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ABSTRACT

A theoretical analysis is presented for treating the 

free vibrations of submerged, ring stiffened cylindrical 

shells with simply supported ends. The effects of the 

eccentric stiffeners are averaged over the thin-walled 

isotropic cylindrical shell. The energy method is utilized 

and the frequency equation is derived by Hamilton's Principle. 

All three degrees of freedom are considered. Numerical re

sults are presented for frequencies and mode separation for 

several cases of interest. Comparisons with previous theo

retical and experimental results indicate good agreement. The 

cylindrical wave approximation and the plane wave approximation 

for the field equation were investigated. Their applicability 

was evaluated and the results indicate that only the cylindrical 

wave approximate method gives good agreement with the exact 

solution. For a steel shell in water with c = 5.82 slug/sec, 

the plane wave approximate method gives very poor results 

(about 5-20% accuracy)
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NOMENCLATURE

Symbol Description

Aq - Fourier coefficient.

Ar - Cross-sectional area of stiffener

[A] - Frequency determinant.

A^j - Elements of frequency determinant.

c - Acoustic velocity in the fluid.

D - Flexural stiffness of isotropic cylinder wall,
Et3

12(1 -p2 )

E - Young's modulus.

e - Distance from cylinder middle surface to
line on which N acts.x

F^ - Defined by equation (3.21).

G - Shear modulus.

HoCl)(KR)- Hankel function of the first kind, of order 
zero and argument KR.

H ^^(KR)- Hankel function of the first kind, of order 
n argument KR.

h - Thickness of cylinder.

h^ - Stiffener dimension as shown in Figure 3.1.

I - Moment of inertia of stiffener about its
centroid.

I - Moment of inertia of stiffener about middle
surface of cylinder.

J - Torsional constant for stiffener.
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K (KR) - Modified Bessel function of the secondo

n

kind, of order zero and argument KR.

K (KR) - Modified Bessel function of the second
kind, of order n and argument KR.

K,K - Coefficient of the equation for potential
fluid flow.

L - Length of cylindrical shell.

 ̂ - Ring spacing (see Figure 2.1).

M - Mass per unit area.

M - Moment resultant in axial direction,x
M - Moment resultant in circumferential direction.y
M - Shear moment resultant,xy
M - Shear moment resultant,yx
m - Number of longitudinal half-waves.

N - Stress resultant in axial direction,x
N - Stress resultant in circumferential direction.y
N - Shear stress resultant,xy
N - Externally applied load resultant in
x x direction.

N - Circumferential stress resultant due to
y applied pressure.

n - Number of circumferential waves.

P - Total pressure.

- Hydrostatic pressure.

P. - Incident pressure.1 r
Pr - Radiated pressure.

P - The amplitude of the radial pressure.
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R - Radius to middle surface of isotropic
cylinder.

T - Kinetic energy.

t - Time variable.

V - Potential energy.

u,v,w - Displacements in x,y, and z directions,
respectively (axial, tangential and 
radial).

x,y,z - Orthogonal coordinates defined in
Figure 2.1 (x and y lie in middle 
surface of cylinder or plate).

U,V,W - The amplitudes of displacement.

~z - Distance from middle surface of
cylinder to centroid of stiffener.

e »e .L, - Membrane normal strains and shearing
x y* ^  strain.

ExT,eyT’YxyT’ ~ Normal strains and shearing strain.

- Defined by equation (4 .22).

P - Poisson’s ratio.

w - Circular frequency.
p - Density.

<f) - Velocity potential function.

$ - The amplitude of the velocity
potential.

Subscripts

c - cylinder

i - Integer

j - Integer



r - Stiffening in y direction,

w - Water.

A - Prestress state.

B - Small changes away from prestres
state.

A comma indicates partial differentiation with 

spect to the subscript following the comma.



CHAPTER 1

INTRODUCTION

Since the early efforts of Rayleigh [1]xand Love [2], 

the vibration of shells in a vacuum has been extensively 

analyzed. More recently, the prestressed, eccentrically 

stiffened, cylindrical shell of finite length was investi

gated by McElman et al [3] and Harari and Baron [4].

The dynamic interaction between shells and fluids 

has also received considerable attention. Junger [5, 6 , 7] 

was the first to analyze the free and forced vibrations of 

a cylindrical shell submerged in an acoustic medium. He 

treated an infinitely long, cylindrical shell utilizing 

plain strain analysis. The transient response of a sub

merged infinitely long, ring-stiffened cylindrical shell 

has been studied by Herman and Klosner [8] and Lyons et 

al [9]. A submerged cylindrical shell of infinite length, 

having radial surface motion over a stiffened, finite 

section has been studied by Paslay et al [10].

Due to the rapid development of deep sea oil drilling, 

long-range submarine and undersea research, interest has in

creased in the natural frequency of a submerged, stiffened,

1 Numbers in brackets designate references.
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cylindrical shell of finite length. There is no existing 

analysis method to meet this demand. Therefore, the main 

objective of the present study is to extend McElman's work 

for the submerged condition.

A submerged, eccentrically stiffened, cylindrical shell 

of finite length is analyzed to obtain its natural frequency. 
The effects of eccentric stiffeners are averaged over the 

thin-walled isotropic cylindrical shell. Three degrees of 

vibration of the structure are considered. Boundary con

ditions are established and satisfied at the fluid-structure 

interface. In obtaining the frequency equation for the 

vibration of the eccentric ring-stiffened, submerged, cylin

drical shell, the derivation is accomplished by defining the 

Donnel type of nonlinear strain displacements for the shell 

and its stiffeners, formulating the potential and kinetic 

energies of the system, and then applying Hamilton's Principle. 

A set of appropriate nonlinear equilibrium equations and 

boundary conditions are derived. The nonlinear equations 

are used to derive linear equations that govern the small 

vibration of the system.

Finally, a three degree freedom frequency equation is 

obtained for the submerged, eccentric ring-stiffened, cylin
drical shell. The frequencies.are numerically resolved, 

a value of the has been obtained, the corresponding ratios 

of radial, axial and tangential amplitudes can be evaluated.



The numerical results obtained from the present analysis 

for several cases of interest are given in Chapter 3.

Good agreement is found with other theoretical investiga
tions and experimental results.

The cylindrical wave approximation and the plane wave 

approximation for the field equation were investigated and 

a parametric study was done in order to compare the approxi

mate methods with the exact solution.
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CHAPTER 2 

GOVERNING FIELD EQUATIONS

The well known field equation for a homogeneous fluid 
medium [11] is

Vcj)2 = —
c2 912

The axisymmetric form of this equation is

9_i(j>_ + J _  9cp + 92 cj) = _1_ 9 2 (j> (2.1)

9r2 r 9r 9x2 c2 9t2

in which <f> is the velocity potential function, c is the

velocity of sound in the fluid, t is the time variable, 

x is the shell coordinate parallel to the axis of the structure 

(Figure 2.1), and r is the variable describing the distance from 

the shell surface into the fluid.

The velocity potential, cj>, and the radiated pressure,

P , can be written as

4> = eiwt $ cos^I sin-ip- C2 -2)

n iwt n ny mx
r = e r C0S_R sin~TT (2.3)
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u (x, y)
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r !w (x, y)

1 F  _________________  ‘i F  \

^ -----------

vw Cx»yl

Figure 2.1 - Geometry of Ring Stiffened Cylinder
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in which $ is the amplitude of the velocity potential, Pr is 
the amplitude of the radial pressure, w is the circular 

frequency, m is the number of axial half-waves, n is the 

mean radius of the cylindrical shell,and L is the length 

of the cylindrical shell.

Substituting equation (2.2) into the governing field 

equation (2 .1) for the fluid medium yields:

If the fluid is assumed to be infinitely extended, the 

solution of equation (2.4) for an outgoing wave is given

Let

(2.4)

by

(2.5)

in which H ^  ̂  is the Hankel function of the first kind o
of order zero.
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The constant Aq is evaluated by ensuring that the velocity 

of the shell and the velocity of the fluid medium are equal 

at the shell-fluid interface, r = R, i.e.

For a shell simply supported at each end, the radial 

deflection is assumed to be

in which W = the amplitude of the radial deflection.

Substituting equations (2.3) and (2.7) into equation
(1.6) results in

Upon substituting equation (2.5) into equation (2.8), 

the constant can be written as

(2-7)

iaiW (2 .8)

o

^ _ -iooW ____
0 K (KR) (2.9)
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The radiated pressure is defined by the velocity

potential of the fluid medium

pr ■ Pw If- (2.10)

in which pTr is the density of the fluid. Then w

n 2 i^t r f 'iTTT C- mx ny (2.11)r = pw f(w)W sin -j—  cos-£-

in which

Pr = p wu2 Wf(a>) (2.12)

f(V) = H° CKR)
KH-̂  ̂ 1 ̂ (KR) (2.13)

Let

K = it > i V ( - r (̂ -)2 C 2 - 1 4 )

The function f (w) can be written as

K (KR)
f(dj) = — -----—  (2.15)

K Kj(KR)

in which K and K, are modified Bessel functions of the o 1
second kind, of order 0 and 1 , respectively.
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The shell is assumed to be acted upon by a shock wave 

which induces a radiated pressure and a hypothetical in

cident pressure. The radiated pressure is defined by the 

velocity potential of the acoustic medium and the incident 

pressure on the shell is dependent upon the motion of 

wave front which is shown in Figure 2.2.

For the transient condition, the time t is equal or
2Rless than the value ---- . The condition under considerationc

in this steady-state analysis is that the time t is greater
2Rthan the value — -— . The wave front has completely passed

the cylinder and the incident pressure may be treated as 

a constant. The fluid effects at the end of the cylinder were 

neglected so that the problem is more tractable analytically.



10

Shock Wave Front

Shock Wave Velocity

Figure 2.2 - Shock Wave Movement
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CHAPTER 3 

ENERGY OF THE STIFFENED STRUCTURE

Consider an axisymmetric structure consisting of a 
cylindrical shell with a reinforcing stiffener. In the cylin

drical portion of the structure, the displacements of the 

. r - shell are defined by the three orthogonal components u, 

v, w, which are functions of the coordinates x and y (see 

Figure 2.1). The stiffener displacements u, v, w, are 

shown in Figure 3.1, where h is the thickness of the clyin- 

drical shell.

Potential Energy

The strain energy of the unstiffened thin-walled iso

tropic cylinder [12] is

h

in which exT, £yT and yxyT are 

strains, E is Young's modulus, 

the thickness h is sufficiently 

the cylinder is considered to b

irR a
f  (e +  £ l r r  \ XT yT

•*0

YxyT2) dXdydZ (3.1)

the total normal and shearing 

and y is Poisson's ratio. When 

small compared to the radius R, 

a thin-walled cylinder.
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1________w (x,y)

- z

3lXj>Xl  —

O

h/2

h/2

QStiffener Centroid

Figure 3.1 - Stiffener Geometry



The Donnell type nonlinear strain displacement relations use 

here are

£ xT = uT,x + 2 w ’x

eyT = VT ,y + W/R + 7 w ’y

^xyT uT,y + VT,x + w,x w ’y (3.2)

where

Urp = U - ZW,X

VT v ‘ zw’y (3.3)

The quantities u,v, and w are the displacements of the 

middle surface of the cylinder wall. Thus,

exT u,x + 2 w,x " zw’xx

eyT = v’y + E + l K ’y ' zw,yy (3.4)

yxyT = u’y + v>x + ” ’x " 2zw’xy

After integration with respect to z, the cylinder strain 

energy becomes



+ 2 (l-y) w,2xy j dxdy (3.5)

where

s ” sxT U = #X

£y eyT Iz = 0

Y = Y 1 = 0  xy xyT I z (3.6)

If the displacement in the cylinder and stiffening rings 

are continuous and the properties of the stiffening rings 

are averaged over the spacing 1, the total strain energy [12] 

for the stiffening rings of spacing 1 attached to the shell 

is found to be



The first term in equation (3.7) is the strain energy 

of extension and bending. The quantity dAr is an element of 

cross-sectional area of the stiffening ring, and GrJr is the 

twisting stiffness of the ring section. Substitution of the 

first of the equations (3.4) into equation (3.7) and integrat 

ing over the area of the stiffening ring yields the following 

expression for the stiffening ring strain energy

G J
j dxdy [3.8]
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Here zr is the distance from the pniddle surface of the 

isotropic shell to the centroid of ring cross-section, and 

I is the moment of inertia of the stiffening ring with re

spect to an axis in the middle surface of the isotropic

shell. It should be noted that "z is positive for a stif-r r
fening ring on the outer surface of the shell and negative 

for a ring on the inner surface.

The potential energy of external pressure and an 

externally applied axial load resultant N (positive in 

compression) is

Pwdxdy +

f N u I - I [ x t I z = e J
o

L
dy

o

(3.9)
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where

N = function of P, in this case x h

P, + P. = P h 1 r

P^ = constant external pressure

P^ = incident pressure

Pr = radiated pressure

The quantity e is the distance from the middle surface of 

the isotropic shell to the line on which the load resultant 

N acts.
X.

The potential strain energy of the combined structure 

can be written as the sum of the energies of the cylindrical 

shell, the stiffening rings, and the loads as follows:

V = vc + vr + Vp (3.10)

Kinetic Energy

The kinetic energy of the system can be written in 

terms of the kinetic energies of the cylindrical shell 

segments and the stiffening rings.
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The kinetic energy of the unstiffened thin-walled 

cylinder is

L r 2irR
Tc = j  I / pc ^ ^ 2+ ^ 2 + w 2)dxdy (3.11)

o o

in which Pc is the density of cylinder material.

The kinetic energy of the stiffening ring is

r L f 27TR A
Tr = j  / / p r ~  ^u2+ v2+ w 2 )clxdtj (3.12)

o o

in which is the density of ring material.

The total kinetic energy of the system is

/-L r 2ttR
T = j  I M (ti2 + v2+ w 2) d x d y  (3.13)

o o
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where

A
M = p h + p —  (3.14)^ 1 I

is the average or distributed mass per unit area.
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CHAPTER 4

EQUATION DERIVATION § NUMERICAL RESULTS

Equation of Motion and Boundary Conditions

The partial differential equations and boundary con

ditions are derived from Hamilton's principle

where T and V are the structural system's kinetic energy 

and potential energy respectively.

The three motions of this conservative system from a 

given initial configuration to a given final configuration 

in a time interval (t^, 12) are obtained by allowing variation 

of the three displacements Su, <5v and Sw to be arbitrary 

and utilizing the fundamental technique of the calculus of 

variations [13]. From equation (4.1), the three equations 

of motion are derived as follows:

[T - V]dt = 0 (4.1)
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u, +’xx R w,x
i-y2 (u ,xy + w ’xw ’xy>

1+y
2 v, + w, w, > - m a  = o >, »Xy ’y ’xy/ mu

1 +[ Ehi Ci-y2)] (v, XX + — w, + w, w, ) »y y ’yy'

i+y2 (u, xy + w . wx ’x y - 1-y
2 v ’xy + w. xx

E A r r
Ehl (1-y ) zrw >yy - M v  = 0

DV w + k ( Eh
l - y 5

E A r r
y

1
J w, y

-f ( :r + zr A r)w ’
2 z E A /r r r (v

yyyy

2n W ,R ’yy w, + w, w,’yy ’y ’yyy

Eh
(i-y2 )R

(u, + i w, ) \ ’x 2 ’x'

)

’yyyy
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Eh
1-y2

> + ^ w,’x 2 *x (v, y
w
R w ’yj] w, XX

Eh
l-y2

v, y
1 2 
2 w ’y + y u, X w, X )]w, yy

E A r r v, y
1? w, X - z rw ’yy) w ’yy

-  2 Eh
2 (l+y)

( V, + V, w, w, \ w, \ *y ’x ’x ’y j ’xy - Mw = 0 (4.2)

The necessary and sufficient conditions to cause the 

equation (4.1) to vanish during the variational process (3.1) 

are to zero the remainder part in addition to the equation of 

motions. Then the natural boundary conditions are established. 

These conditions at each end of the stiffened cylindrical shell 

are:

D [ w ’xxx + (2'y) W,xyy] ^ 7  [ u ’x + 7 w ’x 

+ y(v,y +  I + w,2x )]w,x - ^fr+^jCu.y + v >x

+ w,x W, )w, = 0



23

or w = 0

D (w ’xx y w ’yy) Nx =  0

or w, = 0 ’x

Et
i-y:

u .’X * I w,: (v’y 7 S)]

♦ Nx - 0

or u = 0

Gt ( u ’y + v ’x + " ’x w ’y) “ 0

or v = 0
(4.3)

Equations (4-2) may be conveniently rewritten in terms 
of the stress resultants as
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Nx,x + Nxy,y - Mii - 0

N + N - Mv = 0y,y xy,x

N yM + M - M - M + -tx,xx xy,xy yx,xy y,yy R

N w, - N w, - 2N w, + P - Mw x xx y ’yy xy ’xy

= 0 (4.4)

The boundary conditions (4.3) may be rewritten in 

terms of stress resultants as

M - ( M - M \ + N w, + N w,x,x  ̂ xy,y yx,yj x ’x xy ’y

or w = 0

Mx + Nxe = 0

or w,x = 0
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N + N x x = 0

or u = 0

Nxy = 0 or v = 0 (4.5)

where

Nx
Eh

i-y [u, X w, X (v’y + — + — w,
■)}

N =y
Eh
TTTP [v >y ♦ s 1

2 w ’y (u, X + I w.*)]

E A r r w
v,y + R

1
2 w, y ■ zr w,yy)

N.xy Gh ( v,y V , . w , x W, y>

Mx -D (w,xx * y w >yy)

My = -D (w>yy + y w,n j

+ z.
E A r r

E I r r w,

w 1
yy

2
(v,y + p -R 2 w ’y zr w »yy>



Vibration Equations

The equations of motion (4.4) derived in the last section 

are used to obtain linear equations which govern the small 

amplitude vibrations of a prestressed, eccentrically stiffened, 

cylindrical shell which is submerged in a fluid medium.

The deformations associated with the vibration of a 

prestressed cylinder are divided into two parts as follows:

u uA + uB

v

w (4.7)

The first part, denoted by subscript A, is an axisymmetric 

static prestress deformation which occurs prior to excitation 

at one of the natural frequencies. The second part, denoted
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by subscript B, is a small additional deformation which 

occurs as a result of the excitation. Since the A sub

scripted quantities are static they are axisymmetric 

deformations; therefore, the terms Miî , Mv^, Mw^ and all 

derivatives with respect to y vanish. The equilibrium 

equations which govern these deformations are found from 

equations (4.4) as

^xA,x

NxyA,x

-M xA,xx * -$T ' NxAwA,xx + (Ph + pl) = 0 (4'8)

If there is no applied shear, equation (4.8) yields

NxyA = 0

If we let all derivatives with respect to y equal 

zero for axisymmetric deformation, a set of appropriate 

boundary conditions are found from equations (4.5) to be
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M x A , x  + Nx A WA  = 0

or 0

MxA N e x = 0

or w. 0A,x

N x A + Nx ‘ 0

or = 0

NxyA = 0

or vA = 0

where

nxa ” [ ua,x + i  wa,x +1J ( - n r ) ]1-y
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NyA _JJL_ [ X _  + C

1-y2 L  R ^ A ’x + 2 WA,x)
E A r r wA

R

NxyA ^ WA ,x

M . = -Dw.xA A , xx

The equilibrium equations and boundary conditions 

which govern the dynamic deformations (subscript B) are 

obtained by substituting equation (4.7) into equation

(4 .4) and (4 .5). By eliminating the axisymmetric pre

stress equations, and retaining only linear terms, 

i.e. neglecting the high order terms under the small 
amplitude vibration assumption, the following equations 

governing the dynamic deformations (subscript B) are 

obtained:

N „ + N „ - MiL = 0xB,x xyB,y B

NyB,y NxyB, x MvB = 0



M  + M  M MxB,xx xyB,xy yxB,xy yB,yy

N B
R ^xAWB,xx ~ ^xB W A,xx ^yA WB.

+ P - M w r = 0r B

and the boundary conditions become

M xB,x ( MxyB,y ’ Myxb,y) + NxA wB,x

+ Nx Bw A , x  = 0

or Wg 0

M D = 0  xB

or w,, 0B ,x

N x B = 0

or uB = 0

30

yy

4.11)
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NxyB

or Vg = 0 (4 .12)

where

Et r / WR nt
Nx B “ y ^ 7 [ UB,x + wA,x wB,x + t J ( vB,y * t )]

Ft- r /
NyB = ^ l [ vB,y + T  * P (uB,x + uA,x wB,x)]

E A . WB
♦ - ^ ( vB,y + T T

Z W„ \r B,yy J

NxyB = Gh (uB,x + vB,x + wA,x wB,y)

MXB = "D CWB ,xx + ^ wB,yy)
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M D = -D y B (WB,yy * » w B,xx)
E I r r wB,yy

+ z ErArr r /
1 (VB,

w
y

B
R r B,yyJ

M Gh
xyB wB,xy

M.yxB
/Gh 
V, 6

GrJ
f-) w b .xx

(4.13)

Frequency Equation Derivation

Assuming a constant prestress deformation W^, the solution 

equations are

N A = - N - PRxA x 2

N.yA = - Ny = - PR (4.14)

Equation (4.11) may now be written as
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N x B,x  + NxyB,y ' M U B = 0

N D + N r, - M v n = 0yB,y xyB,x B

Mr, + M „  M r, - M ,xB,xx xyB,xy yxB,xy yB,yy

N R+ — X—  + N + N w., + PR x B,xx y B,yy r

M wfi = 0 (4.15)

The displacement Ug, Vg and Wg which satisfy simple 

support boundary conditions are given as

iwt /_mTTx_\ • / nyUB - &  e 1"  <=« ( ^ M  P H

vB . 7 eiMt sin sin (-SJ-)

"B - "  Sln (-=?")I cos (USg-) (4.16)
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The equation (2 .11) gives

Pr = P W ^2£C“) e1U)t W sin cos (^g-)

where m is the number o£ axial half-waves and n is the 

number of circumferential full waves. If equations (4.16) 

are substituted into equation (4.15) it yields

- (Mw2 + -JL. + Gh * ) \ J
V 1-y2 L R ’

+ + Gh') V - W = 0LR ' 1-y / j_p2 LR

mn-rr /UEh 
LR k 1-y Gh) U - (Mto: Eh

l-y:
nj
R:

E A r r n‘
R‘

Gh m 2 it 2) V - 2- (-Eh.
' R2 V l-l

E A r r E A z n ‘ r r r
IR ■) W = 0
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y E h  ynrrr jj
i-y RL

n / Eh 
R2 ' 1-1

E A r r

r r r n - + ■ r— ) V1R /

. /Gh3 \ mmr 2 . n 3
+ (—  + — — ) ( l r ) - — —  (if)

1R"
r-i . — / 4n — n o Eh
L1 + zr ( n r  + zr jr)]+—

Eh  1_
y2 R2

Nx ( ^ ) 2- Hy (l)2 - [H + Pwf M ] “ ' W = 0

(4.17)

The determinant of the displacemnt coefficients when 

set equal to zero yields a sixth-order equation of the cir

cular frequency.

[A] = 0 (4.18)

where

A12 A 21
( Gh + -HSt. 

^  ' 1-h2
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A13 = A31
yEh 
1- y 2

m tt 
LR

2 3 = A32
n
R 2

Eh 
l- y :

E A r r
( 1 * «r * ) )

A11 = - (M to2 Eh
1- U‘

m 2tt2 Gh - 
R

A 22 = - ( M or Eh n
R

E A r r Gh m  2tt2

A33 M w f(w)j 0)2- “[(F)+ (kR  ) n ,mn 
2 W l r -n

G J r r v /inn tt  ̂
) (LR >

E J r r < K >

* ^ f i  * z / 2 a 2 * z “-'mI r (  „ r R 2 ;j1R

Eh 1 
1 - y 2 R 2

. n (** ) - ST (£)D 2 x v L ' y ' R '
J (4 .19)



The result of [A] = 0 is
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A^ui 6 + + A-̂ o)2 + Aq = 0 (4.20)

where

F1 + PwF ^

F2 =
Eh m 2iT2 iw+ Gh
l-y 2 L2 R2

F3 =
E h

l-y:
+ JL-E) si + Gh 5 ^

iy r 2 l 2

F4 A12 'Gh +^Gh y Eh \ mniT 
LRl-y

F5 A23
Eh E A r r
l-y

1+ z.
O '

n_
R2

F6 A13
y E h  nnr

l-y 2 LR



38

r , miT . k , , n v4  ̂ ~ , mnu \ 2 1
[(— ) + ( r ) + M u r )  J

/ Gh3 L Gr^r \ f mnirN 2  ̂ ErIr , n N 4 
\ 3 + \ / V LR / i ( R )

E A r r
lR2 (2n5R “  )]R2 ' J

Eh
i-y:

l
R2
—  - N mX Ny

2(k)
(4.21)

and

A3 - FjM2

a2 ' m [ f i (f2 + f3 ) • MFy]

A. - (f 4)2]- M [( - (F5y tF6 > 2]

o [ c p 4 ) (F5)2 f 2 + cf6)2f 3

2F4 F5 F6

(4.22)
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Mode Separation

It is convenient to write the system of equations

(4.17) in matrix form

[A] [D] = 0

where [D] is the vector "U
V
-W (4 .23)

The natural frequency, to, is obtained by equating the 

determinant [A] to zero. Substituting the valve of to into 

equation (4.23), the non-trivial solution will provide the 

amplitude ratios from the three algebraic equations of the 

coefficients of U, V and W.
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Numerical Procedures

The solution of the frequency equation (4.20) involves 

modified Bessel functions. These functions were evaluated 

by the IBM computer subroutine program BESK, which computes 

the zero-order and first-order Bessel functions using 

series approximations and then computes the high-order func

tion using the recurrence relation [14]. The accuracy was 

checked by comparing it with published data [14]. The natural 

frequencies, a) , were obtained by an iterative procedure.

The root of the nonlinear frequency equation is computed 

by subroutine ZEROIN in which the bisection method and 

secant rule are used [15].

For the consideration of one degree of freedom, only 

the radial surface motion of the system is permitted and 

other surface motions are neglected. The frequency equation 

is derived from equation (4,18) by equating Mio2 terms to 

zero in and A ^ . This equation has the following

form:

a: m2 + k ' = o1 o
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The frequency to is found exactly.

For the purpose of comparing with McElmans' method, 

the fluid-structure interaction is decoupled from this one 

degree of freedom frequency equation. Actually, this equation 

represents another form of the McElman equation.

Comparison with McElmans' Method

The design example given in reference [16] was 

evaluated in vacuum and in seawater at a depth of 1,000 feet. 

The preassigned parameters were given the values:

R = 198.0 in., L = 504.0 in., h = 1.2056 in.,

1 = 30.17 in., p = 0.33, E = 30 x 10^ psi,

P c = 7.33 x 10  ̂ slug/in., = 0.97 x 10  ̂ slug/in.,

c = 60,000 in/sec.(average sound velocity in saltwater), 

h^ = 10.02 in., 1^ = 0.3071 in., h^ = 10.363 in., 

h^ = 0.2373 in. (the stiffener dimension h^ is shown 

in Figure 2.1).

The example was evaluated in this study by four 

different methods as detailed below.
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1. McElman's method with prestress which is formed 

by the pressure associated with a depth of water 

of 1,000 ft.

2. The present one degree of freedom method with the 

fluid-structure interaction decoupled.

3. The present one degree of freedom method with 

fluid-structure interaction.

4. The present three degree of freedom method with 

fluid structure interaction.

The numerical results are presented in Table I.

The results of methods 1 and 2 are identical. They show 

that both equations , though of different formulation, are 
equivalent. The results of method 3 and 4 give much lower 

natural frequencies when the structure is submerged in water. 

In these methods, the tangential and axial motion are not 

significant. The elimination of these two degrees of free

dom in method 3 gave only slightly different natural frequen

cies than in method 4.
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Table I - Natural Frequencies (Hz) Comparison with 

McElman's Method

Axial
Half
Wave
m

Full
Wave
n

McElman
Method

Present Method
One Degree 
Freedom 

Considered

Three Degrees 
Freedom 

Considered

in Vacuum
in Water 

1000' Depth
in Water 

1000' Depth

1 2 30. 06 30. 06 10.68 10.85

1 3 15.17 15.17 6.11 6.18

2 4 41.47 41.47 18.97 19.11

3 5 66. 78 66. 78 33. 78 33. 74
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Comparison with Experiments Conducted in Water by Norfolk 

Naval Shipyard [10]

The tests were conducted by the Under Water Explosion 

Research Division of the Norfolk Naval Shipyard [10].

Several aspects of the experimental program such as the 

use of massive bulkheads and extended end sections, were 

introduced in order to make the experimental model more 

nearly the match of the cylindrical shell of infinite length, 

with radial surface motions over only a finite section. The 

dimensions and characteristics of the ring-stiffened cylinder 

are :

R = 20.25 in., L = 60.75 in., h = 0.177 in.,

L/1 = 17, E = 30 x 10^ psi, p = 0.3,

p = 7.77 x 10 4 slug/in., p = 0.934 x 10 4 slug/in., c w
c = 60,000 in/sec., (pA) ring = 0.25 x 10  ̂ lb/sec/in., 

(EA) ring = 9.68 x 10^ lb/in., 1 = 0.98 in.

The above example was evaluated by the present three degree 

of freedom approach. The numerical results are presented in 

Table II.
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From Table II, it is evident that the natural frequen

cies calcualted by the present method are slightly higher 

than those obtained in the referenced tests. This result 

is to be expected since the test model was a long cylinder 

with radial surface motion over a simply supported section 

of finite length, whereas the analytical model consisted of 

only a simply supported cylinder of identical finite length. 

Thus, the experimental model had a longer "effective" length 

than the analytical model. Based on elementary beam theory 

in which the natural frequencies are inversely proportional 

to the square of the effective length, the tested frequencies 

should be lower than those predicted by the presented analytical 

model.
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Table II - Natural Frequencies (Hz) Comparison 

with Underwater Test Data

Axial Half 
Wave m

Full Wave 
n

Experiment* 
in Water

Present Method** 
(Depth of Water 5 ft)

1 2 128/138 156

1 3 204 210

3 4 466 554

3 5 655 736

* Infinite long cylinder with radial motion over 
finite section.

** Finite length with simply supported ends.
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Comparison with Experiments Conducted in Air by 

Hayek and Pallet [17]

The results of the present method have been compared 

to a set of experimental results which have been obtained 

at the Ordinance Research Laboratories by Hayek and Pallet, 

reference [17]. The experiments were conducted on the 

stiffened cylindrical shell of the following geometry:

R = 10.2 in, L = 30.0 in, h = 0.33 in,

1 = 5.0 in, h^ = 1.0 in, h^ = h^ = 0  in,

h^ = 0.375 in, E = 10^ psi, P = 0.33 in,

P c = 0.098 lb/in,

The numerical results are presented in Table III.

It can be seen from Table III that as n increases, 

the natural frequencies predicted by this method deviate 

substantially from the experimental values. The mode shape 

associated with n cannot be approximated by an overall sinu

soidal wave m and, therefore, the error involved is large. 
Similar results appear in the other orthotropic approaches 

documented by Bleich [18], Galletly [19], Wah [20], and 

Basdekas-Chi [21] ; recommendations for improved results 

are presented in Chapter VII.
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Table III - Natural Frequencies (Hz) Comparison 

with Air Test Data

Half
Wave
m

Full
Wave
n

Experiment 
in Air Present Method*

1 2 627 727

1 3 1190 1336

3 0 3020 3019

1 8 3728 5897

* One degree freedom is considered
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Mode Separation

The mode separation was conducted in the first 

example problem of this numerical analysis. The design 

example was evaluated with the interaction of seawater 

at a depth of 1000 feet. The previously assigned 

parameters were given in page 41.

The natural frequencies were obtained from the 

first example of this analysis. Substituting the values 

of frequency into equation (4.23), the amplitude ratios 

are found from the three algebraic equations of the 

coefficients of U, V and W. The numerical results 

are presented in Table IV.
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Table IV - Mode Separation

Axial
Half
Wave
m

Full
Wave
n

Natural
Frequency

Hz

Ratios of Mode
Radial

Amplitude
Axial

Amplitude
Tangential
Amplitude

1 2 10. 85 1.0 0.152 0.515

1 3 6.18 1.0 0.097 0.356

2 4 19.11 1.0 0. 086 0.309

3 5 33. 74 1.0 0. 073 0.227
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CHAPTER 5 

APPROXIMATE SOLUTIONS

Cylindrical Wave Approximation [8, 23]

The acoustic field equation [2.1], is replaced here 

by Haywood’s approximate relation

Where is the after-flow coefficient. The approximation 

assumes that each ring element of the the shell radiates a 

cylindrical wave into the surrounding medium.

The solution of equation of motion [4.15], satisfying 

the shell boundary condition [4.12], and the shell-fluid boundary 

condition equation [5.1], is given by

... io)t ,77 • mTrx nyW = e W s m  — £—  cos—^

TT „iwt rr nnrx nyU = e U cos — £—  cos —

.t iwt ,7 . mirx nyV = e V s m  — j-—  cos

■ iojt i  . m-rrx nycp = e <3? s m  — j-—  cos -^ -

n io)t „ . mirx ny
V  e r Sln L cos R -  [5.2]
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The velocity of the shell and the velocity of the fluid 

medium are equal at the shell-fluid interface, r = R, i.e.

3W = 3 
3t 3r

Substituting equation [5
results in

The radiated pressure P 

potential of the fluid medium

Substituting equation [5

[5.5] results in

P 03

The structure is excited 

assumed to be

[5.3]

1] and [5.2] into equation [5.3]

is defined by the velocity

[5.5]

2] and [5.4] into equation

i

a radial harmonic force

F - elMt F sin wlx cos 15.7]
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may be written as

U = F UU
(Ar)2+ (Ai)2

+ 1

V = F W

W = F WW

+ l
C^r) 2 + (A.)

A
+ x

(Ar)2+ (A i)2

and [5.6] into the equation

radial harmonic force

amplitude U, V, W which

A. ~l
(Ar)2+ (A^2

A-l
CAr3 2 + ( A^2

A. ~~l
(Ar)2+ C A i)2 [5.8]

where

A r a H  a 2 2 a 33 + ^ A i 9 A 9 A i ̂  " a 99 [A i -̂ )12 23 13 2 2 ^13-

all(A l3)2- a C a 12)2

Ai tall a22 12

UU A12 x A23 - a22 A13

W  A13 x  A12 -  a 1;L A23

^  all a22 “ Â 12^2 [5.9]
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The A^. is defined by equation [4-19] and are

given by

all = A11 +

2

[5.10]
2

C

Assuming the forcing function to be sinmt, the imaginary 
part is only under consideration. Therefore, the resultant 

amplitude is

The maximum A (to) occurs at resonance frequency which 

is determined numerically.

Plane Wave Approximation [ 23]
The acoustic field equation is approximated by the 

relation

A (to) (UU)2 + ( W ) 2 + (WW)2
[5.11]

3r
JL
C

3(j)
31 [5.12]
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The approximation assumes that each element of the 

shell radiates a plane wave into the surrounding medium, 

an assumption which increases in error as the interaction 

progresses.

Substituting [5.12] and [5.5] into equation [5.3] 

results in

$ = - cW [5.13]

The substitution of equation [5.2] and [5.13] into 
equation [5.5] leads to

Pr = - ipcwW [5.14]

By the same procedure used in the cylindrical wave 

approximation method, the resultant amplitude results in

F A -
A (co) = — --—  (UU)2 + (VV)2 + (WW)2 [5.15]

A 2 + A . 2 r l
the A. and a_7 are redifined as i 33

Â  — a22 - ^̂ 12̂   ̂ [P̂ w]

a 33 = ^33 " + P C w ) ]

The maximum A (w) occurs at resonance frequency which 

is determined numerically.
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Parametric Study

A parametric study was conducted for a cylindrical shell 

submerged in seawater, using the preassigned dimensions listed 

on page 41, with — as the variable. The after-flow coef

ficients gn which yield maximum amplitudes (equation 5.11) at 

the natural frequencies calculated in Chapter 4 are deter

mined numerically and plotted on Figure 5.1. These after

flow coefficients (gn ) approach the upper bound of Haywood's 

values [23].

The formula that evolved for the after-flow coefficients

is :

gĵ  (g^OO + 9e - (3.4 + 0.3 n) ( L -

where

(g^oo 1.43 (g^) OO = 4.24

(§2^00 — 2.40 Cg 5 ) 00 = 5.10

(g^ ) 00 — 3. 30 (gg ) 00 = 6.00

With these values of gn it is possible to calculate the 

natural frequency numerically by the cylindrical wave approxima

tion method.

The accuracy of the plane wave approximate equation 

[5.15] depends upon the value of pc. For values at pc between
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zero and 60,000 x 0.97 x 10  ̂ = 5.82 slug/sec, it gives 

agreement only at low values of pc. At pc = 5.82 slug/sec 

the accuracy of the natural frequency is very poor (about 

5% to 20%). Therefore, the plane wave approximation is not 

recommended when the shell is submerged in a fluid.
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Figure 5.1 - The after-flow coefficient
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CHAPTER 6 

CONCLUSIONS

The natural frequencies of a submerged, ring-stiffened, 

cylindrical shell of finite length considering the prestress 

and the effect of eccentricity were analyzed.

The dynamic interaction between the stiffened cylinder 

and the acoustic medium is found to have a very significant 

effect on the system's vibration characteristics. In con

trast to McElman's analytical method, reference [3], the 

present study considered the boundary conditions of the 

fluid-structure interface as well as all three degrees of 

freedom of vibration. The present method gives signifi

cantly lower frequencies in water (Table I).

The fluid-structure interaction, in another point of 

view, may be considered as added mass. Compared to the 

total effective mass of the system, the portion of ring 

distributed mass is smaller when the system is in water and 

is larger when the system is in a vacuum. Therefore, the 

present analytical procedure is capable of yielding accurate 
natural frequencies in water when the ring spacing, T, is 

sufficiently small to be averaged out.
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There is a limitation to the McElman's method and 

any other orthotropic approach. It is that a high circum

ferential mode shape may not be approximated by an overall 

longitudinal mode shape [4]. Therefore, some of the high 

mode natural frequencies deviate substantially from the 

actual values. This limitation also applies to the present 

analysis, as discussed in Chapter 5.
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CHAPTER 7 

RECOMMENDATION

The differential equilibrium equations are derived 

for a thin, circular cylindrical shell with evenly spaced 

uniform stiffeners submerged in a fluid medium. It is 

assumed that the stiffener spacing is small compared with 

the vibration wave length in order that its effect on the 

behavior of the structure may be averaged or distributed. 

Therefore, the deformation of the ring stiffener in this study 

is not considered independently. For future studies, it 

is recommended that the shell elements and stiffeners be 

considered as separate structures and that compatibility be 

enforced at their junctures.
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