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ABSTRACT

A mathematical model describing the displayed se-

lectivity of the kidney nephron to macromolecules of

varying particle size is presented. Diffusion and elec-

trical forces are considered to be the sole mechanisms

of transfer. The mass transfer principles responsible

for selectivity are considered to occur within the cap-

illary structure, and not within the membrane wall. A

charge is assumed to be characteristic of the macromolecule

and the membrane wall. Models describing both charged.

and uncharged solutes are developed.

A non-linear least squares technique, developed by

Marquardt, is used to curve fit the derived functions

to data relating fractional clearances of dextran and

dextran sulfate to varying particle radius. It is shown,

that the charged case model gives reasonable results in

the simulation of nephron function whrn dextran is the

considered solute. Also, curve fittings obtained by

the charged case model in the dextran sulfate simulation

indicate the realization of charge as a determining variable

in the prediction of fractional clearance.
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1.

CHAPTER 1 : 	 INTRODUCTION 

The ability of the kidney to selectively transfer

large molecules as a function of particle size has been

atributed to the action of the nephron. The application

of ultrafiltration theory is popular in the attempt to

realize the processes which take place in the nephron. 1,4,5

The filtration theory regards the nephron capillary as a

porous structure, having a mean pore radius, and thereby

controlling' the . passage of large molecules by virtue of

particle size.

The lack of a physical porous structure in the nephron

membrane suggests that approaches other than those offered

by filtration principles be investigated to describe

the selectivity displayed by the nephron. 17 Also, em-

pirical results, obtained by Bohrer, 3 imply a charge rela-

tionship exists in the consideration of transfer of large

molecules by the nephron.

The study undertaken here offers an alternate theory,

to explain the transfer of large molecules by the nephron.

Selectivity is assumed to occur within the capillary, and

not ty the action of the membrane. Diffusion and electrical

attraction are the forces considered. A model is developed,

and is used to simulate results obtained by the Bohrer

study.
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A non-linear least squares estimation method, devel

oped by Marquardt, is also discussed.
14

	The method is

implemented to estimate unknown parameters, required by

the model in the simulation of the available data. General

theory and considerations are presented.
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CHAPTER 2 : 	 THE MODEL

2.1 Introduction

Diffusion and electrical forces are considered the

mechanisms of mass transfer. The processes are assumed

to take place within the nephron capillary, and not in

membrane wall. A charge is assumed on both the solute

particles and the membrane.

The existence of an electrical charge on the mem-

brane and the solute particles is realized by experimental

results obtained by Bohrer,3 which suggests a charge relation

ship in the transfer of molecules in the nephron. The

model presented here has been developed to simulate

the results obtained by the Deen study.

	

Acknowlegement is given to Dr. C. R. Huang, Professor
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model.



2.2 The General Mass Transfer Equation

The kidney nephron is assumed to be of a tubular

structure, having an inside diameter, R , and length,

L. The coordinate z is chosen to represent the axial

direction, and r the radial ( Figure 2.1 ). The capil-

lary membrane is assumed atr = R and r is zero at the

center of the nephron at z=0, and exits atz=L.

In the region near the membrane wall, a boundary

layer of thickness δ is assumed ( Figure 2.2 ). A primary

assumption is that any solute which appears at the membrane

wall ( at r=R ) is completely passed across the membrane

into the Bowman 'Space. The Bowman Space is within the

glomerulus, and functionally collects all effluent passed

by the nephron. 17 For convenience, χ is defined, such

that:

and

The solutes of interest are comprised of large

molecules, such as dextran or dextran sulfate, having

positive charge of magnitude δ. It is assumed that

the molecules are spherical in shape, and have a particle

radius, rρ. 1 The capillary membrane is assumed to



Figure 2.1 - The nephron model

5.

Figure 2.2 - Enlarged view of boundary layer region.
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have a negative charge, constant for all values of Z

at r=R , and is responsible for an electric field, E

(χ) (Section 2.3).

The solute flux is denoted by N A , and the solute

concentration at x=0 by C where

For any constant z , a material balance equation may be

written as shown in Equation 2.2,

where D is the diffusion coefficient of the solute in

water, and νχ is the particle velocity in the χ direction.

The first term on the right hand side of Equation 2.2

represents the flux contributed to NA due to Fick's Law

(the diffusion of particles due to a concentration gra

dient)
6

	The second is the flux cνχ caused by the

electrical attraction of solute particles by the charged

membrane wall. It is noted that

There are two forces acting onaa given particle in

the χ direction: the Coulomb attraction force, 8,10
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and a frictional force due to Stoke's Law, 18

where μ is the viscosity of the fluid medium, in this

case, water. In the steady state condition, Fl and Fd

will be equal and opposite, and equating the forces and

solving for νχ yields

Substituting (2.3) into (2.2) results in

It can be assumed, that for any constant z , the solute

flux remains constant with respect to χ :

Differentiating (2.4), and taking advantage of (2.5),

yields

where

The electric field can be expressed in the following

exponential form (see Section 2.3):



Equation 2.6 may then be written

and when integrated, yields

where c, is a constant of integration, and refering to

Equation 2.2

Using an appropriate integrating factor, Equation 2.9

may be integrated, and

In order to find an expression for NA in terms of z

two boundary conditions are needed. When χ=o , the

concentration C is equal to C o , constituting the first

boundary condition. At the membrane wall (when x=δ),

the flux is assumed directly proportional to the concen-

tration by a constant, β. Substituting the first

condition into Equation 2.10 results inasolution for

8.
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Combining Equations 2.10, 2.11, and 2.12, and the second

boundary condition:

or more consisely

and

In the development of a material balance expression

with respect to the axial direction, a differential

cylindrical element is considered (Figure 20). The element

is positioned at some z , and has a length Δz , and radius

R. Three surfaces are formed, and the amount of solute

which enters the element through the normal plane at z=z

must equal that amount which exits at z = z+Δz. and through

the cylinder wall:

where νz is the mean velocity of the solute with respect

to the 2 direction. Allowing Δz→0, the differential



Figure 2.3 - Differential cylindrical element

equation

may be formed, and by Equation 2.14

Equation - 2.17 is easily salvable by separation of varible

techniques, and

and c3 is found by noting that at z = 0, Co (z) = Co(0),

and

10.
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The total amount of solute transferred across the

membrane is obtained by integrating the flux N A along

the axial direction

By Equation 2.14

and substituting Co 'z) from Equation 2.19

where ω is the amount of solute passed through the membrane,

and

Integration yields:

Assuming that all of the parameters on the right hand

side of Equation 2.23 are held constant, with the exception

of rρ, and D, the amount of solute transferred becomes

a function of rρ and D only.
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2.3 The Electric Field

The capillary membrane is assumed to be uniformly

charged, and in contact with the solvent-solute mixture.

Solute particles of opposite charge, drawn near to the

membrane surface, will decrease the charge "seen" by the

particles further from the membrane, thereby decreasing

their attraction.

A potential of ψo is assumed at the membrane surface,

and due to the interaction of the surface and particles,

a potential function, ψ(χ), may be defined. In this in-

stance, the magnitude of the potential decreases as one

proceeds from the membrane into the solution. The vari-

ation of solute concentration, C , due to the electrical

considerations is 7

where, q is the particle charge, κ is the Boltzmann constant,

T the temperature (°κ), and C o is the concentration of

solute far from the membrane surface.

At any constant z , the charge density is given

by

Since the charge density ρ for any value of χ or z

is defined, Poisson's equation may be used to find the
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divergence of the gradient of the electrical potential

at that point:

where v2. is the Laplacian operator, and D is the dielectric

constant of the solvent. 7

Various solutions of Equation 2.26 have been studied: 7,8

one such solution is for a polyionic system, and assuming

qψ is small compared with κτ, Equation 2.26 becomes

where

and Co and q are the initial concentration and charge of the

ith particle. The solution for the unidimentional (χ)

and single particle case is approximated by

for small values of ψo and q. Further simplification

is achieved by assuming the initial concentration

is constant over all z , which is useful in evaluating

the total solute transferred (Section 2.2).

The expression for E(χ)is given by: 10



14.

or

where



1 5 .

2.4 The Diffusion Coefficient

In Section 2.2, Equation 2.23 gives an expression

for the total solute lost as a function of the particle

radius, rρ, and the diffusion coefficient, D. The coef

ficient, however, is not independendent of the particle

radius, but can be expressed as a function of r ρ.

Data regarding the permeability of dextran is not

readily accessable, however, it is assumed that the

diffusion can be expressed by

where κφ is defined as the diffusion constant, and η>0.

A typical value of η in mass transfer applications such

as this is 2.
11
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2.5 The Complete Model

Fractional clearance, an indication of kidney function,

is defined as1

where U is the solute concentration in urine, P , the

concentration in plasma. The subscript denotes the solute

of interest.

Inulin is a substance which freely passes through

the nephron membrane and does not reabsorb into the

efferent plasma 18 and therefore, the inulin concentration

of the urine is eqivalent to the Bowman inulin concen

tration. Also, since all of the inulin is passed through

the membrane, the denominator of Equation 2.23 becomes

unity, and

when the solute is dextran. If it is assumed that the

solute is not reabsorbed, as in the case of dextran, then

θ can be expressed 1

where ζSθ is the solute concentration in the Bowman Space,

and ζSA is the concentration at the afferent end of the

nephron. For small δ (Section 2.2 ), ζSA may be con-
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sidered to equal to C(z=0), and therefore

It is assumed that the solvent volume flux is constant

crossing the membrane, and hence, the concentration

will be directly proportional to the amount of solute

crossing the membrane:

where κρ is a proportionality constant, and ω is the solute

transferred. Equation 2.35 may be written

and in complete form (from Equation 2.23)

where
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and the parameters listed are previously defined ( Sections

2.2, 2.3, and 2.4 ).

For the special case of an uncharged solute, q = 0 ,

and therefore

and



19.

CHAPTER 3 : MARQUART'S METHOD OF LEAST SQUARES

3.1 Introduction

Numerical computation of Equation 2.38 requires

the estimation of parameter values which are not availible.

Due to the non-linearity of the model function , simple

linear least squares curve fitting schemes could not be

implemented, and attention was drawn towards other tech-

niques, An iterative method, developed by Marquardt, 14

was chosen to perform the iteration.

Marquardt's method of least squares estimation of

non-linear parameters is a compromise between the Taylor

Series and the Gradient methods of obtaining non-linear

least squares solutions. Seperately, both methods have

their difficulties in obtaining an accurate solution.

The method selected, however, incorporates both methods

such that the shortcomings of either method are minimized*
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3.2 Non-Linear Least Squares

A model function is assumed to be of the form

where χm are independent varibles, Bκ are the κ parameters,

and 	 _ denotes matrix notation. The i data points are

denoted by

The problem is to compute those estimates of the para-

meters which will minimize some residual, φ, such that

where Yi is the predicted value of y at the i th data

point.

The Taylor Series method begins its approach by initally

expending the function

or concisely

b represents the parameter vector, and 6t. is an incremental
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correction to b. The value of ϕ predicted, <ϕ> , is

Since c is linear in Equation (3.4), a solution for St

may be found corresponding to a minimum <ϕ>. Setting

δ<ϕ>/δσi = 0 for all j , the equation becomes
dSj

where

Once a solution is found for Si , it is added to the

original estimate, and the forementioned procedure is

repeated until δt becomes of little contribution to b.

The success of obtaining a reasonable estimate by

means of the Taylor Series method is dependent upon care

ful choice of the initial estimates. In the non-linear

case, contours of constant ϕ are severely distorted in

regions far from the minimum. Near the minimum, however,
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the contours become eliptical, as in the linear case,

and proper convergence of the Taylor series takes place, 12,15

Trials made far from the region of convergence may cause

divergence of the series, and erroneous estimations of the

parameters.

An alternative to the Taylor Series procedure is the

Gradient method. Here, the correction vector is given

by the negative gradient of ϕ :

In practice, initial values may be chosen far from the

effective region of the Taylor Series method. Unfortunately,

convergence of the Gradient solution in the region of the

minimum is relatively slow, a consideration which renders

neither method ideal.

Marquardt's least squares method incorporates both.

previously mentioned methods, such that, it relies upon

the Gradient method at the beginning of the iterative

process, and as the minimum of ϕ is approached, the

Taylor Series method continues the calculations. Using

this method, poor estimation of initial parameters need

not inhibit convergence of a solution in a minimum of

iterations.
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3.3 Marquardt's Method of Least Squares Estimation

It has been shown,14 that a solution for the Gradient

correction vector, δg, may be obtained by the solution of

where Aw , δg*, and g( are scaled versions of the vectors

defined Section 3.2 δ t may may be found from

and δ; in both cases is found by the transformatiOn

Marquardt's algorithm considers the value of ϕ at

the r th iteration, or ϕ (r). Equation (3.10) then becomes

and when solved, yields . δ, a new trial vector

and a new residual ϕ(r+i) . The values of ϕ(r) and ϕ(r+i) are

dependent upon the value of at the rth iteration, λ (r).

Inspection of Equations (3010) and (3.11) illustrates,

that as λ decreases, the Gradient solution begins to

approach the Taylor Series solution.

	

The iterative process seeks to minimize the residual,
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such that

Since ϕ is a function of λ, the algorithm chooses some

A t such that the minimum of ϕ is obtained. The strategy

is as follows :14

In practice, an initial λ and a value for ν is needed

(Marquardt suggests 10-2 and 10 respectively). The iteration

is converged when the correction to the parameters becomes

where τ and ε are arbitrary values.

It is expected that a well behaved function allows

for smaller and smaller λ, so that in the linearized
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region of minimum ϕ, the Taylor Series is allowed to

perform the convergence* Added conditions to the method

are included to satisfy minimum ϕ, and therefore, a

feasible neighborhood is always obtained* It must be

noted, that care must be yet be taken in the choice of

initial estimates of the parameters and in computation

of the algorithm to allow for accurate results.
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CHAPTER 4 : 	 SIMULATION OF THE MODEL

4.1 Introduction:

Implementation of Marquardt's least squares method

required that the model functions be expressed as a func

tion of the independent variable and the unknown parameters

to be estimated. Also, since poor estimates for initial

values causes convergence difficulties, a technique was

used such that reasonable estimates were obtained.
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4.2 Simulation Method

Parameters, for which estimates were desired, were

defined in terms of the model parameters. These were

chosen in such a manner, that information regarding the

model parameters could be extracted. Analytic partial

derivatives of the transformed function with respect to

the partial derivatives were calulated.

Prior to use of the least squares method, initial

estimates were investigated. Since many of the values

of the parameters were not available, trial and error

insertion of values into the functions was used. In all

cases, values were implemented in the models, and varied,

noting the behavior of the function to these variations.

Once a set of values displayed a reasonable representation

of experimental results, Marquart's method was initated.

In this manner, a higher incidence of convergence was

expected.

After convergence of the parameters was accomplished

by least squares, the iterated values were used to gen-

erate data, which was compared to experimental results,

Exebution of the entire forementioned procedure was repeated

many times . to obtainan accurate and singular fit.

All calculations were computer aided. A Fortran

version of Marquardt's algorithm is described in Appendix



I. All integrations involved in the entire process

were performed numerically by Simpson's Rule.

28.



4.3 Parameter Selection - Charged' Case

The model function for the fractional clearance of

a charged solute is given by Equation 2.38 . The

parameters to be estimated were chosen as follows:

29.

Substitution of these values into the model equation

transforms θ into a function of rρ and Bκ:



where all values are positive.

30.



4.4 Parameter Selection - Uncharged Case

The model function for the fractional clearance of

an uncharged solute is given by Equations 2.38 and 2.39.

The adjustable parameters were chosen as follows:

31.

Under these assumptions, θ becomes

where all parameters are positive valued.
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CHAPTER 5 : 	 RESULTS

5.1 Considerations

The data available was taken from a study, in which

the fractional clearances were measured with respect to

particle radius of infused dextran and dextran sulfate.

For each of the solutes, a comparative study was performed,

such that the effect of angiotensin II was investigated.

Angiotensin is a substance which induces proteinuria, a

condition by which large plasma protein molecules, which

normally do not transfer into the urine, pass through the

nephron membrane freely. 3,17 Fractional clearances were

measured for both solutes under normal hydropenia con-

ditions, and also when angiotensin was infused -. Tables

5.1i 5.2, 5.3, and 5.4 summarize the empirical results

found in the Deen study°

An extensive literature search was undertaken, in

order to determine empirical values for the parameters

used in the simulation. Unfortunately, the lack of existing

data rendered little insight into the nature of the values

required. Trial and error estimates for all of the param-

eters were made according to the technique outlined in

Section 4.2

For each of the curve fits accomplished, the experi

mental and predicted fractional clearances were tabulated
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and plotted. The iterated parameter values were recorded

to obtain comparison between the different trial cases.
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Table 5.1

Fractional clearance of dextran of varying molecular size

measured under normal hydropenia. 3

Particle Radius Fractional Clearance
rP (Å) θ meas

18 1.00

20 0.97

22 0.87

24 0.73

26 0.60

28 0.45

30 0.32

32 0,22

34 0.15

36 0.09

38 0.045

40 0.022

42 0.008
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Table 5.2

Fractional clearance of dextran of varying molecular size

measured under angiotensin infusion. 3

Particle Radius
rP (Å)

Fractional Clearance

θ meas

18 1.00

20 0.99

22 0.95

24 0.85

26 0.74

28 0.59

30 0.46

32 0.32

34 0.22

36 0.14

38 0.075

40 0.038

42 0.019
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Table 5.3

Fractional clearance of dextran sulfate of varying molecular

size measured under normal hydropenia. 3

Particle Radius Fractional Clearance
rP (Å) θmeas

18 0.56

20 0.35

22 0.19

24 0.11

26 0.06

28 0.032

30 0.020

32 0.013

34 0.007

36 0.003

38 0.0009

40 0.0004

42 0.0002
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Table 5.4

Fractional clearance of dextran sulfate of varying molecular

size under angiotesin infusion:. 3

Particle Radius Fractional Clerance
rP (Å) θ meas

18 0.74

20 0.55

22 0.37

24 0.25

26 0.16

28 0.099

30 0.062

32 0.039

34 0.021

36 0.010

38 0.0032

40 0.0009

42 0.0005
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5.2 The Uncharged Case

The model derived for the uncharged case was used

exclusively in simulations, where dextran was the infused

solute. Because of its molecular structure, it was assumed

that the net charge on a single dextran molecule was zero°

The zero case model was not applied to studies using:

dextran sulfate as the solute°

In the implementation of the least squares curve

fit, weighting of the residual function was investigated°

For each of the fits attempted, the following weighting

functions were implemented:

The functions are such that, importance is given to those

values of fractional clearance which are small in comparison

to valuescorresponding to smaller radii. It was found

that Equation 5.2 yielded the most profitable curve fits,

and the results presented in this section are representa-

tive of this weighting.

Initially, η was considered as a constant fixed
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parameter, such that η=2. The results are summarized

in Table 5.5 and Figures 5.1 and 5.20

The incorporation of η as an adjustable parameter

led to the inability of obtaining a convergent solution

of the least squares algorithm. However, a solution was

obtained by considering only particle radii larger than

26 Å. 	 The results are summarized in Table 3.6 and

Figures 5.3 and 5.4.



40,

Table 5.5

Fractional clearance values of dextran of varying molecular

size predicted by the zero charge model, and holding

during the curve fit.

Particle Radius Fractional Clearances
Predicted Under
Normal Hydropenia

Fractional Clearances
Predicted Under
Angiotensin Infusion

rρ(Å) θ CALC θCALC

18 0.75 0.79

20 0.67 0.72

22 0.61 0.65

24 0.56 0.60

26 0.52 0.55

28 0.48 0.51

30 0.45 0.48

32 0.42 0.45

34 0.40 0.42

36 0.38 0.40

38 0.36 0.38

40 0.34 0.36

42 0.32 0.34

Iterated Parameter Estimates

B1 542.2 810.4

B2 1.32 2.18

B3 5.31 x 1010 1.22 x 1010
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Figure 5.1 - Fractional clearance versus particle radius
for dextran under normal hydropenia using
the zero charge case model and η=2.

Figure 5.2 - Fractional clearance versus particle radius
for dextran under angiotensin induced conditions
using the zero charge case model and η=2.
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Table 5.6

Fractional clearance values of dextran of varying molecular

size predicted by the zero charge model, for particle radii

greater than 26 A , for variable η.

Particle Radius Fractional Clearances
Predicted Under
Normal Hydropenia

Fractional Clearances
Predicted Under
Angiotensin Infusion

rρ(Å) θ CALC θCALC

28 0.045 0.092

30 0.037 0.081

32 0.031 0.071

34 0.026 0.064

36 0.022 0.057

38 0.019 0.051

40 0.016 0.046

42 0.014 0.041

Iterated Parameter Estimates

B1 1.02 0.95

B2 1.03 1.00

B3 9.43x106 9.05x10 6

B4 3.04 2.21
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Figure 5.3 - Fractional clearance versus particle radius
for dextran under normal hydropenia using the
zero charge case model

Figure 5.4 - Fractional clearance versus particle radius
for dextran under angiotensin induced conditions
using the zero charge case model.
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5.3 The Charged Case

The model derived in Section 4.3 was used to curve

fit all of the experimental cases, and for all, conver-

gence of parameter estimates was obtained. The technique

of simulation used is again outlined in Section 4.2 • A

residual weighting function was not incorporated in the

least squares fits.

The parameter δ was not considered in the choice

of adjustable parameters. For convenience, δ was estim-

ated by implementing different values of δ, and regarding

that value which resulted in an optimal fit. For all

cases, the value of 6= 10 -3 .

Tables 5.7 and 5.8 give the observed and predicted

data of the experiment performed using dextran in normal

hydropenia and angiotensin induced conditions respectively.

Graphical results are given in Figures 5.5 and 5.6

. Tables 5.9 and 5.10 display the results found by considering

the data found by using dextran sulfate as the solute,

and normal hydropenia and angiotensin induced conditions.

Graphical results are also displayed in Figures 5.7 and

5.8.
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Table 5.7

Observed and predicted values of fractional clearance

versus particle radius for dextran under normal hydropenia

using the charged case model.

Particle Radius Observed
Fractional
Clearance

Predicted
Fractional
Clearance

rρ (Å) θmeas θcalc

18 1.00 1.02
20 0.97 0.95
22 0.87 0.86
24 0.73 0.74
26 0.60 0.60
28 0.45 0.46
30 0.32 0.33
32 0.22 0.22
34 0.15 0.13
36 0.09 0.08
38 0.045 0.039
4o 0.022 0.019
42 0.008 0.008

Iterated Parameter Estimates

B 1 1.23

B2 5.71

B 3 1.04

B4 1.07 x 103

B5 1.04

B6 0.50

B7 9.59 x 10 -21

B8 3.00



Table 5.8

Observed and predicted values of fractional clearance

versus particle radius for dextran under angiotensin

induced conditions using the charged ease model.

Particle Radius Observed
Fractional
Clearance

Predicted
Fractional
Clearance

rρ (Å) θmeas θcalc

18 1.00 1.01
20 0.99 0.98
22 0.95 0.93
24 0.85 0.85
26 0.74 0.74
28 0.59 0.60
30 0.46 0.46
32 0.32 0.33
34 0.22 0.21
36 0.14 0.13
38 0.075 0.070
40 0.038 0.035
42 0.019 0.016

Iterated Parameter Estimates

B1 1.08

B2 7.00

B 3 1.03

B4 1.06 	 x 	 103

B 5 1.03

B6 0.63

B7 9.65 	 x 10-21

B8 3.00
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Figure 5.5 - Fractional clearance versus particle radius
for dextran under normal hydropenia using
the charged case model

Figure 5.6 - Fractional Clearance versus particle radius
for dextran under angiotensin induced conditions
using the charged case model.



Table 5.9

Observed and predicted values of fractional clearance

versus particle radius for dextran sulfate under normal

hydropenia using the charged case model.

Particle Radius Observed
Fractional
Clearance

Predicted
Fractional
Clearance

rρ (Å) θmeas θcalc

18 0.56 0.55
20 0.35 0.36
22 0.19 0.20
24 0.11 0.10
26 0.06 0.04
28 0.032 0.013
30 0.020 0.004
32 0.013 0.0008
34 0.007 0.0002
36 0.003 0.00003
38 0.0009 2.9 x 10-6
40 0.0004 3.1 x 10-7
42 0.0002 0.0

Iterated Parameter Estimates

B1 1.04

B2 3.50

B3 2.00

B4 1.00 x 	 103

B5 2.00

B6 0.94

B7 1.00 	 x 	 10-21

B8 3.00
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Table 5.10

Observed and predicted values of fractional clearance

versus particle radius for dextran sulfate under angio

tensin induced conditions using the charged case model.

Particle Radius Observed
Fractional
Clearance

Predicted
Fractional
Clearance

rρ (Å) θmeas θcalc

18 0.74 0.71
20 0.55 0.56
22 0.37 0.40
24 0.25 0.26
26 0.16 0.14
28 0.099 0.070
30 0.062 0.031
32 0.039 0.011
34 0.021 0.004
36 0.010 1.1 x 10-3
38 0.0032 2.7X 10-4

40 0.0009 5.7 x 10-5
42 0.0005 1.0 x 10-5

Iterated Parameter Estimates

B1 1.12

B2 2.43 x. 10 1

B3 1.81

B4 8.16 x 10 3

B 5 1.81

B6 0.11

B7 1.08 X 10-20

B8 3.00

49.
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Figure 5.7 - Fractional clearance versus particle radius
for dextran sulfate under normal hydropenia
using the charge case model.

Figure 5.8 - Fractional clearance versus particle radius
for dextran sulfate under angiotensin induced
conditions using the charged case model.
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5.4 Discussion

As seen by the studies presented, use of the uncharged

model in the simulation of dextran fractional clearances

yielded unfortunate results. In addition to holding

η as a constant 2.0 during the fit, other trials were

performed with integer value of 1.0 and 3.0 which

resulted in similar poor quality of predicted values. The

acquisition of superior results by trials made with the

charged case model leads to the conclusion that dextran

can not be considered as an electrically neutral macro-

molecule, but rather has some positive charge associated

with its properties.

The curves resulting from the charged case simulation

of dextran fractional clearances are comparible to results

obtained by the Chang simulation.1 	The results obtained

by the simulation of dextran sulfate fractional clearances

displayed comparatively less accurate curve fits, partic-

ularly the normal hydropenia simulation. The curves,

however, are judged reasonable to illustrate certain aspects

of the model. In general, Marquardt's method of non-linear

least squares proved useful in application.

In the dextran simulation, three of the parameter

estimates, B 1 , B2 , and B6 displayed notable numerical

differences in the comparison of the normal hydropenia

and angiotensin induced estimates. Since R and L are
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considered identical for all cases, B i is indicative of

t he value of κρνz, and B 2 of νz. For both cases, Deen3

experimentally 'evaluated the capillarY 'plasma flow rate,

QA, which was found to be 83,3 nl/min for the normal

case, 59.6 nl/min for the angiotensin induced case. For

comparison, a ratio of the flow ratesmay be taken, and

compared to a simular ratio of the values' of B2 • The

experimental flow rate ratio was found to be 0.72, whereas

the predicted ratio was equal to 0.82 . Although numerically

imprecise, the model sucessfully illustrates the decreased

flow rate induced by the' infusion of angiotensin II.

The parameter B6 is equal to the proportionality

constant ,β, which can be considered indicative of the

membrane permeability of a given solute. The increase

of β from normal to angiotensin induced studies suggests

that angiotensin II increases the permeability of the

nephron membrane to dextran.

The dextran sulfate studies are sucessful in showing

the charge dependency of fractional clearanae* In both

cases, the parameters B3 and B5 increased from the corre-

sponding dextran studies* The angiotensin induced study

also displays an increase in B4 , B3, B4 , and B5 are all

charge related parameters, and an increase of these estimates

suggest an increase of the magnitude of the charge attributed

to dextran sulfate with respect to dextran.
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Unfortunately, the dextran sulfate simulations suffer

from ambiguity in estimations of B 2 and B6 . The normal

case shows a increase of flow rate, contradictory to

experimental findings. The angiotensin induced simulation

arrives at an extreme decrease of flow rate, far exceeding the

experimental value. Solute permeability suggested by

the two conflict in their estimates. Further investigation

into the nature of B2 and B6 is suggested.
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CHAPTER 6 : 	 CONCLUSION

The investigation performed here has introduced an

alternate theory, to elucidate the mass transfer principles

governing the nephron and its processes. This analysis

shows simple diffusion and electrical forces may be con-

sidered to describe the displayed selectivity of the

nephron to macromolecules of varying particle radii. Also,

a method of non-linear least squares curve fitting has

proven successful in obtaining reasonable solutions to

this non-linear application.

Further study is suggested with regard to electrical

considerations. A more rigorous analysis of the electrical

field and its incorporation in the model function is

needed. Experimentation is also suggested, in the determin-

ation of unavailable parameters.
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APPENDIX

Fortran Version of Marquardt's Non-Linear

Least Squares Curve Fit Procedure

There is availible a computer version of Marquardt's

Non-Linear Least Squares Estimation of Adjustable Parameters,

capable of adjusting a maximum of 45 parameters. It is

written in Fortran, and in versatile subroutine form.

The program, denoted by the subroutine name NLLSQ, is

called by the user's program by the statement

CALL NLLSQ ( Y,X,B,RRR,NARRAY,ABRAY,IB )

Execution of the program requires definition of the call

variables, and the creation of a subroutine named MODEL,

which provides the function desired to be fit.
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I. Variable Definition

All of the arguements transferred by the CALL NLLSQ

statement are arrays, and must contain the following

information when the subroutine is called:

Y 	 - contains the values of the dependent

variables at the N observed data points.

X 	 - contains the values of the independent

variables at the N observed data points.

The dimension of X is dependent upon the

number of variables specified, M. If

M=1, X need only be a singly dimensioned

array. For M=2, X must be a two dimensional

array, the size of which is at least

X(N,M).

B 	 - contains the starting values for the K

parameters of the model. At the return

of NLLSQ, B contains the final adjusted

parameter values.

RRR 	 - an array, whose use is optional, used

to communicate between the calling pro-

gram and the MODEL subroutine. After

convergence, all of the residuals may

be computed by MODEL, and returned to the

calling program via this array.

NARRAY is dimensioned NARRAY(8) and specifies the size
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of the problem, and the options desired.

NARRAY(1) 	 -= N, the number of data points to be

fitted.

NARRAY(2) 	 -= M, the number of independent variables.

NARRAY(3) 	 -= K, the number of adjustable parameters

in the model.

NARRAY(4) 	 -= IP, the number of omitted parameters.

An omitted parameter is held constant

during the fit.

NARRAY(5) 	 -= The size of the intermediate printout

after each iteration.

= 0, no intermediate printout.

= 1,prints the current values of the

sum of squares PHI, lambda used in the

compromise AZ, the angle between the

correction vector and the negative gradient

vector GAMMA, the length of the correction

vector in scaled space,XL, the current

set of parameters B, and the latest cor-

rection vector DB.

= 2, same as 1, and also the parameter

correlation matrix.

= 3, same as 2, plus PTP inverse.

NARRAY(6)

	

-= The size of the final printout after

convergence or force off.

= -1, no output except for error messages.
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A force off or the inversion of a singu-

lar matrix constitutes an error message.

= 0. prints the output as specified by

NARRAY(5) = 3.

= 1, gives, in addition, the observed,

predicted, and residual value for each

data point, and the one-parameter and

support plane confidence region estimates.

= 2, same as above, plus PTP, the PTP

correlation coefficients, and the non-

linear confidence region calculations.

NARRAY(7)

	

-  the output device number. If left 0, the

value becomes 06 by default.

NARRAY(8) 	 -  KITER, the maximum number of iterations

allowed in a fitting. If left 0, the

value becomes 30 by default.

ARRAY is an array which contains 8 statistical constants

used by NLLSQ. If any of the ARRAY variables are left 0,

standand values are provided, as given in Table I 	 The

user need only to specify the nonstandard value he needs.

IB is an integer array, which contains the subscripts

of the parameters the user wishes to hold content. Sub-

sequently, these parameters will not be adjusted from the

initial value introduced, and thus' the partial derivatives

with respect to these parameters are zero, and the PTP

matrix contains zeros in the row and column corresponding
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to the omitted parameters. The number of omitted para

meters are again specified by NARRAY(4).

Table I,

Standard values assigned to statistical constants used

by NLLSQ when any of the ARRAY variables are left zero.

Program
Symbol

Name Standard
Value

Program
Use

ARRAY (1) AL .1 Inital value of
Marquardt's com
promise parameter

ARRAY(2) DELTA .00001 Increment in
forming estimated
partials

ARRAY(3) E .00005 Epsilon test
criterion

ARRAY(4) FF 4.0 Upper (1-a) point
of variance ratio
distribution

(k,n-k)

ARRAY(5) GAMCR 45 Critical angle
used in GAMMA-
EPSILON test

ARRAY(6) T 2.0 Two tailed (1-a)
point of student's
t distribution

ARRAY(7) TAU .001 Constant used in
epsilon test

ARRAY(8) ZETA 10-31 Singularity
criterion in
matrix-inversion



60.

II. The MODEL Subroutine

The function that is desired - to be fit should be

supplied by the user ire the MODEL subroutine. The routine

provides the service of calculating the function and the

residual at each of the N data points. It should also

calulate the partial derivatives at each point, if possible.

If analytic partials are not availible, MODEL is incor-

porated in the estimation of the partial values. A COMMON

block is used to communicate values between NLLSQ and

MODEL.

Proper use of MODEL requires that two statements

initiate the routine:

SUBROUTINE MODEL ( F,Y,X,RRR,I,JP)

and

COMMON/BLK1/B(45),P(45),RE,N,M,K

The COMMON block transfers the values of the .parateters,

the partial derivatives, and the residual between routines.

The arguements appearing in the MODEL statement enable the

transfer of the estimated value of the independent variable_

F, the observed value Y, the independent variable X, and

an- optional residual value RRR at the Ith data point. The

arguement JP is included for selective computation of

varibles by MODEL. If JP = 1, MODEL should only calculate
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F and the residual RE. If JP = 2, MODEL should calculate

F and RE, and calculate the partial derivatives, or return

with JP = 3. The partial derivatives are denoted by P(J),

where P is the partial derivative of F with respect to the

Jth parameter at the Ith data point. If the partials are

not calculated, setting JP= 3 will instruct NLLSQ to

numerically estimate P(J). This calculation is accomplished

in a subroutine NEWA, which is provided in NNLSQ. An

incremental technique is used in partial estimation, the

value of the increment given by ARRAY(2) 0 Setting JP = 4

allows the option of the user to calculate F and RRR(I)

after convergence, where RRR may, for instance, calculate

the value of the residual at the Ith data point0

For illustration purposes, they following function

is considered:

where f is the function to be fitted to the data, X the

independent variable, and B 1 , B2, and B3 are the adjustable

parameters. In this case M =1 and K = 3. It is assumed

that 15 data points are available, and therefore N = 15.

Analytic partial derivatives are easily found and therefore
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The MODEL would appear as follows:

SUBROUTINE MODEL ( F,Y,X,RRR,I,JP )

COMMON/BLK1/B(45),P(45),RE N,M,K

DIMENSION Y(15),X(15)

F = B(1)*X(I) 	 B(2)*EXP(-B(3)*X(I))

RE = Y(I) 	 F

GO TO ( 30,1000,20 ), JP

10 	 P(1) = X(I)

P(2)= EXP(-B(3)*X(I))

P(3)=-B(2)*X(I)*P(2)

RETURN

20 	 RRR(I) = RE

30 	 RETURN

END

62.



63.

III. Comments

Because of it's subroutine form, NLLSQ ( Non-Linear

Least Squares fitting routine) may be incorporated in

in any number of applications, as the sole calculation,

or the part of a larger program. Of course, computation

time should be considered in the implementation of NLLSQ.

When convergence of a solution is reached, the routine

outputs this information. Failure to converge within the

specified number of iterations will result in a FORCE

OFF message, and control will return from NLLSQ. Care

should be taken in the initial estimates of the parameters,

otherwise a false convergence or FORCE OFF will occur.

Poor inital estimates may also result in computer compu-

tation difficulty.

If weighting of the residual function is desired,

simple modification of the MODEL subroutine is only nec-

essary. If in the example given ( p.61) it is desired

to weight the residual by the inverse of the observed

dependent varible, RE would be calculated in the routine

as
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