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ABSTRACT 

A very important factor in the reliability of

MOS devices is the stability of the threshold voltage.

This dissertation examines the effects of positive and

negative gate bias stresses at elevated temperatures

on the drift in the threshold voltage of MOS field effect

transistors.

Over 400 p-channel enhancement mode devices were

life tested under different temperature and gate bias

conditions for periods of up to 15,000 hours, and

the drift in their threshold voltages studied and

analyzed. It was found that under both negative and

positive bias-temperature tests, the threshold voltage

drifted towards more negative values, though in the

negative bias tests, the drift in the first few tens

or hundreds of hours was in the opposite direction.

The effect of positive bias is easily explained in

terms of impurity ion migration effects. To explain the

effect of negative bias, two competing mechanisms,

namely, impurity ion migration and the silicon ion

effects, are postulated by the author; and a logical

theoretical explanation is developed to explain the

results of the experimental investigation.
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CHAPTER 1 	 1

INTRODUCTION 

1.1 Historical Review:

An unipolar field-effect transistor was
1

described by Shockley in 1952 . Such transistors

were built, tested, and their performance analyzed

by Dacey and Ross 2 . However, the device was only

in the laboratory stage of development, until

advances in semiconductor technology made its

fabrication in the industry feasible 3,4 .

The insulated gate construction was developed

and described by Hof stein, Heiman and others 5,6 .

The high input impedance and fast switching speeds

of these devices made the insulated-gate field-

effect transistor a complement to the bipolar trans-

istor for many applications, and helped in the

complete transistorization of the older electron

tube circuits.

This revival of interest in the field-effect

transistor (FET) in the early sixties led Wallmark 7

to hail its advent as an "Old Device with New Promise".

The theory and performance of the FET have since

been studied and formulated in great depth.8,9,10

Later, Sah and Pao 11 presented a detailed theory,
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summarizing the results of all previous investiga-

tions on the Metal-Oxide-Semiconductor (MOS) FET.

(See also 12 and 13). The further development of

MOS technology led to its easy adoption in the design

and fabrication of the present day integrated

circuits, 14,15,16

1.2 Oxidation:

The gate oxide is an important part of the MOS

structure. The oxidation of silicon is usually

accomplished by thermal growth, which has been

described in detail by Seely and others. 1718

Oxidation at lower temperatures using Si3N4 masks

have been reported on. 19 Oxides have also been

prepared by chemical vapor deposition using SiH 4 -0O2-

H2 sources and have been compared with thermally grown

oxides by Gaind and others.20

The impurities in thermally grown oxide layers

have been analyzed using electron microprobe tech-

niques. 21 Defects such as pinholes in thermal

oxides have been studied 22 . Deal 23 has presented

a concise summary of the nature and properties

of all the charges found in thermally grown oxides.

1.3 The Silicon - Silicon  Dioxide System:

The characteristics and operation of a MOS



3
device depend heavily on the properties of the

silicon - silicon dioxide interface. A consider -

able amount of study over the years has been devoted

to the properties of the silicon - silicon dioxide

system and to correlate them to the observed

electrical characteristics of MOS devices. 24 These

studies have established the existence of the

following:

a) Fast surface states at the silicon-silicon
dioxide interface.

b) Fixed positive surface state charge density
at or near the interface.

c) Mobile and fixed ionic charges within the
gate oxide.

d) The redistribution of impurities at the
silicon surface during thermal oxidation.

1.3.1. Fast Surface States: 

The energy levels of these states fall within

the silicon bandgap. The amount of charge in these

states is a function of the surface potential and

varies with the applied gate voltage. 25 , 26 These

are called "Fast Surface States", because these

charges can easily and quickly be exchanged with

the near-charges of the silicon substrate. The

origin of these states is the disruption of the

periodicity of the silicon lattice near the silicon-

silicon dioxide interface. It has also been found27
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that the density of fast surface states is

the highest for (111) oriented silicon, and

the lowest for (100) oriented silicon, with

all other process conditions remaining the same.

These fast states act as scattering centers

at the silicon - silicon dioxide interface and

tend to reduce the effective carrier mobility in

the channel. This also results in increasing

the threshold voltage of the device. Castro and

Deal 28 showed that annealing at low temperatures

in an inert or reducing atmosphere (such as hydro-

gen or forming gas) reduces the density of these

states.

1.3.2. Fixed Positive Surface Charge Density, QSS: 

This surface state charge in the silicon -

silicon dioxide interface was identified and

studied by Zaininger and others 29,30 . The energy

levels associated with these charges lie outside

the silicon bandgap. Unlike the fast surface

states, these charges are not dependent on the

surface potential or the applied gate voltage. But

the density is highest for (111) oriented silicon

and lowest for (100)orientation. Measurement of

QSS values has been made by using low frequency
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capacitance-voltage methods 31 and conductance

techniques 32 . The effects of processing on

the value of QSS have been studied. The effects

on Qss of oxidation temperatures and ambients

have been presented by Deal and others 33,34 . The

QSS values could be reproducibly reduced by

annealing in a dry inert gas or in dry oxygen at

an appropriate temperature.

1.3.3. Mobile and Fixed Ionic Charges:

Impurity ions of alkaline metals like sodium

and those of hydrogen, all electropositive in

nature, are known to be present in the oxide

layer 35 . A radiochemical analysis technique of

determining the distribution of sodium ions

was described by Yon36 . These ions are mobile

in the oxide and they diffuse as well as migrate

under temperature and electric field stresses 37 .

Snow38 introduced sodium and Lithium into the

oxide and measured their transport as a function

of time, temperature and voltage stress. Other

studies have also been made on these ionic drifts

by Goetzberger, Hofstein and others. 39,40,41,42

Frequent purging of the oxidizing tubes by HC1

gas and dry oxygen and addition of HC1 to the



6

oxidizing atmosphere are known to reduce the

sodium contamination in the oxide. 43 Use of

phosphosilicate glass over the oxide to

getter the sodium ions is well known in the indus-

try 44 .

Ionizing radiation fromY-rays, X-rays and

electron irradiations also affect the MOS devices 45 .

When a positive or a negative bias is applied to

the gate, there is a build-up of a space-charge

region within the silicon dioxide. There is

also an increase in the fast surface-state

density due to these irradiations. These effects

tend to shift the threshold voltage of the device

under positive and negative gate bias and temp-

erature stresses. Al203 is known to be more

resistant to incident radiation as compared to

Si02.

1.3.4. Impurity Redistribution During Thermal Oxidation:

During thermal oxidation at elevated temper-

atures, the different impurities commonly used

to dope silicon tend to redistribute at the

surface of the silicon substrate 46 ' 47 . Boron

tends to be depleted from the silicon surface,

while phosphorus tends to pile up at the silicon
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surface during oxidation, the concentration being

dependent on the oxidation temperature, and the

depth of redistribution into the silicon being

dependent on the oxidation temperature as well as

time.

1.4. Electromigration:

Revesz 48 has discussed the possible reactions

at the aluminum metal-SiO2 interface, contributing

to metal ions which migrate into the oxide under

the influence of an electric field. This has

been further studied by Berger and others 49,50 . in

detail. A comprehensive survey of the phenomenon

has been published by Black 51 . To obviate this

phenomenon, silicon gates to replace aluminum

gates have been developed 52
.

1.5. Double-layer Gate Insulators:

Both silicon nitride and aluminum oxide are

known to be very effective barriers to sodium ion

migration in the presence of high electric fields 53 .

The preparation and properties of silicon nitride

have been investigated in detail 54,55 . In order

to retain the highly desired properties of the

interface between silicon and thermal oxide and
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at the same time prevent sodium ion migration,

devices have been fabricated 56 using double-

layer gate insulators. Si02 - Si3N4 and

Si02-Al 203 devices have been fabricated by

manufacturers.

An additional advantage of these devices is the

fact that Si3N4 and Al20 3 have much higher

dielectric constants than Si0 2 and for the same

mechanical thickness, these double-layer insulators

will be electrically equivalent to a thinner

layer of Si02. The threshold voltages can be

made lower as required in integrated circuits,

particularly when they are to be interfaced with

bipolar integrated circuits. The properties of

Metal-Nitride-Oxide-Semiconductor (MNOS) devices

have been compared with those of MOS structures

by several researchers. 57 , 58 , 59

1.6. Self-aligned Gate Electrodes:

Conventional Silicon MOSFETs are not capable of

operating at higher frequencies as compared to the

capability of bipolar devices. In enchancement mode

devices, there is no initial channel present with

zero gate voltage and a conducting channel is

formed only when the gate voltage of appropriate
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polarity is applied. This feature necessitates

the gate electrode to extend completely over the

region between the drain and the source. In

order that a slight misalignment of the gate

electrode does not ruin the device, it is common

practice to allow the gate electrode to overlap

both the source and the drain electrodes. This

overlap, coupled with the thinness of the insulat-

ing layer, gives rise to appreciable parasitic

capacitances between gate and drain and gate and

source. This provides a negative feed-back

effect which increases with frequency. As a result,

at higher frequencies gain drops off considerably,

accounting for the poorer performance mentioned

above.

In order to reduce the gate-to-drain and

gate-to-source parasitic capacitances,"Self-aligned

Gate Electrodes!' have been developed and used. The

most common material used for the self-aligned

gate electrode is polycrystalline silicon 6061

though molybdenum has also been used 62 . The poly-

crystalline silicon is first deposited over the gate

oxide and then p or n type diffusion of the silicon

substrate is done to form the drain and source

regions. During the diffusion, the polycrystalline
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silicon gate acts as a mask to prevent the

doping of the channel region. In addition,

the silicon gate itself gets heavily doped

to make it highly conductive, so that no metaliza-

tion is required except for contact.

Because of the difference in work function be-

tween aluminum and silicon, the threshold voltage

is lower for these devices. Since the gate is in

place prior to diffusion, tight tolerance is not

required for definition of the gate. In integrated

circuits, this allows a higher packing density

of components. Also, both poly-silicon and

aluminum layers can be used for interconnections

in integrated circuits 63 .

1.7 Ion Implantation:

The development of ion implantation tech-

nology made it possible to control the threshold

voltage of MOS devices with great flexibility".

It is possible to obtain low threshold voltages

with p-channel devices. High energy ion accelera-

tors are used to implant dopant impurities into

the substrate, the source and drain regions, or

the channel region itself to control the threshold

voltage. It has been found 65 that it is possible
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to shift the threshold voltage of both p-channel

and n-channel devices, by implanting a small concen-

tration of donor or acceptor impurities through

the gate region into the silicon substrate. In

the case of silicon-gate devices, the gate itself

acts as a mask to protect the underlying channel

region from implantation of dopant ions, while

the source and drain regions alone are doped

by implantation 66 .

Ion Implantation and its ramifications have

been studied in detail by several research-

ers. 67,68,69,70

1.8 Reliability of MOS Devices:

The reliability of semiconductor devices has been

stated71 to be a function of the following:

E - Electric Field

S - Surface

P - Package

A- Ambients

T- Temperature and Temperature Gradient

1Z- Special Factors

The reliability factors with particular reference

to MOSFET's and Integrated Circuits, and micro-



12

electronics in general, have been expounded in

. 	 72,73, 74, 75detail. 	 Improvements in the reliabil-

ity of integrated circuits have been outlined in a

recent paper by Hawkins 76 .

The various modes and failure mechanisms in

MOS devices have been analyzed and presented in

the literature.77,78,79,80 The available techniques

for failure analysis were summarized by Workman 81 .

The use of electron microscopy for failure diag-

nostics 82 has become very extensive. Studies have

been made of the failure modes at the surfaces and

interfaces by Goetzberger and others. 83 , 84 The

reliability factors involved in the aluminum

metalization on the oxide have been identified
85

 .

The effects of long term storage on reliability

Of MOS devices have been presented 86 and the results

of accelerated life tests on them published. 87,88

1.9. Scope of this Investigation:

This investigation primarily concerns the

threshold voltage of MOS devices and its stability.

Under positive and negative gate biases at elevated

temperatures,the ionic impurities in the oxide

undergo transports and redistribute. This re-
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distribution along with other factors makes the

threshold voltage drift, thereby affecting the

reliability of the device. These effects are studied

in the investigation.

For purposes of this study, several MOS

field-effect-transistors were put under various

positive and negative gate biases and temperatures

and life tested for several thousand hours. The

threshold voltage of the devices were measured

initially and at appropriate intervals, and the

drifts analyzed. Theories have been developed to

logically explain the results obtained.
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CHAPTER II 

BASIC THEORY OF MOSFET's

2.1. General:

The following discussion applies for a

p-channel device, and is applicable with necessary

minor modification to an n-channel device as

well. The mechanism of conduction is described

in detail, the threshold voltage VT is defined,

and a mathematical expression for VT is derived.

The importance of the' stability of VT is also

explained.

In a p-channel device shown in figure 1, the

semiconductor bulk material is n-type silicon,

and the mobile charge carriers deep in the bulk are

electrons. The insulating material on the surface

is silicon dioxide. The electrical condition

that characterizes the silicon at the surface* is

said to be accumulation, depletion, or inversion,

according to whether the mobile charge density at

* "The silicon surface is defined as that region of semi-

conductor material encompassing the outermost layer of

structural silicon atoms inward to that position within

the bulk interior where the energy bands become flat"89.



F-'5
FIG 1. P-Channel MOSFET Structure
	 •
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the surface is greater than, less than, or of the

opposite type to that in the bulk silicon.

2.2. The Mechanism of Conduction in MOSFET's:

Figure 2a shows the energy band diagram

of the device with no gate voltage applied. A pos-

itive surface state charge +Q ss always exists in

thermally grown silicon dioxide 90 . Hence electrons

are attracted from within the n-type bulk and

accumulate at the surface. This results in the

downward bending of the conduction and the valence

bands as shown in the figure. In this and the

following diagrams, the intrinsic energy level Ei

is assumed to be midway between the conduction and

the valence bands, while the Fermi level EF is shown

closer to the conduction band, as the material is

of n-type. The Fermi potential is also shown as OF.

The charge density distribution, approximated by

6 functions is shown in figure 2b. The positive
surface charge density +Q ss is balanced by the nega-

tive charge density -QA of the elctrons accumulated

at the silicon surface.

If a negative gate voltage is now applied to

the gate electrode (gate charge = -QG ) such that it



H

FIG 2. Energy Band and Charge Distribution Diagrams
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FIG 2. continued
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just balances the effect of +Qss , the accumulation

of the electrons near the silicon surface disappears,

and there is no longer any bending of the bands.

The surface potential Os = 0. This condition is

illustrated in figures 2c and 2d, and is known

as the flat band case.

If the negative voltage at the gate is further

increased, the mobile electrons at the donor centers

in the channel region are repelled, and a depletion

region is formed. The charge density +QD in this

depletion region is hence positive. Figures 2e

and 2f depict the energy bands and the charge dis-

tributions respectively under these conditions.

When Ei is bent just sufficiently to intersect

EF at the surface (such that Øs=Ø F) , the surface

has become intrinsic from its initial n-type concen-

tration. In other words, the mobile holes just

equal the mobile electrons at the surface. Under

this condition, the gate charge -Q G must just balance

out the surface state charge +QSS and the depletion

region charge +QD.

When negative gate bias is still further in-

creased, mobile positive holes are attracted towards

the surface, and an increasing percentage of the
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charge in the channel region is contributed by

holes. At E = EF , mobile electrons still

outnumber holes in the channel region; but as the

gate bias is made more negative, Ei rises above

EF at the surface and the density of holes becomes

more than that of electrons. The surface is now

said to be "inverted". When Ei is sufficiently

greater than EF at the surface to make Øs= 20F,

the surface has become as much p in nature as the

bulk is n. Under these conditions, conduction is

deemed to have commenced between the source and the

drain through the channel. In other words, the

channel region has been inverted and has a positive

charge density +Q 1 . These conditions are shown in

figures 2g and 2h.

The gate voltage at which the conduction thus

commences is called the "Threshold Voltage" of the

device*. Or, the threshold voltage is that voltage

at the gate that produces a gate charge -QG, just

sufficient to counteract the surface state charge

±QSS, and the charge +QD of a depletion region

that supports a potential of 20 F .

* A- practical engineering definition of threshold voltage
is given in section 4.1. See also Appendix
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To summarize, in order to effect conduction in

a p-channel device, a sufficiently negative gate

voltage must be applied so as to produce enough

negative gate charge -QG to

i) counteract +Q SS and undo the accumulation of
electrons at the surface.

ii) repel mobile electrons from the donor centers
in the channel region.

iii) attract into this region sufficient number
of mobile holes, so that the number of holes
dominate over the number of electrons. (i.e.)
to invert the channel region into a p region.

Finally, it is appropriate to remark that the

onset of conduction is a gradual process of trans-

ition from depletion to inversion, during which there

is a continuous increase of hole concentration in

the channel region, as the electron concentration

simultaneously and continuously decreases.

2.3. Expression for Threshold Voltage:

Based on the discussion in the previous section,

an expression for the threshold voltage can easily

be derived. Let the terms be defined as below:

VT - threshold voltage of the device

QG - charge density on the gate metal

°SS - surface state charge density at the
silicon-silicon dioxide interface

QB - charge density in the bulk

9(x) - impurity ion density at a distance x
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from the gate electrode (see figure 3)

tox - thickness of the gate oxide

Єox - relative permittivity of silicon dioxide

o - absolute permittivity of vacuum

Øms - work function difference between silicon
and the gate metal

The algebraic sum of all the charges in the MOS system

should be zero. The gate oxide region of the MOS

system constitutes in effect a capacitor, charged

by the voltage applied to the gate metal. Under

threshold conditions, the charge on this capacitor

per unit area is

If an additional charge in the oxide contributed by

a distributed impurity ion density (x) as shown

in figure 3 is considered,

Note that the fourth term in the above expression

is obtained by considering the distributed impurity



FIG 3. Impurity Ion Charge Density Distribution
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ion density as an equivalent charge density located

at the gate electrode.

The above equation can now be rearranged and

written conveniently as

Finally, if the gate voltage necessary to counter-

balance the work function difference between the

gate metal and the silicon substrate is also

considered, the expression for the threshold volt-

age stands modified as below:

2.4. Importance of Threshold Voltage Stability:

The drain characteristics of a typical p-channel

MOSFET is shown in figure 4. The drain current ' Ds

is plotted against the drain voltage ADS, for

different constant values of the gate voltage VGS.

It can be split into three regions of operation.

In region 1, VDS values are very low, and 'Ds in-

creases linearly with VDS . Region 2 corresponds to



FIG 4. Drain Characteristics of a P-Channel MOSFET

25



26
higher values of 	 but saturation has not

commenced. In this region, IDS can be expressed 91

approximately as:

where μp = average mobility of holes in the channel

cox = oxide capacitance

w = width of the channel

1 = length of the channel

In region 3, saturation sets in and I ris is given

by the expresion

In amplifier applications, the load line is so set

to have the operating point well into the saturation

region. The transconductance gm in this region can

be derived as shown below:

From the above expression, it can be seen that any

drift in AT will correspondingly alter gm , thereby

affecting the circuit operation, unless the circuit
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is designed taking this into account.

In switching circuits, the instant of turn-on,

when conduction commences, is directly dependent on

VT . So any drift in VT tends to affect switching

directly.
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CHAPTER III 

CONSTRUCTION AND RELIABILITY FACTORS 

3.1. Construction:

The discussion here will be confined to the

p-channel device, which is fabricated from a thin

single crystal n-type substrate. Silicon crystal

growth is the first step. The crystal is pulled from

molten silicon containing an appropriate concentra-

tion of a n-type dopant, usually phosphorus. The

crystal orientation commonly used is either (111)

or (100) , and this orientation is identified by

providing a flat in the cylindrical ingot rod. The

rod is then "zone-cut" into different resistivity

ranges. The appropriate resistivity range selected

for the MOSFET fabrication is then sliced into thin

wafers about 8 mils thick, the thickness just suffic-

ient to handle without breakage in subsequent process-

ing. These wafers vary in diameter from an inch to

several inches.

The wafers are then checked for substrate dis-

locations, so as to ensure proper oxide growth in

later processing. They are then lapped and polished

to a high degree, in order that the carrier traps

may be minimized92.
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The typical "thick oxide" process discussed

hereunder has about 15,000 angstroms thick final

oxide over the diffused p-regions.

The wafers are first thoroughly cleaned before

initial oxidation. They are then placed on a quartz

boat and loaded into the open-ended quartz tube of

an oxidation furnace held at a controlled temperature

(900°C to 1200 °C). An oxide layer of 5000 to 6000
angstroms thickness is grown as shown in figure 5a.

This oxide acts as a mask against subsequent

diffusion.

After initial oxidation, comes the first masking

step. Liquid photoresist is spin-coated on the wafer,

which is baked to remove the resist solvents. An

appropriately designed mask is applied and exposed

to a light source. The photo-resist is further

developed by dipping in a suitable solvent. After a

second bake to drive off the residual developer, the

oxide is selectively etched with a solution of hydro-

fluoric acid and ammonium fluoride. The mask pattern

used in this step is to define the source and drain

regions, and to etch off the oxide in those defined

regions (see figure 5b). This operation determines

the critical source-to-drain length, and must be



FIG 5. Thick Oxide Process Steps
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tightly controlled.

The next step, namely the p-diffusion of the

source and the drain, is effected in two stages

(figure 5c and 5d). In the first stage, a layer

of the p-type impurity (usually boron) is

deposited on by placing the wafers in a predeposition

furnace tube (at 1000 0C to 1100 °C) using an appropriate

source like diborane (B 2H 6 ) or boron trichloride

(BC13). In the second stage, the wafers are

transfered to a driving furnace, where the p-type

dopant impurity is diffused into the silicon to form

the drain and source regions. A thick oxide layer

of about 15,000 angstroms is again grown over the

surface.

By using a second mask (gate mask), followed

by an etching operation, substantially the entire

thickness of the oxide at the gate region is etched

off as shown in figure 5e. A small amount of over-

lapping of the source and the drain regions by the

gate is designed into this mask. The wafer is now

ready for the gate oxidation, which is done usually

in a dry oxygen atmosphere in an oxidation furnace

at an appropriate temperature. The gate oxide

grown is typically about 1,500 angstroms thick.

This step is shown in figure 5f.
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A third photo-masking and etching step is

performed as shown in figure 5g, in order to remove

the oxide over the drain and source regions, so

that contact metalization can be done. Aluminum

is the most common metalization used. Ultrapure

film of aluminum, 5,000 to 10,000 angstroms

thick, is evaporated on the wafer by using an

evaporator usually of the electron beam type.

This contact metalization is shown in figure 5h.

Finally, the finished wafer is sintered at an

appropriate temperature to ensure proper alloying of

the aluminum with the silicon so as to make the

contact resistance as low as possible.

It can be noted that since (100) oriented

silicon typically gives lower Q ss values as compared

to (111) oriented silicon, lower threshold voltage

values can be obtained with the (100) orientation.

However, as the field oxide threshold voltage is

also correspondingly reduced, compensatory measures

such as increasing the field oxide thickness have

to be taken.

After aluminization, very often the wafers go

through a glass passivation step. A layer of

amorphous SiO2, about 5,000 angstroms thick is vapor
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deposited on top of the aluminum. This is usually

done at 300° to 500°C, temperatures much lower than

the melting point of aluminium, in a resistance heat-

ed reactor using silane (SiH4) and oxygen as the

reactants. Another photomasking and etching oper-

ation is required to remove this oxide from the

bonding pad areas, before the wafers are ready for

assembly.

3.2.Reliability Factors:

Some of the reliability factors involved in the

fabrication of MOS devices are described below:

1. The thick oxide method described in section

3.1 reduces the possibility of pinholes in

the oxide. Apart from the thickness of the

oxide, it can be noted that all areas, except

where the gate overlaps the source and the drain,

the oxide has been grown in two layers. This

minimizes the propagation of pinholes complete-

ly through the oxide.

2. A very high degree of polish in the lapping

operation is essential. Since the MOSFET is a

surface-controlled device, carrier traps should

be reduced to a minimum. This is ensured by

making the surface as evenly flat as possible by
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polishing.

3. Proper alignment of masks used in the photoresist

and etching operations is critically important.

Frequent replacement of photomasks is mandatory.

It is common practice in the industry to replace

masks after 10 to 15 uses.

4. Super clean conditions, particularly in the

photoresist and diffusion areas, are essential.

Dust-free dehumified air flow, use of laminar

flow hoods, use of pure deionized water in the

cleaning operations, use of high purity

"electronic" or "reagent" grade etchant solutions,

and prevention of contamination from extraneous

sources including the operating personnel are very

important.

5. Before the aluminum metalization is done, it is

good practice to etch off 50 to 150 angstroms of

the gate oxide, in order to remove any sodium

contamination due to the photoresist residues.

6. The electron beam evaporater for metalization

is preferred, as it gives cleaner metalization

free from alkaline ion contamination. In order

to ensure uniform thickness of deposited aluminum,
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special fixtures have been designed to

planetarily rotate the wafers, so as to provide

varying angles of incidence between the wafers

and the evaporater source.

7. Where stepping of the oxide is involved under

the metalization, they are appropriately sloped

to ensure that metalization cracks do not develop,

creating a reliability problem due to reduced

crosssection of metalization.

8. Passivation of the wafer surface greatly helps

in eliminating or at least, minimizing the

possibilities of scratches on the metalization, in

addition to reducing surface ion migration. The

presence of a small amount of phosphorus oxide

in the passivating layer acts as a "getter" to

trap and immobilize alkali ions, which contribute

to instability. 93

9. Over-alloying of aluminum into base silicon on the

p-region contact cutouts should be avoided.

Though this alloying is done by sintering at closely

controlled temperatures, further alloying does

occur in several subsequent operations such as

die-attaching, wire-bonding etc., where temperatures

about 400°C are used. The time duration for which
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the die is exposed to this temperature

during assembly should be minimum, subject

of course to the requirements of good die-

attach and wire-bond. For the same reason,

ultrasonic wire-bonding is preferred to

thermocompression bonding.

10. Freedom from contamination is as important

for the package as it is for the die. The

package bases as well as caps should be effect-

ively cleaned before use in the assembly line.

Between such cleaning and their actual use in the

assembly, they should be stored under clean and

inert conditions.

3.3 Gate Protection: 

The fact that the gate of a MOSFET acts as a

capacitor makes the device very sensitive to damage

by stray electrostatic charges, that can be generated

during normal handling. A typically 1500 Angstroms

thick gate oxide would require at most 150 volts

to break down, assuming a high quality oxide with a

breakdown strength of 10
7 
volts/cm. Assuming a gate

capacitance of 4 pf, this voltage would need only a

small charge of (4 x 10 -12 ) (150) Coulomb or 0.6

nCoulomb. Hence protective devices are very often
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incorporated into the construction of MOS devices.

The most common form of protection is a diffused

diode in parallel with the gate 94 . The breakdown

voltage of this diode is designed to be just above

the maximum operating gate voltage of the device.

Its dynamic resistance in breakdown should also be

low. Another form of protection is the incorporation

of also a diffused resistor in series with the gate,

which helps to limit the current during breakdown 95 .

3.4 Reliability Assurance Methods:

In conjunction with production, it is also import-

ant to provide reliability assurance. Most quality

assurance specifications include references to the

following documents:

MIL - STD - 883A Test Methods and Procedures for
Microelectronics.

MIL - M - 38510 Microcircuits, General Specifica-
tions for.

Uniform methods for testing are established by

MIL - STD - 883A. These tests include environmental,

mechanical, and electrical screening tests. A typical

screening procedure is shown in tabular form in Appendix

A.
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3.5 Failure Modes and Analysis: 

Some of the common modes of failure of MOS devices

are listed in Appendix B. These include wafer-

processing and assembly related failures, mechanical

defects, and surface failures.

Failure analysis is a useful tool to discern

from the failed unit the extent of its deterioration

and cause of failure, so that corrective measures to

improve reliability can be instituted based on the

study. The proper sequence of individual tests

is very critical, in order not to destroy evidence.

The recommended sequence of individual steps and

a summary of basic failure analysis techniques are

given in Appendix C and Appendix D respectively.
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CHAPTER IV 

EXPERIMENTAL PROGRAMS AND TEST RESULTS 

4.1. Engineering Definition of Threshold Voltage:

As explained in chapter II, section 2,2, the

threshold voltage of a p-channel enhancement mode

MOSFET is the gate voltage required for the onset

of conduction from source to drain through the

inverted channel. For practical measurement

purposes howver, engineering practice more specific-

ally defines the threshold voltage (VT) for

p-channel devices as the gate-to-source voltage

(VGS) required to generate a drain-to-source

current (/DS) through the channel of a specified

value, under the condition VDS = VGS (i.e. with

the drain and gate terminals connected together).

The specified IDS value for the devices tested in

this study was -l0uA.

4.2. Measurement of Threshold Voltage:

The circuit used for the measurement of thres-

hold voltage is shown in figure 6. A General Radio

D.C. amplifier and electrometer, type 1230A, was

used for monitoring the drain current, while a

Hewlett Packard A.C. - D.C. differential voltmeter,



Circuit for Measurement of Threshold Voltage

FIG 6.
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model 741A, was used to measure the threshold

voltage. The latter instrument enabled the

measurement of VT upto the 4th decimal (0.1 mV).

As already explained in Chapter III,

section 3.3, the inadvertent application of even

a small electrostatic charge to the gate of an

MOS device can cause a large enough voltage

gradient in the gate oxide to damage it. Hence

extreme precautions were taken in handling these

devices, A metal wrist strap connected to a

good ground connection was worn by the operator

while taking measurements. When the devices were

not under test, they were always kept with all

leads connected together to avoid any possible

damage, unless otherwise required.

4.3. Experimental Program:

Several p-channel MOSFETs were put under life

test under different high temperature stresses as

well as temperature and bias stresses for several

thousand hours. The threshold voltages were

measured initially and at appropriate intervals of

time. Their means and standard deviations were

calculated and the drifts in threshold voltage

with time studied and analyzed. Special care was
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taken to ensure the accuracy of measurements.

The several categories of life tests undertaken

and the results obtained therefrom are explained

in the following sections.

The devices used for the tests were DD07P,

DDO8P, and DD08K type MOSFETs, manufactured by

American. Microsystems Inc. These 3 types were of

identical construction and ratings, except that

DD07P had a protective gate zener, absent in the

DD08P and DD08K types. The detailed specifications

of these devices are given in appendix E,

4,4. High Temperature Life Tests:

97 DD07P type devices were used for these tests.

The different storage temperatures and the number

of devices under each condition are listed below:

Category Storage Conditions 	 # of Devices

Ia Temperature of 80° + 3°C 	 40
with all leads tied together

Ib Temperature of 100° + 3 °C 	 40
with all leads tied together

Ic Room temperature 	 (22° + 2 0C) 	 17
with all leads tied together

TOTAL 	 97
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These life tests were carried out upto

15,000 hours, and VT measurements were taken

at peiodic intervals. A summary of the data

is presented in table I (A & B), and charts I&II.

The drift from 0 hours to 15,000 hours in the

mean value as well as the standard deviation of

the threshold voltage of the units of all these

three categories were well under 1%, and hence

considered insignificant.

4.5. High Temperature and Negative Bias Life Tests; 

A second group of 235 devices, consisting of

98 DD08P units and 137 DD08K units, were used

for these tests. The life test conditions and

quantities were as shown below:

Category Storage Conditions 	 # of Devices
DD08P 	 DD08K

IIa

IIb

IIc

Room temperature 	 (22 0+2°C) 	 20 	 26
with all leads tied together

Temperature of 140 °C+5 °C 	 40 	 55
with all leads together

Temperature of 140 °C+ 5°C
Bias VCS = -56V; 	 source, 	 38 	 56
drain, and substrate tied
together

TOTAL 	 98 	 137
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TABLE I 

DATA SUMMARY OF HIGH TEMPERATURE LIFE TESTS

A) Mean of |VT| :

HOURS CATEGORY Ia
(80°C)

CATEGORY Ib
(100°C)

CATEGORY Ic
(Room Temp.)

0 4,8637 4.8363 4.7646

250 4.8405 4.8315 4.7362

500 -- 4.8291 --

750 4.8606 4.8257 4.7653

1000 4.8571 4.8379 4.7539

1500 4.8521 4.8394 4.7536

2000 4.8559 4.8307 4.7656

3000 4.8597 4.8334 4.7765

4000 4.8531 4.8318 4.7598

5000 4.8533 4.8261 4.7545

7000 4.8363 4.8165 4.7468

10000 4.8505 4.8190 4.7626

12000 4.8646 4.8343 4,7685

15000 4.8469 4.8065 4.7493
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TABLE I (continued) 

B) Standard. Deviation of VT :

HOURS
CATEGORY Ia

(80°C)
CATEGORY Ib

(100°C)
CATEGORY Ic
(Room Temp.)

0 0.1530 0.1678 0.2852

250 0.1497 0.1640 0.2785

500 _ _
0.1609 --

750 0.1478 0.1612 0.2792

1000 0.1482 0.1599 0.2765

1500 0.1495 0.1602 0.2770

2000 0.1491 0.1595 0.2773

3000 0.1496 0.1628 0.2792

4000 0.1549 0.1625 0.2876

5000 0.1540 0.1647 0.2869

7000 0.1537 0.1632 0.2887

10000 0.1538 0.1630 0.2868

12000 0.1569 0.1627 0.2870

15000 0.1558 0.1638 0.2881
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The gate bias of 56V on the IIc devices was 80%

of the maximum rating. 	 Since the gate oxide thick-

ness was about 1300 Angstroms, it corresponds to

an electric field of about 4.3 x 10 6 V/cm.

The results of these tests are summarized

in table II (A & B) and charts III & IV. The IIc

units were unable to withstand the high temperature

and negative gate bias and increased in mean thres-

hold voltage within 1100 hours by as much as 16%

and 18.8% for the DD08P and DD08K types respectively.

Hence these devices were removed from test at 1100

hours. However the IIa and IIb units were continued

on test upto 3100 hours. The drift in mean thres-

hold voltage of the IIa units at room temperature

was very insignificant. The IIb units at 140 ° C

decreased in mean threshold voltage by 1.4% and

5.4% respectively for the DD08P and DD08K types.

4.6. High Temperature and Positive and Negative Bias 

Tests:

In the light of the results obtained on

the tests described in section 4.5, it was felt

that a lower gate bias with the same temperature

will yield more meaningful data, and that comparative
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TABLE II 

DATA SUMMARY OF HIGH TEMPERATURE AND NEGATIVE BIAS LIFE 

TESTS 

A) Mean of I VTI:

HOURS

	  DD08P MOSFET's
Category IIa T 	 Category IIb 	 Category IIc
(Room temp. & 	 (140°C & no bias) (140°C & VGS =
	  no bias) 	 -56V)

0 4.2755 	 4.3412 	 4.2988

1100 4.2695 	 4.3018 	 4.9847

2100 4.2928 	 4.2914 	 --

3100 4.2846 	 4.2795 	 --

1
DD08K MOSFET's

0 	 4.3353 	 4.4932 	 4,3957

1100 	 4.3013 	 4.3593 	 5.2215

2100 	 4.3422 	 4.2660 	 --

3100 	 4.3527 	 4.2488 	 --
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TABLE II - continued 

B) Standard Deviation of VT :

HOURS

DD08P MOSFET's

Category IIa 	 Category lib 	 Category 	 IIc
(Room temp. 	 & 	 (140 C & no 	 (140 C & VCS =
no bias) 	 bias) 	 -56V)

0

1100

2100

3100

	

0.1631 	 0.1544 	 0.1741

	

0.1617 	 0.1632 	 0.1219

	

0.1586 	 0.1825

	

0.1595 	 0.1764 	 --

DDO8K MOSFET's

	

0 	 0.1697 	 0.3998 	 0.2193

	

1100 	 0.1697 	 0.2704 	 0.2806

	

2100 	 0.1780 	 0.2302

	

3100 	 0.1659 	 0.2326 	 --



Chart III. Mean & S.D. of VT 	 AMI DD08P MOSFET's 
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Chart IV. Mean & S.D. of VT 	AMI DD08K MOSFET's 
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data on the effect of positive and negative gate

bias will be useful. Hence 47 more devices of the

DD08K type were life-tested under the following

new conditions:

Category Storage Conditions 	 # of Devices

IIIa
o

Temperature of l40+ 5°C 	 23
and VGS = -28V; 	 source, drain,
and substrate tied together

IIIb Temperature of 140 °+5 °C and 	 24
VGS = +28V; 	 source, drain, and
substrate tied together

Gate bias of 28V was 40% of the maximum rating,

contributing an electric field in the gate oxide

of about 2.15 x 10 6 v/cm.

The data obtained on these devices upto 260

hours is summarized in table III. All the IIIb

units (with positive bias) showed an increasedIV T I

within 260 hours, the increase in meanIV T Ibeing 8.7%.

But, out of the 23 IIIa units (with negative bias),

13 showed an average increase inIVTIof 7.7%, while

the other 10 showed an average decrease of 4.5%.

If all the IIIa units are taken together, mean |V.TI

showed an increase of 2.3%. Histograms on
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TABLE III 

DATA SUMMARY OF HIGH TEMPERATURE POSITIVE AND NEGATIVE 

BIAS TESTS ON DD08K MOSFETS: 

Mean and Standard Deviation of |VT|

I

Category
IIIa

(140°C & VGS = -28V)
IIIb
(140°C & VG S = +28V)

Hours 0 	 260 0	 260

Mean 4.3654 	 4.4670 4.5265 	 4.9211

Standard
Deviation 0.3996 	 0.5303 0.3904 	 0.4355
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the percentage drift in IVT I of these devices

are presented in figures 7 and 8.

11 of the IIIa units were continued on test

upto 1,500 hours. The unit which had shown

increase in FT ' continued to increase upto about

480 hours and then stabilized. But those units which

had shown decrease in IVT I began later to increase

and eventually stabilized within 1,500 hours.

In order to confirm the validity of the above

results, an additional larger sample of 22 DD08K

type devices were tested under category IIIa

conditions (140 °+5°C and V
GS 

= -28V). Threshold

voltage measurements were taken this time at more

frequent time intervals (0 hours, 46, 75, 120,

195, 390, 580, 840, 1200, and 1500 hours). Except

for 1 unit, all the rest drifted in IV T I to a

lower value at 46 hours. But the IVT I values started
increasing on all units at least within 390 hours,

and continued to increase beyond 390 hours. The

VT drift eventually stabilized within 1500 hours.

The data summary on these units is presented in Table

IV and Chart V.

The data on all individual units of category

IIIa, IIIb, and the additional IIIa units are pre-
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sented in appendix F.



o age drift
FIG 7. Histogram of % age Drift in 'VT ' of III a Units



Y5 age drift 6

FIG 8. Histogram of % age Drift in |VT| of IIIb Units
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TABLE IV 

DATA SUMMARY OF HIGH TEMPERATURE NEGATIVE BIAS 

TESTS ON ADDITIONAL CATEGORY IIIa* MOSFETS 

Mean and Standard Deviation of |VT|

HOURS MEAN STANDARD DEVIATION

0 4.4458 0.3044

46 4.2826 0.2948

75 4.2279 0.2983

120 4.2014 0.3214

195 4.2343 0.3505

390 4.4283 0.3156

580 4.5436 0.3085

840 4.5994 0.3092

1200 4.6288 0.3091

1500 4.6307 0.3092

* Storage condition: 140°C and VGS = -28V



Chart V. Mean of VT - Additional DDO8K MOSFET's
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CHAPTER V 

EXPLANATION OF TEST RESULTS AND PROPOSED 

THEORY ON THE EFFECT OF NEGATIVE BIAS 

5.1. Ionic Contamination of the Oxide:

As has often been reported 96,97,98 , the gate

oxide layer of a MOSFET has extraneous ionic

impurities, which have been mostly stated to be

those of alkali metals. Sodium can easily get

introduced into the oxide during the manufacturing

process at any process step. Any process material,

solvent or the ambient can act as a source of sodium.

In addition, hydrogen atoms, when ionized, are

electropositive in nature. Under high enough

electric fields, not only ionization, but also

migration of these ions takes place100,101. This

migration however is at a slow rate, and is depend-

ant on temperature as well as size, weight, and

binding energy of the particular ionic impurity

involved. While the hydrogen ions are mobile even

at room temperature, the sodium ions drift occurs at

above 100°C or lower102 . Some negative charges

have been also noted under certain conditions,

but they do not drift at temperatures much below

300°C, as observed by Deal102.
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The results of life tests presented in chapter

IV show that, while high temperature alone do not

cause the threshold voltage to drift very much,

high temperature along with positive or negative

gate bias cause considerable shifts in C T .

5.2. Effects of Positive Gate Bias and Temperature:

Under positive gate bias and elevated

temperature, the elctropositive impurity ions in

the gate oxide tend to migrate towards the oxide-

silicon interface, as shown in figure 9. The

increased positive ionic charge density near the

oxide-silicon interface tends to oppose channel

inversion (see figure), and hence necessitates a

higher applied negative gate voltage to invert

the channel. In other words, the threshold volt-

age of the device becomes more negative. This

can also be seen directly from the expression for

CT given in section 2.3., and is consistent with

the test results obtained on category IIIb units

(140°C & CGS = +28C). Figure 10 shows the condi-
tions under VT measurements for this case.

5.3. Effects of Negative Gate Bias and Temperature:

Under negative gate bias of CGS = -56V and



FIG 9, Conditions Under Positive Gate Bias & Temperature



Conditions at VT Measurement (+ve Gate Bias & Temp.)

FIG 10.
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temperature of 140 °C, the threshold voltage

of all the IIc units were found to drift towards

more negative values when the tests were

carried to 1100 hours. But tests at VGS = -28C

and 140°C (IIIa units) revealed CT drifts in

both directions upto 260 hours, but between

260 hours and the next set of readings taken

at 360 hours, all the units had drifted towards

more negative CT values. They continued to

do so beyond 360 hours also, and the drift even-

tually stabilized within 1200 hours. The same

pattern of drift was exhibited by the additional

IIIa units also.

A survey of the literature revealed that
;

the papers of Deal et al103, Hofstein 104 , Reynolds

et al 105 , and Kim106 are relevant to the phenomena

observed, though none of them bring out explicity

the theoretical factors causing the observed thres-

hold voltage shifts. But taking the contents of

these four papers together and the experimental

results of this investigation, the occurence of

the following two competing mechanisms is herein

postulated:

1. Impurity ion migration: Under negative gate
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bias, the electropositive impurity ions tend

to migrate towards the metal-oxide interface.

The consequent decrease in the positive ionic

charge density near the oxide-silicon inter-

face helps channel inversion, and hence

only a lower applied negative gate voltage is

required for channel inversion, or |VT| tends

to decrease. This can also be seen from the

expression for VT given in section 2.3. This

migration phenomenon should saturate, if the

bias stress is continued for sufficient

length of time, once all the available impurity

ions have migrated to the metal-oxide inter-

face.

2. Augmentation of positive charge density at the 

oxide-silicon interface: Since the thermal

oxidation process itself takes place by the

inward diffusion of oxygen through the silicon

dioxide already formed in the outer layers, it

is inevitable that the last two hundred ang-

stroms or so of the oxide layer near the oxide-

silicon interface are only partially oxidized,

leaving some SiO atoms and some unoxidized Si

atoms. If a high enough negative field at

elevated temperature is applied across

the oxide, these unoxidized Si atoms are



69
positively ionized. The silicon in the partially

oxidized zone could also be considered as

providing traps for holes. A high enough negative

gate bias at high temperature can also attract

into the oxide layer more positively ionized Si

from the substrate regions near the interface. The

net effect of all these is to cause an increase

in the positive ionic charge density at the oxide-

semiconductor interface. Such an augmentation of

positive charge density at the oxide-silicon inter-

face tends to oppose channel inversion. In other

words, |VT| will tend to increase.

Figures 11 and 12 depict the combined picture of the

conditions under negative gate bias and temperature,

and the conditions under VT measurement respectively.

Considering the ion migration mechanism, Marciniak

and Przewlocki 107 obtained drift time constants for

positive bias and temperature one or two orders of

magnitude higher than those for the opposite polarity,

and attributed their results to a possible trapping of

mobile ions at the metal-oxide interface. If this

theory is valid, it would follow that the increase in

|VT| due to ion migration in the negative bias case would
be less in magnitude and saturate faster, than in the

case of positive bias. This is consistent with the



Conditions Under Negative Gate Bias & Temp.

FIG 11.



Conditions at VT Measurement (-ye Gate Bias & Temp.)

FIG 12.
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results obtained on the 260 hours test of category

IIIa and IIIb units.

Considering the latter mechanism, the presence of

the unoxidized silicon is believed also to be the

cause of QSS108. Under negative bias, the positive

charging of the unoxidized silicon increases the

threshold voltage magnitude. Deal 109 found that

at 300°C, the drift with time reached 90 percent of

the saturation value within 10 minutes and the

remaining 10 percent took 8 hours, when the applied

field was between 0.5 x 10 6 to 3.0 x 10 -6 V/cm. At

the 140 °C temperature and 2.3 x 10 -6 C/cm field used

in the tests of this study, this period can be expected

to be much longer.

The period required for the saturation of the

drift due to the second mechanism is much longer than

that required for the stabilization of the drift due

to the first mechanism. Thus, when the test duration

is small, either of the two competing mechanisms could

dominate; while for longer test duration, the second

effect becomes dominant at least after a few tens or

hundreds of hours. Thus, the threshold voltage drifts

eventually towards more negative values. The postulation

set forth is thus consistent with the test results



7 3
presented in chapter IV.
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions:

P-channel MOSFET's under negative gate bias

and temperature stress may often show a downward

drift in IVT 1I initially, meaning a few tens to

a few hundreds of hours, depending on the field,

temperature, and impurity concentration. But

after this period, the drift in |VT| is upward.

The reason for this is that the migration of

impurity ions in the oxide layer predominates

initially over the positive ion augmentation

effect, while as time progresses, the latter

has the dominant effect.

For the positive gate bias and temperature

stress however, the drift in IVT I is upward through-
out.

6.2. Recommendations:

During the manufacturing process, contamina-

tion by ionic impurities should be eliminated or

reduced to a minimum. 	 Advances have been made

by the industry in this direction, but sustaining

the necessary process controls can not be over-
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emphasized.

Further studies are required to determine what

part of the augmentation of positive charge density

at the silicon-silicon dioxide interface is due

to the infusion of additional silicon ions into

the oxide from the substrate, and what part is

due to additional charging of ionized silicon

responsible for QSS.
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APPENDIX A. 
EXTRACT OF SCREENING PROCEDURE, MIL-STD-883A, METHOD 5004.2

SCREEN
CLASS B

MIL-STD-883 	 REQUIREMENTCONDITION
METHOD	 (% )

3.1.1 	 INTERNAL CISUAL
(PRECAP)

2010 	 TEST CONDITION B 	 100

3.1.2 	 STABILIZATION BAKE 1008 	 24 HRS MIN TEST 	 100
CONDITION C MIN

3.1.3 	 THERMAL SHOCK 1011 	 -

3.1.4 	 TEMPERATURE CYCLING 1010 	 TEST CONDITION C 	 100
MIN.

3.1.5 	 MECHANICAL SHOCK 2002 	 - 	 -

3.1.6 	 CONSTANT
ACCELERATION

2001 	 TEST CONDITION E 	 100
(MIN) Yl PLANE

3.1.7 	 HERMETICITY
a. FINE b. GROSS

1014 	 - 	 100

3.1.8 	 INTERIM (PRE-BURN-IN)
ELECTRICAL
PARAMETERS

PER APPLIC- 	 PER APPLICABLE
ABLE PROCURE- 	 - 	 DOCUMENT
MENT DOCUMENT

3.1.9 	 BURN-IN TEST 1015 	 160 HOURS AT 	 100
125°C MIN.

CO



SCREEN

CLASS B

MIL-STD-883 	 CONDITION 	 REQUIREMENT
METHOD 	 (% )

3.1.10 	 INTERIM(POST-BURN-IN)
ELECTRICAL
PARAMETERS

PER APPLICABLE
PROCUREMENT 	 - 	 -
DOCUMENT

3.1.11 	 REVERSE-BIAS BURN-IN 1015 	 TEST CONDITION A
OR C, WHEN SPECI- 	 -
FIED 72 HRS. AT
150°C MIN.

3.1.12 	 FINAL ELECTRICAL
TEST a. STATIC TESTS
1. 25°C 	 2. MAX AND
MIN RATED OPERATING
TEMPERATURE
b. DYNAMIC TESTS
25°C

PER APPLICABLE 	 - 	 100
PROCUREMENT
DOCUMENT

3.1.13 	 RADIOGRAPHIC - 	 - 	 -

3.1.14 	 QUALIFICATION OR
QUALITY CONFORMANCE
INSPECTION TEST
SAMPLE SELECTION

5005 	 -	 PER
APPLICABLE
DOCUMENT

3.1.15 	 EXTERNAL VISUAL 2009 	 - 	 100 OD
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APPENDIX B. 

FAILURE MODES OF MOS DEVICES 

1. Defects due to electrical overstress:

1.1. Open bond wires
1.2. Punctured gate oxide
1.3. Blown protective devices

2. Oxide faults:

2.1. Pinholes
2.2. Cracks
2.3. Contamination

3. Metallization faults:

3.1. Lifting metal
3.2. Over-alloying
3.3. Cracks in metal
3.4 	 Too thin metal
3.5. Bridging metal
3.6. Corroded metal

4. Surface defects:

4.1. Contamination, ionic and particulate
4.2. Excessive accumulation or depletion
4.3. Inversion or channeling

5. Die-mount faults:

5.1. Misplaced die
5.2. Poor adhesion and voids under die
5.3. Eutectic on die

6. Wire-bonding faults:

6.1. Broken wire
6.2. Mis-targeted bonds
6.3. Improper ball size
6.4. Excessive wire tails
6.5. Excessive slackness
6.6. Crossing of wires
6.7. Poor bond-pull strength
6.8. Purple plaque
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7. Package defects:

7.1. Poor hermeticity
7.2. Mechanical damage
7.3. Poor lead integrity
7.4. Contamination due to weld splash and

improper cleaning

8. Diffusion faults
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APPENDIX C 

RECOMMENDED SEQUENCE OF INDICIDUAL STEPS FOR FAILURE 
ANALYSIS**

1. External visual examination.
2. Electrical tests (through package pins only)

for verification.
3. X-ray.
4. Hermetic seal test (fine).
5. Hermetic seal test (gross).
6. Ultra-violet inspection.
7. Gas sample (of package cavity).
8. Decapsulation.
9. Die photo.

10. Visual inspection.
11. SEM inspection.
12. Thermal profile.
13. Electrical probing.
14. Wire-pull tests.
15. Passivation oxide removal.
16. Probing-electrical tester.
17. Selective removal of metal.
18. Decoration technique.
19. Etching Si02.
20. Bevel/stain.
21. Diffusion profile by spreading resistance

measurement,
22. Sirtl etch.
23. Cross-section.
24. Store sample.
25. Record data.

** Basic Technology by Integrated Circuit Engineering,
Scottsdale, Arizona, pp. 21-14/15.
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APPENDIXD

SUMMARY OF BASIC FAILURE ANALYSIS TECHNIQUES ***

*** Basic Technology by Integrated Circuit Engineering,
Scottsdale, Arizona, pp. 21-36/37.



METHOD PRINCIPLE PHENOMENON ADVANTAGES LIMITATIONS

Infrared Spec-
troscopy

Structure deter-
mination and
identity of
organic and in-
organic com-
pounds. General
quant. analysis.

Excitation of
molecular vibra
tions by light.

Identification
of functional
groups. Cir-
tually no sam-
ple limitations.
Impurity detec-
tion.

Medium sensi-
tivity. 	 No
direct infor-
mation about
size of mole-
cule.

Mass Spectrom-
etry

Structure Deter-
mination and
identity of or-
ganic compounds.
Analysis of
trace volatiles
in non-volatiles.

Ionization of
molecule and
cracking of
molecule into
fragment ions.

Precision mole-
cular wt.(mole-
cular ion).
Very high
sensitivity.
Impurity
detection.

Does not detect
functional
groups direct-
ly. Compari-
tively slow &
destructive.

Gas Chromato-
graphy

General multi-
component quan-
tative analysis
of volatile
organics. High-
ly efficient
separation tech-
nique.

Partitioning
between vapor
phase and sub-
strate.

Generality--
Widely applic-
able to vola-
tile materials.
Multi-component
analysis. High
sensitivity in
special cases.

Identifies ma-
terials only
in special
cases. Not
applicable to
materials of
low volatility.

CO



METHOD PRINCIPLE PHENOMENON ADVANTAGES LIMITATIONS

Combined Gas
Chromatography
and Mass Spec-
trometry.

Identification
and analysis of
trace organic
materials.

Combines separa-
tion efficiency
of GC with sen-
sitivity and
specificity of
mass spectro-
scopy.

Applicable to
identity of
sub-ppm
components in
mixtures.

Not applicable
to materials
of low volatil-
ity.

Atomic Emis-
lion Spectro-
scopy 	 (AES)

General qual.
and semiquant.
survey of all
metallic ele-
ments. Trace
metal analysis.

Light emission
from excited
electronic
states of atoms-.

General for all
metallic ele-
ments. Simul-
taneous analy-
sis of all
metallic ele-
ments.

Detects the
volatile ele-
ments (non-
metals) only
with difficul-
ty; calibra-
tion required
for precision
quant analy-
sis.

Radiographic
X-ray

Detect loose
particles in
hermetic packa-
ges.

X-rays penetrate
into cavity.
Metallic parti- -

Iles are opaque
to X-rays.

Loose metallic
particles may-
be detected
without dis-
turbing seal in
easy, non-
destructive
manner.

Metal packages
shield circuits
from X-rays.
Electrically
programmable
ROM's will be
damaged.

OD
03



METHOD PRINCIPLE PHENOMENON ADVANTAGES LIMITATIONS

Leak Test Determine her-
miticity of
packages.

Fine leak tests
force detect-
able material
in package and
detects its
escape.

Eliminates
possible field
failures and
determines
possible cause
of failed
devices.

Correlation
between leak
rate and fail-
ure rate not
documented.

Spreading Re-
sistance

Measures resis -

tivity.
Resistance be-
tween two probes
is function of
proble charac-
teristics,
resistivity &
geometry of
material

High spatial
resolution can
be obtained.

Calibration of
probe charac-
teristics and
proper surface
preparation of
chip is essen-
tial.

Plasma Etching Remove glassi-
vation. Also
used to remove
silicon,

Ionized fluorine
etch attacks
Si02 and Si &
not aluminum

Removes glass-
ivation with-
out damaging
aluminum metal-
lization or
adding other
contaminants.

Requires addit-
Tonal equipment

00



METHOD PRINCIPLE PHENOMENON ADVANTAGE LIMITATIONS

Electron Micro-
Probe 	 (EMP)

Identifies
specific ele-
ments and to
some degree
the concen-
tration.

High energy
electron beam
causes electrons
to be ejected
from bombarded
material.
Emitted X-ray
photon energy
identifies
element.

High resolu-
tion and simul-
taneous display
of all elements

Equipment
costs.

Flying Spot
Scanner

Troubleshoot
defective
circuits.

Generation of
hole-electron
pairs by light
beam in junction
areas.

Non-destructive
low energy light
beam used.

Metalliza-
tion shields
light. Tech-
pique not well
developed.

Infrared
Scanning

Determine
thermal
profile.

Detect infrared
radiation from
scanned chip.

Non-destructive
convenient
method of de-
tecting hot
spots.

Resolution in-
adequate for
small geomet-
ries of high
frequency
circuits.
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APPENDIX E 

SPECIFICATIONS OF AMI DD07P, DD07K, DD08P, AND DD08K 
MOSFETs 

General Description: Medium Conductance P-channel

Enhancement Mode MOSFET's in

TO-72 Package.

Terminal Diagrams - Bottom View

Absolute Maximum Ratings (TA = 25 °C, Body Grounded)



SYMBOL
I

CHARACTERISTICS MIN. TYP. MAX. UNITS TEST CONDITIONS

VT Threshold Voltage -3.5 -4.3 5.5 V VGS = VDS ,
 IDS = -10 uA

BCDSS Drain-Source Breakdown -30 -41 - V IDS = -10 uA, VGS = 0

BVSDS Source-Drain Breakdown -30 -41 - V  IsD = -10uA, VGD = 0

BVPNG Body Breakdown -30 -41 - V IDB = -10uA, VGS = 0,
Source Open

BVGSS* Gate-Source Breakdown -30 -41 - V IGs = -10uA, VDS = 0

IDSS Drain Leakage - 0.05 1.0 nA VDS = -15V, VGS = 0

ISDS Source Leakage - 0.07 1.0 nA VSD = 15V, VGD = 0

I GSS*  Gate Leakage - 0.01 1.0 nA VGS = -15V, VDS = 0

IGSS Gate Leakage - 0.1 - pA VGS = -30V, VDS = 0

IDSon ON Drain Current 15.5 44.0 - mA VGS = VDS = -15V

RON DC ON Resistance - 125 200 ohms VGS = -15V, VDS =--010V

Yfs Forward Transadmittance 14000 5400 - umho VGS = -15V, VDs=-15V,
F = 1.0 kHz

rd Dynamic Drain Resistance - 2.0 - kohm VGS = -15V, VDs=-15V,
F = 1.0 kHz

Ciss Input Capacitance - 4.4 6.0 pF VGS = 0, VDS = 0

Coss
1

Output Capacitance - 4.6 6.0 pF VGS = 0 , VDS = 0



SYMBOL CHARACTERISTICS MIN. TYP. MAX. UNITS I 	 TEST CONDITIONS

Crss Reverse Transfer
Capacitance

- 0.60 1.00 pF VGS = 0, VDS = 0,
Crss = Cgd

Cgs Gate-to-Source Capaci-
tance

- 3.8 5.0 pF VGS = 0, VDS = 0

Cds Drain-to-Source Cap-
acitance

- 4.0 5.0 pF VGS = 0, VDS= 0

F
i Input Gain Bandwidth

Frequency
- 195 MHz. Fi = Yfs/2π Ci ss

Fo Output Gain Bandwidth
Frequency

187 - MHz Fo = Yfs/2π Coss

* With gate protective zener (DD07P, DD07K)

CU
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APPENDIX F 

TEST DATA ON ALL INDIVIDUAL DEVICES
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VT OF CATEGORY IIIa MOSFETs

(Units Stored at 140 °C & With a Bias of VGs = -28V)

Unit No. VT at 0 hrs. VT at 260 hrs.
Percentage
Drift in 	 VT

N1 3.9796 4.4533 + 11.90

N2 4.8175 5.6749 + 17.80

N3 4.0085 3.9309 -	 1.84

N4 4.9755 4.6118 - 	 7.31

N5 4.4798 4.9827 + 11.23

N6 4.5138 5.1503 + 14.10

N7 3.8823 4.0100 + 	 3.29

N8 4.6708 4.9116 + 	 5,16

N9 4.8095 4.3 .564 - 	 9.42

N10 4.0738 4.0384 - 	 0.87

N11 4.6679 4.6147 - 	 1.14

N12 3.9880 3.9133 1.87

N13 4.0443 4.1057 + 	 1.52

N14 4.0000 4.0313 + 	 0.78

N15 4.1900 4.0847 - 	 2.51

N16 4.0239 4.2912 + 	 6.64

N17 4.8779 4.3911 - 	 9.98

N18 4.1027 4.0469 - 	 1.36

N19 3.9321 3.9621 + 	 0.76

N20 4.4232 4.5502 + 	 2.87
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VT OF CATEGORY IIIa MOSFETS - continued

Unit No. at 0 hrs. VT at 260 hrs.
Percentage
Drift in 	 CT

N21 5.2145 5.9066 + 13.27

N22 4.7600 4.3421 - 	 8.78

N23 3.9721 4.3820 + 10.32

Mean 	 = 	 4.3654 	 4,4670

S.D. 	 = 	 0.3996 	 0.5303
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VT OF CATEGORY Mb MOSFETs

(Units Stored at 140 00 & With a Bias of VGS = +28C)

Unit No. VT at 0 hrs. at 260 hrs. Pe r centage
Drift in 	 VT

P1 4.5584 4.6315 + 	 1.60

P2 4.5418 4.6088 + 	 1.48

P3 4.3365 4.4480 + 	 2.57

P4 4.7370 4.9654 + 	 4.82

P5 4.2429 4.6343 + 	 9.22

P6 4.0394 4.4320 + 	 9.72

P7 4.9050 5.2248 + 	 6.52

P8 4.5343 4.8756 + 	 7.53

P9 4.9527 4.9667 + 	 0,28

P10 5.0017 5.0561 + 	 1.09

P11 5.0861 6.2191 + 22.28

P12 3.7540 4.7158 + 	 25.62

P13 4.4996 4.6408 + 	 3.14

P14 4.1640 4.3598 + 	 4.70

P15 4.2916 4.6743 + 	 8.92

P16 4.6090 5.5628 + 20.69

P17 4.0149 4.7885 + 19.27

P18 	 I 4.8065 4.8671 + 	 1.26
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VT OF CATEGORY IIIb MOSFETs - continued

Unit No. at 0 hrs. at 260 hrs .
Percentage
Drift in 	 CT

P19 4.9717 5.0653 + 	 1.88

P20 4.4900 5.1895 + 15.58

P21 5.1204 5.3088 + 	 3.68

P22 4.9340 5.5596 + 12.68

P23 4.1582 5.0465 + 21.36

P24 3.8870 4.2664 + 	 9.76

Mean 	 = 	 4.5265 	 4.9211

S.D. 	 = 	 0.3904 	 0.4355



VT OF CATEGORY IIIa MOSFET's CONTINUED ON TEST

(Units Stored at 140 0C & VGS = -28V)

Unit # 0 hrs. 260 hrs. 360 hrs. 480 hrs. 910 hrs. 1500 hrs.

N13 4.0443 4.1057 4.1963 4.2000 4.2004 4.2002

N14 4.0000 4.0313 4.1603 4.2769 4.2807 4.2810

N15 4.1900 4.0847 4.1735 4.2668 4.2683 4.2688

N16 4.0239 4.2912 4.3700 4.4311 4.4517 4.4529

N17 4.8779 4.3911 4.6263 4.6590 4.6630 4.6653

N18 4.1027 4.0469 4.1123 4.1980 4.2008 4.2010

N19 3.9321 3.9621 4.0612 4.0872 4,0896 4.0891

N20 4.4232 4.5502 4.6555 4.6992 4.7032 4.7003

N21 5.2145 5.9066 6.0960 6.1970 6.2401 6.2398

N22 4.7600 4.3421 4.4034 4.4712 4.6010 4.6853

N23 3.9721 4.3820 4.5075 4.6179 4.6289 4.6304

9
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VT OF ADDITIONAL UNITS OF CATEGORY IIIa

(Units at 140 °C and VGA  -28C) 

Unit #

N51

0 hrs.

4.3275

46 hrs.

4.2153

75 hrs.

4.1608

120 hrs.

4.1137

195 hrs.

4.0985

N52 4.7333 4.4720 4.3511 4,3207 4.4601

N53 4.4135 4.2209 4.1212 4.0150 4.2195

N54 4.3584 4.1083 4.0008 3.9000 3.8595

N55 4.7409 4.5612 4.4803 4.4987 4.5593

N56 4.8613 4.7673 4.7287 4.6801 4.6898

N57 4.4860 4.2073 4.0803 3.8795 3.7087

N58 4.6698 4.4682 4.3611 4,2602 4.2085

N59 3.9743 3.7094 3.6712 3.7733 3.8595

N60 4.0935 3.8847 3.7930 3.6373 3.5987

N61 4.4492 4.3360 4.3133 4.3275 4.3623

N62 4.1239 4,0591 4.0400 4,0175 4.0408

N63 4.7775 4.5384 4.5023 4.5187 4.5593

N64 4.1283 4.0393 4.0187 3.9753 3.9806

N65 4.6193 4.3875 4.3213 4.3408 4.4389

N66 4.6920 4.5527 4.5013 4.4727 4.5198

N67 4.7340 4.5605 4.5197 4.5503 4.6010

N68 4.8027 4.5849 4.5423 4.5588 4,6168

N69 4.6280 4.3339 4.2697 4.2716 4.3279

N70 3.9273 3.7361 3.6989 3.7079 3.7593

N71 4.3223 4.5334 4.6000 4.6811 4.7612
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VT OF ADDITIONAL UNITS OF CATEGORY IIIa - continued

Unit # 0 hrs. 46 hrs. 75 hrs. 120 hrs. 195 hrs.

N72 3.9455 3.9412 3.9387 3.9312 3.9254

Unit # 390 hrs. 580 hrs. 840 hrs. 1200 hrs. 1500 hrs.

N51 4,3004 4.4419 4.5087 4.5133 4.5129

N52 4.7993 4.9404 4.9998 5.0007 5.0013

N53 4.4802 4.5614 4.5996 4.6012 4.6103

N54 4.2734 4.4883 4.5553 4.5996 4.5987

N55 4.7112 4.7914 4.8189 4.8205 4.8216

N56 4.8014 4.8773 4.8823 4.8847 4.8883

N57 4.3388 4.5197 4.5604 4.6024 4.6042

N58 4.3987 4.6411 4.7887 4.8491 4.8508

N59 3.9937 4.0488 4.0850 4.1089 4.1074

N60 3.9001 4.1111 4.1889 4.2302 4.2299

N61 4.4558 4.5094 4.5313 4.5507 4.5523

N62 4.1611 4.2285 4.2638 4.2893 4.2966

N63 4.6815 4.8009 4.8933 4.9414 4.9474

N64 4.0809 4.1757 4.2418 4.2989 4.3021

N65 4.6197 4.7213 4.8076 4.8683 4.8702

N66 4.6887 4.8011 4.8635 4.9011 4.9013

N67 4.7203 4.7997 4.8384 4.8607 4.8599

N68 4.7649 4.8410 4.8808 4.9089 4.9072
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VT OF ADDITIONAL UNITS OF CATEGORY IIIa - continued

Unit # 390 hrs. 580 hrs. 840 hrs. 1200 hrs. 1500 hrs.

N69 4.5125 4.6844 4.7904 4.8583 4.8603

N70 3.9001 4.0012 4.0778 4.1192 4.1201

N71 4.8487 4.8985 4.9123 4.9272 4.9303

N72 3.9902  4.0753 4.0987 4.0998 4.1012
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APPENDIX G 

THRESHOLD VOLTAGE DEFINITIONS 

The definitions and expressions for C T , given in

chapter II, are based on the assumption that conduction

is deemed to have commenced, when the channel surface

has become as much p in nature as the bulk is n. In

section 2.2, VT is hence defined as the gate voltage

required to produce sufficient Q G to counteract the

surface state charge QSS and the charge QD of a

depletion region that supports a potential of 2.4.

In figure 2, the same definition is expressed in terms

of charge distributions as below:

In the expression for VT given in section 2.3, the term

QB (charge density in the bulk silicon) is equal to

(QD + Q 1 ), the total hole charge in the depletion region

and the inverted channel, due to the applied gate volt-

age. This expression also includes terms to take into

account the effects of (i) the work function difference

between the gate metal and the silicon and (ii) any ionic

contamination in the gate oxide.
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