Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have movad during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.
[^0]77-22,453
PARKER, James Atwood, Jr., 1943FLOW OF POLYMER MELT BLENDS THROUGH POROUS MEDIA.

New Jersey Institute of Technology, D.Eng.Sc., 1977

Engineering, chemical

Xerox University Microfilms , Ann Arbor, Michigan 48106

FLOW OF POLYMER MELT BLENDS THROUGH POROUS MEDIA BY
 JANES ATWOOD PARKER, JR

A DISSERTATION

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE
OF
DOCTOR OF ENGINEERING SCIENCE
IN
CHEMICAL ENGINEERING
AT
THE NEW JERSEY INSTITUTE OF TECHNOLOGY

This dissertation is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey 1977
The flow of molten polystyrene, poly(methyl methacrylate) and three blends of these polymers has been studied in a rheogoniometer and in packed beds of unconsolidated spherical glass beads. One primary purpose of the study was to determine the behavior of polymer melt blends in porous media flow. The second major purpose of the work was to develop and test a new and powerful model for packed bed flow based upon the Huang generalized rheological constitutive equations.
Rheological characterization of the pure polymers and blends was obtained using a Roberts-Weissenberg rheogoniometer. Shear and normal stresses were measured at shear rates from .002 to $20 \mathrm{sec}^{-1}$ and temperatures from 180 to $220^{\circ} \mathrm{C}$. Both the four parameter Huang and three parameter Ellis equations of state provided excellent representations of the viscometric data.
The Huang rheological equation was combined with an hydraulic radius capillary model for a porous medium leading to a generalized Darcy's law. This expression defined an effective non-Newtonian viscosity applicable to packed bed fluid flow. A packed bed friction factor
and Reynolds number were developed to correlate experimental data.

Pressure drop of the pure polymers and blends was measured over a range of flow rates through packed beds of various bead sizes and packing depths. Temperature was maintained at $204^{\circ} \mathrm{C}$.

Data for each pure polymer and blend was successfully correlated using a friction factor-Reynolds number relationship, which specifies that the product of these dimensionless quantities is constant. The value of this constant for pure poly(methyl methacrylate) was approximately one half the value for pure polystyrene and the three blends.

No significant differences in the behavior of the pure polymers and blends was observed. The Huang equation of state provided excellent representation of molten polymer viscometric data and successfully correlated packed bed flow data. The difference in packed bed flow behavior of poly(methyl methacrylate) and the other materials was tentatively ascribed to unidentified surface interaction effects between the fluids and the packed beds. Using the defined expressions, pressure drop for packed bed flow can be estimated from the rheological properties of the fluid and the physical properties of the packed bed.

APPROVAL OF DISSERTATION

FLOW OF POLYMER MELT BLENDS
THROUGH POROUS MEDIA
BY
JAMES ATWOOD PARKER, JR. FOR

DEPARTMENT OF CHEMICAL ENGINEERING
AND CHEMISTRY
THE NEW JERSEY INSTITUTE OF TECHNOLOGY

BY

FACULTY COMMITTEE

PREFACE

This dissertation is the culmination of research first proposed by Professor R.G. Griskey six years ago. Under his direction, the basic goal of studying the porous media flow of melt blend polymers jelled.

Design and fabrication of the equipment was directed by Dr. Nandor Siskovic, and accomplished through the skill of Mr . Walter Schmeideskamp and his able shop personnel.

Shortly after experimental work began, Professor Griskey left NCE and Professor C.R. Huang assumed the task of research advisor for the study. Under his direction, a second important aspect of the effort materialized. The opportunity was to develop and test a new theoretical model for a packed bed. The basis for the new model was a statistical thermodynamic constitutive equation proposed by Professor Huang. With his considerable expertise and patience, the goal was accomplished.

Actual conduct of the packed bed experiments required two to three people. In addition to Dr. Siskovic, fellow students Minh Ho Choi and Yon-Li Shanghuan par-
ticipated extensively in the work.

The large quantities of polymer required for the packed bed experiments were supplied free of charge by the Dow Chemical Company and at discount by Rohm and Haas Company.

Financial support for the 1971 school year in which full time research was conducted was through Graduate Assistanceships made available by the Graduate Division.

Time, financial support, materials and encouragement were liberally bestowed throughout these years by my employer, Celanese Corporation.

Those needs, problems and motivations to which no one else could respond were cheerfully shared by my wife, Sandee. She also contributed significantly to this final manuscript.

To each person and organization I have named and to others whose influence has touched this work, my hearty and lasting thanksl

TABLE OF CONTENTS

Page
CHAPTER I. INTRODUCTION
Statement of the Problem 1
Significance of the Problem 1
Methodology 4
CHAPTER II. THEORY
General 5
Rheological Models for Non-Newtonian Fluids 5
Generalized Newtonian fluid equations of 8 state
The Huang generalized equation of state 11
Limitations and extensions of the rheo- 16logical equations
Porous Media Flow - Newtonian Fluids 17
Darcy's law 1'
Modeling porous structures 20
Geometric theories of porous media 21
Statistical theories of porous media 27
Averaged equation theories of porous media 29
Porous Media Flow - Non-Newtonian Fluids 30
Generalized Darcy's law 34
Page
Rheological Behavior of Melt Blends 43
CHAPTER III. RHEOLOGICAL EXPERIMENTS
Description of the Polymers 47
Polystyrene 49
Poly(methyl methacrylate) 50
Equipment and Procedures 54
Results and Analysis 56
CHAPTER IV. PACKED BED EXPERIMENTS
Materials 74
Equipment and Procedures 75
Results and Analysis 84
CHAPTER V. CONCLUSIONS 108
CHAPTER VI. RECOMMENDATIONS 111
APPENDIX A. NOMENCLATUREAPPENDIX B. MATERIALS AND APPARATUS
APPENDIX C. EXPERIMENTAL PROCEDURES
APPENDIX D. RHEOGONIOMETER
EXPERIMENTAL RESULTS

APPENDIX E: PACKED BED
 EXPERIMENTAL RESULTS
 APPENDIX F. FRICTION FACTORREYNOLDS NUMBER

REFERENCES

LIST OF FIGURES

Figure
Number Title Page
1 Rheogoniometer Results for 100% PMMA-VM 58
2 Rheogoniometer Results for 50/50 PMMA/PS 59
3 Rheogoniometer Results for 100% PS-678 60
4 Effect of Temperature on Shear Stress 62
5 Effect of Material Composition on 63Shear Stress
6 Comparison of Huang and Ellis Model 69 Constitutive Equations
7
Temperature Dependence of Huang Nodel 70 Parameter A
8 Packed Bed Experimental Apparatus 77
9
Hot Oil Circulation System 78
10 Packed Bed Test Section 81
11 Packed Bed Flow Curves for 100 \% PMMA-VM 88
12 Packed Bed Flow Curves for 50/50 PNMA/PS 89
13 Packed Bed Flow Curves for 100\% PS-678 90
14 Packed Bed Flow Curves for 50/50 PNIMA/PS 91
15
Particle Size Dependence of Pressure 93Drop
16 Composition Dependence of Pressure Drop 94
17 Friction Factor-Reynolds Number 97 Correlation for the Huang Model 100% PMINA
Figure
Number
TitlePage
18
Friction Factor-Reynolds Number 98 Correlation for the Huang Model $75 / 25$ PMIMA/PS
19 Friction Factor-Reynolds Number 99 Correlation for the Huang Model $50 / 50 \mathrm{PIMMA} / \mathrm{PS}$
20 Friction Factor-Reynolds Number 100 Correlation for the Huang Model 25/75 PMMA/PS
21 Friction Factor-Reynolds Number 101 Correlation fot the Huang Model 100\% PMMMA/PS
22 Friction Factor-Reynolds Number 102 Correlation for the Huang Model All Blends and 100% PS
23 Friction Factor-Reynolds Number 103 Correlation for the Ellis Model All Blends and 100% PS

LIST OF TABLES

Table
Number Title Page
I Physical Properties of PS and PNMA 51
II Commercial Specifications of PS-678 52 and PMMA-VM
III Rheological Experiments 57
IV Ellis Rheological Equation Parameters 64
V Huang Rheological Equation Parameters 65
VI Standard Error of the Huang and Ellis 68 Rheological Equations of State
VII Huang Equation Parameters for Packed 71 Beds
VIII Ellis Equation Parameters for Packed 73 Beds
IX Description of Glass Bead Packings 76
X Packed Bed Porosity 85
XI Design of Packed Bed Experiments 86

CHAPTER I. INTRODUCTION

Statement of the Problem

The occurrence of porous media is universal.
Living organisms are porous, soil is porous, graphite, ceramics, wood, textiles and molecular sieves are all porous materials. The importance of an understanding of the processes which occur in porous materials has long been recognized. Investigators have used a variety of approaches to characterize porous structures. Because of the diversity, complexity and universality of porous media, no rigorous comprehensive mathematical descriptions have been formulated - nor does such a model seem possible for some time to come. Meanwhile, significant extensions of existing theory can be made through the practical solution of specific problems.

Significance of the Problem

Applications of the theory and technology of porous media flow abound. One of the most important applications is in secondary oil recovery. The problem of how to extract oil which remains in pores underground after primary recovery is extremely complex. Present widespread recognition of the importance of conserving our not unlimited natural resources further highlights this application. Studies of the flow of non-Newtonian fluids
through various types of porous media contribute to a phenomenological understanding of this task.

Chemical engineering applications of porous media flow include catalytic fixed bed reactors, packed towers to perform separations, filtration operations and packed bed polymer melt processing - particularly as applied to filament extrusion.

In the mid 1960's and early 1970's, many investigators focused on the flow of non-Newtonian fluids through porous media. Even so, the bulk of our present knowledge of the subject relates to Newtonian flow. The behavior of Newtonian fluids flowing in porous media provides satisfactory design criteria for many gas and simple liquid systems. In addition, the techniques of Newtonian fluid analysis form the basis for the successfully applied non-Newtonian treatments.

The majority of the experimental studies of nonNewtonian systems are for dilute polymer solutions. Investigators have thus been able to readily control and vary the degree of non-Newtonian behavior exhibited. As discussed later, only a few published studies deal with the flow of molten polymers. These studies are of great practical importance to the present work since they address some of the same equipment design, exper-
imental, and data analysis challenges.

What is sought in this investigation is to extend the work of previous studies in several ways. Great attention is devoted to the design of the experimental apparatus, that it relate in practical terms to commercially important extrusion equipment and that it provide accurate measurement of the experimental variables. Polymers of commercial importance are chosen for study - namely, polystyrene and poly(methyi methacrylate). Perhaps of greatest significance, the study is not limited to pure component single phase systems, but is extended to melt blends of the subject polymers as well.

Increasing attention is being focused on polyblends as a result of attempts to extend the applications of polymeric materials by combining them. Enhanced strength, toughness, durability and other features are sought. Systems of commercial importance include impact rubber modified polystyrene, rigid polyvinyl chloride blended with poly(butadiene-co-acrylonitrile), and acrylonitrile-butadiene-styrene plastics. Industry continues to research bicomponent fibers which exhibit self bulking characteristics for use in fashion design. Other studies of blend systems have been made, but no
previous study of melt blend porous media flow is known.

Methodology

The study is divided into two parts, each requiring theoretical and experimental development. Rheological melt behavior of the pure components and blends is characterized over a broad range of temperatures and shear rates in a Weissenberg type cone and plate instrument. A satisfactory rheological model to describe the data is sought. In the second phase, isothermal fiow data through packed beds of unconsolidated particles of regular geometry is generated. These results are analyzed by coupling a generalized Darcy's law and the rheological equation of state with an hydraulic radius capillary model for the porous media. A test of a new thermodynamically based generalized equation of state is made. Further, an analytic solution of the hydraulic radius packed bed model is developed using this phenomenological equation.

Behavior of the pure component and blend systems is assessed relative to studies of the same or similar systems in other flow geometries.

> CHAPMER II. THEORY

General

The several components of fluid flow theory required to analyze porous media flow are outlined below. A derivation of the fundamental rheological relationships for generalized Newtonian fluids is given. Several equations of state based on this development are reviewed. An alternate statistical thermodynamic approach leading to a generalized rheological expression for pseudoplastic fluids is given.

The approaches to porous media flow analysis are outlined and the Darcy law development for Newtonian fluids is detailed. Extension of the Darcy law concept to non-Newtonian fluids is made for several models of interest. Finally, the behavior of polymer melt blends in other geometries is presented as a guide to the type of results which might be observed in porous media flow.

Rheological Models for Non-Newtonian Fluids

A generally accepted development of the basic laws governing the isothermal flow of incompressible fluids is given by Bird, Stewart and Lightfoot (7). The equation of continuity describing the rate of change of density within a volume element fixed in space as a function of net mass efflux from the element is
given as

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=-(\underline{\nabla} \cdot \rho \underline{v}) \tag{II.1}
\end{equation*}
$$

The equivalent expression as a substantial derivative of density is

$$
\begin{equation*}
\frac{D \underline{D}}{\mathrm{Dt}}=-\rho(\underline{\nabla} \cdot \underline{V}) \tag{II.2}
\end{equation*}
$$

For the special case of incompressible fluids, (II.2) reduces to

$$
\begin{equation*}
(\underline{\nabla} \cdot \underline{v})=0 \tag{II.3}
\end{equation*}
$$

The momentum balance carried out on a volume element gives expressions analogous to (II.1) and (II.2) above, i.e.

$$
\begin{equation*}
\frac{\partial}{\partial t}(\rho \underline{V})=-[\underline{\nabla} \cdot \rho \underline{V} \underline{V}]-\underline{\nabla} p-[\nabla \cdot T]+\rho \underline{\underline{g}} \tag{II.4}
\end{equation*}
$$

for an observer at a fixed point, and

$$
\begin{equation*}
\rho \frac{D \underline{V}}{D t}=-\underline{\nabla} P-[\underline{\nabla} \cdot \tau]+\rho \underline{\underline{g}} \tag{II.5}
\end{equation*}
$$

for an observer traveling at the local velocity of the volume element. These equations are completely general and apply to all continuous media.

To be able to use these expressions, one must define the various stresses in terms of fluid charac-
teristics. For the Newtonian fluid, the simplified relationship between the stress tensor and the velocity gradient or rate of deformation tensor is

$$
\begin{equation*}
\underline{I}=-\mu \Delta \tag{II.6}
\end{equation*}
$$

In this case, the coefficient of viscosity, μ, depends on pressure and temperature, but not on the stress and velocity gradient tensors.

For the non-Newtonian fluid, a constitutive model of similar type is proposed

$$
\begin{equation*}
\underline{I}=-\eta \underline{\underline{\Delta}} \tag{II.7}
\end{equation*}
$$

where the coefficient, η, is a scalar quantity and is a function of either the stress or velocity gradient tensors. This generalized Newtonian fluid model is the basis for all of the specific constitutive equations presented in the following section (6).

The functionality of η on either \mathcal{I} or \triangleq is now required. Arguments as to the relative importance of the three scalar invariants of \triangle on which η may depend are given by Bird (7) and by Sadowski (91) and need not be recast here. The practical result of the assumptions which are made is that η is a function of the second invariant

$$
\begin{equation*}
I_{2}=[\Delta: \Delta]=\sum_{i} \sum_{j} \Delta_{i j} \Delta_{\mathrm{ji}} \tag{II.8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\eta=\eta[\triangleq \Delta \Delta] \text { or } \eta=\eta[\underline{\underline{\tau}}: \underline{\underline{\tau}}] \tag{II.9}
\end{equation*}
$$

The development is thereby restricted to incompressible, inelastic fluids and to systems in which the fluid behaves as though the flow geometry were simple. The only justification for ignoring the effects of complex geometry (as in a packed bed) is the success of various investigators in correlating flow data without admitting a geometrical dependence.

Generalized Newtonian fluid equations of state. Many rheological models have been formulated which conform to equations (II.7) and (II.9). No one model has been proposed which is universally applicable to all non-Newtonian fluids. In general, the flexibility of such functions increases for a greater number of adjustable parameters, but the utility correspondingly decreases with the added complexity. The models considered here are those of demonstrated utility and relative simplicity. References to more detailed development and discussions of the equations which follow may be found in Bird (6), Ferry (30), McKelvey
(66), and Rheology (86).

Undoubtedly the most widely used generalized Newtonian model is the Ostwald-de-Waele or power law expression

$$
\begin{equation*}
T_{i j}=-\left[m\left|\frac{1}{2}(\Delta: \Delta)\right|^{\frac{n-1}{2}}\right] \Delta_{i j} \tag{II.10}
\end{equation*}
$$

This simple two constant model has been found applicable to many fluids over intermediate shear rate ranges. It reduces to Newton's law of viscosity for $n=0$ and $m=\mu$. For pseudoplastic fluids ($n<1$), the model incorrectly predicts infinite viscosity in the limit of zero shear stress (6). Further, Reiner (85) has objected that no physical significancs can be attached to the coefficient m since the dimension of m depends upon the value of n. In spite of these deficiencies and objections, the model has been successfully applied to many flow systems. References include application to axial tube flow and to annular tube flow by Fredrickson and Bird (31, 32, 33), to the analysis of capillary rheometer data by Han, Yu and Kim (40), to flow around a sphere by Slattery (106), and to porous media flow by Kozicki (59). Gregory, Griskey and Siskovic (37, 38, 105), Christopher and Middleman (18, 19), Marshall and Metzner (64),
and Harvey (49). Additional discussion and examples of the power law are given by Bird (7).

A simple superposition of the power law and Newton's Law of viscosity leads to the widely applied three parameter Ellis model, viz.,

$$
\begin{equation*}
\Delta_{1 j}=-\left[\phi_{0}+\phi_{1}\left|\frac{1}{2}(\underline{I}: \underline{I})\right|^{\frac{\underline{(l-1}}{2}}\right] \tau_{1 j} \tag{II.11}
\end{equation*}
$$

The model correctly predicts a constant and finite zero shear viscosity. Ellis model solutions to problems including circular tube flow, falling film, coating a moving strip, radial annular flow and tangential annular flow have been given by Matsuhisa and Bird (65). It has also been used to describe axial annular flow (2), circular tube heat transfer (65) and packed bed flow by Sadowski and Bird $(91,92)$.

The Sisko model is closely related to the Ellis model and represents another possible superposition of the power law and Newton's law of viscosity.

$$
\begin{equation*}
\tau_{i, j}=-\left[\eta_{0}-\beta\left|\frac{1}{2}\right| \triangleq: \Delta| |^{\frac{\alpha-1}{2}}\right] \Delta_{1 j} \tag{II.12}
\end{equation*}
$$

Sisko applied the model to a tube flow problem (104).

Neither the Ellis nor the Sisko model correctly predicts an upper limiting viscosity observed at high shear rates. The more complex Eyring model (36) was
developed based on considerations of the molecular structure of matter. It has been simplified to forms including the Powell-Eyring model (83) which correctly describes the lower and upper limiting viscosities.

Another simplification of the Eyring model results in the Sutterby model (113):

$$
\begin{equation*}
\tau_{i j}=-\left[\eta_{0}\left(\frac{\sinh ^{-1}\left[\left.\beta\right|^{\frac{1}{2}}(\underline{\Delta} \triangleq \mid) \mid\right]}{\beta\left|\frac{1}{2}(\Delta: \Delta)\right|}\right)^{\frac{\alpha-1}{2}}\right] \Delta_{i j} \tag{II.14}
\end{equation*}
$$

This model has given better representation of data for some fluids than the Ellis model. It has been applied to tube flow and to converging section flow (113).

The Huang generalized equation of state. One exception to the generalized Newtonian fluid approach to rheological modeling is that developed by C.R. Huang (53). The approach is based on application of the general principles of statistical mechanics and irreversible thermodynamics through the entropy. Changes in the entropy as a result of the stress/strain behavior of the fluid are mapped by a molecular arrangement parameter. The resulting rheological equations of state describe time-dependent and time-independent nonNewtonian fluids.

> The equation

$$
\begin{equation*}
S=k \cdot \ln \Omega \tag{II.15}
\end{equation*}
$$

is a basis of statistical mechanics relating the entropy, S, to the number of micromolecular states of an assembly, Ω, through the Boltzmann constant, \mathbf{k}. For a simple idealized assembly, Ω can be expressed as a function of thermodynamic state variables of the assembly. For non-Newtonian fluids, however, additional molecular arrangement parameters are required to describe the order-disorder transitions which occur when the fluid is subjected to shear stress. The equation for the overall specific entropy change due to heat transfer, viscous dissipation and change in molecular arrangement is proposed to be

$$
\begin{equation*}
\rho \frac{d \hat{S}}{d t}=-\frac{1}{T}\left[q_{i j}^{i}+T^{i j \frac{d}{d t}} \frac{T_{j}+}{} T^{i j} \frac{d \beta_{i j}}{d t}\right] \tag{II.16}
\end{equation*}
$$

where $\mathcal{\beta}_{i j}$ is the molecular arrangement parameter of the fluid. The rate of entropy generation, σ, is then

$$
\begin{equation*}
\sigma=-\frac{1}{T}\left[\frac{1}{T} q^{i} T_{1 i}+T^{i j} \frac{\left.d \gamma_{i j}+T^{i j} \frac{d \beta_{i j}}{d t}\right]}{d t}\right. \tag{II.17}
\end{equation*}
$$

where \boldsymbol{q}^{i} is the heat flux vector and $T_{i j}$, the temperature gradient vector.

[^1]heat flux, strain rate and molecular arrangement are assumed to be
\[

$$
\begin{align*}
& q^{i}=-\lambda g^{i k} T_{1 k} \tag{II.18}\\
& T^{i j}=-\eta \frac{d \gamma^{i j}}{d t} \tag{II.19}\\
& T^{i j}=-\xi \frac{d \beta^{i j}}{d t} \tag{II.20}
\end{align*}
$$
\]

Equations (II.18), (II.19) and (II.20) may be substituted into (II.17) to give

$$
\begin{equation*}
\sigma=\frac{1}{T}\left[\frac{\lambda}{T} g^{j k} T_{k_{k}} T_{i}+\eta \frac{d \chi^{i j} d \gamma_{i j}+\xi}{d t} \frac{d \beta^{i j}}{d t} \frac{d \beta_{i j}}{d t}\right] \tag{II.21}
\end{equation*}
$$

The two final terms in equation (II.21) are shear stress related and may be combined to express the rheological behavior of the fluid:

$$
\begin{equation*}
\tau^{i j}=-\eta \frac{d \gamma^{i j}}{d t}-\xi \frac{d \beta^{i j}}{d t}=-\eta_{t} \frac{d \gamma^{i j}}{d t} \tag{II.22}
\end{equation*}
$$

where the overall apparent viscosity is

$$
\begin{equation*}
\eta_{t}=\eta+\xi \frac{\dot{\beta}^{i j}}{{\underset{\gamma}{ }}^{i j}} \tag{II.23}
\end{equation*}
$$

For pseudoplastic fluids such as those considered in this study, it is assumed that the molecular arrangement parameter changes very rapidly from its equilibrium value $\mathcal{\beta}_{e}^{i j}$ to a new value $\beta_{0}^{i j}$ when a shear stress is applied. The kinetics of the change are given as:

$$
\begin{array}{lr}
\frac{d \beta^{i j}}{d t}=-c_{5} \beta^{i j}\left|\dot{\gamma}^{i j}\right|^{n} & 0 \leq t \leq t_{0} \\
\frac{d \beta^{i j}}{d t}=-c_{6} \beta_{0}^{i j}\left|\dot{\gamma}^{i j}\right|^{n} & t_{0} \leq t \tag{II.25}
\end{array}
$$

Integrating equation (II.24) gives:

$$
\beta_{0}^{i j}=\beta_{e}^{i j} \exp \left(-c_{5}\left|\dot{\gamma}^{i j j}\right| \begin{array}{l}
n \tag{II.26}\\
t_{0}
\end{array}\right)
$$

Combining equations (II.25) and (II.26); noting $c_{5}=c_{6}$:

$$
\begin{equation*}
\frac{d \beta^{i j}}{d t}=-c_{5} \beta_{e}^{i j}\left|\dot{\gamma}^{i j}\right|^{n} \exp \left(-c_{5}\left|\dot{\gamma}^{i j}\right|^{t_{0}}\right) \tag{II.27}
\end{equation*}
$$

Introducing (II.27) into (II.23), the overall apparent viscosity becomes

$$
\begin{equation*}
\eta_{t}=\eta-c_{5} \xi \beta_{e}^{i j} \frac{\left|\dot{\gamma}^{i j}\right|^{n}}{\dot{\gamma}^{i+j}} \exp \left(-c_{5}\left|\dot{\gamma}^{i j}\right|_{t_{0}}^{n}\right) \tag{II.28}
\end{equation*}
$$

Assuming $\eta \equiv \mu=$ constant, the generalized equation for pseudoplastics from (II.22) becomes

$$
\tau^{i j}=-\left[\mu-c_{5} \xi \beta_{e}^{i j} \frac{\left|\dot{\gamma}^{i j}\right|^{n}}{\dot{\gamma}^{i j}} \exp \left(-c_{5}\left|\dot{\gamma}^{i j}\right|^{n} t_{0}\right)\right] \gamma^{i j}(I I .29)
$$

Until the present study, tests of this fluid
model were limited to computer simulation of pseudoplastic rheograms with arbitrary constants. With such data, qualitatively correct agreement with experimental flow curves was found.

Recently, other studies not related to polymer melts and blends have successfully used variations of the Huang model to represent experimental data. The fluids studied included whole human blood (53a, 53b), latex paint (53c) and silicone grease (53d). Thus, the behavior of many different and rheologically complex fluids can be represented by this powerful model.

Limitations and extensions of the rheological
equations. Several points must be emphasized about the rheological equations discussed above. Each involves a degree of empiricism in its formulation and so is not rigorous. The adjustable parameters of each must be determined from experimental data, thereby limiting utility to regions near the data base. None of the models describes normal stress or time dependent effects.

Reviews of some models which describe nonlinear viscoelastic effects have been given by Bogue and Doughty (12), Metzner, White and Denn (69, 70), and Spriggs, Huppler and Bird (111, 112). Alternate forms of the Huang model (53), and functions such as the Oldroyd model as simplified by Williams (124), the Spriggs and Bird model (111), the models of Rivlin and Ericksen (90), and the Coleman and Noll expression (20) address time dependent effects. Application of these complex equations to even simple flow geometries results in formidable mathematical difficulties. The usefulness of this group of models is restricted in practical, experimental studies. Further development of the theories and functional relationships is required before they can be applied to problems of the complexity of
porous media flow.

Porous Media Flow - Newtonian Fluids

The basic physical relationship governing the flow of a viscous fluid through an isotropic, homogenous porous medium was deduced experimentally by Henry Darcy in 1856 (23). Generalizations and extensions of that work constitute the field of porous media flow. Excellent general discussions of relevant background are provided by Bear (3), Carman (16), Collins (21), Dallavalle (22), Muscat (75, 76) and Scheidegger (94, 97, 98) among others. In the brief review which follows, Darcy's law is presented and generalized to its possible differential forms. The several types of models proposed to functionally define the proportionality constant in the law are described. The discussion follows primarily the authorative presentations of Bear and Scheidegger referenced above.

Darcy's law. The original experiment upon which present day porous media theory rests was performed by H.P.G. Darcy in 1856. His apparatus consisted of a filter bed through which water percolated. Pressure drop across a known depth of the homogenous packing was measured as a function of flow rate. Darcy deduced
the following relationship among the variables:

$$
\begin{equation*}
Q=K A_{r} \frac{\Delta P}{L} \tag{II.30}
\end{equation*}
$$

The flow was found to be directly proportional to the bed cross sectional area A_{r} and pressure gradient. The proportionality constant depended upon the nature of the packed bed and the properties of the fluid. Many experimental studies of the flow of isothermal, incompressible fluids through beds of unconsolidated particles of regular geometry have substantiated this type of relationship.

The form of Darcy's law in (II.30) is of limited utility. First, some statement of the significance of the constant K is required. Then, a differential form of the law must be developed to allow variations in boundary conditions.

For Newtonian fluids, separation of the effects due to the porous medium and to the fluid's properties can be achieved by redefining the constant K as

$$
\begin{equation*}
K=\frac{k}{\mu} \tag{II.31}
\end{equation*}
$$

where k is the permeability of the medium and μ is the fluid viscosity. The permeability has fundamental
units of L^{2}. The permeability concept has been found to adequately characterize many types of porous media.

Using equation (II.31), Darcy's law for flow through a horizontal bed becomes

$$
\begin{equation*}
V_{0}=\frac{Q}{A_{r}}=-\frac{k}{\mu}\left(\frac{P_{2}-P_{1}+\rho g h}{h}\right) \tag{II.32}
\end{equation*}
$$

where the usual expanded representation of the pressure gradient is shown. Two differential forms have been suggested which lead to (II.32):

$$
\begin{equation*}
V_{0}=-\frac{k}{\mu}\left(\underline{\nabla} p-\rho_{\underline{g}}\right) \tag{II.33}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{0}=-\nabla \frac{k p}{\mu}+\frac{k \rho g}{\mu} \tag{II.34}
\end{equation*}
$$

Equation (II.33) introduces a force potential

$$
\begin{equation*}
\phi=g z+\int_{P_{0}}^{P} \frac{d P}{P} \tag{II.35}
\end{equation*}
$$

such that

$$
\begin{equation*}
V_{0}=-\frac{\mathbf{k} \rho}{\mu} \underline{\nabla} \phi \tag{II.36}
\end{equation*}
$$

with z as a vertical coordinate. Equation (II.34)
is a velocity potential of the form
and

$$
\begin{equation*}
\Psi=\frac{k \rho}{\mu}+\int_{z_{0}}^{z} \frac{k \rho g d z}{\mu} \tag{II.37}
\end{equation*}
$$

While it has not been possible to justify either of these forms as fundamentally valid, the force potential form, equation (II.36), has come to be generally accepted. Derivations by Collins (21), Hall (39), Hubbert (54), Irmay (56) and Mokadam (72) led to this form.

Modeling porous structures. In general, the approaches which have been taken to modeling porous media may be divided into three types: viz., geometric theories including the capillary and particle models, statistical theories and theories in which averaged forms of the governing differential equations are developed. Each approach is reviewed below with reference to specific studies. Emphasis is placed on the hydraulic radius capillary models used to characterize the flow system of the present study.

Although not directly relevant to the development of particular models, studies directed to the determination of the structure of porous media by theoretical and analytical methods also contribute to an understanding of flow phenomena in them. A good general review with an extensive bibliography has been given by Dullien and Batra (25).

Geometric theories of porous media. As pointed out in the discussion of Darcy's law, the porous structure is characterized by the permeability factor, k. The drag theory of permeability treats the walls of the media pores as resistances to fluid flow (96). The drag of each obstacle in the field of flow is estimated from the Navier-Stokes equations and the total resistance is the sum of the individual contributions. The drag theory is the basis of work by Brinkman (14), Iberall (55), Mott (73) and more recently by Brenner (13), Dullien $(26,27)$ and LeClair $(61,62)$.

Brinkman perceived a packed bed as an assemblage of particles held in place by external forces and exerting a damping force on the flowing fluid. The total force acting on a volume element of fluid was given by the sum of the shearing and normal stresses through the Navier-Stokes equation and a damping force related to the fluid velocity and viscosity. A permeability expression was developed as

$$
\begin{equation*}
k=\frac{D_{p}^{2}}{72}\left[3+\frac{4}{1-\epsilon}-3 \sqrt{\frac{8}{1-\epsilon}-3}\right] \tag{II.39}
\end{equation*}
$$

Iberall dealt with a random distribution of circular cylinder fibers, approximating the total drag force as the sum of individual element contributions.

Interactions among the flow streamlines of adjacent fibers were ignored. Creeping flow Reynolds number was assumed. An expression for pressure gradient was developed which, when compared to Darcy's law, gave for

$$
\begin{align*}
& \text { permeability: } \\
& \qquad k=\frac{3}{16} \frac{D_{p}^{2} \epsilon}{1-\epsilon}\left[\frac{2-\ln \left(\frac{D_{p} V_{0} \rho}{\mu \epsilon}\right)}{4-\ln \left(\frac{D_{p} V_{0} \rho}{\mu \epsilon}\right)}\right] \tag{II.40}
\end{align*}
$$

Brenner assumed a spacially periodic porous medium consisting of an array of unit cells, each containing one or more particles of arbitrary shape. He analyzed the model in terms of both the drag forces parallel to the stream velocity and the lateral forces at right angles to a settling particle. The extension of this analysis to creeping flow in porous media led to a symmetric permeability tensor with non-zero diagonal components of the form:

$$
\begin{equation*}
k_{i j}=k \delta_{i j} \tag{II.41}
\end{equation*}
$$

for an isotropic medium.

These approaches are representative of drag theory geometric modeling.

Capillary models of porous media have been more extensively investigated than any other representation. The success of numerous investigators in correlating
experimental data accounts for the attention given these models. Again, the 1960 review by Scheidegger (97) serves as an authorative guide to early basic developments.

The simplest capillary picture of a packed bed is that of a bundle of straight, parallel tubes. Comparison of the Hagan-Poiseuille and Darcy expressions for flow leads to a permeability of

$$
\begin{equation*}
k=\frac{\epsilon \bar{D}^{2}}{32} \tag{II.42}
\end{equation*}
$$

where $\overline{\mathrm{D}}$ is the single capillary average diameter. Replacement of the numerical factor "32" by a tortuosity term T and the capillary diameter by a specific surface area S gives a modified permeability

$$
\begin{equation*}
k=\frac{\epsilon^{3}}{T^{2} S^{2}} \tag{II.43}
\end{equation*}
$$

Such expressions are poor representations of what is observed experimentally.

Arranging the capillaries in each of the three principle directions (thereby lowering the permeability by a factor of three) results in an expression not significantly better than (II.42).

Inherent in all variations of the capillary tube
models is the assumption that each capillary is a direct path through the porous medium. Obviously, this is not a realistic picture. At the other extreme, it is assumed that all the capillaries are in series, forming a tortuous channel the entire length of which is traversed by each fluid element. The permeability expression under this assumption is

$$
\begin{equation*}
k=\frac{1}{96} \frac{\epsilon \bar{D}^{2}}{T^{2}} \tag{II.44}
\end{equation*}
$$

Scheidegger suggested that the capillary tubes could be better described in terms of a distribution $\alpha|D|$ of variable diameter (95). The resulting expression for permeability was

$$
\begin{equation*}
k=\frac{\epsilon}{96 T^{2}} \frac{1}{\int_{0}^{\infty}\left[D^{2} d(D) d D\right]^{2} \int_{0}^{\infty} \frac{D^{6}}{D^{6}} d D} \tag{II.45}
\end{equation*}
$$

This differs from the other values of k discussed in that average pore diameter has a specific meaning:

$$
\begin{equation*}
\bar{D}^{2}=\frac{1}{\int_{0}^{\infty}\left[D^{2} \alpha|D| d D\right]^{2} \int_{0}^{\infty} \frac{C|D|}{D^{6}} d D} \tag{II.46}
\end{equation*}
$$

In summary, the simpler of the capillary models are inadequate to describe real systems. The more complex models containing a tortuosity factor can be forced to fit any porous structure, but do not contribute to a satisfactory understanding of the phenomena involved.

Extension of capillaric modeling to a more realistic description of pore geometry is possible through the concept of hydraulic radius. From the theory of flow through non-circular channels, hydraulic radius is defined as the ratio of conduit volume to wetted surface area, having the units of length. For porous media, it may be regarded as a length characteristic of the complex passages of the matrix. Since permeability has units of length squared, it is taken as proportional to the square of hydraulic radius. In general, permeability is also related to a shape factor $f(s)$ and to a porosity factor $f(\epsilon):$

$$
\begin{equation*}
k=f(s) f(\epsilon) R^{2} \tag{II.47}
\end{equation*}
$$

Investigators have sought to give meaning to the shape and porosity factors (4). One of the most widely accepted developments is that traced to work conducted between 1922 and 1957 by Blake (11), Kozeny (58), Carman (15. 16), Ergun (28), Fair and Hatch (29), Leva (63) and Wyllie (126). By solving the Navier-Stokes equation for all channels passing through a cross section normal to the flow direction, Kozeny obtained a Darcy law form

$$
\begin{equation*}
Q=-\frac{c_{0} \epsilon^{3}}{\mu S^{2}} \underline{\nabla} \phi \tag{II.48}
\end{equation*}
$$

Thus

$$
\begin{equation*}
k=\frac{c_{0} \epsilon^{3}}{s^{2}} \tag{II.49}
\end{equation*}
$$

The Kozeny constant, c_{0}, is a function of channel cross section shape. Further, the specific surface may be expressed per unit volume of solid, S_{0}, rather than per unit volume of porous medium, S, through the porosity :

$$
\begin{equation*}
S=S_{0}(1-\epsilon) \tag{II.50}
\end{equation*}
$$

Then

$$
\begin{equation*}
k=\frac{c_{0}}{s_{0}^{2}} \frac{\epsilon^{3}}{(1-\epsilon)^{2}} \tag{II.51}
\end{equation*}
$$

For spheres

$$
\begin{equation*}
D_{p}=\frac{6}{S_{0}} \tag{II.52}
\end{equation*}
$$

Thus

$$
\begin{equation*}
k=\frac{c_{0} D_{p}^{2}}{36} \frac{\epsilon^{3}}{(1-\epsilon)^{2}} \tag{II.53}
\end{equation*}
$$

Various values assigned to c_{0} lead to numerically different permeabilities of the form:

$$
\begin{equation*}
k=\frac{D_{p}^{2}}{c} \frac{\epsilon^{3}}{|1-\epsilon|^{2}} \tag{II.54}
\end{equation*}
$$

It is further possible to incorporate a tortuosity factor into the constant c, but the form of (II.54) is
not changed. This expression for the permeability is the well known Blake-Kozeny-Carman equation.

A great many investigators using various media and fluids have tested this form of permeability expression. Scheidegger discusses a number of these studies. For non-spherical systems, still further improvements in the model are required (89). In general, the shape and tortuosity factors are ill defined and cannot be tested independently. Thus, the overall constant, c, in equation (II.54) is treated as an adjustable parameter, lacking any unambiguous physical significance. The justification for such an approach is the success which has been achieved in correlating flow data from many systems.

Statistical theories of porous media. The appeal of a statistical mechanical treatment of porous media flow is that the random disordered nature of such systems need not be compromised to apply the techniques. In the geometric theories, simplified ordered models were constructed to keep the resulting mathematical expressions simple enough to be solved analytically. Adjustable parameters were added to achieve agreement with experiment.

Reviews of statistical treatments for porous media are given by Bear (5) and Scheidegger (97). Specific reference may be made to the theories advanced by Aranow (1), De Jong (24), Haring and Greenkorn (48), Pakula (78) and Scheidegger $(99,100)$ as representative of this approach.

Fundamental to the statistical theories is a third factor, the dispersivity, in addition to the shape and porosity factors discussed previously. Dispersivity may be regarded as a measure of the sideways dispersion which a stream of fluid undergoes in flowing through a packed bed. In Scheidegger's treatment, the differential equations of flow are formulated in terms of the probability distribution of an elementary fluid displacement vector. The permeability expression

$$
\begin{equation*}
k=b \cos ^{2} \theta \tag{II.55}
\end{equation*}
$$

results, where b is a factor related to the reciprocal of the flow resistance of a pore and θ is the angle between the displacement vector and pressure gradient. The exercise leads to a modified Darcy's law.

Alternatively, the randomness may be attributed to the medium and models such as that proposed by

Haring and Greenkorn may be formulated. Their model of the medium is of ramdomly ordered cylindrical pores of variable length and radius distributed according to the beta function. The permeability expression developed is

$$
\begin{equation*}
\frac{k}{\epsilon}=\frac{R^{2}}{24} \frac{(a+2)(a+b+2)}{(a+b+3)(a+1)} \tag{II.56}
\end{equation*}
$$

where a and b are parameters of the radius distribution, R is the largest pore radius and ϵ is the porosity. Dispersivity coefficients in the longitudinal and transverse directions are also developed.

These and other statistical approaches, while quite successful in describing general flow characteristics, have not been effectively applied to practical data analysis. As with some geometrical theories, the complexity of the mathematics developed in statistical analyses presently limits the utility of this approach.

Averaged equation theories of porous media. The most rigorous, if least studied, approach to modeling porous media is the development of correct averaged forms of the governing differential equations. Since this technique leads to generalized equations, results should be in accord with any geometric or statistical development.

References to this averaged differential equation technique include work by Payatakes (80), Slattery (108, 109, 110) and Whitaker (121, 17). In his study, Whitaker proposed a skewed capillary model and developed a permeability tensor of the form

$$
\begin{equation*}
K_{i j}=B|1| \delta_{i j}+B|2| \lambda_{i} \lambda_{j} \tag{II.57}
\end{equation*}
$$

where the $\underline{\underline{B}}$ tensor is a polynomial function defining the magnitude of a general orientation vector and λ is the unit orientation vector. Description of orthotropic materials requires a symmetric second order tensor.

The complexity of the averaged equation theories is immediately evident. Correlative forms of these equations have not been developed. Thus, data analysis is not possible with this powerful, but mathematically limiting method.

Porous Media Flow - Non-Newtonian Fluids

As late as 1960 there were no published reports of the flow of non-Newtonian fluids in porous media. Extensive work on non-Newtonian flow in other systems was in the literature, but packed bed flow studies were limited to Nẹtonian fluids. Then, beginning with the
work of Sadowski and Bird in 1963 (91, 92), interest in the theoretical and experimental aspects of nonNewtonian porous media flow quickened.

Several approaches to describing such flow have been forwarded. An excellent review of these given by Savins in 1969 is abstracted here to provide a basis for the present theoretical development (93).

Scheidegger was apparently the first to suggest that a capillary model and a generalized Newtonian rheological equation could be combined to describe nonNewtonian flow in a porous medium (97). The hydraulic radius approach was illustrated for one dimensional flow of a power law fluid in a packed bed by Bird (10). Subsequently, modifications of this development were utilized by Christopher and Middleman (18, 19), Giatonde and Middleman (35), Marshall and Metzner (64), Payne and Parker (81), Wampler and Gregory (119), Wissler (125) and Siskovic, et al (105).

The work of Sadowski extended Scheidegger's concept to the more complex Ellis equation of state (91, 92). Gregory provided the first study of melt flow (polyethylene) and used the Mooney-Rabinowitsch rheological model to describe the melt behavior. Recently, Park,
et al successfully described packed bed flow of aqueous poly(methyl cellulose) using a Hershel-Bulkley fluid model (79).

Details of the application of the hydraulic radius approach to the description of packed bed flow will be covered as part of the present theoretical development. In principle, the method is similar to those referenced above.

Another way of describing porous media flow involves direct adaptation of Darcy's law to non-Newtonian flow without using a particular rheological model. The rheological description must then be derived from viscometric and packed bed data. McKinley, et al (68) and Kozicki, et al (59) have used this technique. McKinley, studying flow in underground reservoirs, replaced the porous medium with a capillary of equivalent radius proportional to the square root of the ratio of permeability to porosity. The proportionality constant was determined from a capillary rheogram and porous media flow data for a specific bed. In principle, this single determination should allow prediction of non-Newtonian flow in the same type of medium regardless of porosity or permeability. The study by Kozicki
furthered this approach to include anomalous effects attributed to an anisotropic layer of fluid particles on the medium surface.

Dimensional analysis has been applied by Slattery to the flow of an arbitrary viscoelastic fluid in porous media (107, 108). This treatment involved a tensorial description of an incompressible, simple fluid having a characteristic time and viscosity. Marshall and Metzner observed anomalous behavior in the flow of several polymer solutions through a sintered bronze disk (64). They attributed departure of the Deborah number from expected behavior to viscoelastic effects. Wissler proposed a correction factor for these effects which successfully explained the Marshall and Metzner results (125).

Still other correlation methods and systems have been used such as that by Hassell and Bondi who estimated shear rate in rubber cements, then entered corresponding capillary stress and shear rate data directly into a friction factor - Reynolds number expression (50). White applied the power law form of Darcy's law to the equation of continuity giving differential equations linking pressure distribution and the stream function (122). Additional insight into
the variety of related problems may be gained by consulting Herzig, et al (51), Payne and Parker (81), and Volssoughi and Seyer (118).

Generalized Darcy's law. Of the approaches briefly reviewed above, the coupling of a suitable rheological equation of state with a capillary form of porous medium model to give a generalized Darcy's law is the most successful technique for representing experimental data. In most cases, a packed bed friction factor is calculated and plotted against an effective Reynolds number in accordance with the usual practice of correlating flow data in other geometries. Using this approach, a new friction factor - Reynolds number relationship is developed for the Huang generalized equation of state.

The shear stress distribution and volumetric flow rate of a fluid in a tube of regular cross section are given by Bird as (8):

$$
\begin{equation*}
T_{r z}=\left|\frac{\Delta P}{2 L}\right| r \tag{II.58}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\int_{0}^{2 \pi} \int_{0}^{R} v_{z} r d r d \theta \tag{II.59}
\end{equation*}
$$

From (II.58):

$$
\begin{equation*}
T_{R}=\left(\frac{\Delta P}{2 L}\right) R \quad \text { @ } r=R \tag{II.60}
\end{equation*}
$$

Thus

$$
\begin{equation*}
T_{r z}=T_{R}\left(\frac{r}{R}\right) \tag{II.61}
\end{equation*}
$$

The Huang generalized equation of state for pseudoplastics was given previously as

$$
\begin{equation*}
\boldsymbol{\gamma}^{i j}=-\left[\mu-c_{5} \xi \beta_{e}^{i j}{\frac{\gamma^{i j}}{\gamma^{i j}}}^{n} \exp \left(-c_{5}\left|\dot{\gamma}^{i j}\right|^{n} t_{0}\right)\right] \dot{\gamma}^{i j} \tag{II.29}
\end{equation*}
$$

For isothermal, incompressible flow in a tube, this equation has the form below with $\dot{\gamma}_{r z}=\left(-\frac{d V_{z}}{d r}\right)$

$$
\begin{equation*}
\tau_{r z}=A \dot{\gamma}_{r z}+B \dot{\gamma}_{r z}^{n} \exp \left(-C \dot{\gamma}_{r z}^{n}\right) \tag{II.62}
\end{equation*}
$$

where the constants. A , B , C , and n have been substituted for the original parameters in (II.29). Equating (II.61) and (II.62) gives

$$
\begin{equation*}
\left.r=\frac{R}{\tau_{R}}\left[A \dot{\gamma}_{c z}+B \dot{\gamma}_{r z}^{n} \exp \mid-C \dot{\gamma}_{r z}^{n}\right]\right] \tag{II.63}
\end{equation*}
$$

From (II.59)

$$
\begin{equation*}
Q=2 \pi \int_{0}^{R} \frac{V_{z}}{2} d\left(r^{2}\right) \tag{II.64}
\end{equation*}
$$

Integration by parts follows:

$$
\begin{aligned}
Q & =\pi\left[V_{z} / r^{2}\right]_{0}^{R}-\pi \int_{0}^{R} r^{2} d V_{z} \\
& =-\pi \int_{0}^{R_{r}} r^{2} \frac{d V_{z}}{d r} d r \\
& =-\pi \int_{0}^{R} \frac{1}{3} \frac{d V_{z}}{d r} d\left(r^{3}\right)
\end{aligned}
$$

$$
\begin{equation*}
Q=\frac{\pi}{3} \int_{0}^{R \dot{\gamma}_{r z} d\left(r^{3}\right)} \tag{II.65}
\end{equation*}
$$

A second application of integration by parts gives:

$$
\begin{align*}
Q & =\frac{\pi}{3}\left[\left.\left(-\frac{d V_{z}}{d r}\right) r^{3}\right|_{0} ^{R}-\int_{0}^{R} r^{3} d \dot{\gamma}_{r z}\right] \\
& =\frac{\pi}{3}\left[\dot{\gamma}_{R} R^{3}-\int_{0}^{R} r^{3} d \dot{\gamma}_{r z}\right] \tag{II.66}
\end{align*}
$$

Combining (II.63) and (II.66) and inserting proper limits of integration:

$$
\begin{aligned}
Q= & \frac{\pi}{3}\left\{\dot{\gamma}_{R} R^{3}-\frac{R^{3}}{T_{R}^{3}} \int_{0}^{\dot{\gamma}_{R}}\left[A^{3} \dot{\gamma}_{r z}^{3}+3 A^{2} B \dot{\gamma}_{r z}^{n+2} \exp \left(-C \dot{\gamma}_{r z}^{n}\right)\right.\right. \\
& \left.\left.+3 A B^{2} \gamma_{r z}^{2 n+1} \exp \left|-2 C \dot{\gamma}_{r z}^{n}\right|+B^{3} \dot{\gamma}_{r z}^{3 n} \exp \left(-3 C \dot{\gamma}_{r z}^{n}\right)\right] d \dot{\gamma}_{r z}\right\}(I I .67)
\end{aligned}
$$

The first of the four terms in brackets in (II.67)
may readily be integrated:

$$
\begin{equation*}
A^{3} \int_{0}^{\dot{\gamma}_{R}} \dot{\gamma}_{r Z}^{3} d \dot{\gamma}_{r z}=\frac{A^{3}}{4} \dot{\gamma}_{R}^{4} \tag{II.68}
\end{equation*}
$$

A transformation of variable is performed on each of the three remaining terms to be integrated of the form

$$
\begin{equation*}
C_{1} x^{C_{2}}=y \tag{II.69}
\end{equation*}
$$

Correspondence between this form and the terms to be integrated is as follows:
second term: $\quad c_{1} x^{C_{2}} \Rightarrow c \dot{\gamma}_{r z}^{n}$
third term:
$c_{1}{ }^{x^{c_{2}}} \Rightarrow 2 c \dot{\gamma}_{r z}^{n}$
fourth term: $\quad C_{1} x^{C_{2}} \Rightarrow 3 C \dot{\gamma}_{r z}^{n}$
After substituting and rearranging variables, the following transformed integrals are obtained:

$$
\begin{align*}
& \frac{3 A^{2} B}{n}\left(\frac{1}{C}\right)^{\frac{(n+3)}{n}} \int_{0}^{C} \dot{\gamma}_{R}^{n} \tag{II.73}\\
& \frac{3 A B^{2}}{n}\left(\frac{1}{2 C}\right)^{\frac{2 n+2}{n}} \int_{0}^{2 C \dot{\gamma}_{R_{x p}^{n}}^{n}(-y) y\left(\frac{3}{n}\right)} d y \tag{II.74}\\
& \frac{B^{3}}{n}\left(\frac{1}{3 C}\right)^{\left.\frac{3 n+2}{n}\right)} d y \tag{II.75}\\
&
\end{align*} \int_{0}^{3 C \dot{\gamma}_{R_{e x p}}^{n}(-y) y\left(\frac{3 n+1}{n}\right)} d y .
$$

From Abramowitz and Stegun (46), the gamma function is defined to be of the form

$$
\begin{equation*}
\Pi(a, z)=\int_{0}^{z} \exp (-t) t^{a-1} d t \tag{II.76}
\end{equation*}
$$

Each of the transformed integrals (II.73), (II.74) and (II.75) is the same form as the gamma function. The same reference (47) defines the probability function

$$
\begin{array}{r}
\frac{\Gamma(a, z)}{\Gamma(a)}=p\left(\frac{x^{2}}{\nu}\right)=1-Q\left(\frac{x^{2}}{\nu}\right) \tag{II.77}\\
\nu=2 a \\
x^{2}=2 z
\end{array}
$$

If (II.73), (II.74) and (II.75) are each compared in
turn with (II.76) and (II.77), a further set of corresponding terms is developed, viz,
second term:

$$
\begin{align*}
& a=\frac{n+3}{n} ; \quad z=y @\left(\dot{\gamma}_{r z}=\dot{\gamma}_{R}\right)=c \dot{\gamma}_{R}^{n} \\
& t=y ; \quad v=2\left(\frac{n+3}{n}\right) ; \quad x^{2}=2 c \dot{\gamma}_{R}^{n} \tag{II.78}
\end{align*}
$$

third term:

$$
\begin{gather*}
a=\frac{2 n+2}{n} ; z=y @\left(\dot{\gamma}_{r z}=\dot{\gamma}_{R}\right)=2 c \dot{\gamma}_{R}^{n} \\
t=y ; \quad \nu=2\left(\frac{2 n+2}{n}\right) ; \quad x^{2}=4 c \dot{\gamma}_{R}^{n} \tag{II.79}
\end{gather*}
$$

fourth term:

$$
\begin{array}{r}
\left.a=\frac{3 n+1}{n} ; \quad z=y @ \mid \dot{\gamma}_{r z}=\dot{\gamma}_{R}\right) 3 c \dot{\gamma}_{R}^{n} \\
t=y ; \quad v=2\left(\frac{3 n+1}{n}\right) ; \quad x^{2}=6 c \dot{\gamma}_{R}^{n} \tag{II.80}
\end{array}
$$

With appropriate substitutions of (II.78) into (II.73), (II.79) into (II.74) and (II.80) into (II.75), the final form of the integrated expressions is obtained in terms of real parameters as:

$$
\begin{align*}
& \frac{3 A^{2} B}{n}\left(\frac{1}{C}\right)^{\frac{n+3}{n}} \Gamma\left(\frac{n+3}{n}\right)\left[1-Q\left(\frac{2 C \dot{\gamma}_{R}^{n}}{2\left(\frac{n+3}{n}\right)}\right)\right] \tag{II.81}\\
& \frac{3 A B^{2}}{n}\left(\frac{1}{2 C}\right)^{\frac{2 n+2}{n}} \Gamma\left(\frac{2 n+2}{n}\right)\left[1-Q\left(\frac{4 C \gamma_{R}^{n}}{2\left(\frac{2 n+2}{n}\right)}\right)\right] \tag{II.82}\\
& \frac{B^{3}}{n}\left(\frac{1}{3 C}\right)^{\frac{3 n+1}{n}} \Gamma\left(\frac{3 n+1}{n}\right)\left[1-Q\left(\frac{6 C \gamma^{n}}{2\left(\frac{3 n+1}{n}\right)}\right)\right]
\end{align*}
$$

Equation (II.68) for volumetric flow becomes:

$$
Q=\frac{\pi R^{3}}{3}\left\{\dot{\gamma}_{R}-\frac{1}{T_{R}^{3}}\left[\frac{A^{3}}{4} \dot{\gamma}_{R}^{4}+\frac{3 A^{2} B}{n}\left(\frac{1}{C}\right)^{\frac{n+3}{n}} \Gamma\left(\frac{n+3}{n}\right)\right.\right.
$$

$$
\begin{align*}
& \left(1-Q\left(\frac{2 C \dot{\gamma}_{R}^{n}}{2\left(\frac{n+3}{n}\right)}\right)\right)+\frac{3 A B^{2}}{n}\left(\frac{1}{2 C}\right)^{\frac{2 n+2}{n}} \Gamma\left(\frac{2 n+2}{n}\right) \\
& \left(1-Q\left(\frac{4 C \dot{\gamma}_{R}^{n}}{2\left(\frac{2 n+2}{n}\right)}\right)\right)+\frac{B^{3}}{n}\left(\frac{1}{3 C}\right)^{\frac{3 n+1}{n}} \Gamma\left(\frac{3 n+1}{n}\right) \\
& \left.\left(1-Q\left(\frac{6 C \bar{\gamma}_{R}^{n}}{2\left(\frac{3 n+1}{n}\right)}\right)\right)\right] \tag{II.84}
\end{align*}
$$

The average velocity for tube flow is (8):
$\left\langle V>=\frac{\int_{0}^{2 \pi} \int_{0}^{R} V_{\frac{2}{2}} d r d \theta}{\int_{0}^{2 \pi} \int_{0}^{R} r d r d \theta}=\frac{Q}{\pi R^{2}}\right.$
For packed bed flow the commonly accepted Dupuit-
Forscheimer assumption is (94):

$$
\begin{equation*}
V_{0}=\langle V\rangle \epsilon \tag{II.86}
\end{equation*}
$$

relating superficial and average pore velocities. Following Bird (10), capillary and packed bed parameters may be related through the hydraulic radius:

$$
\begin{align*}
& R=2 R_{h} \tag{II.87}\\
& R_{h}=\frac{\epsilon}{S} \tag{II.88}
\end{align*}
$$

Then

$$
\begin{equation*}
S=S_{0}(1-\epsilon) \tag{II.89}
\end{equation*}
$$

defines a specific surface area S_{0}, and

$$
\begin{equation*}
D_{p}=\frac{6}{S_{0}} \tag{II.90}
\end{equation*}
$$

defines a mean particle diameter D_{p}. (exact for spheres). Combining equations (II.84) through (II.90), the expression for superficial velocity through the packed bed becomes:

$$
\begin{aligned}
V_{0} & =\frac{D_{p}}{9}\left(\frac{\epsilon^{2}}{1-\epsilon}\right)\left\{\dot{\gamma}_{R_{h}}-\frac{1}{T_{R n}^{3}}\left[\frac{A^{3}}{4} \dot{\gamma}_{R h}^{4}\right.\right. \\
& +\frac{3 A^{2} B}{n}\left(\frac{1}{C}\right)^{\frac{n+3}{n}} \Gamma\left(\frac{n+3}{n}\right)\left(1-Q\left(\frac{2 C \dot{\gamma}_{R n}^{n}}{2\left(\frac{n+3}{n}\right)}\right)\right) \\
& +\frac{3 A B^{2}}{n}\left(\frac{1}{2 C}\right)^{\frac{2 n+2}{n}} \Gamma\left(\frac{2 n+2}{n}\right)\left(1-Q\left(\frac{4 C \dot{\gamma}_{R n}^{n}}{2\left(\frac{2 n+2}{n}\right)}\right)\right) \\
& \left.+\frac{B^{3}}{n}\left(\frac{1}{3 C}\right)^{\frac{3 n+1}{n}} \Gamma\left(\frac{3 n+1}{n}\right)\left(1-Q\left(\frac{6 C \dot{\gamma}_{R n}^{n}}{2\left(\frac{3 n+1}{n}\right)}\right)\right)\right](\text { II.91) }
\end{aligned}
$$

Use of $\tau_{R_{h}}$ and $\dot{\gamma}_{R h}$ acknowledges substitution of the hydraulic radius as an effective radius of the pores in the packed bed. Further, from (II.60),

$$
\begin{equation*}
T_{R_{h}}=\frac{\Delta P}{L} R_{h}=\frac{\Delta P}{L} \frac{D_{g}}{6}\left(\frac{\epsilon}{1-\epsilon}\right) \tag{II.92}
\end{equation*}
$$

Equations (II.91) and (II.92) can be combined to give a form corresponding to a generalized Darcy's law, i.e.,

$$
\begin{equation*}
v_{0}=\frac{k}{\eta_{\text {eff }}} \frac{\Delta P}{L} \tag{II.93}
\end{equation*}
$$

which is analogous to (II.32) with the Newtonian viscosity replaced by an effective viscosity. The complete expression is

$$
\begin{align*}
V_{0} & =\frac{D_{p}^{2} \epsilon^{3}}{54(1-\epsilon)^{2}} \frac{1}{T_{R h}}\left\{\dot{\gamma}_{R h}-\frac{1}{T_{R h}^{3}}\left[\frac{A^{3}}{4} \dot{\gamma}_{R h}^{4}\right.\right. \\
& +\frac{3 A^{2} B}{n}\left(\frac{1}{C}\right)^{\frac{n+3}{n}} \Gamma\left(\frac{n+3}{n}\right)\left(1-Q\left(\frac{2 C \dot{\gamma}_{R h}^{n}}{2\left(\frac{n+3}{n}\right)}\right)\right) \\
& +\frac{3 A B^{2}}{n}\left(\frac{1}{2 C}\right)^{\frac{2 n+2}{n}} \Gamma\left(\frac{2 n+2}{n}\right)\left(1-Q\left(\frac{4 C \dot{\gamma}_{R n}^{\prime n}}{2\left(\frac{2 n+2}{n}\right)}\right)\right) \\
& \left.\left.+\frac{B^{3}}{n}\left(\frac{1}{3 C}\right)^{\frac{3 n+1}{n}} \Gamma\left(\frac{3 n+1}{n}\right)\left(1-Q\left(\frac{6 C \dot{\gamma}_{R n}^{n}}{2\left(\frac{3 n+1}{n}\right)}\right)\right)\right]\right\} \tag{II.94}
\end{align*}
$$

The term

$$
\frac{D_{p}^{2} \epsilon^{3}}{54(1-\epsilon)^{2}}
$$

is the same form as the Blake-Kozeny-Carman permeability relationship presented earlier as (II.54). In practice, the factor c or 54 is adjusted to give agreement with experimental data.

The classical method of correlating tube flow data is through the dimensionless groupings friction factor and Reynolds number. As shown by Bird (9), the friction factor for tube flow is

$$
\begin{equation*}
f=\frac{2}{4}\left(\frac{D}{L}\right) \frac{\Delta P}{\frac{1}{2} \rho\langle V\rangle^{2}} \tag{II.95}
\end{equation*}
$$

Again applying equations (II.86) through (II.90), the analogous packed bed friction factor is

$$
\begin{equation*}
f^{*}=\frac{1}{3} \frac{D_{p}}{L} \frac{\Delta P}{\rho V_{0}^{2}} \frac{\epsilon^{3}}{1-\epsilon} \tag{II.96}
\end{equation*}
$$

Combining equations (II.54), (II.93) and (II.96) and rearranging leads to an expression proposed by Ergun (28) in 1952, based upon the dimensionless groupings obtained by Blake in 1922 (11):

$$
\begin{equation*}
f^{*}=\frac{D_{p}}{L} \frac{\Delta P}{\rho V_{0}^{2}} \frac{\epsilon^{3}}{1-\epsilon}=c\left[\frac{|1-\epsilon| \eta_{\text {eff }}}{D_{p} V_{0} \rho}\right] \tag{II.97}
\end{equation*}
$$

The right side of (II.97) is of the form of a modified Reynolds number, differing from (II.96) only in that the numerical factor $\frac{1}{3}$ has been lumped with the empirical constant c. Thus

$$
\begin{equation*}
f^{*}=\frac{c}{N_{r e, e f f}} \tag{II.98}
\end{equation*}
$$

where by comparing (II.93) and (II.94) it is evident that $\eta_{\text {eff }}$ in $N_{r e, e f f}$ is given by

$$
\frac{1}{\eta_{e f f}}=\frac{1}{T_{R h}}\left\{\dot { \gamma } _ { R h } \frac { 1 } { T _ { R h } ^ { 3 } } \left[\frac{A^{3}}{4} \dot{\gamma}_{R h}^{4}\right.\right.
$$

$$
+\frac{3 A^{2} B}{n}\left(\frac{1}{C}\right)^{\frac{n+3}{n}} \Gamma\left(\frac{n+3}{n}\right)\left(1-Q\left(\frac{2 C \dot{\gamma}_{R n}^{n}}{2\left(\frac{n+3}{n}\right)}\right)\right)
$$

$$
+\frac{3 A B^{2}}{n}\left(\frac{1}{2 C}\right)^{\frac{2 n+2}{n}} \Gamma\left(\frac{2 n+2}{n}\right)\left(1-Q\left(\frac{4 C \dot{\gamma}_{R n}^{n}}{2\left(\frac{2 n+2}{n}\right)}\right)\right)
$$

$$
\left.\left.+\frac{B^{3}}{n}\left(\frac{1}{3 C}\right)^{\frac{3 n+1}{n}} \Gamma\left(\frac{3 n+1}{n}\right)\left(1-Q\left(\frac{6 \cdot C \dot{\gamma}_{R n}^{n}}{2\left(\frac{3 n+1}{n}\right)}\right)\right)\right]\right\}(\text { II. 99) }
$$

As will be outlined in the chapter on experimental results, the equations developed above may be used to analyze packed bed flow data for any system of known rheological behavior. Deviations from predicted packed bed flow behavior (excluding experimental error) may be attributed to various effects related to the complex geometry of the porous medium and to unaccounted viscoelastic fluid properties.

Rheological Behavior of Melt Blends

One of the principle differences between this and and previous porous media flow studies is the inclusion of three blends of the two polymers being investigated into the experimental plan. No other comparable stady is known. An opportunity is thus afforded to learn whether polymer blends exhibit unusual behavior in both pure shear fields (the rheometer) and in the complex flow geometry of the packed bed. Further, the dependent variables (shear stress and pressure drop) may be determined as a function of composition for the system studied.

The literature on polyblends is extensive and was not exhaustively reviewed for this study. Only those papers of direct relevance by virtue of involving related systems or using pertinent analysis techniques
are considered.

Helpful general discussions of the whole field of polyblends have been provided by Platzer (82) and by Yu (74). With a simple yet convincing argument, Yu reviewed the basic requirements of compatibility in a thermodynamic sense and concluded that all polymer blends must be inhomogenous at some scale of examination greater than the moleculer level. He further highlighted the problem of defining the degree of compatibility of a polyblend since in some systems it may behave as a single phase when in fact heterogeneity exists at some micro scale.

Studies of specific blend systems have been made by Han (40 through 45), Noel and Carley (77), Hill and Maxwell (52), Seymour (101), Sieglaff (102, 103) and VanOene (116). Sieglaff studied the viscous and elastic behavior of poly(vinyl chloride) modified by various low molecular weight plasticizers. Viscosity reduction was observed in capillary rheometer data for some additives, but no evidence of two phase phenomena was noted.

A study more directly relevant to the present work was that by Hill and Maxwell at Princeton University.

They determined the dynamic mechanical response of two component blends of polyethylene, polystyrene and poly(methyl methacrylate) using an orthogonal rheometer. Measurements of the out-of-phase modulus (simply related to the shear viscosity at low frequency and shear rate) and the in-phase modulus (related to elastic behavior) for PMMA/PS blends were reported. The out-of-phase modulus varied smoothly as a function of composition, showing no evidence of phase separation or inversion. The in-phase modulus showed a maximum at about $50 / 50$ PNINA/PS, and the relaxation spectrum was shifted with respect to a theoretical spectrum. This effect was attributed to slight solubility of one polymer in the other.

Han has used a sophisticated capillary rheometer (40) coupled with photomicroscopy to examine blend systems including high/low density polyethylenes, polystyrene/polypropylene, polystyrene/polyethylene and the same polystyrene/poly(methyl methacrylate) polymers used in this work. In a much higher shear rate range than that explored by Hill and Maxwell, Han found broad, distinct minima in the viscosity of PS/PE and PS/PP blends as a function of composition. Capillary exit pressure (a measure of elastic behavior) showed a single maximum and minimum for $\mathrm{PS} / \mathrm{PE}$ and a double
maximum, single minimum for PS/PP. Micrographs showed the distinct phases of the two components in each case, but no evidence of phase inversion (continuous to dispersed or vice-versa) at any composition.

As an extension of the Weissenberg cone and plate data generated for this study, Han characterized the same PS/PMMA blends in the capillary rheometer. Shear and normal stress results over a total four decade range of shear rate are in excellent agreement (45).

VanOene (116) has shown that for PS/PMMA blends, polystyrene is the continuous phase.

To summarize, viscometric studies of various polymer blend systems genexally confirm the incompatibility of polymers. Some examples of unexpected behavior have been observed, but no consistent pattern of deviation from normal single phase behavior has been ascertained. It is evident that studies of polyblends in a variety of flow geometries will be necessary to fill the gaps in the existing information base.

CHAPTER III. RHEOLOGICAL EXPERIMENTS

As reviewed above, the method of analysis of this study required coupling a rheological model for the fluids with a model for the porous medium. In order to test the theoretical development made by this approach. both reliable viscometric data and packed bed flow data were required. The testing instrument used in the study was a modified Roberts-Weissenberg Model 18 rheogoniometer. In the following sections, the polymers and blends are described, sample preparation is discussed, the experimental procedure is reviewed and the rheological data are fitted to several equations of state including the power law, Ellis and Huang models.

Description of the Polymers

Several factors affected the choice of materials for study. Chief among these was the desire to use polymers of commercial significance which would normally be processed in full scale extrusion equipment of the type to be described. Polymers of general interest. the rheology of which had been characterized in other systems, were sought. Discussions of polymers and polymer processing by McKelvey (66), Middleman (71), Bernhardt (84), Eirich (86, 88), Kwei (60), Tobolsky (114, 115) and VanOene (116) among others were consulted. Certain
similarities of the polymers seemed desirable such as crystallinity, melt viscosity, solubility and melt processing conditions, to assure the feasibility of blending. Comparable melt temperatures and flow indices would minimize the possibility of channeling in the packed bed tests. Finally, since the experimental program required several thousand pounds of each polymer, cost and availability was a factor.

These requirements narrowed the materials of choice to five; i.e., polyethylene, polypropylene, poly(ethylene terephthalate), polystyrene and poly(methyl methacrylate). PET was eliminated based upon its sensitivity to moisture in melt processing which requires sophisticated screws and vacuum degassing (123). Sample quantities of various grades of the other candidates were procured, blended either as pellets or ground, and pressed into sheets in a laboratory press. Ease of fabrication and visual uniformity were noted.

Ultimately, specific commercial grades of polystyrene and poly(methyl methacrylate) were selected for study. These gave the most uniform pressed sheets, were least sensitive to melt temperature conditions, were both amorphous polymers, and were available at comparable melt indices.

Polystyrene. Polystyrene (PS) is a linear, amorphous, thermoplastic polymer formed by the peroxidecatalyzed free radical polymerization of styrene monomer. The structure of the polymer may be represented as

Polystyrene is clear, transparent and reasonably thermally stable. Commercial polymer grades are atactic.

Typically, pure styrene monomer is prepolymerized in a stirred vessel with a peroxide initiator to a solution containing about 30% polymer. The viscous syrup is transferred to the top of a cylindrical tower where polymerization is completed through an increasing temperature gradient to the bottom of the tower where molten polymer is fed to the extrusion, cooling and chopping operations. In addition to pure styrene polymer. many derivatives including acrylonitrile-butadienestyrene (ABS) and styrene-butadiene-rubber (SBR) resins are prepared. Uses include packaging, appliances, toys, lighting fixtures and others.

General properties of polystyrene are summarized in Table I. The commercial polymer used in this study
was manufactured by The Dow Chemical Company and dis(R) ignated as styron 678. This material is referred to hereafter as PS -678. Resin properties of commercial significance are summarized in Table II. This molding compound was supplied as one eighth inch pellets.

Poly(methyl methacrylate). Poly(methyl methcrylate) (PMMA) is likewise a linear, amorphous, thermosplastic polymer noted for its optical clarity and resistance to weathering and ultraviolet degradation. The polymer structure may be represented as

Commercial preparation is by bulk or suspension polymerization of methyl methacrylate monomer. Suspension polymerization is often preferred when possible (as for molding powders) since the reaction is highly expthermic and difficult to control in bulk. Typical commercian polymer is 70 to 75% syndiotactic. PMMA is clear, transparent and offers better impact strength than polystyrene. Sheets, rods, tubes and molded parts are usual product forms. Applications include automotive lenses and signs where outdoor exposure is required, as well as jewelry and decorative objects.

Table I
Physical Properties of PS and PMIMA

Property	Polystyrene	Poly(methyImethacrylate)
Structure (4)	$\left[-\mathrm{CH}_{2}-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]$	
Specific Gravity $(1,2)$	1.04-1.09	1.17-1.20
Clarity (2)	Transparent	Transparent
Tacticity (1)	Atactic	$\begin{aligned} & 70-75 \% \\ & \text { Syndiotactic } \end{aligned}$
$\begin{array}{r} \text { Melt Transition, }{ }^{\circ} \mathrm{K} \\ (2,3) \end{array}$	378	433
$\begin{array}{r} \text { Glass Transition },{ }^{\circ} \mathrm{K} \\ (2,3) \end{array}$	354, 373	408
Solubility Parameter $\begin{equation*} \left(\mathrm{cal} / \mathrm{cm}^{3}\right)^{\frac{1}{2}} \tag{1} \end{equation*}$	8.6	9.1
Heat Deflection Temperature ${ }^{\circ} \mathrm{F}$ (6) 264 psi	220	155-210

Sources:

1. Billmeyer, F.W., Textbook of Polymer Science, New York: John wiley and Sons, Inc., 2nd ed. , 1971. pp. 25, 230, 404-414, 504,506.
2. Polymer Handbook, J. Brandrup and E.H. Immergut (eds.) New York: John Wiley and Sons. Inc. . 1966.
3. Rheology - Theory and Applications - Volume 1, F.R. Eirich (ed.), New Yorks Academic Press, 1969. p. 453.
4. Ibid., Volume 2, pp. 172-174.

Table II
Commercial Specifications of PS-678 and PMMA-VM

Property	PS-678	PMMA-VM
Lot Nos.	$\begin{aligned} & \text { FK } 01105 \\ & \text { FF } 10912 \end{aligned}$	$\begin{aligned} & 7-11103 \\ & 7-11112 \\ & 7-15196 \end{aligned}$
Specific Gravity	1.04	1.18
Deflection Temperature (1) 264 psi; F	177	182
Vicat Softening Point ${ }^{\circ} \mathrm{F}$	194	190
Melt Viscosity, poise	800	--
Melt Index, g/10min	18.0	15.0
Flow Temperature, ${ }^{\circ} \mathrm{F}$	--	284
Processing	Injection	Injection
Form	$\frac{1}{8} \text { "pellets }$	$\frac{1}{8} \text { "pellets }$

Data from respective product specification brochures for styron ${ }^{(1)} 678$, The Dow Chemical Company and Plexiglas ${ }^{8} \mathrm{VM}$, Rohm and Haas Company.

Abstract

The properties of PNIMA are given in Table I. A Rohm and Haas Company acrylic molding powder designated (R)

Plexiglas VM was used in this study. This material is referred to as PMMA-VM. Significant commercial processing properties are given in Table II. As with the PS-678, the molding powder was supplied as one eighth inch pellets.

The similarities of the two polymers are readily apparent in Tables I and II. Thermal transitions, solubility parameters, non-crystalline structure, carbon backbone, product form and recommended uses are all similar for the two materials. While no quantitative measure of compatibility was attempted, the uniform, homogenous visual appearance of the melt blends qualitatively confirmed that the polymers were of a common type.

Before use in either the rheogoniometer or packed bed tests, the polymers were blended (if required) and dried for a minimum of two hours at $85^{\circ} \mathrm{C}$ under 45 mm of mercury vacuum in a Patterson-Kelly "V" type blender. Approximately 150 pounds of the molding powder could be dried in a batch. The dried and blended materials were stored in plastic bags in sealed cans prior to use. No evidence of bubbles or other moisture-related
problems was observed in the melts. The further preparation of samples for use in the rheometer tests is described below.

Equipment and Procedures

Preparation of thin sheets of the polymers in a laboratory hydraulic press as samples for the rheological testing is described below. The modified Model R-18 instrument and the experimental procedure are briefly reviewed.

Small quantities of the previously dried pure polymers were separately ground in a Wiley mill with dry ice to prevent softening due to the heat generated. Several sieve fractions of each polymer were collected. The finest fraction passed through a No. 30 sieve using a Tyler Ro-Tap shaker. Maximum particle size for this fraction was 595 microns. This fraction was vaculam dried and blended as appropriate to press into sheets.

The Carver press plate apparatus used to prepare the samples is shown in Appendix Figure B-1. Briefly, the resin powder was placed between two polished nickel-plated press plates separated by a copper shim. This sandwich was heated to 190 to $200^{\circ} \mathrm{C}$ and pressed up to 10,000 psig between the platens of the Carver
press. After cooling under pressure, a uniform, bubblefree sheet five inches square and 0.030 inches thick was obtained. One inch diameter disks were punched from the sheets and stored in a desiccator prior to testing.

The theory and practice of rheological characterization using the Roberts-Weissenberg cone and plate rheogoniometer are well documented. References include work by Fredrickson (34), Jobling (57), McKennell (67), Eirich (87), Van Wazer (117) and Weissenberg (120). The particular instrument used for this study was equipped with a heated, inert gas-purged chamber surrounding the cone and plate to allow testing in the melt. The upper cone was heated and thermostated. Temperature could be maintained within $\pm^{\circ} \mathrm{C}$ of a target value during a test.

A glass port was provided so that the sample was observable throughout testing. Breakup at high shear rates ($\sim 20 \mathrm{sec}^{-1}$) was thus visually indicated by a distorted edge appearance as well as by erratic deflection readings. In general, shear rates from about 0.002 to $20 \mathrm{sec}^{-1}$ were scanned in geometric doubling steps. Stepwise changes in shear rate were set by a gearbox driven by a constant speed DC motor. Complete
specifications for the rheogoniometer are given in Appendix Table B-I.

Results and Analysis

The experimental plan for the rheogoniometer tests is presented in Table III. The two pure polymers plus $3: 1$ and $1: 1$ blends of each with the other were tested over a four decade range of shear rate at 180 to $220^{\circ} \mathrm{C}$ in 10 degree increments. Three separate tests of each blend/temperature combination were conducted. Both shear and normal stress measurements were taken. The normal force results are included in the complete data summary in Appendix D, but do not otherwise appear in the text or analysis. Due to the large volume of data, only the average of the three replicates of each blend/ temperature is tabulated. The relationships for calculating shear rate and shear and normal stresses from the rheogoniometer readings are given in Appendix Table B-I.

Figures 1, 2 , and 3 show typical T versus $\dot{\gamma}$ curves for pure PMMA-VM, 50/50 PMMA/PS and pure PS-678, respectively. The non-Newtonian behavior of each material is evident. Further, the blend follows the same pattern as the pure polymers. Dashed extensions are based on Huang model fit of the data.

Table III
Rheological Experiments

Materials:	100\% PMMA-VM
	100\% PS-678
	$75 / 25$ PMMA/PS
	50/50 PMMA/PS
	25/75 PMMA/PS
Temperature ${ }^{\circ}{ }^{\circ} \mathrm{C}$:	180
	190
	200
	210
	220
Shear Rate, sec ${ }^{-1}$:	0.002 to 20
Reproducibility:	Three replicates per experimental condition
Responses:	Load cell deflections corresponding to shear and normal stresses

Figure 1
Rheogoniometer Results for 100% PMMA-VM

Figure 2
Rheogoniometer Results for 50/50 PMMA/PS

Figure 3
Rheogoniometer Results for 100% PS -678

Figure 4 is a cross plot of T on temperature at several values of $\dot{\gamma}$ for $50 / 50 \mathrm{PMMA} / \mathrm{PS}$. As shear rate increased, the effect of temperature on shear stress was proportionately less.

Figure 5 is yet another type of plot in which the effect of blend composition on shear stress is shown at a constant temperature $\left(200^{\circ} \mathrm{C}\right)$ for several shear rates. In spite of the attempt to match the rheological behavior of the two polymers, the PMMA-VM exhibited significantly higher stress at a given temperature and shear rate than the PS-678. Further, the blends did not fall linearly between the two pure components. The PS-678 had a disproportionate effect in stress reduction for a given concentration. Related behavior in the packed bed will be highlighted in Chapter IV.

The data were fitted to several of the rheological models including the power law, Ellis and Huang equations. Parameters for the Ellis and Huang models are summarized in Tables IV and V, respectively. For the Ellis equation the parameters correspond to an alternate form of (II.11); 1.e.,

$$
\begin{equation*}
\Delta_{i j}=-\frac{1}{\eta_{0}}\left[1+\left(\frac{T_{1 j 1}}{\tau_{\frac{1}{2}}}\right)^{C-1}\right] \tau_{1 j} \tag{III.1}
\end{equation*}
$$

Figure 4
Effect of Temperature on Shear Stress

Figure 5
Effect of Material Composition on Shear Stress

$$
\begin{gathered}
\text { Table IV } \\
\text { Ellis Rheological Equation Parameters }
\end{gathered}
$$

$04^{\circ} \mathrm{Z}$	18＊ 2	$98^{\circ} \mathrm{Z}$	$66^{\circ} \mathrm{Z}$	$\angle T \cdot E$	2
000 「ャて	00ザヵセ	005° ¢ $¢$	00ぐ62I	006^{*} 2SI	$\underline{1}$
006＇91	$008^{\prime 2} \mathrm{LZ}$	$006{ }^{\circ} \mathrm{LT}$	007＇06	002「ヶてZ	${ }^{0} 4$
$97 \cdot 2$	$92^{\prime} 2$	$27^{\circ} \mathrm{Z}$	ササ＊	$49^{\circ} \mathrm{Z}$	∞
O0I＊ヶ0I	002＊90	00．${ }^{\circ}$ をZI	002＇80I	006＊9EI	－
005＇I2	$008{ }^{*} \dagger$ ¢	006． L	004＇20I	000＊乙とて	q
$0 \varepsilon^{\circ} \mathrm{Z}$	IT＇Z	$677^{\circ} \mathrm{Z}$	εL^{\cdot}＇Z	$25^{\circ} \mathrm{Z}$	D
00と・62I	$006{ }^{\circ} \mathrm{L}$	009 ${ }^{\text {2 }}$（0T	009＊82I	00ヶ＊LIT	${ }_{5}^{2}$
00を＊L		002＊86	006＊ILI	001＊ $2 S_{\text {¢ }}$	4
εz^{\prime} Z		$87^{\circ} \mathrm{Z}$	ع9＇乙	LL＇Z	2
006 ${ }^{\circ} 80$ I	009＊8ヶI	009＊ 27 I	00サ＊Lヵし	00サ＊8をI	－
$008{ }^{\circ} 07$	004＇L9	00ヶ＊ヶと		00ザと釉	4
$97^{\circ} \mathrm{Z}$	$6 \varepsilon^{\circ} \mathrm{Z}$		$s z^{\prime} \mathrm{Z}$	น ${ }^{*}$ Z	2
000＊97t	OOE＇こと巾	005 ${ }^{\circ} 987$	002＇08S	000＊ヶ0 4	$\stackrel{\stackrel{2}{\tau}}{\sim}$
008＊ $6+$	004＂66	000＇602	006＊867	000＊ 10% 「	4
022	012	002	067	081	73ा8888

Test Material
100% PMMA－VM
$75 / 25 \mathrm{PMMA} / \mathrm{PS}$
$50 / 50 \mathrm{PMMA} / \mathrm{PS}$
$25 / 75 \mathrm{PMMA} / \mathrm{PS}$
$100 \% \mathrm{PS}-678$
Table V

Huang Rheological Equation Parameters

Temperature ${ }^{\circ} \mathrm{C}$

$W \Lambda$-VWLA $200 I$
$75 / 25$ PMMA/PS
50/50 PMMA/PS
$25 / 75$ PMMA/PS
100% PS-678
as given by Bird (6) and Sadowski $(91,92)$ in which

$$
\begin{align*}
& \frac{1}{\eta_{0}}=\phi_{0} \tag{III.2}\\
& \tau_{\frac{1}{2}}=\left(\phi_{1} \eta_{0}\right)^{\frac{1}{-C l+1}} \tag{III.3}\\
& \alpha \equiv c \tag{III.4}
\end{align*}
$$

Using this form, the lower limiting viscosity was estimated from the data as

$$
\begin{equation*}
\lim _{T \rightarrow 0} \eta=\eta_{0} \tag{III.5}
\end{equation*}
$$

which was assumed to correspond to the straight line portion of the rheological data at low shear rate. Further, $T_{\frac{1}{2}}$ was estimated as

$$
\begin{equation*}
T_{\frac{1}{2}}=|T| \text { @ } \quad \eta=\frac{1}{2} \eta_{0} \tag{III.6}
\end{equation*}
$$

The third parameter, \boldsymbol{C}, was estimated by computer simulation. Allowing the computer to estimate all three parameters did not significantly improve the fit of the data and was rejected in preference to the technique described above.

All four parameters in the Huang model were computerestimated. The computer routine was based on an iterative least squares estimation of the non-linear equation
parameters. The subroutine written to enter data into the main program is included in Appendix C.

The standard error of fit for the Ellis and Huang models is summarized in Table VI. The power law proved markedly inferior to the more powerful three and four constant models and is not included in the comparison. The standard error results show equally good representation of the data with either equation. A representative comparison of the actual results and the predicted curves for both models is provided by Figure 6. The $50 / 50$ PMMA/PS blend at $200^{\circ} \mathrm{C}$ is shown. Evidently. these models are excellent representations of the experimental results.

These results were used to estimate the appropriate values of the fluid parameters at the temperature of the packed bed flow experiments. In the case of the Huang model, each parameter was plotted as a function of temperature and composition as shown for A in Figure 7. Values of A, B, C, and n estimated for the packed bed analysis are presented in Table VII.

Of the Ellis model constants, only $\boldsymbol{\eta}_{0}$ varied in a consistent manner with temperature. A similar result was reported by Sadowski for the polymer solutions he
Equation
Huang
Ellis

Figure 6
Comparison of Huang and Ellis Model Constitutive Equations

Figure 7
Temperature Dependence of Huang Model Parameter A

studied at room temperature (91, 92). Thus, the estimates of η_{0} in Table VIII were made in an analogous manner to the Huang constants, but $\tau_{\frac{1}{2}}$ and \mathbb{C} values are arithmetic averages of the five separate rheological test results over the temperature range. A single exception is the value of $T_{\frac{1}{2}}$ for PMMA which was graphically estimated.

An independent check of these results has been provided by Han, et al (45) who combined them with capillary rheometer data for the same polymers and blends. The combined data covered the shear rate range from 10^{-2} to $10^{3} \mathrm{sec}^{-1}$ and demonstrated excellent agreement of the two sets of results.
$\mathcal{\sigma} \left\lvert\, \begin{array}{lllll}n & i & \cdots & 0 & n \\ \dot{\sim} & \dot{\sim} & \dot{\sim} & \dot{i} & \dot{i} \\ \dot{N}\end{array}\right.$
 Test Material
100\% PMMA-VM
$75 / 25 \mathrm{PMMA} / \mathrm{PS}$
$50 / 50 \mathrm{PMMA} / \mathrm{PS}$
$25 / 75 \mathrm{PMMA} / \mathrm{PS}$
$100 \% \mathrm{PS}-678$

CHAPTER IV. PACKED BED EXPERIMENTS

The packed bed test equipment for this study was designed, fabricated and instrumented to provide a complete and accurate characterization of the polymers in a commercial scale flow regime. A description of the major system components and the test procedures is given below. Results of the tests are reviewed and analyzed. The theoretical porous media flow model developed for the Huang rheological equation of state is tested using these data.

Materials

The five polymer systems characterized rheologically were also examined in the packed bed experiments. All tests were conducted at about $204^{\circ} \mathrm{C}$. Reasonable flow rates and pressures were achieved at this temperature. Initial testing at temperatures up to $225^{\circ} \mathrm{C}$ resulted in polymer degradation due to the retention time-at-temperature of about 1.5 hours, average.

The pressure and temperature dependence for each polymer and blend was required in the analysis of the packed bed data. This information is summarized in Table B-II and Figure B-2. Appendix B. A blend density was assumed proportional to the weight fraction of each component, since the polymers are basically viewed as

Abstract

incompatible. Thus, no volume change on mixing would be expected.

A description of the glass beads used for the bed packings is given in Table IX. The beads were high quality blast beads selected to provide a tenfold range of particle size. Maximum particle-to-bed diameter ratio was about 0.1. A complete description of the beads including the manufacturer's specifications is given in Appendix Table B-III.

Equipment and Procedures

A simple schematic of the major components of the melt extrusion system is shown in Figure 8. The associated hot oil circulation system is represented in Figure 9. Polymer was melted and extruded at constant pressure from the Prodex extruder to the Zenith metering pump. The molten polymer was metered by the pump through a long lead pipe section to the inlet pressure transducer, through the packed bed to the outlet pressure transducer and through the trailing pipe section to an exit nozzle. Flow rate was conveniently measured by direct weighing of timed samples caught at this nozzle. Temperature was potentiometrically measured at several points both in the oil circulation system and in the melt to assure uniformity. The pressure trans-
Designation
$V-390$
$V-280$
$V-1607$
$V-080$
$P-047$
Glass beads manufactured by Potters Bros. Inc., Carlstadt, NJ.
Test section diameter 4.053 in . or 10.295 cm .
Figure 8

ducers were connected to transmitters which read out on mercury manometers. Both inlet and outlet gauge pressures and the differential between them were measured.

The extruder was a two inch Prodex equipped with a metering type screw and a 24/1 length/diameter ratio barrel. Dried polymer was hand fed to the hopper which was continuously heated by two lamps to minimize moisture regain. Melt temperature was controlled in three resistance heated zones to closely match the test piping temperature. Small diameter piping to the Zenith pump was also resistance heated and insulated.

The Zenith pump was a two gear Type HLB-4729 staple fiber hot pump with anominal $20 \mathrm{cc} / \mathrm{rev}$ delivery. The pump was enclosed in a hot oil-fed, insulated aluminum block to maintain constant temperature.

Exiting the Zenith pump, the melt entered the main piping system. Leading and trailing section flow channel size was 3.83 inches diameter corresponding to the actual ID of nominal 4 inch, schedule 80 pipe. Both sections were fully oil-jacketed and were approximately 37 and 25 inches long, respectively. Thermocouple ports were provided in each, both in the annular oil chamber and communicating with the flow channel. Maximum

Reynolds numbers of the order of 10^{-4} are estimated for these pipe sections which were intended primarily to promote fully developed laminar flow entering and exiting the test section.

The pressure transducers were mounted in specially designed solid steel flanges, one on either side of the test section. Temperature at the transducer sensor and in the melt flow was measured in each flange. The flanges were not oil-jacketed, but were heavily insulated. Temperature difference between the transducers was generally about $1^{\circ} \mathrm{C}$ and did not exceed $2^{\circ} \mathrm{C}$. The flow temperatures measured in these flanges (one inch radially into the melt) characterized the packed bed temperature. In general, bed inlet temperature was about $1^{\circ} \mathrm{C}$ lower than outlet temperature. In no case was data taken when this difference exceeded $3.5^{\circ} \mathrm{C}$, since significant viscous heating was indicated by such a condition.

The elements of the packed bed are shown schematically in Figure 10. The section was oil-jacketed and was overbored to allow insertion of the sleeves and supports which defined the packed bed. The machined bed diameter was 4.053 inches. Moving in the direction of flow, the section contained a spacer sleeve, outer
Figure 10
Packed Bed Test Section

bead support screen, beads packed in a sleeve, inner bead support screen, perforated metal screen support plate, breaker plate and breaker plate support sleeve. The several support members were found necessary to prevent buckling of the screens which defined the packing space. The contribution of these members to overall pressure drop was accounted in the data analysis by subtracting out their contribution to the pressure difference. Data for this purpose was obtained in blank flow experiments conducted with the supports in place, but without packing. Various combinations of sleeves allowed beds of $1.75,4.29$ and 6.10 cm depth to be tested.

Pressure range of the transducers was 0 to 3000 psig. Each was initially calibrated at temperatures of 27, 160,200 and $240^{\circ} \mathrm{C}$. A special jig to hold both transducer bulbs and connect to an hydraulic dead weight tester was immersed in a constant temperature oil bath for this calibration. Small but real differences in readings between temperatures were recorded for both transducers. The data is given in Appendix Table C-III and Figure $\mathrm{C}-1$. The individual transducer calibration curves at $200^{\circ} \mathrm{C}$ were used in the packed bed tests to convert manometer readings to psig pressure units.

Average absolute error in the net pressure difference values was calculated to be ± 7 psig.

Before experimental work was begun, a method was devised to assure that identical packed beds could be repeatedly prepared. For each bed depth and bead size combination, the test section was packed by tapping and shaking until it appeared uniformly full. The beads were then poured out and weighed. This procedure was repeated several times and an average weight determined. A plot of depth versus weight for each bead was thus developed. The exact weight of beads for each bed was taken from the best line through the data points, including the origin. For all packed bed tests, the same weight of beads was used. For the largest beads (.979 cm diameter), a count was used rather than weight. This data is summarized ir Table C-IV, Appendix C.

Specification of bed porosity was necessary to calculate the bed friction factor. The porosity, \in, is the void space in the packed bed expressed as a fraction of the total volume of the bed. Since the packed beds were prepared with known weights (or count) of beads, an accurate bead density allowed calculation of bead volume, and void volume by difference with the total volume. The density of each bead size was determined
by displacement of water in a volumetric flask using a modified pycnometer technique. Values of ϵ are reported in Table X. Data for the determination of these values of ϵ are given in Appendix Table $C \rightarrow V$.

The experimental procedure required preparation of an appropriate packed bed section, installation of the test section into the piping system, then preheating the system to operating temperature. Flow was begun at a low rate and continued until all temperatures and the pressures equilibrated. Flow was set and verified several times as pressure and temperature readings were recorded. Two or three consecutive sets of readings spanning at least ten minutes and showing no significant variations were accepted as equilibrium data.

Detailed descriptions and specifications for each major piece of equipment discussed above are given in Appendix B. The procedures including calibration of the pressure transducers, packed bed loading and the actual test conduct are detailed in Appendix C.

Results and Analysis

The experimental plan for the packed bed experiments is summarized in Table XI. A total of 59 separate tests were conducted including several complete repli-

Table XI. Design of Packed Bed Experiments

Notes:

1. Total 59 tests (different beds) conducted.
2. PMMA and PS selected for similarities, availability and flowability.
3. Minimum flow rates limited by extruder speed; maximum flow rates limited by pressure developed.
4. Smallest particles limited by estimated pressures; largest particles conformed to guideline of $10 / 1$ bed/bead diameter ratio to avoid wall effects.
5. Bed depth limited by pressure developed.
6. For 0.979 cm diameter beads, bed depths were 1.83 and 4.37 cm .
cations and selected tests at the greatest bed depth. Combinations of conditions in which pressure exceeded 3000 psig or significant viscous heating precluded isothermal equilibrium operation were discarded from the data analysis.

The data summary for the packed bed experiments is given in Appendix E, Tables E-I through E-V. Many readings in addition to those summarized were taken as control points in monitoring the system. A summary of a complete set of test readings is given in Appendix Table C-VI.

Many possibilities for examining such an array of data exist. Checks of trends and consistency are possible by simple graphical representations. Figures 11, 12 and 13 illustrate the basic results in which flow rate through the packed bed is related to pressure drop. Development of high pressures with the PMMA-VM even for large particles (0.679 cm diameter) is indicated in Figure 11. Further, viscous heating effects were particularly restrictive and limited the data obtained for PNIMA-VM. Progressively smaller bead sizes are illustrated for $50 / 50$ PMMA/PS in Figure 12 (0.375 cm diameter) and for pure PS-678 in Figure 13 (0.198 cm diameter). Reproducibility of the data is illustrated in Figure 14

for $50 / 50$ PMMA/PS where the data from two tests (numbers 39 and 46) conducted a week apart are plotted. Average difference in the pressure drop at a given flow rate is 5.5%.

The effect of bead size on pressure drop is illustrated for several flow rates and two packing depths for $50 / 50$ PMMA/PS in Figure 15. For tube flow, pressure drop is directly proportional to tube length and inversely proportional to the square of tube diameter. Thus, at a given pressure drop, the ratio D^{2} / L is constant, for the same flow. Very nearly the same dependence is calculated for the sets of curves in Figure 15. Similar results were reported for polyethylene by Gregory (37, 38).

The composition dependence for pressure drop is presented in Figure 16. The three largest particle sizes at two intermediate flow rates are shown for a bed depth of 4.29 cm . Addition of relatively small amounts of PS-678 to the blend gives large pressure reductions. This effect is analogous to the stress reduction in the rheological experiments noted in Chapter III, Figure 5. Greater proportional effect is evident at smaller particle size.

Figure 15
Particle Size Dependence of Pressure Drop

Figure 16
Composition Dependence of Pressure Drop

Although examination of the independent effects of each experimental variable on the responses is a useful exercise, it does not adequately represent the total system behavior. Through the friction factor - Reynolds number relationship expressed in equation (II.98), all of the packed bed data may be comprehensively represented. Both the Huang and Ellis model packed bed developments were tested. The latter is of significance primarily as a reference point of demonstrated success in other studies. To review, the friction factor represents the physical characteristics of the porous medium and of the test material, i.e.:

$$
\begin{equation*}
f^{*}=\frac{D_{p}}{L} \frac{\Delta P}{\rho V_{\delta}^{2}} \frac{\epsilon^{3}}{1-\epsilon} \tag{IV.1}
\end{equation*}
$$

The friction factor is independent of the rheological nature of the fluid. Its product with the Reynolds number is a constant as expressed in (II.98). The effective Reynolds number for packed bed flow is then

$$
\begin{equation*}
N_{r e, \text { eff }}=\frac{D_{p} V_{0} \rho}{(1-\epsilon) \eta_{\text {eff }}} \tag{IV.2}
\end{equation*}
$$

The particular equation of state selected to represent the rheology of the fluid determines the form of the effective viscosity. $\prod_{\text {eff }}$ for the Huang model was given as (II.99). For the Ellis model, Sadowski gave:

$$
\begin{equation*}
\frac{1}{\eta_{\text {eff }}}=\frac{1}{\eta_{0}}\left[1+\frac{4}{\alpha+3}\left(\frac{\tau_{R h}}{\tau_{\frac{1}{2}}}\right)^{\alpha-1}\right] \tag{IV.3}
\end{equation*}
$$

Huang model results for each individual material are shown in Figures 17 through 21. A summary plot is given in Figure 22 for the Huang model. Only the summary results are presented for the Ellis model in Figure 23. Computer programs were developed to calculate both sets of results. These are detailed in Appendix Tables C-VII and C-VIII. The results given in the figures are tabulated in Appendix F .

The individual materials - both pure polymers and blends - are well represented by equation (II.98). The constant c varied among the materials from about $\mathrm{c}=120$ for PNMA-VM to a high value of $\mathrm{c}=275$ for 75/25 PMMA/PS. For the three blends and pure PS-678, a value of $\mathrm{c}=260$ adequately characterizes the total 187 data points. For the Ellis model, c is roughly ten units higher than those given above.

Although the value of c was described as adjustable to give agreement with experiment, several investigators found values of $c=150$ or 180 for various systems and fluids (19, 35, 38, 92). The origin of these values was in work by Ergun (28) and Carman (15),

Figure 17

Friction Pactor-Reynolds Number Correlation for the Huang Model

Figure 18

Friction Factor-Reynolds Number Correlation for the Huang Model

Figure 19

Friction Factor-Reynolds Number Correlation for the Huang Model

Figure 20
Friction Factor-Reynolds Number Correlation for the Huang Model

Figure 21

Friction Factor-Reynolds Number Correlation for the Huang Model

Figure 22
Friction Factor-Reynolds Number Correlation fot the Huang Model

Figure 23

Friction Factor-Reynolds Number Correlation for the Ellis Model

respectively. Other studies have reported values from $c=118$ (60a) to $c=650$ (50).

As originally conceived, c accounts for the tortuosity of the porous medium, reflecting the inability to accurately define path length and pore size in so complex a geometry. Deviations from the expected values of Ergun and Carman have been attributed to viscoelastic effects by Sadowski $(91,92)$ and to the presence of an anomalous fluid layer on the particles' surface by Kozicki, et al (59). Further, the Darcy law development leading to (II.98) ignored inertial effects as small compared to viscous effects in porous media flow.

Sadowski observed deviation of the friction factor versus Reynolds number from $c=180$ for a solution of high molecular weight hydroxyethylcellulose in water. The deviation occurred above $N_{\text {re,eff }}=0.5$, but not below that value. He defined a characteristic time to account for the suspected viscoelastic effects which corrected the deviant points without significant effect on other test fluids. Christopher, however, reanalyzed Sadowski's data using the power law rather than the Ellis fluid model (19). He found that the deviation then occurred at low values of Reynolds
number, but not at the high values. Further, Kozicki was able to correlate the same data using a modified Ellis model Reynolds number which allowed for the existance of an adsorbed fluid layer on the particles' surface. Thus, no solid evidence exists in this case to support the theory of viscoelastic effects.

The assumption that inertial effects can be ignored can be tested. Scheidegger reported that the critical Reynolds number for porous media flow above which inertial forces may be significant, lies between 0.1 and 75 (97). In the present study, maximum Reynolds numbers were $<2 \times 10^{-5}$. The assumption seems reasonable.

From the discussion above, it seems unlikely that the variations in c are due to some unaccounted fluid behavior. Since different values of c have been calculated for the same packed beds with different fluids, it is equally unlikely that the bed geometry is alone responsible for the results. Interaction between these factors offers a plausible explanation.

The anomalous adsorbed fluid layer proposed by Kozicki is one possible interaction. Kozicki introduced two factors termed the impermeability and aspect factors to account for velocity changes resulting from polymer adsorption or gelation on the bed packing.

This idea is tested by the following reasoning.

Only the PMMA-VM results deviated significantly from a value of $c=260$. One may suppose that the adsorption phenomenon is related to the presence (or absence) of PS-678. This idea is supported by recalling that VanOene showed PS to be the continuous phase in PNMA/PS biends (116). If such a layer exists, the bed porosity ϵ should be effectively reduced. As \mathcal{E} decreases, c decreases. Thus, the four resins containing PS-678 (high values of c) are logically the ones for which adsorption occurs. Carrying the analysis further, the effect of an adsorbed layer should be greatest for small particles and low flow rates (greatest reduction in effective values of ϵ). No trend is evident that the values of c increase at the presumably inflated values of ϵ for small bead sizes. In fact, c is approximately constant for a given material, flow rate and bed depth as bead size decreases with the values of ϵ which were used. Moreover, for a given material, bed depth and bead size, c increases as flow rate increases, contrary to expectation if values of ϵ are inflated at low flow rates.

It is clear that none of the proposals reviewed
above satisfactorily explains the differences in the f^{*} versus $N_{r e, e f f}$ relationship for PMMA-VM compared to the other materials tested. One can propose various additional adjustable parameters to produce superposition of the results, but physical significance is questionable. The need for study leading to a mechanistic model which more accurately describes porous media flow, is evident. Meanwhile, correlation of data by the method of this study provides accepted working relationships.

A prime objective of this work was the assessment of blend behavior compared to that of the pure components. In all respects, the three blends responded identically to pure PS-678. No evidence of phase inversion, phase separation or other anomalous effects exists. Thus, in both the simple geometry of the rheogoniometer and the complex geometry of the packed bed, the blends behaved as though they were pure and single phase materials. This observation extends the pattern of results reported by Hill and Maxwell (52) and Han (40) for less complex flow geometries (discussion in Chapter II.).

CHAPTER V. CONCLUSIONS

The results of this investigation may be summarized by the following statements.

1. A four parameter form of the thermodynamicallybased Huang rheological equation of state provided excellent representation of experimental data for pure component and blend melts of polystyrene and poly(methyl methacrylate). This study provided the first experimental test of the model with molten polymers.
2. The cone and plate rheogoniometer data from this study and the capillary rheometer data of Han (45) provided a thorough rheological characterization of the polymers and blends over a five decade shear rate range.
3. A packed bed test apparatus of commercial size was designed, fabricated and successfully tested in this study.
4. Disproportionate effects in shear stress reduction (Figure 5) and pressure drop reduction in the packed beds (Figure 16) were observed for addition of polystyrene to poly(methyl methacrylate). These effects are tentatively ascribed to the tendency of polystyrene to form the continuous phase in
blends of the two polymers as reported by VanOene (116). Melt viscosity of the PS-678 was significantly lower for a given set of conditions than was that of PMMA-VM. No other unusual effects were observed for blends of the polymers.
5. The application of the Huang equation of state to an hydraulic radius capillary model of the porous medium led to a generalized Darcy's law (II.93). Analytic solution of the resulting equations allowed the packed bed experimental data to be represented through a friction factor-Reynolds number correlation. Both this development and that given previously by Sadowski $(91,92)$ satisfactorily represented the total 214 data points for the five polymers and blends. Thus, a test of the Huang model for melt flow in a complex geometry was provided.
6. The values of the adjustable parameter c in equation
(II.98) were significantly different for PNINA-VM ($c \doteq 120$) compared to PS-678 and the polymer blends ($c \doteq 260$). This result is attributed to an unidentified interaction between these fluids and the packed beds. The data from this study do not provide the basis for a phenomenological understanding
of this result. Surface tension and other surface effects may be suspected of contributing to the observed differences in behavior.
7. The analysis does provide working relationships among the experimental variables. Using the equations which were developed, the pressure drop through a packed bed can be estimated from the rheological properties of the fluid and the physical properties of the packed bed. Sensitivity of the pressure drop to the experimental variables can be tested.
8. Packed bed flow behavior of more rheologically complex fluids than those reported herein can be represented by this new model. The Huang model provides a more powerful and versatile description of fluid rheology than other models previously applied to porous media flow.

CHAPTER VI. RECOMMENDATIONS

The present investigation provided two extensive test applications of the Huang rheological equation of state. An appropriate simplification of the model for isothermal, incompressible, pseudoplastic flow gave a tractable equation which closely described experimental data. Extension of this model to other polymer systems (melt and solution) and other viscometric geometries is warranted.

The second test of the model was its adaptation to the hydraulic radius capillary representation of a packed bed producing a modified Darcy's law. The applicability of the hydraulic radius concept in correlating experimental data was demonstrated.

The variation in the adjustable parameter c, both among materials and from expected values, requires further study. One suggested extension of the work is limited testing of another polymer previously shown to (R) exhibit predicted behavior. Alathon 10 polyethylene (E.I. Du Pont, Inc.), investigated by Gregory (37, 38), could be used for this purpose. Such a study would provide a check of the apparatus.

The change in c from a value of about 120 for pure PMMA-VM to a value of about 260 for the other resins can be explored. In particular, tests of blends with less than 25 percent PS-678 would show whether a consistent trend between the extreme values exists.

More basic studies of the morphology of melt blends of the polymers taken from packed beds would allow direct observation of differences in those materials which gave different values of c. Experiments to measure surface tension and other surface effects are also recommended to understand the differences.

The apparatus used in conducting the packed bed tests is adaptable for flow studies of other melt systems. The large diameter main piping and the instrumentation would be suitable for the investigation of radial temperature and pressure distributions around a packed bed, static mixer or other test devj.ce.

Finally, the work described herein can be generalized to describe other systems of importance such as secondary oil recovery flow, filtration and related extrusion operations.

APPENDIX A. NOMENCLATURE

$A=$ constant in the Huang equation of state, $M / L t$ $A_{r}=$ cross sectional area of packed bed, L^{2}
a $\quad=$ parameter of the beta function radius distribution, dimensionless
$B \quad=$ constant in the Huang equation of state, $M / L t$
B \quad tensor polynomial in the skewed capillary permeability model
b $\quad=$ parameter in the beta function radius distribution, dimensionless; factor related to the reciprocal resistance of a pore, L^{2}

C = constant in the Huang model
$c \quad=$ adjustable parameter associated with the hydraulic radius permeability in the friction factor-Reynolds number correlation
$c_{0}=$ the Kozeny constant, dimensionless
$c_{5}, c_{6}=$ constants in the Huang model
D = diameter of a tube, L
$D_{p}=$ diameter of a particle, L
$f \quad=$ friction factor for tube flow, dimensionless
$f^{*}=$ friction factor for packed bed flow. dimensionless
$f(s)=$ shape factor, dimensionless
$f(\epsilon)=$ porosity factor, dimensionless

η	$=$ non-Newtonian viscosity, M/Lt
$\prod_{\text {eff }}$	$=$ effective non-Newtonian viscosity, M/Lt
70	```= parameter in the Sisko and Sutterby models, M/Lt```
η_{N}	= parameter in the Powell-Eyring model, $\mathrm{M} / \mathrm{L} t$
π_{t}	```= overall apparent viscosity in the Huang model, M/Lt```
θ	= angle, radians
λ	= unit orientation vector in the skewed capil-
	lary model, dimensionless
λ	$=$ thermal conductivity, $\mathrm{ML} / \mathrm{t}^{3} \mathrm{~T}$
μ	= Newtonian viscosity, M/Lt
ξ	$=$ coefficient in the Huang model
π	$=3.14159 .$.
ρ	= fluid density, M / L^{3}
σ	$=$ rate of generation of entropy, ML ${ }^{2} / \mathrm{t}^{3}$
T	$=$ shear stress tensor, $M / L t^{2}$
$\overline{\overline{\tau_{R}}}$	$=\text { shear stress at the wall, } M / L t^{2}$
$\tau_{R_{h}}$	```= hydraulic radius shear stress at the wall, M/Lt'2```
	= force potential. L^{2} / t^{2}
ϕ_{0}, ϕ_{1}	```= parameters in the Ellis model, Lt/M and variable dimensions, respectively```
Ψ	$=$ velocity potential, L^{2} / t
x	= parameter in the Powell-Eyring model

$$
\begin{aligned}
\Omega= & \text { the number of micromolecular states of an } \\
& \text { assembly, Huang model }
\end{aligned}
$$

Mathematical Operations

$D / D_{t}=$ substantial derivative
$P\left|X^{2} / v\right|=$ the probability function defined as the ratio of the incomplete to the complete gamma functions
$\Gamma|a|=$ the complete gamma function $=\int_{0}^{\infty} \exp |-t| t^{a-1} d t$
$\Gamma|a, z|=$ the incomplete gamma function

$$
=\int_{0}^{z} \exp (-t) t^{a-1} d t
$$

$\nabla=$ vector differential operator, del, L^{-1}
$\nabla^{2}=$ Laplacian operator

APPENDIX B.

MATERIALS AND APPARATUS

Plate Title Page
Figure B-1 Laboratory Polymer Press 1
Table B-1 Rheogoniometer Specifications 2
Table B-IIa Temperature and Pressure De- 3
pendence of Polymer Density
Table B-IIb Pressure Dependence of Resin 4Density at $398^{\circ} \mathrm{F}$
Figure B-2 Dependence of Polymer Density 5 on Temperature and Pressure
Table B-III Manufacturer's Glass Bead 6Packing Specifications
Table B-IV Prodex Extruder Specifications 7
Table B-V Metering Pump System 8 Specifications
Figure B-3 Detail of Leading and Trailing 9 Pipe Sections
Figure B-4 Detail of Pressure Transducer 10 Flange
Table B-VI Pressure Measuring System 11 Specifications
Figure B-5 Pressure Measuring System 12 Instrumentation
Figure B-6 Transducer Calibration Jig 13
Table B-VII Hot Oil Bath Specifications 14
Table B-VIII Potentiometer Specifications 15

Laboratory Polymer Press

Top Platten

Top Press Plate

Shim

Bottom Press Plate

Bottom Platten

Jack and Base of Press

Specifications:

Manufacturer:
Carver Laboratory Press
No. 15300-105
Six inch square heated plattens 25-250 ${ }^{\circ} \mathrm{C}$ 0-16,000 psig pressure

Fred S. Carver, Inc.
Summit, New Jersey 07901
Table B-I

Rheogoniometer Specifications

Designation:	Roberts-Weissenberg Rheogoniometer
Model:	R-18
Plate Diameter:	2.50 cm
Cone Angle:	4.0042 deg
Gap Setting:	187μ
Spring Constants:	Torsion, 1.016x10 Compression, 5.90×10^{3} dyne -cm $/ \mu$$\mu$
Manufacturer:	Parol Scientific Instruments Bogor Regis, England

Calculations:
Shear Rate

$$
\dot{\gamma}_{\theta \phi}=\frac{\text { angular velocity }}{\text { cone angle }}=\frac{360}{4.0042 t}=\frac{89.9056}{t}
$$

where $t=$ period of the plate rotation, supplied by the manufacturer as a function of gearbox settings.

Shear Stress

$$
\tau_{\theta \phi}=\frac{3 K_{T} \Delta_{T}}{2 \pi R^{3}}=\frac{3\left(1.016 \times 10^{3}\right) \Delta_{T}}{2 \pi\left(\frac{2.50}{2}\right)^{3}}=248.373 \Delta_{T}
$$

where $\Delta_{\boldsymbol{T}}=$ torsional deflection, μ
Normal Stress

$$
\tau_{11}-T_{22}=\frac{2 K_{N} \Delta_{N}}{\pi R^{2}}=\frac{2\left(5.90 \times 10^{3} \Delta_{N}\right.}{\pi(2.5 / 2)^{2}}=2403.87 \Delta_{N}
$$

$$
\text { where } \Delta_{\mathrm{N}}=\text { normal deflection, } \mu
$$

Table B-IIa

Temperature and Pressure Dependence of Polymer Density

Material	Temperature ${ }^{\circ} \mathrm{F}$	Density, $\mathrm{g} / \mathrm{cm}^{3}$ @			
		Pressure, psig			
		0	2000	4000	6000
Polystyrene	215	1.019	1.032	1.041	1.051
	380	. 977	. 990	1.001	1.013
	398(est)	. 972	. 985	. 996	1.009
Poly(methylmethacrylate		255	5100	12,750	
	250	1.129	1.149	1.174	
	285	1.112	1.133	1.161	
	320	1.099	1.123	1.150	
	355	1.084	1.110	1.142	
	398 (est)	1.064	1.092	1.133	

1. Data from Processing of Thermoplastic Materials, reference 84.

Procedure:
a) Plot data, ρ vs T with p as a parameter.
b) Extrapolate each isobar to $398^{\circ} \mathrm{F}$; estimate ρ.
c) Plot ρ vs p at $398^{\circ} \mathrm{F}$; estimate values of $\rho \rho$ over the pressure range of interest.
d) For blends, calculate weight average values of ρ from pure polymer values.
e) Values of density used in packed bed calculations are summarized in Table B-IIb.

Figure B-2
Dependence of Polymer Density on Temperature and Pressure

Glass beads manufactured by Potters Bros., Inc., Carlstadt, N.J.

Table B-III

Manufacturer's Glass Bead Packing Specifications

Mininum
$\%$ in Range

영영

> Table B-IV

Prodex Extruder Specifications

Designation:
Size:
Length/Bore Ratio:
Drive:

Screw Type:
Manufacturer:

Compact Extruder
Two inch
24:1
US Varidrive
15 Hp
30 to 130 rpm
Metering
Prodex Corp.
King George Post Road Fords, New Jersey
Table B-V
Metering Pump System Specifications

Designation:
Type:
Nominal Delivery:
Manufacturer:

Drive:

Zenith HLB-4729
Two gear staple fiber hot pump
$20 \mathrm{~cm}^{3} / \mathrm{rev}$
Zenith Products Co.
432 Cherry St.
West Newton, Massachusetts
a. Graham Transmission motor Type P, model 65643-A WF $1.5 \mathrm{Hp}, 1750 \mathrm{rpm}$
b. Transmission model 250 MR 2.8 Input 1750 rpm Output 0 to 230 rpm
c. Reducer 5:1 speed reduction from transmission

Table B-VI
Pressure Measuring System Specifications

Designation:	Taylor Transcope Transmitters
Model:	211 TNO 0
Input Air:	20 psig
Range :	0 to 3000 psig input 3 to 15 psig output
Sensor:	Volumetric pressure bulb no. 90
Manufacturer:	Taylor Instrument Co. 95 Ames St. Rochester, New York 14601
Readout:	Mercury manometer 90 cm , middle scale zero Fisher Scientific Co.

Figure $B-5$

Pressure Measuring System Instrumentation

"a" is connection for pressure transducer

Table B-VII

Hot Oil Bath Specifications

Designation:
Model:
Range:
Fluid:

Control Unit:

Manufacturer:

Cannon High Temperature Bath
H-1
0 to $250^{\circ} \mathrm{C}$
G.E. SF-1017 silicone oil General Electric Silicone Products Division

No. 666 Bronwill Scientific Co.

Cannon Instrument Co. State College
Pennsylvania

Table B-VIII

Potentiometer Specifications

Designation:	Leads \& Northrup Potentio- meter Facility
Type:	K-3
Facility Cat. No.:	$7553-\mathrm{A}$
Meter Cat. No.:	$7553-6$
Range:	$0-1.6$ volts, 3 scales
Error:	0.015% of reading
DC Null Detector	$9834-1$
Cat. No.:	Eppley No. Standard Cell:
Power Supply:	Constant voltage no. 099034
Manufacturer:	Leads \& Northrup, Inc.

Designation:Facility Cat. No.:7553-6$0.015 \%$ of readingEppley No. 7796841.01915 volts
Leads \& Northrup, Inc. meter Facility

K-3
7553-A

Constant voltage no. 099034
-

APPENDIX C.

EXPERIMENTAL PROCEDURES

Plate Title Page
Procedure C-i Rheological Testing 1
Table C-I Calculation of Ellis Rheo- 3logical Model Constants
Table C-II Calculation of Huang Rheo- 4 logical Model Constants
Procedure C-ii Calibration of the Taylor 5 Pressure Measuring System
Table C-III Taylor Pressure Measuring 7
System Calibration Data
Figure C-1 Taylor Bulb Calibration 8 Curves
Table C-IV Packed Bed Bead Loading 9 Calibration
Table C-V Data for Determination of \mathcal{E} 10
Procedure C-iii Packed Bed Experiments 11
Table C-VI Summary of Data for a Packed 13Bed Test
Table C-VII Calculation of Huang Model 15 Friction Factor-Reynolds Number
Table C-VIII Calculation of Ellis Model 19
Friction Factor-Reynolds Number

Procedure $\mathrm{C}-\mathrm{i}$
Rheological Testing

The general procedure followed in operating the Roberts-Weissenberg rheogoniometer is detailed below:

1. Move the heating chamber into place and preheat the apparatus to the test temperature. Purge with dry nitrogen.
2. Set the cone-to-plate gap (187ر) after reaching operating temperature.
3. Zero deflection meters as required.
4. Place a previously prepared disk of resin between the instrument cone and plate. Allow the temperature to equilibrate, air to be expelled and the polymer to melt.
5. Start the plate rotation at the minimum speed (shear rate) to be tested.
6. Observe the torsional and normal deflection readings. When steady, record.
7. Increase rotation speed stepwise through the range of shear rates. Record steady deflection readings at each step. Several instrument range changes are required.
8. Observe the sample visually as the shear rate
increases. Rough edge appearence and unsteady deflection readings indicate maximun test conditions. 9. Replicate the procedure twice more for each resin/ temperature combination.
9. Average the replicate deflection readings and calculate shear and normal stress as a function of shear rate as shown in Appendix Table B-I.

Table C-I

Calculation of Ellis Rheological Model Constants

Technique

As explained in Chapter III, the Ellis model viscosity coefficient η_{0} and the shear stress coefficient $T_{\frac{1}{2}}$ were estimated according to the graphical procedure recommended by Bird (6). The third parameter, \mathbb{C}, was computer-estimated through a non-linear least squares estimation program. The exact program is not available (property of Celanese Corporation) but was derived from the method published by D.W. Marquardt of Dupont, "An Algorithm for Least Squares Estimation of Non-Linear Parameters" in the Journal of the Society for Industrial and Applied Mathematics, Vol. 11, No. 2 (1963).

Input to the base program required subroutines giving the form of the non-linear equation to be fitted, initial estimates of the parameters and the data. The subroutines for the Ellis model were as follows:

SUBROUTINE F CODE (Y,X,B,PRNT,F,I) DIMENSION $Y(500), X(500,10), B(50), \operatorname{PRNT}(5)$
$F=\operatorname{ALOG}((X(I, 1) / B(1)) *(1 .+(X(I, 1) / B(2)) * *(B(3)-1))$. RETURN
END
SUBROUTINE SUBZ (Y, X, B, PRNT, NPRNT, N)
DIMENSION $Y(500), X(500,10), B(50), P R N T(5)$
DO $10 \mathrm{I}=1, \mathrm{~N}$
REIURN
END

Table C-II

Calculation of Huang Rheological Model Constants

Technique

All four parameters in the Huang rheological model were computer-estimated. As explained in Table C-I, the base program was derived from a published method, but is not specifically available (property of Celanese Corporation). Brief subroutines giving the form of the non-linear equation to be fitted, initial estimates of the parameters and the data were required to use the program. The subroutines are reproduced below:

SUBROUTINE F CODE ($Y, X, B, P R N T, F, I$)
DIMENSION $Y(500), X(500,10), B(50), \operatorname{PRNT}(5)$
$\mathrm{F}=\mathrm{ALOG}(\mathrm{B}(1)+\mathrm{B}(2) *(\mathrm{X}(\mathrm{I}, 1) * *(\mathrm{~B}(3)-1)). * \operatorname{EXP}(-\mathrm{B}(4) *$
$1(X(I, 1) * * B(3)))) * X(I, 1))$
RETURN
END
SUBROUTINE SUBZ (Y,X,B,PRNT,NPRNT,N)
DIMENSION $\mathrm{Y}(500), \mathrm{X}(500,10), \mathrm{B}(50), \operatorname{PRNT}(5)$
DO $10 \mathrm{I}=1, \mathrm{~N}$
$10 \quad \mathrm{Y}(\mathrm{I})=\operatorname{ALOG}(\mathrm{Y}(\mathrm{I}))$
RETURN
END

Procedure C-i1
Calibration of the Taylor Pressure
Measuring System

The Taylor system used to measure pressure in the melt consisted of two volumetric transducer bulbs associated with appropriate transmitters which provided a proportional 3 to 15 psig pneumatic output signal. A differential transmitter to directly read pressure difference between the leading and trailing transducers was initially planned, but high cost and long delivery precluded use of this automated readout. Instead, three mercury manometers were used, one each to read gage pressure of the two transducers and one to read the difference between them as a check. Figure B-5 shows the panel constructed to house these instruments.

The transducers were calibrated by connecting the bulbs in a special housing (Figure B-6) with an hydraulic dead weight tester to provide accurate loading. The calibration jig was immersed in a constant temperature 011 bath and calibrated at applied loads from 0 to 3000 psig. Readings from all three manometers were recorded. Calibration at $27,160,200$ and $240^{\circ} \mathrm{C}$ was performed. Selected loads were repeated to test reproducibility.

The data are summarized in Table C-III and are plotted in Figure C-1.

The data at $200^{\circ} \mathrm{C}$ for the leading and trailing transducers were fitted to a least squares line of the form

$$
p(p s i g)=a(H t(c m H g)-b)
$$

The following equations resulted:

Leading $\quad P=49.106$ (Ht - 15.27)
Trailing $P=49.124$ (Ht - 15.77)

Pressure differences were calculated using these expressions.

The residual error (95% confidence limits) in using these equations was $\pm 16.1 \mathrm{psig}$ and $\pm 9.7 \mathrm{psig}$, respectively. The average error (comparing measured and predicted calibration data points) was $\pm 8.6 \mathrm{psig}$ for the leading transducer and ± 4.9 psig for the trailing transducer.
Table C-III

$$
\text { Table } \quad C-I V
$$

Packed Bed Bead Loading Calibration

Bead Number	Bed Height cm.	Average Bead Weight g (1)	Average Deviation \qquad
V-390	1.83	176	1.4
	4.37	435	2.0
V-280	1.75	255.8	0.6
	4.29	639.8	1.3
V-1607	1.75	260.0	1.3
	4.29	654.1	1.4
V-080	1.75	271.3	1.5
	4.29	657.2	2.3
P-047	1.75	228.9	0.8
	4.29	559.1	1.4

$$
\begin{array}{ccc}
\begin{array}{c}
\text { Bead } \\
\text { Density } \\
\text { g/cm3 }
\end{array} & \begin{array}{c}
\text { Bead Wt. } \\
\text { g/cm } \\
\text { Bed Depth (2) }
\end{array} \\
\cline { 1 - 1 } 2.533 & & 97.9 \quad \text { (3) } \\
2.922 & 147.48 \\
2.947 & 150.35 \\
2.942 & 153.94 \\
2.466 & 130.43
\end{array}
$$

$$
\begin{array}{lllll}
\begin{array}{c}
\text { Bead } \\
\text { Number }
\end{array} & & \begin{array}{c}
\text { Bead } \\
\text { Sample } \\
\text { Weight,g }
\end{array} & \begin{array}{c}
\text { Equiv. Vol. } \\
\text { Water } \\
\text { Weight, } g
\end{array} & \begin{array}{c}
\text { Actual } \\
\text { Water }
\end{array} \\
\cline { 1 - 1 } \text { Volume, cm }
\end{array}
$$

$$
\begin{aligned}
& \text { 1. Tests conducted at } 27.10 \text { to } 27.16^{\circ} \mathrm{C} \text {; take water density }=.99649 \text {. } \\
& \text { 2. Derived from Table C-IV. } \\
& \text { 3. Number of beads/cm bed depth instead of weight. } \\
& \text { Summary of values of } \in \text { is given in Table } X \text { of the text. }
\end{aligned}
$$

Procedure C-iii

Packed Bed Experiments

Each packed bed experiment required a minimum of four hours continuous, intensive work. At least two people were required to conduct an experiment, and three were scheduled when possible. The major steps in each test are listed below. A summary of all readings taken during one run is given in Table C-VI.

1. Start oil recycle and extruder preheating to approach operating temperatures.
2. Prepare the packed bed test section with the appropriate supports, sleeves and beads.
3. Install the test section, connect oil hoses, reinsulate and begin oil circulation throughout the system.
4. Check and zero manometers, calibrate the potentiometer and inspect other instrumentation for normal operation.
5. As all parts of the system (extruder, pump, piping, transducer flanges, test section and oil reservoir) approach operating temperature, start polymer flow. Monitor pressures carefully to be certain no plugs of solid material remain.
6. Record pertinent general information to identify the test, and specific operating data for the measured pressures, temperatures, etc. Record at approximately ten minute intervals.
7. When all readings equilibrate, measure the flow and record all system temperatures and pressures.
8. Continue to collect data at ten minute intervals until at least two consecutive sets show no significant differences.
9. Change the flow rate to the next higher level and adjust controls as required to maintain constant test section temperatures.
10. Repeat steps 6 through 8 for all flow rates.
11. Shut the system down after the last readings, drain the oil from the test section, remove and clean the test section while it is hot.

Table C-VI
Summary of Data for a Packed Bed Test

General

Test Number
Test Date
Resin
Resin Preparation
Bead Designation
Bed Depth
Air Pressure to Transducers Ambient Temperature

37
October 19, 1971
$50 / 50$ PMIMA/PS
Dry $2 \mathrm{hr}, 85^{\circ} \mathrm{C}, 45 \mathrm{~mm} \mathrm{Hg}$ V-1607
1.75 cm

20 psig
$79^{\circ} \mathrm{F}$

Comments: Equipment assembled and heat on at 1500. Extruder on at 1515.
Go to 2nd flow at 1628
Go to 3 rd flow at 1648
Go to 4 th flow at 1708
Go to 5 th flow at 1740

Table C-VI (continued)
Summary of Data for a Packed Bed Test

Oil System (Ref. Flow)	1	2	3	4	5
Reservoir Temp. ${ }^{\circ} \mathrm{F}$					
Set	373	373	373	373	373
Read	374	374	374	374	374
Oil Pump Press., psig	40	40	4.0	40	40
Potentiometer (Temp.), mv					
Trail Sec Inlet	11.12	11.14	11.13	11.16	11.20
Trail Sec Outlet	11.09	11.12	11.12	11.14	11.19
Lead Sec Inlet	11.12	11.14	11.14	11.16	11.21
Lead Sec Outlet	11.12	11.12	11.12	11.15	11.19
Gear Pump Chamber	11.08	11.08	11.10	11.13	11.16

Melt System

Flow, g/min	149	212	303		409
Potentiometer (Temp.), mv			530		
Z Pump Irlet	10.78	10.70	10.62	10.56	10.48
Z Pump Outlet	10.80	10.84	10.88	10.95	10.96
Lead Sec Inlet	10.75	10.74	10.74	10.80	10.85
Lead Sec Midway	10.92	10.91	10.90	10.95	10.94
Lead Trans Bulb	10.68	10.68	10.69	10.71	10.72
Lead Flange	10.92	10.92	10.91	10.93	10.94
Trail Flange	10.97	11.00	11.00	11.01	11.04
Trail Trans Bulb	10.76	10.79	10.80	10.82	10.84
Trail Sec Midway	11.01	11.03	11.02	11.00	11.04
Manometers (Press.), cm Hg					
Lead Left Leg	11.20	11.90	12.80	13.60	14.70
Lead Right Leg	10.05	10.80	11.80	12.60	13.70
Lead Total	21.25	22.70	24.60	26.20	28.40
Trail Left Leg	8.25	8.35	8.45	8.60	8.70
Trail Right Leg	8.00	8.05	8.20	8.35	8.35
Trail Total	16.25	16.40	16.65	16.95	17.05
Diff Left Leg	2.10	2.75	3.55	4.20	5.20
Diff Right Leg	2.95	3.55	4.40	5.05	6.10
Diff Total	5.05	6.30	7.95	9.25	11.30

Table C-VII
 Calculation of Huang Model
 Friction Factor-Reynolds Number

Technique

Two separate but closely related programs were written to calculate the Reynolds number using the Huang equation of state according to equations (II.99) and (IV.2). The first program calculated the arguments "a" in $\Gamma(a)$ and " X^{2} / V " in $Q\left(X^{2} / V\right)$. The gamma function $\Gamma(a)$ and the probability function $P\left(X^{2} / V\right)=1-Q\left(X^{2} / V\right)$ were not directly available and were not programmed into the computer. Thus, the required values of these functions were entered manually from tabulations into the second program to complete the calculations. Copies of both programs are attached as continuations of Table C-VII.

Table C-VII (continued)

Calculation of Huang Model

Friction Factor-Reynolds Number

Program to Calculate a and X^{2} / V

Table C-VII (continued)
 Calculation of Huang Model
 Friction Factor-Reynolds Number

Table C-VII (continued)
 Calculation of Huang Model
 Friction Factor-Reynolds Number

```
    Program to Calculate f*}\mathrm{ and N Nre,eff p.2
FOWTHAN IVGLEVEL 21 PARKER DATE = 75069 16/40/07
\begin{tabular}{|c|c|c|}
\hline 0038 & & CONST(I) =FF(I) ONRE(I) \\
\hline 0039 & & GOCALC(I)=RHO(I) \({ }^{\text {O SUPVEL (I) }}\) \\
\hline 0040 & 10 & continue \\
\hline 0041 & & WPITE 16.40) \\
\hline 0042 & &  S'FLOW'.5X,'PSIG'/ \\
\hline 0043 & & WRITE (6,50) (OATNO(I).DP(I),LENGTH(I),POROS(I),RHO(I),FLOW(I),PSI \(\delta \in(I) \cdot 1=1, M)\) \\
\hline 0044 & & FOGMAT (F5.0.3F10.3,F8.3,2F9.0) \\
\hline 0045 & & WRITE (6.60) \\
\hline 0046 & 60 &  \\
\hline 0047 & & WRITE (6,70) (AII), B(I), C(I),N(I), I=1,M) \\
\hline 0048 & 70 & FOPMAT (2F10.0.2F10.4) \\
\hline 0049 & & WRITE 16.80) \\
\hline 0050 & 80 &  BCHI3'//) \\
\hline 0031 & & WRITE (6.90) (GAMI(I).GAM2(I).GAM3(I),CHII(I).CHIZ(Ii,CHI3(I).I=1. \(|\mu|\) \\
\hline 0052 & 90 & FOPMAT (1) 3F12.4.3F12.6) \\
\hline 0053 & & WRITE (6.93) \\
\hline 0054 & &  6.5x:CHI3F:/) \\
\hline 0055 & & WRITE \((6,96)\) (GAMIF(I).GAM2F(I),GAM3F(I).CHIIF(I),CHI2F(I),CHI3FI (1). \(I=1,4\) ) \\
\hline 0056 & & FONMAT (3F10.3.3F10.5) \\
\hline 0057 & & WPITE (6.100) \\
\hline 0058 & & 
\[
\text { LCC. } 5 x, \operatorname{GCMEAS} \cdot 1
\] \\
\hline 0059 & & WRITE ( 6.110 ) (TAURH(I).SHEAR(I).SUPVEL(I).EFFVIS(I).GOCALC(I).GOM EAS (I) \(I=1, M\) ) \\
\hline 0060 & 110 & FORMAT (F12.0.2F12.4.F12.0.2F12.4) \\
\hline 0001 & & WRITE (5.120) \\
\hline 0062 & 120 &  \\
\hline 0063 & & WRITE (6,130) (FF(I), NRE (I), CONST(I),LFF(I).LNRE(I), I=1,M) \\
\hline 0064 & 130 & FORMAT (F11.0.F14.10.F10.1.2F11.3) \\
\hline 0065 & & Stop \\
\hline 0066 & & END \\
\hline
\end{tabular}
```


Table C-VIII
 Calculation of Ellis Model
 Friction Factor-Reynolds Number

Technique

A program was written for calculating the Ellis model Reynolds number as given by equations (IV.2) and (IV.3). A simplified language, specific to the time-share system used, was programmed. The calculations are readily adaptable to Fortran IV. A copy of the program is attached as a continuation of Table C-VIII.

Table C-VIII (continued)
 Calculation of Ellis Model
 Friction Factor-Reynolds Number

```
READY
OLD:ELLIS
READY
:F
G GOMEAS = FLOW/4994
6 DELP=PSIG*68947
10 FF1 = (RHO*DELP)/(GOMEAS*GOMEAS )
20 FFR=DP/LENGTH
30 FF3=(POROS*POROS*POROS)/(1.-POROS )
40 FF=FF1*FF2*FF3
50 NRE1 =DP*GOMEAS/ETAO
60 NRE2=1./(1.-POROS)
70 RH=(DP*POROS)/(6.*(1.-POROS))
80 TAURH=DELP*RH/LENGTH
90 NRE4=LOG (TAURH/TAU)
100 NRE5 = EXP ( (ALPHA-1 . )*NRE4)
110 NRE3 = (1.+(4.*NRE5/(ALPHA + 3 - ) ))
120 NRE=NRE1*NRE2*NRE3
130 GOCALC=(RHO*RH*TAURH*POROS*NRE3)/(2.*ETAO)
140 CONST=FF*NRE
150 REP FF,NRE,CONST,GOCALC,GOMEAS DIGITS 10
160 LFF=LOG(FF)
170 LNRE=LOG(NRE)
180 REP LFF,LNRE DIGITS 12
190 INP TTY
READY
BYE
```


APPENDIX D.

RHEOGONIOMETER EXPERIMENTAL RESULTS

Plate

Table D-I. 1
Table D-I. 2 Table D-I. 3 Table D-I. 4 Table D-I. 5

Table D-II. 1 Table D-II. 2 Table D-II. 3 Table D-II. 4 Table D-II. 5

Table D-III. 1 Table D-III. 2 Table D-III. 3 Table D-III. 4 Table D-III. 5

Table D-IV. 1 Table D-IV. 2 Table D-IV. 3 Table D-IV. 4 Table D-IV. 5

Table D-V. 1
Table D-V. 2 Table D-V. 3 Table D-V. 4 Table D-V. 5

Title
100% PS-678 Tests 20,21,22 100\% PS-678 Tests 1-10,23 100% PS-678 Tests 11,12,13 100% PS-678 Tests 14,15,16 100% PS-678 Tests 17,18,19 5

Page
$75 / 25 \mathrm{PS} / \mathrm{PMMA}$ Tests $81,82,83$6

75/25 PS/PMMA Tests 78,79,80 7
75/25 PS/PMMA Tests 75,76,77 8
75/25 PS/PNIMA Tests 72,73,74 9
75/25 PS/PMMA Tests 69,70,71 10
50/50 PS/PMMA Tests 51,53 11
50/50 PS/PMMA Tests 39,40,41 12
50/50 PS/PMMA Tests $42,43,44$ 13
50/50 PS/PMMA Tests $45,46,47$ 14
50/50 PS/PMMA Tests 48,49,50 15
25/75 PS/PMMA Tests 54,55,56 16
25/75 PS/PMMA Tests 57.58,59 17
$25 / 75 \mathrm{PS} / \mathrm{PMMA}$ Tests $60,61,62$ 18
$25 / 75 \mathrm{PS} / \mathrm{PMMA}$ Tests $63,64,65$ 19
$25 / 75 \mathrm{PS} /$ PIIMA Tests $66,67,68$ 20
100% PNIMA-VM Tests 36,37,38 21
100\% PMINA-VIM Tests 24,25,26 22
100% PNMA-VM Tests 27,28,2923
100\% PNIMA-VM Tests 30,31,3224
100% PNMMA-VM 25

Table D-I. 1

ค

100%

100% PS－678

$T_{\theta \phi}$
dime $/ \mathrm{cm}^{2}$

Table D-I. 3

Table D-I. 4
and 16
Rheogoniometer Results for Experiments 14,15
Nت

From Table B-I:

$2403.87 \Delta N$

$\frac{89.9056}{t}$
$248.373 \Delta_{T}$

Table D-I. 5
Rheogoniometer Results for Experiments 17, 18 and 19

$\begin{aligned} \text { I } \quad \dot{\gamma}_{\theta \phi} & =\frac{89.9056}{t} \\ T_{\theta \phi} & =248.373 \Delta \Delta_{T} \\ T_{11}-T_{22} & =2403.87 \Delta \Delta_{N}\end{aligned}$

－1응ㅇㅇㅇㅇㅇㅇ ∞ ○ い゙ローかべベェ゙き

$\underset{{ }^{\circ} \mathrm{C}}{\text { Temperature }}$

$\tau_{\theta \phi}=$ $T_{11}-T_{22}=$

$$
\text { Table D-II. } 2
$$

Table D-II. 3
Rheogoniometer Results for Experiments 75, 76 and 77 $\underset{\ll 1}{ }$

$\begin{array}{l}\text { IA-VM } \\ \tau_{\theta \phi} \\ \text { dyne } / \mathrm{cm}^{2}\end{array}$

$$
\begin{array}{ll}
t \\
\mathrm{sec} / \mathrm{rev}
\end{array} \quad \begin{aligned}
& \dot{\gamma}_{\theta \phi-1} \\
& \hline
\end{aligned}
$$

Temperature
HOOOOOOOOOOOOO

$$
\begin{aligned}
\dot{\gamma}_{\theta \phi} & =\frac{89.9056}{t} \\
T_{\theta \phi} & =248.373 \Delta_{T} \\
T_{11}-T_{22} & =2403.87 \Delta_{N}
\end{aligned}
$$

$\frac{89.9056}{t}$

: I-q วโqe

Temperature

 - -2
: I-
From Table

Rheogoniometer Results for E
50/50 PS-678

mminow

Table D-III. 2
40 and 41

Naman

> 8 0 $0-1$ $2-1$ a-1

$\dot{\sim}$

 Table D-III. 3

Temperature

$$
\text { Table D-III. } 3
$$

$$
\text { Rheogoniometer Results for Experiments } 42,43 \text { and } 44
$$

웅NNNNNNNNNNNNNNNNNNNNN

$$
\text { Table D-III. } 4
$$

$$
\begin{aligned}
\dot{\gamma}_{\theta \phi} & =\frac{89.9056}{t} \\
T_{\theta \phi} & =248.373 \Delta_{T} \\
T_{1 \overline{1}} T_{22} & =2403.87 \Delta_{N}
\end{aligned}
$$

Temperature
From Table

48.2

$\mathrm{B}-\mathrm{I}:$

Table D-III. 5

Rheogoniometer Results for Experiments 48, 49 and 50
$\geq \geqslant$

$$
\begin{aligned}
& \text { ล๐๐Mへ } \\
& \text { mionべべ丸 }
\end{aligned}
$$

Table D-IV. 2

$\begin{gathered} \text { Temperature } \\ { }^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Rheogoniometer Results for Experimen $25 / 75$ PS-678 /PMMA-VM				
	$\begin{gathered} \mathrm{t} \\ \mathrm{sec} / \mathrm{rev} \\ \hline \end{gathered}$	$\dot{\gamma}_{\text {sec }}$	$\Delta_{\boldsymbol{\mu}}$	$\begin{gathered} T_{\theta \phi}{ }_{\text {dynem }}{ }^{2} \end{gathered}$	$\begin{gathered} \Delta_{N} \\ \mu \end{gathered}$
190	$3.34 \times 10_{4}^{4}$. 00269	3.36	834.5	
190	$1.68 \times 10_{3}^{4}$. 00535	6.67	1,656	
190	8.39×10^{3}	. 01072	13.63	3,386	
190	4.22×10^{3}	. 02130	26.67	6,623	
190	2.11×10^{3}	. 04261	51.09	12,690	
190	$1.06 \times 10 \frac{3}{2}$. 08482	94.54	23.480	2.15
190	5.30×10^{2}	. 1696	164.0	40,740	5.28
190	2.65×10^{2}	. 3393	311.6	77,930	13.43
190	1.33×10^{2}	. 6760	466.6	115,900	37.23
190	66.7	1.348	744.4	184,900	75.53
190	33.4	2.692	1,083	269,000	144.9
190	16.8	5.352	1,522	378,100	261.3
From Table	$B-I: \quad \dot{\gamma}_{\theta \phi}=$	$\frac{89.9056}{t}$			
	T_{0}	248.373			
	$T_{11}-T_{22}$	2403.87Δ			

Table D-IV. 3

Rheogoniometer Results for Experiments 60, 61 and 62

$B-I:$
$\underset{\mathrm{P}_{\mathrm{C}}}{\text { Temperature }}$
From Table

- Nivini

$B-I:$
From Table

Rheogoniometer Results

$$
\text { Table D-IV. } 4
$$

$$
\text { and } 65
$$

$$
\begin{aligned}
& \text { - vion Nivitio }
\end{aligned}
$$

Temperature

$B-I:$
Table D-V.I Rheogoniometer Results for Experiments 36,37 and 38

$T_{\theta \phi}$ dyne/cm

$$
z=
$$

Table D-V.2
のo人

$$
\text { Rheogoniometer Results for Experiments } 24,25 \text { and } 26
$$

$\dot{\sim} \dot{\sim}{ }^{\circ} \underset{N}{N}$

$T_{\theta \phi} / \mathrm{cm}^{2}$
dyne

100% PNMA-VM

$\stackrel{\mathrm{t}}{\mathrm{sec} / \mathrm{rev}}$	$\begin{gathered} \dot{\gamma}_{e \phi} \\ \sec _{-1} \end{gathered}$
$3.34 \times 10_{4}^{4}$.00269
1.68×10^{4}	. 00535
8.39×10^{3}	. 01072
$4.22 \times 10 \frac{3}{3}$.02130
2.11×10^{3}	. 04261
$1.06 \times 10 \frac{3}{2}$. 08482
5.30×10^{2}	. 1696
2.65×10^{2} 1.33×10^{2}	. 3393
1.33×10^{2} 66.7	.6760 1.348

0
\mathscr{L}_{3}^{1}
+
0
0
0
0
0
0
0
0
E
-

\ddot{H}
m
m
From Table
Table D-V. 3

Noinga
か千

नm
Table

$$
1 \pm
$$

$$
\underset{N}{ }
$$

Temperature
${ }^{\circ} \mathrm{C}$
220
220
220
219
220
220
220
220
220
220
220
220
220 ヘNNN太NNNNNN

$\geq \geq 1$

$$
\infty
$$

$$
\text { and } 35
$$

APPENDIX E.

PACKED BED EXPERTNENTAL RESUL,TS

Plate	Title		Page
Table E-I. 1	100\% PVINA-VW	Blank	1
Table E-I. 2	100\% PVMM -VN	V-390 Beads	2
Table E-I. 3	100\% PMMA-VM	V-280 Beads	3
Table E-I. 4	100\% PMMM-VM	V-1607 Beads	4
Table E-I. 5	100\% PMMA-VM	V-080 Beads	5
Table E-II. 1	$75 / 25$ PMMA/PS	Blank	6
Table E-II. 2	$75 / 25$ PNIMA/PS	V-390 Beads	$?$
Table E-II. 3	$75 / 25$ PNIMA/PS	V-280 Beads	8
Table E-II. 4	$75 / 25$ PNIMA/PS	V-1607 Beads	9
Table E-II. 5	$75 / 25$ PMMA/PS	V-080 Beads	10
Table E-III. 1	50/50 PMMMA/PS	Blank	11
Table E-III. 2	$50 / 50 \mathrm{PNMM} / \mathrm{PS}$	V-390 Beads	12
Table E-III. 3	50/50 PMMA/PS	V-280 Beads	13
Table E-III. 4	$50 / 50$ PMIMA/PS	V-1607 Beads	14
Table E-III. 5	$50 / 50 \mathrm{PNMM} / \mathrm{PS}$	V-080 Beads	15
Table E-III. 6	50/50 PNIVA/PS	P-047 Beads	16
Table E-IV. 1	25/75 PMMA/PS	Blank	17
Table E-IV. 2	25/75 PNINA/PS	V-390 Beads	18
Table E-IV. 3	25/75 PMIMA/PS	V-280 Beads	19
Table E-IV. 4	$25 / 75$ PNIMA/PS	v-1607 Beads	20
Table E-IV. 5	25/75 PMINA/PS	V-080 Beads	21
Table E-V. 1	100\% PS-678	Blank	22
Table E-V. 2	100\% PS-678	V-390 Beads	23
Table E-V. 3	100\% PS-678	V-280 Beads	24
Table E-V. 4	100\% PS-678	V-1607 Beads	25
Table E-V. 5	100\% PS-678	V-080 Beads	26

	$\begin{gathered} \mathrm{N} \\ \mathrm{H} \end{gathered}$

Table E-I. 2
Table
100% PM

Run No.
$\begin{array}{c}\text { \& } \\ \text { Bed Depth } \\ \text { cm }\end{array}$
$\# 7$
1.83
$\# 6$
4.37

		$\stackrel{M}{N} \underset{\sim}{N} \underset{\sim}{\sim}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		
	MさNNMN －HONNH	$\begin{aligned} & \text { ong } \\ & \text { Min } \end{aligned}$
		きズ入
	NHamino N〇す Nion	
	$\begin{aligned} & \infty \circ o \text { ond } \\ & \text { ming억 } \end{aligned}$	

Table E-I. 4
Packed Bed Results 100% PNIMA-VN V-1607 (0.375cm) Beads

		$\begin{aligned} & \text { acm } \\ & \text {-1 N } \\ & \text { Nom } \end{aligned}$
	$\begin{aligned} & \text { Noo } \\ & \underset{\sim}{\mathrm{H}} \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { NOO } \\ & \underset{H}{H} \underset{N}{n} \end{aligned}$
	$\begin{aligned} & \text { n-10 } \\ & \text { लूळ口 } \end{aligned}$	
	Э	$\begin{aligned} & \sim N O \\ & \mathcal{F} 00 \\ & \end{aligned}$
	$\begin{aligned} & \mathbf{O}_{1}^{\infty}{ }_{\mathrm{N}}^{\mathrm{N}} \end{aligned}$	$\begin{array}{r} -1+\infty \\ \text {-9 } \\ 9+9 \end{array}$
	$\begin{aligned} & \circ \mathrm{n}^{n} \infty \\ & \mathrm{O}_{9}^{\circ} \mathrm{N} \end{aligned}$	
	$\begin{aligned} & \text { OMN } \\ & \text { न NN } \end{aligned}$	$\begin{aligned} & \text { FiN్ } \\ & \text { HNO } \end{aligned}$

Run No. Bed Depth cm
$\# 8$
1.75
$\# 9$
4.29

Run No.
 Bed Depth cm
$\# 5$
1.75

$$
\begin{aligned}
& \# 50 \\
& 4.37
\end{aligned}
$$

Table E－II． 2

		$\begin{aligned} & \text { Mô옹 } \\ & \text { HinNN } \end{aligned}$
an or of	mmana	잉ㅇ욱
O ${ }^{+}$		
	べさ MN゚	ベキi゚べへ
$\left.\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered} \right\rvert\,$		
		$\underset{\sim}{N} \neq \pm \xlongequal[0]{n}$ NNMぎ
		엉ㅇㅇㅇㅇㅇㅇㅇ
cosmex		
cod		
	$\infty \infty \infty \infty$ mलmलm	
		mon ヘno HNNま

$$
\begin{gathered}
\text { Run No. } \\
\begin{array}{c}
\text { \& } \\
\text { Bed Depth } \\
\text { cm }
\end{array} \\
\hline \# 53 \\
1.83
\end{gathered}
$$

$$
\begin{gathered}
\text { Run No. } \\
\text { \& } \\
\text { Bed Depth } \\
\text { cm } \\
\hline
\end{gathered}
$$

$$
\stackrel{n}{n} \underset{\sim}{n}
$$

$$
\begin{gathered}
\underset{\sim}{N} \\
\underset{\sim}{*} \\
\underset{\sim}{2}
\end{gathered}
$$

$$
\begin{aligned}
& n \\
& n \\
& \cdots \\
& \vdots \\
& j
\end{aligned}
$$

$$
\begin{aligned}
& \infty \\
& \sim \\
& \sim \\
& *
\end{aligned}
$$

Run No.
Bed Depth cm
$\# 55$
1.75

$\# 49$
4.29

Run No. Bed Depth cm
$\# 52$
1.75

$\# 56$
4.29
Table E-III. 2
Packed Bed Results $50 / 50$ PNMA/PS V-

Run No.
Bed Depth
cm
$\# 42$
1.83

$\# 40$
4.37

Run No.
Bed Depth
cm

$\# 38$
4.29

\#46
1.75
n ~~~
Table E-III. 6

E-IV. 2

V-390 (0.979 cm) Beads

Flow	Tem	ture	Pre	ure		sure	
Rate $\mathrm{g} / \mathrm{min}$	$\underset{\substack{\text { Inlet }}}{ }$	Outlet	Inlet psig	Outlet psig	Total psig	Blank psig	Net psig
147	401	401	117	13	104	82	22
205	398	399	152	20	132	100	32
298	396	398	191	26	165	120	45
402	396	398	227	40	187	138	49
509	396	398	256	48	208	154	54
148	397	398	169	18	151	82	69
204	397	399	194	24	170	100	70
300	396	398	242	30	212	120	92
406	396	398	302	43	259	139	120
512	396	398	337	51	286	154	132

Run No. Bed Depth cm
$\# 34$
1.83

$\underset{\sim}{\sim} \stackrel{\AA}{\sim}$
Table E-IV. 3

Flow	Temperature			Pressure		Pressure Drop		
Rate $\mathrm{g} / \mathrm{min}$	$\begin{gathered} \text { Inlet } \\ { }_{\mathrm{F}} \\ \hline \end{gathered}$		$\mathrm{Outl}_{\mathrm{OF}} \mathrm{et}$	Inlet psig	Outlet psig	Total psig	Blank psig	Net psig
148	396		398	145	16	129	82	47
209	396		398	181	22	159	101	58
302	396		398	222	30	192	120	72
414	396		398	272	43	229	140	89
532	397	*	399	310	49	261	156	105
144	397		398	219	16	203	81	122
200	397		399	276	21	255	99	156
296	396		399	349	28	321	119	202
400	396		398	420	38	382	138	244
509	397		399	471	46	425	154	271

$$
\begin{aligned}
& \begin{array}{c}
\text { Run No. } \\
\text { \& } \\
\text { Bed Depth } \\
\text { cm }
\end{array} \\
& \hline \begin{array}{l}
\# 31 \\
1.75
\end{array}
\end{aligned}
$$

\[

\]

Table E－IV． 4
Packed Bed Results $25 / 75$ PMMA／PS V－1607（ 0.375 cm ）Beads

	$\begin{aligned} & 0 \pm \infty N N \\ & \rightarrow=\infty N N \\ & \rightarrow \sim N N \end{aligned}$	$\begin{aligned} & \text { OHMAN } \\ & \text { mininin } \end{aligned}$
告		
	Ha未	-oncNMo
	HNMmy	のキース

30.7		
O＋	mもべきの	キ゚のへの
伡政时	चNNすべ	HNNJT

Run No．
\＆ Bed Depth
\＃28
1.75

Table E-IV. 5

$\underset{\sim}{m} \stackrel{a}{n}$

Temperature	
$\underset{{ }_{\mathrm{F}}}{\text { Inlet }}$	$\mathrm{Outl}_{\mathrm{OF}} \mathrm{et}$
397	398
396	398
395	397
395	397
396	398
398	398
396	398
396	398
396	397
396	398

Run No.
Bed Depth
cm
$\# 21$
1.75

$\# 23$
4.29
Table E-V. 4
Packed Bed Results 100% PS -678 V-1607 (0.375 cm) Beads

Flow	Temperature		Pressure		Pressure Drop		
Rate $\mathrm{g} / \mathrm{min}$	$\begin{gathered} \text { Inlet } \\ \hline \mathrm{F} \end{gathered}$	$\begin{gathered} \text { Outlet } \\ 0 \mathrm{~F} \\ \hline \end{gathered}$	Inlet psig	Outlet psig	Total psig	Blank psig	Net psig
148	397	398	202	$?$	195	82	113
211	396	398	265	16	249	101	148
305	396	397	338	26	312	121	191
396	396	397	394	36	358	137	221
504	396	398	447	46	401	151	250
147	399	400	404	11	393	82	311
209	396	398	514	21	493	100	393
307	396	398	630	31	599	121	478
410	396	400	724	36	688	139	549
525	397	400	844	46	798	153	645
143	397	398	394	13	381	80	301
212	397	399	499	19	480	101	379
307	396	399	640	26	614	121	493
406	396	399	766	36	730	139	591
519	398	400	860	41	819	152	667

Run No. Bed Depth cm
$\# 15$ 1.75

$\stackrel{0}{\infty}$
$\# 24$
4.29

$$
\begin{aligned}
& \text { Run No. } \\
& \text { \& } \\
& \text { Bed Depth } \\
& \text { cm }
\end{aligned}
$$

APPENDIX F.
 FRICTION FACTOR-REYNOLDS NUMBER

Plate
Title
Page
Table F-1 100% PMMA-VM 1
Table $\mathrm{F}-2$ $75 / 25$ PMIMA/PS 2
Table F-3 50/50 PMIMA/PS 4
Table F-4 25/75 PNIMA/PS 6
Table F-5 100% PS-678 8

o|

.
$\overrightarrow{-1}$
$\overrightarrow{-1}$

 透o|

-

Table F-III (continued)

-1

枵

易

25/75 PMINA/PS

g
g

かき

ロ．

REFERENCES

1. Aranow, R.H., "A Statistical Approach to Flow Through Porous Media," The Physics of Fluids, vol. 9, September, 1966, pp. 1721-1727.
2. Ashare, E. and R.B. Bird, "Falling Cylinder Viscometer for Non-Newtonian Fluids," A.I.Ch.E. Journal, vol. 1l, September, 1965. pp. 910916.
3. Bear, Jacob, Dynamics of Fluids in Porous Media, New York: American Elsevier Publishing Company, Inc., 1972, p. 125.
4. Ibid., p. 165,587.
5. Ibid. p . 171.
6. Bird, R.B., "Experimental Tests of Generalized Newtonian Models Containing a Zero-Shear Viscosity and a Characteristic Time," Canadian Journal of Chemical Engineering, August, 1965, pp. 161-168.
7. Bird, R.B., E. N. Lightfoot and W.E. Stewart, Transport Phenomena, New York: John Wiley and Sons, Inc., 1965, p. 101.
8. Ibid., pp. 45, 46.
9. Ibid., pp. 180-182.
10. Ibid. . p. 198.
11. Blake, F.C.. "The Resistance of Packing to Fluid Flow," Transactions A.I.Ch.E., vol. 14. 1922. p. 415.
12. Bogue, D.C. and J.O. Doughty, "Comparison of Constitutive Equations for Viscoelastic Fluids," I\&EC Fundamentals, vol. 5, no. 2, May, 1966, p. 243 .
13. Brenner, H., "The Stokes Resistance of an Arbitrary Particle," Chemical Engineering Science, vol. l8. Great Britain: Pergamon Press, Ltd., 1963. pp. 1-25.
14. Brinkman, H.C., "A Calculation of the Viscous Force Exerted by a Flowing Fluid on a Dense Swarm of Particles," Applied Science Research, vol. Al, 1947. D. 27.
15. Carman, P.C., "Fluid Flow Through a Granular Bed," Transactions Institute of Chemical Engineers, vol. 15. Londons 1937, pp. 150-156.
16. Carman, P.C. Flow of Gases Through Porous Media. London: Butterworth, 1956.
17. Chase, C.A., "Theory of Fluid Motion in Porous Media," I\&EC, vol. 62, no. 12, December, 1970, p. 83.
18. Christopher, R.H., Power Law Flow Through a Packed Tube, MS Thesis, University of Rochester, Rochester, N.Y., 1965.
19. Christopher, R.H. and Stanley Middleman, "Power Law Flow Through a Packed Tube," I\&EC Fundamentals, vol.4, no. 4, November, 1965, p. 422.
20. Coleman, B.D. and W. Noll, "Recent Results in the Continuum Theory of Viscoelastic Fluids," Annual New York Academy of Science, vol. 89, 1961. p. 672.
21. Collins, R.E., Flow of Fluids Through Porous Media New York: Reinhold Publishing Company, Inc., 1961.
22. Dallavalle, J.M., Micromeritics - The Technology of Fine Particles, New York: Pitman Publishing Corporation, 2nd ed., 1948, ch. 13.
23. Darcy, H.P.G., Les Fontaines Publiques de la Ville de Dijon, Paris: Victor Dalmont, 1856.
24. De Jong, J., "The Tensor Character in the Dispersion Coefficient in Anisotropic Porous Media," Ist I.A.H.R. Symposium Fundamentals of Transport Pheromena in Porous Media, Haifa, Israel, 1969.
25. Dullien, F.A.I. and V.K. Batra, "Determination of the Structure of Porous Media," I\&EC, vol. 62, no. 10, October, 1970, p. 25.
26. Dullien, F.A.L., "New Network Permeability Model of Porous Media," A.I.Ch.E. Journal, vol. 21, 1975, p. 299.
27. Dullien, F.A.L., "Prediction of Tortuosity Factors from Pore Structure Data," A.I.Ch.E. Journal, vol. 21, July, 1975, pp. 820-822.
28. Ergun, Sabri, "Fluid Flow Through Packed Columns," Chem. Eng. Prog., vol. 48, Feb., 1952, p. 89.
29. Fair, G.M. and L.P. Hatch, "Fundamental Factors Governing the Streamline Flow of Water Through Sand," Journal American Water Works Assoc, , vol. $25,1933, \mathrm{pp} .1551-1565$.
30. Ferry, J.D., Viscoelastic Properties of Polymers, New York: John Wiley and Sons, Inc., 1970.
31. Fredrickson, A.G. and R.B. Bird, "Non-Newtonian Flow in Annuli," I\&EC, vol. 50, 1958, pp. 347-352.
32. Fredrickson, A.G. and R.B. Bird, "Friction Factors for Axial Non-Newtonian Annular Flow," I\&EC, vol. 50. 1958, p. 1599.
33. Fredrickson, A.G. and R.B. Bird, "Non-Newtonian Flow in Annuli," I\&EC Fund., vol. 3, 1964, p. 383.
34. Fredrickson, A.G., Principles and Applications of Rhelogy, Englewood Cliffs, N.J.: PrenticeHall, Inc.. 1964, pp. 207-214.
35. Gaitonde, N.Y. and S. Middleman, "Flow of Viscoelastic Fluids Through Porous Media," I\&EC Fund., vol. 6, Feb., 1967, p. 145.
36. Glasstone, S., K.J. Laidler and H. Eyring, Theory of Rate Processes, New York: McGraw Hill, Inc., 1941, ch 9.
37. Gregory, D.R., Non-Newtonian Flow Through Porous Media, PhD Thesis, Virginia Polytechnic Institute, Blacksburg, Va., 1965.
38. Gregory, D.R. and R.G. Griskey, "Flow of Molten Polymers Through Porous Media," A.I.Ch.E. Journal, vol. 13, January, 1967. p. 122.
39. Hall, W.A., "An Analytical Derivation of the Darcy Equation," Transactions American Geophysical Union, vol. 37, 1956, p. 185.
40. Han, C.D., T.C. Yu and K.U. Kim, "Rheological Properties of Molten Polymers: I. Homopolymer Systems," Journal of Applied Polymer Science, vol. 15, 1971, pp. 1149-1162.
41. Han, C.D. and T.C. Yu, "Rheological Properties of Molten Polymers: II. Two Phase Systems," Journal of Applied Polymer Science, vol. 15, 1971, po. 1163-1180.
42. Han, C.D. and R.R. Lamonte, "Melt Flow Instabilities in Capillary Flow of Two Phase Polymer Systems," Polymer Engineering and Science, vol. 12, March, 1972, pp. 77-80.
43. Han, C.D. and T.C. Yu, "Rheological Behavior of Two Phase Polymer Melts," Polymer Engineering and Science, vol. 12, March, 1972, pp. 81-90.
44. Han, C.D. and T.C. Yu, "Die Swell Behavior of Two Phase Polymer Melts," A.I.Ch.E. Journal, vol. 17. November. 1971, pp. 1512-1514.
45. Han, C.D., K.U. Kim, et al, "Measurements of the Viscoelastic Properties of Poly(methylmethacrylate) and Polystyrene Blends," New York: John Wiley and Sons, Inc., Applied Polymer Symposium, vol. 20, 1973, pp. 191-198.
46. Handbook of Mathematical Functions, M. Abramowitz and I.A. Stegun (eds.), National Bureau of Standards Apolied Mathematics Series 55. June, 1964, p. 260, eqn. 6.5.3.
47. Ibid., p. 941, eqn. 26.4.19.
48. Haring, R.E. and R.A. Greenkorn, "A Statistical Model of a Porous Medium with Nonuniform Pores," A.I.Ch.E. Journal, vol. 16, May, 1970, p. 477.
49. Harvey, A.H., An Investigation of the Flow of Polymer Solutions Through Porous Media, PhD Thesis, Oklahoma University, Norman, Oklahoma, 1968.
50. Hassell, H.L. and A. Bondi, "Mixing of Viscous Non-Newtonian Fluids in Packed Beds," A.I.Ch.E. Journal, vol. 11, March, 1965. p. 217.

51, Herzig, J.P., D.M. Leclerc and P. Legoff, "Flow of Suspensions Through Porous Media - Application to Deep Filtration," I\&EC, vol. 62, May, 1970, pp. 8-35.

52, Hill, A.S. and B. Maxwell, "Dynamic Melt Properties of Polymer Blends," Polymer Engineering and Science, vol. 10, September, 1970, p. 289 .
53. Huang, C.R., "A Thermodynamic Approach to Generalized Rheological Equations of State for Time-Dependent and Time-Independent NonNewtonian Fluids," Chemical Engineering Journal, vol. 3, 1972, 100-104.
54. Hubbert, M.K., "Darcy's Law and the Field Equations of the Flow of Underground Fluids," Transactions A.I.M.E., vol. 207. 1956. p. 222.
55. Iberall, A.S., "Permeability of Glass Wool and Other Highly Porous Media," Journal Res. Nat. Bur. Stand., vol. 45,1950, p. 398.
56. Irmay, S., "On the Derivation of Darcy and Forscheimer Formulas," Transactions American Geophysical Union, vol. 39. 1958. p. 702.
57. Jobling, A., "Flow Testing of Viscoelastic Materials. Design and Calibration of the RobertsWeissenberg Model R8 Rheogoniometer," Journal Polymer Science, vol. 36, 1959 p. 421.
58. Kozeny, J., Uber Kapillare Leitung des Wassers im Boden, sitzungsber Akad. Wiss. Wien, vol. 136, 1927, pp. 271-306.
59. Kozicki, W., C.J. Hsu and C. Tiu, "Non-Newtonian Flow Through Packed Beds and Porous Media," Chemical Engineering Science, vol. 22, 1967, pp. 487-502.
60. Kwei, T.K., T. Nishi and R.F. Roberts, "Study of Compatible Polymer Mixtures," Rubber Chemistry and Technology, vol. 48, May, 1975, pp. 218-235.
61. Leclair, B.P. and A.E. Hamielec, "Viscous Flow Through Particle Assemblages at Intermediate Reynolds Numbers," I\&EC Fundamentals, vol. 7. November, 1968, po. 542-549.
62. LeClair, B.P. and A.E. Hamielec, "Viscous Flow Through Particle Assemblages at Intermediate Reynolds Numbers," I\&EC Fundamentals, vol. 9, November, 1970, pp. 608-613.
63. Leva, M., "Flow Through Packings and Beds," Chemical Engineering, vol. 64, 1957, series inc. January, p. 204 and December, p. 267.
64. Marshall, R.J. and A.B. Metzner, "Flow of Viscoelastic Fluids Through Porous Media," I\&EC Fundamentals, vol. 6, August, 1967, p. 393.
65. Matsuhisa, S. and R.B. Bird, "Analytical and Numerical Solutions for Laminar Flow of the Non-Newtonian Ellis Fluid," A.I.Ch.E. Journal, vol. 11, July, 1965, pp. 588-595.
66. McKelvey, J.M., Polymer Processing, New York: John Wiley and Sons, Inc.. 1962.
67. McKennel, R., "Cone-Plate Viscometer," Analytical Chemistry, vol. 28, 1956, p. 1710.
68. McKinley, R.M., H.O. Jahns, W.W. Harris and R.A. Greenkorn, "Non-Newtonian Flow in Porous Media," A.I.Ch.E. Journal, vol. 12, January, 1966. D. 17.
69. Metzner, A.B., J.L. White and M. M. Denn, "Behavior of Viscoelastic Materials in Short-time Processes," Chemical Engineering Progress, vol. 62, December, 1966, p. 81.
70. Metzner, A.B., J.L. White and M.M. Denn, "Con-stitutive Equations for Viscoelastic Fluidsfor Short Deformation Periods and for RapidlyChanging Flows," A.I.Ch.E. Journal, vol. 12,September, 1966. pp. 863-866.
71. Midaleman, S. The Flow of Hich Polymers. New York: Interscience Publishers, Division of John Wiley, 1968.
72. Mokadam, R.G., "Thermodynamic Analysis of the Darcy Law," Journal Adolied Mechanics (Transactions A.S.M.E.), vol. 28, 1961, D. 208.
73. Nott, R.A. Some Aspects of Fluid Flow, London: Edward Arnold and Company, 1951, p. 242.
74. Multicomponent Polymer Systems, (Advances in Chemistry Series), R.F. Gould (ed.), Washinston, DC: ACS Publications, 1971. Papers presented at Symposium, February 23-26, 1970.
75. Muscat, Morris, "The Flow of Fluids Through Porous Media," Journal Apolied Physics. vol. 8, 1937, pp. 274-282.
76. Muscat, Morris, The Flow of Homogenous Fluids Throush Porous Media, New York: McGrawHill, first edition, 1937.
77. Noel, O.F., III and J.F. Carley, "Properties of Polybropylene - Polyethylene Blends," SPE 31st ANTEC, 1972. D. 97.
78. Pakula. R.J. and R.A. Greenkorn, "An Experimental Investigation of a Porous Medium Model with Nonuniform Pores," A.I.Ch.E. Journal, vol. 17. September, 1971, pp. 1265-1268.
79. Park, H.C., M.C. Hawley and R.F. Blanks, "Flow of Aqueous Solutions of Polymethylcellulose (A Non-Newtonian Fluid) Through Porous Media," draft article for A.I.Ch.E. Journal, ADril, 1972.
80. Payatakes, A.C., Chi Tien and R.M. Turian, "A New Model for Granular Porous Media. I. Model Formation. II. Numerical Solution of Steady State Incompressible Newtonian Flow Through Periodically Constricted Tubes," A.I.Ch.E. Journal, vol. 19. January, 1973. pp. 58-67. 67-76.
81. Payne, L.W. and H.W. Parker, "Axial Dispersion of Non-Newtonian Fluids in Porous Media," A.I.Ch.E. Journal, vol. 19, January. 1973. pp. 202-204.
82. Platzer, N.A.J., "Copolymers, Polyblends and Composites," Chemical Technology, vol. 4, February, 1974. pp. 90-95.
83. Powell, R.E. and H. Eyring, "Mechanisms of the Relaxation Theory of Viscosity," Nature, vol. 154. 1944, p. 427.
84. Processing of Thermoplastic Materials, E.C. Bernhardt (ed.), New York: Reinhold Publishing Company, 1959.
85. Reiner, M., Deformation, Strain and Flow, New York: Interscience Publishers. Inc. 1960.
86. Rheology - Theory and Applications - Volume 2 F.R. Eirich (ed.), New York: Academic Press, 1958. p. 145.
87. Rheology - Theory and Applications - Volume 3, F.R. Eirich (ed.), New York: Academic Press. 1960, ch. 2.
88. Rheology - Theory and Applications - Volume 5. F.R. Eirich (ed.), New York: Academic Press, 1969.
89. Rice, P.A., D.J. Fontugne, R.G. Latini and A.J. Barduhn, "Anisotropic Permeability in Porous Media," I.\&EC, vol. 62. June, 1970, p. 23.
90. Rivlin, R.S. and J.L. Ericksen, "Stress Deformation Relations for Isotropic Materials," Journal Rational Mechanics and Analysis. vol. 4. 1955, p. 323.
91. Sadowski, T.J., Non-Newtonian Flow Through Porous Media, PhD Thesis, The University of Wisconsin, Madison, Wisconsin, 1963.
92. Sadowski, T.J. and R.B. Bird, "Non-Newtonian Flow Through Porous Media. I. Theoretical. II. Experimental," Transactions Society Rheology, vol. 9, 1965, pp. 243-250, 251-271.
93. Savins, J.G., "Non-Newtonian Flow Through Porous Media," I\&EC, vol. 61, October, 1969, p. 18.
94. Scheidegger, A.E., The Physics of Flow Through Porous Media, New York: The Mac Millan Company, 1957. p. 92.
95. Ibid., p. 98.
96. Ibid., p. 108.
97. Scheidegger, A.E., The Physics of Flow Through Porous Media, New York: The MacMillan Company, 1960 rev. ed.
98. Scheidegger, A.E., "Hydrodynamics in Porous Media," Encyclopedia of Physics, vol. 9, Springer, Berlin, 1960.
99. Scheidegger, A.E., "Statistical Theory of Flow Through Porous Media," Transactions Society Rheology, vol. 9, 1965, pp. 313-319.
100. Scheidegger, A.E., "Statistical Hydrodynamics in Porous Media," Journal Applied Physics, vol. 25, 1954, pp. 994-1001.
101. Seymour, R.B.. "Composition vs. Properties of Polyolefin Blends," Modern Plastics, vol. 50, January, 1973, pp. 98-100.
102. Sieglaff, C.L., "Rheological Behavior of Poly(Vinyl Chloride) Mixtures. I. Viscous Behavior," Polymer Engineering and Science, vol. 9, March, 1969, p. 81.
103. Sieglaff, C.L. and C.G. Vinson, पRheological Behavior of Poly(Vinyl Chloride) Mixtures. II. Elastic Behavior," Polymer Engineering and Science, vol. 9, January, 1969, p. 73.
104. Sisko, A.W., "The Flow of Lubricating Greases," I\&EC, vol. 50, December, 1958, pp. 17891792.
105. Siskovic, N., R.G. Griskey and D.R. Gregory, "Viscoelastic Behavior of Molten Polymers in Porous Media," A.I.Ch.E. Journal, vol. 17. March, 1971, pp. 281-285.
106. Slattery, J.C., "Approximations to the Drag Force on a Sphere Moving Slowly Through Either an Ostwald-de-Waele or a Sisko Fluid," A.I.Ch.E. Journal, vol. 8, 1962, p. 663.
107. Slattery, J.C., "Flow of Viscoelastic Fluids Through Porous Media," A.I.Ch.E. Journal, vol. 13, November, 1967. pp. 1066-1071.
108. Slattery, J.C., "Multiphase Viscoelastic Flow Through Porous Media," A.I.Ch.E. Journal, vol. 14, January, 1968, p. 50.
109. Slattery, J.C., "Single Phase Flow Through Porous Media," A.I.Ch.E. Journal, vol. 15, December, 1969, p. 866.
110. Slattery, J.C., "Two-Phase Flow Through Porous Media," A.I.Ch.E. Journal, vol. 16, May, 1970. pp. 345-352.
111. Spriggs, T.W. and R.B. Bird, "Some Nonlinear Viscoelastic Models with Inclusion of Results from Molecular Theory," I\&EC Fundamentals, vol. 4, 1964, pp. 182-186.
112. Spriggs, T.W., J.D. Huppler and R.B. Bird, "An Experimental Appraisal of Viscoelastic Models," Transactions Society Rheology, vol. 10, 1966, pp. 191-213.
113. Sutterby, J.L., "Laminar Converging Flow of Dilute Polymer Solutions in Conical Sections. II," Transactions Society Rheology, vol 9. 1965, pp. 227-241.
114. Tobolsky, A.V., Properties and Structure of Polymers, New York: John Wiley and Sons. Inc., 1967, pp. 78-83.
115. Tobolsky, A.V. and H.F. Mark, Polymer Science and Materials, New York: Interscience Publishers, Division of John Wiley, 1971, p. 217.
116. Van0ene, H., "Modes of Dispersion of Viscoelastic Fluids in Flow," Journal Colloid \& Interface Science, vol. 40, September, 1972. pp. 448467.
117. Van Wazer, J.R., J.W. Lyons, K.Y. Kim and R.E. Colwell, Viscosity and Flow Measurement, New York: Interscience Publishers, Division of John Wiley, 1963, p. 113.
118. Volssoughi, S. and F.A. Seyer, "Pressure Drop for Flow of Polymer Solution in a Model Porous Medium," Canadian Journal Chemical Engineering, vol. 52, october, 1974, pp. 666669.
119. Wampler, F.C., and D.R. Gregory, "Flow of Molten Poly(ethyleneterephthalate) Through Packed Beds of Glass Beads," 70th National A.I.Ch.E. Meeting, August 29 - September 1, 1971, Atlantic City, New Jersey.
120. Weissenberg, K. "Rheology of Hydrocarbon Gels," Proceedings Royal Society, London, A200, 1950, pp. 183-188.
121. Whitaker, S., "Advances in Theory of Fluid Motion in Porous Media," I\&EC, vol. 61, December, 1961, pp. 14-28.
122. White, D.A., "Non-Newtonian Flow in Stratified Porous Media and in Axisymmetric Geometries," Chemical Engineering Science, vol. 23. 1968, pp. 243-251.
123. Williams, A.G., Personal communication ref. moisture sensitivity of PET.
124. Williams, M.C. and R.B. Bird, "Oscillatory Behavior of Normal Stresses in Viscoelastic Fluids," I\&EC Fundamentals, vol. 3. 1964, pp. 42-49.
125. Wissler, E.H., "Viscoelastic Effects in the Flow of Non-Newtonian Fluids Through a Porous Medium," I\&EC Fundamentals, vol. 10, August, 1971, pp. 411-417.
126. Wyllie, M.R.J. and A.R. Gregory, "Fluid Flow Through Unconsolidated Porous Aggregates. Effect of Porosity and Particle Shape on Kozeny - Carman Constants," I\&EC, vol. 47. 1955, p. 1379.

53a. Huang, C.R., N. Siskovic, R.W.J. Robertson, W. Fabisiak, E.H. Smithberg and A.L. Copley, "Quantitative Characterization of Thixotropy of Whole Human Blood," Biorheology, vol. 12. 1975. p. 279.

53b. Huang, C.R. and W. Fabisiak, "Thixotropic Parameters of Whole Human Blood," Thrombosis Research, vol. 8, sppl. II, 1976. p. 1.

53c. Huang, C.R., W. Fabisiak and N.L. Polston, "Correlation of Thixotropic and Application Properties of Latex Paints," VI International Congress on Rheology, Gothenburg. Sweden, August 23-27. 1976.

53d. Huang, C.R.. Personal communication.
60a. Larkins, R.P., R.R. White and D.W. Jeffrey, "Two-phase Concurrent Flow in Packed Beds," A.I.Ch.E. Journal, vol. 7. June, 1961, p. 231.

VITA

The author was born James Atwood Parker, Jr., in on He was educated in Norfolk public schools and received an academic high school diploma from Granby High School in 1961.

In the fall of 1961, he entered the cooperative engineering program of Virginia Polytechnic Institute and graduated with a B.S.Ch.E. degree in 1966. Work experience during this undergraduate program was with Celanese Fibers Company in Narrows, Virginia. He continued study at V.P.I. and received the M.S.Ch.E. degree in 1968.

In 1967, while completing the M.S.Ch.E degree requirements, he joined Celanese Research Company, Summit, New Jersey. Graduate work at the New Jersey Institute of Technology was conducted simultaneously during his employment with Celanese Research Company. Full time research was conducted during the 1971-72 academic year.

The candidate is currently employed by Celanese Fibers Marketing Company in Charlotte, North Carolina, where he and his family reside.

[^0]: University Microfilms International
 300 North Zeeb Road
 Ann Arbor, Michigan 48106 USA
 St. John's Road, Tyler's Green
 High Wycombe, Bucks, England HP10 8HR

[^1]: The forms of the phenomenological equations for

