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ABSTRACT

It is well known that in actual control systems 
there are uncontrolled parameter changes caused by aging 
of elements, temperature, pressure and effects of external 
medium, among others, which may impair the performance of 
the system. Hence, there is the need to develop systems 
that weakly react to these parameter fluctuations.
Sensitivity theory has been developed to study some of 
these problems. Most of the investigations in this area, 
however, deal with problems in continuous systems modeled 
by ordinary differential equations. Even the recent publica­
tions on sensitivity problems in distributed parameter 

control systems are largely concerned with systems modeled 
by first order partial differential equations.

In this dissertation, the study of parameter sensitivity 

is extended to higher order distributed parameter control 
systems. The dynamic system of interest is represented by 
a non-linear higher order vector partial differential equation 
and its associated matrix sensitivity equation. The problem 

posed is that of minimizing a cost functional consisting of 
both the performance and trajectory sensitivity indices subject 
to the state and sensitivity equations of the system. By means 
of variational techniques, the necessary conditions for optima­
lity are obtained. The sufficient conditions are also derived 
using the theory of convexity.
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The theory developed is applied to two classes of 

reliability models of wide-applicability. These are 
represented by the standby redundant system and the semi­
infinite parabolic PDE. The resulting co-state equations, 
together with the system's equations, are discretized 
in both space and time. Algorithms are then developed 
to integrate these equations. The results are presented 
in the form of state and sensitivity profiles for a given 
set of conditions. The variation of the functional per­
formance index with respect to changes in system parameter 
is also presented.

The study concludes with a series of numerical examples 
to illustrate the theory and technique in modeling various 
sensitivity problems in distributed parameter control systems. 
In particular, the problem of achieving a compromise among 
a set of design objectives is emphasized.

This dissertation is essentially an extension of low 
sensitivity design theory to distributed parameter systems.
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CHAPTER I 
INTRODUCTION

Dynamic systems have been studied by classical 
mechanics and solved satisfactorily. Like any other branch 
of science or mathematics^ studies of dynamic systems, 
which are physical processes mathematically modeled by 

differential equations, have to surmount certain problems.
One of these problems is stability of motion due to the 
fact that real dynamic systems are exposed to disturbances 
which may affect the response of the system.

These disturbances, partly due to parameter changes, 
provide an important link between physical dynamic systems 
and their mathematical models. Hence, the most significant 
investigation in this connection is the study of stability 

as a result of variations in the system's parameters. Such 
investigations have led to new concepts such as paramter 
sensitivity, and trajectory sensitivity among others.

Earlier investigations into problems of parameter 

sensitivity of dynamic systems proved mathematically cum­
bersome. The advent of high speed electronic computers, 
however, facilitated computations and thereby eased the 
problem of extending the study of parameter sensitivity 
in dynamic systems to areas such as multi-variable systems (91). 

In addition, more sophisticated types of investigations other 
than straight forward stability analysis Op study of be­
havior of sensitivity coefficients had been encouraged and
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continue to be encouraged as better and faster computers 
became available. For example, the study of the effects 
of disturbances in dynamic systems has been extended to 
include the study of trajectory, initial condition, eigen­
value and eigenvector sensitivities. (92).

In spite of the advent of high speed computers, 
sensitivity studies have not been vigorously pursued outside 

the area of dynamic systems modeled by ordinary differential 
equations. It has not been easy to handle the different 
types of partial differential equations. For, while 
there is a fairly general and unified theory for ordinary 
differential equations, there is no such theory for par­
tial differential equations.

In this investigation, the study of sensitivity in 
distributed parameter systems represented by some classes 
of reliability problems is undertaken. Prior published works 
in the area of sensitivity analysis in control systems, 
with particular reference to multiple-index optimization 
in distributed systems, will be considered in this chapter. 
The specific objectives of this research will also be stated.

A. Brief Survey of Control System Sensitivity

Recent investigators have developed techniques for the 
study of sensitivity problems in conjunction with system 
optimization. (50). This technique of optimizing the 
system's performance index while at the same time reducing
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the sensitivity of the system due to parameter variations 

appears particularly attractive. Unfortunately, this approach 
is not without its problems. For, it raises some computa­
tional issues in addition to questions concerning the 
efficiency of such an approach and also practical implemen­
tation of the control system. (25, 50). But the study of 
sensitivity, especially techniques of design, have not reached 

the point where definitive answers can be given to these 
questions posed by Kreindler. (50). Although 

sensitivity studies were first initiated by Bode (10) as far 
back as 1945, it was not until 1963 when the usefulness of 
sensitivity analysis in the design of optimum control sys­
tems was realized. (28). Since then problems in control 
system sensitivity have captured the attention of researchers 
and textbook writers. (25, 50, 92). Considerable atten­

tion also continues to be devoted to sensitivity in optimal 
control systems at national and international conferences. (69).

Since 1963, three major surveys on the subject of 
sensitivity and sensitivity problems in optimal control 
systems have been published. The first paper published in 
19 64 gave a systematic survey of researches on the sensiti­
vity of automatic control systems and of the application of 
the results of these researches to the synthesis of control 
systems including adaptive systems. (4 7). This first survey 
dealt mostly with Soviet literature. The second survey 
was published by Sobral in 196 8. (87). It summarized the
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then current developments on the subject, and essentially 
updated the earlier survey. The third survey, apparently 
the most recent, was published in 1971 by Ngo. (59). This 
survey reviewed the publications on sensitivity in discrete 

control systems.

A recent important monograph (92), written in the style 
of a survey primarily considered problems related to trajec­
tory sensitivity in continuous systems.

The above monograph, papers, books and surveys account 
for most of the literature on the subject. In later sections, 
various aspects of sensitivity in optimal control systems 
will be considered. Before doing so, the general problem 
of control of distributed parameter systems will be briefly 
outlined.

B . Optimum Control of Distributed Parameter Systems

The distributed parameter system of interest in this 
study has some spatial domain D which is contained in the 
Euclidean space Rn ( n 1 ) In many such systems
this domain is fixed, closed and bounded. It may even be 
infinite or semi-infinite in extent. In more difficult pro­
blems the boundaries may be movable. There is also a time 
domain T which is usually finite or semi-infinite.

These distributed parameter systems are mathematically 

characterized by either partial differential equations or
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integral equations. In the case of partial differential 

equations, there are also boundary conditions to be considered. 
There is then some functional dependent on the state of the 
system , its boundary conditions , its controls, or seme 
combination of these. The usual optimal control problem is 
either to find the control which minimizes the given functional 
(open-loop control) or to find the functional relationship 
between the control and the system state in order that the 
functional is minimized (closed-loop control).

The analytical study of the design of optimum distri­
buted parameter systems was first initiated by Butkovskii 
(14) who dealt with the integral representation and the 
maximum principle for distributed parameter systems. The 
dynamic programming approach was studied by Wang and Tung 
(95), among others. Kim and Gajwani (43) derived the canonical 
equations, i.e., the necessary conditions for optimality, 
by variational techniques and thereby improved upon the 
earlier work by Lurie. (5 3). The most comprehensive survey 
on optimal control of distributed parameter systems was 
published by Robinson (74) in 1969. Earlier surveys include 
those by Wang (94) and Butkovskii et a l . (17). The latter
dealt with the Soviet literature on the subject. Thus, the 
theory of optimal control of distributed parameter systems 

is apparently well established. Unfortunately, the inherent 
difficulty in handling the mathematics of distributed systems 
inhibit extensive applied research in this area. The problem
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of searching for an efficient mathematical approach to dis­
tributed parameter problems continues to engage the attention 
of researchers (79, 94). Indeed, a few dissertations have 
already been written on this subject. (83, 48).

The classical theory of distributed control followed 
closely that of single parameter control modeled by ordinary 
differential equations. The objective, for example, is 
still the minimization of some cost functional subject to 
some contraints. On the other hand, the solutions of 
the resulting co-state equations are more difficult to 
solve than those for continuous systems. Techniques have 

been developed for tackling the distributed two-point bound­
ary value problems. These follow closely some of the 
techniques developed for solving two-point boundary value 
problems in lumped parameter systems. (8 3).

C. Sensitivity in Continuous Systems

We have already noted that the study of control system 
sensitivity started with the origins of feedback system 
theory. In fact, the basic concepts in this area first 
appeared in the fundamental work of Bode (10) which consti­
tuted the beginnings of modern theory of feedback systems.
The usefulness of sensitivity in system design was soon 
apparent (28, 40, 90). Cruz and Perkins (22), Rohrer and 
Sobral (75) and others have also investigated sensitivity 
problems in optimal control. An excellent overview of sen­
sitivity theory is provided by Kreindler. (49). Most of the
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earlier works on sensitivity in continuous systems were con­
cerned with deterministic parameter sensitivity. Thus, 
Gonzales' (35) extension into multiparameter 

sensitivity measures which are applicable to cases where 
the parameters are stochastic is significant. White (97) 
reviewed several types of sensitivity measures and defined 
two new measures, integral and peak sensitivity, in terms 
of sensitivity functions.

Horowitz (40) showed that sensitivity analysis need 
not be restricted to small parameter deviations. He, there­
fore, introduced the concept of "sensitivity in the large" 
and demonstrated that systems which suitably compensated for 
large parameter deviations exhibited qualities generally 
considered attainable only by means of adaptive control.

Dorato's (28) earlier formulation of the performance 

index sensitivity problem for both open-loop and closed-loop 
control systems was extended by Pagurek (60) to include a 
broader class of systems. But it was Kreindler (49) who 
in 1967 considered the general problem of reducing perfor­
mance index sensitivity in a system subject to a single 
parameter variation, by means of adding a measure of per­
formance index sensitivity to the original performance index.

Other measures of sensitivity of importance in 

optimal control are trajectory sensitivity (50), relative 
sensitivity (75) and terminal condition sensitivity. (39, 36).
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In spite of the multiplicity of measures of sensitivity, 
the effects of parameter changes on the behavior of a sys­
tem is manifested in two main ways. (87). First, the 

motion of the system - the state trajectory - may deviate 
from the nominal trajectory. This is called the trajectory 
sensitivity. Second, the performance index may also differ 
from that value associated with the nominal trajectory.
This will be called performance index sensitivity. In the 
theory of synthesis of low sensitivity control systems 
these two types of sensitivity undoubtedly receive most of 
the attention of researchers. Accordingly, it is proposed 
here to define and examine each of them.

1. Performance index sensitivity

Sensitivity, in the classical sense, is defined as the 
ratio of a relative change in a desired quantity to the 
relative change in a parameter of the system (10, 91). It 

is assumed, in this definition, that changes in the para­
meters are uniform and small. (This may not be true in 
practical systems.) By a limiting process, the above 
definition leads to the sensitivity coefficient of a system. 
(91). This sensitivity coefficient is defined as the partial 
derivative of a variable relative to the system parameter 
evaluated at the nominal values of the parameter. Thus, 
the sensitivity coefficients only convey information about 
a small neighborhood of a point in parametric space. (45).
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A more general approach to sensitivity studies is 

obtained by using the performance index as a measure of the 
behavior of the system. Performance index sensitivity is 
thus defined as the derivative of the performance index with 
respect to system parameters.

In extending Dorato1s (28) method of computing perform­
ance index sensitivity functions, Pagurek (60) obtained the 
rather strange result that the first variation of the 
performance index caused by a variation of the system para­
meter is the same whether an open-loop or a closed-loop 
implementation is used. It turned out, however, that Pagurek's 
result is a special case of a more general result. (62).
Also, Pagurek1s result applies if one is concerned only with 
variations of the performance index. But if variations in 

the state are the main concern, then in a certain sense a 
closed-loop system is better than an open-loop system. (87).

2. Trajectory sensitivity

The trajectory sensitivity matrix, v(t), is defined as 
the variation of the state variable x(t) / due to small varia­
tions of the system parameter, a,. This is given by the relation,

U.D
The elements of the matrix ^ constitute what we have al­
ready defined as sensitivity coefficients.

Many authors devote considerable attention to the 
development of techniques for generating and solving for these 
coefficients, notably by means of sensitivity equations. (9, 91).
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In this connection we note Butkovskii's (1958), structural 
approach which essentially eliminated the need to solve 
the sensitivity equations.

Since trajectory sensitivity coefficients are inde­
pendent of state vectors, they are normally treated as 
another type of state vector. This is important since it 
means that a trajectory sensitivity coefficient, v(t) , 

may be adjoined to a state to form an augmented State X =

[ x, v ] • In the same fashion, the original performance 
index may be augmented by addition of some positive definite 
function of the sensitivity vector. This, in fact, provides 
the basis and legitimacy of multiple-index optimization.
(49). This approach has been successfully applied to 
continuous systems. (54).

D. Parameter Sensitivity in Discrete Systems

An early investigator of sensitivity in discrete systems 
was Lindorff. (52). Others include Radanovic (69) who in 
1966 presented the theory of sensitivity analysis for sampled- 
data (discrete and discrete-continuous) systems. King (44) 
extended the techniques of sensitivity analysis to the 
class of systems whose mathematical description leads to 
a set of linear differential-difference equations.

Methods for systematic adjustment of sampling rates 
based on sensitivity considerations were developed by Tomovic 
and Bekey (89) and Bennet and Sage (7), among others.
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We note the fact that the fundamental work in sensi­
tivity was parameter sensitivity. In discrete systems 
this was studied either by expressing the change in state 
in terms of a perturbation matrix or by means of a sen- 
sitivity-vector function. (79). Generally, discrete 
sensitivity problems are studied via appropriate adaptations 
of continuous sensitivity definitions and sensitivity theory.

E . Sensitivity in Distributed Parameter Systems

Extending Cruz and Perkins' (22) generalization of the 

Bode (10) sensitivity criterion to multivariable stationary 
systems, Porter (65) demonstrated that an effective design 
procedure for the multivariate case can be developed from 
the generalized criterion. In a second paper, Porter (68) 
showed that certain results in system sensitivity analysis 
when properly formulated are valid in the domain of distri­
buted systems.

Recently, Davis and Perkins (26) reviewed the comparison 
sensitivity criterion for distributed systems and derived 
sufficient conditions which insure satisfaction of the com­
parison sensitivity criterion for distributed parameter 
systems described by non-separable partial differential 
equations.

Both Seinfield (83) and Gembicki et al (34) have con­
sidered the problem of multiple-index sensitivity optimiza­
tion. Seinfeld studied sensitivity of open- and closed-loop
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distributed parameter systems and solved the augmented 

problem for double-pipe heat exchangers with distributed 
and boundary controls. Gembicki1s work involved only static 
control problems in power systems.

A highly theoretical study of eigenvalue and eigen­
function sensitivity of distributed parameter systems was 
recently published. (25). We may also mention the growing 
body of distributed parameter sensitivity studies with 
application to water pollution problems. (63). These water 

pollution problems are modeled by first order partial dif­
ferential equations.

F. Sensitivity in Reliability Systems

Sensitivity problems encountered in reliability studies 
have mostly been documented as studies of parameter varia­

tions, component tolerances and application of the concept 
of drift failures to electrical circuits. (85). These studies 
are obviously useful in design of circuits or devices, since 
they allow the designer to gain a useful insight into the 
effect of parameter changes on the system. Belove (6) 
developed important sensitivity theorems for two- and three- 
element networks to facilitate the design of low sensitivity 
networks.

Apart from the above studies, there does not appear to 
be much interest in the literature on problems of sensitivity 
in reliability systems such as repairable structures. In
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the context of reliability theory, therefore, this investi­
gation is probably the first attempt at developing the 
theory and extending the multiple-index optimization techni­
ques to the solution of distributed systems with application 
to reliability.

G. Multiple-index Optimization Involving Sensitivity Functions.

The important work of Kreindler
(50) in which he proposed and discussed the optimization of 
an augmented performance index subject to augmented state equations has 
already been noted. Although this technique has been successfully 

applied to the linear regulator problem (54) and chemical 
control processes (83), it has not gained sufficient popu­
larity among researchers. In the area of distributed para­
meter sensitivity, therefore, very little work has been 
done to date.

It is fair to note the fact that Kreindler himself 
raised some theoretical problems in connection with the 
multiple-index optimization approach. These include the 
problem of comparing the ordinary optimization results to 
those obtained after augmenting both the state and performance 
index. There is also the problem of implementing such an 

augmented control system. Kreindler, however, agreed that 
further experimentation was necessary.

It is this experimentation preceded by the development 
of the appropriate multiple-index optimization theory for
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distributed parameter systems that constitute the core of 
this investigation.

H. Objectives

Recent contributions to the theory of sensitivity in 
optimal control have been concerned primarily with continuous 
systems. However, a majority of physical systems are essen­

tially of a distributed nature. These require partial dif­
ferential equations for their formulation. (83). Among 

these are classes of reliability problems represented by 
heat conduction phenomenon and standby repairable systems.
Although some work has been done on the control of distri­
buted parameter systems (48) , they have not been applied 
specifically to reliability problems. The literature on 
sensitivity in distributed parameter systems is even poorer.

Therefore, this investigation will be primarily concerned 
with the development of sensitivity theory for distributed 

parameter systems, and its application to classes of relia­
bility problems.

Specifically, the main objectives of this work are three­
fold:

1. To develop by means of the calculus of variations, 
necessary and sufficient conditions for the optimality of 
the optimal distributed parameter sensitivity problem modeled by vector-



matrix partial differential equations.

2. To extend the technique of sythesis of low 
sensitivity optimal control to distributed parameter 
systems.

3. To develop some numerical algorithms for solving 
sensitivity problems with mixed boundary conditions.
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PROBLEM FORMULATION AND STATEMENT

It is proposed in this chapter to formulate and state the 
general dynamic model for the classes of problems under investigation. 
The appropriate functional performance index, boundary conditions and 
classes of admissible controls will also be considered.

A. Formulation of the Model
The following notations are pertinent: 

a e r P, parameter vector.

x.(t,y) = [ Xi (t,y).. .xn (t,y) ] e Rn , state vector.
(.) = 3(‘)1 ;t 3t

3rM( • ) /  = ~ 3 C » where r is a positive integer.
y y

u.(t,y) = [ u-| (t,y) ...um (t,y) ] e  Rm , control vector. 

7(t,y) = e Rn x R*3, sensitivity matrix.da

w(t,y) = e Rm x Rp , sensitivity control matrix.
S3

T - [tQ. tf ]

a = l y 0 > yf  1
t, y, a are independent variables, 
a £2 denotes the boundary of n 
and Rn is n-dimensional Euclidean space.



1 . The Vector-Matrix PDE Dynamic Model
The distributed parameter system of interest may be 

represented by the vector partial differential equation of the form,

(2.1)
9t

where k and r are positive integers
and £•](•) represents an nxl continuous and differentiable vector
function of the variables inside (•)• For convenience the argument
of x_ and u_ are omitted. It is clear that a multi-spatial version
of equation (2 .1 ) can easily be obtained by making the state variable,
x̂ , a function of a vector spatial variable, y_. (78) and employing
Sage's (79) notation and definition for the differential 3 ^ >y) tr
The multi-spatial case will not be considered in this investigation. 
For, it only complicates the mathematics without necessarily providing 
any additional insight into the problem. Also, only space-distributed 
controls, belonging to the so-called Class II systems (48), will be 
considered.

The important assumption is now made that the dynamic model is 
subject to uncontrolled parameter changes. These changes may be 
due to:

(a) 'aging' of elements,
(b) effects of external medium,
(c) interaction with other systems,
(d) inaccuracy of calculated data,
(e) impossibility of precise realization of the control device,

and (f) environmental and other effects.



18

It is further assumed that changes in the system parameter vector 
(which has a nominal value a^) are small. Hence, the sensitivity 
equation can be obtained by partial differentiation of equation (2 .1) 
with respect to the parameter a_ of the system. (49). The result is:

= fi|_ ; + ^  - r + ^Lj_ - +8£i_
at ax 3x.r y  au w aa—  r y  —  —

A  f? (a_,t,y,x,x , v , v / , u , w )  (2 .2 )

where f2eRnx R p

Without any loss of generality, let k = 1. Therefore, from (2.1) 
and (2 .2 ), the general dynamic model of interest may be represented by:

and l l  = ^

2 , The Functional Performance Index 
N o w , given

t
f

J ^ a . x . u j  J e ^ x ^ a . t ^  d n +  J J $i (a,t,y,x, x ,u )dfldt 
n t0  ̂ ^  ~

(2.5)

Let the scalars c-j and c^, and pxl vector c^ be weighting factors.
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Consider the performance index,
— - 3 ] - -J (a,x,v,u,w) = c-j U,x_,u_) + £ 2  _ 1_ + c3J 2 (a_,v,w) (2.6)

9d

where, J 2 (a_,v,w) = J-j (a_,x,u)
x_ v v 
u v w

/ e2^ f >— d kl + / / df2dt

t n (2.7)

e2 ^ f ’V ^  ~ 1̂ ̂ —f ’ *̂f̂ x v v (2 .8)

$2 (a_,t,y,v,v r,w) = ^ ( a , t , y , x , x  r,u)
x v v 
u v w

(2.9)

(•) denotes the transpose of (•)• 
and (*)f denotes (•) evaluated at t = t^.

R e m a r k : In equation (2.7), x_ v v means x_ is replaced by v in the
argument of J-j. Similar notation applies to (2.8) and (2.9)

The first term in equation (2.6) is the performance index defined 
by (2.5). The second term is the sensitivity function of the perform­
ance index and the third term is the trajectory sensitivity. This
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last term reduces the variations of trajectory and control caused 
by the variations of the system's parameter-, a.
Hence, the performance index, J, in equation (2.6) seeks to approxi­
mately reach a compromise among the system optimality, the sensitivity 
of the performance index and the sensitivity of the trajectory. In 
addition, by suitable choices of c-|, c2 and c3 , the appropriate type 
of index may be emphasized or de-emphasized to meet a predetermined 
set of design criteria.

For convenience, denote e-^ = 0-| ( x ^ a ^ t ^ ) . Similar notations apply 
to e2 f »vf , etc.

Now, by defining,

then, from (2.5) and (2.7) through (2.11), equation (2.6) reduces to

30lf (2.10)

3 3 $
(2 .11)

J = J ef d o  + 
n

(2.12)

R e m a r k : The functional performance index (2.12) is very general.
It includes the various types of performance indices 
suggested for multiple-index optimization. (86)
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3. Boundary Conditions
The specified initial and boundary conditions for (2.3) are:

x ( t0»y) = b-,, x ( t , y )

3ft

3X
= b2’3yj = b3’

(an
3yr"2 | = br

(2.13)
where (i = l,2....r) are constants.

The corresponding conditions for equation (2.4) are:

v(tQ ,y) = 0, v(t,y)i = 0,
'3ft

3V_
3y = 0,

3ft

r-2-3 V
r-2 = 0 .

“ ay
3ft

(2.14)

It is assumed that the non-linear partial differential 
equations (2.3) and (2.4) are so posed that a unique solution can 
be obtained in terms of the other variables by applying the initial 
and boundary conditions (2.13) and (2.14).

4 , Classes of Admissible Controls
We assume that control vector u_ and control matrix w  belong 

to a prescribed set U e Rm and W e Rm x R^, respectively*

We say that u ( t,y ) or w ( t,y ) 
is admissible if,

(i) u_(t,y) or w(t,y) is defined and piecewise continuous

on[t0 ,tf jx [y0 ,yfJ 

and (11) ujt.y) EU or w(t,y) ski for all x [y0 .yf .



22

B. Statement of the Problem

Problem P is stated as follows:

Problem P: Find (u*(t,y), w*(t,y) ) which minimize
t*

J = / 0f d ft + / J $ dft dt
tft o f t

subject to the constraints

= -1

and
vt = ?2 (a,t,y,x,>ys\^vy%£,w)

with specified initial and boundary conditions,

(2 .12)

(2.3)

(2.4)

3X r-23 X
x(tQ ,y) = b p  x(t,y) b g , 3y II cr CO QJ7 < "S 1 ro

3ft 3ft

= br (2.13)
3ft

and

v(t0.y) = o, v (t,y) = 0 , 3V_
3y = o

r-2- 3 v

3ft 3ft
syr-2

= 0. (2.14)
9ft

C. Conclusion
The formulation and statement of problem P have been presented. 

The primary objective is to obtain conditions for optimality of the 
functional performance index (2.12) subject to the vector-matrix 
partial differential equations (2.3) and (2.4) and the boundary
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conditions (2.13) and (2.14). The solution, to be presented in the 
next chapter, is essentially a compromise among the system optimality, 
the sensitivity of the performance index and the trajectory sensitivity.
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CHAPTER III

THEORY OF SYNTHESIS OF LOW SENSITIVITY DISTRIBUTED PARAMETER CONTROL

The necessary and sufficient conditions for problem P of chapter 
II will be derived. The derivation of the necessary conditions will 
be done by means of the calculus of variations. The sufficient condi­
tions will be obtained by applying the conditions for convexity. (77)

A. Necessary Conditions for Problem P
An optimal control problem is essentially a minimizing problem. 

Such problems are usually solved in two stages. First, necessary 
conditions are obtained. These conditions limit the number of pp 
candidates for a solution to the problem. The required solution 
is then obtained by imposing some other conditions which insure a 
minimum. These latter conditions are the sufficient conditions.
It is important to note that a necessary condition does not 
necessarily guarantee existence of a solution. It does, however, 
narrow the area of search for a solution.

The necessary conditions for optimality of ( u*,w* ) for 
problon P are surrmarized in Theorem 3.1.

(a) Theorem 3.1; Let u*(t,y)e and w*(t,y)e pf" x R? for 
(t,y)e T x ft be the extremal controls which transfer (x(tQ ,yo), 
v(tQ,yo)) to ( x(tf,yf), v(tf,yf)). Also let x*(t,y) and v*(t,y) 
be the trajectories of (3.1) and (3.2) generated by u*(t,y) and 
w* (t,y) respectively. In order that u* and w* be optimal for 
problem P, it is necessary that there exists non-zero p x 1 vector



(t,y) and a non-zero nxp matrix q2 (t,y) such that q*,q*, x* ,v* 
are a solution to the following system:

= 2.1 , “ fcf *3,1)

( 21 j =5* , t = t- (3.2)
av * r

3H
( axyr )* = 0. , Q = dtt (3.3)

3H( ) * = 0. (3.4)
9v ry

(H }* + ("1)r f - r d l r )  + !3k = 0 - ' (tfy ) e T x n  (3.5)- y -y * at

(-~ )* + (“l)r rr-■ ( —   ̂ + 9<̂ 2 = 0. , (t,y)e Txfi (3.6)
8v y av r * aty

(—  ) = 0 (t,y) e T xfi (3.7)
3u *

(— ) = 0  (t,y) e T x!2 (3.8)
aw *

where (•)* represents (•) evaluated at (x*, x£r/v*,v*r/u*/w*); the 
Hamiltonian, H, is defined by,

H(a,t,y,x,j^r,v, vyr,u,w,q^,q^) = * + q ^  + tr (q^) (3.9)

and tr (•) denotes the trace operation on (*).
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(b) Proof of Theorem 3.1

In order to simplify the derivation, we omit the dependence on 
the variables. Also, define the first variation 6(*) = (•) - (•)* 
where (•)* represents x£r, v*; v*r, u*or w^
From (2.3), (2.4), (2.12) and q^, and q2, we obtain the adjoined 
performance index,

fcf
f d ft + J J [cj)+q£(f1 “ _=) + tr (q2 (f2 - |̂ ) )]dftdt

t ft o

fcf
+ ^  ̂ [ H - _ -tr (g2 |^) jdfidt (3.10)

t ft o

We note that the first variation 5g of a scalar function g(B), where 
B is an MxN matrix, is given by (12)

M N
6g = I Z [ 6B. . (|§ )] = tr [ 6B (^) - ] (3.11)

j i i,j 9B

where ^  is an MxN gradient matrix,
9B

= / 0^ dft

Ja = j
ft
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Taking the first variation of (3.10) and applying (3.11) it is seen 
that;

■ I [ S 5f < “ ), + < evf <aa >'* 1 dn
+ / /[ 6x"( 3H )*' + 5x-r (£_H )*
to a 3* y 3*yr

+ tr ( 6V ( 3H )* ) + tr ( 6Vvr ( aH )* ) + gu- ( aH )’ 
3^ y 3 ^ f  3«

+ tr ( fiw( gH )*) 
3^

tr ( qfoffiv*) )
2 at

qj* (ax) ) j d^dt
31

(3.12)

Integrating the fourth term on the right hand side of (3.12) and dd 
applying the boundary conditions in (2.13), we have,

jf(6% r  ( 2H_ )* d^dt = rf [ 6 ^ r_1 < )* -<$X*r~2 (gH)*
tofl 3Xyr to 3X?7 ~  ay aX7sy 3 V

.... + (-l)37"1̂  3r-l (Mi )* ]dt + (-l)rrf fsacVI ( aH)
3yt-l 3 x ^  ^  to a ayT ^

3J2

*dQdt

= J1 S’C 37”1 (3H_ )* dt + (-1)17 ff ffixV ( aH)
tn 3X.r I t_ o avr ,x i

)*dnat

3ft
tQ n 3 y37 3 2 ^

(3.13)
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Similarly, for the sixth term,

J / tr [ iv r( 9H )* ] dMt = j tr [ 6vr-i(3H )* ]dt
to ** sfi

' -3H+ (-if ( / tr [ 6v 35. ( W J *  J dfldt t o  3rtQ ft By37
(3.14)

in view of (2.14).

Integrating the last two terms in (3.12), we have,

*f/ /* Stlajfe)' + tr( q* 3 (6v)' x ]dftdt
t0 a “ <jT” * 3t

'= J t «2$ 3j£ + < «vf

t-:
rf  -" / / t «5x "3£* + tr ( <5v 3§* ) ] dftdt (3.15)
tQ n at 3t

in view of (2.13) and (2.14), i.e. x(tQ,y) = v(tQ,y) =0
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Substituting (3.13) through (3.15) into (3.12) and simplifying, 

ws have,

+ r  J [ &'( 3H + ( " D r 3r (3H ) + 9a)*tQ ft ”3x “5yt "5x̂ r "5t

+ 3h )* + tr ( <Sw (3H )* )
~  3u 3*T

+ tr( 6v ( 3lT + (-l)r 3r ( 3H V  + 3q? )) ] dftdt 
3* Syr 5 ^ r  ' S T

(3.16)

Applying the fundamental theorem of the calculus of variations (20), 
the necessary conditions for problem P of Chapter II are obtained by 
setting &Ja = o. Theorem 3.1 is immediately established.
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LEMMA : If the specified initial and boundary conditions given
in (2.13) and (2,14) are modified as :

= bx, 3x = b3, 
3ŷ

|dft
*r- h  = b.“ S T y T - 1 r+1 C

3J2
and v(tQ#y) = 0 , 3tf = 0 ,   3r~ V  = 0  C

Jy I c) yr-1
13S2 3J2

then, the necessary conditions are the same as those stated in Theorem ' 
Chapter III, except that equations (3.3) and (3.4) are replaced by,

>r-l 3H
3yT“l ( 3̂ r  } =  0 ' SI = 312

and ,r-l ( 9 H  1» - 
3 F - 1  W y r  > - 0,

SI =3S2

Remark :The above Lemma is similar to that considered by Sage and 
Chaudhuri (78) . The results derived here, however , are of wider 
applicability since the/ apply to both vector and matrix partial 
differential equations.

i.17) 

.18) 

.1 of

.19)

.20)
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To establish the lemma, note that it follows from (3.17) and (3.18) 
that;

t _
r j &cXr ( 3H )* anat = (-!)( ( 3H )* dt
to ft tQ 3F"1 3^r

tf
(-)r / j8x'3r ( 3H )* d M t  

to ft "Sy*

(3.21)

Jf J tr[ 6v^r ( 3H f* Jdftdt = (-1)r'1/ftr[Svl^J1 (3H 
to ft SVyT to 3y£"I3v5

tf
+(-l)r / Jtr[6v3r (3H )* Jdftdt 

to ft ^y^5vyT
(3.22)

This leads to (3.19) and (3.20), respectively. The lertma is thus 
immediately established.



32

B. Sufficient Conditions for Problem P
In optimal control problems sufficient conditions determine 

whether the extremal obtained by the necessary conditions is indeed 
the minimizing ( or maximizing ) solution. A ccnmon method for 
determining this is to take the second variation of the augmented 
performance index and determine its sign. If the second variation is 
positive it implies the solutions yield a minimum, a negative sign, 
of course, implies a maximum. This technique unfortunately leads 
to only local sufficient conditions. Global solutions are generally 
obtained by the use of the theory of convex functions ( 77 ).

By the theory of convex functions, the global solution is 
obtained by comparing it to all possible values, not only those due to 
neighboring solutions. This theory, which will be used here, has been 
successfully applied to optimal control problems including those 
involving differential games (12).

Sufficient conditions for problem P of Chapter II are stated 
in Theorem 3.2. The proof follows immediately thereafter.



Theorem 3.2 : Let ( x*, v*, u]*, ffi*, cfc, q* ) be continuous,
differentiable and a solution of equations (3.1) through (3.8) and
(2.3), (2.13) and (2,14). If the following conditions hold;

(i) ê , defined in (2.10), is convex in x^ and v^, at t=t^

(ii) H, defined in (3.9), is convex in (x, x^,tf,Vyr,u,\Sr )

then, u*, and w*, are minima for prablen p.

(b) Proof of Theorem 3.2
For convenience let

J = J( a, x, v, u, w, 2*r q\ > 

and J* = J( a, x*, V*, u*, w*, 3*, q* )

Similar notation applies to 0( x*, v*, a, t, )
~£ f ~  t
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Consider,

J - J* = J ( 0 - 0* ) dfl
£2 f £

+/f / [ H - H* - q*'(3x - 32?*) - tr( q$(3£'~ 3v*) ) ] dftdt
t fl <5E 'SE 3t 1

(3.23)

If 0^ is convex in x^ and v^, then frcm the condition for convexity 
(77) and also equations (3.1) and (3.2) , it is seen that,

(0f - 0*)^ I<SXfqJf + trffiVgcJ^ )] (3.24)

where (,)f denotes (.) evaluated at t = t^

Similarly, we have,

( H - H*)£ 6x"( 3H )* + 6x.tr ( 3H )*

+ tr[ 6v ( 3H )* ] + tr[ 6v„r ( 3H )* ]
W  7 W x

yr

+ 6u'( 3H )* + tr[ 6w (3H )* ] (3.25)
"SE 3w
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Now,

J / &x'r (3H )* dftdt = (-l)r / f6x'Br (3H )* dftdt (3.26)
t o fi tQ ft dyT Sj^r

in view of (3.3) and (3.13).

and / / tr[ 6vj- (3H )* Jdftdt = (-1 )rf /tr[ 6v 3r (3H )*]dftdt
t Q & r  WyT to ft

(3.27)
in view of (3.4) and (3.14).

Also, x(tQ,y) = v(t0,y) = 0 ( in view of (3.3) and (3.4) ), hence,

J /q?(^x ~ 3x*) dftdt = ftixZ q* dft - /fix'Sof dftdt (3.28)
ftS l 5t 5t ft “lf t0 ft 3t

tf t
/ /tr[q^(3\T- 3v*) Jdftdt = tr[6vfq|̂ )dft - /f J tr[6v9q|. ] dftdt. 
t ft Et̂  St1 t_ ft cTt

(3.29)
Substituting (3.7), (3.8), (3.22) through (3.29) into (3.23) and
simplifying, we have,

j - f £f [  SxT (3H)* + (-l)r 3r (3H )* + 3crt ] 
t O  5x 3 F  §t

+ tr[ 6v((3H)* + (-1)r3r (3H )* + 3q*) ] Jdftdt
Sy* Sv’x

in view of (3.5) and (3.6). This completes the proof for Theorem 3.2
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C. Summary
Two Theorems and a Lenina for necessary and sufficient conditions 

for optimality of problem P of Chapter II were stated. These, indeed, 
form the basis for the discussion of physical problems and solutions 
of numerical examples to be presented in subsequent chapters.

For ease of reference, the above Theorems are stated below;

1. Theorem 3.1 : In order that u* and w* be optimal for problem P, it is 
necessary that there exists non-zero p x 1 vector cĵ (t,y) and a non-zero 
n x p matrix q2(t,y) such that c[*, q* ,u*, v* are a solution of the 
following systems

( 9 0 ) *  = < a *  , t=t•f (3.1)

30 )*= q4 , 
3v

(3.2)

3H )*= 0 , £2 3J2 (3.3)

3H )*= 0 £2 3£2 (3.4)

( 3H )* + 
3x

(-1)r3r ( 3H )* + 3£* = 0. , (t,y) T x n
9 ^ r  3t

(3.5)

( 3H )* +
3^

~l)r3r ( 3H )* + 3q* =0. , (t,y) T x ft
3vyr 3t

(3.6)
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( 9H )* = o. , (t,y) e T x ft (3.7)
3u

( 3H )* = 0. , (try) e T x ft (3.8)
3W

2 .Lemma : If the specified initial and boundary conditions given in
(2.13) and (2.14) are modified as:

x(tQ ry) = b1# = b , . . . . 9 = br+1 (3.17)
3 y 3 yr-1

| 3ft | 3ft

and v(t^,y) =0, 3v = 0, . . . . 3r“^v = 0 (3.18)
*Yi T£F=13ft 13ft

then, the necessary conditions are the same as those stated in Theorem 
3.1 of Chapter III, except that equations (3.3) and (3.4) are 
replaced by,

)* = 0, a = 311 (3-19)
* 3*yr

i f ±  ( j h  )* = o, a = 3B (3-20)
3 Y 3 vyr
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3. Theorem 3.2 : Let ( x*, v*, u*, w*,cj|, q* ) be continuous,
differentiable and a solution of equations (3.1) through (3.8) 
and (2,3), (2.13) and (2.14). If the following conditions hold;

(a) 0̂  , defined in (2.10), is convex in x^ and v^

(b) H, defined in (3.9), is convex in (XfXyTr^v^r 

then, u* and w* , are minima for problem P.

at t=t^ 

,u,w* )
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CHAPTER IV 

STANDBY REDUNDANT SYSTEMS

In this chapter the mathematical model of a standby redundant 
system with arbitrary repair rate and non-constant failure rate will 
be derived. TWo problems involving the synthesis of optimum repair 
rate and low sensitivity design will be formulated. The necessary and 
sufficient conditions for extremum for both problems are stated.
These conditions are established by direct application of the general 
theory derived in Chapter III.

A. Introduction

The application of probability theory to system reliability' 
analysis and evaluation is well known (8, 71). Of particular interest 
is the analysis of the reliability of repairable systems using Markov 
processes. The usual assumptions made in the derivation of the mathe­
matical model include the assumptions of constant failure rate and 
constant repair rate. These assumptions, which conveniently lighten 
the mathematical computations, may not be valid for many physical 
systems (85). For example, the repair rate may not be constant because 
of maintainability, availability and other factors. In this investi­
gation the assumption of constant repair rate will be relaxed. But the 
assunption of constant failure rate will be retained. For, this does 
not appear to be too objectionable (85).

We are primarily concerned in this investigation with the optimi­
zation and study of sensitivity in classes of reliability problems repre-
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sen ted mathematically by partial differential equations. Such structures 
are also referred to as distributed parameter systems.

Standby redundancy, one of the physical systems selected for purposes 
of illustration, is an important and widely used technique for relia­
bility improvement (3, 85) . A designer may find redundancy not only 
the quickest, easiest and cheapest solution, if the component is available 
and cheap, but also the only practical solution if the reliability 
requirement is beyond the state of the art. There are some serious 
problems which the designer may have to face. The components may not 
after all be cheap if a large number of redundant structures are required.
More importantly, there may be limitations on the designer such as 
size, weight, power requirements and the need for complex sensing and 
switching circuitry. On balance, however, designers find it easier to 
resort to redundancy than to other means of reliability improvement.

The failure rate of the standby system is assumed in this investi­
gation to vary around a nominal value during the operation of the system.
This assumption is dictated by the practical necessity of component 
replacements and repair. Both operations - repair and replacement - do 
affect the failure characteristics of the system. It is further assumed 
that a functional can be found which, together with an efficient main­
tenance of repair rate, may represent the performance of the system 
cost-wise. Achieving a minimum of this cost functional under conditions 
of operation near the nominal value of the failure rate is the ideal 
desirable result.

Many researches have considered the problem of maximizing system 
reliability (32, 58), but only have lumped or continuous parameter systems
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have so far been considered. Recent investigators in this area of 
lumped parameter reliability optimization include Misra ( 57 ) and 
Tillman ( 88 ). This treatment of reliability problems as lumped 
parameter systems does not take into account the repair time in the 
formulation of the mathematical model. In considering the repair time 
in the derivation of the mathematical model of the standby system 
we shall arrive at a model represented by partial differential equations. 
The theory of low sensitivity design developed earlier will then be applied. 
It is true that standby redundancy has been extensively explored in 
the literature, but none of the authors discussed low sensitivity design 
of these structures ( 3,31,85).

In the next section a mathematical model of the standby system with 
repair will be derived. In later sections problems involving low sensi­
tivity design will be formulated and solved by means of the theorems 
established in Chapter III. The solutions are stated in the form of 
corollaries.

B. Mathematical Model for Two-element Standby Redendant System

The derivation of the mathematical model in this section is somewhat 
different from that of Rau ( 71 ) based on the following assumptions: 
standby redundant system with both arbitrary failure and repair rates.

Consider a two-element standby redundant system with failure rate 
X (t) and repair rate u(t,x) as shown in figure 4.1. It is assumed that 
there are both perfect switching and sensing and that no warm up time 
is required.
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U(t,T) ,X(t)

U(t,l) ,X(t)

FIGURE 4.1; Two-element Standby Redundant System.
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At any time t the system must be in one of the following states 
with probability (t), ( i=l,2,3 ).

State Is both elements are operable , but only one is operating.
State 2: one element has failed and the other is operating.
State 3: both elements have failed.

Define the probabilities A(t)At, u(t,x) At, and p2(t, x)dx as follows:
Mt)At s’ the probability that failure occurs in the interval (t,t+At)

given that it is working at time t. (4.1)
u(t,t) At S the probability that a failed element is repaired in the

interval (x,x+At) given that it has been under repair for T
units of time and that it is working at time t. (4.2)
( from statistical point of view u(t,x)->- u (t) as t-*> «>)

P2 (t,x)dx ̂  the probability that the system is in state 2 at time t
and has been there fromx to x+ dx units of time, wherex is
the tine to repair an element after a fault has been detected.

(4.3)
Remark 1: It follows from (4.1) that the probability that no failure 
occurs in the interval (t, t+At) is equal to l-A(t)At.
Remark 2: Properties of p2(t,x).
(a) p2 (t,x) = 0 for x> t (4.4)

t
(b) p2(t) = £ p2(t,x)dx 0 t (4.5)

(c) p2 (t,0) = A(t)p1(t) for x=0, t̂ . 0 (4.6)
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The last property follows from the fact that X(t)p^(t) At, which denotes 
the probability that the system is in state 1 at time t and switches 
into state 2 during the next increment of time At , is precisely what 
is meant by p2(t,0)At.

It is seen that the only ways that the system can be in state 1 
at time t+At are:
1. The system is in state 1 and no failure occurs during the interval 

(t,t+At); or
2. The system was in state 2 at time t, had been there for t time 

units, and was repaired during the interval (t,t+4t). Thus we must 
sum or integrate the probability of occurrence of an event for the 
above second type over all t for o x ,<t.

hence,

t
p^t+At) = pjjt) (l̂ X (t)At) + j  p (t,x)u(t,x)dxAt (4.7)

o z

In order for the system to be in state 2 at time t+At and to have 
been there T+At time units, the system must be in state 2 at time t, 
have been there for T units of time, and no failure and repair occur 
in the next At time units. Thus we have,

p2(t+At,x+At) = p2(t,x) [ 1 - u(t,x) At ] [ 1 - X(t) At ] (4.8)

In order for the system to be in state 3 at time t+At , it was 
either there at time t or was in state 2 at time t, had been there T 
time units, and was not repaired during (t,t+At) but yet the remaining 
component failed in the increment of At.
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hence,

t
p^(t+At) = P3 (t) + / p2 (t,x)[ 1 - u(t,r)At ] X(t) Atdx (4.9)

Dividing equations (4.7) through (4.9) by At and letting At->0, 
we obtain, respectively,

t
dpT (t) = -X(t)p,(t) + / p2(t,T)u(t,x)dt (4.10)
dt b

Sp^t,**) 3po(t,Tr) _ - [ u(t,x) + X (t) ]p„(t#x)
St3—   + " ^ t ----- 2 (4.11)

t
dpi(t) _ X (t) / p2(t,T)dx (4.12)
dt “ 0

where >(t) ? 0 is given.

The initial and boundary conditions are given by,
P 1 (0) =  1. (4.13)

P 3 (0) =  0 (4.14)

p2(t,0) = X(t)Pl(t) (4.15)

Also the sum of the probabilities equals one,

i.e. p^t) + p2(t) + p3(t) = 1 (4.16)
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C. Formulation, Statement of Problems and Proof of Corollaries

Twd problems will be formulated in this section. The first problem 
involves the synthesis of optimum repair rate for the two-element 
standby redundant system. The second problem concerns the synthesis 
of low sensitivity optimum control. In this latter regard, it vrould 
be useful to define the following sensitivity and other quantities.
• - Assuming a constant failure rate ,x, but arbitrary repair rate u(t,T)

v (t) = 3pi(t) , system sensitivity (4.17)
3X

= 3P?(t,r) , state sensitivity (4.18)
3X

w(t,x) = 3u(t,x) , sensitivity control (4.19)
3X

The performance index of interest is defined as the sum of the 
minimum energy and the unreliability of the system. The minimum 
energy performance index is given by,

T t
JME = / / t ( va2 + p| )/2.] dxdt , (kT<Jt«r (4.20)

o o

where T is the operating time.

Let F(t) be the failure time distribution with density 
function f(t), then,

t
F (t) = J f (x)dx 

o
is the system's unreliability at time t. But the reliability 
of the system, R(t), is given by,

R(t) = 1 - F(t)

(4.21)

(4.22)



47

It follows from (4.21) and (4.22) that

tF(t) = J ( - dR ) dt (4.23)
0 dt

and the unreliability at time T is given by,
T

F(T) = / (- dR ) dt (4.24)
0 3t

but R(t) = 1 - p3(t) = p1(t) + p2(t) (4.25)

hence (4.24) reduces to,
T

F(T) = - J ( dR ) dt
o at

s / ( dga(t) )dt 
o at

T t
= / / Xp2 (t,T)dTdt (4.26)

0 0
in view of (4.12).

The functional performance index is selected by combining 
(4.20) and (4.26), the result is,

T t
J = 0 0 (^ klP2 + k2u2/2* + k3p2/2* )dTdt (4,27)

where k^, k2, and k3 are weighting factors.
Remark; It is important to note that in the deterministic equivalence 
of above system, it is assumed that pj_, p2, P3 represent the statistical 
means of the respective probabilities.
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1. Problem 4.1: synthesis of optimum repair rate

Determine optimum u* (t, x) e U for o^x^t^T , and k2 e R which 
minimize ,

T t
J(k2,p2,u) = J / ( \k1p2 + k u2/2. + k pJ/2. )dxdt, 

o o ^
0 « x ^ T  (4

subject to

8P2 + 3£2 + (u + l)P2 = 0 (4
3t 3x

The initial and boundary conditions are,

dP] + Xp, = / P2u dT, t^O (4
dt o
P 1 (0) = 1  (4
p 2 (t,0) = X p 1(t) t ^ O  (4
P 3 (0) = 0  (4

Remark; The constraints (4.12) and (4.16) have been combined in the 
formulation of F(T) ( see equation (4.26) ).

.28)

.29)

.30)

.31)

.32)

.33)

The necessary and sufficient conditions for optimality of 
problem 4.1 are stated in corollaries 4.1 and 4.2 respectively.
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(a) Corollar/4.1 : necessary conditions for problem 4.1

In order that the control u(trx) be optimal for pibblem 4,'i, it is 
necessary thatthere exists non-zero continuous function q(t,x),0^T^t<T 
which together with u(t,x) satisfy;

3q*(t,x) + 3q*(t,x) [ u*(t, x) +X]q*(t,x) -k^X - k3R(t,x) = 0,
3t 3x ^

0 < x < t < T  (4.34)

q*(T,x) = 0 0<x<t<T (4.35)

k2u*(t,x) + q*(t,x)p£(t,x) (4.36)

and through which the trajectory governed by

3P*(t,x) 3Po(t,x) + [ u*(t,x) + X]p*(t,x) = 0,
3t + 3x 2

(4.37)

is transferred from p2 (0,0) to p 2(t #t ) in fixed time T by the control 
in the admissible class u e U , o$x<rt̂ T.

Ranark; In view of equation (4.32) p2(0,0) = X. Also, for optimal
performance p2 (T,T) must satisfy the relation p3 (T,T) :̂X. In other 
words the system is required to be in near state 1 at the end of the 
operation.

(b) Proof of corollary 4.1

Let q(t,T) be the Lagrange multiplier. From equations (4.28) and (4.29) 
it is seen that the Hamiltonian, H, is given by,

H ̂  XkjP2 + k2u2/2. + k3p2/2. - q[ Sgg + ( u +X )p2 ] (4.38)
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The necessary conditions stated in corollary 4.1 follow inmeadiately 
from application of Theorem 3.1 of Chapter III to (4.38).

(c) Corollary 4.2 ; sufficient conditions for problem 4.1

Let ( p*, u*, q* ) be continuous, differentiable and a solution
to equations (4.34) through (4.37). If - q2̂ 0,k^0, for k2 and
q, not all zero, then u*(t,x) e U for O ^ t ^ T  is optimal for
problem 4.1.

( a) Proof of corollary 4.2

3 3 2We form the matrix, M, of second differentials, t Y a H ,
1=1 j=f9Xi3x.

H is defined by (4.38) t x = ( p2, u, aP? ),
9t

and
k2 -q 0

where

M = -q k2 0
o 0 0

(4.39)

The matrix M is clearly positive semi-definite if k-jk^ 3 , k^O, which
inplies that H defined by (4.38) is convex in ( p2, u, ap2 ) . Corollary

9t4.2 is immediately established from Theorem 3.2 of Chapter III.
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2. Synthesis of Low Sensitivity Optimal Repair Rate

The sensitivity equations and their associated initial and boundary 
conditions are obtained by differentiating equations (4.29) through (4.33) 
with respect to X. in view of the definitions of the sensitivity functions 
given by (4.17) through (4.19), it is seen that the sensitivity equations 
are given by;

Problem 4.2 is stated as follows;
(a) Problem 4.2

Determine the optimal ( u*(t,T), w*(t,x) ) and e R for
0$T^t$T, which transfer the trajectories generated by (4.29) and (4.40)

(4.40)

v1 (0) = 0 (4.42)

v2(t,0) = p1(t) + AV^t) t Jj. O (4.43)

v3(0) = 0 (4.44)

Let k^ (i=l,2..»6) be weighting constants, then the selected 
performance index is given by,

J = / / [ ( knu2 + k2Pj + k3v2 + k.w2 )/2 
o  o  ^  2  *o o

+ k5uw + kgp2v2 O^T^t^T (4.45)
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frcm ( p2(0,0), v2(0,0) ) to ( P2(T,T), v2(T,T) ) while the functional 
performance index (4.45) is minimized, subject to (4.30) through (4.33) 
and (4.41) through (4.44). The constants kj_ (i=3,4,5,6) are given.

The necessary and sufficient conditions for problem 4.2 are stated 
in corollaries 4.3 and 4.4 respectively.

(b) Corollary 4.3 ; necessary conditions for problem 4.2

In order that the controls u and w be optimal for problem 4.2, it 
is necessary that there exist non-zero continuous functions (t, x) and 
q2 (t, T), 0<T$t$T, which together with u and w satisfy;

3g* + 3g* - q*( u* + X) - k3v* - kgP* '■= 0 (4.47)

k^u* + k5w* + q*p* + q*v* = 0 (4.48)

k4w* + k5u* + p*q* = 0 (4.49)

q*(T,T) = 0 (4.50)

q*(T,T) = 0 (4.51)

and through which the trajectories governed by (4.29) and (4.40) are 
transferred from ( p2(0,0), v2(0,0) ) to ( p2(T,T), v2 (T,T) ) in fixed 
time T by the controls in the admissible classes u e U, w e W for 
0£T$t£T
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(c) Proof of cQrollary 4.3

Define ,H , the Hamiltonian as follows;

- q̂ [ ̂ 2  + (U+̂ P2 J " ̂  ̂ 2  + ^ ^ ^ 2  + (wfl)P2 1
(4.52)

where q^(t,T) and q2(tfx) are Lagrange multipliers.
The necessary conditions follow irrrneadiately from application 

of Theorem 3.1 of Chapter III to (4.52).

(d) Corollary 4.4 : sufficient conditions for problem 4.2

Let ( p*, v|, u*, w \  q£, q* ) be continuous, differentiable and 
a solution of equations (4.29) through (4.33), (4.40) through (4.44) 
and (4.4b) through (4.51). If the determinants |D̂ | £0 (i=l,2,..4) for 
same values of k^(i=l,2...6), q^ and q2, not all zero, then u* e U 
and w*e W for 0 ̂  t ̂  t ̂  T are optimal for problem 4.2.

where we define | |  = * (4.53)

kl ^ 1  
-qi k2

(4.54)

ki -qx k5

-*1 k2 "^2

k5 -*2 k3

(4.55)
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P 4I =

kl ^ 1 k5 ^2
-*1 k2 "*2 k6
k5 ^ 2 k3 0

k6 0 k4

(4.56)

Proof of corollary 4.4 
(e) Vfe form , as usual,the matrix of partials defined by

J 3 H
i=l i=l 9x75x7 1 D

(4.57)

Where H is the Hamiltonian defined by (4.52) 
and x = [ p a, w,

I?2' iZo J9t

»—1 k5 q2 0 0

^ 1 k2 ^ 2 k6 0 0

k5 ^ 2 k3 0 0 0

^ 2 k6 0 k4 0 0
0 0 0 0 0 0
0 0 0 0 0 0

(4.58)

Sihee 1111 = | |Dg| | = 0,matrix,M, is clearly positive semi- 
definite if |dJ^ 0(i=l,2,..4), for seme k^( i=l,2,..6), not
^ero, where |D^|are defined by (4.53) through (4.56). This result 
implies that H is convex in x. Corollary 4.4 is inmeadiately 
established from Theorem 3.2 of Chapter III.
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D. Summary

The necessary conditions for both problems 4.1 and 4.2 were 
established by direct application of Theorem 3.1 of Chapter III. The 
sufficient conditions were obtained by application of the conditions for 
convexity and Theorem 3.2 of Chapter III. It follows, therefore, that 
for each of the performance indices (4.28) and (4.45) the extremum, 
if it exists, is a global minimum.
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CHAPTER V 

HEAT CONTROL PROCESS

The second class of problems selected for purposes of illustration 
of the theory derived in Chapter III is represented by the heat equation. 
This equation finds extensive use in the study of conduction, diffusion 
and other processes where heat transfer takes place. In spite of its 
enormous importance, very little work on sensitivity analysis of the heat 
equation has been reported in the literature ( 83 ).

Problems involving the sensitivity analysis of the heat equation 
are presented in this chapter. It is assumed that the variations in the 
parameter - the diffusivity - are small.

A. General Formulation and Boundary Conditions

For simplicity, only the one - dimensional version of the heat 
equation will be considered. This, in its simpliest form, is given by;

23T = a 9 T + bu (5.1)
St ay2

where T(t,y) is the temperature in the material for
t e (tQ,tf) and y e (yQ,yf) 

u(t,y) is the heat forcing function or control 
'a' is the diffusivity with nominal value, aQ 
'b' is a constant
(to,tf) and (yQ,yf) are fixed and given intervals.
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1. Boundary conditions

Boundary conditions for the heat equation (5.1) are extremely impor­
tant. For, these boundary conditions must be formulated with care in order 
to insure existence and uniqueness of solutions. In mathematical jargon, 
the problem must be*well posed' by suitable choice of boundary conditions.

Since the region under consideration in this problem is finite, the 
distribution, T(0,y), within the material at time t = 0 may be specified.
In addition, either the temperature T or the rate of heat flow, 3T , across

3y
the boundaries ( at both y=yQ arcl y=Yf ) may be prescribed. A general 
boundary condition is given by,

a-jT(t,y) + a23T(t,y) = a3 , at y=yQ and y=yf (5.2)
3y

where otj_ (i = 1.2.3) are constants. (37)

Figure 5.1 exhibits seme of these acceptable boundary conditions.

In some problems the forcing function is prescribed at one boundary* 
This leads to the so-called boundary control formulation. These boundary 
control problems will not be considered in this investigation. Only 
distributed control problems will be discussed in this chapter.
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T
or or
3T

0
o

3t

Figure 5.1 : Boundary Conditions For One-dimensional Heat Equation.
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2. General formulation

The problems posed here involve synthesis of low sensitivity 
optimal control. We define the following sensitivity quantities;

v = 3_T , temperature sensitivity (5.3)
3 a

w = 3 u , control sensitivity
S a  (5.4)

By differentiating (5.1) with respect to 'a1, it is seen that,

3 v = a 3^v + 3^T„ + bw
fy2 T y 2ft (5.5)

Let the initial and boundary conditions for (d .1) be given by,

and either

T(0,y) = S0, y e  (yQ,yf)

T(tfy0) = 3X , t e (tQ,tf)

T(t,yf) = e2/ t e (t0,tf)

(5.6)

(5.7)

(5.8)

or 3T = & , t e (tQ,tf)
"Sy J 1

y=y0
3T = 8 , t e (tQ,tf)
3y

y=Yf

(5.9)

(5.10)

where 8^ ( i = 0,1.. 4) are constants.
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The corresponding initial and boundary conditions for the sensitivity 
equation (5.5) are obtained by differentiating (5.6) through (5.10).
Hence,

v(0,y) » 0 , y e  (yQ#yf) (5.11)

and either v(t,^ = 0 , t e (t^tf) (5.12)

v(t,yf) = 0 , t e (tQ,tf) (5.13)

or 9v (5.14)
fy =0, t e (to,tf)
]y=yo
3v =0, t e (tQ,tf) (5.15)
•5y| 

|y=yf

The cost functional used in this chapter is defined by;

J = Jf /f [ (R-jT2 + R ^  + R3u2 + R4w2 )/2, + R5TV +RgUw]dtdy (5.16)
y0 to

where R^(i=l,2..6) are weighting constants.

In the problems which follow, we seek to find the set of controls 
which will minimize J under the constraints given by (5.1) and (5.5) 
together with the appropriate initial and boundary conditions.
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B. Problem Statement and Proof of Corollaries

Two problems involving low sensitivity optimal control will be formulated 
in this section. In the first problem, the two boundaries will be maintained 
at different temperatures. This is analogous to the heat sink phenomenon.
In the second problem both boundaries are insulated. The necessary and 
sufficient conditions will be stated in the form of corollaries, since 
they are derived by direct application of Theorems 3.1 and 3.2 of Chapter III.

1. Heat sink problem

Problem 5.1 is stated as follows;

(&) Problem 5.1

Determine the optimal u e U and w e W for t e (tQ,t̂ ) and y e (y^y^) 
which transfer the trajectories generated by (5.1) and (5.5) from 
( TCt^yo), v(t0,yQ) ) to ( T(tf,yf), v(tg,yf) while the functional 
performance index given by (5.16) is minimized, subject to the initial and 
boundary conditions (5.6) through (5.8) and (5.11) through (5.13).

The necessary and sufficient conditions for optimality of problan 5.1 
are stated in Corollaries 5.1 and 5.2 respectively.
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(b) Corollary 5.1 ; necessary conditions for problem 5.1

In order that the controls u* e U and w* e W for t e (t ,t*) ando i
y e (yQ/Yf) be optimal for problem 5.1, it is necessary that there exist 
non-zero functions q£t,y) and q2(t,y) for t e (tQ,tf) and y e (yQ,yf) 
which , together with u* and w* , satisfy;

+ R-jT* + R5V* = 0 (5.17)

a_q* +  a  a 2q *  +  
3* 3ya-

R2v* + R5T* = 0 (5.18)

R3u* + q*b + RgW* = 0 (5.19)

R4w* + q^b + RgU* = 0 (5.20)

q£(tf,y) = q2(tf,y) =0, y e  (y0,yf) (5.21)

(5.22)

q*(t,yf) = q|(t,yf) = o, t e (to'V (5.23)

and through which the trajectories governed by (5.1) and (5.5) are 
transferred from ( T(tQ,yo), v(t0,yQ) ) to ( T(tf,yf), v(tffyf) ), where 
(to,tf,y0,yf) are fixed.



(c) Proof of corollary 5.1

Define the Hamiltonian,
2 2 2 2 H = (R-jT + R2V + R-jU + R^w )/2. + R^TV + RgUW

2 2 2 + q, ( a 9 T + bu ) + q« ( a 9 v + 9 T + tw )
1 7  7  (5-24)

Where q-̂ (t,y) and q^(t,y) are Lagrange multipliers.

Gorollary 5.1 follows immediately from application of the necessary 
conditions in Theorem 3.1 of Chapter III to (5.24).

(d) Corollary 5.2: sufficient conditions for problem 5.1

Let ( T*,v*,u*,w*,q|,q^ ) be continuous, diffemetiable
and a solution to equations (5.1) and (5.5) through (5.8), (5.11)

2through (5.13), and (5.17) through (5.23), if ^ 0 , RjR.2 ” ^5 ^
2R^ >/ 0,and R3R4 - Rg ^ 0 for sane Rj_ ( i = 1,2,...6 ) not all zero,

then u* e U and w* e W for t e and y e (y0»yg) are
optimal for problem 5.1

(e) Proof of corollary 5.2

We form the second partials of H and define the matrix, M,as
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R1 R5 0 0 0 0

R5 0 0 0 0
0 0 R3 R6 0 0
0 0 % R4 0 0
0 0 0 0 0 0
0 0 0 0 0 0

The matrix, M , is clearly positive semi-definite for R^£ 0,
2 2 R1R2 " r5 ^ 0# R3 ^ 0 , and - R^ ^ 0 for some values of

R^(i=l,2...6) not all zero. This implies that H is convex in x. Corollary 5.2
in immediately established from Theorem 3.2 of Chapter III.

2. Problem 5.2 : Insulated Boundary Case
Determine the optimal u*e U and w* e W for t e(tg,tf) and y e(yQ,yf) 

which transfer the trajectory generated by (5.1) and (5.5) from 
( T(tQ,y0) #v(t0,y0)) to ( T(tf,yf), v(tf,yf)) while the functional 
performance index given by (5.16) is minimized. The initial and 
boundary conditions are given by equations (5.6), (5.9), (5.10), (5.11)
(5.14) and (5.15).

(a) Corollary 5.3 ; necessary conditions for problem 5.2
Hie necessary conditions for optimality of problem 5.2 are the same as 

those stated in Corollary 5.1, except that equations (5.22) and (5.23) 
are replaced by,

and

-J2l = £22,Sv 3y|
y=y0 \y=y0

&
= i223y

= 0

(5.26)

(5.27)
y=y.
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(b) Proof of corollary 5.3

The proof follows immediately from application of the Leona following 
Theorem 3.1 of Chapter III.

The sufficient conditions for problem 5.2 are stated in corollary 5.4below.

(c) Corollary 5.4 : sufficient conditions for problem 5.2
Let (T*,v*,u*,w*,qJ,q2 ) be continuous, differentiable and a 

solution to equations (5.1), (5.5), (5.9) through (5.10) , (5.11), (5.14) 
through (5.23); if Rx ̂  0, - r| ^0, R.^ 0, R R4 - Rg ̂  0, for
some R^( i=l,2..6), not all zero, then u* £ U and w* e W are optimal 
for problem 5.2

(d) Proof for corollary 5.4
The proof is thesame as that for Corollary 5.2.

C. Summary
Two problems involving heat transfer have been considered in this 

chapter. The necessary and sufficient conditions were established for 
each problem. The proofs follow directly from Theorems 3.1 and 3.2 of 
Chapter III. Since the sufficient conditions were established by means of 
the theory of convexity it follows that the extremum, if it exists, is a 
global minimum.
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CHAPTER VI 

NUMERICAL COMPUTATION

In this chapter discrete models and some problems in 
the setting up of finite difference equations for numerical 
computation are considered. The necessary conditions for 
numerical convergence of the solution of the discrete equations 
will be established. In establishing these conditions, tests 
for stability and consistency will be used. These tests 
are treated in detail elsewhere in the literature. (1, 56, 99).

A. Techniques for Solving Distributed Parameter Control Problems

It is possible to solve distributed parameter control 
problems by first establishing a spatially discretized 
model for both the system's equations and the functional 
performance index. The result is a set of matrix difference 
equations. Alternatively, a corresponding set of difference 
equations may be obtained by time-discretization. After 
either of the above discretization process, the well- 
established techniques for solving optimal control problems 
in continuous systems are then employed. (78).

For some problems it may be better to discretize the 
space or time parameter after the necessary conditions for 
optimality have been obtained. This enables us to use the 
well established techniques for solving two-point boundary 
value problems in continuous systems.
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The solution of the optimal control leads to the 
solution of two-point boundary value problems for 
distributed parameter systems.

There are four widely used computational techniques 
for solving distributed parameter two-point boundary 
value problems. (48, 78). These are:

1. Techniques based on iteration of the control 
to improve the performance index. For example, direct 
search on the performance index and the method of steepest 
ascent based on the second variation.

2. Techniques that iterate on the state equations.
For example, quasilinearisation.

3. Techniques that iterate on the boundary conditions 
while the actual state and co-state equations are retained. 
For example, shooting methods and invariant imbedding.

and

4. Techniques based on multi-level and hierachical 
methods. (98).

In this investigation, both space and time parameters of 
tne state and co-state equations will be discretized. 

Algorithms will then be developed for solving these discrete 
equations by iterating on the state equations and improving 
the performance index.
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Since this study relies on computer methods for solving 
the PDE, it is important to consider problems such as 
stability of the numerical solution, convergence and con­
sistency of the discrete equation with the differential 
equation. Before doing so, some of the discrete models 
often used to approximate partial differentials will be 
examined.

B . Finite Difference and Computational Molecules

The success of any discretization scheme depends on 
the choice of difference formulae used to approximate the 
partial derivatives. Only a few of the finite difference 
formulae will be considered in this section. These will be 
used in developing discrete approximations of the partial 
differential equations of interest in this investigation.

Taylor's series for ( u + At , y ) about (t,y), gives,

u(t+At,y) = u(t,y) + At 3u + (At)232u + ..
3t 2 g t2 (6.3)

which upon division by At, results in the relation,

Let t = ih = i At ( i = 1, 2 (6 .1)
y = jk = j Ay ( j = 1,2 (6 .2 )

3u = ( u(t+At,y) - a(t,y))/At - At 3 u 
3t 2

(6.4)



Hence

^  = ( u i+i,j - ui , j ^ + V h) (6*5)

where 0 „(h) = -hCajO, , - ... (6 -6)I 2 y.d

Equation (5.5) is the forward difference approxima­
tion for the differential at the grid point (i,j).
0 (h) is the truncation error associated with the forward 
f
difference approximation. Evidently, this error approaches 
zero as h approaches zero.

Similarly, the backward difference approximation and its 
associated truncation error, 0^ (h) , are given by,

t? " ( ui,i ‘ ui-l,J)/h + 0 b(h) <6'7)
i.J

at

whe re

0b(h) =h_(afu2)i,j - ... (6 .8)
2 8t

In a similar fashion, the forward difference approxi­
mation for the second partial derivative 9^u_ is 
given by (2 )

ay2

^ 2  = ( -2ui.J + )/k2 W  <k^  (6-9)
where i,j

~ /,_2n k2
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Again both Ô Cli) and O^(k^) tend to zero as h and k approach 
zero.

The above are some of the models which may be used 
in setting up the difference equations. They are first 
order approximations. Higher order approximations are 
also available (2). These higher order molecules are more 
accurate, but they lead to implicit formulae which are 
more difficult to solve.

C. Problems in Setting up the Finite Difference Equations

It is again emphasised that the finite difference 
models set up in the previous sections are only approximate 
models. Hence, they introduce errors such as truncation, 

discretization and round-off errors. There are, therefore, 
inherent problems in the setting up of the finite difference 
equations. (38).

The first problem in choosing a finite difference 
formula is stability. When round-off and other errors 
grow and eventually "swamping" the true solution, numerical 
instability is said to have occured. Definitionally, 
therefore, the system of equations is unstable if3as h and 
k tend to zero, the finite difference solutions at a point 
or within an interval become unbounded. This phenomenon 
may be avoided or limited by using smaller interval sizes. 
There are various sophisticated methods for determining 
stability (56). They will not be discussed in this investi­
gation. It is worth noting that a useful and simple method



for determination of stability is to test for positiveness 
of the co-efficients of the various terms in the discrete 
equation. In other words, a condition is imposed to 
ensure that the co-efficients do not change sign. Thus,

solution, stability ensures, at least in principle, that 
the growth of round-off errors is bounded. (56).

After ensuring stability of the discrete equation, 
it is essential to also ensure that the discrete model 
is consistent with the original differential equation.
For, an approximate numerical scheme may converge to the 
solution of another equation if the discrete approximation 
is not consistent with the original partial differential 
equation. The discrete approximation, L(u.j_ j) = 0, is 
said to be consistent with its original equation, L(u(t,y))= 0

In other words, the finite difference equation is said to 
be consistent with the differential equation if the local 
truncation errors tend to zero as h and k tend to zero. 
This is the basic test of consistency which we shall apply 
to our discrete equations.

apart from ensuring that the equation has a unique

if
Limit

0 (6.11)
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Thirdly, there is the problem of convergence. A 

solution converges if it approaches the true or exact 

solution as the grid is refined. For properly posed initial 
value problems, it is well established that for convergence 
it is necessary and sufficient that the discrete equation 
be stable and consistent. This is the Lax Equivalence Theorem (2).

In addition to the above problems - stability, 
consistency and convergence - there are problems such as 
step size and initial trial solution which must be considered. 
In selecting the step size, it is often necessary to strike 
a compromise between accuracy and speed of solution. This 
is usually done by-trial and error methods. In the case 
of initial trial solution, it is often possible to resort 
to physical considerations and intuition. (41).
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D. Stability, Consistency and Estimated Error

In this section the stability, consistency and error will be 
examined. The heat equation and its associated co-state equations 
are used to illustrate the techniques involved. In order to express 

these equations more compactly, define U = ( T,v,q^,q2)'. After 
substituting u and w from (5.19) and (5.20) into (5.1) and (5.2) 

respectively, and setting R^=Rg=0, the system of equations in Problem 5.1 
reduces to

(6.12)

where
a 0 0 0
1 a 0 0

A = 0 0 -a -1 
0 0 0 -a

(6.13)

0 0 i/r3 0

and
0 0 0 i/r4
r -l 0 0 0

(6.14)

_0 R2 0 0
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j. Stability

It is proposed in this section to determine the stability conditions 
for the system of heat equations given by equation (6.12). This 
equation is similar to the one dimensional parabolic equation . There 
is a difference in the sense that ^  is a matrix. Usually Aq  is a scalar.

Among the techniques available for determination of stability of 
discrete equations are;

(a) The Matrix Method
(b) The von Neumann Method

(c) Brauer's Theorem
(d) Fourier Method

Use will be made of Brauer' s Theorem bo determine 
conditions for stability of (6.12).

Consider,

(6.15)

and + 0 (k2) (6.16)

where At = h and Ay = k

(6.17)
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From (6.12) it is seen that

U»1,J - ui,j +
[ : J ~ C nU + 0(h+k2)

h k i»j

where the small quantity, 0 (h+k^) is the error of the approximation 
Neglecting this small error (6.18) reduces to,

u- ,, . -u- • = [ u. . -  2u. . + u. . , ] - C_.u. .^  ifD+1 ifD i/D-1 0 irD
h

where u^  ̂is the solution of the approximate discrete equation (6

Define r = h , and re-arrange (6.3.9 ), the result is;
X 2

u... . = rA„u,- -;_i + [ I. - 2rAri - hC ]u. . + rA u. . ,n 1+1,3 0 ifD"-1- 4 o 1,] o 1,3+1 (

where 14 is the 4-dimensional unit matrix.

Nov; let the prescribed boundary conditions be U(t,y0) = U(t,yf)=0, 

then' ui,0 " ui,nfl = 0

(6.18)

(6.19)

.19)

6.20)

t

(6.21)
expanding (6.2 Q) for i =1.2, .. n and making use of (6. 21) /the re­
sult is the following tria-diagonal system of equations.
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ui+l,l = 0 + 1  V ^ - h C o K , !  + rAoUj/2

Ui+1,2 = rAoui,l+ rAoUi,l + Î4"2rAo”hco^uif2 * rAouif3

Ui+l,n * r^oui,n-l t14-2r,A0-hC0 ] ui f n
(6. 22)

The above system of equations may be written in the form,

(6. 23)

where

A =

[I4_2rAo~hC0] iAq
iAq  [I4-2rA0-hC0] rAQ .

tAq  [I4“2rA0-hCC))_

A is a x %  square matrix.
and ui = I uifl, n±f2 .... uifn ]

(6*24)
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Now, stability of the finite difference equation (6.23) is ensured 
if all the eigenvalues of matrix A are, in absolute value, less than or 
equal to 1 (2) . A simple method of estimating the eigenvalues of matrix
A is by applying Brauer1- Theorem. This Theorem states that if ag is the 
diagonal term in the s-row of a square matrix and Ps is the sum of the 
moduli of the terms in the s-row, excluding the diagonal term, then all 
the eigenvalues, X . must lie inside or on the boundary of the circle,

| A - as | = Ps (6.25)

From (6.24), it is seen that X is greatest for one of the rows in 
the second block of matrices in the second main row of (6.24). Hence 
the row of elements of interest, A2, is given by;

A2 = [ rAo ( I4 -2rA0 - hCQ ) . . . ] (6.26)

a Assuming typical values, = 1 (i=l,..6), then substituting
(6.13) and (6.14) into (6.26), leads to

ra 0 0 0 ' (l-2ra) 0 -h 0 'j ra 0 0 0 • • •

r ra 0 0 ! -2r
j

(l-2ra) 0 -h 1 r ra 0 0 • • •

0 0 --ra -r 1 -h
i

0 (l+2ra) 2r 0 0 -ra -r • • •

0 0 0 -ra ! o -h 0 (l+2ra)* 0 0 0 --ra • • •

(6.27)



For convenience, listed below are values of as and Ps for 
the four rows of ,

Row No.

1.
2.
3.
4.

(l-2ra)
(l-2ra)
(l+2ra)
(l+2ra)

(2ra + h ) 
(2ra+h+4r ) 
(2ra+h+4r) 
(2ra + h ) (6.28)

Evidently, the largest estimate of the eigenvalues may be obtained 
by considering elements in rows 2 or 3 of (6.28).
Consider the elements of row 2,and let \ 2 be the possible eigenvalue assoc 
iated with that row. Then by Braur's Theorem,

|X2 ~ (l-2ra)|^(2ra + h + 4r) (6.29)

which implies that

-(2ra+h+4r) ̂  I x2 " (l“2ra) ] ̂ (2ra+h+4r) (6.30)
hence the two possible values of A 2 are given by,

A 21 = l~4ra-h-4r (6.31)

and ^22 =l+h+4r (6.32)

for stability | A 21 | ̂  1 and | \22^  ± (6*33)

hence from (6.31) ,

-1 <: (l-4ra-h-4r) ^ 1 
the inequality (6. 34) results in the conditions;

(6.34)
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r 4(2-h)/4 (a+1) (6*35)

and r >-h/4(a+l) (6.36)

The second condition (6.35) is obviously meaningless, hence it is 

ignored.
In a similar fashion (6.32) and (6.33) imply,

-1 $1 + h + 4r $1 (6.37)

from which it is seen that;

r >, -(2 + h )/4 (6.38)

and r ̂ -h/ 4 (6.39)

Again, the conditions (6. 38) and (6. 39) are iteaningless, since 
r = h/k^ is a positive number.

Similarly, the possible eigenvalues from row 3, , are given by;

- (2ra+h+4r) < [ X3 - (l+2ra) ] < (2ra+h+4r) (640)

which results in the eigenvalues,

*31 = 1 - h - 4r (641)

and X32 = l+4ar+h+4r (642)
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For stability, | I I ̂321 ^  (6* 43)

From (6. 41) and (6. 42) we obtain the conditions,

-1 ̂  l-h-*4r < 1  (6. 44)

i.e. r ̂ (2-h)/4 (6.45)

and r <-h/4 (6. 46)
The second condition (6. 46) is valueless.

Again from (6. 42) and (6, 43) it is seen that

-1 ^  l+4ar+h+4r (6.47)

which results in the conditions,

r ̂  -(2+h)/4(a+l) (6.48)

and r ̂  -h/4 (a+1) (6.4g)

Again, conditions (6. 48) and (6. 49) are valueless.

From (6. 35) and (6. 45) it is seen that the more severe condition
is given by (6.45),

i.e. r ̂ C(2-h)/4 (a+1), for h < 2  (6.50)

Inequality (6.50) is therefore the condition for stability of 
the discrete equation (6.2 0)
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Now, for typical values, h=.o2, k=.5 and ( a ) max = 2,

2we obtain r= h A  = -08 (6.51)
But from (6.45) ,r<(2-h)/4(a+l)

= .17 , in view of the above typical values.

> h A 2 = . 08
Hence the choice of grid net lengths satisfy the stability 

condition (6. 49).

With both stability condition and consistency requirement satisfied, 
the discrete solution necessarily converges. (2) • This latter condition, 
consistency, is considered in the next sub-section.
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2. Consistency

Consider 3U = A- 32U0 - C U (6.21)
" W  1 y

subject to the initial and boundary conditions,
U(0,y) = 0 , 0 ̂ y ̂ 1 (6.52)

and U(t,l) — U(t,l) = 0, 0 (6.53)
The explite difference approximation to (6.21) was obtained in the 

previous section and is given by,

ui+l,j = [ I4 “ 2 ^  - hC0 ]ui f . + rAQ [ uifj+1 + uitj+il
(6.21)

2where At = h , Ay = k and r = h A

Now, denote the exact solution of (6.12) by U and the exact solution 
of the finite difference equation (6.21) by u, then the error, e , is 

e = U - u (6.54)

At the mesh points,

ui.j “ Ui,j- ei,j ' ui+l,j " Ui+l,j ' ei+l,j ' etc-  (6-55) 

Substituting (6.55) into (6.21) leads to

ei+l,j = t I4 -2rA0 - hC0]ei(j + r V  et(j+1 + ei(j_1 J

+ - ui,j
- rAo t °i,j+l + 1 (6-56>
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Applying the Extended Mean Value Theorem for continuous functions, 

ui -i+1 = ui i + k < 3u h   ̂+ k292U_ (t,y+9ik) (6.57)
2y 1,3 7 T y 2  

2,2,U .  . _ i  =  U .  . -  k (  3 U  ) ±  H +  k  3  U o ( t , y - 0 2 k )  irD 1 W  ^  j - ^ 2  * *
(6.58)

U i + i , j  *  U ±  j + h 3U(t+63h,y) (6.59)
3t

where 0 < 0^ < 1 , 0 < 02 < 1 , and 0 < 0^ < 1

Substituting (6.57) through (6.59) into (6.56) leads to,

ei+l,j ■ 1 h ' ^  * Xo 1 ei,j + ̂  ei,j+l + 1

+ h 3U(t+0oh,y) + hC_.il.;  ̂- rk\_ [S^l^y+Onk)3t 3 ° J  *  1

+ 3^t,y-02k) ] (6.60)

Applying the Intermeadiate Value Theorem,

1 [ sVj^y+O-jk) + 3^t,y-02k) ] = 3^u£t,y+04k) (6.61)

where -1 < 0^ < 1

hence (6.60) reduces to

ei+l,j = [ I4 - 2rAQ - hC0]eifj + r ^  [ ei#j+1 + ]

+ h[ 3U(t+0oh,y) + C qU. . - Ao3?UXt,y+04k) ] (6.62)
3t 1,3 3yz
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Let denote the norm of the maximum error along the i th 
time-row and M be defined by

M = 3U(t+0,h,y) + CQUi#j - A_ 32U(t,y+0.k) 
3t 3y q

(6.63)
3y"

If 3= 1 114 - 2rAc - hC0 ||+ 2r||Ao|| ^ 1 (6.64)

then,
I le i+l,jl I" M  I I4 " 2rA0 “ llCo ] 11 • I K ,  jl I

+ r | |Aq| | [ || ei^ +1 | | + | |eif j_! | | ] + hM

= 6 Ej_ + hM (6.65)

Since (6.65) is true for all i, the following is also true,

Ei+1 < $Ei + hM = + hM( 1 +3 )= 03 Ei-2 + hM( 1 +3 + 62)
(6.66)

i 2 i-1Hence, $3 EQ + hM ( 1 +3 + 3 + . . . 3 ) (6.67)

Initially u and U are the same, therefore EQ = 0 
hence,

E l < hM ( 1 + 3+ 62 + . . . +3i'1) (6.68)
2when k tends to zero, h = rk also tends to zero and M tends to

But U is a solution of the differential equation (6.12), hence 
the limiting value of M and therefore E^ is zero. This proves that 

u converges to U as k tends to zero, and hence establishes the 
consistency of the discrete approximation.
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3. Estimated Error

Consider the equation

3U - A  S 2^  + C_U = 0  (6.32)
ST T y  °

The above equation was approximated by the model

Ui+1̂ L - ! y . - ^  [ “1,3+1 - 2“i,j + v *2 + = °

(6.19)
Applying the Extended Mean Value Theorem,

ui i+i = -i + k (l £  h  i + k20 2 u,)i -i + k3 O  3U J i  -i J-rD+l x,3 ^  X,] j, — 2 1,3 y r  — 3 1,3

Similarly,
+ k4 34U(t,y+8Tk) (6.69)

T\ T ?

U i  j . !  =  Ui j -  k (3_U)± . +  kf( J J J  )±  . -  k-5 ( 3 Uij -j
' D ^  3 ~  21 " ^ 2  ^  31 ^ 3  ' 3

+ k4 S ^ t ^ e ^ k )  (6.70)
Tt “ J3y

where 0 < 0£ < 1 and 0 < 0£ < 1

Adding (6.69) and (6.70) and simplifying gives

1 ui,j+i + V k2 = + £  |Vttfy*e5k)3 7  n o
y (6.71)

where -1 < 0o < 1
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also, U . • = U. . + h ( 3U ). . + h ^ ^ t + e ^ y )  i+J-rD i,3 ^  1,3 7 — 2

i.e. [ U. . - U. ■ ]/ h - -  3U + h a^tt+G^y) 1+1,3 IrD 3t 7 ^ 2
(6.72)

0 < 84 < 1

The truncation error T is obtained by substituting (6.71) and (6.72) 

into (6.19) and subtracting (6.19) from (6.12). The result is (2)

T = - h 3fu(t+04h,y) + k2 aV^y+GJc) + CQ (U-U^j)
7 3t2 Tz T T  '3y

(6.73)
Clearly the last term in (6.73) is due to computer round-off error. 

This term is very small in an average computer (2) . Thus, neglecting 

this small error and taking the norm of (6.73) gives

m l  = h
2
<LP
at2

+ k 
17 o a4u

3y4
(6.74)

Hie second and fourth differentials in (6.74) are approximated by, 

3%(t+0Jh,y) = I u.+0'+lfj - 2 ui+0'f j + ui+^ _ 1(j ] / h2 (6.75)
at2

3U(t,y+0'k) = [ uif j+2+6' - 4 u. (j+1+e. + 6 uirj+^
9y

- 4 u. .i, j-l+03 + ui,j-2+6^  ̂/ k (6.76)

With both 0^ and 0' equal to their respective maximum and



minimum values the above differentials are computed for Example 7.5 

using the typical values R ± = R2 = R3 = R4 = 1, aQ=.5, h=.02 and k=.4
The results are

<k2
= .76 (6.77)

^4U
&

= 1.32 (6.78)

Also ||a o || = aQ + 1 = 1.5 (6.79)

Hence the estimated error is

T | = h (.76) + k (1.5)(1.32)
7  17

= .033 (6.80)

Considering the fact that only first order approximations were used 
in the derivation of the discrete model, the above error is reasonable.

The above error is the truncation error, which is different frcm 

the total error given by equation ( 6.68 ),
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E. Summary
The Stability and Consistency were established for the heat 

conduction system of equations. It was also established that the 

truncation error was of tie order .033, which is reasonable. There is 
no doubt, however , tiiat this error may be improved by using higher order 
discrete models. Unfortunately, these higher order discrete models lead 
to !±ie solution of implicit equations which are very difficult to solve.
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CHAPTER VII

NUMERICAL EXAMPLES

Numerical solutions for the classes of distributed parameter problems 

discussed in Chapters IV and V are presented in this chapter. As far as 
possible attempts will be made to formulate examples of practical signifi­

cance. The appropriate plots for various state and sensitivity quantities 
are also presented. The first set of examples involves synthesis of optimum 

and low sensitivity design for the two-element standby redundant system.

The second set of examples relates to the problems of heat transfer discussed 
in Chapter V.

A. Stand-by Redundant System

1. Example 7.1 :synthesis of optimum repair rate
For problem 4.1 of Chapter IV, it is required to determine u* and k2. 

Numerical quantities given are;
T =1. 

ki = .5 

k3 = 1°

(7.1)
(7.2)

(7.3)

Xo= *1
and p^(t) = ,9exp(-.6xt) + ,lexp(-4.6At)

0 ^ x ̂  t ^ t (7.5)

(7.4)
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(a) Results
After applying Corollary 4.1 of Chapter IV and substituting u(t,x) 

from (4.36) into (4.34) and (4.37) it is seen that;

3_g* , 3_q* q*(i-q*p?A o  ) _ kiX_ kf>? = 0/ (7*6)
3 1 3x ” 2 2

+ IP* + P*( x- q*p*/k2 ) = 0 (7.7)
9 1 9t

subject to the boundary conditions (4.35), (4.30) through (4.33).
Equations (7.6) and (7.7) are solved with the aid of their characteris­

tic curves. Note that these characteristics cross the t-axis and are 
inclined to it at an angle of 45°. A few of these curves are shown in 

figure 7.1.1. By writing an explicit discrete formula for, say, P2 , the 
values of P2 along a characteristic may be found if any point on it is 
known. The equations are so discretized as to ensure that the solutions 
for P2 and q progress in the direction of the arrows shown in the 
appropriate diagram. This effectively ensures that boundary conditions 
(4.32) and (4.35) are taken into account. Selecting At = Ax = h, the discrete 
versions of (7.6) and (7.7) are;

■3,1+1 = + ^  U + u ^ + hk1l + hk3(p|)if. , (7.8)

^2>i-l,j = (p2>i,;j+l + h(p2)i,j '“Ij + * ' ‘7’9>

where u* . = -q* . (p*). /k0
1/3 1/3 2 1/3 2

(7.10)
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T

0

t

T

0

FIGURE 7.1.1 Characteristics and confuting grids for problem 7.1
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Hie algorithm for solving (7.8) and (7.9) may be summarized 
as follows;

(i) Discretize (7.6) and (7.7) using first order forward and 
backward discrete models to obtain equations (7.8) and (7.9) above.

(ii) Starting from the last characteristic, compute and q on 
the grid points and in the direction of their respective arrows.

(iii) Calculate u from (7.10)

(iv) Select k^ and repeat steps (ii) and (iii) until (4.30) is 
satisfied.

Hie plots for p^ and are shewn in figure 7.1.2. Hie computer
program, OPRATE, is listed in Appendix B-l.

Hie computed value for k -2 is .45.

It is seen from figure 7.1.2 that p^ is fairly constant over 
the operating period. The optimal repair rate, u*, however, decreases 
steadily until it reaches zero at the end of the operation.

From the computer results, the greatest absolute value of q is .67.

2
Clearly, ^2^3 ” ^ 0 which is the condition for convexity

stated in Corollary 4.1. Hence, the optimum obtained in this example is 
a minimum.
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u(t,T)
------  - P2(t,x)

.09

1.0

.08

\

FIGURE 7.1.2 : Optimum State and Control for Problem 7.1
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2. Sensitivity optimization for redundant systems

Three examples based on problem 4.2 of Chapter IV are presented in 
this section. It is proposed to determine both u* and w* and ( for some 
cases ) the relative sensitivity of the performance index. The relative 
or comparative sensitivity, SR , of the performance index,J, is defined (79)

where J* is the value of the performance index at the optimal point 
and , J, is the value of the performance index at the non-optimal points.

The system, it is noted, is not optimal for system parameters different 

from the nominal value,Xo*

Remark : In computing the value of the performance index, J , it is important 
to note that all quantities within the double integral signs must appear 
as magnitudes or absolute quantities. This is necessary, as explained by 
Sage (79), in order to eliminate the undesirable cancelling effects of 
quantities which may be negative during the computation.

(a) Exanple 7.2
For problem 4.2 of Chapter IV, it is required to find u*, w*,

?2 ' v2 ' kl anc* ^2 9^ven that*

by.
J - J*

SR " J* (7.11)

7.12)

7.13)

7.15)
7.14)

7.16)
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also Pi(t) = .5 + .5exp( - A t ) -  .5Atexp( -Xt) (7.17)
T = 1. (7.18)

From Corollary 4.3 and the following definitions,

k? = k-j/D (7.19)

k8 = k5/b (7.20)
kg = k4/D (7.21)

where D = k-jk4 - k^ (7.22)

it can be shown that,

(7.23)

(7.24)

(7.25)

(7.26)

In addition, equations (4.40) through (4.44), (4.29) and (4.30)
must be satisfied at the optimal point. The corresponding boundary conditions
for the above co-state eqations are;

q*( T, T) = 0  (7.27)

q*( T, T) = 0  (7,28)

i ? + 3t
_ V* - q*( u*+x ) - k2p* - ( w* + 1 ) = 0

+ 5S£ - q*( u* + \) - v*| - p *  = 0

u* = kgP*q* ■’ M P2 - S ' & l

w* = kgq*p* H>■ k8q*v* - k7pjq*

where
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The discretized version of the state and co-state equations (4.29),
(4.30), (7.23) and (7.24) are,

where u* and w* are defined by (7.25) and (7.26) respectively.

(b) Results
It is noted that the above equations are similar to those obtained 

for Example 7.1. Hence the algorithm for solving the above equations is

u*, v^, and w* are shown in figures 7.2.1 through 7.2.4 for seme values

of . The computer program, LOWSEN, is listed in Appendix B-2.
The computed values for the constants are, k]_ = 1.7 and k2 = .9 

From the results, it is seen that u* is least sensitive to changes in the
failure rate.Both w* and p* vary noticeably with parameter variations. The

state sensitivity, v*, varies only slightly with changes in X.

(7.29)

(7.30)

+h(v*)

(7.31)

+h(q*) . [ u. . + X ] + (v*), .h + h(p*)

(7.32)

also similar to that developed for solving Example 7.1. The plots for p*,
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1.0

FIGURE 7.2.1 : Plot of for Problem 7.2
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=.04, .05, or .06

“t-— -l.o

FIGURE 7,2.2 : Plot of u(t,x) for Problem 7.2
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A=.06
.0641

Ab»« 04

FIGURE 7.2.4 : Plot of w for Problem 7.2
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FIGURE 7.2.5 : FI/M CHART FOR PROBLEM 7.2
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(c ) Example 7.3

This example is essentially thesame as Example 7.2, with the following 
modifications;

Ao = .5 (7.33)

* u> II .7 (7.34)

k4 “ .5 (7.35)

k5 = 0 (7.36)

llKD .5 (7.37)
it is required to find,

(1) k^ and k2
(2) the relative sensitivity curves for 

ki = .6 , .9
and (the plots for p*, and u*

(d) Results
The results are plotted in figures 7.3.1 and 7.3.2 , the computed 

values for the constants are k^ = .62 and k2 = 1.1
It is seen from figure 7.3.2 that the relative sensitivity curves are 

nearly thesame for small parameter changes. It is, therefore, concluded 
that the system is insensitive to small changes in k^.
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FIGURE 7.3.1 s Plot of p and u for Problem 7.3
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(e) Example 7.4

This example is thesame as Example 7.2, with the following modifications,

Ao = *2 (7.38)
p^t) = .5exp(-y t) +.5exp [ -(2-y) t ]

(7.39)
k2 = 1 (7.40)
k3 = .7 (7.41)
k4 = .5 (7.42)
k5 = 0 (7.43)
k6 = .5 (7.44)

It is required to determine;
(1) y and k^
(2) the relative sensitivity curve 

and (3) the plots for p| and u*

(f)Results

The computed values for the constants are y = .72 and k^ = 1.5 
The graphs for p* and u* -re shown in figure 7.4.1 and the relative sen­
sitivity curve is shown in figure 7.4.2
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1.0

FIGURE 7.M.1 : Plot of and u for Example 1A
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B. Heat Transfer Examples

The importance of the heat conduction equation has already been 

noted. Poor heat conduction in solids may lead to catastrophic failure, 
general degradation, and hence adversely affect the performance of the 
device. One of the factors which may affect the transfer of heat is variation 
in the value of the diffusivity of the material. Diffusivity variations are 
not exactly known analytically. This is not unexpected since diffu­
sivity is a function of three parameters - thermal conductivity ( K ), 

density ( p) and the specific heat ( c ). Indeed, each of these parameters 
may vary in its own peculiar manner ( 21, 27 ).

The diffusivity, a , is related to tlie to the above three parameters 

through the relation,
a = K cm/sec. (7.45)

cp

Practical values for this parameter range from zero to about 4.0.

Three examples based on the two problems discussed in Chapter V will 

be presented in the following sections. As usual, it is assumed that 
changes in diffusivity are uniform and small.
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1. Example 7.5

This example is based on the heat sink problem presented in Chapter 
V. It is required to determin T* and v* for problem 5.1, given the 
following numerical values;

b = 1 (7.46)

1*2 = cRx (7.47)
R4 = cR3 (7.48)
R5 = Rg = 0 (7.49)
T(0,y) =v(0,y) = 0 (7.50)

T(t,0) = T(t,2.5)= 0 (7.51)

v(t,0) = v(t,2.5) = 0 (7.52)

where R^ and R^ are given constants.

The following costate equations and their associated boundary 
conditions follow immeadiately frcm application of Corollary 5.1 of 
Chapter V;

2~ - RnT (7.53)

| 2 2 = a Jj3^ “ V  (7.54)

u = -q-j/R-j (7.55)

w = - q2/R4 (7.56)
qx (t,0) = q2 (t,0) = o , te(0,l) (7.57)

q^i/y) = q2d,y) = o ye (0.2.5) (7.58)
qi(t,2.5) = q 2 (t,2.5) =0, te(0,l) (7.59)
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(a)~ Results
After substituting u and w from equations (7.55) and (7.56) into 

the state equations (5.1) and (5.5) the resulting equations , together with 
the co-state equations are discretized to obtain the approximate difference 

equations. The programming algorithm for the solution of the two-point 
boundary value problem in discretized version is summarized as following;

(1) Guess values T° , v° , J°
(2) Compute q^ , q^ by solving backwards the discretized co-state 

equations.
(3) . Using q^ and q^ , find and v^ by solving forwards the discre-

1 ^
tized state equations.

(4) Compute J*- frcm T^ , v^ , q^ ,q^ .
k(5) Repeat steps (2) to (4) above until J meets the specified

criterion |jk+1 - j* |<e, for given small positive number e.

_3With At = .04, Ay=.5, e=10 , good results were obtained after an average

of about 7 iterations. The flow chart for digital computation is shown 
in figure 7.5.1 The program is listed in Appendix B-3 as routine LHSINK.

The optimal solutions T* and v* are plotted in figure 7.5.2 and 7.5.3 
respectively for R^=R3=1, c=.5 and a0=.5. Typical values are tabulated in 

Table 7.5. For a material intended to function as a heat sink, a fairly high 
temperature gradient at x=2.5 is desirable. Unfortunately as the temperature 
gradient increases the sensitivity also increases. Hence there is a need for 
compromise between those two quantities. The effect of weighting factors 
R^ and R^ on the value of the performance index is shown in figure 7.5.4.
An increase in R^ relative to does not improve the shape of the curves, 

which should ideally be flat over a wide range of parameter changes.
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FIGURE 7.5.1: FLOW CHART FOR 
EXAMPLE 7.5
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a =.5 ,c=.5

t
FIGURE 7.5.3 : Plot of v for Problem 7.5
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c=l

c=.l

0 1.0 2.0 3.0
PARAMETER, a

T?T'7JRT 7.5.4- : Plot of Performance Index Variations



J a
Tempt, grad, 
at v=2.5

Peak 
+ ve

Sensitivity 
“ V2

.281 .01 .43 .46 .021

.270 .51 . 35 .36 . 003

.280 1.01 .28 .21 .003

.294 1.51 .28 .14 .003

. 308 2.01 .41 .11 .002

. 321 2. 51 . 20 .09 .002

. 334 2. 01 .18 .08 . 001

Table 7.5: Variation of Temperature gradient and
sensitivity for Example 7.5
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Since Ru~Rg=0 and R^(i=l,2, 4) are all positive it is obvious that
the sufficient conditions stated in Corollary 5.2 are satisfied. Hence the 
solutions obtained in this example are the required minima.
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2. Example 7.6
This example is the same as Example 7.5 except that it is here assumed 

that parameter variations have no effect on the control, u. i.e. w=0.
This assumption is widely used by authors who investigate low sensitivity 
in continuous systems. (50).

(a) Results

The results for T and v are shown in Figure 7.6.1 and 7.6.2 for 
R^=R^=1, c=.5 and aQ=,5 . The variations of the performance index 
with respect to parameter changes are shown in figure 7.6.3. These 
curves appear to be similar to the corresponding curves for Example 7.5. 
But the Table showing the variations of temperature gradient and 
sensitivity with parameter changes shew seme increase in both the 
temperature gradient and the corresponding sensitivity. The pattern of 
behavior is the same hence there is no advantage in this example in 
including an additional term, w.



118

(N

o ean'4Eaecaue,i o

FI
GU
RE
 

7.6
.1 

: 
Plo

t 
of 

T 
for
 
Pr
ob
le
m 

7.
6



119

o

At) TATTj T b’U B S 0

t
ru

£
it-;O
j . 'O

<N
tO
•r*-

§G



Vf
-for



121

J a
Tempt, grad, 
at y = 2.5

Peak Sensitivity 
+ ve - v e

.287 .01 1.75 .74 .037

.273 . 51 1.42 .43 .002

.281 1.01 1.16 .24 .002

.294 1. 51 1.00 .16 .000

. 308 2.01 0.88 . 13 .000

. 322 2.51 0.78 .11 . 000

. 334 3.01 0. 72 . 09 .000

Table 7.6: Variation of Temperature gradient and
sensitivity for Example 7.6



3. Exanple 7.7

This is essentially thesame as Example 7.5 with the following 
modifications;

(i) The boundaries are insulated, i.e.

(a) Results
The plots of T and v are shown infigure 7.7.1 and 7.7.2 

respectively. The effect of and R3 and parameter changes on the 
performance index is shown in figure 7.7.3. The performance index 
curve for this problem is far superior to that for other examples,

(7.60)

The following numerical values are also given

a0 = .5 (7.61)
(7.62)

(7.63)
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/T7ot

FIGURE 7.7.1 : Plot of Temperature for Example 7.7
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1.0

FIGURE 7.7.2 : Plot of Sensitivity for Problem 7.2
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5-»

,c=l

R, =1.5. R =1

0 1.0 2.0
FIGURE 7.7.3 : Plot of Performance Index for Example 7.7
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C. Comment on the Numerical Results

Hie numerical results presented in this chapter have demonstrated 
the applicability of the theory derived in Chapter III. These results 
suggest the following logical approach to sensitivity problems;

1. Selection of an attribute to characterize the system.
2. Derivation of the appropriate mathematical model for 

the system, taking into account all parameters of 
interest in the design of the system.

3. Selection of an appropriate performance index, and 
hence an augmented index involving both the state and 
sensitivity functions.

4. Derivation of the sensitivity equation.
5. Optimization of the performance index subject to 

both the state and sensitivity equations.

It is only after the above steps have been taken that the detail 
compromise or trade-offs may be called into play. The second stage of 
optimization, therefore, aims at a finer definition of the range of 
compromises consistent with competing design criteria. This second 
stage may not be necessary in all cases.

It is again emphasized that there may not be any siginificant 
advantage in including the control sensitivity, w, in this analysis. 
Other researches (50) have expressed similar doubt in connection with 
continuous system sensitivity synthesis. The fact remains, however, 

that since the control vector is firmly under the control of the
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desinger, uninfluenced by parameter variations, its elimination 
can be justified on practical grounds.
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D. Conclusion

Numerical solutions for the problems formulated in Chapters IV and V 
have been presented. These solutions demonstrate the practical applications 
of the theory derived in Chapter III, to the two classes of reliability 
problems under investigation. It is noted that the boundary condition 
requirement inposed by (4.30) seriously restricts the choice of failure 
model for the stand-by system. Also, the classes of problems are confined 
to those whose mathematical models are included in the model formulated 
in Chapter II.
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CHAPTER VIII 

CONCLUSIONS

The main objective of this dissertation is to extend 
the theory of synthesis of low sensitivity optimal control 
to classes of problems known as distributed parameter 
systems. After review of prior work in the area of dis­
crete, continuous and distributed parameter system sensi­
tivity, it was noted that while extensive research papers 
exist on problems of discrete and continuous system 
sensitivity, there are only a few papers devoted to 
distributed parameter system sensitivity. In view of the 
fact that there is no general theory for partial differential 
equations, a partial differential .equation was proposed 
for the classes of systems of interest in this research.
This model formed the basis for the development of the 
distributed parameter sensitivity theory for the design of 
low sensitivity optimal control.

Specifically, the following are the summaries of 
this research:

(i) The necessary and sufficient conditions were 
established for the vector-matrix partial differential equation 
constraints. This, in control theory, is an extension of 
the vector Maximum Principle. The development of the theory 
presented in both Chapters II and III is very general. By 
following similar reasoning, similar theories can be derived 
for other partial differential equations with little modifications.



(ii) The technique of low sensitivity design for 
distributed parameter optimal control was demonstrated by 

applying the general theory to two common physical systems 
in reliability - the standby system and the heat conduction 
equation. Before doing so, the mathematical model for the 
standby system was derived. The derivation of optimum 
maintenance of failure rate and minimum variations of 
performance index was presented.

(iii) Recognizing that closed form solutions are not 
often available for distributed parameter systems, numerical 
algorithms were developed for the solution of practical 
problems. Since accuracy is of great importance, the 
explicit models developed were examined to ensure consistency 
and stability. Indeed, a model calculation was performed
to determine the error for the heat conduction equation.

(iv) By means of a series of examples, both the 

general theory and the numerical techniques were applied to 
practical examples. In particular, it was demonstrated 
that in the area of low sensitivity design, optimization
is essentially the pursuit of compromises among sets of 
given design criteria. In addition this compromise must 
necessarily be pursued in more than one stage. It may thus 

be desirable to optimize an augmented cost function in order 
to determine the range of acceptable compromises. A second 
optimization will then be needed to determine the exact 
compromise required to satisfy the design criteria. This 
demonstrates that unlike other optimization problems, low



sensitivity design is a multiple stage operation.

Probably the most important conclusion of this 
research is that it is practically feasible to apply a 
complex theory such as low sensitivity design to reliability 
problems. In addition we have demonstrated the feasibility 
of extending sensitivity studies to distributed parameter 
systems and thereby laid the foundation for application 
to the other areas of interest in chemical engineering, 
circuitry, and power systems.
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CHAPTER IX 

AREAS FOR FUTURE RESEARCH

There is no doubt that in a virtually unexplored area 
such as synthesis of low sensitivity control in distributed 
parameter systems, there are several areas for future research. 
The following suggested areas are severely limited in order 
to conform with the underlying philosophy of this research, 
i.e., that any theory must lend itself to practical appli­
cations .

In this research, only open-loop control was considered.
It would therefore be useful to study the case of closed- 
loop control for the distributed parameter system and, 

if possible, compare these to open -loop solutions.
The reader must be forewarned that the mathematics involved 
may prove oppressive. For example, the determination of 
the lagrange multipliers for the simple distributed linear 
regulator problem leads to the solution of Riccati Partial 
differential equations. These equations are hard to solve.

It was realized early in this research that very little 
work has been done on the problem of existence of solutions.
It would certainly be useful to investigate this important 
problem of existence together with the related question of 
"well posing" of problems. These are not of small signifi­
cance. Since distributed parameter problems are difficult 
to solve, it would certainly be useful to be assured through
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the use of suitable theorems that the solution in fact 
exists. This will save time and also inject order into 
an apparently chaotic area. And more importantly, it 
will accelerate application of the theory to practical 
problems.

In this investigation, only the calculus of variations 
was considered. A vast area of research exists in the 
study of other optimization techniques, such as dynamic 
programming, Ritz and gradient methods. These are the 
so-called direct methods.

There is no doubt that other areas in reliability 

suggest themselves as useful areas for research.It is recalled 
that the main problem in reliability, however, is the 

derivation of the mathematical model. In this regard, it 
may be useful to explore other models such as higher order 
Markov processes and semi-Markov chains for the reliability 
analysis. These other models may probably turn out to 
be more difficult. But if they enable the use of wider 
classes of failure models for the standby and other redundant 
systems to be used, the effort may be worthwhile.

Finally, since repair policy is important in repairable 
systems, it may be interesting to investigate the design 
of low sensitivity systems for various repair policies.
This indeed is a desirable and direct extension of the 
present work.
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APPENDIX A 

A-l The Euler Lagrange Equations

The necessary conditions for extremum of the functional,

J ( x ) = f F( x, x̂ ., t ) dt A-l.l

are given by;

3F*- d (3F*) = o A-l.2
3x clt ax,.

3F* = 0, for t = tQ, t^ A-l.3
3Xj.

where ( tA, tf0 are given, x. = dg(t) and (.)* represents (.) evaluated
at”

at the extremum.

A -2 The Euler Ostrogradski Equations 

For a multiple integral given by;

J( x(t,t) ) = / j F( x, Xj., x , t ,t )dtdt A-2.1
A

the conditions for extremum are given by;
j£* - 3_3F* - 8F* = 0  A-2.28* atgxj. 3-c gx̂.

0 , t =tQ, tf A-2.3

3F* = 0 , t= tQ,tf A-2.4
9*t
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A-3. Conditions for Convexity

The necessary conditions for convexity of f(x) is summarized in 
Theorem A-3(77)

Theorem A-3

If f( x^,x2» ) is differentiable and convex, then

f(x) - f(x*) * Vf*(x - X*) A-3.1

where x = [ x1,x2,...xn]

Vf* = [ 3f , 3f ,... 3f ]
3xi 3x 9 3x ^ ]n

and (,)*denotes (.) evaluated at the extremum.

A-4 Quadratic Test for Convexity

If f(xj,X2, .. x ^  is twice differentiable and continuous function 
in an open convex set D, it is convex in D if and only if the 
quadratic form (77),

6 6 
I Ii=l j=l

32f
3x^3xj

A-4.1

is positive semi-definite for every point x in D.



APPENDIX a 

COMPUTER PROGRAMS



r% 
r* 
rfc

137

( U l  S U B R O U T I N E  O P I A T E
DI M E N S  T D M  P I « 2 1 ) , P ? ( ? i > 2 1 ) i P 3 ( ? l ) / n ( 2 i l , 0 i ( 2 b 2 l ) ,

1 U ( 21, 2 1 K  A T ( ? p  , X ( ? i ) , C fj S T ( 2 1 )
 rc=o-------- ----- ------------------------ ---------------

H w , 0 5  
L*?21----- A-ina.r------------------  -  --    -..-  ■
P R I N T  2 7 2.» A L D 
nQ F 5 5 M « l , L

 A T  C M ) s'PCTOT (M -  l J V H - - - - - - - - - - - - - - - ---  - - - - - - - -
P 1 < M > * « , 9 * E X P < - , 6 * A L D * A T < M )  ) + . l * E X p ( « 4 . 6 * A L n * A T < M )  )
P 2 « M jp K = A l D * P 1 ( M >55 C O N T I N U E - - - - - - - -  " ‘ - -
A K 1 c * 5 A K ^ s l O .
P Q 2 3 3 K  t ? ‘5 /  5 O H *  *  ' "  ' ------ --------

A K 2 « F l . n A T ( K L ) / ! 0 0  D 0 6 6 N » 1 / L
 Q K X i N l s O .     -- "--- ------
6 b  C O N T I N U E  

I L « 2 * ( L - l )
— 0030TK*tTlt------------------------  - -“ -----------

IP»2*I,-IK I Q b JK
- nOA-OK-t> I «   ------     -.... — ------  ----------------I = 2*L<-K 

J = T Q » K + 1U  Q-j- f p - p / A t C ?  - - - - - - - -  - - - - - - - - - - -
O K l " l f J > = 0 1 ( I , J * i 1 / J)  + A L D ) « d l ( I , J ) - H * A K l * A L D - H * A K 3 * P 2 ( I, 

40 CONTINUE

J = 0
D 0 2 0 I * T P ^ L

-------vt^J + 1-----------        - .... - ■P 2 ( J * J  + K = P 2 (  J - K j ) - H * C U (  u  J) + A L 0 ) * P 2 <  I;J)
2 0  C O N T I N U E 3-0— C Q M T f N  W E - - - - - - - - - - - - - - - - -  *.

C S U B P R H G  f-llR U ( I , J )
n Q 5 8 J « l , L

  f)Q57TirvtTt- - - - - - - - - - - - - - - - - - - - - -
U ( I , J ) » « P 2 (  I i J ) * O l < K J ) / A K ?5 7  C O N T I N U E

 58 C O N T I N U E------------------- ------C S U B P R O G R A M  C A L C .  PI , P 2, P 3.
p C T )=0,

------- OQTS-rrZyt— - - - - - - - - - - - - - - - - - - —

s u m i s o ;
D 0 7 6 J * 2 , I------- s m i  = (X j, j 7--------------

7 6  C O N T I N U E  P( I ) n S U M l



 T 9  C O N T W » E - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - -D C U 3 M a l , L
P 3 ( M ) 3 l . f P l ( M ) - P " ( M ) !3— t Q N - T l N U E - - - - - - -        -. . . ..

C S U B P R H G ,  T d  C H E C K  B O U N D A R Y  C Q M Q (
P R T N T 2 2 2
X | l ) p ( P l ( 2 ) - P K l )  ) / H + A L D * P !  ( 1 ) ~ P 2 ( K 1 ) * U ( K 1 ) # H  P R ! N T  1 0 / M / X (1 )

   Pt)iV8-I*?jt- - - - - - - - - - - - - -  - - - - - - - -  - - - - - - - - - - -
S U M 2  a 0 •D Q 6 9 J a ? # !

—    S U ^ S t W + H * ^  I > J )----  ------
6 9  C O N T I N U E

X ( I ) » ( P l ( I ) - P I ( I « l ) ) / H  + A L P * P K  n - F U M 2 6 8  C O N T T N O E  - - - -  --
S U M 3 a Q .
D Q 3 7 I X  = K L  3 7  5 OM-3 = S 0 M 3 + A S S - ( Y < IX > >5 U M 3 a S O M 3 / ’Si,
P R I N T 1 0 / K L # S U M ^

---  SUMU aO. .....  -..... -.-......................................
0 0 4 2 U  = K L  
D Q 4 2 2 J  = K  1

-? ,Ar(c?^t:J ( I , ;r) ̂ U  f T>\) )> A t D X n A K T *  A-fr* ( p % (  j ) )
1 + . S * A K 3 * P 2 U ,  J ) * P 2 (  1 / J> )4 2 2  C O N T I N U E

' 4 ?  1  C O N T  t N W E   — ■   -  --
P R T N T 4 1 4  
I O I C  + l- - - - - - p  k i n -t-^o i  > s« m  .)t a  l d -—  —

C E N D  O F  S U B P R H G S .
P R T N T  21

-------- n 0 7 o ; r j - m v  5.... ................................... .J = L w J J + l
P R I N T I O O j ( P 2 < I , J > , I = 1 , L , 5 )

 T O — C t J M T T N O t    - - . . . . . . . *- ----
P R I N T 8 0 8D 0 7 0 7 J J s l / L / 5J ® L » J J ^ l     " —.-...  . . .  . . . .
P R T N T l O O ^  (01( K J K T  = 1 , U 5 )

7 0 7  C Q N J I N I ' E - - P f r t N W         -  -
DQf59JJ = K U 5  J a I. w J J  + l

-- frfttWTtOOr t OtTy :l) ;■ I g 1, i, 3i----------------  - - --- ----------
S9 C O N T I N U E  P R I N T l l

------DtWM-lltrt----------—  ----------------- -------------4 P R T N T 1 0 , M / P K M ) , P ( M ) , P 3 ( M )
! F ( S U M 3 « iD 0 2 ) 7 7 / 7 7 ^ 2 3 32T313— C-OMTtNttf- - - - - - - - - -   -- - - - - - -7 7  P R T N T 3 0 3 # A K 2

2 7 2  F Q R M A  T ( / / / / / / K f S X ,  ' R E S U L T S  F n R  L A M Q A  = ' , F 7 , 4# / / )



10 FQRMAK5X# I4j3F10.4)
8 0 0  F O R M A T * / / /  « V A L U E S  F Q R  Q U , J >  ') It- - F O R M A T - t Y /-/>• ♦ T T M F  R 1 f T T-- P R  t T ) --  P3( T) » )
19 F Q P M A K / / , '  V A L U F S  F O R  U ( I , J ) i )2 2 2  F O R M A T ( / / / , »  T I M F  V S ,  f r r q r  * )

 21— P t t R W r T W r r * — V A t  tfFS— P^R- P ? T T t J ) * T  ---  - - - -
4 0 1  F Q R M A T < 1 5 X * F 9 . * , i O X , F 6 . 4 >
4 1 4  F 0 R M A T ( / / / j.1 5 X ,  » C O S T  L A M D A  ? )

- 303 F O R M A T (// /.»4 5 X j » VAt U F  O F  K 2 =  * , F 5 .3)S T n p
F N O



no
n|

140

B - 2  S U B R O U T I N E  L O W S E N
D l M E N S I O N ' T l l T i  ) , P 2 { 51 ,S T T ,  A ( 5 1 , 5 1 j T Q 2 1 5  1 7 5 I T 7 B Y y i 7 5 l T 7 P 3 ( 5 1 7 7  1 S 1 ( 5 1 , 5 1 1 , Q 1 ( 5 1 , 5 1 ) , C ( 5 1 , 5 1 1 ,  D (51 ,51} , AT ( 51) , P ( 5 1  I,

2 U  1 5 1 , 5 1 ) , X { 5 1 ) , P H ( 5 1  , 5 1 ) , C O S T (20)L = 51 ' ....  .. . . . . . . . .  ...
H = .02 Y =  .5
lc=o ' " ~........... .... ......... . .....
D 0 1 3 3 K L  = 1 ,10 
A L D =F L D A T ( K L ) / 1 0 0 .
D 0 1 1 = 1 , L D G 2 J = 1 , L  
P 2 ( I , J ) = 0 .
511 I » J )=0 .. . . . . .  " ' “ ‘ "
U ( I , J ) = 0 .
P H I J  , J )=0 .

2 C O N T I N U E  
1 C O N T I N U E

P R I N T  2 7 2 , A L D
D 0 5 5 M = 1 » L  "  ' .  ~   " ^ . . . . .    '. . . . .
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