
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



AXISYMMETRIC AIR JET IMPINGING ON

A HEMISPHERICAL CONCAVE PLATE

BY

STEFAN JACHNA

A DISSERTATION

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

DOCTOR OF ENGINEERING SCIENCE

AT

NEW JERSEY INSTITUTE OF TECHNOLOGY

This dissertation is to be used only with due regard
to the rights of the author. Bibliographical refer-
ences may be noted, but passages must not be copies
without permission of the Institute and without credit
being given in subsequent written or published work.

Newark, New Jersey

1978



APPROVAL OF DISSERTATION

AXISYMMETRIC AIR JET IMPINGING ON

A HEMISPHERICAL CONCAVE PLATE

BY

STEFAN JACENA

FOR

DEPARTMENT OF MECHANICAL ENGINEERING

NEW JERSEY INSTITUTE OF TECHNOLOGY

BY

FACULTY COMMITTEE

APPROVED: 	  Chairman

. 

NEWARK, NEW JERSEY

APRIL, 1978



TABLE OF CONTENTS

TABLE OF CONTENTS 	

ACKNOWLEDGEMENT 	  iv

ABSTRACT 	

LIST OF Comm SYMBOLS 	  vii

CHAPTER

1. Introduction  	 1

2. Subject of Investigation  	 4

3. Description of Apparatus  	 6

4. Experimental Procedure  	 12

5. Potential Core  	 15

6. Free Jet  	 19

7. Deflection Zone  	 31

8. Wall Jet Zone 	 3)4

9. Viscous Shear Force at the Wall 	

10. Boundary Layer Thickness Near Stagnation Point 	  56

11. Velocity Profile in the Jet Wall Zone 	  58

12. Summary and Conclusion 	  59

APPENDIX A, Calculation of Maximum Velocity Decay 	  64

APPENDIX B, Calculation of Viscous Shear Force 	  80

APPENDIX C, Evaluation of EXperimental Error 	  91

BIBLIOGRAPHY 	  9)4

FIGURES 	

VITA 	  171



ACKNOWLEDGEMENT 

The author is grateful to Professor Peter Hrycak for his guidance,

encouragement and a thorough supply of new publications in the field.

Thanks are due to The New Jersey Institute of Technology and its

Department of Mechanical Engineering for providing the facilities of

the Jet Research Laboratory.

The probe holder, the jet nozzles and some probes used in the

present work came from Mr. D. T. Lee's experiments on the flat plate.

Special probes and the hemispherical plate were originally furnished

for National Aeronautics and Space Administration research project (20).

Sealmaster Bearings, a Division of Borg Warner Corp. donated the

screw guide for this work.

Mr. Walter Schmiedeskamp of the Department of Mechanical Engineer-

ing Machine Shop mounted the test support structure, built additional

pitot probes, loaned two indexing tables and helped with the auxiliary

equipment.

Finally, thanks are due to the staff of the Deparment of Mechanical

Ehgineering and Dr. Roman Andrushkiw from the Department of Mathematics

who, in many ways, contributed to the successful completion of this

work.

All this is acknowledge with sincere gratitude.

iv



AXISYMMETRIC AIR JET IMPINGING ON

A HEMISPHERICAL CONCAVE PLATE

Dissertation Abstract 

This experimental study was conducted on an amisymmetric air

jet impinging normally on a smooth, hemispherical, concave plate.

The jet Reynolds numbers, based on bulk nozzle velocity and nozzle

exit air properties, were between 14,000 and 75,000.

The impingement plate used in this work was a hemispherical

surface with the radius of 94 mm.

Calibrated Pitot tubes and a micromanometer were used for

pressure and velocity measurements. The Pitot tubes were mounted on

precision positioning mechanisms permitting the accurate traversing

of any direction in space. The test air flow rate was measured with

calibrated rotometers.

The following results of this work are considered a contribu-

tion to the knowledge of the jets:

1. It was observed in the free jet zone that the minimum value of

negative static pressure depends upon Reynolds number and that the

location of the minimum is independent of Reynolds number. If the

nozzle-to-plate distance is smaller than 20 nozzle diameters, this

location is closer to nozzle exit in proportion to plate proximity.

For any nozzle-to-plate distance larger than 20 nozzle diameters,



the location of minimum static pressure is constant and equal to

eight nozzle diameters from the nozzle exit which is in essential

agreement with other researchers.

2. Maximum velocity decay in the wall jet studied was determined

to be less rapid than in the case of the flat plate wall jet.

3. A semi-empirical equation for maximum velocity decay in the

wall jet was obtained. The development of this equation was based

on integral momentum analysis.

4

. Empirical equations for "reference boundary velocity" decay

and maximum velocity decay in the wall jet were found. The results

obtained from the equations are close to experimental results.

5. The developed hemispherical wall jet boundary layer was found

to be much thinner than it is in the flat plate case. This fact

may be significant in heat transfer.
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LIST OF COMMON SYMBOLS 

Coefficient

ID Width of jet

D Nozzle diameter

P Pressure

P 	 ' Pa Ambient atmosphere pressure

Pc Static pressure along the jet centerline

Ps Wall surface pressure

Pmax Maximum pressure

S Distance along the plate surface

ReD Reynolds number based on bulk velocity, nozzle
diameter and air properties t nozzle exit

U Velocity in the x and z direction

Um Maximum axial velocity of the jet

U oc Velocity at center of nozzle exit

V Velocity in the "s" direction

VM Maximum velocity along the plate

Vmo
Vm

m47 o= V o

Maximum velocity along the plate at 8 . 10.9°

Reference maximum velocity at Θ = 47o

VRB
Reference boundary velocity

x Distance away from the nozzle

y Radial distance from jet centerline

Yl
2

y-location where U= 1/2  Um

z Normal distance from the plate

zi z-location where V . -I-- Vm



zn
Normal distance between target plate and nozzle

dC Boundary layer thickness, wall jet region

Τw Wall shear stress

Q Position angle

ti Specific weight

eut- Dynamic viscosity

= 	 (z - 6- ) / b

Density

Other symbols are as defined in the text.

Subscript "o" indictes conditions at the origin.

Barred symbols indicte dimensionless quantities.

Prime sign indicates a derivative.
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CHAPTER 1 

INTRODUCTION

A jet is a forceful stream of fluid emitted into the environment.

Jets have wide application:

- An octopus escaping danger, a ship propelling herself at sea,
an aeroplane in the air - use jet to gain velocity.

- A boiler burner uses a jet to deliver fuel.

- A jet impinging on Pelton wheel converts kinetic energy to
mechanical work.

- A jet of air or steam issued through a siren sounds an alarm.

- A jet of air is used in metallurgy for surface hardening.

- Granulated material fluidization and conveying utilize jets.

- The rocket jet put man on the moon.

The application of the jet is old and common. It was first

applied by trial and error.

The era of jet investigation started after Prandtl had published

his mixing length theory in 1925. Tollmien used this theory the

next year and this became the first theoretical research of axially

symmetric jets. Further theoretical contribution to the knowledge of

the jet came in 1932 with Taylor's publication of his theory of free

turbulence. Ten years later Prandtl published his new theory based

on viscous friction. Goertler (13)*, applying this theory obtained

a solution of a free turbulent circular jet. Goertler also used this

theory in his work on the problem of the mixing zone at the boundary

*Numbers in parentheses indicate references in bibliography
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of parallel jets, obtaining results which are in good agreement with

the measurements by Reichardt (34).

Many other theoreticians and researchers continued the study of

jet in various flow and boundary conditions. Among them were:

Schlichting (40) developed theory on two dimensional wake behind
a body, applicable to jets.

Glauert (i1) was one of the first researchers to work on wall jet
along a flat plate.

Barat (4),then Miller and Comings (28) demonstrated the existence
of negative static pressure in the jet.

Gooderum, Wood and Brevoort (12) investigated free boundary of a
free supersonic jet.

Bakke (3) experimented with wall jets and contributed to the
testing technique.

Poreh and Cermak (31) investigated impinging jets and added new
aspects to the subject.

Brycak et al. (19) studied mass and heat transfer in impinging
jets.

Bradshaw and Gee (7) in their study took into account a stream
external to the jet.

Albertson et al. (2) studied diffusion of jets.

More recently Maxwell (27) presented a study of momentum flux in
developing region of jets.

Russell and Hatton (37) used both Pitot tube and hot wire measure-
ments to study a jet impinging on a flat plate and found the
first one better.

Van Der Hegge Zijnen (48) presented elaborate test data of jet
velocity distribution and obtained very consistent results.

Schnurr, Williamson and Tatom (42) studied jets impinging on
curved deflector. Data were applicable to transport aircraft.

Reid and Katz (35) investigated free and impinging jets with and
without auxiliary flows.
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Beltaos and Rajaratnam (6) presented compatible velocity dis-
tribution in their studies of a slit jet impinging on a flat
plate.

Narain (29) gave an account of a swirling turbulent plume.

Krishnan and Glicksman (24) analyzed jets impinging on smooth
plates.

Y. Tsuei (47) and T. S. Kim (23) in their respective disserta-
tions analyzed jets impinging on smooth plates.

Hrycak, Nagarajan and Lee (20) studied mass and heat transfer
in the hemispherical geometry.

The list of investigators, who contributed to knowledge of jets

is long and growing. The acknowledgement of their accomplishments is

not the intent here. Only some were cited and some will be referred

to in the following chapters, as the correlation of topics develops.

For comparison purposes, an effort was made in this work to

closely relate common tests to those in (20) and (25), while running

reproducible tests.

Instrument set-up in spherical coordintes and securing a

steady supply of test air were difficult and time consuming. It

took three quarters to one hour from start-up to reach the desired

steady operating conditions. The instrument calibration was very

sensitive to the probe positioning. In order to obtain reproducible

test data the experimental arrangement was modified three times

until the final version met the requirements.

The experimental error, as evaluated in Appendix C, was

about 2!)/0 of the measured velocity.
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CHAPTER 2

SUBJECT OF INVESTIGATION 

This investigation was of an experimental type. The subject was a

turbulent, subsonic, axisymmetric free jet of air impinging normally

on a smooth, hemispherical, concave plate.

Depending upon flow characteristics, the impinging jet can be

divided into four regions, or zones, as shown in Figure 7:

I. Potential Core

II. Free Jet

III. Deflection

IV. Wall Jet

The primary interest of this investigation was directed to:

a) velocity profile and pressure distribution of the free jet

as affected by the presence of the impingement plate.

b) velocity profile, pressure distribution and boundary layer

thickness in the wall jet.

The nozzle exit local Mach number range of jets investigated

was 0.1 to 0.54. The Reynolds number range of jets was 14,000 to

75,000 based on the bulk nozzle velocity and nozzle exit air

properties.

Local Reynolds number based on the hemispherical test plte

diameter was 7,300 and higher. Since laminar flow region exists for

Re 4: 1,000 (19), transition region for 1,000 	 Re 4 4,000 and
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fully turbulent flow above 4,000, the range of investigation was

entirely in the turbulent region.

The flow may be considered incompressible (39) up to M = 0.3.

The majority of the present tests was run below this value. The

highest local Mach number in the wall jet tested was PI = 0.28,

with incurred error less than 29%, see Appendix C.

Momentum equation was applied to analyze maximum velocity decay

in the wall jet and the results were compared with the tests.
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CHAPTER 3

DESCRIPTION OF APPARATUS 

3.1 Air Supply 

The experimental part of this investigation was done in the

Mechanical Engineering Laboratory of New Jersey Institute of

Technology. The air supply system consisted of an electric motor

driven, two stage, reciprocating compressor with jacket cooling,

interstage coolingloil separator and after-cooler with a moisture

trap. The compressor draw in ambient air. The compressed air was

directed to an air receiver of about 4. cu. ft. volume. Excess air

was blown off from the air receiver while the main stream was

supplied to the test room. After passing a regulating valvejthe air

entered either a "large" or "small" rotometer as directed by isolat-

ing valves. Both rotometers had scale range of 0-60 cm. The "large"

or high flow unit had mass flow range of 0.004 to 0.046 lb/sec.

+ 1% rate of instantaneous reading, the "small" or low flow unit had

the range of 0.001 to 0.00725 lb/sec. + 1% rate. Calibration was

done by National Aeronautics and Space Administration. Calibration

charts are shown on Figures lb and lc. The air flow was regulated by

the valves downstream of the rotometers. The main purpose of measur-

ing the air flow with the rotometers was to establish the Reynolds

number.

Two calibrated Bourdon type pressure gauges were installed up-

stream of rotometers: one was a rough reading gauge of 0-200 + 1

psig. The other was a fine reading, calibrted gauge of
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0-30 psig + 0.15 psig range. After passing the rotometers the air

entered a 7.5 ft. long pipe in which a copper-constantan thermocouple

was installed in a well to measure the test air temperature. The

thermocouple was located about one foot upstream of the final elbow.

A flexible connection was applied between the thermocouple and the

final elbow to prevent plenum vibrtion.

Downstream of the flexible connection an elbow turned the air

down to a plenum terminated with a tap to accept test nozzle, Figure

1. A screen type flow straightener was used in the plenum. The air

supply piping was 1i." diameter up to the rotometers. The pipe be-

tween the rotometers and a plenum was 1i". The plenum was 2i"

diameter, 35" long. The piping was suspended from the room ceiling.

It was held vertical with the aid of three anchoring wire lines with

turnbuckles.

Consistent with rotometer calibrations, the test air was

supplied at 25 psig measured at the flow meters. To maintain this

constant pressure level at different flow requirements, a pressure

regulating valve was mounted just upstream of the flow meters. The

mass flow rate was corrected for temperature deviation from the

calibration value.

The test room ambient air temperature was measured with a

mercury thermometer while barometric pressure readings were taken

from a laboratory aneroid type barometer at the compressor. The

ambient temperature difference between test and compressor rooms
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was not greater than 1°F. Compressed air excess moisture was removed

in the aftercooler. Gas velocity measured is a function of its

specific gravity which in turn depends upon its humidity. This in-

vestigation was concerned with velocity and pressure ratios. In

such a case specific gravity appears in the numerator and denominator.

Reltive humity effects were therefore omitted in the calculations.

Relative humidity has to be taken into account for "absolute"

velocity measurements. The most practical way in this case was to

measure the temperature of moist air leaving the aftercooler.

Assuming that it is nearly saturated and then heated to the plenum

temperature at constant humidity ratio, the specific volume can be

determined from the psychrometric chart.

3.2 Manometers 

Different manometers were used depending upon the pressure

measured: a U-tube filled with mercury, a U-tube filled with water

and for the smallest pressures a micro-manometer filled with a non-

hygroscopic manometric liquid having specific gravity of 0.7970 t

75°
 F. The specific gravity of the manometric liquid was

stable within the range of measurements. The manometer was capable

of measuring the pressures smaller that 0.001 of an inch of water.

The scale was calibrted in inches of water.

3.3 Impinging Plte 

The impinging plate shown on Figure 2 had a hemispherical shape

made of one piece 1.1 mm thick brass sheet. Such a sheet is flexible
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if flat, but when given a three dimensional shape, it is rigid like a

basin or bowl. The plate had a surface finish of a cold rolled metal.

Such a finish is considered smooth on Moody diagram. The plate had a

93.7 mm inside radius. Twenty-nine plexiglass "corks" were bonded

from outside on plate meridionals. A 0.4 mm diameter hole was

drilled through the cork and plate in each cork. The hole ridges on

the jet side were made free of drilling burrs. The central hole was

located at the stagnation point. The "cork" holes served as taps

for measuring pressure distribution. They were also used as

"stations", Figures 1 and 2. The plate was held by a support having

three adjustable legs. The leg adjustment was used for plate

leveling, Figure 2. All taps were plugged with masking tape, from

the outside, to prevent air leaks, except when measurements were

being taken. The plate used in the test was approved by N.A.S.A.

3.4 Plate Mounting 

The impinging plate and the probe holder were mounted on two

identical indexing tables bolted to a support table, Figure la. The

support table was braced for rigidity. The indexing tables had

linear movements along X and Y axes and rotation about Z axis. All

movements were equipped with vernier scales. The support table was

fastened to a vertical guide which could travel 50 cm on the vertical

axis for setting nozzle-to-plate distance. The vertical guide was

bolted to a structure resembling a drill press column.

The column base was anchored to the floor, the column top was

clamped on the vertical axis to a sturdy wooden brace.
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3.5 Probe Mounting

A traversing carriage shown on Figures 3a and 3b was used to

mount the pressure measuring probes. It was fastened to an indexing

table identical to that of the test plate. The two indexing tables

were mounted next to each other on the support table, Figure la. The

traversing carriage had a vertical beam 2 ft. tall equipped with a

vernier. It had a stage mounted on a journal. The stage could

rotate about the journal and also travel on X and Z axes. The com-

bination of movements of the two indexing tables and the movements

of the traversing carriage made it easy to adjust the probe to any

required position. All movements had vernier scales. The whole

probe positioning mechanism could be precisely set t any point and

any angle in space. When setting and reading instruments, a two-

power magnifying glass was used for reliable resolution.

3.6 Pressure Probes 

Pitot type probes were used for measuring static and total

pressures. The design of these probes was recommended by NASA and

used by Lee (25). The probes are shown in Figure 4. The static

pressure probe was made of 0.8 mm (1/32 inch) diameter stainless

steel tubing. It had four 0.4 mm (1/64 inch) drill holes for sensinE

sttic pressure. The total pressure probe was made of 0.4 mm diam-

eter stainless steel tubing.

Modified probes were used to reach the bottom of the hemispheri-

cal plate for measuring the boundary layer thickness. The probes

are shown in Figure 6. The total pressure probe was made of
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3.18 mm (1/8 inch) diameter stainless steel tubing with the tip of

0.8 mm 	 diameter. The probe was bent to fit the inside of the

hemisphere, as illustrated. The static pressure probe had a similar

shape to the above, except for the tip which had four pressure

sensing holes of O.4 mm diameter.

3.7 Jet Nozzles 

Two nozzles were used in this investigation. They were brass,

made of the same bar stock. Their outside dimensions were identical,

except for outlet diameters which were 9.5 mm (3/8 inch) and 6.35 mm

(1/4 inch). The nozzle design is shown in Figure 5.
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CHAPTER 4.

EXPERIMENTAL PROCEDURE 

The test apparatus set up for taking measurements was done in

the following way:

The test plate was mounted on one indexing table and lined

up vertically with the aid of a level gauge. The traversing

carriage was mounted on the other indexing table and locked in

vertical position with the aid of a stiffening bracket. The

vertical axis of the jet was set with the aid of turnbuckles on

plenum anchoring lines, Figures 1 and la.

The coaxiality of the vertical guide and the jet axis were

checked prior to system operation in the following manner.

A. The plate was brought close to the jet nozzle.

B. The stagnation point was found, as described further

below.

C. The plate was moved away from the nozzle by lowering the

guide to minimum elevation.

D. Location of the stagnation point was rechecked at the low

guide elevation.
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It was suggested by Snedeker (43) to use a dark grease drop for

visual location of the stagnation point. The grease is put on the

surface on the expected location of the stagnation point. The imping-

ing jet forces the grease to "creep" away from the stagnation point,

except at the stagnation point, where it remains motionless. This

method is very accurate and easy, but messy. It cloggs up the pressure

taps in the plate, and for that reason was not used in this experiment.

Since there was a drill hole located at station "1", at the bottom

center of the hemisphere, it was much neater and equally accurate to

locate the stagnation point by observing maximum pressure reading

under the impinging jet. A pressure probe connected to a manometer

showed the maximum reading easily located by X and Y traversing of

the indexing table. Rotation of the indexing table with respect to

the Z axis was the final check, at which the maximum pressure reading

remained constant at the stagnation point.

The following preparations were made prior to testing:

I. A desired size of issuing nozzle was installed in the plenum

exit with a neoprene "o" ring to prevent air leaks.

II. The impingement plate was positioned at the required nozzle-

to-plate distance.

III. The flow rate and the rotometer setting were predetermined

with the aid of rotometer calibration plot for the required Reynolds

number.

IV. The compressor was started. The flow and pressure were

then adjusted as test conditions required.
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V. The coaxiality of jet and the impingement plate was checked

and eventually corrected.

VI. Some adjustments were necessary to reach equilibrium conditions

at the desired flow. The adjustments were to be made on the

throttling globe valve, the blow-off valve, the pressure regulting

valve and also on intercooler and aftercooler water flow.

When the above preparations were completed, the system was

ready for measurements.

To take the measurements either the probes shown on Figures L.

or 6 were used, depending upon which jet zone was investigated.

The instrument setting in the free jet zone, marked II on

Figure 7, was simple. It required placing the probe in the jet

on the proper coordinate.

In the wall jet zone, marked IV on Figure 7, the probe position-

ing was time consuming. For any of the 15 stations in the rows A

and B on the hemisphere the directional angle of the probe holder

had to be predetermined and the traversing carriage stage aligned

at this angle. Subsequently the probe was made tangent to the

hemispherical plate surface and "zero" reading position set taking

into account the probe diameter. In this setup the probe was being

moved perpendicular to the surface of the plate at a given station.
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CHAPTER 5

POTENTIAL CORE

The potential core is zone I as shown on Figure 7. It extends

conically down and is characterized by maintaining nozzle exit

velocity. The length of the core depends upon the mass flux, i.e.

Reynolds number, at Rep‘ 10,000. For Rep between 101000 and

20,000 this dependence is weak, according to (25). Above that,

the length of the potential core becomes independent of Rep, (1).

The length of the potential core is determined by plotting on

a log-log graph paper the centerline jet velocity TIotrJoc vs. the

distance from the nozzle exit, x/D. The intersection of the tan-

gent to the curve and Uc/Uoc . 1 is defined as the nominal core

length.

The range of potential core lengths, expressed dimensionlessly

as given in (19) were:

x/D . 4.8 at ReD . 3500 for D 9.52 mm

x/D 5.3 at Rep 4000 for D 6.35 mm

x/D . 5.5 at Rep 5500 for D = 3.17 mm

Max x/D . 6.8 was at Rep . 101000 for the above nozzle diameters.

The Reynolds numbers in the present study were all

above 13,000. To establish the jet centerline velocity decay and to

find the potential core length, a series of tests were run. The

results are summarized on the plots, Figures 8 through 15.
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Plotting Uc/Uoc versus x/D on log-log paper as indicated above gave

the potential core lengths.

The plots are clearer for larger distances of the plate from the

nozzle, i.e. for large zir/D values.

Figure 8 presents three curves for Rep = 15,4000; 27,000 and

46,100 t zn/D = 20 and D = 6.35 mm.

Figure 9 presents three curves for Reynolds numbers comparable

to the above numbers and the same nozzle diameter with z
n/D = 13.

From Figures 8 and 9, it appears that as Re
D 

increases indepen-

dently of zn/D, the experimental results approach equation 6.14.

All six of the above mentioned curves produce the potential

core length of about x/D = 6.0.

Figures 8, 9, 10, and 11 were developed from data run for the same

nozzle diameter, D = 6.35 mm. Figure 10 presents the curves for

similar Reynolds numbers but for zn/D = 9. Figure 11 depicts the

same, adding one more Reynolds number = 72,700 for zn/D = 7. These

two plots do not provide useful information concerning potential

core length. This is due to the proximity of the nozzle exit to the

impinging plate. There was no space to take measurements beyond the

range shown due to the physical size of the probes.

For another reason these two plots reveal this very important re-

sult: At only two nozzle diameters from the plate the centerline
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velocity is still about 97% of the exit velocity. The proximity of

the plate resulted in an unexpectedly small velocity retarding

effect.

Figures 12, 13, 14 and 15 have the same purpose as Figures 8, 9,

10 and 11, but they show the results for nozzle diameter = 9.52 mm.

Figure 12 presents the centerline velocity decay for Rep = 15,8000;

28,800 and 57,800 at zn/D = 20. Here the experimental results

approach equation 6.14 starting with higher Rep. Figure 13 shows

similar Reynolds numbers as Figure 12 but at zn/D = 13. From all

six curves on the above two plots the potential core length obtained

is again x/D = 6. Figure 14 shows the centerline velocity decay for

ReD = 15,800; 30,800 and 56,500 at zn/D = 9. Figure 15 exhibits the

results for ReD = 16,100; 29,700; 53,500 and 69,000 at z n/D = 7. In

this case the two last figures also provide no information to deter-

mine the potential core length due to the physical size limittions,

but they indicate that the nozzle exit velocity is little affected

by plate presence dawn to the distance of 2D.

The following important facts were established in the study of

the potential core:

1. The potential core length was found to be independent of

the nozzle diameter for nozzle diameters of 6.35 and 9.5 mm and

Reynolds number between 10,000 and 70,000.

2. The potential core length for the condition in the study

was essentially constant and equal to about 6D. A space limitation

between the nozzle and the plate prevented taking longer range
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measurements. A mean value of 6.0 is then accepted.

The core length discussed is the "nominal" length, shown on

Figure 8 as dimension C. It is determined by intersection of the

line representing the centerline velocity decay in the jet with

the horizontal line representing the dimensionless centerline

velocity Uc/Uoc . 1. The real or "true" length shown on Figure 8

as the dimension L is the distance from the nozzle exit to the

furthest point on the jet centerline where the velocity is still

equal to Uoc.

3. Even at distances of as close as two nozzle diameters from

the impinging plate, the exit velocity is retarded no more than 3%.
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CHAPTER 6

FREE JET 

6.1 Centerline Velocity Decay and Jet Spread

The free jet, zone II on Fig. 7, in this experiment was turbu-

lent, axisymmetric and incompressible. It was studied analytically

and experimentally and at present the analytical results are fairly

well proven by measurements.

In the impinging plate experiments the free jet is 4/5 of the

distance from the nozzle exit to the impinging plate, zn. This zone

of the jet is not affected by the presence of the plate.

This fact was established by Poreh and Cermak (31), Tani and

Komatsu (45), Lee (25) and was confirmed by this study. For reference

purposes it is useful to present some historical background of the

free jet analysis.

The first theoretical study of the circular turbulent jet is

due to Tollmien, who based his work on Prandtl's mixing length

theory, i.e.

where 7: is the shear stress

u is the velocity in axial direction

y is the radial direction

1 is a length to be derived from experimental measurements.
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Where

1 1 is a new length to be determined for the particular experi-

ment.

Furthermore introducing Prandtl's "new hypothesis" (41) with the

virtual kinematic viscosity

Where

k
:1 

is an experimental coefficient, b is the width of mixing zone

It is assumed that ε is constant over the width of jet and in-

dependent of the distance from the virtual origin x, as first discuss-

ed by Reichardt (34)

Using Prandtl's assumption that the mixing length 1 is proportional

to the width of the jet. b

Schlichting estimated the increase in width and decrease in

velocity as follows:



From experimental investigation it could be stated that the in-

crease of mixing zone width time is proportional to the transfer

velocity, v'

Comparing this to the expression obtained by Prandti for mixing

length theory

Schlichting obtained

Taking further approximation that the mean value of -SLR is to
ay

be taken for the half width of the jet and is proportional to umax/b,

therefore

Taking for the jet boundary

21

Comparing  6.5 and. 6.6

And after integration
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The last equation is valid for circular and two dimensional

jets. To relate umax and x, the momentum equation is used with the

assumption that the pressure is constant in the jet:

from which

Substituting equation 6.8

Since both J and 5 are constant,

According to equ. 6.12 the jet centerline velocity is in-

versely proportional to the distance from the jet origin. For

plotting purposes it is more convenient to put 6.12 into dimension-

less form

This equation holds for fully developed flow in the free jet

zone. The coefficient in equation 6.13 is the dimensionless
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potential core length as defined by Abramovich (1) who studied the

results of experiments previously conducted by German researchers.

Lee (25), running the tests with the flat plate, obtained the value

of C xc/D up to 6.8. Other researchers obtained C in the range of

5.2 to 7.7.

For Reynolds numbers between 14,000 and 75,000, according to this

study, the value of C was a constant and equal to about 6.0, as

indicated in the previous chapter. Therefore for the hemispherical

concave plate the last equation becomes

The line representing this equation is drawn on Figs. 8, 9, 12

and 13. It makes sense for xtD)> 6, since um/uoc is never greater

than one. As seen in the figures, relation 6.14 gives faster velocity

decay. Equation 6.14 could be viewed as a limiting line for these

experiments. It could be used for the prediction of lower limit

centerline velocity. The largest discrepancy appeared on Fig. 8,
um

where x/D . 17, the actual velocity as measured is - 0.4 while
uoc

umequation 6.14 gives the value of - 0.35.
uoc

The actual velocity is larger than that predicted theoretically.

According to Reichardt (34) the half width of the developed jet

is given by:

Making it dimensionless



This relation is shown on Figure 17. It does not provide

accurate information for the jet impinging on a hemispherical concave

plate. Inspection of the two plots presented on Figure 17 shows

that the discrepancy between equation 6.16 and the measurement are

smaller for smaller nozzle diameter (6.35 mm) and larger for larger

nozzle (9.52 mm). According to this investigation, the following

equation represents experimental results better:

Apparently the half width growth depends upon nozzle construction.

Figure 5 shows that the nozzles used in this investigation had the

"approach diameter", D1> 2D.

Many researchers use D1 D, i.e. the nozzle looks like a piece

of pipe. 	 A constant half width growth cannot be expected to be

the same for all nozzles, regardless of their construction.

6.2 Static Pressure Variation Along Jet Centerline 

In all previous theoretical considerations of the free,

turbulent, incompressible jet it was always assumed that the static

pressure is constant and equal to ambient. Barat (4) and later

Miller and Comings (28) proved existence of negtive sttic pressure

in the air jet. Lee (25) measured it also. There were many
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tests run in the present series to investigate the subject and the

test results confirm existence of the negative static pressure in

the jet stream.

Since Pitot tubes were considered to give more conclusive re-

sults than hot wire method for velocity measurements, they were used

exclusively in these tests. Static pressure measurements were

done with Pitot tube shown in Figure 4. According to Prandtl (33),

the Pitot tube pressure reading depends upon probe hole size and

should be increased by a small fraction of the flow velocity head

to obtain a true value. No such correction was applied in this

investigation.

Numerous tests were run in this investigation to establish

static pressure distribution in the free jet zone. The results are

presented in Figures 18 through 26 showing the pressure distribution

along the jet centerline.

Figures 27a through 27f show the plots of static pressure

across the jet. The tests demonstrate that the static pressure is

negative in the unrestricted regions.

Figure 18a symbolizes a typical trend of curves, except at

x/D close to zero. At low x/D, the nozzle exit dimensionless pressure

is close to ambient, downstream it reaches minimum (inverted scale is

shown on the plots) and then it rises again. Figure 18b compares the

test results obtained for a free jet with similar test by Barat (4)and

Lee (25). The curves are compatible. Static pressure remains negative,
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asymptotically approaching zero, consistent with the experimental

results (16). Extensive tests which were run for (16) reveal another

important fact: the minimum static pressure on the jet centerline

always falls at x/D 8. The location of this minimum was independ-

ent of ReD and appeared at x/D 8 for the different nozzle diameters

used in the experiments. The results were obtained for eight differ-

ent Reynolds numbers ranging from 10,000 to 54,000 and at three

different nozzle diameters, D 3.2, 6.35 and 9.5 mm.

The results of the present study are in agreement with the above

mentioned results. For any nozzle-to-plate distance equal to or

larger than 20 D, the location of minimum static pressure is a

constant 8 D, at any Reynolds number in the range tested. When

the distance zn/D becomes smaller, the minimum (inverted on plot)

is closer to the issuing nozzle. As expected, for larger Reynolds

number the static pressure contour is more pronounced, but the

location of the minimum is the same for the same z n/D, at any Re.

All the static pressure measurements along the jet centerline

were consistent, except for the points in the vicinity of the nozzle

exit. In that region, for 6.35 mm diameter nozzle, the pressure

curves were inverted and the same trend was observed for 9.5 mm

nozzle at larger ReD. In this region, for 9.5 mm nozzle at at

smaller ReD , the curves were not inverted and a positive pressure

was measured.

A possible explanation of this phenomenon can be that, for the
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smaller nozzle at all ReD, and for the larger nozzle at larger

ReD, the issuing jet was too much disturbed by the presence of the

pressure probe inside the issuing nozzle. When measuring these

points, the static pressure probe tip had to be inserted into the

nozzle exit, in order to have static pressure sensing holes close

to it. The ratio of the pressure probe diameter to the smaller

nozzle diameter was 1/8.

6.3 Static Pressure Distribution Across the Jet 

Identical nozzle diameters were used to study the static press-

ure distribution across the jet in this work. The plate-to-nozzle

distance was set at zn/D 20, Reynolds numbers run were 14,000;

15,500; 27,600; 29,700; 48,000 and 59,300. There were three measure-

ment cross sections, at x/D 4, 8 and 12. The test results are

shown on Figures 27a through 27f. A pattern for the curves is

established. It looks like an inverted mountain chain lined up

along the jet centerline. The curves have minimum (reversed on

plots) at the centerline for x/D 8 and 12, then approach ambient

pressure further away. Consistent with the pressure distribution

along the centerline, the minima fall with increasing Reynolds

numbers, but for each Rep the extremum occurs at x/D 8.

The plot for x/D 4 behaving in the same way further away from

the centerline, has a dip at the centerline itself. From the pre-

vious consideration this is the region of potential core. As

mentioned in the preceding paragraph this region may not produce

stable pressure readings, and the presence of the pressure probe
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disturbs the flow too much in the proximity of the nozzle exit.

The curves obtained in this work for 6.35 and 9.5 mm nozzles

resembles the curves obtained by M. Barat (4), who used 150 mm

nozzle diameter. Since the nozzle size and construction were

different, a complete similarity of curves could not be expected.

The nozzle used by Barat was a piece of round pipe, while the

nozzles used in this work had an exit contraction, as shown in

Figure 5.

6.4 Velocity Distribution in the Free Jet 

Velocity profile equations for the free jet were developed by

Schlichting from the Navier-Stokes and continuity differential equa-

tions.

In solving them, some simplifying assumptions were used and

semiempirical coefficients introduced.

One of these assumptions was that the static pressure is con-

stant and equal to ambient pressure, which is contrary to the data

presented in the preceding two paragraphs.

Another important assumption was that a jet can be considered to

have a point source and have geometrical similarity of velocity pro-

files. The best known velocity equations are those due to Schlichting's

theory for the turbulent jet, based on virtual kinematic viscosity

which is constant here.
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There are also solutions due to Tollmien, not given here. The

two equations differ in such a way that according to Reichardt's

(34) measurements, equation 6.17 is better at higher velocity, i.e.

closer to the jet centerline while Tollmien's equation is better

beyond the jets half width.

The test results are presented in Figures 16a through 16f. The

plots are shown in dimensionless velocity vs. dimensionless width.

For comparison the Schlichting and Tollmien curves are drawn and

test points are indicated. To have the most coverage the longest

nozzle-to-plate distance, zn/D = 20, was selected for plotting. Six

plots were made, one for each test station distance from the exit

nozzle: x/D 6, 8, 10, 12, 1L. and 16. Each plot represents two

nozzle diameters, D 6.35 mm and D 9.5 mm and there are three

different Reynolds number tests ranging from 14,000 to 60,000 for

each nozzle diameter.
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The present test results indicate that in this experiment the

velocity profile is closer to the Schlichting curve, as defined by

equation 6.17, rather than to the Tollmien curve and Reichardt test

points. Up to y/y1/2 1 the test points obtained in this experiment
2

are located above the Schlichting curve, then they follow this curve

to about Y/Y1/2 = 1.4. For still larger y/y 1/2, the test results have
2-

different tendencies: the test stations closer to the nozzle are

nearer to the Tollmien curve. With increased distance, e.g. x/D = 10,

the test points obtained in these experiments fall close and above the

the Schlichting curve. It was observed that at these points the

readings were unsteady and the points were scattered. It is attribu-

ted to small nozzle-to-plate distance case, when the fully developed

flow was not yet established.

The velocity profile reveals no dependence upon nozzle diameter

and Reynolds number.

This behavior is consistent and well established (41, 46, 34,

48 , 25).

Scatter in velocity measurements in the free jet was mainly

due to fluctuations caused by vortices washed away from the target

plate boundary layer and entering the free jet region.
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CHAPTER 7

DEFTRCTION ZONE 

In this investigation the jet axis was normal to the impinge-

ment plate. The common point of the jet axis and the impingement

plate locates the stagnation point. Using a cylindrical coordinate

system with the origin at the stagnation point, FrOssling found an

exact solution of the Navier-Stokes equations. It is quoted here for

future reference.

For the non viscous case of the axisymmetric jet impinging

normally on the boundary he obtained:

Where:

U is the radial velocity 	 a is a constant

W is the axial velocity 	 p
o 

is the stagnation pressure

Based on the above, the following form of solution was assumed

for viscous flow:
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Where f (z) and F (z) are new functions to be determined. By

substituting into Navier-Stokes equations, two equations are obtained:

Eliminating constant and introducing similarity transformation

with applicable new boundary conditions. The solution of 7.9 was

given in power series by F, Homann (1Q. N. Frossling (10) presented

0 u/U relations for in the tabular form,to simplify calculations.

There were also newer contributions to this problem like Strand (44)

Tani and Komatsu (45).

Since velocities close to the stagnation point are small and the

plate surface was smooth, the viscosity effects can be neglected.

Schlichting's equations are therefore satisfactory in the vicinity

of the stagnation point.

Inspection of equation 7.1 reveals that the radial velocity

increases with increasing radius. This can only be true within close

vicinity to the stagnation point, depending upon the source strength.

The pressure distribution is parabolic, by equation 7.3. After reach-

ing a maximum value, the velocity is decelerated and the equation 7.1

does not hold any more. In that region the viscous equations,
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7.4, 7.5 and 7.6,are applicable.

According to measurements by Lee (25), the maximum velocity is

reached at about r/D = 1 for nozzle-to-plate distances, zn/D < 20.

Having a plate curvature in this work much larger than the nozzle

diameter, little error is made by considering the plate flat at the

stagnation point. For nozzle diameters larger with respect to the

plate curvature this error could be significant.

Deflection zone region is small. It seems to have no immediate

practical application and was not considered a major part of the

investigation.

Physically it was located at the bottom of the hemisphere and

therefore accessibility of this region was limited.
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CHAPTER 8

WALL JET ZONE 

8.1 Pressure Distribution Along Impingement Plate 

Pressure distribution along the impingement plate is shown on

Figs. 28a, b and c. All the plots are for a nozzle diameter of

9.5 mm, at various nozzle-to-plate distances: zn/D 13, 9 and 7

and various Reynolds numbers. The curves have their maxima at the

stagnation point, s/D . 0, from which they rapidly decrease with

increased distance s/D and then asymptotically approach ambient

pressure. From about s/D 3, the pressure is insignificantly

different from the ambient. The curves are practically independent

of Reynolds number. Fig. 29 shows the mean shape of the curves.

As anticipated, they become steeper as the impingement plate is

brought closer to the nozzle.

It was observed that at the distance about s/D . 10 the static

pressure measured on the surface of the plate was negative. Boundary

shape and Coanda effect made the flow follow the plate contour.

8.2 Measurement of Boundary Layer Thickness 

The boundary layer thickness on the concave surface of the hemi-

spherical plate was measured with the Pitot tubes. The tubes were bent

downstream of the probe to follow the shape of the hemisphere.

After the conditions of equilibrium at the required Reynolds

number were reached, the probe was brought in contact with the plate

surface under an angle perpendicular to the surface at the given
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station. This was accomplished with the aid of the positioning

mechanism described in paragraph 3.5. Taking into account the probe

tip diameter, a series of static or total pressure readings were

recorded at various distances, z, on the normal to the station. The

same procedure was repeated with the second (total or static)

pressure measurements at the station, to complete the series. The results

of these measurements gave velocity distributions at the stations lo-

cated on the plate meridionals.

The boundary layer thickness is by definition the distance from

the boundary to a point at which V . Vmax• The location of this point

on the velocity plot is usually questionable due to asymptotic growth

of velocity. It is more distinct to base this definition on the point

where V 0.99 Vmax. This approach was used in the present analysis.max

Figure 30 shows several of these points as typical. The boundary

layer thickness was plotted on Figs. 31a, 31b and 31c, and the mean

trend is shown on Fig. 32.

The test results do not indicate any regular, uniform pattern.

A mean line approximates the boundary layer growth. It had been ob-

served that the rapid pressure fluctuation reveals very unstable flow

condition. The pressure fluctuated in a random manner, although the

air supply system operation was steady. The boundary layer growth

showed a strong time dependence.

To test the nature of this instability, a whisker of thread was
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attached to the tip of a thin, stiff wire and introduced into the

boundary layer. The thread fluttered, as expected, but it also

swirled randomly in the boundary layer region. The thread motion

reveals the existence of intense vorticity in the boundary layer.

The eddy axes were perpendicular to the direction of flow and parallel

to the boundary.

It seems that the boundary layer growth occurring in the meridi-

onal direction is too rapid. The boundary layer thickness grows into

the onrushing stream of higher velocity. There are two streams close

together, the inner one having higher momentum than the outer. Since

the geometry of the hemisphere is directing these two flows on a

collision course, the two streams with different momentum collide.

Since this takes place in a viscous continuum, the result is

the vortex formation. The vortices roll away from the plate surface

and are being carried away by the stream in a continuous fashion.

As observed, there was no definite time pattern. The instability

of the pressure readings was not cyclic.

8.3 Velocity Decay Along the Plate 

When analyzing the wall jet velocity, region IV on Figure 7,

Glauert (11), following Prandtl's boundary layer concept, divided the

flows into two categories:

1. The wall layer, where the boundary and viscous effects of

the wall govern.
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2. The outer layer, away from the wall, which has characteristics

of a free, turbulent flow.

Maximum velocity in the velocity profile separates the two flow

layers.

To represent the velocity profile in the outer layer of a flat

plate, Poreh and Cermak (31) introduced a reference boundary velocity,

VRB, obtained by extrapolation of the outer layer velocity profile to

the boundary as if no boundary existed. It is shown dotted on Fig. 7.

This reference velocity can be considered a centerline velocity at

a given distance from the stagnation point of a hypothetical free jet.

This reference boundary velocity would be like a plane point flow

spreading radially:

In this case the velocity distribution for the outer layer can be

represented by Goertler's (13) free jet equation:

where k is the integration constant.

Von Karman (22) used the principle of integrated momentum equa-

tion in analyzing a steady flow. Applying this method and the con-

cept of VRB in two dimensional wall jet analysis, Abramovich (1) ob-

tained results which were in good agreement with the measurements.

Lee (25) applied the same method for the investigation of a

circular jet impinging on a flat plate and his results are also in good

agreement with the measurements.
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In this investigation the distance "r" has to be superseded

by "s", which is a curvilinear distance measured on the hemispherical

surface. Fig. 33 presents a summary of nine series of tests showing

Vim , the reference boundary velocity. The plots were taken at the

following nozzle-to-plate dimensionless distances: z/D 13, 9 and

7. At each distance three flows were investigated: Reynolds

number 25,000; 50,000 and 75,000.

Intuitively, one expects that equation 8.1 would not hold for the

case of the hemispherical plate. For a flat plate case the flow is

spreading radially from the stagnation point

In the case of a hemispherical plate, concave side, the flow is

spreading meridionally. Initially, in the proximity of the stagnation

point, it is similar to the flat plate case. Further away, the

direction of flow is gradually changing along the solid boundary of

the hemisphere. In the final stage it is similar to a two directional

flow in a pipe, where there is a high velocity, small cross section,

central flow in one direction and a slow velocity, annular flow in

the opposite direction.

The boundary geometries are different for the jets impinging on

a flat plate and on a hemispherical plate. The boundaries shape

the flow pattern, and fore that reason the velocity distributions

are different.

Considering that the width of the jet is proportional to r for
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the flat plate impinging jet, the flow area at any r is proportional

to r squared, where r is unbounded.

For the hemispherical concave plate, the wall jet is confined

to an annulus, whose outer radius is finite. It is therefore antici-

pated that the reference boundary velocity - 7'a; will be larger for the

henispherical, concave plate jet than the corresponding velocity in

the case of the flat plate jet. Maximum velocity decay measurements

divided by nozzle exit velocity are shown on Figures 33a, 33b and

33c. The summary of these tests are shown on Figure 33d. The test

results are consistent and reveal no dependence upon Reynolds number

and plate-to-nozzle distance.

To have a general application, the formulae have to be dimension-

less. For that purpose the distance from the stagnation point located

at the bottom of the hemisphere to any given point on the hemisphere

has to be measured not by the curvilinear distance, "s", but by the

Engle, 4 = s/R, where R is the radius of the hemisphere. Position

angle 4 is the enclosed angle between the sphere radii to the stag-

nation point and the station. At the stagnation point 4 0, while

at the hemisphere rim, it is 11/2.

From the continuity equation one can deduce that the difference

between V for the hemispherical case and the flat plate jets will

grow with the angle 4.

The chart on Fig. 33 was "normalized" with respect to the VRB
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velocities measured at Q. . 11/6 . 30° which corresponds to station

8. The data points are indicated and the curve represents the purely

empirical formula developed:

The points for z/D . 13 at station 5 deviate from the

curve but the velocity measurements for these points were taken within

the region of the free jet. The Pitot tube measuring the velocity

at station 5 was situated parallel to the plate while still in the

region of the free jet impinging on it. These points should not be

considered representative.

The Outer Layer

In a theoretical consideration of the hemispherical wall jet,

the momentum equation will be applied as developed by von Karman in

1921. This approach was used by Abramovich for the two dimensional jet

and by Lee for an axisymmetric jet impinging on a flat infinite plate.

Figure7arepresents the axial plane cross section of the control

volume. The equation of conservation of momentum in segment ABCD is:

1E momentum in - 	 momentum out ZN, momentum in segment

(8.4)



Written out:

Momentum in thru AB + Momentum in thru BC +

- Momentum out thru CD - Momentum out thru DA .

Momentum accumulation in the segment 	 (8.5)

This equation holds under the following assumption:

,This last assumption by Prandtl was satisfactory and was suc-

cessfully used in many solutions, although more recent measurements

by Poreh, Tsuei and Cermak (32) indicate that 17i 0 at V . Vmax

for the flat plate wall jet.

With these assumptions introduced, there is no accumulation of

momentum in the control volume, In this case the right hand side of

the equation vanishes. The condition of stationary ambient fluid

justifies to disregard momentum influx thru the surface BC. The

equation is therefore reduced to:

Momentum in thru AB - Momentum out thru CD +

- Momentum out thru DA 0 	 (8.6)

The equation component in the plane normal to the jet axis of this

vectorial quantity is applied.

The whole control volume has to be considered. Integration

over the control volume gives:
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where:

R is the radius of hemisphere

is the position angle in vertical plane

is the angle in the horizontal plane

1 is the curvilinear distance along the surface of integration

s is the distance along the hemispherical plane

Since the first term is in the region where the surface of in-

tegration is cylindrical, it can be written:

Moreover, since so is nearly constant, i.e. the flow is incompress-

ible, then 8.7 can be divided by 27r? :

Equation 8.8 is not exact, the following approximations are introduced,
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It was assumed that 	 0 at V . Vm. Air density is not exactly

constant, since there is a measured pressure gradient along the

Velocity is assumed parallel to the plate surface. This is true a

for the streamlines next to the plate. Velocities on streamlines

further away from the plate divert more. In the second term of

equation 8.7 and 8.8 the upper limit of integration is actually a

distance along the path of Vm, and not a distance "s" measured ala

the hemisphere. Since the boundary layer is thin, the difference

between these two is small enough to permit the substitution of th

"s" for "1", therefore 1 s = R G. By introduction of the last

relations into equation 8.8 one obtains, using a dummy variable:

Since the rate of change along the hemisphere contour is required,

8.9 is differentiated with respect to CK. Noting from Figure 7 that

V = 0 at z b + 	 and V = Vm at z 
3 and returning from o( to @

yields:



)1)1 

The second and fourth terms cancel, therefore:

To generalize, dimensionless parameters are introduced:

after substituted into equation 8.11, one gets

or as expressed in the above notation

Primed symbols indicate differentiation with respect to G in

subsequent notation.
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On performing the differentiation there results

and introducing trigonometric identities yields

Now within the boundary layer, i. e. for = 	 0 to 1, 

velocity distribution can be defined according to Schlichting by the

power law (32)

where the symbols are as above and the exponent "n" is a weak

function of Reynolds number. In older references, lower values

were favored for "n". Bawer test data done with more advanced

laboratory equipment suggest higher "n" values for the investigated

range of Reynolds numbers in turbulent wall jet flow. Reference

(19) recommends values for "n" from 7.5 to 15.



Beyond the boundary layer, i.e. for region from S to b

or "2" from 0 to 1, the following relation is used:

This equation gave good agreement with measurements conducted by

Poreh and Cermak (31) and Lee W. For thickness of the wall jet,

according to the present investigation summarized on Fig. 34, the

following relation is accepted:

which is very close to that used by Lee for a flat plate impinging

jet:

For boundary layer thickness, the results obtained in the present

investigation which are summarized on Figures 34 and 35 give

This last relation is significantly different from the flat

plate investigation in which Lee obtained:
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Differentiation of equations 8.15, 8.16 and 8.17 with respect to

8 gives:

In boundary layer region:

And in outer region, the formula

Also the rate of growth of wall jet thickness is:
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The rest of the computation is shown in Appendix A, where the

reference number is started with the subsequent equation.

The resulting equations obtained for the exponent n = 14 are:

Solution by polynomial interpolation



and correspondingly I(G1) 1(0 with proper symbols.

Solution by series expansion

49

In equations 8.23 and 8.24 the reference points G1 and G2 are

determined by the location where the approximate integrand crosses

the abscissa. In this manner the formulae for velocity becomes

simpler as opposed to using go at the beginning of integration.
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Equations 8.23, 8.24 and 8.25 represent the maximum velocity

decay of the wall jet at the concave side of the hemispherical plate

for the range of 14,000 < Re < 75,000 with the exponent n = 14.

It became evident from the data obtained that maximum velocity

decay depends upon nozzle-to-plate distance. The reduction relation

used for plotting is:

All the values are functions of the initial velocity which is maximum

velocity at station 5, i.e. at Q . 10.9 o

In all three equations: 8.23, 8.24 and 8.25 the angle Q is ex-

pressed in radians. The following tabulation compares wall jet maxi-

mum velocity decay calculated from the three equations.
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Table I

Comparison of Maximum Velocity Decay
Calculated by Equations 8.23, 8.24 and 8.25

Velocity Ratio 	 Eqn. 8.23 	 Eqn. 8.24 	 Eqn. 8.25
	 _	

Vm 10.90/v0	 1 	 1 	 1

IC 14.6/V0 	 0.736 	 0.739 	 0.751

Ifni 22.40/V0
	

0.475 	 0.479 	 0.493

Vm 38o /V0 	 0.299 	 0.300 	 0.301

V

m 47o/Vo 	 0.261 	 0.260 	 0.252
m 47/Vo

Vm 53o/Vo 	 0.243 	 0.245 	 0.228

Vm 64/v0 	 0.202 	 0.235 	 0.199

Vm 68.5o/V
/Vo 	

0.185 	 0.204 	 0.191

Vm 80o/Vo 	 0.124 	 0.136 	 0.177

Vm 83.4o/V
0 	

0.102 	 0.119 	 0.174

Figure 36 shows the test points marked and the curves are by equations

8.23 and 8.24, equation 8.25 is shown in Figure 36a for clarity.

The agreement of the curve with test points may be considered

satisfactory. Equation 8.23 is most cumbersome to use. Equation

8.24 is quite handy; in comparison to 8.23, The simplest is the

empirical equation 8.25.
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The curves representing equations 8.23 and 8.24 deviate from

the test results close to the rim of the hemisphere. Maximum wall

jet velocity decay in this region calculated by equations 8.23 and

8.24 fall below the measured values. The difference between the

test results and calculated values diminishes if the reduction equa-

tion 8.26 is not used on test values in this boundary region. Empir-

ical equation, 8.25, gives best results in the whole range.

The agreement obtained between the experimental results and the

curve could indicate that the assumption of cu- 0 at V . Vm incurred

negligible error. This assumption was used by M. B. Glauert (11) in

the analysis of wall jets.

Equations 8.23, 8.24 and 8.25 being dimensionless, can be

applied to any size hemispherical plate. The first and second equa-

tions express maximum velocity decay in terms of the angle 9, once

the initial velocity Vo is determined. The empirical equation, 8.25,

assumes the value of "1" at this point of Θ = 10.9° and references the

rest to it. All the equations have the numerical coefficients for

Reynolds numbers 14,000 	 Re 	
75,000, for which n 15 along

with jet width and boundary layer thickness as given by equation

8.17 and 8.18.

For investigation of maximum velocity decay outside of the

present range of Reynolds numbers, a proper value for the exponent

"n" would have to be established.
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This value would be inserted into equation A.2 and the modified

coefficients in equation A.6 would be found. Although with different

coefficients, equations 8.23 and 8.24 would have the same form.

The devition of the results obtained from the equations 8.23

and 8.24 and the velocities measured_ close to the edge of the hemisphere

is explainable also by the fact that the entire boundary layer must be

small with respect to the significant dimension of the system. In

this case this dimension is R, the radius of the hemisphere (41). In

the present investigtion the ratio of(b + g)to R for Θ > 80° was

close to 1/3 which cannot be considered small.

The present problem is handled essentially by a modified bound-

ary layer treatment in the integrated form. It refers to the fact

that, for boundary layer flow over bodies of revolution, the governing

equations are the same as for two dimensional flow. Difference exists,

*)
however, in the form of the continuity equation which is fully ob-

served in the present approach. When the boundary layer treatment

of the problem is physically attainable, the present method will also

show it as a deviation between the experimental results and the cal-

culated curve. A much more powerful method would be needed, requiring

perhaps integration of the turbulent Navier-Stokes equation.

Schlichting (41), p. 190
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CHAPTER 9

VISCOUS SHEAR FORCE AT THE WALL 

For consideration of viscous shear force at the wall, a control

volume ADEA is chosen, as shown on Figure 7a. The momentum equation

component in this control volume adjacent to the wall is taken in the

plane normal to the impinging jet axis.

The result of the calculation performed in the Appendix B, with

the equation numbers preserved, is:

In order to compare these results with those obtained for the

flat wall jet, one can refer to Lee (25) and Poreh, Tsuei and Cermak

(32). An equivalence to equation 9.1 was given in the fomm:

In the present investigation, the boundary layer thickness,

expressed by equation B.15 is

Based on this, the expressions for hemispherical plate and
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flat plate friction force are similar, as it can be seen by equations

9,1 and_ 9.2. In both the exponent is equal to

The term F, represented by equation B .19 for the hemispherical

plate and by equation 9.3 for the flat plate differ significantly in

spite of their apparent similarity. The difference is functional.

This term for the flat plate, equation 9.3 is a function of'n'i

which is a weak function of the Reynolds number. For the flat plate

at an established c4 and "a" in the range of Reynolds number in-

vestigated it is just a coefficient. Intuitively, TA0U 	 shouldoc

be a function of the Reynolds number.

The corresponding term for the hemispherical plate is a local

function with the angle variable Θ. For that reason its practical

application is limited.
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CHATTER 10

BOUNDARY LAYER THICKNESS NEAR STAGNATION PUNT

For calculation of boundary layer thickness near the stagnation

point, one can use formula given in (19) after Schlichting

in which "a" is the coefficient when expressing velocity in the form:

The symbol "s" is the distance from the stagnation point,

measured along the impingement surface.

In the present investigation D = 6.35 mm

Taking as an example one of the tests for which Zn/D = 7,

This value compares favorably with that calculated for the flat

plate case (19), where it was
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The actual measurement of the boundary layer thickness near the

stagnation point was not attempted due to physical restrictions. The

measurements would have to be done at the bottom of the hemispherical

surface on .its concave side and using relatively large probes to mea,

sure small dimensions. The smallest probe diameters available for the

test was 0.4 mm, while the boundary layer thickness was of the order

of 0.2 mm. The measurements taken under such conditions would not be

satisfactory.
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CHAPTER 11

VELOCITY PROFILE IN THE JET WALL ZONE 

The mean velocity profile measurements in the wall zone are pre-

sented on the plot Fig. 37. 'Figures 37a to 37g show the profiles at

some selected stations. The Reynolds number range investigated was

10,000 to 78,000 and dimensionless distance from the nozzle-to-plate,

z/D . 7, 9 and 13. The velocity measurements were taken on normals

at the station indicated. The velocity profiles measured are in

good agreement with the formula 8.16:

These results therefore confirm the results obtained by Poreh

and Cermak (31) and Lee (25).

The velocity profiles were identical for all points above

z/z1„ . 0.2 at all distances from the issuing nozzle. There were
2

small differences closer to the wall. Figure 38 depicts the general

trend in the wall jet spread.
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CHAPTER 12

SUMMARY AND CONCLUSION

This study was mostly concerned with the wall jet zone in the

case of hemispherical concave, smooth surface. The range of Reynolds

number was from about 14,000 to 75,000, which corresponds to Mach

number from about 0.1 to about 0.5. This range was selected due to

the suitability of the available testing equipment.

Reynolds numbers lower than 10,000 represent small velocities in

the order of 20 m/s and less. The measurement of such low velocities

requires very sensitive instruments.

Reynolds numbers higher than 75,000 represent velocities in the

order of 200 m/s and higher. At such velocities the probes began to

vibrate violently when inserted into the jet. Pitot tubes would

have to be much more rigidly built to take measurements at such

velocities and the effect of compressibility would have to be included.

Eight important observations were made in this study.

1. The jet is not throttled easily. When the impingement plate is

only two nozzle diameters away from the jet issuing nozzle, the flow

is still practically unrestricted. This confirms previously made ob-

servations by other researchers, yet it has not found many practical

applications. The use of screens and guides was suggested (17) for

restricting hot streams discharged into the environment. By placing

baffles close to hot stream outlets discharging into the lakes one



60

can localize warm spots and dissipate heat gradually. It is known

that, if unrestricted, the hot streams travel long distances thermally

polluting lake and river water and affecting aquatic life.

2. The results of this work, published in Letters in Heat and Mass
it

Transfer (16), indicate that the minimum static pressure of the free

jet is located 8 nozzle diameters from the nozzle outlet. These tests

were run with three nozzle diameters: 3.2, 6.35 and 9.5 mm. When the

impingement plate was moved closer to the nozzle exit, the minimum

pressure point was also moved closer to the nozzle. The location of

minimum pressure point was found to be independent of nozzle diameter

and Reynolds number. This last phenomenon is surprising since it

means that no matter what the exit velocity was, the lowest static

pressure would always fall at the same point, 8 nozzle diameters

away from the nozzle exit in the unrestricted jet.

While the location of minimum static pressure is fixed in space,

the value of the minimum does depend upon Reynolds number. The

higher the Reynolds number, the lower the depression for the range of

Reynolds number in this study.

3. Compared with flat plate experiments, the maximum velocity decay

of comparable jets was less rapid for the concave, hemispherical plate.

Such behavior of the jet could be predicted from the plate geometrical

differences forming the boundaries in the incompressible flow.

4. The strong vorticity fauna in this investigation seemed to inten-

sify turbulence. The vortices were formed in such a way that their
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axes were parallel longitudinally to the hemispherical plate. It

indicates that heat transfer by convection in such a condition is

greater. The vortices formed in the hot boundary layer carry

away heat into the colder region of higher velocity.

5. The boundary layer thickness in the developed wall jet zone of

the hemispherical plate was measured to be about half of that mea-

sured in (21) for the flat plate. It is significant in heat transfer,

as related by Prandtl's modification of Reynolds analogy. At Prandtl

number close to unity for air, the velocity profile is similar to

the temperature profile hence the velocity and thermal boundary

layer thicknesses are nearly the same. The thermal gradient is

higher for thinner boundary layer. Since heat conducted through

unit surface per unit time is by Fourier conduction law:

Based on the above, one can conclude that the hemispherical plate

conducts heat at a higher rate than a flat plate when impinged by an

identical jet.

This is not a proof, since the gradient, 	
T  , is to be evalu-

ated at z o of the temperature profile T (a), which is not exactly

known.
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The ultimate proof would be to measure the heat transfer of the

heated hemispherical plate when blown on by an air jet. Such experi-

ments were not in the scope of this investigation, but confirmation

of this corollary is found in (8), by Dyban and Mazur, who measured

heat transfer rate in concave and flat plates, when impinged upon

by an air jet. According to these tests, the rate of heat transfer

for a concave plate is about 35 to 40 higher than for a flat plate

under identical conditions.

6. The method of measuring the boundary layer thickness with the

probes available was not practical near the stagnation point. The

Pitot tubes were too large for measuring small distances.

7. The empirical relations of "reference boundary velocity" decay

and maximum velocity decay in the wall jet, equations 8.3 and 8.25

respectively established in this work, give useful predictions for the

investigated range of Reynolds number.

8. Equation 8.23 for maximum velocity decay in the wall jet based

on the theoretical consideration gives good agreement with measure-

ments. In the Reynolds number range investigated it is a function

of the local angle only. It is independent of Reynolds number,

radius of curvature of the hemisphere and the nozzle diameter.

Practically it means that this relation can be used for any

velocity in the range investigated and for any size of the hemisphere.



63

Recommendation

In future research of subsonic jets, the hemispherical, convex

plate draws the first attention. Normally impinging and skew axial

jets provide a large field for investigation.

Parabolic and hyperbolic surfaces may also find practical appli-

cation. Hyperbolic shape cooling towers have the best natural

draft performance. They can be thought of as huge jet issuing

nozzles in which gravity effects have a major role but were

negligible in this study.

It is logical to conduct small scale, model tests and extend

the information to large applications, considering scale factors.

Large scale test equipment is costly to furnish and run.

New Jersey Institute of Technology
Newark, New Jersey
April, 1978
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APPENDIX A

The Continuation of Calculation of the Maximum 

Velocity Decay in the Wall Jet, for Chapter 8, Page ha 

For simplicity the two integrals in equation 8.22 are solved separte-

ly. The solution of the first one is:



The second integral:
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Substituting the components back into 8.22 yields:
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Dividing by Vm 	 28:

Equations 8.17 and 8.18 in which go = 0 gives:
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Exponent "n" used in equation 8.15 for the range of Reynolds

numbers in the present investigation is n = 14 as suggested by (19)-

For checking purposes, the particular values are used here.

Introducing the above into equation A.2 yields:
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Multiplying the terms and dividing by 0.01228 R 2 one obtains:

Collection of similar terms yields:

Dividing by 6.275 and collecting:



Using the syMbols:

	

a . 0.0561 	 A = 0.5374 	 B . 0.05656

C 	 0.07437 	 D 0.000472	 E 0.9256

F 0.05562

Introducing these symbols into the equation:
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The first and second integrals in equation A.8 can be solved

exactly. The remaining four are not integrable exactly. Two solutions

are used: by polynomial interpolation and by expansion in series.

Solution by polynomial interpolation 

The first two integrals have exact solutions:

The remaining four integrals are not soluble exactly. In order to

integrte them, they are combined under one integral sign. The region

of interest is 10° < 	 < 80°, i.e. 10° away from the stagnation
point and the edge of the hemisphere. Six points in this region

are selected evenly spaced, the terminal ones being 10 and 80°. The

values of the integrand are found for these points and a polynomial

is found passing through these points thus approximating the integrand.

Since a polynomial is always integrable, the solution can be found.

Executing this procedure in steps one obtains:



or for simplicity:

The following tabulation shows the values of the integrand at

the selected six points:
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It is obvious that the integral premultiplied by D contributes very

little and therefore can be disregarded. Using Newton's interpola-

tion method for finding the polynomial passing through these points,

where, 6 G . 0.244346:
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2.97

-1.97

	

1.0 	 1.3

- .67 	 -1.13

	

.33 	 .17 	 .84

-.50 	 - .29 	 -1.53

	

- .17 	 -.12 	 -.69

-.62 	 -.98

- .79 	 -1.1

-1.72

-2.51



Taking the approximation

Substituting the above integrals into equation A.8 yields:

Reducing

Applying boundary conditions:

Substituting back into A.10:

Finally, for G <4 7°:

714
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In equation A.14, the symbol V
.n1)17

 represents the value of Vm

calculated t (41 	 47
o , for which f(Q) . 0. This equation is

awkward to use. A much more manageable equation is obtained as

follows:

Solution by expansion in series 

The starting point is again equation A.8. The first two integrals

have exact solution, but the remaining ones do not and an expansion

in series will be used to solve them. Some terms in exact and

series expansion will be similar. Collection of exact and rough

coefficients by which integrals are multiplied produce incorrect

results. In order to obtain consistent coefficients, all integrals

are expanded in series.



The following series expansions will be used:
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Using those, the component integrals become:

Since a 0.0561, the terms multiplied by powers of "a" larger than

2 will be disregarded, as will the integral premultiplied by

D.0.000472.
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Substituting these components back into equation A.8 one obtains:

collecting terms:



After substitution of values:
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Disregarding the terms with negligibly small coefficients:

Applying boundary conditions that IC . 1 at Q = Go and

rearranging:
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And finally:

The derivative of A.19 equals zero for Q2 64.3° = 1.1228 radians.

Therefore, for Q Q2 = 64.3° the following relation applies:

In equation A.20b, the symbol Vra64.3° denotes the value of Vra t

θ=θ2 	 = 64.3° = 1.1228 radians.
2 

Finally, it would be of interest to obtain an equation similar

to 8.3a. For that purpose, t Q° = 10.9° = 0.19 radians that

eqution should equal 1, therefore

and the purely empirical equation found is:
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APPENDIX B

Calculation of Viscous Shear Force 

at the Wall, for Chapter 9 

The momentum equation component is in the plane normal to the

impinging jet. In a consideration similar to that in chapter 8, but

for an angular element d 99 of the control volume ADEA, at the wall,

as shown in Figure 7a, the following equation applies:

Where: Vm is the max. velocity, i.e. velocity at z

V 	 is a velocity at z in the velocity profile

is the position angle in vertical plane

is the radius of curvature of the hemispherical plate

1 	 is the curvilinear distance measured along the surface

of integration

is the distance along rhe hemispherical surface

is the air density

Tw is the wall shear stress

is the angle in the plane normal to the free jet axis
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Since the boundary layer thickness is small, one can approximate

1 s R Q. Assuming sD constant and introducing a dummy variable

0( for Q

Differentiating each term in equation B.2 with respect to c<

observing that V=Vm at z= δand returning back from c)‹. to

one obtains:



Introducing dimensionless parameters:

Dividing by U 2 :oc
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Introducing the new symbols and dividing by
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Using the identity sin 2Q 2 cos Q sin Q, the last equation becomes:

Carrying out the differentiation and multiplying by two:

and multiplying out the terms, yields:
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Within the boundary layer region the velocity distribution may be

assumed as before:

Introducing 8.15 and 8.17 into B.7 yields:
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On carrying out the integration, there results

On substituting the limits and dividing by sin 29., .4f 0, i.e. away

from stagnation point, one gets



Multiplying and reducing terms
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Which, after a few transformations, becomes

Multiplication of coefficients yields:
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If 7m is assumed to have the following dimensionless form

where A is a velocity proportionality coefficient

And also if it is assumed that

where B is a coefficient of the boundary layer growth.

After substituting the last four relations into equation 13.12:
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Observing that B is a small number, about 1/80 in the present

investigation, one can disregard terms in which B2 appears. Without

committing large error one can write, therefore after dividing by

After reducing:

For simplicity let:



Then B.18a becomes

90
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APPENDIX C

Evaluation of Experimental Error 

The maximum relative error for velocity, measured with the Pitot

tube at steady, incompressible flow is evaluated as follows:

The velocity formula is:

	

Where: g 	 gravity acceleration, ft/s 2

h . water column reading, inches of water

= density of water, lbm/ft3

. density of air, lbm/ft3

P = ambient pressure, psia

	

Z 	 compressibility factor

R . air constant lbf ft/lbm °F

T . air temperature, °R

On substituting C-2 into C-I, one obtains:

By definition, a maximum relative error is:
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Since g, Z and R may be assumed exact, they do not contribute to

the error and it is expressed by:

Evaluting individual relative errors:

Water density error between 75 and 90 °F

Temperture error, 2°F at an average of 75°F

U-tube water column reading, 0.1"

Barometric pressure, 0.03" Hg

Combining the components yields:

The maximum relative error at steady flow and the velocity of

320 ft/sec measured with a U-tube is 0.6%.
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Dompressible Flow 

Air compressibility effects are most prominent at the highest

velocity. The highest velocity measured in the wall jet was

320 ft/sec which corresponds to Mach number M = 0.28.

The Pitot tube pressure reading has to be corrected according to

the relation (30):

Expanding C.7 by binomial theorem and rearranging yields:

After disregarding smaller terms, M- is the correction for

compressibility and also the relative error incurred by assuming

an incompressible flow:

The total maximum error with compressibility effects included is

then:

Since compressibility error is the dominant component and it is

proportional to velocity squared, the total relative error decreases

rapidly with decreasing velocity.
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Description 

le Plenum

2. Nozzle

3. Hemispherical impinging plate

4. Adjustable legs

5. Indexing table supporting the
impinging plate

6. Support table

7.Vertical guide

8. Indexing table supporting the
traversing carriage with probe

9. Traversing carriage beam

10. Beam stiffening rods

11. Traversing carriage

12. Probe
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FIG. 1a TEST ARRANGEMENT



FIG. lb LARGE ROTOMETER CALIBRATION CURVE 0



FIG. lc 	 SMALL ROTOMETER CALIBRATION CURVE
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11.0MENCLATURE
*************************

D Nozzle exit diameter
zn Nozzle-to-plate distance
x Distance from nozzle exit
y Distance from jet center line
0 Stagnation point

s

 Distance from ”Ou on hemisphere
z Distance from hemisphere surface
R Hemisphere radius



FIG. 2 IMPINGMENT HEMISPHERICAL PLATE FOR FLOW STATIC
PRESSURE MEASUREMENTS

3



FIG. 3a JOURNAL AND SLIDE OF THE TRAVERSING CARRIAGE



FIG. 3b
STAGE OF THE TRAVERSING CARRIAGE

_.t.
0
lil,



FIG. 5
NOZZLE
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HG. 6 MODIFIED PRESSURE PROBES



FIG.7 HEMISPHERICAL PLATE JET ZONES
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FIG. 7a 	 MOMENTUM FLUX MODEL
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CENTER LINE VELOCITY DECAY FOR Zn/D=20,D=6.35mm

PIC, A
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CENTER LINE VELOCITY DECAY FOR Zn/D=I3, D=6.35mm

FIG.9
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CENTER LINE VELOCITY DECAY FOR Zn/D=9, D=6.35mm

FIG. 10
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CENTER LINE VELOCITY DECAY FOR Zn/D=7, D=6.35mm

FIG. II
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CENTER LINE VELOCITY DECAY FOR Zn/D....20, D.9.5mm

FIG. 12
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CENTER LINE VELOCITY DECAY FOR Zn/D=I3, D=9.6mm

FIG. 13

115



CENTER LINE VELOCITY DECAY FOR Zn/D=9, D=9.5mm

FIG. 14
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CENTER LINE VELOCITY DECAY FOR Zn/D=7, D=9.5mm

FIG. 15
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VELOCITY PROFILE ACROSS JET CENTERLINE
FIG. I6-I



VELOCITY PROFILE ACROSS JET CENTER LINE
FIG. 16-2
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FIG. 16a
....s.
0



_....1.
ND_...‘FIG. 16 b



FIG. I6c



N.)

FIG. I6d



D --z= 6.35mm 	 D 9.52mrn

	ReD:	 ReD :

o 14100 	 + 15300

• 27700 	 Y 29600

✓ 47500 	 e 59500

FREE JET VELOCITY DISTRIBUTION

FOR Zn/D=20, 0=114

FIG. 16e

_L.



FREE JET VELOCITY DISTRIBUTION

FOR Zn/D=20, X/D=16

FIG. 16f
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1
STATIC PRESSURE DISTRIBUTION ALONG JET CENTER LINE 	 4

FOR Zn/D=20, D=6.35mm

FIG. 18a
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STATIC PRESSURE DISTRIBUTION ALONG A FREE JET

CENTER LINE FOR D=6.35mm

FIG. 18b
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STATIC PRESSURE DISTRIBUTION ALONG THE
CENTER LINE FOR Zn/D=20, D=9.5mm

FIG. 19
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STATIC PRESSURE DISTRIBUTION ALONG THE CENTER LINE
• FOR Zn/D=I3, D=9.5mm

FIG. 20

130



STATIC PRESSURE DISTRIBUTION ALONG THE CENTER LINE
FOR Zn/D=9, D=9.5mm

FIG, 21
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STATIC PRESSURE DISTRIBUTION ALONG THE CENTER LINE

FOR Zn/D=7, D=9.5mm

FIG. 22
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STATIC PRESSURE DISTRIBUTION ALONG THE CENTER LINE

FOR-D=6.35mm, Rep= 27 000

FIG. 23
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STATIC PRESSURE DISTRIBUTION ALONG THE CENTER LINE
FOR D=9.5mm, Re16 000

FIG, 24

1 34
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STATIC PRESSURE DISTRIBUTION ALONG THE CENTER LINE

FOR D=9.5mm, ReD=30 000
FIG. 25
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STATIC PRESSURE DISTRIBUTION  ALONG THE CENTER LINE
FOR D=9.5mm, Rer;--=57 000

FIG. 26
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STATIC PRESSURE DISTRI-BUTION ACROSS THE JET
FOR D=6.35mm, R e =7,6000
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FIG. 27a



STATIC PRESSURE DISTRIBUTION ACROSS THE JET

FOR a. 6.35mm Re = 14000
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FIG. 27b



STATIC PRESSURE DISTRIBUTION ACROSS THE JET
FOR D=6,35mm Re = 48 000
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FIG. 27c



STAT I C PRESSURE DISTRIBUTION  ACROSS THE JET

FOR D =9.5mm Re:0=1 5 500
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FIG. 27d



STATIC PRESSURE DISTR I BUT I ON ACROSS THE JET

FOR D=9.5on Reim= 29 700

1 41

FIG. 27e



STATIC PRESSURE DISTRIBUTION ACROSS THE JET

FOR D=9.5mm Re3.59 3000
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FIG. 27f



WALL PRESSURE DISTRIBUTION
FOR Zn/D=I3, D=9.5mm

114.3

FIG. 28a



WALL PRESSURE DISTRIBUTION FOR
Zn/D=9, D=9.5mm
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FIG.28b



WALL PRESSURE DISTRIBUTION FOR

Zn/D=7, D=9.5mm

FIG. 28c



COMPARISON OF WALL PRESSURE
DISTRIBUTIONS

146

FIG. 29



FIG.30 DETERMINATION OF BOUNDARY LAYER THICKNESS



FIG.3Ia 	 BOUNDARY LAYER THICKNESS FOR Zn/D43
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I	 1

Note: the jagged appearence of the curves representing
boundary layer thickness fluctuation has been daterrained
in a special study. See e4.60 A. A. Townsend, "The Structure
of Turbulent Shear Flow", 1956, concerning representation
of the edge of a turbulent jet.

FIG. 3Ib 	 BOUNDARY LAYER THICKNESS FOR Zn/D=9



BOUNDARY LAYER ENVELOPE
EGLUATION 8.23 15 BASED ON

150

FIG. 3Ic 	 BOUNDARY LAYER THICKNESS FOR Zn/D=7



FIG. 32
DIMENSIONLESS BOUNDARY LAYER THICKNESS
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FIG. 33 	 REFERENCE BOUNDARY VELOCITY DECAY
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MAXIMUM VELOCITY DECAY IN THE WALL JET

FOR Zn/D=7, D=6.35mm

FIG. 33a
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MAXIMUM VELOCITY DECAY IN THE WALL JET
 FOR Zn/D=13, D=6.35mm

FIG. 33b



MAXIMUM VELOCITY DECAY IN THE WALL JET
FOR Zn/D=9, D=6.35mm

FIG. 33c

-a.



COMPARISON OF MAXIMUM VELOCITY DECAY
IN THE WALL JET

FIG. 33d
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FIG. 34
WALL JET WIDTH



,BOUNDARY LAYER THICKNESS ENVELOPE

FIG. 35

8



FIG. 36 MAXIMUM VELOCITY DECAY IN THE WALL JET



FIG. 36a MIMUM VELOCITY DECAY WITH CURVE BY EQN. 8.25

1'60



FIG. 36b MAXIMUM VELOCITY DECAY EXPONENT PLOT

REDUCTION FORMULA FOR FIG.36:
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WALL JET VELOCITY PROFILE AT -STATION 6, Zp/D.7
FIG. 37a
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WALL JET VELOCITY PROFILE AT STATION 9, Zn/D=7

FIG. 37b
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•. 	 •..
WALL JET VELOCITY PROFILE AT STATION 6, ZniD=9

FIG. 37c
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WALL JET VELOCITY PROFILE AT STATION 10, Zn/D=91
FIG. 37d
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WALL JET VELOCITY PROFILE AT STATION 6, Zn/D.13
FIG. 37e
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WALL Alt VELOCITY PROFILE AT STATION 8, Zn/D=liv-
FIG. 37f
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WALL JET VELOCITY PROFILE AT STATION 10, Zn/D=13
FIG. 37g
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V 	 V

	FIG. 38	 SPREAD OF THE WALL JET
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