Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

THE SETTLING OF PARTICLES IN

A SQUARE CONTAINED MEDIUM

BY

RICHARD STEPHAN MATYAS

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

AT

NEW JERSEY INSTITUTE OF TECHNOLOGY

This thesis is to be used only with due regard to the rights of the author(s). Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

> Newark, New Jersey 1977

ABSTRACT

Stokes' Law, has been standardly utilized to calculate the terminal velocity of falling particles. However, the limitation of Stokes' Law is that it does not take into account the container walls and their resulting drag forces. Extensive work with additional drag due to cylindrical container walls has been examined by many investigators. The classical and earliest is the well know Ladenburg Correction which cannot be utilized with non-cylindrical containers. This experimental thesis examines the analog of the Ladenburg relationship for a square container. This experimental thesis was undertaken to experimentally determine the value of the constant K_1 for a square contained medium. The theoretical relationships that were previously done utilized a calculated theoretical value of the constant K_1 in the formula $y \simeq K$ $(1 - K_1 x)$.

In this series of experiments, measurements were taken on the weight, diameter and density of the spheres utilized. Temperature dependent properties of viscosity and density of the fluid medium were measured and plotted. Actual settling velocities of the spheres were measured along with fluid medium temperatures. Because of the differences in the sphere densities and temperature differences of the fluid medium each data point was considered independently. Each data point had its unique Stokes' settling velocity and this was taken into account during the calculations. The data points were plotted and

11

computer analyzed for the constant value K1.

This series of experiments has experimentally determined the value of the constant K_1 to be 1.8932. This differs from the theoretically calculated K_1 value of 1.903 by 0.51%.

The plotted data points indicate increased scattering as the spheres become smaller. This appears to be directly related to the convection currents in the fluid medium.

APPROVAL OF THESIS

THE SETTLING OF PARTICLES IN

A SQUARE CONTAINED MEDIUM

BY

RICHARD STEPHAN MATYAS

FOR

DEPARTMENT OF CHEMICAL ENGINEERING NEW JERSEY INSTITUTE OF TECHNOLOGY

BY

FACULTY COMMITTEE

APPROVED:

-

NEWARK, NEW JERSEY

JUNE, 1977

.

PREFACE

The settling of particles is an integral part of many common processes. These processes vary from standard fluidized beds to the more recent liquid membrane modes of separation. These real life conditions can be better understood by scale modeling. An excellent model used for this purpose may be the settling of spheres in a square contained medium.

In the past there has been extensive work done on models of a falling sphere in a cylindrical or spherically contained medium. Unfortunately, in these cases, scaling up to a real life situation is difficult.

Dr. E. Bart of the New Jersey Institute of Technology Chemical Engineering Department who provided the theoretical background and purpose was also the advisor for this experimental thesis. Dr. E. Bart (2) did the theoretical calculations for the settling of spheres in a square contained medium. This theoretical work should lead to more accurate scaling up from models to a real life situation.

V

TABLE OF CONTENTS

	Page
List of Figures	1
List of Tables	2
Background/Theory	3
Measurement of Physical Properties	7
The Experimental Column	10
Experimental Procedure	12
Experimental Results	13
Discussion of Results	15
Conclusions/Recommendations	17
Appendix	18

.

LIST OF FIGURES

	Page
Figure One - The Experimental Column	11
Figure Two - Ucon Lubricant 50-HB-5100	22
Density vs Temperature	
Figure Three - Ucon Lubricant 50-HB-5100	23
Viscosity vs Temperature	
Figure Four - Experimental Data	24
y/K vs x = d/D (Measured Sphere Dia.)	
Figure Five - Experimental Data	30
y/K vs x = d/D (Calculated Sphere Dia.)	

LIST OF TABLES

	Page
Table One - Experimental Data	21
Viscosity Measurements of Ucon Lubricant Density Measurements of Ucon Lubricant Sphere Weights	
Table Two - Experimental Results	25
Table Three - Experimental Results	31
Calculated Sphere Diameters Based on Density and Weight.	

BACKGROUND/THEORY

A spherical particle falling under the influence of gravity in a viscous fluid ultimately comes to a uniform terminal settling velocity. This terminal velocity is when the gravitational forces experienced by the sphere are counter balanced by the hydrodynamic forces.

Taking into account the density difference between the sphere and the surrounding fluid the gravitational force acting on the particle is:

$$F_g = (\ell s - \ell) g \frac{4}{3} \mathcal{H} a^3$$
 (1)

Stokes' Law for the frictional resistance or drag on a sphere is:

 $Ff = 6 \mathcal{H} \mathcal{H} a Us$

Where Ff = frictional resistance \mathcal{A} = fluid viscosity Us = Stokes' terminal velocity (in an unbounded medium)

Ladenburg's (4) investigation of the sphere falling in a cylinder led to his correction to the drag force:

$$F_z = 6 \, \mathcal{H} \, \mu \, U_s \, a \, (1 + K \, a/R_0)$$
 (3)

Where Ro = cylinder radius K = constant (2)

The Ladenburg value of K was later corrected to 2.10444. This value works only when a/Ro is small. This correction is a poor representation of a model for an array. The Ladenburg model has a cylindrical envelope that surrounds the particle. The problem with the Ladenburg model is that the spaces between the packed cylindrical envelopes is not accounted for.

Bart (2) investigated a sphere falling in a square container. The sphere at the center of a cube should be an excellent model for a three-dimensional array.

Bart's correction to the drag force is:

$$F_z \simeq 6 \ \mathcal{H} \ \mathcal{H} \ U \ a \ (1 + 1.903266 \ a/l)$$

Where 1 = square container half width

Equating the gravitational force acting on a sphere Eqn. (1) with Stokes' Law for the frictional resistance Eqn. (2), results in Stokes' Law for the calculation of the terminal velocity of spheres falling in an unbounded medium. The standard from is:

$$Us = \frac{gd^2 (\ell s - \ell)}{18 \mu}$$
(5)

Where d = sphere diameter

This equation is only valid for laminar flow with Reynold's numbers less than one. In order to take in account for any wall effects the standard equation must be modified. The normal modification is a polynomial expansion that is generally known in the field of low Reynold's number flows. Investigators like Wakiya, Faxen and Dahl and

(4)

others summarized in Happel and Brenner (3) utilize this general form. The only differences in the actual polynomial expansions utilized are in the dimensionless parameters and the coefficients determined by the particular geometry.

The following equation takes into account the drag force resulting from the container walls:

$$U = \frac{gd^2 (\ell s - \ell)}{18 \mu} \quad (1 - K_1 d/D + K_2 (d/D)^2 - ...) \quad (6)$$

Which is also $U = Us (1 - K_1 d/D + K_2 (d/D)^2 -....)$

Where K₁, K₂ = coefficients (constants) U = actual particle settling velocity D = square duct width

U is a measurable quantity while Us is a theoretical abstraction, since an unbounded medium does not really exist. If the spheres become very small mathematically, it is the same as if the bounded medium becomes infinitely large. In this way, the measured settling velocity becomes the Stokes' Law for an unbounded medium:

Divide equation (6) by d^2 , resulting in:

$$U/d^{2} = \frac{g(\ell s - \ell)}{18 \mu} \quad (1 - K_{1} (d/D) + K_{2} (d/D)^{2} -) \quad (7)$$

Let $K = \frac{g(\ell s - \ell)}{18 \mu}$ which is constant if temperature is constant And let $y = U/d^2$, x = d/D

These substitutions into equation (7) results in:

$$y = K (1 - K_1 x + K_2 x^2 -)$$
 (8)

For very small x, x^2 becomes negligible and equation (8) becomes:

$$y = K (1 - K_1 x)$$
 (9)

Since K is not constant equation (9) must be divided by K to give a simple straight line relationship. The resulting final equation is:

$$\mathbf{y}/\mathbf{K} \simeq \mathbf{1} - \mathbf{K}_1 \mathbf{x} \tag{10}$$

Therefore, a straight line relationship for y/K versus x should be observed for small values of x. The slope should be K_1 with an intercept of 1.00.

Bart (2) determined the theoretical value of K_1 to be 1.903. The present work determined a value for this same K_1 by direct experimentation.

MEASUREMENT OF PHYSICAL PROPERTIES

The viscous fluid medium utilized in this experimental work was Ucon Lubricant, type 50 HB - 5100 by Union Carbide. The viscosity of this Ucon Lubricant is very high, similar to melasses. Its viscosity and transparency made it a good choice for reading slow settling velocities. This material is temperature sensitive. Any temperature changes or gradients would result in viscosity variations. With this in mind, the density and viscosity of the Ucon Lubricant were measured over the probable operating temperatures.

The density was measured by a calibrated 25 ml volumetric flask suspended in a constant temperature bath. A waiting period of 10-15 minutes was utilized for the Ucon Lubricant to reach equilibrium. The Ucon Lubricant was added or removed by a disposable pipet. The volumetric flask was weighed on a Mettler H-8 analytical balance. The results were plotted on a graph of density versus temperature °Celsius. (Appendix, Figure Two, pg. 22). The data points were fed into a Hewlett Packard HP-9820 Computer for least squares analysis, yielding:

 $D = 1.3733 - 1.2813 t(^{\circ}c)$ with a goodness of fit = -0.99918.

The viscosity was measured with a Cannon-Fenske Viscometer, Standard Test ASTM-D-445, with a 2.572 centistokes per second constant. Centistokes can be multiplied by the density at the given temperature to give centipoise. The viscometer was suspended in a constant temperature bath for the density readings. The results were plotted on a graph of viscosity versus temperature (Appendix, Figure Three,

7

pg. 23). The data points were fed into a Hewlett Packard HP-9820 Computer for least squares analysis, yielding:

 $V = 4.0833 - .0080 t(^{\circ}c)$ with a goodness of fit = -0.99726.

The spheres were white Delrin precision made ball bearings from Industrial Tectonics. The theoretical specific gravity of Delrin is 1.425. The sphere sizes were nominally 1/8, 3/16, 1/4, 5/16, 3/8, 1/2, 3/4 inch. The individual spheres were measured for their particular density and diameter.

The individual sphere densities were determined by measuring the density of an organic mixture with the same density. The individual spheres were placed into an organic solvent mixture and the appropriate organic solvent was added with agitation until the sphere just started to rise from the bottom of the container or started to drop from the surface. The solvent mixture was pipeted into a 25 ml calibrated volumetric flask and weighed. The solvents utilized were Carbon Tetrachloride (Tetrachloromethane) Sp.G = 1.595 and 1, 2 -Di-Chloroethane Sp.G = 1.256. Each Delrin sphere was separated from each other in small labeled containers after their density measurement. Each Delrin sphere had its diameter measured by a micrometer. The average of ten readings were recorded. Sets were made up in small labeled boxes consisting of one sphere from each size. There were not enough spheres of various sizes to have one of each size in the six groups.

8

Each sphere was weighed on the H-8 Mettler balance. From the weights and densities, the diameters were also calculated.

Each set of spheres was kept isolated from the other sets and labeled. This was necessary in order not to lose sphere identity since there were differences in dimensions and densities.

THE EXPERIMENTAL COLUMN

The column (Figure One, The Experimental Column) was previously made by Mr. L. B. Dight (1) for a senior project. All dimensions and construction were verified and/or repaired. The column was constructed of acrylic plastic. The sides were 3/8" thick and the base 3/4" deep. The height of the column was three feet tall and measured six inches square. The 3/8" thick acrylic top was modified for this experiment. A two inch hole was drilled in the top and a cross hatch of wires was affixed to the top. Where the wires crossed maintained the constant starting point for the dropping of the spheres.

Directly in the center of the base was a funnel leading to a two gate valve system to recover the dropped spheres. Two ASTM thermometers, calibrated to 0.01 ° c were mounted on the column, one on the top and one in the base. The front and back of the column had timing marks placed on the outside at the one and two foot distances. The marks on the back were placed to ensure consistent readings. The column was adjusted by use of a bubble level to ensure proper alignment.

10

FIGURE ONE - THE EXPERIMENTAL COLUMN

EXPERIMENTAL PROCEDURE

All spheres were dipped into Ucon Lubricant and dropped into the column at the crossed wires by use of a pair of tweezers. The stop watch was started as the sphere passed the first timing mark and stopped when the sphere passed the second timing mark. The time was then recorded. The smallest sphere was dropped first. This procedure was repeated until all the spheres of that particular set were dropped according to increasing size. Only after this particular set of spheres was removed were any other spheres dropped.

EXPERIMENTAL RESULTS

The raw data from the experiments are shown in the Appendix, Table Two, pp. 25-29. This data was worked up to apply to equation (9). The results of this work up are summarized in the Appendix, Tables Two and Three. Sample Calculations are shown in Appendix (p. 20) for a typical run.

The resulting data were used in a least squares analysis (using a Hewlett Packard HP-9820 Computer and standard program). The results of this least squares evaluation are summarized below:

A. Calculated Sphere Diameters - All data points

Goodness of Fit: -0.7434 Intercept: 0.9972 Slope: -1.7121

B. <u>Measured Sphere Diameters</u> - All data points

Goodness of Fit: -0.7052 Intercept: 0.9923 Slope: -1.6326

Because of the wide range of data points with the 1/8 inch spheres a computer analysis was performed without the 1/8 inch sphere data points.

C. <u>Calculated Sphere Diameters</u> - Less 1/8 inch sphere data points

Goodness of Fit: -0.8839 Intercept: 1.0125 Slope: -1.8932 D. <u>Measured Sphere Diameters</u> - Less 1/8 inch sphere data points

Goodness of Fit: -0.8807 Intercept: 1.0095 Slope: -1.8366

Percent Difference from Theoretical Calculated Ki value

of 1.903.

- A. $\frac{1.903 1.7121}{1.903} \times 100 = 10.0\%$
- B. $\frac{1.903 1.6326}{1.903} \times 100 = 14.2\%$
- C. $\frac{1.903 1.8932}{1.903} \times 100 = 0.51\%$
- D. $\frac{1.903 1.8366}{1.903} \times 100 = 3.5\%$

DISCUSSION OF RESULTS

The best experimental K₁ value is 1.8932 which is approximately 0.5% different from the theoretical value of 1.903.

The data resulting from the calculated sphere diameters, omitting the 1/8 inch sphere data points, gives the least percent difference to the theoretical calculated K_1 value. The calculated diameters should give the hydraulic diameter which would take in account surface imperfections. The hydraulic diameter should have resulted in more accurate results and did so by comparing calculations C and D.

The differences between the top and bottom thermometers differed up to 2.2 $^{\circ}$ Celsius. This means a difference from the top and bottom of the column of 0.0018 gm/cc in density and 2.60 Stokes in viscosity. The temperatures in the Ucon Lubricant varied as much as 1.1 $^{\circ}$ Celsius during experimentation utilizing any single box of spheres. This resulted in a change of 0.0008 gm/cc in density and 1.25 Stokes in viscosity while the experiment was being conducted. With these different and changing temperatures, convective heat currents probably were formed. These convective currents would easily account for the increased scatter in data as the spheres got smaller. Because of the temperature differences of the Ucon Lubricant and the density differences of the Delrin Spheres, it was absolutely necessary to calculate a K value for each data point.

Careful measurements were extremely important in this experiment due to sources of possible error. These experiments essentially involved measurement of the small deviations from Stokes' Law. When the deviations are small compared to the measured parameters, error propagation will be most unfavorable, as is the situation in these experiments.

CONCLUSIONS/RECOMMENDATIONS

The theoretical value of K₁ calculated by Bart (2) to be 1.903 has been experimentally verified well within experimental error.

All future experimentation in this area should include two things:

- 1.) A constant temperature room.
- 2.) Careful preliminary work determining the actual physical properties of the spheres and fluid to be utilized.

APPENDIX

	Page
Calculations	19
Sample Calculations	20
Table One - Experimental Data	21
Viscosity Measurements of Ucon Lubricant Density Measurements of Ucon Lubricant Sphere Weights	
Figure Two - Ucon Lubricant 50-HB-5100	22
Density vs Temperature	
Figure Three - Ucon Lubricant 50-HB-5100	23
Viscosity vs Temperature	
Figure Four - Experimental Data	24
y/K vs x = d/D (Measured Sphere Dia.)	
Table Two - Experimental Results	25
Figure Five - Experimental Data	30
y/K vs x = d/D (Calculated Sphere Dia.)	
Table Three - Experimental Results	31
Calculated Sphere Diameters Based on Density and Weight.	•

CALCULATIONS

The average temperature (Degrees Celsius) assuming a straight line relationship, was used to calculate the density and viscosity of the Ucon Lubricant during each sphere's fall. The viscosity was changed to poise for this calculation.

$$\frac{\text{Viscosity: } \mathcal{A} = \frac{t^{\circ}\text{Celsius - 40.8327 x}}{0.00805} \times \frac{\rho}{100} = (\text{poise})$$

$$\frac{\text{Density: } \rho = \frac{t^{\circ}\text{Celsius - 1.373.2625}}{-1.281.2827} = \text{gm/cc}$$

$$y = \text{U/d^2}$$

$$K = \frac{g(\rho - \rho)}{18\mathcal{A}}$$

$$981.456 \text{ cm/sec}^2 = \text{g}$$

$$2.54 \text{ cm/inch} = 30.48 \text{ cm/ft}$$

$$K = \frac{981.456 (\rho - \rho)}{18\mathcal{A}}$$

SAMPLE CALCULATIONS

Run #1 A - Box
$$1/8^{m}$$
 sphere

$$\frac{d(1n)}{0.1250} \frac{l_{s}(gm/cc)}{1.34364} \frac{t(^{o}c)}{19.0} \frac{Time}{473.6}$$
sec.
 $\rho = \frac{19.0 - 1.373.2626}{-1.281.2827} = 1.05696 \text{ gm/cc}$
 $\mu = \frac{19.0 - 40.8326}{0.00805} \times \frac{1.05696}{100} = 28.6342 \text{ poise}$
 $473.6 \text{ sec/ft} \rightarrow 0.002111 \text{ ft/sec} = U$
 $x = d/D = \frac{0.1250}{6} = 0.0208$
 $y = U/d^{2} = \frac{0.002111 \text{ ft/sec}}{(0.1250 \text{ inch})^{2}} (\frac{144 \text{ inch}^{2}}{(1 \text{ ft}^{2})} = 19.4549 \text{ 1/ft-sec}$
 $K = \frac{g(Ps - P)}{18/4} = \frac{981.456 \text{ cm/sec}^{2}}{18} (28.6342 \text{ gm/cm sec})$
 $= 0.5458 \text{ 1/cm-sec}$
 $K = 0.5458 \text{ 1/cm-sec} \times 30.48 \text{ cm/ft} = 16.6389 \text{ 1/ft-sec}$
 $y/K = \frac{19.4549 \text{ 1/ft-sec}}{16.6389 \text{ 1/ft-sec}} = -1.1692$

TABLE ONE - EXPERIMENTAL DATA

Viscosity Measurements of Ucon Lubricant,

Run	<u>t(°c)</u>	T(min-sec)	T(sec)	(Centistokes) Time x 2.572
1 2 3 4 5 6 7 8	20 20 22 24 24 24 26 26	16m = 45s $16m = 58s$ $14m = 59s$ $15m = 03s$ $13m = 25s$ $13m = 25s$ $12m = 04s$ $12m = 03s$	1005 1018 899 903 805 805 723 723	2,584,86 2,618,35 2,312,18 2,322,52 2,071,44 2,070,97 1,861,41 1,860,48
	Density Mea	asurements of Ucon	Iubricant.	
Run	<u>t(°c)</u>	(GMS) Gross Wt.	(GMS) Net Wt.	(gm/cc) Density
1 2 3 4 5 6 7	19.4 18.7 21.2 23.2 24.8 26.2 27.7	53.571 53.584 53.542 53.502 53.465 53.440 53.413	26.414 26.427 26.385 26.345 26.308 26.283 26.283 26.256	1.05656 1.05708 1.05540 1.05380 1.05232 1.05132 1.05024
	Sph	ere Weights: (GMS	2	
Sphere	A-Box	<u>B-Box</u>	C-Box	<u>D-Box</u>
1/8 3/16 1/4 5/16 3/8 1/2 3/4	0.023 0.077 0.181 0.372 0.630 1.464 4.995	0.023 0.078 0.184 0.372 0.629 1.487 4.976	0.023 0.078 0.181 0.371 0.626 1.484 5.032	0.023 0.078 0.184 0.372 0.627 1.485 5.032
	Sph	ere Weights: (GMS)	•
Sphere	E-Box	<u>F-Box</u>		
3/16 1/4 5/16 3/8 1/2	0.078 0.184 0.371 0.628 1.480	0.077 0.182 0.371 0.629 1.482		

TABLE TWO - EXPERIMENTAL RESULTS

.

<u>Run</u> #1	A = Box				
<u>d(in)</u>	<u>ls(gm/cc)</u>	T(sec)	<u>t(°c)</u>	<u>(gm/cc)</u>	M(poise)
0.1250 0.1872 0.2488 0.3122 0.3752 0.4995 0.7498	1.34364 1.37336 1.37336 1.42776 1.38720 1.36820 1.37276	473.6 204.6 125.3 74.5 58.3 38.1 17.8	19.0 19.2 19.3 19.45 19.5 19.6 19.6	1.05696 1.05680 1.05672 1.05660 1.05656 1.05649 1.05649	28,6342 28,3677 28,2344 28,0346 27,9679 27,8350 27,8350
<u>U(ft/sec)</u>	<u>x</u>	<u>¥</u>	<u> </u>	<u>y/K</u>	• .
0.002111 0.004888 0.007981 0.013423 0.017153 0.026247 0.056179	0.0208 0.0312 0.0414 0.0520 0.0625 0.0832 0.1249	19.4549 20.0854 18.5660 19.8311 17.5459 15.1485 14.3894	16.6389 18.5458 18.6380 22.0029 19.6475 18.6111 18.8834	1.1692 1.0830 0.9961 0.9013 0.8930 0.8139 0.7620	
Run #2	<u>A - Box</u>				·
<u>d(in)</u>	<u>fs(gm/cc)</u>	T(sec)	<u>t(°c)</u>	e(gm/cc)	M(poise)
0.1250 0.1872 0.2488 0.3122 0.3752 0.4995 0.7498	1.34364 1.37336 1.37336 1.42776 1.38720 1.36820 1.37276	593.2 214.2 123.5 68.9 53.0 33.5 15.8	21.3	1.05516	25.5741
<u>U(ft/sec)</u>	x	<u> </u>	K	y/K	
0.001686 0.004669 0.008097 0.014514 0.018868 0.029851 0.063291	0.0208 0.0312 0.0414 0.0520 0.0625 0.0832 0.1249	15.5382 19.1856 18.8359 21.4429 19.3002 17.2286 16.2111	18.7468 20.6782 20.6782 24.2134 21.5776 20.3429 20.6392	0.8288 0.9278 0.9109 0.8856 0.8945 0.8469 0.7854	

T	A	BLE	TWO	 EXPERIMENTAL RESULTS
<u> </u>			and a second	

.

<u>Run</u> #3	<u>B – Box</u>				
<u>d(in)</u>	<u>es(gm/cc)</u>	T(sec)	<u>t(°c)</u>	f(gm/cc)	(poise)
0.1242 0.1872 0.2494 0.3124 0.3750 0.5000 0.7495	1.40392 1.37896 1.37696 1.42776 1.38880 1.38652 1.37072	391.7 201.2 117.7 67.9 53.0 31.6 16.0	21.3	1.05516	25.5741
<u>U(ft/sec)</u>	<u> </u>	¥	<u>K</u>	y/K	
0.002553 0.004970 0.008496 0.014728 0.018868 0.031646 0.062500	0.0207 0.0312 0.0416 0.0521 0.0625 0.0833 0.1249	23.8325 20.4224 19.6691 21.7312 19.3208 18.2281 16.0214	22.6642 21.0421 20.9122 24.2134 21.6816 21.5334 20.5066	1.0515 0.9705 0.9405 0.8975 0.8911 0.8465 0.7813	
<u>Run</u> #4	C = Box				
<u>d(in)</u>	<u>ls(gm/cc)</u>	T(sec)	<u>t(°c)</u>	(<u>(gm/cc)</u>	4(poise)
0.1255 0.1877 0.2483 0.3122 0.3742 0.4993 0.7495	1.31556 1.37276 1.37336 1.42776 1.38720 1.38652 1.38424	565.2 204.5 120.2 68.7 52.9 31.6 15.3	21.2	1.05524	25.7070
<u>U(ft/sec)</u>	<u> </u>	Y	<u> </u>	<u>y/K</u>	
0.001769 0.004889 0.008319 0.014556 0.018904 0.031646 0.065359	0.0209 0.0313 0.0414 0.0520 0.0624 0.0832 0.1249	16.1735 19.9827 19.4303 21.5049 19.4406 18.2792 16.7542	16.8294 20.5273 20.5661 24.0831 21.4609 21.4169 21.2695	0.9610 0.9735 0.9511 0.8929 0.9059 0.8535 0.7877	

·

TABLE TWO - EXPERIMENTAL RESULTS

, .

$\underline{Run} #5$	D = Box				x
<u>d(in)</u>	<u>fs(gm/cc)</u>	T(sec)	<u>t(°c)</u>	f (gm/cc)	K(poise)
0.1255 0.1272 0.2493 0.3125 0.3745 0.5000 0.7492	1.33812 1.37276 1.37696 1.42776 1.38880 1.38152 1.38656	692.7 222.6 122.5 60.5 53.6 31.9 15.5	21.4 21.4 21.3	1.05509 1.05509 1.05516	25.4415 25.4415 25.5741
<u>U(ft/sec)</u>	<u>x</u>	<u>y</u>	<u>K</u>	y/K	
0.001444 0.004492 0.008163 0.014388 0.018657 0.031348 0.064516	0.0209 0.0312 0.0416 0.0521 0.0624 0.0833 0.1249	13.2021 18.4583 18.9133 21.2159 19.1558 18.0564 16.5514	15.4323 20.7514 20.9122 24.2135 21.6816 21.2085 21.5360	0.8555 0.8895 0.9044 0.8762 0.8835 0.8514 0.7854	· · ·
<u>Run</u> #6	$\underline{B} - \underline{Box}$				
<u>d(in)</u>	es(gm/cc)	T(sec)	<u>t(°c)</u>	e(gm/cc)	<u>(poise)</u>
0.1242 0.1872 0.2494 0.3124 0.3750 0.5000 0.7495	1.40392 1.37896 1.37696 1.42776 1.38880 1.38652 1.37072	449.9 214.3 122.4 69.4 53.8 32.1 16.3	21.2	1.05524	25.7070
<u>U(ft/sec)</u>	<u> </u>	<u>y</u>	<u> </u>	y/K	
0.002223 0.004666 0.008169 0.014409 0.018587 0.031153 0.061349	0.0207 0.0312 0.0416 0.0521 0.0625 0.0833 0.1249	17.8848 19.1732 18.9120 21.2605 19.0331 17.9441 15.7263	22.5418 20.9282 20.7988 24.0831 21.5643 21.4169 20.3955	0.7934 0.9161 0.9093 0.8828 0.8826 0.8378 0.7711	

<u>Run</u> #7	<u>A - Box</u>				۰. ۲
<u>d(in)</u>	es(gm/cc)	t(sec)	t(°c)	P(pm/cc)	(poise)
0.1250 0.1872 0.2488 0.3122 0.3752 0.4995 0.7498	1.34364 1.37336 1.37336 1.42776 1.38720 1.36820 1.37276	572.2 220.1 126.2 70.6 54.8 34.3 16.2	21.0	1.05539 1.05548	25.9726
<u>U(ft/sec)</u>	<u> </u>	Y	<u>K</u>	<u>y/K</u>	
0.001747 0.004543 0.007924 0.014409 0.018587 0.031153 0.061349	0.0208 0.0312 0.0414 0.0520 0.0625 0.0832 0.1249	16.1003 18.6678 18.4334 21.2878 19.0128 17.9801 15.7137	18.4445 20.3462 20.3367 23.8272 21.1178 19.9082 20.1985	0.8729 0.9175 0.9064 0.8934 0.9003 0.9031 0.7779	
<u>Run</u> #8	<u>C – Box</u>				
<u>d(in)</u>	<u>fs(gm/cc)</u>	T(sec)	<u>t(°c)</u>	(gm/cc)	<u> A(poise)</u>
0.1255 0.1877 0.2483 0.3122 0.3742 0.4993 0.7495	1.31556 1.37276 1.37336 1.42776 1.38720 1.38652 1.38424	589.1 201.8 117.8 66.7 52.0 30.6 14.5	21.75 21.65	1.05481 1.05489	24.9767 25.1095
<u>U(ft/sec)</u>	<u> </u>	¥	K	<u>y/K</u>	· · ·
0.001698 0.004955 0.008489 0.014993 0.019231 0.032679 0.068966	0.0209 0.0313 0.0414 0.0520 0.0624 0.0832 0.1249	15.5243 20.2525 19.8274 22.1506 19.7768 18.8759 17.6789	17.3501 21.0389 21.0787 24.6793 21.9947 21.9497 21.7988	0.8947 0.9626 0.9406 0.8975 0.8992 0.8599 0.8110	برچې

TABLE TWO - EXPERIMENTAL RESULTS

.

.

<u>Run</u> #9	<u>E - Box</u>				
<u>d(in)</u>	<u>Ps(gm/cc)</u>	T(sec)	<u>t(°c)</u>	<u>e(gm/cc)</u>	<u> (pôise)</u>
0.1880 0.2500 0.3122 0.3750 0.4998	1.37896 1.37696 1.42776 1.38880 1.37896	199.3 112.9 65.0 51.2 30.6	21.65	1.05489	25.1095 4 25.1759
<u>U(ft/sec)</u>	<u> </u>	<u> </u>	<u> </u>	y/K	
0.005018 0.008857 0.015385 0.019531 0.032679	0.0313 0.0417 0.0520 0.0625 0.0833	20.4445 20.4065 22.7297 19.9997 18.8382	21.4493 21.3169 24.6793 22.1006 21.3901	0.9532 0.9573 0.9210 0.9049 0.8807	.• .
<u>Run</u> #10	<u>F – Box</u>				
<u>d(in)</u>	(s(gm/cc)	T(sec)	<u>t(°c)</u>	(gm/cc)	<u> (poise)</u>
0.1875 0.2488 0.3125 0.3750 0.5000	1.37896 1.37896 1.42776 1.38880 1.37896	190.3 113.2 65.3 51.1 30.4	21.6	1.05493	25.1759
<u>U(ft/sec)</u>	<u> </u>	V	<u> </u>	y/K	
0.005255 0.008834 0.015314 0.019569 0.032895	0.0312 0.0414 0.0521 0.0625 0.0833	21.5245 20.5503 22.5814 20.0386 18.9475	21.3901 21.3901 24.6115 22.0397 21.3901	1.0063 0.9607 0.9175 0.9092 0.8858	• •

TABLE TWO - EXPERIMENTAL RESULTS

TABLE THREE - EXPERIMENTAL RESULTS

.

	<u></u>				
<u>Run</u> #1	<u>A - Box</u>				
<u>d(in)</u>	U(ft/sec)	x=d/D	$y=U/d^2$	<u> </u>	<u>y/K</u>
0.1258 0.1870 0.2486 0.3120 0.3755 0.4996 0.7513	0.002111 0.004888 0.007981 0.013423 0.017153 0.026247 0.056179	0.0210 0.0312 0.0414 0.0520 0.0626 0.0833 0.1252	19.2083 20.1285 18.5959 19.8565 17.5179 15.1425 14.3321	16.6389 18.5458 18.6380 22.0029 19.6475 18.6111 18.8834	1.1544 1.0853 0.9977 0.9024 0.8916 0.8136 0.7590
<u>Run</u> #2	<u>A – Box</u>				
0.1258 0.1870 0.2486 0.3120 0.3755 0.4996 0.7513	0.001686 0.004669 0.008097 0.014514 0.018868 0.029851 0.063291	0.0210 0.0312 0.0414 0.0520 0.0626 0.0833 0.1252	15.3411 19.2266 18.8662 21.4704 19.2694 17.2217 16.0646	18.7468 20.6782 20.6782 24.2134 21.5776 20.3429 20.6392	0.8183 0.9298 0.9124 0.8867 0.8930 0.8466 0.7784
<u>Run</u> #3	<u>B' – Böx</u>				
0.1241 0.1875 0.2497 0.3120 0.3751 0.5000 0.7507	0.002553 0.004970 0.008496 0.014728 0.018868 0.031646 0.062500	0.0207 0.0313 0.0416 0.0520 0.0625 0.0833 0.1251	23.8709 20.3571 19.6218 21.7870 19.3105 18.2281 15.9702	22.6642 21.0421 20.9122 24.2134 21.6816 21.5334 20.5066	1.0532 0.9674 0.9383 0.8998 0.8906 0.8465 0.7788
<u>Run</u> #4	<u>C - Box</u>				٦
0.1268 0.1877 0.2486 0.3117 0.3747 0.5004 0.7506	0.001769 0.004889 0.008319 0.014556 0.018904 0.031646 0.065359	0.0211 0.0313 0.0414 0.0520 0.0625 0.0834 0.1251	15.8435 19.9827 19.3835 21.5740 19.3887 18.1990 16.7052	16.8294 20.5273 20.5661 24.0831 21.4609 21.4169 21.2695	0.9414 0.9734 0.9425 0.8958 0.9034 0.8497 0.7854

Calculated Sphere Diameters Based on Density and Weight.

Calculated Sphere Diameters Based on Density and Weight.								
<u>Run</u> #	D = Box							
<u>d(in)</u>	U(ft/sec)	x=d/D	$y=U/d^2$	K	y/K			
0,126	0.001444	0.0210	13.0767	15.4323	0.8474			
0.187	8 0.004492	0.0313	18,3405	20.7514	0.8838			
0.249	0.008163	0.0416	18,8528	20.9122	0.9015			
0.312	0 0.014388	0.0520	21.2840	24.2135	0.8790			
0.374	7 0.018657	0.0625	19.1354	21.6816	0.8826			
0.500	4 0.031348	0.8340	18,0276	21,2085	0.8500			
0.750	6 0.064516	0.1251	16.4897	21.5360	0.7657			
Run #	6 B - Box							
0 124	1 0.002222	0 0207	20 7854	22 5/118	0 9221			
0,127		0,0207	10 1110	20 0282	0.0132			
0.107		0.0/16	18 8666	20.7088	0.0071			
0.249		0.0410	21 21 51	24. 0831	0.8851			
0.375		0.0520	10 0220	24,0031	0.8821			
0.500	$\begin{array}{ccc} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 & 2 \\ \end{array}$	0.023	17 0111	21.049	0.8378			
0.500		0.0055	15 6761	20 2055	0.7686			
0.750	7 0.001349	0,1251	15.0701	20, 5955	0.7000			
<u>Run</u> #	$7 \qquad \underline{A - Box}$							
0.125	8 0.001747	0.0210	15,8962	18,4445	0.8618			
0.187	0 0.004543	0.0312	18,7078	20,3462	0,9195			
0.248	6 0.007924	0.0414	18,4631	20.3367	0.9079			
0.312	0 0.014409	0.0520	21.3151	23.8272	0.8946			
0.375	5 0.018587	0.0626	18,9824	21,1178	0.8989			
0.499	6 0.031153	0.0833	17.9729	19.9082	0.9028			
0.751	3 0.061349	0.1252	15.6510	20,1985	0.7749			
<u>Run</u> #8	8 <u>C – Box</u>				·			
		0.0011	4	400000	0.07/-			
0,1268	5 0,001698	0.0211	15.2076	17,3501	0.0705			
0.1877	0.004955	0.0313	20.2525	21.0389	0.9020			
0.2486	0.008489	0.0414	19.7796	21.0787	0.9384			
0.3117	7 0.014993	0.0520	22.2217	24.6793	0,9004			
0.3747	7 0.019231	0.0625	19.7241	21.9947	0.8968			
0.5001	+ 0.032679	0.0834	18.7930	21.9497	0.8562			
0.7506	5 0 . 068966	0.1251	17.6271	21.7988	0.8086			

TABLE THREE - EXPERIMENTAL RESULTS

TABLE THREE - EXPERIMENTAL RESULTS

Calcu	lated Sphere	Diameters Based	d on Densit	ty and Weight	
<u>Run</u> #9	<u>E – Box</u>				
<u>d(in)</u>	U(ft/sec)	x=d/D	$y=U/d^2$	K	<u>y/K</u>
0.1875 0.2497 0.3117 0.3749 0.5001	0.005018 0.008857 0.015385 0.019531 0.032679	0.0313 0.0416 0.0520 0.0625 0.0834	20.5537 20.4556 22.8027 20.0104 18.8156	21,4493 21,3169 24,6793 22,1006 21,3901	0.9582 0.9596 0.9240 0.9054 0.8796
<u>Run</u> #10	F- Box				
0.1867 0.2487 0.3117 0.3751 0.5003	0.005255 0.008834 0.015314 0.019569 0.032895	0.0311 0.0415 0.0520 0.0625 0.0834	21.7093 20.5669 22.6975 20.0280 18.9248	21.3901 21.3901 24.6115 22.0397 21.3901	1.0149 0.9615 0.9222 0.9087 0.8847

-

REFERENCES

- 1.) Dight, Lawrence B., "Settling of Particles," <u>Sphere</u>, vol. 2, Number 2, New Jersey Institute of Technology, Newark, New Jersey, Spring 1975, pp. 9-14.
- 2.) Happel, J. and E. Bart, "The Settling of a Sphere Along the Axis of a Long Square Duct at Low Reynolds Number," <u>Applied Scientific Research</u>, Vol. 29, No. 4, August 1974, pp. 241-258.
- 3.) Happel, J. and H. Brenner, <u>Low Reynolds Number Hydrodynamics</u>, Englewood Cliffs, N.J.: Prentice Hall, Inc, 1965.
- 4.) Ladenburg, R., Ann. der Physik, 23, 9, 447 (1907); 22, 287 (1907).