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ABSTRACT

In this investigation, the deposition of suspensions in laminar 

flow in the entrance region of a channel and a diffuser was considered.

The particulate phase was considered to he under the action of 

the electric field force due to electrostatic charges. In addition, 

a lift force acting on each particle at the wall arising from the 

fluid shear near the wall and an adhesive force between each particle 

and the wall due to the difference of the material properties for 

both particle and walls were considered as surface forces.

The suspension flow was assumed to be incompressible, laminar, 

dilute, and with negligible gravity effect.

The complete solution of the problem involved solving the 

Navier-Stokes equations for two-phase flow. Since the resulting 

governing equations are non-linear partial differential equations, 

finite difference and numerical techniques were used to obtain 

solutions. All the numerical work was carried out on an IBM 360 

computer.

The complete flow characteristics of the particulate phase and 

the rate of deposition of the solid particles were studied under dif­

ferent flow conditions. Deposition due to surface adhesion only, 

electrostatic charge only and both surface adhesion and electrostatic 

charge including the lift-force action at the wall was considered.
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Moreover, the case when the channel is connected to a diffuser which is 

considered as an approximate model for the splitter region of a 

fluidic device was discussed.

From this study, it was found that an appreciable amount of 

particle deposition can result because of the electrostatic charge on 

the solid particles. Also it was found that surface adhesion lias a 

smaller effect on the rate of deposition than that due to electrostatic 

charge. The lift-force action at the wall has a negligible effect on 

the rate of deposition. In addition, it was concluded that the dif­

fusive Peclet number has a considerable effect on the particle 

velocities, concentration and rate of deposition. The axial distri­

bution of rate of deposition has a maximum only at low diffusive 

Peclet number.

Moreover, it was observed that the angle of divergence has a 

great effect on the rate of deposition in a diffuser flow. The pres­

sure gradient and the rate of deposition increase with increasing dif­

fuser angle. However, at larger diffuser angles, separation takes 

place and the rate of deposition increases rapidly in the presence of 

electric charge. In the absence of electric charge, the rate of depo­

sition decreases rapidly with increasing diffuser angle.
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1 • INTRODUCTION

Two phase fluid-solid particle suspensions flow has been a 

subject of long term interest due to the frequent occurrence in 

many systems and the difficulty in obtaining satisfactory equations 

to explain the complex behavior exhibited by different systems.

There are many common examples of technologically important 

problems involving fluid-solid particle suspensions flows, such as 

problems connected with aerosol and paint sprays, air scrubbing 

systems, aircraft icing, blood flows, dust collectors, fluidized 

beds, heterogeneous reactors, metallized propellent rockets, pneu­

matic conveyers, rain erosion of guided missiles, rocket exhausts 

containing metal particles and many others.

One of the most important problems that has been investigated 

recently is the deposition of contaminants in fluidic devices, con­

sequently serious changes in performance and plugging can be expected 

in such devices.

In a variety of cases of practical importance it is possible 

to treat the particle cloud as a continuum, then the flow of sus­

pensions may be regarded, for the purpose of analysis, as a mixture 

of two interpenetrating continuous fluids.

The objective of this study of laminar flow of suspensions in 

the entrance region of channel and diffuser is to examine in detail 

the complete flow characteristics of the particulate phase, under the
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action of the electric field force due to electrostatic charges on 

the solid particles and channel or diffuser wall. In addition, a 

lift force acting on each particle at the wall arising from the fluid 

shear near the wall, and an adhesive force between each particle and 

the wall due to the difference of the material properties for both 

particle and walls will be considered as surface forces,hence they 

are included only in the problem as boundary conditions at the wall.

Also the characteristics of the rate of deposition curves for 

different flow parameters in both channel and diffuser flows will be 

discussed. In addition, and for the diffuser flow, the effect of 

the angle of divergence on the rate of deposition of the solid par­

ticles will be studied, consequently, the question concerning the 

effect of the pressure gradient on the rate of deposition can be 

answered.

Moreover, the case when the channel is connected to a diffuser 

which is considered as an approximate model for the splitter region 

of a fluidic device will be discussed.

Here it is meant by channel the constant area one i.e. the 

parallel-plate channel and it is meant by diffuser the straight 

wall diffuser.

The particulate concentration is assumed low enough (dilute 

suspension) such that the particles have no effect on the fluid phase. 

Incompressible, two-dimensional, steady and laminar flow for both 

channel and diffuser flows will be considered for the present investi­

gation .
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Since the resulting governing equations are non-linear partial 

differential equations, finite difference and numerical techniques 

were used to solve both problems of the channel and diffuser flows.

All the numerical work was carried out on an IBM 360 computer 

with accuracy of four significant figures for the channel flow prob­

lem and three significant figures for the diffuser flow problem.

In Chapter 2 a literature survey on the deposition of particles 

in two-phase flow is studied. The laminar flow of suspensions in 

the entrance region of both channel and diffuser is discussed in 

Chapters 3 and 4 respectively. Conclusions and recommendations for 

future study are given in Chapters 5 and 6 respectively.
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2. LITERATURE SURVEY ON THE DEPOSITION 
OF PARTICLES IN TWO-PHASE FLOW

The problem of flow of suspensions and deposition of suspended 

particles from turbulent flows lias been discussed and investigated 

recently by many investigators. For instance, the transport of sus­

pended particles by turbulent streams of water has been studied by 

Kalinske and Van Driest [33]. The mixing and distribution of 

liquid droplets in high velocity gas streams were studied by Longwell

and Weiss [41]. Only a few experiments have been reported on the

important problem of deposition of droplets by Alexander and Col- 

dren [2 ].

The problem of flow of suspensions and deposition of suspended 

particles with laminar flows has not been treated as widely as with 

turbulent flows.

The literature survey will be divided into two main sections:

1. External Flow, i.e. flow over a surface such as: flat 

plate, corner, sphere, an ellipsoid of revolution, cylinder 

and wedge, respectively.

2. Internal Flow, i.e. flow inside surfaces such as: chan­

nels and tubes, respectively.

Numbers in brackets refer to items in the list of references.
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2.1 External Flow

J. V. Healy [24] analyzed the flow of an ideal fluid, containing 

small spherical particles, past a cylinder and a flat plate of finite 

width standing normal to the stream, and the problem was treated by 

the method of small perturbations. The perturbed equations for arbi­

trary initial particle density are difficult to solve, even numcrcially. 

Wien the further assumption of small initial particle density is made, 

the problem is simplified considerably. Ilealy assumed: (1 ) incompre-

sisble, potential, high-speed flow, (2 ) fluid-particle interaction is 

according to Stokes' drag law, (3) the particle-particlc interaction 

is negligible, and (4) the density of the fluid is considerably less 

than that of the particle material, this assumption permits the absence 

of the pressure force terms in the particle momentum equation.

For this case the nonlinear equation governing the particle stream­

lines is given in differential form. The equation governing the par­

ticle density distribution is solved by the method of characteristics 

and the result given in integral form. The llunge-Kutta method is used 

to obtain numerical solutions and the results are presented graphically. 

Conformul mapping and analysis are used to find the particle streamlines 

and density distribution for the flow past a flat plate of finite width. 

For both bodies a particle-free zone exists, whose size depends only 

on the particle Stokes number, and in all cases the particle density 

increases monotonoically along the particle streamlines in the down­

stream direction. The critical particle Stokes number was found to be 

1/iS for the cy Linder and 1/4 for the plate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

D. II. Michael [44] considered the effect on the steady flow past 

a sphere of a uniform upstream distribution of dust particles having 

a small relaxation time. Using a potential solution as an upstream 

model of the gas flow at large Reynolds numbers N , an equation for 

the concentration of dust near the sphere was obtained and solved 

numerically.

It was shown that in the inviscid model, there existed a dust-

free layer adjacent to the sphere. A drag force was computed, and

it was also shown that particles did not collide with the sphere

until the Stokes number, 2up a 2 /9ay, was greater than 1/12 assumingd d
that the gas flow did not change due to the presence of dust par­

ticles, and that was in agreement with the analysis done by Langmuir 

and Blodgett [36].

Michael's paper concludes with a discussion of the effect of a 

viscous boundary layer on the dust-free layer, depending upon the 

value of the Stokes number times the square root of Reynolds number. 

Michael's interest in this subject was aroused by a paper of Saffman 

[60] in which the Orr-Sommerfeld equation for small disturbances in 

plane parallel flow of a dusty gas was formulated.

Michael and Norey [45] calculated the trajectories for small par­

ticles introduced upstream into a fluid flowing past a fixed sphere. 

Unseparated potential flow is taken as the velocity profile for the 

fluid, and the effect of gravity is included in the formulation when 

it acts along the axis of symmetry.
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Using a numerical procedure, particle trajectories which graze 

the sphere, and the corresponding collision efficiencies, were calcu­

lated for values of the Stokes number. When gravity was neglected, 

an analytic solution was obtained for large values of Stokes number 

which is in good agreement with the numerical results for Stokes 

number as low as 5. These results were compared with those of 

Langmuir and Blodgett [36]. When gravity was included, a critical 

value of the Stokes number was calculated for which no collisions 

occur until the Stokes number exceeds its critical value.

S. I,. Soo [67] studied the relation between fraction impacted 

and collection efficiency of particles in a flowing suspension on a 

body.

The effects of inertia, diffusion and particle-surface5 inter­

action are expressed by parameters correlating relaxation time to 

diffusion time and deposition velocity by surface force to that by 

dif fusion.

Morr and Soo [46] discussed the flow of a dust suspension over 

an ellipsoid of revolution. They performed an experimental work for 

measuring the particle deposition rate on the ellipsoid as well as 

the velocity and pressure distributions.

They classified the deposition of the solid particles on the 

ellipsoid as either inertial or diffusive. The particles deposited by 

inertia were very cohesive, tightly packed, and adhered to the surface 

of the ellipsoid close to the stagnation point, while the diffusive
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deposition occurred in regions where the normal component of the 

particle cloud-mass mean motion was expected to be almost parallel 

to the surface; in such regions the deposits were slightly cohesive 

and adhered loosely to the surface of the ellipsoid. They cal­

culated the fraction impacted efficiency for potential flow case 

by some simplifications in the momentum equations.

R. J. Forstrom et al [19] studied the fluid dynamics of particle 

(platelet) deposition for filtering walls that are related to 

Atherosclerosis. The analysis is applicable to the deposition of 

any rigid and spherical particle flowing near to a surface experienc­

ing a fluid flux from fluid to wall. Particle deposition onto filter­

ing surfaces is expected to occur when the drag force of filtration 

overcomes the fluid mechanic wall repulsive force. A nondimensional 

particle deposition parameter has been formulated and experimentally 

validated utilizing red blood cells.

The deposition parameter is applied to platelet deposition in 

the vasculature and shows that platelets are expected to contact 

arterial surfaces only in low shear, separated regions. This may be 

the link between the filtration and thrombosis theories of atheros­

clerosis. Platelet radius and plasma viscosity are predicted to be 

important parameters of atherosclerosis.

J. V. Healy [25] discussed the two-phase convex-type flows. The 

flow of an inviscid incompressible fluid, with imbedded identical 

spherical particles, around an arbitrary corner, was treated by the
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method oE small perturbations. Another application was made to 

concave-type flows in another paper. In both cases the approximate 

effects of separation were also considered.

The assumption of arbitrary initial particle density leads to 

a complex system of equations, which seems to have no simple 

solution. Assuming small initial particle density, the particle, 

density distribution is given by a first-order partial differential 

equation and by solving it by the method of characteristics, yields 

ordinary differential equations, whose solutions are simple and 

analytic for unseparated flow and numerical only when separation is 

taken into account.

In the unseparated flow, spiral type curves will be obtained and 

the particle density increases monotonically in the downstream direc­

tion on all particle streamlines.

In the separated flow, Ilealy has found that tfie most effective 

result is the disappearance of the infinite velocity at the origin 

and the consequent considerable reduction in the magnitude of the 

perturbation.

J. V. Ilealy [26] discussed the two-phase concave-type flows, 

which is considered as an extension of his previous work in [25] 

concerning the two-phase convex-type flows.

lie compared the particle streamlines found from the perturbation 

with those obtained by numerically integrating, the unperturbed equations.
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The agreement is found to be good for u^/F ~ U.2 and excellent when 

ui/F = 0.1 or less, where uj is the fluid velocity at unit distance 

away from the stagnation point along the stagnation line and F is the 

inverse particle relaxation time.

The nature of concave corner flows abruptly changes when the 

angle 0 through which the flow is deflected is ir/2. For 0 < ir/2, 

all particles collide directly except those approaching on stream­

lines close to the stagnation line. When 0 = ir/2, the critical 

value of (ui/F) is (ui/F)c = 0.25, and for n •> 0 > ii/2, only parti­

cles approaching; on streamlines near the stagnation line all collide.

It has been found that no particle-free zones exist in concave- 

type flows and the particle density increases monotonically in the 

downstream direction along all particle streamlines. The approximate 

effects of viscosity were also discussed at the end of the paper.
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2.2 Internal Flow

Stukel and Soo [73] studied and investigated the turbulent flow 

of a suspension into a channel. An experimental investigation of the 

hydrodynamics of a suspension with 10 p magnesia particles suspended 

in air over the inlet of a channel formed by two parallel plates 

was conducted for various flow velocities, plate gap widths, and mass 

flow ratios of solid particles to air. The study was undertaken to 

further the understanding of the aerodynamics of air pollution con­

trol equipment.

Experiments were carried out in a 12 in x 12 in section wind 

tunnel with flow velocities up to 1 2 0 ft/sec, plate gap widths of 

1/4, 1 and 2 in., and mass flow ratios of particles to air varied 

from 0.01 to 0.1 lb. particles/lb air. They determined the particle 

and air velocities, the particulate mass flow and density distri­

butions, and the particle size distribution as affected by the flow 

response. Measurement included a differential isokinetic sampling 

procedure for the measurement of the local mass flow of particles,

p u , and a fiber optics probe for the measurement of the local P P
particle concentration, n . Measurements of the velocities and

p

static pressure of the gas phase were made with conventional Pitot 

static probes.

It was found that earlier methods of correlation based on the 

momentum integral method were valid, and that predictions of the 

boundary layer parameters of laminar motion could be extended to tur­

bulent motion which exists in most of the air pollution control equip­

ment .
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The nature of the developing turbulent boundary layer for dilute 

suspensions is such that the density of particles is higher at the wall 

than at the core due to the presence of charge on the particles included 

by surface contacts. Further, a part tele slip velocity brought about 

by the lack of particle-to-particle collisions in the suspension was 

observed at the wall, analogous to rarefied gas motions.

It was concluded that similarity laws for the scaling of equip­

ment for air pollution control should include the momentum transfer 

number and the electroviscous number in addition to the Reynolds num­

ber N . The electroviscous number is especially important when partic- 

les possess large charge-to-mass ratios.

Yang and Peddieson [83] discussed the continuum theory of solid- 

fluid suspensions including solid-phase viscosity. They applied that 

theory to the solution of problems of one-dimensional, plane, parallel 

flow. The Stokes drag formula was assumed to govern the interphase 

force and both components were assumed to obey Newton's law of viscos­

ity. They assumed no-slip condition for the dispersing phase and 

slip condition for the dispersed phase at a solid surface. The result­

ing equations were used to solve three steady-flow problems: (1 ) plane

Poiseuille flow, (2) plane Couette flow, and (3) vertical film flow.

They assumed incompressible N e w t o n i a n fluid with indeterminate pres­

sure. It was also assumed that the solid phase obeys Newton's law of

viscosity with (constant) viscosity coefficient u . Lt was fur: herP
assumed that the solid phase contributes nothing to the pressure of 

the mixture.

(Mosed-form soLutions were obtained for these problems and used 

to evaluate the velocity profilet:, skin friction coefficients, and
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flow rates of both phases for a variety of numerical values of the 

parameters arising in the problem. These results were presented 

graphically.

They showed that the inclusion of solid-phase viscosity and the 

amount of particle slip allowed at the channel walls have important 

consequences in the problems solved. Gome preliminary results were 

also given for an unsteady parallel-flow problem of the boundary layer 

type (Stokes' first problem).

Yang and Peddieson treated the particle cloud in their analysis 

as a continuum, then the suspension might be regarded, for the pur­

pose of analysis, as a mixture of two interpenetrating continuous 

fluids.

Many authors have proposed sets of hydromechanical equations 

claimed by them to be appropriate for the analysis of two-phase solid- 

fluid flows.

Significant contributions have been made by Robinson [59],

Van Deemter and Van Der Laan [79]. Ilinze [28], Marble [42], Pigford 

and Baron [56], Murray [47], Anderson and Jackson [3], and Soo [65].

Soo's work appears to be the most general in that ho began with 

the equations of the general theory of mixtures discussed by Truesdell

and Toupin [76] and Truesdell and Noll [77].

The equations given by all of the above authors have similar

forms but are not in complete agreement. It: appears that more work
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will be needed to resolve the discrepancies between the various 

theories. One of the best understood situations seems to be the case 

of negligible volume concentration of particles (i.e., a dilute 

suspension). Equations appropriate to this condition are discussed 

in the review article by Marble [41].

Yang and Peddieson discussed the problem of flows of solid-fluid

suspensions without deposition.

Peddieson [53] studied the flow induced in a solid-fluid suspen­

sion by the impulsive motion of an infinite flat plate.

Many previous investigators have assumed that the solid phase

behaves like an inviscid fluid. This assumption appears to be not

universally valid. In fluidized beds, for instance, the viscosity of 

the solid phase is known to be large according to Jackson [31] and its 

neglect leads to qualitatively incorrect results in bed-stability 

calculations.

A continuum theory of solid-fluid suspensions including solid- 

phase viscous effects was formulated and used to solve the problem of 

finding the motion induced in a semi-infinite mass suspension by the 

impulsive motion of a bounding flat plate parallel to itself.

The appropriate partial differential equations were solved numeri­

cally using an implicit finite-difference method. Numerical results 

were obtained and examined for information concerning parametric 

t:rends.
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An interesting result is that the fluid-phase skin-friction 

function is found to behave qualitatively differently when solid- 

phase viscous effects are important than when they are negligible.

Wang et al [80] has derived a complete series solution for the 

distribution and deposition of particles which are diffusing and 

settling in a stationary fluid between two horizontal plane surfaces 

after being uniformly distributed.

Separate expressions for the entire range of calculation are 

given as functions of two equations: (1 ) a dimensionless parameter

which is the. diffusion coefficient divided by the product of the 

settling velocity and plane separation, and (2 ) a dimensionless time 

variable which is the ratio of distance of fall to plane separation.

Numerical results show that it is better, as well as easier, to 

approximate deposition by the larger of the two separate effects for 

pure diffusion and for pure settling than by combining them as if 

they were independent probabilities.

Friedlander and Johnstone [20] found that when a stream of gas 

carrying suspended particles flows in turbulent motion past a surface, 

the particles are deposited due to the radial fluctuating component 

of velocity. They performed an experimental study of the rate of 

deposition of dust particles on the walls of tubes with an analysis 

of the mechanism of transport of particles in a turbulent stream.

Friedlander anti Johnstone found that the net rate of deposition 

depends on both the rate of transport of the particles to the wall, and
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the rate of: re-entrainment; the second effect was reduced to a mini­

mum by allowing only a single layer of particles to accumulate on the 

surface and taking precautions to ensure adherence of oil particles 

that struck the wall.

I). G. Thomas [78] has determined the minimum transport velocity 

(defined as the mean stream velocity required to prevent the accumu­

lation of a layer of stationary or sliding particles on the bottom 

of a horizontal conduit) for flocculated thorium oxide and kaolin sus­

pensions flowing in glass pipes. The pipes ranged from 1 to 4 in. 

in diameter, and the concentration was varied from 0.01 to 0.17 volume 

fraction solids. Two flow regimes were observed depending on the con­

centration of the suspension. In the first the suspension was suffi­

ciently concentrated to be in the compaction zone and hence had an 

extremely low settling rate. The second regime was observed with more 

dilute suspensions which were in the hindered-settling zone and 

settled ten to one-hundred times faster than slurries which were in 

compaction.

The concentration for transition from one regime to the other 

was dependent on both the tube diameter and the degree of flocculation.

The suspension particles were smaller than the thickness of the 

laminar sublayer, and they settled according to Stokes' drag law.

Under these circumstances the relation obtained for dilute sus­

pensions was found to bo consistent with particle transfer in the 

radial direction owing to Bernoulli forces on the particle and the
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action of turbulent fluctuations which penetrate the laminar sub­

layer .

For concentrated suspension in compaction, the minimum transport

velocity was given by a characteristic critical Reynolds number .
c

Thomas [78] considered the case of small particle size to insure 

homogeneous flow of suspension.

Bourgeois and Grenier [7] studied the ratio of terminal velocity 

to minimum fluidizing velocity for spherical particles. The analogy 

between the states of a particle falling at its terminal velocity in 

a fluid and that of a particle in a bed, at incipient fluidization 

by the same fluid, suggests the possibility of a correlating minimum 

fluidizing and terminal velocities and of predicting the minimum 

fluidizing velocity.

A semi-theoretical curve has been obtained, relating (Re /Re ^ :

terminal Reynolds number to minimum fluidizing Reynolds number) to
3 _.?the so-called fluidization number, g o ,  (n - p , ) (2a) /if , and itpb p pb

has been compared with new experimental data collected for this pur-
8pose in the range of fluidization number less than 10 and greater 

than 1 0 0 .

Many authors have already proposed various empirical equations 

for predicting the minimum fluidizing velocity. Leva [37] in a 

graphical comparison of some of these correlations lias shown that 

their agreement is rather erratic. In spite of their imperfections,
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they have served a useful purpose in design work; further refinements 

are however desirable and should be based on a sound theoretical 

foundation. Among the proposed theoretical expressions, those of 

Narsimhan [48] and of Wen and Yu [81] are the most recent.

S. L. Soo [6 6 ] studied the pipe flow of suspensions. This study 

shows that fully developed pipe flow of a particulate suspension is 

defined by four dimensionless parameters of particle-fluid inter­

actions in addition to the Reynolds number N .

Effects accounted for include the Magnus effect due to fluid 

shear, electrostatic repulsion due to electric charges on the par­

ticles and Brownian or turbulent diffusion. In the case of laminar 

liquid-solid suspension electrostatic effect is negligible, but 

shear effect is prominent. Solutions of the basic equations give the 

density distribution of particles with a peak at the center (Einstein, 

Jeffery) or at other radii between the center and the pipe wall (Segri 

et al) depending on the magnitudes of the various flow parameters.

In the case of a turbulent gas-solid suspension, the Magnus effect 

is significant only within the thickness of the laminar sublayer. 

However, charges induced on the particles by the impact of particles 

at the wall produce a higher density at the wall than at the pipe 

centerline. The velocity distribution of particles is characterized 

by a slip velocity at the wall and a lag in velocity in the core from 

the fluid phase.
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In that study Soo neglected the effect of gravity on pipe 

flow of a suspension and he justified that assumption.

Soo and Tung [70] studied and analyzed the general case of a 

fully developed pipe flow of a suspension in a turbulent fluid with 

electrically charged particles or with significant gravity effect, 

or both, and for any inclination of the pipe with the direction of 

gravity.

Parameters defining the state of motion are: pipe flow Reynolds

number, Froude number, electro-diffusion number, diffusion~response 

number, momentum~transfer number and particle Knudson number.

Comparison with experimental results is made for both gas-solid 

and liquid-solid suspensions.

It is shown that the gravity effect becomes significant in the 

case of large pipe diameters and large particle concentrations.

Soo and Tung [71] extended their previous studies of the fully 

developed flow of a suspension of particles in a turbulent fluid in 

gravitational and electric fields and a shear flow field, the effect 

of sedimentation was taken into account.

Additional considerations from previous studies are diffusion 

and settling under field forces, the sticking probability of a particle 

at the wall and that to a bed of similar particles.
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The transient condition gives the rate of build-up of a bed of 

deposited particles. The method is applicable to pipes at any incli­

nation to the direction of gravity.

Deposition by a field force may take place when the particle 

concentration at the pipe wall increases to its packed bed value or 

when particles start to adhere to the pipe wall. The former may 

result from a large concentration of particles, while the latter may 

occur even in a dilute suspension. In both cases, a layer of solid 

particles may build-up to a point such that a sliding bed will proceed 

downstream and may actually reach a condition of steady flow. However, 

an alternative situation is unsteady flow with formation and blow away 

of dunes or unsteady flow with particles moving from one dune to the 

next undergoing deceleration or acceleration as explained by 

Kennedy [34].

Soo and Rodgers [68] studied the occurrence of deposition due to 

field forces. They identified a sticking probability, o, which depends 

on material properties. When all particles drifting to the wall stick 

to or settle at the wall a = 1; a = 0 for complete re-entrainment.

This sticking probability is related to the force of adhesion of 

particles to a surface.

Corn [14] showed that adhesive forces are either electrical or 

liquid (viscosity and surface tension) in origin.

The electrical forces include contact potential difference and 

dipole effect, space charge and electronic structure.
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The gravity effect alone produces settling, but the fact that a 

particle may again become re-entrained gives a < 1. Another sticking

probability a concerns adhesion of particles at the immediate vici­

nity of the wall. Opposite to settling is the lifting of a particle 

in the shear flow field of a fluid. This leads to a redistribution 

of density of particle clouds and erosion of a bed of deposited par­

ticles .

Soo and Tung [70,71] investigated the general case of a fully 

developed pipe flow of a suspension in a turbulent fluid in gravita­

tional and electric fields and a shear flow field. Although they 

claimed that the method of solution could be extended to a laminar flow 

field, they did not carry out any study on laminar flow.

Chua and Wang [11] conducted an experimental investigation of 

the deposition of submicron particles from steady flows in a branched 

tube. Local rates of deposition of submicron particles from steady 

flows were measured along the inner and outer walls of the daughter 

branches of a symmetrical Y-shaped glass model of a junction with 

dimension based on the data of the secondary and tertiary branchi of 

an average human respiratory tract.

Monodisperse polystyrene latex microspheres were used to gener­

ate the aerosol by a collision-type atomizer. The particles were 

0.109p in diameter and were electrically neutralized by bipoleions.

The aerosol passed through the daughter tubes at three constant
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inspiratory flow rates, 31.25, 62.5 and 125 ml/sec, which correspond 

to low, normal and stressed breathing rates of average men.

At all flow rates, the deposition rates along the inner walls 

were observed to have a maximum at the branch point and a second 

maximum at approximately two diameters distance from the branch point, 

while the deposition rates along the outer walls appeared to have a 

maximum at one diameter distance from the entrance to the daughter 

branch.

Futhermore, the deposition rates were higher by one order of 

magnitude than the values calculated from the equation of convec­

tive diffusion with the assumption of a parabolic velocity profile.

The data suggest that asymmetric flow profiles and secondary flows 

in daughter tubes have significant and considerable effects on the 

rates of particle deposition.

Chua and Wang plotted some curves of deposition rate per unit 

concentration, i.e. the so-called velocity of deposition versus the 

distance from junction for all flow rates mentioned before, and they 

compared their results with those of Levieh [38j.

Huglnnark [30] studied the solid particle deposition from a tur­

bulent gas stream. lie did an experiment to estimate the particle 

velocity as a function of the stopping distance (the distance that 

a particle with a given initial velocity will move through a stag­

nant fluid). And he claimed that data for 0 .8 p particles in the 

0.54 cm diameter pipe are not shown because those data are not in
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agreement with the other particle data, also he added that the 

assumptions of equal particle and gas diffusion, stopping distance, 

and particle velocity equal to fluctuating velocity appear to be 

consistent with the experimental data.

Singh and Byers [63] did an experimental study of particle 

deposition due to thermal force from hot dust-laden gas in turbul­

ent flow downward in an externally cooled vertical tube. Thermal 

force is the term used to describe the force experienced by a sus­

pended particle due to a temperature gradient in the gas. This 

temperature gradient causes small particles to travel in the direction 

of decreasing temperature. They showed that small particles deposited 

closer to the inlet and the larger ones travelled farther downstream 

before depositing, also they found that no deposition took place for 

particles larger than 0.75pm.

The resulting data for particle size and average temperature in 

the laminar sublayer along the tube length indicated that the thermal 

accommodation coefficients decreased rapidly with increasing tempera­

ture. Collection efficiency was determined experimentally as a func­

tion of particle size for a turbulent stream flowing through a concentric 

tube annulus with the inner tube heated and the outer cooled. Overall 

efficiency was found to increase from 19.5% for the pipe flow to about 

29% for the annulus. The range of the particle size distribution for 

the annulus flow was from 0.35 to 1.2pm

Peddieson 155 J studied the motion of a two-phase (dust-carrier 

gas) suspension in the vicinity of a sphere or a circular cylinder.
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The problem of analyzing the flow of a fluid containing solid 

particles or droplets past such bodies has been of interest for a 

long time because of the existence of such flows in several situations 

of engineering interest. These include the formation of ice on air­

plane wings, the erosion of missile surfaces due to high-speed rain­

drop impacts, and the collection and sampling of dust for the purposes 

of monitoring and controlling air pollution.

A knowledge of the rate of dust collection by a single isolated 

element can be used to estimate the rate of collection of the bed as 

a whole. Also the heads of various sampling devices often take the 

form of spheres or cylinders.

Some early papers in this field are those by Taylor [75], 

Langmuir and Blodgett [36], and Robinson [59]. The work of these 

authors and many others is reviewed in the book by Fuchs [22] and the 

conference proceedings edited by Richardson [58].

Most of this earlier work was directed toward finding the so- 

called collection efficiencies for bodies of various shapes.

(The collection efficiency is a measure of the rate at which 

particulate material is collected on the surface of the body).

Various extensions of that work are contained in the papers of 

Paretsky, Theodore, Pfeffer, anil Squires [51], Spielman and Goren 

[72], Flint and Howarth [18], Dawson [171, Michael and Norey [45], 

and O'Neill [49].
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All of the preceding papers have contained the assumption that 

the void fraction of the two-phase suspension was large, (the void 

fraction is the ratio of fluid volume to total suspension volume).

Peddieson [54] discussed the theoretical prediction of the per­

formance of dust collectors.

A state of multiphase flow exists in such devices. In a dry 

collector there are two phases, dust and the carrier gas. In a wet 

collector an additional phase, consisting of water droplets, is 

present.

R. II. Boll [6 ] developed a mathematical model of venturi 

scrubber performance and compared with experimental data on pressure 

drop and particle collection.

It comprises simultaneous differential equations of drop motion, 

momentum exchange, and particle impaction on drops. They are readily 

integrated by computer for the whole venturi, given its configuration 

and operating conditions. Provided liquor distribution is reasonably 

uniform, pressure drop prediction is quite good for a wide variety 

of venturi sizes and shapes.

Accuracy of prediction of particle collection is only fair, 

discrepancies are thought to be due to either maldistribution of spray 

liquor or condensation of water vapor. Thus, provided these conditions 

are voided, the model can be used to optimize design and operating 

conditions for specific applications.
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Pai and Hsieh [50] studied the interaction terms in gas-solid 

two-phase flows. From both experimental data and theoretical results 

of the tx^o-phase flow, they obtained the complete expression of the 

interaction force between a gas and solid particle at low Reynolds 

number flow. The interaction force contains two terms: one is pro­

portional to the difference betx^een the velocities of the gas and 

the solid particle with a coefficient as a function of volume fraction 

Z and the other is proportional to the product of the total pressure 

of the mixture and the gradient of solid volume fraction. The 

second term is nexi?. Wien Z ->- 0 the completion expression of inter­

action force reduces to the well-known expression of Stokes formula.

Crooke and Walsh [15] studied the flow of a dusty gas through an 

infinitely long pipe. They discussed several boundary value problems 

arising from Saffman's formulation of the equations of two-dimensional 

flow for dusty gases.

They derived a set of linear partial differential equations rep­

resenting two-dimensional flow and obtained solutions to these equa­

tions for rectangular and circular geometries. They examined both 

steady-state and transient cases.

The general solution for two-dimensional flow through arbitrary 

cross-sections in terms of eigenfunction expansions for the geometry 

of these cross-sections was obtained.

They developed a method for the construction of solutions for 

the flow of a viscous, incompressible gas with suspended dust particles
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when the flow domain possesses special geometry. They did not consider 

any change in the number density (N) of the particles, i.e. the case 

of no particle deposition.

Comparin et al [13] studied experimentally the deposition of con­

taminants in fluidic devices. They found that serious changes in 

performance and plugging can be expected in such devices.

It is an interesting point to further the study analytically for 

the deposition of contaminants in fluidic devices particularly in the 

splitter region (output region) which can be approximated to a para- 

llel-plate channel connected to a straight wall diffuser.
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3. LAMINAR FLOW OF SUSPENSIONS IN THE 

ENTRANCE REGION OF A CHANNEL

Internal flows of suspensions have been extensively studied as 

mentioned in Chapter 2. However, laminar flows of suspensions in 

channels, especially in the entrance regions, have not been investi­

gated due to the fact that a complete solution of the problem will 

involve solving the Navier-Stokes equations, which is a formidable 

task. The availability of large, high speed digital computers and 

the greater understanding of the use of numerical methods for solv­

ing non-linear partial differential equations have made the numeri­

cal solution of the equations of motion feasible, thus eliminating 

much of the need for approximation in solving fluid mechanics 

problems.

An experimental study by Stukel and Soo [73] of turbulent flow 

of a suspension into a channel has found that considerable amount of 

particle deposition occurred due to the electrostatic charge on the 

particles. Soo further introduced the concept of a sticking factor,o 

which depends on both the solid particle and channel wall material. 

When o = 1.0, all particles reaching the channel wall are assumed to 

stick to the wall, whereas at a = 0, every particle is reentrained 

by the fluid flow stream after reaching the wall.

In this chapter, a numerical scheme is presented to study the

laminar flow of suspensions in the entrance region of a channel, in­

cluding the rate of deposition of the solid particles on the channel

wa Li.
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The suspension channel flow is considered at conditions under 

which a finite layer of particles is deposited at the channel wall, 

due to the electrostatic charge and wall adhesion. The electro­

static charge is generated by the collision among the solid particles 

themselves and also by the collision between the solid particles and 

the channel wall. Experiments by Kunkel [35] showed that all dust 

particles become electrostatically charged upon being dispersed into 

a cloud.

The suspension flow is laminar and is considered to be incom­

pressible which is also true as a good approximation for compressible 

flow at very low Mach numbers.

Also the case of low particulate concentration (dilute suspen­

sion) will be considered such that the particles have no effect on the 

fluid phase. Due to dilute suspension assumption and since the solid 

particles tire very small (size of order 2p diameter), the effect of 

gravity can be neglected. Further it will be assumed that the thick­

ness of the layer of deposit is much smaller than the channel width, 

so that the effective reduction in channel widtli is not enough to 

change appreciably the fluid velocity distribution.

To get the governing equations, one writes the assumptions as 

foJlows:

Assumpt ions

(1) incompressible, steady flow

(2) Two-dimensional, laminar flow

( 3 )  N e g l i g i b l e  g r a v i t y  e f f e c t
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(4) Negligible axial component of the electric field intensity

(7) Particle-particle interaction is negligible

(8) Thickness of the layer of deposit is much smaller than the 
channel width

In accordance with the boundary layer simplification by Schlichting 

[62], the equation for the normal component of fluid momentum reduces 

to (Dp/Dy) = 0, therefore p is a function of x only and one can 

replace the partial derivative term (Dp/Dx) in the equation for the 

axial component of fluid momentum, by the total derivative term 

(dp/dx).

Subject to these assumptions, the governing equations will be:

3.1 Governing Equations

(a) Fluid Phase

- ^ + - ^ = 0  (3-1)
o x oy

(b) Particle Phase

(5) Dilute suspension (p > p , K = 0)

(6) Fluid-particle interaction is according to Stokes' drag

') x 1 y (3-3)

D ,, 0 u

p l)x
*  +  vP

(3-5)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

DE p q
X  = _JL_ (3-6)

d y k mo p

where F = F [9(vi/2a2)p^] [1 + (p/2p )]  ̂ (3-7)

and F = (c /24)f2a(pIv - v |)/p]. (3-8)D 1 p 1

The continuity equation of the particle phase (3-3) can be

expanded in the form
Du Dp Dv Dp

p — P- + u ^ 4- p -— -2- +  v v— ^ = 0 p Ox p Dx p 3y p Dy

which contains partial derivatives of the same order for u , vp p
and p .P

Looking at equations (3-4) , (3-5) and (3-6) one can see that

the variables of highest order derivatives are u , v and E , res-P P y
pectively. This means that equation (3-4) is a fundamental equation 

for u , also equation (3-5) is a fundamental equation for v^ and 

equation (3-6) is a fundamental equation for E^. One still needs a 

fundamental equation for o , i.e. an equation where p has the high-• p p
est order derivative and this is done by replacing the continuity 

equation of the particle phase with the diffusion equation as follows:

Equations (3-1) and (3-3) can be combined to give:

u -r— ^ + v -t— ^ Lp (u - u)] - [p (v - v) ] (3-9)Dx Dy 3x P P Dy p p

Let j = p (u - u)PX Mp p

j = p (v - v)py p p
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i and i are the mass fluxes in the x - and y - direction res- px J py
pectively under the effect of both external field force and self­

diffusion of the particles. Equation (3-9) can be written as follows:

dp dp dj di
u _ E  + v J L B!_ _ J « - ^ J ! Z  (3-10a)c)x d y <)x o y

3 j x 3 j]
For the present investigation, it is assumed therefore

equation (3-10a) becomes
3p 3p 3j

u x— + v 7— ^ = - . (3-10b)dx dy dy

From Fick's law one has
p E dp

j = (Ci ) - D 7,-2- (3-11)PY mp p P 3y

which means that the mass flux of the soli! particles in the y-direc-

tion is due to both external field force and self-diffusion of the 

particles.

Substituting Eq. (3-11) into E q . (3-10b) , one gets the diffusion 

equation:
dp dp ,, P E 9n

u J  + v --E. , . [ (3_) + D Xlj) a _ 12)dx dy dy m p p dy"-

Therefore the system of equations that has to be solved is as fol­

lows :

^  f  - 0 0-1)jx <)y

du , du 1 dp , p d2uu —  + v =  t1- + —  — j  (3-2)dx ()y p dx p dy‘-

du du D du
U +  V = F (u-u ) +  -7 —  ( [1 *’) (3-4)p dx p dy p p dy p dy
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3v 9v _
u + v = F (v-v ) + (^— )E (3-5)p 9x p dy p m y

3p 3p p E
u -r— ^ + v "9 = ~ V -  ̂ + Dr, T v ^  (3-12)3 x 3y dy m p p «y

3E p q
= (-*— ) • (3-6)9y e mo p

The purpose of solving these equations is to determine the rate 

of deposition of the particles on the channel wall which can be 

obtained from the equation of conservation of mass of the particle 

phase as follows:

- f  /'* p u dy = ap v +  a p f /F - a'p , fT /F (3-13)3x o p p J pw pw w pw w w pb L

where a is the sticking probability accounts for electrical and

viscous forces,

a is the sticking probability accounts for adhesive for-w
ces at the wall,

I
a is the lifting probability which accounts for liftw

forces at the wall,

f is the adhesive force per unit mass of particles at thew
immediate vicinity of the wall, 

f is the lift force per unit mass of particles acting on

a particle by fluid shear near the wall, and it is given 

by Soo and Tung [71] as follows:

f, = 1.54 -—
PP

3u
3y (u — u + a 

P
3 u
3y ). (3.14)
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The right-hand side of equation (3-13) consists of three terms.

The first term (ap v ) is the rate of deposition of particles per pw pw
unit area due to electric charge. The relation of v and E (elec-°  pw w
trie field intensity at the wall) is derived in Appendix A and it is 

given by Eq. (A-7).

The second term (o p  f /F) is the rate of deposition of partic- w pw w
les per unit area due to surface adhesion. This term depends upon

material and surface properties. The quantity a f /4F is the deposi-w w
tion velocity defined by Friedlander and Johnstone[20].

The third term (-o'p f /F) is the rate of lifting of particles w pb L
per unit area due to lift forces at the channel wall. The minus sign 

indicates lifting of particles, i.e. decrease in rate of deposition. 

For given fluid and particle phases with fixed particle size, the lift 

force per unit mass f will be a function of the axial velocities dif­

ference (Up- u ) and tlie axial velocity gradient of the fluid phase 

G'tu/3y) . This means that the lift force f at the wall is a function
ia

of the axial position x. It is worth noticing that the lift force in 

the governing equations was neglected because of neglecting the grav­

ity effect since the suspension is dilute and the solid particles are 

very small. However, the lift force f was considered as a surface 

force arising from the fluid shear near the wall.

Combining Eq. (3-14) with Eq. (3-1.3) then the resulting equation 

for the rate of deposition of the particles will include the variables:

(u, u , ™ ),. . , , , v and pp dy 0 the wall pw pw
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The factors a, a , a and the quantities f and p , can be w w w  pb
assigned reasonable values according to experiments and previous work 

by others such as Soo and Tung [71] and F can be calculated from 

Eq. (3-7) after some simplifications as indicated in Appendix B.

Equations (3-1), (3-2), (3-4), (3-5), (3-6) and (3-12) to (3-14) 

can be non-dimensionalized as given in Appendix B, as follows:

av = o
OX 3Y

u M  + v ^
3X 3Y

dP 1 _ 32U
dx Nr  3Y7

(3-15)

(3-16)

3U 3U
J -- ^  + V  ip OX p OY

3 V 3 V
+ V _E. -

p 3X p 3Y

3p'
+ V — r-)3X 3Y

1 1 3 ■ 3Un—  (U - 0 ) + w  (p*
m P

-L- (V _ v ) + E' N V p' SNm m

32Pp * 3 %  . *2
OY7^  ' L 3Y ‘ 4aPp

(3-17)

(3-18)

(3-19)

3E *— —  = 4a p 3Y p
(3-20)

A A I A
m  = p (aV +  a A/3) - a p , y/b pw pw w w pb (3-21)

where y = (1.54BN p „/R5'N„ ') (U - U + Rm R R p
calculated ul the wall.

OjJ
3Y

3U 
3 Y (3-2 la)

The physical meaning and order of magnitude of the dimensionless 

quantities and parameters are explained in Appendix B.

Equation (3-19) is the Diffusion equation, while E q . (3-20)[given
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by the Gauss law] is the Poisson equation. The unknowns in the 

above equations [Eq. (3-15) through E q . (3-21)] are:

U , V , P , U , V , p , E and m “ P P P

Note that the solution depends on Reynolds number N as well as

the momentum-transfer number N , the diffusive Peclet number B, them
electrostatic charge parameter a and the boundary conditions.

3.2 Boundary Conditions

Referring to Fig. (3.1) and considering symmetrical flow through 

the channel with uniform inlet conditions, the boundary conditions 

will be:

@ x = 0

(0 < y < h)

u = u = u P o

v = v = 0  P

P = P P P°

P = P..

E = 0y

(at the channel inlet)

uniform

uniform

uniform

(3-22)

(x > 0)

Du
A1! = _JL = t
Dy Dy
v = v = 0  P

'■'i* = 0Dy

(at the centerline of the channel)

sy mine try

symmetry

(3-23)
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@ y = h 

(x > 0) 

u = v = 0

(at the channel wall)

no slip condition
3u

up Lp 3y Iy=h particle slip condition Case I

or

3u
u = u (1 - xF/u )- L tt— ^ p o o' p 3y ly=h

u - P

3p
) — ^p 3y

3u j 
— £Jp 9y 'y=h

(x < u /F)

(x > u /F)O

Case II

y=h (l-a)p
qEW f , £tW  , ' L,- a p --- l a p ,  —pw - w pw - w pb -m F F t
P

where f = 1.54
J_i

1..
v I Ci U  I ■ / . |  ̂̂  | \—  (u - u +  a |“  j ) ,

(3-24)

f~v" I 9u
a I 3y

3u
3y

and L is the particle-fluid interaction length. When the fluid is 
P

in laminar motion, is the free path over which a particle changes

its direction because of diffusion D . The existence of L explainsP P
the experimental result that the particles are in a slip motion with 

velocity u at the wall as in the case of a rarefied gas, theJ pW to >
expression for L as a free path is given by John [32] as follows:

T ... 7 ... 3n. .

pa it y

where

therefore L = P
3 v___

-  g RT■it

(Velocity of sound)

(3-24a)

where. v = Kinematic viscosity of the fluid (air) 

R = has constant
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T = Temperature of the gas

g = Gravitational constant

So for a given pressure and temperature (say 1 atm and 20 deg C) 

the interaction length, L , can be calculated as shown in Appendix B.

The last boundary condition in (3-24) of the particle cloud 

density gradient at the wall is derived in Appendix A. It is based 

on the equation of conservation of mass of the particle phase, from 

which one can find the rate of deposition of the particles on the 

channel wall as given in Eq. (3-13).

It is worth noticing that two cases for the slip condition of

the particles at the wall were considered. Case I is the regular

slip condition and Case II is the modified slip condition where the

excess term u (1 - xF/u ) 0 x < u /F was introduced to account for o o o
the distance tiiat the solid particles will travel before they start

to deposit on the wall when L = 0 (i.e. Knudsen number K = 0 ) .p np
The value of the distance x depends on the relaxation time of the 

particles (1/F), the higher the relaxation time of particles the 

greater the distance x will be and vice versa.

The above equations of the boundary conditions can be non-dimen- 

sionalixed as follows:

@ X = 0 (at the channel inlet)

(0 < Y < 1)

II = U 1 uni form (1 ,2)P (3-25)
V = V = 0 P (3,4)
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PP = 1

P = 0

uniform (5)

(6) 
(7)

g y = o 

(x  > 0)

3UDU _ __]3 _
DY ~ 3Y

V

Dp

V = 0 P

DY
- 0

E = 0

0 Y

(X > 0)
V = 0

DU
K

(at the centerline of the channel)

np DY Y=1

symmetry (8,9)

(10,11)

symmetry (12)

(13)

(at the channel wall)

no slip condition (14,15)

particle slip Case I (16)
condition

or

DU
U = (1 - X/N )-K p m np DY Y=1 X < Nm

DU
U = - K — ^p np D Y Y=1 X > N

Case II (16)

%
DY .. = (l-a)E p “ - o Ap + a Yp 1 w  pw w pw wpw w pb (17)

where y = (1.54 f3N p, /R N,, 2) (U - U + R m R R p
8JJ
DY ) DU

DY

The above equations (3—25) to (3-27) represent 17 bound, 

ditions and those conditions are necessary and sufficient to 

system of equations given in Section 3-1 [Eq. (3-15) to Eq.

(3-25)

(3-26)

(3-27)

ury con­

sol ve the 

(3-21)|.
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3.3 Method of Solution

Equations (3-15) to (3-21) in Section 3.1 with the boundary 

conditions (3-25), (3-26) and (3-27) in Section 3.2 can be solved
k k t k

together for the unknowns U, V, P, U , V , p , E , and m by the 

finite difference technique [12, 64]. These equations are written 

in a finite difference form as shown in Appendix C.

A square mesh is superimposed on the flow field internal to the 

channel. The finite difference coordinates are chosen to correspond 

to the spatial coordinates shown in Fig. (3.1) so that i = 1 corres­

ponds to X = 0, and j = 2 corresponds to Y = 0, a positive change in 

the X-coordinate of AX, which is taken as 0.1, increases i by 1, 

similarly a positive change in the Y-coordinate of AY, which is taken 

as 0.1 (corresponding to 10 equal intervals in the Y-direction, i.e. 

n = 10) increases j by 1. When Y = 1, at the channel wall, j = n+2. 

Eleven mesh points in the Y-direction and up to 141 mesh points in 

the X-direction were used, i.e. X = 14 which is equivalent to 7 times 

the channel width. The finite difference grid is illustrated in 

Fig. (3.2).

k kThe quantities U, V, P, U , V^, and E at each point in the

column i = 1 are known as boundary conditions (3-25). By substitut­

ing the values of U , U , V and p  (uniform conditions) into equa-
P1 ?! P1

tion (C-25) after replacing the subscript (i + 1) with i, then one
- .*can calculate the deposition rate (DPR = m ) at i = 1. From the.

k kquantities U , V , P., U , V , p and E , by use of the finiteI. I. l p j P | P j r
difference equations which take the form of the matrix equation:
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A. X . M  = B. i l+l l

where A. is the matrix of coefficients at axial position i,i

B_̂  is the column vector at the same axial position i,

and X.,, is the variable column vector at axial position (i+1).l+l
j.

A. and B. are in terms of U . ,  V,, P., U , V , p , and E.. But
1 1 1 P i Pi Pi * 1 *

X i+i ls in terms of u i + r  v i + r  p i+i, UP . ’ \  ’ p p . ^  and E m -i+i i+i i+i 
So for i = 1, A and B^ are known, hence one can determine , i.e.

•}'<
U„, V , 7 , U , V , p and E „ . Substituting the values of U „ , U , 
Z p2 P2 P2 2 

V , and p taken at the wall (i.e. @ j = 12) into equation (C-25)
P2 P2

then the deposition ra_te DPI^ can be determined.

In the same manner the solution is carried on downstream, find- 
* -,ving U, V, P, U , V , p and E for the (i+l)th column when these

°  p P P —
quantities are known in the ith column. Substituting the values of

*U.,.,, U , V and p taken at the wall, into equation (C-25)
x+i pi+i pi+i pi+i

then one can find the deposition rate DPR.,.., i.e. m tit the axial1 i+l
position i+l.

The numerical procedures are shown in Appendix C. For the solu­

tion of the matrix equation AX = B, a computer program has been 

written using a subroutine called (LEQT2F) which in turn uses other 

subroutines (LUDATF & LUELMF) to solve the given matrix equation nu­

merically and by the Crout reduction technique [21] which is the 

modified Gauss elimination technique. A matrix size of A was con­

sidered to be (60 x 60) and an accuracy of four significant figures
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in the computations was assumed.

As far as the stability requirement is concerned, Berezin [4] 

and Quarmby [57] indicated that the general condition for stability is

(AX/Nr )/(AY)2 < 0.5

with AX = AY = 0.1,

for N = 1000 (AX/Nr )/(AY)2 = 0 . 0 1  < 0 . 5

and for N = 100 (AX/N )/(AY)2 = 0.1 < 0.5

Therefore the stability requirement is satisfied.

Moreover, different mesh sizes (AX = 0.05, 0.2, and 0.3) were used 

during the course of analysis. The solutions for these mesh sizes were 

found to be in agreement with the solution for the chosen mesh size 

(AX = 0.1).

3.4 Results and Discussion

In this section, the complete flow characteristics of laminar flow 

of suspensions in the entrance region of channel will be examined in 

detail. The fluid phase will be discussed briefly, since it has been 

done by Quarmby [57] and others. However, the particulate phase will 

be studied extensively due to the fact that the solution of the problem 

is a parametric type, and the interest is to find out which flow para­

meters affect considerably the rate of deposition of the solid particles. 

Some of these parameters as well as dimensionless quantities needed to 

solve Che problem, can be calculated as indicated Appendix B, while 

the others can be estimated and taken from previous results and experi­

ments that have been done by others [10,71].
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3.4.1 Fluid Phase

Fig. (3.4) shows the axial velocity distribution of the fluid 

phase U. The centerline velocity, U , increases downstream until it 

approaches a value of 1.5 when the flow becomes fully developed. As 

a check with Quarmby's solution [57], at X = 14, = 1.16 while the

corresponding value obtained by Quarmby (with K = 0) is U = 1.20 

which means that the solution is different by 3.3% at that specific 

point. Such a difference is mainly due to the fact that a horizontal 

mesh size of AX = 0.1 was assumed, while Quarmby has considered 

AX = 0.0001 and of course the smaller the mesh size, the better the 

results one obtains. But since the problem involves solving for the 

fluid and particulate phases at the same time and the interest is to 

examine the flow characteristics of the particulate phase, then an 

approximate solution for the fluid phase (by selecting AX = 0.1) is 

reasonable for reducing computing time.

Fig. (3.5) shows the vertical velocity distribution of the fluid 

phase V. Here, the values of V are negative, which means that the 

direction of motion of the fluid elements in the vertical direction 

is away from the wall, and this result is antilogous to the result ob­

tained by Ilornbeck [29] for pipe flow. Also it can be observed that 

the absolute value of V decreases downstream until it becomes zero 

when the flow becomes fully developed.

Fig. (3.6) shows the axial distribution of the fluid static 

pressure P. It: is clear that the pressure decreases along the X-axis 

and this is true since the fluid is accelerated.
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3 .4.2.1 Flow of Suspensions without Deposition

This case is studied for the purpose of finding the flow para­

meters that affect the velocity field and concentration of particles.

Fig. (3.7) shows a comparison of axial velocities of fluid and

particle phases U and respectively with no deposition. It is

obvious that U > U except at the wall. Such a difference (U - U )P P
is caused by the difference in the momentum of both fluid and parti­

cles. Also it can be seen that U , the axial velocity of the particlepc’
at the centerline of the channel, increases downstream until it 

matches the fluid stream velocity in the fully developed region.

It is worth noticing that the profile of at X = 1 and near

the wall is curved due to the slip condition at the wall in Case II
3U

where (1 - X/N ) > • K r ^ - L  , for X < N .m np c)Y *Y=1 m

Fig.(3.8) shows a comparison of vertical velocities of fluid

and particle phases, V and V , with no deposition. It is clear that

both V and V are negative, therefore both the fluid elements and P
the particles are moving towards the centerline of the channel. Also 

the absolute value of (V - V^) increases with X at the beginning, 

then starts to decrease until it reaches zero at very large X, i.e. 

when the flow becomes fully developed.

Fig. (3.9) indicates that the particle velocity, U , increases 

with increasing the diffusive Pcclet number p. It is clear that the 

particle velocity profile becomes close to that of the fluid pha.se 

at higher P due to the fact that: increasing the diffusive Peclet:
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3.4.2 Particle Phase

In this section, the discussion of the particulate phase will 

be divided into four main parts as follows:

(1) Flow of suspensions without deposition

(2) Flow of suspensions with deposition due to surface 

adhesion only

(3) Flow of suspensions with deposition dut to electric 

charge only

(4) Flow of suspensions with deposition due to both electric 

charge and surface adhesion including lift-force action 

at the wall (general case).

It should be noted that the discussion and related figures in the 

particulate phase are focussed on Case II for the particle slip con­

dition at the wall (boundary condition 3-27), unless otherwise 

stated. However, the only difference between the effect of Case I 

and Case II is some changes in the velocity profiles and rate of

deposition of particles within a distance X = N , where N is them m
momentum-transfer number.

In each case the velocity profiles of the particles U and VP P
will be discussed. Particle cloud density distribution, i.e. the

■k v'cparticle concentration p and also the electric field intensity EP
will be considered. In addition, the characteristic curves of the 

rate of deposition of particles will be discussed in a way that 

shows the most important parameters.
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number increases the momentum transfer from the fluid elements to 

the solid particles.

Fig. (3.10) illustrates the effect of the diffusive Peclet 

number,3, on the vertical velocity of the particles with no deposi­

tion. It is shown that the absolute value of V decreases withP
increasing diffusive Peclet number, i.e. when the particles become 

more accelerated.

The computer results indicate that the diffusive Peclet number 

has no effect on the distribution of the particle concentration 

which is uniform in a flow of suspension without deposition.

3 .4.2.2 Flow of Suspensions w ith Deposition Due to Surface 

Adhesion Only

In this section, the effects of the surface adhesion on the 

particulate phase characteristics will be discussed. The surface 

adhesion is caused by the adhesive force between the particles and 

the wall due to the difference of the material properties of the 

particles and the channel wall.

The computer results show that the surface adhesion has a very 

little effect on the particles velocity profiles U and V . And the
J p p

most effective parameter that changes these velocity profiles is the 

diffusive Peclet number p. however, the surface adhesion has a great 

influence on the distribution of the particle concentration, p , and 

the rate of deposition, hi , as shown in next figures.
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Fig. (3.11) shows the particle cloud density distribution, i.e.
*the particle concentration, p , for a surface adhesion parameter

(o A = 0.1) and at low diffusive Peclet number (3 = 4). It is worth w
Anoticing that the concentration, p , decreases downstream, moreoverP

the decrease of the concentration at the wall is greater than that 

at the centerline.

Fig. (3.12) illustrates the influence of the surface adhesion

parameter (a A = 0.1, 1.0, 100) on the distribution of the particle w
concentration p , for 3 = 40. It is clear that at higher surface

adhesion, the particle concentration drops faster especially at the

wall as shown in Fig. (3.13), moreover at a value of a A = 100, thew
particle concentration at the wall p becomes practically zeropw
further downstream, and this is the case of complete absorption.

In addition and by comparing Fig. (3.12) for a A = 0.1 where 3 = 40w
with Fig. (3.11) where 3 = 4, it can be seen that when one increases 

the diffusive Peclet number 3, the particle concentration beocmes 

more uniform particularly at the centerline of the channel as also 

indicated in Fig. (3.14).

Fig. (3.14) indicates the effect of surface adhesion on par­

ticle concentration for 3 = 107 . It is obvious that p = 1.0 atP
Y = 0 up to 0.6 and the only change in concentration occurs near the 

wall. Form Fig. (3.15) one can observe that the particle concen­

tration at the wall decreases rapidly with increasing surface adhes­

ion. From the computer results at X - 14, o A = 1000 the particlew
concentration at the wall p ' 0.0055, i.e. the case of complete
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absorption where p = 0 ,  occurs approximately when a A = 1000 for pw w
8 = 107 while the complete absorption case happens when a A - 100 forw
R> = 40 as shown in Fig. (3.13). From this result it can be seen 

that the diffusive Peclet number, 3, has a considerable effect on 

the particle concentration. Moreover, the surface adhesion para­

meter, a A, has a serious effect on particle concentration especially w
at low 8. It is worth noticing that the absolute value of the par-

t i d e  cloud density gradient at the wall i.e. (3p /0Y)y_ 2 increases

with increasing the surface adhesion parameter, a A, as shown inw
Fig. (3.12) and Fig. (3.14). And by looking at equations (A-10) and

(3-21) one can notice that the rate of deposition, m, increases as
* . *(3p /3Y)Tr , increases in case of adhesion only, consequently, m in-p \ = 1

creases with increasing a A as indicated in Fig. (3.17) and Fig.w
(3.18).

Fig. (3.16) shows the axial distribution of the rate of deposi­

tion of solid particles, iii , due to surface adhesion only where

o A = 0.1 and 3 = 4. It is evident that the rate of deposition de- w
creases downstream, which is to be expected since the particle

concentration at the wall, n , decreases because of surface adhesionpw
and particle absorption at the wall.

Fig. (3.17) and Fig. (3.18) show the effect of surface adhesion

on the rate of deposition due to adhesion only for 6 = 40 and R = 10 

respectively. It is clear that iii increases with increasing o A . 

Also the rate of deposition increases rapidly at inlet and slowly 

further downstream with increasing surface adhesion until the case

7
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of complete absorption is reached where all particles are deposited 

at the inlet.

Fig. (3.19) illustrates the effect of the lift forces on the 

rate of deposition of particles in case of no electric charge, i.e. 

deposition is due to surface adhesion only.

f
It is clear that without lift forces (a = 0) the rate ofw

deposition, m , decreases along the X-axis, while with lift forces
f

(a = 10"6) the rate of deposition increases up to X = 5 then de- w
creases slightly. The main result from such a figure is that lifting 

reduces the rate of deposition slightly as it will be seen later in 

Fig. (3.47) and Fig. (3.48) when electric charge is considered.

Here, it should be emphasized that the lift forces acting on the 

particles at the wall arising from the fluid shear near the wall are 

not considered as field forces but rather surface forces because of 

the small particle size and negligible gravity effect. For that 

reason the lift forces have a very little effect on the solution 

for the rate of deposition.

3.4.2.3 Flow of Suspensions with Deposition Due to Electric 

Charge Only

Stukel and Soo [73] conducted an experiment for a turbulent 

flow of a suspension into a channel. They found that an appreciable 

amount of particle deposition occurred due to the electrostatic 

charge on the particles. That electrostatic charge is generated by 

the collisions between the solid particles themselves and also by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 0

the collisions between the solid particles and the channel wall.

For that reason, the case of deposition due to electric charge only 

will be considered in this section.

The computer results indicate that the electrostatic charge has 

a very little effect on the particles velocity profiles, and V , 

at large diffusive Peclet number (3 = 1 0 7). However, as 13 decreases 

(say 3 = 40) then the electrostatic charge affects the particle velo­

city profiles particularly V as shown in Fig. (3.23) where 

becomes positive. In other words the particle velocity profiles, 

and V , are mainly sensitive to the diffusive Peclet number, g, as 

mentioned in the previous article.

Fig.(3.20) shows the particle cloud density distribution, i.e. 

the particle concentration, p , due to electric charge only. It 

is clear that the electrostatic charge tends to increase the par­

ticle concentration at the wall, p . Note that this is opposite topw
the effect of surface adhesion that causes a decrease in p as dis-pw
cussed in the previous section. However, the particle concentration 

at the channel centerline remains constant and uniform because of 

the high diffusive Peclet number (g = 1 0 7).

Fig. (3.21) illustrates the influence of the electrostatic 

charge and surface adhesion, on the rate of deposition. It Is clear 

that the rate of deposition, m , clue to electric charge only is 

greater than that due to surface adhesion only as one moves further 

downstream. From the upper curve (electric charge? only) it can be 

observed that m increases rapidly up to X = 2, then increases again
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but slightly and linearly, i.e. m has no maximum. Such a maximum 

exists only if 3 is small as shown in Fig. (3.45), which means that 

the Peclet number of diffusion has a serious effect on the shape of 

the rate of deposition curve as it will be seen in the next article. 

Also from the lower curve (adhesion only) it can be noticed that m 

decreases slightly and almost linearly along the X-axis.

3.4.2.4 Flow of Suspensions with Deposition Due to Both Electric

Charge and Surface Adhesion Including Lift-Force Action at 

the Wall (General Case)

The general case where deposition is due to both electrostatic 

charge on the particles and adhesion at the channel wall including 

the lift-force action will be discussed in this section. A compara­

tive type of study will be presented to investigate the effects of 

all different fl.oxvr parameters and dimensionless numbers, on the rate 

of deposition.

Fig. (3.22) and Fig. (3.23) show the effect of Case I and

Case II, i.e. the particle slip condition at the wall given by (3-27),

on the distribution of axial and vertical velocities of particles

U and V . Case I is the regular slip condition of the particles at P P
the wall and Case II is the modified slip condition where the ex­

cess term u (1 - xF/u ) 0 x < u /F is introduced to account for the o o o
distance that the solid particles will travel before they start to

deposit on the wall when K = 0. From these two figures, i.e. Fig.up
(3.22) and Fig. (3.23), it is clear that there is no difference be­

tween Case I and Case II except at the beginning where X < N . it
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is worth noticing that V is positive as shown in Fig. (3.23), i.e. 

the particles are moving in the positive Y-direction (toward the 

wall) and this is due to the electrostatic charge on particles when 

the diffusive Peclet number, 3, is small, however for large (3, 

remains negative as discussed in Section 3.4.2.3.

Fig. (3.24) shows the distribution of the particle concentration,

P , in Cases I and II. It is clear that the distribution is identical P
in both cases and the concentration at the wall is greater than that

k kat the centerline, i.e. p > p . Also it can be seen that bothpw pc
p and p decrease downstream as shown in Fig. (3.25) and Fig. pw pc \ t.
(3.26). This result is analogous to the result obtained by Soo and 

Tung [71] for suspension flow in a pipe.

Fig. (3.27) indicates the effect of the sticking factor, o (for 

electroviscous forces) on the particle concentration, p . It isp
*

shown that p decreases with increasing o and that the decrease is P
greater at the wall than at the centerline. However, the maximum

value Cor a is 1.0, i.e. it is limited and from that one can observe
kthat more decrease in p can be achieved by increasing the surfacepw °

adhesion parameter, o A, as mentioned before.w

Fig. (3.2S) sliows the distribution of the particle concentration, 

p , at large diffusive Peclet number ((■> = 107). It can be noticed 

that the concentration is uniform at the centerline while it increases 

at the wall due to electric charge as also shown in Fig. (3.20) for 

the case of deposition due to electric charge only. However, surface 

adhesion tends to decrease the concentration at the wall as shown in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

Fig. (3.13).

Fig. (3.29) and Fig. (3.30) indicate that the electric field 

intensity distribution, E , in Cases I and II is almost linear. 

Moreover, all curves of different axial positions coincide on one 

curve by increasing the diffusive Peclet number, p.

Now for the rate of deposition curves, two main sets of para­

meters and dimcnsionless quantities will be considered. For the

first set: (K = 0.0001, N = 2, N_ = 1000, R~ = 0.002, a = 1.0,np m R
g = 40, a = 0.5, aw A = 0.1, pw = 10~6 , pR = 300, = 0.3), and for

the second set: (K = 0.0001, N = 2, NT = 1000, = 0.002,np m R
« = i-0 . P = 107, a = 0.5, qw A = 1.0, °w = 1Q~10, pR = 300,

p , = 0.3). The difference between the two sets is the values pb
underlined, particularly the Peclet number of diffusion, g. To 

investigate the effect of each these parameters and numbers on 

the deposition rate, m , one must vary the value of each one at a 

time keeping all others constant. The physical meaning and order of

magnitude of these parameters and numbers are discussed in Appendix B.

Fig. (3.31) and Fig. (3.32) indicate the effect of the slip

condition of the particles at the channel wall (Cases I and II) on

the rate of deposition, m , for the two sets of parameters and num­

bers mentioned above. It is clear from both figures that in Case II 

one has lesser rate of deposition than that in Case I near the chan­

nel inlet, i.e. the more the slip of particles at the wall, the

lesser the rate of deposition. But further downstream (X > N )m
the two cases I and II have equal rate of deposition.
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From Fig. (3.31) it is evident that a maximum rate of deposition 

occurs at approximately one channel width for Case II. This result 

is analogous to the result obtained by Chau and Wang [11] who con­

ducted an experimental work for a flow of suspensions in a branched 

tube and observed that a maximum rate of deposition occurs at the 

branch point and a second maximum at approximately two diameters 

distance from the branch point along the inner walls, while a maxi­

mum rate of deposition occurs at one diameter distance along the 

outer walls.

However, for large diffusive Peclet number, the rate of deposi­

tion increases along the X-axis without showing a maximum as seen in 

Fig. (3.32).

Fig. (3.33) and Fig. (3.34) illustrate the effect of the

particle size, R , on the rate of deposition, m . It is obvious that

by increasing the particle size from 2 to 20 p diameters, the rate 

of deposition increases very little, near the channel inlet.

Fig. (3.35) shows the effect of particle Knudsen number, K > 

on the rate of deposition, iii . It is shown that by decreasing the 

Knudsen number from 0.01 to 0.0001, the rate of deposition increases 

but very little and only near the channel inlet.

Fig. (3.36) and Fig. (3.37) indicate the effect of the momentum-

transfer number, N , on the rate of deposition. The rate of deposi-m
t'ion decreases with increasing moment urn-1 rans fe r number, and the 

maximum rate of deposition occurs approximately at X = N for low
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diffusive Peclet number (3 = 40) as shown in Fig. (3.36). But for 

high diffusive Peclet number (3 = 107) the rate of deposition has no 

maximum as depicted in Fig. (3.37).

From Fig. (3.38) and Fig. (3.39) one can observe that Reynolds 

number, NR , has a very little effect on the rate of deposition m 

and in general the larger the Reynolds number, the lesser the rate 

of deposition.

Fig. (3.40) shows the effect of the electrostatic charge on the 

rate of deposition at small diffusive Peclet number (3 = 40). It is 

clear that whenever one increases the electrostatic cluirge parameter, 

a, the rate of deposition increases downstream. Now as the diffusive 

Peclet number increases (3 = LO7) then by increasing the electro­

static charge parameter, the rate of deposition increases also and 

continuously as indicated in Fig. (3.41). From both Fig. (3.40) and 

Fig. (3.41) one can see the serious effect of the electrostatic charge 

on the rate of deposition.

The effect of the diffusive Peclet number, 3, on the rate of 

deposition of particles, m , is shown in Fig. (3.42). It is clear 

that the larger the value of 3, the .smaller the rate of deposition, 

in , near the channel inlet. However, the larger the value of 3, the 

larger the modified rate of deposition, fiii , (defined in Appendix B) 

as shown in Fig. (3.43).

Fig.(3.44) illustrates the influence of the surface adhesion on 

the rate of deposition. It is shown that .increasing the surface
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adhesion parameter, a A, increases the rate of deposition andw
shifts the maximum rate of deposition to the inlet of the channel,

and if we keep increasing o A until the case for complete absorptionwA
(p = 0) is reached, then all the particles will deposit at the pw
inlet of the channel.

Fig. (3.45) indicates the effect of each of the electrostatic 

charge and surface adhesion on the rate of deposition. It is evident 

that with electric charge, the rate of deposition gets larger than 

that with surface adhesion only. In other words the effect of the 

electrostatic charge is predominant.

The effect of the electroviscous-sticking factor, o, on the 

rate of deposition is depicted in Fig. (3.46). Now by increasing 

the value of o, the rate of deposition, m , increases. One must keep 

in mind that 0 p; o £ 1.0, and that it is a probability factor of 

sticking.

Fig. (3.47) and Fig. (3.48) indicate the effect of the lift 

forces at the wall on the rate of deposition. It is clear that the 

lift forces tend to reduce the rate of deposition but very little 

as also indicated in Fig. (3.19).

The influence of the electrostatic charge on the modified rate

of deposition, (!m , is shown in Fig. (3.49) and Fig. (3.50). And as

it was mentioned before that Increasing a , increases the rate of 
. *deposition, in , it also increases the modified rate of deposition,

(hil .
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Fig. (3.51) shows the effect of the diffusive Peclet number, 3, 

on the modified rate of deposition, 3m . It is clear that increasing 

3 increases 3m considerably until 3 reaches a value of approximately 

1000 then any further increase in 3 will not cause an appreciable
JL.

change in 3m ,i.e. the modified rate of deposition is limited regard­

less to the value of the diffusive Peclet number.

Fig. (3.52) indicates the influence of the electrostatic charge

on the rate of deposition of particles at high surface adhesion

(a A = 1000). w

It is clear that the greater the value of «, the greater the
A.

rate of deposition, m . Comparing Fig. (3.50) with Fig. (3.52) one 

can see that surface adhesion tends to decrease the rate of deposition 

downstream.

From this study, it was found that a considerable amount of 

particle deposition can result due to the electrostatic charge on 

the solid par t i d e s  , i . e . the electrostatic charge parameter, a , is 

one of the most important parameters in particle deposition. Also,

it was found that the diffusive Peclet number, 3, lias an appreciable
>v

effect on the particle velocities, U & V , and concentration, n ,1 p p P
and rate of deposition, iii . The rate of deposition curve shows a 

maximum only at low 3 and in the presence of electric charge (a > 0).

Moreover,surface adhesion lias a smaller effect on the rate of 

deposition than that due to electric charge and the rate of deposition 

curve for adhesion only is a decreasing type curve.
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In addition lift-force action at the channel wall has a 

negligible effect on the rate of deposition.

In other words, the important parameters for the rate of deposi­

tion in a channel flow are as follows:

a the electrostatic charge parameter 

3 the diffusive Peclet number
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4 • LAMINAR FLOW OF SUSPENSIONS 

IN THE ENTRANCE REGION OF A DIFFUSER

The single-phase cliffuser flow problem with turbulent flow has 

been studied experimentally by Carlson et al [8], Wolf and Johnston 

[82] and others. Two-dimensional diffuser performance with subsonic, 

two-phase, air-water flow has been discussed by llench and Johnston 

[27]. They concluded that diffusers with air-water mixtures have the 

same general performance and characteristics as single-phase dif­

fusers. Also they found that the pressure recovery of diffusers with 

two-phase flow deteriorates with increasing air flow, especially 

after the two-phase flow regime changes form bubbly to turbulent.

In addition the radial diffuser and converging channel and tube 

flows with laminar flow have been investigated analytically by Parmet 

and Saibel [52], Limberg [39, 40], Sutterby [74] and many others.

Schlichting [62] discussed the flow in convergent and divergent 

channels for some special cases. He stated that in a divergent chan­

nel the shape of the velocity profiles is markedly affected by the 

Reynolds number and by the angle of divergence.

Hamel [23] studied the two and three-dimensional flows whose 

streamlines are identical with those of a potential flow. He found 

tint for larger angles of divergence back flow occurs earlier.

Blasius [5] investigated the two-dimensional and axi-symmetrioal 

flow through channels with small angles of divergence1. He. showed 

that laminar flow can support only a very small pressure increase
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without the incidence of separation. The condition for the avoidance 

of back flow at the wall in a divergent tube of radius R(x) was 

found to be (dR/'dx) < 12/Nr  (condition for separation), where 

N = ud/v denotes the Reynolds number referred to the mean velocity 

of the flow through the tube and to its diameter.

In more modern times Abramowitz [1] extended these calculations 

(of divergent tubes) for divergent channels, and found that the point 

of separation moves downstream from the channel entrance as the Rey­

nolds number is increased and as the angle of divergence is decreased.

However, the laminar diffuser flow of suspensions as a two-phase 

flow problem has not been investigated.

In this chapter, a numerical scheme is presented to study the 

laminar flow of suspensions in the entrance region of a diffuser, with 

emphasis on the rate of deposition of the solid particles on the 

diffuser wall.

The suspension diffuser flow is considered at conditions under 

which a finite layer of particles is deposited at the diffuser wall, 

due to the electrostatic charge and wall adhesion. The suspension 

flow is assumed to be incompressible, laminar, dilute with negligible 

gravity effect.

4.1 Governing Equations

Having the same assumptions as in Chapter 3, the governing 

equations will be exactly the same as for the channel flow described
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in section 3.1, except that the equation for the rate of deposition, 

i.e. Eq. (3-13) will include h(x) instead of h and the equation is 

still valid for the diffuser flow as mentioned in Appendix A. Here 

the unknowns that one is looking for in this case for the diffuser 

flow are the same as for the channel flow.

4.2 Boundary Conditions

Two different cases for the boundary conditions of the diffuser 

flow will be considered. The first case is for a single diffuser 

assuming uniform boundary conditions at the inlet. The second case 

is for a diffuser connected to a constant area channel of length 

x = 2h (one channel width). In that case, the results of the channel 

flow at exit (x = 2h) will be taken as the boundary conditions at 

the diffuser inlet.

The purpose of considering the second case is due to the fact 

that in an actual fluidic device, the splitter region can be con­

sidered as a diffuser connected to a constant area channel. This is 

done to simplify the problem, however in the actual fluidic device, 

the diffuser section is not symmetric and moreover, all boundary con­

ditions are nonuniform.

In both cases for the boundary conditions, symmetrical flow 

through the diffuser will be assumed.

Referring to Fig. (4.1), the boundary conditions for a single 

diffuser with uniform inlet conditions will be:
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@ x = 0 (at the diffuser inlet)

or

(0 < y < h)

u = u = u
P °

v = v = 0P

P = P P po

p = p.

E = 0y

g y = 0 

(x > 0)

~ 1 u‘ill - p
;)y Dy = 0

v = v = 0  P
I)p_

3y_E =

E = 0y

0 y = h (x) 

(x > 0) 

u = v = 0
() 1

p 3y

uniform

uniform

uniform

(3-22)

(at the diffuser centerline)

symmetry

symmetry

(3-23)

(at the diffuser wall) h(x) = w(x)

y=h(x)

no slip condition 

particle slip condition Case I

u = u (1-xF/u ) - L x— 1 p o o p o y y=h(x)
<) u

1 = - L —p p J y
3p

y=h(x)

P
'p 3y

x < (u /F)

x > (u /F) - o
f

Case II

r i % vv w  i ’ 1'. , s =  ( l —o ) P - -  0 p +  o |> -----y=h(x) pv\i m w pw - w pii -

(3-24)
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Similar to Chapter 3, section 3.2, the dimensionless form of 

the boundary conditions is as follows:

(0 < Y < 1)

U = U = 1  P

V = V = 0  p

pp = 1 

P = 0 

e "'= 0

@ Y = 0

(X > 0)

DU
dy

DU
_E.

DY

V = V - 0 p

Dp'
.JI _
DY

E = 0

g Y = W 

(X > 0)

U = V = 0
DU

u = -  K £p np DY

(at the diffuser inlet)

uniform

uniform
(3-25)

(at the diffuser centerline)

symmetry

symmetry

(3-26)

Y=W

(at the diffuser wall) W = w(x)/h
(W > 1)

no slip condition 

particle slip condition Case I
D IJ

U = (1-X/N ) - lv TvJ p m n p 0 Y
D U

^np DY Y=W

Y=W (X < Nm )

(X I: Nm )
Case II

DY = (.1-0 )E p - o Ap 4- o Yp . T:-W W pw w pv/ w pi)

(3-27)
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The boundary conditions for a diffuser connected to a constant 

area channel of length x = 2h, will be the same as for diffuser 

alone except the inlet conditions i.e. 0 X = 0 where the results of 

the channel flow at x = 2h are taken to be the inlet boundary con­

ditions of the diffuser flow, and this is the case of nonumiform 

inlet conditions.

4.3 Method of Solution

Equations (3-15) through (3-21) in section 4.1, with the 

boundary conditions in section 4.2, can be solved together for the
j.

unknowns U, V, P, U , V , p , E and iii by the finite differencep p p
technique as in the case of the channel flow.

Trying to keep the matrix size constant at all axial positions 

to avoid singularity problems, and since the width of the diffuser 

is a function of axial position, a trapezoid mesh is superimposed 

on the flow field internal to the diffuser, recognizing that the dif­

fuser angle is small (4° to 15°).

The finite difference coordinates are chosen to correspond to 

the spatial coordinates shown in Fig. (4.1) so that i = 1 corres­

ponds to X = 0, and j = 2 corresponds to Y = 0, a positive change in 

the X-coordinate of AX, which is taken as 0.1, increases i by 1.

But the positive change Ln the Y-coordinate of AY varies from one 

axial position to another by a value equal to (tantO/ik' where 0 is 

half the diffuser angle and n is the number of equal intervals in 

the Y-coordinate (it was considered n = 10). For example, if 0 = 2°, 

then (AY  ̂ - AY.) = 0.00034921. Each change of AY in the Y-coordinate
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increases j by 1, when Y = 1, at the diffuser wall, j = n + 2.

Eleven mesh points in the Y-direetion and up to 141 mesh points in 

the X-direction were used.

The finite difference grid is illustrated in Fig. (4.2).

>fcThe quantities U, V, P, U , V , and E at each point in 

the column i = 1 are known as boundary conditions (3-25) or results 

of channel flow at X = 2 for the case when the diffuser is connected 

to a constant area channel.

By substituting the values of h ,  U , V and p taken at the1 1>! Pj 'Pl
wall into equation (C-25) after replacing (i + 1) with i, then the 

rate of deposition (DPR - in ) at i = 1 can be calculated.

From the quantities U , V , P , U , V , p , and E , by use of1 -l -L p j p j p j 1
the finite difference equations which take the form of the matrix 

equation:

A . X . ,, = B . i i+l i

Where is the matrix of coefficients at axial position i, is 

the column vector at the same axial position, and ^  *-s the vari­

able column vector at axial position (i+l). A, and Ih are in terms 

of U., V., P., U , V , p E. and S. where S. = AY. = W./n andl l i p . p . p . ,  i i i i li i 1 i
W.+ L = w^ + tanO/n, (w^ = L, n = 10). But. X is in tern

✓V +VV .,,> F , U , V , p and E.,,. Therefore,at i
i+J. i+i p1+1 p i+1 i>1+1 i+i

and Bj are known, hence one can determine X.,, i.e. U

V , p and E,,. Substituting the values of U.,, U , V P., P-, 2 ’ p ’ p.

; of u i + r

 ̂ 1, a l

P 9 , u ,/ P 2and
S•pos i t ion
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rate DPR^ can be evaluated.

In the same manner the solution is carried on downstream, find-

inn U, V, P, U , V , p and E for the (i+l)th column when these p P P —
quantities are known in the i th column, and upon substituting the

values of U.,,,U ,V and p taken at the wall, into equation 
1+1 Pi+1 Pi+1 Pi+1 

(C-25) then one can determine the deposition rate D P R ^ + .̂  . The

numerical procedures are shown in Appendix C.

The computer program used for solving the channel flow problem 

is also used for solving the diffuser flow problem after making the 

necessary changes concerning the diffuser angle and its related 

variables.

4. 4 Results and Discussion

In this section, the complete flow characteristics of the lam­

inar flow of suspensions in the entrance region of a diffuser will 

be discussed. The fluid phase will be examined briefly, however the 

particulate phase will be studied extensively due to the fact that 

the solution of the problem is a parametric type and the goal is to 

find the most important parameters for the rate of deposition. More­

over, the effect of the diffuser angle as one of the most important 

parameters on the rate of deposition will be examined, consequently 

the question concerning the effect of the pressure gradient on the 

rate of deposition in a diffuser flow can be answered.

4.4. L Eluid_P1 \ iise

l’ig. (4.4) shows the axial velocity distribution of the fluid
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phase, U. It is clear that the centerline velocity, U , decreases

downstream, and the numerical value of the velocity gradient at

the wall (9U/3Y) decreases along the X-axis. Moreover, there is w
no back flow, i.e. no separation within 14h distance, since the 

chosen angle of the diffuser is small (20 = 4°).

Fig. (4.5) shows the vertical velocity distribution of the fluid 

phase, V. Here, the values of V are negative, which means that the 

direction of motion of the fluid elements in the normal direction is 

away from the wall. Also it can be seen that the absolute value of 

V increases then decreases along the X-axis.

Fig. (4.6) illustrates the effect of the diffuser angle (20) on 

the fluid static pressure distribution, P. It is evident that the 

pressure increases as the diffuser angle is increased until separation 

occurs. Also at larger angles separation takes place as investigated 

by Abramowitz [1].

4.4.2 Particle Phase

In this section, three cases will be considered:

(1) Deposition due to surface adhesion only

(2) Flow of suspensions with deposition due to both electric

charge and surface adhesion including lift-force action at 

the wall wi.til uniform inlet conditions

(3) Deposition due to both electric charge and surface adhesion 

including lift-force action at the wall witli nonumiform In­

let conditions (diffuser connected to a channel).
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Similar to section 3.4, the discussion and related figures 

in the particulate phase are concentrated on Case II for the particle 

slip condition at the wall (boundary condition 3-27), unless other­

wise stated.

In Cases (1) and (3) only the rate of deposition curves will 

be discussed. However, in Case (2), the velocity profiles and
vV <'cV , particle concentration n , electric field intensity E and the P P

rate of deposition, m , will be examined. A comparative type of 

study for m with different flow parameters and numbers as well as 

the diffuser angle is made.

4.4.2.1 Deposition Due to Surface Adhesion Only

Fig. (4.7) indicates the effect of the diffuser angle on the 

rate of deposition due to surface adhesion only. It is clear that 

the rate of deposition decreases downstream. Also it can be seen 

that the diffuser angle (20) has a great effect on the deposition 

rate, m . As one increases the diffuser angle, the rate of deposi­

tion decreases until the point of separation is reached where the 

rate of deposition decreases rapidly.

The results at 0 = 0, are the same as for the constant area

channel flow with o A = 1.0 shown in Fig. (3.18).w

4.4.2.2 Flow of Suspensions with Deposition Due to both Electric 

CJm_rge_ and Surf acjc Adhesion Includ ing Llft-Force Action at the 

Wa_li (with Uniform Jhi_let_ Conditions)

A comparison of axial velocities of fluid and particle phases
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U and U respectively is shown in Fig. (4.8). It is evident that 
P

the centerline velocities U and U are close to each other, howeverc pc
at the wall and near the inlet there is a significant difference in

the velocities U and U due to the slip condition of the particles w pw
(Case II in boundary condition 3-27).

Fig. (4.9) shows the vertical velocity distribution of the 

particles, V . Here, the values of V are positive, which means 

that the particles are moving toward the wall, while the fluid ele­

ments are moving away from the wall.

This difference is due to the electrostatic charge on the par­

ticles when the diffusive Peclet number, (3, is small. However, for 

large (3, the sign of remains negative as shown in Fig. (4.20).

Fig. (4.10) shows the distribution of the particle concentra­

tion, p . It is shown that the concentration at the wall is greater

than that at the centerline, i.e. p  > p  at any axial position.pw pc
Also the centerline concentration decreases downstream, similar to

the case of channel flow.

From Fig. (4.11) it can be observed that the distribution of
JL

the electric field intensity, E , is almost linear.

Fig. (4.12) indicates the effect of the particle slip condition 

at the wall, i.e. Case I and Case II, on the rate of deposition, ill . 

It is clear that in Case II one has a lesser rate of deposition than 

that in Case I near the diffuser inlet, i.e. the greater the slip of 

particles at the wall, the lesser the rate of deposition, but further
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downstream the two cases are identical.

The computer results indicate that the particle size, R , has a

negligible effect on the rate of deposition, especially for particles

of 2 to 20b diameters. Also the particle Knudsen number, K , has anp
negligible influence on the rate of deposition, particularly for a range

of K = 0.0001 to 0.01. np

From Fig. (4.13) it can be observed that by increasing the

momentum-transfer number, N^, the rate of deposition, m , decreases

near the diffuser inlet and N has no effect at all downstream.m

The effect of Reynolds number, N^, on the rate of deposition is

shown in Fig. (4.14). It can be noticed that NR has a very little 
. *effect on in .

Fig. (4.15) shows the effect of the electrostatic charge para­

meter, a , on the rate of deposition. it is clear that whenever « is

increased, the rate of deposition m increases rapidly at the dif­

fuser inlet and then decreases downstream.

The effect of the diffusive Peclet number, 0, on the rate of 

deposition, in , is depicted in Fig. (4.16). It can be noticed that 

in decreases with increasing 0.

Fig. (4.17) shows the effect of the surface adhesion parameter,

o A, on the rate of deposition. It is clear that when a A is in-w w
creased, the rate of deposition, in , increases but to a certain limit,

where further increase in o A will cause a rapid decrease in thew
particle concentration at the wall until the case of complete absorp-
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tion of particles at the wall is reached, then all particles will 

deposit at diffuser inlet.

The effect of the diffuser angle on the rate of deposition at 

low diffusive Peclet number is shown in Fig. (4.18). It is evident 

that the larger the diffuser angle, the greater the rate of deposi­

tion. However, at larger angles, separation takes place within 14h 

distance.

Fig. (4.19) shows a comparison of the axial velocities of fluid 

and particle phases U and at large Peclet number of diffusion 

(8 = 107) . It is clear that the two velocities are close to each 

other except at the beginning (X = 1) due to the particle slip con­

dition at the wall.

From Fig. (4.20) it can be noticed that the difference between 

the vertical velocities V and V increases at the beginning then de-p
creases further downstream until it reaches zero when the flow be­

comes fully developed.

Fig. (4.21) indicates the distribution of the particle concen­

tration, p , at high diffusive Peclet number. It is shown that p^ 

is uniform and constant at the centerline while it increases at the 

wall due to electric charge.

From Fig. (4.22) it can be seen that the distribution of the 

electric field intensity, F , is linear at all axial positions when 

(8 = 10'') •
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Fig. (4.23) illustrates the effect of the diffuser angle (20)

on the rate of deposition, m, with B = 10^. It is shown that the

rate of deposition always increases with increasing diffuser angle.

Moreover, at larger diffuser angle, separation takes place and the

rate of deposition increases rapidly. By comparing Fig. (4.23)

with Fig. (4.18) one can see the serious effect of the diffusive

Peclet number, 3, on the shape of the deposition curve. But from

both figures it can be concluded that the larger the diffuser angle,

the greater the rate of deposition } and since the pressure gradient

(dP/dX) increases by increasing the diffuser angle (20) as shown in

Fig. (4.6), consequently the higher the pressure gradient, the
♦greater the rate of deposition, m .

It is worth noticing that the shape of the deposition curves 

shown in Fig. (4.23) is agreeable with the actual results of con­

tamination buildup with time shown in Figures 27, 32 and 38 given 

by Comparin et al [13]. From these figures (27, 32 and 38) one can 

observe that greater deposition occurs at the top plates (more 

divergence) while lesser deposition occurs at the bottom plates 

(less divergence).

4 .4.2.3 Deposition Due to Both Electric Charge and Surface Adhesion 

In_c 1 uding Lift-Foree Action at the Wall with _Nominiform 

Conditions

This is the case when the diffuser is connected to a constant 

area channel. A channel of length equivalent to its width, i.e. 

x = 2h, is connected to a diffuser of angle (20), where the selected 

values for 20 are 4° anti 1.5°.
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This is done as an approximate model for the splitter region 

in an actual fluidic device. Hence, the results of the channel flow 

at X = 2 will be considered as the inlet conditions for the diffuser 

flow.

Fig. (4.24) shows the effect of the diffuser angle and inlet 

conditions on the rate of deposition. Here, it can be noticed that 

the rate of deposition increases gradually at smaller angles of diver­

gence, however at larger angles the rate of deposition increases 

rapidly and separation takes place earlier. Also one notices that 

nonuniform inlet conditions affect the rate of deposition within a 

distance of X = 2, and the effect is negligible downstream.

Fig. (4.25) and Fig. (4.26) show the axial distribution of the 

rate of deposition, m ,in case of a channel connected to a diffuser 

when the angle of divergence 20 = 4° and 15°, respectively. From 

these figures one can sec that at 20 = 15° separation occurs at X = 1.7 

from the diffuser inlet, while at 20 = 4° no separation at all.

From this analysis it was found that the conclusions obtained 

in section 3.4 for the channel flow are the same for the diffuser 

flow. In addition to that, it was found that the angle of diver­

gence has a serious effect on the rate of deposition in a diffuser 

flow. By increasing the angle of divergence, the pressure gradient 

increases and also the rate of deposition increases. But at larger 

diffuser angles, separation takes place and the rate of deposition 

increases rapidly in the presence of electric charge. However, in
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the absence of electric charge, the rate of deposition decreases 

rapidly with increasing angle of divergence.

In other words, the most important parameters for the rate 

deposition in a diffuser flow are as follows:

a the electrostatic charge parameter 

3 the diffusive Peclet number 

20 the diffuser angle
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5. CONCLUSIONS

From this investigation, the conclusions reached for both 

channel and diffuser flows can be given as follows:

(1) An appreciable amount of particle deposition can result 

because of the electrostatic charge on the solid particles,

i.e. the electrostatic charge parameter, a , is one of the 

most important parameters.

(2) The diffusive Peclet number, p , has a considerable effect

of the particle velocity profiles U and V , concentrationP P
>  v . *p and rate of deposition of particles m . The rate of 

deposition curve shows a maximum only at low p.

(3) Surface adhesion has a smaller effect on the rate of 

deposition than that due to electric charge.

(4) Lift-force action at the wall lias a negligible effect: on 

the rate of deposition.

In addition to that, it was found that the angle of divei'gence 

lias a great effect on the rate of deposition in a diffuser flow. By 

increasing the diffuser angle, the pressure gradient increases and 

also the rate of deposition increases. However, at larger diffuser 

angles, separation takes place earlier and the rate of deposition 

increases rapidly in the presence of electric charge. However, in 

the absence of electric, charge the rate of deposition decreases rapid­

ly with increasing diffuser angle.

In other words, the most effective parameters and numbers on
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the rate of deposition are:

Channel and diffuser flows

(i) a the electrostatic charge parameter

(ii) ft the diffusive Peclet number

Diffuser flow only

(iii) 20 the diffuser angle
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6. RECOMMENDATIONS FOR FUTURE STUDY

The information regarding some of the flow parameters such as

electrostatic charge parameter,a, and surface adhesion parameter,

a A, is insufficient for a flow in a fluidic device, w

Experiments may be conducted to measure the electrostatic 

charges on the particles in order to calculate the electrostatic 

charge parameter, a.

An experimental study might also be undertaken using different

materials for both particles and channel or diffuser wall to measure

the surface adhesive force, hence the surface adhesion parameter,

o A, can be obtained, w

Also the effect of both electrostatic charge and surface adhes­

ion on rate of deposition of particles can be shown experimentally.

In this investigation, the case of solid particles suspended in 

air, i.e. two-phase flow was considered. Attempts should be made Lo 

extend this study in the presence of oil particles and solid particles 

in the air, i.e. three-phase flow, which is the actual case expeci- 

ally when one deals with air from a compressor. Such a study will 

show the influence of the o:i..l particles on the rate of deposition of 

the solid particles.

Moreover, it would be of interest to further the study of 

deposition of suspensions in laminar flow in both channel and diffuser 

under the action of gravitational and electric fie his and a shear

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78

flow field. This is the case when one deals with particles of large 

size and dense suspension.
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Appendix A

DERIVATION OF THE BOUNDARY CONDITION 
OF THE PARTICLE CLOUD DENSITY GRADIENT AT TIIE WALL

From the continuity equations of the fluid and particulate 

phases discussed in section 3.1 one has:

~  = 0 (3_1)dx Dy

d (pnUr^ '1(PnV n )and -— E._E_ +  3_JL_E = 0 (3_3)
c) x 9 y

Combining these two equations, one can get the following:

3p n. «
+ v ^  = - f- [PP (u - u)] - [ P  (v - v)] (3-9)9 x 3 y 9 x p 3 y p p

Let J = (u - u) px ^ p

J = p (v - v)py p p

J and J are the mass fluxes in the x- and y-direction respective- px py
ly under the effect of both external field force and self-diffusion 

of the particles.

Therefore equation (3-9) can be written in tiie form:

9 p 9 p 3 J i I
u J> + v _ R  = _ JL* _ (A-l)

9 x 9 y c) x (i y

From the momentum equation of the particulate phase in the x-direction 

one has:
3u 3u  __ D 3u

u -i v .P- = p (u - u ) -I— ~—  (p (3-4)p 9 x p 9 y p p 9 y Kp „y
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Multiplying both sides o£ this equation by (p /F) it follows

1 9 u 3u D 3 u
—  (p u tc— + P v sr-̂ - ) = - P (u - u) + 3^- —  (p —- p p 3x p p 3y p p F ay P Jy

By differentiating partially with respect to x, then one obtains

i  „  3 u  3 u  D D n  D ?  a u n

f  tx (ppUp 3^' + PPVP a / } = ^  [pp (up_ U) 1 + f '  (Pp 3y ~}

. . . i t  ^  + P „ + £ a ,  + p v ! > - ,p 3x 3x p p 3x?- 3x 3y p p 3x3y

D 3 2 p 3u 33u
= - ~—  [p (u - u) ] + [x— (y ^ ) + p x3x p p F 3x3y 3y p 3x3y-

Neglecting all higher order terms and assuming that the quantities

S (p u )/3x and 3 (p v )/3x are negligible at the channel or diffuser
P P P P

wall, then one gets

[p (u - u)] - 0 (A-2)3x p p

3J1 -e - _J2x o
3x

Substituting from equation (A-2) into equation (A-l), then one can 

write
3d 3P 33

u ^ J U v  J -  = - (A- 3)3 x 3 y  <) y

which is the same as equation (3-11) in section 3.1. Now using 

Fick's law one has

p E 3p
j = (<L_) _.JL£ _ D _JL (F)
py m F p a y

which indicates that tiie particle mass flux is due to the effect of
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both external field force (electric field force) and self-diffusion 

of the particles. Substituting equation (F) into equation (A-3), it 

follows
Dp Dp  ̂ P E  ̂ 3p^

(A-4)— + v -— * 3x Dy
* P E 3p

r/3 \ P-X  ] + A -  (d — P)
3y p J Dy p Dy

Integrating equation (A-4) w.r.t. y and taking the limits of 

integration from y = 0 to y = h, one obtains
Dp. , Dp ,h _£/n u ^ d y  + /" v r 1  dy = ~  [(5-) LE-Z ] dy + f- (I) ^ d yo 3x 7 o Dy y o dy m o 3y p 3y

p E li 3 p h

p V

rh 3 Dp.
3 y o 3 y

= _ [(a_) h L i ,  + [D
V  f ° p 3 y o

p E p E 3p
= _ (3_ ) . Pw w + (a__) ■ P P ,̂ - q. D  E

mp F m p F P 3y

3p
- D  --£| 

y=h P y ! y=0

Applying the boundary condition (3-23) in section 3.2, one gets:

h 3 p Dp 3 p
/ u -r— dy + / * v dy = D ^o 3x o Dy p Dy

P E _ (£L) _E«. J?.
i m Fy=h p F

3o

p Dy
C1E. Dp. Dp./ w i rh P , , /-II P ,= () (---  ) +  J u dy + J v dypw = o 3x o Dyy=h m 1'P

Carrying out integration by parts for the second integral term on 

the right-hand side of this equation, one can write 

Dp qE , Dp h
D _..JL 
P Dy

, w. , rh p , r i rh Dv= p (--- ) +  f  u vr dy 4- [p v] - J p —  dypw - o 3x p o o p  Dyy=h m FP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Once again, applying the boundary conditions (3-23) and (3-24) in

section 3.2, it follows

3p. * k !!i= P (--- ) + r u — -*■, pw - Jo <)xy=h m FP
dy .h Dv ,/ p —  dy o p Dy (A-5)

But from the continuity equation of the fluid phase, equation (3-1), 

one has

Du
Dx

Dv
Dy

Substituting into equation (A-5) gives

qED p
Dp 3y

, w, rh p , h Du ,- P (--- ) +  J u — dy+/ p —  dyT̂ T.T _  Dx - "y=h pW m F P
qE

o p ox

, r,(o u). w. , di 3 n= P (--- ) + / — V —  dypw - o D x m F P

Applying Leibnitz's rule for differentiating an integral, one obtains

Dp.
p Dy

qE ,

= P (— — ) + tt- / 1 (p u) dy - (p u) dhi Pw ? Dx ° P p , —y=h m F 1 h dxP

for channel flow = 0, but for diffuser flow t  0, however for dx dx '
both cases (p u) = 0 due to the no slip condition at the wall for

the fluid phase, hence one gets:

qEDp
Dp :)y y=h pw- P ( — ;;) + /“ (p u) dy

m F 
P

qE,

IX o p

, w. , D ,.ll , il D r / NilP ( ) + J p u tly - J -—  [p (u - u) Jc ypw -/ Dx o 'p p J o Dx p p 3in 1 1 1  1 1
,h D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

But from equation (A-2) one has —  [p (u - u) ] - 0<)x p p
Dp 

n op
qE ,, ,

( w \ j- d rh i= p (--- ) + T—  J P U dypw - Dx o p py=h m FP
(A-6)

And from the momentum equation of the particulate phase in the 

y-direction, one has

Dv Dv
u + v -r-E- = F (v - V ) + C-^-OEp Dx p Dy p m ' y (3-5)

Neglecting all the inertia terms relative to the other terms, and 

since at the wall v = 0 (no slip condition of the fluid phase) , then

equation (3-5) becomes
qE,w.V --(--- )pw (A-7)
m F 
P

For the rate of deposition of the solid particles, the equation of 

conservation of mass has been used as follows:

D h - ' -7—  / p u dy = op v + o p f /F - o p , fT /F Dx o p p pw pw w pw w w pb L (3-13)

Substituting from equation (A-7) into equation (3-13) gives
qE

) il ( ^ ) *- or"- / P u dy = op - + a p f /F - a p . fT /FDx o P p ' Pw m F w pw w w pb L

D „h qE,
I.e. — - / P u dy = - op (--- ) - o p  f /F + a p f /FDx o p p pw -  w  pw w w pb I,pw m F pw *w w pb (A-8)

Sulistituting from equation (A-8) into equation (A-6) follows

Dp
qE qE _ i

= p (- —~~) - op (— — ) - o |) f /F + o p , f, /Fy=h pw - pw _ - w pw w w pb I,

Dp
• D T-2P Dy

m F r” m iP P
qE.

(1 - o) W
y=h

- o () f /1' + o (1 f /1' 
pw -  vo pw w w ph I,m 1'

(A-9)
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This is the boundary condition of the particle cloud density 

gradient at the wall, which is used in (3-24),sections (3.2) and 

(4.2) for the boundary conditions.

And by non-dimensionalizing of equation (A-9), one gets the 

following:

(1) channel flow

DY Y=1
= (1 - a) E p - a Ap + a yp .w pw w pw w pb (A-10)

(2) diffuser flow

Dp

3Y Y=W
(1 - a)E p - a Ap + a yp .w pw w pw w pb (A-ll)
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Appendix B

DIMENSIONLESS QUANTITIES AND PARAMETERS 
PHYSICAL MEANING AND ORDER OF MAGNITUDE

(1) Dlmenslonlcss Quantities and Parameters

X = x/h

Y
.t.

= y/h

r “ = a/h

w = w(x)/h

u ~ u/uo
V = v/u o
u = u /up P o
V = v / up P o
p = (p - P0 )/(p Uq )

D
N = i— 2- )
DF Fh2

N = ( ^ )  '' t3 -) (£- )ED 4e m Do p p
N =  U / hF

m o
11 ll/v

R o
K = L /hnp P
m = m / ( p p o U o )

B m " = lh/[ppo(Dp'
E * = ( ^ ) ( - 1 L -: 

mp FDP
-X.

0 = p / p' p P PO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

ppb ppl2pp 

PR ’ p/ppo

<n e » »d f >2 - o p FDP

B ' < V N dV  = “oh/Dp

T = ( h f _ ) / ( F D  )L p

A = (hf )/(FD ) w p

(2) Physical Meaning

D ?-2
N = ( ) Diffusion response number
DF Fh?

which is the square root of the ratio of relaxation time (1/F)

to diffusion time (Ib’/D )•P
P ‘ ■ t 2^ = ( P_9.) (C1 ) (— -) Electro-diffusion number

ED 4 c m Do p p

which is the ratio of displacement by electrostatic repulsion 

to that by diffusion.

N = u /hF Momentum-transfer number
111 o

which is the ratio of relaxation Lime (1/F) to transport time 

(h/uo).

N = u h/v Reynolds number
(based on half channel width)

which is the ratio of inertia forces to viscous forces.
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N = v/D Schmidt number of particlescp p

which is the ratio of viscous forces to particle diffusive for­

ces, it is analogous to Prandtl number in heat transfer.

K = L /h Knudsen number of particlenp p
which is the ratio of particle-fluid interaction length (L ) to 

half channel width (h). This number governs the particle slip 

condition at the wall.

2. 2.
a = (N„„N,,t,)2= (t^O ) (— — ) Electrostatic-chargeED DF 4e m -o p FD parameterP

which characterizes the electrostatic charge of solid particles.

3 = (N /N2 ) = N N„ = U h/D Diffusive Peclet numberm DF scp R o p

which is the ratio of inertia forces to diffusive forces. This

number is a momentum-diffusion parameter.

Y = (hf )/(FD ) Lift-force parameterL p

which is the ratio of lift forces at the wall to diffusive 

forces of particles.

X = (hf )/ (FD ) Adhesive-force parameterw p

which is the ratio of wall adhesive forces to diffusive forces

of particLes. Note that (o X) was used as a surface adhesionw
parameter.

.JL
iii = m / (p u ) Dfmensionless rate ofpo o . . r . ,deposition of particles

which is the ratio of the rate of deposition of the particles

to the mass flow rate of the particles at inlet.
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Bm" = m/[p (D /h)] Dimensionless-modifled rate
P° ^ of deposition of particles

which is the ratio of the rate of deposition of the particles

to the modified mass flow rate of the particles at inlet

[p (D /h)] which is the product of the inlet particle con- po p
centration p times the diffusion velocity (D /h).po p

(3) Order of Magnitude

Some of the parameters and dimensionless quantities can be 

calculated, while the others can be estimated and taken from 

previous experiments (Cheng et al [10]).

From Lhe actual size of a fluidic device one has h = 0.05 cm.

Considering solid particles of diameters 

2 a = 2p and 

2a = 20p

the particle size parameter R = a/h can be calculated and the 

result is as follows:

R = 0.002 for particles of 2p diameter

R = 0 . 0 2  for particles of 20p diameter

For air as a fluid phase with a pressure p = 1 atm and tempera­

ture T = 20 deg C, then by using equation (3-24a) the particle-

fluid interaction length, L , can be calculated and the result 

is as follows:

L = 6.5 x 10 ® cm.P
Hence the particle Knudsen number, K = L /h, can be evaluated

nP P
and the result is:

K = 0.00013. np
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A ranee for K as (0.0001 - 0.01) will be considered, np
Assuming a uniform inlet velocity u q = 3000 cm/S the Reynolds

number can be determined, N = u h/v based on half the channelR o
width, and the result is 

Nr= 1000.

A range for NR as (100-1000) will be taken. For the momentum-

transfer number, one has

N = u /hF m o  _1
where F = F [9(p/2a2 )p ] [ 1 + (p/2p^)] (3-7)

and F = (c^/24)[2a(p j v - v | )/p] . (3-8)

kIn the Stokes' law range F = 1 as given by Soo and Tung [71J,

and assuming that p << p , then the second bracket in equation

(3-7) can be dropped, i.e.

F = 9tip /2a2 .P

Then for a particle density p = 3 . 7  g/cmJ, tiie inverse of the

relaxation time F can be obtained, and the result is
_tF = 22000 S for particles of 2|i diameter

and F - 220 S for particles of 2Op diameter.

Hence the momentum-transfer number N can be calculated, andm
the result is as follows:

N = 2 . 7  for particles of 2p diameterm

and N = 270 for particles of 20p diameter.

For the electrostatic charge parameter a ,
P 9 j °

/,ro "V fi)P
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where
e = 8.85434 x 10_12 C?-/N.m2(free space permittivity), o

From the experimental work by Cheng et al [10] for an air 

velocity of 35 m/s (close to u = 30 m/s):

(q/m ) = 1.633 x 10  ̂C/Kg

and this is the electrostatic charge to mass ratio, required to 

evaluate a.

Assuming an inlet particle concentration, p of

p = 4.6 x 10 6 g/cm3po

according to Davies [16] the coefficient of diffusion is as 

follows:

D = 1.3 x 10 3 cm2/s for particles of 2p diameter
P

and D = 1.2 x 10 8 cm2/s for particles of 2On diameter.
P

Hence one can determine the electrostatic charge parameter, a ,

and the result is:

a ~ 467 for particles of 2p diameter

A range for a of zero to 4 00 will be considered.

For the diffusive Peclet number 8 = u h/D .o p
Subtituting numerical values,

8 - 1.2 x 108 for particles of 2g diameter

A range for 8 of 4 to 103 will be assigned.

The surface adhesion parameter o A is assigned the values 0, 0.1,1.0,w
10 and 100 in accordance with the studies by Soo and Tung [71].

Since the electroviscous-sticking factor a and the lifting factor
I

o can only have values between 0 and I. 0, values of 0.5 and 1.0 w
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for a and 0, 10 10 and 10 G for a were assigned. It shouldw
f

be noted that for higher values of a , the results are un-w
realistic.

For the density ratio 

PR = p/pp o ’

p = p . = 0.00138 g / c m 5air

and p = 4.6 x 10 p g/cm3 (assumed)po

hence

PR = 300.

The dimensionless packed bed density, = p ^/p^,will be assumed 

to be 0.3 as a reasonable value.
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Appendix C

NUMERICAL PROCEDURES FOR SOLVING THE EQUATIONS 
DERIVED IN CHAPTERS 3 and 4

The governing equations (3-15) to (3-20) can be written in

finite difference form as follows:

(Ui+U j  ~ Ui>j) . (yA + b J + 1 ~ U - ± \ , j L  = o (C-l)
H S v

U. - - U. . U . n  ... U. irr x+1,j i,j, i+l,J+l _ l_i±l___ a )

i+l,j'' H } i+1, j V 2S ; H

,U.tl . ,, - 2u.,1 . + U . . .. .( i+l, i+l______ i+l,.i l+l, |-1)
N„S2

u _ u u u

" i + i n  " pi+i,j

U U 2U + U 
( i+1,,1 - P l+l,j) | ( Pi+l,.i+l P i+l, 1 P l+l,.i~l)

N oin RS-

p“ - * U - U
+ ( Pl+1, i+l p i+l, 1 -1) ( P 1+1,i+l Pl+l,i-l) (C-3)

i+ l , i

V _ V V V V
u ( pi+i>.i pi»j) + v ___ p.ii-i.’-Jn_ . Pd±Lvi_)
p . , , . H p . . S Ni+l,j i+l,J m

+ (C-4)3N v ;III
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u + v  . P|+1’j r)i+l,j H i+l, j 2S

P 2p p
= ( P i+1,.i+1 Pi+l,.i Pl+l,j-l)

0S2
* * 

p p
■ * ' ^i+l,;j+l Pi+l,j-l. 4a *

a *
^•j.1 • ui “ E -( l+l, 1+1 i-

_E • I-1 , ( - ^ 4 ^ ---- ^  p (C-5)x+l,j 2BS B p±+1 .

= 4ap (C-6)
Pi+l,j

Neglecting the second term on the left-hand side of equation 

(C-4) since it is small compared with the other terms, and by 

linearizing these equations, one will get the following:

(Ui+l,j Ul,j) + (V l+l,,j+l V i+l,j) = Q (C_ L)

ft rU i+l,.j Ui ,.h, „ rU i+l,;i-H U 1+1,,1-1 w _ ( P i+l P l) 
i,jV II ' i ,j ̂  2S ; H

ru -a.i -0.1" 2 u -o.i • + u - ci • n+ ( i Id , j - H  l + l  , j  L+l, j - 1 ) (C-7)
N S-

U _ U U - U
U ( P_i+U  ‘h i )  + v f J j ± L i ± i ___
P . . II p . 2SJ-.J 1,J

u u 211 u
- ( i+l>j P i + 1 >j ), ( Pi+l,j+l P i+1, j P i+1, j-1)n-  - + __ _ 

m

p _ p" u _u
+  ( ,Pi > j H :  P i,j-I)( P iH,it r  P i;H,j-l)

4BS- pj; ^  a >
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v _ V _ V *
TJ ( Pi+l»j !>i J )  -( J+J.J 4 -  ( C _ 9 )
Up. H N BNx, j m m

>1* ^
P 2p p
( Pl+l,j+l Pi+l,i Pl+l,j-l.)

BS7

- E. .(— J  ^ i - ^ ) - ^ p  p (C-10)i,J 2BS B p ^ .  Pi+1>j

where II and S arc the step sizes in the axial and normal directions 

respectively.

For the channel flow II = S = 0.1 (constant) .

But for the diffuser flow II = 0.1 (constant) while S varies

according to the diffuser angle (20). Different values for angle 0

will be considered,particularly 0 = 2°, 2.5°, 4°, 5° and 7.5°. For 

an actual fluidic amplifier, the diffuser angle in the splitter region 

is about 15°, i.e. 0 = 7.5°.

In each case the width of the diffuser will be a function of

axial position and one can write:

W.,, = W. + tan 0/N TW = w(x)/h]l+l l

and S . .. = W . /N L+l 1+1

where N = 10, = 1 and 0.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



101

For example when 0 = 2 °  

then W ? = 1.0034921 

W 3 = 1.0069842 

Wq = 1.0104763 

W 5 = 1.0139684

(tan 0 = 0.034921)

52 = 0.10034921

53 = 0.10069842 

S,t = 0.10104763 

S 5 = 0.10139684

and so on.

For both the channel and diffuser flows

i = l(l)m (m is taken up to 140)

j = 2(l)n+l (n is taken 10)

where m and n are the numbers of equal intervals in the x- and y-

direction respectively. The finite difference grids of both the 
channel and diffuser flows are shown in Fig. (3.2) and (4.2)

respectively.

The equations of the boundary conditions (3-25), (3-26) and 

(3-27) can be written in finite difference form as follows:

@ 1 = 1  [at inlet, corresponds to X = 0, since
(2 < j < n+2) X = H (i-1) ]

U_ . = U = 11, p, . uniform

V, . = V = 0I,., p1>;j

p = 1  uniform
Pl,j

. = o -t >.j
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These uniform inlet boundary conditions are applied for both 

channel and diffuser flows when there is no connection between the 

two.

But when one deals with a diffuser connected to a channel, 

then the inlet conditions of the diffuser flow are the exit condi­

tions of the channel flow.

j_z_2 
(i > 1)

[at the channel or diffuser centerline ,corres­
ponds to Y = 0, since Y = S(;j — 2)]

IT _  I p
U i+1,3 1+1,1 ___ P l+1,3 p i+1,1 =

2S 2S = 0 i+l,3 l+l,1
symmetry

= U
Pi+1,3 Pi+1,1

V . . 9 = V = 0
’ p i+l,2

P ~ P
p 1+1,3 p1+1,1

2S = 0 p = p symmetry
P i+1,3 P i + 1,I

Gj j = n+2 [at the wall, corresponds to Y = 1 for channel
. . . , x flow and Y = W for diffuser flow](i > 1)

U 0 = V = 0 (no slip-fluid phase)i+l,n+2 i+l,n+2

 ̂j C
U = U (slip-particle phase) Case Ip .ii 1 + K /S p.,,* 1+ 1 ,n+2 up i+I,n+l
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U
P i+1, n+2

(1 - ) K /S
---------15----_p /----- D£ _ — ) u
(1 + K /S) 1 + K /S; p.np np i+1,n+1

or

U
P i+l,n+2

K /S
(— ^ ---— ) U
1 +  K„p/S 15 i+1, n+1

i < (N /H)+l m

i > (N /H>1 ~ m

Case II

Pi+1,n+2 Pi+1,n+1
) = (1 i+1, n+2 Pi+1, n+2 o' Apw P i+1, n+2

+ a y pw i+1,n+2 pb

which can be written in the following approximate form:

Pp *ti ,o = PP-,1 ,0 i (1 + SO Y- i „p,'1/p5' )/[1-S(1- o )e '.'i+l,n+2 i+l,n+2 i w i,n+2 pb p. ,, i,n+2v l ,n+1 *

+ Scr A] ■w

Let (p = S/II) , then equations (C-l) , (C-7) to (C-10) and (C-6) can 

be written in the form:

V i+1,j+1 vi+i,i + n . , ,  .i+i, j ■
(c -1 1 )

'2S + sOi -)U.i+1»j-1 + (
U. .
. .Ijii- + s"2n .-)U,i+1

V. .
+ S*NR )Ui+l,j+l +

1+1
II

u :  .+ p.
(C-l2)

V
i i n l  _ +
2S Sn>

1
Pp . . 1

1 ')!!
P1,J P-- + a +

L+lJ-l S'"? pi+i,j

+ ( pi,j
2S - H ± ± ,4S- fip'

i-1 u
)U

1,1 i+1,.i+i
L+l
N ..in

1+P • •
v II ’

(C-l3)
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U * u V
A + pi,Jw l i t L i  i±h± _ f-Z iij.  -iu l) (C_i4)
(fT + II )Vp.J.1 N BN ~ H > (U ^m i+l,3 m m

* „ 4apV. . . E . . j. U. , „ p. .
- (—iiJ- h i h — i-’-l) p ' + ( ’■!--h---? 1- --------- p
( 25 S *  2SB P i+i,:i-i " 6 P 1+ljj

*  DV. . , E. . . U. . . p. .+ (-i-J 1 +-JhJ)p' = (_lxJ----_i.il) (C-15)
+  ̂ 2S S^B 2S3 ;Pp ±+1)j+1 H

E -_li -j.1 _ e -_li • “ 4aSp = 0 (C-16)i+l,j+1 i+l,j p i+l,j

Also equation (3-21a) can be written in a simplified finite difference 

form after applying the boundary conditions at the wall as follows:

-< n K /S
■Y-j-i -ro= (1-54BN p„/R'CN '2)[(— r11?-— 7^)U i+l, n+2 m R R 1 + K / S p . 1 ,’ np i+l,n+1

+ R”u -.i J.1/S3U:' ,, ( r  17si+l,n+l i+l,n+l (C-17)

Combining equation (C-17) with equation (3-21) gives

m . , = DPR • I, = p (oV + a  A/(3)i+l i+l p . „ p . , ,, wi+l,n+2 i+l,n+2

i K /S
-o p" (1.54BN p /R"Np :) [ ( _ i E — ^ > 0  w pb in R R 1 + K /S p . , . , n1 np i+l,n+1

+ R*u. /s]u / p  (C-18)x+1,n+1 i+ l ,n+1

Let

ul.
V, ■ ,
( 4 ’J + -4-— )v 2S s n r

J ,J + s % >
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a 3 . .i,3

P I .  .i,J

32. .
i,J

33. .i,3

- sA- _ -i— ) 2S S2NT
V R * *

(_ .PA > 1  _ i + ...2S S23 4S ( 3 p ’

U
(i _  + _2_ + -Zid. 
h ] hm

Pi  ,3

)

-Zaj _ 1
2S

* *p - p
J ^ d + L _ j A J - A

4S2 Pp
Pi,3

)

Y11,3

U
1 P i i 
in

T'| 1  . .

V, . -i E. .i , J I  -} I i > J N
2S S;rB 2Sf5y

i,3
U.i
IT ' S^B

4ap
P-; a

( I 2 l ‘

n 3 . .i,3
V. . E. .
r-JLi± ± + _AzJ_\
V 2.S S d  2Sfr

Cl. . 1,3
U? .+ P .
(— i d  d
v H '

C 2 .i,3

C3. . i,3

(3U. .)i,3
U2
(JP.L)
V II ’

C4. .
i ,3

U . Vp , . P • • 
( i,l  '.,Ju.)

C 5 . .
i ,3

= (
U . . . ' p . .1 ,J 1 >J

II

C = - 4aS

CC = (1.543N p /R N„ ) in R R

CK = (K /S)/ ( 1 + K /S) n p np
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Then equations (C-ll) to (C-16) and equation (C-18) can be 

written in shortened form as follows:

al. .U.^ . -.+ a2. .U.,n .+ « 3 . .u.,n . + P , /}[ = Cl (C-19)
1,3 i+l,j-l 1,3 i+l,J i ,3 i+l,J+ 1  i+1 7 i,j

V-j.-. . , i — V - .+ , . = C2 . . (C-20)i+l,j+1 1+1,3 1+1,1 i,J

31. .U + 32. .U + 33. .U — U - ./N — C 3 . .(C—21)
^  Pi+l,j-l lsJ Pi+l,i Pi+l,j+l 1+1>J m  X ’J

yl. .V - V.,, ,/N - E.' ,/3N = C4. . (C-22)
1,3 p.... . i+l,3 ra 1+1,1 nl i,li+ l,J

nl. . P + n2. . p + p3. . p  - C5. . (C-23)
1,J Pi+1,j-l 1,J Pi+1,j ■L,J Pi+1,j+1 1,J

E* . E* .+ Cp* = 0 (C-24)i+l,j+1 1+ 1,3 P.+ 1 J

DPR. , = p (aV + a A/3)
1+1 1 + 1 , n+2 1 + 1 , n+2 "

-a p . CClCK-U +R U ,-i/SllH / R tC-2SJw pb pi+l,n+l i+l,n+1 7 i+1 ,n+l ^  ZPj

where i. = l(l)m for all equations (C-19) to (C-25)5

and j = 2(1)n+1 for all equations except (C-22) where
j = 3(1)n+2

Equations (C-19) to (C-25) can be expanded to give (6n+l.) equa­

tions for fixed value of i and different values of j. Using the boundary
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conditions with these equations, then the unknowns that one is 

looking for will be as follows:

Phase

fluid
phase

Unknowns

U i+1,2’ U i+1,3’

i+1

’ U i+1,n+1

V i+l,3’V i+l,4 ‘ ‘ •’ V i+l,n+l

No. of Unknowns

n-1

particle
phase

, u
’i+1, 2 15i+1,3

> v -

P

,••,v

i+1,n+1

p i+1,3 p i+1,4 P i+1,n+1

Pi+1,n+2

Pi+1,2 Pi+1,3
, P

Pi+1,n+1

Iji+1,3’ Li+1,4’ ' ' ’E i+1,n+1 ’

E .i+1,n+2

m . - x+1

n

1

Total (6n+l)

So the number of equations is equal to the number of: unknowns, 

so the system of equations can be solved, and the method of solution 

is discussed in sections 3.3 and 4.3 for the channel and diffuser 

flows respect: Lvely.
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Appendix D

TABLES OF COMPUTER PROGRAM VARIABLES

SYMBOL EXPLANATION

M,N number of grid steps in the X- and Y- directions
respectively.

II,S Step sizes in the X- and Y- directions respectively.

W h, half the channel width.
vVR R , dimensionless radius of a particle.

AKNP K , particle Knudsen number,np
ANG tan 0, where 0 is half the diffuser angle.

ANM N , momentum-transfer number,m
ANR N^, Reynolds number.

ALPHA a, electrostatic charge parameter.

BETA B, diffusive Peclet number.

SIGMA o, sticking probability accounts for electro-viscous
forces.

SIGMAW a , sticking probability accounts for adhesive forces
at the wall.

SIGMWP

LAMBDA 

DENTR 

PDENT 

C1 (I , J )

c 2(i:,.j)

G3 (I,J )

*“AIso see

o , lifting probability accounts for lift forces at w
the wall.

A, surface adhesion parameter, 

p , density ratio as defined.
>v(3 j > dimensionless packed bed density.

Cl. given in Appendix C.3 i J
C 2 . . given in Appendix C.•*- y J
C3. given in Appendix C.

1 y J

li.st of symbols on pages xxi, xx i i, xxiii and xxi'
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SYMBOL EXPLANATION

C4(I,JB) C4^ j+ 1 ' S^ven ^PPendix C

C5(I,J ) C5 . given in Appendix C 
i , J

ALPHA1(I,J ) oil. , , given in Appendix C 
i , J

ALPHA2(I,J ) a 2 . . , given in Appendix C 
i , J

ALPHA3(I,J) a3^ ., given in Appendix C

ALPH13(1,2) al3 . „ = al. ,, + a 3 . . 
3 , 2  i , 2  1 , 2

BETA1(I,J) 61. ., given in Appendix C 
i , 3

BETA2(I,J) 62 . ., given in Appendix C 
i , 3

BETA3(I,J) 63. ., given in Appendix C 
i , 3

BETA13(I,2) 613. = 61. 0 + 63.
i , 2  i , 2  i , 2

BETA23(I,NC) 623. = 62. ,1 + CK • 63.
i ,n+ 1  l ,n+ 1 i ,n+ 1

GAMA1(I,JB) yli given in Appendix C.

GAMA(I,ND) y . as defined in Eq.
L ,11+2 (G 17)after

ETA1(I , J ) ql. given in Appendix C 
i , 3

ETA2(I,J ) r\2  . ., given in Appendix C 
1 , 3

ETA3(I ,J ) p3^ j , given in Appendix C

ETA4(I,NC) n4. = (1+So y . p /p )/[1- i,n+l w' L,n+ 2  pb p. n+1

E'L’A13 ( 1 , 2 ) nl3 0 = n l. 9 +  n3.1. 9 L. 1. , _ .L y

ETA23(I,NC) ti 2 3 = ri ? + ri 3 • n 4i,n+l 1 “i ,ii+l 1 i,n+l 1 i,n+.l
A (II,JJ) A, matrix of coefficients

of matrix
B(.TJ) B, column vector

U(IB,J) U ., axial velocity of 
i + 1 ,3

M u  id phase.

P (IB) P.,,, fluid static pressure. r+L
V(LB,J) V.,, normal velocity of i+l ,3 flu id phase

J:i ,ii+2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



/V

SYMBOL 

UP (IB,J)

VP (IB,J) 

ROUP(IB,J) 

ROHU(IB,J) 

ROHV(IB,J ) 

E(IB,J) 

DPR(IB)

110

EXPLANATION

U , axial velocity of particle phase.
P i+l,j

V , normal velocity of particle phase.
Pi+l,j

P , particle concentration .
P i + l J*

U , mass flow of particles in the X-direction.
JU

p V , mass flow of particles in the Y-direction.
P i+l,j Pi+l,j

E .,. Electric field intensity. i+l,J

rate of deposition of particles.
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