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ii.

ABSTRACT

The work presented in this dissertation is devoted to the analysis
of nonlinear buckling of thin cylindrical shells with imperfections.
The nonlinearity of the problem treated in this dissertation is that
associated with large displacements in the linear elastic range. The
method used is not restricted by the magnitude of the displacements
provided that the strains do not exceed the limit of proportionality.

Thus, based upon the large deflection theory, cylindrical shell
panel is investigated for buckling under the action of uniform external
pressure. Certain higher order infinitesimal terms which are usually
neglected in the shallow shell theories, have been retained in the
present paper to study their effect on buckling, and also to test
the validity of shallow shell assumptions. The shell is clamped at
the two longitudinal edges while it is simply supported at the
transverse edges.

The general nonlinear theory with respect to strains is applied
to deep shells to formulate the set of equations, which are nonlinear
partial differential equations. These nonlinear partial differential
equations are reduced to a set of nonlinear ordinary differential equa-
tiong by applying the Kantorovitch method.

Further these differential equations are reduced to a set of
nonlinear finite difference equations by conventional methods in
terms of central differences. These nonlinear finite difference
equations are linearized by incremental method, and transformed

into a suitable matrix form.



iii.

An iterative procedure to solve this system of incremental equa-~
tions in the matrix form is developed. A computer program is written
in Fortran IV to solve these equations, following the interative pro-
cedure.

The following different cases of buckling have been investigated
in this paper.

a) Symmetric buckling of deep shells.

b) Symmetric buckling of shallow shells.

c¢) The effect of initial imperfections on the buckling loads.

d) Asymmetric buckling as a bifurcational buckling of symmetric

case.

The findings of this study may be stated as follows:

From buckling point of view, deep shells are stronger than shallow
shells.

When only shallow shell parameters are employed, neglecting deep
shell parameters, the corresponding deflection caused by an increment
in load tends to be smaller. And therefore the buckling load when
shallow shell parameters are employed tends to be higher.

In case of shallower shells, though, no appreciable difference in
the unit load is found by employing deep shell parameters.

Initial imperfections if present even to a minute degree can
affect the buckling load significantly. Also, this paper establishes
the validity of certain assumptions of shallow shell theory for the

first time.



iv,

PREFACE
Much recent research has been devoted to the problem of elastic
buckling of thin plates and shells. This is understandable in light
of the fact that thin walled shell constructions incorporate material
economy with possible high strength. But it also renders the structure
prone to buckling. The thin shells have wide applications in
aeronautical, naval and civil engineering. Although, the practical

potential for the use of thin shells has by no means exhausted.

The work presented in this dissertation is devoted to the analysis
of nonlinear buckling of thin cylindrical shells with imperfections.
The nonlinearity of the problem treated in this dissertation is that
assoclated with large displacements in the linear elastic range.

The method used is not restricted by the magnitude of the displace-
ments provided that the strains do not exceed the limit of

proportionality.
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1. INTRODUCTION

1.1 General

Minimum weight, optimum structural design has forced thinner

and thinner structural shapes of various kinds into engineering.

The characteristic property of such shapes is their flexibility
and their relatively small resistance to bending and torsion. There-
fore, when deformed under load such structures have large displacements
compared to their thickness. 1In this respect their behavior is

geometrically nonlinear.

The objJect of this paper is to investigate such geometrically
nonlinear buckling of a thin deep cylindrical shell under the action

of uniform external pressure.

There has been a considerable research devoted to the problem
of elastic buckling of closed shells. Such research has applications
in aircraft and naval industry. Little work, however, is done on the
stability investigations of open shells. The historical review of the

previous work done in this field is presented in the next article.

1.2 Historical Review

The theory of elastic stability of thin shells has been
investigated by many researchers in last sixty years. In the first
twenty five years of the above period though most research workers

dealt only with linear theory of elastic stability, Thielemann [26].



The buckling loads of thin cylindrical shells have been in
serious disagreement with those predicted by the linear theory, e.g.
In the case of the axially loaded cylinder the test results shown in
Figure [1], have been about 20 to 30% of the classical buckling load,
whereas in the case of torsion and external pressure the tests give about
70 to 80% of the buckling loads expected from the classical theory. In
addition the test results show unusually large scatter in the buckling

loads, Thielemann [26] Stein [25].

Thus, classical linear theory of shells failed to explain the

diserepancy that existed between the theoretical and experimental

results.

Donnell[4] achieved a major simplification of the linear theory of
buckling of circular cylindrical shells in 1934, which played an important

role in the development of an adeguate nonlinear theory.

In 1940, the tests of simple struts with a central nonlinear
elastic support, in England and in United States, showed that small
imperfections in these nonlinear structures reduced the critical load
drastically. Guided by these tests, Von Karman and Tsien examined the
post buckling behavior of cylindrical shells under axial compression,

Karman and Tsien {[13].

These investigators made use of nonlinear large-deflection theory
proposed by Donnell. Their method of attack on the problem was based on
the psir of nonlinear differential equations for the normal deflection

w and the Airy stress function of the theory of shallow shells.
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In a single statement the result of investigations of Karman and
Tsien [13] may be stated as follows: The axially compressed cylinder
after having reached the critical buckling load must snap through into
another state of equilibrium which is connected with a considerably

smaller axial load.

The analysis of Von Karman and Tsien was refined and enlarged by

Kempner [14], Leggett and Jones [19], Michielsen [22],

Donnell and Wan [6] made an important contribution toward the
explanation of the discrepancies between experimental and theoretical
buckling loads of axially loaded cylindrical shells. They introduced
the assumption of initial imperfections into the analysis of Karman and
Tsien [13]. These initial imperfections they showed, present even in the
order of a few tenths of the thickness of the wall, considerably reduce

the buckling load of the axially compressed cylinder.

A different kind of approach to the nonlinear buckling problem was
developed by Koiter [15], [16]. In this approach, the attention was
focussed on the initial stage of post-buckling behavior. A number of
additional examples have been investigated by Budiansky [1],

. Hutchinson [101, [11] and Thompson [27].

Most of the above mentioned research investigations have been
devoted to the problem of elastic buckling of closed shells, such as
cirecular cylinders. The research findings have applications primarily
in the design of aircraft fuselages, missile casings etc. It is only
in the last few years that the problem of the stability of open shells,

such as cylindrical panels has drawn attention of some researchers.



The stability investigaticns of open cylindrical shells have
been carried out by Karakas and Scalz [12], Yang and Guralnick [31],
W.J. Stack-staikidis [24], Chu and Turula [30] and Mek and Wen [20].
The first two of these, are experimental investigations whereas the

last three are the theoretical investigations.

A fiberglasswreinforced plastic shell was tested at Case
Institute of Technology by Karakas and Scalz [12]. The shell was
simply supported by resting the end diaphragms on rollers. The usual
practice of incremental loading was followed, and deflections and
strains were recorded at each increment of load. The compressive
stress at the center of the shell was found to be about 32 percent
of the critical buckling stress, calculated according to the

suggestions of the ASCE Manual No. 31.

Shell models fabricated from sheets of 5052 H-32 aluminum were
tested for buckling by T.H. Yang and S.A. Guralnick [31] at Illinois
Institute of Technology. The shells were simply supported on rollers
at the ends. A uniformly distributed live load on the horizontal
projection of the shell, was simulated by means of a series of closely
spaced concentrated loads. The results of this study compare well with
those calculated by shallow shell theory. The models tested in this

study were all relatively shallow.

A method for the study of the nonlinear buckling of shallow
cylindrical shells is presented by W.J. Stack-Staikidis [24]. In this
method the governing differential equations are expressed in terms of

stress function and the normal displacement. The Kantorovitch method



and a finite difference scheme are applied to solve the resulting
equations. The general nonlinear theory with respect to strains and
shellow shell assumptions are used for the mathematical formulation

of the problem.

A technique for obtaining the critical load of open cylindrical
shells is presented by Kuang-Han Chu and Peter Turula [30]. The shell
considered is simply supported at the ends and is free at the
longitudinal edges. General equations based on the large deflection
theory are developed and a set of nonlinear finite difference equations
are solved. In developing this technique also, the shell is assumed

to be shallow.

Cary Mak and Robert Wen [20] have investigated a cylindrical
shell panel supported by flexible longitudinal beams on edges and rollers
on the curved edge of the shell. The problem is solved by means of
Rayleigh-Ritz type approach. In this investigation also the shell was

assumed to be shallow and loaded by its own weight or radial pressure.

1.3 The Method of Present Investigation

A1l of the aforementioned theoretical investigations were based on
shallow shell theory assumptions. The present investigation distinguishes
itself from all the others by taking into consideration certain higher
order infinitesimal terms, which in other words is equivalent to assuming

the shell to be deep. This makes the method more general.

This investigation also takes into account, the effect of initial
imperfections of various amplitudes of the order of the thickness of the
shell. As a result of this general approach, the mathematical formulation

has involved many terms making the calculation very laborious.



In this investigation the governing equations for deep shells
are obtained by applying the general nonlinear theory with respect
to strains. The nonlinearity treated is that associated with large
displacements in the linear elastic range. The method used is not
restricted by the mangitude of the displacements provided that the
strains do not exceed the limit of proportionality. The shell is
assumed to be clamped at the two longitudinal edges and simply

supported at the transverse edges.

The governing equations mentioned above are nonlinear and
partial differential equations. These nonlinear partial differential
equations are reduced to a set of nonlinear ordinary differential
equations by the application of the Kantoroviteh method. Further,
these nonlinear ordinary differential equations are reduced to a set
of nonlinear finite di fference equations by conventional methods in
terms of central differences. These nonlinear finite difference
equations are linearized by incremental technique, and transformed

into a suitable matrix form.

An iterative procedure to solve the above mentioned matrix in
the incremental form is developed and a computer program is written
in Fortran IV to solve these equations using the iterative procedure.
Symmetric buckling of deep as well as shallow shells, the effects of

imperfections on buckling, and asymmetric buckling are investigated.

1.4 Stability Criteria

1.h.1 Classical Stability. The object of theory of elastic

stability is to investigate the states of equilibrium under varying
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loads. The classical stability analysis in particular investigates
the stable equilibrium configurations that develop through successive
deformations as shown in Figure [2] from unstrained state, when loads

are gradually increased.

Critical state of equilibrium is defined as that equilibrium
configuration at which the loss of stability occurs. This critical
state of equilibrium can be identified with a point at which further
increase of the load may result in a discontinuous change of the

configuration.

1.4,2 Bifurcation Point Criterion. The second type of loss of

stability that may occur is represented by the concept of "bifurcation

point."

According to this concept, it is possible under certain conditions,
that the fundamental load deflection curve is intersected by another
equilibrium path as shown in Figure [2]. The point at which this occurs
is called bifurcation or branching point. The adjacent states for loads in
excess of the critical load are stable and those corresponding to loads
below the critical value are unstable. In other words, an exchange of
stability takes place between the fundamental state and the adjacent
state. The state of equilibrium at a bifurcation point in general is

unstable.

1.4.3 The Effect of Imperfections on Buckling. No shell can be

manufactured to a perfect geometric shape. Therefore, there are bound to

be certain deviations from the desired shape which are termed as initial
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imperfections. Again these initial imperfections mey be different

even for the same geometric specifications.
E.H. Dill [T] in order to simplify the problem states that:

"In theory, if the actual shape is known one could write
the equation of the middle surface and from the general
equations one could write the differential equations
governing the behavior of the shell. However, it will
be more simple to derive the equation by supposing that
an initiglly perfect shell is deformed into the imperfect
form by deflections w of its middle surface but that no
stress is caused by this deformation. In this case the
total deflection will be w + w where w is the deflection
due to load. The strain due to load will be found by
taking the total strain less the initial strain.”

Donnell [6] employs a very ingeneous device to simplify this

problem further. Again in the E.H. Dill's [7] language:

"Precisely the manner of deviation from a perfect shape is
not generally known; however, control over the maximum
amplitude of the initial imperfection can generally be
maintained. It should be assumed then for the purpose

of design that any shape may be present initially whose
magnitude does not exceed a certain amount. For example,
the initial deviations might be expanded in a Fourier
series. Then the coefficients of this series should be
determined in such a way that the buckling load is minimized
subject to the restraint that the amplitude of initial
imperfection cannot exceed a given amount. The determina-
tion of these coefficients would be a complicated task.
Donnell assumes, instead, that the worst shape that could
be present would be the shape into which the shell will
eventually buckle."

The above technique is used later for the derivations to account

for imperfections.



2. DERIVATIONS OF THE DIFFERENTIAL EQUATIONS

FOR NONSHALLOW CYLINDRICAL SHELL

2.1 Equilibrium Equations of a Shell Element

Consideration of the equilibrium of a shell element with respect
to x and y reference axes as shown in Fig. L, result into the follow-

ing equations.

- - + =

Nx,x * NXYaY KXQX nyQy px 0
N + N - K - K + =0

XY - X NEY YQY XVQX py
M + M -Q =20

X, X XY ¥ X (2-1)
M + M -Q =20

XY X MY ¥

+ + KN + 2K N + KN + =0
QX,X QYaY X X XY Xy yy Py

where N , N , N , M, M M ,Q , Q denote forces and moments act-
x* Ty oxy Xy Txy’ kY Ty
ing on the element as shown in Fig. 4 and Fig. 5 and K, Ky, ny are

curvatures of the deformed middle surface.

Substituting for Qx and Qy from third and fourth of equations
(2-1) into the remaining three equations, the following equations

(2-2) are obtained.

N + N - K (M + M ) - kK. (M +M _)+p. =0

X,X XY,y X X,X XY,y Xy XY,X V¥ X

N + N - K (M +M ) -K (M + M ) +p_ =0

Xy.X Y¥ V Xy.X NEYNA Xy X,X XY.¥ y ( )
2.2

M + oM + M +KN +2K N +KN +p =0

X, XX XY, Xy VoY X x Xy Xy vy z

12.
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2.2 BStress-Strain Relations

If the strains at the middle surface of the shell are denoted
by e s ey and exy and those at a distance z from the middle surface
are denoted by eZ, ez, e? then the stresses ¢ , 0., © in terms of

X Yy X x ¥ Xy

strains are given by the equations,

o, = ————-——-é——-(ex + ve )
1 ~-v Y
E
o =7 (e + vex) (2-3)
¥y 1 - v y

and the strains in terms of stresses are given by the equations,

e =1(g - vo)
E b'd Y

e = %-(cy - vox) (2-4)

The strains on z surface in terms of the strains on the middle

surface are obtained as follows

QN XN

%N
3
E

1k,



Equations (2-5) hold with the assumption of Love's first approximation.

2.3 Strain-Displacement Relations

For the general case of large deflections of shells, including
the second degree infinitesimal terms the nonlinear expressions for

strains in terms of displacements are glven as follows:

e =u - Kow + Ji-wg
X s X X 2 ,X
e =v - Kow+ l-w2 (2-6)

y »Y y 2 7,y

e = u + v - 2Kp w+w oW
Xy N4 2 X Xy » X HY

where Kz, K;, and Kiy are the corresponding curvatures of the original

unstrained surface.

For the shells with initial imperfections, 1t is assumed that the
midsurface of the unioaded shell is displaced radially from the perfect
cylinder by Wy The shape of this initial deflection may be assumed

to be proportional to the final deflection w. That is

With this assumption, the following strain displacement relations may

be established.

15.
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e =u +(l+2k)w2 -Kw
X » X 2 »X o]
1+ 2k 2
e = v + (=) w (2-7)
v Y 2 Y
e =u_+v _ + (1+2k)w w
Xy o5 ’ o X Y

2.4 Actions in terms of Strains and Displacements

The expressions of the membrane forces in terms of strains and

of the moments in terms of displacements are as follows:

N __jﬁ%?_ [:e + ve ]
X 1 -y X b2
1= — 2 [+ ve]
y 1 v y X

(2-8)

=
|

Et
}QT—QZ:L"'\); [exy]

3
M=__—£§_[W + v ]
X 12(1 - v9) » XX JY

-Et3
I [t 0]
y 12(1 -V ) Y H

=
il

- Et3

Mxy - 12(1 + v) L_W,xi]

2.5 Differential Equations for Shells

Differentiating each of the equations (2-7) once with respect to

x and y, the following equations are obtained:



e =u + (1 +2k)w w -Kw
X, X S XX ,X SXX 0 ,X
e = u - Kw + (1 + 2k)w w
X, ¥ 5 XY o L.y X XY

e = v + (1 + 2k)w _w
Yo X L,¥X ¥ XY (2-9)
e = v + (1 + 2k)w _w
Yy JY o HYY
e =u + v + (1 + 2k)w w + (1 + 2k)w _w
XY sX » XY » XX X H XYy »J XX
e = q + v + (1 + 2k)w _w + (1 + 2k)w W
XYY VY » XY 1 X LYY T o XY
™ .
In shallow shells the products like QxKx’ QyKy’ Qxny’ Qnyy in
the equilibrium equations can be considered of higher order in
comparison to the rest of the terms and hence can be neglected. In

nonshallow shells however the above terms can not be neglected, which

being the case under investigation they shall be retained -

The parametric equations of the shell under consideration are

as follows:

= = ex(x - a)

e}
I

(2-10)

17.
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Figure 6 CYLINDRICAL SHELL EXPRESSED BY EQUATION (2-10)
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where the parametric lines, as chosen, are also the lines of
principal curvature of the surface. Therefore c¢ is the principal

curvature of the middle surface.

From these equations (2-9) of the undeformed middle surface the

values of curvatures are obtained as follows:

K° = 7 = c

pls , XX

KX=2__ =0 (2-11)
y Y

K° =7 =0

xy XY

From the geometry of the deformed middle surface the values of the

curvatures are given by

K =w + c
X L XX

K =w (2-12)
¥ oYY

K_=w,
xy Xy

Using the above values (2-11)and (2-12) into the equations (2-9),
substituting which into equations (2-2) the following set of partial

differential equations in terms of displacements are obtained.



Et

z:—;-g) Eu’xx - CW’X + (1 + 2k)w

+ v + (1 + 2k)w W
} {V,xy ( ),y,xy:)]

2 3

Et
+ = u + v + (1 + 2k W + (1 + 2k)w _w
2(1+ V) [j,yy S Moy ( ) ¥ :X%]

+{(1 + k) + c} _m ( + )+ -—Tfﬂii——y ( )
Voxx T C 12(1 = vo) Voo T Voagy! T TR Yy

+ (1 + k)w Et3 w +———Eﬁ3———-{w + vw o+ =
,xv | 120+ v) 7, xxy 2 LYYy » XXY Py

12(1 - v7)

u__+v + (1L + 2k)w w + (1 + 2k)w _w
2(1 + v Xy 2 XX ( )ax » XY ( )’y ’X}J

(2-13)
+-———]§1:——2— [:v +(1+2k)ww]
(l -V ) ayy :y JY
vEt ':
+ — u —aw _+ (1 + 2k)w w :,
(l _ \)2) ,KY VA :X a}Qr
+ (1 + k)w ‘: Bt {w + oW _;J
2(1 + VT Moy T 12(1 - va) Yy » XXY
3
Et
ML ["‘““—2 O o ¥ m m] * By
12(1 - v9) >
3

- Et - ___* 2Bt (w )
2(1 v ) » XXXX S XXYY 12(1 + v) » XXYY

- 20.
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3
12(1 - v7) 2RLL 2 XXV
Et 1+ 2k (2 : 1+ 2k, 2
+ — 1+ k + + - +vivy _ + (v _}
(1 -vg)E( )W,xx cJ {usx ( 2 )w’x cwﬂ \){v,y\, ( 2 s
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3. REDUCTION OF GOVERNING EQUATIONS BY

THE KANTOROVITCH METHOD

3.1 Simplification of the Equations

The differential equations as derived in article 2-5 are nonlinear
fifth order partial differential equations, and represent the mathe-
matical formulation of the problem. Since these equations as such
can not be solved by direct methods Kantorovitch method will be applied
to these equations in order to reduce them to a set of nonlinear ordinary

differential equations.

Dividing all the terms of the equations by E and t, simplifying
and rearranging the terms, following set of equations (3-1) is

obtained:

A u - AW + AW W + Aw w + A_u '+Av + A
15,x ~ 720, x 0 T3,x L,xx 0 TW,y,xy shyy T A6, T ATy

3 2

+ A

+ + + +
ABW,}QcW,xxx AQW,Jocw,xyy AlOW,xy'y Allw,xxx 129, xy ", xxy

Px

+ AW W + == 0
13%,xy L,yyy  Et

(3-1)

B

J_u,xy + B2v,xx + B3W,xw,xy + Bhw W + st + B6w,yw - B w

»Y 5XX VY S VY T,y

p
B + L =0

+ Bow W + Bw W + W W + B..w _Ww
8", yy .xxy 9 ,yy Lyyy  107,xy ,xxx  T11',xy xyy  Et
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2

+ + + u + +
Clw,x C2w, CSW, Ch ,XW’XX CSW,XX‘W"X C6W‘,§DCW
+ C,w +CW2+CW+CW v + C..w w2+Cv + C w2
T ,x 8" ,x 9 107 ,xx ,¥y 117 ,xx ,¥ 127,y 13,y

2
+ C,w u + C. o -w v + C, . w W W + C. . w v + C. oW W
W, xy T,y TIST,xy Lx 0 16T ,x L,y Lxy AT L,yy Ly 187,yy L,y
+ C, W u_ + C W W2+CW W+P—2':-=O (3-1)
197,yy Lx 207 ,yy .x 21 ,yy Et

Where following parameters which depend on the material properties

and the geometry of the shell are defined and substituted.

1 C
A = A, =
1 vz 27 _ vz
A = {1+ 2k) p o=y 2k) (1 2K)
3 l—\)2 L l-\)2 2(1 + v)
A = 1 A = v + 1l
5 2(1 + v) 6 1 . ve 2(1 + v)
2
A, = 3+ 28) p = L+ B
7 2(1 + v) 8 12(1 - vz)
A= w1t k)62 | (1 + k)42
{
9 12(1 _ \)2) 12~1 + \))
A= evt> . o2
0 12(1 - \)2) 12(1 + v)
o = ot?
11 1201 - Vz)



{1+ k)t2 + v(l + k)t2

A12 T 12(T + v) 12(1 - Ve)
A = (1 + k)2 .
13 12(1 - v2)
_ 1 v
Bl_l+\)+(l_\)2)
_(1+ 2x) , v(1 + 2k)
BTy LA
1
B = e e
> (1 -v9)
- Cv
B, = —~"
T (1 -9
B = (1 + k)t2
9 T 2
12(1 - v7)
5 ov(@rri® @+ x)6°
11 12(1 - ve) 12{(1 + v)
and
c. = -vt2 _ t2
1 6(1 - \)2) 6(1 +v)
4P
C3= ——%
12(1 - v7)

o5 = (1 + k)(1 + 2k)
2(1 - v9)

2k,

o
By, = 1% v
_ (1 + 2k)
Bh_ 1+ v
(1 + 2x)
B:-—...____
6 (1.9
g = {1+ K)62 . v(L o+ k)88
8 12(1 + v) 12(1 - ve)
g = {1+ x)t°
10 451 - v9)
2
C, = =t
12(1 = v°)
1+ k
C:
b (1—\)2)
- ¢(1 + k)
Cs 5
(1 -v7)



C c(1 + 2k)
C, = Cg =
T (1 - v2) 8 2(1 - v2)
2
- C v(l + k)
C, = ———e—r C,p = ————"%
9 (1 -v2) 100 1 2v®
o = (1L + K)(1 + 2kx)v . = _vC _
11 2(1 - ve) 12 (1 - vz)
C =9.\)_(_l_+__2;}5_)_ C _2(1 + k)
13 (1 - ve) b T 71 F V)
o = 2(1 + k) o = 2(1 + k)(1 + 2k)
15~ (O + v) 16 (1 + V)
o = _(1+5x) o= 1 +xI@A + 2k)
T (1 - v9) 18 2(1 - v2)
o =@tk o =1+ X1+ 2k)
9 (1 -v9 20 2(1 - v°)
o =-C\)(1+k)
21 (1 - Jz)

It may be observed in the above equations that, parameters Al to AT’

Bl to B7 and Cl to 021 represent the shallow shell parameters.

3.2 Approximating Functions

Let the solutions of the equations (3-1) be represented by the

approximate set of finite series as follows:
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_ . 0Ty
u = Z fnSln(—.B—)
n
_ . nTy
v =] gsin(5%) (3-2)
n
w = nmy

Z hnSin(T)
n

where the functions fn’ g, and hn are functions of x only and
n=1, 2, 3,.....N. The unknown functions fn’ = and hn are to be
determined so that they satisfy the governing equations ’3-1) along

with the boundary conditions to be set up.

Differentiating the approximating functions given by ..3-2) , with
respect to x and y as required by the equations {3-1, and substituting

in the same the following equations (3-3) are obtained.
" nry
Ay ;‘1 fn51n(——b )

1osn (BT
- A, 1Zlhnsm( o) )

9_@_) {3-3)

b

Pt es (WY
+ A3 gl g hmhnSln(_b )sin(

(BTY)

2
+ A, Z Z(mmr )hl;lhncos(n-l,g—y)cos 5

mn b2

+AZn1r2 . DTY
5% (-g) fnsm( b)

* g J(Pajeos ()



n1r 2 . Ty . OTy
sin( 5 )s:.n(T)

_ATZZ h'h (5
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+

Ag ) Z h"h"'s1n(———)51 (mry)
mn

- (BT 20 (BT y o (BTY
A9£§1hmhn( b) 51n(b)51n(b)

2 nmw
- Ao L () st (5

<+

11t os,, (ATY
A ghn s:Ln(--—b )

2
mnm mvy nry
+ " v prinkie
A12 Zg ( b2 )h hncos( 5 ) cos( 5 )

A )h'h —L X
13 1{ g cos( eos ( * R 0

nm nmy.

B, Y ( b)fr'lcos( 5 )
n

*+ B, Z g'-‘sj.n(mTy

+ B3 Z Z (11-;5 h'h' 11'1(—-) os(%)
mn

Z‘Z (25 "h 31n(-—) (Eg—y-)
m n

(3-3)
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B ) Z == g )h h cos(———)31n(ngy)
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By L L (m2n3“5>h h_sin(EY)cos (2
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B1 o Izn gl (m—b 'h"'cos( )sm(T)

(3-3)
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B Z Z (21 )h'h'cos( )81n(n,gy) +
mn
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) (r—l%-)hhnsin(mbl)

n

¢, I I £nlsin(F)sin (=X
m




29.
% L 1 Byiyein (G Rsin ()

)
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nop b
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am nmy
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mmw mry. oy
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2
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- Cyo L [ I nnin (B2)%sin (B sin(B)sin (BY)
nEe (3-3)

b
nny2_. mryy . Dy “Z -0
- C,y g E h hh( o sin( 5 )sin( 5 ) + T

where m = 1, 2, 3,.....N.

3.3 Transformation to Ordinary Differential Equations

The partial differential equations (3-3) are transformed into a
system of ordinary simultaneous equations by the Kantorovitch method.
FEach of the governing equations after the substitution by the approxi-
mating functions, is multiplied successively by each of the j functions
sin (i%l), for =1, 2, 3,,.....N, and integrated with respect to y
from O to b. And the governing equations resulted into a system of
simultaneous ordinary differential equations. These equations are

obtained as follows:

As originally stated the object of this work was the investigation

of a thin cylindrical shell subject to uniform external normal pressure.

And therefore, for the normal pressure p,

(3=L)
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mnm mnw .
+ 0y 22« i Mgt 8pp * Crg L2 1 ()i ni,,,
mn p b

mnp 7 nm,2 (3-5)
- Ci8 I% g IZ) (I bk Qo - Cg glg N LT

- th! Ple - 9—712 —_— =
C20 Z Z z hmhnhp( b) Qlll C2l Z z hm.hn b) Qll * Et @=0
mnop mn
where Q, Ql’ Qg, Qll’ Q22, le, le, Qlll . Q221 etc. are the definite
integrals of the products of trigonometric .functions derived in the

Appendix A at the end.
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4. NUMERICAL FORMULATION

FOR SYMMETRIC BUCKLING

4,1 Symmetric Buckling Considerations

It may be observed that the definite integral Q is equal to zero
wvhen j is an even number, whereas it exists when J is an o0dd number.
As a result, therefore, the last term of the last of eqiuations (3-5)
exists only if j is an odd number, while if j is an even number this
term vanishes. Therefore, the only values that j, and hence m, n and
p can take for symmetric buckling are 1, 3, 5,....N, where N is an

odd integer.

Due to this restriction on m, n, p and J of taking only the odd

Jon

number values for symmetric buckling the definite integrals QJn, le

and Q%Tn disappear. Also the definite integral

0 when n° # j2,

Jjn
Q1
) when n = j.

2

This results into simplification of equations (3-4). Second of
the equations (3-4) is considerably simplified and takes the following

form:

! n_'ﬂ'_2jn_
nglgr'lQl ‘Bsggn( 21°q)" = 0 (4-1)
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where the function &, has uncoupled itself from the rest of the functions.

As the object of this investigation is the study of the variation
of the radial deflection w by varying the external pressure p, the
equations of concern are the remaining ones. These equations are further

reduced to finite difference equations as expalined in the next article.

4,2 Finite-Difference Equations

The equations noted in the previous article constitute a system of
ordinary, nonlinear, differential equations containing six unknowns. The
governing differential equations are replaced by corresponding finite
difference equations. This then reduces the problem to a set of nonlinear
simultaneous algebraicequations confining the range of the independent

variables to a network of meshpoints in the direction of x.

Let h be the mesh size, chosen in such a way that x is represented

as follows:
x = 1h, where i =0,1,2, 3,...M.
Let f , = fn(lh) and h . = hn(lh)

To transform the differential equations to difference equations

the following formulae in terms of central differences are employed.



35.

. i-1 T
£ 5h
- +
f" = (fi—l gfi fi"‘l) ().]._.2)
2
J (- £ o+ 28 ) =2, * f,,)
2h3
fIV= (r o - L Lt 6f. - Lf ot f1+2)
hh

Similarly the difference equations are also obtained for the function
hn. Substituting the above difference equations into equation (3-5), and

simplifying along with as noted in Article 4.1. The following equations

(h-3) and (k=kt) are obtained.

J J J
+ + + +
Pob s o TP g Y P YR T BTy 0t P Pl

Jmn
+ P8 ; g (—hmi—l + hmi+l)(hni--l - 2hni + hhi+l)Qll
+ P9 Z Z mn(_hmi—l + h 1+l ( )Q (4-3)
mn
2 Jmn
- P10 L) (- mi-1 )(n, ;)93
mn

T Jmn
+ Py L rzl (hpg g = @y * Ry, (b o+ 2y g = 2R, .0+ hs0)Qy

P, gl I oo, -2, +h  )(-h Jad7

-1 mi mi+l ni—l n1+l
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Jjmn
MESE é g (R g R (B g - By R0 )6,
(4-3)
3 Jjmn
= Py ég (b o+ e ) (5 00,
J J
R0 ¥ Rl g * B3y + Ryt Rohyiep * Rigl=Tpy g + Tpieq)
* Bg é g (g1 * Tggan )y g = Py + g Q9T
Jmn
+Ro L L (g -2+ ) (L )e)
mn
Jmn
* Rg g E (s g b 1o o F 0090, (Lol)
) Jmn
+ Ry )L (im0 4 Ry BT maleng oo+ mp )8, s
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tRy DL Ly (- Bh w0055
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Each of the above equations represents three equations for j = 1,3,5,
a total of six equations. And each of the double summation terms
represents a total of nine terms where as each of the triple summation
terms represents a total of twenty-seven terms. The summation terms

are the combinations of m, n, p =1, 3, 5

These equations have been arranged setting up linear terms st the
beginning, followed by nonlinear terms successively in increasing order,

with the following parameters defined and substituted.

22
o - Ay, ’ o Ab . AgdTm . A,b
1 hh3 2 Ln kbh 2hB
22
o . =Aob Ajpdm Ay o = Apqb
— -~ , -
3 In Lbh 2h3 i uh3
22
A.Db . =AbD A_j b
o IS S C ol (4-5)
s ry ]
5 2h2 6 h2 b T 2b2
2 2
. A3 . - Ay . . —A,{.ﬂ
= TTa = s =
8 P 9 omw? 10 o2y
2 2 Y
P = A8 P = A9ﬂ p_ = Al21r P = Al31r
2 -] ]
117 )5 12~ 3.2 137 12,3 1k ot
and
C.b -C 32n2 ke b
R = _EE , RY= 1 - f
1 op 2 opp? oh
(4-6)
. C 32w2 6C.b C ﬂhjh C.b
rJ = 1 + 2 + 3 + 9
37 2 RN 3 2
bh 2h 2b
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o —ClJ m hceb o 02b . - Ch . - C6
- , = , =t = 2
b opn? on’t > o 6 3 T p?
2 2 2
. C8 . Cl3w . ) Clhﬂ . _ 019"
H] ? 9
8 e 9 b2 10 2bzh 11 b2
2 2 2
™
Rip = CQ; > B3 = C-SLT > Ry T Cél; > Byg = 012”2 (4-6)
b Lhh b“h kb h
) 2
018“ 020n CYb 2

Rig= 51— Ryp = 2> Rg=TIp:> PRy T73

4.3 Linearization of Algebraic Equations

Equations (4-3) and (4-4) represent a system of nonlinear,
simultaneous, algebraic equations with the six unknown functions fli’

.., f.. and hli’ h3i’ h The solution of this system determines the

3i? 753 51i°

above unknown functions at each point i.

Linearization of the above system is achieved by incremental method.
According to this method an increment is given to the external pressure
and the corresponding increments of the functions are determined in terms
of the values of the functions at the previous point. Thus by increment-
ing the pressure successively and determining the corresponding increments
of the functions the curve between the variables can be found. This
method requires that the values of the functions be at least known at
a certain point. Such a point for the case under investigation is zero
pressure - zero deflection point, which is taken as the origin of the

reference axes for the pressure-deflection curve.
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In order to set up the above equations (4-3) and (L-L) in the
incremental form,let Df and Dh be the increments in the functions f
and h caused by an increment in the external pressure Dpz. After
the increment the corresponding values of £, h and p, are £ + DF,

h + Dh, and p_ + Dp,. Substituting these values into equations (4-3)
and (4-4), and subtracting from which the original equations (L-3)

and (4-lb),the following set of equations is obtained.

5J J J +
P Dhy; o * PDhyy o + P3Dhy ) + PyDhy; o+ PDP, 4 + PEDE, + PoDf,
+Pg ) ) (Db o +Dh )b, . -2h . + n1+l)Q
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Jmn
+ Py LI m(-ph, o+ Dh . )n(n )@,
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Jjmn
+ Py é Izl m(-h .+ B, )n(Dh ey,
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* Rg é g (D Dy g Doy o+ g QT
* R é g (g ) * ) (DR Dy )Q9"
JadT"

+ Rg é g (—Dhmi_l + Dhmi+l)(—Dhni_l +Dh ...



Jmn
mn(Dhmi)(hni)QE2

[=4]
\O
= b~
8 o~

Jmn

mn(hmi)(Dhni)Q22

=
\O
= Mne]
s~

jmn
mn(Dhmi)(Dhni)Q22

jor)
\O
g~
8~

Ro ) mn(-Dh_, . + Dh_. o )(f .)Qggn

1 + i
oo mi+1 n

Jjmn
= +
R, . ) ) mn{-h i1 hmi+l)Dfni Q5o

2 Jmn
R é gn (-Dfmi_l + Dfmi+l)hninl

. 2 Jmn
F1 % gn (foip * Topeg ) (P09

11 i+l
mn
2 Jmn
Ryp L Ln7(Dhy ;) (R )47,
mn
2 Jm

R g g ma(-Dh_. . + Dh . .)(Df .)ag,

2 Jjmn
Ryp L 2n (-Df; o +Df .., )(Dh .)Qy;

(4-8)
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) jmnp
B3l g g (Dhys 0 ¥ Dy Mgy By Mgy g - 2Ry + by 0000,

R13 é g g (hpgy ¥ By )(DBy 3 + Dy (B, ) =20 hpi+l)Q£T§p
Ri3 g g g (hpsg ¥ Bpgag (B g+ B (D, ) = 2D, 4 thi+1)QiT§p
Fi3 4 g g (-Dhpys g % Dy )Py g+ Dby My - 2nps hpi+1)Qi?§p
Ri3 é g g (“hpg g * Byggq (=D g +Dhy ) )(Dhy ) - @DR thi+1)QiT;p
B3 g g g (=Dhps oy * Dhpyyg Mohyy 5 + By g )Ry ) = 2Dk, + thi+l)Qi?;p
B3 é E g (<Dhyg oy + Dby )(-Dhy g *# DBy )(Dhy ) - 2Dh ), + thi+1)Qi?§p
th é g g mn(Dhmi)(hni)(hpi—l - ?hpi * hpi+l)Qg;§p (L-8)

Jmnp

1y é g g m (B V(D Jhpy g - Bl ¥ b )80

Jjmnp
Ry, é g g mn(hy; )(hXDhoy ) - 2Dh , *+ Dhog 0 )Q55)

. Jmnp
Ry g g g mn (D ) (Dl My g = Bhos + By JQ55,

Jalne®

Ry), é E % mn(hmi)(Dhni)(Dh . . - 2Dh , + thi+l 501

pi~1 pl
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\ 1 N1
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g o~
5~
g3 o~

Ri6

=R
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Ri6

j»s]

[

(@)

B o~ B~
5~ B8~
Lol ] Lo lin ey

=
=

()
80~
B0~
g 1

Jmnp
m Dby My (Dhyy g = 2Dhys + Dhoy o )Q5n

Junp
mn(Dhmi)(Dhni)(thi_l - 2thi + thi+l)Q221
Jmnp
- . + -
m(-Dhyys g ¥ Dy Mg My g % By 00055,
mi -h + . . - Jmap
(b )R )(n )+ h 005,

_ jmnp
( thi + Dh )Q

-h
mn -1 pi+l’ %221

mil " Pgeg! ()

n . )gimp

- . + . . -~
ma(-Dhy; o+ Dhypy g (a5 ) (=hyy )+ by )@

Jmnp
- . + . . - .
mn Dhml—l Dhm1+l)(hn1)( thl—l * thi+1)Q22l
- + _ Jmnp
By g Mg ) (D ) ODh, )+ DB 0055,
Jmnp

mn{ = . + . . -

(=D + Dhyyyy J(Oh )(-Dhy 4+ Dny o, dQg0)

>
mnp-(Dhy ) (b3 ) (B3 )Q55,

Jmnp

2
mp™(hy ;) (Dhy ;) (h ;)@

mp®(h ) (0 ) (0 )aJ5e?

mnpg(Dhmi)(Dhni)(hpi)Qggip

T

(L-8)
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Jmnp
- Ryg é g g mnp (h . (Dhni)(thi)Q221

Jmnp
- Rig g g g mnp (Dh )(h ;1 (D .)Q221
e Jmmp
- Ry [ [} mnp”(Dn ;) (on ) (m;)adny
mnp
. Jmnp
- Ryq % g % p(=Dhyy g+ DA ) g+ b ) ()R
2 Jmnp
- Ry JYI Y (b, +h . .)(-Dh . . + Dh l+l)( LT
mnp
2 Jmnp
- Ry LIIp(en ;o +n, (e, o+ hni+l)(Dh L
mnop
2 Jmnp
- Ryy ; g % D (Dhys g+ Do )(=Dhyy o+ Dhyp ) (b, 0Q0T
2 Jmnp
=Ry L LI PTCm g by )Py g+ DRy (DR 506
mnop
Jmnp
L 1% gl g P ('Dhmi-l * Dhmi+1)('hni-l * hni+1)(thi)Q111
2( jmnp _ 3 z
- Byq g g % P (=Dh ;) *+ Dby, )(=Dh, o+ Dby, )(Dh Q70 " = - RYy

In the above system of equations {(L4-T) and (4-8) nonlinear tewms exist
with respect to the increments Df and Dh. These terms are of higher order
in comparison to the other terms and hence their contribution is very small.

These terms are treated as equivalent loads.
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These equations if solved for a known increment of pressure,

determine the values of the unknown increments of functions f and h

at any point 1i.

4.4 Boundary Conditions

As already mentioned the shell under investigation is clamped
at the two boundaries parallel to the y axis and is simply supported

on the other two sides. Hence the boundary conditions are expressed

as follows:

at x = 0, and x = a,

u=0, v=0, w= 0, and v = 0 (k-9)
bl
at y = 0, and y = Db,
u=0, v=0, w=0, andw =0 (L-10)
WYY

It may be observed that the conditions expressed by equation (L4-10)
are identically satisfied as the functions chosen to represent the dis-

placements are as given by equation (3-2).

As the mathematical formulation of the problem is in terms of

displacements, conditions(4-9) yield the following equation.

at x = 0, and x = a

f,=0, g, =0, h,=0 (k-11)



This equation may be satisfied by letting

h'=0 (h-12)

J
In terms of central differences this means

Myt
' = — = )'"—

hj o 0 (4-13)
and in incremental form this means

-Dh, . + Th =0 (4-13)

L.
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5. MATRIX FORMULATION

5.1 Summation Terms

In order to set the system of simultaneous algebraic equations
(4-7) and (4-8) in the matrix form the unknown increments Df and Dh
are expanded for m, n, p = 1, 3, 5 in the summation terms. The values
of the functions f and h are considered to be known at the point

immediately before the increments and hence are treated as known

coefficients.
Let
Jin _ J
g (b g+ hgy,0)9 = (81)
J3n _ J
g (-hni—l * nl+l)Qll - (82)1
Jon _ J
L (b o +h 00e7 = (83))
I nn_;)aly" = (sh)] (5-1)
n
J3n J
g n(hni)Q22 (s5)

- ni’ 22
= J
é Mlhyy g * By )83 = (5T)]
= J
é n-hyg 3 Rgg )90y = (89)]



Jm> _ J
g mi-Bps 1+ Ppgag 1957 = (890
2 jln _ J
) n (h,)ey7" = (810)¢
m
2 J3n _ J
L n"(h Q7" = (s11)7
n
2 Jon _ J
} n (h;)Qy] = (512)}
n
jln _ J
g (hpg o i~ g TPl = (813))
J3n _ J
g (g o * 205 =2y + b o)egY = (S1H)]
Jon J
g (s o 2y - B by, QT = (815
Jml _ J
g (hiyy -2h, +h 08, = (s16)f
Jm3 J
L (g = 2Ry * B A5y = (8170

2 j3n
g n™(-h; Bpie1 0997

2 j5n
Lo, ) o+ Bie 907

P = (a18))

= J
= (Sl9)i

= (szo)g

Py

= (SZl)g

(5-1)
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g nlbyy o - 2oy + by )a0" = (se2)]
Jnlh, ;-2 +n . )J3% = (s23)]
Jn(h,  -2n, +n . )" = (s2u)]
g n3(n_)adl” = (s25)]

) (0 el = (s26)]

E Jon (5273

; (=, + £,,)80 = (528)]

J (g, o+ £, )80 = (529)]

; (<f5 1+ £5,1)9005 = (530)!

I (003" = (s31))
n

) (n_;)ad>" = (s32)]
E (n_)ed2" = (s33)]

(5-1)
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g n(h . )l" = (s35)]

] n(ny;)ady" = (535

g n(n_)ad2" = (5367

! n(e_ )" = (s31)

g n(fni)Qggn = (538)]

I n(z_)al2" = (s539))

E g (Shpsa * Bpgan ) (g
g g (hs g * by )by
g g (hpsy * Pogan (s -
g g (g * By
é g (g 3 * P ) (s
% g T

- 2h

- 2h

ch_.
pi

.+
pi

pi

+ h

ni+l

+ h

ni+l

+ hni+l

* h"pi+1

* hpi+l

Jinp
hpi+l)Qlll

111

Jo5np
)Q111

Jmnl
)Qlll

Jmn3
)Qlll

Jmn5
Ja111

)P = (s11)]

= (s45)3

= (s43)?

= (shh)?
1

i

_ J
= (suo)i

= (ShE)g

(5-1)
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_ jinp _ j
g g nh (b, ) Py R )@y = (8B6);

_ J3np _ J
g g (b M(hy 5 - 2h; + hoi+119p = (S4T)5
_ Jonp _ J
g g n(hni)(hpi—l Phoy T h4q)Q5 = (848)]
} I mn(n_)(n )ed™L - (su9)d
oo mi ni’ 221 i
Jjmn3 _ J
é g mn(hy o b s B, = (850)3
Jmn5 _ J
é g mn(h .)(hni)Q221 = (851)
(5-1)
. Jlnp _ J
g g n(hni)( hP1 1t hpi+l)Q221 = (852)
_ J3np _ J
g % n(hy ) (-, )+ hoie1/Qp = (853)f
Jjonp _ J
E g Al ) (SBps g # gy 005 = (S54)]
- _ Jmlp _ J
g g m-hys g+ By ) (o + Boier '@y = (855)%

_ Jm3p _ J
B g * By JR0p7 = (856)5

B o~
Hola s
=8
|
jay
B.
[l
+
=
B
-+
[

Jm>p _ J
Mohps g ¥ Bogaq )57 = (857)5

5~
g~
2
|
i_::!'::s‘
1
|_l

+
hmi+l



Jmnl
) Z m (-, , th 1+1)( ni)Q22l
mn

Jmn3

; g mn(-h . .+ hmi+1)(hni)Q§§§5
g g np2(hnl)(hpi)Qgé§p - (s61)]
g g ap”(n, ;) (n, QTP = (s62)]
g % np2(h )(hpi)Q%ZEP (563)
g g a Bpga ¥ hni+l)(hpi)Qii§P -

2 J3np
g % Pl * By )0 080Ty

)qd2mP - (5663

2
g g Pl-hyy g+ by, ) (0 0e07)

The above summations have to be evaluated for j = 1, 3, 5, at each

point 1.

1l

= J
= (858)i

(859)3

= (sso)g

J
= (s6h)i

(s65)]

(5-1)

The nonlinear terms of higher order are designated as follows:

53.
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Let:

* Py ; g (B g+ Dy g )Ohy - 20+ on0aT = (061

Pq g g m(-Dh_; , * Dhmi+l)n(Dhni)Qggn = (DSE)g

P1, é g (<Dh_; |+ Dhmi+l)n2(Dhni)Q§Tn = (Ds3)£

1 é g (D = 2DRyy + Dy )by o % DR ) = 2D, 4DR 006"
= (Dslk)d

1

F1e % g (Dhyg = 2Dhyy o+ Dy dn"(Dny o+ Dy )07 = (085)]

) g m(-Dhyy o * D, )n(Dh ;o - 20k, + Dh_ .. )QJ2" = (ps6)?

Py, gl IZI m(-Dh , . + D +l)n3(Dh .)Q‘]mn = (DS7)§ (5-2)

6 é g (D25 3+ D) Ohy g = 20h; + Dy 00T = (088)]

R, é g (D, , - 2Dh . + Dhmi+l)(Dhni)QiTn = (Ds9)§

Rg L [ (<Dhy; o + DR o) (=D, o+ Dh )@l = (0s10))

m n
Ry é g (Dhmi)(Dhni)Qggn = (DSll)g



Ry

15

Ri6

17

13

13

R) 3 % g E (“Dh ;g ¥ DRy oh ) * By

55,

Jmm _ J

; g mn( -Dh L *Dh +l)(Dfni)Q22 = (DSlZ)i
2 Jmn _ J

é g n°(-Df; o+ Df ;) (Dhp)as] = (DS13)y

- . + . - . . . - . .
g g g (-Dh_; o+ Da_ . )(-Dn_. . + Dh 540y (DR o 2Dh ; + Dh ;)

JmID . (pg15)d

911

Jmnp _ J
é g g mn(Dh_; ) (Dh .)(thi — 2Dh ., + thi+l)Q221 = (D816)i

Jmnp J
; g g m(-Dh_. , + Dh 101 (PR ) (DB ;) + DL )Q55)F = (DS1T)Y

é g g mnp2(Dhmi)(Dhni)(thi)Qggip = (DSlB)g (5-3)

2 Jmnp _ J
é E g Po{=Dhyy g % Dy g )(Dhy; o+ Dhyyy ) (Dh;)0a55," = (DS19)7

G N S (G N W I hi)

Jmnp _ J
A = (DDl)i

)(Dh . . - 2Dh . ; Dh_,..)

e (g * By Dby g + Dy ) (D, pi pit+l
mnp
Jmnp _ J
Qyp = (Dp2)Y

- . .
)(thi—l 2th1 th1+l)

Jmnp _ J
Q1 = (DD3)i

i
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By ; g % mn (Db, ) (D, )by o - 2h, + p1+l)Q%2;p = (DDh)g

Ry é E g ma(ny; (Do )(Dh, ) - 20+ DRy )RS - (o05);

R, é E % mn(Da ;) (b ) (D ; o - 2Dh , + p1+1)Q52§p = (DD6)§

iy L1 iy » D))y 1y P = 00
Rys é g % ma(-Dhy o * Dhyy ) (k) (Dh; o + P1+1)Qgg§p = (pp8)J
R1s é'g % mo( by g ¥ Py ) (DR (=D, )+ p1+1)QgE§p = (009)]
R % g % mnp2(Dhmi)(Dhni)( )Qggip = (DDlO)g (5-3)
Ryg é,g % mnp2(hm.)(Dh )(Dh .)Qgggp = (DDll)g

Rg ; g g mnpg(Dhmi)(hni)(Dh .)Q%gip = (Dnle)g

If the above defined summation terms (5-1) and (5-2) are substituted
into the equations (L-7) and (4-8), simplified andrearranged the
coefficients of the unknown increments are found to be the following

combinations of the summation terms.



Pgdjl + P8(Sl)g - P9(Sh)g + PlO(SlO)i - P8(Sl6)£ + Pll(Sl3)g
+ 2P11(316)§ = P12(819)f + P12(816)£ - Pl3(822)£ + Pl3(57)§
+ Plh(SES)g = (SSl)g
Pgdj3 + P8(S2)i - (3)(P9)(85)§+ Plo(Sll)g = P8(817)g + Pll(Slh)i
+ 22 (817)) - P ,(520) + B (9)(s17)) - P ,(3)(523)]
+3p) o(8)) + (3)(p,)(526)] = (ss2)] (s)
Pgdsj + Pg(s3)] - 5P9(s6)§ + P (512)) + P, (515)) - pg(s18))
+ 2P (518) - P (s21)] + P ,(25)(528)] - (5)p, J(s20))
+ 5P 5(89)) + 5p.) (527) = (883)]
pla,, + pgls1)] + po(s1)] - P, (510)] + By (513)] - 2p (516)]

J J J J J
- P12(819)i - P12(816)i + Pl3(822)i + Pl3(57)i - Plh(SES)i

J_ J
+ P8(816)i = (ssh)i

5T.



3
P3d3;

J J
- Plz(szo)i - 9P12(SlT)i + 3Pl

J J
+ P8(sz)i + 3P9(ss)i - P

J = J
+ P8(817)i = (SSS)i

j
P3ds;

J J J J
+ P8(s3)i + 5P9(s6)i - PlO(Sl2)i + Pll(SlS)i - 2P,

J J J
(811)i + Pll(81h)i - 2P11(Sl7)i

J J J
(323):.L + 3Pl3(38)i - 3P1h(826)i

J J J J J
- Plz(SQl)i - 25P12(818)i + 5Pl3(seb)i + 5Pl3(S9)i - 5P1h(827)i

+ Pg(518)7 =(ss6)£

+

+

+

i

J
Pll(816)i
J

P4 (817)]

J

Pll(SIS)i
J
Pll(Sl6)i

J
Pu}mjk

J
Pll(SlB)i

1}

i}

1}

1§

(ss7)]
(558)?
(559)?
(851o)£
(8311)5

J
(8512)i

(5-4)

58.
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J J J J J J
P9(s7)i - Plo(81)i - 2Pll(Sl3)i + 2P12(s19)i - 2P8(Sl)i - 2P13(ST)i

J_ J
- Plh(ST)i = (5813)i

J J J J J J
+ 3P9(88)i - 9Plo(sz)i - 2Pll(Slh)i + eplz(szo)i - 2P8(52)i - 6Pl3(88)i

J _ A1\
~27Plh(88)i = (ssJ;)i

J J J J J J
5P (S9)i - 251310(53)i - 2P, (315)i + 2P12(821)i - 2P8(s3)i - 10Pl3(s9)i

9 1

_ 125p_, (89)3 = (ss15)9
s, (89)3 = (s815)) -

J 3 J 3 j P
Rpdyy + Rg(528)7 + R (831)] - 2Rg(S1)] - R, 4(837)5 - 2R, 5(Sho);

J J J J J_ J
+ Rl3(sh3)i + th(su9)i - Rls(ssz):.L - R15(358)i + 2Rl7(s6h)i = (5516)i

RY

J J J J J
2dj3 + R6(529)i + R,((s32):.L - 2R8(52)i - 3Rlo(s38)i - 2313(sh1)i

(853)3

J J J J o J
+ Rl3(suh)i + th(sso)i - 3R15 Rl5(859)i + 2R17(S65)i = (3317)i

J J J J J J
R2d35 + R6(s3o)i + R7(S33)i - 2R8(S3)i - SRlO(S39)i - 2Rl3(sh2)i

J J J J J J
+ Rl3(sh5)i + th(SSl)i - sRls(ssh)i - R15(860)i + 2317(866)i = (3518)i
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J J J J J J
thjl + R6(S28)i + R7(331)i + 2R8(Sl)i + RlO(S37)i + 2R13(sho)i

J J J J J - J
+ R13(sh3)i + th(sh9)i + RlS(SSQ)i + R15(858)i - 2317(s6h)i = (5819)i

J J J J J J
thjs + R6(se9)i + R7(S32)i + 238(32)i + 3Rlo(s38)i + 2Rl3(sb,1)i

J

J J J J J_
+ R13(Shh)i + th(sso)i + 3R15(S53)i + R15(859)i - 2R17(S65)i = (sszo)i

J J J J hj J
thjs + R6(s3o)i + R7(333)i + 2R8(s3>i + 5R10(839)i + 2Rl3(sh2)i

J J J 3 3 _ J
+ R13(sh5)i + th(SSl)i + 5R15(ssu)i + Rl5(S6o)i - 2317(866)i = (ssel)i

(5-k)

J J J J J J
R3d1j - 2R6(sz8)i - 2R (s31)i + R (316)i - R12(310)i + 2R9(s3h)i

T T

J J J J J
- Rll(s.28)i - R12(831)i - 2R13(sh3)i + 2th(sh6)i - eth(shg)i

J J J J_ J
+ RlS(SSS)i - 2Rl6(s61)i - Rl6(sh9)i - Rl7(Sh3)i = (ssze)i

(s17)9 +6R

J J J J J
RYd._. - 2R6(829)i - 2R7(S32)i + R7 i 9(S3S)i - 9Rll(829)i

3735

J J J J J
- Rle(Sll)i - 9R12(832)i - 2Rl3(shh)i + 6th(sh7)i - 2th(350)i

J J J J o_ J
+ 3R15(SS6)i - 6316(s62)i - 9R16(850)i - 9317(shu)i = (8523)i



J J
(836)Y - 25R11(S3°)i

J
(s18)i + 10R9 i

J J J
R3d53 - 2R6(s3o)i - 2R7(s33)i + Ry

J J J J J
- Rl2(812)i - 25R12(833)i = 2Rl3(sh5)i + 10th(Sh8)i - 2th(851)i

J J J J _ J
+ 5315(357)i - 10R16(S63)i - 25316(851)i - 25R17(sh5)i = (sszh)i

Rygd;; + Rg(816)] - Rll(élo)g = (ss25)?

R gds; + R.(517)] - Ry (s11)] = (s826)]

RleSJ + R6(818)£ - R11(312)£ = (ssz7)§ (51)
- Rpgd, - Re(516)! + B (810)) = (5528)

- Rygds; - R6(Sl7)§ + Rll(Sll)i = (ssz9)f

- Rygds; - R6(818)£ + Rll(512)§ = (ss3o)£

Rlo(s7)§ = (ss31)£

3R, ,(88)3 = (ss32)]

5R, ,(89)] = (8833)]

where 4, =1 whena =D

0 when a#b

61.
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To simplify the right hand side of the equations call the following

equivalent load terms as:

JDm)g-(mw€-+tm3€ -(mh@

J J J_ J
+(DSS)i - (Ds6)i + (Ds7)i = (DST)i

J

. Dp :
-RY Z _ (ps8)d - (Ds9)g - (p810)}

19 Et i

J J J J
_(Dsn)i - (13312)__.L + (Ds.13)i + (rsm)i (5-5)

J J J J J J
-(D815)i - (D816)i - (DSl?)i + (D518)i +(Ds:L9)i - (DD1)i

-(DD2)£ - (DD3)§

—(DDh)g - (DDS)g - (DD6)£ - (DDT)g

—(DD8)£ - (DD9)£ + (DDlO)g + (DDll)g

+(DD12)j + (DD13)J + (DDlh)i + (DDlS)g = (DDD)g

i i

Using the above summations (5-1), (5-2), (5-3), (5-4) and

(5-5) the system of equations (4-7) and (4-8) takes the following

form



J J J
(s87)y dh), , + (881)] Dh,, ., + (8813); Dh

Jd
+ (ss_w)l Dhy .o

J J J
(ss8)y Dh + (882)7 Dhy, | + (sS1k)y Dh

31i-2

J
+ (3811)i Dh3i+2

J J J
(ssg)i Dh + (sss)i Dhsi_l + (8315)i Dh

5i-2

J
+ (3812)i Dh5i+2

+ P_4,.Df

J
* Pody Dfs g FPEd sPT gt Pedy Py

+ P.d.,.Df

+ P_d,.Df 31 793507 3541

J
5455035 1 + Pgds,Df

+ P_4d_.Df (

+ P.d..Df 7953

3 _
5d550Fs; 3 * Pgds Dfs; 5141 ©

J J
(Rldlj)Dhli_2 + (8816)y Dhy; , + (8522)§ Dh

+ (deij)Dhli+2

(R.4..)Dh + (3317)§ Dh + (sse3)£ Dh

1°3] 3i-2 3i-1

+ (de3j ):Dri3i+2

11

3i

5i

J
+ (ssh)i Dhli+l

J
+ (SSS)i Dhy, e

+ (ss6)g Dh5i+l

(5-6)

psT)Y
1

J
1t (SSl9)iDhli+l

j
3i * (SSQO)i Dh3i+l
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+ (Rydg )Dpg; » * (3818)§ Dhg; ; * (sseh)g Dhg; + (ss21)y Dhg; 1
+ (desj)Dh5i+2
(8828)5 Dfy; 1 * (ss31)§ Df; + (sszs)g Df ;.1 (5-7)
(sse9)g Dfg: 3 * (ss32)g Dfy, + (sse6)§ Dfs. 41
(ss3o)g Dfg, | * (ss33)f Dfg; + (8827)2 Dfsy,q = (DDD)g

If the six unknown increments Dhl’ Dh3, DhS’ Dfl, Df3, DfS at a
mesh point i are considered as a six by one column matrix and called X
and the right hand side of the above system of equations as Y, then
the above system of equations can be set in the following matrix form

at each mesh point i

Afy o ¥ A%y g ¥ ASK P K Y AR T Y (5-8)

where X and Y are the following column matrices.

sl

i bﬁ]
L JJ ]

— -

DST%]
L J
[

L\ 4

The A matrices are defined later in terms of the following FE and

HE submatrices.



FE1

FE2

FE3

FEL

FES

HE1

HE3

]
ojo
Qo

[ Psdin 593 Fss ]
(s528))  (ss29)? (ss3o)g:|

d J - ]

| P5a; 5 Pgds, PgdSJ. :l

= 3 . :

L__(8331) (ss32)¢ (ss33)i]

L P17 193 Fr%; ]
(8525)9 (s526)7 (ssz'()gJ

Lo o o?}

Lo O |

[ (ssmd (558)? (s59)? |

£Rfm Ry ds3; %%3]_

[ (ss1) (ss2)? (sss)g:]

[ (3516)g (3817)g (8518)31

[ (ssn)i (ssw)g (sms)i ]

[(ssee)f (sse3)g (sseh);?; ]

65,

(5-10)

(5-11)



e q:(ssu)*i’ (s85) (556)3 ]
J J J
[ (8519)7 (s520)] (sszl)i:l
(5-11)
a1 yd J ]
s T[(s;ﬁo)i (8811)i (SSl2)gj-]
[R5dlj Rgds, Rsds; ]J

Each of the above submatrices is a three by three matrix with

each row consisting of the values of the elements for j = 1, 3, 5.

The A matrices then are defined as follows.

A = r-HEE}l FEl]
l -
_ [ i
A2 = HE2 FE2J
L
A3 = FI{EB FE3J (5-12)

Al = l:HELl qu]
A5 = [HE5 FE5]

These matrices are of the order of six by six and have to be

determined at each mesh point i = 1, 2, 3,...M.

If the matrix equation (5-8) is applied at mesh point i = 1,

it becomes.

ALX_| + A2X_ + A3X + Ahx2 + ASX, = Y (5-13)
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TheXmatrices if substituted in terms of submatrices ij and Dhj
given by equation (5-9) and A matrices substituted in terms of

HE and FE submatrices yield the following equation.

HE1TDh,

+ FEIDT,
J =1 J

+ HE2Dhj + FE2Df

0 50 + HE3Dhj

-1 1

(5-1L4)

+ FE3DT,

+ =
j1 5 FESij 3 Yl

+ HEhDhj 3

+ FELDf, . HESDh,
: J 2 J

5.2 Boundary Conditions

The boundary conditions at x = 0 and g = a expressed by

equations (4-11) and (4-13) in the incremental form require, that

and

~Dh (5-15)

+ =
gir F DR
substituting the unknown increments at mesh points -1, in terms of

increments at +1 and satisfying the above conditions, the equation

(5-8) is reduced to

Blx, + AUX, + ASX, = Y, (5-16)
where
Bl = l:HEl + HE2 | FE1 + FE3:] (5-17)

Because the shell and the loading are symmetrical, the
numerical solution would be more efficient if half of the shell is
considered. Therefore, it is also necessary to determine the

boundary conditions on the crown of the shell at x = %—.
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Let i = M,be the mesh point at the crown of the shell, then

due to symmetry

DhM_:k = DhM+k, DfM_k = DfM+k (5-18)

where k = 0, 1, 2,...M

Therefore substituting the unknown increments at mesh points
M+ 1, and M+ 2 in terms of increments at points M - 1 and M - 2;

equation (5-9), if applied to mesh points M - 1, and M reduces to

+ =
AlXM_3 AZXM-—E’ + BQXM_l + AuXM YM—l

(5-19)
B3Xy o + BHX, , + A3X, = Yy
where
B2 = [HE2 + HE4Y | FE2 + FEM]
B3 = Em1+1m5 IE1+FTZ (5-20)
Bh = [ﬁEe + HEL | FE2 + FE%J

5.3 Matrix Formulation

The matrix equation (5-8) when applied at all the mesh points
fromi =1 to i = M, generates a system of 6M simultaneous equations
with 6M unknowns. The resulting matrix is bandtype matrix with non-

zero submatrices appearing only along the principal five diagonals.
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Each submatrix is of the order of six by six and each row of the

band may contain up to thirty non-zero elements.

The solution of

this system determines the values of the unknown increments ij

and Dhi’ J=1, 3, 5 at all the mesh points 1

1,2, 3,...M.

The total matrix in terms of submatrices takes the following form.

—
BL Ak
A2 A3
Al A2

0 Al

0 0

0 0

0 0

0 0

0 0
-

A5
Al
A3
A2

Al

A5
Al
A3

A2

A5
Al

A3

A5

AL

A3
A2

Al

Al
A3
A2

B3

A5
Al
B2

Bh

A5
Ah

A3

X Yl
X5 Y5
%3 T3
Lol | Tueo
e | vl
X Y

. M Jd L M .



6. ANALYTICAL AND NUMERICAL FORMULATION

FOR ASYMMETRIC BUCKLING

6.1 General

As discussed in the first chapter asymmetric buckling is one of
the possible mode of buckling. In this chapter this asymmetric buckl-
ing is investigated. It is assumed that the shell deforms symmetrically

until the bifurcation of the solution occurs.

By mathematically adding a small asymmetric deformation to
already accumulated symmetric deformations, it is tested if an
unstable state equilibrium exists in the vicinity of the above state
of equilibrium. The lowest value of the load for which the bifurcation

occurs is considered as the stability limit.

Physically the above procedure is equivalent to forcing a feeble
asymmetric deformation on the original symmetric deformation, without
any increase in the load; and checking if the resulting deformed

shape is in equilibrium.

The mathematical formulation of the problem leads to an eigenvalue

problem.

6.2 Mathematical Formulation

As discussed above to determine the states of small asymmetric

deformation in the vicinity of a finite symmetric deformation, it may
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be assumed that the total deflection at a point consists of two
parts, first representing the displacements due to symmetric
deformation and the second representing the displacements due to

small asymmetric deformation.

Thus

total u=u+ u

total v=v + v (6-1)
total w=w + w

where u, v and w are the displacements corresponding to small

asymmetric deformation.

Substituting the above equations (6-1) into the first of equation

(3-1), and letting p, = 0, the latter yields the following equation
(6-2)

Auta) —AGw+w) A +w) (v W)

1 ) s X — L XX

+ Ay G+ 1),y(w + wi),xy + Ag(u+ g),yy + Ay + g),

A ww), (s 1), + Aglw + ‘i),xx(w O (6-2)
+ Aglw + y_), (w + ‘i),xyy + A glw + ‘i), * A (v + 1)’xxx
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Expanding the above equation, and subtracting the first of
equation (3-1) from the expanded equation; and as u, V, W are
higher order infinitesimals compared to u, v, w, neglecting the
nonlinear terms with respect to u, v, w the following equation

(6-3) is obtained.

A u -~ AW + Aw Ww + AW W + AAw W +Ahww
1—xx 2— X s X S, XX 3 ,X XX l’""ay ' XY XY
+ A_u + A v + AW W + A w W + ALW W
S_SW 6—9 Xy 7_9 X Yy 7 : XYY 8'—3 XX 5 XXX
(6-3)

+ AW

AlO"i, Xyy 11—, xxx

+ + A + +
Ag¥ o xR ™ ayy AV, xyy

+ AW A =0

W + W A\ + AW W + AW W
12—, xy . XXy 127 ,xy— xxy 13—,xy Lyyy 13, xy—yyy

Similarly working in the same manner with the last of equations
(3-1) and equations (6-1) and neglecting the nonlinear terms with

respect to u, v, W the following equation (6-L) is obtained.

+ + + +
Cl‘i, XXYy CEE, XXXX C3"—v’, YYYY Chu ¥ xx CME, xw, XX

k] 3

+ 2C.w W W + C.w w2+C6wm{\i+C6w \

57 ,xx s X X — XX X ) >
(6-k)
+ + 2 + + +
C7E,X Cg" VX, X CQY- CllOW, xxL,y clOT'i,xxV s
+ 2C..w _ W W + C..w w2 + C. Vv + 2C, W W
117 ,xX ,y—Y 1l—xx ,y l2_sy 13 oI THY



+ C,W u + C.\W u + C,.W v + C, W A2
lh’ W XYY lh—aXy o5 15 s XY X 15_’xy s X

+ C.,W W W + C. W W W + C..Ww W W

167,x sF XY 16 1 XY XY 16—,}{ Y XY

(6-4)
2

+ C..w v + C, W v + 2C. W W W + C, oW W

17 s JI Y 17_ayy ' 18 INAEEY 'Y i lB—:Yy o7
+ C. w u + C, W - 2

19 ,yy—x 19—yy »x 20

u_+2C,.Ww__w W + C,.W W
WYY s XX 20—33’3’ » X

+ + =
Cle,yyH- CQlEByyW 0
It may be observed that the above equations (6-3) and (6-U4)
constitute a set of two homogeneous, partial differential equations
and hence the problem has been reduced to an eigenvalue problem.
The value of the load P, is present in the above equation in an

implicit way, through the displacement functions u and w.

6.3 Approximating Functions

Let u and w be approximated by the series

u = Z ﬁn sin(E%[ )

! (6-5)
W= g En sin(E%L
then each mode n can be represented by the expressions:
s, - 2, sn() e
v, = En sin(ll%y- )



substituting in the equations (6-3) and (6-L4), the values of u
and v given in article 3.2, and the values of u and w given by
equations (6-6), and using Kantorovitch's method the following

equations (6-T7) and (6-8) are obtained.

" _ ' ' n AM " ' AL
AfQ Ah'Q) +Ah2h 11+A313n12nth11

+ (5%, Z manl QR0 + Ay ()70 Z mohy Q5 - 5%(%)263?

2 o mn ™2 2 mn
- (D% T b Q™ - A (5 Y nn'Qf + Agh" J h''' m
T'b n - m 1l A’?b - - m 11 8—nmell
" " 2 mn _'[2 mn
* Aghpt Zh Q) - A llnglmhz;lee - Al Ilr'lgl h"Q
(6-7)
- Ao ]+ Al Ay Z moihy 0
" 12 mn 3
+ Apohy () glmnhﬁlez - Ay gal(E) Z
- A .h (E)thn3h' Qt = 0
13—n'b m 22
- c,n¢E® Q + ¢ hIVQn + o (B3R + cyn" T oprQ™
1-n 3n' b’ 1 b=n m 11
(6-8)
1" o mprl " mpn
+ O 5 gl holpy + 2Cshy Z Z hibe@an * Csly gl g mp11

+ Cgh_ Z Wiy + Cghp I b @yy + Cof1a) + 2cgn! Z nlQ + Cgh Q7
m

T,
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v 20,8, () L 2 maby i Q575 * e ) Z mph B Qo

Q22

by Z mn my2 2 '
13 b’ Lomh Q)+ Clhfn(b) ) mh

(T2 mn 1(My2 1, QPR
* b (E) gl maf Qp * C16hn(y) Izn Iz) nphy Q) 22

Ty 2 ' mpn ' mpn
+ Cyeh () Z Z mph R0 T, + c,h! (£ X Z mph, D105

mpn

mpn
- 2018h ( 5 Z nm ph h Q

Tyl 2
122 ~ C1gty (%) gng nmph b Q501

)2 ) mgthmn - C o (5)2 ) ng:t*l'nql‘ﬁl (6-8)
m m

mpn mp1n
where m, p = l, 3, 5,-. N and Ql, Q. 13 Q 202 Qlil, Ql:gea Q212:

ngi are the definite integrals of the trigonometric functions

explained in the appendix B at the end.

6.4 Finite Difference Formulation

Considering the same location of mesh points as in the
symmetrical buckling case, the differential equations (6-T) and
(6-8) are transformed into difference equations. These difference

equations may be simplified by defining the following summation terms.



(Tl)i

AlQl
h2
2 2n
- A5h T Ql
b2
n
- ARy
2h
A
3 mn
3 ) (hml—l - 2hm1 mi+l)Qll
2h m
A
3 mn
3 L (- bl hmi+l)Qll
2h m
Ah"2 z )mn
mn(- h . +h . Q
- +
2b2h m mi-1 mi+l’ 22
Ah'ﬂ'2 mn
2 ! m(h ;)Qp,
2bh m
A 1r2
- 0T Z 2 mn
mh .Q
%h @ M
6 -
) A7ﬂ2 ; . | (6-9)
n (- h . + h . Q
b°h  m mi-1 mi+l” 11
A
8 mn
5L (=hyy ot 2h, g =20, 0+ h, )0,
2h” m
fg—-{ (h 2h . +h . Q™
2h5 . mi -1 mi mi+l’ 11
2
- AT
A9 2 mn
- z m(-h ., . +h.. .)Q
- +
2b2h3 n mi-1 mi+l® 11
2
- AT
9 2 mn
53 Y n%(n ] -2, hmi+l)Qll
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(T14)]
(115);
(T26);
(T27)]
(T18)]

(T19);

[

(6-10)

b Y mn{- h

h )Q
22
2bh m

+
mi-1 mi+l



(09)]

n
(Ulo)i

n
(Ull)i

T
C3n m Ql
b
b (-, . +f Q™
op3 T Tmi-l mi+l’ ™11
m
C5 mpn
— -h . + h . - h . + h .
yp3 g g ( mi-1 m1+l)( pi-1 p1+1)Qlll
C mpn
5 -h. . +h_ )
i’;}: Z Z - hmi-l + hmi+l)( pi-1l pi+l Q‘111
m p
% (h oh . +h_ . )™
h mi-1 ~ mi mi+1” 711
C
6 mn
< I b
h m
C—8— ) (-n + h )ar
2h2 T Tmi-l mi+l’ 11
m
(6-10)
n
Co%
2
C..m
11 mpn
h .){(-h . + h .
b2h Elg mn ml)( pi-~-l p1+l)Q212
2
c..m
11 Z Z mpn
mp(h_.)(h_.)Q
b2h2 np mi pl’ 221
2
2C. .7
13 mn
L2 L mn,)a,
2
C,m
1k z mn
m(f .)@Q
2b2h n mi ‘22
2
Cl67r )inpn

55 ; g np(- by o+ By (B )@,
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n_ "16"
(U19); = Izng mp(= by g By (- By )00

bboh®
2
n 16"
20)) = (- b,
(U20); 1022 g% mp(hy )= by 4 + p1+l)Q221
b
(v21)? = — 18 T o (B ) (00 s
i E oo Py 11900
4
- Coqm
(ve2)] = __1}?_ 7 T n®mp(n i) (150 oy
b mp
2
- C T
n _ 19 2 mn
(U23); = ———————zbgh ) n°(- S I S
5 (6-10)
we)® = 2229 5T P Yen . 4™
i 2b2h2 m D mi pi-1 pi+l” "1l
2
n = CplT 2 m
U2s5), = —2 -h . . +h. - h . pr
(v25); 422 IZHZ) n{= By g B pi-l © p1+l)Qlll
2
- C,..m
n _ 21 2 mn
(v26); = —=—5— Iznm (B ;)05
P
- C.,m
n _ 21 2 m
(va7); = ——>%— El n~(h ;)9

When the above defined summation terms are substituted into
the difference equationsgimplified and rearranged; the coefficients
of the functions gn and En are found to be the following combinations

of summation terms.
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(v1)} = (v3)] = (T1)]

(v2)] = - 2(m1)] + (T2)}

(V)] = - (121)7 - (T15)]

(v5); = = (T3)] - (T&)] + (15)] - (T7)] - (18)] + (MO)]

+ 2(T11)? + (TlQ)? - (m3)] - (T14)7 + 2(m5); - (T16)7
+ (Tl?)g - (Tl8)?
(V6)§ = - 2(T5)? + (6] + (T9)? - 2(T10)2 - 2(T12)?
n 0 (6-11)
- 2(m7), + (T19)i
(v7)? = (TB)? + (Th)? + (TB)E + (T7)] + (T8)? + (m0)] - 2(Tll)?
+ (le)? + (TlS)? + (Tlh)? - 2(Tl5)? + (116)? + (Tl7)? + (TlB)?

(v8)! = (T11)] + (T15)]

]

n n n n
(v9)i - (Uo)i - (Ul)i - (U2)i
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(VlO);l = (u3)]

(vi1)] = (m)} + (v2) + (vo)}

(vi2); = (u5)}

(vi3)] = (Ub)} - W(us)} + (UT)Y - (U8)] + (W)} + (1)} - (u12)]

+ (15)] - (un)} - (U8)] - (v20)} - (u2k)}
(vib)] = - 2(ub)] + 6(us)] + (U6)] - 2(u)} - 2(v9)] + (U10)]

- 2(U11)§._1 + (1113)1i1 + ()] - 2(u5); + (U16)] +(;U:L9)ri1 + (U2:L)f.Ll

(6-11)
+ (U23)" + (U25) + (U26)® + (V) + (u22)™
i i i i i

(v15); = (U] = 4(us)] + (Un)] + (UB)] + (U] + (ML)} + (w2)]

+ (UlS)ri1 +(m7)] + (18)] + (U20)} + (U2h)§

(\/’16)f.L1 = (US)?

Using the above summations (6-9), (6-10) and (6-11),the difference

equations take the following form.
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n n n n
+ + + h
(V)y £ vy £ s+ (B f s H B S
(6-12)
n n n n
h + + h h =0
* (sl B gt (Ve R (VT —n,i+l) (V8); b 14n)
n n n n
. T + 0 + Vv h +
(v9); ~n,i-1 (V1 )i £n,i (V11); £n,i+1 ( 12); n,i-2)
(6-12)
n n n n
h + L + + h =0
(V13); By g ¥ (AW By 5+ (WS by + (V8D B s

The equations (6-12) applied to all mesh points constitute a
system of simultaneous equations. In this case, the network of the
mesh points covers the whole middle surface of the shell and therefore

the total number of mesh points is 2M.

6.5 Matrix Formulation

If the unknown functions fn and En at a mesh point i are con-

sidered as a two by one column matrix and called Z, that is

Z. = (6—13)

then the equations (6-12) can be set in the matrix form as follows:

+ c3zi + chzi+l + cszi+ =0 (6-1L)

ClZ, 5

+
i-2 CQZi-

1

where the following substitutions have been made.
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0 (vh)
FF1l = . HH] =
0 (vie)
(_(v1)i J _(vs)i ]
FF2 = , HH? =
_(V9)i __(v13)i
r(va)i ] (V6), ]
FF3 = , HH3 =
_(VlO)i_J (v1h)i_] (6-15)
. r(V3)i ] ) I:(V'?)i ]
FFh = R HHLY =
_(ml)ij (v15)i_]
[ o (v8),
FF5 = , HHS =
| o (Vl6)i
and
Cl = [FFl HHJ_]
c2 = _FFZ HH2J
C3 = FFF3 HHBJ (6-16)
ch = rFFh HHh]
c5 = [F‘F’i HH5]

If the equation (6-14) is applied to mesh pointsi = 1 and

i=2M -1, it becomes respectively.



012_l + 0120 + c3zl + chz2 + 0523 =0
(6-17)

C1Z + 027 + (€37 + ch22

+ =
2M-3 2M-2 2M-1 Csz2M+ 0

M 1

6.6 Matrix Formilation for Boundary Conditions

The shell under investigation is clamped at the two boundaries
parallel to the Y axis. And since the additional asymmetric
deformations must also satisfy the boundary conditions expressed by
equations (4-11) and (L4-12), the boundary conditions expressed by
the above equation (4-11) and (4-12) are transformed to those in

terms of £ and h .
- -n

Thus at x = 0 and x = a i.e. at i = 0 and i = 2M.

f =0, h =0 (6-18)
-n -
and

h (6-19)

- + - + =
h b EQM-l M + 1 0

= 0:
—-n-1 -n+l i

8k,

Substituting the unknown functions fn, hn at mesh point - 1 in terms of

functions at +1, and at the mesh point M + 1 in terms of those at 2M - 1

and satisfying the above equation, the equation (6-1T7) becomes

Dlzl + chz2 + csz3 =0 (6-20)
and

ClZ,, 5 * C2Z, , + 2% 1 = 0 (6-21)
where

Dl = [%Fl + FF3 l HH1 + HH%] (6-22)

D2 = [%F3 + TF5 l HH3 + HH%]
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It may be noted that the displacement functions at i = 0 and

2M each being equal to zero the submatrix C2 at t = }] and ch at

e
It

2M - 1 may be neglected.

[ud
1l

6.7 Characteristic Equation

The matrix equation (6-14) when applied to all the mesh points
fromi = 1 to 1 = 2M - 1 generates a system of 2(2M - 1) simultaneous
equations with equal number of unknowns. The resulting matrix is also

a band type matrix with non-zero submatrices along the principal five

diagonals.

-51 ¢k ¢5 0 0 0 0 0 0 0 o-1 3%_ i —o-1
c2 ©3 ¢k c5 0 0 0 0 0 0 0 Z, 0
cL 2 ¢3 ck 5 0 0 0 0 0 0 Z 0

0O ¢ ¢ ¢3 ¢k c¢5 0 0 0 0 0 - 0
0 0O €1 c2 ¢3 ¢k 05 0 0 0 0 -

0 0 0 o© 0O ¢ ¢c2 €3 ¢4+ ¢5 0

0 0 0 o© 0 0O CL c¢2 €3 ¢ o¢5 Z o3 0
0 0 0 o0 0 0 0O C1L ¢2 (€3 ¢k Z oo 0
0 0 0 o0 0 0 0 0O € ¢2 D3 Z o1 0

- 4 L .
(6-23)

In order for the system of equations represented by the above

matrix to have non-trivial solutions the determinant of the above
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coefficient matrix has to be equal to zero. If the determinant of
the above coefflcient matrix is called D, then the condition for

the non-trivial solution is
Determinant D = 0O (6-24)
This equation determines explicitly the critical pressure for

unsymmetrical buckling, the method of solution of which is discussed

in the next chapter.



7. METHOD OF SOLUTION

7.1 General

Having derived the matrix for symmetrical buckling in Chapter
Five, and the characteristic equation for asymmetric buckling in
Chapter Six, this chapter is devoted to the method of solution of

the above.

In order to explain the method of solution, let the matrix

equation (5-21) be represented as follows.

[[A] ¥ [AAN—l]] [MN] = EAPN] ¥ f(“mﬂ (7-1)

where A = the coefficient matrix consisting of the elements depend-
ing upon the geometry of the shell, material properties and the

mesh size h,

[AGN] = column matrix representing the Nth increments in the

functions fj and hj which determine the displacements.

ApN = column matrix determined by the Nth increment in the

external load.

AAN i additional corrections to the coefficient matrix A, as

a result of updating the displacements, in the previous step.

[f(AGN l)] = additional corrections due to "equivalent load

terms."

87.
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The characteristic equation (6-24) is
Ip| =0 (7-2)
where D = Determinant of the coefficient matrix represented by

equation (6-23).

7.2 Linear Incremental Step Method

In order to solve the above system of algebraic equations,
represented in the incremental form by equaticn (7-1) the linear
ineremental technique is employed. According to this technique
the load is divided into a number of equal steps, whose size is
chosen to yield displacement increments sufficiently small so that
the linear theory applles. The solution technique consists of the

following steps in sequence.

1. The entire shell which is in equilibrium in the beginning has
no load on it with no resulting deflection. Therefore, the

starting point on the load deflection curve is determined.

2. With the initial geometry of the shell being now known, the
coefficient matrix Ay is generatednwith N = 1 (the 1st step).
In this initial cycle the higher order non-linear terms

dependent upon the displacement functions are taken as zero, i.e.

[f(si\l—l)] =0

3. Also the "equivalent load" terms in the load column matrix

f£(AS, .) are also taken equal to zero.

N-1
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An increment in the load ApN is considered and the system

is solved,

The first cycle of the solution of the system determines AGN,
corresponding to the initial increment Apl at all the mesh

points.

The resulting increments of functions f and h are used to

compute corresponding increment of the average deflection.

The increments of the function Df and Dh are added to the
values of the functions f and h of the preceeding cycle, with
these wvalues the correction to the coefficient matrix is

determined,.

Also with the values of Df and Dh (i.e. AGN) determined in the
previous cycle the additional corrections to "equivalent load"

terms consisting of non-linear terms are determined.
A new increment of load is applied and whole process is repeated.

As described above, the curve of load against the corresponding

deflection can be determined +ill the deflection becomes excessively

high for a particular increment in load indicating stability limit,

T.3 Asymmetric Buckling

1.

For asymmetric buckling, to determine the bifurcation point on

the load deflection curve, everytime the displacements are
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determined for an increment in the load. The value of the

determinant D of the characteristic equation is calculated.

By interpolation on the load deflection curve the point

corresponding to zero value of the determinant is found.

The corresponding value of the load indicates the asymmetric

buckling load.

Buckling with Initial Imperfections

To determine the buckling load with initial imperfections, the
deflection WL corresponding to the limit load is determined

from the load deflection curve.

Then the imperfection parameter k is determined from the

following equation

t
k= - (7-3)

Using different values of k like k, -k, 2k, -2k, etc. and
following the same steps as described in article T.2 the load

deflection curve is determined.

The limiting load on this curve corresponds to the buckling

load for the shell with initial imperfections.
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8. NUMERICAL RESULTS AND CONCLUSION

8.1 Computer Programming

The iterative method of solution using linear incremental approach
described in Chapter seven, requires repeated formulation and solution
of a large number of simultaneous equations, expressed by matrix
equation (5-21). To accomplish this, a computer program is written
for and executed on the I.B.M. 360-40 Model at Southeastern
Massachusetts University. Program being excessively long, some
effort is also devoted in optimizing the numerical computations [3].
Subroutines are written to evaluate integrals in appendices A and B,

and the summation terms defined in Chapters five and six.

8.2 Computational Effort

The principal short coming of the linear incremental approach to
large displacement problems is the computational effort involved.
Every incremental step requires the setting up of the large matrix
and its inversion. The large number of subroutines also consume
substantial computation time. Moreover, each incremental (or
iterative) step requires the complete solution of a small deflection
problem. For these reasons, even though some effort is made to

optimize computations, machine running time is understandably high.



The total solution time depends of course on the number of mesh
points employed and even more significantly on the number of incremental

steps required to reach the limiting point on the load-deflection curve.

The solution time for the six cases treated ranged from 65 to
75 minutes on the I.B.M. Model 360-L4L0 at Southeastern Massachusetts

University Computing Center.

8.3 Mathematical Models

Six mathematical models of shells are investigated with the
following values of parameters. All models have Poisson's ratio
v =20.33, t = .07T", and a/b = 1. In the first three cases the
models are relatively shallow (C = 0.02) as compared to the last

three models (C = 0.37)

Dimensionless load parameter p and dimensionless deflection

parameter w are defined as follows:

- P T
p = 5 x 10

=
I
=

where w is the average deflection.

In addition to the parameters stated above, some additional para-
meters with different values are employed in the various cases as

noted below in Table 1.
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TABLE 1 ~ PARAMETERS OF SHELL MODELS

Case No. 1 c k Shell Parameters
1 0.02 0.0 ~deep, omé ahallov
2. 0.02 +0,5 deep
3. 0.02 -0.5 deep
L, 0.037 0 deep
5. 0.037 0 shallow
6. 0.037 -0.02 deep

An additional case with all the parameters equal to that of Case No. 1,
but with shallow shell parameters, instead of deep shell parameters,

has also been investigated independently.

The load-deflection curves of the above models are shown in

Figures 7, 8, 9, 10, 11, 12, and 13.

8.4 Results and Comparison of the Results with Experimental Investigations

Because of different ways the shells are supported, difference in
the manner of loading and different geometries of the shell used by the
experimental investigators, explicit comparison of the results is
neither appropriate nor logicsl. Although an attempt is made to state
the results of the two available experimental investigations, along with
relevant data. In presenting the data some additional parameters are
calculated which are believed to affect the results; though they are

not presented as such by the original investigators.



The Results of Other Experimental Investigations

9% .

Shell Width Shell R Rise/
Thickness Span Radius —E P Span Remarks
(t), in (a) in | in (R) in
1 0.05 23.6" 27 18 360} 1.36 | 0.16 R
"
) 0.05 23.6 27 18 360) 1.46 | 0.16 Yang
3 0.063 23.6" 54 18 285} 1.65 | 0.08 and
b | 0.063 23.6" | 54 18 285] 1.55 | 0.08 ? Guralnick
5 0.063 23.6" 81 18 2851 1.4 | o0.054
6 0.063 23.6" 81 18 285) 1.26 | 0.054
o
7 .156" 32.11" |125 25 160] 1.337] .182 Karakas &
Scalz
Present Investigation
a Rise R Shell
/b k c /Span /t ) Parameters
1 1 0 0.02 0.1 650 2.1 deep
2 1 +0.5 0.02 0.1 650 1.875 deep
3 1 -0.5 0.02 0.1 650 2.42 deep
L 1 0 0.037| 0.185 350 3.22 deep
5 1 0 0.037] 0.185 350 3.87 shallow
6 1 -0.02 0.037} 0.185 350 3.48 deep

The shell tested by Yang and Guralnick (31), was simply supported

at the transverse edges and was free at the longitudinal edges.

Also a

uniformly distributed live load on the horizontal projection of the

shell was simulated, by means of closely spaced concentrated loads.

Karakas and Scalz (12) also tested the shell with simulated uni-

formly distributed load on the horizontal projection of the shell.

shell was simply supported on rollers at the ends.

This
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It can be readily seen that the buckling loads of the present
investigation are relatively high compared with those of Karakas and
Scalz, and Yang and Guralnick. But this is understandable as the
boundary conditions of the shell considered make it more rigid, and

the load considered was applied normal to the shell surface,

8.5 Conclusions

By comparing the results of the load-deflection curves of the
six models, the following observations may be made. It may be
observed from Table 1, that first three cases deal with shallower
shells with (c = 0.02, Rise/Span = 0.1) vwhereas the last three
cases deal with deeper shells with (¢ = .037, Rise/Span = .185).
Relatively, a shallower shell (¢ = .02, Rise/Span = 0.1l) is in-
vestigated in case No. 1 by employing deep as well as shallow
shell parameters. The load-deflection curves for both (Figure No.T)
coincide resulting into a common value (p = 2.1) for buckling load.
Hence, it is concluded that there is nc improvement in the value
of the buckling load for this shell (¢ = 0.02, Rise/Span = 0.1) by

employing deep shell parameters, instead of shallow shell parameters.

This also proves that, the following assumptions used in the
shallow shell theory are correct, and the buckling loads calculated
by using equations based on them are not in error for the shells with

c <°0.02, and Rise/Span € 0.1, and hence establishes their validity.
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Assumptions of Shallow Shell Theory

1. The slope of the shell is smell compared with some refer--

ence plane (usually the horizontal plane for roofs)
2. The curvature of the surface is small,
3. The changes in curvature of the surface is small.

On the other hand, in case No. 4 and case No. 5, relatively a
deeper shell (with e¢ = 0.037, and Rise/Span = 0.185) has been
investigated by employing deep (case No. 4) as well as shallow
(cas No. 5) shell parameters. The load-deflection curves for these
two cases (Figure 11, and Figure 12) coincide in the initial range
(up to p = 2.5)., However they do not do so at higher values of
loads and hence result into different values of buckling loads
(p = 3.22 with deep shell paramters) for case No. 4 and (p = 3.87
with shallow shell parameters) for case No. 5. Hence, it is
concluded that there is some improvement in the value of the
buckling load for this shell (with ¢ = 0.037, and Rise/Span = 0.185)
by employing deep shell parameters instead of shallow shell para-

meters.

In the initial range, though the load deflection curves for
the two cases coincide which proves the validity of shallow shell
theory, for small deflection problems or ordinary statical problems
where no buckling or excessive deflections are involved, for the

shells with ¢ € 0.037, and Rise/Span € 0.185.
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Next, case No. 1, case No. 2, and case No. 3 are compared for the
effect of imperfections on buckling load where a shell with ¢ = 0.02, and
Rise/Span = 0.1 is investigated for k = 0 (case No. 1), k = +0.5 (case No. 2)
and k = ~0.5 (case No. 3). The load deflection curves for these three cases
are shown in Figure Nos. T, 8 and 9 respectively, The buckling loads in
these three cases respectively are p = 2.1 for k = 0, p = 1.875 for k = +0.5
and p = 2.42 for k = -0.5. TFrom these observations, therefore, it is conclud-
ed that, the initial imperfections in the shell if present, can affect the
buckling load significantly. The effect of initial imperfections on buckling
load is not always of weskening kind. For imperfections in the direction of
deflection (k positive) the buckling load is reduced, whereas for the initial
imperfections in the direction opposite to the direction of deflection

(k negative) the buckling load is increased.

Figure 10, where load deflection curves for case No.2 (k = +0.5) and
case No. 3 (k = ~0.5) are plotted together, indicates the upper and lower
range of load-deflection curves due to imperfections for k between -0.5 to
+0.5, For all other amplitudes of imperfections, with k between -0.5 to +0.5.
the plot of load-deflection curve may lie within the shaded portion. This
indicates that the experimental values of the buckling loads of shell models
constructed to same specifications mey vary within a certain range depending

upon the degree of initial imperfections present.
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If comparison is made between case No. 4 (xk = 0, ¢ = 0.037,
Rise/Span = 0.185) with p = 3.22; and case No. 6 (k = -0.02,
c¢ = 0.037, Rise/Span = 0.185) and p = 3.48, the following con-
clusions may be drawn. The effect of imperfections on buckling
loads is not only limited to relatively shallower shells (c = 0.02,

0.1) but is also seen in deeper shells (c = 0.037,

Rise/Span

Rise/Span = 0.185). Also, the introduction of even feeble imper-
fections (k = -0.02) as in Case No. 6 affects the solution.
Hence, generalizing, it may be stated that the initial imperfec-

tions, if present can affect the buckling load significantly for

any shell.

Next, comparing the first three cases where the shells are
relatively shallow (c = 0.02, Rise/Span = 0.1) and p = 2.1, 1.875,
2.42 respectively with the last three cases where shells are rela-
tively deep (¢ = 0.037, Rise/Span = 0.185) and p = 3.22, 3.87, 3.48
respectively, it may be stated in general that the deep shells are

stronger than the shallow shells.

8.6 BSuggestions for Future Research

Further investigations of deep shells or shells in general
with different boundary conditions and different geometries would

be of considerable interest.
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The present practice of treating a shell as shallow or deep
is more or less arbitrary, i.e., it has not been evolved through
theoretical investigations. Hence, one of the focus of future
research in this area can be to determine theoretically the cri-
tical Rise/Span ratio and curvature gt which the shell changes
from shallow to deep. This investigator believes that the bound-
ary conditions, apart from Rise/Span ratio and curvature would
affect the treatment of a shell as shallow or deep and hence
should also be taken into account in order to establish the

critical ratios mentioned above.

It is also suggested that more investigations, experimental
as well as theoretical should be carried out to refine and con-

firm the results of this investigation.
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Figure 7 - Load vs Average Deflection Curve (Case No. 1)
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Figure 8 Load vs Average Deflection Curve (Case No. 2)
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APPENDIX A
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APPENDIX B
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