
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While 
the most advanced technological means to photograph and reproduce this document 
have been used, the quality is heavily dependent upon the quality of the original 
submitted.

The following explanation of techniques is provided to help you understand 
markings or patterns which may appear on this reproduction.

1.The sign or "target" for pages apparently lacking from the document 
photographed is "Missing Page(s)". If it was possible to obtain the missing 
page(s) or section, they are spliced into the film along with adjacent pages. 
This may have necessitated cutting thru an image and duplicating adjacent 
pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it 
is an indication that the photographer suspected that the copy may have 
moved during exposure and thus cause a blurred image. You will find a 
good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being 
photographed the photographer followed a definite method in 
"sectioning" the material. It is customary to begin photoing at the upper 
left hand corner of a large sheet and to continue photoing from left to 
right in equal sections with a small overlap. If necessary, sectioning is 
continued again — beginning below the first row and continuing on until 
complete.

4. The majority of users indicate that the textual content is of greatest value, 
however, a somewhat higher quality reproduction could be made from 
"photographs" if essential to the understanding of the dissertation. Silver 
prints of "photographs" may be ordered at additional charge by writing 
the Order Department, giving the catalog number, title, author and 
specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as 
received.

University Microfilms International
300 North Zeeb Road
Ann Arbor, Michigan 48106 USA
St. John's Road, Tyler's Green
High Wycombe, Bucks, England HP10 8HR



II

77-22,452

MORADI, Jacob Yaghoub, 1950- 
A FAST BOUNDARY TRACKING ALGORITHM FOR 
CONSTRAINED NONLINEAR MATHEMATICAL 
PROGRAMMING PROBLEMS.

New Jersey In s t i tu te  of Technology,
D.Eng.Sc., 1977 
Engineering, mechanical

Xerox University Microfilms, Ann Arbor, Michigan 48106



A FAST BOUNDARY TRACKING ALGORITHM FOR CONSTRAINED 

NONLINEAR MATHEMATICAL PROGRAMMING PROBLEMS

BY

JACOB YAGHOUB MORADI

A DISSERTATION 

PRESENTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE 

OF

DOCTOR OF SCIENCE IN MECHANICAL ENGINEERING

AT

NEW JERSEY INSTITUTE OF TECHNOLOGY

This dissertation is to be used only with due regard to 
the rights of the author. Bibliographical references 
may be noted, but passages must not be copied without 
permission of the College and without c red it  being 
given in subsequent w ritten  or published work.

Newark, New Jersey 
1977



DEDICATION

In  Mmotiy ofa 

My ?ath<Di,

V A V I V M0RADI



ABSTRACT

A fast search algorithm for the solution of nonlinear mathemati­

cal programming optimization problems is presented in this thesis . A 

gradient search procedure is combined with a "Boundary Tracking"(BT) 

method using the feasib le  direction finding method of Zoutendijk for  

generating a feasible s tarting  direction along the feas ib le -in feas ib le  

boundary.

The algorithm is applied to the minimum weight design o f submersi­

b le , c irc u la r ,  cy lindrica l shells reinforced by equally spaced "T" type 

frames. This problem had produced algorithm fa i lu re  in two e a r l ie r  

studies and was only recently solved by the Direct Search-Feasible 

Direction Algorithm (DSFD) which was shown by recent comparison studies 

to be among the fas tes t and most re lia b le  mathematical programming 

methods availab le . The BT procedure was found to be substantia lly  

fas te r  than DSFD, producing a solution with about one-eigth the e f fo r t  

required by DSFD.

In a general comparison study a code based on the BT algorithm  

was compared with twenty other codes representing most of the popular 

numerical optimization methods on ten te s t  problems. These problems 

are such that majority of the codes tested fa i le d  to solve more than 

h a lf  o f them. The new code proved superior to a l l  others in overall 

generality  and e ff ic ien cy . I t  solved a l l  problems and was the fastest  

code on the constrained problems.
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NOMENCLATURE

A = cross sectional area of the frame

A. = number of active behavior constraints
J

B^Cx) = behavior function

b = web thickness

b1 = flange thickness

c = distance from midplane of the shell to the surface of
the frame

C-| = an arb itra ry  large constant

C2 = maximum flange to plating thickness ra tio

d = distance from the midplane of the hull plating to the
neutral axis of the frame

E = tens ile  modulus

EIf  = bending s tiffness of a frame

e = eccentric ity

e-j, e2 , eg = a rb itra ry  small positive constraints

f 5 f (x )  = objective function

f , f ,  = e ffic iency  c r i te r ia
a a

G = shear modulus

G J = torsional s t if fness  of a frame

g(x), g . (x )  = constraint function and the j th  constraint function
J

g*(x) = the smallest proper constraint

g (t )  = the constraint g*(x) as a function of a single variab le
t

He* = frame deflection parameters [see equations 3.11 - 3 .12]

h = web hei ght

I = number of variables

x



J = number o f constraint equations

K = number of proper constraints

k. = a rb itra ry  small positive number
J

L1 = distance between frames

= lower l im i t  on behavior function 

Ls = length of the shell

m = axial wave number

Ng = numerical success rating

N-|, N2  = a rb itra ry  selected numbers

n = circumferential wave number

n, = number of problems solved by code "a"
a

p = hydrostatic pressure

P̂  = set o f proper constraints

P = progress towards solution (section 4 .2)

p_n(n,m) = gross collapse pressure
c9

Pr c (n,m) = collapse pressure of a shell panelL»o

p*g, p*s = minimum collapse pressures

Qp = to ta l radia l load

R = radius o f the shell

Rmin’ Rmax = mini'mum anc* maximum radius of the shell

R+, RT = active lower and upper regional constraints

S. = factor of safety
J

t  = skin thickness

t  = normalized cpu time
r

u = best movement direction vector

xi



VQ = displacement volume of the cylinder

= volume of the frame

Vg = volume of plating

V,, = volume of frame webw
W = weight of the hull

W. = deflection parameter
J

x, x.j = design variable vector and i ts  components respectively

a  = step size

a  . = minimum step sizemi n r

r = frame deflection parameter

Ys = spec ific  weight of material

Yw = specific  weight of immersion f lu id

e. = constraint a c t iv ity  l im i t
J

y = poison's ra t io

ab = frame bending stress

crc = compressive hoop stress

a^a = allowable frame stress

0 pa = allowable plating stress

a = axial stressr
ct  = maximum frame stress

= hoop stress

|cf>[ = magnitude of a rb itra ry  vector function <J>

V(j> = the gradient of a rb itra ry  vector function <|>

(O,)1 = transpose of a rb itra ry  vector function <|)

x i i



SUPERSCRIPTS

b = base number

& = comparison value

L = Lower l im i t
XL

n = value at the n direction finding problem

r = number of redesign cycles

s = number of i te ra tio n s  for locating the IF boundary

U = upper l im it

0 = in i t i a l

x i i i



CHAPTER 1

INTRODUCTION

1.1 Optimization in Design

Optimal design problems may be treated by many d i f fe re n t  methods, 

for example, ordinary and variational calculus, mathematical program­

ming (MP), and some special techniques, such as the f u l ly  stressed 

concept used in structural design [1 -1 0 ] \

Of the above mentioned methods, MP procedures [11] seem to be 

the most f le x ib le  methods available fo r  optimal design synthesis 

since they trea t  the broadest range of engineering problems and are 

easily  adaptable.

The concept o f design optimization requires that a quantity to 

be minimized or maximized be designated and that this quantity be 

expressed as a function of the design variables. This function is 

called the "merit" or "objective" function, and can be w ritten  in 

the form

f  = f  (xi ) i = 1 ,2 , . . . I  (1-1)

where x̂  are the design variables and I is the number of design v a r i­

ables. Generally, the design variables are not free to take on any 

value, but are subject to constraints governing th e ir  range or the 

behavior of the design.

^Numbers in brackets designate references a t the end of the thesis.
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When l im its  on behavior are specified, a quantita tive  measure

of the behavior as a function of the variables, called the "behavior

function", B(x.j) is required. Thus, i f  K behavior functions are 

specified, one can write  K equations of the form

L|< ^ Bk ^  k -  1, 2 , . .  .m

k = m + 1, m + 2 , . . . n  (1 .2 )

< B̂  k = n + 1, n + 2 , . . .p

where is the lower bound on B^, and the upper l im i t .  and 

may be functions of . Behavior constraints representing the 

above behavior function l im its  can be written as follows

= uj - Bj > 0 j = 1, 2,...m

9j  = Bj-m _ Lj-m  ̂0 j  = m + 1, m + 2 , . . .2m (1 .3 )

gj  = Uj-2m _ Bj-2m  ̂ 0 j  = 2m + 1, 2m + 2 , . . .2m + n

gj  -  Bj-2m+n ‘  LJ-2m+n » 0 j  = 2m + n + 1 . ,2m + n + p

All the above equations may be w ritten  as

ga- £ 0 J = 1, 2 , . . . J  (1 .4 )

J = 2m + n + p

Regional l im its  are often imposed by manufacturing or other 

considerations. These are of the form 

L U
xi ^ x. ^ xi (1 .5 )

xV and xB are constants and represent the minimum and maximum values 

of x̂  respectively. Here regional constraints are distinguished from 

behavior constraints since any constraint of the form

A < x. ^ B (1 .6 )



where A and B are constants, may be treated more simply than the 

general form. Not a l l  the x. need be subject to such l im its .  A de­

ta i le d  discussion of regional constraints can be found in Reference 

[9 ] .

Some variables may also be restric ted  to certain discrete values.

In structural design these values can represent material properties, 

geometric available shapes and sizes, or thickness gages.

The concept of a merit surface is important to the understanding 

o f the redesign process. The function f ( x . )  can be considered as a sur­

face in I + 1 dimensional space where the coordinate axes are the x. and 

y where the value o f y is given by f (x ^ ) .  The constraints delineate the 

region of in terest w ith in  which the optimum is to be found. Points 

which sa tis fy  the constraint equations are called "acceptable" or 

"feasible" points. All other points are called "unacceptable" or 

" in feas ib le" . The set of a l l  feasible points constitute the "feasible  

region" and a ll  in feas ib le  points define the "infeasible region". The 

surface between these regions is called the Infeasible-Feasible (IF )  

boundary. Those portions of the IF boundary where at least one be­

havior constraint is zero are called the "behavior" boundary. Points 

away from the constraint surface are called "free", and those on 

these surfaces are called "bound" points. The merit surface is ex­

plored to find the highest point in the acceptable region. The algo­

rithms commonly employed in such problems usually s ta rt  the exploration  

from a free acceptable point. The variables are generally treated as
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continuous qu an tit ies . I f  discrete variables are encountered, they 

may be treated i n i t i a l l y  as continuous and, upon finding an optimum, 

a local exploration is made to find  the optimal discrete value [12].

1.2 General Strategy of Mathematical Programming

Like a l l  optimization methods the MP methods try  to find those 

values x fo r which the merit function f ( x . ) w i l l  be minimized (or 

maximized). The problem may be stated as follows:

Find those x. that produce the

m in .f(x .j) (1 .7 )

such that a l l  the constraints

g^(xi ) 0 j  = 1, 2 , . . . J (1 .8 )

and the equality  constraints

gk(xi ) = 0  k = J + 1, J + 2 , . . . K  (1 .9)

are s a t is f ie d , where the x̂  are the I real valued variables x-p 

x2 j . . . X j in I-dimentional Euclidian space, and constraints g^, 

g2 , . . .gK are real-valued real functions in that space.

Most MP methods do not t re a t  the equality  constraints d ire c t ly .  

These constraints may, for example, be converted to inequality  con­

stra ints  of the form

£ ^ 9k(xi ) ^ e (1.10)

where e is an a rb itra ry  small number. One can also t re a t  an equality  

constraint by solving fo r one variable in terms of the others, thereby 

eliminating a variable  and constraint.
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MP methods are based on searching strategies . The search usually  

starts from an a r b i t r a r i ly  selected point x® and, by means of some 

local search strategy, a set of points xr  is generated such that  

f ( x r ) < f ( x r_1) while also satisfying a l l  the constraint equations.

In the majority of design problems, e ither f  and/or some or a l l  of  

the constraints gj are nonlinear in x, and therefore one has a non­

l in e a r ,  constrained optimization problem.

None of the available nonlinear optimization methods guarantees 

an optimal solution (when i t  ex is ts ) .  There are two major d i f f i c u l ­

t ie s .  F i r s t ,  many of the design problems are not unimodal that is ,  

they have more than one local optimum. The nonlinear methods are, 

however, designed only to locate local optima and thus the global 

optimum may not be attained. Secondly the search algorithm may simply 

f a i l  to find even a local optimum.

The prudent designer thus usually tr ie s  several d if fe re n t  s ta r ­

ting points. I f  a l l  the search paths terminate at the same point, 

then optim ality  is assumed and the problem can be considered to be 

unimodal. However, i f  the termination point is d if fe re n t  for  

d if fe re n t  search paths, then e ith e r  the best design is 

accepted or additional s tarting  points are t r ie d  in an attempt to 

find a s t i l l  better design. Such a decision draws on the designer's 

experience and judgment. The fa i lu re  to converge to the same point 

may be due e ith e r  to the presence of several local optima, or to 

algorithm fa i lu re .  Failure is said to occur when the algorithm te r -



6 .

minates a t a point s ig n if ic a n tly  away from the nearest local optimum. 

An excellent discussion of the d i f f ic u l t ie s  involved in the solution  

of unconstrained nonlinear programming problems is provided in 

Reference [12]. These d i f f ic u l t ie s  are greatly  compounded when con­

stra in ts  are added. For convenience, since this and other MP methods 

are capable only of locating a local optimum, in the discussion below 

the term optimum should be taken to mean local rather than global 

optimum.

1.3 Motivation and Structure

Many e f f ic ie n t  algorithms exist fo r  treating  linear  problems, 

that is ,  problems with l in e a r  objective functions and constraint 

equations, and certa in  simple nonlinear problems [5 -7 , 13]. Most 

design problems are, however, nonlinear problems that must be treated  

by re la t iv e ly  less e f f ic ie n t  methods.

There are a number of methods availab le  fo r solution of such 

problems [14]. However, there are several d i f f ic u l t ie s  with these 

methods. For example, the computations required to produce improved 

designs in the neighborhood of the constraint boundaries are in some 

cases lengthy and re la t iv e ly  complex. The number of function evalua­

tions is often very large, and, most methods are not r e l ia b le ,  that  

is ,  the best points produced by these methods may not be a local 

optima.

Recently, Eason and Fenton [15] compared a group of seventeen 

numerical optimization methods. This group of algorithms contains
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most of the currently popular procedures. The results of this study 

indicate that the direct search algorithms are superior with respect 

to genera lity , e ff ic iency , running cost, speed, preparation cost and 

r e l i a b i l i t y  [1 5 ] .  Unfortunately, none of the methods presented in 

this study are to ta l ly  re l ia b le .  None of the codes solved a ll  of 

the ten problems attempted.

In a recent paper, Pappas and Moradi compared a code based on 

the D irect Search-Feasible D irection Algorithm (DSFD) [16] with those 

studied by Eason and Fenton [1 7 ].  This code solved a l l  the tes t  

problems treated in Reference [1 5 ]. In addition i t  also solved a 

d i f f i c u l t  s ix -variab le  problem which the r e la t iv e ly  re lia b le  DSDA, 

and popular SUMT, procedures fa i le d  to solve [1 7 ] .  In this study the 

DSFD based code proved superior to a l l  others in overall generality  

and e ff ic ien cy .

Even the re la t iv e ly  e f f ic ie n t  DSFD however, required several 

hundred to several thousand function evaluations to achieve a solution  

to Eason's and Fenton's te s t  problems. Therefore substantial compu­

tational e f fo r t  and cost would be required by these procedures on 

problems with computationally demanding functions. Since many 

important engineering problems are of this type, there is a c lear  

need for a new algorithm which requires a reduced number of function 

evaluations fo r  solution.

This thesis presents an apparently fast and re l ia b le  algorithm  

which u t i l iz e s  a search strategy designed to greatly  reduce the number



of function evaluations required fo r  solution. This is accomplished 

by developing a scheme which keeps the search confined to the neigh­

borhood of the behavior boundary, on the premise that th is  is where 

the optimum is usually found in constrained problems.

The search moves e f f ic ie n t ly  along this boundary by making effec­

t iv e  use of a r e la t iv e ly  small amount of new local function information 

relying prim arily  on information generated e a r l ie r  in the search.

Thus, the number of new function evaluations required to sustain 

movement and thereby the to ta l number o f function evaluations required 

fo r  solution are kept low.

Since the advent of high speed d ig ita l  computers many accurate 

but computationally demanding methods have been developed fo r  engi­

neering analysis. Due to the r e la t iv e ly  large execution time required 

for each reanalysis cycle (function evaluation) of many of these 

techniques and the large number of reanalysis cycles required by most 

MP procedures, the combination of such analytic  methods and MP pro­

cedures may be very costly to u t i l i z e  and are therefore often imprac­

t ic a l .  This d i f f i c u l t y  can seemingly be minimized by use of the 

Boundary Tracking (BT) algorithm due to its  apparent e ff ic iency  in 

reducing the number of function evaluations and therefore to ta l execu­

tion time required for solution.

Where the BT algorithm is not availab le  in a compiled form, a 

simpler algorithm may be preferable fo r  use on small simple problems.

In such circumstances the extra compilation time required due to the



9 .

greater complexity o f the BT algorithm may overshadow the time saved 

by a reduction in the number of function evaluations required for  

solution.



CHAPTER 2 

DESCRIPTION OF GENERAL STRATEGY OF 

THE BOUNDARY TRACKING ALGORITHM

2.1 Introduction

The most common strategy for constrained optimization techniques 

is f i r s t  to move to the IF boundary from a starting point and then to 

move along th is  boundary to the optimum. A typical objective function 

surface is i l lu s tra te d  in Figure 1.

The general strategy of the Boundary Tracking (BT) algorithm is 

to f i r s t  locate a point on the behavior boundary. Once the behavior 

boundary is located the best d irection for movement along this boun­

dary is determined. Movement along this boundary is then continued 

until the optimum point is obtained.

Figure 2 presents a general block diagram of the BT algorithm.

2.2 Location o f the Behavior Boundary

The search starts from an a rb itra ry  starting point x?. I f  the 

problem has behavior constraints, these constraints are evaluated at 

th is point. I f  the s tarting point proves to be in the feasib le  region, 

i t  is designated as a base point (point 1 Figure 1 ). A step is then 

taken in the d irection of the gradient of the objective function. All 

the constraints are evaluated a f te r  the step. I f  the new point is in 

the feasible region the objective function is evaluated and compared 

to the last base point. I f  the function has improved, th is  new point 

is called a base point (points 2, 3, 4 in Figure 1) and the search
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REGION NEAR 
OPTIMUM POINT

FEASIBLE REGION

BEHAVIOR BOUNDARY

INFEASIBLE REGION

Figure 1. General Strategy of Boundary Tracking Methbd
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continues, doubling the step size with each move.

Once the behavior boundary is crossed, a point on this boundary 

is located (point 5) using a l in e  search in the direction of the la s t  

move.

The search is performed in the direction of movement, rather  

than say the direction of the gradient of the constraint function 

v io la ted , since id en t if ic a t io n  of the la t t e r  direction requires ca l­

culation of constraint function derivatives, while the former d irec ­

tion is  available and thus requires no new information. The l in e  

search is used because of i ts  s im plic ity .

I f  the search move crosses the IF boundary at a regional l im i t ,  

i t  is  possible to find the best direction to continue movement by 

solving Zoutendijk's d irection finding problem (see section 3 .2 .3 ) .  

Here fo r  s im p lic ity , however, the variables exceeding the l im its  are 

set equal to the corresponding l im i t  and the search continued un til a 

behavior constraint is v io la ted . This strategy tends to de flec t the 

direction of movement along the IF boundary.

I f  a f te r  a step, the point remains in the feasible region but 

the objective function has not improved, a new gradient d irection is 

calculated a t the la s t  base point and the search restarted. I f  

several d irection changes fa i l  to locate the constraint boundary, a 

more e f f ic ie n t ,  a lb e it  more complex, unconstrained search method such 

as the modified Rotating Coordinate Pattern (RCP) search [1 7 ],  is
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used. This search procedure is applied here to avoid the zig-zagging 

problem associated with the gradient search method [1 2 ].  Thus the 

advantages of the gradient search method are exploited where possible, 

but the method is replaced by a more appropriate procedure whenever 

strategy d ictates . I f  the behavior boundary is crossed in the modi­

f ied  RCP search, the nearby boundary may be located by any convenient 

method such as that already described.

The major contribution of th is  thesis is the procedure for move­

ment along the behavior boundary. I t  is th is  movement which causes 

the d i f f ic u l ty  associated with the solution of constrained nonlinear 

problems. The method used for locating the boundary, such as the 

gradient search or the RCP search, is of secondary importance. Since 

the bulk of the search is associated with movement along the boundary, 

the choice of the in i t i a l  boundary locating procedure w i l l  not sub­

s ta n t ia l ly  e f fe c t  overall performance. Thus, the procedures used for 

th is  purpose are not of great importance and need not be described in 

deta il here. The interested reader is refered to references [12, 17] 

fo r  a detailed description of these methods.

I f  the s ta rt ing  point is in fea s ib le , the behavior boundary is 

located by f i r s t  selecting the most negative constraint, that is ,  the 

constraint presenting the greatest v io la tio n . The point where this  

constraint vanishes is then located using a line search in the direc­

tion of the gradient of this constraint (see section 3 .1 .2 ) .  This 

direction is used here since i t  provides the shortest distance to the
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surface where th is  constraint vanishes. The l in e  search procedure 

used here is a modified Secant root finding procedure (see section 

3 .1 .2 ) .

A ll the constraints are then evaluated a t  the point where the

selected constraint vanishes. I f  no v io lation exists the objective

function is evaluated and the point is designated as a base point. 

However, i f  any other constraints are violated a t this point, the

smallest one (a lgebra ica lly) is again selected and the point where i t

is zero is found. This process is continued un til a point on the 

behavior boundary is located.

For problems without behavior constraints an unconstrained search 

method, such as the modified RC Pattern search [1 8 ] ,  is used to locate  

the optimum point. This search method combines the well known RC 

Pattern search with Zoutendijk's feasible d irection finding method 

(see section 3 .2 .3 ) .  The d irection finding procedure is employed a t  

the points o f RC Pattern search fa i lu re .

2.3 Movement Along The Behavior Boundary

Once the point on the behavior boundary is located i t  is designa­

ted as a base point (point in Figure 1). The best dire^+ion to 

move is  then determined by solving the direction finding problem of  

Zoutendijk (see section 3 .2 .3 )  and a step taken in th is  d irection.

The objective function is  then evaluated at th is  point. I f  the func­

tion has improved, a l l  the constraints are evaluated.
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I f  none of the constraints that were inactive a t the base are 

violated, an appropriate constraint is selected from among the active  

constraints (see section 3 .1 .1 ) .  The behavior boundary is located 

by finding a point where this constraint is zero by means of a l in e

search in the direction of the gradient of the selected constraint
o

(point x ) .

Upon locating the point on the boundary a f te r  the best direction  

move, the objective function is evaluated. I f  the function has im- 

proved the point is designated as a base point (point x ) .  A move is 

then made from the la s t  base in the direction of improvement along a 

l in e  connecting two bases a distance equal to the distance between 

these bases.

O
The boundary is then located as before (see point x o f Figure 1) 

along the d irection of the gradient of the appropriate constraint as 

evaluated at the la s t  point where the best direction finding problem 

was formulated. I t  should be pointed out that th is  is an underlying 

feature of th is  algorithm, making m ultiple use of function evaluations 

in order to keep the number of new evaluations required as small as 

possible. Only i f  th is d irection fa i ls  to locate the boundary, are 

new gradient values computed.

When the point on the behavior boundary is found, i t  is compared

to the la s t  base point. I f  the function has improved, the point is
3 4 5designated as a new base point (points x , x , x ) and the search is  

continued. However, i f  the function has not improved the direction
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is abandoned and the search is re-started from the las t base point by 

calculating a new best d irection .

A fter  each move a l l  the constraints are evaluated, i f  a new con­

s tra in t  is violated (point A) the point where th is  constraint is zero

is located and a new best direction calculated. However, i f  no new 

constraint is v io la ted , an appropriate constraint is selected from 

among the previously active constraints (see section 3 .1 .1 ) and the 

boundary located, the process is continued un ti l  convergence is 

achieved.

I f  no appropriate constraint is active the move along the pre­

vious direction is continued, since i t  is the best direction a v a i l ­

able. I f  a f te r  a step in the above d irec tion , the objective function

has increased rather than decreased the step size is reduced. The 

process is repeated u n ti l  a better point is found or the convergence 

c r ite r io n  is met (see section 3 .3 ).

I f  a f te r  any move a constraint inactive  at the las t base point 

is v io la ted , the behavior boundary is located by finding the point 

where this constraint is zero. This point is found by a line  search 

in the direction of the las t  move. This d irection is used to e l im i­

nate the need to calculate the gradient of the new constraint. The 

search is then re-started by calculating the best movement direction  

at this point on the boundary.
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2.4 Search termination description. For the few cases where 

the optimum occurs away from the behavior boundary, a s u ff ic ie n t con­

d it ion  for optim ality  is that a l l  components of the gradient of the 

objective function be essentia lly  equal to zero. For most cases, 

however, where the optimum is on the behavior boundary no such simple 

condition ex is ts .

The search termination procedure used here is  as follows. The 

search using a specified basic step size is performed un til no further  

improvement can be obtained. When such a point is found i t  is desig­

nated as an optim ality  comparison base. Now the basic step size is 

reduced in an e f fo r t  to achieve improvement and the search continued 

until a new optim ality  comparison base is obtained.

In order to ju s t i fy  a fu rther  reduction in the step size an 

optim ality check is performed whenever the step size is to be reduced. 

I f  a convergence l im i t  is s a t is f ie d ,  the step size is again reduced 

fo r  further improvement and the search is continued un til another 

optim ality comparison base is obtained. A secondary convergence 

check is then performed in order to determine whether the la te s t  im­

provement due to the step reduction is less than the previous improve­

ment thereby indicating convergence has occurred. I f  both convergence 

tests are simultaneously s a t is f ie d ,  or the minimum step size is reach­

ed, the search is terminated. Otherwise, the search is re -started by 

calculating a new best movement d irection .
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A block diagram of the search termination procedure is given in 

Figure 3.
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CHAPTER 3 

MATHEMATICAL DEVELOPMENT

3.1 Boundary Location

I t  is assumed fo r  the purpose o f devising a search strategy that 

the solution to the optimization problem with behavior constraints 

l ie s  on the behavior boundary. The main strategy is f i r s t  to locate 

such a boundary and then to move along this boundary. For the pur­

pose o f locating the boundary a "proper" behavior constraint is iden­

t i f i e d  and method fo r  locating the behavior boundary selected or 

developed.

3.1.1 Id e n t if ic a t io n  of "proper" constraints. A ll negative and 

small positive constraints are designated as active constraints (for  

d e fin it io n  of a c t iv i ty  see section 3 .2 .3 ) .  A constraint is considered 

"proper" i f  i t  is necessary or desirable to locate a point where the 

value of this constraint is zero a f te r  making a search move in an 

e f fo r t  to establish a new base.

Since i t  is necessary to eliminate any constraint v io la tion  pre­

sent at a point, a l l  the negative constraints are considered "proper".

I f  a l l  active constraints are posit ive , a positive active con­

s tra in t  is considered proper i f

-  Vf • Vg. < 0 (3 .1 )
J

This indicates that the projection of -V f on Vg is of opposite 

sign to Vg (point 1 Figure 4) and therefore , the value o f the constraint
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g. w i l l  decrease as a resu lt of a move in -V f  direction (minimization
J

problem).

The best d irection fo r improving a function is i ts  gradient 

direc tion . However, th is  direction is not always feasib le  in con­

strained problems (point 1 Figure 4 ) .

A direction is desired such that a f te r  taking a step, the objec­

t iv e  function w i l l  improve the maximum amount possible without 

v io la tin g  the behavior constraints. A direction along the behavior 

boundary often has th is  property. Moving along the behavior boundary, 

however, may not always produce the best improvement in the objective  

function as shown by point 2 in Figure 4. Here projection of -V f  on 

Vg. has the same sign as Vg.. Thus, the value of the constraint g.
J J J

w il l  increase by moving in -Vf d irec tion . A c r i te r ia  is therefore  

needed that can indicate which positive constraint ( i f  any) is "pro­

per". Equation (3 .1 )  s a t is f ies  this purpose, since i f  s a t is f ie d  i t  

id en t if ie s  the constraints that may be violated i f  a move in the best 

direction (-V f)  is made. Thus i t  id e n t if ie s  proper constraints,  

that is ,  those constraints along which i t  is desirable to move in 

order to achieve the best improvement in the objective function.

I f  no proper constraint can be id e n t i f ie d ,  the movement along the

previous direction is continued, since there is no advantage in loca­

ting  and moving along the nearby boundary.

3 .1 .2  The boundary locating method. Call the set o f  proper

constraints where, k = 1, 2 , . . .K .  I f  more than one "proper"
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constraint is id e n t i f ie d ,  that is i f

K > 1 (3 .2)

the smallest (a lgebra ica lly ) is selected and called g*. The root of 

g* is then found in the direction of movement or the gradient o f g*.

The root, i f  i t  ex is ts , of the constraint g*(x) along a l in e  may 

be found as closely as desired by means of the "secant root-finding"  

method [19] by i te ra t in g  the equation

xs + 1  = xs - g*(xs ) (x s-x s_1 ) / [g * (x s ) -  g*(xs_1)]  s = 1 , 2 , . . . N 1 (3 .3 )

where N-j is  th e  maximum number o f  i t e r a t i o n s  p e r m i t t e d ,  u n t i l

|g* (xS+1) | £ e1 (3 .4 )

is sa tis f ie d . Here e-| is an a r b i t r a r i ly  selected accuracy l im i t .

I n i t i a l l y  xs , xs_  ̂ are two points on the line  defined by

Case A: I f  the boundary is to be located in the direction of the last

search move (see section 2 .3 ) le t  the i n i t i a l  points on the line  

(s = 1 ) be given by

xs _ 1  = xb (3 .5 )

xs = xr  (3 .6)
h y*

where x and x are the end points of the la s t  search s te p .

Case B: I f  the boundary is  to be located in the gradient direction

of the constraint g*(x) (see section 2 .3 )  le t

xs _ 1  = xr  (3 .7 )

xs = xr ± anVg* (xn ) /  (Vg* (x11))  (3 .8 )
r

where x is the point from which the boundary is to be located and x 

is the las t base where a direction finding problem was formulated
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(see section 3 .2 .3 . ) .  Here the plus and minus signs are used when g* 

is  negative or positive  respectively. The quantity a11 is the step size 

used at point xn.

Case C: For the case where this procedure is used to find  the behavior

boundary where a s tart ing  point of the optimal search is in feas ib le ,
r 0replace x by the s ta rt ing  point x and le t ,

a11 = (3.9)

where is an a r b i t r a r i ly  specified i n i t i a l  step s ize, and le t

Vg* (xn) = vg* (x°) (3.10)

in equations (3 .7 ) and (3 .8 ) .

A fter  equation (3 .4 ) is s a t is f ie d , the remainder o f constraints 

in the set may also vanish. However, i f  a f te r  e lim inating the 

the smallest v io la tion

9j (xs+1) *  -  e] j  = 1 , 2 , . . . J (3.11)

is not s a t is f ie d , a new g* is selected and the procedure repeated until 

a point on the behavior boundary is located (equation 3.11 s a t is f ie d ) .

In case B, slow convergence may indicate that the gradient V g * ( x n ) 

may no longer be applicable at point x n . This situation is shown in 

Figure (5 ). There is  no point along the gradient V g * ( x ^ )  which fa l ls  

on the boundary. A new gradient d irection  V g * ( x  ) is therefore calcu­

lated and used in place of V g * ( x n ) .  I f  a f te r  calculating a new gradi­

ent direction the boundary s t i l l  cannot be located with a reasonable 

number o f i te ra t io n s , the d i f f ic u l ty  may be due to too large a reach 

step ( l in e  x® -  x r  in Figure 5). Thus where recalculation of the
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gradient f a i l s ,  the step size is reduced and another e f fo r t  is made to 

locate the boundary from a point somewhat closer to the las t  base.

T h e r e f o r e ,  un less

s < N-j (3.12)

where N-j is chosen em pir ica lly , le t

vg* (xn) = vg* (xr ) (3.13)

in equation (3 .8 ) and repeat the application of equation (3 .3) I f  equa­

tion (3 .12 ) is again violated le t

where

Axr + 1  = Axr /2 (3.14)

Axr  = xr  -  xb (3.15)

and x b is the las t base point. Then select the smallest proper con-
r + 1

s tra in t  at point x where

xr + 1  = xb + a / * 1 (3 .16)
6  *| p 1

(point x + Ax in Figure 5 ) ,  replace x by x in equations (3 .7 )  

and (3 .8 )  and repeat the i te ra t io n  of equation (3 .3 ) .  The process is 

continued un ti l the boundary is located without v io la ting  equation 

(3.12) or u n t i1

| A x r + 1 | < a n. (3.17)

I f  equation (3.17) is s a t is f ie d  the attempt to locate the boundary is 

abandoned. The optimal search is then restarted by calculating a new

start ing  direction (see section 3 .2 .3 ) at the la s t  feasible point en­

countered.

3.2 Mathematical Representation of General Strategy

The general strategy of the algorithm can be represented mathe­

matically  as follows.
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3.2.1 Movement to the boundary-starting point in the feasib le  

region. A block diagram fo r  the movement to the boundary procedure 

is given in Figure 6 .

Given the s tarting  point xV, where i n i t i a l l y  r = 0, which s a tis ­

f ies  regional constraints

Xj .< xC ^ x U. i = 1, 2 , . . . I  (3 .18)

and a l l

g j (x ^ ) » 0 j  = 1, 2 , . . . J (3 .19)

the objective function f ( x r ) is evaluated. This point is called a 

base point xb, where i n i t i a l l y  b = n = 1 , and the f i r s t  comparison base

xn is defined as,

xn = xb (3.20)

Then with

ar  = an (3.21)

le t

x'- r + 1  = xr  -  ar [V f(xn) ]  /  |V f(xn)| (3 .22)
VI

where V is the gradient operator, |VfJ the magnitude of Vf and, a is 

the step size at i te ra t io n  r .

I f  any
r+1 U‘

xi '  xi
l e t  V (3.23)

r+1 U
xi = xi

or i f  any
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r + 1  .  VL'x. < X .
1  1

l e t  (3.24)

* r ’ ■ 4

Now compute the g .(x  ) ,  i f  equations (3.19) are s a t is f ie d ,  evaluate
J

f ( x r+1). I f

f ( x r+1) < f ( x b) (3 .25)

ca ll the point a new base point. Thus le t

xb + 1  = xr + 1  (3.26)

A new move is then made according to equation (3.22) with the 

step size redefined as

a r + 1  = 2ar  (3 .27)

and application of equations (3 .23-3 .26) repeated. I f  b>l and equa­

tion (3.25) is not s a t is f ie d  increase n by one, le t  the next compar­

ison base xn = xb (3.28)

and le t

Now i f

xr = xb (3.29)

n < N2  (3 .30)

where N2  is an a rb itra ry  constant s ign ify ing the number o f direction  

changes, a new gradient direction Vf is  calculated. The application  

of equations (3 .20-3 .27) are then repeated un til e ither  a point in 

the in feasib le region is found or equation (3 .30) is not sa tis f ie d .

I f  point x is in the in feasib le  region the behavior boundary is 

located in the d irection of the la s t  move (see section 3 .1 .2 ) .

I f  n exceeds N2  the gradient search is abandoned and the RCP 

search invoked. This search method is continued in the unconstrained
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region un ti l  a point in the infeasible region is found or the optimum 

is achieved (see section 3 .3 ) .

I f  equation (3.25) is not satis fied  when b = l, the step size a is  

redifined as

ar + 1  = ar /2  (3.31)

and a new move is made according to equation (3 .2 2 ) .  The application  

of equations (3.31) and(3.22) is repeated un ti l equation (3 .25) is 

s a tis f ied  or

“ r + 1  <  a m i n  < 3 - 3 2 >

where a^. is a minimum step size. In the la t t e r  case the point is

assumed to be optimum and the search is terminated.

3 .2 .2  Movement to the boundary - s ta rt ing  point in the infeas­

ib le  region. I f  the s tarting  point x? is in the in feasib le region or 

the RCP search has located a point in th is  region the behavior bound­

ary is located by a search in a constraint gradient d irection (see 

section 3 .1 .2 ) .

3 .2 .3  In i t ia t io n  of movement along the boundary. A fter  locating

a point on the behavior boundary a method is  needed which can in i t ia t e

the move along this boundary toward the optimum i f  optim ality has not 

yet been achieved. The Feasible direction finding algorithm of 

Zoutendijk [20] is suitable  for this purpose since, i t  e ith e r  provides 

a direction along which an improved point can be found, or indicates 

the presence of a local optimum.
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D e fin it io n : a) A direction vector u is called "feasible" i f

a f te r  taking a s u ff ic ie n t ly  small step along this direction no con­

s tra in t  is v io lated [20 ]. This w i l l  be true i f

(u )T Vg  ̂ (x) » 0 (3.33)

where (u)T is the transpose of u, since a small step in th is  direc­

tion w i l l  produce no change or an increase in g j (x ) .

b) A feasib le  vector u is called "usable" i f  a move in, the d irec­

tion u can also provide an improvement in f ( x ) .  This w i l l  be the case 

i f

(u )T V f(x) < 0 (3.34)

since a s u f f ic ie n t ly  small step in the u direction w i l l  produce a 

decrease in the value of f ( x ) .

c) A behavior constraint g -(x ) is considered "active" i f
J

g j (x . j )<  (3.35)

where

e. = K, (a11 /  a0 ) (3.36)
J J

is an array of positive , a rb itra ry  small numbers. These numbers may 

approach zero during the search, but can not be id e n t ic a lly  zero [ 2 0 ] .  

The quantity a0  is the step size at the beginning of the search and 

K. is a small positive constant.
J

d) A lower regional constraint is considered "active" i f

xi -  x|r < a11 (3.37)

and the upper constraints active i f

xY -  x . ^ an (3.38)
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Denote the set of a l l  active behavior constraints by A .. Call
J

RT and r|  the active lower and upper regional constraint set respec­

t iv e ly .

The direction finding problem can be formulated in the following  

manner:

Given x, find u that results in the

max a (3.39)

and for which

a  > 0 (3.40)

(u ? Vf(x) + a  ^ 0 (3.41)

~(u )T Vgj(x) + Wj a x< 0 J €. A .
J

(3.42)

u. < 0 i € R- (3.43)

û  > 0 i e Rt (3.44)

K i  ^ i i = 1, 2 , . . .  I (3.45)

Equations (3 .45) bound the length of u to prevent the direction  

finding problem from producing an unbounded solution vector.

When suitable deflection parameters W. are used, the solution of
J

the problem provides a usable and feasib le  direction u since, i f  a  > 0  

from equations (3 .41) and (3.42) equations (3.33) and (3 .34) w i l l  be 

s a tis f ie d . I t  also provides the best usable direction since, i f  a  is 

maximized, the l e f t  hand side of equation (3.34) w i l l  be a maximum 

and therefore the d irection found w i l l  be the best d irection for de­

creasing f (x )  [ 2 0 ] .
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I t  may be seen that the direction finding problem of equations 

(3.39 -  3.45) is a l inear programming problem. Thus, any l inear  

programming method such as the simplex procedure [ 2 1 ] can be used to 

provide the solution.

Since the objective here is to move along the IF boundary, the 

direction u should be as close to this boundary as possible. The 

work associated with locating the boundary w i l l  therefore be minimized 

a fte r  the move. The deflection parameters W. here are thus set to be
vJ

equal to zero. This produces a direction u that tends to be tangent 

to the boundary.

3 .2 .4  Movement along the boundary. A flow chart for the move­

ment along the boundary procedure is given in Figure 7.

Call the point on the behavior boundary x and define

step s ize . A direction u is then calculated (see section 3 .2 .3 )  and

(3.46)(3 .46)

where i n i t i a l l y  b = £ = 1 , x^ is a base point, and c£is a comparison

the point xr  defined as

(3 .47)

where

AxJT = a£ ui /  | u | (3 .48)

i f

f ( x r ) < f ( x b) (3 .49)

and

g j(x r ) > ej j  -  1 , 2 , . . . J

J * Aj
9 •  •  • (3 .50)
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are s a t is f ie d , point xs on the behavior boundary is located by a 

search in the constraint gradient d irection and the objective func- 

tion evaluated. Now, i f  equation (3 .49) is sa tis fied  a t  x , l e t

xb + 1  = xs (3.51)

now index b and define the next step as

x^ = x*? + A x^ (3.52)

where

A x? = x1? -  xb “ 2  b > 2 (3.53)

or

A x^ = xb -  x H  b = 2 (3.54)

The constraints are now evaluated. I f  equation (3.50) is s a t is f ie d ,  

the behavior boundary is located in the constraint gradient direction  

and the application of equations (3.51 -  3.54) repeated.

I f  when b = l, equation (3.50) is not s a t is f ie d , that is ,  i f  new

constraints have become active , the value a c t iv i ty  l im i t  e. is doubled
J

fo r  a l l  constraints in set A. not satis fy ing  equation (3 .5 0 ) ,  since
J

i ts  previously assigned value was not s u ff ic ie n t  to properly define 

a c t iv i ty .  The boundary is then located in the direction u and the 

application of equations (3.47 -  3.50) repeated.

I f  equation (3 .50) is not sa tis f ie d  when b > 2 the boundary is 

located in the d irection  of the la s t  move Axr . Then a new set of 

active constraints is defined and the search re-started from the las t  

base point (see section 3 .2 .3 ) .
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In application of equations (3.49 -  3 .54) i f  equation (3 .50) is 

s a t is f ie d , but equation (3.49) is not s a t is f ie d ,  this indicates that  

the la s t  search move d irection was unproductive, therefore the la s t  

direction of movement is abandoned and the search is re-started from

A fter employing equations (3.47) and (3 .4 8 ) ,  i f  equation (3 .49)  

is not s a t is f ie d , this indicates that the step size is too large , 

therefore le t

Now, since new a c t iv ity  l im its  are defined [see equation (3 .3 6 ) ]  the 

active constraints are again determined, i f  the set A. has changed a
J

new direction u is calculated, otherwise the previous direction is 

used and application of equations (3.47 -  3 .49) repeated using the 

new step s ize . This procedure is continued un til equation (3 .49) is 

s a tis f ied  or convergence is achieved.

Application of equations (3.47 - 3.56) is  invoked when applicable, 

as explained above, un ti l  the convergence or optim ality  c r ite r io n  are 

met (see section 3 .3 ) .

the la s t  base point xb by calculating a new d irection u, and setting

b=l.

a

a

(3 .55)

(3 .56)

3.3 Search Termination

A flow chart fo r  the search termination procedure is given in 

Figure 8 .
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The question of optim ality  is considered a t  a l l  points where the 

direction finding problem is formulated. For the few cases where a 

local optimum occurs away from the behavior boundary that is where 

a ll

9j (x) > (3 .57)

a s u ff ic ie n t  condition for optim ality  is

|Vf| s e2  (3 .58)

where e2  is an a rb itra ry  small number.

For most cases, however, where optimum is constrained, the solu­

tion to Zoutendijk's direction finding problem [20] provides a te s t  

for optim ality . A null solution vector u indicates a local optimum 

where a l l  e. = 0. However, where some e. f  0 and the active con-
J J

stra ints  are also not zero, the point may be merely near, rather than 

at the optimum, since in this type of problems the optimum point 

is usually on the behavior boundary. Therefore, when u = o attempts 

are made to r e -s ta r t  the search and the optim ality  procedure is invoked 

only when a non-zero direction vector u is obtained. In order to re ­

s ta r t  the search the step size is redefined as

an + 1  = an/2  (3 .59)

and therefore the a c t iv i ty  l im its  e. are redefined according to equa-
J

tion (3 .3 6 ) .  A new direction u is then calculated i f  A. has changed.
J

This procedure is repeated un ti l a non-zero direction is found or the 

minimum step size is encountered, that is

a" < (3 .60)

in which case the search is terminated and the point is assumed to be
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an optimum.

For the cases where u f  o> increase £ by one and le t

f l  = f ( x b)

(3.61)

(3.62)
o 0

where f  is a comparison value with i n i t i a l l y  £ = 0, and f  = C-j,

where C-| is an a rb itra ry  large number. Now i f

a 1 = a£_1 (3.63)

no optimality check is made since £ has increased because the search 

was re-started due to the fac t that the previous movement direction  

was unproductive. However, i f  the step size has changed, this in d i­

cates that the maximum improvement in the function has been achieved 

using the previous step size and the step size must be reduced for  

additional improvement. A convergence check is now made in order to 

determine i f  a search using the new step size is ju s t i f ie d .  Thus, 

where equation (3.63) is not s a t is f ie d ,  define

where e  ̂ is the primary convergence c r i t e r ia ,  the search is continued.

A secondary convergence check is in it ia te d  whenever the primary 

convergence c r i t e r ia  is met, [equation (3.65) s a t is f ie d ]  in order to 

confirm optim ality . For this purpose the step size a is reduced 

according to equation (3.59) and the search is re -s ta rted . When 

further movement with the new step size terminates the primary conver­

gence check is invoked. Therefore, whenever equation (3 .65) is not

Af£ = |(f£ _ f£-lj /  f£|^ (3.64)

Unless

3 (3.65)
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s a tis f ie d  at point x*3, le t

K = 0 (3.66)

and where equation (3.65) is sa tis f ied  index K and le t

(3.67)

(3.68)

I f  equation (3.60) is s a t is f ie d ,  the point is assumed to be a local 

optimum and the search is terminated. Otherwise a new direction u is 

computed and the search continued. When the primary convergence check 

is sa t is f ied  in two consecutive t r ie s ,  that is i f

the search is terminated. Otherwise a new direction u is computed, K 

is set equal to 1 and the search continued. When equation (3 .70) is 

s a t is f ie d ,  the change in the value of the objective function (Af) has 

decreased from the previous convergence cl.eck, even though a reduced 

step size was used, the point is thus assumed to be optimum and the 

search is terminated.

K = 2 (3.69)

the secondary convergence check is invoked. Thus i f

Af£ < Af£_1 (3.70)



CHAPTER 4

DESIGN EXAMPLE

4.1 Problem Statement

Consider the minimum weight design of submersible, c irc u la r ,  

cy lindrica l shells reinforced by equally spaced "T" type frames. The 

design variables with respect to which the optimization is to be car­

ried out are: Plate thickness, frame web and frame flange thickness,

frame flange width, web height, and frame spacing. The objective  

function to be minimized is  the ra t io  of shell weight to the weight 

of f lu id  displaced. All the standard design equations used in submers­

ib le  shell design practice are to be s a t is f ie d . A ll variables w i l l  

be treated as continuous. The fixed design parameters are: The

operating depth, shell diameter, shell segment length, shell eccen­

t r i c i t y ,  construction material properties, factors of safety to be 

used in design, maximum and minimum values permitted fo r  the design 

variables, and, when required, a maximum (when external frames are 

used) or minimum (when in ternal frames are used) frame diameter.

This problem is selected here since i t  is a d i f f i c u l t  and compu­

ta t io n a l ly  demanding engineering problem which the re la t iv e ly  re l ia b le  

optimization code, DSDA and the popular SUMT procedure, could not 

solve [1 7 ].

In a previous study [22] i t  has been shown that the merit surface 

in this problem is f a i r ly  f l a t ,  therefore a wide range of variables



43 .

with s im ilar objective function values may be generated during the 

search. This study also demonstrates that movement along the behavior 

boundary is very d i f f i c u l t  in this problem.

A modified version of this problem with only four variables was 

treated in Reference [2 2 ],  using the DSDA procedure. The formulation 

of the more d i f f i c u l t  s ix  variable problem presented here is  s im ilar  

to that used in Reference [22].

Only CAD0P3 [2 3 ] ,  a modified version of CAD0P2 code, [16] reached 

an optimal solution to this problem. This code is three times fas ter  

than CAD0P2 code in problems with behavior constraints. However, due 

to the d i f f ic u l t ie s  involved in moving along the behavior boundary, the 

execution time required by CAD0P3 to achieve the optimum is quite long 

(see section 4 . 3 ) .  The problem, therefore, was treated using the BT 

algorithm in order to demonstrate i ts  superior a b i l i ty  in moving along 

a d i f f i c u l t  behavior boundary.

4 .2 Problem Formulation

4.2.1 Objective function. For cy lin drica l vessels with periodic 

"T" type reinforcing frames the objective function may be w ritten  as

external frames

internal frames

where W is the weight of the hull segment, given by

W = Y (V + V + V.)  rs ' s w f ' ( 4 . 2 )
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The ys and yw are the specific  weight of the material and immersion 

f lu id ,  respectively. V_, V ,  V. are the volume o f the p lating, frameS W T

webs, and frame flanges, respectively, and VQ is the displacement 

volume o f the cylinder enclosed by the plating envelope. The varia ­

bles x-|, x2 , . . . , X g ,  which in turn represent the quantities t ,  b, b1, 

w, L1, and h, respectively, are defined in Figure 9. The objective  

function f ( x ) ,  therefore represents the ra tio  o f the shell weight to 

the weight of the f lu id  displaced for the shell segment of length l_s . 

The weight of the bulkheads is omitted.

4 .2 .2  Constraint equations. The constraint equations g -(x ) are
J

divided into two groups: a) Behavior constraints which control the

fa i lu re  modes or impose lim ita tions  on the space relationships among 

the variab les, and b) regional constraints which specify ranges of  

the variables. The basic behavior constraint equations are formulat­

ed using a modified version o f the design equations given in References 

[24] ans [25 ].

The general in s ta b i l i ty  constraint is given by

gl = (p*cg " Sl p) 1 p*cg ^ 0 ' 4 ‘ 3)

where p is the applied hydrostatic pressure; p* is the minimum o feg
the collapse pressure pcg(n,m) due to general in s ta b i l i ty  [2 6 ], and 

S-j is the factor of safety fo r  this fa i lu re  mode. The collapse pres­

sure is given by
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2 2
Pcg(n,m) = [Dm2(l + 32 ) 2 + (GJf  + EIf 32) +

(4 .4)

12DZ2 ^  *  FV - , it2
TT4m2 A L2 R ( l /2  + 62 )

where p (n,m) is the buckling pressure for a specified n and m and eg
Af  = 1 + 2n2d (1 -  32p) + n4d2 (1 + g2 ) 2 

A = (1 + 32) 2 + 2B2F (1 + y) + 34 F(1 -  y2 )
(4 .5)

Z2 = Ls (1 -  y2 ) /  R2t 2

3 = nL-s /  nrrrR 

F = (b'w + bh) /  t L '

D = Et3 /  12 (1 -  y2) (4 .6)

d = d /  R

where d is the (algebraic) distance to the neutral axis o f the frame 

from the midplane of the hull p la ting , taken as positive when i t  is 

outward from the central axis of the hull [25 ]. The quantities GJ  ̂

and El r̂ are the torsional and bending stiffness of the frame, respec­

t iv e ly .  Symbols representing hull and frame dimensions are defined 

in Figure 9. The quantities G, E, and y are the shear modulus 

G = E /  2(1 + y ) ,  tens ile  modulus, and poisson's r a t io ,  respectively.

Buckling of the shell between frames is controlled by the con­

s tra in t

g2 = (p*cs -  S2P) /  P*cs » 0 0 . 7 )

where
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Pc s ( n , m )  = (tt2/ L ,2R) [Dm2(l + g2 ) 2 + 1 /A (12DZ2/ir2m2) ]  1 / (1  /2  + g2) (4 .8 )

For a given set of design parameters and pressures the buckling

pressure functions p (n,m) and p (n,m) depend on the two discrete
C y  C S

independent variab les, the axial and circumferential wave number m

and n respectively. To obtain the c r i t ic a l  buckling pressure one must

f i n d  t h e  minimum o f  P - _ ( n , m )  and p (n,m) w i t h  r e s p e c t  t o  n = 1>2.»Cy CS

and m = l ,  2 , ___  For this purpose the procedure of Reference [26]

is used here.

The necessity to avoid plating y ie ld  produces the constraint

s3 = <°pa '  ap> /  apa » 0 (4 ' 9)

where a is the allowable plating stress and

aP = + al  -  v * ) 1 /z  {4>10)

The quantities c?r and a^ are found from

^  = -pR/t [ l  + T(HM + nHE)] (4.11)

ar  = -PR/ 2 t [1 + 2r (4 J 2 )

The terms -pR /t  and -pR/2t are the hoop and axial stresses, respec­

t iv e ly ;  F is a frame deflection parameter, and and are the

functions that define the bending e ffe c t  on the shell due to local 

frame reinforcing [2 4 ],  Equations for H^, and are given in Refe­

rence [24 ].

The constraint against the frame yie ld ing fa i lu re  mode is given

by

94  = /  ^fd .  (4* 13)
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where af  is the allowable frame stress and the maximum frame 

stress. The quantity is given by

aT = ab + (4 J 4 )

with the compressive hoop stress aQ given by

a = Q pR/(A + bt) (4.15)
i, P

Here A is the cross-sectional area of the frame and Qp is the tota l

radia l load per inch of circumference. Qpis given by equation (23)

of Reference [2 4 ]. The frame bending stress ab results from s lig h t

out-of-roundness of the h u ll .  I t  is calculated using

ab = [Ece (n2 -  1) /  R2] [p /  (pcs -  p)] (4.16)

where c is the distance from the midplane of the shell to the surface

o f the frame, e is the eccentric ity  from the true c irc le  radius, and

n the wave number that minimizes p .
^y

I t  should be noted that ab is discontinuous at points near p = pCg 

and is discontinuous with respect to n, since n is an in teger.

Flange buckling is controlled by le t t in g  

g5 = ab " E*57̂ / 12 0  “ v2)3 t x3/  ( x4 _ x2 ^ 2 *  0 (4.17)

Two geometric constraint equations can be used. A maximum flange 

thickness is specified to prevent the flange from becoming excessively 

th ick . I t  is desirable to specify a maximum flange thickness as a 

fraction  of the p lating thickness. Thus, the constraint

g6 = (C2t  - b ')  /  C2t  *  0 (4.18)

is used, where C2 is the maximum flange to plating thickness ra t io .
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The constant Cr> is made a r b i t r a r i ly  large i f  the designer does not 

wish to apply this constraint. Minimum flange width is controlled by 

the inequality

g7 = (w -  C3h) /  w ^ o (4.19)

to insure that the flange width is s u ff ic ie n t  so that the design rule  

fo r  the control of the web cribbing is not invalidated, is an 

a rb it ra ry  constant controlling the minimum ra t io  of flange width to 

web height.

I t  is desirable to l im i t  the minimum or maximum (depending on

whether internal or external frames are used) radius of the frame

because of space consideration. One can then use the constraint

g8 = ( R + h + b '  + t /2  Rn|in) /  Rm1n J 0 (4 .20)

where R . is the minimum specified radius for internal frames or min r

% =  <Rn,ax -  R -  t /2  -  h -  b ')  /  Rmax » 0 (4 .21)

for external frames where Rmax is the maximum specified radius.

To insure against web buckling the following design constraint 

is invoked.

g9 = ab - [4 tt2E/12 (1 -  v2 ) ]  (x2 /  xg) 2 > 0 (4.22)

Side constraints o f the form

(x“ -  x . )  /  x? *

> (4.23)

(xi -  x1:) /  Xj *  0_J

are used to l im i t  the range of the variables x  ̂ for manufacturing, 

space, or other practical reasons. The flange width c learly  cannot
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exceed the frame spacing, imposing an upper l im i t  on x^. Sometimes
U1x^ is lim ited  by design consideration, thus i f  x^ is the designer 

specified maximum

The formulation of the example treated here is now complete, but 

other forms of constraints and objective functions, which do not 

arise in th is  example are c le a rly  possible.

4.3 Discussion of Results

4.3.1 Code description. A FORTRAN IV code called CAD0P4 based

on this algorithm was developed and used in this study. The code is

operational with IBM FORTRAN levels G and H and the UNIVAC TDOS sys­

tems. The user is required to supply the objective and constraint 

functions, the in i t i a l  values of the variables, and side constraint 

values.

The i n i t i a l  step size is in te rn a lly  generated so that at the 

starting point a step of size in the Vf d irection produces a one 

percent change in the value of the objective function. This step is

constrained so that a0 > .01. The minimum step size is defined as
0 -5 —6

amin = 01 /"*000* The program uses ê  = 10“ , e2 = = 10“ , N-j = 6,

N2 = 10, C-j = 105 and the a c t iv i ty  l im i t  constant is i n i t i a l l y  speci­

fied  as K. = 0.01 fo r  a l l  constraints.
J
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Nondimensional constraint equations of the form 

gj  (xi ) = (Uk - Bk ) / U k >  ° when 0 and Bk f 0 

or (4.25)

gj ( xi ) = (Bk -  Lk ) /  Lr > o when Lk f  o and Bk f  0 

are used. Otherwise, a dimensional form of equations is used.

A constraint given as 0 $ b(x.j)  ̂ A would be written as two con­

s tra in t  equations. For example, onecould be of the form of the f i r s t

of equations (4.25) where = b(x^) and U-| = A. The second would be 

of the form g£ = -b (x i ) since l_k = 0.

4 .3 .2  Code app lica tion . The above problem was treated using

CAD0P3 and CAD0P4 codes. Except that the in i t i a l  step size is speci­

f ied  for this problem as a = 4/R, where R is the radius o f the sh e ll .  

The minimum step size is defined as o^. = a0 / 200. Runs were made on 

an IBM 370 model 168 using FORTRAN level G. The same starting  points 

were used in these runs. The execution time in seconds along with 

other necessary information were printed a t each base point in order 

to closely track the synthesis path of each procedure.

Tables 1 and 2 present the results obtained from CAD0P3 and 

CAD0P4 codes, respective ly . A total o f 72810 function evaluations 

were performed using CAD0P3 code prior to termination. Due to the 

great execution time required by CAD0P3 fo r  th is  problem, the run was 

terminated prior to reaching the optimum. The execution time for  

th is  run was 56.2 seconds. CAD0P4 code required only about 4000 func­

tion evaluations with 4.8 seconds execution time to reach a s im ilar
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level o f convergence.

The constraint presenting the web buckling (gg) was active from 

near the beginning of the search, while the plate y ie ld ing (g^) be­

came active a f te r  a re la t iv e ly  short time and remained active through 

the rest of the search. The general buckling constraint was also 

active a t the la t te r  part of the search. Thus, the optimal design is 

constrained by general in s ta b i l i t y ,  local web buckling and plating  

y ie ld .

The CAD0P3 codecame within l%of the optimum point a f te r  23 sec­

onds and approximately 43000 function evaluations, while CAD0P4 re­

quired only 1.4 seconds and about 1000 function evaluations to reach 

this level of convergence. I t  should be pointed out that for most 

practical engineering purposes, a 1% level of accuracy is quite accep­

table. I t  is the refining process that is responsible for the greatest 

portion o f the to ta l execution time.

I t  must be pointed out that due to the presence of intermediate 

prin t statements, the execution time required fo r  solution without 

these statements is appreciably less than the above mentioned time.

A run made without any intermediate p r in t statements using CAD0P4 

code terminated a f te r  2.1 seconds at the optimum point while the 

original run required 8.7 seconds.

Comparison of the above results demonstrate the apparent supe­

r io r i t y  of the Boundary Tracking algorithm to the DSFD procedure with 

respect to speed. This is the resu lt  of great reduction in the number
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of function evaluations required fo r  convergence. I t  demonstrates 

the a b i l i ty  of the BT procedure to move e f f ic ie n t ly  along a d i f f i c u l t  

behavior boundary.



CHAPTER 5

COMPARISON STUDY

The CAD0P4 code as described in section 4.3.1 was used in th is  

study along with a ll  the constants and parameters presented e a r l ie r .

This comparison study is based on the works of Eason and Fenton 

given in  References [14] and [1 5 ]. All ten problems treated in these 

references were run, using the new code with the starting points 

given in Reference [1 4 ] .  All the control constants and the step 

sizes are in te rn a lly  generated so that there was no special tuning 

fo r  individual problems. Computations were performed in double pre­

cision on an IBM 370 model 168 system, using a level G compiler, thus 

closely simulating the Eason and Fenton study.

A b r ie f  description o f the codes studied are given in Table 3, 

while Table 4 contains the data for rating the success of the various 

codes in solving the ten problems to which they were applied. A de­

ta i le d  description of the problems is given in Reference [1 4 ] .  A 

normalized time required for the solution of each problem successfully  

solved is given in Table 4. Normalized time is defined here as the 

execution CPU time divided by the CPU time required to execute a tim­

ing standardization program [1 4 ].  The symbol "P" denotes progress 

toward a solution, and a blank denotes fa i lu r e .  The c r i te r ia  used in 

References [14] and [15] fo r  defining successful solution or progress 

were also applied here.
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TABLE 3 

CODE DESCRIPTIONS

Name Description Algor
Class*

ADRANS Random search followed by pattern moves DS

CLIMB Rosenbrock search DS

DAVID Davidon-Fletcher-Powell with numerical derivatives GF

DFMCG Fletcher-Reeves conjugate gradient method with 
secant approximation derivatives G

DFMFP Davidon-Fletcher-Powell with secant approsimation 
derivatives G

FMIND Hook & Jeeves pattern search DS

GRAD4 Steepest descent method G
GRID1 Grid and star network search, with shrinkage AR
MEMGRD Davidon-Fletcher-Powell with retained step length 

information GF

NMSERS Simplex search DS

PATSH Modified pattern search, dome strategy DS

PATRNI Modified pattern search, ridge strategy DS

RANDOM Random search with shrinkage AR
SEEK! Pattern search followed by random search DS

SEEK3 Modified pattern search DSF

SIMPLX Modified simplex search DSF

DSDA Modified pattern search followed by Mugele’s search DS
CAD0P2 Modified pattern search followed by Zoutendijk 

feasible direction method DS
CAD0P3 Modified CAD0P2 DS

CAD0P4 Boundary Tracking method BT

*DS = d irect search, DSF = d irect search employing SUMT strategy and 
penalty function, 6 = gradient procedure, GF = gradient procedure 
using SUMT strategy and penalty function, AR = area reduction method, 
BT = Boundary Tracking.
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The important variables effecting  execution time are; the prob­

lem, the algorithm, the code, the input and output requirements, the 

architecture of the machine and the compiler system. In order to 

minimize the effects of those variables not involved in the compari­

son, s im ilar  computer machines and compiler systems along with the 

same test problems and output requirements are used here. Unfortuna­

te ly  the effects of the code structure can not accurately be deter­

mined. Thus, data of Table 4 and ratings shown in Table 5 can not 

be considered to accurately r e f le c t  the effectiveness of the basic 

optimization algorithms.

The data and rating procedures used here however, can be d ire c t­

ly  applied, with reasonable accuracy, fo r  re la t iv e  comparison of the 

codes tested. The results obtained are thus useful to the user of 

such codes. The re la t iv e  effectiveness of basic optimization algorithms 

can only be infered from this data i f  one assumes that the codes for  

each procedure have been prepared with essentia lly  comparable e ffec ­

tiveness.

This study uses Eason and Fenton's comparison procedures since 

they are the best available and the most current. Furthermore, use 

of another investigator's  comparison methods rather than one proposed 

by the developer of a new method reduces the tendency toward developer 

bias in reporting on the effectiveness of his method.

The data from Table 4 may be applied to a number of rating methods 

for comparing the codes tested. Table 5 presents re la t iv e  ranking of
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the codes using the c r i t e r ia  of Reference [1 5 ] .  The rating equations 

are as follows:

Let the number of problems solved by code "a" be n3, and l e t  n'
a a

be the number of problems with a "P" rating . Then the numerical suc­

cess rating N is given by
a

One of two computational e ffic iency  ratings is  given as

f a = bap ‘ ap '  mi" <‘ a p ^  1 na ( 5 ‘ 2)

where b = 1 i f  code "a" solved problem "p" and zero otherwise, t

is the normalized time required for solution and min( t3r ) is theap
shortest time required by any of the codes studied to solve problem

"p". The other e ffic iency c r ite r io n  is

f_ = b „  t__ /  mean ( t . _ ) ]  /  n, (5.3)a L p=l ap ap v ap/J ' a
where m ean(t„  is the average time required by the codes studied to ap
solve problem "p". An overall rating number which can be considered a 

composite measure of generality  ( r e l i a b i l i t y )  and e ffic iency (speed) 

is given by

Ta -  sp°l * i P <5 -4 >

where t '  is set equal to t ,_  i f  algorithm "a" solves a problem "p",ap ap
and to twice the time used by the slowest code solving a problem "p" 

i f  code "a" could not solve i t .  This penalty time is used to penalize  

code u n re l ia b i l i ty .  Only codes that solved h a lf  or more of the prob­

lems are rated for e ff ic ien c y .

The tables presented here are sim ilar to those given in References 

[15] and [1 7 ],  except that the CAD0P3 and CAD0P4 codes are included.
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The CAD0P3 code is  a modified version of CAD0P2 code presented in Ref­

erence [17]. Thus, the rating methods and presentation o f results used 

are essentia lly  those of Reference [15] and [17].

From Tables 4 and 5 i t  can be concluded that CAD0P4 is the fastest 

code in overall generality  and e ff ic iency  rating. This Boundary Tracking 

method presented here appears comparable in speed to the fastest methods 

presented in Reference [1 7 ],  (NMSERS, PATRNI, DSDA, and CAD0P2). CAD0P4 

is faster than average in a l l  problems. I t  is the fas tes t code solving 

problems 1, 2, 3 , ' 6 ,  7, and 9, which are problems with behavior con­

s tra in ts . On the other hand, problems 4, 5, 8, and 10, where the CAD0P3 

and CAD0P4 codes performed id e n t ic a l ly ,  but less e f f ic ie n t ly  than some 

other procedures, are problems without such constraints. This is ex­

pected since the two codes are identical in treating the unconstrained 

problems.

Of the problems tested, problem 1 which has the largest number of 

behavior constraints (10) was apparently also the most d i f f i c u l t ,  since 

i t  was solved by only six of the twenty-one codes presented in Table 4. 

The second most d i f f i c u l t  problem was problem 9, for which only 7 of the 

21 codes led to the optimum point. This problem has only 6 behavior 

constraints and two variables. However, there is a rapid change in the 

slope of the behavior boundary in the region near the optimum point. 

Because of this rapid variation in slope, a major part of the to ta l ex­

ecution time was spent on refining the location of the point so as to 

meet the convergence c r ite r io n . Problem 10, which required the longest 

execution time, has no behavior constraints. The long execution time



6 3 .

required by th is  problem is due to the complexity o f  the objective 

function and the number of the function evaluations needed to reach 

the optimum.

I t  can be seen from Table 4 that the CPU time required for trea ­

ting problems 9 and 10 in most cases is much greater than the sum of  

the CPU times required for the solution of the rest of the problems 

tested. Thus, the speed of a code in solving problems 9 and 10 plays 

an overwhelming role in determining the code's overall generality and 

effic iency ra tin g , T„. For example, a code that is very e f f ic ie n t  on
a

the majority of problems but requires long solution times for problems 

9 and 10 would have a r e la t iv e ly  low overall generality  and effic iency  

rating using equation (5. 4) .  Therefore, this ra ting  method is not 

very useful fo r  comparing codes solving a l l  the te s t  problems. For 

such codes the e ffic iency ratings f 3 and f a represent the a b i l i ty  of
a a

the method more c le a rly . Furthermore, the overall generality  and 

effic iency rating Ta does not s u ff ic ie n t ly  penalize those codes which 

fa iled  to solve any of the te s t  problems 1 through 8, but performed 

well on problems 9 and 10. The penalty time used here fa i ls  to accu­

ra te ly  take into account the weaknesses of such codes in solving 

problems 1 through 8.

The superior performance of CAD0P4 code in problems with behavior 

constraints compared to CAD0P3 code is due to the fac t that the number 

of function evaluations required in CAD0P3 is proportional to the num­

ber of bases needed for solution m ultip lied by the number of variables. 

On the other hand, the number o f function evaluations in CAD0P4 is
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proportional only to the number of base points, and does not have to 

be m ultip lied  by the number of variables. Therefore, in CAD0P3 the 

number of function evaluations increases d ire c t ly  with the number of  

variab les, while in the CAD0P4 code i t  does not.

Compared to the r e la t iv e ly  re lia b le  codes (na ^ 8 ) ,  CAD0P4 is  

fas te r  than CAD0P3 on six of the ten problems solved by CAD0P3, fas ter  

than DSDA on six of nine, and faster than PATSH on eight o f nine, and 

fas te r  than SEEK3 in a l l  problems solved by these schemes. As may be 

seen, the CAD0P2 and CAD0P3 codes are the only re liab le  codes compar­

able to CAD0P4. CAD0P4 is s ig n if ic a n tly  fas ter than CAD0P3, CAD0P2, 

PATSH, SEEK3, and SIMPLX. The stra ight pattern (PATRN1) or simple 

(NMSERS) codes are ranked re la t iv e ly  high in e ffic iency prim arily  due 

to th e ir  superior performance in unconstrained problems (Table 5 ).

Of th is group, only NMSERS appears to be s u ff ic ie n t ly  re l ia b le  to merit 

consideration for use. The minor difference in effic iency between 

NMSERS and CAD0P4 is ,  however, overshadowed by the superior r e l i a b i l i t y  

of the la t t e r .  Thus, in the overall speed, generality , and effic iency  

ra tin g , CAD0P4 stands out. Viewed on the basis of these comparisons, 

CAD0P4 appears to be a superior nonlinear mathematical programing code.

The new algorithm is intended to be a constrained optimization  

algorithm. Therefore, the performance o f CAD0P4 is compared to the 

codes of References [15] and [17] on problems having behavior con­

s tra in ts . This comparison is shown in Table 6.

Table 6 is s im ila r  to Table 5 except that the problems without
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behavior constraints are excluded. The rating equations used fo r  these 

values are the same as those used fo r  Table 5. The results of Table 6 

indicate the superiority  o f CAD0P4 with respect to speed, genera lity ,  

and e ffic iency . Only codes that solved h a lf  or more (ng ^ 3) of the 

problems are rated for e ffic iency .

The superior performance of the CAD0P4 code in a l l  the above ra­

tings strongly suggests the superiority  of the BT method fo r  treating  

problems with behavior constraints. CAD0P4 proved to be substantia lly  

more e f f ic ie n t  than the CAD0P3 and NMSERS codes on such problems. In 

the overall generality  and effic iency  rating CAD0P4 code again stands 

alone with CAD0P3 code in the second place being approximately three 

times slower. However, as explained e a r l ie r ,  due to the re la t iv e ly  

long execution time required for problem 9 th is  rating method does not 

r e f le c t  accurately the re la t ive  effectiveness of the codes which 

solved a l l  the te s t  problems. The e ff ic iency  ratings f a and f  may 

again be more useful in comparing such codes. In these ratings CAD0P4 

code is  two to three times faster than other r e la t iv e ly  fa s t  codes 

(CAD0P3, NMSERS).

Thus, the Boundary Tracking algorithm presented here appears to 

be superior to DSFD with regard to e ff ic iency  and to a l l  other optimi­

zation procedures tested with respect to generality  and e ff ic iency .

Based on i ts  performance on the ten problems of Reference [15] 

and on the other comparison studies, the Boundary Tracking method 

appears to be a fa s t  and re lia b le  nonlinear mathematical programing 

optimization procedure.
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In conclusion, i t  must be pointed out that the tes t problems used 

in the above comparison study are re la t iv e ly  small and simple, while  

many practical engineering problems are large and contain complex and 

computationally demanding functions. Therefore, although i t  is reason­

able to assume that the above comparison study is  representative o f  

the performance of the new code on most practical problems of size 

and complexity s im ilar to that o f the study, th is  performance may not 

be representative for large complex problems. Unfortunately, no 

comparison study u t i l iz in g  large complex problems is availab le , and 

is not l ik e ly  to be available soon due to the d i f f i c u l t y  and cost 

associated with such a project. Furthermore, one cannot guarantee 

that the performances noted in the present study are typical for a l l  

re la t iv e ly  small simple problems. Nevertheless, th is  is the most com­

plete of the available general comparison studies and should be useful 

as a guide in selecting a suitable algorithm fo r  a particu lar problem. 

The designer must, however, proceed with care in comparing his problem 

to the above tes t problems, taking into account such things as the 

number o f variables, constraints, nature of the function to be evalua­

ted, etc . in selecting a desirable algorithm.
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CONCLUSION

The successful application of the CAD0P4 code to the r e la t iv e ly  

complex problem of shell synthesis and i ts  performance in the general 

comparison study presented in section 4 . 1 ,  imply that the Boundary 

Tracking method developed here is a superior nonlinear mathematical 

programming procedure. Although the code proved to be the best in the 

general comparison study, the real potentia ls o f the algorithm are 

demonstrated in the shell design problem. Since many engineering 

problems are of such a class, the new algorithm shows the promise o f  

adding a major contribution to the f ie ld  of automated design.

In the above studies the BT method proved to have great potential 

fo r  use in computationally demanding problems. However, as in the case 

of most new methods, additional studies may lead to improvement, par­

t ic u la r ly  in the speed of the algorithm.

The only apparent disadvantage o f CAD0P4 is i ts  re la t iv e  complex­

i t y  compared to some of the other reasonably re lia b le  methods. I t  

contains 1320 FORTRAN statements, while , fo r example, the CAD0P3 con­

tains 790, DSDA contains 372, and PATSH only 75 FORTRAN statements. 

Thus, i f  CAD0P4 code is not available in a compiled form, fo r  simple 

problems of r e la t iv e ly  low complexity and dimensionality, one of the 

simpler codes may be preferable since the time required fo r  compilation 

o f the program may exceed the time saved by using CAD0P4.
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In addition, i ts  performance on problems without behavior con­

s tra in ts , although quite good, is not as outstanding as on problems 

with such constraints.

In conclusion, the user of this or any other algorithm fo r  auto­

mated design, should be aware that the general nonlinear constrained 

optimization problem is quite d i f f i c u l t  to handle. Also, none of the 

availab le  techniques w i l l  guarantee an optimum solution. One should, 

therefore , be careful in the application o f such an algorithm and 

analyze the results thoroughly. One also, should make use o f several 

synthesis runs, using d if fe re n t  s tarting points where possible, before 

assuming the value is an optimum solution.
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