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ABSTRACT

A fast search algorithm for the solution of nonlinear mathemati-
cal programming optimization problems is presented in this thesis. A
gradient search procedure is combined with a "Boundary Tracking "(BT)
method using the feasible direction finding method of Zoutendijk for
generating a feasible starting direction along the feasible-infeasible

boundary.

The algorithm is applied to the minimum weight design of submersi-
ble, circular, cylindrical shells reinforced by equally spaced "T" type
frames. This problem had produced algorithm failure in two earlier
studies and was only recently solved by the Direct Search-Feasible
Direction Algorithm (DSFD) which was shown by recent comparison studies
to be among the fastest and most reliable mathematical programming
methods available. The BT procedure was found to be substantially
faster than DSFD, producing a solution with about one-eigth the effort

required by DSFD.

In a general comparison study a code based on the BT algorithm
was compared with twenty other codes representing most of the popular
numerical optimization methods on ten test problems. These problems
are such that majority of the codes tested failed to solve more than
half of them. The new code proved superior to all others in overall
generality and efficiency. It solved all problems and was the fastest

code on the constrained problems.



APPROVAL OF DISSERTATION
A FAST BOUNDARY TRACKING ALGORITHM FOR CONSTRAINED
NONLINEAR MATHEMATICAL PROGRAMMING PROBLEMS
BY
JACOB YAGHOUB MORADI

FOR

DEPARTMENT OF MECHANICAL ENGINEERING

NEW JERSEY INSTITUTE OF TECHNOLOGY

BY

FACULTY COMMITTEE

APPROVED: _ CHAIRMAN

| cams an s Y Tt 7t

NEWARK, NEW JERSEY
JUNE, 1977

iv



ACKNOWLEDGMENT

The author wishes to express his appreciation to his advisor,
Dr. M. Pappas, for his help and guidance in the preparation of this

thesis. Also, he is grateful to Dr. H. Herman for his aid and advice.

This work was supported by the Office of Naval Research,
Contract No. ONR-NO0O-14-75-C-0987 and by the Office of the Dean of

Research at New Jersey Institute of Technology.



TABLE OF CONTENTS

ABSTRACT OF THE THESIS
ACKNOWLEDGMENT

LIST OF FIGURES

LIST OF TABLES
NOMENCLATURE

CHAPTER 1 - INTRODUCTION
1.1 Optimization in Design
1.2 General Strategy of Mathematical Programming

1.3 Motivation and Structure

CHAPTER 2 - DESCRIPTION OF GENERAL STRATEGY OF THE
BOUNDARY TRACKING ALGORITHM

2.1 Introduction
2.2 Location of the Behavior Boundary
2.3 Movement Along the Behavior Boundary

2.4 Search Termination Description

CHAPTER 3 MATHEMATICAL DEVELOPMENT

3.1 Boundary Location

3.1.1 Identification of Proper Constraints

3.1.2 The Boundary Locating Method

3.2 Mathematical Representation of General Strategy

3.2.1 Movement to the Boundary,Starting Point in the
Feasible Region

Vi

10
10
10
15
18

21
21
21
22
26
28



TABLE OF CONTENTS (Cont'd.)

3.2.2 Movement to the Boundary,Starting Point in the
Infeasible Region

3.2.3 Initiation of Movement Along the Boundary

3.2.4 Movement Along the Boundary

CHAPTER 4 - DESIGN EXAMPLE
4.1 Problem Statement

4.2 Problem Formulation
4.2.1 Objective Function
4.2.2 Constraint Equations
4.3 Discussion of Results
4.3.1 Code Description
4.3.2 Code Application

CHAPTER 5 - COMPARISON STUDY

CHAPTER 6 - CONCLUSION

LIST OF REFERENCES

vii

Page

31
31
34

42
42
43
43
44
50
50
51

56

68

70



Figure

Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

o O Bow N

LIST OF FIGURES

General Strategy of the Boundary Tracking
Method

Block Diagram of the General Strategy
Block Diagram of the Termination Procedure
Selection of a Proper Constraint

The Boundary Locating Method

Flow Chart of the Procedure for Movement
to the Boundary

Flow Chart of the Procedure for Movement
Along the Boundary

Flow Chart of the Termination Procedure

Typical Shell Cross Section

viii

Page

11
12
20
23
27

29

35
39
45



TabTe

Table

Table
Table
Table
Table

2:

Sy o1 W

LIST OF TABLES

Synthesis path for the shell design problem
using DSFD method

Synthesis path for the shell design problem
using the Boundary Tracking method

Code Descriptions
Performance of Optimization codes
Relative ranking of Optimization codes

Ranking of Optimization codes in Problems with
Behavior Constraints

ix

Page

53

54
57
58
60

65



Bk(x)

bl

g(x), gj(X)
g*(x)
g(t)

HE’ HM
h
I

NOMENCLATURE )

cross sectional area of the frame
number of active behavior constraints
behavior function

web thickness

flange thickness

distance from midplane of the shell to the surface of
the frame

an arbitrary large constant
maximum flange to plating thickness ratio

distance from the midplane of the hull plating to the
neutral axis of the frame

tensile modulus
bending stiffness of a frame

eccentricity

= arbitrary small positive constraints

objective function

efficiency criteria

shear modulus

torsional stiffness of a frame

constraint function and the jth constraint function
the smallest proper constraint

the constraint g*(x) as a function of a single variable
t

frame deflection parameters [see equations 3.11 - 3.12]

web height

number of variables



R
+
RY,

S

t

tap

u

min?®

R;

number of constraint equations

number of proper constraints

arbitrary small positive number
distance between frames

Tower Timit on behavior function

length of the shell

axial wave number

numerical success rating

arbitrary selected numbers
circumferential wave number

number of problems solved by code "a"
hydrostatic pressure

set of proper constraints

progress towards solution (section 4.2)
gross collapse pressure

collapse pressure of a shell panel
minimum collapse pressures

total radial load

radius of the shell

minimum and maximum radius of the shell
active lower and upper regional constraints
factor of safety

skin thickness

normalized cpu time

best movement direction vector

X1i



displacement volume of the cylinder
volume of the frame

volume of plating

volume of frame web

weight of the hull

deflection parameter

design variable vector and its components respectively
step size

minimum step size

frame deflection parameter
specific weight of material
specific weight of immersion fluid
constraint activity limit

poison's ratio

frame bending stress

compressive hoop stress

aliowable frame stress

allowable plating stress

axial stress

maximum frame stress

hoop stress

magnitude of arbitrary vector function ¢
the gradient of arbitrary vector function ¢

transpose of arbitrary vector function ¢

Xii



SUPERSCRIPTS

base number

comparison value

Lower limit

value at the nth direction finding problem
number of redesign cycles

number of iterations for locating the IF boundary
upper limit

initial

xiii



CHAPTER 1

INTRODUCTION

1.1 Optimization in Design

Optimal design problems may be treated by many different methods,
for example, ordinary and variational calculus, mathematical program-
ming (MP), and some special techniques, such as the fully stressed

concept used in structural design [1-10]1.

Of the above mentioned methods, MP procedures [11] seem to be
the most flexible methods available for optimal design synthesis
since they treat the broadest range of engineering problems and are

easily adaptable.

The concept of design optimization requires that a quantity to
be minimized or maximized be designated and that this quantity be
expressed as a function of the design variables. This function is
called the "merit" or "objective" function, and can be written in
the form

f=f (Xi) i=1,2,...1 (1-1)
where X; are the design variables and I is the number of design vari-
ables. Generally, the design variables are not free to take on any

value, but are subject to constraints governing their range or the

behavior of the design.

1Numbers in brackets designate references at the end of the thesis.



When 1imits on behavior are specified, a quantitative measure
of the behavior as a function of the variables, called the "behavior
function", B(xi) is required. Thus, if K behavior functions are

specified, one can write K equations of the form

Lk< Bk< Uk k=1, 2,...m
Bk-< Uk k=m+1, m+ 2,...n (1.2)
Lk < Bk k=n+1,n+2,...p

where Lk is the lower bound on Bk’ and Uk the upper Timit. Lk and
Uk may be functions of X Behavior constraints representing the

above behavior function limits can be written as follows

gj = Uj - Bj >0 i=1,2,...m

g5 = Bj-m - Lj-m >0 j=Em+1, m+2,...2m (1.3)
gj = Uj-2m - Bj-2m 20 j=2m+1, 2m+ 2,...2m + n
gj = Bj-2m+n - Lj-2m+n >0 j=2m+n+1,...2m+n+p

A1l the above equations may be written as

gj>0 i=1, 2,...d (1.4)

J=2m+n+p

Regional 1imits are often imposed by manufacturing or other

considerations. These are of the form

L u
. < Xs € X .
X; € X5 € X, (1.5)
x% and xq are constants and represent the minimum and maximum values

i i
of Xs respectively. Here regional constraints are distinguished from

behavior constraints since any constraint of the form

Ag x;¢ B (1.86)



where A and B are constants, may be treated more simply than the
general form. Not all the Xs need be subject to such Timits. A de-

tailed discussion of regional constraints can be found in Reference

[9].

Some variables may also be restricted to certain discrete values.
In structural design these values can represent material properties,

geometric available shapes and sizes, or thickness gages.

The concept of a merit surface is important to the understanding
of the redesign process. The function f(xi) can be considered as a sur-
face in I + 1 dimensional space where the coordinate axes are the Xs and
y where the value of y is given by f(xi). The constraints delineate the
region of interest within which the optimum is to be found. Points
which satisfy the constraint equations are called "acceptable" or
"feasible" points. A1l other points are called "unacceptable" or
"infeasible". The set of all feasible points constitute the "feasible
region" and all infeasible points define the "infeasible region". The
surface between these regions is called the Infeasible-Feasible (IF)
boundary. Those portions of the IF boundary where at least one be-
havior constraint is zero are called the "behavior" boundary. Points
away from the constraint surface are called "free", and those on
these surfaces are called "bound" points. The merit surface is ex-
plored to find the highest point in the acceptable region. The algo-
rithms commonly employed in such problems usually start the exploration

from a free acceptable point. The variables are generally treated as



continuous quantities. If discrete variables are encountered, they
may be treated initially as continuous and, upon finding an optimum,

a local exploration is made to find the optimal discrete value [12].

1.2 General Strategy of Mathematical Programming

Like all optimization methods the MP methods try to find those
values x for which the merit function f(xi) will be minimized (or
maximized). The problem may be stated as follows:

Find those X; that produce the

min.f(xi) (1.7)
such that all the constraints

gj(xi) >0 i=1,2,...4 (1.8)
and the equality constraints

9 (%;) = 0 k=0+1,0+2,...K (1.9)
are satisfied, where the X; are the I real valued variables xy,

XoseaXp in I-dimentional Euclidian space, and constraints 97s

9ps...gy are real-valued real functions in that space.

Most MP methods do not treat the equality constraints directly.
These constraints may, for example, be converted to inequality con-
straints of the form

es gplxs) < e (1.10)
where € is an arbitrary small number. One can also treat an equality
constraint by solving for one variable in terms of the others, thereby

eliminating a variable and constraint.



MP methods are based on searching strategies. The search usually

0 and, by means of some

starts from an arbitrarily selected point x
local search strategy, a set of points X' is generated such that

£(x") < f(xr'l) while also satisfying all the constraint equations.
In the majority of design problems, either f and/or some or all of
the constraints gj are nonlinear in x, and therefore one has a non-

linear, constrained optimization problem.

None of the available nonlinear optimization methods guarantees
an optimal solution (when it exists). There are two major difficul-
ties. First, many of the design problems are not unimodal that is,
they have more than one Tocal optimum. The nonlinear methods are,
however, designed only to locate local optima and thus the global
optimum may not be attained. Secondly the search algorithm may simply

fail to find even a local optimum.

The prudent designer thus usually tries several different star-
ting points. If all the search paths terminate at the same point,
then optimality is assumed and the problem can be considered to be
unimodal. However, if the termination point is different for
different search paths, then either the best design is
accepted or additional starting points are tried in an attempt to
find a still better design. Such a decision draws on the designer's
experience and judgment. The failure to converge to the same point
may be due either to the presence of several local optima, or to

algorithm failure. Failure is said to occur when the algorithm ter-



minates at a point significantly away from the nearest local optimum.
An excellent discussion of the difficulties involved in the solution
of unconstrained nonlinear programming probiems is provided in
Reference [12]. These difficulties are greatly compounded when con-
straints are added. For convenience, since this and other MP methods
are capable only of locating a local optimum, in the discussion below
the term optimum should be taken to mean local rather than global

optimum.

1.3 Motivation and Structure

Many efficient algorithms exist for treating linear problems,
that is, problems with Tinear objective functions and constraint
equations, and certain simple nonlinear problems [5-7, 13]. Most
design problems are, however, nonlinear problems that must be treated

by ralatively less efficient methods.

There are a number of methods available for solution of such
problems [14]. However, there are several difficulties with these
methods. For example, the computations required to produce improved
designs in the neighborhood of the constraint boundaries are in some
cases lengthy and relatively complex. The number of function evalua-
tions is often very large, and, most methods are not reliable, that
is, the best points produced by these methods may not be a local

optima.

Recently, Eason and Fenton [15] compared a group of seventeen

numerical optimization methods. This group of algorithms contains



most of the currently popular procedures. The results of this study
indicate that the direct search algorithms are superior with respect
to generality, efficiency, running cost, speed, preparation cost and
reliability [15]. Unfortunately, none of the methods presented in
this study are totally reliable. None of the codes solved all of

the ten problems attempted.

In a recent paper, Pappas and Moradi compared a code based on
the Direct Search-Feasible Direction Algorithm (DSFD) [16] with those
studied by Eason and Fenton [17]. This code solved all the test
problems treated in Reference [15]. In addition it also solved a
difficult six-variable problem which the relatively reliable DSDA,
and popular SUMT, procedures failed to solve [17]. In this study the
DSFD based code proved superior to all others in overall generality

and efficiency.

Even the relatively efficient DSFD however, required several
hundred to several thousand function evaluations to achieve a solution
to Eason's and Fenton's test problems. Therefore substantial compu-
tational effort and cost would be required by these procedures on
problems with computationally demanding functions. Since many
important engineering problems are of this type, there is a clear
need for a new algorithm which requires a reduced number of function

evaluations for solution.

This thesis presents an apparently fast and reliable algorithm

which utilizes a search strategy designed to greatly reduce the number



of function evaluations required for solution. This is accomplished
by developing a scheme which keeps the search confined to the neigh-
borhood of the behavior boundary, on the premise that this is where

the optimum is usually found in constrained problems.

The search moves efficiently along this boundary by making effec-
tive use of a relatively small amount of new local function information
relying primarily on information generated earlier in the search.

Thus, the number of new function evaluations required to sustain
movement and thereby the total number of function evaluations required

for solution are kept Tow.

Since the advent of high speed digital computers many accurate
but computationally demanding methods have been developed for engi-
neering analysis. Due to the relatively large execution time required
for each reanalysis cycle (function evaluation) of many of these
techniques and the large number of reanalysis cycles required by most
MP procedures, the combination of such analytic methods and MP pro-
cedures may be very costly to utilize and are therefore often imprac-
tical. This difficulty can seemingly be minimized by use of the
Boundary Tracking (BT) algorithm due to its apparent efficiency in
reducing the number of function evaluations and therefore total execu-

tion time required for solution.

Where the BT algorithm is not available in a compiled form, a
simpler algorithm may be preferable for use on small simple problems.

In such circumstances the extra compilation time required due to the



greater complexity of the BT algorithm may overshadow the time saved
by a reduction in the number of function evaluations required for

solution.



CHAPTER 2
DESCRIPTION OF GENERAL STRATEGY OF
THE BOUNDARY TRACKING ALGORITHM

2.1 Introduction

The most common strategy for constrained optimization techniques
is first to move to the IF boundary from a starting point and then to
move along this boundary to the optimum. A typical objective function

surface is illustrated in Figure 1.

The general strategy of the Boundary Tracking (BT) algorithm is
to first locate a point on the behavior boundary. Once the behavior
boundary is located the best direction for movement along this boun-
dary is determined. Movement along this boundary is then continued

until the optimum point is obtained.
Figure 2 presents a general block diagram of the BT algorithm.

2.2 Location of the Behavior Boundary

The search starts from an arbitrary starting point x?. If the
problem has behavior constraints, these constraints are evaluated at
this point. If the starting point proves to be in the feasible region,
it is designated as a base point (point 1 Figure 1). A step is then
taken in the direction of the gradient of the objective function. ATl
the constraints are evaluated after the step. If the new point is in
the feasible region the objective function is evaluated and compared

to the last base point. If the function has improved, this new point

is called a base point (points 2, 3, 4 in Figure 1) and the search
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continues, doubling the step size with each move.

Once the behavior boundary is crossed, a point on this boundary
is located (point 5) using a line search in the direction of the last

move.

The search is performed in the direction of movement, rather
than say the direction of the gradient of the constraint function
violated, since identification of the latter direction requires cal-
culation of constraint function derivatives, while the former direc-
tion is available and thus requires no new information. The Tine

search is used because of its simplicity.

If the search move crosses the IF boundary at a regional limit,
it is possible to find the best direction to continue movement by
solving Zoutendijk's direction finding problem (see section 3.2.3).
Here for simplicity, however, the variables exceeding the 1imits are
set equal to the corresponding Timit and the search continued until a
behavior constraint is violated. This strategy tends to deflect the

direction of movement along the IF boundary.

If after a step, the point remains in the feasible region but
the objective function has not improved, a new gradient direction is
calculated at the last base point and the search restarted. If
several direction changes fail to locate the constraint boundary, a
more efficient, albeit more complex, unconstrained search method such

as the modified Rotating Coordinate Pattern (RCP) search [17], is
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used. This search procedure is applied here to avoid the zig-zagging
problem associated with the gradient search method [12]. Thus the
advantages of the gradient search method are exploited where possible,
but the method is replaced by a more appropriate procedure whenever
strategy dictates. If the behavior boundary is crossed in the modi-
fied RCP search, the nearby boundary may be located by any convenient

method such as that already described.

The major contribution of this thesis is the procedure for move-
ment along the behavior boundary. It is this movement which causes
the difficulty associated with the solution of constrained nonlinear
problems. The method used for locating the boundary, such as the
gradient search or the RCP search, is of secondary importance. Since
the bulk of the search is associated with movement along the boundary,
the choice of the initial boundary locating procedure will not sub-
stantially effect overall performance. Thus, the procedures used for
this purpose are not of great importance and need not be described in
detail here. The interested reader is refered to references [12, 17]

for a detailed description of these methods.

If the starting point is infeasible, the behavior boundary is
located by first selecting the most negative constraint, that is, the
constraint presenting the greatest violation. The point where this
constraint vanishes is then located using a line search in the direc-
tion of the gradient of this constraint (see section 3.1.2). This

direction is used here since it provides the shortest distance to the
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surface where this constraint vanishes. The line search procedure
used here is a modified Secant root finding procedure (see section

3.1.2).

A1l the constraints are then evaluated at the point where the
selected constraint vanishes. If no violation exists the objective
function is evaluated and the point is designated as a base point.
However, if any other constraints are violated at this point, the
smallest one (algebraically) is again selected and the point where it
is zero is found. This process is continued until a point on the

behavior boundary is located.

For problems without behavior constraints an unconstrained search
method, such as the modified RC Pattern search [18], is used to locate
the optimum point. This search method combines the well known RC
Pattern search with Zoutendijk's feasible direction finding method
(see section 3.2.3). The direction finding procedure is employed at

the points of RC Pattern search failure.

2.3 Movement Along The Behavior Boundary

Once the point on the behavior boundary is located it is designa-
ted as a base point (point x! in Figure 1). The best direr*ion to
move is then determined by solving the direction finding problem of
Zoutendijk (see section 3.2.3) and a step taken in this direction.

The objective function is then evaluated at this point. If the func-

tion has improved, all the constraints are evaluated.
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If none of the constraints that were inactive at the base are
violated, an appropriate constraint is selected from among the active
constraints (see section 3.1.1). The behavior boundary is located
by finding a point where this constraint is zero by means of a line
search in the direction of the gradient of the selected constraint
(point x2)

Upon locating the point on the boundary after the best direction
move, the objective function is evaluated. If the function has im-
proved the point is designated as a base point (point x2). A move is
then made from the last base in the direction of improvement along a
Tine connecting two bases a distance equal to the distance between

these bases.

The boundary is then located as before (see point 3 of Figure 1)
along the direction of the gradient of the appropriate constraint as
evaluated at the last point where the best direction finding problem
was formulated. It should be pointed out that this is an underlying
feature of this algorithm, making multiple use of function evaluations
in order to keep the number of new evaluations required as small as
possible. Only if this direction fails to locate the boundary, are

new gradient values computed.

When the point on the behavior boundary is found, it is compared

to the last base point. If the function has improved, the point is

4

designated as a new base point (points x3, X', x5) and the search is

continued. However, if the function has not improved the direction
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is abandoned and the search is re-started from the last base point by

calculating a new best direction.

After each move all thé constraints are evaluated, if a new con-
straint is violated (point A) the point where this constraint is zero
is located and a new best direction calculated. However, if no new
constraint is violated, an appropriate constraint is selected from
among the previously active constraints (see section 3.1.1) and the
boundary located, the process is continued until convergence is

achieved.

If no appropriate constraint is active the move along the pre-
vious direction is continued, since it is the best direction avail-
able. If after a step in the above direction, the objective function
has increased rather than decreased the step size is reduced. The
process is repeated until a better point is found or the convergence

criterion is met (see section 3.3).

If after any move a constraint inactive at the last base point
is violated, the behavior boundary is located by finding the point
where this constraint is zero. This point is found by a line search
in the direction of the last move. This direction is used to elimi-
nate the need to calculate the gradient of the new constraint. The
search is then re-started by calculating the best movement direction

at this point on the boundary.
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2.4 Search termination description. For the few cases where

the optimum occurs away from the behavior boundary, a sufficient con-
dition for optimality is that all components of the gradient of the
objective function be essentially equal to zero. For most cases,
however, where the optimum is on the behavior boundary no such simple

condition exists.

The search termination procedure used here is as follows. The
search using a specified basic step size is performed until no further
improvement can be obtained. When such a point is found it is desig-
nated as an optimality comparison base. Now the basic step size is
reduced in an effort to achieve improvement and the search continued

until a new optimality comparison base is obtained.

In order to justify a further reduction in the step size an
optimality check is performed whenever the step size is to be reduced.
If a convergence limit is satisfied, the step size is again reduced
for further improvement and the search is continued until another
optimality comparison base is obtained. A secondary convergence
check is then performed in order to determine whether the latest im-
provement due to the step reduction is less than the previous improve-
ment thereby indicating convergence has occurred. If both convergence
tests are simultaneously satisfied, or the minimum step size is reach-
ed, the search is terminated. Otherwise, the search is re-started by

calculating a new best movement direction.
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A block diagram of the search termination procedure is given in

Figure 3.
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CHAPTER 3
MATHEMATICAL DEVELOPMENT

3.1 Boundary Location

It is assumed for the purpose of devising a search strategy that
the solution to the optimization problem with behavior constraints
Ties on the behavior boundary. The main strategy is first to locate
such a boundary and then to move along this boundary. For the pur-
pose of locating the boundary a "proper" behavior constraint is iden-
tified and method for locating the behavior boundary selected or

developed.

3.1.1 Identification of "proper" constraints. All negative and

small positive constraints are designated as active constraints (for
definition of activity see section 3.2.3). A constraint is considered
"proper" if it is necessary or desirable to locate a point where the
value of this constraint is zero after making a search move in an

effort to establish a new base.

Since it is necessary to eliminate any constraint violation pre-

sent at a point, all the negative constraints are considered "proper".

If all active constraints are positive, a positive active con-

straint is considered proper if

- Vf - ng <0 (3.1)

This indicates that the projection of -Vf on Vg is of opposite

sign to Vg (point 1 Figure 4) and therefore, the value of the constraint
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gj will decrease as a result of a move in -Vf direction (minimization

problem).

The best direction for improving a function is its gradient
direction. However, this direction is not always feasible in con-

strained problems (point 1 Figure 4).

A direction is desired such that after taking a step, the objec-
tive function will improve the maximum amount possible without
violating the behavior constraints. A direction along the behavior
boundary often has this property. Moving along the behavior boundary,
however, may not always produce the best improvement in the objective
function as shown by point 2 in Figure 4. Here projection of -Vf on
ng has the same sign as ng. Thus, the value of the constraint gj
will increase by moving in -Vf direction. A criteria is therefore
needed that can indicate which positive constraint (if any) is "pro-
per". Equation (3.1) satisfies this purpose, since if satisfied it
identifies the constraints that may be violated if a move in the best
direction (-Vf) is made. Thus it identifies proper constraints,
that is, those constraints along which it is desirable to move in

order to achieve the best improvement in the objective function.

If no proper constraint can be identified, the movement along the
previous direction is continued, since there is no advantage in loca-

ting and moving along the nearby boundary.

3.1.2 The boundary locating method. Call the set of proper

constraints Pk where, k = 1, 2,...K. If more than one "proper"
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constraint is identified, that is if
K> 1 (3.2)
the smallest (algebraically) is selected and called g*. The root of

g* is then found in the direction of movement or the gradient of g*.

The root, if it exists, of the constraint g*(x) along a Tine may
be found as closely as desired by means of the "secant root-finding"

method [19] by iterating the equation

+ - -
T2 - g ) ST I ) - g (FTDT s = 12,00 (3.3)
where N] is the maximum number of iterations permitted, until

| g* (xSH)[ < ey (3.4)

is satisfied. Here e is an arbitrarily selected accuracy limit.

s-1 are two points on the line defined by

Initially x>, x
Case A: If the boundary is to be Tocated in the direction of the last
search move (see section 2.3) let the initial points on the line
(s = 1) be given by
NORL (3.5)
x> = x' (3.6)
where xb and x" are the end points of the last search step.

Case B: If the boundary is to be located in the gradient direction

of the constraint g*(x) (see section 2.3) let
VL, (3.7)
x> = x" £ o'vgr (x") / (vg* (x")) (3.8)

where x' is the point from which the boundary is to be located and K"

is the last base where a direction finding problem was formulated
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(see section 3.2.3.). Here the plus and minus signs are used when g*
is negative or positive respectively. The quantity a" is the step size
used at point x".
Case C: For the case where this procedure is used to find the behavior
boundary where a starting point of the optimal search is infeasible,
replace x" by the starting poirt x0 and let,
o = o0 (3.9)

where ao is an arbitrarily specified initial step size, and let

vg* (x") = vg* (x0) (3.10)

in equations (3.7) and (3.8).

After equation (3.4) is satisfied, the remainder of constraints
in the set PK may also vanish. However, if after eliminating the
the smallest violation

+
S 1)

(x > - e j=1,2,...0 (3.11)

%
is not satisfied, a new g* is selected and the procedure repeated until

a point on the behavior boundary is located (equation 3.11 satisfied).

In case B, slow convergence may indicate that the gradient Vg*(xn)
may no longer be applicable at point x". This situation is shown in
Figure (5). There is no point along the gradient Vg*(x]) which falls
on the boundary. A new gradient direction Vg*(xr) is therefore calcu-
lated and used in place of Vg*(xn). If after calculating a new gradi-
ent direction the boundary still cannot be located with a reasonabie
number of iterations, the difficulty may be due to too large a reach

step (1ine x6 - x" in Figure 5). Thus where recalculation of the
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gradient fails, the step size is reduced and another effort is made to

locate the boundary from a point somewhat closer to the Tast base.

Therefore, unless
s < N, (3.12)
where N1 is chosen empirically, let
vgr (x") = vg* (x') (3.13)
in equation (3.8) and repeat the application of equation (3.3) If equa-
tion (3.12) is again violated let

ax™1 = ax'2 (3.14)

where
ax" = x' - xb (3.15)

and xb is the last base point. Then select the smallest proper con-

*l where

xr+] = xb + Axr+] (3.16)
+1

straint at point x"

1

(point 8+ ax™1 in Figure 5), replace x" by x"' in equations (3.7)

and (3.8) and repeat thém;;g?ation of equation (3.3). The process is
continued until the boundary is located without violating equation
(3.12) or until

1ax™ ] <o (3.17)
If equation (3.17) is satisfied the attempt to locate the boundary is
abandoned. The optimal search is then restarted by calculating a new

starting direction (see section 3.2.3) at the last feasible point en-

countered.

3.2 Mathematical Representation of General Strategy

The general strategy of the algorithm can be represented mathe-

matically as follows.
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3.2.1 Movement to the boundary-starting point in the feasible

region. A block diagram for the movement to the boundary procedure

is given in Figure 6.

Given the starting point x:, where initially r = 0, which satis-

fies regional constraints

L r U .
X{ € X € X i=1,2,...1 (3.18)
and all
9;(x{) > 0 i=1,2,... (3.19)

the objective function f(x") is evaluated. This point is called a

base point xb, where initially b = n = 1, and the first comparison base

n. .
X 1is defined as,

X" = xP (3.20)
Then with
of = " (3.21)
Tet
= o eE™ T 7 |vE() | (3.22)

where V is the gradient operator, |Vf| the magnitude of Vf and, of is

the step size at iteration r.

If any
r+] U
X'i > X‘i
let (3.23)
r+1 _ U
i TX

or if any
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AP
i i
let (3.24)
r+¢1 _ L
X_i - X_i
Now compute the gj(xr+1), if equations (3.19) are satisfied, evaluate
FXh. 1f
Fx") < (xP) (3.25)
call the point a new base point. Thus Tlet
NG (3.26)

A new move is then made according to equation (3.22) with the
step size redefined as
o1 = 24" (3.27)
and application of equations (3.23-3.26) repeated. If b>1 and equa-

tion (3.25) is not satisfied increase n by one, let the next compar-

ison base x" = x (3.28)
and let

x' = xb (3.29)
Now if

n < N2 (3.30)

where N2 is an arbitrary constant signifying the number of direction
changes, a new gradient direction Vf is calculated. The application
of equations (3.20-3.27) are then repeated until either a point in
the infeasible region is found or equation (3.30) is not satisfied.

r+1

If point x is in the infeasible region the behavior boundary is

located in the direction of the last move (see section 3.1.2).

If n exceeds N2 the gradient search is abandoned and the RCP

search invoked. This search method is continued in the unconstrained
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region until a point in the infeasible region is found or the optimum

is achieved (see section 3.3).

If equation (3.25) 1is not satisfied when b=1, the step size o is
redifined as
ar+1 = aof/2 (3.31)
and a new move is made accordiny to equation (3.22). The application
of equations (3.31) and(3.22) is repeated until equation (3.25) is

satisfied or

r+1
o< G (3.32)

where o is a minimum step size. In the latter case the point is

min
assumed to be optimum and the search is terminated.

3.2.2 Movement to the boundary - starting point in the infeas-

ible region. If the starting point x? is in the infeasible region or
the RCP search has located a point in this region the behavior bound-
ary is located by a search in a constraint gradient direction (see

section 3.1.2).

3.2.3 Initiation of movement along the boundary. After locating

a point on the behavior boundary a method is needed which can initiate
the move along this boundary toward the optimum if optimality has not
yet been achieved. The Feasible direction finding algorithm of
Zoutendijk [20] is suitable for this purpose since, it either provides
a direction along which an improved point can be found, or indicates

the presence of a local optimum.
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Definition: a) A direction vector u is called "feasible" if
after taking a sufficiently small step along this direction no con-
straint is violated [20]. This will be true if

() Vg5 (x) 20 (3.33)
)T

where (u)’ 1is the transpose of u, since a small step in this direc-

tion will produce no change or an increase in gj(x).

b) A feasible vector u is called "usable" if a move in the direc-
tion u can also provide an improvement in f(x). This will be the case
if

(W7 vf(x) < 0 (3.34)
since a sufficiently small step in the u direction will produce a

decrease in the value of f(x).

c) A behavior constraint gj(x) is considered "active" if

gj(xi) < €; (3.35)

where
e, = K, (a7 o0) (3.36)
J J

is an array of positive, arbitrary small numbers. These numbers may

approach zero during the search, but can not be identically zero [20].
The quantity ao is the step size at the beginning of the search and
Kj is a small positive constant.
d) A lower regional constraint is considered "active" if
X3 - x% < ol (3.37)
and the upper constraints active if

U Zx. g ol (3.38)
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Denote the set of all active behavior constraints by Aj. Call
R; and R: the active lower and upper regional constraint set respec-

tively.

The direction finding problem can be formulated in the following

manner:

Given x, find u that results in the

max o (3.39)
and for which

g>0 (3.40)

(u ) VE(x) + o< 0 (3.41)

~(u )T Vg;(x) + Uy o< 0 J € A (3.42)

u; < 0 ie R; (3.43)

u; >0 ieR] (3.44)

u| € i=1, 2,...1 (3.45)

Equations (3.45) bound the length of u to prevent the direction

finding problem from producing an unbounded solution vector.

When suitable deflection parameters wj are used, the solution of
the problem provides a usable and feasible direction u since, if o > 0
from equations (3.41) and (3.42) equations (3.33) and (3.34) will be
satisfied. It also provides the best usable direction since, if o is
maximized, the left hand side of equation (3.34) will be a maximum
and therefore the direction found will be the best direction for de-

creasing f(x) [20].
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It may be seen that the direction finding problem of equations
(3.39 - 3.45) is a Tinear programming problem. Thus, any Tinear
programming method such as the simplex procedure [21] can be used to

provide the solution.

Since the objective here is to move along the IF boundary, the
direction u should be as close to this boundary as possible. The
work associated with locating the boundary will therefore be minimized
after the move. The deflection parameters wj here are thus set to be
equal to zero. This produces a direction u that tends to be tangent

to the boundary.

3.2.4 Movement along the boundary. A flow chart for the move-

ment along the boundary procedure is given in Figure 7.

b

Call the point on the behavior boundary x~ and define

o= ! (3.46)

b is a base point, and ofis a comparison

where initially b = 2 = 1, x
step size. A direction u is then calculated (see section 3.2.3) and

the point x" defined as

r _ b r
X; = Xg o+ A X (3.47)
where
Ax? = o u; / lul (3.48)
if
£(x") < F(xP) (3.49)
and
g;(x") > ¢; i=1, 2,...d (3.50)
j# AJ-
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are satisfied, point x> on the behavior boundary is located by a
search in the constraint gradient direction and the objective func-

tion evaluated. Now, if equation (3.49) is satisfied at x>, let

xPH = S (3.51)
now index b and define the next step as
r_ b r
where
A x0T = xP - xP-2 b>2 (3.53)
i i i
or
r_ b b-1 -
A X5 = Xs o= Xy b =2 (3.54)

The constraints are now evaluated. If equation (3.50) is satisfied,
the behavior boundary is located in the constraint gradient direction

and the application of equations (3.51 - 3.54) repeated.

If when b=1, equation (3.50) is not satisfied, that is, if new
constraints have become active, the value activity limit Ej is doubled
for all constraints in set Aj not satisfying equation (3.50), since
its previously assigned value was not sufficient to properly define
activity. The boundary is then located in the direction u and the

application of equations (3.47 - 3.50) repeated.

If equation (3.50) is not satisfied when b > 2 the boundary is
located in the direction of the last move Ax'. Then a new set of
active constraints is defined and the search re-started from the last

base point (see section 3.2.3).
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In app]iéation of equations (3.49 - 3.54) if equation (3.50) is
satisfied, but equation (3.49) is not satisfied, this indicates that
the Tast search move direction was unproductive, therefore the last
direction of movement is abandoned and the search is re-started from
the last base point xb by calculating a new direction u, and setting

b=1.

After employing equations (3.47) and (3.48), if equation (3.49)
is not satisfied, this indicates that the step size is too large,
therefore let

o1 = o2 (3.55)
&1 = gt (3.56)

Now, since new activity limits are defined [see equation (3.36)] the
active constraints are again determined, if the set Aj has changed a
new direction u is calculated, otherwise the previous direction is
used and application of equations (3.47 - 3.49) repeated using the
new step size. This procedure is continued until equation (3.49) is

satisfied or convergence is achieved.

Application of equations (3.47 - 3.56) is invoked when applicable,
as explained above, until the convergence or optimality criterion are

met (see section 3.3).

3.3 Search Termination

A flow chart for the search termination procedure is given in

Figure 8.
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The question of optimality is considered at all points where the
direction finding problem is formulated. For the few cases where a

local optimum occurs away from the behavior boundary that is where

all
9; (x) > e, (3.57)
a sufficient condition for optimality is
|VF| < e, (3.58)

where e, is an arbitrary small number.

For most cases, however, where optimum is constrained, the solu-
tion to Zoutendijk's direction finding problem [20] provides a test
for optimality. A null solution vector u indicates a Tocal optimum
where all Ej = 0. However, where some ej # 0 and the active con-
straints are also not zero, the point may be merely near, rather than
at the optimum, since in this type of problems the optimum point
is usually on the behavior boundary. Therefore, when u = g attempts
are made to re-start the search and the optimality procedure is invoked
only when a non-zero direction vector u is obtained. In order to re-
start the search the step size is redefined as

UL (3.59)
and therefore the activity limits €5 are redefined according to equa-
tion (3.36). A new direction u is fhen calculated if Aj has changed.
This procedure is repeated until a non-zero direction is found or the

minimum step size is encountered, that is

n
ol Opin (3.60)

in which case the search is terminated and the point is assumed to be
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an optimum.

For the cases where u # g, increase % by one and let
ot = of (3.61)
£ = £(xP) (3.62)
where fz is a comparison value with initially 2 = 0, and fo = C1,
where C1 is an arbitrary large number. Now if
o = &1 (3.63)
no optimality check is made since 2 has increased because the search
was re-started due to the fact that the previous movement direction
was unproductive. However, if the step size has changed, this indi-
cates that the maximum improvement in the function has been achieved
using the previous step size and the step size must be reduced for
additional improvement. A convergence check is now made in order to
determine if a search using the new step size is justified. Thus,
where equation (3.63) is not satisfied, define
af =y (fF - Ty et (3.64)
Unless

AFY < ey (3.65)

where es is the primary convergence criteria, the search is continued.
A secondary convergence check is initiated whenever the primary
convergence criteria is met, [equation (3.65) satisfied] in order to
confirm optimality. For this purpose the step size o is reduced
according to equation (3.59) and the search is re-started. When
further movement with the new step size terminates the primary conver-

gence check is invoked. Therefore, whenever equation (3.65) is not
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satisfied at point xb, iet
K=20 (3.66)
and where equation (3.65) is satisfied index K and Tlet
UL (3.67)
&1 = ot (3.68)

If equation (3.60) is satisfied, the point is assumed to be a local
~ optimum and the search is terminated. Otherwise a new direction u is
computed and the search continued. When the primary convergence check
is satisfied in two consecutive tries, that is if

K=2 (3.69)
the secondary convergence check is invoked. Thus if

af* < aftl (3.70)

the search is terminated. Otherwise a new direction u is computed, K
is set equal to 1 and the search continued. When equation (3.70) is
satisfied, the change in the value of the objective function (Af) has
decreased from the previous convergence c.eck, even though a reduced
step size was used, the point is thus assumed to be optimum and the

search is terminated.



CHAPTER 4

DESIGN EXAMPLE

4.1 Problem Statement

Consider the minimum weight design of submersible, circular,
cylindrical shells reinforced by equally spaced "T" type frames. The
design variables with respect to which the optimization is to be car-
ried out are: Plate thickness, frame web and frame flange thickness,
frame flange width, web height, and frame spacing. The objective
function to be minimized is the ratio of shell weight to the weight
of fluid displaced. A1l the standard design equations used in submers-
ible shell design practice are to be satisfied. A1l variables will
be treated as continuous. The fixed design parameters are: The
operating depth, shell diameter, shell segment length, shell eccen-
tricity, construction material properties, factors of safety to be
used in design, maximum and minimum values permitted for the design
variables, and, when required, a maximum {when external frames are

used) or minimum (when internal frames are used) frame diameter.

This problem is selected here since it is a difficult and compu-
tationally demanding engineering problem which the relatively reliable
optimization code, DSDA and the popular SUMT procedure, could not

solve [17].

In a previous study [22] it has been shown that the merit surface

in this problem is fairly flat, therefore a wide range of variables
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with similar objective function values may be generated during the
search. This study also demonstrates that movement along the behavior

boundary is very difficult in this problem.

A modified version of this problem with only four variables was
treated in Reference [22], using the DSDA procedure. The formulation
of the more difficult six variable problem presented here is similar

to that used in Reference [22].

Only CADOP3 [23], a modified version of CADOP2 code, [16] reached
an optimal solution to this problem. This code is three times faster
than CADOP2 code in problems with behavior constraints. Howaver, due
to the difficulties involved in moving along the behavior boundary, the
execution time required by CADOP3 to achieve the optimum is quite Tong
(see section 4.3). The problem, therefore, was treated using the BT
algorithm in order to demonstrate its superior ability in moving along

a difficult behavior boundary.

4.2 Problem Formulation

4.2.1 Objective function. For cylindrical vessels with periodic

"T" type reinforcing frames the objective function may be written as
w/yw VD internal frames
f(x) = (4.1)
w/[yw(VD PV, T Vf)] external frames
where W is the weight of the hull segment, given by
W= s (Vg +V, + Ve) (4.2)
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The vy and Y, are the specific weight of the material and immersion
fluid, respectively. VS, Vw’ Vf are the volume of the plating, frame
webs, and frame flanges, respectively, and VD is the displacement
volume of the cylinder enclosed by the plating envelope. The varia-
bles X1s XosesesXes which in turn represent the quantities t, b, b',
w, L', and h, respectively, are defined in Figure 9. The objective
function f(x), therefore represents the ratio of the shell weight to
the weight of the fluid displaced for the shell segment of Tength Ls.
The weight of the bulkheads is omitted.

4.2.2 Constraint equations. The constraint equations gj(x) are

divided into two groups: a) Behavior constraints which control the

failure modes or impose limitations on the space relationships among
the variables, and b) regional constraints which specify ranges of

the variables. The basic behavior constraint equations are formulat-
ed using a modified version of the design equations given in References

[24] ans [25].

The general instability constraint is given by

gy = (p* g = S4P) / p* 2 O (4.3)

cg cg

where p is the applied hydrostatic pressure; p*Cg is the minimum of
the collapse pressure pcg(n,m) due to general instability [26], and
S] is the factor of safety for this failure mode. The collapse pres-

sure is given by
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2 2
pegnom) = [on*(1 + 8%)% + EIL (ag, + E1.8°) +

(4.4)
12072 (1 + FAZ) 2

il
it N Tk R(1/2 + 6%)

where p_. (n,m) is the buckling pressure for a specified n and m and
cg

Ae =1+ 2n%d (1 - 82.) + nfa? (1 + g2)2

A= (1 + 822 4 28%F (1 + ) +8Y FO1 - 18)

(4.5)
72 - L, (1 - W2) 7 R%t2
B = nLS / mmR
F = (bw + bh) / tL'
D=Et3/ 12 (1 - ) (4.6)

d=d/R
where d is the {algebraic) distance to the neutral axis of the frame
from the midplane of the hull plating, taken as positive when it is
outward from the central axis of the hull [25]. The quantities GJf
and EIf are the torsional and bending stiffness of the frame, respec-
tively. Symbols representing hull and frame dimensions are defined
in Figure 9. The quantities G, E, and p are the shear modulus

G=E/ 2(1+y), tensile modulus, and poisson's ratio, respectively.

Buckling of the shell between frames is controlled by the con-

straint

9y = (p*cg = SoP) / P*eg 20 (4.7)

where



47.

pec (nam) = (w2/L2R) [on?(1 + 8%)2 + 1/a(1202%/n%n?) 11/ (1/2 + 6°) (4.8)

For a given set of design parameters and pressures the buckling

pressure functions p_._(n,m) and pcs(n,m) depend on the two discrete

cg
independent variables, the axial and circumferential wave number m

and n respectively. To obtain the critical buckling pressure one must
find the minimum of pcg(n,m) and pcs(n,m) with respect to n = 0, 1,2,

and m=1, 2,.... For this purpose the procedure of Reference [26]

is used here,

The necessity to avoid plating yield produces the constraint
93 = (05 = 9p) / oy > 0 (4.9)
where Gpa is the allowable plating stress and
- (2 2 _ 1/2
o (0r + Ty 0r0¢) (4.10)

The quantities O and o¢ are found from

Oy =4-pR/t[1 + F(HM + uHE)J (4.11)
The terms -pR/t and -pR/2t are the hoop and axial stresses, respec-
tively; T is a frame deflection parameter, and HM and HE are the
functions that define the bending effect on the shell due to local

frame reinforcing [24]. Equations for HM, and HE are given in Refe-

rence [24].

The constraint against the frame yielding failure mode is given
by
9 = (Ofa - OT) / Ogy 20 (4.13)
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where Oga is the allowable frame stress and o1 the maximum frame

stress. The quantity Or is given by

% T (4.14)
with the compressive hoop stress o given by
g, = Qp pR/(A + bt) (4.15)
Here A is the cross-sectional area of the frame and Qp is the total
radial load per inch of circumference. Qpis given by equation (23)
of Reference [24]. The frame bending stress o, results from slight
out-of-roundness of the hull., It is calculated using
o, = [Ece (n? - 1) / R%1 [p/ (pq - P)] (4.16)
where c is the distance from the midplane of the shell to the surface

of the frame, e is the eccentricity from the true circle radius, and

n the wave number that minimizes pcg'

It should be noted that o/ is discontinuous at points near p = pCg

and is discontinuous with respect to n, since n is an integer.

Flange buckling is controlled by letting
gg = o, - [.5n°E/12 (1 - V)1 [xg/ (x4 - %)1° 50 (4.17)

Two geometric constraint equations can be used. A maximum flange
thickness is specified to prevent the flange from becoming excessively
thick. It is desirable to specify a maximum flange thickness as a
fraction of the plating thickness. Thus, the constraint

g = (Gt - b') / Gt 20 (4.18)

is used, where C2 is the maximum fTange to plating thickness ratio.
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The constant C2 is made arbitrarily large if the designer does not
wish to apply this constraint. Minimum flange width is controlled by
the inequality

9y = (w - C3h) / w=>0 (4.19)
to insure that the flange width is sufficient so that the design rule
for the control of the web cribbing is not invalidated, C3 is an
arbitrary constant controlling the minimum ratio of flange width to

web height.

It is desirable to 1limit the minimum or maximum (depending on
whether internal or external frames are used) radius of the frame
because of space consideration. One can then use the constraint
) /R0 20 (4.20)

is the minimum specified radius for internal frames or

gg = (R+ h+b' +t/2 - Ry min

where Rmin

dg = (R -R=-t/2-h-0b")/ Riax > 0 (4.21)

max
for external frames where Rmax is the maximum specified radius.

To insure against web buckling the following design constraint

is invoked.

gy = 0 - [an2E/12 (1 - VD)1 (x, / x6)2 > 0 (4.22)

Side constraints of the form
U U
(xi - Xi) / x>0
(4.23)

(x; - X5) /

>
1 1 1’0

are used to 1Timit the range of the variables X; for manufacturing,

space, or other practical reasons. The flange width clearly cannot
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exceed the frame spacing, imposing an upper limit on Xg- Sometimes
t
X4 is Timited by design consideration, thus if xg is the designer

specified maximum

u' u! = |
U _
X4 - (4.24)
UI
*5 g Xp 7 %5

The formulation of the example treated here is now complete, but
other forms of constraints and objective functions, which do not

arise in this example are clearly possible.

4.3 Discussion of Results

4.3.1 Code description. A FORTRAN IV code called CADOP4 based
on this algorithm was developed and used in this study. The code is
operational with IBM FORTRAN levels G and H and the UNIVAC TDOS sys-
tems. The user is required to supply the objective and constraint
functions, the initial values of the variables, and side constraint

values.

The initial step size is internally generated so that at the

0

starting point a step of size o~ in the Vf direction produces a one

percent change in the value of the objective function. This step is

constrained so that ao > .01. The minimum step size is defined as

0 _ 1a-D _ _ 10-6 -
Oin = O /1000. The program uses e, = 107, e, = e = 107, Ny =6,
5

N, = 10, C; = 10° and the activity limit constant is initially speci-

2 1
fied as Kj = 0,01 for all constraints.
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Nondimensional constraint equations of the form
gj(xi) = (Uk - Bk) /U >0 when U, #0andB #0

or (4.25)
gj(xi) = (Bk - Lk) / Lk >0 when Ly # 0 and By 0

are used. Otherwise, a dimensional form of equations is used.

A constraint given as 0 < b(xi) < A would be written as two con-
straint equations. For example, one-could be of the form of the first
of equations (4.25) where By = b(xi) and U; = A, The second would be

of the form 9o = —b(xi) since L, = 0.

4.3.2 Code application. The above problem was treated using

CADOP3 and CADOP4 codes. Except that the initial step size is speci-
fied for this problem as a = 4/R, where R is the radius of the shell.

The minimum step size is defined as o = aQ/ZOO. Runs were made on

min
an IBM 370 model 168 using FORTRAMN level G. The same starting points
were used in these runs. The execution time in seconds along with

other necessary information were printed at each base point in order

to closely track the synthesis path of each procedure.

Tables 1 and 2 present the results obtained from CADOP3 and
CADOP4 codes, respectively. A total of 72810 function evaluations
were performed using CADOP3 code prior to termination. Due to the
great execution time required by CADOP3 for this problem, the run was
terminated prior to reaching the optimum. The execution time for
this run was 56.2 seconds. CADOP4 code required only about 4000 func-

tion evaluations with 4.8 seconds execution time to reach a similar
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level of convergence.

The constraint presenting the web buckling (gg) was active from
near the beginning of the search, while the plate yielding (93) be-
came active after a relatively short time and remained active through
the rest of the search. The general buckling constraint was also
active at the latter part of the search. Thus, the optimal design is
constrained by general instability, Tocal web buckling and plating

yield.

The CADOP3 codecame within1%of the optimum point after 23 sec-
onds and approximately 43000 function evaluations, while CADOP4 re-
quired only 1.4 seconds and about 1000 function evaluations to reach
this level of convergence. It should be pointed out that for most
practical engineering purposes, a 1% level of accuracy is quite accep-
table. It is the refining process that is responsible for the greatest

portion of the total execution time.

It must be pointed out that due to the presence of intermediate
print statements, the execution time required for solution without
these statements is appreciably less than the above mentioned time.
A run made without any intermediate print statements using CADOP4
code terminated after 2.1 seconds at the optimum point while the

original run required 8.7 seconds.

Comparison of the above results demonstrate the apparent supe-
riority of the Boundary Tracking algorithm to the DSFD procedure with

respect to speed. This is the result of great reduction in the number
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of function evaluations required for convergence. It demonstrates
the ability of the BT procedure to move efficiently along a difficult

behavior boundary.



CHAPTER 5

COMPARISON STUDY

The CADOP4 code as described in section 4.3.1 was used in this

study along with ail the constants and parameters presented earlier.

This comparison study is based on the works of Eason and Fenton
given in References [14] and [15]. A1l ten problems treated in these
references were run, using the new code with the starting points
given in Reference [14]. Al1 the control constants and the step
sizes are internally generated so that there was no special tuning
for individual problems. Computations were performed in double pre-
cision on an IBM 370 model 168 system, using a level G compiler, thus

closely simulating the Eason and Fenton study.

A brief description of the codes studied are given in Table 3,
while Table 4 contains the data for rating the success of the various
codes in sclving the ten problems to which they were applied. A de-
tailed description of the problems is given in Reference [14]. A
normalized time required for tlie solution of each problem successfully
solved is given in Table 4. Normalized time is defined here as the
execution CPU time divided by the CPU time required to execute a tim-
ing standardization program [14]. The symbol "P" denotes progress
toward a solution, and a blank denotes failure. The criteria used in
References [14] and [15] for defining successful solution or progress

were also applied here.
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CODE DESCRIPTIONS
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Name Description é}ggg*
ADRANS  Random search followed by pattern moves DS
CLIMB Rosenbrock search DS
DAVID Davidon-Fletcher-Powell with numerical derivatives GF
DFMCG Fletcher-Reeves conjugate gradient method with

secant approximation derivatives G
DFMFP Davidon-Fletcher-Powell with secant approsimation

derivatives G
FMIND Hook & Jeeves pattern search DS
GRAD4 Steepest descent method G
GRIDI1 Grid and star network search, with shrinkage AR
MEMGRD  Davidon-Fletcher-Powell with retained step length

information GF
NMSERS  Simplex search DS
PATSH Modified pattern search, dome strategy DS
PATRNI  Modified pattern search, ridge strategy DS
RANDOM  Random search with shrinkage AR
SEEK] Pattern search followed by random search DS
SEEK3 Modified pattern search DSF
SIMPLX Modified simplex search DSF
DSDA Modified pattern search followed by Mugele's search DS
CADOP2 Modified pattern search followed by Zoutendijk

feasible direction method DS
CADOP3  Modified CADOP2 DS
CADOP4  Boundary Tracking method BT

*DS = direct search, DSF = direct search employing SUMT strategy and

penalty function, G = gradient procedure, GF
using SUMT strategy and penalty function, AR

BT = Boundary Tracking.

gradient procedure
area reduction method,



58.

*S]ULRALSUOD [euoLlbad BuLpn|oXdyx

"[5L ‘¥L] uotynyos
e paemol ssaaboud sajedlput 4 pue ‘uoLInios J404 padLnbad dwL} pazLiewMou SI3BILpUL AUJUD | eI LABUWNN,

09°L 6€°0 600°0 €00°0 S00°0 %00°0 080°0 S¢l0°0 €00°0 7070 7d0avd
09°L 00°L S00°0 G20°0 L10°0 ¥00°0 080°0 0€0°0 900°0 6LL"0 £€400v)
€L’ G6"L €00°0 690°0 L10°0 800°0 G.0°0 060°0 910°0 L0E°0 ¢d0avd
Ge"1L ¥6°L  00°0 Gy1°0 80070 €00°0 70170 L¥0°0 12070 d vasa
d 040°0 29¢°0 t6L°0 GE0'0 9%1°0 Le-tL L6270 672 XTdWIS
d 02’y €l0°0 y1 0 t6L™0 Ge0°0 ARG L0 ¢oL’o Y EEN
€a°1 d L00°0 010°0 0to°o d d d LA33S
d €L0°0 0g°1 #2070 d d WOANWY
021 ¢0°t  100°0 d ¢00°0 800°0 d d d INdLYd
G6°1 d 200°0 d 1200 d d d ONYlvd
bG°€ d 600°0 oLoto 020°0 8L0°0 €0 00°1 0¢¢°0 8L L HS1vd
d 6€°0 £00°0 d ALY ¢00°0 090°0 G%0°0 610°0 SYISWN
d £90°0 990°0 650°0 1670 eEvLo QHOWIN
d d LE0°0 d d €e0’0 d d LATH9
d ¥00°0 d €6€°0 €82°0 d d Paved
[7ARS d €00°0 €00°0 o%L"0 d ¥00°0 ANTW4
£8€°0 d 062°0 8€0°0 d ddW4d
¥00°0 d Gl10°0 d 9JW4a
9v0°0 §40°0 cel’t ¥8°0 881°0 GIAvd
£00°0 G00°0 G10°0 aWI )
d d 690°0 651°0 ¥S9°0 00L°0 d G9°1 84t°0 v9°¢ SNvday
SalleN 3po)h
0 9 0 . 4 L 0 0 9 e oL xxSJULBAISUO)
14 4 P4 € ¢ 4 14 § € S solqetdep
ot 6 8 L 9 S ¥ € Z L "ON W91qo4d

53000 NOILVZIWILAO 46 3ONVWHO4¥3d
¥ 318yl



59.

The important variables effecting execution time are; the prob-
lem, the algorithm, the code, the input and output requirements, the
architecture of the machine and the compiler system. In order to
minimize the effects of those variables not involved in the compari-
son, similar computer machines and compiler systems along with the
same test problems and output requirements are used here. Unfortuna-
tely the effects of the code structure can not accurately be deter-
mined. Thus, data of Table 4 and ratings shown in Table 5 can not
be considered to accurately reflect the effectiveness of the basic

optimization algorithms.

The data and rating procedures used here however, can be direct-
ly applied, with reasonable accuracy, for relative comparison of the
codes tested. The results obtained are thus useful to the user of
such codes. The relative effectiveness of basic optimization algorithms
can only be infered from this data if one assumes that the codes for
each procedure have been prepared with essentially comparable effec-

tiveness.

This study uses Eason and Fenton's comparison procedures since
they are the best available and the most current. Furthermore, use
of another investigator's comparison methods rather than one proposed
by the developer of a new method reduces the tendency toward developer

bias in reportiny on the effectiveness of his method.

The data from Table 4 may be applied to a number of rating methods

for comparing the codes tested. Table 5 presents relative ranking of
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the codes using the criteria of Reference [15]. The rating equations

are as follows:

Let the number of problems solved by code "a" be Ny and let né
be the number of problems with a "P" rating. Then the numerical suc-
cess rating Na is given by

Na =n, + né/Z (5.1)

One of two computational efficiency ratings is given as

fo =[50 by oy / min (8,01 / n, (5.2)

where ba = 1 if code "a" solved problem "p" and zero otherwise, ty

P p

is the normalized time required for solution and min(tap) is the

shortest time required by any of the codes studied to solve problem
"p". The other efficiency criterion is

= _ r10

f, = [zp=] by tap / mean (tap)] / ng (5.3)

where mean(ta is the average time required by the codes studied to

p
solve problem “p". An overall rating number which can be considered a
composite measure of generality (reliability) and efficiency (speed)
is given by

- 10 oy
Ta = Zp=] tap (5.4)

where t! is set equal to ta if algorithm "a" solves a problem "p",

ap p
and to twice the time used by the slowest code solving a problem "p"
if code "a" could not solve it. This penalty time is used to penalize
code unreliability. Only codes that solved half or more of the prob-

lems are rated for efficiency.

The tables presented here are similar to those given in References

[15] and [17], except that the CADOP3 and CADOP4 codes are included.
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The CADOP3 code is a modified version of CADOP2 code presented in Ref-
erence [17]. Thus, the rating methods and presentation of results used

are essentially those of Reference [15] and [17].

From Tables 4 and 5 it can be concluded that CADOP4 is the fastest
code in overall generality and efficiency rating. This Boundary Tracking
method presented here appears comparable in speed to the fastest methods
presented in Reference [17], (NMSERS, PATRNI, DSDA, and CADOP2). CADOP4
is faster than average in all problems. It is the fastest code solving
problems 1, 2, 3, 6, 7, and 9, which are problems with behavior con-
straints. On the other hand, problems 4, 5, 8, and 10, where the CADOP3
and CADOP4 codes performed identically, but less efficiently than some
other procedures, are problems without such constraints. This is ex-

pected since the two codes are identical in treating the unconstrained

problems.

Of the problems tested, problem 1 which has the largest number of
behavior constraints (10) was apparently also the most difficult, since
it was solved by only six of the twenty-one codes presented in Table 4;
The second most difficult problem was problem 9, for which only 7 of the
21 codes led to the optimum point. This problem has only 6 behavior
constraints and two variables. However, there is a rapid change in the
slope of the behavior boundary in the region near the cptimum point.
Because of this rapid variation in slope, a major part of the total ex-
ecution time was spent on refining the location of the point so as to
meet the convergence criterion. Problem 10, which required the longest

execution time, has no behavior constraints. The long execution time
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required by this problem is due to the complexity of the objective
function and the number of the function evaluations needed to reach

the optimum.

It can be seen from Table 4 that the CPU time required for trea-
ting problems 9 and 10 in most cases is much greater than the sum of
the CPU times required for the solution of the rest of the problems
tested. Thus, the speed of a code in solving probliems 9 and 10 plays
an overwhelming role in determining the code's overall generality and
efficiency rating, Ta‘ For example, a code that is very efficient on
the majority of problems but requires long solution times for problems
9 and 10 would have a relatively Tow overall generality and efficiency
rating using equation (5.4). Therefore, this rating method is not
very useful for comparing codes solving all the test problems. For
such codes the efficiency ratings fa and ?A represent the ability of
the method more clearly. Furthermore, the overall generality and
efficiency rating Ta does not sufficiently penalize those codes which
failed to solve any of the test problems 1 through 8, but performed
well on problems 9 and 10. The penalty time used here fails to accu-
rately take into account the weaknesses of such codes in solving

problems 1 through 8.

The superior performance of CADOP4 code in problems with behavior
constraints compared to CADOP3 code is due to the fact that the number
of function evaluations required in CADOP3 is proportional to the num-
ber of bases needed for solution multiplied by the number of variables.

On the other hand, the number of function evaluations in CADOP4 is
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proportional only to the number of base points, and does not have to
be multiplied by the number of variables. Therefore, in CADOP3 the
number of function evaluations increases directly with the number of

variables, while in the CADOP4 code it does not.

Compared to the relatively reliable codes (na > 8), CADOP4 is
faster than CADOP3 on six of the ten problems solved by CADOP3, faster
than DSDA on six of nine, and faster than PATSH on eight of nine, and
faster than SEEK3 in all problems solved by these schemes. As may be
seen, the CADOP2 and CADOP3 codes are the only reliable codes compar-
able to CADOP4. CADOP4 is significantly faster than CADOP3, CADOPZ,
PATSH, SEEK3, and SIMPLX. The straight pattern (PATRN1) or simple
(NMSERS) codes are ranked relatively high in efficiency primarily due
to their superior performance in unconstrained problems (Table 5).

Of this group, only NMSERS appears to be sufficiently reliable to merit
consideration for use. The minor difference in efficiency between
NMSERS and CADOP4 is, however, overshadowed by the superior reliability
of the latter. Thus, in the overall speed, generality, and efficiency
rating, CADOP4 stands out. Viewed on the basis of these comparisons,

CADOP4 appears to be a superior nonlinear mathematical programing code.

The new algorithm is intended to be a constrained optimization
algorithm. Therefore, the performance of CADOP4 is compared to the
codes of References [15] and [17] on problems having behavior con-

straints. This comparison is shown in Table 6.

Table 6 is similar to Table 5 except that the problems without
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behavior constraints are excluded. The rating equations used for these
values are the same as those used for Table 5. The results of Table 6
indicate the superiority of CADOP4 with respect to speed, generality,
and efficiency. Only codes that solved half or more (na > 3) of the

problems are rated for efficiency.

The superior performance of the CADOP4 code in all the above ra-
tings strongly suggests the superiority of the BT method for treating
problems with behavior constraints. CADOP4 proved to be substantially
more efficient than the CADOP3 and NMSERS codes on such problems. In
the overall generality and efficiency rating CADOP4 code again stands
alone with CADOP3 code in the second place being approximately three
times slower. However, as explained earlier, due to the relatively
Tong execution time required for problem 9 this rating method does not
reflect accurately the relative effectiveness of the codes which
solved all the test problems. The efficiency ratings fa and ?A may
again be more useful in comparing such codes. In these ratings CADOP4
code is two to three times faster than other relatively fast codes

(CADOP3, NMSERS).

Thus, the Boundary Tracking algorithm presented here appears to
be superior to DSFD with regard to efficiency and to all other optimi-

zation procedures tested with respect to generality.and efficiency.

Based on its performance on the ten problems of Reference [15]
and on the other comparison studies, the Boundary Tracking method
appears to be a fast and reliable nonlinear mathematical programing

optimization procedure.
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In conclusion, it must be pointed out that the test problems used
in the above comparison study are relatively small and simple, while
many practical engineering problems are large and contain complex and
computationally demanding functions. Therefore, although it is reason-
able to assume that the above comparison study is representative of
the performance of the new code on most practical problems of size
and compiexity similar to that of the study, this performance may not
be representative for large complex problems. Unfortunately, no
comparison study utilizing large complex problems is available, and
is not Tikely to be available soon due to the difficulty and cost
associated with such a project. Furthermore, one cannot guarantee
that the performances noted in the present study are typical for all
relatively small simple problems. Nevertheless, this is the most com-
plete of the available general comparison studies and should be useful
as a guide in selecting a suitable algorithm for a particular probliem.
The designer must, however, proceed with care in comparing his problem
to the above test problems, taking into account such things as the
number of variables, constraints, nature of the function to be evalua-

ted, etc. in selecting a desirable algorithm.



CHAPTER 6
CONCLUSION

The successful application of the CADOP4 code to the relatively
complex problem of shell synthesis and its performance in the general
comparison study presented in section 4.1, imply that the Boundary
Tracking method developed here is a superior nonlinear mathematical
programming procedure. Although the code proved to be the best in the
general comparison study, the real potentials of the algorithm are
demonstrated in the shell design problem. Since many engineering
problems are of such a class, the new algorithm shows the promise of

adding a major contribution to the field of automated design.

In the above studies the BT method proved to have great potential
for use in computationally demanding problems. However, as in the case
of most new methods, additional studies may lead to improvement, par-

ticularly in the speed of the algorithm.

The only apparent disadvantage of CADOP4 is its relative complex-
ity compared to some of the other reasonably reliable methods. It
contains 1320 FORTRAN statements, while, for example, the CADOP3 con-
tains 790, DSDA contains 372, and PATSH only 75 FORTRAN statements.
Thus, if CADOP4 code is not available in a compiled form, for simple
problems of relatively Tow complexity and dimensionality, one of the
simpler codes may be preferable since the time required for compilation

of the program may exceed the time saved by using CADOP4.
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In addition, its performance on problems without behavior con-
straints, although quite good, is not as outstanding as on problems

with such constraints.

In conclusion, the user of this or any other algorithm for auto-
mated design, should be aware that the general nonlinear constrained
optimization problem is quite difficult to handle. Also, none of the
available techniques will guarantee an optimum solution. One should,
therefore, be careful in the application of such an algorithm and
analyze the results thoroughly. One also, should make use of several
synthesis runs, using different starting points where possible, before

assuming the value is an optimum solution.
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