Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

CALCULATION OF ISOBARIC PHASE ENTHALPY DIFFERENCES FOR BINARY SYSTEMS FROM VAPOR-LIQUID EQUILIBRIUM DATA

By

STEVEN MERRILL HARVEY

A THESIS

PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CHEMICAL ENGINEERING

 \mathbf{AT}

NEW JERSEY INSTITUTE OF TECHNOLOGY

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passage must not be copied without permission of the college and without credit being given in subsequent written published work.

NEWARK, NEW JERSEY

1979

APPROVAL OF THESIS

CALCULATION OF ISOBARIC PHASE ENTHALPY DIFFERENCES FOR BINARY SYSTEMS FROM VAPOR-LIQUID EQUILIBRIUM DATA

Ву

STEVEN MERRILL HARVEY

FOR

DEPARTMENT OF CHEMICAL ENGINEERING NEW JERSEY INSTITUTE OF TECHNOLOGY

ΒY

FACULTY COMMITTEE

APPROVED

NEWARK, NEW JERSEY

MAY, 1979

ABSTRACT

Equations relating isobaric vapor-liquid equilibrium data to heats of vaporization are useful in testing the thermodynamic consistency of experimental VLE data and in the design of distillation equipment. Several researchers have proposed such equations based on the Gibbs-Duhem equation. At low pressures, simplified versions of these equations were successfully used to test the consistency of published VLE and enthalpy data. At high pressures, equilibrium phase enthalpy differences were calculated from rigorous equations using a modified form of the Redlich-Kwong equation to calculate fugacity coefficients. As expected, the relative error of using the simplified equations was found to increase with increasing pressure.

ACKNOWLEDGEMENT

The author would like to express his sincere appreciation to his advisor, Dr. H.T. Chen, whose assistance and patience were invaluable in completing this project. In addition, the author would like to thank his employer, Hoffmann-La Roche, Incorporated, for furnishing needed computer facilities and financial support.

TABLE OF CONTENTS

Previous Methods and Theory 1	
Extension of Tao's Method for Binary Systems to	•
Higher Pressures 6	
Methods of Determining (dy/dT) and (dln0/dy) $_{ m p}$. 8	
Low Pressure Example: The Ethanol-Water System	
at 1 Atm 9	
Low Pressure Example: The Toluene-1,2-Dichlor-	
oethane System at 686 Torr 11	
High Pressure Example: The Ethane- Butane System	
at 200 Psig	
The Effect of Pressure on the Fugacity Contribu-	
tion to the Equilibrium Phase Enthalpy	
Difference • • • • • • • • • • • • • • • • 13	
Discussion of Results and Conclusions \ldots \ldots 14	
Nomenclature	
Literature Cited	
Tables	
Figure Captions	
Figures	
Appendix	

-v-

PREVIOUS METHODS AND THEORY

Othmer, Ricciardi, and Thakar (1953) presented the following equation for binary systems based on the Gibbs-Duhem equation at constant pressure assuming Dalton's law of partial pressures and the Clausius-Clapeyron equation:

$$\frac{L_x}{RT^2} = \left[\frac{x}{y} - \frac{(1-x)}{(1-y)}\right] \left(\frac{dy}{dT}\right)_p$$
(1)

where L_x is the latent heat of vaporization based on liquid composition (the integral latent heat of vaporization). They proposed equation (1) be applied to the prediction and correlation of x,y data from vacuum up to moderately high pressures. Earlier, Redlich and Kister (1948) had derived a similar relationship assuming that the variation of activity coefficients with temperature was negligible.

Van Ness (1959) derived a general form of the Gibbs-Duhem equation shown here:

$$\frac{\mathbf{v}}{RT}dp + \frac{\mathbf{H}^* - \mathbf{H}}{RT^2}dT = \sum (z_i dlnf_i)$$
(2)

At constant pressure this reduces to the following:

$$\frac{H^{*}-H}{RT^{2}}dT = \sum (z_{i}dlnf_{i})_{p}$$
(3)

Ljunglin and Van Ness (1962) extended this generalized form to a completely rigorous general coexistence equation for binary mixtures at constant pressure:

$$\Omega dT = (y_1 - x_1) dln - \frac{1}{y_1} + \frac{y_1 - x_1}{y_1 (1 - y_1)}$$
(4)

$$\Omega = \frac{-(\Delta H^{v} + x_{1} H_{1}^{v} + x_{2} H_{2}^{v} - H^{L})}{RT^{2}}$$
(4a)

The expression in parentheses $(\Delta H^{v} + x_1 H_1^{v} + x_2 H_2^{v} - H^{L})$ is a close approximation to the integral heat of vaporization. Another close approximation is as follows:

$$L_{x} = x_{1}L_{1} + x_{2}L_{2} - \Delta H^{L}$$

$$(5)$$

Othmer used this approximation in the derivation of equation (1). Equation (5) does not contain a term to account for the enthalpy change necessary to heat the vapor phase from the bubble point to the dew point.

Tao (1968) extended equation (4) to multicomponent systems. Equation (6) is his rigorous equation which describes the relationship between the molar enthalpy difference of two equilibrium phases and the x,y,T data for multicomponent systems:

$$\sum (x_i - y_i) dln f_i^v = \frac{L_{xy} - \Delta H}{RT^2} dT$$
(6)

where L_{xy} is the phase enthalpy difference and ΔH^* is equal to the difference between the ideal gas enthalpy with vapor phase composition and the ideal gas enthalpy with liquid phase composition. Tao also derived the limit forms of equation (6) as the mixture composition approaches that of a pure component (equation 7), as the mixture composition approaches that of an azeotrope (equation 8), and as the mixture approaches its critical point (equation 9).

$$1 - \frac{dy}{dx} = - \frac{L_{xy}}{RT^2} \frac{dT}{dx}$$
(7)

$$1/(d(dT/dlnf_{i}^{v})/d(x_{i}-y_{i})) = L_{xy}/RT^{2}$$
 (8)

$$L_{xy} = 0 \tag{9}$$

Equation (6) can be simplified by assuming that $f_i = y_i P$ (a safe assumption at low pressures), resulting in equation (6a)

for binary mixtures:

$$\frac{L_{xy} - \Delta H^{*}}{RT^{2}} = \frac{(x_{1} - y_{1})}{y_{1}y_{2}} (\frac{dy_{1}}{dT})$$
(6a)

In a separate paper, Tao (1968) derived a similar equation relating the integral latent heat of vaporization to vapor- liquid equilibrium data:

$$L_{x} = x_{i} RT_{yd}^{2} \frac{dlnf_{x}^{V}}{dT_{yd}} - x_{i} RT_{xd}^{2} \frac{dlnf_{x}^{V}}{dT_{xd}} + (H_{xd}^{*} - H_{xb}^{*})$$
(10)

At low pressures, equation (10) can be simplified by assuming that $f_y^V = y_i P$ and $f_x^V = x_i P$, resulting in equation (11): $L_x = RT_{yd}^2 \frac{x_i dy_i}{y_i dT_{yd}} + (H_{xd}^* - H_{xb}^*)$ (11)

For a binary system, equation (11) rearranges to:

$$L_{x} = RT^{2} \left[\frac{x_{1}}{y_{1}} - \frac{1 - x_{1}}{1 - y_{1}} \right] \left(\frac{dy_{1}}{dT} \right)_{p} + \left(H_{xd}^{*} - H_{xb}^{*} \right)$$
(11a)

Comparing equation (11a) with equation (1) we find they are eqivalent except for the term $(H_{xd}^* - H_{xb}^*)$, which represents the enthalpy difference between a vapor mixture of composition x_1 at dewpoint temperature T_{xd} and a vapor mixture of composition x_1 at bubble point temperature T_{xb} . If we compare equation (11a) with equation (6), we find the integral heat of vaporization is related to the equilibrium phase enthalpy difference at low pressures by the expression:

$$L_x = L_{xy} + (H_{xd}^* + H_{xb}^*)$$
 (12)

where T_{xb} is equivalent to T_{yd} . This is not surprising since the two values are related by definition by the following

expression:

$$L_{x} = L_{xy} + (H_{xd}^{v} - H_{yd}^{v})$$
 (13)

Therefore, equation (12) is a good approximation at relatively low pressures when the ideal gas enthalpy difference should approximate the actual enthalpy difference.

Lee and Edmister (1969) calculated phase enthalpy differences using a combination of equation of state calculations and ideal gas enthalpy values to calculate vapor enthalpies and a combination of equation (14) and ideal gas enthalpies to calculate liquid enthalpies:

$$\frac{H^{*}-H^{L}}{RT^{2}} = \sum x_{i} \left(\frac{\partial \ln \phi_{i}}{\partial T}\right)_{P,y} + \sum x_{i} \left(\frac{\partial \ln \phi_{i}}{\partial y_{i}}\right) \left(\frac{dy_{i}}{dT}\right)_{P} + \sum \frac{1}{K_{i}} \left(\frac{dy_{i}}{dT}\right)_{P}$$
(14)

Equation (14) was obtained by combining equation (3) with equation (15):

$$(\frac{d \ln f_{i}}{dT}) = (\frac{\partial \ln \phi_{i}}{\partial T})_{P,y} + (\frac{\partial \ln \phi_{i}}{\partial y_{i}})(\frac{d y_{i}}{dT})_{P} + (\frac{\partial \ln \phi_{i}}{\partial y_{j}})(\frac{d y_{j}}{dT})_{P} + \dots$$

$$\dots + (\frac{\partial \ln \phi_{i}}{\partial y_{n}})(\frac{d y_{n}}{dT})_{P} + (\frac{d \ln y_{i}}{dT})_{P}$$

$$(15)$$

The temperature-composition derivatives $(dy/dT)_P$ were evaluated by fitting a polynomial to a set of six or seven data points to find the empirical constants by least squares, then differentiating the resulting expression to find the derivatives of the middle range points. The two derivatives of $ln(\phi_i)$ were determined analyticaly from the Benedict-Webb-Rubin and Redlich-Kwong equations of state.

Lee and Edmister concluded that this method of calculating

saturated liquid enthalpy values for mixtures is particularly sensitive to the method used to smooth and differentiate the temperature-composition data, and to a lesser extent, the input data itself and the choice of equation of state. They could not recommend the method until a better procedure for determining the derivative $(dy_i/dT)_p$ is found.

This paper uses Tao's simplified equation (6a) to calculate equilibrium phase enthalpy differences at low pressures. Equation (11a) is used to calculate integral heats of vaporization. Instead of the least squares curve fitting technique used by Lee and Edmister to determine $(dy_i/dT)_p$, this paper uses the Wilson equation to smooth experimental T,y data, and a spline fitting technique to determine the derivative. For higher pressure systems, Tao's equation (6) is rearranged to allow the use of fugacity coefficients calculated from a form of the Redlich-Kwong equation as modified by Prausnitz and Cheuh (1972). Equation (6) can be rearranged to the following form:

$$\sum (x_i - y_i) \left(\frac{d \ln f_i^{V}}{dT} \right) = \frac{(L_{xy} - \Delta H^*)}{RT^2}$$
(6b)

By definition:

$$\mathbf{f}_{i} = \phi_{i} \mathbf{y}_{i} \mathbf{P} \tag{16}$$

At contant pressure:

$$(dlnf_{i}/dT)_{P} = \frac{1}{y_{i}} \left(\frac{dy_{i}}{dT}\right)_{P} + \frac{1}{\overline{\varphi}_{i}} \left(\frac{d\overline{\varphi}_{i}}{dT}\right)_{P}$$
(17)

Substituting into equation (6b) for a binary mixture:

$$(x_{1}-y_{1}) \left[\frac{1}{y_{1}} \left(\frac{dy_{1}}{dT} \right)_{P} + \frac{1}{\phi_{1}} \left(\frac{d\phi_{1}}{dT} \right)_{P} \right] + (x_{2}-y_{2}) \left[\frac{1}{y_{2}} \left(\frac{dy_{2}}{dT} \right)_{P} + \frac{1}{\phi_{2}} \left(\frac{d\phi_{2}}{dT} \right)_{P} \right] = \frac{(L_{xy} - \Delta H^{*})}{RT^{2}}$$
(18)

Since $y_2 = 1 - y_1$ and $x_2 = 1 - x_1$, this rearranges to:

$$\frac{(x_1 - y_1)}{y_1 y_2} (\frac{dy_1}{dT})_{P} + (x_1 - y_1) \left[(\frac{d\ln\phi_1}{dT})_{P} - (\frac{d\ln\phi_2}{dT})_{P} \right] = \frac{(L_{xy} - \Delta H^*)}{RT^2}$$
(19)

where for a binary system at constant pressure

$$\left(\frac{d\ln\phi_{i}}{dT}\right)_{P} = \left(\frac{d\ln\phi_{i}}{dy_{1}}\right)\left(\frac{dy_{1}}{dT}\right)_{P}$$
(20)

Comparing equation (19) with equation (6a) we find they are identical with the exception of the second term on the lefthand side of equation (19). This term represents the difference between the actual equilibrium phase enthalpy difference and the value calculated assuming $f_i = y_i P$. In this paper, this term will be referred to as the fugacity contribution to L_{xy}

The derivative $(dln\phi_i/dy_1)_P$ can be found by numerically differentiating an equation of state such as the Redlich-Kwong equation. The derivative $(dy_1/dT)_P$ can be found by graphical differentiation or by curve fitting temperature composition data and differentiating the resulting equation.

In this paper, two methods of obtaining $(dy/dT)_{P}$ from temperature-composition data were investigated:

- Representation of T,y data with a single third or fourth order polynomial using the method of King (1962), then differentiation of the resulting equation.
- 2. Smoothing the T,y data with the Wilson equation, representation of smoothed data with a third degree natural spline function and differentiation of the function using the method of Grenville (1967).

The derivatives $(dln\phi_i/dy)$ were determined by numerically differentiating the Redlich-Kwong equation of state as modified by Prausnitz and Chueh (1972). A two phase binary system has two degrees of freedom. In the case of constant pressure, fixing the vapor composition y_1 fixes the liquid composition x_1 and the temperature T. At a specified vapor composition, the molar volume of the gas mixture was determined by solving the Redlich-Kwong equation:

$$P = \frac{RT}{v - b} - \frac{a}{T^{0} \cdot 5_{v(v+b)}}$$
(21)

where a and b are functions of y_1 and component critical properties and T is a function of y_1 . The fugacity coefficients for each component were determined as proposed by Prausnitz and Chueh. The derivatives were obtained by evaluating $\Delta \phi_i / \Delta y_i$ over small increments of y_1 .

LOW PRESSURE EXAMPLE: THE ETHANOL-WATER SYSTEM AT 1 ATM THE CALCULATION OF THE EQUILIBRIUM PHASE ENTHALPY DIFFERENCE

The ethanol-water system was chosen for study because it had been studied by Tao (1968) and published enthalpy data were available for comparison. The ethanol-water data of Thomson and Reider (1949) was fit to the Wilson equation to allow interpolation of intermediate values. The smoothed data are presented in table 1. The smoothed data was then fit to third and fourth order polynomials resulting in equations of the form:

$$y_1 = a + bT + cT^2 + dT^3$$
 (22)

and

$$y_1 = a + bT + cT^2 + dT^3 + eT^4$$
 (23)

Differentiation of equations (22) and (23) led to the following:

$$(dy_1/dT)_P = b + 2cT + 3dT^2$$
 (24)

$$(dy_1/dT)_P = b + 2cT + 3dt^2 + 4eT^3$$
 (25)

The smoothed data were also fit to a third order natural spline function and differentiated as proposed by Grenville (1967). Using Grenville's method, every set of four smoothed data points was fit to a third order polynomial with the requirement that the values and derivatives at the connecting points, as evaluated by adjacent polynomials, be equivalent. The results are tabulated for each method in table 2, and shown graphically in figure 1.

The derivatives from table 2 were then used to calculate the phase enthalpy difference using equation (6a). Values of L_{xy} are presented in table 3 and compared to the published values of Tao (1968) and Faust (1960).

Figure 1 illustrates that (dy_1/dT) is very sensitive to the method chosen to represent and differentiate T,y data. Assuming that the data of Faust is correct, it is evident from table 3 that the best results were obtained using Grenville's method. A comparison of the Faust data and L_{xy} obtained from equation (6a) is shown graphically in figure 2. The largest relative error occurred at $y_1 = 0.0$ (pure water) where $L_{xy} = L_{H_20}$ was calculated from equation (7) using two spline functions, one for T,y and the other for T,x representation. Since the heat of vaporization of pure water is well known, the use of equation (7) with this approach is not very accurate. Future research may find it possible to use equation (7) to improve the accuracy of the Wilson equation and other VLE equations in the dilute phase regions.

LOW PRESSURE EXAMPLE: THE TOLUENE-1,2-DICHLOROETHANE SYSTEM AT 686 TORR THE CALCULATION OF INTEGRAL LATENT HEATS OF VAPORIZATION

The toluene-1,2-dichloroethane system was studied in order to compare values of L_x calculated from equation (11a) with published data. Equation (11a) was selected instead of equation (10) because the pressure was low and f_i could be assumed equal to $y_i P$. The procedure used to determine $(dy/dT)_p$ was the same as that used in the ethanol-water example. Vapor-liquid equilibrium data of Sundaram and Viswanath (1976) was smoothed with the Wilson equation. The smoothed T,y data were then fit to both a fourth order polynomial and a spline function to generate the derivatives and equation (11a) was used to calculate L_v . For purposes of comparison, equation (6a) was used to calculate L_{xv} . Calculated values of L_x and L_{xy} are listed in table 4. The polynomial fit was smoother than the spline fit in this particular case. Figure 3 compares the calculated value of L_{v} to the published values. Assuming that the published values of L_x to correct, the maximum error using equation (11a) with the polynomial fit was about 3% which indicates that the VLE data and published latent heat data are reasonably consistent.

It is interesting to note that the maximum calculated difference between the equilibrium phase enthalpy difference and the integral latent heat of vaporization was 229 cal./gm.-mole at $x_1 = 0.7$, or 2.9% of L_x . Thus, the maximum difference between the two parameters was less than the maximum error of the method of calculation. Similarly, the contribution of the term $(H_d^*-H_b^*)_x$ was less than 2.1%. This represents the relative error of using equation (1) in place of equation (11a). The ethane-butane system was selected because it was one of the systems studied by Lee and Edmister (1969) when they concluded that a better method of determining (dy_1/dT) must be found before they could recommend using the isobaric Gibbs-Duhem equation to predict saturated liquid enthalpies from experimental vapor-liquid equilibrium data. Also, published enthalpy values, calculated by other methods, were available in the literature for comparison.

Because of the system pressure (200 psig), it could not be assumed that $f_i = y_i P$. Therefore, equation (19) was used instead of equation (6a). Smoothed T,y,x data were obtained by fitting the experimental data of Chu (1952) to the Wilson equation using Flowtran (1974). The smoothed data were then fit to both a fourth order polynomial and a spline function as previously described for the ethanol-water system. Results using the spline function are shown and compared in table 5 to the calculated values of Steil, Hobson, and Weber (1956). Results using the fourth order polynomial are shown in table 6, and all of the values are compared graphically in figure 4. From figure 4 it is obvious that the spline fit method yielded smoother results than the polynomial method. However, values calculated by both methods were higher than the published values. This indicates that the VLE data used is inconsistent with the published enthalpy values.

Also indicated in table 5 and table 6 are the fugacity contributions of equation (19). In this particular case, the relative fugacity contribution was less than 5% of the phase enthalpy difrerence throughout the concentration range despite the fact that the fugacity coefficient of butane ranged as low as 0.62. The fugacity contribution represents the difference between the actual phase enthalpy difference and that calculated using the simplified equation (6a). Three systems were studied at various pressures in order to determine how much of a contribution the term

fug. cont. =
$$(x_1 - y_1) \left[(dln\phi_1/dT)_P - (dln\phi_2/dT)_P \right] RT^2$$

makes to equation (19). The systems studied were:

- 1. Ethane-butane from 6.8-34.0 atm. (100-500 psia)
- 2. Carbon dioxide-propane from 33.9-54.3 atm. (500-800 psia)
- 3. Carbon dioxide-hydrogen sulfide from 20-80 atm. (294-1176 psia)

The T,y,x data used for all systems were obtained from Chu (1952). The x,y data were used directly, but the T,y data were fit to a fourth order polynomial using the method of King (1962) with y_1 as the independent variable. Therefore, T was calculated using equation (23), $(dT/dy_1)_p$ was calculated using equation (25), and $(dy_1/dT)_p = 1/(dT/dy_1)_p$. All calculations were done by digital computer using critical properties from Smith and Van Ness (1959), interaction parameters and constants from Prausnitz and Cheuh (1972), and regression parameters for ideal gas specific heats from Hougen and Watson (1959).

The results of the computerized calculations are summarized in table 7. Note that for each system, the relative fugacity contribution increases with increasing pressure. This confirms that the use of equation (6a) at high pressures could result in errors as high as 12% of calculated L_{xy} , possibly greater.

DISCUSSION OF RESULTS AND CONCLUSIONS

As previously experienced by Lee and Edmister (1969), the calculation of enthalpy differences based on the isobaric Gibbs-Duhem equation is very sensitive to the methods used to smooth and differentiate experimental T, y data. A polynomial expression can be used to directly represent experimental data either by least squares or by the method used in this paper. However. lower order polynomials cannot accurately represent systems of widely varying curvature and higher order polynomials require more data points than are normally available from the literature. A spline function cannot be used directly with experimental data since the resulting function will pass through each data point causing significant errors in the derivative due to normal experimental scatter. The method can be improved by first smoothing the data with using any applicable VLE equation (such as the Wilson equation used in this paper), then fitting the smoothed data to a high order polynomial or a spline function. The accuracy of the derivatives will depend on the accuracy of the VLE equation itself.

The best results for the low pressure, binary systems studied in this paper were achieved by smoothing the data with the Wilson equation, then representing the smoothed data with a spline function. Compared with published data, the average error of calculated values of L_{xy} for the ethanol-water system was 1.4 % using the spline function, 4.7 % using a fourth order polynomial, and 24.9 % using a third order polynomial. The average error of L_x for the toluene-1,2-dichloroethane system was 1.3 % using the spline function and 1.4 % using a fourth order polynomial.

The use of equation (19) to calculate the equilibrium phase enthalpy difference at high pressures has not been confirmed due to a lack of high pressure enthalpy data. L_{xv} values for the ethane-butane system calculated from equation (19) were found to be, on the average, 20 % higher than the published values of Smith and Weber (1964). Hopefully, accurate methods of measuring latent heats at high pressures will be used in the future to obtain data on this system. Until then one can state only that according to equation (19), the published VLE data is not consistent with the published enthalpy data.

In this paper, several methods of calculating phase enthalpy differences were compared. In addition, several approaches to handling temperature-composition as input to the equations used were tested. Based on the results and comparisons the following were concluded :

> 1. At low pressures, equations (6a) and (11a) can be used to test the consistency of experimental VLE data for binary systems with latent heats of vaporization. However, it is recommended that the VLE data first be smoothed with a suitable VLE equation, then differentiated using a spline fitting technique.

> 2. At higher pressures equation (19) should be used in conjunction with an equation of state, such as the Redlich-Kwong equation, rather than the simplified equations. This method requires confirmation due to the lack of published experimental high pressure enthalpy data.

NOMENCLATURE

= mole fraction of i in liquid x; = mole fraction of i in vapor У; = the fugacity of i in the mixture ſ $\mathbf{L}_{\mathbf{x}}$ = the intergral heat of vaporization at P and x of the system L_{xy} = the phase enthalpy difference for co-existing equilibrium vapor and liquid at P and T of the system. = latent heat of pure component i $\mathbf{L}_{\mathbf{i}}$ R = gas constant ΔH° = (ideal gas enthalpy with vapor phase composition ideal gas enthalpy with liquid phase composition) ΔH^{V} = vapor phase heat of mixing ΔH^{L} = liquid phase heat of mixing H: = molal enthalpy of component i 8_i = activity coefficient of component i in mixture = defined by equation (4a) L Superscripts V = of vapor phaseL = of liquid phaseSubscripts 1 = of component 12 = of component 2= at dew point temperature of mixture d

b = at bubble point temperature of mixture

x = at composition x;

y = at composition y;

LITERATURE CITED

Chu, J.C., S.L. Wang, S.L. Levy and P. Rajendra, Vapor-Liquid

Equilibrium Data, J.W. Edwards, Inc., Ann Arbor, Mich. (1953).

- Foust, A.S., <u>et al.</u>, Principles of Unit Operations, John Wiley & Sons, New York, N.Y. (1960).
- Grenville, T.N.E., "Spline Functions, Interpolation, and Numerical Quadrature," <u>Mathematical Methods for Digital Compu-</u> ters, John Wiley & Sons, New York, N.Y.(1967).
- Hougen, O., K. Watson and R. Ragatz, <u>Chemical Process Principles</u>, Part I<u>I</u>, John Wiley & Sons, New York, N.Y.(1959).
- King, E.P., "Curve Fitting-Quick and Easy," Hydrocarbon Proc. & Pet. Ref., 47, 129(1962).
- Lee B., and W.C Edmister, "Isothermal Enthalpy Difference for Saturated Liquid Mixture Via Isobaric Gibbs-Duhem Equation," AIChE J., <u>15</u>, 615(1969).
- Ljunglin, J.J., and H.C. Van Ness, "Calculation of Vapour-Liquid Equilibria From Vapour Pressure Data," Chem. Eng. Sc., <u>17</u>, 531(1962).
- Othmer, D.F., L.G. Ricciardi and M.S. Thakar, "Composition of Vapors from Boiling Binary Systems," Ind. Eng. Chem., <u>45</u>, 1815(1953).
- Prausnitz, J.M., and P.L. Chueh, <u>Computer Calculations for High</u> <u>Pressure Vapor-Liquid Equilibria</u>, Prentice-Hall, Englewood Cliffs, N.J.(1972).
- Redlich, O., and A. Kister, "Thermodynamics of a Nonelectrolyte Solution," Ind. Eng. Chem., 40, 341(1948).

Redlich, O., and J.N.S. Kwong, "An Equation of State. Fugacities of Gaseous Solutions," Chem. Reviews, <u>44</u>, 233(1949).

Smith, J., and H.C. Van Ness, Introduction to Chemical Engineer-

ing Thermodynamics, 2nd Edition, McGraw-Hill, New York, N.Y.(1959).

- Smith, L.C., and J.H. Weber, "Liquid Phase Enthalpy Values for the Ethane-n-Butane System," J. Chem. Eng. Data, 2, 349 (July, 1964).
- Stiehl, J.G., M. Hobson and J.H. Weber, "Differential Heats of Condensation and Enthalpies of Saturated Liquid Hydrocarbon Mixtures," AIChE J., <u>2</u>, 389(1956).
- Sundaram, S., and D.S. Viswanath, "Thermodynamic Properties of the System Toluene-1,2-Dichloroethane," J. Chem. Eng. Data, 21, 448(1976).
- Tao, L.C., "A Thermodynamic Relationship between Integral Heat of Vaporization and Isobaric Vapor-Liquid Compositions," AIChE J., <u>14</u>, 988(1968).
- Tao, L.C., "New Methods of Testing Thermodynamic Consistency of Isobaric, Multicomponent Vapor-Liquid Equilibrium Data," Ind. Eng. Chem. Fundementals, 8, 133(1969).
- Tao, L.C., "A Thermodynamic Equation Relating Equilibrium Vapor-Liquid Compositions and Enthalpy Differences in Isobaric Multicomponent Systems," AIChE J., <u>15</u>, 362(1969).
- Tao, L.C., "Clapeyron Equation of a Multicomponent Solution," AIChE J., 15, 460(1969).
- Thomson A.R., and R.M. Rieder, "Vapor-Liquid Equilibria Measured by a Gillespie Still --- Ethyl Alcohol-Water System," Ind. Eng. Chem., 41, 2905(1949).

Van Ness, H.C, "Exact Forms of the Unrestricted Gibbs-Duhem Equation," Chem. Eng. Sc., <u>10</u>, 225(1959).

Table 1

<u> </u>	<u> Y </u>	<u>T (K)</u>	X	<u> </u>	<u>T (K)</u>
.0000	.0000	373.125	.8400	.8559	350.897
.1000	.4269	359.957	.8500	.8635	350.873
.2000	• 5196	356.705	.8600	.8713	350.851
.3000	.5727	355.019	.8700	.8792	350.831
.4000	.6171	353.825	.8800	.8873	350.815
.5000	.6613	352.871	.8900	.8956	350.800
.6000	.7091	352.086	•9000	•9040	350.789
.7000	•7633	351.463	.9100	.9127	350.779
.7500	• 7937	351.216	.9200	.9215	350.773
• 7600	.8001	351.172	.9300	• • 9305	350.770
.7700	.8066	351.131	.9400	• • 9398	350.769
.7800	.8133	351.091	.9500	.9492	350.771
• 7900	.8200	351.053	.9600	•9589	350.777
.8000	8269	351.018	.9700	.9688	350.786
.0100	.8340	350.984	.9800	• 9789	350.798
.0200	• 0411 01: 07	350.953	.9900	•9893	350.813
.0300	.0405	350,924	1,0000	1.0000	350.832

Ethanol-Water	Data of	Thomson	and	Reider(18)	Smoothed
By	the Wil	son Equa-	tion		

Table 2

Ethanol-Water System At 1 Atm.

Comparison of Methods used to represent T-Y data and calculate $(dy1/dT)_{p}$

<u> </u>	_dy/dT ^a	dy/dT ^b	_dy/dT ^C	_dy/dT ^d
0.000 .100 .200 .300 .400 .500 .600 .700 .800 .900 1.000	0592 0377 0303 0275 0233 0297 0363 0546 1688 +.1040	0572 0287 0323 0359 0405 0474 0595 0878 2285 +.2020	0343 0287 0296 0340 0412 0526 0714 1082 2035 6816	0375 0274 0280 0345 0440 0538 0758 1240 2128 +.1720
-				

a. third order polynomial $(0.0 \le y_1 \le 0.9)$ b. fourth order polynomial $(0.0 \le y_1 \le 0.9)$

- c. third order natural spline function $(0.0 \le y_1 \le 0.94)$ d. Published by Tao (3)...method of calculation not indicated.

Table 3

Ethanol-Water System Calculation of L_{xy} From Equation (6a) and Comparison to Published Data

(P= 1 Atm)

X	L a	b	L c xy	L _{xy} (Tao	o) ^e (Faust) ^f
.000 .100 .200 .300 .400 .500 .600 .700 .800 .900 1.000	13258 10078 7900 5501 5421 4815 4745 7788 -1163	10162 10726 10244 9432 8575 7938 7600 10534 -2273	9151 ^d 10162 9852 9714 9593 9501 9388 9354 9384 7684 7684 9432	9649 9545 9483 9720 10285 8950 9162 9456 9860 9289	9712 9930 10844 9900 9770 9660 9580 9550 9560 9398

a. Third order polynomial used to represent T-Y data

b. Fourth order polynomial used to represent T-Y data

c. Third order natural spline function used to represent T-Y data

d. Calculated using equation (7) e. Calculated by Tao (3)

. ÷

f. Published data of Faust (21)

			Ta	ble 4					
		T	<u>oluene-1,2-Di</u>	chloroe	thane Syst	em			
			at 686	Torr					
mole t	fraction oluene	équil. temp.	(dy ₁ /dT) ^a _P	b term	(H [*] _d -H [*] _b) ^c _x	ΔH ^{*c}	d L _x	e L _{xy}	h L _x
$\mathbf{x}^{\mathtt{f}}$	Υſ	°ĸ	° _K -1	• • • • • •	calc	ories/g-	mole		
0.0	0.000	354.2	.02648	6995 ^g	0	0	6995	6995	
0.1	0482	356.0	.02720	7736	33	-18	7769	7718	7787
0.2	.1022	358.0	.02861	7826	64	-36	7826	7726	7864
0.3	.1633	360.0	.03052	7865	89	-53	7954	7812	7939
0.4	.2333	362 .3	.03249	7894	108	-70	8002	7824	8002
0.5	•3143	364.7	.03497	7962	130.	-84	8092	7878	8069
0.6	.4087	367 .3	.03796	8053	121	-93	8174	7960	8114
0.7	• 51 98	370.1	.04078	8011	135	-94	8146	7917	8182
0,8	.6516	373.2	.04432	8016	91	-83	8107	7933	8181
0.9	.8094	376.5	.04913	8129	56	-55	8185	8074	8162
1.0	1.0000	380.2	.05339	7666 ^g	0	0	7666	7666	

1

Calculated from spline fit to smoothed T-Y data $x_1 = 1 - x_1 + 2 \cdot dx_1$ a.

b. term =
$$\left(\frac{x_1}{y_1} - \frac{1-x_1}{1-y_1}\right) RT^2 \left(\frac{dy}{dT}\right)_p = L_x$$
 according to equation (1)

Calculated using heat capacity data from Hougen, Watson, and Ragatz c. based on a datum of 273.2 deg. K.

Calculated from equation (11a) . L_x = the integral heat of evaporation. d.

- Calculated from equation (6a). L_{xy} = the phase enthalpy difference. e.
- Data of Sundaram and Viswanath, smoothed with the Wilson equation. f.
- Calculated from equation (7) g.
- Calculated using T and (dy1/dT)_P from 4th order T-Y polynomial. ž1.+

	<u>Table</u>	5		
Ethane-Butane	System	at	200	Psia

mole f	fraction thane	equilibrium temperature	term ^a	fug. cont.	ΔH^*	L_c xy	published data
х	У	o _K		.calories/	gram-mole.		٣
0	0	367.8		,	29 •		3817
.10	•3849	344.9	4107	-34	-232	3841	3159
.20	.6478	323.3 0	4128	13	-255	3886	3007
• 30	• 7830	308.4	4064	100	-180	3984	3039
.40	.8814	291.3	3658	143	- 77	3724	3144
.50	,9313	278.7	3473	132	- 9	3596	3138
.60	·9579	269.8	3479	109	22	3610	3070
.70	.9735	263.3	3531	85	31	3647	298 9
.80	.9835	258.5	3439	58	27	3524	2884
•90	.9905	255.4	2797	30	16	2843	2764
1.00	1.0000	252.2					2668

a. term =
$$\left(\frac{x_1}{y_1} - \frac{1-x_1}{1-y_1}\right) RT^2 \left(\frac{dy_1}{dT}\right)_P$$
 from equation (19)
b. the fugacity contribution = $(x_1 - y_1) \left(\left(\frac{dln\phi_1}{dT}\right)_P - \left(\frac{dln\phi_2}{dT}\right)_P\right) RT^2$
c. L_{xy} = term^a + fugacity contribution + ΔH^*

Table	6
Children of the American State of the Americ	

E	thane-	Butane	Svstem	at	200	Psia.

x ₁	y ₁	$\mathbf{T}^{\mathbf{a}}$. γ	dy1/dTb	ϕ_1	ϕ_2	<u>dln</u> ∲1 dT	<u>din</u> ∅ dT	Fug. Cont.	∆H [*]	L_{xy}
		(⁰ K) (l/gmol))(x10 ²)			(°K ⁻¹ :	x10 ²)	(cal/gmol	• • • • • • •)
•1	.385	344.4	1.698	-1.46	•959	.780	.184	.133	-34.2	-231.8	3878
.2	.648	324.4	1.657	-1.03	.929	.761	.123	.145	12.5	-255.0	3990
•3	.783	307.6	1.580	628	.910	•738	.119	.210	83.0	-180.3	3257
.4	.881	288.3	1.468	420	.889	.703	•136	.296	127.1	- 76.8	3248
•5	•931	275.2	1.383	344	.872	.673	.159	•369	136.3	- 8.9	3616
•6	•958	267.0	1.327	310	.860	.652	.177	.424	125.1	22.4	4041
•7	•974	261.8	1.290	291	.852	.637	.191	.465	101.9	31.3	4342
.8	•984	258.3	1.265	280	.846	.627	.202	.495	71.4	27.3	4303
•9	• 991	255.8	1.246	273	.841	.619	.210	.518	36.3	15.7	3466

a. Calculated from equation (23)

b. Calculated from equation (25)

Table 7

The Effect of Pressure On the Relative Fugacity Contributiona

Ethane-Butane System

System Pressure	Maximum Fugacity	Contribution
(Atm.)	(percent of	L _{vv})
6.8	2.5	хy
13.6	3.8	
20.4	5.0	
27.2	6.0	
34.0	8.5	

Carbon Dioxide-Propane System

33.9	7.8
40.8	8.7
47.6	11.3
54.3	12.6

Carbon Dioxide-Hydrogen Sulfide System

20.0	2.8
30.0	3.9
40.0	5.1
50.0	6.3
60.0	7.4
70.0	8.3h
80.0	7.6

- a. The relative fugacity contribution is defined on page 13.
- b. Approximately one half of the concentration range was supercritical at 80 Atm.

FIGURE CAPTIONS

Figure	1.	Ethanol-Water System at 1 Atmosphere: $(dy_1/dT)_P$
		Vs. y ₁
Figure	2.	Ethanol-Water System at 1 Atmosphere: L _{xy} Vs. y ₁
Figure	3.	Toluene-1,2-Dichloroethane System at 686 Torr: L_x Vs. x_1
Figure	4.	Ethane-n-Butane System at 200 Psia: L _{xy} vs. x ₁

FIGURE 1

FIGURE 3

COMPUTER PROGRAM "ETHANE"

(Used to tabulate the ethane-butane section of table 7)

1C	ETHANE REVISED FEBRUARY 8, 1978
2C 3C 4C 5C	THIS PROGRAM CALCULATES ISOBARIC INTEGRAL LATENT HEATS OF VAPORIZATION FOR BINARY MIXTURES FROM HIGH PRESSURE VAPOR- LIQUID EQUILIBRIUM DATA
6C 7 8 9 10 11&	DIMENSION FG1(99),FG2(99),DDF1(99),DDF2(99),DH(99),CF(99),DHF(999) DIMENSION DAA(99),DBB(99) DIMENSION YV(99),YW(99),YD(99) DIMENSION X(99),Y(99),H(99),T(99),A(99),B(99),YY(99) ,V(99),DY(99),DV(99),DF(99),FGC1(99),FGC2(99)
20C 21C	ETHANE BUTANE BINARY SYSTEM : ASSIGNED BINARY DATA
22C 23C 24C 25C 26C 27C 28C	TC=COMPONENT CRITICAL TEMP IN DEG K ; PC=CRITICAL PRES IN ATM VC=CRITICAL VOLUME IN LITERS/GM-MOLE; OMEGA,OMEGB,W,Cl2=CONSTANTS USED FOR THE MODIFIED REDLICH-KWONG EQUATION HA,HB,HC,HD=IDEAL GAS SPECIFIC HEAT REGRESSION COEFFICIENTS WM=COMPONENT MOLECULAR WEIGHT ; HV=LATENT HEAT OF VAPORIZATION AT BOILING POINT BP FOR PURE COMPONENT ; CP=AVG SPEC HEAT OF LIQ
28C 29C 30 35 40 45 50 55 60 65 70 75 80 85 90 100 101 102 103 104 105 106 107 108 109 110 111	AT BOILING POINT BP FOR PURE COMPONENT ; CP=AVG SPEC HEAT OF LIQ TC1=305.0 TC2=425.0 PC1=48.2 PC2=37.5 VC1=.1479 VC2=.2548 OMEGA1=0.434 OMEGA1=0.434 OMEGB1=0.088 OMEGB1=0.088 OMEGB2=0.0906 W1=.105 W2=.200 C12=0.01 HA1=1.648 HB1=4.124E-2 HC1=-1.53E-5 HD1=1.74E-9 HA2=0.945 HB2=8.873E-2 HC2=-4.38E-5 HD2=8.36E-9 WM1=30.07 BP1=184.5 CP1=.55 HV1=3506 WM2=58.12
113 114	BP2=298 CP2=.55
115 116C 116C 117C	THIS SECTION READS IN T-Y REGRESSION DATA, SYSTEM PRESSURE IN ATM, AND X-Y DATA PAIRS
165 301 170 180 6	CONTINUE PRINT 6 FORMAT(/"TYPE T-Y REGRESSION DATA: Y0,T0,Y1,T1,Y2,T2,Y3,T3,Y4.T4"/)
200 202 204 200	READ, FY0, FT0, FY1, FT1, FY2, FT2, FY3, FT3, FY4, FT4 PRINT 200 FORMAT(/"TYPE TOTAL PRESSURE IN ATM"/)
	······································

206 210 7	READ, P Continue
220	PRINT 8
230 8	FORMAT(/"TYPE NO OF Y1,X1 DATA PAIRS OF INPUT"/)
240	PRINT 9
260 9	FORMAT(/"TYPE Y1,X1 PAIRS, ONE PAIR PER LINE"/)
270	J=l
280	DO 10 $I=1, L, 1$
290	READ, Y(J), X(J)
296	YW(J) = Y(J) + 1.005
298	YD(J) = YV(J) - YW(J)
300 10	J=J+1
3010	THIS SECTION OF THE PROGRAM CALCULATES SPECIFIC VOLUME
303C	OF THE VAPOR MIXTURE BY SOLVING THE MODIFIED REDLICH
304C	EQUATION FOR THE LARGEST REAL ROOT
305C	
310	TC12 = (SQRT(TC1*TC2))*(1C12) $TC12 = 291 - 08*((M1+M2)/2)$
330	VC12=(.5*(VC1**(1./3.)+VC2**(1./3.)))**3
340	VCX=VC1/VC2
350	IF(VCX.GE.3.)VC12=(VC1+VC2)/2.
360	A1 = (OMEGA1*.006732*(TC1**2.5))/PC1
370	B1=OMEGB1 * .08205*TC1/PC1
390	B2=OMEGB2*.08205*TC2/PC2
400	PC12=ZC12*.08205*TC12/VC12
410	A12=(OMEGA1+OMEGA2)*.006732*(TC12**2.5)/(2.*PC12)
420	RE=(FT4-4.^FT3+6.^FT2-4.^FT1+FTU)/24. RD=(FT3-3.*FT2+3.*FT1-FT0)/66.*RF
440	RC = (6.*FT2-9.*FT1+4.*FT0-FT3)/62.*RD-RE
450	RB=FT1-FT0-RC-RD-RE
450	RA=FTO
470	DELTA = (FY4 - FY0)/4
490	DO 11 M=1,L,1
492	KK=1
493 203	
500	$T(J) = RA + RB^{(Y(J) - FYO)} / DELTA + RC^{(Y(J) - FYO)^{2}} (DELTA^{2})$ $T(J) = T(J) + RD^{(Y(J) - FYO)} * 3) / (DELTA * 3)$
520	T(J) = T(J) + RE*((Y(J) - FYO) * 4) / (DELTA * 4)
530	DT=RB/DELTA+(2.*RC/(DELTA**2))*(Y(J)-FY0)
540	DT=DT+(3.*RD/(DELTA**3))*((Y(J)-FY0)**2)
550	$DT = DT + (4 \cdot RE / (DE LTR \cdot 4)) \cdot ((Y (J) - FY U) \cdot 3)$ DY (T) = 1 / DT
570	YY(J) = 1 - Y(J)
580	A(J)=A1*Y(J)**2+2.*Y(J)*YY(J)*A12+A2*YY(J)**2
590	B(J) = Y(J) * B1 + YY(J) * B2.
600	$CA =08205 \times T(J) / P$ $CB = (A(J) \times T(J) \times A(J) - 08205 \times T(J) \times B(J) - D \times B(J) \times A2) / P$
620	CC = (-1.) *A(J) *B(J) * (T(J) ** (5))/P
630	V(J) = CUBIC(CA, CB, CC)
650	
557	T22=T(J) ^ * (-3./2.) T2=T(J) ** (3./2.)
744	FGC1 (J) = FUG (V (J), B (J), B1, TZ, Y (J), A (J), A1, YY (J), A12, P, T (J))
745	FG1(J) = EXP(FGC1(J))
746	FGC2(J) = FUG(V(J), B(J), B2, TZ, YY(J), A(J), A2, Y(J), A12, P, T(J))
749 750	$\mathbf{F}(\mathbf{F}(\mathbf{F})) = \mathbf{F}(\mathbf{F}(\mathbf{F}))$ $\mathbf{F}(\mathbf{F}(\mathbf{F}), \mathbf{F}) = \mathbf{F}(\mathbf{F}(\mathbf{F}), \mathbf{F})$
751	IF(KK.EQ.3) GO TO 205
755C	· · · · · ·
756C	
761C 7620	THIS SECTION NUMERICALLY DIFFRENTIATES LN (PHI) AS A FUNCTION OF TEMPERATURE USING THE CHAIN DUFE
763C	of functions of no the chain hole
764C	DLN(PHI)/DT = DLN(PHI)/DY * DY/DT
765C	

770	YPERM=Y (J)
780	YYPERM=YY(J)
790	TPERM=T (J)
800	DYPERM=DY (J)
810	APERM=A (J)
820	BPERM=B(J)
830	
840	FGC1P=FGC1(J)
850	
800	$r G Z P = r G Z \{J\}$
820	$r_{02} = r_{02} = r$
800	
900	
910 204	FGC1A = FGC1(J)
920	FGC2A = FGC2(J)
930	Y(J) = YW(J)
940	KK=3
950	GO TO 203
960 205	FGC1B=FGC1(J)
970	FGC2B=FGC2(J)
980	DDF1 (J) = (FGC1A - FGC1B) * DYPERM/YD (J)
990	DDF2(J)=(FGC2A-FGC2B)*DYPERM/YD(J)
1000	
1010	TI (J) TIPERM
1020	DY(T) = DYPERM
1040	A(J) = A PERM
1050	B(J) = BPERM
1050	V(J)=VPERM
1070	FGC1(J) = FGC1P
1080	FGl(J) = FGlP
1090	FGC2(J) = FCC2P
2000	FG2(J) = FG2P
2180	DH(J) = ((X(J)/Y(J)) - ((I - X(J))/(I - Y(J))) * DY(J)
2190	$CF(J) = (X(J) - Y(J)) \wedge DDFT(J) + (Y(J) - X(J)) \wedge DDFZ(J)$
2200	DH(J) = DH(J) = 1,987*(T(J) * 2) CF(T) = CF(T) + 1,987*(T(T) * 2)
2220	DHF(I) = DH(I) + CF(I)
2230 11	J=J+1
4000C	
4010C	
4020C	THIS SECTION OUTPUTS REQUIRED INFORMATION IN TABULAR FORM
4030C	· ·
5000	J=1
5001	PRINT 733, P
5002 733	FORMAT(////5X,"ETHANE-BUTANE BINARY SYSTEM P= ",
50038	FO.1," ATM") Doddam(//Av Hmoll av Hmolat (v Hwolat av Hpolat (D7 a
5004 IS 5005£	$\frac{1}{2} \frac{1}{2} \frac{1}$
5008 16	PORMAT(//4x,"A1",12x,"A2",11x,"A12",12x,"B1",12x,"B2",
5009&	E10.4, 4%, E10.4, 4X, E10.4, 4X, E10.4, 4X, E10.4)
5010	PRINT 13
5012 13	FORMAT(//" Y1",6X,"X1",7X,"TK",7X,"VM",9X,"DYDT",9X,"PHI(1)",
5013&	4X,"PHI(2)")
5014	DO 12 M=1,L,1
5020	PRIN'T 14, Y(J), X(J), T(J), V(J), DY(J), FG1(J), FG2(J)
5030 14	FURMAT(F6.3,2X,F6.3,2X,F6.1,3X,F7.3,3X,E10.3,3X,E10.3,3X,
50318	
5045	J=1
5048	J=1
5050 18	FORMAT(//" Y1",9X,"AM",10X,"BM")
5060	DO 17 N=1,L,1
5030 19	FORMAT(F6.3,3X,E10.3,3X,E10.3,3X,E10.3,3X,E10.3)
5090 17	J=J+1
5100	
5103 202	ΓΟΚΜΑΥ (//2X, "Y1", bX, "PH1 (1)", 4X, "PH1 (2)", 4X, "ΙΝΟΠΤ (1)", 5Χ, "ΙΜΟΠΤ (2)",
5110	$\frac{1}{1} = \frac{1}{1} = \frac{1}$
J L L V	

DO 188 [J=1,L,1

FORMAT (F6.3, 3X, F7.3, 3X, F7.3, 3X, E10.3, 3X, E10.3) 5130 189 5140 188 J = J + 15150 J=1 5160 PRINT 208 5165 208 FORMAT (//40X, "IDEAL", 8X, "REAL", /2X,"Y1",6X,"DLNPHI(1)",4X,"DLNPHI(2)",7X, 5170& "(HV-H*)", 5X, "(HV-H*)", 4X, "FUG CONT") 5171& 5180 DO 210 JI=1,L,1 PRINT 212, Y(J), DDF1(J), DDF2(J), DH(J), DHF(J), CF(J) 5190 FORMAT (F6.3, 3X, E10.3, 3X, E10.3, 3X, F10.1, 3X, F10.1, 3X, F10.1) 5200 212 5210 210 J = J + 15230C THIS SECTION CALCULATES DELTA H*= (Y1-X1)*(H2-H1) 5231C WHERE H1, H2 ARE IDEAL GAS ENTHALPIES OF PURE COMPONENTS 5232C 5233C 6080 J=1PRINT 602 6090 6100 602 FORMAT(//" Y1",6X,"X1",8X,"DELTA H*",5X,"LAT HV") DO 620 JM=1,L,1 6110. 6120 HS=ENT(HA1, HB1, HC1, HD1, Y(J), T(J),6130& HA2, HB2, HC2, HD2, X(J))HLHV=HS+DHF(J) 6140 PRINT 630, Y(J), X(J), HS, HLHV 6150 6160 630 FORMAT (F6.3, 2X, F6.3, 2X, F10.1, 2X, F10.1) 6170 620 J=J+1PRINT 302 7000 FORMAT(///5X, "TYPE 0 TO STOP, 1 TO RERUN WITH NEW COND"/) 7010 302 7020 READ, 18 IF(18.EQ.1) GO TO 301 7030 7040 CONTINUE 9500 STOP 9510 END 9511C REAL FUNCTION CUBIC(G,C,D) 9520 THIS FUNCTION CALCULATES THE LARGEST REAL ROOT OF A CUBIC 9521C EQUATION OF THE FORM $X^{*}3 + G^{*}X^{*}2 + C^{*}X + D = 0$ 9522C 9523C IF(G.GE.0.) GO TO 138 9530 EP=(1./3.)*(3.*C-(ABS(G)**2))9540 GO TO 142 9550 9555 138 CONTINUE EP = (1./3.) * (3.*C-G**2)9560 9570 142 IF(G.GE.0.) GO TO 148 EQ=(1./27.)*(27.*D-9.*G*C-2.*(ABS(G)**3)) 9580 GO TO 152 9590 9600 148 CONTINUE EQ=(1./27.)*(27.*D-9.*G*C+2.*G**3) 9610 9620 152 CONTINUE R=(EP/3.)**3+(EQ/2.)**2 9630 IF(R.LE.O.) GO TO 113 9640 AA1 = (-EQ/2.+SQRT(R))9650 IF(AA1.GE.0.) AA=AA1**(1./3.) 9660 IF(AA1.LT.0.) AA=-1.*(ABS(AA1)**(1./3.)) 9670 BB1 = (-EQ/2. - SQRT(R))9680 IF(BB1.GE.O.) BB=BB]**(1./3.) 9690 9700 IF(BB1.LT.O.) BB=-1.*(ABS(BB1)**(1./3.)) 9710 Y1=AA+BB X1 = Y1 - G/3. 9720 GO TO 30 9730 BETA=SQRT(((EQ**2)/4.)/((EP**3)/(-27.))) 9740 113 9750 THETA=ARCOS (BETA) X0=SQRT(-4.*EP/3.)*COS(THETA/3.) 9760 IF(EQ.GT.0.) XO=XO*(-1.)9770 9780 X1=SQRT (-4.*EP/3.)*COS (THETA/3.+2.09439) 9790 $IF(EQ.GT.0.) \times 1 = \times 1^{*}(-1.)$ X2=SQRT(-4.*EP/3.)*COS(THETA/3.+4.18879) 9800 9810 IF(EQ.GT.0.) X2=X2*(-1.)9815 IF(XO.GT.X1) X1=X09816 IF(X2.GT.X1) X1=X2

9819

X1 = X1 - G/3.

-A4-

9820-30 9830	CONTINUE CUBIC=X1
9840	RETURN
9850	END
9859C	•
9860	REAL FUNCTION FUG(FV,FB,FB1,FTZ,FY1,FA,FA1,FY2,FA12,FP,FT)
9361C	•
9862C	THIS FUNCTION CALCULATES THE NATURAL LOG OF COMPONENT
9863C	FUGACITY COEFFICIENTS USING MODIFICATIONS OF THE REDLICH
9864C	AND KWONG EQUATION OF STATE AS PROPOSED BY PRAUSNITZ
9865C	AND CHUEH, "COMPUTER CALCULATIONS FOR HIGH PRESSURE VAPOR-
9865C	LIQUID EQUILIBRIA, PRENTICE-HALL, 1968.
9867C	
9870	FUG 1=ALOG (FV/(FV-FB))+FB1/(FV-FB)
9880	FUG2=(24.3754/(FTZ*FB))*(FY1*FA1+FY2*FA12)*(ALOG((FV+FB)/FV))
9890	FUG3=(FA*FB1/(.08205*FTZ*(FB**2)))*(ALOG((FV+FB)/FV)-(FB/(FV+FB)))
9900	FUG4=ALOG((FP*FV)/(.08205*FT))
9910	FUG≈FUG1−FUG2+FUG3−FUG4
9920	RETURN
9930	END
9931C	
9940	REAL FUNCTION ENT (AI, BI, CI, DI, YI, TK,
9941&	A2, B2, C2, D2, X1)
9942C	
9950C	THIS FUNCTION CALCULATES IDEAL GAS ENTHA; LPIES FOR GAS
9951C	MIXTURES IN CAL/GM MOLE REFERENCED TO THE LIQ STATE AT
99520	0 DEG C (2/3.16 DEG K)
99530	
9955	$Ed_1 = A_1 * (TK - 2/3 \cdot 16) + (TK - 2/3 \cdot 16)$
99608	$(B1/2.) \land (TK^{2}/2.13.16^{2}) \land (C1/3.) \land (TK^{3}/2.13.16^{3}) \land$
99708	$(D1/4.) \circ (TK \circ 4 - 2/3.10 \circ 4)$
9975	$En Z = A Z^{-1} (1 K^{-2} / 3 \cdot 10) + 1$
99708	$(D_2/2_{-})^* (1K^*/2^{-}/3_{-}10^*/2) + (C_2/3_{-})^* (1K^*/3^{-}/3_{-}10^*/3) + (D_2/3_{-}10^*/3) + (D_2/3_{-}10^*/3) + (D_2/3_{-}10^*/3) + (D_2/3_{-}10^*/3_{-}10$
37118 0000	$(DZ/4.)^{(1K^{4}Z/3.10^{4}Z)}$
390U	EN1-(ED1-ED2)"(11-X1)
7700 0006	
2200	

*B

Directions For Using Program Ethane

- 1. From experimental or curvefit VLE data, determine T-Y regression data for selected range of y_1 . Five pairs of y_1 -T values are required at $y_1 = y_a$, $(y_e y_a).25$, $(y_e y_a).50$, $(y_e y_a).75$, y_e , where $y_a = 1$ ower limit of desired range and $y_e =$ the upper limit. Temperatures must be input in degrees K.
- 2. Input system pressure in Atmospheres.
- 3. Input the desired number of experimental or curvefit data pairs.
- 4. Input data pairs, one pair per line $(y_1, x_1)_p$.
- 5. Repeat for different system pressures.
- 6. To run different systems, program text must be edited to include proper component values (lines 34-115).

TYPE T-Y REGRESSION DATA: Y0, T0, Y1, T1, Y2, T2, Y3, T3, Y4, T4 =0.0 337.5 .25 324.2 .50 307.3 .75 288.6 =1.0 228.1 TYPE TOTAL PRESSURE IN ATM =6.804 TYPE NO OF Y1,X1 DATA PAIRS OF INPUT =11 • TYPE Y1,X1 PAIRS, ONE PAIR PER LINE =.100 .014 =.200 .031 =.300 .050 • =.400 .073 =.500.097 =.600.124 =.700.164 =.800 .230 =.900 .342 =.950 .478 =.990 .742

ETHANE-BUTANE BINARY SYSTEM... P= 6.8 ATM

0.342

0.478

0.742

65.0

122.0

97.3

0.900

0,950

0,990

Y1	X1	ፕለ	VM	DYDT	PHT (1)	PHI (2)
0.100	0.014	334.5	3.519	-0.189E-01	0.991E 00	0.8758 00
0.200	0.031	327.9	3.475	-0.136E-01	0.9838 00	0.870E 00
0.300	0.050	320.4	3.415	-0.135E-01	0.976E 00	0.263E 00
0.400	0.073	313.4	3,363	-0.153E-01	0.959E 00	0.857E 00
0.500	0.097	307.3	3.323	-0.171E-01	0.963E 00	0.852E 00
0.600	0.124	301.3	3,285	-0.157E-01	0.956E 00	0.849E 00
0.700	0.164	293.8	3.223	-0.109E-01	0.950E 00	0.843E 00
0.800	0.230	281.9	3.098	-0.651E-02	0.941E 00	0.831E 00
0.900	0.342	261.6	2.855	-0.385E-02	0.926E 00	0.804E CO
0.950	0.478	246.9	2.666	-0.301E-02	0.912E 00	0.777E 00
0.990	0.742	232.2	2.470	-0.249E-02	0.896E 00	0.7458 00
				IDEAL	REAL	
Y1	DLNPH	I(1)	DLNPHI(2)	(HV-H*)	(HV-H*)	FUG CONT
0.100	0.1388	E-02	0.103E-02	4015.9	4009.3	-6.6
0.200	0.9981	E-03	0.105E-02	3075.1	3076.8	1.7
0.300	0.9908	E-03	0.1038-02	3281.0	3282.8	1.8
0.400	0.107E	E-02	0.929E-03	4061.4	4052.4	-9.1
0.500	0.1111	E-02	0.773E-03	5173.4	5147.7	-25.7
0.600	0.9998	E-03	0.743E-03	5620.6	5599.5	-22.1
0.700	0.8195	E-03	0.974E-03	4769.0	4783.3	14.3
0.800	0.7618	E-03	0.137E-02	3662.5	3717.0	54.5
0.900	0.9058	E-03	0.2005-02	3247.6	3330.7	83.1
0.950	0.1108	2-02	0.257E-02	3517.5	3701.4	83.9
0.990	0.138E	2-02	0.332E-02	6679.3	6730.8	51,5
Y I	X1	DELT	'A H* 1	LAT HV		
0.100	0.014	- 5	9.4	3949.9		
0.200	0.031	-10	3.4	2973.4		
0.300	0.050	-13	0.6	3152.2		
0.400	0.073	-14	4.1	3908 .3		
0.500	0.097	-14	9.1 4	1998.6		
0.600	0.124	-14	4.1 5	5454.4		
0.700	0.164	-11	7.5	1665.8		
0.800	0.230	-5	1.7 3	3665.3		•
0.900	0.342	6	5.0	3395.7		

3395.7

3823.5

6828.1

-A7-

ETHANE-BUTANE BINARY SYSTEM... P= 13.6 ATM

•		X1	тк	VM		DYDT	PHT (1)	PHT (2)
	0.100	0.023	364.3	1.721	-0.	188E-01	0.997E 0	0.804E 00
	0.200	0.047	358.1	1.721	-0,	145E-01	0.983E 0	0 0.797E 00
	0.300	0.074	350.8	1.711	-0.	1348-01	0.9708 0	0 0.788E 00
	0.400	0.104	343.3	1.697	-0.	1328-01	0.958E C	0 0.779E 00
	0.500	0.138	335.6	1.681	-0.	126E-01	0.946E C	0.771E 00
	0.600	0.180	327.2	1.658	-0.	110E-01	0.934E C	0 0.752E 00
	0.700	0.235	316.8	1.619	-0.	8438-02	0.921E 0	0 0.7505 00
	0.800	0.315	302.7	1.549	-0.	596E-02	0.905E C	0 0.729E 00
	0.900	0.455	282.3	1.427	-0.	408E-02	0.881E 0	0 0.690E 00
	0.950	0.591	268.8	1.338	-0.	337E-02	0.853E 0	0 0.657E 00
	0.990	0.892	256.0	1.248	-0.	290E-02	0.842E 0	0 0.619E 0Q
		,				TOPAT	DEXE	
	V I	DIMDU		MOUT (2)		10040	/uv_u*	S FUC CONT
	0,100	0 2755	(1) = 0	1605-02		1250 7	(114-11	0 -22 4
	0.100	0.1065		1555-02		4200.0	9220.	-23.4
	0.200	0 1765	-02 0 -02 0	1495-02		3530 3	3515	-10.1
	0.400	0.1685	C-02 0	1415-02		3816 4	3707	6 -19.8
	0.500	0.1575	-02 0	135E-02		4098.4	4081.	0 -17.4
	0.600	0,139E	-02 0	144E - 02		4080.3	4084.	1 3.8
	0.700	0.125E	-02 0	174E - 02		3722.4	3767.	6 45.2
	0.800	0.124E	-02 0	227E-02		3288.3	3379.	9 91.6
	0.900	0.146E	-02 0.	323E-02		3184.8	3308.	9 124.1
	0.950	0.1738	-02 0.	406E-02		3657.4	3777.	3 120.0
	0.990	0.209E	-02 0.	510E-02		3740.8	3779.	2 38.4
								• .
	VI	۲۱	DELTA	u* 1	አጥ ዛህ			
	0.100	0.023	-82		1144 6			
	0.200	0.047	~151.	2	2757.8			
	0.300	0.074	-202	3	313.1			
	0.400	0.104	-236	a 7	550.7			
	0.500	0.138	-255	2	825.8			
	0.600	0.180	-253	2	830.9			
	0.700	0.235	-223.	3 3	544.3		*	
	0.800	0.315	-154.	4 3	225.5			
	0.900	0.456	-42.	5 3	266.4			
	0.950	0.591	15.	9 3	793.2			
	0.990	0.892	16.	8 3	796.0			
							•	

· ·

Yl	X 1	ТК	VM	DYDT	PHI(1)	PHI (2)
0.100	0.028	378.5	1.033	-0.239E-01	0.102E 01	0.736E 00
0.200	0.060	373.8	1.065	-0.190E-01	0.993E 00	0.730E 00
0.300	0.095	368.0	1.086	-0.160E-01	0.971E 00	0.723E 00
0.400	0.129	361.2	1.096	-0.135E-01	0.952E 00	0.715E 00
0.500	0.175	353.2	1.094	-0.113E-01	0.935E 00	0.705E 00
0.600	0.227	343.4	1.081	-0.915E-02	0.917E 00	0.692E 00
0.700	0.295	331.0	1.050	-0.717E-02	0.899E 00	0.673E 00
0.800	0.385	315.1	0.998	-0.553E-02	0.876E 00	0.643E 00
0.900	0.543	294.4	0.915	-0.423E-02	0.843E 00	0.594E 00
0.950	0.687	281.7	0.858	-0.370E-02	0.820E 00	0.558E 00
0.990	0.903	270.3	0.802	-0.333E-02	0.797E 00	0.520E 00
				IDEAL	REAL	
Y1	DLNPHI	[(l)	DLNPHI(2)	(HV-H*)	(HV-H*)	FUG CONT
0.100	0.7105	5-02	0.200E-02	5443.5	5339.0	-104.5
0.200	0.454E	E-02	0.174E-02	4505.4	4496.8	-108.6
0.300	0.332E	2-02	0.164E-02	4209.4	4116.4	-93.0
0.400	0.258E	E-02	0.164E-02	3990.5	3924.6	-65.9
0.500	0.2088	E-02	0.177E-02	3654.9	3630.5	-24.4
0.600	0.176E	2-02	0.205E-02	3330.5	3356.0	25.4

3012.4

2829.1

2889.7

3232.6

4248.9

.

-

3090**.2** 2955.6

3042.5

3366.7

4301.1

•

25.4

77.8

126.5

152.8

134.1 52.2

ETHANE-BUTANE	BINARY	SYSTEM	P=	20.4 ATM

0.250E-02

0.322E-02

0.449E-02 0.559E-02

0.690E-02

.

¥1	X1	DELTA H*	LAT HV
0.100	0.028	-90.7	5248.3
0.200	0.060	-167.3	4329.4
0.300	0.095	-229.3	3887.1
0.400	0.129	-279.0	3545.5
0.500	0.175	-300.9	3329.6
0.600	0.227	-299.0	3057.0
0.700	0.295	-263.0	2827.3
0.800	0.385	-191.0	2764.6
0.900	0.543	-30.6	2961.9
0.950	0.637	-23.5	3343.2
0.990	0.903	2.5	4303.6

0.162E-02

0.168E-02

0.201E-02

0.235E-02 0.277E-02

0.700

0.800

0.900

0.950

0.990

Yl	X1	ТК	VM	DYDT	PHI(1)	PHI (2)
.0.100	0.047	398.6	0.732	-0.135E-01	0.105E 01	0.697E 0
0.200	0.085	390.7	0.753	-0.122E-01	0.101E C1	0.683E C
0.300	0.124	382.4	0.766	-0.118E-01	0.980E 00	0.669E 0
0.400	0.166	373.8	0.775	-0.114E-01	0.953E 00	0.656E 0
0.500	0.214	364.7	0.779	-0.106E-01	0.928E 00	0.643E 0
0.600	0.270	354.7	0.775	-0.925E-02	0.905E 00	0.629E 0
0.700	0.340	342.7	0.761	-0.750E-02	0.881E 00	0.610E 0
0.800	0.440	327.5	0.729	-0.576E-02	0.854E 00	0.579E 0
0.900	0.605	307.3	0.670	-0.429E-02	0.817E 00	0.528E 0
0. 950	0.737	294.7	0.625	-0.369E-02	0.791E 00	0.489E 0
0.990	0.925	283.2	0.578	-0.327E-02	0.763E 00	0.446E 0
						•
				IDEAL	REAL	
¥1	DLNPHI	[(1) D	LNPHI(2)	(HV-H*)	(HV-H*)	FUG CONT
0.100	0.5418	5-02 0.	,275E-02	2506.0	2451.6	-44.
0.200	0.4068	C-02 0.	,252E-02	2646.1	2592.8	-53.
0.300	0.3498	-02 0.	,2348-02	2866.7	2807.8	-58.
0.400	0.309E	02 0.	,219E-02	3081.1	3022.4	-58.
0.500	0.2/16	-02 0.	,21/E-02	3207.3	3165.5	-40.
0.000	0.2346	-02 0	2308-02	31/8.4	3181.7	3.
0.700	0.2096	-02 0.	2906-02	3001.3	3068.9	67.
0.000	0.2076	-02 0.	5468-02	2/01.0	2094.3	133.
0.950	0.2900	-02 0. -02 0	6955-02	2030.0	2008.0	109.
0.990	0.334E	-02 0.	893E-02	3417.2	3475.1	57.
				•		
Y1	X1	DELTA	H* LA	THV		•
0.100	0.04/	-81.	5 23	80.1		
0.200	0.086	-162.	/ 24	30.2		
0.300	0.124	-230.	9 25	/6.9		
0.400	0.166	-279.	1, 27	42.1		
0.500	0.214	-307.	4 28	59.1		
0.000	0.270	-311.	1 28	/0.0		
0.700	0.340	-285.	4 27	5.4 7.0		
0.800	0.440	-218.	3 20	13.9		
0.900	0.005	-109.	3 26	98.8 F7 A		
0.950	0.131	-48.	9 29	5/.4 ro.5		
0.990	0.923	-0.	o 34	00.5		

ETHANE-BUTANE BINARY SYSTEM... P= 27.2 ATM

Y1 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990	X1 0.059 0.106 0.153 0.201 0.256 0.319 0.400 0.505 0.662 0.793 0.945	TK 409.3 401.1 392.3 383.1 373.4 362.7 350.2 334.9 315.4 303.4 292.7	VM 0.475 0.525 0.551 0.568 0.578 0.580 0.580 0.572 0.549 0.504 0.468 0.430	-0. -0. -0. -0. -0. -0. -0. -0.	DYDT 129E-01 117E-01 111E-01 106E-01 987E-02 874E-02 731E-02 582E-02 5582E-02 393E-02 352E-02	PHI(1) 0.114E 01 0.105E 01 0.951E 00 0.925E 00 0.896E 00 0.833E 00 0.833E 00 0.790E 00 0.761E 00 0.732E 00	PHI(2) 0.645E 00 0.629E 00 0.599E 00 0.585E 00 0.568E 00 0.546E 00 0.513E 00 0.460E 00 0.420E 00 0.377E 00
Y1 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990	DLNPHI 0.139E 0.682E 0.501E 0.344E 0.292E 0.250E 0.255E 0.291E 0.337E 0.402E	(1) -01 -02 -02 -02 -02 -02 -02 -02 -02 -02 -02	DLNPHI(2) 0.304E-02 0.286E-02 0.255E-02 0.255E-02 0.257E-02 0.351E-02 0.464E-02 0.675E-02 0.875E-02 0.117E-01		IDEAL (HV-H*) 1959.0 2195.7 2376.7 2566.1 2670.1 2675.8 2545.6 2393.2 2349.6 2374.7 2722.8	REAL (HV-H*) 1810.2 2076.8 2271.6 2476.4 2612.3 2672.2 2612.5 2530.8 2530.8 2530.2 2529.3 2781.3	FUG CONT -148.8 -118.9 -105.1 -89.7 -57.8 -3.6 66.9 137.5 180.6 154.5 58.6
Y1 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 0.950 0.990	X1 0.059 0.106 0.153 0.201 0.256 0.319 0.400 0.505 0.662 0.793 0.945	DELT -6 -14 -21 -26 -29 -29 -29 -20 -11 -5	A H* 9.3 7.9 3.1 3.1 0.5 4.6 6.3 5.5 0.1 1.2 9.3	LAT HV 1740.9 1928.9 2059.5 2213.2 2321.9 2377.5 2346.2 2325.3 2420.1 2478.0 2772.0			

ETHANE-BUTANE BINARY SYSTEM... P= 34.0 ATM

¥

20C	
21C	CARBON DIOXIDE- PROPANE BINARY SYSTEM : ASSIGNED BINARY DATA
220	
230	TC= CRITICAL TEMP IN DEG K
240	PC= CRITICAL PRES IN ATM
250	V_{-} CRITICAL VOL IN LITERS
200	VC CHITICAL VOL IN BILLERS O OF CA OFCA DECK CONTACT A DARMETER (DECKIGATE CONTACT
200	W- ACCENTRIC PLOTON WE NOT WE PARAMETERS (PRAUSNILZ& CHUEH)
270	CD- SPECIFIC PROOF, WM- MOL. MI, SPE BOILING PI IN DEG K
200	UP UP UP UP UP CP UP PC COPPOSITION
290	nA, nD, nC, nD= VAPOR SP. NI. REG. CUEFFICIENTS
300	NV- LATENT HEAT OF VAPORIZATION AT BP IN CAL/GM MOLE
310	
34	
30	
35	
40	PC1=72.9
45	PC2=42.0
50	VC1=.094
55	VC2=.1995
60	OMEGA 1=0.447
65	OMEGA2=0.438
70	OMEGE1=0.0911
75	OMEGB2=0.0889
80	W1=.225
85	W2=.152
90	C12=0.11
100	HA1=5.316
101	HB1=1.4285E-2
102	HC1=8362E-5
103	HD1=1.784E-9
104	HA2=-0.966
105	HB2=7.279E-2
106	HC2=-3.755E-5
107	HD2=7.58E-9
108	WM1=44.01
109	BP1=194.7
110	CP1=.55
111	HV1=6030
112	WM2=44.09
113	BP2=298.16
114	CP2=.55
115	HV2=3605
116	TR11=BP1/TC1
117	TR21=BP2/TC2
165 301	CONTINUE

*In addition to physical property changes, this program revision includes an extrapolation of the published pure component latent heats using Watson's correlation.

-A12-

¥1	X 1	тк	VM	DYDT	PHI(1)	PHI (2)
0.300	0.100	340.1	0.552	-0.154E-01	0.995E 00	0.667E 00
0.514	0.200	323.5	0.561	-0.105E-01	0.918E 00	0.651E 00
0.640	0.300	310.0	0.542	-0.849E-02	0.878E 00	0.635E 00
0.731	0.400	298.9	0.520	-0.804E-02	0.848E CO	0.620E 00
0.795	0.500	291.0	0.502	-0.827E-02	0.827E 00	0.610E 00
0.850	0.600	234.6	0.488	-0.905E-02	0.810E 00	0.604E 00
0.900	0.700	279.5	0.477	-0.106E-01	0.796E 00	0.6022 00
0.935	0.800	276.4	0.471	-0.128E-01	0.788E CO	0.604E 00
0.960	0.900	274.7	0.468	-0.156E-01	0.783E 00	0.607E 00
0.980	0.950	273.5	0.458	-0.194E-01	0.780E 00	0.611E 00
				TDFAL	DEVI	
Y)	DLNPH	(1) D	LNPHT (2)	(HV-H*)	(HV-H*)	FUG CONT
0.300	0.6728	-02 0	.139E-02	3377.7	3133.0	-244.7
0.514	0.363E	-02 0	.168E-02	2732.5	2605.0	-127.5
0.640	0.3095	-02 0	.206E-02	2392.6	2325.9	-65.7
0.731	0.3108	-02 0	.212E-02	2401.1	2343.4	-57.7
0.795	0.3238	-02 0	.186E-02	2520.3	2452.7	-67.6
0.850	0.337E	-02 0	.121E-02	2856.1	2769.2	-86.8
0.900	0.348E	-02 -0	.126E-03	3664.6	3552.6	-112.0
0.935	0.351E	-02 -0	.197E-02	4316.8	4204.6	-112.2
0.960	0.346E	-02 -0	428E-02	3645.6	3576.0	-69.6
0.980	0.336E	-02 -0	.740E-02	4413.2	4365.3	-47.9
				WATE		R CONR
V 1	¥1	DELTA	11* T	ארואד איז איז די איז די	אט מסמים כר	E COMP
0.300	0.100	-175	7 20	156.3	0. 2584	7
0.514	0.200	-224	.8 2	380.1	0. 3054	.7
0.640	0.300	-199.	.7 21	26.2	0. 3366	.5
0.731	0.400	-161	4 21	182.0 190	0.5 3590	.9
0.795	0,500	-123	.8 2	328.9 269	98.5 3737	.5
0.850	0,600	-91	7 26	577.5 31	35.8 3849	.7
0.900	0.700	-65.	1 34	187.5 343	26.3 3936	.2
0.935	0.800	-40	7 41	63.8 35	79.8 3985	.7
0.950	0.900	-17.	3 35	58.7 360	5.6 4014	. 4
0.980	0.950	-8.	4 43	356.9 371	9.6 4032	.9

CO2- PROPANE BINARY SYSTEM... P= 33.9 ATM

Y1	X1	тк	VM	Ľ	YDT	PHI(1)	PHI (2)	
0.255	0.100	351.3	0.423	-0.1	27E-01	0.104E	01	0.630E	00
0.455	0.200	334.9	0.442	-0.1	116-01	0.936E	00	0.611E	00
0.603	0.300	320.3	0.434	-0.9	33E-02	0.878E	00	0.594E	00
0.703	0.400	309.2	0.420	-0.8	80E-02	0.8428	00	0.5808	00
0.770	0.500	301.6	0.408	-0.8	862-02	3818.0	00	0.5728	00
0.825	0.000	295.5	0.395	-0.9	015 01	0.7998	00	0.5976	00
0.077	0.700	290.1	0.320	-0.1	185-01	0.7625	00	0.5662	00
0.950	0.900	282.8	0.300	-0.1	365-01	0.7605	00	0.5695	00
0.980	0.950	281.4	0.375	-0.1	53E-01	0.756E	00	0.572E	00
					IDEAL	RE	AL .		
Y1	DLNPHI	(1) DI	NPHI(2)		(HV-H*)	(HV-1	1*)	FUG CON	T
0.255	0.7668	C-02 0.	228E-02		2544.3	233	9.8	-20/	1.6
0.455	0.4958	C-02 0.	182E-02		2543.5	235	5.4	-178	3.1
0.603	0.393E	C-02 0.	203E-02		2407.2	229	0.0	-117	7.3
0.703	0.376E	-02 0.	202E-02		2424.6	232	1.4	-100	0.2
0.770	0.3805	C-02 0.	177E-02		2440.4	234	1.2	-99	3.2
0.825	0.3886	-02 0.	1256-02		2505.4	240	2.7	-102	2.6
0.877	0.3956	-02 0.	2798-03		2//0.3	265		~108	5.0
0.930	0.3956	-02 -0.	1036-02		3822.2	3707	1.9	-117	1.2
0.000	0.3765	-02 -0.	5305-02		3307.9	229	5 6	- / (
0.900	0.5700	-02 -0.	3306-02		5070.4			- 4 2	c. 0
					WATKIN	S EST FOR	R PURE	COMP	
Y1	X1	DELTA	H* L.	AT HV	CO	2 PROI	PANE		
0.255	0.100	-155.	5 2	184.3		0.	2162.1	i ,	
0.455	0.200	-211.	6 2	153.7	4	D.	2745.7	1	
0.603	0.300	-207.	3 2	082.6	(Ο.	3134.5	ذ	
0.703	0.400	-175.	6 2	148.8	(D.	3384.0	1	
0.770	0.500	-137.	92	203.3	146	4.7	3539.3	6	
0.825	0,600	-103.	0 2	299.8	2300	5.8	3655.8	ł	
0.877	0.700	-72.	9 2	594.8	2769	9.4	3754.2	?	
0.930	0.800	-48.	3 3	555.6	3099	9.9	3839.7		
0.960	0.900	-21.	1 3	275.6	324	1.9	3880.2	!	
0.980	0.950	-10.	2 3	625.4	3320	J.6	3903.7		

CO2- PROPANE BINARY SYSTEM... P= 40.8 ATM

Yl	X1	ТК	VM	DY	2D T	PHI (L) I	2HI (2)	
0.380	0.200	347.1	0.348	-0.11	4E-01	0.980E	00	0.576E	00
0.540	0.300	331.9	0.353	-0.97	7E-02	0.893E	00	0.557E	00
0.660	0.400	319.1	0.344	-0.90)4E-02	0.845E	00	0.5418	00
0.728	0.500	311.5	0.335	-0.89	9E-02	0.817E	00	0.532E	00
0.795	0.600	304.1	0.325	-0.93	30E-02	0.791E	00	0.5255	00
0.852	0.700	298.2	0.316	-0.99	9E-02	0.769E	00	0.521E	00
0.902	0.800	293.4	0.309	-0.11	1E-01	0.753E	00	0.521E	00
0.950	0.900	289.4	0.304	-0.13	2E-01	0.739E	00	0.526E	00
					IDEAL	RE7	L		
Y1	DLNPHI	(1) DLN	VPHI(2)	(HV-H*)	(HV-H	*)	FUG CON	łT
0.380	0.697E-	02 0.2	208E-02	2	085.1	1874	.1	-211	1.0
0.540	0.499E-	02 0.2	223E-02	2	065.7	1920	.6	-145	5.1
0.660	0.450E-	02 0.2	228E-02	2	119.6	2003	.1	-116	5.5
0.728	0.446E-	02 0.2	21CE-02	1	996.0	1892	.5	-107	3.5
0.795	0.452E-	02 0.1	L59E-02	2	045.3	1940	.1	-105	5.2
0.852	0.460E-	02 0.0	534E-03	2	127.7	2021	.1	-106	5.6
0.902	0.464E-	02 -0.9	26E-03	2	199.9	2102	.9	-97	1.1
0.950	0.455E-	02 -0.3	864E-02	2	307.8	2239	.7	-68	1.2
					WARKTHO		DUDD	0.000	
V 1	V 1	DELTA D	14 T	N 11 11 1	WATKINS	LST FUR	PURE	COMP	
0 200	0 200		1" L		02	PROP	ANE ADDE A		
0.500	0.200	-1/2.4		701.8	0.		2335.8		
0.540	0.300	-191.8		128.8	υ.		2833.1		
0.550	0.400	-1/4.8	1	828.3	υ.		3163.6		
0.728	0.500	-137.0	· 1	755.4	0.	-	3334.5		
0.795	0.600	-104.1	1	835.9	355.	3	3488.0		
0.852	0.700	-73.2	1	948.0	2000.	2	3504 .3		
0.902	0.800	-44.9	2	058.0	2497.	4	3693 .3		
0.950	0.900	-20.3	2	219.3	2815.	4	3765 .3		

ā.

CO2- PROPANE BINARY SYSTEM... P= 47.6 ATM

C02	2- 3	PROPANE	BINARY	SYSTEM	P=	54.3	ATM

	Y1	X1	тĸ	VM		DYDT		PHT	11	PHT (2)	
	0.483	0.300	339.9	0.278	-0.	102E-0	01 0.	928E	00	0.514E	00
	0.600	0.400	328.5	0.277	-0.	955E-(0.	865E	00	0.500E	00
	0.680	0.500	320.1	0.272	-0.	9478-0	2 0	825E	00	0.490E	00
	0.752	0.600	312.5	0.265	-0.	973E-0	0.	791E	00	0.4828	00
	0.820	0.700	305.8	0.258	-0.	104E-0	01 0.	763E	00	0.478E	00
	0.883	0.800	300.0	0.251	-0.	116E-0	01 0.	739E	00	0.479E	00
	0.940	0.900	295.4	0.246	-0.	136E-C	01 0.	720E	00	0.485E	00
	0.968	0.950	293.5	0.244	-0.	152E-C)1 0.	713E	00	0.491E	00
			•								
						IDEA	L	REA	L		
	YI YI	DLNPHI (1) DLN	PHI(2)			(*)	(HV-B	1*)	FUG CON	TV
	0.488	0.677E-	02 0.2	398-02		1760.	/ /	15/1	• 5	-189	9.2
	0.600	0.5/56-	02 0.2	48E-02		1706.	5	1500	.9	-14(1.5
	0.080	0.5516-	02 0.2	2/E-UZ		1594.	5	14/5		-118	3.6
	0.752	0.5476-	02 0.1	736-02		1539.	,	1425	· · 1	-110).0
	0.820	0.5526-		355-03		1570.	1	1461		-108	5.8
	0.003	0,5522-		525-02		1605.	0	1504	. 5	-101	
	0.940	0.5305-	02 - 0.4	110 02		16/1.	4	1002	. 4	-05	.0
	0.963	0.5186-	02 -0.7	116-02		1506.	9	1469	•••	-31	• 9
						WAT	KINS ES	T FOR	PURE	COMP	
	Yl	X1	DELTA H	*	сат ку	1	C02	PROP	ANE		
	0.488	0.300	-165.8		1405.8		0.		2590.1		
	0.600	0.400	-153.0		1412.9		Ο.		2926.5	5	
	0.680	0.500	-122.8		1353.1		0.		3139.7	7	
	0.752	0.600	-92.8		1336.3		0.		3311.7	7	
	0.820	0.700	-65.8		1395.4		0.		3455.2	?	
	0.883	0.800	-41.3		1523.3		1748.9		3569.9	1	
•	0.940	0.900	-18.3		1584.1		2312.0		3656.8	8	
	0.968	0.950	-7.9		1461.1		2495.5		3692.9	1	
										· ·	

Program Revised for the Carbon Dioxide- Hydrogen Sulfide System

20C CARBON DIOXIDE- HYDROGEN SULFIDE BINARY SYSTEM : ASSIGNED BINARY DATA. 21C 22C 23C TC= CRITICAL TEMP IN DEG K 24C PC= CRITICAL PRES IN ATM 25C VC= CRITICAL VOL IN LITERS 25C CMEGA, CMECB, C12= BINARY INTERACTION PARAMETERS (PRAUSNITZ& CHUEH) 27C W= ACCENTRIC FACTOR, WM= MOL. WT., BP= BOILING PT IN DEG K CP= SPECIFIC HT OF LIQ IN CAL/GM DEG C 28C HA, HB, HC, HD= VAPOR SP. HT. REG. COEFFICIENTS 29C 30C HV= LATENT HEAT OF VAPORIZATION AT BP IN CAL/GM MOLE 31C 34 TC1=304.2 35 TC2=374.0 40 PC1=72.9 PC2=88.9 45 50 VC]=.094 VC2=.09083 55 OHECA1=0.447 60 65 OMEGA2=0.434 70 OMEGB1=0.0911 75 OMEGB2=0.0882 28 W1=.225 85 W2=.1 C12=0.08 90 100 ΗΛ1=5.316 HB1=1.4235E-2 101 HC1=-.8362E-5 102 103 HD1=1.784E-9 HA2=7.070 104 105 HB2=.3128E-2 HC2=.1354E-5 105 107 HD2=-.7867E-9 108 WM1=44.01 BP1=194.7 109 CP1=.55 110 HV1=5030 111 112 WM2=34.08 113 BP2=212.9 114 CP2=.55 HV2=0463 115

Y1 0.131 0.240 0.341 0.441 0.531 0.665 0.715 0.785 0.810 0.889	X1 0.020 0.052 0.142 0.211 0.331 0.431 0.618 0.669 0.748 0.836	TK 293.3 288.3 283.4 278.2 273.3 265.8 263.2 259.8 258.7 257.5 255.8	VM 1.007 0.992 0.977 0.957 0.937 0.904 0.891 0.874 0.858 0.853	DYD' -0.215H -0.213H -0.200H -0.187H -0.179H -0.179H -0.184H -0.194H -0.221H -0.237H -0.237H -0.265H -0.346H	$ \begin{bmatrix} F \\ F - 01 \\ $	PHI(1) 0.934E 00 0.920E 00 0.907E 00 0.894E 00 0.833E 00 0.865E 00 0.865E 00 0.850E 00 0.850E 00 0.850E 00 0.850E 00 0.847E 00 0.844E 00	PHI(2) 0.848E 0 0.843E 0 0.839E 0 0.835E 0 0.832E 0 0.828E 0 0.828E 0 0.828E 0 0.828E 0 0.829E 0 0.829E 0 0.830E 0 0.833E 0	000000000000000000000000000000000000000
Y1 C.131 C.240 O.341 C.441 C.531 O.665 O.715 O.785 C.810 O.340 O.889	DLNPHI 0.309E 0.298E 0.279E 0.265E 0.258E 0.258E 0.261E 0.265E 0.266E 0.268E 0.269E	$\begin{array}{c} (1) & DI \\ -02 & 0 \\ -02 & 0 \\ -02 & 0 \\ -02 & 0 \\ -02 & 0 \\ -02 & 0 \\ -02 & 0 \\ -02 & 0 \\ -02 & -0 \\ -02 & -0 \\ -02 & -0 \\ -02 & -0 \\ -02 & -0 \\ -02 & -0 \\ -02 & -0 \end{array}$	ENPHI (2) 134E-02 113E-02 981E-03 852E-03 714E-03 337E-03 775E-04 526E-03 858E-03 140E-02 290E-02	10 (HV 360 353 348 341 387 371 293 289 239 239 241	DEAL 7-H*) 06.4 81.2 88.5 82.5 88.9 91.6 2.0 61.3 91.6 90.6 8.8	REAL (HV-II*) 3573.2 3574.0 3466.5 3400.0 3330.3 3766.3 3613.2 2860.3 2825.6 2341.3 2380.2	FUG CONT -33. -57. -72. -83. -105. -98.8 -71.0 -65.9 -49. -38.9	22066380935
Y1 0.131 C.240 C.341 C.531 C.665 C.715 C.785 C.810 C.840 C.839	X] 0.020 0.052 0.092 0.142 0.211 0.331 0.431 0.618 0.669 0.748 0.836	DELTA -12: -21. -29. -36. -40. -43. -37. -22. -18. -12. -7.	H* L7 7 35 5 33 1 32 3 35 2 28 9 28 4 23 2 23	W 560.8 552.4 137.0 363.4 290.2 723.0 575.9 138.1 206.8 328.9 173.1	ATKINS E CO2 2509. 2899. 3411. 3729. 4049. 4153. 4281. 4321. 4363. 4421.	EST FOR PURE H2S 3432. 3512. 3586. 3663. 3733. 3636. 3872. 3917. 3931. 3946. 3967.	CCMP MIX 3365. 3457. 3587. 3731. 3977. 4073. 4203. 4247. 4297. 4371.	

CO2- HYDROGEN SULFIDE BINARY SYSTEM... P= 20.0 ATM

¥1	X1	тк	VM		DYDT	PHI(1)	PHI (2)
0.056	5 0.010	312.5	0.660	-0.	250E-01	0.934E 00	0.809E 00
0.169	0.042	307.7	0.657	-0.	222E-01	0.913E 00	0.802E 00
0.251	0.077	303.4	0.650	-0.	199E-01	0.897E 00	0.797E 00
0.353	0,122	298.5	0.640	-0.	180E-01	0.881E 00	0.792E 00
0.44	5 0,179	293.2	0.627	-0-	169E - 01	0.865E CO	0.786E 00
0.531	0.251	288.0	0.613	-0.	165E-01	0.850E 00	0.782E 00
0.611	0.349	283.2	0.593	-0-	170E-01	0.837E 00	0.779E 00
0.698	0.484	278.3	0.581	-0.	182E-01	0.823E 00	0.777E 00
0.803	0.684	273.2	0.563	-0.	260E-01	0.808E 00	0.779E 00
0.837	0.732	272.2	0.559	-0.	303E-01	0.805E 00	0.7818 00
0.866	0.793	271.3	0.556	-0.	374E-01	0.802E 00	0.784E 00
••••							
					IDEAL	REAL	
Y1	DLNPH	I(1) DI	LNPHI(2)		(HV-H*)	(HV-II*)	FUG CONT
0.05	0.510	E-02 0.	.1908-02		4221.9	4193.4	-28.6
0.169	0.4351	E-02 0.	159E-02		3780.2	3714.3	-66.0
0.251	0.285	ε-02.0.	142E-02		3467.3	3385.3	-82.0
0.353	0.3541	E-02 0.	.130E-C2		3230.2	3138.5	-91.7
0.445	0.3381	E-02 0.	.117E-02		3107.0	3006.7	-100.3
0.531	0.3341	E-02 0.	.995E-03		3063.4	2955.1	-108.3
0.611	0.3388	E-02 0.	7105-03		2983.5	2871.9	-111.6
0.693	0.3488	E-02 0.	118E-03		2939.4	2828.6	-110.8
0.808	0,3676	E-02 -0.	177E-02		3082.0	2981.8	-100.1
0.837	0.373E	E-02 -0.	284E-02		3435.2	3333.5	-101.6
0.856	0.3318	E-02 -0.	455E-02		3440.1	3350.9	-89.2
					WATKINS	EST FOR PURE	COMP
Y 1	X1	DELTA	H* L	λτ Ην	C02	H2S	MIX
0.056	0.010	-4.	4 4	188.9	0.	. 3095.	2922.
0.169	0.042	-12.	7 3	701.5	0.	. 3184.	2646.
0.261	0.077	-19.	1 3	355.2	952.	3263.	2660.
0.353	0.122	-24.	9 · 3	113.7	1964.	. 3347.	2353.
0.445	0.179	-29.	7 2	977.0	2519.	. 3434.	3027.
0.531	0.251	-32.	3 2	922.8	2915.	3516.	3197.
C.611	0.349	-31.	1 2	840.8	3218.	3589.	3362.
0.698	0.484	-26.	1 2	802.4	3485.	3661.	3539.
0.808	0.684	-15.	5 2	965.3	3733.	3735.	3733.
0.837	0.732	-13.	2 3	320.3	3780.	3749.	3775.
0.865	0.793	-9.	2 3	341.6	3819.	3761.	3811.

CO2- HYDROGEN SULFIDE BINARY SYSTEM... P= 30.0 ATM

Y1	XI	TK	VM .	DYDT	PHI(1)	PHI (2)	
0.124	0.035	322.9	0.479	-0.210E-01	0.914E 00	0.768E 00	
0.216	0.074	318.2	0.476	-0.185E-01	0.893E 00	0.761E 00	
0.300	0.117	313.4	0.470	-0.171E-01	0.874E 00	0.755E 00	
0.382	0.168	303.5	0.462	-0.163E-01	0.856E 00	0.749E CO	
0.467	0.232	303.3	0.452	-0.1602-01	0.837E 00	0.743E 00	
0.546	0.313	298.3	0.441	-0.163E-01	0.821E 00	0.738E 00	
0.630	0.420	293.3	0.428	-0.171E-01	0.803E 00	0.735E 00	
0,720	0.563	288.3	0.414	-0.193E-01	0.786E 00	0.733E 00	
0.835	0.756	283.0	0.398	-0.258E-01	0.768E 00	0.738E 00	
0.852	0.797	282.1	0.394	-0.288E-01	0.765E 00	0.740E 00	
0.899	0.852	280.9	0.390	-0.349E-01	0.761E 00	0.745E 00	
0.942	0.916	279.8	0.386	-0.482E-01	0.757E 00	0.751E 00	
				TOFAL	REAL		
¥1	DLNPHT	(1) DL	NPHT (2)	(HV-H*)	(111-11+)	FUG CONT	
0.124	0.5498-	-02 0.	2035-02	3550 1	3497 3	-62 Q	
0.216	0.474E-	-02 0.	188E-02	3127 2	30/5 7	-81 5	
0.300	0.435E-	-02 0.	174E-02	2014 2	2820 7	-93 5 .	
0.382	0.417E-	-02 0.	1605-02	2799.7	2695.5	-104.2	
0.457	0.411E-	-02 0.	141E-02	2765.3	2649.2	-116-1	
0.546	0.414E-	-02 '0.	114E-02	2701.8	2578.2	-123.6	
0.630	0.423E-	-02 0.	680E-03	2640.7	2513.2	-127.5	
0.720	0.436E-	02 -0.	199E-03	2478.3	2360.0	-118.4	
0.835	0.450E-	-02 -0.	270E-02	2359.1	2268.5	-90.6	
0.862	0.451E-	02 -0.	380E-02	2489.0	2403.7	-85.3	
0.899	0.448E-	02 -0.	599E-02	2832.1	2754.9	-77.2	
0.942	0.436E-	020.	107E-01	3569.0	3508.3	-60.7	
				WATKING	FOT FOD DID	COMP	
Y1	XI	DELTA	H* LA'		1125	MTY	
0.124	0.035	-7.	7 349	39.5 0	2886	2528	
0.216	0.074	-12.0	9 30	32.8 0	2984	2339.	
0.300	0.117	-17.	d · 28(13.3 0	3077	2154	
0.382	0.168	-21.	3 26	14.2 0	3170.	1059	
0.467	0.232	-24.	1 262	24.8 990	. 3264.	2202	
0.546	0.313	-25.	259	3.1 1981	. 3349.	2602.	
0.630	0.420	-23.4	1 248	9.8 2500	3432	2851.	
0.720	0.563	-18.1	1 234	1.9 2895	3511	3068.	
0.235	0.756	-9.4	225	9.1 3228	. 3592-	3288	
0.862	0.797	-7.8	2 2 3 9	5.9 3285	. 3606.	3329-	
0.899	0.852	-5.7	7 274	9.2 3350	. 3624.	3378	
0.942	0.916	-3.1	1 350	5.2 3407	. 3639.	3421.	
						· -	

CO2- HYDROGEN SULFIDE BINARY SYSTEM... P= 40.0 ATM

Y1 0.045 0.132 0.216 0.295 0.374 0.455 0.534 0.614 0.701 0.811 0.908 0.950	X1 0.010 0.048 0.089 0.135 0.190 0.255 0.336 0.438 0.572 0.739 0.874 0.932	TK 337.4 333.0 328.2 323.4 318.4 313.2 308.2 303.3 298.4 293.2 289.8 288.8	VM 0.365 0.367 0.365 0.360 0.354 0.354 0.326 0.314 0.300 0.288 0.283	-0.2 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.3 -0.4	PYDT 212E-01 85E-01 60E-01 55E-01 55E-01 59E-01 69E-01 89E-01 89E-01 64E-01 91E-01	PHI(1) 0.937E 00 0.909E 00 0.853E 00 0.853E 00 0.820E 00 0.800E 00 0.781E 00 0.761E 00 0.740E 00 0.727E 00 0.723E 00	PHI(2) 0.743E 00 0.735E 00 0.726E 00 0.719E 00 0.705E 00 0.699E 00 0.695E 00 0.695E 00 0.693E 00 0.693E 00 0.709E 00 0.717E 00
Y1 0.045 0.132 0.216 0.295 0.374 0.455 0.534 0.614 0.701 0.811 0.903 0.950	DLNPHI 0.763E 0.618E 0.544E 0.508E 0.491E 0.483E 0.495E 0.508E 0.526E 0.547E 0.545E 0.525E	$\begin{array}{c} (1) & 1 \\ -02 & 0 \\ -02 & 0 \\ -02 & 0 \\ -02 & 0 \\ -02 & 0 \\ -02 & 0 \\ -02 & -0 \\ -02 & -0 \\ -02 & -0 \\ -02 & -0 \\ -02 & -0 \end{array}$	DLNPHI(2) 0.279E-02 0.247E-02 0.227E-02 0.212E-02 0.196E-02 0.174E-02 0.141E-02 0.879E-03 0.106E-03 0.267E-02 0.847E-02 0.144E-01		IDEAL (HV-H*) 3911.4 2990.9 2714.4 2558.8 2462.9 2441.1 2394.1 2295.6 2060.6 1944.0 2475.3 3085.8	REAL (HV-H*) 3873.0 2922.3 2628.2 2460.4 2353.4 2318.4 2261.8 2161.5 1938.0 1843.9 2396.2 3027.4	FUG CONT -38.3 -68.7 -86.2 -98.4 -109.6 -122.7 -132.2 -135.1 -122.5 -100.1 -79.0 -58.5
Y1 0.045 0.132 0.216 0.295 0.374 0.455 0.534 0.614 0.701 0.811 0.903 0.950	X1 0.010 0.048 0.089 0.135 0.190 0.255 0.336 0.436 0.572 0.739 0.874 0.932	DELTA -2 -6 -10 -13 -16 -19 -19 -19 -18 -13 -8 -3 -2	H* L .6 3 .5 2 .4 2 .8 2 .7 2 .1 2 .8 2 .3 2 .9 1 .0 1 .9 2 .1 3	AT HV 870.5 915.8 617.8 446.6 336.6 299.3 242.1 143.2 942.1 143.2 9392.4 025.3	WATKING CO2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	EST FOR PURE H2S 2541. 2653. 2766. 2874. 2979. 3082. 3177. 3264. 2348. 3434. 3488. 3503.	CCMP MIX 2303. 2169. 2025. 1865. 1680. 1490. 1865. 2387. 2694. 2853. 2894.

CO2- HYDROGEN SULFIDE BINARY SYSTEM... P= 50.0 ATM

Y1 X1 TK VM DYDT PHI (1 0.035 0.009 347.5 0.284 -0.180E-01 0.953E 0.122 0.050 342.4 0.287 -0.166E-01 0.916E 0.194 0.092 338.0 0.285 -0.159E-01 0.889E 0.271 0.137 333.0 0.284 -0.154E-01 0.863E 0.345 0.190 328.2 0.279 -0.151E-01 0.838E 0.423 0.256 323.0 0.273 -0.152E-01 0.814E 0.496 0.330 318.3 0.266 -0.155E-01 0.792E 0.593 0.425 312.8 0.257 -0.164E-01 0.767E	<pre>) PHI(2) 00 0.716E 00 00 0.705E C0 00 0.695E 00 00 0.679E 00 00 0.679E 00 00 0.655E 00 00 0.655E 00 00 0.655E 00 00 0.657E 00 00 0.673E 00 00 0.681E 00</pre>
0.035 0.009 347.5 0.284 -0.180E-01 0.953E 0.122 0.050 342.4 0.287 -0.166E-01 0.916E 0.194 0.092 38.0 0.286 -0.159E-01 0.889E 0.271 0.137 33.0 0.284 -0.154E-01 0.863E 0.345 0.190 328.2 0.279 -0.151E-01 0.838E 0.423 0.256 323.0 0.273 -0.152E-01 0.814E 0.496 0.330 318.3 0.266 -0.155E-01 0.792E 0.533 0.425 312.8 0.257 -0.164E-01 0.767E	00 0.716E 00 00 0.705E 00 00 0.695E 00 00 0.695E 00 00 0.679E 00 00 0.679E 00 00 0.671E 00 00 0.655E 00 00 0.657E 00
0.122 0.050 342.4 0.287 -0.166E-01 0.916E 0.194 0.092 338.0 0.285 -0.159E-01 0.889E 0.271 0.137 333.0 0.284 -0.154E-01 0.863E 0.345 0.190 328.2 0.279 -0.151E-01 0.838E 0.423 0.256 323.0 0.273 -0.152E-01 0.814E 0.496 0.330 318.3 0.266 -0.155E-01 0.792E 0.533 0.425 312.8 0.257 -0.164E-01 0.767E	00 0.705E CO 00 0.695E 00 00 0.637E 00 00 0.679E 00 00 0.671E 00 00 0.655E CO 00 0.655E 00 00 0.657E 00 00 0.673E 00 00 0.681E 00
0.194 0.092 338.0 0.285 -0.159E-01 0.889E 0.271 0.137 333.0 0.284 -0.154E-01 0.863E 0.345 0.190 328.2 0.279 -0.151E-01 0.838E 0.423 0.256 323.0 0.273 -0.152E-01 0.814E 0.496 0.330 318.3 0.266 -0.155E-01 0.792E 0.593 0.425 312.8 0.257 -0.164E-01 0.767E	0 0.695E 00 00 0.637E 00 00 0.679E 00 00 0.671E 00 00 0.655E 00 00 0.657E 00 00 0.657E 00 00 0.673E 00 00 0.681E 00
0.271 0.137 333.0 0.284 -0.154E-01 0.863E 0.345 0.190 328.2 0.279 -0.151E-01 0.838E 0.423 0.256 323.0 0.273 -0.152E-01 0.814E 0.496 0.330 318.3 0.266 -0.155E-01 0.792E 0.533 0.425 312.8 0.257 -0.164E-01 0.767E	C0 C.687E 00 00 0.679E 00 00 0.671E 00 00 0.655E 00 00 0.657E 00 00 0.657E 00 00 0.673E 00 00 0.681E 00
0.345 0.190 328.2 0.279 -0.151E-01 0.838E 0.423 0.256 323.0 0.273 -0.152E-01 0.814E 0.496 0.330 318.3 0.266 -0.155E-01 0.792E 0.533 0.425 312.8 0.257 -0.164E-01 0.767E 0.662 0.540 308.2 0.257 -0.164E-01 0.767E	00 0.679E 00 00 0.671E 00 00 0.655E 00 00 0.659E 00 00 0.655E 00 00 0.655E 00 00 0.657E 00 00 0.673E 00 00 0.681E 00
0.423 0.256 323.0 0.273 -0.152E-01 0.814E 0.496 0.330 318.3 0.266 -0.155E-01 0.792E 0.533 0.425 312.8 0.257 -0.164E-01 0.767E 0.662 0.540 208 2	00 0.671E 00 00 0.655E 00 00 0.655E 00 00 0.655E 00 00 0.655E 00 00 0.657E 00 00 0.673E 00 00 0.681E 00
0.496 0.330 318.3 0.266 -0.155E-01 0.792E 0.583 0.425 312.8 0.257 -0.164E-01 0.767E 0.662 0.540 208 2 0.257 -0.164E-01 0.767E	00 0.655E C0 00 0.659E 00 00 0.655E 00 00 0.657E 00 00 0.673E 00 00 0.681E 00
0.533 0.425 312.8 0.257 -0.164E-01 0.767E	00 0.659E 00 00 0.655E 00 00 0.657E 00 00 0.673E 00 00 0.681E 00
	00 0.655E 00 00 0.657E 00 00 0.673E 00 00 0.681E 00
0.092 0.340 308.2 0.247 $-0.179E-01$ $0.746E$	00 0.657E 00 00 0.673E 00 00 0.681E 00
0.759 0.637 303.2 0.234 -0.213E-01 0.723E	00 0.673E 00 00 0.681E 00
0.901 0.873 297.7 0.213 -0.348E-01 0.697E (00 0.681E 00
0.933 0.922 296.8 0.207 -0.439E-01 0.693E (r .
	r ·
IDEAL REAL	
YI DLNPHI(1) DLNPHI(2) $(HV-H^*)$ $(HV-H^*)$	*) FUG CONT
0.035 0.859E-02 0.335E-02 3325.0 3292	-32.7
0.122 0.710E-02 0.295E-02 2505.5 2536.	-69.4
0.194 0.641E-02 0.275E-02 2349.7 2264.	8 -84.9
0.271 0.600E-02 0.255E-02 2294.9 2193.	.5 -101.4
0.345 0.579E-02 0.238E-02 2220.4 2107.	.3 -113.1
0.423 0.573E-02 0.215E-02 2153.7 2029.	9 -123.8
0.496 0.578E-02 0.185E-02 2075.5 1945.	.4 -131.1
0.593 0.593E-02 0.130E-02 2078.1 1935.	.8 -142.4
0.662 0.614E-02 0.453E-03 1845.1 1714.	.2 -131.0
0.759 0.645E-02 -0.147E-02 1528.2 1424.	1 -104.1
0.901 0.673E-02 -0.979E-02 1924.5 1843.	-81.5
0.938 0.652E-02 -0.155E-01 2112.2 2050.	.3 -61.9
WATKINS EST FOR	PURE CCMP
YI XI DELTA U* LAT HV CO2 H2S	MIX
0.035 0.009 -1.6 3290.6 0.224	9. 2171.
0.122 0.050 -4.9 2531.2 0. 240	3. 2110.
0.194 0.0927.4 2257.4 0. 252	2036.
0.271 0.137 -10.4 2183.1 0. 265	2. 1934.
0.345 0.190 -12.7 $20^{\circ}4.6$ 0.276	8. 1813.
0.423 0.255 -14.5 2015.4 0.298	2. 1653.
0.495 0.330 -15.1 1930.3 0. 298	2. 1503.
0.583 0.425 -15.2 1920.6 0.309	0. 1288.
0.662 0.540 -12.2 1702.0 0.317	6. 1074.
0.759 0.687 -7.5 1416.6 $1023.$ 326	5. 1563.
0.901 0.873 -3.0 1840.0 2060. 335	9. 2189.
0.938 0.922 -1.7 2048.6 2171. 337	5. 2245.

CO2- HYDROGEN SULFIDE BINARY SYSTEM... P= 60.0 ATM

Y1	X1	ТΚ	VM		DYDT	PHI	(1)	PHI(2)
0.090	0.042	352.7	0.225	-0.	153E-01	0.945	E 00	0.632E 00
0.160	0.086	348.0	0.228	-0.	145E-01	0.910	E CO	0.671E 00
0.226	0.131	343.4	0.227	-0.	142E-C1	0.881	E 00	0.661E 00
0.300	0.184	338.2	0.224	-0.	141E-01	0.850	E 00	0.651E 00
0.369	0.243	333.3	0.220	-0.	143E-01	0.823	E CO	0.642E 00
0.442	0.312	328.3	0.214	-0.	148E-01	0.796	E 00	0.633E 00
0.532	0.398	322.3	0.205	-0.	158E-01	0.765	E 00	0.624E 00
0.601	0.489	318.1	0.193	-0.	170E-01	0.743	E 00	0.620E 00
0.687	0.615	313.4	0.187	-0.	193E-01	0.719	E 00	0.618E 00
0.796	0.765	308.3	0.170	-0.	245E-01	0,690	E 00	0.6228 00
0.969	0.967	303.0	0.096	-0.	498E-01	0.659	E CO	0.654E 00
					TDEAL	R	EAL	
Y1	DLNPHI	(1) D	LNPHI (2)		(HV-H*)	(HV	-H*)	FUG CONT
0.090	0.873E	-02 0	.357E-02		2217.1	21	55.3	-61.9
0.160	0.7538	-02 0	.334E-02		1930.9	18	54.3	-74.6
0.226	0.693E	-02 0	.318E-02		1808.6	17	25.0	-83.5
0.300	0.663E	-02 0	.301E-02		1771.5	16	76.2	-95.3
0.369	0.6555	-02 0	.282E-02		1706.7	16	03.0	-103.7
0.442	0.6628	-02 0	.254E-02		1665.3	15	51.8	-113.5
0.532	0.635E	-02 0	.200E-02		1754.8	16	20.6	-134.2
0.601	0.710E	-02 0	.133E-02		1599.3	14	69.4	-129.9
0.687	0.748E	-02 -0	.201E-04		1264.1	11	58.8	-105.3
0.796	0.8028	-02 -0	.334E-02		882.2	8	15.6	-65.5
0.959	0.1078	-01 -0	.377E-01		605.1	51	87.4	-17.7
				•	WATKIN	S EST F	OR PUR	E COMP
Yl	X1	DELTA	Н* Г	AT HV	CO	2 H	125	MIX
0.090	0.042	-2	.7 2	152.6		0.	2059.	1883.
0.160	0.086	-4	.6 1	851.7		0	2232.	1875.
0.226	0.131	6	.3 1	718.7		0. :	2374.	1838.
0.300	0.184	-8	.4 1	667.9		0. :	2521.	1765.
0.369	0.243	-9	.7 1	593.3	:	0. 2	2645.	1670.
0.442	0.312	-10	$\cdot 6 1$	541.2	1	0. 2	2765.	1543.
0.532	0.398	-11	.7 1	608.9	1	0. :	2897.	1355.
0.601	0.489	-10	.2 1	459.2	1	U. 2	2984.	1191.
0.687	0.615	-6	.9 1	151.9		0. 3	3079.	964.
0.795	0.765	-3	• 1	812.5	100	U. A 3	3174.	647.
0.909	0.901	-0	• 6	281.2	1093	L. 3	5269.	1160.

C02- HYDROGEN SULFIDE BINARY SYSTEM... P= 70.0 ATM

Y1 0.050 0.127 0.175 0.240 0.308 0.373 0.433 0.508	X1 0.025 0.070 0.116 0.167 0.225 0.292 0.366 0.456	TK 363.7 357.9 353.8 348.4 342.9 338.0 333.4 328.2	VM 0.177 0.182 0.130 0.177 0.172 0.168 0.162 0.153	DYD -0.1541 -0.1231 -0.1181 -0.1201 -0.1231 -0.1231 -0.1371 -0.1401 -0.1281	r 5-01 5-01 5-01 5-01 5-01 5-01 5-01 5-01	PHI() 0.101E 0.948E 0.920E 0.886E 0.852E 0.852E 0.822E 0.793E 0.764E	01 00 00 00 00 00 00 00	PHI (2) 0.667E 0.651E 0.640E 0.626E 0.612E 0.601E 0.592E 0.590E	00 00 00 00 00 00 00 00
Y1 0.050 0.127 0.176 0.240 0.308 0.373 0.438 0.508	DLNPH1 0.154E 0.789E 0.699E 0.732E 0.769E 0.759E 0.670E	I (1) Di C-01 0 C-02 0	LNPHI(2) .417E-02 .413E-02 .417E-02 .412E-02 .389E-02 .356E-02 .350E-02 .458E-02	II (HY 213 160 121 115 110 107 90 57	DEAL 7-11*) 80.2 94.3 88.3 55.2 5.8 1.6 1.0	REA (HV-H 2056 1549 1171 1109 1098 999 836 547	L *) -7 -2 -3 -6 -9 -6 -3	FUG CCN -73 -54 -42 -49 -66 -75 -65 -23	•9 •5 •0 •6 •9 •0 •7
Y1 0.050 0.127 0.176 0.240 0.308 0.373 0.438 0.508	X1 0.025 0.070 0.116 0.167 0.225 0.292 0.366 0.456	DELTA -1. -2. -3. -4. -5. -5. -5. -4.	H* L7 1 20 9 15 3 11 5 11 6 10 9 9 5 8 3 5	W NT HV 055.1 545.8 167.8 104.8 093.0 093.0 094.0 031.0 543.0	ATKINS CO2 0. 0. 0. 0. 0. 0. 0. 0. 0.	EST FOR H2 15 18 20 22 23 25 26 27	FURE 5 71. 58. 26. 17. 88. 25. 45. 68.	CCMP MIX 1492. 1622. 1669. 1685. 1652. 1583. 1486. 1362.	

CO2- HYDROGEN SULFIDE BINARY SYSTEM... P= 80.0 ATM

-A24-