2.4-3) 

to a problem with n elements in its domain gives 

8. 

T = N1T1 + N2T2 + N3T3 '" +Nn+1Tn+1  
(2.4-2) 

Since at any given location only two interpolation 

functions are non-zero, Eqs. (2.4-2) and (2.4-3) reduce to 

a two term expression similar to Eq. (2.4-1). 

2.5 Galerkin's Method of Weighted Residuals  

Galerkin's method of weighted residuals is one of the 

most commonly used methods for formulation of the finite 

element equations. Galerkin's method of weighted residuals 

is based on the concept of minimization of the residual 

error remaining after an approximate solution, as repre-

sented by Eq. (2.4-3), is substituted into the differential 

equation describing the problem. In Galerkin's method, the 

residual error is weighted with the interpolation function 

N1. The weighted residual error then is summed over the 

domain of the problem and an approximate solution is found 

which minimizes the total residual error. 

The differential equation for one-dimensional unsteady-

state heat conduction in rectangular coordinates is 

82T  a T 
 - pCp  =0 a x2 a t (2.5-1) 



Substitution of an approximate solution into Eq. (2.5-1) 

yields the residual error 

9. 

a2 (ET N
i
) a (ET 

R(x) K - p Cp  1=1,2,3 a .2 a t (2.5-2) 

The residual error R(x) will be equal to zero if the 

approximate solution equals the exact solution. Weighting 

the residual error with N1 over the domain of the problem 

results in the expression 

R(x) Ni dx = 0 (2.5-3) J:=D 
Performin7 the required differential calculus to evaluate 

the residual errors in Eq. (2.5-2) and integral calculus 

to minimize the total weighted residual errors in Eq. 

(2.5-3) results in a system of linear simultaneous 

equations of order n+1 where n is the number of elements 

comprising the domain of the problem. 

2.6 Time Domain 

In Eq. (2.5-1) the time derivative of temperature is 

approximated using a finite difference method such as a 

Euler or Crank-Nicholson procedure. The derived system of 

element equations will contain a vector of nodal tempera-

tures at time t and a vector of nodal temperatures at time 

t+ pt. 

2.7 Initial and Boundary L;onditions  

Initial conditions are set by specifying the vector 

of nodal temperatures at time t = 0. 
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Boundary conditions of the problem are easily imposed 

by simple modifications of the system of simultaneous 

equations. Both Dirichlet boundary conditions, specification 

of temperatures, and Neumann boundary conditions, specifica-

tion of temperature gradients, may be accomodated in this 

manner. 

2.8 Solution 

The solution to the problem Is obtained by solving the 

simultaneous finite element equations for the values of 

the unknown temperatures at the nodes of the finite elements. 

The simultaneous equations may be solved using direct or 

iterative numerical methods. As with finite difference 

methods, the approximate solution generally converges to 

the exact, or analytical, solution by increasing the number 

of nodes. However, for a given problem, the stability and 

convergence of the approximate solution is influenced by 

the size of the elements and the size of the time intervals 

at which a solution is obtained. 



3.0 DEVELOPMENT AND SOLUTION OF FINITE ELEMENT EQUATIONS 

The finite element equations for unsteady-state heat 

conduction in the axial and radial dimensions will be 

developed for the discretization of the problem into two 

elements, in each dimension, using Galerkin's method of 

weighted residuals. The results are easily extended to a 

greater number of finite elements. 

3.1 Axial Dimension 

The differential equation for one-dimensional heat 

conduction in rectangular coordinates is 

11. 

a 2T a T 
Ka 

 x
2 - p Cp 

t 
= 0 (3.1-1) 

After substituting a linear approximation model for 

temperature, as in Eq. (2.4-3), into Eq. (3.1-1) for I, 

the residual error becomes: 

a 2 ()=NiT i) a  (ENiTi) 
H(x) = K - p Cp 1=1,2,3 (3.1-2 a x2 t 

As the domain of the problem in the x dimension has been 

broken down into two elements, there are three nodes and 

three unknown nodal temperatures. Therefore the summation 

in the approximation model for T in Eq. (3.1-2) has three 

terms. 

In Galerkin's method of weighted residuals, the 

residual error as defined by Eq. (3.1-2) is weighted with 

the approximation function N1. The total weighted residual 



error over the domain of the problem is then minimized. 

This can be expressed mathematically ass 

12. 

- 82T  a T- 
K  2 -PCP n  N dx = 0 

xi Q.) x 0 t 
(3.1-3) 

where j = 1,2,3 and T = N1T1. Weighting the residual 
1=1 

error with N1, N2, and N3 produces three equations with 

Ti, T2, and T3 as unknowns. 

The first term on the left side of Eq. (3.1-3) 

0 3 
n 2T 

 N dx 
x1 J  a x2  

j=1,2,3 (3.1-4) 

may be integrated by parts to give 

aT x3 -K jrx3 aT 
dx j=1,2,3 a x

N
J x xi ax ax 

(3.1-5) 

The term on the left side of Eq. (3.1-5) may be expressed 

PER the A 
column     vector 

K — N2 

K —  

K ,' T 
x3 

; 
xi x 

' 
(---) 

Ni 

a x  

8T 'x3 

a x 
N3 

 

a T 

0 

xi 

x3 

xi  

Since N2 equals zero at x3 and x1, N1 equals zero at x3, 

and N
3 
equals zero at x1, Eq. (3.1-6) becomes 

(3.1-6) 



T 
-K 

a x 'xi 

0 

T 
K 

a x x3 

13. 

(3.1-7) 

Later in the formulation of the finite element equations, 

Neumann boundary conditions may be imposed on the problem 

by specifying temperature gradients at the two end nodes, 

xl  and x,4, in Eq. (3.1-7). 

Substituting the linear approximation model for T, the 

term on the left side of Eq. (3.1-5) becomes 
x a (E , ,,) 

1 
 qNJ K ) , , dx 1=1,2,3; j=1,2,3 

xi. ax 0 x 
(3.1-8) 

Since the nodal unknown temperatures Ti are constant in 

the solution of the problem, Eq. (3.1-8) may be rearranged 

to 

3 x3 a Ni  aNi 
K --gn dx j = 1,2,3 
i=1 xl x  Ci x  

For j = 1, Eq. (3.1-9) may be written as 

(3.1-9) 

Kx3 x3 aN2 aN1 
 dx T + Ki  dx T2 + 

f 
1 x ax ax xi all X 0x 

Kf x3 dx T
3 x1 

ax ax 
(3.1-10) 



Similar expressions may be written for Eq. (3.1-9) 

for j = 2 and j = 3 and assembled to produce the matrix 

and column vector 

14. 

aN, a N1 a N2 aNI
. 

a  N3 aN1
.
--  

ax ()lc ax ax ax ax 
Til 

Ki x3 aNi 
aN2 aN2aN2 aN3aN2 

 dx
2 ax ax ax ax ax ax xi 

aN1 aN3 aN2aN
3

aN3aN3 

ax ax ax ax ax ax 
T3 

3.1-11 ) 

Elements of the matrix in Eq. (3.1-11) that are a function 

both of N1 and N3 are equal to zero. Since N1  is only 

defined in the first finite element and N
3 
is only defined 

in the second finite element, nowhere from xi to x3 are 

both N1  and N3 simultaneously non-zero. Therefore Eq. (3.1-11) 

may be rewritten as 

a Ni  a Ni a  N2 a  Ni 
a x ax ax ax 

0 
T1 

K 
x3 a Ni a N2 a N2 ()N2 a N3 a N2 

dx p 
 

1x l  dx ax ax ax ax ax 2 

0 
a N

2 
 aN

3 
 a N

3 
 aN3 

a x ax a x ax 
T
3 

Other elements in the matrix of Eq. (3.1-12) must be 

evaluated individually by inserting the proper expression 

for the interpolation functions N1. For example, 

(3.1-12) 



x3 aN1 a NI,  dx 
 . x2 aN1  8N1 ax 

x1 a. a. xi  a. a. 
N1  = (.2  - x)/(12 - x1) = (x2 - x)/1 

aN a (x2 - x)/1 1 
-  = _ 

ax ax 1 

)(12 (-1\ = 1ji2 12 - xl 1 
dx =  

xl 

= — 
\ 1) 1 12 xi 12 1 

Similarly, 
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(3.1-13) 

(3.1-14) 

(3.1-15) 

(3.1-16) 

fx3  a N2 a N2 
 dx 

 j(i2 aN2  a  N2 d
x  +
i,c 3a  N2 aN 2  

 dx 
xi 2 xi  a x a x a x a x a. ax 

(3.1-17) 
In the element between x1 and x2 

N2 = (x - xl)/(x2 - xl) = (x - x1)/1 

aN2 aor - .0 /1 1  = ax ax 1 
In the element between x2 and 13 

N2 = (/3 - 1)/([3 - 12) = (x3 - x)/1 

aN2 a(x3 - x)/1 1  = a. a. 1 

Therefore 

(3.1-18) 

(3.1-19) 

(3.1-20) 

(3.1-21) 

f3 AaN2 02'2;.:1 =rx2e) 
1 (1) 

dx 
x3 -1 X -1) 

+ dx = x1 vx \1 1 1 1 12 
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(x Xi) (x3 - x2) 21 2 - = = 
12 12 12  

(3.1-22) 

Evaluated in this manner, Eq. (3.1-12) becomes 

1 -1 01 
K' 

_1 

:11 

2 
1 

0 -1 1 T3 

(3.1-23) 

Inserting the linear approximation model for T, 

the second term on the left side of Eq. (3.1-3) becomes 

p C p 
a (ENiTi) 

x
:3  at 

Ni dx I = 1,2,3; j = 1,2,3 

For j = 1. Eq. (3.1-24) becomes 

(3.1-24) 

p

Jk3 
aT, (k3 a T, 

pC dx + pCp N2N1 dx 4 at jx t 
X1 i  

3 T pcpr N N dx U  ., 
3 1 a t  (3.1-25) 

Similar expressions may be written for j = 2 and j = 3 

and angtemhled to nrociune the matrix and column vector 

- a ri No, N2N1  N3N1  
a t 

a T2  
p cp N1N2 N2N2  N3N2 dx  a 

t 
 

x i"  1 
No3 N2N3 N3N3 E)) T3  

t 

(3.1-26) 



2 1 4 1 

3 6 
(3.1-31) 

The elements of the matrix in Eq. (3.1-26) are evalu-

ated as before. 

x3 2 x2 -x 
2 -1 (x2-x)3 x2 

x2-xi.)3 xi 
jr N1N1 dx T: ( dx 12 
x, 3 1 
1 1 1 

= — =  
12 3 3 

Since N1  + N7  = 1 within the first finite element; 

17. 

(3.1-27) 

2 
2 

)13 N1N2 dx =f N1 (1-N1 ) dx =1 N 1 1 Ix :11-N1 dx 

x1 xi x1 xl 

2 2\ x  
x2 /5c 

2 

x 
 N1 dx = 2-x --1 x  dx = (x2x-- ) = 

\ xi xi \ x2-x 1 2 / x  
1 

(3.1-28) 

1 ( x2 1 
2-xi) 1 2 2 

Therefore, 

Jr 

1 1 1 
x3 N1N2  dx = — _ 2 - = 

3 6 
Xi 

(3.1-29) 

(3.1-30) 

Similarly, 
2 

' N2N2 dx = xl fik2c-xl)
2 
dx Ifx3C372

,
) 

2-x 
dx = 

1 1 x2 x3-x  

31x2 
-

3x3 
1 - -1 (x3 x) 13 1 13 

= - 
12 3 12 3 12 3 12  3 x1 x2 



After evaluating all the elements of the matrix, Eq. 

(3.1-26) then becomes 

18. 

_ 
aT1  

2 1 0 
at 

Cp 1 aT2 
1 4 1 a 6 t 

0 1 2 
T3 

Cat 

(3.1-32) 

Inserting Eqs. (3.1-7), (3.1-23), and (3.1-32) in Eq. 

(3.1-3) gives the assembled finite element equations for 

the axial dimension in terms of the unknown axial nodal 

temperatures and their time derivatives: 

-K a
a: 

1 -1 0 T1 1 

K 
0 - -- -1 2 -1 T2 1 

a T' 
K „I 0 -1 1 T

3 0 x x3 
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a I',  2 1 0 
a t 

p Cpl  
1 4 1 = 0 

6 at 

a T3  
1 2 

at 

(3.1-33) 

or, in simplified finite element method notation, 

[ax] - [A] * [TX] - [B] * [1'] = 0 (3.1-34) 

where 

[ax] = column vector of axial Neumann boundary 

conditions 

[A] = assemblage matrix of axial element con-

ductive properties 

[13] = assemblage matrix of axial element capaci-

tance properties 

[TX] = column vector of unknown axial nodal 

temperatures 

= column vector of time derivatives of un-

known axial nodal temperatures 

Eq. (3.1-34) may be rearranged to 

[A] * [TX] + [13]* [i] = [ax] (3.1-35) 
This expression is the mathematical statement of Galerkin's 

method of weighted residuals applied to a one-dimensional 

unsteady-state heat conduction problem in rectangular 



coordinates. 

To solve Eq. (3.1-35) for the nodal temperatures, 

the time derivatives of the nodal temperatures must be 

expressed as a function of the nodal temperatures. In 

finite element analysis this is usually done with a 

finite difference approximation. Eq. (3.1-35) can be 

expressed in finite difference form as 

20. 

[ A] * e [TX] t
+
z
st 

+ (1-0) [ TX] t + 

[ B ] * e [II  lt+At (1- e ) ]t ) = [x1 
t+at (3.1-36) 

If e = i, the Crank-Nicholson method is obtained. The 

time derivatives in Eq. (3.1-36) may be approximated by 

1 
— 

[TX]t+tyt - [TX  it  
2 ( t+At 

 
At 

(3.1-37) 

Eq. (3.1-36) then becomes 

2 
([ A.] + — [ B1 * [TX]t+6-t = 2 [11Xit+At 

([A 
2 

- - [8] * [Tx]
t At 

(3.1-38) 

This equation relates the nodal temperatures at time t +At 

to the nodal temperatures at t and the boundary conditions 

of the problem. 



3,2 Radial Dimension 

The development of the finite element equations for 

unsteady-state heat conduction in the radial direction in 

a cylindrical coordinate system proceeds in a similar 

fashion as that in the axial dimension. The governing 

differential equation is 

21. 

K 
r r 

[i. a   ( aT a  T 
r -pCp, = 0 

t 
(3.2-1) 

After rearranging and performing the differentiation, Eq. 

(3.2-1) becomes 

a T a2 T a T 
K 7- + Kr n - p Cp r — 0 
S r r2 t 

(3.2-2) 

Application of Galerkin's method of weighted residuals to 

minimize the residual error over the domain of the problem 

in the radial dimension yields 

f r3 52  T a r 1 K + Kr  - p Cpr  — N dr = 0 

ri r r2 a t 
(3.2-3) 

where j = 1,2,3 and. T = Ni T1' Here the interpolation 
1=1 

function Ni and unknown nodal temperatures Ti apply to 

finite elements in the radial dimension from r = 0 to 

r = R, the radius of the cylinder; and are distinct Prom 

those in the axial dimension. 



The second term in the integrand of Eq. (3.2-3) may 

be integrated by parts, 

22. 

r3 r3 
u dv = u v 11.3 - v du 

with jerl 
ri ri 

u = r N i  

and. 

a2 T 
dv = a 2 

 dr 
r 

Therefore, 

au a  
 = N + r 

a r a r 

a T 
v  = 

a r 
and Eq. (3.2-4) becomes 

(3.2-4) 

(3.2-5) 

(3.2-6) 

(3.2-7) 

(3.2-9) 

a r  f r3 K
r 

 

r2 
N dr = 

ri  

V  T  r3 fr3 a  T a  N 
KrN - K + r ) dr = 

a r 1 r 0 r ri 

KrN 
a  Vr 3 3 K 

r a T a  T a 
 dr 

t
il rl 

N4 

r N dr :3 Kr  
Or ar 

1 
(3.2-9) 

It is apparent that the second term on the right si -le of 

Eq. (3.2-9) cancels out the first term of Eq. (3.2-3). 



0 

0 

a T 
KH 7 

u r 

(3.2-11) 

The first term on the right side of Eq. (3.2-9) may 

be expressed as the column vector 

23. 

aT 
KrN 1 

r 0 

a T  
TrN - '2 r 0 

T 
KrN3 77-- 

0 r 0 

(3.2-10) 

where r1 = 0 and r
3 = 

The first element of Eq. (3.2-10) 

equals zero since N1 is undefined and equals zero at r = R. 

Similarly, the second element of Eq. (3.2-10) equals zero 

since N2 is undefined and equals zero at r = H and r = 0. 

41th = 1 at r = R, Eq. (3.2-10) reduces to 

Neumann boundary conditions may be specified by heat 

fluxes at the surface of the cylinder with Eq. (3.2-11). 

To evaluate the third term on the right side of Eq. 

(3.2-9), the linear approximation model for T is substi-

tuted 
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1:3 a  (E. Ti )  a  Ni  
Kr 

C' r 
 dr 1 = 1,2,3; = 1,2, 

(3.2-12) 

Three equations, each in terms of the three unknown 

nodal temperatures, result after expanding and Integrating 

Eq. (3.2-12). For j = 1, 

f a r3 Kr 
N2

dr 
aNi aN1 .-21 4. r3 Kr Or a  N1 dr T2 

a r ar 
r  

r 
ri l  

r3 

Kr  f 

a N3 a Ni  
 dr T

r  a r ar 3 
1 

reduces to 

(3.2-13) 

(1.2 -1 -1 r2 1 -1 
j 

\\ 
Kr 

1 1 
(--) dr ri +i Kr (--) ( 

1 1 
— ) 

1 / 
dr T

2 
ri ri (3.2-14) 

where 1 is the length of the finite element. The limits 

of Integration of the first and second terns in Eq. (3.2-14) 

are r2 and r1 since N1 is undefined and equals zero from 

r2 to r3. The third term of Eq. (3.2-13) equals zero 

since nowhere from r1 to r3 
are N1 and N3 simultaneously 

non-zero. Eq. (3.2-14) is integrated to 

9 K r>• - r i2 K 
T   22 1- ( 2 12 2 

(3.2-15) 

In like manner, Eq. (3.2-12) becomes for j = 2 



2 2 -K (r22 - r2i K (:r  - ri:) 
+ T1 + 2 2 12 2 1 2 

25. 

r2 - 2 r22 K 3  T
3 

K (r 
-  2 2 2 2 1 

and for j = 3 

T2 2 r2 -K _3 r2 T + K r3 - _2) 

2 
T 2 1. 2 2 3 12 

(3.2-16) 

(3.2-17) 

Eq. (3.2-12) can therefore be written in matrix notation 

by assemblin Eqs. (3.2-15), (3.2-16), and (3.2-17) as 

(: 

ii - rT (r - ri.)  
0 T 

2 7 1 

K - (xi - r2i. (11 - r 
 + 
i r.  - ri _ 

) (r; -  rq 

1
7 

2 
T2 \ 2 2 2 i 

- 
(r.2j - 11) \:r / - r\ 

0 
2 2 ) 3 

(3.2-18) 

I'he third term in the intesrand of Eq. (3.2-3) is now 

evaluated. The linear approximation model for T is inserted 

to yield 

fr-4 a  (EN,,r,) 
p Cpr N dr 1 = 1,2,3; j = 1,2,3 a t ri (3.2-19) 
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Expanding Eq. (3.2-19) results in three equations 

with the time derivatives of the nodal temperatures as 

unknowns. Eq. (3.2-19) may be written in matrix notation 

as 

NiNir N2N1r N3N1r 
a T  
at 

loCpir3 NiN2r N2N2r N2N2r dr 6L12 
a t 

ri 

N1N3r N2N3r N3N3r 
T3  

at 

(3.2-20) 

The elements of the matrix in Eq. (3.2-20) are evaluated 

individually. For examole. 

r:)/Y2 r;) WiNir dr = r dr = 
r1 r1

1 

1 r2 2 1 2r2 2r2r3 r4) r  r 2 
r2 r - 2r2r2 + r3 dr = —2- +— 

1 1 2 3 4 ri r1 

,2 2r, 1 1 [ 2 2 2) fo' _3 _3 ) („4 ) r2 - ri - 
3 

i\ 1'2 - rl 12 '1 12 2 4 

(3.2-21) 

Ji

r3 
N2N2r dr = 

r1 

(1,2  (r - ri Kr - r1\\ 
r i

fr3 
( r  dr  Irl 

r3 - r\ (r3 - r) 
1 ) 1 1 r? 
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1272 //r1 r;) ( r1 
-r r3 

dr +:3 (r3 
-r r3 -r 

 r dr = 
r1 1 \ 1 

2 
1 

[ 2 2r1 ) 3 1  1 ( 4 r2 - r1 + r2 - r4 + i )1 
12 2 3 / 4 

2 
, )] 1 [ 3 / 

1."3 
2 r2 J (1,3 — 1 0 r4 - 4 

12 

_ 

2 2 3 3 4 3 `- 
(3,2-22) 

fr3 "Lr2 (r2 -r r - ri) 
NiN2r dr r dr = 

1 1 
r1 1 

2 (r2  - r) ri - r) 
- r dr = 

1 1 
r1 

-1 J

r 

r2rir - r1r2 - r2r2 + r3 = 
1 rl  

r2r1 
r2  

2 2 rl + r2  r ( 3 _ ri 3  + — 1 r4  ( 4)1 
1 L 2 3 4 7----ff - r1 2 - ri 1 

J 

(3.2-23) 

f 
r)  r dr = r3 N N 3  

r r3 - r r 

r1 

2 3r dr - 
1 1 r2 

r3 r3 - r) (r2 - r -1 r3 2 2 3 r dr = r3r2r - r2r - r3r + r dr 
f

2 1 1 1 r2 r 

r2 + r3 3 ( 4 4) r3r2 (
r

2 (r3 _ r2 + — r3 r2 
= -1 

12 2 3 2 3 4 

(3.2-24) 
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Eqs. (3.2-21), (3.2-22), (3.2-23), and (3.2-24) are 

all the same function of, at most, three nodal coordinates. 

With specification of the nodal coordinates, the function 

is easily computed. For simplicity of notation the 

function will be lenoted Fij where i and j refer to the 

interpolation functions in the integrals of Eq. (3.2-20). 

Therefore Eq. (3.2-20) becomes 

aT 1 
F11 -F21 0 

a t 

e  Cp a  T2  
12 

2 F22 -F32 a t  -F01 

-F23 F31 at 

(3.2-25) 

Inserting Eqs. (3.2-11), (3.2-18), and (3.2-25) into 

Eq. (3.2-3) gives the assembled finite element equations 

for the radial dimension in terms of the unknown radial 

nodal temperatures and their derivatives: 
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(;) 4 - ri..) 
- 

2 2 
0 

(r-  r-2  - 

2 2 
0 

K 2 r ) 42 _ 4  ri - r!) (! - 1"  

1) 

 
0 - 2 2 

 2 
; 

-1
\ 2 2 

9 9 ) 
(7 i•-: 161 - r3) 

KR IV 
a 

o - 
2 2 

a T1  

:_ Pli  ---.. 

11 -F21 0 
a t 1 

F  

pCp ar 2  
F22 -R = 0 

2 - TT -F12 - 32 a t 

aT
3 T

3 
0 -F23 F

33 at 
(3.2-26) 

or, in simplified finite element method notation 

[RR] - [R] * [TR] - [S] * [T] = 0 (3.2-27) 

where 

[RR] = column vector of radial Neumann boundary 

conditions 

[R] = assemblage matrix of radial element conductive 

properties 

[S] = assemblage matrix of radial element capacitance 



properties 

[TA] = column vector of unknown radial nodal 

temperatures 

[ • T] = column vector of time derivatives of unknown 

radial nodal temperatures 

Ea. (3.2-27) may be rearranged to 

30. 

[ a ] * [ raj + [s]*111 =[J (3.2-28) 

The Crank-Nicholson method for evaluating [T] 

with finite difference approximations may be applied as 

in the axial dimension. The resulting assembled finite 

element equations 

/[a] + 2 [s [PH] = 2 
t+At t+At At 

([a] is]) [m]  t nt 
(3.2-29) 

may be solved for nodal temperatures at time t + At since 

nodal temperatures at the previous time interval and the 

boundary conditions are known. 

3.3 Initial and Boundarl Conditions  

In the unsteady-state heat conduction problem under 

examination, initial conditions are established by 

specifying the temperature at all axial and radial nodes 

at time t 0. Therefore for a finite cylinder of radius 



(3.3-1) 

(3.3-2) 

(3.3-5) 

(3.3-6) 

R and length L at an initial uniform temperature T0 the 

initial conditions are 

31. 

T (x,t) = T° OxL tsO 

T (r,t) = T0 0 R t 0 

The unknown nodal temperature column vectors of Eqs. 

(3.1-38) and (3.2-29) for two finite elements in each the 

axial and radial dimensions become 

[ _ 

T° 

[TX] "0 = T° 

TO 

T 

[TR] "0 = To [ 
TO 

(3.3-3) 

(3.3-4) 

For a finite cylinder having its entire surface 

instantaneously changed to temperature T
1 
and maintained 

at this temperature, the Dirichlet boundary conditions may 

be expressed as 

T (0,t) = T (L,t) = T1 t 0 

T (R,t) = T1 t 

For two finite elements in the axial dimension, Eq, 

becomes at time t 

(3.1-38) 



/K 2 p Cp1:\ (-K p Cpl) 

(— + 
+ 0 T 

\I. 3 6.t I 1 3 At 1  

(
it 

+ 
f 7 Cpl (2K + 4 p Cpl) -K + t9 Cp1N1 T 

1 3 .6 t 1 ant 1 Sot / 2  

-K p Cpl) ( + 
r3 

K 2 ,o Cpl 
, 0 (-

1 
+ 

Sot 1 Sot 

-2K 
x al 

0 - 

a T 
2K —n  

x x3 

2 p Cpl) (-K - lo Cpl) 

1 - 3 At \1 3 A t 
0 T0 

(K 

p Cpl) (2K 
_ 

4 p Cpl) (K P Cpl.) 0 
_ T 

1 Sat 1 3 of 1 3 At 

- 

0 
( -K p Cpl)  (IC 2 p Cpl f,) 

Ty  
1 3 6-t 1 3 ©t 

(3.3-7) 

32. 
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Dirichlet boundary conclltions introAuced into the finite 

element equations by the followins modifications of Eq. 

(3.3-7) 

1 0 0 T1 - 

(-K 
+ 1 3 

p Cpl (2K + l+p CO)  (-K 
+  r 

 Cpl 
2 

= 
'  

ct  3 A t 1 3 At 

0 0 1 T3 

2T1 

0 

2T1 



(3.3-9) 
(3.3-10) 

1 0 0 1 T 

(-K p  
- 

Cpl (2K 4 to Cpl) (IC p Cp) 
I —  

T0 
\ 1 3 At / 1 3 6t 1 3At 

0 0 1 T1 

(3.3-8) 

The nodal temperature solutions at times t >0 will 

now yield temperatures at nodes 1 and 3 equal to T1. This 

can be seen by solving Eq. (3.3-8) for T1 and Tl 

Ti = 2T1 - T1 = Tl 

T3 = 2T1 T1 = T1 

The finite element equations in the radial dimension are 

modified analogously for Dirichlet boundary conditions. 

3.4 Method of Solution 

The solution of the assembled finite element equations 

for one-dimensional unsteady-state heat conduction, such as 

Eqs. (3.1-38) and (3.2-29), consists of the temperatures 

at the nodes at a particular time, t. The assembled finite 

element equations are appropriately modified for the 

boundary conditions. The time t is broken down into n 

time intervals, At, such that t = n At. Beginning at time 

34. 
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0, solutions are found at each successive time interval 

until the solution at time t = niNt is obtained. This 

is done by solving the assembled finite element equations 

for [Tit
+6.t

where [Tit is the solution at the previous time 

interval. 

The solution for the three-dimensional unsteady-state 

heat transfer problem involving a cylinder of finite length 

is easily obtained by application of Newman's method. In 

Newman's method, the dimensionaless solution at any point 

within the three dimensional object is the product of the 

dimensionaless solutions in each dimension. Assuming no 

variation of temperature with angular position, the tempera-

ture at any point within the cylinder is simply 

(3.4-1) e x,r er 

where 

T1 - T 

- T1 - TO 

and 

(3.4-2) 

TO = initial condition, uniform temperature 

1 = T - temperature boundary condition 

T = nodal temperature at time t 

Dimensionaless nodal temperature vectors are directly 

substituted for [TXI and [TR] in the assembled finite 

element equations. Thus the temperature at a node 4ith 
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coordinates x and r at time t is obtained by solving Eqs. 

(3.1-38) and (3.2-29), individually for e x  and er  as 

defined by Eq. (3.4-2) at time t. For the node of interest, 

Eq. (3.4-1) is applied to calculate exr. 

In the solution of both Eqs. (3.1-38) and (3.2-29), 

a tridiagonal system of linear equations in terms of the 

unknown nodal temperatures results. The Crout Reduction 

method, which is an efficient, direct method of solution 

for tridiagonal linear systmes of equations, may be used 

to solve for the vector of nodal unknown temperatures. 

3. Computer Proi.Kram 

A FORTRAN computer program written to calculate the 

temperature distribution throughout the cylinder is shown 

in Appendix A. In the program, the thermal conductivity, 

heat capacity, and density of the material are specified. 

The cylinder is assumed homogeneous with respect to these 

properties. The length and radius of the cylinder, and 

the time at which a solution is desired are specified. 

The number of finite elements in both the axial and radial 

dimensions must be set and the length of the time interval 

for successive solutions in time must be indicated. kll 

matrices and vectors are dimensioned to permit a maximum of 

50 finite elements in both the axial and radial dimensions; 

any lesser number of elements may also be used. 

The program constructs the assembled finite element 



equations, Eqs. (3.1-38) and (3.2-29), for the desired 

number of nodes. The matrices and vectors for problems 

with more than two elements are constructed based on the 

symmetry and form evident in Eqs. (3.1-33) and (3.2-26) 

which were derived for two elements. 

Solutions, in terms of dimensionaless nodal tempera-

tures, are obtained independently in both the axial and 

radial dimension at successive time intervals by solving 

the assembled finite element equations using the Crout 

Reduction method. At each successive time interval, 

Newman•s method is applied using the independent axial 

and radial solutions to calculate dimensionless tempera-

tures throughout the cylinder. 

37. 
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4.0 RESULTS  

4.1 Temperature Profiles 

For purposes of illustration, the solution was obtained 

for an unsteady-state conduction problem for a cylinder with 

the following parameters: L = 10.0 inches, 10 axial finite 

elements, R = 5.0 inches, 5 radial finite elements. K = 20.0 

Btu-ft/hr-ft2-°F, p = 490.0 lb/ft3, Cp = 0.12 Btu/lb-°F. 

The time increment, At, at which successive solutions in 

time was selected as 36.75 seconds. The physical and 

thermal properties chosen approximately correspond to those 

of a mild steel. 

For both the axial and radial dimension, the value of 

the ratio Kbt/e Cp12, where 1 is the size of the finite 

element, is 0.50. The effect of the value of this ratio on 

the stability and accuracy of solutions obtained by the 

finite element method developed here is explored in 

Sections 4.2 and 4.3. 

The solutions at successive time increments obtained 

by the computer program developed are presented in Appendix 

B. The dimensionaless nodal temperatures are defined as 

(T
1 
- T)/(T1 - To) where T°  is the initial uniform 

temperature throughout the cylinder and T1 is the tempera-

ture applied to the surface of the cylinder at time t = 0. 

As the Tables show, the temperatures are symmetric about 
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the axial midpoint of the cylinder, L/2. 

Figure 4.1-1 shows the temperature profiles in the 

cylinder at time t = 147.0 seconds. The parameter of 

the curves, x/(L/2), is the dimensionaless distance from 

the axial midpoint of the cylinder at L/2. Figures 4.1-2 

through 4.1-6 show the temperature profiles at x/(L/2) = 

0.0, 0.2, 0.4, 0.6, and 0.8, respectively, at different 

times. The curves of each Figure are at times 147.0, 294.0, 

441.0, 588.0, and 735.0 seconds corresponding to Fourier 

numbers in the axial and radial dimensions, ic1/pCp(112)2  

and Kt/p CpR2, of 0.08, 0.16, 0.24, 0.32, and 0.40, 

respectively. 

The breakpoints on these curves are the nodal temp-

erature solutions in the Tables of Appendix B. The 

straight lines between the nodal temperature solutions are 

the profiles imposed by the assumption of a linear approxi-

mation model for temperature. For better estimates of 

temperature solutions between nodes, a smooth curve could 

be drawn through the nodal solutions with a zero slope at 

r/R = 0.0, the center of the cylinder. 
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Figure 4.1-1  

Temperature Profile at t = 147.0 seconds 
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Figure 4.1-2  

Temperature Profile at x/(L/2) = 0.0 
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Figure 4.1-3 

Temperature Profile at x/(L/2) = 0.2 
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Figure 4.1-4  

Temperature Profile at x/(L/2) = 0.4 
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Figure 4.1-5  

Temperature Profile at x/(L/2) = 0.6 
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Fizure 4.1-6  

Temperature Profile at x/(L/2) = 0.8 
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4.2 Stability, of Finite Element Solutions  

In the development of computer programs for solution 

of the finite element equations in both the axial and radial 

dimensions, physically impossible solutions or solutions 

with very large errors were frequently obtained. For a 

cylinder of a given size, physical and thermal properties, 

the accuracy of the solution was found to be dependent on 

the length of the finite element, 1, and the size of the 

time increment, 66t, at which successive solutions in time 

were obtained. As in certain finite difference methods for 

the solution of partial differential equations, the solutions 

from the finite element method of analysis are conditionally 

stable and, the stability of the solutions are dependent on 

the magnitude of the dimensionaless ratio K6t/pCp1
2. A 

well-defined lower bound for K A.t/ to Cpl2 was found to exist. 

However, a well-defined upper bound for the ratio was not 

discerned. 

Dimensionaless nodal temperature vectors at successive 

time increments are shown in Table 4.2-1 for a problem in 

the axial dimension with the following parameters: L = 10.0 

inches, 10 finite elements, K = 20.0 Btu-ft/ft2-hr-°F, 

P = 490.0 lb/ft3, Cp = 0.12 Btu/lb-°F, t = 20.0 seconds. 

The corresponding value of Kb.t/p Cpl
2 is 0.272. The 

solutions shown in Table 4.2-1 are for initial conditions 

and boundary conditions with TlT°. 
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Therefore all physically realistic limensionaless temperatures, 

defined by Eq. 3.4-2, should lie between 0 and 1. However, 

nodal solutions greater than 1, as denoted by an asterisk, 

were obtained. Dimensionaless solutions c.creater than 1 are, 

of course, a physical impossibility corresponding to 

temperatures less than T°, the initial temperature. As shown 

in Table 4.2-1, the dimensionaless solutions greater than 1 

move closer to the nodal midpoint with increasing time until 

they disappear altogether. 

The phenomenon noted in Table 4.2-1 was found to occur 

in all problems where K bt/p Col2 
is less than 1/3. This 

lower limit was established by varying one parameter in 

KaNt/P Cpl2 
with all others constant; dimensionaless solu-

tions greater than 1 occurred when the ratio dropped below 

1/3, In both the axial and radial dimensions, all parameters 

in the ratio KAt/pCp12 exhibited this effect. 

Solutions at larger times for the same problem are 

shown in Table 4.2-2 with time increments t = 20 seconds 

and t = 30 seconds and the corresponding ratios 

KE t/p Cpl2 = 0.272 and KA t/ p Cpl
2 

= 0.408, respectively. 

The solutions, at earlier times, with K6 t/p Cpl2 = 0.408 

did not exceed 1. At t = 300 seconds, dimensionaless 

solutions greater than 1 for KAt/Qpl2= 0.272 have 

disappeared. After a sufficiently long time, 't = 600 
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seconds, the solutions for K At/ P Cpl2 = 0.272 approach 

and become identical to those for K At/ pCp12 = 0.408. 

For solutions at early times, therefore, the dimen-

sionaless ratio K.At/p Cpl2 must be greater than 1/3. It 

is not sufficient to use a small time increment At. For 

early times, the length of the finite element, 1, must be 

adjusted together with the time increment At to maintain 

K Lt/pCp12 e-1/3. 

Nodal temperature solutions in the axial and radial 

dimensions at time t 735.0 seconds for a cylinder with 

the properties L = 10.0 inches, R = 5.0 inches, K = 20.0 

Btu-ft/hr-ft3-°F, p = 490.0 lb/ft3, and Cp = 0.12 Btu/lb-°1? 

are shown in Tables 4.2-3 and 4.2-4, respectively. In each 

case, a time increment of 73.5 seconds was used. Solutions 

were obtained using 10, 20, and 30 finite elements. 

In the axial dimension, Table 4.2-3, the di,nensionaless 

coordinates are from the midpoint of the cylinder as the 

solution is symmetric about the midpoint. For solutions 

with 10, 20, and. 30 finite elements, the ratio K 6t/p Cpl2 

has the values 1.0, 4.0, and 9.0 respectively. It might 

be expected that increasing the number of finite elements 

in a problem would increase the accuracy of the solution. 

However, as shown in Table 4.2-3, the average absolute 

deviation of the finite element solutions from the 

analytical solutions, (EIT-TI /n, increases from 0.0059 
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to 0.0127. For large values of K At/pCp12 , extreme errors 

occur at the nodes near the surface of the cylinder rendering 

the solution useless. For the ease with K at/pCp12 = 1.0, 

the nodal solution deviations are acceptable. 

The same phenomenon is noted in the radial dimension 

in Table 4.2-4. The average absolute deviations increase 

from 0.0093 to 0.0173 as the ratio K At/p Cpl2 increases 

from 4.0 to 36.0. In each case, extreme errors occur at 

nodes near the surface of the cylinder. For the cases 

with K at/ p Cp12 values of 16.0 and 36.0, some nodal 

solutions are negative. Negative dimensionaless temper-

atures indicate temperatures greater than T1, the 

temperature imposed at the surface of the cylinder. 

Clearly, this is a physical impossibility. Also, the 

solution for the case with ictLt/p Cpl2 = 4.0 has un-

acceptable errors. 

The value of the dimensionaless ratio K6t/p Cp12 

in the solution of unsteady-state conduction in cylinders 

is of singular importance in the stability and accuracy of 

the solutions. The ratio must exceed. 1/3 for reasonable 

and accurate solutions at small times. Extreme errors 

can occur with large values of K Cpl2 . No well-defined 

upper limit for K Lt/p Cpl2 was found.; however, values of 

2.0 and less were found to give useful solutions. 
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55. 

y.3 Accuracyland ConveT!gence of Finite Element Solutions 

Due to the assumption of the linear approximation 

model for temperature in the development of the finite 

element equations, the temperature distributions obtained 

by finite element analysis are not expected to be exact. 

The accuracy of the finite element solution may be seen 

by comparing the nodal temperatures in the axial and 

radial dimensions with the temperatures predicted by the 

analytical solutions. 

In the axial dimension, the analytical solution to 

this unsteady-state conduction problem is 

oo  
T1-T .(-1)n -(n+i)277-20<t/b2 

cos[(n+)vx/b] (4.3-1) 
1-T0 ,01-14)71r e  T  

n=0 

where 

t = time 

= K40Cp 

b = L/2 

x = coordinate in axial dimension measured from 

midpoint of cylinder, L/2. 

Similarly, in the radial dimension, the analytical solution 

is 

2 
°° -aiKt/PCp T1-T 2 Te 

-T---0 =   Jo(alr) 
T -T R

1=1aiJ(aiR) 



56. 

where 

R = radius of cylinder 

t = time 

J
n = Bessel function of first kind of order n, 

n = 0, 1. 

ai = i'th root of Jo  (a R) = 0 

Finite element solutions in both the axial and radial 

dimensions were obtained for a cylinder with the following 

parameters: 

L = 10.0 inches 

R = 5.0 inches 

K = 20.0 Btu-ft/ft2-hr-°F 

p = 490.0 lb/ft3 

Cp = 0.12 Btu/lb-°F 

Solutions were obtained at 183.75 seconds and 735.0 seconds 

corresponding to Fourier numbers of 0.1 and 0.4, respectively, 

with the cylinder discretized into 10, 20, and 30 finite 

elements in each dimension. In each case, the time increment, 

pt, was chosen to maintain Kb.t/p co12 within the identified 

permissible bounds. For the axial dimension cases, 

K a.t/pCp12 = 0.5, and for the radial dimension cases, 

t/pCp12 = 2.0. The results are shown in Tables 4.3-1 

through 4.3-4 along with the analytical solutions. In the 

axial dimension, the dimensionaless coordinates are from the 

midpoint of the cylinder; nodal temperatures are only 



57. 

shown for one half of the cylinder because of the symmetry 

about L/2. 

By examining Tables 4.3-1 through 4.3-4, the finite 

element solutions can be seen to be reasonably good app-

roximations of the analytical solutions even for the axial 

and radial cases with only 10 finite elements. For each 

case, the nodal deviations, T-T, and the average nodal 

deviation, (1T_ 1) /n, are shown. By comparing the 

nodal deviations with the analytical temperature profiles, 

it can be seen that the largest nodal deviations occur 

in the areas of largest rate of change of slope, 

0 2 T a 2 T 
 Or  

a x2 8 2 r . 

Furthermore, in the areas of the largest rate of change 

of slope, the nodal deviations decrease with an increasing 

number of elements. In view of the linear approximation 

model used in the finite element analysis, this is a 

reasonable result. 

The finite element solutions converge to the analytical 

solution with an increasing number of finite elements. 

Since the dimensionaless temperatures are defined as 

(T1-T)/(T1-T°), the generally positive nodal deviations 

indicate the finite element method of analysis converges 

to an upper bound solution in this problem. 



58. 

For most engineering applications, solutions obtained 

from 20 finite elements provide adequate accuracy. 
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5.0 CONCLUSIONS 

The finite element method of analysis may be easily 

applied to three-dimensional unsteady-state heat conduction 

in a cylinder of constant thermal and physical properties 

in which the cylinder, initially at some temperature T0  

throughout, has its entire surface temperature instantan-

eously changed to a temperature T1. The symmetry of the 

cylinder about an axis through the center and parallel 

with the curved surface of the cylinder reduces the analysis 

to a two-dimensional problem. The use of Newman's method 

reduces the problem still further to two independent 

one-dimensional problems. A Crank-Nicholson scheme is used 

for the approximation of time derivatives of temperature. 

Solutions for this problem obtained by the finite 

element method of analysis are conditionally stable. The 

stability of the solutions in both the axial and radial 

dimensions is dependent on the value of the ratio 

KAt/pCp12where t is the time increment used in the 

approximation of time derivatives and 1 is the length of 

the finite element. For stability, Kb..t/pCp12 must be 

greater than 1/3 but less than approximately 2.0. 

An absolute upper limit for K6t/pCp12 was not found, 

but for values greater than 2.0 very large errors result. 

The magnitude of the errors increase with increasing values 

of nt/pCp12. The large errors occur at nodes near the 
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surface of the cylinder in both the axial and radial 

dimensions. Physically impossible solutions may result 

where nodal temperatures are greater than the surface 

temperature in the case where the cylinder is being 

heated. 

If the value of the ratio Kat/pCp12 is less than 

1/3, errors in solutions at small times result with 

temperatures in the interior of the cylinder less than 

the initial uniform temperature of the cylinder in the 

case where the cylinder is being heated. Again, this is a 

physically impossible solution. After a sufficiently 

long time, these deviations disappear and no longer 

affect the accuracy of the solution. 

Solutions for this problem obtained by the finite 

element method of analysis converge to the analytical 

solution forming an upper bound limit. Convergence may 

be obtained by increasing the number of finite elements 

in the axial and radial dimensions in the formulation 

of the problem provided the value of the ratio Kilt/pL. , pl2 

Is maintained within the identified acceptable limits. 

The greatest deviations of the finite element solutions 

from the analytical solutions occur where the rate of 

change of the slope of the temperature profile is large. 

Solutions with sufficient accuracy for most engineering 

applications may be obtained with 20 finite elements. 
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6.0 RECOMMENDATIONS 

For a given problem, care must be exercised in the 

selection of the size of finite elements used and the time 

increment on which time derivatives are based. Improper 

selection can result in instabilities and rather large 

errors. 

A useful extension of this work would be the appli-

cation of the methods of numerical analysis to the formu-

lation and solution of the finite element equations to 

determine the origin of, and better define, the conditional 

stability of the method, and to predict bounds for the 

maximum errors in the solutions. 
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Table B-1  

Program Output - Dimensionaless Nodal Temperatures 

t = 36.75 seconds 

--;--....,
,
r 0.0R 1 0.2R I 0.4R I 0.6 a I 0.8 a [ 1.0R 

0.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 L 0.5692 0.5690 0.5671 0.5461 0.2933 0.0 

0.2 L 0.9690 0.9687 0.9655 0.9297 0.4994 0.0 

0.3 L 0.9977 0.9974 0.9941  0.9573  0.5142 0.0 

0.4 L 0.9998 0.9994 0.9962 0.9592 0.5152 o.o 

0.5 L 0.9999 0.9996 0.9963 0.9594 0.5153 0.0 

0.6 L 0.9998 0.9994 0.9962 0.9592 0.5152 0.0 

0.7 L 0.9977 0.9974 0.9941  0.9573 0.5142 0.0 

0.8 L 0.9690 0.9687 0.9655 0.9297 0.4994 0.0 

0.9 L 0.5692 0.5690 0.5671 0.5461 0.2933 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

t = 73.50 seconds 

0.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 L 0.4839 0.4815 0.4642 0.3588 0.2034 0.0 

0.2 L 0.8009 0.7970 0.7684 0.5939 0.3367 0.0 

0.3 L 0.9726 0.9678 0.9331 0.7212 0.4089 0.0 

0.4 L 0.9956 0.9907 0.9551 0.7383 o.4186 0.0 

0.5 L 0.9978 0.9929 0.9572 0.7399  0.4195 0.0 

0.6 L 0.9956 0.9907 0.9551 0.7383 0.4186 0.0 

0.7 L 0.9726 0.9678  0.9331 0.7212 0.4089 0.0 

0.8 L 0.8009 0.7970 0.7684 o.5939 0.3367 0.0 

0.9 L 0.4839 0.4815 0.4642 0.3588 0.2034 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 
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Table B-1  (contd.) 

t = 110.25 seconds 

-
1
.i...„

.„,.,, 
 r 0.0 R I 0.2 R1 0.4 R 1 0.6 R I 0.8 R I 1.0 R 

0.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 L 0.4019 0.3910 0.3435 0.2624 0.1352 0.0 

0.2 L 0.7188 0.6992 0.6143 0.4693 0.2418 0.0 

0.3 L 0.8911 0.8668 0.7615 0.5818 0.2998 0.0 

0.4 L 0.9688 0.9424 0.8279 0.6325 0.3259 0.0 

0.5 L 0.9811 0.9544 0.8385 0.6406 0.3300 0.0 

0.6 L 0.9688 0.9424 0.8279 0.6325 0.3259 0.0 

0.7 L 0.8911 0.8668 0.7615 0.5818 0.2998 0.0 

0.8 L 0.7188 0.6992 0.6143 0.4693 0.2418 0.0 

0.9 L 0.4019 0.3910 0.3435 0.2624 0.1352 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

t = 147.00 seconds 

0.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 L 0.3430 0.3217 0.2783 0.2011 0.1035 0.0 

0.2 L 0.6187 0.5802 0.5020 0.3627 0.1866 0.0 

0.3 L 0.8022 0.7523 0.6508 0.4703 0.2420 0.0 

0.4 L 0.8906 0.8352 0.7225 0.5221 0.2686 0.0 

0.5 L 0.9188 0.8616 0.7454 0.5386 0.2772 0.0 

0.6 L 0.8906 0.8352 0.7225 0.5221 0.2686 0.0 

0.7 L 0.8022 0.7523 0.6508 0.4703 0.2420 0.0 

0.8 L 0.6187 0.5802 0.5020 0.3627 0.1866 0.0 

0.9 L 0.3430 0.3217 0.2783 0.2011 0.1035 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 
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Table B-1 (contd.) 

t = 183.75 seconds 

--„..... r 0.0 R I 0.2 R 
I 

0.4 R 1 0.6 R I 0.8 R 1 1.0 R 

0.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 L 0.2827 0.2664 0.2241 0.1602 0.0804 0.0 

0.2 L 0.5215 0.4915 0.4134 0.2956 0.1483 0.0 

0.3 L 0.6873 0.6478 0.5449 0.3896 0.1954 0.0 

0.4 L 0.7814 0.7364 0.6194 0.4429 0.2222 0.0 

0.5 L 0.8093 0.7627 0.6416 0.4587 0.2301 0.0 

0.6 L 0.7814 0.7364 0.6194 0.4429 0.2222 0.0 

0.7 L 0.6873 0.6478 0.5449 0.3896 0.1954 0.0 

0.8 L 0.5215 0.4915 0.4134 0.2956 0.1483 0.0 

0.9 L 0.2827 0.2664 0.2241 0.1602 0.0804 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

t = 220.50 seconds 

0.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 L 0.2383 0.2212 0.1852 0.1302 0.0651 0.0 

0.2 L 0.4432 0.4115 0.3445 0.2422 0.1210 0.0 

0.3 L 0.5942 0.5516 0.4618 0.3247 0.1622 0.0 

0.4 L 0.6824 0.6335 0.5303 0.3729 0,1863 0.0 

0.5 L 0.7118 0.6607 0.5531 0.3890 0.1943 0.0 

0.6 L 0.6824 0.6335 0.5303 0.3729 0.1863 0.0 

0.7 L 0.5942 0.5516 0.4618 0.3247 0.1622 0.0 

0.8
.

L 0.4432 0.4115 0.3445 0.2422 0.1210 0.0 

0.9 L 0.2383 0.2212 0.1852 0.1302 0.0651 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 
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Table B-1  (contd.) 

t = 257.25 seconds 

-----,,„,„,r 

0.0 L 

0.0 R j 0.2 R I 0.4 R I 0.6 R I 0.8 R 1.0 R 

0.0 0.0 0.0 0.0 0.0 0.0 

0.1 L 0.1988 0.1851 0.1536 0.1076 0.0533 0.0 

0.2 L 0.3730 0.3474 0.2882 0.2018 0.1000 0.0 

0.3 L 0.5041 0.4695 0.3895 0.2728 0.1352 0.0 

0.4 L 0.5843 0.5442 0.4515 0.3162 0.1567 0.0 

0.5 L 0.6107 0.5688 0.4719 0.3305 0.1638 0.0 

o.6 L 0.5843 0.5442 0.4515 0.3162 0.1567 0.o 

0.7 L 0.5041 0.4695 0.3895 0.2728 0.1352 0.0 

0.8 L 0.3730 0.3474 0.2882 0.2018 0.1000 0.0 

0.9 L 0.1988 0.1851 0.1536 0.1076 0.0533 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

t = 294.00 seconds 

0.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 L 0.1676 0,1553 0.1286 0.0896 0.0443 0.0 

0.2 L 0.3159 0.2926 0.2424 0.1688 0.0835 0.0 

0.3 L 0.4299 0.3981 0.3298 0.2298 0.1137 0.0 

0.4 L 0.5005 0.4636 0.3841 0.2675 0.1324 0.0 

0.5 L 0.5245 0.4858 0.4024 0.2803 0.1387 0.0 

o.6 L 0.5005 0.4636 0.3841 0.2675 0.1324 0.0 

0.7 L 0.4299 0.3981 0.3298 0.2298 0.1137 0.0 

0.8 L 0.3159 0.2926 0.2424 0.1688 0.0835 0.0 

0.9 L 0.1676 0.1553 0.1286 0.0896 0.0443 0.0 

1 CI T . n n n (1 CI A n n n A A /I 
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Table B-1 (contd.) 

t = 330.75 seconds 

r 0.0 R 1 0.2 R 1 0.4 R 1 0.6 R 0.8 R 1.0 R 

0.0 L 0.0 

0.1410 

0.2666 

0.3641 

0.0 

0.1308 

0.2472 

0.3378 

0.0 

0.1080 

0.2042 

0.2790 

0.0 

0.0751 

0.1420 

0.1940 

0.0 

0.0371 

0.0701 

0.0958 

0.0 

0.0 

0.0 

0.0 

0.1 L 

0.2 L 

0.3 L 

0.4 L 0.4255 

0.4464 

0.3947 

0.4140 

0.3260 

0.3419 

0.2268 

0.2379 

0.1119 

0.1174 

0.0 

0.0 0.5 L 

0.6 L 0.4255 

0.3641 

0.3947 

0.3378 

0.3260 

0.2790 

0.2268 

0.1940 

0.1119 

0.0958 

0.0 

0.0 0.7 L 

0.8 L 0.2666 0.2472 0.2042 0.1420 0.0701 0.0 

0.9 L 0.1410 0.1308 0.1080 0.0751 0.0371 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

t = 367.50 seconds 

0.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 L 0.1191 0.1102 0.0910 0.0632 0.0312 0.0 

0.2 L 0.2256 0.2089 0.1725 0.1197 0.0591 0.0 

0.3 L 0.3091 0.2861 0.2362 0.1640 0.0809 0.0 

0.4 L 0.3619 0.3350 0.2766 0.1921 0.0947 0.0 

0.5 L 0.3800 0.3518 0.2904 0.2017 0.0995 0.0 

0.6 L 0.3619 0.3350 0.2766 0.1921 0.0947 0.0 

0.7 L 0.3091 0.2861 0.2362 0.1640 0.0809 0.0 

0.8 L 0.2256 0.2089 0.1725 0.1197 0.0591 0.0 

0.9 L 0.1191 0.1102 0.0910 0.0632 0.0312 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 



83. 
Table B-1 (contd.) 

t = 404.25 seconds 

-'' , 

X 0.0 L 

r 0.0 R 1 0.2 R I 0.4 R 
1 

0.6 R I 0.8 R 1.0 R 

0.0 0.0 0.0 0.0 0.0 0.0 

0.1 L 0.1006 0.0931 0.0768 0.0533 0.0263 0.0 

0.2 L 0.1908 0.1767 0.1458 0.1012 0.0499 0.0 

0.3 L 0.2618 0.2425 0.2000 0.1388 0.0684 0.0 

0.4 L 0.3070 0.2843 0.231+5 0.1628 0.0802 0.0 

0.5 L 0.3225 0.2987 o.2463 0.1710 0.0843 0.0 

0.6 L 0.3070 0.281+3 0.2345 0.1628 0.0802 0.0 

0.7 L 0.2618 0.2425 0.2000 0.1388 0.o684 0.0 

0.8 L 0.1908 0.1767 0.1458 0.1012 0.0499 0.0 

0.9 L 0.1006 0.0931 0.0768 0.0533 0.0263 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

t = 441.00 seconds 

0.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 L 0.0851 0.0787 0.0649 0.0450 0.0222 0.0 

0.2 L 0.1615 0.1495 0.1233 0.0855 0.0421 0.0 

0.3 L 0.2219 0.2054 0.1694 0.1175 0.0579 0.0 

0.4 L 0.2604 0.2411 0.1988 0.1379 0.0679 0.0 

0.5 0.2737 0.2533 0.2089 0.1449 0.0714 0.0 

0.6 L 0.2604 0.2411 0.1988 0.1379 0.0679 0.0 

0.7 L 0.2219 0.2054 0.1694 0.1175 0.0579 0.0 

0.8 L 0.1615 0.1495 0.1233 0.0855 0.0421 0.0 

0.9 L 0.0851 0.0787 0.0649 0,0450 0.0222 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 
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Table B-1 (contd.) 

t = 477.75 seconds 

.%';`. r 0.0R 1 0.2 R 

._ 

1
0.4R I 0.6 R 0.8 R I 1.0& 

0.0 L 0.0 

0.0720 

0.1367 

0.0 

0.0666 

0.1266 

0.0 

0.0549 

0.1044 

0.0 

0.0381 

0.0724 

0.0 

0.0188 

0.0357 

0.0 

0.0 

0.0 

0.1 L 

0.2 L 

0.3 L 0.1880 

0.2207 

0.2320 

o.2207 

0.1880 

0.1367 

0.1740 

0.2043 

0.2148 

0.2014.3 

0.1740 

0.1266 

0.1434 

0.1685 

0.1771 

0.1685 

0.1434 

0.1044 

0.0995 

0.1168 

0.1228 

0.1168 

0.0995 

0.0724 

0.0490 

0.0576 

0.0605 

0.0576 

0.0490 

0.0357 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.4 L 

0.5 L 

0.6 L 

0.7 L 

0.8 L 

0.9 L 0.0720 

0.0 

0.0666 

0.0 

0.0549 

0.0 

0.0381 

0.0 

0.0188 

0.0 

0.0 

0.0 1.0 L 

t = 514.50 seconds 

0.0 L 0.0 

0.0609 

0.0 

0.0564 

0.0 

0.0465 

0.0 

0.0322 

0.0 

0.0159 

0.0 

0.0 0.1 L 

0.2 L 0.1158 0.1072 0.0884 0.0613 0.0302 0.0 

0.3 L 0.1592 0.1474 0.1215 0.0843 0.0415 0.0 

0.4 L 0.1871 0.1731 0.1427 0.0990 0.0488 0.0 

0.5 L 0.1967 0.1820 0.1500 0.1040 0.0513 0.0 

0.6 L 0.1871 0.1731  0.1427 0.0990 0.0488 0.0 

0.7 L 0.1592 0.1474 0.1215 0.0843 0.0415 0.0 

0.8 L 0.1158 0.1072 0.0884 0.0613 0.0302 0.0 

0.9 L 0.0609 0.0564 0.0465 0.0322 0.0159 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 



85. 

Table B-1 (cOntd.) 

t = 551.25 seconds 

Ic
.-

.
r 0.0 R 0.2 R 0.4 R I 0.6 R 0.8 Et 1.0 R 

0.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 L 0.0516 0.0477 0.0393 0.0273 0.0134 0.0 

0.2 L 0.0981 0.0908 0.0748 0.0519 0.0256 0.0 

0.3 L 0.1349 0.1249 0.1029 0.0714 0.0351 0.0 

0.4 L 0.1585 0.1467 0.1209 0.0839 0.0413 0.0 

0.5 L 0.3.666 0.1542 0.1271 0.0882 0.0434 0.0 

o.6 L 0.1585 0.1467 0.1209 0.0839 0.0413 0.0 

0.7 L 0.1349 0.1249 0.0129 0.0714 0.0351 0.0 

0.8 L 0.0981 0.0908 0.0748 0.0519 0.0256 0.0 

0.9 L 0,0516 0.0477 0.0393 0.0273 0.0134 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

t = 588.00 seconds 

0.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 L 0.0437 0.0404 0.0333 0.0231 0.0114 0.0 
0.2 L 0.0831 0.0769 0.0634 0.0439 0.0216 0.0 

0.3 L 0.1143 0.1058 0.0872 0.0604 0.0298 0.0 

0.4 L 0.1343 0.1243 0,1025 0.0710 0.0350 0.0 

0.5 L 0,1412 0.1307 0.1077 0.0747 0.0368 0.0 

o.6 L 0.1343 0.1243 0.1025 0.0710 0.0350 0.0 

0.7 L 0.1143 0.1058 0.0872 0.0604 0.0298 0.0 

0.8 L 0.0831 0.0769 0.0634 0.0439 0.0216 0.0 

0.9 L 0.0437 0.0404 0.0333 0.0231 0.0114 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 



86. 

Table B-1  (contd.) 

t = 624..75 seconds 

.."'-,„r 0.0 H I 0.2 R I . 0.4 El 0.6 R [0.8 H 1.0 H 

0.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 L 0.0370 0.0342 0.0282 0.0196 0.0096 0.0 

0.2 L 0.0703 0.0651 0.0537 0.0372 0.0183 0.0 

0.3 L 0.0968 0.0896 0.0738 0.0512 0.0252 0.0 

0.4 L 0.1138 0.1053 0.0868 0.0602 0.0296 0.0 

0.5 L 0.1196 0.1107 0.0913 0.0633 0.0312 0.0 

0.6 L 0.1138 0.1053 0.0868 0.0622 0.0296 0.0 

0.7 L 0.0968 0.0896 0.0738 0.0512 0.0252 0.0 

0.8 L 0.0703 0.0651 0.0537 0.0372 0.0183 0.0 

0.9 L 0.0370 0.0342 0.0282 0.0196 0.0096 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

t = 661.50 seconds 

0.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 L 0.0313 0.0290 0.0239 0.0166 0.0082 0.0 

0.2 L 0.0596 0.0551 0.0455 0.0315 0.0155 0.0 

0.3 L 0.0820 0.0759 0.0626 0.0434 0.0214 0.0 

0.4 L 0.0964 0.0892 0.0735 0.0510 0.0251 0.0 

0.5 L 0.1013 0.0938 0.0773 0.0536 0.0264 0.0 

0.6 L 0.0964 0.0892 0.0735 0.0510 0.0251 0.0 

0.7 L 0.0820 o.0759 0.0626 0.0434 0,0214 0.0 

0.8 L 0.0.596 0.0551 0.0455 0.0315 0.0155 0.0 

0.9 L 0.0313 0.0290 0.0239 0.0166 0.0082 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 



87. 

Table B-1 (contd.) 

t = 698.25 seconds 

.--,,,,_. r 0.0 R i 0.2 R 
1 

0.4 R I 0.6 R I 0.8 R 1.0 R 

0.0 L 0.0 

0.0265 

0.0505 

0.0 

0.0246 

0.0467 

0.0 

0.0202 

0.0385 

0.0 

0.0140 

0.0267 

0.0 

0.0069 

0.0131 

0.0 

0.0 

0.0 

0.1 L 

0.2 L 

0.3 L 0.0695 

0.0816 

0.0858 

0.0816 

0.0695 

0.0505 

0.0643 

0.0756 

0.0795 

0.0756 

0.0643 

0.0467 

0.0530 

0.0623 

0.0655 

0.0623 

0.0530 

0.0385 

0.0367 

0.0432 

0.0454 

0.0432 

0.0376 

0.0267 

0.0181 

0.0213 

0.0224 

0.0213 

0.0181 

0.0131 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.4 L 

0.5 L 

0.6 L 

0.7 L 

0.8 L 

0.9 L 0.0265 0.0246 0.0202 0.0140 0.0069 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 

t = 735.00 seconds 

0.0 L 0.0 

0.0225 

0.0428 

0.0 

0.0208 

0.0396 

0.0 

0.0171 

0.0326 

0.0 

0.0119 

0.0226 

0.0 

0.0059 

0.0111 

0.0 

0.0 

0.0 

0.1 L 

0.2 L 

0.3 L 0.0588 0.0545 0.0449 0.0311 0.0153 0,0 

0.4 L 0.0692 0.0640 0.0528 0.0366 0.0180 0.0 

0.5 L 0.0727 0.0673 0.0555 0.0385 0.0189 0.0 

0.6 L 0.0692 0.0640 0.0528 0.0366 0.0180 0.0 

0.7 L 0.0588 

0.0428 

0.0545 

0.0396 

0.0449 

0.0326 

0.0311 

0.0226 

0.0153 

0.0111 

0.0 

0.0 0.8 L 

0.9 L 0.0225 0.0208 0.0171 0.0119 0.0059 0.0 

1.0 L 0.0 0.0 0.0 0.0 0.0 0.0 
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