Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

A KINETIC STUDY OF THE REACTIONS OF POLY-L-LYSINE WITH 1-HALO-2,4-DINITROBENZENES

ВΥ

RAYMOND KENNETH RAKOWITZ

A THESIS

PRESENTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

AΤ

NEW JERSEY INSTITUTE OF TECHNOLOGY

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

ABSTRACT

The kinetics of the reactions of poly-L-lysine with 1-Fluoro, 1-Chloro, 1-Bromo, and 1-Iodo-2,4-Dinitrobenzenes have been studied. The investigation was done at 25°C as a function of pH and concentration. In all cases the rate of reaction increased as pH increased. In the reactions of Chloro, Bromo, and Iododinitrobenzenes with Polylysine the reaction rate is the composite of two rates; one associated with the random coil and one associated with the helical conformation. For the reaction of Fluorodinitrobenzene with Polylysine the reaction rate is the composite of four rates; two associated with the random coil and two associated with the helical conformation. Base catalysis was observed only in the reaction of Fluorodinitrobenzene with Polylysine. The order of reactivity was found to be F>>Br>Cl>I.

ii

APPROVAL OF THESIS

A KINETIC STUDY OF THE REACTIONS OF

POLY-L-LYSINE WITH 1-HALO-2, 4-DINITROBENZENES

BY

RAYMOND KENNETH RAKOWITZ

FOR

THE DEPARTMENT OF CHEMICAL ENGINEERING

NEW JERSEY INSTITUTE OF TECHNOLOGY

ВҮ

THE FACULTY COMMITTEE OF

.

APPROVED:

NEWARK, NEW JERSEY

MAY, 1978

PREFACE

This work was undertaken to investigate unanswered questions that have been brought up by previous works performed by members of the College. This work by no means answers all questions and in turn, has raised some new ones.

ACKNOWLEDGMENTS

I would like to thank those people who helped me achieve my goal of Master of Science in Chemical Engineering. First, Dr. Richard Parker, my advisor, who gave me many hours of his time and help. Dr. David Kristol, who offered many useful comments. Dr. Ernest Bart, whose calculator programs helped me complete the analysis of the data. And finally, I would like to thank my friends and family, especially Linda; without their encouragement I would never have completed this work. v

Table of Contents

Page
Abstractii
Approvaliii
Prefaceiv
Acknowledgmentsv
List of Figuresvii
List of Tablesx
Introduction1
Experimental Technique9
Kinetic Procedures14
Discussion and Analysis of Results
Conclusions and Recommendations
Bibliography
Appendix I
Appendix II
Appendix III

vi

List of Figures

·	Figure
Structure of Polylysine	1
The Various Conformations of Poly-L-Lysine	2
Structures of the 1-Halo-2,4-Dinitrobenzenes	3
Simple Nucleophilic Aromatic Substitution	4
Reaction of 2,4-Dinitrofluorobenzene with Aniline	5
Structure of Poly (2,4-dinitrophenyllysine)	6
Plots of Optical Density vs. Time for the reactions	; 7
of FDNB (5.748x10 ⁻⁴ M) with Polylysine	
$(1.626 \times 10^{-3} M)$ and Tham Buffer $(0.05M)$; FDNB	
$(5.748 \times 10^{-4} M)$ with Tham Buffer (0.05M); and the	
Resulting Reaction Rate of FDNB $(5.748 \times 10^{-4} \text{M})$	
with Polylysine (1.626x10 ⁻³ M)	
Net Rates of Reaction vs. pH for the Reactions of:	,
Polylysine with Fluorodinitrobenzene	8
Polylysine with Chlorodinitrobenzene	9
Polylysine with Bromodinitrobenzene	10
Polylysine with Iododinitrobenzene	11
Plot of Optical Density vs. Time for the Reactions	12
of Polylysine $(4.878 \times 10^{-3} \text{ and } 2.439 \times 10^{-3} \text{M})$	
with FDNB (1.1496x10 ⁻³ M)	
Plot of Optical Density vs. Time for the Reactions	13
of Polylysine (1.626×10^{-3} M) with FDNB	
$(1.1496 \times 10^{-4} \text{ and } 5.748 \times 10^{-4} \text{M})$	

vii

List of Figures

	Figure
Plot of Oh, Fraction of Polylysine in Helical	14
Conformation vs. pH	
Plot of the formation of Poly (2,4-dinitro-	15
phenyllysine) per unit concentration of coil	
free amine and ClDNB vs. ratio of helix to coil	
free amine	
Plot of the formation of Poly (2,4-dinitro-	16
phenyllysine) per unit concentration of coil	
free amine and BrDNB vs. ratio of helix to coil	
free amine	
Plot of the formation of Poly (2,4-dinitro-	17
phenyllysine) per unit concentration of coil	
free amine and IDNB vs. ratio of helix to coil	
free amine	· .
Plot of Net Reaction Rate per unit concentration	18
of FDNB vs. pH as a whole and broken down into	
its component kinetic parts.	
Plot of Net Reaction Rate per unit concentration	19
of ClDNB vs. pH as a whole and broken down into	
its component kinetic parts.	
Plot of Net Reaction Rate per unit concentration	20
of BrDNB vs. pH as a whole and broken down into	
its component kinetic parts.	

.

List of Figures

	Figure
Plot of Net Reaction Rate per unit concentration	21
of IDNB vs. pH as a whole and broken down into	
its component kinetic parts.	
Plot of Net Reaction Rate per unit concentration	22
of FDNB vs. pH as a whole and broken down into	
its component kinetic parts which are extrapolated	E
beyond the experimental limits.	
Plot of Optical Density vs. Time at pH 10.5 for	23
the reaction of Polylysine $(1.626 \times 10^{-3} M)$ with	
C1DNB $(5.74 \times 10^{-4} M, BrDNB (5.74 \times 10^{-4} M), and$	
IDNB $(5.75 \times 10^{-4} M)$.	
Plot of Optical Density vs. Time for the reaction	24
of ClDNB (5.74x10 ⁻⁴ M) with Polylysine	
(1.626x10 ⁻³ M) at pH's of 10.0 and 11.0.	

ix

Rate Constants

Ι

INTRODUCTION

Presently, extensive research is being done in the area of Biocatalysis. Biocatalysis is simply defined as catalysis by enzymes, which are polyamino acids. When work first began on protein (polyamino acid) reactions, only interactions between the macromolecules were considered. Further studies, however, looked at the factors that were involved in the macromolecular reactions. These factors were found to be amino acid residues, bases, and the physical and chemical environment of the proteins and their reactants. Such is the case in the reaction of proteins with deoxyribonucleic acids which occur in living organisms. The results of this investigation strongly indicate stacking interaction between bases in DNA and, for example, phenylalanine residues in poly (Lys⁵⁸Phe42).1

H (CH₂)₄ O

Figure 1: Poly-L-lysine

¹Santella, R.M. and Li, H.J., "Studies on Interaction between Poly (L-lysine⁵⁸, L-phenylalanine⁴²) and Deoxyribonucleic Acids," <u>Biochemistry</u>, Vol. 14, No. 16, 1975, pp. 3604-3611.

Poly-L-lysine (Figure 1), like proteins, is a polyamino acid. Unlike most proteins it can exist in a purely helical or purely random coil conformation depending upon the pH of its aqueous medium. Polylysine has been shown to have several biological applications such as the activation of prothrombin², the ability to increase resistance to enzymatic hydrolysis of the interferon inducer polyinosinic acid-polycytidylic acid³ and the elucidation of the conformations of such glycosaminoglycans as the important blood anticoagulant heparin.⁴

In addition, the active sites in some enzymes, e.g. ribonuclease, acetoacetate decarboxylase and glutamate dehydrogenase, involve nucleophilic attack by a lysine residue. Studies of the nucleophilic reactivity of polylysine can possibly answer some questions concerning the mechanisms of enzyme reactions involving lysine at the

³Bektemirov, T. A., Burgosova, M. P. and Andzharparidze, O. G., "Interferon Induction in Monkeys by Poly (I) Poly (C) Complex with Poly-L-lysine," <u>Voprosnii</u> Virusologica, No. 5, 1976, pp. 536-539.

⁴Schodt, K. P., Gelman, R. A. and Blackwell, J., "The Effect of Changes in Salt Concentration and pH on the Interaction Between Glycosaminoglycans and Cationic Polypeptides," <u>Biopolymers</u>, Vol. 15, No. 10, 1976, pp. 1965-1977.

²Vogel, C. N., Butkowski, R. J., Mann, K. G. and Lundblad, R. L., "Effect of Polylysine on the Activation of Prothrombin. Polylysine Substitutes for Calcium Ions and Factor V in the Factor Xa Catalyzed Activation of Prothrombin," <u>Biochemistry</u>, Vol. 15, No. 15, 1976, pp. 3265.

The rate of reaction of polylysine with p-nitrophenyl acetate⁶ and iodoacetamide⁷ has been found to vary with pH since more free amine is present at higher pH values. In the case of iodoacetamide it was possible to determine from experimental data the separate rate constants for the SN2 reactions of the helical free amine and the coil free amine.

At a pH of less than eight polylysine is in a completely random chain configuration possessing a pk_a of 9.76. As the pH increases, the chain becomes more ordered. At a pH of about 12 the chain is completely helical and the pk_a is 10.20.⁸,⁹ This can be better illustrated by

⁵Parker, R. C., Rakowitz, R. K. and Kristol, D. S., "The Reaction of Polylysine with 2,4-Dinitrofluorobenzene," <u>International Journal of Biochemistry</u>, Vol. 9, 1978, pp. 117-119.

⁶Kristol, D. S., Krautheim, P., Stanley, S. and Parker, R. C., "The Reaction of p-Nitrophenyl Acetate with Lysine and Lysine Derivatives," <u>Bioorganic Chemistry</u>, Vol. 4, 1975, pp. 299-304.

⁷Parker, R. C., Stanley, S. and Kristol, D. S., "The Reaction of Iodoacetamide with Polylysine, -Acetyllysine and -Acetyllysine," <u>International Journal of Biochemistry</u>, Vol. 6, 1975, pp. 863-866.

⁸Stanley, S. J., "A Kinetic Study of Lysine and Lysine Derivatives," <u>A Thesis Presented in Partial Ful-</u> fillment of the Requirements for the Degree of Master of Science in Chemical Engineering at Newark College of Engineering, p. 46.

⁹Parker, R. C., Slutsky, L. J. and Applegate, K. R., "Ultrasonic Absorption and the Kinetics of Conformational Change in Poly-L-lysine," <u>Journal of Physical Chemistry</u>, Vol. 72, No. 9, 1968, pp. 3177-3186. Figure 2. It has been proven that for polylysine as the pk_a increases so does the rate of reaction.¹⁰

The problem that was undertaken in this study was the investigation of the reactions of polylysine with 1-Fluoro, 1-Chloro, 1-Bromo, and 1-Iodo-2,4-Dinitrobenzenes. (Figure 3)

Figure 3: 1-halo-2,4-dinitrobenzene

This reaction is an example of Nucleophilic Aromatic Substitution. (Figure 4)

"There are two essential steps: Attack of a nucleophilic reagent upon the ring to form a carbanion (III), and the expulsion of halide ion from the carbanion to yield the product."11

A more complex mechanism has been reported to occur

¹⁰Stanley S. J., "A Kinetic Study of Lysine and Lysine Derivatives."

¹¹Morrison, R. T. and Boyd, R. N., <u>Organic Chem-</u> <u>istry</u>, Third Edition. Boston, Massachusetts: Allyn and Bacon Inc., 1973, p. 829.

Figure 2: Poly-L-lysine in its Various Conformations

A: Completely Random Coil B: Helix-Coil C: Completely Helix

in the reactions of 1-Fluoro-2,4-Dinitrobenzene with aniline and piperdine¹² and with imidazole.¹³ (Figure 5)

In this case attack by the amine leads to a charged intermediate (IV) which can yield the product, a substituted aniline (VI) by either a spontaneous loss of H+ and F⁻ or by catalytic removal of H⁺ by base with a concomitant loss of F⁻. In the case where fluoride ion is displaced from a nitro activated aromatic substrate $(K_2/K_{-1}<\langle 1\rangle)^{14}$ it is possible to observe base catalysis. In some cases where a halogen ion other than fluoride is displaced from a nitro activated aromatic substrate $(K_2/K_{-1}<\langle 1\rangle)^{15}$ it is not possible to observe base catalysis. In this case they would follow the reaction path of a simple Nucleophilic Aromatic Substitution. (Figure 4)

12De Rossi, R. H. and Rossi, A. R., "Kinetics of Reactions of 1-Substituted 2,4-Dinitrobenzenes, with Aniline and Piperdine in Acetone," Journal of Organic Chemistry, Vol. 39, No. 24, 1974, pp. 3486-3488.

¹³De Rossi, R. H., Rossi, A. R. and Gimenez, F. N. R., "Reaction of 2,4-Dinitrohalobenzenes with Imidazole in Nonpolar Aprotic Solvents," <u>Journal of Organic Chemistry</u>, Vol. 41, No. 19, 1976, pp. 3163-3166.

¹⁴De Rossi, R. H., Rossi, A. R. and Gimenez, F. N. R., "Reaction of 2,4-Dinitrohalobenzenes with Imidazole in Nonpolar Aprotic Solvents."

¹⁵De Rossi, R. H. and Rossi, A. R., "Kinetics of Reactions of 1-Substituted 2,4-Dinitrobenzenes, with Aniline and Piperdine in Acetone."

Figure 4: Simple Nucleophilic Aromatic Substitution

Figure 5: Reaction of 2,4-Dinitrofluorobenzene with Aniline

It was, therefore, felt that a fruitful study could be generated by investigating the reactions of polylysine with 1-halo-2,4-dinitrobenzenes. Because of the areas of desired investigation it was necessary to determine the rates of these reactions as a function of pH and concentration at constant temperature. In summary, this work was undertaken to investigate:

- 1) The effect of pH on the rates of reaction.
- To determine by which mechanism each reaction occurs, whether catalyzed or uncatalyzed.
- 3) And to determine the rate constants for both the uncatalyzed and base catalyzed reactions of the 2,4-dinitrohalobenzenes with the helix and coil amines of poly-L-lysine.

EXPERIMENTAL SECTION

All reactions were run at a constant temperature of 25°C with varying pH and, in some cases, varying concentration. Attempts were made to investigate the reactions at higher temperatures; however, the reaction times were of such short duration that they could not be followed by the spectrophotometric method employed here.

The temperature was maintained with the aid of a Forma-Scientific constant temperature bath that circulated water through the thermo-spacers of the Beckman DU spectrophotometer. For long-term reactions an Eberbach constant temperature bath was used.

The pH range at which the reactions were run was from 8.50 to 11.00. Measurements were taken at pH values of 8.50, 9.00, 9.50, 10.00, 10.50, and 11.00 for the reaction of polylysine with the cholor-, bromo-, and iodo-dinitrobenzenes. For the reaction of fluoro-dinitrobenzene with polylysine measurements were taken at pH's of 8.50, 9.00, 9.50, 10.00, 10.35, 10.65, and 10.85.

The buffered solutions were adjusted to the proper pH's by using a Leeds and Northrop pH meter with a glass electrode and calomel reference electrode. The meter was calibrated using a standard Fischer Scientific Co. pH 9.18

buffer salt dissolved in the proper amount of boiled distilled water.

In Figure 4 the reaction of polylysine with 2,4-Dinitrohalobenzene compound is shown to give two products, the hydrohalic acid and Poly(2,4-dinitrophenyllysine) (Figure 6). This polymer was found to have a λ max of 365 nm.

As the reaction proceeds and product is produced more radiation is absorbed. This enables one to follow the course of the reaction by measuring the absorbance of the product at 365 nm as a function of time. The extinction coefficient, $\boldsymbol{\epsilon}$ =2753 OD/(mole/l), of the 2,4-dinitrophenyl derivative of the model monomer unit N- $\boldsymbol{\propto}$ -acetyl-L-lysine-N-methylamide was used in the coversion of optical density to concentration.

To keep the hydrohalic acid from changing the pH as the reaction proceeded the solution had to be buffered. Due to the large pH range used one buffer was deemed insufficient to cover the whole range. Therefore, two different buffers were used. Tris (Hydroxymethyl) Aminomethane better known as THAM obtained from the Fischer Scientific Company was used for the pH range from 8.50 to 10.00. Sodium Borate, also obtained from Fischer Scientific Company was used in the pH range of 9.50 to 11.00. Both buffers were prepared at 0.05 molar concentration.

Figure 6: Poly(2,4-dinitrophenyllysine)

Constant ionic strength was maintained in order to minimize the effect of changing ionic strength on the rates of reaction. For this reason Sodium Nitrate, obtained from Brothers Chemical Company, was added to the buffer solutions at a concentration of 0.10 molar. Two liters of each of the Buffer-Sodium Nitrate solutions were prepared to insure uniformity throughout the experiment.

Poly-L-lysine Hydrobromide, Lot #L-71, of molecular weight 125,000 was obtained from the Pilot Chemical Company. This was mixed with buffer solution to prepare two hundred and fifty milliliters of a polylysine solution of 0.00492 molar, with respect to lysine residues, for each of the two buffers. The polylysine solutions were mixed by means of a magnetic stirrer for seven days to insure that all the polymer had gone into solution. Two hundred and fifty milliliters of each polylysine solution was calculated to be sufficient to complete the experiments.

Initial trials with the polylysine solutions showed them to be too concentrated. Therefore, small quantities of the polylysine solutions were diluted to one-third their original concentration with the buffer solutions. This gave a working concentration of 0.00166 molar.

The 2,4-Dinitrohalobenzene solutions were prepared

using Eastman Kodak Chemical Company Acetonitrile (spectrograde) as the solvent. The Fluorodinitrobenzene was obtained from the Aldrich Chemical Company and was used without further purification at a concentration of 0.0696 molar. The Chlorodinitrobenzene was obtained from the Eastman Kodak Chemical Company and was recrystallized using absolute Ethanol as a solvent. The Chlordinitrobenzene concentration was 0.0694 molar. The Bromodinitrobenzene was also obtained from the Eastman Kodak Chemical Company and was also used without further purification at a concentration of 0.0695 molar. The Iododinitrobenzene was obtained from the Fairfield Chemical Company and was used as purchased at a concentration of 0.0696 molar.

All reactions were run in spectrophotometer cells with a light path of 10mm. The runs that had short reaction times were carried out in Quartz cells with teflon stoppers. The long-term reactions were carried out in disposable cells obtained from Markson Science, Inc. Parafilm was used to seal these cells. Each disposable cell was used only once for a reaction then discarded.

Approximately two hundred runs were performed taking anywhere from a few seconds to a few weeks to complete the run. The concentration of the nucleophile was always in large excess over that of the 2,4-Dinitro-

halobenzene substrates. Most reactions were followed to completion and the net rates were calculated on a Hewlett-Packard 9100 calculator programmed for least squares linear regression.

KINETIC PROCEDURES

A typical run would be performed using the following sequence.

The polylysine solution is first diluted with the buffer solution to the working concentration of 0.00166M. The pH is then adjusted and three milliliters of the polylysine solution is placed in each cell. Duplicates are run of each reaction. In the short reaction time runs only three Quartz cells are filled. In the long reaction time runs as many as thirty disposable cells are filled.

The spectrophotometer is allowed to warm up for at least one hour before the absorbance readings are taken using the hydrogen lamp as the ultraviolet light source. When the instrument is properly warmed the three cells and a reference are placed in the cell holder which is then put into the spectrophotometer's constant temperature chamber, making sure the reference cell is directly in front of the photocell.

When thermal equilibrium has been attained the spec-

trophotometer dial is zeroed using distilled water as a reference. The kinetic runs are then ready to be initiated. The cell holder is brought out of the machine and the tops are removed from the cells in which the runs are going to take place. Twenty-five microliters of the 2,4-Dinitrohalobenzene solution are injected into the reaction cells using a Hamilton microsyringe. The tops are replaced and the cells are shaken to insure thorough mixing. The holder is placed back in the spectrophotometer and the absorbance of each reaction cell can be read. If the reaction time is short, the cells remain in the constant temperature chamber and readings are taken at selected intervals of time. For the very slow reactions the cells are checked once a day over a period of two weeks and are stored in a constant temperature bath between readings. The raw data for the kinetic reactions can be found in Appendix I.

DISCUSSION AND ANALYSIS OF RESULTS

A complete tabulation of data for all the runs may be found in Appendix I. An example of the typical type of kinetic data generated may be found in Table A40 of Appendix I. This specific run will be used to illustrate how the final results were obtained. In this example the concentrations of polylysine and 1-Fluoro-2,4-Dinitrobenzene (FDNB) are 1.626 x 10^{-3} M and 5.748 x 10^{-4} M respectively. This run was performed at 25°C at a pH of A plot of this data is shown in Figure 7 as the 9.50. upper curve A. A linear regression analysis was performed on this data using a program prepared by Dr. Ernest Bart for the Hewlett-Packard 9100 calculator. The results of this analysis give the slope of the best fit line for the rate of formation of poly (2,4-dinitrophenyllysine) for the given pH, temperature and reactant concentrations. This rate has the units of optical density (OD) per second.

Two reactions take place in the reaction cell upon the addition of FDNB. The one of interest is the reaction of FDNB with polylysine. The second is the reaction of FDNB with the buffer component. It therefore becomes necessary to break up the total reaction rate into its two individual rates. This was accomplished by measuring the rate of reaction of FDNB with the buffer component alone at the same pH, temperature and buffer concentration

Figure 7: Optical Density vs. Time for A: The Reaction of FDNB $(5.748 \times 10^{-4}M)$ with Polylysine $(1.626 \times 10^{-3}M)$ and Tham Buffer (0.05M)B: The Reaction of FDNB $(5.748 \times 10^{-4}M)$ with Tham Buffer (0.05M)C: The Resulting Reaction Rate of FDNB $(5.748 \times 10^{-4}M)$ with Polylysine $(1.626 \times 10^{-3}M)$

TIME (seconds)

as the polylysine solution. These reactions generated a new set of curves. The run with buffer at the same conditions as the example is shown on Figure 7 as the lower curve B. Least squares analysis of this data was also performed and the results are found in Appendix II. The rates due to the reaction of FDNB and polylysine alone can now be calculated by subtracting the slope of the buffer run from that of the polylysine run and the resulting curve can be seen as the middle curve C in Figure 7.

For each concentration, pH and 2,4-dinitrohalobenzene at least two runs were performed. The rates of each were obtained and averaged. The average value of the reaction of the buffer alone was then subtracted to give an average net reaction rate. These have been tabulated in Appendix II and the resulting graphs of pH vs. reaction rate can be seen in Figure 8 for FDNB, in Figure 9 for ClDNB, in It should Figure 10 for BrDNB, and in Figure 11 for IDNB. be pointed out that at pHs 9.50 and 10.00 the curves in Figures 9, 10, and 11 are discontinuous as a result of switching from THAM to Sodium Borate buffer. This discontinuity is possibly due to the buffer salts' different abilities to catalyze the OH- displacement of halogen from the benzene ring. For the reactions of FDNB with polylysine only THAM buffer was used and the curve in Figure 8 is continuous.

18.

19

pН

20

рH

рН

pН

The reaction rates in the units of OD/time must be converted to more useful units. This is done by multiplying the average net rate at each pH by the extinction coefficient ϵ . The extinction coefficient was determined experimentally by measuring the optical density of a known concentration of the final product. The extinction coefficient was found to be ϵ =2753 optical density units/ (mole/liter).

For the example the reaction rate was found to be 2.367×10^{-3} OD/second. The buffer reaction rate, $3,250 \times 10^{-4}$ OD/second, was subtracted giving a total net reaction rate of 2.042×10^{-3} OD/second. This was converted to the units of (moles/liter)/second by use of the extinction coefficient to give a net rate of 7.417×10^{-7} (moles/liter)/second. The net rates in the units of (moles/liter)/seconds for all runs has been tabulated in Appendix II.

The reactions of polylysine with the 2,4-dinitrohalobenzenes were found to be first order with respect to polylysine concentration and first order with respect to 2,4-dinitrohalobenzene concentrations. This can be seen from Figures 12 and 13, where the reaction rates or slopes of the lines involving reactions of twice the normal concentrations of the reactants are double those involving the normal concentrations. Figure 12: Optical Density vs. Time for A: The Reaction of Polylysine $(4.878 \times 10^{-3}M)$ with FDNB $(1.1496 \times 10^{-3}M)$ B: The Reaction of Polylysine $(2.439 \times 10^{-3}M)$ with FDNB $(1.1496 \times 10^{-3}M)$

TIME (seconds)
Figure 13: Optical Density vs. Time for the Reactions of A: Polylysine $(1.626 \times 10^{-3}M)$ with FDNB $(1.496 \times 10^{-4}M)$ B: Polylysine $(1.626 \times 10^{-3}M)$ with FDNB $(5.748 \times 10^{-4}M)$

TIME (seconds)

The rate expression that has been suggested includes all possible factors that might have an effect on the reaction rate and is Equation A.16

A	[X]	-	= $k_1[NH_2]_c + k_2[NH_2]_h + k_3[NH_2]_c[OH^-]$ + $k_4[NH_2][OH^-] + k_5[NH_2]^2 + k_6[NH_2]^2$
Where	Rate	=	the rate of formation of poly(2,4-dinitro-
	[X] [NH ₂] _C	=	concentration of the 2,4-dinitrohalobenzene free amine concentration in the coil
	[NH2]h	=	free amine concentration in the helix configuration
	[OH-]	=	concentration of hydroxide ion
	kl	=	the rate constant associated with the coil amine
	k ₂	=	the rate constant associated with the helix amine
	k ₃	=	the rate constant associated with base catalysis of the coil amine
	k4	=	the rate constant associated with base catalysis of the helix amine
	k ₅	=	the rate constant associated with self catalysis of the coil amine
	k ₆	=	the rate constant associated with self catalysis of the helix amine

The $[NH_2][OH^-]$ terms represent hydroxide catalysis and the $[NH_2]^2$ terms represent self catalysis.

Although self catalysis has been observed with some amines, the reaction here was found to be first order with respect to polylysine. On a molecular level this is not unreasonable since the charged intermediate formed during

¹⁶Parker, R. C., Rakowitz, R. K. and Kristol, D. S., "The Reaction of Polylysine with 2,4 Dinitroflurobenzene."

the initial attack by polylysine is still attached to the large polylysine molecule and therefore would be hindered to further attach by the bulky polylysine molecule. This precludes any significant contribution of the selfcatalysis terms reduces Equation A to Equation B.

$$B = \frac{Rate}{[F]} = k_1 [NH_2]_c + k_2 [NH_2]_h + k_3 [NH_2]_c [OH^-] + k_4 [NH_2]_h [OH^-]$$

Before any of the rate constants could be obtained the concentration of the coil free amine $[NH_2]_C$ and the helix free amine $[NH_2]_h$ had to be calculated. This was done by solving two simultaneous equations. Equation D which is the equation for the equilibrium of the amine group.

 $D - NH_3^+ \rightleftharpoons -NH_2 + H^+$

And Equation E which states that the total amine concentration whether it be free amine or protonated amine must equal the total polylysine concentration.

 $E [NH_2] + [NH_3^+] = [PL]$

[NH3⁺] = concentration of protonated amine [NH2] = concentration of free amine [PL] = concentration of Polylysine

If the concentration of polylysine is broken down into the concentrations of each of its two configurations; helix and coil, Equation E would change to Equations Fl and F2.

F1 $[NH_2]_{C} + [NH_3^+]_{C} = \Theta_{C} [PL]$

F2 $[NH_2]_h + [NH_3^+]_h = \Theta_h$ [PL] where Θ_c [PL] + Θ_h [PL] = [PL] and Θ_c and Θ_h are the fractions of polylysine in coil and helix configurations respectively.¹⁷ Figure 14 is a graph of Θ_h vs. pH.

Equation D can also be broken down to coil and helix polylysine with Equations Gl and G2 resulting.

 $G1 - NH_3^+ \rightarrow NH_{2c} + H^+$

 $G2 - NH_3^+h \rightleftharpoons -NH_{2h} + H^+$

The resulting equilibrium expressions for these two reactions are given by

H1
$$k_c = \frac{[NH_2]_c [H^+]}{[NH_3^+]_c}$$
 H2 $k_h = \frac{[NH_2]_h [H^+]}{[NH_3^+]_h}$

These Equations can be further simplified by taking the log of both sides

I1
$$\frac{[NH_3^+]_c}{[NH_2]_c} = 10pkc-ph$$
 I2 $\frac{[NH_3^+]_h}{[NH_2]_h} = 10pkh-ph$

now with two equations and two unknowns for both the helix and coil configurations, the unknowns can be found by solving the two equations simultaneously.

¹⁷Parker, R. C., Slutsky, L. J. and Applegate, K. R., "Ultrasonic Absorption and the Kinetics of Conformational Change in Poly-L-lysine."

29

pН

For the example of the reaction of FDNB with polylysine at pH 9.50 and 25° C the polylysine concentration [PL] is 1.626×10^{-3} moles/liter. The pk for coil and helix polylysine are 9.76 and 10.20 respectively.¹⁸ From Figure 14 the fraction of polylysine in the helix form O_h is 0.16 and the fraction of polylysine in the coil form is simply $(1-O_h)$ or 0.84. Substituting these into Equations I1, I2, F1, and F2 gives the following results:

 $[NH_2]_{C} = 4.84 \times 10^{-4} M$ $[NH_3^+]_{C} = 8.82 \times 10^{-4} M$

 $[NH_2]_h = 3.63 \times 10^{-5} M$ $[NH_3^+]_h = 2.24 \times 10^{-4} M$ These and all the other free amine calculation results can be found in Appendix II.

The rate constants in Equation B can now be determined. The reactions rates were obtained by experiment. The 2,4dinitrohalobenzene concentrations and pH are known, and the hydroxide ion concentration and free amine concentrations for both the helical and coil amines can be calculated. Calculating the rate constants involves using a program designed by Dr. Ernest Bart for the Hewlett-Packard 9820 Calculator. This program involves finding all the necessary summations and a 4 x 4 matrix inversion to solve for the four rate constants. The program is listed

¹⁸Parker, R. C., Slutsky, L. J. and Applegate, K. R., "Ultrasonic Absorption and the Kinetics of Conformational Change in Poly-L-lysine."

in Appendix III.

This program worked well for the reactions of FDNB with polylysine but was unable to give a satisfactory fit of the rate data for any of the other reactions. Therefore, a new model was considered which involved no base catalysis; it generated a new rate expression. (Equation C)

 $C \quad \frac{\text{Rate}}{[X]} = k_1 \quad [\text{NH}_2]_c + k_2 \quad [\text{NH}_2]_h$

This expression says that there is no observed base catalysis. The lack of base catalysis here can be attributed to the fact that Cl, Br, and I bonds to benzene rings are weaker than F-benzene bonds. Hence, k_{-1} is very small, and $k_2/k_{-1}>$ l. The constants k_1 and k_2 could now be found by plotting <u>Rate</u> vs. [NH₂]_h [X][NH₂]_c vs. [NH₂]_h as in Figures 15, 16, and 17 for Chloro, Bromo and Iododinitrobenzenes. The resulting slope is the rate constant k_2 and the y-intercept is the rate constant k_1 . This rate expression worked well for the remaining reactions and the results are tabulated for all the reactions in Table I.

Figures 18, 19, 20, and 21 show the total corrected rate resolved into its component parts for the reactions of polylysine with FDNB, C1DNB, BrDNB, and IDNB. In all 31 .

Table I

Reaction	kl	k ₂	k ₃	k4	<u>Goodness of Fit</u>	
FDNB + Polylysine	9.18 x 10 ⁻¹	5.19	4.79 x 10^3	7.29 x 10 ³	· _	
ClDNB + Polylysine	5.40 x 10 ⁻³	1.21×10^{-2}	-	·	0.996	
BrDNB + Polylysine	5.79 x 10 ⁻³	1.22×10^{-2}	-	-	0.998	
IDNB + Polylysine	2.23×10^{-2}	5.31 x 10 ⁻³	· _	_	0.983	

· .

 $\frac{[\text{NH}_2]_h}{[\text{NH}_2]_c} \times 10^2$

Figure 16: Rate of formation of Poly (2,4-dinitrophenyllysine) per unit concentration of coil

free amine and BrDNB vs. ratio of helix to coil free amine

[NH2] hx10² [NH2] c

34

Figure 17: Rate of formation of Poly (2,4-dinitrophenyllysine) per unit concentration of coil free amine and IDNB vs. ratio of helix to coil free amine

 $\mathbf{p}\mathbf{H}$

Figure 19: Net Reaction Rate per unit concentration of ClDNB vs. pH as a whole and broken down into its component kinetic parts

37

pН

рН

cases the coil amine reaction rate is the predominant reaction below pH 9.50. It then exhibits a maximum value near pH 10.0 due to a combination of two factors. With increasing pH there is a greater fraction of coil amine in the uncharged form. However, increasing pH also reduces the fraction of the polylysine in the coil form. Thus, the maximum concentration of coil free amine residues occurs near pH 10.0, and at sufficiently high pH values the coil free amine concentration would approach zero resulting in a minimal contribution by this kinetic term to the overall rate.

The helix amine reaction rate exhibits different behavior. It increases rapidly with pH because both the fraction of the amino groups in the helix which is uncharged, and the fraction of the polylysine which is in the helix configuration increase with increasing pH. At sufficiently high pH's where virtually all the helical amino groups are unprotonated and virtually all the polylysine is in the helical form, the rate will approach a maximum limiting value.

In the reaction of FDNB with polylysine there are two other factors involved in the reaction rate. They are the catalyzed amine reaction rates for both the coil and helix amines.

The catalyzed coil amine reaction rate increases with pH in the pH range studied because [OH⁻] is increasing dramatically. However, extrapolation of the curves by calculation (Figure 22) predicts that a maximum in the rate will occur near pH 11.8 due to the effect of the decreasing coil free amine concentration above pH 10.00.

The catalyzed helix amine reaction rate increases more sharply with pH than does either the uncatalyzed helix amine reaction rate or the catalyzed coil amine reaction rate. This is because the fraction of free amine in the helix configuration, the fraction of the helix in the polylysine and the [OH⁻] are all increasing in the pH range studied. Above pH 11.2 where virtually all the polylysine is in the unprotonated helical form, the rate will increase logarithmically with increasing pH and the catalyzed helix amine becomes the predominant factor in the reaction.

Since the helical amine rate constant is greater than the coil amine rate constant in both catalyzed and uncatalyzed reactions, the major contributor to the total rate depends upon the concentrations of the available amines and the [OH⁻]. Therefore, as seen in Figures 18, 19, 20, 21, and 22, the uncatalyzed coil amine reaction predominates below pH 9.7, the uncatalyzed helix

pH ·

amine reaction predominates above pH 9.7, and in the case of base catalysis (Figures 21 and 22 only), the OH⁻ catalyzed helix amine reaction predominates above pH 10.8.

A comparison of the reaction rates of the 2,4-dinitrohalobenzene can best be demonstrated by a graph of the raw data for a give pH of 10.5, temperature of 25°C, polylysine concentration of 3.252×10^{-3} M and a 2,4-dinitrohalobenzene concentration of about 5.74 x 10^{-4} M (Figure 23). The reaction of FDNB with polylysine is excluded from this Figure 22 because it would run almost parallel to the y-axis with the scale used.

Figure 23 shows the reaction rates of ClDNB and BrDNB with polylysine to be about the same, with BrDNB slightly faster. The reaction of IDNB with polylysine is considerably slower. This observed order F>>Br>Cl>I is not unique since it had been previously observed by R. E. Parker and T. O. Read in their investigation of the reactions of Picryl Halides with Aniline.¹⁹ Their explanation of why the order of ease of halogen displacement is F>>Br>Cl>I, and not F>>Cl>Br>I is that the accelerative London-force interaction between the reagent and the

¹⁹Parker, R. E. and Read, T. O., "The Mechanism of Displacement Reactions. Part I. Kinetics of the Reactions of the Four Picryl Halides,1,2,3,5-Tetranitrobenzene, and 1,2,4-Trinitrobenzene with Aniline in Ethanol," Chemical Society Journal, 1962, pp. 9-18.

Figure 23: Optical Density vs. Time at pH 10.5 for the Reaction of Polylysine (1.626 x 10^{-3} M) with ClDNB (5.74 x 10^{-4} M) BrDNB (5.74 x 10^{-4} M) and IDNB (5.75 x 10^{-4} M)

TIME x 10^3 (seconds)

displaced group will be greater for Bromine than for the less polarisable Chlorine.

Figure 24 shows how the reaction rate is affected by pH for a constant ClDNB concentration of 5.74×10^{-4} M and polylysine concentration of 1.626×10^{-3} M. The reaction at pH 10.0 is illustrated by the lower curve and the reaction at pH 11.0, the upper. This demonstrates the effects of the coil and helical configurations on the reaction rate (Figure 18). At pH 10.0 the effect on the reaction rate brought on by the coil amine has reached its maximum; it is at this pH that the the effect of the helix amines begins approaching that of the coil amine. Above pH 10 the helix effect seems to be dominating the shape of the curve. At pH 11.0 the coil amine has lost all its effect on the reaction rate and the helical amine determines its shape completely.

This is not unexpected since in the reaction of polylysine with Iodoacetamide, S. J. Stanley found this to be true.²⁰ The explanation is that in the random coil region of polylysine the amines are less nucleophilic and are pointing in all different directions including inward. This would hinder a reaction with a molecule such as Iodoacetamide. In the helical 45.

²⁰Stanley, S. J., "A Kinetic Study of Lysine and Lysine Derivatives."

Figure 24: Optical Density vs. Time for the Reaction of ClDNB $(5.74 \times 10^{-4}M)$ with Polylysine (1.626 $\times 10^{-3}M$) at pH's of 10.0 and 11.0

TIME x 10^3 (seconds)

conformation of polylysine the amines are more nucleophilic and are pointing outward from the backbone of the helix making them quite free to react. This accounts for polylysine in the helix configuration's greater reactivity than that of the coil.

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions have been drawn:

1. It has been shown that the rate of reaction for polylysine with 1-halo-2,4-dinitrobenzenes increases as the pH increases. In the cases where CIDNB, BrDNB or IDNB reacts with polylysine the reaction rate is the composite of two rates: one associated with the random coil and one associated with the helical conformation. For the reaction of FDNB with polylysine the total reaction rate is the summation of four rates; two associated with the random coil and two associated with the helical conformations. The final rate expressions for the reactions of polylysine with the 1-halo-2,4-dinitrobenzenes are:

 $\frac{\text{Rate}}{[F]} = 9.18 \times 10^{-1} [\text{NH}_2]_{\text{C}} + 5.19 [\text{NH}_2]_{\text{h}} + 4.79 \times 10^{-3} [\text{NH}_2]_{\text{C}}$ $[\text{OH}^-] + 7.29 \times 10^{-3} [\text{NH}_2]_{\text{h}} [\text{OH}^-]$

for Fluoro, $\frac{\text{Rate}}{[C1]} = 5.40 \times 10^{-3} [\text{NH}_2]_{\text{c}} + 1.21 \times 10^{-2} [\text{NH}_2]_{\text{h}}$ for Chloro, $\frac{\text{Rate}}{[Br]} = 5.79 \times 10^{-3} [\text{NH}_2]_{\text{c}} + 1.22 \times 10^{-2} [\text{NH}_2]_{\text{h}}$ for Bromo, and $\frac{\text{Rate}}{[I]} = 2.23 \times 10^{-2} [\text{NH}_2]_{\text{c}} + 5.31 \times 10^{-3} [\text{NH}_2]_{\text{h}}$ for Iodo.

- 2. The order of reactivity for the reactions of 1-halo-2,4-dinitrobenzenes with polylysine is FDNB>>BrDNB> ClDNB>IDNB. The FDNB reacted much faster than the other 1-halo-2,4-dinitrobenzenes, the ClDNB and BrDNB were about equal with BrDNB taking a slight edge and the IDNB reacted slower than all the others.
- 3. Base catalysis was observed in the reactions of FDNB with polylysine and no base catalysis was observed in the reactions of ClDNB, BrDNB and IDNB with polylysine. This is why the rate expression for the reaction of FDNB with polylysine contains the two base catalysis terms k₃[NH₂]_c[OH⁻] and k₄[NH₂]_h[OH⁻] and the other rate expressions do not. No self catalysis was observed.
- 4. In all cases the conformation of the polylysine molecule has an effect on the reaction rate. At low pH's polylysine in the random coil conformation exhibits slow reaction rates and with increasing pH the polylysine molecule becomes more uniform as a helix and the reaction rate increases.

The following are recommendations for further work:

 Copolymers of lysine with other amino acids tried to check the steric effects exhibited by the polymer. In polylysine only one site is active. In copolymers of lysine other active sites could be checked for their reactivity.

- 2. The concentration of the free Amine should be varied while keeping the fraction helix constant to look for the nucleophilic effects and not conformation effects as was done in this work by varying the pH.
- 3. Other substrates could be studied instead of the l-halo-2,4-dinitrobenzenes used in this experiment; e.g., l-halo-2,6-dinitrobenzene. Where the halogen is located directly between the nitro groups one could check the steric effect of the nitro groups.
- 4. Another buffer should be used in future studies such as CAPS (Cyclohexylaminopropane Sulfonic Acid) which can buffer a greater pH range. This eliminates any error that might be involved in using multiple buffers.
- 5. Other reactions in which self-catalysis is involved might be of interest. In this work we found our experiment to proceed by base catalysis for Fluoro and no catalysis for the Chloro, Bromo, and Iodo dinitrobenzenes. One might work on a way to predict catalysis before hand.
- 6. The reactions of the 1-halo-2,4-dinitrobenzene with polylysine should be investigated at different

temperatures to determine the activation parameters for these reactions.

BIBLIOGRAPHY

Bektemirov, T. A., Burgosova, M. P. and Andzharparidze, O. G., "Interferon Induction in Monkeys by Poly (I) Poly (C) Complex with Poly-L-lysine," <u>Voprosnii</u> Virusologica, No. 5, 1976, pp. 536-539.

De Rossi, R. H. and Rossi, A. R., "Kinetics of Reactions of 1-Substituted 2,4-Dinitrobenzenes, with Aniline and Piperdine in Acetone," Journal of Organic Chemistry, Vol. 39, No. 24, 1974, pp. 3486-3488.

De Rossi, R. H., Rossi, A. R. and Gimenez, F. N. R., "Reaction of 2,4-Dinitrohalobenzenes with Imidazole in Nonpolar Aprotic Solvents," Journal of Organic Chemistry, Vol. 41, No. 19, 1976, pp. 3163-3166.

Kristol, D. S., Krautheim, P., Stanley, S. and Parker, R. C., "The Reaction of p-Nitrophenyl Acetate with Lysine and Lysine Derivatives," <u>Bioorganic Chemistry</u>, Vol. 4, 1975, pp. 299-304.

Morrison, R. T. and Boyd, R. N., Organic Chemistry, Third Edition. Boston, Massachusetts: Allyn and Bacon Inc., 1973, p. 829.

Parker, R. C., Rakowitz, R. K. and Kristol, D. S., "The Reaction of Polylysine with 2,4-Dinitrofluorobenzene," International Journal of Biochemistry, Vol. 9, pp. 117-119, 1978.

Parker, R. C., Slutsky, L. J. and Applegate, K. R., "Ultrasonic Absorption and the Kinetics of Conformational Change in Poly-L-lysine," Journal of Physical Chemistry, Vol. 72, No. 9, 1968, pp. 3177-3186.

Parker, R. E. and Read, T. O., "The Mechanism of Displacement Reactions. Part I. Kinetics of the Reactions of the Four Picryl Halides,1,2,3,5-Tetranitrobenzene, and 1,2,4-Trinitrobenzene with Aniline in Ethanol," Chemical Society Journal, 1962, pp. 9-18.

Parker, R. C., Stanley, S. and Kristol, D. S., "The Reaction of Iodoacetamide with Polylysine, -Acetyllysine and -Acetyllysine," <u>International Journal of Biochemistry</u>, Vol. 6, 1975, pp. 863-866. Santella, R.M. and Li, H.J., "Studies on Interaction between Poly (L-lysine⁵⁸, L-phenylalanine⁴²) and Deoxyribonucleic Acids," <u>Biochemistry</u>, Vol. 14, No. 16, 1975, pp. 3604-3611.

Schodt, K. P., Gelman, R. A. and Blackwell, J., "The Effect of Changes in Salt Concentration and pH on the Interaction Between Glycosaminoglycans and Cationic Polypeptides," <u>Biopolymers</u>, Vol. 15, No. 10, 1976, pp. 1965-1977.

Stanley, S. J., "A Kinetic Study of Lysine and Lysine Derivatives," <u>A Thesis Presented in Partial Ful-</u> fillment of the Requirements for the Degree of Master of <u>Science in Chemical Engineering at Newark College of</u> Engineering, p. 46.

Vogel, C. N., Butkowski, R. J., Mann, K. G. and Lundblad, R. L., "Effect of Polylysine on the Activation of Prothrombin. Polylysine Substitutes for Calcium Ions and Factor V in the Factor Xa Catalyzed Activation of Prothrombin," <u>Biochemistry</u>, Vol. 15, No. 15, 1976, pp. 3265.

APPENDIX I

RAW DATA

All Table Numbers are the same as their respective Run Numbers

APPENDIX I

RAW DATA

Reaction Cuvette Condition	Table Numbers
3 ml. of THAM Buffer solution of $0.05M$ concentration + 50 μ l of 6.9554 x $10^{-2}M$ FDNB at 25°C and a pH of: 8.50 9.00 9.50	Al A2 - A4 A5 - A6
3 ml. of THAM Buffer solution of $0.05M$ concentration + 25 l of 6.9554 x $10^{-2}M$ FDNB at 25°C and a pH of: 8.50 9.00 9.50 10.00	A7 A8 - A13 A14 - A15 A16 - A17
3 ml. of THAM Buffer solution of $0.05M$ concentration + 10 μ of 6.9554 x $10^{-2}M$ FDNB at 25°C and a pH of: 10.35 10.65 10.85	A18 - A19 A20 - A21 A22 - A23
3 ml. of THAM Buffer solution of $0.05M$ concentration + 50 l of 6.9554 x $10^{-2}M$ FDNB at 38°C and a pH of: 9.50	A24 - A25
3 ml. of THAM Buffer solution of 0.05M concentration + 25 μ of 6.9554 x 10 ⁻² M FDNB at 38°C and a pH of: 9.50	A26 - A27
3 ml. of 4.92×10^{-3} M Polylysine in 0.05M THAM + 50ml of 6.9554 x 10^{-2} M FDNB at 25°C and a pH of: 8.50	A28 - A30
3 ml. of 4.92×10^{-3} M Polylysine in 0.05M THAM + 25 l of 6.9554 x 10^{-3} M FDNB at 25°C and a pH of: 8.50	A31 - A32
3 ml. of 2.46 x 10^{-3} M Polylysine in 0.05M THAM + 50 l of 6.9554 x 10^{-3} M FDNB at 25°C and a pH of: 8.50	A3 3 - A35

3 ml. of 1.23 x 10^{-3} M Polylys THAM + 50 ml of 6.9554 x 10^{-3} 25°C and a pH of:	ine in 0.05M M FDNB at 8.50	A36 - A37
3 ml. of 1.64 x 10^{-3} M Polylys THAM + 25µl of 6.9554 x 10^{-3} 25°C and a pH of:	ine in 0.05M M FDNB at 9.00 9.50	A38 - A39 A40 - A41
3 ml. of 3.28 x 10^{-3} M Polylys THAM + 25 μ l of 6.9554 x 10^{-3} M 25°C and a pH of:	ine in 0.05M M FDNB at 9.50	A42 - A43
3 ml. of 1.64×10^{-3} M Polylys: THAM + 25 μ l of 6.9554 x 10^{-3} M 25°C and a pH of:	ine in 0.05M M FDNB at 8.50 9.00 9.50 10.00	A44 - A46 A47 - A49 A50 - A51 A52 - A53
3 ml. of 0.82 x 10^{-3} M Polylys: THAM + 10,~1 of 6.9554 x 10^{-3} M 25°C and a pH of:	ine in 0.05M M FDNB at 10.35 10.65 10.85	A54 - A57 A58 - A61 A62 - A63
3 ml. of 1.64×10^{-3} M Polylyst THAM + 50 l of 6.9554 x 10^{-3} M 38°C and a pH of:	ine in 0.05M M FDNB at 9.50	A64 - A66
3 ml. of 3.28 x 10^{-3} M Polylyst THAM + 25 cl of 6.9554 x 10^{-2} M 38°C and a pH of:	ine in 0.05M 4 FDNB at 9.50	A67 - A68
3 ml. of 1.64 x 10^{-3} M Polylysi THAM + 25 1 of 6.9554 x 10^{-2} M 38°C and a pH of:	ine in 0.05M 4 FDNB at 9.50	A69 - A70
3 ml. of THAM Buffer solution concentration + 25 l of 6.939 ClDNB at 25°C and a pH of:	of 0.05M 95 x 10 ⁻² M 8.50 9.00 9.50 10.00	A71 - A72 A73 - A74 A75 - A76 A77 - A78

3 ml. of Sodium Borate (BORAX) is solution of 0.05M concentration of 6.9395 x 10 ⁻² M ClDNB at 25°C pH of:	Buffer + 25 m 1 and a 9.50 10.00 10.50 10.80 11.00	A79 A81 A83 A85 A87		A80 A82 A84 A86 A88
3 ml. of 3.252×10^{-3} M Polylysin Sodium Borate + 25 ml of 6.9395	ne in 0.05M $\times 10^{-2}$ M			
ClDNB at 25°C and a pH of:	10.50 10.80	A89 A93	-	A92 A94
3 ml. of 1.626 x 10^{-3} M Polylysin THAM + 25 <i>m</i> l of 6.9395 x 10^{-2} M (ne in 0.05M ClDNB at			
25°C and a pH of:	8.50	A95		A96
	9.00	A97	-	A100
	10.00	A101 A105	-	A104 A107
3 ml. of 1.626 x 10^{-3} M Polylysin	the in $0.05M$			
ClDNB at 25°C and a pH of:	9.50	A108	_	A109
	10.00	A110		A111
	10.80	A112 A115	-	A114 A118
3 ml. of THAM Buffer solution of	0.05M			
concentration + 25 1 of 6.947 x	$10^{-2}M$	7110		n 1 2 0
BIDNE at 25°C and a ph of:	9.00	A119 A121	_	A120 A122
	9.50	A123	-	A124
	10.00	A125	-	A126
3 ml. of Sodium Borate (BORAX) B	uffer + 25 M l			
of 6.947 x 10^{-2} M BrDNB at 25°c a	ind			
a pH of:	9.50	A127		A128
	10.00	AL29	-	A130
	10.80	A133	-	A134
	11.00	A135	-	A136

3 ml. of 3.252×10^{-3} M Polyly Sodium Borate + 25 l of 6.94 BrDNB at 25°C and a pH of:	sine in 0.05M 7 x 10 ⁻² m 10.50 10.80	Al37 - Al38 Al39 - Al40
3 ml. of 1.626 x 10^{-3} M Polyly THAM + 25 \sim 1 of 6.947 x 10^{-2} M 25°C and a pH of:	sine in 0.05M BrDNB at 8.50 9.00 9.50 10.00	A141 - A142 A143 - A144 A145 - A146 A147 - A148
3 ml. of 1.626 x 10^{-3} M Polyly Sodium Borate + 25, 1 of 6.94 BrDNB at 25°C and a pH of:	sine in 0.05M 7 x 10 ⁻² M 9.50 10.00 10.80 11.00	A149 - A150 A151 - A152 A153 - A155 A156 - A157
3 ml. of THAM Buffer solution concentration + 25,1 of 6.964 IDNB at 25°C and a pH of:	of 0.05M 44 x 10 ⁻² M 8.50 9.00 9.50 10.00	A158 - A159 A160 - A161 A162 - A163 A164 - A165
3 ml. of Sodium Borate (BORAX) 0.05M concentration + 25~1 of IDNB at 25°C and a pH of:	Buffer of 6.9644 x 10 ⁻² M 9.50 10.00 10.50 11.00	Al66 - Al67 Al68 - Al69 Al70 - Al71 Al72 - Al73
3 ml. of 3.252×10^{-3} M Polylys Sodium Borate + 24 of 6.964 IDNB at 25°C and a pH of:	ine in $0.05M$ 4 x $10^{-2}M$ 10.50	Al74 - Al75
3 ml. of 1.626 x 10^{-3} M Polylys THAM + 25 1 of 6.9644 x 10^{-2} M and a pH of:	ine in 0.05M I IDNB at 25°C 8.50 9.00 9.50 10.00	Al76 - Al77 Al78 - Al79 Al80 - Al81 Al82 - Al85

3 ml. of 1.626 x 10^{-3} M Polylysine in 0.05M Sodium Borate + 25 1 of 6.9644 x 10^{-2} M	
IDNB at 25°C and a pH of: 9.50 10.00 11.00	A186 - A187 A188 - A189 A190 - A191

TABLE Al

TABLE A2

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
31	.190	24	.205
100	.197	110	.221
200	.207	220	.226
300	.211	300	.244
400	.226	420	.280
500	.228	510	.294
625	.236	600	.330
700	.240	700	.350
800	.250	800	.373
900	.255	900	.420
1000	.261	970	.441
1100	.274	1035	.470
1200	.280	1100	.470
1300	.285	1200	.515
1400	.290	1300	.530
1500	.302		

.

TABLE A3

TABLE A4

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
110	.237	116	.170
200	.261	209	.303
363	.316	269	.309
401	.310	320	.336
450	.316	372	.329
500	.329	426	.340
553	.343	505	.371
600	.362	552	.408
655	.379	622	.411
700	.398	669	.432
753	.432	740	.461
810	.449	798	.499
855	.456	854	.560
905	.510		
955	.551		
1010	.691		
TABLE A5			
----------	--		
----------	--		

Time in Seconds	Optical Density	Time in Seconds	Optical Density
35	.350	72	.315
56	.360	87	.320
86	.370	102	.325
117	.380	117	.330
150	.390	134	.335
178	.400	147	.340
302	.440	163	.345
344	.450	177	.350
376	.460	192	.355
406	.470	209	.360
433	.480	222	.365
462	.490	239	.370
491	.500	252	.375
522	.510	268	.380
552	.520	283	.385
		301	.390
		315	.395
		333	.400

TABLE A7

TABLE A8

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
100	.101	26	.123
200	.103	104	.146
300	.106	154	.150
400	.109	208	.152
500	.106	264	.163
600	.114	306	.168
700	.120	357	.173
800	.122	406	.181
900	.129	475	.187
1000	.131	545	.189
1100	.134	600	.196
1200	.140	650	.207
1300	.143	700	.212
1400	.149	750	.219
1500	.152	800	.221
		850	.223
		900	.229

TABLE A10

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
35	.133	102	.152
110	.131	190	.158
155	.138	250	.163
203	.141	356	.172
253	.149	408	.176
307	.158	465	.181
353	.163	535	.192
400	.170	580	.196
455	.175	652	.202
510	.179	700	.209
556	.186	780	.215
610	.188	840	.221
650	.199	89 3	.228
703	.200	934	.229
756	.207	1068	.250
800	.215		
902	.221		

TABLE All

Time in Seconds	Optical Density	Time in Seconds	Optical Density
100	.283	110	.266
241	.300	256	.278
311	.310	328	.285
430 536	.335	550	.318
602	.352	617	.327
682 750	.375 .386	695 764	.354 .360
817	.405	832	.381
926 992	.440 .471	939 1006	.408 .430
1095	.536	1113	.453

TABLE	A13	
-------	-----	--

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
120	.221	23	.210
205	.231	36	:215
269	.241	60	.220
343	.250	85	.225
456	.248	104	.230
566	.276	132	.235
634	.284	157	.240
709	.303	179	.245
779	.311	207	.250
849	.320	235	.255
95 3	.350	260	.260
1024	.370	285	.265
1127	.381	310	.270
		334	.275
		356	.280

TABLE A15

TABLE A16

383

405 428 450 .285

.290 .295 .300

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
18	.190	27	.315
41	.200	42	.325
65	.205	60	.335
94	.210	81	.345
114	.215	97	.355
140	.220	114	.365
164	.225	130	.375
187	.230	148	.385
211	.235	164	.395
236	.240	180	.405
261	.245	202	.420
285	.250	216	.430
309	.255	231	.440
331	.260	244	.450
355	.265	259	.460
376	.270	272	.470
402	.275	287	.480
425	.280	302	.490
450	.285	316	.500
472	.290		

Time in	Optical
Seconds	Density
23	230
25	240
55	• 2 4 0
54	.250
12	.260
91	.270
109	.280
127	.290
144	.300
161	.310
176	.320
191	.330
206	.340
221	.350
235	.360
249	.370
262	.380
278	.390
292	.400
308	.410
326	.420

Optical Density Time in Seconds .170 142 203 .210 260 .245 334 .290 393 .325 .395 517 556 .420 592 .440 .460 627 .490 682

TABLE A19

Time in Seconds	Optical Density	Time in Seconds	Optical Density
162	.130	186	.190
223	.170	239	.265
280	.205	315	.375
355	.255	377	.460
413	.290	433	.535
496	.315	451	.560
535	.365	467	.580
573	.385	481	.600
607	.405		
648	.430		

TABLE A22

Time Secon	in Optical ds Density	Time in Seconds	Optical Density
12	.125	28	.235
43	.170	57	.315
75	.215	86	.395
100	.250	116	.475
133	.295	151	.570
169	.345	186	.660
234	.440	198	.690
248	.460	210	.720
262	.480	222	.750
,	TABLE A23	TABLI	E A24

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
18 30 38 47 57 67 77 87 97 107	.175 .205 .225 .250 .275 .300 .325 .350 .375 .400	29 43 53 62 71 81 91 100 110 123 132 142 151 160 170	.310 .325 .335 .345 .355 .365 .375 .385 .395 .410 .420 .430 .440 .450 .460

.

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
19	.260	18	.290
32	.275	28	.300
42	.285	44	.310
52	.295	61	.320
61	.305	78	.330
70	.315	110	.350
79	.325	125	.360
89	.335	141	.370
98	.345	156	.380
107	.355	174	.390
116	.365	188	.400
125	.375	202	.410
134	.385	218	.420
143	.395	232	.430
148	.400	247	.440
		262	.450

TABLE A27

×

Time in Seconds	Optical Density	Time in Seconds	Optical Density
16	.210	25	.275
26	.220	41	.310
43	.230	52	.335
59	.240	70	.360
78	.250	80	.380
94	.260	100	.430
113	.270	113	.460
133	.280	124	.490
152	.290	135	.520
169	.300	152	.580
187	.310	174	.650
205	.320	189	.700
223	.330		
241	.340		
259	.350		
277	.360		
294	.370		

TABLE A30

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
20	.250	21	.255
31	.265	34	.280
40	.290	41	.300
51	.310	51	.320
60	.330	59	.340
70	.350	67	.360
82	.380	75	.380
91	.400	81	.400
101	.420	90	.420
108	.440	96	.440
117	.460	104	.460
125	.480	112	.480
132	.500	118	.500
TABLI	E A31	TABLE	E A32

Optical Density Optical Density Time in Time in Seconds Seconds .150 24 .135 24 41 .165 36 .145 .180 60 46 .155 .195 .165 74 57 .210 88 68 .175 .185 102 .225 81 .195 118 .240 91 134 .255 99 .205 146 .215 .270 109 166 .285 .250 135 178 .300 .260 145 200 .325 153 .270

TABLE A34

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
23	.265	24	.245
37	.285	44	.260
55	.305	57	.275
70	.315	70	.290
88	.345	82	.305
109	.385	92	.320
119	.400	103	.335
127	.415	117	.350
137	.430	126	.365
146	.445	138	.380
154	.460	157	.395
161	.475	165	.410
169	.490	175	.425
178	.505	187	.440
185	.520		

TABLE A35

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
35	.245	23	.190
54	.265	40	.205
69	.280	80	.220
79	.295	96	.235
90	.310	115	.245
109	.325	148	.255
121	.340	168	.265
133	.365	186	.275
162	.385	205	.285
179	.420	224	.295
203	.440	246	.305
		265	.315
		281	.325
		305	.335
		321	.345
		338	.355

TABL	E A37	TABLE	E A38
Time in Seconds	Optical Density	Time in Seconds	Optical Density
21 48 66 89 105 127 144 163 187 209 226 246 266 284	.185 .195 .205 .215 .225 .235 .245 .255 .265 .265 .275 .285 .295 .305	20 39 53 63 73 91 105 126 136 159 168 181 192	.436 .480 .510 .530 .550 .570 .590 .610 .630 .650 .670 .690 .710
296 323	.325		

Time in Seconds	Optical Density	Time in Seconds	Optical Density
		Secondo	20112201
21	.343	16	.400
42	.420	23	.420
56	.450	32	.440
66	.470	40	.460
76	.490	49	.480
92	.510	5 7	.500
102	.530	65	.520
116	.550	74	.540
129	.570	83	.560
144	.590	91	.580
168	.620	100	.600
179	.640		
189	.660		
201	.680		
217	.700		

TABLE A40

TABLE A42

TABLE A44

.265

Time in Seconds	Optical Density	Time in Seconds	Optical Density
30	.390	20	.290
36	.410	26	.310
44	.430	34	.330
52	.450	41	.350
60	.470	48	.370
68	.490	56	.390
83	.530	63	.410
91	.550	70	.430
98	.570	77	.450
106	.590	84	.470
113	.610	96	.500
		103	.520
		110	.540
		117	.560

TABLE A43

Time in Optical Optical Time in Seconds Density Density Seconds 24 .280 15 .175 30 .300 .190 33 40 .320 53 .195 48 .340 83 .200 56 .360 .205 99 65 .380 118 .210 74 .400 135 .215 82 .420 151 .220 91 .440 170 .225 99 .460 .230 186 108 .480 206 .235 116 .500 222 .240 .520 124 239 .245 .250 .540 132 257 274 .255 .260 292

311

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
15	.175	29	.150
34	.180	45	.155
52	.185	64	.160
67	.190	84	.165
87	.195	102	.170
105	.200	119	.175
123	.205	139	.180
143	.210	159	.185
160	.215	176	.190
179	.220	195	.195
196	.225	214	.200
213	.230	233	.205
233	.235	251	.210
251	.240	259	.215
269	.245	284	.220
288	.250	304	.225
307	.255	322	.230
325	.260	342	.235

TABLE A47

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
20	.210	19	.200
31	.220	29	.210
43	.230	41	.220
59	.240	53	.230
71	.250	66	.240
85	.260	76	.250
98	.270	91	.260
111	.280	104	.270
126	.290	116	.280
138	.300	129	.290
152	.310	141	.300
166	.320	154	.310
178	.330	167	.320
193	.340	179	.330
206	.350	191	.340
218	.360	204	.350
231	.370	216	.360
		229	.370

Time in Seconds	Optical Density	Time in Seconds	Optical Density
26	.175	16	.190
36	.185	25	.205
49	.195	34	.220
61	.205	44	.235
74	.215	54	.250
86	.225	64	.265
98	.235	74	.280
110	.245	84	.295
122	.255	94	.310
135	.265	104	.325
147	.275	114	.340
159	.285	124	.355
171	.295	133	.370
183	.305	143	.385
196	.315		
208	.325		
220	.335		
232	.345		

TABLE A51

<u> </u>			•
Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
	-		
19	.250	17	.31
26	.265	22	.33
37	.285	27	. 35
46	.300	32	.37
55	.315	38	. 39
66	.330	43	.41
76	.345	47	.43
86	.360	53	.45
96	.375	58	.47
105	,390	63	.49
115	.405	67	.51
125	.420	71	.53
135	.435	76	.55
144	.450	80	.57
153	.465	84	.59
162	.480	₩ A	

TABLE A54

Time in Seconds	Optical Density	Time in Seconds	Optical Density
13	35	10	110
17	.37	18	.125
22	.39	32	.150
27	.41	37	.160
32	.43	43	.170
38	.45	48	.180
43	.47	53	.190
48	.49	58	.200
53	.51	63	.210
58	.53	69	.220
63	.55	74	.230
6 7	.57	79	.240
72	.59	84	.250
76	.61		

TABLE A55

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
7	.110	25	.170
13	.120	30	.185
20	.130	36	.200
28	.140	42	.215
35	.150	48	.230
42	.160	54	.245
49	.170	60	.260
56	.180	66	.275
63	.190	72	.290
77	.200	78	.305

TABLE A58

Seconds Density Seconds D	ensity
21 .150 21	.135
.165	.150
33 .180 29	.165
40 .195 32	.180
46 .210 37	.195
53 .225 41	.210
59 .240 45	.225
65 . 255 48	.240
71 .270 52	.255
77 . 285 56	.270
83 .300 60	.285
64	.300

TABLE A59

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
24	.170	12	.150
33	.210	17	.170
36	.225	22	.190
40	.255	27	.210
45	.265	32	.230
50	.290	37	.250
54	.310	42	.270
58	.325	46	.290
62	.345	51	.310
72	. 400	56	.330
76	. 420	60	.350
80	. 440	65	.370

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
22	.170	18	.165
27	.190	22	.190
32	.210	25	.210
37	.230	29	.235
42	.250	33	.260
47	.270	37	.280
51	.290	40	.305
56	.310	44	.325
61	.330	47	.350
65	.350	51	.370
70	.370	55	.400
		58	.420
		63	.450
		66	.470

TABLE A63

Time in Seconds	Optical Density	Time in Seconds	Optical Density
21 25 30 34 38 42 46 50 54 58 62 65	.175 .195 .225 .250 .275 .300 .325 .350 .375 .400 .425 .450 .475	15 21 26 30 35 39 46	.550 .600 .650 .700 .750 .800 .900
73	.500		

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
15	.450	13	.450
20	.500	19	.500
25	.550	21	.525
29	.600	24	.550
34	.650	28	.600
38	.700	33	.650
41	.750	38	.700
44	.800	42	.750
48	.850	46	.800
50	.900	50	.850
		53	.900

TABLE A67

TABLE A68

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
1 7	205	7.4	0.85
1/	• 325	14	.275
21	.350	17	.300
24	.375	21	.325
27	.400	24	.350
34	.450	27	.375
40	.500	30	.400
47	.550	34	.425
53	.600	37	.450
60	.650	40	.475
66	.700	43	.500
72	.750	46	.525
78	.800	50	.550
84	.850	53	.575
89	.900	56	.600
		59	.625

TABLE A70

Time in Seconds	Optical Density	Time in Seconds	Optical Density
19	.325	20	.275
27	.365	25	.300
34	.400	30	.325
39	.425	36	.350
45	.450	41	.375
50	.475	47	.400
55	.500	52	.425
60	.525	5 7	.450
65	.550	62	.475
69	.575	67	.500
74	.600	73	.525
		77	.550
		86	.575

TABLE A71

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start	.118	Start	.121
8.64x104	.140	8.64x104	.143
1.728x105	.146	1.728x105	.151
2.592x105	.145	2.592x105	.145
3.456x105	.149	3.456x105	.146
5.184x105	.124	5.184x105	.123
6.048x105	.139	6.048x105	.137
6.912x105	.130	6.912x105	.126
7.776x105	.141	7.776x105	.127
8.712x105	.138	8.712x105	.125
12.186x10 ⁵	.150	12.186x10 ⁵	.148
13.032x10 ⁵	.129	13.032x10 ⁵	.127

TABLE A74

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start	.097	Start	.105
86400	.148	86400	.108
172800	.155	172800	.143
259200	.173	259200	.132
345600	.161	345600	.135
518400	.139	518400	.136
604800	.157	604800	.142
691200	.154	691200	.164
777600	.157	777600	.151
871200	.159	871200	.154
1218600	.184	1218600	.171
1303200	.158	1303200	.159

TABLE A75

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start 86400	.124	Start 86400	.130
172800	.162	172800	.174
259200	.154	259200	.164
345600	.155	345600	.182
518400	.176	518400	.179
604800	.196	604800	.207
691200	.215	691200	.230
777600	.196	777600	.209
871200	.206	871200	.224
1303200	•25⊥	1218600	.267
	•254	1303200	.262

TABLE A78

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start	.120	Start	.140
86400	.172	86400	.169
172800	.184	172800	.170
259200	.225	259200	.229
345600	.237	345600	.229
518400	.257	518400	.245
604800	.314	604800	.292
691200	.356	691200	.330
777600	.394	777600	.360
871200	.399	871200	.362
1218600	.441	1218600	.411
1303200	.449	1303200	.401
TABLE	A79	TABLE	A80

Time in Optical Optical Density Time in Seconds Density Seconds .117 .100 Start Start 86400 .157 86400 .113 172800 .125 172800 .123 259200 .142 259200 .158 345600 .120 345600 .117 518400 .147 518400 .123 604800 .148 604800 .125 691200 .150 691200 .147 777600 .149 777600 .142 871200 .155 871200 .164 1218600 .153 .152 1218600 1303200 .156 1303200 .146

TABLE A82

Time in Seconds	Optical Density	Time in Seconds	Optical Density
Start	.118	Start	.119
172800	.156	172800	.159
259200	.201	259200	.163
345600	.175	345600	.187
518400	.188	518400	.228
604800	.226	604800	.229
691200	.244	691200	.229
777600	.250	777600	.239
871200	.279	871200	.259
1218600	.303	1218600	.301
1303200	.312	1303200	.314

TABLE A83

Time in Seconds	Optical Density	Time in Seconds	Optical Density
Start 86400	.125	Start 86400	.115
172800	.232	172800	.233
345600	.337	345600	.335
604800 691200	.480	604800 691200	.470
777600 871200	.562	777600 871200	.565 .609
1218600 1303200	.788 .810	1218600 1303200	.784

TABLE A86

Time in Seconds	Optical Density	Time in Seconds	Optical Density
36 100	.128 .138	300	.197
350	.147	600	.207
550	.150	1100	.219
1050	.162	1600	.227
1550	.167	2600	.228
2550	.168	3600	.232
3550	.172	4600	.233
4550	.173	5900	.242
5850	.180	6590	.250
6550	.187	7525	.251
7500	.188	8440	.254
8400	.192	10250	.255
10200	.192	12800	.257
12800	.195	14020	.267
14000	.202		

TABLE A87

Time in Seconds	Optical Density	Time in Seconds	Optical Density
Start 86400	.134	Start 86400	.110
172800	.498	172800	.497
345600	.835	345600	.686
518400 604800	1.05	518400	1.02
691200	1.46	691200	1.38
871200	1.63	871200	1.48 1.66

TABLE A90

in nds	Optical Density	Time in Seconds	Optical Density
	.156	455	.156
	.191	1638	.181
	.205	2150	.193
	.220	2633	.207
	.251	3534	.232
	.261	3935	.235
	.296	4972	.264
	.400	7793	.364
2	.680	13580	.560
)	.745	14958	.608
2	.873	16552	.691
}	.920	17468	.720
	in nds	in Optical Density .156 .191 .205 .220 .251 .261 .296 .400 .680 .745 .873 .920	in Optical Time in Density Seconds .156 455 .191 1638 .205 2150 .220 2633 .251 3534 .261 3935 .296 4972 .400 7793 .680 13580 .745 14958 .873 16552 .920 17468

TABLE A91

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
1295	.122	1300	.194
1650	.133	1680	.202
2120	.153	2140	
3130	.195	3140	.249
3740		3750	.264
4230	.232	4240	.276
4610	.249	4620	.294
4960	.264	4965	.309
5660	.289	5665	
6290	.310	6300	.344
6690	.328	6700	.356
7600	.363	7615	.384

Time in Seconds	Optical Density	Time in Seconds	Optical Density
50 150 250 350 800 900 1300 1800 2400 2750 3150 3650	.158 .170 .172 .179 .190 .196 .208 .218 .240 .248 .240 .248 .263 .274	100 800 1000 1500 2500 2650 3260 3460 3950 4600 4850	.248 .278 .287 .305 .354 .368 .392 .398 .422 .443 .450
4150	.287		

TABLE A95

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
10800	.172	$ \begin{array}{r} 10800 \\ 81000 \\ 100800 \\ 169200 \\ 255600 \\ 342000 \end{array} $.182
81000	.215		.227
100800	.255		.258
169200	.303		.301
255600	.376		.368
342000	.431		.423

TABLE A98

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
10800	.187	10800	.182
81000	.313	81000	.285
100800	.333	100800	.329
169200	.456	169200	.430
255600	.607	255600	.589
342000	.783	342000	.732

TABLE A99

Optical Density	Time in Seconds	Optical Density
.145	Start	.137
.212	16200	.190
.356	86400	.345
.385	105300	.396
	Optical Density .145 .212 .356 .385	Optical Time in Density Seconds .145 Start .212 16200 .356 86400 .385 105300

TABLE A101 TABLE A102 Optical Density Time in Time in Seconds Seconds Start .158 Start 16200 .239 16200

.571

.697

TABLE A103

86400

105300

TABLE A104

86400

105300

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
223	.200	227	.173
18603	.291	18606	.265
86038	.503	86037	.526
94000	.573	94005	.598
172800	.838	172780	.837

Optical Density

.169

.238

.551

.666

TABLE A106

Time in Seconds	Optical Density	Time in Seconds	Optical Density
360	.214	360	.158
3595	.236	3818	.189
18700	.454	5903	.204
		9703	.255
		11906	.280
		14066	.306
		17114	.343
		18869	.367
		20340	.387
		23143	.408

TABLE A107

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
350	3 ~ ~	·	
350	.155	Start	.181
3817	.191	16200	.256
5898	.205	86400	.507
9700	.262	105300	.646
11900	.281		
14071	.311		
17109	.354		
18871	.378		
20359	.400		
23160	.421		

TABLE A110

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start	.167	270	.144
16200	.232	3671	.180
86400	.549	5765	.195
105300	.678	959 7	.235
		11762	.246
		13980	.269
		17124	.286
		18886	.313
		20275	.321
		23150	.338

TABLE All1

TABLE All2

Time in Seconds	Optical Density	Time in Seconds	Optical Density
270 3681 5765 9596 11761 13980 17130 18893 20273 23150	.149 .188 .187 .221 .244 .261 .282 .304 .318 .327	$ \begin{array}{r} 1110\\ 1350\\ 1550\\ 2150\\ 2650\\ 3480\\ 4000\\ 4310\\ 4775\\ 5490\\ 6910\\ 7725 \end{array} $.184 .201 .189 .207 .217 .240 .250 .267 .278 .287 .325 .325
		1125	• 224

TABLE A113		TABLE A114	
Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
150 240 600 1040 1650 2400 2920	.102 .107 .119 .128 .131 .148	80 470 950 1915 2530 3015 3399	.151 .157 .175 .200 .210 .225 .234
3200	.168	3745	.247
3776	.180	4445	.259
4500	.206	5085	.274
5820	.237	5477	.281
6910	.264	6415	.306

TABLE All6

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
110	.158	85	.191
450	.172	425	.207
900	.185	875	.218
1230	.187	1215	.221
1600	.197	1516	.223
2120	.207	2100	.238
2470	.217	2445	.248
2770	.226	2735	.257
3195	.242	3165	.274
3470	.246	3505	.273

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
186	161	255	173
860	.175	875	.187
1377	.187	1400	.199
1980	.201	1990	.213
2477	.213	2488	.226
3033	.226	3046	.242
3542	.241	355 7	.257
4004	.255	4017	.270
4550	.272	4562	.286
5070	.287	5100	.312
5520	.301	5531	.318
6118	.320	6137	.340

TABLE All9

TABLE All7

TABLE A120

TABLE All8

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start	.153	Start	.161
86400	.167	86400	.181
172800	.170	172800	.166
259200	.172	259200	.181
518400	.221	578400	.198

TABLE A121		TABLE A122	
Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start	.193	Start	.149
86400	.205	86400	.159
172800	.189	172800	.172
259200	.209	259200	.216
518400	.223	518400	.210

TABLE A123		TABLE A124	
Time in Seconds	Optical Density	Time in Seconds	Optical Density
Start 86400	.172 .199	Start 86400	.191 .216
172800	.226	172800	.226
259200	.242	259200	.242
518400	.301	518400	.271

כרוג הדרוגות

÷

Time in Seconds	Optical Density	Time in Seconds	Optical Density
Start	.262	Start	.274
86400	.355	86400	.364
172800	.452	172800	.438
259200	.556	259200	.482
518400	.990	518400	.566

TABLE A127

TABLE A128

4

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start	.179	Start	.163
86400	.182	86400	.165
172800	.192	172800	.169
259200	.206	259200	.173
518400	.224	518400	.203

TABLE A130

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start	.190	Start	.192
86400	.219	86400	.210
172800	.251	172800	.236
259200	.251	259200	.261
518400	.307	518400	.333

TABLE A131

Time in Seconds	Optical Density	Time in Seconds	Optical Density
Start	.307	Start	.298
86400	.463	86400 172800	•428 •546
259200 518400	.667 1.02	259200 518400	.671 1.05

Time in Seconds	Optical Density	Time in Seconds	Optical Density
250	.118	550	.234
1400	.128	1360	.239
1910	.130	1880	.248
2910	.132	2880	.246
4150	.135	4150	.249
5050	.137	5050	.250
7600	.141	7600	.256
8880	.145	8750	.262

TABLE A135

TABLE A136

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start 86400 172800 259200 345600 691200	.335 .566 .730 .831 .861 .935	Start 86400 172800 259200 345600	.243 .608 .921 1.32 1.83

TABLE A138

Time in Seconds	Optical Density	Time in Seconds	Optical Density
160	.174	120	.179
435	.184	395	.189
975	.200	955	.207
1455	.217	1430	.228
2415	.246	2375	.256
3075	.274	3035	.283
3525	.288	3490	.296
4115	.308	4080	.319
4465	.324	4430	.334
4995	.336	4965	.345
5560	.355	5520	.366
6305	.383	6270	.396

TABLE A139

Time in Seconds	Optical Density	Time in Seconds	Optical Density
220	.173	200	.318
1350	.229	1325	.372
1700	.245	1550	.385
2000	.266	1990	.411
2450	.289	2250	.419
2650	.301	2600	.438
3200	.316	3050	.452
3500	.332	3430	.460
4000	.360	3800	.478
4350	.378	4300	.508
	· · · · · · · · · · · · · · · · · · ·		

TABLE A142

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
10800	.198	10800	.175
81000	.245	81000	.257
100800	.275	100800	.285
169200	.320	169200	.329
255600	.408	255600	.398
342000	.484	342000	.465

TABLE A143

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
10800	.178	10800	.194
81000	.326	81000	.339
100800	.382	100800	.386
169200	.530	169200	.534
255600	.757	255600	.753
342000	1.11	342000	1.21

TABLE A145 TABLE A146 Optical Density Time in Optical Time in Density Seconds Seconds 227 .187 307 .186 18608 .301 18662 .303 86039 .627 86090 .597 94005 .700 94035 .652 172760 1.15 1.15 172740

TABLE A147

Time in Seconds	Optical Density	Time in Seconds	Optical Density
365	.176	387	.175
2065	.202	2088	.193
3910	.216	3933	.214
5733	.241	5760	.231
11540	.287	11570	.286
13277	.308	13300	.303
14936	.323	14960	.322
16782	.340	16807	.338
18660	.358	18682	.357
20610	.381	20630	.378
22496	.412	22520	.399
24665	.428	24700	.424
TABLE A150

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start 86400 172800 259200 345600	.294 .560 .828 1.30 1.87	Start 86400 172800 259200	.288 .562 .823 1.32

TABLE A151

Time in Seconds	Optical Density	Time in Seconds	Optical Density
400	.176	460	.167
2115	.193	2220	.183
3950	.211	4084	.201
5780	.228	5870	.216
1158 7	.282	11664	.264
13320	.297	13393	.282
14975	.314	15070	.303
16828	.332	16920	.324
18700	.350	18809	.335
20642	.369	20730	.351
22537	.392	22640	.373
24722	.417	24840	.392

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
150	.192	125	.182
600	.217	560	.202
800	.218	800	.203
1400	.243	1370	.223
1900	.250	1870	.220
2750	.264	2720	.236
3250	.280	3210	.247
3575	.288	3540	.254
4100	.297	4065	•265
4800	.312	4765	•277
6200	.342	6160	.302
7150	.363	7110	.318

TABLE A153

TABLE A156

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
75	.045	100	.098
350	.054	275	.104
915	.075	730	.118
1400	.093	1080	.121
2330	.115	1420	.130
2995	.138	1975	.143
3485	.152	2280	.154
4030	.161	2610	.160
4385	.173	3005	.180
4925	.184	3370	.188
5480	.199		
6225	.215		

TABLE A158

Time in	Optical	Time in	Optical
Seconds	Density	Seconas	Density
150	.208	Start	.385
200	.212	86400	.333
760	.217	172800	.309
1000	.224	259200	.295
1420	.235	518400	.276
1890	.247		
2290	.263		
2520	.271		
2990	.284		
3300	.288		

TABLE A159

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start	.288	Start	.268
86400	.276	86400	.269
172800	.273	172800	.259
259200	.276	259200	.263
518400	.294	518400	.261

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start	.388	Start	.460
86400	.298	86400	.412
172800	.294	172800	.410
259200	.294	259200	.362
518400	.293	518400	.345

TABLE A161

TABLE A164

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Chart	2.2.1	C to a set to	21.2
Start	• 3 3 L	Start	.JLJ
86400	.303	86400	.329
172800	.303	172800	.352
259200	.304	259200	.367
518400	.318	518400	.396

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start	.344	Start	.295
86400	.335	86400	.270
172800	.347	172800	.257
259200	.371	259200	.256
518400	.460	518400	.262

TABLE A167

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start	.271	Start	.270
86400	.253	86400	
172800	.257	172800	.258
259200	.264	259200	.274
518400	.262	518400	.281

TABLE	A169	TABLE	A170
Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start	.351	Start	.262
86400	.305	86400	.280
172800	.288	172800	.312
259200	.293	259200	.342
518400	.303	518400	.402

.

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start 86400 172800 259200 518400	.371 .356 .365 .379 .459	Start 86400 172800 259200	.782 1.07 1.24 1.47

Time in Seconds	Optical Density	Time in Seconds	Optical Density
Start 86400 172800 259200	.792 .942 1.20 1.42	208 830 1380 1840 2600 3210 3885 4795 5750 6940	.355 .375 .384 .388 .401 .411 .422 .439 .458 .477
		7850	.493

TABLE A173

TABLE A176

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
170	.276	10800	.433
790	.293	81000	.446
1341	.301	100800	.451
1820	.307	169200	.449
2650	.326	255600	.453
3170	.328	342000	.465
3845	.339		
4750	.354		
5705	.368		
6910	.385		
7815	.396	·	

TABLE	A1//	TABLE	A178
Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
10800	.376	10800	.384
81000	.338	81000	.405
100800	.351	100800	.418
169200	.350	169200	.451
255600	.386	255600	.510
342000	.400	342000	.567

Time in Seconds	Optical Density	Time in Seconds	Optical Density
10800 81000 100800 169200 255600 342000	.435 .514 .546 .565 .656 .737	300 18657 86106 94040 172720	.445 .508 .672 .693 .842
•			

TABLE A	181	TABLE A182	
Time in Seconds	Optical Density	Time in Seconds	Optical Density
297 18657 86115 94050 172700	.459 .533 .665 .678 .828	410 3660 18724	.466 .505 .603

TAB	LE	A1	83	}
	the second second		~ ~	

.609

Time in Seconds	Optical Density	Time in Seconds	Optical Density
404	.472	478	. 476
3658	.521	2245	.498
18725	.612	4117	.516
		5900	.528
		11690	.556
		13428	.582
		15095	.581
		16943	.587
		18827	.598
		20760	.606
		0000	600

Time in Seconds	Optical Density	Time in Seconds	Optical Density
500 2265 4137 5932 11710 13452 15122 16964 18850 20782 22690	.469 .488 .508 .522 .549 .562 .572 .581 .592 .601 .606	Start 86400 172800 259200 345600 691200	.581 .580 .672 .752 .877 1.37
24890	.624		<i>,</i>

TABLE A185

TABLE A188

Time in	Optical	Time in	Optical
Seconds	Density	Seconds	Density
Start 86400 172800 259200 345600	.662 .644 .788 .950 1.14	160 2140 3225 4181 6304 7728 9715 11527 13340 15666 17530 19520	.423 .445 .452 .455 .468 .482 .496 .504 .510 .526 .531 .542

TABLE	A189	TABLE	A190	
Time in Seconds	Optical Density	Optical Time in Opti Density Seconds Dens	Optical Density	
180	.264	145	.278	
810	.276	780	.289	
1360	.283	1355	.298	
1840	.293	1810	.306	
2770	.305	2740	.314	
3270	.312	3245	.319	
3890	.319	3855	.329	
4770	.329	4735	.336	
5710	.342	5680	.346	
6930	.350	6895	.353	
7700	.366	7670	.385	

APPENDIX II

Analysis of Raw Data

All Runs analyzed were performed at a temperature of 25°C. The results that have been obtained from these tables were used in the final analysis of the Reactions of Poly-L-lysine with 1-Halo-2,4-dinitrobenzenes.

Reaction

Table Numbers

1-Fluoro-2,4-dinitrobenzene with Poly-L-lysine	B1-B6
1-Chloro-2,4-dinitrobenzene with Poly-L-lysine	B7-B10
1-Bromo-2,4-dinitrobenzene with Poly-L-lysine	B11-B14
1-Iodo-2,4-dinitrobenzene with Poly-L-lysine	B15-B18

$[NH_2]_h$	[NH2]c	[PL]	[F]	Buffer	рН	Run
(mole/l)	(mole/l)	(mole/l)	(mole/l)			Number
3.312x10 ⁻⁶	2.432×10^{-4}	4.839x10-2	1.140×10^{-3}	THAM	8.50	A28
3.312x10 ⁻⁶	2.432×10^{-4}	4.839x10-2	1.140x10-3	THAM	8.50	A29
3.312x10-6	2.432x10-4	4.839x10-2	1.140x10-3	THAM	8.50	A30
3.339x10-6	2.452×10^{-4}	4.879x10 ⁻²	5.748x10 ⁻⁴	THAM	8.50	A31
3.339x10-6	2.452x10-4	4.879x10-2	5.748x10-4	THAM	8.50	A32
1.656x10 ⁻⁶	1.216x10 ⁻⁴	2.420×10^{-2}	1.140×10^{-3}	THAM	8.50	A33
1.656x10 ⁻⁶	1.216x10 ⁻⁴	2.420×10^{-2}	1.140×10^{-3}	ТНАМ	8.50	A34
1.656x10 ⁻⁶	1.216×10^{-4}	2.420×10^{-2}	1.140×10^{-3}	THAM	8.50	A35
8.279x10-7	6.080x10 ⁻⁵	1.210x10 ⁻²	1.140×10^{-3}	THAM	8.50	A36
8.279x10-7	6.080×10 ⁻⁵	1.210×10^{-2}	1.140×10^{-3}	THAM	8.50	A37
1.113x10-6	8.173x10 ⁻⁵	1.626x10-2	5.748×10^{-4}	THAM	8.50	A44
1.113x10 ⁻⁶	8.173x10 ⁻⁵	1.626x10-2	5.748×10^{-4}	THAM	8.50	A45
1.113x10 ⁻⁶	8.173x10 ⁻⁵	1.626×10^{-2}	5.748×10^{-4}	THAM	8.50	A46
6.701x10 ⁻⁶	2.221×10^{-4}	1.613×10^{-2}	1.140×10^{-3}	THAM	9.00	A38
6.701x10 ⁻⁶	2.221×10^{-4}	1.613x10 ⁻²	1.140×10^{-3}	THAM	9.00	А39
6.755x10-6	2.239×10^{-4}	1.626x10 ⁻²	5.748×10^{-4}	THAM	9.00	A47

.

TABLE B1

109

. .

TABLE	B2
-------	----

Run Number	Hq	Net Rate	Net Rate [F][NH ₂] _C	Avg. $\frac{\text{Net Rate}}{[F][NH_2]_c}$	Avg. <u>Net Rate</u> [F][NH ₂] _C	$\frac{[NH_2]_{h}}{[NH_2]_{c}}$
		O.D./sec	$\frac{O.D./sec}{(mole/1)^2}$	$\frac{O.D./sec}{(mole/1)^2}$	$\frac{\text{mole/l} \cdot \text{sec}}{(\text{mole/l})^2}$	
A28	8.50	2.480×10^{-3}	8.945x10 ³			
A29	8.50	2.170×10^{-3}	7.827x10 ³			
A30	8.50	2.477x10 ⁻³	8.934x10 ³			
A31	8.50	9.560×10^{-4}	6.783x10 ³			
A32	8.50	1.012x10-3	7.180x103			
A33	8.50	1.506x10 ⁻³	1.086x10 ⁴			
A34	8.50	1.156x10-3	8.339x10 ³	7.284x10 ³	2.646	1.362x10 ⁻²
A35	8.50	1.108x10-3	7.993x10 ³			
A36	8.50	4.324×10^{-4}	6.238x10 ³			
A37	8.50	4.299×10^{-4}	6.202x10 ³			
A44	8.50	2.481×10^{-4}	5.281x10 ³			
A45	8.50	2.365×10^{-4}	5.034x10 ³			
A46	8.50	2.384×10^{-4}	5.075x10 ³			
A38	9.00	1.152×10^{-3}	4.550x10 ³			
A39	9.00	1.371×10^{-3}	5.415x10 ³			
A47	9.00	5.979×10^{-4}	4.646x10 ³	4.972x10 ³	1.806	3.017×10^{-2}

TABLE B3	
----------	--

						ель. 1
			TAB	LE B3		
Run	рН	Buffer	[F]	[PL]	$[NH_2]_{c}$	[NH ₂] _h
Number			(mole/l)	(mole/l)	(mole/l)	(mole/l)
A48	9.00	THAM	5.748x10-4	1.626x10 ⁻²	2.239x10 ⁻⁴	6.755x10 ⁻⁶
A49	9.00	THAM	5.748x10-4	1.626x10 ⁻²	2.239×10^{-4}	6.755x10 ⁻⁶
A50	9.50	THAM	5.748x10-4	1.626x10-2	4.844x10-4	4.327x10-5
A51	9.50	THAM	5.748x10-4	1.626x10 ⁻²	4.844×10^{-4}	4.327x10 ⁻⁵
A42	9.50	THAM	5.748x10-4	3.252x10 ⁻²	9.688×10^{-4}	8.654×10^{-5}
A43	9.50	THAM	5.748x10-4	3.252×10^{-2}	9.688x10-4	8.654x10 ⁻⁵
A40	9.50	THAM	1.140×10^{-3}	1.626x10 ⁻²	4.844×10^{-4}	4.327x10 ⁻⁵
A41	9.50	THAM	1.140x10 ⁻³	1.626x10 ⁻²	4.844×10^{-4}	4.327x10 ⁻⁵
A52	10.00	THAM	5.748x10-3	1.626x10 ⁻²	7.020x10 ⁻⁴	2.013x10 ⁻⁴
A53	10.00	THAM	5.748x10 ⁻³	1.626x10 ⁻²	7.020×10^{-4}	2.013x10 ⁻⁴
A54	10.35	THAM	2.311×10^{-4}	8.130x10-3	3.055×10^{-4}	2.455×10^{-4}
A55	10.35	THAM	2.311x10 ⁻⁴	8.130×10 ⁻³	3.055×10^{-4}	2.455×10^{-4}
A56	10.35	THAM	2.311×10^{-4}	8.130x10 ⁻³	3.055×10^{-4}	2.455x10-4
A57	10.35	THAM	2.311x10 ⁻⁴	8.130x10 ⁻³	3.055x10-4	2.455x10-4
A58	10.65	THAM	2.311×10 ⁻⁴	8.130x10-3	2.590×10^{-4}	3.950×10^{-4}
			,	2	1	

Run Number	рН	Net Rate	Net_Rate [F][NH2]c	Avg. <u>[F][NH2]</u> c	Avg. <u>Net Rate</u>	$\frac{[NH_2]h}{[NH_2]c}$	
		0.D./sec	$\frac{O.D./sec}{(mole/1)^2}$	$\frac{\text{O.D./sec}}{(\text{mole/l})^2}$	$\frac{\text{mole/l} \cdot \text{sec}}{(\text{mole/l})^2}$		
A48	9.00	6.499×10^{-4}	5.050x10 ³				
A49	9.00	6.694x10 ⁻⁴	5.201x10 ³				
A50	9.50	1.312x10 ⁻³	4.712x10 ³				
A51	9.50	1.357x10 ⁻³	4.874x10 ³				
A42	9.50	2.552×10^{-3}	4.583x10 ³	4.313x10 ³	1.567	8.933x10 ⁻²	
A43	9.50	2.159x10-3	3.877x10 ³				
A40	9.50	2.042x10-3	3.698x10 ³				
A41	9.50	2.283x10 ⁻³	4.134x10 ³				
A52	10.00	3.486×10^{-3}	8.639x10 ²	8.515x10 ²	3.093x10-1	28.675x10 ⁻²	
A53	10.00	3.386x10-3	8.391x10 ²				
A54	10.35	1.292×10^{-3}	1.830x10 ⁴				
A55	10.35	0.811x10 ⁻³	1.149x10 ⁴	2.063x10 ⁴	7.492	80.35x10 ⁻²	
A56	10.35	1.920×10^{-3}	2.720x10 ⁴				
A57	10.35	1.801x10 ⁻³	2.551x10 ⁴				
A58	10.65	2.465×10^{-3}	4.118x10 ⁴				
A59	10.65	3.390×10^{-3}	5.664x10 ⁴	4.756×10^{4}	17.276	152.5×10^{-2}	112

Run Number	рН	Buffer	[F]	[PL]	[NH2]c	[NH2]h
			(mole/l)	(mole/l)	(mole/l)	(mole/l)
A60	10.65	THAM	2.311x10 ⁻⁴	8.130x10-3	2.590x10-4	3.950×10^{-4}
A61	10.65	THAM	2.311x10 ⁻⁴	8.130x10 ⁻³	2.590×10^{-4}	3.950×10^{-4}
A62	10.85	THAM	2.311x10-4	8.130x10 ⁻³	2.205x10-4	4.884x10-4
A63	10.85	THAM	2.311x10 ⁻⁴	8.130x10 ⁻³	2.205×10^{-4}	4.884×10^{-4}

TA	B	L	Ε	В	6

			TA.	90 عاتا		
Run Number	рП	Net Rate	Net Rate [F][NH ₂] _c	Avg. <u>Net Rate</u>	Avg. $\frac{\text{Net Rate}}{[F][NH_2]_{C}}$	[NH ₂] _h [NH ₂] _c
		O.D./sec	0.D./sec (mole/1) ²	$\frac{\text{O.D./sec}}{(\text{mole/l})^2}$	$\frac{\text{mole/l} \cdot \text{sec}}{(\text{mole/l})^2}$	
A6 0	10.65	2.754x10 ⁻³	4.601x10 ⁴			
A61	10.65	2.778x10-3	4.641x10 ⁴			
A62	10.85	3.752x10 ⁻³	7.363x10 ⁴	7.326x10 ⁴	26.609	221.5x10 ⁻²
A63	10.85	3.714×10^{-3}	7.288x10 ⁴			

Run	рИ	Buffer	[C1]	[PL]	[NH ₂] _c	[NH2]h
NUMBEL			(mole/l)	(mole/l)	(mole/l)	(mole/l)
A95	8.50	THAM	5.735x10-4	1.626x10-3	8.173x10-5	1.113x10 ⁻⁶
A96	8.50	THAM	5.735x10 ⁻⁴	1.626x10-3	8.173x10 ⁻⁵	1.113x10 ⁻⁶
A99	9.00	THAM	5.735×10^{-4}	1.626x10-3	2.239x10-4	6.755x10-4
A100	9.00	THAM	5.735x10-4	1.626x10-3	2.239×10^{-4}	6.755x10 ⁻⁴
A97	9.00	THAM	5.735x10-4	1.626x10-3	2.239x10-4	6.755x10 ⁻⁴
A98	9.00	THAM	5.735x10-4	1.626x10-3	2.239x10-4	6.755x10 ⁻⁴
A101	9.50	THAM	5.735x10 ⁻⁴	1.626x10-3	4.844×10^{-4}	4.327×10^{-5}
A102	9.50	THAM	5.735x10-4	1.626x10-3	4.844×10^{-4}	4.327x10 ⁻⁵
A103	9.50	THAM	5.735x10 ⁻⁴	1.626x10-3	4.844×10^{-4}	4.327x10 ⁻⁵
A104	9.50	THAM	5.735x10 ⁻⁴	1.626x10 ⁻³	4.844×10^{-4}	4.327x10 ⁻⁵
A108	9.50	BORAX	5.735x10 ⁻⁴	1.626x10 ⁻³	4.844×10^{-4}	4.327x10 ⁻⁵
A109	9.50	BORAX	5.735×10^{-4}	1.626x10 ⁻³	4.844×10^{-4}	4.327x10 ⁻⁵
A106	10.00	THAM	5.735×10^{-4}	1.626x10 ⁻³	7.020×10^{-4}	2.013x10 ⁻⁴
A107	10.00	THAM	5.735x10-4	1.626x10 ⁻³	7.020×10^{-4}	2.013x10 ⁻⁴
A105	10.00	THAM	5.735×10^{-4}	1.626x10-3	7.020×10^{-4}	2.013x10 ⁻⁴
A110	10.00	THAM	5.735×10^{-4}	1.626×10^{-3}	7.020×10^{-4}	2.013x10 ⁻⁴

[NH2]h [NH2]c	Avg[Cl][NH2]c	Avg [Net Rate [Cl][NH2]c	Net Rate	Net Rate	рН	Run Number
	$\frac{\text{mole/l} \cdot \text{sec}}{(\text{mole/l})^2}$	$\frac{O.D./sec}{(mole/1)^2}$	$\frac{O.D./sec}{(mole/1)^2}$	O.D./sec		
1.362x10 ⁻²	5.941x10 ⁻³	16.357	17.053	7.993x10 ⁻⁷	8.50	A95
			15.660	7.340x10 ⁻⁷	8.50	A96
			16.907	2.171x10 ⁻⁶	9.00	A99
			17.421	2.237x10-6	9.00	A100
3.017x10 ⁻²	5.491x10 ⁻³	15.118	13.527	1.737x10 ⁻⁶	9.00	A97
			12.616	1.620x10 ⁻⁶	9.00	A98
			17.642	4.901x10 ⁻⁶	9.50	A101
			16.364	4.546x10-6	9.50	A102
8.933x10 ⁻²	5.582x10-3	15.3685	12.764	3.546x10 ⁻⁶	9.50	A103
			13.555	3.766x10-6	9.50	A104
			14.885	4.135x10-6	9.50	A108
			16.998	4.722x10 ⁻⁶	9.50	A109
·			30.105	1.212x10 ⁻⁵	10.00	A106
			29.782	1.199x10 ⁻⁵	10.00	A107
28.675x10-2	9.637x10 ⁻³	26.529	32.911	1.325x10-5	10.00	A105
•			20.738	8.349x10 ⁻⁶	10.00	A110

Run	рН	Buffer	[C1]	[PL]	[NH ₂] _c	[NH2]h
NUMBEL			(mole/l)	(mole/l)	(mole/l)	(mole/l)
A111	10.00	BORAX	5.735x10 ⁻⁴	1.626x10-3	7.020×10^{-4}	2.013x10 ⁻⁴
A91	10.50	BORAX	5.735x10 ⁻⁴	3.252×10^{-3}	1.128x10 ⁻³	1.278×10^{-3}
A92	10.50	BORAX	5.735×10^{-4}	3.252x10-3	1.128x10-3	1.278x10-3
A89	10.50	BORAX	5.735x10 ⁻⁴	3.252×10^{-3}	1.128x10 ⁻³	1.278x10-3
A90	10.50	BORAX	5.735×10^{-4}	3.252x10-3	1.128x10-3	1.278x10-3
А93	10.80	BORAX	5.735×10^{-4}	3.252x10 ⁻³	9.239x10-4	1.793x10 ⁻³
л94	10.80	BORAX	5.735x10 ⁻⁴	3.252x10-3	9.239×10^{-4}	1.793x10 ⁻³
A112	10.80	BORAX	5.735x10 ⁻⁴	1.626x10 ⁻³	4.619×10^{-4}	8.967x10 ⁻⁴
A113	10.80	BORAX	5.735x10 ⁻⁴	1.626x10 ⁻³	4.619x10-4	8.967x10-4
A114	10.80	BORAX	5.735x10 ⁻⁴	1.626x10 ⁻³	4.619x10-4	8.967×10^{-4}
A115	11.00	BORAX	5.735x10 ⁻⁴	1.626x10 ⁻³	3.536×10^{-4}	1.081x10 ⁻³
A116	11.00	BORAX	5.735x10 ⁻⁴	1.626x10 ⁻³	3.536×10^{-4}	1.081x10 ⁻³
A117	11.00	BORAX	5.735×10^{-4}	1.626x10 ⁻³	3.536×10^{-4}	1.081x10-3
A118	11.00	BORAX	5.735×10^{-4}	1.626×10^{-3}	3.536×10^{-4}	1.081×10^{-3}

Г	A	В	L	E	В	1	0	

			ТА	BLE B10		
Run Number	pH	Net Rate	Net Rate	Avg $\frac{\text{Net Rate}}{[C1][NH_2]_{C}}$	Avg [Net Rate [C]] [NH2] c	$\frac{[\mathrm{NH}_2]_{\mathrm{D}}}{[\mathrm{NH}_2]_{\mathrm{C}}}$
		0.D./sec	$\frac{O.D./sec}{(mole/1)^2}$	$\frac{O.D./sec}{(mole/1)^2}$	$\frac{\text{mole/l} \cdot \text{sec}}{(\text{mole/l})^2}$	
VIII	10.00	7.694x10 ⁻⁶	19.111			
A91	10.50	3.918x10 ⁻⁵	60.568			
A92	10.50	2.987x10 ⁻⁵	46.175	56.615	20.565x10-3	113.313x10 ⁻²
A89	10.50	4.433x10 ⁻⁵	68.530			
A90	10.50	3.311x10 ⁻⁵	51.185			
A93	10.80	2.615×10 ⁻⁵	49.360			
A94	10.30	3.955×10^{-5}	74.651			
A112	10.80	1.846x10 ⁻⁵	69.687	72.965	26.504x10 ⁻³	194.118x10 ⁻²
A113	10.80	1.896x10-5	71.574			
A114	10.80	2.012x10 ⁻⁵	71.948			
A115	11.00	2.279×10^{-5}	112.370			
A116	11.00	2.173x10 ⁻⁵	107.146	118.88	43.182x10 ⁻³	305.60x10 ⁻²
All7	11.00	2.511x10 ⁻⁵	123.812			
A118	11.00	2.681x10 ⁻⁵	132.194			
						1
						, ω

			-	
	TABLE B11			

Run Number	рH	Buffer	[Br]	[PL]	$[NH_2]_c$	[NH2]h	
			(mole/l)	(mole/l)	(mole/l)	(mole/l)	
A141	8.50	THAM	5.741×10^{-4}	1.626x10 ⁻³	8.173x10-5	1.113x10-6	
A142	8.50	THAM	5.741×10^{-4}	1.626x10 ⁻³	8.173x10-5	1.113x10-6	
A143	9.00	THAM	5.741x10 ⁻⁴	1.626x10 ⁻³	2.239x10 ⁻⁴	6.755x10-6	
A144	9.00	THAM	5.741x10 ⁻⁴	1.626x10-3	2.239×10^{-4}	6.755x10 ⁻⁶	
A145	9.50	THAM	5.741×10^{-4}	1.626x10-3	4.844×10^{-4}	4.327x10 ⁻⁵	
A146	9.50	THAM	5.741×10^{-4}	1.626x10 ⁻³	4.844×10^{-4}	4.327x10 ⁻⁵	
A149	9.50	BORAX	5.741×10^{-4}	1.626x10-3	4.844×10^{-4}	4.327x10 ⁻⁵	
A150	9.50	BORAX	5.741×10^{-4}	1.626x10-3	4.844×10^{-4}	4.327x10 ⁻⁵	
A147	10.00	THAM	5.741x10 ⁻⁴	1.626x10 ⁻³	7.020×10^{-4}	2.013x10 ⁻⁴	
A148	10.00	THAM	5.741×10^{-4}	1.626×10^{-3}	7.020×10^{-4}	2.013×10^{-4}	
A151	10.00	BORAX	5.741×10^{-4}	1.626x10-3	7.020×10^{-4}	2.013×10^{-4}	
A152	10.00	BORAX	5.741×10^{-4}	1.626x10-3	7.020×10^{-4}	2.013x10 ⁻⁴	
A137	10.50	BORAX	5.741×10^{-4}	3.252x10 ⁻³	1.128x10 ⁻³	1.278x10-3	
A138	10.50	BORAX ·	5.741x10 ⁻⁴	3.252x10 ⁻³	1.128x10 ⁻³	1.278×10^{-3}	
A139	10.80	BORAX	5.741×10^{-4}	3.252x10-3	9.239×10^{-4}	1.793x10-3	
A140	10.80	BORAX	5.741x10 ⁻⁴	3.252×10^{-3}	9.239×10^{-4}	1.793x10-3	ы
							.19

Run Number	рН	Net Rate	Net Rate	Avg [Net Rate [Br] [NH2] c	Avg [Br] [NH2] c	[NH ₂] _h [NH ₂] _c	
		O.D./sec	$\frac{O.D./sec}{(mole/1)^2}$	$\frac{O.D./sec}{(mole/1)^2}$	$\frac{\text{mole/l} \cdot \text{sec}}{(\text{mole/l})^2}$		
A141	8.50	8.074x10 ⁻⁷	17.208	16.574	6.020x10-3	1.362x10 ⁻²	
A142	8.50	7.479x10 ⁻⁷	15.939				
A143	9.00	2.660x10 ⁻⁶	20.694	21.437	7.787x10 ⁻³	3.017x10 ⁻²	
A144	9.00	2.851x10 ⁻⁶	22.180				
A145	9.50	5.317x10-6	19.119				
A146	9.50	5.249x10 ⁻⁶	18.875	17.98	6.531x10 ⁻³	8.933x10 ⁻²	
A149	9.50	4.437x10 ⁻⁶	15.960				
A150	9.50	2.908x10 ⁻⁶	10.460				
A147	10.00	9.083x10 ⁻⁶	22.537				
A148	10.00	9.068x10-6	22.500	22.71	8.249x10-3	28.675x10 ⁻²	
A151	10.00	9.454x10-6	23.460				
A152	10.00	9.002×10 ⁻⁶	22.340				
A137	10.50	3.262x10-5	50.367	51.100	18.525x10 ⁻³	113.313x10 ⁻²	
A138	10.50	3.565x10 ⁻⁵	51.834				
A139	10.80	4.634x10 ⁻⁵	87.370			· · ·	
A140	10.80	3.910×10 ⁻⁵	73.720	83.00	30.149x10-3	194.118x10 ⁻²	100

.

Run Number	pH	Buffer	[Br]	[PL]	[NH2]c	$[NH_2]_h$
			(mole/l)	(mole/l)	(mole/l)	(mole/l)
A153	10.80	BORAX	5.741×10^{-4}	1.626x10 ⁻³	4.619×10 ⁻⁴	8.967×10^{-4}
A155	10.30	BORAX	5.741×10^{-4}	1.626×10^{-3}	4.619×10^{-4}	8.967x10 ⁻⁴
A156	11.00	BORAX	5.741×10^{-4}	1.626x10 ⁻³	3.536×10^{-4}	1.087x10-3
A157	11.00	BORAX	5.741×10^{-4}	1.626×10^{-3}	3.536x10-4	1.087x10 ⁻³

Run Number	рН	Net Rate	Net Rate [Br][NH ₂] _C	Avg [Net Rate [Br] [NH2] c	Avg[Net_Rate [Br][NH2]c	$\frac{[NH_2]_h}{[NH_2]_c}$
		O.D./sec	$\frac{\text{O.D./sec}}{(\text{mole/l})^2}$	$\frac{0.D./sec}{(mole/1)^2}$	$\frac{\text{mole/l} \cdot \text{sec}}{(\text{mole/l})^2}$	
A153	10.80	2.035x10 ⁻⁵	76.740			
A155	10.80	2.497×10^{-5}	94.157			
A156	11.00	2.414×10 ⁻⁵	118.905	118.437	43.021x10-3	305.6×10^{-2}
A157	11.00	2.395×10^{-5}	117.969			

TABLE B15	

Run	рН	Buffer	[I]	[PL]	[NH2]c	$[NH_2]_h$	
number			(mole/l)	(mole/l)	(mole/l)	(mole/l)	
A176	8.50	THAM	5.748×10^{-4}	1.626x10-3	8.173x10-5	1.113x10 ⁻⁶	
A177	8.50	THAM	5.748×10^{-4}	1.626×10^{-3}	8.173x10 ⁻⁵	1.113x10 ⁻⁶	
A178	9.00	THAM	5.748×10^{-4}	1.626x10-3	2.234x10-4	6.755x10-6	
A179	9.00	THAM	5.748×10^{-4}	1.626x10 ⁻³	2.234×10^{-4}	6.755x10 ⁻⁶	
A180	9.50	THAM	5.748×10^{-4}	1.626x10 ⁻³	4.844×10^{-4}	4.327×10^{-5}	
A181	9.50	THAM	5.748×10^{-4}	1.626x10-3	4.844×10^{-4}	4.327x10 ⁻⁵	
A186	9.50	BORAX	5.748×10^{-4}	1.626x10-3	4.844×10^{-4}	4.327x10 ⁻⁵	
A187	9.50	BORAX	5.748×10^{-4}	1.626×10^{-3}	4.844×10^{-4}	4.327x10 ⁻⁵	
A182	10.00	THAM	5.748x10 ⁻⁴	1.626x10-3	7.020×10^{-4}	2.013x10-4	
A183	10.00	THAM	5.748×10^{-4}	1.626×10^{-3}	7.020×10^{-4}	2.013x10 ⁻⁴	
A184	10.00	THAM	5.748x10 ⁻⁴	1.626x10 ⁻³	7.020×10^{-4}	2.013x10 ⁻⁴	
A185	10.00	THAM	5.748×10^{-4}	1.626x10 ⁻³	7.020×10^{-4}	2.013x10 ⁻⁴	
A189	10.00	BORAX	5.748×10^{-4}	1.626x10 ⁻³	7.020×10^{-4}	2.013x10 ⁻⁴	
A174	10.50	BORAX	5.748×10^{-4}	3.252×10^{-3}	1.128x10 ⁻³	1.278x10 ⁻³	
A175	10.50	BORAX	5.748×10^{-4}	3.252×10^{-3}	1.128x10 ⁻³	1.278x10-3	
							щ
					. *		23

Run Number	рН	Net Rate	Net Rate	Avg. <u>Net Rate</u>	Avg. <u>[I][NH2]</u>	$\frac{[\mathrm{NH}_2]_{\mathrm{h}}}{[\mathrm{NH}_2]_{\mathrm{c}}}$
		0.D./sec	$\frac{O.D./sec}{(mole/1)^2}$	$\frac{O.D./sec}{(mole/1)^2}$	$\frac{\text{mole/l} \cdot \sec}{(\text{mole/l})^2}$:
A176	8.50	7.801×10 ⁻⁸	1.661	2.153	0.782x10-3	1.362x10-2
A177	8.50	12.43x10 ⁻⁸	2.646			
A178	9.00	5.694x10 ⁻⁷	4.424	5.855	2.029x10-3	3.017x10-2
A179	9.00	8.683×10-7	6.747			
A180	9.50	2.293x10 ⁻⁶	8.235			
A181	9.50	2.071x10 ⁻⁶	7.438	6.561	2.383x10 ⁻³	8.933x10 ⁻²
A186	9.50	1.326x10-6	4.762			
A187	9.50	1.617x10 ⁻⁶	5.808			
A182	10.00	6.976x10 ⁻⁶	17.289			
A183	10.00	6.942x10-6	17.204			
A184	10.00	5.654x10-6	14.012	15.482	5.624x10-3	28.675x10 ⁻²
A185	10.00	5.758x10-6	14.270			
A189	10.00	5.905x10 ⁻⁶	14.634			
A174	10.50	1.718x10 ⁻⁵	26.448	24.887	9.040x10-3	113.313x10 ⁻²
A175	10.50	1.509x10 ⁻⁵	23.275			

.

TABLE B17

Run Number	рН	Buffer	[I]	[PL]	[NH ₂] _c	[NH2]h
			(mole/l)	(mole/l)	(mole/l)	(mole/l)
A189	11.00	BORAX	5.748×10^{-4}	1.626x10-3	3.536×10^{-4}	1.081x10 ⁻³
A190	11.00	BORAX	5.748×10^{-4}	1.626x10 ⁻³	3.536x10-4	1.081x10-3

Run Number	pII	Net Rate	Net Rate [F][NH ₂]c	Avg. <u>Net Rate</u>	Avg. $\frac{\text{Net Rate}}{[I] [NH_2]}$	[NH ₂] _h [NH ₂] _c
		0.D./sec	$\frac{O.D./sec}{(mole/1)^2}$	$\frac{\text{O.D./sec}}{(\text{mole/l})^2}$	<pre>mole/l·sec (mole/l)²</pre>	
A189	11.00	1.037x10 ⁻⁵	51.02	49.575	18.008x10-3	305.60x10 ⁻²
A190	11.00	0.976×10^{-5}	48.015			

APPENDIX III

Calculator Program Written By Dr. Ernest Bart To Calculate The Rate Constants For A Four Parameter Rate Expression Using A Hewlett-Packard 9820 Calculator

```
0:
ENT "NO. OF RUNS=?", PRT "NO. OF RUNS=", A; SPC 4;1→B+
1:
IF 4>A;PRT "TO LITTLE DATA";GTO 19⊢
2:
0 \rightarrow RB; B+1 \rightarrow B; IF B=21; GTO 2 \rightarrow C
3:
1→Bト
4:
PRT "RUN NO.=", B; SPC 1; ENT "X", X, "Y", Y, "Z", C, "W", ROF
5:
ENT "RATE", R21; PRT X, Y, C, R0; SPC 1; PRT R21; SPC 4+
6:
XX+R1 \rightarrow R1; XY+R2 \rightarrow R2; XC+R3 \rightarrow R3; XR0+R4 \rightarrow R4; XR21=R5 \rightarrow R5 \vdash
7:
YY+R7→R7;YC+R8→R8;YR0+R9→R9;YR21+R10→R10+
8:
CC+R13→R13;CR0+R14→R14;CR21+R15→R15+
9:
ROR0+R19 \rightarrow R19; ROR21+R20 \rightarrow R20; B+1 \rightarrow B; IF B \leq A; GTO 4+
10:
SPC 3;R2→R6;R3 R11;R4→R16;R8→R12;R9→R17;R14→R18+
11:
1>A:0>C:2>BH
12:
R(B+5A) - R(B+5C) R(C+1+5A) / R(6C+1) \rightarrow R(B+5A) +
13:
IF B=5;B+1>B;GTO 12⊢
14:
IF A=3;A+1\rightarrow A;C+2\rightarrow B;GTO 12+
15:
IF C=2;C+1\rightarrow C;C+1\rightarrow A;C+2\rightarrow B;GTO 12+
16:
R20/R19 \rightarrow X; (R15-XR14)/R13+C; (R10-XR9-CR8)/R7+B+
17:
(R5-XR4-CR3-BR2)/R1→A⊢
18:
PRT "A1=",A, "A2=",B, "A3=",C, "A4=",X+
19:
SPC 8;END+
R58
```