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PREFACE

It was the original intent of this work to provide a 
theoretical basis to Study several problems associated with 
electrocardiagrams. Preliminary reading and discussions 
sparked the interest in this area. It became clear that 
nan-stationary statistics were involved, leading to the 
formulations given in the dissertation. As the theoretical 
study progressed, the applicability of the vrork to the area 
of electroencephalograms was also evident. In each step , 
with every hurdle encountered, the intricacies involved lent 
a stronger and stronger intuitive notion that a fruitful 
path was being followed. Hopefully now, the joining of 
theory and application can be pursued with an approach 
that will bear much fruit.

The completion of this dissertation would not have been 
possible without the patience, understanding and endurance of 
family and seme good friends. To than is given a simple, sincere 
thank you. Also, grateful thanks are given to Margaret, Sister 
Clarissa, Bobbie, Karen, Regina, Diana, Rosemary, Karen, Ruth, 
and Gary who all helped put it together.
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ABSTRACT

This dissertation deals with linear systems subjected 
to stochastic disturbances. The class of stochastic processes 
considered is the class of second order stochastic processes 
characterized by having finite continuous covariance. The 
properties of the covariance provide means to formulate 
optimization problems without the difficulties present when 
the covariance is not finite or continuous.

The first aspect studied was several classes of optimal 
control problems. The effects of the stochastic processes were 
approximated by the effects of its first two moments. This 
procedure resulted in allowing optimal system controls to be 
found whatever the first two moments of the stochastic input 
were, or "worst case" optimal controls were found. Differential 
game theory was used to solve the "worst case" problem.

Then, a model reference adaptive control system was 
employed to permit simultaneous parameter identification and 
control to be obtained in an on-line environment. The parameter 
identification was accomplished using gradient or steepest 
descent techniques. The control inputs were updated as the 
parameters were changed yielding sub-optimal control of the 
physical system. In addition, minimum error covariance 
estimation of linear systems with second order stochastic 
disturbances was developed.
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CHAPTER 1 1

INTRQDUCTION

In this dissertation a class of optimal control and 
identification problems is studied. The approach developed 
permits treatment of same physical situations not yet fully 
explored and allows a different approach to physical situa­
tions previously dealt with. The overall problem is to 
optimally control a plant in the presence of noise distur­
bances and simultaneously identify parameters of the plant. 
The general linear problem is pictured below.

PHYSICAL PLANT 
dx (t) *=A (Y, t) x (t) +B (y , t) u (t) +C (Y, t) v (t)

MEASUREMENT
H(Yft)

Figure 1.1 General linear problem
In this situation, the measurement y  corrupted by 

noise W, of the state x is to be driven by the control u, 
which is optimal in some manner, while in the presence of 
additional noise v, at the input to the plant. Simul­
taneously, the vector y , which is the collection of all 
elements of A, B, C, and H which are not known, is to be 
determined in some way.
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The optimal control solution ean be carried out 
offline. Then the identification can be performed 
online, while the actual plant is being controlled.

The problem of Figure 1.1 is linear, however both 
the plant and measurement may actually be nonlinear.
In this work, only linear problems are dealt with leaving 
nonlinear problems for future research. The identifica­
tion scheme employed is discussed in Chapter 6 . The 
stochastic optimal control problem is detailed in 
Chapters 2 and 3. Throughout the dissertation only con­
tinuous-time problems are studied, since stochastic dis­
crete- time problems submit to some approaches which just 
do not carry over to continuous time. This point will be 
clarified in Chapter 2. Also the measurement y, will be 
assumed to be equal to the state x, within the dissertation. 
This corresponds to w=o and H(y,t)=I. Having completed the 
solution of this problem, the extension to the case of 
noise corrupted measurement is possible. These modifica­
tions slightly change Figure 1.1 to the following.

x(t )

PHYSICAL PLANT 
dx (t) =A (y, t) x (t) +B (y, t) u (t) +C(Y/t)v (t)

Figure 1.2 General linear problem 
without measurement
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The state equation is
dx(t)=A(Y ,t)x(t)+B(Y ,t)u(t)+C(Y ,t)v(t) ,t£[t0 ,tJ 1 , 1  
dt

where
x is an n vector 

A(y;,t) is an nxn matrix 
u is an r vector 

B(Y ,t) is an nxr matrix 
v is an s vector 

C(Y ,t) is an nxs matrix
and

Y is an m vector.

The state of the system is x and the measurement is 
y=x. The optimal control is u and the additive stochastic 
disturbance is v. The unknown gains, time constants, etc. 
which are the elements of the matrices A, B and C form the 
vector y.

The overall problem of figure 1-2 essentially is the 
combination of two problems: stochastic optimal control
and identification. In this work, differential game theory 
will be employed in the "optimal" part of the solution. 
Generally speaking background material required for identi­
fication problems is presented in the texts by Sage and 
Melsa (96) and Graupe (31). Discrete-time process identifi­
cation is given in the text by M e n d e l (76). Identification



is the subject of the survey articles by Astrqp and 
Eykhoff (7) and Balakrishnan (14) and the entire special 
issue of the December, 1974 IEEE Transaction on Automatic 
Control. Deterministic optimal control background is 
presented in the texts by Athans and Falb (9 ) , Hsu and 
Meyer (33), and Leitmann (67) . The variational techniques 
employed in this work are found in Kirk (45), Sage (95) and 
Citron (22). Some of the proofs depend on a matrix 
formulation similar to that in Athans (10 ). Stochastic 
optimal control for some types of stochastic processes is 
given in Astroim (8 ), and Sage and Melsa (97). The sepa­
ration principle is found in Wonham (109). Various exten­
sions and alternatives to the separation principle exist 
as in e.g. Athans (12 ) . The original work on deterministic 
differential game theory is in Isaacs (39 )• Other texts 
are Blaquiere ( 18.) and Friedman (27) . Articles by Ho (33 ) , 
Kuo ( 50) and (52 ) , and Kuo and Burbank (55 ) present solu­
tions to wide classes of two person, zero-sum differential 
games. Pure stochastic differential games are discussed 
in Behn and Ho (16) and by Willman in (108). Estimation 
theory is needed for the study of stochastic optimal control, 
and especially for the separation theorem, which states that 
the optimal feedback control solution is obtained only after 
the best estimate of the state has been found.

Tfexts on estimation theory are Brys on and Ho (20 ) ,
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• and Sage and Melsa (97). The monograph by Lee (64) for­
mulates estimation type problems concisely. The detailed 
class of problems will be developed in Chapters 2 and 3. 
References dealing with these details will be given in 
those chapters.

For problems of stochastic optimal control, the 
approaches used to date require estimation of the state and 
much a priori knowledge of the stochastic disturbances v 
and w. The linear estimation problem was first presented 
in Kalman (40). Many extensions have been made such as in 
Mehra (74) where errors in initial values of the variance 
are discussed. In Lee ( 64) the estimation problem is solved 
using a Bayesian approach. In Kushner (62), Sage and Melsa 
(97) and Meditch (73) linear and"nonlinear estimation, aiid~ 
stochastic control are discussed. Astrcsa ( 8 ) uses the 
Ito formulation for the same type of problems.

The class of stochastic processes studied is the class 
of second order processes. Davis (23) and Boonton (19) 
deal with prediction and estimation for this class of inputs 
in the classical manner. A deterministic disturbance in a 
differential game is giteen by Krikelis and Rekasius (49). 
Their problem is a conflict of interest game between a 
deterministic optimal control and a deterministic distur­
bance. The differential game approach to be employed in 
this research considers a stochastic disturbance. It is
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assumed that the effects of the stochastic disturbance 
are approximated by its first two moments. The conti­
nuous time vector case is studied. In Yoshikawa (110) a 
scalar two stage discrete stochastic differential game 
is solved in terms of the complete probability density 
function. The problem here is based on the assumption 
that the density function can be approximated by its 
first two moments, but a wider class of problems is con­
sidered than in (110). Differential games with imperfect 
information are covered by Leondes and Pearson (69 ) ,
Leondes and Stuart (6 8 ) and Kushner and Chamberlain (61 ).
In these references noise corrupted measurements or in­
complete state situations are considered.

The complete probability density function for a class 
of nonlinear Bayesian estimation problems is approximated 
for the discrete time case only by Alspach ( 2 ), and 
Sorensen and Alspach (10^ . In another article ( 1 ) they 
consider non Gaussian Bayesian estimation. Sain and 
Liberty ( 98) computationally obtain a density function for 
a quadratic performance index.

The class of differential games studied here is 
characterized as games of imperfect information in that 
parameter identification is required. It is assumed though 
that the stochastic disturbance can be approximated by its
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first .two moments which is not the most general ease. 
However the problem of simultaneous optimal control and 
identification included in this research is seen to be 
an extension of known results even with this assumption.
The approach developed here is one in which the plant 
is optimally controlled in the presence of any stochastic 
process v, considering the effects of the disturbances as 
follows. The first two moments of v are assumed to pro­
vide sufficient information to obtain physically workable 
solutions to the overall problem. This assumption is 
crucial to all that follows but it is noted that the 
effects of any finite number of moments could be included 
using the approach of this dissertation as a starting point. 
The manner in which the first two moments propagate through 
the plant or system then, is the means to describe how the 
stochastic disturbance affects, in a degrading manner, the 
optimal operation of the plant. These two moments are then 
considered to be inputs to the same plant as the optimal 
control u. There is apparent the conflict between the 
effects of the optimal control u and the effects of the two 
moments of the stochastic disturbance v. For each given 
performance index, a quantitative measure of these effects 
is obtained.

Using the conflict characterization, a differential 
game is defined between "man" who chooses to optimally
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control the plant versus "nature" who seeks to choose moments 
of stochastic disturbances which degrade optimal performance . 
The "man-nature" differential game approach to other kinds 
of problems appears e.g. in Kuo (51) and ( 53).

The approach to be employed using differential game 
theory with imperfect information in the sense that the 
parametery is unknown is mentioned by Ho in (34 ) as a pos­
sible area for future research. This approach is formulated 
in this work for the first time as applied to the problems 
of figure 1.2 . One contribution then is the differential
game approach formulation. Actually, the formulation is 
equivalent to an absolute-worst-case controller design 
problem as described in Ragade and Sarma (92 ).

The specific class of problems considered in the 
research is for stochastic processes with finite variances 
which are also continuous in the mean square sense with 
respect to time. To the author's knowledge, this class of 
stochastic processes with unknown y has not been fully dealt 
with before in a control problem or in an identification 
problem. This class of stochastic process is best 
characterized by the term nonstationary since two independent 
time variables are required to mathematically describe the 
moments of the process. Nonstationary inputs are dealt with 
in Boonton ( 19) , but the resulting integral equations are 
very difficult to deal with. Baggeroer (13) illustrates the
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solution to similar integral equations as does Shinbrot 
(104) . Davis (23) formulates a class of nonstationary 
prediction problems.

As will be seen in detail in Chapters 2 and 3, the 
specific problem characterization of this work is one in 
which the stochastic disturbances are non-stationary with 
correlation times of the same order of magnitude as the 
system or plant. This situation appears in many biomedical 
monitoring and control problems. In particular, as seen in 
Kawabata (41) , EEG waveforms exhibit these properties. It 
is speculated that the theory developed will permit much 
more thorough analysis and understanding of any EEG related 
phenomena, such as time series analysis of the waveforms, 
modeling of the system generating the waveform, and/or con­
trol of the system generating the waveform by drugs. For 
example, the state of a person's consciousness, sleeping, 
awake, alert, etc. is influenced by drugs.

The therapeutic use of drugs and the covert use of 
drugs are both problems requiring deeper understanding.
The effect of these drugs on EEG waveforms, and the modeling 
of the system creating these waveforms would possibly enhance 
this understanding from a new viewpoint. Several of the 
previous points are considered in Nunez ( 82).

Basically this work presents an approach to the solution
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of an optimal control problem in which stochastic distur­
bances are present. Techniques for on-line identification 
are included. The approach is to consider an absolute- 
worst-case situation as described mathematically with 
differential game theory. The particular class of pro­
blems dealt with is for nonstationary, continuous-time 
stochastic disturbances. These disturbances are typically 
found in many biomedical areas, and especially in EEG related 
phenomena.,;

Chapter 2 provides material needed to formulate the 
specific problem. This formulation is presented in Chapter 3. 
Chapters 4 and 5 provide necessary and sufficient conditions 
for the solution of the "optimal" part of the problem.
Chapter 6 provides the solution to the identification por­
tion of the problem. In Chapter 7, examples are worked out 
to illustrate the theory. The results are summarized in 
Chapter 8 and the extensions possible are presented in 
Chapter 9. The derivations of the state equations is given 
in Appendix A. Appendix B contains derivations of perform­
ance index and endpoint condition transformations. The 
proofs of the necessary condition theorems are in Appendix C, 
and the proofs of the sufficient condition theorems in 
Appendix D.
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CHAPTER 2 

STOCHASTIC PROCESSES

When a stochastic process is only a part of a larger 
problem, some assumptions must be made about the stochastic 
process and only then can the solution to the larger problem 
begin. This chapter develops the main points required to 
classify stochastic processes and in particular to delineate 
the class of stochastic processes chosen for this study.

2.1 Discrete and Continuous Stochastic Processes
A stochastic process is, in words, a random phenomena 

that changes with time, or some other parameter. The real, 
scalar stochastic process v(.,.), a family or ensemble of 
functions, depends on the outcome of an event w;W'fft, the 
sample space and, a parameter t, usually assumed to be time 
where te [... ,-1 , 0 ,1 ,.. .] = 1  for a discrete-time process, and 
t (-00,00) =e for a continuous-time process.

For fixed t=tj€l(or E),v(tj,.) is a random variable.
For fixed w=WjGft,v(.,Wj) is a (deterministic) function 

of time.
For fixed t=tj and w=Wj ,v (tj ,Wj ) is a number.

For each fixed tj, the random variable v(tj,,) is 
defined on a sample space ft, where there exists a Botel field B 
of subsets of ft, and a probability measure P on B. The
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probability space (ft,B,P) is the basis for the measure- 
theoretic (axiomatic) study of probability, as discussed in 
Dubes (25). The sample space fi, can in general, be either 
discrete, continuous, or mixed. That is, fi={j;jel} or 
fi=E or some combination. Similarly, tjfcE' or tj&I. The 
stochastic process then may be a combination of discrete­
time or continuous time with discrete, continuous, or mixed 
sample space. Considering only continuous sample spaces fi, 
a quantitative description of the stochastic process is 
desired. Prabhu (90), states that a stochastic process 
v(.,.) is statistically determined if the nth order joint 

distribution function F(£i,?2 '*'*,^n;tl,t2 f* * *ftn^ =
P (v(tlr.) <?1 ;v(t2 , • )<^2 > • • • yvftn' )=£n*

2 .1.1
is known for all n and t-^tj#. • . ,tR where F satisfies the 
symmetry and compatibility conditions. For the discrete-time 
scalar stochastic process v (t,.) ,t£ f0 ,l,. .. ,k] ,k<°°, there are 
finitely many distribution functions, and a complete stati­
stical description of the process is possible with them.
On any open or closed subset of the real line, however, there 
are infinitely many instants of time, hence infinitely many 
joint distribution functions and in theory, the continuous­
time stochastic process can never be statistically determined. 
This point is of major significance in estimation theory where 
density functions have to be defined. It is possible in
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theory to completely determine all the distribution 
functions of a discrete-time process and utilize them, 
whereas continuous-time problems do not submit to this 
method of study. For this reason, the present research 
deals with continuous-time dynamic and stochastic processes, 
since the discrete situation can be studied later. However, 
the reverse is not tnue for many kinds of analysis.

The first order distribution function 
F U , ; ^ )  = Ptvtt-,,.)^-.) 2.1.2

over the ensemble v(t^/»), for all t^€ft0 ,tf]| exists as 
does the second order joint distribution function.

F (5i,52'ti't2) = P(v(ti^)<S1;v(t1>^<?2) 2.1.3
over the ensembles v(t^ > •) and v(t2 ,.) for all 
tl /t2 e^to ,tf^‘ From these two functions much useful 
information is available. Theorems involving only tnese 
two functions and their properties appear in Bhat (17) and 
Hoel (35). Of course, knowledge of these first two distri­
bution functions above does not imply the process v (.,.) is 
completely statistically determined. It is noted in Dubes 
(25) and Sage and Melsa 07 ) that in many physical situations 
knowledge of the first two distribution functions is all that 
is necessary for satisfactory performance or results. 
Techniques are available as in Parzen (86 ) for implementing 
knowledge of the first n,n«=°, distribution functions as an 
approximation to full knowledge for all n.
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2.2 Continuous Stochastic Processes
Next is an illustrative example from Astrom ( 8 ) which 

will be used to classify various types of continuous 
stochastic processes. This example delineates those pro­
perties of continuous stochastic processes most useful in 
the analysis of a larger problem. A set of "reasonable" 
assumptions might be the following as a starting point.
The real scalar continuous-time stochastic process 
v(t,.),t«[t0 , tfl =T which is a continuous random variable 
for each fixed tsT should be

1 ) second order, i.e. have finite variance,
2) continuous in the mean square sense VteT,
3) a process such that v(t,.) is independent of

v (t ,.) VtvreT,
and

4) zero mean.

It is shown in Astrom ( 8 ) that the mean-square value 
of v(.,.) ,$v v (t,t)=E{x2 (t) }=0 VteT.

2 .2.1

If this process is the input (forcing function) of a 
linear ordinary differential equation, then the difference 
between the solution with zero input and the solution with 
this input is zero in the mean square. According to Astrom 
(8 ), this is not a "sensible" stochastic state model. 
Remarks in Papoulis (84) lead to the same conclusion.
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In order to describe a "sensible" state model, one or 
more of assumptions 1) through 4) must be relaxed. It is 
well known that 4) can be relaxed with no loss of generality 
in most circumstances. However there does remain the 
accountability for non-zero means.

If assumption 1 ) is dropped and in addition stationarity 
imposed, the process would be basically a white noise pro­
cess, i.e., the variance is infinite.

Relaxing assumption 2) leads to the time derivative of 
the stochastic process being undefined (in the mean-square 
sense). If this process was the input to a linear O.D.E., 
then the derivatives in the equation would also be undefined. 
The Ito calculus or the Stratonovich calculus allows 
analytic treatment of this type of process. Basically, an 
independent interval type process exists. For normal sta­
tionary transition probability, a Weiner process is formed 
and it is well known that Weiner processes have no defined 
time derivatives (in the mean-square sense).

Assumption 3) could be dropped and nonstationary 
processes with mean square sense time derivatives and finite 
continuous variances are obtained. Such processes are some­
times called second order processes.

2.3 Classification
It is desired to grossly classify continuous-time 

stochastic properties by which of assumptions 1) through 3)
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are relaxed. Whether assumption 4) holds or not will not 
affect the generality of any class.

2.3.1 Class 1.
This is the class of processes with infinite variances.

If the process is also stationary it is a white noise process.

2.3.2 Class 2.
This is the class of independent increment processes.

The best known example is the Weiner process for which the 
transition probability is Gaussian and stationary. No member 
of this class of processes is continuous (mean square) in 
time, hence does not have a defined time derivative.

2.3.3 Class 3.
This is the class of second order processes. Such pro­

cesses are nonstationary with finite variances and continu­
ous (mean square) derivatives.

2.3.4 Class 4.
This is the class of stochastic processes with cor­

relation times very much less than the smallest time con­
stants of the system which they enter. Such a prpcess 
v(.,.) has a variance given by

V.__(tfT) = Q(t) 6 (t-T) .
VV .2.3.4.1-

This class of processes is discussed in Bryson and Ho ( 20)
and has been treated in stochastic control and estimation
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problems. However, at t=T, the variance is infinite. As 
in (20), the Dirac delta function is the limit of a pulse 
with amolitude 1/2 <= of duration 2 &  This pulse can be thought of as 
having large variance for a very short time. If 2€ is much less 
than the smallest time constant of the system, the time 
correlation of the process dies out in times of order of 
magnitude relevant to the system. Essentially this implies 
the nonstationarity property is not of significance and 
only one time axis is required to describe the statistics 
of the process. This may not be true in all physical 
situations. Therefore, this work will deal with class 3 
processes and it is noted that approximations other than 
those with impulses of class 4 processes are included as 
members of class 3 processes.

2.4 Conclusions
This chapter provides the reasoning used to select 

the class of processes studied in the research. Continuous­
time processes are selected since discrete-time analyses do 
not always allow the extension to the continuous-time case, 
whereas the reverse is possible. Class 3) stochastic pro­
cesses are chosen for study since they have not been studied 
to date in control or identification problems. In fact this 
class of processes has only been the subject of a few papers 
most of which formulate but do not solve problems. The other 
three classes of processes have been studied extensively.
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CHAPTER 3

PROBLEM FORMULATION
In this chapter the approach to the solution of the 

stochastic optimal portion of the problem begins. The 
identification portion of the problem starts in Chapter 6 . 
Throughout Chapters 3, 4, and 5 all elements of y are 
assumed to be known. Therefore the rotational dependence of 
all variables on the vector y of parameters to be identified, 
will be eliminated until Chapter 6 .

For any optimal problem, four data are needed as dis­
cussed in Lee and Markus (65). The dynamic system equations, 
the performance index, endpoint conditions, and classes of 
admissible controls must be specified. In addition if the 
dynamic system has stochastic inputs, some assumptions must 
be made regarding the class of processes. Also a priori 
assumptions on the initial values of the moments of the 
stochastic processes are needed.

From these four data and the assumptions about the 
stochastic processes, the stochastic optimal problem is 
formulated. It is sought to derive necessary and sufficient 
conditions for solutions to be optimal. Also if possible 
the existence and uniqueness of solutions is to be established. 
Further, in many problems closed loop (feedback) control laws



19

are to be found. In this work, the existence of solutions, is 
assumed.

3.1 Stochastic Formulation
The four data for the classes of stochastic optimal con­

trol problems considered follow. This description covers a 
wide range of physical situations. An actual physical process 
is what is being described.

3.1.1 Dynamic System
The dynamic system considered is the linear time varying

system given by
dx (t,. )=A (t)x (t,.) +B (t) u (t) +C (t) v (t, .) 
dt 3.1.1.1
for t£ft0 ,tf] = 1^

where
x is an nxl state vector
A is an nxn matrix
u is an rxl optimal control vector
B is an nxr matrix
v is an sxl stochastic disturbance vector

and
C is an nxs matrix.

The stochastic process v is assumed to be a Class 3) 
type process defined in Chapter 2, usually called a second 
order process. No assumptions are made about its distribution 
(or density) functions. It is assumed that for each fixed
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(t,.) is a continuous random variable, which implies 
a continuous sample space.

3.1.2 Performance Index
The scalar quantitative measure of performance termed 

the performance index is mathematically given by
tf

J=J (u) = K(x (tf ,.),tf)+/ foo (x(t,.) , u (t) , v (t, .) , t)dt
to 3.1.2.1,

for dynamic optimization problems. The functional J con­
tains two terms, a terminal cost term K, and an integral 
cost term of the function foo • Most performance indices 
for stochastic optimal problems do not explicitly show 
dependence on the stochastic input v. The effect of this 
disturbance is assumed to be wholly contained in its effect 
on the state x. It is seen from 3.1.1.1 that x is a 
stochastic process as well as v. It is a priori assumed 
that u is a deterministic function of time. From 3.1.2.1,
J is a random variable. As such, it is not a "sensible" 
quantitative measure. In many stochastic problems, the random 
variable J is made deterministic and is given by

Jn=J (u) = E {j} ,
U 3.1.2.2

where E{.} denotes expectation. Other means of making J a
deterministic measure exist in the literature. All of these
require expectation, but not in the same way as shown in
3.1.2.2. For example, the measure
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JD1=JD1 = E U  J-E(J)] 2> ■" 3.1. 2. 3
is discussed in articles by Sain and/or Liberty (98 ), (99 ),
(100) , and (101) . Other related formulations are given in 
Murphy (81), and Rekasius (93). In the articles by Pugachev 
(89 ) , and Andreev (3), \ 4 ) , (5), and ( 6 ) , the problem of
synthesizing optimal systems for a wide variety of performance 
criteria is investigated.

Typical deterministic measures are minimum energy, fuel, 
and time. These are for deterministic problems equivalent 
to v(t,. ̂ oVtfiT^.
They are

tf
Jm(£)=<x (tf) ,Q (tf )x (tf) >+/ {<x,Rx>+<u,Su> }dt

tf r
'3.1.2.4

{ Z s j j Uj | }dt 
• tQ j=l J 3.1.2.5

tf
j /u )=f dt=tf-t
“ T t0  ° 3.1.2.6

These three performance indices are most widely used. Even 
if the noise v is present the same type of index is still 
used, except that the e {J} or a function of E{J} is required 
for a "sensible" measure. A slight generalization for the 
minimum energy criteria JME would explicitly include the 
energy due to the stochastic disturbance v, given in a 
general form by 3.1.2.1. The minimum energy, or quadratic, 
form of 3.1.2.1 is
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J gjvjg (u) — — {“̂ (t^,.) ,Q (t^) x (t^, .)> 

tf
+/ {<x,Rix>+<U/R3U>+<v,R4v>}dt}
"̂O 3.1.2.7

In this case, minimum energy control of state is desired in 
the presence of minimum disturbance energy, where (u)
is a more general stochastic minimum energy criteria. Such 
criteria have indirectly been studied in maximum signal-to- 
noise ratio problems for stationary Gaussian white noise 
processes. A modern formulation of this problem is found in 
Holtzman (37) and Athans and Schweppe (12).

3.1.3 Endpoint Conditions
Normally in deterministic optimal problems, only the 

initial value of the state x(tQ ), the initial time tQ , the 
final state x(t^), and the finite final time t^ are required 
as known or as to be determined if not specified. These data 
are present in the transversality conditions when variational 
techniques are used.

When stochastic inputs are present, much more a priori 
information is required such as the mean value and variance 
of the initial state x(tQ ), and the correlation between the 
stochastic disturbance and the initial state. These data are 
explicitly required. For many problems, the distribution 
function (or density function) of the noise v and the state x 
must also be specified.
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3.1.4 Classes of Admissible Controls
The last data needed to formulate a deterministic 

optimal control problem is the set U, in which the 
optimal control u belongs. Whether the set U is open 
or closed puts bounds or no bounds on the values u can 
have. Most minimum energy problems require U to be an 
open set and minimum fuel or time problems require U to 
be a closed set, i.e., u is bounded above and below.
The physical application determines which condition is 
present in a specific example.

3.2 A Transformation
For stochastic optimal control problems, the four 

data of section 3.1 acquire characteristics which add 
to the degree of difficulty in completion of the solu­
tion as compared to deterministic optimal control problems. 
Basically the only stochastic optimal problems solved to 
date are linear ones for which the separation theorem 
holds. This restriction requires that a Kalman estimate 
be obtained in addition to the four data. In this work 
an alternate approach is given. As a first step, a 
transformation of the four data is made using mainly the 
expectation operator. This transformation changes the 
problem from stochastic to deterministic. The form of 
the data after transformation suggests a differential 
game approach as will be discussed in Section 3.3.
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3.2.1 Dynamic System
The stochastic dynamic system governed by the state

equation 3.1.1.1, is transformed directly by taking the
expectations of both sides resulting in

d yx (t)=A(t) y (t)+B (t)u (t)+C (t) y (t) 
dt X X v

for all t&T-L
3.2.1.1

where
E {x (t ,.)}=yx (t)

3.2.1.2
and

E{v(t,.) }=yv (t)
3.2.1.3

The mean yx , of the state x and the mean yv of the 
stochastic input v are deterministic functions of time.
The control u is assumed a priori to be a deterministic 
function of time. The mean yv , is the first moment of 
the state x, and similarly for yv . As mentioned in 
Chapter 1, the effects of the stochastic disturbance v 
will be approximated by its first and second moments. The 
first moment propagates through the system as in equation
3.2.1.1. The complete description of the propagation of 
the second moment of v on the state x is given by the two 
equations,
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9V'v x (t,x)=A(T)V'v x (t,T)+C(T)V-v v (t,T)
3x

for (t,x)6T  xT = V
1 1 3.2.1.4

and
9_VX X (t, x)=A(t)vx x (t, x)+c (t)Vv x (t,x)
31

for (t,x)£T
3.2.1.5

where
E{[ v(t,. )-E{v (t,.) }] i bf (x,.) - e {v  (x,.) m ^ l t / X )  

for (t,x)6T,
3.2.1. 6

E{[ v(t, .)-E{v(t, .) }]Tx(x, .) -E{x (x, .) } ] "*} =Vvx (t, x) 
for (t ,t )GT ,

3.2.1.7
E{[ x (t, . )-E{x (t, .) } ] [x (x, .) - e(x (x , .) }] )=VXX (t f x)

for (t,x)£T,

The covariance of v,
Vv v (t,x) is an sxs matrix

and

^vv ̂ T ̂ =^vv — )
for (t,x)6FT

3.2.1. 8

3.2.1.9
where

E{v(t, .)vJ'(x,.) } = $v v (t,x) 
for (t,x)fr

3.2.1.10
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and $v v (t,x) is the sxs matrix called the autocorrelation 
of v.

The cross-covariance of v and x,
Vv x (t,T) is an sxn matrix

and
Vv x (t,T)=$v x (t,T)-yv (t)yx'(T)

for (t,x)£T

where
E{v(t,. )x" (x, .) }=$v x (t,x)

3.2.1.11

for (t,x)£ r
3.2.1.12

and $ (t.x) is the sxn matrix called the cross correlationvx
of v and x.

And the covariance of x,
Vv v (t,x) is an nxn matrixXX

and

Vxx (t'T)==$xx (t'T) 
for (t,x)£ T

3.2.1.13
where

E{x (t,.)xA (x,.)}=$x x (t,x) 
for (t , x )£r

3.2.1.14
and (t,x) is the nxn matrix called the autocorrelationXX
of x.
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The following moments also appear and are defined below.
The variance of v

Vv v (tft) is an sxs matrix
and

Vv v (t,t)=$v v (t,t)-yv (t)y;(t) 
for t£ T1

where
E{v(t/.)vT (t/.)}=$v v (t,t) 

for t 6T]_
and $v v (t,t) is the sxs matrix called the mean square value 
of v.
The cross variance of v and x 

Vv x (t,t) is an sxn matrix
and

Vv x (t,t)=$v x (t,t)-yv (t)v£(t) 
for t6 T1

where
E{v(t, . )x^(t,.) } = $v x (t,t) 

for terx
and $ (t,t) is the sxn matrix called the mean cross valuevx
of v and x.
The variance of x

Vx x (t,t) is an nxn matrix
and

Vxx(t,t)=txx(t,t)-yx (t)y^(t) 
for tev1



28

where
E{x(t,.)x*(t,.) } = $xx (t, t) 

for
and

$x x (t,t) is the nxn matrix called the mean square 
value of x.

The detailed derivation of equations 3.2.1.1, 3.2.1.4, 
and 3.2.1.5 is contained in Appendix A. The derivation uses 
material from Papoulis (84), Lebedev (63), Pugachev (39), 
and Sage and Melsa (97) . These equations describe how the 
first and second moments of a Class 3) stochastic process 
propagate through a linear system. Similar equations could be 
obtained for any other class of stochastic processes.

3.2.2 Performance Index
The transformation of performance indices was first per­

formed in estimation problems. Typically, minimum variance 
criteria resulted for criteria quadratic in the state x. The 
major portion of criteria after transformation used in the 
literature depend on criteria which were originally quadratic. 
For example, if x is a stochastic process, then from 3.1.2.4 

‘JfiTF, }=E {<X(tjr,.) , QX (t £ , . ) > 

fcf+/ {<x,Rx>+<u,Su>}dt} 
fco

tf=tr [Q$xx (tf, tf)] +/ {tr [R4>xx (t, t)] +<u,Ru>}dt
fco
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= tr[ QVx x (tf ,tf)« - Qvx (tf)y£(tf)]

tf r ,
+ / {tr [KV (t,t) - Ry (t)y*(t)] + <u,Ru>}dt

to

= tr[ QVX X (tf ,tf) ] - <yx (tfJ,Qyx (tf)>
tf

+ / {tr [RVx x (t,t)] - <yx (t),Ryx (t)> + <u,Ru>}dt.
  ° -----  3.2.2.1

Similarly, it can be shown that
e {Js } = tr [Q (tf) VxX (tf , tf) ] - <yx (tf) ,Q(tf)yx (tf)> 

tf+ / {tr [R-,vx x (t,t)] - <yx (t) ,Rxyx (t)> + <u,R3 u> 
t0

+ tr[ R 4Vvv (t, t)] - <yv (t) ,R4 yv (t) >}dt
3.2.2.2

The other types of performance indices mentioned in the 
references of Section 3.1.2 are one of the following: 

e{j^e ),e{ijme-e{jme}] 2 },[ElJM E }] 2

or for Js ,

E{jh, E{[j -E{J '}]2}, [E{J } ]2.S , '•‘•'■'s L S 1

In some of those references, the equations are worked out, and 
they contain the first and second moments of v and x as 
variables, as do equations 3.2.2.1 and 3.2.2.2. Slight generali­
zations of these types of criteria are the ones chosen for this 
research. The transformations of these particular indices is 
contained in Appendix B. Four different criteria are used to
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derive necessary conditions in Chapter 4. The physical 
significance of these four criteria is also detailed in 
Appendix B.

3.2.3 Endpoint Conditions
Prom the equations of the dynamic system and the per­

formance indices, it will be seen that a modification in the 
form of the endpoint conditions is necessary. The fixed 
endpoint case is used in Chapter 4 derivations of necessary 
conditions, as well as fixed finite final time. Other kinds 
of endpoint conditions, such as free final state and free 
final time are left for future research.

3.2.4 Classes of Admissible Controls
In Section 3.3, the moments of v will be designated as 

controls. Therefore, these moments must be members of a set 
which is either open or closed. For Class 3) stochastic pro­
cesses there are no finite bounds on either the mean or the 
covariance of v which exist due to the theory of stochastic 
processes, so it is assumed that they belong to open sets.

3.3 Differential Game Approach
In this section the variables of equations 3.2.1.1,

3.2.1.4, and 3.2.1.5 are renamed for ease of notation and for 
clarity in the formulation of the differential game. Then 
the equations of the dynamic system, the performance index, 
the endpoint conditions, and the classes of admissible controls
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are specified in full such that necessary and sufficient 
conditions can be obtained.

3.3.1 Formulation
Equation 3.2.1.1 is changed to
dz^ (t) =A (t) (t) +B (t) u-̂  (t) +C (t) U 2 (t)
dt

for all t£r,.
3.3.1.1

where
Ux (t)=z^(t) an nxl vector, 
u(t)=u1 (t) an rxl vector,

and
y (t)=u5 (t) an sxl vector.v ^
Equation 3.2.1.4 becomes
9 zf (t , t) =A (t) z^(t f t ) +C (x) u« (t , x)
97 2

for all (t,x)£T
3.3.1.2

where
, nVv x (t,x)=Zj(t,x) an nxs matrix

and
Vv^(t,x)=U3 (t,x) an sxs matrix.
Equation 3.2.1.5 becomes
9_z3 (t,x)=A(t)z3 (t,x)+C(t)z2 (t,x)
91

for all (t,x)£T
3.3.1.3

where
Vx x (t/T)=z3 (trT) an nxn matrix.
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The state of the system becomes z^, z2 , Z3 with the "man" 
chosen controls and the opposing "nature" controls U 2 ,

V
A general performance index of the form

r tftf
J=J(u1 ,u2 ,up=/ / f2 (z1 ,z^fz 3 ,ulfu 2 ,updtdx

tOtO

tf
+ / f (z fUi,u9)dt

tQ 1 1 ^ 3.3.1.4

will be employed. The "man" controls seek to minimize 
J while the "nature" controls u2 , u ^  seek to maximize J.

The initial and final times are fixed. The initial 
state is specified and given by 

zl(t0 ) = tt10

z2 (t,t0 ) = ir2 ^(t)
Z o (t /f) == TT o n ( T ) •
J JU 3.3.1.5

The terminal state is also specified and given as

zi (tf' ' ” 1 1

Z2 (t,tf) = 7T2 ^(t)
z3 (tf f t) = 7r3 1  (t).

3.3.1.6
Finally it is assumed that u-|£U^=Er , i.e.u-^ takes

values in r dimensional Euclidean space which is an open 
set. Similarly U 2^U 2 =ES and U 3 6 U 3 =EsxEs .
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3.3.2 Differential Game Theory
At this point some remarks about deterministic differen­

tial games are necessary as background for the next section.
In the description of the four data for a one-sided optimal 
control problem given in Section 3.1 and 3.2 the dynamic system 
and performance index change considerably. The discussion of 
endpoint conditions and classes of admissible controls remains 
the same except more variables are present.

A two-person zero-sum differential game is a two-sided
optimal control problem. The two sides are exemplified as two
sets of controls u^ and U 2 , which drive dynamic systems with
goals that are in conflict with each other. Mathematically, the
dynamic system is

dx(t)=A (t)x (t)+B (t)u, (t)+C (t)u2 (t) ,t£[ tQjt,] 
dt

3.3.2.1
for a class of linear differential games. Equations 3.3.2.1 is
sometimes obtained by combining the equations for two systems,
one the "man" system given by

dxm (t)=Am (t)xm (t)+Bm (t)u1 (t) ,t£[ t ,tf ] 
dt

3.3.2.2
and the other the "nature" system given by

dx (t)=A (t)x (t)+C (t)u2 (t) ,t£[ t ,tf ].
dtn n n n 2 ° 3.3.2.3

The performance index would include the effects of both con­
trols, and for system 3.3.2.1 would functionally be

tf
JDG=JjjG(ul'u 2 )=K(x(tf ) ft£ )+/ f (x,ux ,u2)dttQ 3 * 3•2•4



34
g. minimum energy type criteria is

t£
Jme=Jme (u 1 'u 2)=<x (tf) (tf) >+/ {<x/R 2 x>+<u1 ,R3 u1>

to
-<u2 ,R4 u9>}dt

Z 3.3.2.5
The conflict is present since u^ seeks to minimize J me 
while u 2 seeks to maximize Cfc® r£*e» it is sought to simul­
taneously establish

min max (u-, ,u2)
«l< 0l U2«u2 • *  1 *

<j • j  • ^  t o

where and U 2 are classes of admissible controls. The
solution is sought by u^ in the knowledge that u 2 seeks to
maximize Jm e and vice versa. Therefore the optimal point is

JME (x/Ui */Uo) < Jme (x*,u1 *,u2*) <, Jme (X/U. ,u,*)x 3.3.2.7
which is the definition of a saddle point. From 3.3.2.7 it 
is seen that u-̂  seeks to minimize Jme knowing u2* is maximizing 
Jm e and vice versa.

These key points are needed to formulate the class of 
differential game problems in the next section.

3.3.3 Statement of the Problem
rIt is desired to find the pair of controls (u-^^fU-j) 

which establish a saddle point for the performance index 
J of equation 3.3.1.4 in the sense that



irrin max J (u-. ,Uo ,u{,t ,tf) 
ul^ul u 2 ^ u 2

u|eu 3

f'.
occurs, while transferring the initial state z^(tQ ),z^(t,tQ ),

rn
z 3 (t0 ,T) to fixed terminal state (tf),z2 (t,tf)z3 (tf,t) in 
fixed finite time t^-tQ subject to the constraints given by
3.3.1.1, 3.3.1.2 and 3.3.1.3. Necessary conditions for four 
different specific problems are given in Chapter 4.

3.4 Conclusions
A stochastic optimal control problem for dynamic systems 

with Class 3) stochastic disturbances was given. The nature of 
the problem was transformed to deterministic using mainly the 
expectation operator. The effects of the stochastic disturbance 
after this transformation are assumed to be contained in the 
propagation of the first two moments through the dynamic system. 
The degrading effect of these moments is in conflict with the 
efforts to optimally control the dynamic system. This conflict 
situation was formally cast into a differential game. The 
various data needed to mathematically describe the differential 
game were specified and finally the statement of the problem in 
this context was given.
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CHAPTER 4 ■

NECESSARY CONDITIONS

Four different classes of problems are considered in this 
chapter. For the first three classes, the dynamic system remains 
tlie same but the performance index changes. For the fourth class of 
problems the dynamic system also changes. Then sets of necessary 
conditions for each problem are given.

4.1 Problem Statements
'Hie four data required to define each class of problems are 

specified in this section.

4.1.1 Problem 1.
It is desired to find the pair of controls (u ;u ,u") which1 2  3

establish a saddle point for the performance index

t tJ(u ,u ,u') = - I JfJf{tr[R z (t,T)z"* (t,x)R”*] +
1 2  3 L L X 3 3 1to o

tr[R u (t j )u' (t,T)H* ] JdtdT + - ff<u (t) ,R u (t) >-<u (t) ,R u (t)>}dt2 3 ’ 3 2 2 j 1 3 1 2  ̂ 2to

where R is assumed non-negative definite and symmetric and R , R , 4.1.1.1x z 3
and R are assumed to be positive definite and symmetric, in the*>
sense that

rnin max J(u ,u ,u') 4.1.1.2
u£U u-feU„ 1 38 3
1 1 u W*J *
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occurs, while transferring the specified initial state 4.1.1.3

z (t,t.) = tt (t)«> -j ii

z (t: ,t) = it (t )
3 °  3 U

to the specified final state 4.1.1.4
z (fcf) = TTi 11

= TT (t) ̂ z i

Z (tf,T) = TT (T)
3 3 I

in fixed finite time tf - tQ, where the dynamic system is governed

and the admissible classes of controls are the open sets 
u & U = Er
1 1

u e U = E32 2

Uj eUj = Es X Es

4.1.2 Problan 2.
Problem 2 involves the functional performance index

by
ds (t) = A(t)z (t) + B(fc)u (t) + C(t)u (t), Vter 
dt1 1 1 z
3z'(t,T) = A(i)z''(t,T) + C(T)u'(t,t), V/(t,T)er

4.1.1.5

4.1.1.6
2

9z (t,T) = A(t)z (t,T) + C(t)Z (t,T) , V(t,T) € r
at3 3 'l

4.1.1.7

uJ(t,T))dtdT 4.1.2.1
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instead of 4.1.1.1, all other data remaining the same.

4.1.3 Problem 3.
Problem 3 involves the specific performance index 

t t
J(u ,U ,U’*) = (z (t),Z (t) ,z'(t,T) ,Z (t,T),U (t),U (t),U (t

X Z 3 ^  £  O O  1 1 Z 3 1 1 Z

° °  S S
+ 1 I fkm(z"'Z )u" * dtdT k=l m = l m  2 3 3km

instead of 4.1,1.1, all other data remining the same.

4.1.4 Problem 4
Consider a dynamic system described by

dz (t) = A(t)z (t) + B(t)u (t) + C(t)u (t)
St1 1 1 2

dz (t) =F (t)z (t) + z (t)A^(t) + u (t)C'(t)
3 P  2 3

dz (t) = A(t)z (t) + z (t)A'(t) + C(t)z (t) + z''(t)C"(t)
3 t 3 3 3 Z Z

with tire functional
tfJ(u ,u ,U ) = f tr rdl R (t)u (t)u (̂t)

1 2 3 i  X X X
to z

+ d* R (t) [u (t) + u (t) u' (t) ] }dt
-S-6 Z 3 Z Z4

Given the state equations 4.1.4.1 through 4.1.4.3 and the 
performance index 4.1.4.4, find the optimal strategy 

ui6Uif i = 1|2,3 such that

J(u *,u ,u ) ,1 J(u *,u *,u *) ^ J(u ,u *,u *)
1 Z 3  X Z 3 1 Z 3

for all u^eu^, i = 1,2,3

|U (t))
2

4.1.3.1

4.1.4.1

4.1.4.2

4.1.4.3

4.1.4.4
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where 
z (t') = z
i °  1 u

Z (t 0 = Z
2 0  20

z (t») = z 4.1.4.6
3 o  3 u

are specified

and
d + d =*> 1 
1 2

d £  0
X

d > 0 4.1.4.7
2

4.2 Statement of Necessary Conditions
4.2.1 Theorem 4.1

In order that the pair of controls (u ;u ,û ) be extremal for
1 2 s

Problem 1 of Section 4.1.1, it is necessary that there exists non­
zero continuous functions A (t) ,ttr , and A (t,t) ,A (t.r), (t,x) <= r1 i 2 3 r
which are solutions of

dA*(t) = - A (t)A*(t), Vter 4.2.1.1
dt1 1

9A* (tf t) = - A'(T)A*(t,x) - X"tt,T)C(T), V(t,T) e r 4.2.1.2
Tr*

0A*(t,xJ = - A'(t)A*(t,x) - R'R z*(t,x), \/(t,x) 6 r 4.2.1.3
3 ? 3 3 * * 3
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through which the trajectories governed by
dz *(t) = A(t)z*(t) + B(t)u*(t) + C(t)u*(t), Vter 4.2.1.4
3t 1

33**(t,*) = A(T)z'*(t,T) + C(T)u'*(t,T), V(t,T) e r 4.2.1.5
3x* a 3

3z *(t,T) = A(t)z*(t,x) + C(t)z*(t,x), V(t,x) 6 r 4.2.1.6
!Tt3 3 2

are transferred from
z (t6) = TT
i ^  A 0

3 U

Z'(t,t ) = TT (t) z z o

z (t_ rx) = ir (x) 4.2.1.7
i

to

z (tf) = TT
A 1 A

Z'(t,tf) = IT (t)ai

Z (tf x) = TT (x) 4.2.1.8
3 31

in fixed finite time tf - t , by the controls in the admissible

classes 
u *6U = E^i i

U *6U = Es
it z

u** *CU = ES X Es 4.2.1.9
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which must satisfy
u * (t) = -jf b ' (t) x *(t),v-ni fc r— 1 4.2.1.10

u * (t) = r-1̂  (t) x * (t), *t r 4.2.1.11

4.2.1.12
where ( )* denotes extremal.

Remark:
After substitution of equations 4.2.1.10, 4.2.1.11 and

4.2.1.12 into 4.2.1,4 and 4.2.1.5, there are 2n(l + s + n) 
differential equations with n(l + s + n) initial conditions and 
n(l -f s + n) final conditions, forming a two point boundary value 
problem (TPBVP) with 2n(l + s + n) differential equations and 
2n(l + s + n) endpoint conditions. In theory then, it is possible 
to solve for the extremal controls and trajectories from the set 
of necessary conditions of Theorem 4.1.
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4.2.2 Theorem 4.2

In order that the pair of controls (u^u^up be extremal for 
Problem 2 of Section 4.1.2, it is necessary that there exists non-zero 
continuous functions A (t), ter , and A (t .x), A„ (t/cj, (t,T)ef which arel 1 z * 3 '
solutions of
t tf f
J { (3fo ) +A" (t) A * (t) -Kjk *(t) }dT=0, / {(3fo ) }dt=0 4.2.2.1
t 3z (t) * at1 t ^z"(T)*r\ I *

3A *(t,T)_-A"(T)A *(t,T)-A:*(t.T)C(T)-(3fO ).
V t  - ' I T ' *

S|^*(t/T)_A(T)Z^*(t/T)+C(T)u'*(t/T) , (t,T)6 rHr

4.2.2.2

3A *(t/r) -A'(x)A *(t,T)-(3fo)
3 T  = ^ 7 *  4.2.2.3

through which the trajectories governed by
dzA*(t) A(t)z1*(t)+B(t)u1*(t)+C(t)uz*(t^, ter 4.2.2.4
at = 1

4.2.2.5

Sz/Ct^^AftJz *(t/T)4C(t)z *(t,r), (tfx)&Y 4.2.2.6
3t

are transferred from 

Zi(t0 ) = " * 0

z'(.t,t0)=itZ0( t)
z (t .t)=tt (t) 4.2.2.7
i 0 so

to

z.(tf)=I,.l 
z'(t,tf)=7T;£i (t)
z3 (tf/x)=rr3i (t ) 4.2.2.8
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in fixed finite time t -t , by the controls in the admissible classesf o
u/eU^EF
u2*6 U2=Es
*€U 3 =ESxES 4.2.2.9

which must satisfy
t t-
f£{ Qfo )+ B'(t)A *(t)}dx=0 , J {(3fa ) }dt=0 4.2.2.10
tQ 3ux (t) * 1 tQ 3^ ( 1 ) *
t tJf{(3fo ) + C"(t)l,*(t)}dx=0f / {(3fo ) dt=0 4.2.2.11
tQ 3uz(x) * tQ 3u2 (t) *

(3fo ) + C'(x)A'*(t,x)=0 4.2.2.12
3u“" *3

where ( )* denotes extremal.



44
4.2.3 Theorem 4.3

In order that the pair of controls (u ;u ,u1) be extremal
I Z 6

for Problem 3 of Section 4.2.3, it is necessary that in addition to 
Theorem 4.2, the following conditions

3_3H =0 4.2.3.1
9t 3u :

0 L  < □ iL££L □ } □ =0 4.2.3.23u' 3t 3Uj

0  3 < □ > 0 4 *2 *3 *3iu" 3^:

hold where

H =f (z (t),z (t) ,z"* (t, t) ,z (t, t) ,u (t),u (t),u (t) ,u (t) )OO I i £ i l l £ £

S S
+ I I f (z"(t,T),Z (t,T)) (t,T) 
k=l m=l ^  * 3 "tan

+<X (t),A(t)z (t)+B(t)u (t)+C(t)u (t)>

+tr [[ A(t)z”*(t,t)+C(t)u"*(t,t)] [ X(t,t) ]]
Z 3 Z

+tr [[ A(t)z (t,t) +C(t) z (t,t) ] [ X"* (t,t) ] ] 4.2.3.4
3 Z 3

and where for G an nxm matrix 
n m

0 G □ = I I g.. • 4.2.3.5i=l j=l 13

Remark:
The performance index for this class of probleins is nonlinear 

in z , z', z , u and u but linear in u' . Therefore, the optimal
1 £ 3 I £ 3



controls u and u are found as nonsingular controls but 
1 2

u" is a singular control. The equations 4.2.3.1 and 4.2.3.2
3

allow the solution for u"* to be carried out. Equation 4.2.3.33
represents a strengthened necessary condition similar to the 
Legendre Clebsch condition of nonsingular problems. For this 
class of problems u , u and u" are not bounded, i.e. they

1 2 3
take values in open sets.
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4.2.4. Theorem 4.4
In order that u *(t)6U^r1r6ri ,i = 1,2,3 be the optimal strategies 

for Problem 4 of Section 4.1.4, it is necessary that there exist a 
nonzero vector function Xj*(t) and nonzero matrix functions X2*(t) and 
X3*(t) such that:
a) Xj*(t),X2*(t),X3*(t),z,*(t),z2*(t),z3*(t) are solutions of
dZj.*(t) = (3H). = A(t)z *(t) + B(t)u *(t) +C(t)u*(t) 4.2.4.1
dt 53Ti 2
dz^Mt) = OH)* = F(t)z2*(t) + z2*(t)A'(t) + u *(t)C‘*(t) 4.2.4.2
dt SX2
dz3*(t) = OH)* = A(t)z3*(t) + z *(t)A'(t) + C(t)z *(t) 
dt ETS* 3 2
+ z'*(t)C'(t) 4.2.4.32
dX,*(t) = - OHK = - A'(t)Xi*(t) 4.2.4.4
dt IE*

dX2*(t) = - OH)* = - [F"(t)X2*(t) + X2*(t)A(t) + C"(t)X3*(t) 
dt Tizz

+ C"(t)X3*(t)] 4.2.4.5
dX_*(t) = - OH) = - [A"(t)X *(t) + X-*(t)A(t)] 4.2.4.6
3t 5z3 3
with the boundary conditions
z3*(t0) = z10
zz*^) = Z20
z3*(t0) = z30 4.2.4.7
and
Xi*(tf) = 0
X2*(tf) = 0
X3*(tf) = 0 4.2.4.8
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b) The extremal strategy (u1* (t) ,u2* (t) ,u3* (t)) satisfies the following 
min-max principle
H(Zj* (t) ,z2* (t) ,z3* (t) ,uz* (t) ,u2 (t) ,u3 (t) (t),X2* (t) ,X3* (t))
< H(Zj*(t), z2*(t)f z3*(t),u1*(t)ru2*(t),u3*(t)#X1,",(t),X2*(t)fX3*(t))
* H(za*(t) ,z2*(t) ,z3*(t) ,ux (t) fU2*(t) #u3*(t) rX2*(t) ,X3*(t))

4.2.4.9
for all u. (t)6U,,i = lr2,3,t€-r x x 1
and c)
H (zx*(t) fz2*(t) ,z3*(t) fUl*(t) ,u2*(t) ,u3*(t) ,Xt*(t) ,X2*(t) ,X3*(t))
= constant 4.2.4.10
for all t6rx.
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4.3 Conclusions
Four theorems containing sets of necessary conditions for 

Problems 1 thru 4 were stated. The equations for the propogation 
of the first two monents through a linear time varing system are 
derived in Appendix A. The relation of the performance indices 
of the four problems to physical criteria is explored in Appendix 
B. Also in Appendix B the physical implications of the endpoint 
conditions are established. The proofs of Theorems 4.1, 4.2, 4.3 
and 4.4 are given in Appendix C.
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CHAPTER 5 
SUFFICIENT CONDITIONS

Sufficient conditions are developed for Problem 1 using 
the properties of convexity and concavity. The particular 
performance index of equation 4.1.1.1 is shown to satisfy 
these properties. A similar theorem is given for the 
functional form of the performance index of Problem 2. No 
theorem was developed for Problem 3 since this is a singular 
problem and in general sufficient conditions are very diffi­
cult to develop for singular optimal problems. A set of 
sufficient conditions for Problem 4 was derived using the 
same techniques as in Problems 1 and 2 but is not included 
in this chapter. The uniqueness of the optimal solution of 
Problem 1 is established in Section 5.3.

5.1 Theorem 5.1
For Problem 1 of Section 4.1.1 it is sufficient that the 

pair of external controls (ui;u2 /U3 ) are optimal in the sense 
of establishing a saddle point defined by 

J (z1 ,Z2,z3 ,u1 *,u2 /U3,X1 * ^ 2 * ' X3*^ =

5.1.1
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for J where
J—J (z ̂ , z 2 / z 3 , u-̂  ru 2 r 

W f

or

~hj / {tr [Riz3 (tfT) z^ (t,T)R£']+tr[R2u 3 (t,x)u3 (tf t)r£] 
toto

+trl[ A(t) z~ (t,x)+C (t)u', (tfx)-3 z9 (t,x)] [ X2 (t,x)]]
2 J 3x Z

+trl [ A (t) z3 (t, x)+C (t) z2 (t,x) -3z3 (t,x)] [ X3 (t,x) J ]  }dtdx
3t

+hf {<u1 (t)/R3 u1 (t)>-<u2 (t),R4 u 2 (t) >
*<>

+<X^(t),A (t)(t)+B(tju^(t)+C(t)u 2 (t)-d (t)>}dt
dt

5.1.2

J—J (z^, 2 2 , z^ ,u^ ,u2 ,u3 , X-̂  / X2 , X3) -
tftg
/ / fl2 (z2 ,z3 ,u3 ,X2 ,X3 )dtdx+/ fl1 (z1 ,u1 ,u2 fX1)dt
W o  *o

5.1.3
if the necessary conditions of Theorem 4.1 are satisfied.
Proof:

The proof follows immediately from Theorem 5.1.1 and 
Theorem 5.1.2.

5.1.1 Theorem 5.1.1
For Problem 1 of Section 4.1.1 it is sufficient that the 

pair of extremal controls (u1 ;u2 »u3) are optimal in the sense 
of establishing a saddle point, as in 5.1.1, for the functional



form of the performance index J in 5.1.3 if in addition to 
the necessary conditions of Theorem 4.1 being satisfied, 

ft̂  is convex WRT and concave WRT u 2

5.1.1
and

ft2 is concave WRT and z^.
5.1.1

Proof:
The complete proof is contained in Appendix D.l.

5.1.2 Theorem 5.1.2
It is both necessary and sufficient that the function

ft, is convex in u, and concave in u5, and that the function 1 1  c

ft2 is concave in z^ and u^ if:
R^ is non-negative definite and symmetric

5.1.2
and

R 2 ,R3 ,R^ are positive definite and symmetric
5.1.2

Proof:
The complete proof is also contained in Appendix D.l.

5.2 Theorem 5.2
For Problem 2 of Section 4.1.2 it is sufficient that 

the pair of extremal controls (u^y^/U^*) are optimal in the 
sense of establishing a saddle point defined by equation
5.1.1 for J where
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W f .J =/ / fo (Z-ĵ (t) , 2 2  (t) ^ 2  (t,T) ,z3 (t, x),^ (t) rux (x),
t^t o o

Un (t) ,U9 (t),uX (t,X»dtdx
^ J 5.2.1

if in addition to the necessary conditions of Theorem
4.2 being satisfied

fo is convex in u. (t) ,u-i (x) ,zn (t) and z, (t )
1 1  1 5.2.2

and
fo is concave in u 2 (t),u2 (t),z^(t),z^(t),u^(t,x),

z9 (t,x) and z(t, x) .
2 J 5.2.3

5.3 Uniqueness of Problem 1 Solution
The definiteness of the matrices R 2 , R 3 and provide 

the means to establish equation 5.1.1 as strict inequalities. 
This means the extremal solution obtained from Theorem 4.1 is 
the only solution which is optimal. If the solution obtained 
from Theorem 4.1 is the only solution of the resulting TPBVP, 
then it is by the strict inequalities the unique solution.
This point is clarified in Appendix D.l.

Since global convexity and concavity is used, global 
sufficient conditions result. Then if the TPBVP has only one 
solution, Theorem 4.1 provides necessary and sufficient condi­
tions for unique global solutions for the specific performance 
index of equation 5.1.2.
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These remarks do not apply for the functional form of 
the performance index given in equation 5.1.3, i.e., it is 
not shown to be the unique solution although it is the global 
optimal solution.

5.4 Conclusions
It is established that the necessary conditions of 

Theorem 4.1 are also sufficient conditions for Problem 1 of 
Section 4.1.1. This is accomplished by considering the pro­
perties of convexity and concavity in Theorem 5.1.1, and then 
proving Theorem 5.1.2 which gives the requirements on the 
weighting matrices of the performance index such that the 
convexity and concavity conditions are satisfied. In view of 
the results of these two theorems, the optimal solutions are 
the unique global optimal solutions if they exist.

In addition a sufficient condition theorem for Problem 2 
is stated, also through the properties of convexity and 
concavity.



CHAPTER 6 
IDENTIFICATION

The overall problem of simultaneous identification and control 
is now presented. It is the object of some techniques to identify 
while a process or plant is being controlled while other methods 
are used to identify only. Simultaneous identification and control 
require techniques suitable for "on-line" implementation. Methods 
for identification only are considered as "off-line" methods. It 
is the purpose of this chapter to study the "on-line" situation. 
Further, the simultaneous control is to be optimal or sub-optimal 
with respect to a given criteria. The control generated from 
Chapters 4 and 5 is to be implemented in such a way that if 
identification is complete, i.e. all parameters are known exactly, 
it would be the actual optimal control. If some parameters are not 
known exactly, then the control is actually sub-optimal. As the 
identification progresses in real time, the parameters are more 
closely known and if the dependence of the control on the parameters 
is updated, the sub-optimal control becomes closer to optimal. This 
scheme is carried out using a model reference adaptive control method 
as described in Section 6.3.
6.1 Background

The basic question of identifiability of parameters is discussed 
by several authors inthe December, 1974 Special Issue of the I.E.E.E. 
Transactions on Automatic Control. For the problems considered in 
this work, it will be assumed that the systems are controllable, 
observable, and in canonical form,, hence identifiable.
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AlsOf as previously mentioned, only parameter identification 
will be covered, since model identification would preclude the use 
of the simultaneous optimal control which is solved for offline. 
Further, the parameters are assumed to be constants.

Many different identification methods are currently known. 
Loosely? speaking, they can be classified in the following way.

First, frequency domain or spectrum analysis techniques are 
used in time series analysis. Also, random input methods are used 
which imply that all modes of the plant will be excited, hence 
identifiable. These first two methods are usually offline in that 
identification only is sought.

Secondly, when on-line identification and control is desired, 
the state space, or time domain representation is most often used.
The two main classifications are. model reference adaptive control 
and nonlinear estimation. As discussed in Sage (96) and Graupe (31), 
even if linear systems are to be identified, non-linear estimation 
must be employed. The reason for this is that the parameters to be 
identified are collected in a vector and adjoined to the usual 
state vector resulting in nonlinear state equations, since the 
parameters of the actual state matrix multiply the actual state 
variables. Depending on the a priori statistical information 
about the original state, measurement and inputs, various estimation 
schemes, such as Kalman filtering of a linearized representation of 
the nonlinear system can be used to identify the parameters. Further, 
the controlling input usually is not available as an optimal control, 
but must be chosen to aid the identification as mentioned in (96).



6.2 Model Reference - Gradient Approach
For two main reasons, the model reference adaptive control 

method was chosen to be able to simultaneously identify and 
optimally (or suboptimally) control. First, it is seen from 
Section 6,1, that on-line controls available for optimization 
are not included in most other identification methods. Second, 
no methods are currently available when the stochastic disturbances 
are Class 3), (i.e. second order) processes. For other kinds of 
stochastic inputs, i.e. other than Class 3), model reference 
adaptive control schemes have been studied. Many adaptive schemes 
are not concerned with "optimal" control, but more with parameter 
tracking or trajectory following.

In the model reference system used in this work several 
issues arise which would significantly degrade performance in a 
real - world application. The stability of the overall system of 
plant, model, and adaptive loop with feedback control from the 
model is questionable. Using Lyapunov stability theory Kuo(59) 
derived conditions such that the overall system is stable. This 
method to insure stability is applicable directly to the overall 
system of Section 6.3, and that system can be shown to satisfy the 
conditions given (59).

The stochastic input disturbance requires that an estimate, 
hopefully optimal in same sense, of the state is available. In 
the case where the complete state is available, it has been shown 
by Kurtaran and Menachem (60) that the actual state is the best 
estimate in the sense that it is the minimum error variance estimate.
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For the case where only a noisy measurement of the state is available, 
a best estimateof the actual state is needed. This estimate has 
been derived and is discussed in Section 6.4. For plants with some 
parameters to be identified and only a noisy measurement of the 
state available, questions about sensitivity arise which are not 
covered here.

Finally, the parameter adjustment criteria was chosen as an 
integral square error criteria, since stability was easily established. 
The gradient or steepest descent algorithm as discussed in Kirk (45), 
Wilde and Beightler (107), and Sage (96) was modified and used such 
that a real time implementation could be readily obtained. It is seen 
that in.-. a real world application this algorithm requires much less 
digital hardware than say a Kalman estimator, since no calculus 
is involved in the parameter adjustment, whereas in Kalman 
estimation a matrix Ricatti differential equation must be solved by 
the digital hardware.
6 .3 Implementation

This section describes in detail how to implement the optimal 
control and simultaneously identify parameters in a model reference 
adaptive scheme. The controls used are those derived in Theorem 4.1 
since closed loop strategies are readily obtainable and easily 
implemented.
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6.3.1 Optimal Closed Loop Strategies
The necessary conditions of Section 4.2.1 imply the open loop

problem solution, i.e. the control laws for u * and u * depend on end1 2

times and endpoint conditions only
u * (t) = u * (t ,z (t ), tf, z (tp) ), tfr 6 .3.1 . 11 1 U  J O  L. | i- 4

and
u * (t) = u * (t ,z (t ), tf, z (tf)), tf T 6 .3.1 . 2
i 2 1 1 1

In many situations it is more desired to form a closed loop control by 
feedback of the state z (t), for all tf F . These control laws cire 
desired to be in the form
u * (t) = u * (t, z * (t)), tgT 6 .3.1.31 i x i

and
u *'(t) = u * (t,z * (t)), t£T . 6 .3.1.42 2 1 1

These would be nonlinear control laws. It is even more desired to 
find linear time - varying feedback gains for ease of implementation 
and stability purposes. These points are discussed in Athans and 
Falb ( 9) for deterministic optimal control problems and in Lee (64) 
and Wonham(109) for stochastic optimal control problems.

, For this class of problems, control laws given by 
u * (t) = W (t) z * (t), tf T 6 .3.1.5
1 1 1  i

and
u * (t) = W (t) z * (t),tfT 6 .3.1 . 6
2 2 1 2

are to be found.

From Theorem 4.2.1,
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u *(t) = - i f V t t H  *(t), tf r 6 .3.1.7
1 3  1 i

and
u *(t) = RnC'(t)X *(t), tf T 6 .3.1.8
2 4 1 1

so letting
X *(t) = K(t) z * (t), tf T 6 .3.1.9i i i

where
K (t) is an n x n matrix 
would result in

u * (t) = -If1 B" (t) K (t) z * (t), tf T 6.3.1.10
1 3 1 1

giving
w (t) = - i r ^ t w t ) ,  tfr 6.3.1.111 i i

and
u *(t) = (t)K(t)z *(t), tfT 6.3.1.12
2 4 1 1

giving
W (t) = ir1C'(t)K(t), tfr 6.3.1.13
2 4 1

Differentiating 6 .3.1.9 gives
dX * = dK (t) z *(t) + K(t) dz * (t), tfr 6.3.1.14
a p  at a p
Substituting from the necessary conditions of Theorem 4.2.1 it can
be shown that K(t) must satisfy

dK (t) = -A" (t) K (t) - K (t) A (t) - K (t) D (t) K (t),t f T
at ■>6.3.1.15



60

where
D (t) = -B(t)ITfB'(t) + C(t)R“*C'(t),t£T 6.3.1.16

9 H A

and further K(t) = K'(t) if D(t) is symmetric as is shown in 
Kirk (45) and Ogata ( 83 ).

The initial conditions required for the solution of 
equation 6.3.1.15 are obtained from equation 6 .3.1.9 at t = t^.

This control law gives a closed loop feedback solution 
which is solved offline and implemented on-line either by 
storing the function K(t) V  t£ Y  or by on line simulation. Thisi
is a very useful and practical means for generating an optimal 
control, and even more useful when simultaneous on-line 
identification is required.
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6 ? 3.2 Model Reference Identification and Simultaneous Updated
Sub-Optimal Control

The overall method used is explained by considering Figure 6 .3.2.1

I.C
PHYSICAL PLANT 

x=Ax+Bu,+Cv

I.C
MODEL

Zj=A (y) z-j+B (y) Oj+C (y) u,

NEW Digital
hardware
used to
generate

I.C
after each
sampling
period

A(y)

D(y)

Figure 6 .3.2.1 Model reference adaptive system
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As is seen, the only digital block is that one used to generate 
a new set of values for the parameters being identified. The 
closed loop feedback controls can be simulated using analog 
equipment.

The steepest descent algorithm is carried out by the digital 
block. Hie rate of convergence, region of convergence, sampling 
rate, and weights are all very involved problems in themselves. For 
a particular real-world application, these problems are generally 
dealt with after several trial runs. No comprehensive theory 
.exists, for predetermined solutions. After completion of this step 
in seme manner a workable, near-optimal system is obtained.

For a completely identified system, the closed loop controller ux 
would be optimal for both the model and the plant with respect to 
the criteria of Theorem 4.1. If some parameters are not identified 
exactly, then suboptimal control is applied while identification 
is being carried out. By adjusting the parameters in the analog 
simulation of the feedback gain K and model zl , the control u x 
is updated and as the parameters became closer and closer to their 
true values, the suboptimal controls become closer and closer to 
the optimal controls.
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The actual plant is governed by
dx(t,r) = A(t)x (t,.) + B(t)u (t) +C(t)v(t,.), teT 6 .3.2.1
at
where some parameters of A, B, and C are unknown.
The model is
dz (t) 53 A(y,t)z (t) + B (y,t)u (t) + Q  (y>t)u (t), t£T 6 .3.2.2at1 i i  z

where y is a vector of the unknown parameters.
In equation 6 .3.2.2, the controls u (t) and u (t) are simulated

1 Z
in terms of the time-varying feedback gain matrix K(t) governed by

dK(t) = -A'(y,t)K(t) - K(t)A(y,t) - I<(t)D(y,t)K(t) ,t£T 6 .3.2.3
3t 1

where
D(y,t) = -B(Y,t)R-*B^(y,t) + C(y,t)lT*C (y,t). 6 .3.2.4

Define the error between plant and model state as 
e(y,t) = z4 (t) - x (t) 6 .3.2 .5
and the weighted criteria used to generate updated values of the 
parameters as 

't'i+l
J (y,i)=£{/ <e(y,t) ,V7ie(yft)>dt} 6.3.2.6

t-

where Wj_ is a constant positive definite weighting matrix, 
ti, ti + i  £rA,i = 1 ,  — , N where N is the number of sampling 
intervals.

The method of steepest descent is used to numerically minimize
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Jj(y) with respect to y such that the system will be identified, 
i.e. the model parameters are equal to the actual plant parameters 
when Jj(y) becomes sufficiently small, in comparison to some preselected 
numerical value. The function is minimized by evaluating the slope 
or gradient at a given initial point, and then moving in the direction 
of steepest slope to a new point. The process is carried out numerically 
until Jj (y) is less than scane preselected value, or until no further 
decrease in Jj(y) can be obtained. The slope is approximately 
numerically as

9J = AJ 6.3.2 .7
3y Ay
for each iteration where

Â Y01irG I.lAL- Yi®Jr CHANGE

and y ppjgTNpkTf is the initial guess at the parameters used in solving

the "worst-case" optimal control problem offline.
At each iteration a new value of Y is obtained from

AJI(y)=̂ JI {y,i+l)- J (y,i) 6 .3.2.8

and

Tfi- Yi+1-AY 6.3.2.10

and

6.3.2.11
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where 0 is a weighting factor chosen to aid convergence. As each
v
new value of y is obtained, the model generating the state z and

1

feedback gain K are updated.
The overall system is suboptimally controlled until identification 

is complete, then optimally controlled from that point on. This 
overall system is an adaptive system using a reference model, or 
a model-reference adaptive control system. A complete digital simulation 
of the overall system was written and is discussed in Chapter 7.
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6.4 Optimal Estimation with Second Order Stochastic Disturbances

In this section an estimate is obtained for the dase 
where only a noisy measurement of the state, not the state itself, 
is available. The results could be used in conjunction with the 
identification procedure of the first portion of this chapter,

Awhere the estimate x, replaces the state x in the model reference 
system. If this was to be done, a sensitivity analysis would 
be necessary before implementation. Assuming identification

A

was complete, i.e. all parameters were known, the estimate x could 
be used for many purposes, just as the estimate from a Kalman 
filter is used.

Consider a plant with stochastic disturbance
dx(t,.) = A(t)x(t,.) + B(t)u(t) +C{t)v(t,.) 6.4.1
dt
and with noisy measurement
z(t,.) = H(t)x(t,.) +w(t,.). 6.4.2

AIt is desired to find an optimal filter such that x is the 
best estimate, in the 3ense of minimum error covariance, where 
the filter is constrained by
dx(t) = F (t)x(t) +G(t)Z(t) +D(t)u(t) 6.4.3
at
where F, G, and D are to be determined. The filter is also to be 
unbiased. For this condition,

F(t) = A(t) - G(t)H(t) 6.4.4
and

D (t) = B(t) 6.4.5
where the means Wv (t) and Uw (t) must be"either zero or known a 
priori. If v(t) and w(t) have essentially the same a priori 
data known that is discussed in Appendix B, then the optimal value 
of G(t) can be found and the estimate x generated as given in:



Theorem 6.1
For the conditions of 6.4.1 through 6.4.5 the optimal 

estimate x is given by
dx(t) = A(t)x(t) + G(t) [z(t)-II(t)x(t)] + B(t)u(t) 6.4.6
dt
where G(t) is determined by and must satisfy
G(t)=VMt,T)[VMt,T)H(xf+V (t, ! ) ] " 1 +S(t) 6.4.7wx wx ww
and wnere V^(t,x) is found frcm
<^(t,T)=V^(t,T) [a(T)^(T)H(T)]'Ww (t,T)C'(T)-Vw (t,T)G'(T)
8t 6.4.8

Proof: Tne proof leading to equations 6.4.6 through 6.4.8 is
developed in Appendix F. The method is similar to the calculus 
of variations derivation of the Kalman filter given in Sage (97 ).

Remark: The actual a priori statistical data, the differential
equations describing the evolution of the error covariance, and 
the performance index used are all detailed in Appendix F.
In Appendix F it is shown that S(t) is a weighting matrix. The 
error x(t) is defined as

x(t,.) = x(t,.) -x(t) 6.4.9
The results given above are just briefly quoted to show 

tie preliminary work done in extending the "worst case" control 
theorems of Chapter 4 and 5, and' the identification method of the 
previous sections of Chapter 6 .

6 .5 Conclusions
In this chapter, the model reference adaptive control system 

used to simultaneously identify parameters and suboptimally control 
a physical plant is given. The real-time or on-line implementation 
is possible and in fact provided the reasoning on which the choice 
of this method was made. The parameters are identified using
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steepest descent or gradient methods suitable for on-line use.
The preliminary estimation results of the last section are 

included to sliov; the extension made to the case where only a 
noisy measurement of the actual system state is available.
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CHAPTER 7 

APPLICATIONS
Consider a physical plant, e.g. a cardiac cell, which can 

be mathematically described by linear ordinary differential equations 
with time varying coefficients. Assuming the parameters, i^e. gains 
and time constants of the equations are known then it is desired to 
optimally control the plant with respect to sane measure of 
performance. If, in addition, the plant is subjected to stochastic 
disturbances, the optimal control of the plant becomes much more 
difficult. Assuming sane of the plant parameters are not known 
further complicates the implementation of sane optimal scheme.

This chapter illustrates through example, a technique for the 
simultaneous optimal control and parameter identification of a physical 
plant in the presence of stochastic inputs.

The theory required for "worst case" optimal control in a 
stochastic environment was presented in Chapters 4 and 5. All the 
computations can be done off-line before the operation of the plant 
begins. As the plant operation progresses the unknown parameters 
are updated. These updated parameters are fed to the model in such 
a way that the "optimal" controls are generated from these new values 
of the parameters after each update. Until the identification is 
complete, though, actual optimal control is not possible, though 
qualitatively "good" suboptimal control is actually obtained over the 
time interval of interest as can be seen by comparing actual and 
nan-identified trajectories.
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7.1 An Illustrative Example

An illustrative example showing in detail the optimal computations 
and then a simulation of simultaneous sub-optimal control and 
identification is given. The simulation was completely performed 
on a digital computer using the Fortran language. Ideally, a hybrid 
computer simulation would perhaps be more suitable as a means to 
illustrate all the various aspects of the theory, but large enough 
facilities were not available. The Fortran program listings are 
contained in Appendix E. The particular example is specified and 
set up in Section 7.1.1 . The offline optimal computations are 
detailed in Section 7.1.2 . The results of the simulation of 
implementing both the identification and control are given in Section 
7.1.3.
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A particular example was simulated on the digital computer. The 
actual, real-world physical plant is described in this section.
The general equation for the plant is 
dx(t,.)=A( y,t)x(t,.)+B(Y,t)u(t)4C(y,t)v(t,.) ,tfcr
a t ................     1
Choosing n=r=s=l gives x,u, and v as scalars, hence
dx(t,,)=a(Y)x(t,.) + b(Y) u (t) + c(Y)v(t,.) .tfT.
3t
Assuming c is known, a(Y) = a and b(Y) = b yields
Y=
and omitting the dependence of a and b on Y, 
dx(t,.) = ax(t, ,)+bu(t)+cv(t, .)t€F1 _
at ~
where a and b are to be identified. Equation 7.1.1.4 
in analog computer form is

7.1.1.1

7.1.1.2

7.1.1.3

7.1.1.4

u-> b
a

-X

Figure 7.1.1.1 Analog computer diagram of example 

which physically is a lag with time constant 1/ | a | , 
and with the sum of deterministic control u ■ with gain b and 
stochastic disturbance v with gain c as input.

It is desired to identify the parameters a and b while 
simultaneously optimally or at least sub optimally controlling the 
plant in the presence of the stochastic disturbance v, which 
is assumed to be a Class 3), i.e. second order, stochastic process.



In order to solve the optimal control problem offline, 
initial guesses at the values of the parameters are required.
In the particular example simulated these were 

a = -3.0
b = 2.0 7.1.1.5

Also, the other data required was selected as
c = 1 . 0
t = 0 . 0  o
t = 1.0 7.1.1.6f

More data is required for the optimal solution and is specified 
in the next section.

7.1.2 Optimal Solution
For purposes of obtaining the optimal problem solution, 

the physical plant is described by
dx(t,.) = -3.0x(t,.)+2.0u(t)+1.0v(t,.) ,t£[0.0,1.0] 7.1.2*1
3t
as specified in the previous section.

Using the theory of Appendix A, the first two moments 
of the state x(t,,) become
dz-) (t) ■=» -3.0z^(t) + 2ui(t)+U2 (t) ,tf[0.0,1.0]

7.1.2.2
3zo(t,T) = -3.0z2(t,T) + U3 (t,t), (t,T)£[0.0,1.0]x[0.0,1.0]

7.1.2.3
3z3(t,T) = -3.0z3(t,T)+z2(t,x), (t,x)f[0.0,1.0]x[0.0,1.0] 7.1.2.4 
3t
The variables z ,̂ Z£, Z3 , u^, U2 and u^ are all scalars.
The weighting matrices were chosen as



73

giving

J(u,,uu,uj = l/2/f {u?-U2 }dt-l/2/f/f {2u2 }dtdx 7.1.2.6
^ J t t t n 3O O o

The initial states used were

2! (to) = z^O) = 5.0 7.1.2.7
corresponding to TT]_ -- 5.0 where this is the measurable prior mean. 
It was desired to drive the state (in terms of z\) to
^(tf) = zi (1) =0.1 7.1.2.8

The initial cross covariance chosen m s
z2 (tft0) = 1 .0e-t 7.1.2.9

and the initial covariance
z3(to,T) = 10.0e“T 7.1.2.10

which correspond to a cross variance 
z2 (t0 ,t0) = 1 . 0  

and a variance
2 3 (tQ,to) = 10.0 

which are measurable as is the time constant T = 1.0 
used in 7.1.2.9 and 7.1.2.10 for the exponential correlation 
distribution discussed in Appendix B. The final time endpoints 
are discussed later. For the above data, application of 
equations 4.2.1.1 through 4.2.1.12 yield
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dz* (t) = -3.0z. * (t)+2.0u. * (t)+u * (t) cTEl - 1 1 2

3z-,*(t,x) = -3.0z *(t,x)+u,*(t,x)3x 2 d

3z*(t,x) = -3.0zo*(t,x)+Zo*(t,x) 7.1.2.11
It3 3 z

dX *(t) = 3.0Xi*(t)It1

3X*(t,x) = 3.OX *(t,T)-X3*(t,T)
3x

3Xv*(t,x) = 3.OX *(t,x) 7.1.2.12
iz3 3

Ux*(t) = -2. OXjMt)

u *(t) = X *(t)

u3*(t,x) = 0.5X2*(tfT) 7.1.2.13

Putting 7.1.2.13 into 7.1.2.11 yields the following 
2n (1+s+n) = 6 differential equations with the four 
endpoint conditions of 7.1.2.7 through 7.1.2.10,

dzi*(t) = -3.0z *(t)-3.0Xi*(t)It 1 1

3z *(t,x) = -3.0z *(t,x)+0.5X *(t,x)
*

3Zo*(t,x) = -3.0z *(t,x)+z *(t,x)
3 F
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d/Lj* (t) = 3.ox.j*(t)

ax_*(tf x) = 3 .ox * ( t ,x )
8t J

7.1.2.14

Two rnore final time endpoint conditions are required.
These conditions can be established by assuming tiie following 
form for the initial conditions of X2 and X3

With this form the differential equations can be solved in 
terms of the constants L and K. These constants can be 
determined algebraically by choosing Z2 (t#tf) and Z3 (tf,x ) as 
functions of t and T respectively, realizing that Z2 and Z3 
will liave solutions due to their respective transition 
matrices and initial time endpoint conditions as well as those 
of A2 and X3. From a physical viewpoint, it would be desired 
to drive and Z3 (tf,tf) to values much smaller than the
initial cross variance and variance. Specifying the final cross 
variance..and variance as 
:2(tf,tf) = 0.G33

= Le_t 
X3(to,T) = I<e“T 7.1.2.15

Z3(tf,tf) = 0.303 7.1.2.16



76
requires

= 0.061e“*- + 0.033e3t 
Z3 (tf,f ) = 0.430e“T + 0.170e"3rr+ 0.539e3T 7.1.2.17
where the constants K and L are algebraically determined from 
7.1.2.16 and 7.1.2.17 as 
L = 0.00694

The solutions for the differential equations may be obtained 
by three methods. From Appendix A, the solutions are directly 
found if the transition matrix is known. Assuming the form of 
equation 7.1.2.15 the two-dimensional Laplace transform technique 
in Kuo (54) can be applied. Digital computer simulation of the 
2n(1+s+n) differential equations could also be used. Algebraic 
solutions for the constants in 7.1.2.15 is used for the first 
two methods above. Shooting techniques would allow these constants 
to be evaluated on a digital computer.

The complete analytic solution is

z^*(t) = 5.0e-t -O.015sinh3t

z,*(t,T) = l.Oe"te-3T+O.OO347e3te"3T+O.0OO578e”te3T

K = -0.333 7.1.2.18

+0.00173e3te3T-0.00520e3te"T

z^*(t,x) = 10.0e“3te“T -0.500e‘r3V3T•0.000578e
+0.499e~te“3T +0.000578e3te~3T +0.000289e“te3x

+0.000209e3te3T -0.000868e3te_T
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Xx*(t) = 0.0150e3t

X2*(t,r) = 0.00694e~te3T +0.0208e3te3T -0.0208e3te"T

X3*(tfx) = 0.0833e3te”T

u *(t) = -0.0300e3t 1

u2*(t) * 0.0150e3t

u *(t,T) = 0.00347e“te3T +0.0104e3te3T -0.0104e3te”T 7.1.2.19

The value of the performance index J is 

J(U]*,u2*,u3*)= -0.452

From Section 6.3.1, the analytic solution for the time varying 
gain is

K(t) = 0.09/ (29.955e"6t+0.045) 7.1.2.20

where for this problem

dK(t) = 6K(t)+3K2(t) 7.1.2.21
at
and

K(t ) = 0.003 7.1.2.22



All these solutions were obtained and plotted using various 
digital techniques and are presented graphically in the 
following figures.

Zi(t)
1

0
0 .5 1

Figure 7.1.2.1 Plot of z^ 
Xx(t)

0.3

.5 10
Figure 7.1.2.2 Plot of X^

u. (t)
> t

- 0.8

Figure 7.1.2.3 Plot of u^



u2(t)

0.3

■> t0
1.50
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Figure 7.1.2.4 Plot of

K(t)

3.0

Figure 7.1.2.5 Plot of K

z2(t,T)

1.0,

> t

T
Figure 7.1.2.6 Plot of z,
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z3(t,x)
10.0

T
Figure 7.1.2.7 Plot of z

x2(t,x)

8.0

4.0

T

Figure 7.1.2.8 Plot of X^
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X3it,x)

2.0

1.0

T

Figure 7.1.2.9 Plot of X3

4.0

2.0

t

Figure 7.1.2.10 Plot of u^
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7.1.3 Simultaneous Identification Solution
The complete model reference system of Figure 6.3,2.1 was 

simulated and run on a digital computer. The results of the 
previous section were implemented as shown in Figure 6,3.2.1 with 
allowance to change the parameters a and b. A continuous 
system was approximated by dividing the interval [0.0,1.0] into 
400 sub-intervals for integration purposes. Every ten 
sub-intervals, the error was numerically sampled, and a resulting 
change in parameters a and b calculated. This corresponds 
to there being 40 sampling intervals in one second, therefore 
convergence must be fast enough to came to completion before 
40 clianges occur. Similarly, overshoot of the minimization of 
the functional must be prohibited. These resulted in selection of 
a heuristic scaling of the factor 0 such that smaller percentage 
changes occured as the percent change in the error function 
decreased. The stopping criteria was selected as 0.05% of the 
value of the error during the first sampling period. This 
corresponds roughly to a gradient of less than 0.083. that is 
the magnitude of the gradient of the function at this stopping 
point is very small. The problem was run assuming initial guesses of

a = 3.0
b = 2.0 7.1.3.1

wibh actual parameters of

^ LT = "4*°
bp]^ = 3 . 0  7.1.3.2

For the above particular set of actual plant parameters, the
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identification procedure resulted in 

a = -3.89707
b = 3.11534 7.1.3.3

after 0.6 seconds corresponding to 24 identification sub-intervals 
having elapsed. For purposes of convergence, the weight W of the
integral square error measure was assigned as

W = 500 7.1.3.4
after several trial runs established the range of W such that 
overshoot did not occur, yet convergence did progress rapidly 
enough such that the stopping criteria was met in less that 40 
sampling intervals. The results of the overall simulation are 
presented graphically in the following figures obtained with 
digital plotting routines.

First the convergence of the parameters to the true values 
is pictured.

a

-3

true value

Figure 7.1.3.1 Identification of a
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3 true value

2
0 .6 1

Figure 7.1.3.2 Identification of b

Using the actual time varying values of a and b in Figure 7.1.3.1 , 
the state of the model is

z, (t)
5

Figure 7.1.3.3.
Trajectory of from model reference simulation
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whereas the state of the model from the optimal solution 
run with the same values as the true parameters and with 
the same initial conditions as would be used offline is

z, (t)

5

0

Figure 7.1.3.4 Trajectory of from optimal solution 
Similarly the adaptive scheme provides a suboptimal control u^ as

-2 .
Figure 7.1.3.5 Trajectory of u^ from model reference

simulation
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whereas the optimal control from the same run as Figure 7.1.3.4 is

u, (t)

- 1.

- 2.

Figure 7.1.3.6 Trajectory of u^ from optimal solution 
Comparing the last four figures it is seen that "qualitatively good"
suboptimal control is obtained in terms of the closeness of trajectories
of the state and control u^ from the model reference scheme and the 
optimal run with true values substituted. Therefore in this sense the 
model reference scheme is close to optimal or suboptimal with regard 
to the criteria of Chapters 4 and 5.

An example of the stochastic process v is shown below

iv (t)
0.2

- 0.2

Figure 7.1.3.7 Plot of noise v used in model reference simulation
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The typical effects of the noise v on a steepest descent 
path are illustrated next. ^ - 3

Figure 7.1.3.8
Regions of parameter space

Region 1 shows the area close to the minimum where the 
parameters are close. In this region the noise effects are 
most pronounced. Region 2 is where the noise effects are 
observed but not quantitatively significant with respect to the 
gradient search. In this region the parameters are far enough 
unequal such that the gradient procedure continues with no 
randomness. In Region 3, the parameters are so far apart that 
the error due to this is very much greater than the error due 
to the noise. The outer bound of Region 3 is the limit of the 
region of convergence. These regions were not numerically 
established but could have been by just executing many runs with 
various data. Generally speaking, the circle for Regions 1 and 2 
could be determined in terms of the norm of the variance of the 
noise v as is mentioned in Bryson and Ho (20).

In the actual results obtained, different noise sequences 
were generated for runs with the same unknown parameters. The 
average value of parameters as identified frcm the runs was
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W  3-112383

In the next two figures are samples of the identification of
a and b for several different noise sequences

-3.0

1.00.2 0.4 0.6 0.8
-3.4

-3.6

-3.8
-3.86
-3.89

true value-4.0
0.60.5
0.675

Figure 7.1.3.9 Identification of a for other noise inputs
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3.1 3.10J3.08
true value3.0

0.5 0.6
675

2.8

2.6

2.4

2.2

2.0 1.00.80.60.40.2

Figure 7.1.3.10 Identification of b for other noise inputs
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The results of runs with different actual parameter 
values are given in Figures 7.1.3.11 and 7.1.3.12 .

a
- 2.0
-2.3

0.475
•_ 2  ̂ true value Ex. 3

0.2 0.4 0.6 0.8 1.0
-3.0

-4.0 .

-4.76
true value Ex. 2-5.0

0.775
Figure 7.1.3.11 Identification of a for other values

0.775
true value Ex. 24.3.

4.27
4.0-

3.0

0.2 0.4 0.6 0.8 1.0
2.0

1.22
■>“ true value Ex. 31.2

0.475

Figure 7.1.3.12 Identification of b for other values
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As mentioned in Chapter 6, the difficult problems of 
predetermining optimal sampling rates, rates of convergence, 
regions of convergence and weights have not been solved explicitly, 
but rather through establishing workable values by several trial runs.

The flowcharts and program listings of the adaptive 
simulation are given in Appendix E.

7.2 Conclusions
The illustrative example presented in this chapter was 

completly solved with respect bo all aspects required for 
simultaneous on-line identification and control. The 
same techniques could be applied in principle to any problem 
such that Theorems 4.1, 4.2, 5.1, and 5.2 are applicable.
That is, the case for vector state, control, and stochastic 
disturbance can be solved.



t
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CHAPTER 8 

CONCLUSIONS

The study of second order stochastic processes 
as input disturbances to linear time-varying systems 
was dealt with in a number of ways. This class of 
stochastic processes had been virtually unstudied 
previously. .The main advantages of assuming these 
disturbances are physically present, are that the 
processes are continuous in the mean-square sense and 
the first two moments are continuous and finite. As 
such, these moments and the actual processes are time 
integrable without any of the difficulties and limi­
tations encountered in white noise or colored noise 
stochastic processes whose covariances can only be 
written with Dirac delta functions. Further, the con­
tinuous time case can be treated independently of the 
discrete time case in many areas where this is not true 
for white noise or colored noise processes.
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The first method of study was to approach a 
stochastic optimal control problem in a way such 
that optimal control was possible regardless of 
disturbance, by approximately the effects of the 
disturbance by the first two moments and casting 
the resulting moment equations into the form of a 
differential game. This approach was taken as a 
means to finding the "worst-case" optimal controls 
in the sense that optimal control was found for any 
set of first two moments of the stochastic disturbance. 
The initial studies of this approach led to both 
singular and non-singular performance indices. Also, 
the determination of optimal performance weighting 
constants was performed, corresponding to a greater 
degree of freedom in optimal system synthesis than is 
normally allowed.

The next area studied was to establish a method 
suitable for implementation in real-time for an actual



94

physical plant, that simultaneously identified system 
parameters and optimally or at least sub-optimally 
controlled the system. The particular technique used 
was a model reference adaptive system. The main 
advantage of this system is that it could be established 
in a recursive manner with an algorithm that is rela­
tively easy to implement in terms of hardware and soft­
ware. A complete illustrative example was given as 
simulated on a digital computer. Both identification 
using steepest descent and "worst case" suboptimal control 
were obtained. The overall model reference system can be 
shown to satisfy Lyapunov stability criteria, and the 
simulation verified that this stability did exist. The 
particular problems associated with gradient minimization, 
such as rate of convergence and region of convergence, 
were solved by several trial runs of the simulation rather 
than by explicit analytical techniques.

Finally, a best in the sense of minimum error variance, 
linear estimate was obtained for linear time-varying systems
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with a stochastic input which was a second order process, 
as well as a measurement including another second order 
stochastic process possibly correlated with the input 
process. This estimate is actually an unbiased minimum 
variance estimate and was derived using variational 
techniques similar to those used in deriving the "worst 
case" optimal controls.

The three aspects of control, identification, and 
estimation were studied for linear stochastic systems.
The stochastic processes utilized and studied throughout 
were second order processes, characterized mainly by 
having finite continuous covariances which was a very 
useful analytic property.
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CHAPTER 9 

AREAS FOR FUTURE RESEARCH

The classes of "worst case" optimal control problems, 
i.e., the differential games could be extended to cover a 
slightly wider class in several ways. The addition of a 
terminal cost term to the performance index and the inclu­
sion of a measurement of the state are examples of the 
possible extensions.

The study of nonlinear systems or linearized nonlinear 
systems is a major area for further investigation. In 
several ways, the differential game-moment treatment is more 
amenable to linearized nonlinear systems than present methods 
due to the presence already of both means and covariances.

The model reference adaptive control system has inherent 
in it several interesting side issues. Sensitivity, stability 
and overall adaptive optimality are possible points to con­
sider further. The special problem of a true optimal control 
having a component for control only and a component for 
identification only may possibly be looked at in a setting 
very similar to the "worst case" situation already studied.

Similarly, the use of the "worst case" covariances and 
cross-covariances could be compared to lack of a priori 
statistical knowledge in the minimum error variance estimation 
problem.



Finally, a good solid area seemingly ripe to explore 
using the techniques for optimal control, identification and 
estimation for second order processes is in the study of 
various EEG phenomena. It is the fervent desire of this author 
to try out the different theories on several facets of these 
particular practical problems.
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APPENDIX A.

DERIVATION CF SYSTEM EQUATIONS

The equations governing the propagation of the first two moments
of the Class 3) stochastic process v through the dynamic system
d_ x(t, •) = A(t) x (t,«) + B(t)u(t) + C(t)v(t,*), t£[t0,tf] A I\ A-l 
dt
are derived. Here 

x is nxl 
A is nxn 
B is nxr 
u is rxl 
C is rxs 
v is sxl .

As is well known, the solution of A-l is
t

x(t,.) = $(t,to) X  (to,«) +/ $(t,T) [B(T)u(T) + C(T)v(Tf*)]dr,ter .
to A-2

where
$ (t,to) is the transition matrix found from

d_*(t,to) =A(t)$(t,to) ,t€T1 A-3
dt
with initial condition
$ (to,to) = I. A-4
Taking the expectation of A-l with
E{x(t,*)> i ^(t) andE{v(t,«)> i ^(t), E(d x(t,*) }= d E{x(t,0> !3t 3t
d ^(t) = E (A(t)x(t, •) + B(t)u(t) +C(t)yv (t)> = 
dt
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A(t) E{x(t,*)> + B(t)u(t) + C(t) E{v(t,*)} 
or finally
d y (t) = A(t)y (t) + B(t)u(t) + C(t)y (t),t£I\ a-5
dt x x v 1
The solution of equation A-5 is given by taking the expectation
of A-2 and is
E{x(t,*)} = y (t) = 

x t
E{$(t,to) X (to,*) + / $(t,l) [B(T)u(T) + C(T)v(Ty)]dr} =

to
t

$(t,to)E (x^,*)} + /  *(t,T) [B(T)u(T) + C(T)'E{v(T,')}]dT#tf rx,
to

or finally with E{x(tQ)} ^ ' t*lfi Pr;’LOr mean» y^ft) =
t

$>(t,t_) y (to) + / $(t,x) [b (t)u (t) + C(T)y (T)]dT,tf A-6
° x to v

In applications either A-6 or A-5 would be used to determine 
y (t) ,t€ Tj depending on the specific case as mentioned in Sage and 
Melsa (97).
The cross-covariance V (t,T), an nxs matrix, is found by differentiatingvx
the expectation
3 E {[v(t,*) - u (t)] [x(r,•) - y ( t )  ] "} = 3 V (t,T)
37 V x vx

and using A-l and A-5 evaluated at t = x for all x € , which after
transposing become
d x-*(x,•) = x "(t ,*)A"(t) + u”*(t)B'*(t) +v'(t,OC'(T),Ter. A-7
dt
and
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d_y"(T) =  y'(x)A'(x) +  u " ( t ) B " ( t )  +  y'(T)C'(T)fT£rx A-8
dt x x v
Then
3 E {[v(t,0 - y (t)] [x(x,*) - y (x)]'} = 3 V (t,x)3x v  x FT vx

E {[v(t,*> - y (t)] [d x'(x,«) - d  y'(x)]} = 
v 3x 3x x

E {[v(t, •) - yv (t)] [x'(x,«)A'(x) + u'(x)B'(x) + v'*(x/»)C"(x)

- y"(x)A"(x) - u ' ( x ) b ' ( x )  - y;r(x)c"(x)]> =
X  v

E Uv(t,-) - y <t)] [x'(x,-) - y"(x)]A"(x)
V  x

+ Iv"(x,*) - y'(x)]c'(x) } =

V ^ M A ^ x )  + Vw (trx) C'(x),(t,T) 6 TlxT1 | T 
or finally
3_ V^ft,) = V (t,x)A'(x) + Vw (t,x)C'(x) # (t,x)£ T. A-9
3x v
The solution of A-9 can be determined by using A-2 and A-6 
and forming
E{[v(t,-) - y v (t)] [x(xf•) - yx ( x ) D  = Vw (t,x) =

t
E{[v(t,*) - y (t)] [x^to,*)#"^,^) + / [v'(s,')C'(s)

•h T ( s ) B ' ( s ) ]  x $'(xfs)ds - y'(t0)<&'(x,t_) - f [y'(s)C'(s)x ° ° 4. v^o
+ u** (s)B** (s) ] x $^(x,s)ds} =

E{[v(t;)- yv (t)] [x^(to;) - y'ftoJJ'&'CXfto) +
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t
/ [v"(s,*) - y'(s)]C,*(s)$'(T,s)ds]} =

v
t

+ /  Vw (t,S)C"(8)^(T,S)dS,(t#T)€r

or finally
t

vvx(t'T) = + / Vw (tfs)C"(s)^(Trs)ds/t,x)er. A-10
fco

Taking the transpose of A-9 and A-10 gives

V^(t,T) = A(T)V^(t,T) + C(T)V^(t,T) , (t,T) £ r A-ll

and
t

V^(t,T) = ̂ T ^ V ^ t , ^ )  + f # ( T  ,s)C(s)Vw (t/S)dS#(t,T)6r A-12
fco

The other possible cross-covariance is
Vw (T,t) £ B{[v(T,-) “ Uv (x) ] [x(t,*) - P x (t)]"}

and from the definitions

hence can be determined by interchanging t and t  upon solution of 
either A-9 or A-10.

Far the solution of A-9 or A-10, the function of t at the boundary 
Vvx(t'to) roust be known. This function represents the a priori knowl­
edge of the randomness of the state at initial time correlated with 
the stochastic imput.
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The equations of the auto-covariance or covariance of x are 
found by differentiating the expectation
3_E {[x(t,«) - y (t)] [x(x,•) - y (r)]} £ 3 V (t,t) A-13
3t 305
using A-l and A-6 gives
3 E {[x (t, •) - u (t)] [x (t , •) - y (x)]"} = 3 V-_.(t,T) =
3t X x 5t
E{d_[x(t,-) - y^t)] [x (x, •) - yx (x)]"} =

E { [A(t)x(t,•) + B(t) u(t) + C(t)v(t,•) - A(t)u (t) - B(t) u(t)

-C(t)yv (t)] [x(t ,•) — y^x)]') =

E { .A(t) [x(t,*) - y (t)] + C(t) [v(t,•) - y„(t)] [x(x,*) - y  (x)3"}x v x
(t,T)6r

or finally
| V B M - A ( t ) V a ( M )  + C(t)V,BX(t,x), (t,x)£ T. A-14

The solution of A-14 can be found by using A-2 in 
E{[x(t,*) - Vx(t)] [x (x, •) - y^x)]} =

t
E {[#(tfto)x(to,*) + /  $(t,s) [B(s)u (s) + C(s)v(sf*)]ds

*-o
t

- *(t,to)y (t̂ ) - /  $(t,s) [B(s)u(s) + c(s)y (s)]ds X 
to v

tx( t  ,  • )  -  y x ( T ) ] }  =

t
E { <Mt,to) [x(to,0 - yx(to)] + / <Mt,s)C(s) [v(s,*) - y^sjjds X

fco
[x (t , •) -  yx (x ) ] }  =
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t
♦(trtbJVjoe^t) + / $(t,s)C(s)V (s,t)ds, (ij,t)€ T

to ^
or finally

t
Vxx(t'T) = *(t»tb>va«<to»T> + f *(t,s)C(s)Vvx(s,T)dT, (t,x)£T . A-15

to
Here the prior correlation of x at fcQ with itself for all x must be 
known to complete the solution, i.e. vXx^to,T̂ ^ncwn*

Equations A-5, A-9, and A-14 are the differential equation, 
representation of how the moments of v propagate through a system 
given by A-l. Equations A-6, A-10, and A-15 are the solutions of 
A-5, A-9, and A-14 with the specified initial conditions. For either 
representation these equations are for v a Class 3 stochastic pro­
cess. They are the state-space form of the n**1 order differential 
equations in Papoulis (84) or the operator equations of Lebedev (63). 
In Sage and Melsa (97), Bryson and Ho (20), and Astrom (8 ), the 
same type of derivation is given for other classes of stochastic 
processes.

It is shewn by various theorems in Ghat (17), Hoel (35), and 
Prabhu (90) that the interchange of operators required for the 
derivations in this appendix is valid for Class 3 stochatic processes. 
Further all the specified derivatives and integrals are shewn to 
exist in these same three references.

It also can be shown that differentiating A-6, A-10, and A-15 
gives A-5, A-9, and A-14 respectively; since in the derivations the
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solution set was not obtained by directly integrating the differ­
ential equations. More will be said about the initial conditions 
in Appendix B.

The complete set in differential form is collected below.
The mean of x is
d u (t) = A(t)y (t) + B(t)u(t) + C (t) u (t), t£rx A-16
dt x x v
where

yx is nxl
A is nxn
B is nxr
u is rxl
C is nxs

is sxl
The cross variance of x and v is
| X x (t,T> =A(T)V^(t,T) +C(T)V^(t,T), (t,-T)6r A-17

where
V is sxnvx
V' is nxsvx
V is sxsw
V'l_ is sxs.w

The auto-covariance of x is
= AttjV^ft/r) + C(t)V <t,T), (t,T)6r A-18

3t
where is nxn.
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It is now desired to derive the equivalent equations for Class 4) 
stochastic inputs, which are characterized by having covariance. 
Vw (t,T) = ¥(t) 6(t-T) A-19
where 6(t-x) is the scalar symmetric Dirac delta function 
defined by

f 0 to>T>tf

J f(s)S(s-x)ds = <{ f(x) t <X<t_
t \ ° fo

f(t0)/2 T=t0

f (tf)/2 x=tf A-20
For the system of A-l with v(t,.) having covariance given 
above, the mean of v propagates the same as for Class 3) 
processes and is given by equations A-5 and A-6.

The cross covariance is 
V^tfX) =  E{ [x(t,.) - ux(t)] [v(t,.) - uv (t)] '} 
and can be evaluated by post multiplying equation A-6 minus 
A-2 by [v(t,«) - uv (t)K and'taking the expectation,

t
x(t,.)-u (t) = $(t,t )[x(t ,.)-u (t )]+J $(t,s)C(s) [v(s,.)-y (s)]dsX U O X ^ j. v

0 A-21
giving
V (t,x)=$(t,t0)E{[x(t ,.)-u (t )] [v(t,.)-vl (x) ] '}XV O X o v

t
+/ $(t,s)C(s)E{[v(s,.)—y (s)][v(x,.)-u (t)]'}ds A-22t v vo

Normally it is assumed that x(tQ,.) is uncorrelated with
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V (t,T)= J $(t,s)C(s)V (s,T)ds , (t,r)£ r A-23XV ^ w

o

and knowing the form of V (s,t) from A-19 givesw
t

V (t,T)= J $(t,s)C(s)6(s-T)ds A-24xv t
o

From A-20, this becomes
0 t <t<To

V (t,i)= V C(t)T(t)/2 to<t“i:
$(t,T)C(T)'J'(T) tQ<T<t A-25

and it is clear that a discontinuity occurs at t = t.
Post multiplying A-21 by [x(T,.)-y (t)] " andX
taking the expectation gives
Vxv(t,t) =e{ [x (t,.)-yx (t) ] [x (t,.)-yx (t) ] '} =$ (t,tQ) (tQ,tQ) (t,tQ)

T
+$(t,t0)E{[x(t0#.)-yx (to)] [/<J>(t ,s )C(s ) [v(s,.)-yv (s)]ds]') 

t
+E{[/ $(t,s)C(s)tv(s,.)-yv (s)]][$(T,t0)[x (tQ,.)-yx (tQ)]]"ds} 

o
t T

+E{[/ <I>(t,s)C(s) [v(s,.)-y (s) ]ds] [J <i>(T,a)C(a) [v(a, .)-y (a) ]da] '} 
trt v t

° A-26

Again it is assumed that x(tQ,.) and v (t , .) are uncorrelated 
resulting in the second and third terms going to zero. 
Rearranging,

Vxx^/T) =  ^ ( t f t o J V ^ t t o f t o ^ ^ t o )  

t T
+/ / $(t,s)C(s)E{ [v(s,.)-y (s)] [v(a,.)-y^(a)] '}C'(a)<I>'(t,a)dads 
t t
° ° A-27



and substituting A-19 gives

t T
+/ J $(t,s)C(s)f(s) SCs-cOC'CcO^TfaJdads A-28
t t° o, . . .

in this last expression the order in which the double 
integration is carried out must be selected carefully. If 
t>x, then first integrate with respect to s in order to obtain 
a range where the delta function exists. If x>t, then first 
integrate with respect to a for the same reason.

Rewriting A-28 with this reasoning gives 
Vxx(t,T)-4(t,t0)Vxx(t0,t0)*'(T,t0)

min[t,x]+ J $(t,n)C(ri),i'(ri)Ĉ (n)$̂ (T,n)dri
fco

A-29
Restricting attention to only the case where t =x gives

V ^ l t . T W  (t,t0)V30t(tb ,to)*' <T,to>
t

+ J$(t,n)c(n)'i'(ri) ĉ (n)̂ "(t,n)dn
t
° A-30

Wow, A-30 is the solution of an ordinary differential
equation which can be obtained by differentiating and using
Leibnitz r.s rule for differentiation under an integral which is

S(t) 3(t)
8 I f(t,x)dx= / 8f (t,x)dx+f (t,$)d8(t)-f (t,a)da(t)
3ta(t) a{t )W 3t 3t

A-31
Using A-31, A-30 becomes

107
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^ ( t rt)^(t,t0)v^(t0,t0)^(t,t0)+$(t,t0)v^(t0#t0)d$Tt,t0)

t t
+/ d$(t,n)c(n)’y(n)C'*(n)$'(t,n)dn+J $(t,n)c(n)¥(Ti)c',(n)d$‘,,(t,n)dn
13t t 3to o

+$ (t, t) C (t) ¥ (t) (T (t) $ (t, t) dt-0 A-32
3t

But <J>(t,t)=I and d$(t,-r)=A{t) $(t,t), t£T 
<3t 1

which gives

t t
+A(t) [ J 4>(t,n)C(n)¥(n)C'(n)$'(t,Ti)dn] + [ J <I>(t,n)C(n)¥(n)C>(n),&'(t,n)dn]A'’(t)

t to o
-*C(t)¥(t)C'(t) A-33
and from A-30
^ xx(t,t)=A(t)Vxx(t,t)+Vxx(t,t)A"(t)4C(t)'i'(t)C"(t) ,t€T1 A-34

Equation A-34 is used throughout much of tlie literature 
dealing with estimation theory. The major difference between 
this equation and equations A-17 and A-18 which hold for 
Class 3) stochastic processes is seen in that equation A-34 
holds only in the plane with t=T, but equations A-17 and 
A-18 hold throughout the square (t,T)6[t0,t^]X[t0>it£]. Fur they, 
as remarked on page 106 , V^(t,T) |t =t is a point of 
discontinuity in the square, and equation A-34 includes the 
effects of Vj^O^t) hence includes the effects of this 
discontinuity, in fact A-34 only is true along a line where 
Yxv(t,T ) is everywhere discontinuous.
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Therefore, it is seen that much more information is 

implied by equations A-17 and A-18 for Class 3) processes 
than by equation A-34 for Class 4) processes.

An alternate derivation of equation A-34 can be performed 
by differentiating the definition of the covariance of x, as

d E{[x(t,.)-u (t)] [x(t,.)-u (t)] }=dvft,t) =
3t x x Wc

E{[ dx(t,.)-dy (t)][x(t,.)- (t)n+E{[x(t,.)—m v (t) ] [dx (t,.)-y (t)]"}= 
at dt* x at x

E{[A(t) [x(t,.)-yx (t)]+C(t) [v(t,.) — (t) ] ] [x(t,.)-yx (t) ] '}
+E{ [x(t,.)-yx (t)] [[vftj.J-y^t)] 'C'(t) + [x(t,.)-yx (t)]'A'(t)] }=
A(t) VXx(t,t)+C(t)Vvx(t, t)+V (t, t)C* (t)+V (t,t) A" (t)xv xx a-35

This equation shows the explicit dependence of V^tt^t) on

^xv^*^
Fran A-25,
Vxv(t,t)=C(t)H'(t)/2
and
Vvx(t,t)= V^(t,t)= r(t)C'(t)/2 
tlierefore, substituting in A-35 gives

dV^ (t, t) =A(t)V (t, t) +V_ (t,t)A" (t) +C(t) V' (t)C' (t)/2+C (t) V(t)C' (t)/2 
3E; xx

A-36
and since f (t) is syimetric, A-36 is the same as A-34. 
Evaluating A-30 at t=T and premultiplying by $(t,x) gives

Vx x (t#t)=$ (t*T)*(T,to)VS K (tb ,t^)^(T,to ) +
T

(t,x) $ (x,ri)C(n)'l,(ri)C>(ri) (T,n)dr| A-37
to
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but since $(t,T)4(r,8)=4,(tf 3) for t>x if it is restricted to t>x,
A-37 is equal to equation A-29. Hence for t>x,

Vxx(t/T)=$(t'T)Vxx(T'T) A”38
and similarly for x>t,
V (t,x)=V (t,t)$'(x,t) A-39xx ' xx ' '
These last two equations enable more information to be obtained 
since they permit the covariance of x to be found over the whole 
square.

However, there is no convenient differential equation form 
for A-38 and A-39, and the transition matrix is required. The 
major differences then in the equations for Class 3) and Class 4) 
stochastic processes are:

1) All the first two moments of state and input are 
continuous everywhere in the square for Class 3) processes 
but not for Class 4),

2) The evaluation of all the first two moments of state and 
input for Class 3) processes does not require knowledge of the 
transition matrix whereas this knowledge is required for Class 
4) processes,

3) For Class 4) processes, two separate evaluations are 
required for the cases t>x and x>t, after obtaining all data at 
t=x, but this separation of the square is not at all needed for 
Class 3) processes,
and

4) The equations developed for Class 4) processes only hold 
for "white" or "not time correlated" inputs whereas the equations
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for the Class 3) processes allow any type of correlation, including
memory. "Non-white" or "time correlated" models can be obtained
for Class 4) inputs with "white" noise driving a prefilter
becoming the input to the plant.

The "colored noise" representation is
dx (t,.) =A (t) x (t,.) +B (t) u (t) 4C (t) v (t,.) A-40
dt
where

Va&(t'T)=0

V6a(t'T)=0

Vpg(t,T)=Y (t)6(t-T)

V (t,T)=’P (t)6(t-x)aa a
Since a(t,.) is "white noise", the covariance of y is found 
using A-29, as

v(t,.)= A(t)y(t, .)+3(t,.) A-41
and
d _̂(t,.) =E (t) y (t,.) +T (t) a (t,.) A-42

with

rain[t,T ]
+Jt. 4> (t,n)T (n) vn (n)T (n) K  <T'n)dny u  y

A-43

wliere
d$Y (t, t ) =E (t) $ (t,t ) ^4-1 y odt
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and

V W 1
From A-43, the explicit dependence of V on t and x is
exhibited by the x argument in the transition matrix
Then the state covariance V will depend on x throughxx
this means. The complete solution is obtained from the 
augmented model

d
3t

x(t,.)

 ̂
1 

•+J>-1

A(t) C(t)A(t) 
0 E(t)

x(t, .) B(t) 0
+

y(t,.) 0 0
u(t)

C(t) 0

1---•

+Jca
1

0 T(t) a(t,.)
A-44

rewritten with obvious definitions as

dx* (t,.) =A* (t) x* (t,.) +B* (t) u (t) +C* (t) v* (t,.)
dt
with v* a "white noise" process. The covariance of x* is 
found using A-29 as

A-45

vx*x* (t,T)=$* (t,to)Vx*x* (tofto) $*'(x,tQ)
min[t,T ]
+Jto

A-46

where
d<i>* (t,t_)=A* (t) 4>* (t,t )
3t ° °
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and

"*(to>to)=I
and

6 (t-T)=4'v* (t) 6 (t-f)

The solution of A-46 enables the retrieval of the covariance 
of the original state x driven by "colored noise" v to be obtained.

The "colored noise" v with covariance depending on t and t is 
obtained through the artificial use of the prefilter of equation 
A-42. It is obvious then that A(t),E(t) and T(t) must be linear 
time varying or linear constant matrices. Nonlinear memory type 
elements could not be present. Therefore, only processes with 
Markov properties can be treated. This restriction is not present 
in the development of the second moment equations for Class 3) 
processes.

^v*v* -
'Fg(t) 0
0 ¥ (t)

a
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APPENDIX B

TRANSFORMATIONS GF PERFORMANCE INDEX AND ENDPOINT OJNDITIdNS
B.l Generalized Performance Index

The typical "minimum energy" performance index including all 
energies present in a physical plant was obtained in Section 3.1.2 
as the expectation of 
Js = <x(tf,*) ,Q(tf) x (tf,*)>

+ f {<x(tf •) fRIx(t,*)> + <u(t) ,R2u(t)> + <v(t,») fR3v(t,»)>>dt B.l-1
*"0

Redefine B.l-1 as
Js = K(tf ,x(tf)) + + JTO B.l-2

where the various terms are obviously defined. For x a stochastic 
process, the criteria most often used in the literature is

Jm,x = E{Jxs} = E U  <x(t,.) ,R x(t,.)>dt B.l-3
fco

which is a measure of the mean value of state energy. However, 
other means to make a deterministic number appear. Sain and 
Liberty {98) use the. minimum variance value of state energy

Jw , x =  EC1JXS - {Jx s » 2> B-1'4

Pugachev (91) and Andreev (5) use the other measures
J__ „ ̂  E { J } B.l-5ms,x = xs
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a minimum mean square value of state energy and
2 B.l-6

a minimum mean-squared value of state energy. Murphy (B1) 
introduces arbitrary weighting of these measures. Rekasius (93) 
and Sherman(103) define further possible modifications. Ihe 
original work of Kalman and Bucy (40) in estimation theory, and 
its extensions such as in Mehra (74), Sage and Melsa (97), Bryson 
and Ho (20), As tram (8 ) and Kushner (61), all use the mean value 
of cost.

A more general performance index would be the weighed sum of 
these four, defined as

Several interesting sidelights arise when all of the terms are 
collected as in B.l-10. Consideration of this measure may result 
in solutions to the propositions of Guillemin (29) about finding 
Nature's error criteria.

IP A x =A a_ J + a- J t a„ J 4* a. *J_= lx m,x *2x mv,x 3x ms,x 4x s,x B.l-7

where a. , i = 1,••,4 are constants. 
Similarly, define

B.l-8
and

B.l-9
and finally the overall measure
IP A ip + jp + ip B.l-10
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The optimal selection of the a^, a^y and a^u, i = 1, • *,4 
•is discussed with respect to optimal system synthesis by Andreyev- ( 6) 
and others. A particular version of this type of problem is in­
cluded as Problem 4).

The separation of state, control and disturbance energies pre­
cludes the occurence of cross-terms between these variables.
There would be many cross terms present if the four measures of 
Js in B.l-1 were taken and sunmed. These cross terms are not con­
sidered here as is done in most of the literature.

B.2 Performance Indices of Problems 1 and 2
The choice of

la3x ~ “ 2
1

a3v = ~ 2

a4u = +
1
2

£ < ii + 1
2

and the rest of the a's zero in B.l-10 yields a performance index 
related to the Problem 1 performance index, though not exactly 
equal. The relation is established through the inequality

tr R2u3(t,T)u3 (t,T)R£dtd > - /f/f tr R,u, (t,t)tr R,u, (x,T)dtdtVo Vo
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which can be shown to hold using some basic properties of covari­
ances as in Papoulis (84), sane theorems on positive definite 
matrices as in Hohn (36) and Graybill (32), and sate inequalities 
as in Mitrinovic (77), (78), Beckenbach and Bellman (15) and Marcus 
and Mine (72).

In addition to the terms of the problem 1 performance index, 
a term linear in tr R2U 3 (t,t) will arise. Using the theory in 
Kleindorfer and Kleindorfer (46) and Athans (11), the cost of this 
term can be shown to be included in the RHS of B.2-2.

Alternately, the performance index of problem 1 can be treated 
as a function of other indices as in Petrov (87) and Andreyev ( 6 ) 
yielding a similar relation.

A detailed analysis of B.l-10 would shew that all terms would 
be functions of the first and second mcments of state and disturb­
ance. Including all of these moments under a double integral yields 
the functional performance index of Problem 2.

B.3 Transformation of Problem 3 Performance Index 
Ihe performance index of Problem 3, equation 4.1.3.1 is 

t-t.
J(Uj,Uj,Uj) = { f__(z. (t),Z (r),z"(t,T),Z (t,T),U (t),u (x),u (t),

t t  o o 0 0  1

+ 1 I B*3"k=l m?=l J

/t

u (x)) 

“I
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where B.3-1 represents a functional linear in and nonlinear 
in zp z »̂ Z3 , uj and u,2. The problem then becomes singular with 
respect to u'» but ranains nonsingular with respect to û _ and û . 
Since the state equations are also linear in u^, the Hamiltonian, H 
is linear in u3 and the necessary condition of equation 4,2.2.12 
does not enable u3*to be found. Therefore the higher order 
necessary conditions of Theorem 4.3 had to be developed.

A typical performance index in the form of equation 4.1.3.1 
arises with tlie choice of

in the generalized measure of equation B.l-10. With the aid of
inequality B.2-2, a specific measure singular, hence
linear, in u^ and non-singular in u^ and but nonlinear in z^ is

tftfJ(u ,u ,u') = J J {-l/2tr[R1 z3 (t,T)z3 (t,T)R£] + 1 / 2 ^  (t) ,R2U2 (t)>
1 z J t t o o

-l/2tr[R^u'ft, x) ]-l/2<U2(t) f^2a2 ̂  B.3-2

Other terms in the form of f (z„,z„)u would arise naturallylk 2 3 3jjj.
by considering the cross terms which were neglected in 
developing equation B.l-10 .
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Since B.3-1 is linear in 113, Problem 3 is a singular control problem 
and much more difficult to solve than problems with quadratic criteria. 
This fact led to the formulation of Problem 2) and Problem 1).

B.4 Endpoint Conditions

The choice of performance indices for problems 1), 2) and 3) 
constrains the problems to be fixed endpoint problems. If a terminal 
cost term were present, free endpoint conditions would arise, but this 
case is not covered in this research.

Therefore it becomes necessary to specify the state zl, z', z3 at
tQ and at fixed finite final time t^ as

z^to) = ECx^,.)} = y ^ )  B.4-1
z^tf) = E{x(tf,.)> = ^(tf) B.4-2
z^t,^) = E{[v(t,0 - ^(t)] [xO^,.) -vi^to)]'} B.4-3

=E {[v(t,«) — Uy.(t) 3 [xttf,*) -y^tf)]'} B.4-4
z3(to/T) =E{[x(t0,*) - yx (tQ)] [x (t ,0 - y^x)]'} B.4-5
z3(tf,T) =E{[x(tf,*) - yx (tf)] [x (x, •) -y^x)]'} B.4-6

Graphically B.4-1 through B. 4-6 are given in the following 
figures. In these figures the functions plotted are scalars, but a 
similar figure would apply for each element of the vector-matrix state. 
Assume

z3(t,r) = <Mt)e T B.4-7
and

$(t) = z3(t,t) B.4-8



z4(t)
/ V 120

(t ) o

t,'O

Zz(t,T)

t=T

t=T

Figure B.4.1 Endpoint conditions
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then
-|to—*1

z 3(tofT) = $(tb)e — —

and for t >, tQ

z3(tofT) = $ (tQ) e — 5—
tQ “ t = *(tQ)e—  e Y"

- T
= Ke T B.4-9

and this is the form assumed in example 1 for T = 1. Similar remarks 
hold far Z2 (t,tQ). Then since z^i^,^) and z3(t0,t0) can be measured 
as is described in Kalman (40), and T also can be measured for a 
physical process, with the form in B.4-9, the initial point conditions 
are known.

The conditions at tf result from the initial condition response 
and response due to the transition matrices of A(t) and - A'(t). It 
would be desired to drive z3 (tf ,t̂ ) and z2 (t^,t^) to a smaller value 
than at tQ , and this can be accomplished through the above analysis 
and selection of initial conditions an X2 and A3 which satisfy the 
TPBVP. The mean value zx (t̂ ) can be measured hence is assumed given.



122
APPENDIX C

NECESSARY CONDITIONS
It was proposed that the geometric approach of Kuo in ($0) and 

(52), and Leitmann(67) be employed in deriving necessary conditions. 
The choice of Class 3) stochastic disturbances, and the resulting 
form of equations for the dynamic system and performance index after 
transformation precluded tlie use of the geometric approach. It was 
chosen to employ variational techniques instead for all four classes 
of problems. Standard forms of variational approaches are found in 
Kirk(45), Citron (22), Bryson and Ho (20) and Athans and Falb (9). 
Since some of the state and control variables are matrices rather 
than vectors, the results of standard forms of variational approaches 
could not be directly applied. Instead, matrix variations had to 
be defined and the entire proof had to be carried out. A formal 
extension of Pontriagin's minimum principle, found in Pontriagin 
et al (88) , to the matrix variable case was given by Athans in 
(10), but since the form of the equations included dependence on 
taro independent variables, t and t , the result of that derivation 
could not be directly applied either. The dynamic optimisation of 
criteria and constraints with more than one independent variable 
is briefly described for the vector case in Gottfried and Weisman 
(30). . Introductory distributed parameter optimal control theory 
is covered in Sage (95), but this the results of this theory cannot 
be directly applied either.
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C.l Proof of Theorem 4.1:
For Problem 1 of Section 4.1.1 defined by equations 4.1.1.2 

through 4.1.1.8 with the performance index of 4.1.1.1, define 
X (t) an rrxH vectorI
X (t,T) an nxs matrix
Z

X (t,T) an nxn matrixJ
and form the augmented performance index 
Ja = J (z ,z',z ,u ,u ,u",X ,X ,X ) =

1 2 3 1 2 3 1 2 3

i fcftf— — J J {tr[R z (t,x)z'(t,x)R'] + tr[R u (t,x)u'(t,x)R'']id d * d a ztoto

+ tr [[ A(x)z'(t,x) + C(x)u'*(t,T) - 3z£ (t,x)] iX'ft^) ]] 
z J 3x z

+ tr [[ A(t)z'(t,x) + C(t)z'(t,x) - 3z3 (t,x)] [X,'(t,x) ]] }dtdx 
* * 3t *

tf+ - J {<u (t),R u (t) > - < u (t) ,R u (t)>
* 1 . 1  3 1 2 **2

+ <X (t) ,A(t) z (t) + B(t)u (t) + C(t)u (t) - dZi(t)>} dt 
1 1  1 * 3t

noting that Ja = J of 4.1.1.1. . 
Define Q. as the scalar functiont

fl (z',z , 3z£ , 3Za, u^,X ,X ) = - - tr R z z'R'
2 2 3 J 2 i 2 1 3  3 1

- - tr R u u"R + tr [[ Az" + Cu- - dz« ] [*' ]]
1 2 3 3 2 2 3 2

G.l-1
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+ tr[[ Az + Cz - 3zi ] EX'*]] 
3 2 5t

and define Q as the scalar functioni

ft (z , dzt ,u ,u ,X ) = - < u , R u > - -  <u ,‘ * 1 i s i z z

+ <X ,Az + Bu + Cu - dzj> 
1 1  1 z dt

Then
tftf ^

Ja “ J = f f 0 (z i 9Zy  ̂ 3za.,u f\ f\ 
t0t0 Z Z 3 3t 3 * 3

fcf+ J ft (z ,dz., u ,u ,X ) dt 
1 1 3E

Define the variations 
Sz (t) = z (t) - z *(t)i i i
6z'(t,t ) - z^*(trt)
6za (t,-r) - za (t,t) - za*(t,x) 
6u,-(t) = u,(t) - u *(t)1 t t
6u (t) = u (t) - u * (t)2 * *
<5ua(t,x) = Ua(t,T) - Ua*(t,T) 
6X(t) = X (t) - X *(t)1 i i

6X (t,t) = X (t,x) - X *(t,x)
2 2 2

<5X (t,x) * X (t,x)~X *(t,x)J 4 4
and
<5 J = J - J*

R u >
•4 2

C.l-3

) dtdx

C.l-4

C.l-5

C.l-6

where ( )* denotes ( ) evaluated at extremal conditions.
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Then

6J = f J 6ft dtdx + | 6Q dt
V b  * ^  1

The variation of a scalar function g (A) of an nxm matrix A is
6g(A) = tr [6A (3g(A))']

3A *
Where
3£(A)
3A
is an nxm gradient matrix and 
6A = A - A*
Using C.l-8,
6ft = tr [6z" (3ftz) "*] + tr [6z (3ftJ '] 
z z 3ẑ  * 3 3z3 *

+ tr [63z 2( 3ft* )'] + tr [ 6 3z3 ( 3fl2 )' i 
3t ^  7 ® . ) *

+ tr [6u'(3ft*)'] + tr [6X (3ft* )'] + tr [5X (3ft* )' ] 
3 5uS * z 'SXz * 3 *

6ft = <6z , (3fti) > + < 6 dzi , ( 3fti ) > 
1 1 Szi * 3t &(dz4)*

3t

+<6u t (3fti) >+< 6u f Qftx) > + <6X /Qfti) > 
1 3ut * z 3u2 * 1 3T, *

It is seen from C.l-2 and C.l-3 that

C.l-8

C.l-9

C.l-10

C.l-11

C.l-12

C.l-13
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3&SI . I 
T Qzz) I 
"5t '*

-X}

9̂2 2
Tfaza)Tit

C.l-14

C.l-15

These last three equations are substituted in C.l-11 and C.l-12 and 
then tliose two equations put in C.l-7 gives •

6J = JfJf { tr[Sz'(3Rz)'] + tr [Sz3 OR ) " ]
. . 2 lz' * 3z“ *
V o  2

+ tr [63Z3 ( -X') ] + tr [53z3 (-X') ]
3t 2 * 3t 3 *

+ tr [6u* (3Rz) '] + tr [SX (3Rz) ' ]
3 &U3 * 2 3\z *

+ tr [6X (3R2) "*] } dtdx
3 3T3 *

+ ft {<6z , 0«i> >-<6dZi ,X* >+< 6u , (3flx)
t 1 3z ,* W  1 5ui *o 1

+ <6u , (3R ) > + <6X , (3fl ) > } dt C.l-16
2 StT1 * 1 “ST* *

z 1

Using integration by parts it cam be shown that
t t

- f dt =  ̂<6za* - <6z (tf) #X* (tf)to 3t to dt 1
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+ *oz (tj, X *(t )> c*1-17i ° i °

and.,

JfJf tr[63z; [-X"*]] dtdx = JfJf tr[6z" 3AjT*l dtdt
t t  3r 2 t t * 3to O O O

- Jf tr[<5z'(t,tJX'*(t,tJ ]dt + /f tr[6z"(t,tk> X ^ t , ^ )  
t„ z f 2 f t, . 2

]dt C.l-18

and

J J tr [63z3 [-X-**] ] dtdT = J f tr [6z SX^J dtdt 
toto 3t 3 ^  33t

**f- £ tr [6z^(tffT) X^*(tf,t) ](3t + ^  tr[6z^ (tQ^TjX^ttQ^x) ] dr

These last three equations are substituted into C.l-16. Terms
multiplied by the sane arbitrary variation are collected and the
fundamental theorem of the calculus of variations is applied, i, e.
if <5J = o, then the coefficients multiplying each arbitrary variation
must be zero. This results in
08*)' + 3X* * = o
35: * 37

(30,)' + 3X~ * = o
*' 3t

on,) + dx * = o
3zx * 3t

(30,)' = o 
3u3 *

C.l-19
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(3̂  ) = o
3U1 *

1

On ) = o
Su1 *

On )' = o 
3 P  *

on )' = o 
•SP *

On ) = o c .i-2 0
3T 1 *

and
6z (t̂ ) = 6z (tf) = o 1 1

6z'(t,to) = 6z'(t,tf) = o 
2 2

6z (t-.T) = 6z (tc,T) = o C.l-21
3 3

Equation C.l-21 implies the specified endpoints of equations
4.1.1.3 and 4.1.1.4.

Equations C.l-20 become, for the functions n and n of C.1-22 1
and C.l-3,
dX* (t) = - A'(t)X * (t) # Vts T C.l-22
St1 1 1
3X * (t, t) = - A" (t) X * (tf t) - (tf t) C (t) , V  (tf t) fc r C.l-23
3P
3X * (tft ) = - A'(t) X * (tft) - R'R z ’XtfT), V(t,T) € r C.l-243P 3 1 1 3 '

dz * (t) =A(t)Z*(t) + B(t)u*(t) + C(t)u*(t)fVter C.l-25
at1 1 1 2 1
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3z'*(t,T) = A (x)z'*(t,T) + C  (t)U/* M , V ( M ) 6 r■5TZ * a C.l-26

dz * (tf t) = a (t) z* (tf t) + c(t)z *(t,x), v(ti,r) <=r 
3 P  3 2

C.l-27

C.l-28
1 3 1 1

u * (t) = R-ic"(t)x * ( t ) , v t < = r C.l-29

u'*(trT) = c'(T)x*(t,T) (r”1)(r_a) ,V(t,x)er
3 2 2 2

C.l-30

which are the necessary conditions stated in Theorem 4.1. It is 
seen that the inverses of R , R and R are required, but not for2 3 **
R , lienee

Remark; Substitution of equations C.l-28, C.l-29 and C.l-30 into
C.l-25 and C.l-26 result in 2n(l + s •+<n) differential equations to be 
solved. There cure n(l + s + n) endpoint conditions specified by 4.1.1.3 
and n(l + s + n) more by 4.1.1.4. So the complete solution of the 
problem requires the solution of a 2n(l + s + n) dimension two point 
boundary value problem (TPBVP) since half of the endpoint conditions are 
specified at tQ and the other half at t^ .

R is assumed to be non-negative definite
and

R , R , R are assumed to be positive definite
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C.2 Proof of Theorem 4.2

For Problem 2 of Section 4.1.2 defined by equations 4.1.1.2 
through 4,1.1.8 with the performance index of 4.1.2.1 define 
Xx (t) an n x 1 vector 
Xz(tft ) an n x s matrix 
X3 (tft ) an n x n matrix 

and form the augmented performance index 
t t

Ja=jfJf{fo(zx(t),z (x),z '(t,x),z (tft),uA(t),ul(t),u 2 (t),uz(t),U3(t,x)) 
V o

+ tr [[A(t)z'(t# x ) +C ( x ) u^(tfX)-9zC(t,x)][XC(t,x)]]

+ tr [[A(t)z3(t,x)C(t)zz(tfX)-9z3(t,x)][X3(tfX)]]
at

-KA(t) zl (t)+B(t)u1 (t)+C(t)u (t)-dZt (t) ,XL (t) >}dtdx C.2-1
dt

or
t_t

Ja=jjf a dtdx
V o

where
SW2(z (t)fZ (x),z'(t,x)fZ (t,x)fdz (t),dz'(t,x),3z (t,x),

1 z d 3tA 3x̂
Ux(t)fUx(x),u^(t)fUz(x),u'(t,x),X1(t),XZ(t,x),x3(tfx)) C.2-2

and ft is defined in C.2-1, and it is noted that Ja=J of equation
4.1.2.1.

In addition to the variations in C.l-5, define
6z (x) = 6z (t) |1 1 t=x

fiu4( x ) = 6ux(t)|t=x
6uz (x) = Su* (t) |

t=x C.2-3
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Then,
t tp

6Ja = <5J = JfJr 6 ft dtdt C.2-4
V o

where
69, = t r 6 z ' m  )' + tr6z30a )' + trfi Sz^On )' 

Tz' dz3 3x HJdzZ)
TF

+ tr 6 3z Ofl )' + trfiu'On )' + tr 6A Ofi )'
3t3  ̂(3z )  ̂S113 SAu

7td
+ tr 6\.. (3n )" + <6z.(t),3n > + <6z (x),3n >

SX3 Sz^t) 1 3z4<x>
+<6dz, (t) ,30 > + <6u1 (t) ,3£ > + <6ui (t) ,3n >

dt 3Tdz, (t)) 3Uj (t) 3u (t)
at

+<6u (t),3fl > + <6u*.(x),3n > + <6Xl (t) ,3fl >}dtdx C.2-5
3uz (t) 3u*(x) 3X^0)

Since fo does not depend on dz^ (t), 3z^(t,x) or 3z3(t,x)
3t 3x 3t

on  )'= -X'(t,x) C.2-6
Ttdz:)
Tf

(3n )'= -x'(t,T) c.2-7
•5t

3n = -x (t) c.2-8
T O z 4)
3E

Substituting C.2-6, C.2-7, and C.2-8 into C.2-5, and then that equation 
into C.2-4 results in 3 terms to be integrated by parts similar to
C.l-17, C.l-18, and C.l-19. After this step, terms are collected,
SJ is set to zero, and the fundamental theorem of the calculus of 
variations applied, which results in the following necessary conditions



132

Jf{3fo + A'(t)X.(t> + dX^tJJdx^O, Jf{3fo }dt=0 C.2-9^  -SzTTt) HE tQ -5zT(t)
3X*(t,x)= -A'(x)X2(t,x)-X3(t,x)C(x)-3fo C.2-10
TF 3z|
3X3(t,x)= -A'(t)X,(t,x)-3fo C.2-11TE 1z7
dZj. (t)= A(t)z1 (tJ+Btt)^ (t)+C(t) u2 (t) C.2-12
dt
3z£(t,x)= A(x)z;* (t,X)+C(x)u3 (t,x) C.2-13TF 2
3Z (t,X)= A(t)z3 (t,x)4C(t)Z;* (t,x) C.2-14TE
tf tfJ {3fo + B-* (t)X (t) }dx=0 , J {3fo }dt=0 C.2-15
tQ T^ft) 1 tQ "SuTtT)

t tJ {3fo + C'ttJX^tJldxaO, /f{3fo }dte=0 C.2-16
toTITtt) tQ TjTTtx)
3fo + C'(x)X'(t,x)=0 C.2-17
3u^
with the endpoint conditions of C.l-21.

Remark: The equations C.2-9, C.2-15, and C.2-16 can be shown to not
present constraint difficulties for the following examples. Only the
case for C.2-15 is given.

Consider four cases.
Case 1: fo (ux (t) ,uA (x) )=<Ui (t) ,R3ui (t)>,R3=R3

3fo = 0  
TT^(x)
3fo =2R u (t)
357(t> 3

and C.2-15 becomas
ux(t)= - 1  R~l B" (t)X (t)

J  1
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Case 2s fo (u (t) ,u* ( t ) )  = < u  ̂(t) ,Rsut (t) >W(t)W(x) ,Ra=R;
where w (. ) is a scalar, time-varying weighting function
Then

3fo = 0  
^ u T ( t )

3fo =2R W(t)W (x) u (t)
3uT(t) 3

and C.2-15 becomes
u 4 (t)= -2 (t -t ) L-° R, -EHtU^t)

, . t  3
W(t) W(x)dx

Case 3: fo(u, (t) ,u, (x) )=<u^ (t) ,R3u1 (x) >,R3=Ra
Then

3fo = R 3ut (t)
3u a (x )

3fo = Raut (x)
3Ui(t)

and C.2-15 becomes 

tJfu(x)dx= -(t-t ) K x .B'itiX.it)^ f o 3

°  ~~2

Case 4: fo (t) ,ux (x) )= <ut (t) ,Ra (t,x)uA (x)>
with R3 (t,x) = R^(x,t) 

then C.2-15 becomes 
tJ f Ra(t,x)u(x)dx= -(t-t )B'(t)A.(t) 
t r oO  T " 1



C.3 Proof of Theorem 4.3

The proof is an extension of derivations in Bryson 
and Ho (20) and Gabasov and Kirillova (28). In (20) the 
actual derivation is carried out for a one sided problem 
with a scalar control in one independent variable, t. The 
result is

d 3H=0
dt 3u C.3-1

3_ d_ 3H =0 C.3-2
3u dt 3u

3__ { d2 3H } < 0 C.3-3
3u cTt 3u =

where II is the Hamiltonian for the one-sided problem and 
minimization of cost with respect to the scalar u is 
carried out. The form of C.3-3 is similar to the form of 
the Legendre-Clebsch condition

Huu > 0 C.3-4
For singular problems, the equality holds in C.3-4 

therefore no information is obtained from this condition.
For nonsingular problems C.3-4 implies the sign of the 
second variation of the augmented performance index thereby 
indicating whether minimization or maximization is achieved.



When equality holds in C.3-4, the test for maximization or 
minimization is provided by C.3-3.

The results for a vector control u are quoted in (28) and were 
derived in Kelley (43) and Kelley, Kopp and Moyer (42). The 
equations of Theorem 4.3 are a generalization of the above for 
a matrix control u^ in two independent variables, t and t where 
maximization with respect to U3 is desired.

The proof is extremely lengthy but similar in form to the 
derivation in Bryson and Ho (20). The second variation is found, 
and then the optimal state, equations and costate equations are 
perturbed resulting in the comparison of neighboring trajectories, 
i.e. variations in the state and costate are examined. It is seen 
that equations 4.2.3.1 through 4.2.3.3 are equivalent to C.3-1 
through C.3-3 if U3 is restricted to be a scalar function of one 
independent variable, t realizing that maximization rather than 
minimization with respect to u§ is sought.
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C.4 Proof of Theorem 4.4 
Define the Hamiltonian
HtZj|Z2 fZj,Uj fUj fUj fAj »Xj) =
dj Uj (t)Rj (t)^ (t) + dg tr{R2 (t) [u3 (t) + u2 (t)u'(t) ]2 }

+ Aj (t) [A(t)zx (t) + B(t)Uj (t) + CCtJUj (t) ]
+ tr([F(t)z2(t) + z2(t)A'(t) + u3(t)C"(t)]X̂ (t)>
+ tr{[A(t)z3(t) + z (t)A"(t) + C(t)z,(t) + z;(t)C")t)]x;(t)} C.4-19 2 2  3

where the vector Xj(t) and the matrixes X2(t),X3 (t) are Lagrange 
multipliers. With the aid of the matrix maximum principle of Athans 
(10), the following result is obtained. In order that u.* (t) € U. ,t € r /

1  I X

i = 1,2,3 be the optimal strategies for Problem 4, it is necessary that 
there exist a nonzero vector function X3*(t) and nonzero matrix functions 
X2*(t) and A3*(t) such that conditions a), b) and c) of Theorem 4.4 
hold, as given in Section 4.2.4.
Proof:
Define the variations 
zi (t) = z±*(t) + 6zi(t)
û (t) = Uj* (t) + <5û (t) C.4-2
and using the standard variational approach, it can be shown that

SJa = / { [ (dH) + d X * r 6z.(t) + tr[6z-,(3H). + dx,*.] 
tD at l aza* dt }

+ tr[6z3"((3E)A + dx̂ *)] - X^*(tf)6zi (tf) 
dz3 dt

- tr[X2*(tf) 6Z2 (tf)] - tr[X3*(tf) 6 z3 (tf)] C.4-3
where (*) denotes that the function (•) is evaluated at *



137

z. = z.*,u. = u.* and X. = X.*, i = 1,2,3. If the state equations in
1  1 1  1 X I
4.2.4.1 through 4.2.4.3 are satisfied, and Xj*(t), i = 1,2,3 are 
selected so that the coefficients of <$z^(t), i = 1,2,3 in the integral 
are identically zero, and the boundary conditions of 4.2.4.7 and 
4.2.4.8 are satisfied, then
SJ = ff (3H)"6Ul + OH) 6u, + tr[6u:(3H) ]}dt C.4-4
a • 3u.* 1 3u * Su

to
To the first order approximation
OHj'fiu^t) = H(Zj*,z2*,z3*,ux* + fiu^u *,u *,X *,X2*,XS*)- H* C.4-5
3u

*Therefore, with - Uj* + 6uj,u2 = u2 * ' u 3 = u,

SJ = /f (3H) "Su-dt = 

t
{Hj - H*}dt C.4-6

to

Define a sufficiently small neighborhood of u* as
6U. ={6U. : II 6u.||<3. and u? + 6u. U.} C.4-7x x 11 x 1 1 x x X X

for i = 1,2,3 where the ^  are positive constants. For ux* to be 
a minimizing strategy it is necessary that 

t
= /fiHj - H*}dt > 0 C.4-8
to

for all 6Ujf fiUj. It can be shown as in Kirk (45) that in order for
C.4-8 to be satisfied for all 6u £ 6Uir it is necessary that
Hj > H* C.4-9
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In a similar manner, with Uj = u^*, u2 = u2* + 5u2 ,u3 = u3*
+ 6u, where u and u, are maximizing strategies, it can be shown that

3 2 3

H2 < H* C.4-10
and combining C.4-9 and C.4-10 yields conditions b) and c) of 
Theorem 4.4.
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APPENDIX D

SUFFICIENT CONDITIONS

In one-sided deterministic optimal control problems sufficient 
conditions determine whether the extremal solution obtained by the 
necessary conditions is a minimizing or maximizing solution. The 
technique often used is to see if the second variation of the augmented 
performance index is positive definite implying a minimizing extremal 
solution or negative definite implying a maximizing solution. In 
this approach, the restrictions on the variations lead to local 
sufficient conditions. This means the extremal solution is compared 
only to neighboring values of this solution. Global solutions can be 
obtained by comparing the value of the solution to all possible values, 
not only those due to neighboring solutions. The theory of convex functions 
is most often used to establish global sufficient conditions.

In two-sided deterministic optimal control problems, which are 
two player zero-sum differential games, the second variation technique 
is not as useful as the notions of convexity and concavity. The latter 
techniques were given for nonlinear programming problems in Saaty and 
Bram ( 94 ) and Wilde and Beightler (107). The approach of convex and 
concave functions was used to establish global sufficient conditions 
for a wide class of differential games in Kuo and Burbank (55) and 
Kuo (52).

The definition of a saddle point for the functional performance 
index of equation 5.1.3 is

J(zi,zI,z3,ui,Ui*,u'*,Xi*,Xi*,Xa*)AJi
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where now ( )* denotes optimal, not extremal. This equation can
be written as the two separate inequalities

the inequalities can be described. J^is J evaluated at u 1=ui*, the 
optimal condition, and at u^,u^ some non optimal conditions. The 
resulting trajectories for zx,ẑ , and za will not be optimal since

not optimal the value of J should be less than the value J* which is 
the maximum attainable at all optimal conditions.

ut minimizes, the value of J at non-optimal ut should be greater 
than the minimum attainable at all optimal conditions, J*. If the 
inequalities D.l-2 can be established for all non-optimal u^, u' 
and D.l-3 for all non-optimal ux, then global sufficient conditions 
have been found.
D.l proof of Theorems 5.1.1 and 5.1.2 

Proof of Theorem 5.1.1s 
First half:
It is sought to establish D.l-2 for the augmented performance 

index of equation 5.1.2.From D.l-1,

j -J*£0 D.l-2
and
J -J*>0 D.l-3

Recalling that it is sought to establish
min max j(u ;u^,u')
u€U u£U * * * *

D.l-4

u ,u" are not. Since u and u^ seek to maximize J, when they are4 9 4 *

Similarly, J is at optimal u.,*, u'* and non-optimal uA. Since
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J -j*= j j (z ,z ,3z »9z ,u ,1 ,*>X^*)- 

t t  * 3 37* 3 T  3O o

(Z'*/Z3*#3Z^*#9Z3*»U^*,X2*,X3*)}dtdx 
3t 3t

fee
+J {ni(z1,dzl,ui*,uzfX1*)-fli (z^*^dZî*^Uj*«uz*»XA*) }dt 
t„ at at

where and are defined in equations C.l-2 and C.l-3. 
properties of concavity it can be shown that

%  K ' Z> '2-gi ~az

tr[5z;(30,)']+trt6(3z:) (3B2 )']
* 37* T&zZ)37 

+tr[63zd{3fiv )"l+tr[6z,(3fl )"]+tr[6u"(30,)"]
37 373Z.) * i z 3 * 3 37:

37
But, from C.l-20 and C.l-30

* =^z* (t,x) A(t) +C"* (t) X3* (t,T)
oZjj

o n z );=-x:*(t,x)
3i3z:)* *

3 7

0 nz )"=-x"*(t,x)
3T3Z,) * J 3t

( 3 » v )  '=-z3*(t,T)RX+X:*(t,T)A(t)37; *
and

Ofiz)'=[C'(T)X;*(t,T)-u:*(t,T)R^Rz ] ' = 0

After substituting, D.l- 6 becomes
(zz,z3 ,3zz,3zr<,u.J,Xy*,X„*) — (zit*,z^*,3z^*,3za*,u„*,Xz

+tr[6z;[X"*(t,T)A<T)-KT(t)X *(t,T)]]-tr[6 & z ' ) K * (t,x)]* * 37

D.l-5 

Using the

D.l- 6

\ x 3*)<
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-trI6(3z,)A'*(t,T)]+trI6z [-z^ft/rjRfo+AJMt/TjAtt)]] D.l-7
W  3 3

Using the endpoint conditions
Szz(t,tQ)=6z'(t,tf)=6za(tQ,t)=6z t(tf,t )=0 

and integration by parts it can be shown that
tpt t t
-/£jf tr[6(3z£)A£*(t,T)]dtdT=JfJf tr[Sz*3A;*]dtdT D.l- 8
V o  ^7 V o

and
t t tft_

- J £Jf tr[«(az)i'*(t,l)]dtdT=J I tr[«2s3X;*]dtdT D.l-9
V o  ^  V o  ^

Substituting D.l-7 into D.l-5, and then substituting D.l- 8 and
D.l-9 gives 
t t
rfffJ I (Z., y Z ^ Sz ^ S z ^ U^, Av*,Aa*) t  t  St Sto o

-ftz(z**,z *,3z£*,3z *,<*,A*M *)}dtdi<0 D.l- 1 0
37 37' "

in view of C.l-23 and C.l-24.
Using the properties of concavity, and integration by parts

t
Jf {ft (z1,dzi,u1*,Uz,A *)-ftt (z^dz/,^*,^*,!,*) }dt£ 
tQ 3F 3t

V] {<6z,,(3ft1)J.>+<6dz1,Oft1 ) >+<6u„/3ftz) >}dt=
L  3? *  tt TTAzJ * 'Su *

1 3t
tJ f <6zi,A'(t)A1*(t)4dA/>+<6uz,-RHu/(t)+C'(t)Ai*(t)>}dt-0 D.l-11
t dt 1o

in view of C.l-22, C.l-25 and C.l-29. From D.l-10 and D.l-11,
D.l-2 is established.
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Second half:
It is sought to establish D.l-3 for the augmented performance

index of 5.1.2. From D.l-1, 
t t
toto 37 at

(z'*,z *,^*,dz^*txji;*,x2*,x *) }dtdT
3t 3t

?f D.l-12+J {ft1 (z1,dz1,u1,u2*,X1*)-ft1 (zi* # ^ l*rU**,uaE*,XA*) }dt 
tQ at dt

and from C.l-26 and C.l-27, if u' is then
z',z..dz', and 3z.. are evaluated at optimal conditions.

37* 3t^
Therefore D.l-12 goes to 

t
Jt-J*=jf {ftx (z ,dz ,ux,uz*,A *)-ft. (z *,dzl*fu 1*rui4*,Xl*) }dt D.l-13

t 3t 1 1 3t^o

Using the properties of convexity it can be shown that 

fli (zi»Sj|i»uit'h.*'**) (Z|*fdz.*>u.*,u>*,Ai*)>

<oui,(3ft1) >+<6z ,(3ft.) >+<6(dz,),(3ft1 )*> D.l-14
3u 3z| * 3t 3TdZx)

at
Frcm C.l-20 and C.l-28

(an, )it = 0  D.l-15
3u

then substituting D.l-15 into D.l-14 and the result into
D.l-13 gives 

t
j.nj* > jf {<6z1,(3fti> ^ K a t d z j , ^  ) >}at “ £o 3z * at 37dzi) *

at
Using the endpoint condition 
fizt(to)=6zA(tf ) = 0

D.l-16
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and integration by parts, it can be shown that
t
f <6z., On,).+dl,*>dt=0 D.l-17J 1-J*>jt <6z,,Qfl.),+dl,*>dfc=Q 

t Sz. <3t

in view of C.l-22 and C.l-25, thereby establishing D.l-3.
This completes the proof of Theorem 5.1.1.

Proof of Theorem 5.1.2:
The statement of Theorem 5.1.1 as given by equations 5.1.1.1 

and 5.1.1.2 follows directly from the proof of Theorem 5.1.1 in this 
Appendix.

In Saaty and Bram (94 ) and Parthasarathy and Raghavan (85 ) 
it is shown that the necessary and sufficient conditions such that
5.1.1.1 holds are that 
R3, are non-negative definite and symmetric. D.l-18

Since R 3 and R4 are assumed to be positive definite and symmetric 
for Theorem 4.1, they are non-negative definite, hence 5.1.1.1 holds 
true.

After a lengthy rearrangement of the s x s matrix u 3 into an 
s* x 1 vector of the columns of u 3 and similar rearrangements of 
za, Rx and Rz, it is seen that the
tr Rzu3u3r£ and tr R ^ z ^ R *  functions are 

equivalent to inner products of the columns of u 3 and Z j. Using 
theorems frcm Hohn ( 36 ) and Graybill ( 32 ), the weighting matrices 
of these inner products can be proven to be positive definite or 
positive semidefinite if Rx and Rz are positive definite or positive 
semidefinite respectively. Then the same approach is used to 
establish 5.1.1.2 as was done for 5.1.1.1, the result being
Ra , Rz are non-negative definite and symmetric. D.l-19
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Since Rx is assumed positive semidefinite and R^ positive definite, 
and both symmetric, from Theorem 4.1, equation 5.1.1.2 holds true, 
and the proof of Theorem 5.1.2 is complete.

Remark:
The positive definiteness of R , R and R establish D.l-2

* 3 H

and D.l-3 as strict inequalities, hence only one optimal solution 
can be obtained, if there is only one solution to the 2n(l + s + n) 
dimensional T P B V P.

Remark:
The sufficient conditions are global sufficient conditions 

since the convexity and concavity requirements are globed. Therefore, 
if only one solution of the T P B V P  exists, it is the unique global 
optimal solution.
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D.2 Proof of Theorem 5.2

The details of this proof are similar to the proof of Theorem 
5.1.2 except that terms in the variations Sz ^ t), 6u x (t) and 
6u 2 (t ) are included. As in the proof of Theorem 5.1.2 which 
includes the necessary conditions of Theorem 4.1, this proof re­
quires all the necessary conditions of Theorem 4.2. The convexity 
and concavity requirements are that
fQ is convex in ux (t) ,Ux (r) ,zl (t) and zt (t) 

and
f is concave in u2(t),u2(x),Zj (t),zx (t),u'(t,x),z£(t,x)

and zs (t,x).
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APPENDIX E

COMPUTER PROGRAMS
There were two main problems solved. The "worst case" 

optimal control problem, i.e. the differential game of Chapters 
4 and 5, and the parameter identification problem of Chapter 6 .
The four programs OPT ML, ANLPLT, Fl'î 'PT and VALUE were written 
to complete the solution of the differential game. The program 
PROBlP wag written to simulate the overall model reference 
adaptive system described in Chapter 6 . This program included 
both identification and suboptimal control. A description and 
a listing of each program is contained in this appendix. Flow­
charts for the programs OPTIML and PRQB1P are included. No 
flowcharts are given for the other three programs since they 
only contain straight forward calculations.

The assistance of Dr. F. Russel in creating a set of files which 
greatly eased the whole programming effort is acknowledged and 
was deeply appreciated. This set of files provided means to edit 
and execute any of the above five programs from a remote terminal 
in tie interactive mode and thereby saved much time and physical 
labor.

The complete analytic solution to the optimal problem was 
obtained by hand using two methods. First, the solution form of 
the equations presented in Appendix A was used. Also, the two 
dimensional Laplace transform technique of Kuo (54 ) was 
extended and applied. Both methods yielded identical results.
The complete solution was differentiated by hand insuring that the 
results actually did satisfy the differential equations and
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endpoint conditions of Theorem 4.1 . The convexity and concavity 
requirements of Theorem 5.1 were satisfied, hence the solution 
obtained was the unique, optimal, global solution.

The program OPTIML simulated the differential equations 
of all the variables which were functions of t only. Numerical 
integration of the ordinary differential equations was carried 
out with double precision arithmetic. The results agreed exactly 
with those obtained by hand. A program to numerically evaluate 
the functions of two .independent variables was not written directly, 
but could be in terms of either of the methods used to obtain 
the solutions by hand. Shooting techniques could be employed 
to solve the TPBVP of these variables rather than the actual 
algebraic hand calculations which were made.
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Both open loop and closed versions of OPHML were run, the only 
difference being the form of the differential equations. In 
Figure E.2 is the program listing and Figure E.3.1 through
E.3.4 contain the actual plots obtained by ccmputer.
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For X or K
Obtain initial conditions

Retrieve data
Plot out trajectories

Matrix elements,times,
Initial conditions,tolerances

Read in data

O.D.E.'s over T-i storing

Using DDESP,FUNC1,0UT1
Data as integration proceeds

Integrate

Figure E.l Flowchart for optimal problem
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PROGRAM OPT I  ML 
H.  BURBANK E *E *D EP T•

PROBLEM 1 WITH PLOTS 
DOUBLE PRECISION YSTART*XSTART*XEND*H*EP*SP*Y*DY*X*TSTART*TEND  
DOUBLE PRECISION A* B * C* R3 * R4  
EXTERNAL FUNC1*DSE*OUTl  
DIMENSION Y ( 2 ) * D Y ( 2 ) * YSTART( 2)
DIMENSION Z ( 2 ) * F < 5 1 ) » T I M E ( 5 1 ) * U 1 ( 5 1 ) *U2<51)
REAL X X * T I M E * F * U 1 * U 2  
COMMON NOFNS* A* B * C * R 3 * R 4  
NOFNS=0 
REWIND 40

N=2

TSTART=0.

TEND=1•

H = 0 . 0 2

E P = 0 . 0 0 01

A=~3.
B=2 •
C = l ,

R 3 = l .
R 4 = l .
D D = - B * ( 1 . / R 3 ) * B + C * ( 1 . / R 4 ) * C

Y ( 1 ) =Z1 
Y(2)=LAMBDA1

Z1 ( 0 ) = 5 .
Z 1 <1 ) = 0  * 1 

P U S5#
P I 2 = 0 . 1  
YSTART( 1 ) = P I 1
YSTART(2)  = ( - A # ( P I 2 - P I 1 < M D E X P ( A * T E N D ) ) ) ) / ( DD#DSINH( -ATTEND) ) 
WRITE < 6* 1 0 )  ( Y S T A R T ( I ) *1 = 1 * 2 )

10 F O R M A T ( 5 X * * I C » S * « 2 E 1 5 * 6 )

SP=0*02

CALL DDESP(SP*FUNC1»N»YSTART*TSTART*TEND*H*EP*DSE*0UT1* 6 9 9 )
GO TO 98  

99  CALL DERROR 
98 WRITE( 6 * 5 )  NOFNS 

5 FORMAT(1H *5X*36HT0TAL NO OF FUNCTION EVALUATIONS I S  * 1 6 )  
ENDFILE 40  
DO 100 K = 1 *2



REWIND 40  
DO 200  L=»l*51
READ( 4 0 * 3 0 )  X X * ( Z ( I ) *  1 = 1 * 2 )  

30 FORMAT(3E15.6 )
F ( L ) = Z ( K )

200  T I M E ( L ) = X X
CALL P L T V A R ( T I M E * F * 5 1 )
6 0  TO ( 1 0 0 0 * 1 0 0 1 ) *K

1000 WRI TE( 6 * 3 0 1 )
301 FORMAT(20X* * F ( T ) = Z 1 < T ) • )

GO TO 100
1001 WRI TE( 6 * 3 0 2 )

302  FORMAT(20X* * F ( T ) = L A M B D A 1 ( T ) » 
100 CONTINUE

DO 735  J = 1 *51
U 1 ( J ) = S N G L ( - B / R 3 ) # F ( J)

735  U 2 ( J ) = S N G L ( C / R 4 ) » F ( J )
CALL PLTVAR( TIME* U1* 5 1 )
WRITE( 6 * 3 0 5 )

305  FORMAT(20X* » F ( T ) = U 1 ( T ) * )
CALL PL TVAR( T I ME* U2* 51 )
WRITE( 6 , 3 0 6 )

306  FORMAT(20X* * F ( T ) = U 2 ( T ) * )
STOP
END
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SUBROUTINE FUNC1(Y*T*DY)
DOUBLE PRECISION A *B *C* Y* T* DY *R3* RA* DD  
DIMENSION Y ( 2 ) * D Y ( 2 )
COMMON NOFNS*A*B*C*R3*R4  
D D s - B * ( 1 » / R 3 ) * B + C # ( 1 , / R 4 ) * C  
D Y ( 1 ) * A ttY ( 1 ) + DD *Y(2)
D Y ( 2 ) = - A * Y < 2 >
NOFNS=NOFNS*l
RETURN
END



SUBROUTINE OUT1<Y*DY*N*X*SPTYPE* 
LOGICAL SPTYPE 
REAL Z»XX
DOUBLE PRECISION Y*DY*X 
DIMENSION Y (2)*DY(2)»Z(2)
IF(•NOT.SPTYPE) GO TO 100 
DO 20 K=1»N 

20 Z(K)-SNGL(Y(K))
XX=SNGL(X)
WRITE(40*10) XX*(Z(K>*K=1*2>

10 FORMAT(3E15t6)
100 RETURN 

END



SUBROUTINE P L T VA R ( T . F . N P)
REAL* *  L I N E ( 5 1 ) * F ( 1 ) * T ( 1 )
DATA BLANKtDOTtSTARfDASHtZERO/ lH • 1 H . . 1 H * . 1 H - . 1 H 0 /  
DO 101 J = 1 . 5 1

101 L I N E ( J)aDOT  
DO 127 Ls l • 10

127 L I N E ( 5 * L + 1 ) =DASH 
L I N E ( 2 6 ) -ZERO 
L I N E ( 1 ) =DASH 
PRINT 800  

800 FORMAT(1H1)
PRINT 1 0 2 .  L INE

102 FORMAT( I X  * 5 1 A 1 * 5 X * » T I M E * * 7 X » * F ( T ) »)
DO 103 J - l . 5 1

103 L I NE  ( J ) s BLANK 
L I N E ( 2 6 ) =DOT 
PM=ABS(F( 1 ) )
DO 10* M=*2»NP
I F (P M  «GE. A B S ( F ( M ) ) )  GO TO 1 0 *

105 PM=ABS(F(M) )
1 0 *  CONTINUE

I F ( P M . EQ.  0 . 0 )  PM=1. 0  
DO 107 M=1.NP 
J = 2 5 * 0 * F ( M ) / P M + 2 6 . 5  
L I N E ( J)sSTAR
PRINT 1 0 6 .  L I N E . T ( M ) * F ( M )

106 FORMAT( I X  . 5 1 A 1 . F 1 0 . * . E 1 5 , 6 )
L I N E ( J)=BLANK
L I N E ( 2 6 ) =DOT

107 CONTINUE 
RETURN 
END

155

Figure E.2 Listing of program OPTIML
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* • • * TIMS R T >

• * o.onoo 0.900000E
• * 0 . 0 2 0 0 0.470793E
• • 0,0400 0,443201E
• .. * 0.0600 0.417366E
, * 0 . 0 0 0 0 0.392954E
, * o.inoo 0.369956E
• '« 0 . 1 2 6 0 0.348291E
• o 0.1400 0«327880E
• * O . l n O O 0 .308650E
. « o.iodo 0.290532E
• * 0 . 2 6 6 0 0.273459E
• • 0.2200 0,257372E
♦ ft 0.2400 0.242211E
♦ ft 0.2600 0.227922E
, « 0.2000 0 . 214454E
. * 0 • 3 n h Q 0.2017596
« •* 0,3200 0.189790E
, • « 0.3400 O.178504E
t

, ft 0.3600 0 . 167861E
, ft 0 .3000 0.157823E
t « o.4ndo 0.148353E
• < 0.4200 0.139417E
• * 0 . 4400 0.1309046
• ft 0.4600 0.123022E

ft 0.4000 0.1155036
ft 0 . 5 6 fl 0 0.108399E

, ft 0.5200 0.1016876
, ft 0,5400 0.9534036
. ft 0.5600 0.893371E
• • ft 0,5000 0.8365566
• ft 0 . 6 0 0 0 0.782753E
• ft 0,6200 0.7317706
• ft 0.6400 0.6834216
, ft 0.6600 0.637534E
• ft 0.6800 0.5939426
. ft o.7ndn 0.552489E
• ft 0.7200 0.5130266
I • * 0.7400 0.475410E
• * 0.7600 0.4395076
i ft 0,7000 0 .405186E
« * 0 .8 ddo 0.3723246
• * 0 . 8 2 0 0 0 .340802E
, ft 0 .8400 0.310508E
. * 0 .8600 0.281333E
, * 0,8800 0.2531706
, * 0.9000 0.2259196
* * 0.9?00 0.199481E
• * 0 .9400 0.173762E

0.9600 0.1486696
. * 0.9800 0.124111E

1 .0 0 0 0 0 .100000E
F ( T ) s Z K T )

Figure E.3.1 Plot of z^
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TIME
• * o.oooo
. * 0 , 0 2 0 0
. * 0 . 0 4 0 0
, * 0 . 0 6 0 0
. * 0 . 0 8 0 0
• * o . i h o o
* 4 0 . 1 2 0 0
. * 0 . 1 4 0 0
, * 0 . 1 6 0 0
• * 0 . 1 8 0 0
. 4 0 . 2 0 0 0
, 0̂  
.
.
.»

•
•

0 . 2 2 0 0  
0 . 2 4 0 0  
0 . 2 6 0 0  
0 . 2 8 0 0  
0 . 3 0 0 0  
0 . 32O0  
0 . 3 4 0 0

• * 0 . 3 6 0 0
• « 0 . 3 8 0 0
• 6 0.  4000
f # 0 . 4 2 0 0

0 0 . 4 4 0 0
9 0 0 . 4 6 0 0

* 0 . 4 8 0 0
9 • 0 . 5 0 00
9 * 0 . 5 2 0 0
9 0 0 . 5 4 00
9 0 0 . 5 6 0 0
• 0 0 . 5 8 0 0
9 0 0 . 6 0 0 0
• 0 0.6200
9 0 0 . 6 4 0 0
9 0 0 . 6 600
9 * 0 . 6 8 0 0
9 0 . 7 0 00
9 0 0 . 7 2 0 0•
9 * 0 . 7 4 0 0
9 0 0 . 7 6 0 0
| « 0 . 7 8 0 0
| * 0.8000
9 0 0 . 8 2 0 0
9 0 0 . 8 4 0 0
9 « 0 . 8 6 0 0
• 0 0 . 8 8 00
9 0 0 . 9 0 0 0
9 0 , 9 2 0 0
9 « 0 . 9 4 0 0
9 ■0 0 . 9 6 0 0
9 0 0 . 9 8 0 0
9 0 l.oodo

Fit) 
0.148670E O.157063E 
0•167625E 
0 1177990E 
O.180996E 
0.200683E 
0.213Q92E 
0.226269E 
0.240261E 
0.2551186 
0.270894E 
0.2876456 
0 .3054322 
0.3243196 
0.344373E 
0 .3656686 
0.3882806 
0.4122906 
0,4377846 
0.464855E 
0.4936006 
0.524123E 
0.5563336 
0,9909476 
0.6274896 
0.6662916' 
0.7074926' 
0.751241E- 
0,7976956- 
0.8470216- 
0.8993986- 
0.9550146- 
0.1014076 
0.1076786 
0.1143366 
0.1214066 
0.128913E 
0.136885E 
0 .1453506 
0.1543376 
0,163881E 
0.1740156 
0.184775E 
0 .196201E 
0.208334E 
0 .2 2 1 2 1 6 E 

2348966 
249421E 
2648446 
2812216 
298611E

0 . 
0 . 
0 . 
0 . 
0 .

F<T)  = U M B D U < T >

Figure E.3,2 Plot of
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* 1
T I M E F  *f T )

ft. o  t o r i n o «0 .2973401
ft 9 0 9 0200 -0, 3157261
*  t 0.0400 «0 . 3352501
*  . o  . o j . n o -0.3559801

#  1 0 . 0 0 0 0 -0.3779921
ft , o . i n o o -0 .4013661
•  • 0 . 1 2 0 0 -0.4261841

0.1400 - 0 .4525381
#  t 0 . 1 6 0 0 -0.4805221
*  1 0 . 1 0 0 0 -0 .5102361
ft 9 0 . 2 0 0 0 -0,5417881
* • 0 . 2 2 0 0 -0.5752901

ft . 0.2400 - 0  .6108641
ft t 0 . 2 6 0 0 -0,6486381
•  9 0 . 2 0 0 0 -0.6887461
»  , 0.3000 -0.7313361
« , 0.3200 -0,776560!
»  • 0.3400 -0.824580!

ft • 0 .3600 -0.875568!
*  • 0.3000 -0.929710!
•  9 0 .4000 -0.987200!
«  , 0.4200 -0.104825!

ft • 0.4400 -0.llj.307!
ft , 0.4600 -0.118189!
ft »' 0,4800 -0.125498!

* • 0.5000 -0,133258!
* 9 0 .5200 -0.141498!
ft • 0.5400 -0.150248!

» , 0.5600 -0.159539!
ft . 0.5800 -0.169404!

* • 0 . 6 0 0 0 -0 .179880!
ft , 0 . 6 2 0 0 -0.191003!
ft 9 0.6400 -0.202814!

* • 0.6600 ;0.2153565
ft 0.6800 -0.22R672E
« • 0.7000 -0.242812E

# • 0.7200 -0.257826E
ft .. 0.7400 -0.273770E

ft 9 0.7600 -0.290700E
* 9 0.7800 -0.308674E

ft o . 8 0 6 0 -0.327762E
ft • 0 . 8 2 0 0 -0.348030E
ft 9 0.8400 -0.369550E

ft * 0.8600 -0.392402E
ft 1 0.8800 -0 .416668E

• 0.9000 -0.447432E
9 0.9200 -0.469792E
9 0.9400 ^O,49R842E
9 0.9600 *0 .529688E
9 0.9800 -0.562442E
9 1 . 0 0 0 0 -0.597222E

F ( T ) a U l ( T )

Figure E.3.3 Plot of



159
. , . . * TIME F < T >

o.onnf i 0 . 1 4 R 6 7 0 E -
o .o?oo 0 . 1 5 7 8 6 3 E -
0 . 0 4 0 0 0 . 1 6 7 6 2 5 E -
0 . 0 6 0 0 0 . 1 7 7 9 9 0 E -
o . oado 0 . 1 8 8 9 9 6 E -
o . i n n o 0 . 2 0 0 6 8 3 E -
0 . 1 7 0 0 0 . 2 1 3 Q 9 2 E -
0 . 14O0 0 . 2 2 6 2 6 9 E -
o . i 6 o o 0 . 2 4 0 2 6 1 E -
o . i a d o 0 . 2 5 5 1 1 8 E -
0 . 2 0 0 0 0 . 2 7 0 8 9 4 E -
0 .22(10 0 . 2 8 7 6 4 5 E -

a 0 . 2 4 0 0 0 . 3 0 5 4 3 2 E -
• 0 . 2 A0 0 0 . 3 2 4 3 1 9 E -

0 . 2 0 0 0 0 . 3 4 4 3 7 3 E -
* 0 . 3 0 0 0 0 . 3 6 5 6 6 8 E -
* 0 . 3 7 0 0 0 . 3 8 8 2 0 O E -
« 0 . 3 4 0 0 0 . 4 1 2 2 9 0 E -
. * 0 . 3 6 0 0 0 . 4 3 7 7 8 4 E -
* 0 . 3 0 0 0 0 . 4 6 4 8 5 5 E -
« 0 ,4t ido 0 . 4 9 3 6 0 0 E -

0 . 4 2 0 0 0 . 5 2 4 1 2 3 E -
« 0 . 4 4 0 0 0 . 5 5 6 5 3 3 E -
« 0 . 4 600 0 . 5 9 o 9 4 7 E -
« 0 . 4 0 0 0 0 . 6 2 7 4 8 9 E -

» 0 . 5 0 0 0 0 . 6 6 6 2 9 1 E -
« 0 . 5 7 0 0 0 . 7 0 7 4 9 2 E -
« 0 . 5 4 0 0 0 . 7 5 1 2 4 1 E -

ft 0 . 5 6 0 0 0 . 7 9 7 6 9 5 E -
' ft 0 . 5 0 0 0 0 . 8 4 7 0 2 1 E -

ft 0.6(100 0 . 8 9 9 3 9 8 E -
ft 0.6200 0 . 9 5 5 0 1 4 E -
« 0 . 6 4 0 0 0 . 1 0 1 4 0 7 E
■ft 0 . 6 6 0 0 0 . 1 0 7 6 7 8 E

* 0 . 6B0 0 0 . 1 1 4 3 3 6 E
« 0 . 7 0 0 0 0 . 1 2 1 4 0 6 E

ft 0 . 7 2 0 0 0 . 12 89 1 3E
« 0 . 7 4 0 0 0 . 1 3 6 8 8 5 E

ft 0 . 7 6 0 0 0 . 1 4 5 3 5 0 E
ft 0 . 7 8 0 0 0 . 1 5 4 3 3 7 E
ft 0 . 8 0 0 0 0 . 1 6 38 8 1E

« 0 . 8 2 0 0 0 . 1 7 4 0 1 5 E
« 0 . 8 4 0 0 0 . 1 8 4 7 7 5 E
ft 0 . 8 6 0 0 0 . 19 62 0 1E

« 0 . 8 8 0 0 0 . 20 83 3 4E
« 0 . 9 0 0 0 0 . 2 2 1 2 1 6 E

« 0 . 9 2 0 0 0 . 23 48 9 6E
« 0 . 9 4 0 0 0 . 2 4 9 4 2 1 E

ft 0 . 9 6 0 0 0 . 2 6 4 8 4 4 E
« 0 . 9 8 0 0 0.281.221E
ft 1 . 0 0 0 0 0 • 298611E

F ( T ) = U 2 C T )

Figure E.3.4 Plot of u2
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The programs ANLPLT and P1TTPT were written to obtain computer 

plots of all the states and controls. Program VALUE evaluated 
the performance index, J for optimal states and controls. They are 
listed in Figures E.4, E.5, and E.6 . The results of these 
programs are given in Chapter 7.
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PROGRAM ANLPLT
DIMENSION Y(5)*YY(51).TT<5I)
REAL*A LM80I 
T=0.
TF=1.
DELTAT=(TF-T>/50.
PI1«5.
PI2=0.1
A=-3.
B=2.
C=»U
R 3 s l .
R 4 = l .
DD=-B* ( 1. /R 3 >  *8*C# (1 . /R 4 >  *C  
E T A = ( - A ) # ( P I 2 - P I l * E X P ( - 3 . ) > / <DD »SINH (3«>)
REWIND 30

100 Z1=PI1*EXP(«3.*T) + (DO/(-A))*ETA#(SINH(-A*T>>
Y (1) =Z1
LMBD1=ETA»EXP(-A*T>
Y(2)=LMBD1
U1=(-B/R3)«LMBD1
Y(3)-U1
U2=(C/RA)#LMBD1 
Y(4)=U2
G=(-A*ETA»2.)/(ETA*DD-<A*PI1»2.♦ETA^DD)*EXP<-6*#T)) 
Y (5)=G
WRITE(30*10) Tt(Y CI)*1 = 1*5)

10 FORMAT(6E15.6)
T=T+DELTAT
IF(T.LT.TF) GO TO 100 
ENDFILE 30 
DO 5 K=1,5 
REWIND 30 
DO 6 J=1»51
READ(30.10) T*(Y(I)t1=1*5)
YY(J)SY <K)

6 TT(J)»T
5 CALL PLTVAR(TTfYY*51)

STOP
ENO

Figure E.4 Listing of program ANLPLT



PROGRAM P1TTPT
H.  BURBANK E .E .D E P T .
REAL LMBD2*LMBD3 
DIMENSION Y < 5 ) * Y Y < 5 1 ) * T T < 5 1 )
E K = - 1 . / 1 2 .
E L = 1 . / 1 4 4 .
EM=1 •
EN=10.
WRITE( 6 * 1 )  E K .E L*EM .£N

1 F O R M A T ( 5 X * » K = » * F 1 0 . 5 * » L = * * F 1 0 . 5 * » M = t * F 1 0 . 5 * » N = » * F 1 0 . 5 )  
A A = EM -E L /12 .
A B = -E K /2 4 .
A C = E L /12 .
A D = -E K /4 8 .
A E = E K /16 .
WRITE( 6 * 2 )  AA.AB.AC.AD.AE

2 F 0 R M A T ( 5 X * » A A = » * E 1 5 .6 * » A B = * * E 1 5 . 6 * » A C = » * E 1 5 . 6 * » A D = » * E 1 5 .6 * » A E *  
1 E 1 5 .6 )

A F = E N -E K /9 6 .
A G = - 0 , 5 * ( E M - ( E L / 1 2 . ) - ( E K / 1 4 4 . ) )
A H = - I . « ( ( E L / 2 4 . ) - ( E K / 2 8 8 • ) )
A I = 0 . 5 * ( E M - ( E L / 1 2 . ) )
WRITE( 6 * 3 )  AF*AG*AH*AI

3 FORMAT(5X»«A F = » * E 1 5 , 6 * » A G = » * E 1 5 . 6 * »A H = » . E 1 5 . 6 * • A I = » . E 1 5 . 6 )  
A J = - E K / 1 4 4 ,
A K = E L /2 4 .
A L = - E K /2 8 8 .
AM=EK/96 .
WRITE( 6 * 4 )  A J *A K *A L * AM

4 F O R M A T ( 5 X . ' A J = » * E 1 5 , 6 * « A K = » . E 1 5 . 6 * » A L = » . E 1 5 . 6 * » A M = » . E 1 5 . 6 )  
AN=EL
A 0 = - E K / 4 .
AP=EK/4 ,
W RITE( 6 * 7 )  AN*AO*AP

7 FORMAT(5X**AN=* * E 1 5 . 6 * t A O = i . E 1 5 . 6 * »A P = » * E 1 5 .6 )
AQ=EK
WRITE( 6 * 8 )  AQ

8 FORMAT(5X* *AQ=» » E 1 5 .6 )
C l = ( E N - ( E K / 9 6 . ) ) * E X P ( - 3 . ) M E K / 9 6 . ) * E X P ( 3 . )
C 2 = - 0 . 5 < M E M - ( E L / 1 2 .  ) - ( E K / l 4 4 . ) ) #EXP(-3.>♦ O . S # ( E M - ( E L / 1 2 ) ) *

1 EXP( - 1 . ) - ( E K / 1 4 4 . ) #EXP( 3 . )
C 3 = - l . * ( ( E L / 2 4 . ) - ( E K / 2 8 8 . ) ) #E X P ( - 3 . ) + ( E L / 2 4 . ) * E X P ( - 1 , ) - (E K /2 8 8  

1 EXP(3 )
D l = ( E M - ( E L / 1 2 . ) ) #E X P ( - 3 . ) ♦ ( E L / I 2 . ) * E X P ( 3 * )
02=-1• '*(EK/24.)#EXP(-3.)-1•#(EK/48.)ttEXP(3.)♦(EK/16.)*EXP(M.) 
WRITE(6*10) 01*02

10 F O R M A T (5 X » * D * S * * 2 E 1 5 .6 )
WRITE( 6 * 1 1 )  C 1 .C 2 .C 3

11 F O R M A T ( 5 X . * C * S * * 3 E 1 5 . 6 )
WRITE( 6 * 1 3 )



13 F 0 R M A T ( 5 X * » Z 2 ( T * 1 ) = D 1 # E X P ( - T ) + D 2 * E X P < 3 * T ) * )
W RITE( 6 # 1 4 )

14 FORMAT <5X* t Z3 < 1 * TAU) = C1*E XP(-TAU )  +C2*EXP <-3«»TAU) ♦C3*EXP ( 3 « T A U ) ») 
TAU=0.

90 T = 0 .
REWIND 27  
T F = 1 .
D E L T A T = ( T F - T ) / 5 0 .

100 EP1T=EXP(T)
EM 1T=EXP(-T )
E P 3 T = E X P ( 3 . * T )
EM 3T=EXP(~3*»T)
EP1TAU=EXP(TAU)
EM1TAU=EXP(-TAU)
EP3TAU=EXP(3 .*TAU)
EM 3TA U=EXP(-3 .*TA U)
Z2=AA*EM1T*EM3TAU+AB*EP3T*EM3TAU«-AC#EM1T#EP3TAU*AD»EP3T<»EP3TAU 

1 *AE*EP3T»EM1TAU  
Z3=AF*EM3T*EM1TAU*AG#EM3T*EM3TAU*AH*EM3T»EP3TAU+AI*EM1T#EM3TAU  

1 ♦AJ*EP3T*EM3TAU+AK*EM1T*EP3TAU+AL#EP3T*EP3TAU*AM#EP3T»EM1TAU  
LMBD2=AN»EM1T#EP3TAU+A0»EP3T*EP3TAU+AP#EP3T«EM1TAU 
LMBD3=AG#EP3T«EM1TAU 
U3=LMBD2/2 .
Y ( 1 ) =Z2  
Y ( 2 ) =Z3  
Y(3 )= L M 8 D 2  
Y ( 4 ) =LMBD3 
Y ( 5 ) = U 3
WRITE( 2 7 * 1 2 )  T * ( Y ( I ) * 1 = 1 * 5 )

12 FORMAT(6E15«6)
T=T+DELTAT
I F ( T . L T . T F )  GO TO 100  
ENDFILE 27  
DO 5 K = 1 *5  
REWIND 27  
00  6 J = 1 ,5 1
READ< 2 7 , 1 2 )  T , ( Y ( I ) *  1 = 1 * 5 )
Y Y ( J ) = Y ( K )

6 T T ( J ) = T
CALL P L T V A R (T T *Y Y *5 1 )
GO TO( 1 0 0 1 , 1 0 0 2 * 1 0 0 3 , 1 0 0 4 * 1 0 0 5 ) *K

1001 W RITE( 6 * 3 0 1 )
301 F O R M A T ( 2 0 X , * F ( T ) = Z 2 ( T * T A U ) * )

WRITE( 6 * 5 0 0 )  TAU
500 FORMAT(20X* * TAU=* * F 1 0 # 4 )

GO TO 5
1002 W RITE( 6 * 3 0 2 )

302  F O R M A T ( 2 0 X , * F ( T ) = Z 3 ( T , T A U ) * )
WRITE( 6 * 5 0 0 )  TAU
GO TO 5



1003 WRITE( 6 * 3 0 3 )
3 0 3  FORMAT(20X* * F (T )= L A M B D A 2 (T * T A U ) * )  

WRITE( 6 * 5 0 0 )  TAU
GO TO 5

1004  WRITE( 6 * 3 0 4 )
304  FO R M A T(20X *»F(T )=LA M B O A 3(T*TA U )») 

WRITE( 6 * 5 0 0 )  TAU
GO TO 5

1005 WRITE( 6 * 3 0 5 )
3 0 5  FORMAT(20X* * F ( T ) = U 3 ( T * T A U ) * )

W RITE( 6 * 5 0 0 )  TAU
5 CONTINUE 

ENDFILE 27  
TAU=TAU+0.2
IF(TAU*LT*TF) GO TO 90
STOP
END

Figure E.5 Listing of program P1TTPT
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PROGRAM VALUE 

C H.  BURBANK E .E .D E P T .
F(A)3(EXP(A)-1.)/A
A=-3.
8=2.
C = l .
R 3 = l  •
R 4 = l .
DD*-B»(1. / R 3 ) *B+C#(1 . / R 4 ) *C 
P I  1=»5.
P I 2 = 0 . 1 
E K = - 1 . / 1 2 .
E L = 1 . / 1 4 4 .
EM«1.
EN=I0.
RT s ( - A ) # ( P I 2 - P I l # E X P ( - 3 . ) ) / ( D D * S I N H < 3 . ) ) 
W R ITE (6»2 )  RT 

2 FORMAT ( 5 X * * R T = * * E 1 5 . 6 )
V = 0 .5 * R T *R T # F  ( 6 . )
V V = - 0 . 2 5
VA=VV»EL*EL*F (-2.) #F <6.> 
VBsVV*(EK*EK/16.)#F<6.)*F(6.>
VC=VV*(EK*EK/I6.)#F(6.)*F(-2.)
VD=VV*(-EL*£K/A,0)*F < 2,)*F <6.)*2.
VE=VV* <EL»EK/4.)#F < 2 . ) *F ( 2 . ) * 2 .
VF=VV*(-EK»EK/16.)*F <6.)*F(2.)*2.
WRITE(6»3)V 
WRITE(6*3)VA 
WRITE(6*3)VB 
WRITE(6f3)VC 
WRITE(6t3)VD 
WRITE(6*3)VE 
WRITE <6*3)VF 

3 FORMAT(5X*E15.6)
VALUE=V+VA«>VB+VC+VO*VE+VF 
WRITE(6»1) VALUE 

1 FORMAT(5X»*VALUE=»»E15.6)
STOP
END

Figure E.6 Listing of program VALUE



The combined identification and suboptimal control was 
verified by the simulation of the model reference adaptive 
system of Chapter 6 by the program P R O B 1 P, The flow 
chart is contained in Figure E.7. The listing of P R 0 B 1 P 
is given in Figure E.8 . Hie actual results are contained in 
Ci lapter 7. Several examples were run for different sets 
of unknown parameters.
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END

Read in data

End of I\?

Obtain I.C.'s

First sampling period?Initialize

and a new y
Evaluate AJ(Ay

Percent change in 
J < stopping criteria?

Integrate for one
Sampling period

Figure E.7 Flowchart for identification problem
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_  PROGRAM PROB1P

C H ,  BURBANK E . E . D E P T .
C PROBLEM 1 WITH PLOTS

DOUBLE PRECISION YSTART*XSTART*XEND*H*EP*SP*Y.DY*X*TSTART*TENO  
DOUBLE PRECISION A*B»C*R3*R4*APLT*BPLT*CPLT*V«DD  

DOUBLE PRECISION PTS*DELTAT*PI  1 * P I 2 * ASTART*BSTART*TOTA*TQTB 
DOUBLE PRECISION TINT*TSTRNU*TENDNU*PTSINT*TCHG*PJNORM  
DOUBLE PRECISION S T A T E *D IF F * SUMtMEAS.MEASOL* XX*MEAS1
DOUBLE PRECISION d e l a , d e l b * d e l j * s c a l e k * p j w r t a * p j w r t b . p c t c h g
DIMENSION STATE( 3 ) * D I F F (3 0 )
EXTERNAL FUNC1*DSE*OUTl  
DIMENSION Y ( 3 ) * D Y ( 3 ) tYSTART(3 )
DIMENSION Z ( 3 ) * F ( 5 0 1 > . T I M E ( 5 0 1 ) * U 1 (501> * U 2 ( 5 0 1 ) * T I M E L (501>  

DIMENSION F F (5 0 1 )
DIMENSION VNOISE(4 )
REAL T IM E * F * U 1 * U 2
COMMON NOFNS♦A* 8 * C * R3 »R4 * APLTt BPLT* CPLT » V 
V = 0 .
A P L T a - 4 .
B P LT«3 ,0  
C P LT= 1 .0  
MEAS=0•
IFLAG=0  
NOFNS=0 
NTIMES=0  
REWIND 50  
REWIND 51 
REWIND 52

C NPTS I S  NOtS DELTA T*S  PLUS 1 FOR 0 .
C LPTS I S  NO, OF POINTS PRINTED OUT 

NPTS=440  
LPTS=A40
NMULT=(NPTS-1) / ( L P T S - 1 >
WRITE( 6 * 2 1 )  NMULT 

21 FORMAT(5X*6HNMULTS * 16)
P T S = 400 .
P I l s5 ,

P I 2 = 0 , 1
C

N=3
C

TSTART=0.
C

T E N D s l ,
C

DELTAT= (TEND**TSTART) /P T S
H=DELTAT
SP=DELTAT

C
C



no
 

o
n

o
o
o

o
o

T I N T = 4 0 .
N T IN T *4 0  
TSTRNU=TSTART 
TCHG=(TEND-TSTART) /T INT  
TENDNU=TCHG 
P T S IN T = P T S /T IN T  
N P T S IT s ( N P T S ) /N T IN T  
WRITE(692 2 ) PTSINT 9NPTSIT  

22  FORM AT(5X , 'PTS PER I N T » # E 1 5 . 6 , 5 X . 14)
C

E P * 0 . 0 0 2
C

A=»3*
Bs 2«
ASTART=A 
0START=B 
C = 1 .0  
R 3 = l  •
R 4 = l .
DD=-B# ( 1 . / R 3 ) * B + C *  (1 . / R 4 )  *C

Y ( 1 ) =Z1 
Y<2)=LAMB0AI  
Y ( 3 ) =XPLANT

Z 1 ( 0 ) = P I 1  
Z 1 ( 1 ) = P I 2  
XPLANT( 0 ) = P I 1 

YSTART( 1 ) = P I 1
YSTART (2 )  = ( - A #  (PI2">PI 1 *  (DEXP <A*TEND)) ) )  / (D D * D S IN H ( -A » T £ N D ) ) 
YSTART( 3 ) - P I l
WRITE(69 10) (YSTART( 1 ) 91 = 1 , 3 )

10 FORMAT(5X9»IC9S*9 3 E 1 5 .6 )

10000 CALL DDESP(SP9FUNCI9N9YSTART9TSTRNU9TENDNU9H9EP*DSE90UT1*&99) 
GO TO 98 

99 CALL DERROR 
GO TO 9999 

98 TSTRNU=TSTRNU«-TCHG •
TENDNU=TENDNU+TCHG 
IF(TENDNU.GT.TEND) GO TO 9900 
ENOFILE 51 
REWIND 51
DO 400 KL=1*NPTSIT 

400 READ(51,31) XX,(YSTART(I)*1=1,3)
31 FORMAT(4D25.16)

ENDFILE 51 
REWIND 51
WRITE(6,23) TSTRNU,TENDNU 

23 FORMAT(5X,’NEXT TIME INTERVAL IS FROM* 9E15«6t
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1 »T0»fE15.6t»WITH»)
WRITE (6* 10) (YSTART(I) »I«=1#3)
YSTART( 1 ) =YSTART(3 )

C
C
C
C
C PARAM CHG HERE
C 
C 
C

I F  ( IF L A G .G T .O )  GO TO 10000
MEASOL*MEAS
00  1300 J = 1 *N P T S IT
READ(51*31) XX*(STATE(I)* 1 = 1*3)
D I F F ( J ) = (STATE( 1 ) -S T A T E ( 3 ) ) # * 2

1300 W R I T E ( 6 * A 0 ) D I F F ( J )
AO FO RM AT(5X*D25 .16 )

ENOFILE 51  
REWIND 51

C
-  3 U M * u » 5 * ( D I F F ( l ) * D I F F ( N P T S I T ) ) 

NPTSIM=NPTSIT-1  
00 1301 J=2*NPTSIM

1301 SUM=SUM*DIFF(J)
MEAS=SUM*DELTAT»20.*25.
WRITE( 6 * 4 1 ) SUM

41 FORMAT(5X* ' 5UM=• * D 2 5 . 16)
WRITE( 6 * 1 3 0 2 ) MEAS 
I F  (NT IM ES.EQ .O )  MEAS1=MEAS 

PCTCHG= (MEAS/MEAS1) # 1 0 0 .
WRITE( 6 * 1 3 1 2 ) PCTCHG 

PCTCHG=ABS(PCTCHG)
1312  FORMAT(5X*'PERCENT CHANGE IN  M EAS=»*E15 .6 )
1302  FORMAT(5X* *MEAS=» * E 15«6 )

NTIMES=NTIMES+1
IF ( N T I M E S .G T * 1 )  GO TO 1303
MEAS1=MEAS
DELA=0.1*A
D E L 8 = 0 .1 *B
TOTA=DELA
t o t b =d e l b
A=A*DELA
B=B*DELB

W R IT E (6 *1 3 Q 4 )A *B  
1304  F O R M A T ( 5 X * » A = ' * E 1 5 . 6 * ' B = ' * E 1 5 . 6 )

GO TO 10000
1303 I F  (PCTCHG.GT.2 0 * )  GO TO 1305

I F  (PCTCHG.GT.1 5 . )  GO TO 1306  
I F  (PCTCHG.GT.1 0 . )  GO TO 1307



1305

1306

1307

1308  

1313

1314

1315

1316
1309  

1310

1319

1311

C
C

9900
5

30

I F  (PCTCHG.GT.5 . )  GO TO 1308  
IF (P CTC HG .G T. 2 . )  GO TO 1313  
I F ( PCTCHG.GT. 1 . )  GO TO 1314  
I F ( PCTCHG.GT. 0 . 1 )  GO TO 1315  
I F ( PCTCHG.GT. 0 . 0 5 )  GO TO 1316  
IFLAG =1 

GO TO 10000  
SCALEK=1.0  
GO TO 1309  
SCALEK=0.9  
GO TO 1309  
SCALEK=0.8  
GO TO 1309  
SCALEK=0.6  
GO TO 1309  
SCALEK=0.5  
GO TO 1309  
SCALEK=0.4  
GO TO 1309  
SCALEK=0.2  
GO TO 1309  
SCALEK=0.1  
W RITE( 6 . 1 3 1 0 ) SCALEK 
FORMAT(5X* *SCALEKat, £ 1 5 . 6 )
TOTA=ASTART-A
T0TB=BSTART-8
DELJ=MEAS-MEAS1
PJWRTA=DELJ/TOTA
PJWRTB=DELJ/TOTB
PJNORM=DSQRT( (PJW RTA#*2)♦ (PJW RTB»*2) )
W RITE( 6 . 1 3 1 9 ) PJNORM 
FORMAT(5X*»PJN0RM=* * E 1 5 . 6 )
W RITE( 6 , 1 3 1 1 ) OELJ.PJWRTA.PJWRTB
FORMAT(5X* *DELJ=» * E 1 5 . 6 *  »PJWRTA=» *E 1 5 .6 * » P J W R T B = i* E 1 5 .6 >
DELA=SCALEK*PJWRTA*0.8
DELB=SCALEK*PJWRTB*1. 3
A=A+DELA
B=B+OELB
W RITE( 6 * 1 3 0 4 ) A *8  
GO TO 10000

WRITE( 6 * 5 )  NOFNS
FORMAT(1H *5X*36HT0TAL NO OF FUNCTION EVALUATIONS I S  * 1 6 )
ENOFILE 50
00  100 K = l « 2
REWIND 50
DO 200  L=1*NPTS
READ( 5 0 * 3 0 )  X X * ( Z ( I ) • 1 = 1 * 3 )
FO RMAT(4E15.6 )
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F ( L ) = Z ( K )
200  T I M E (L )= X X

DO 2 05  JJ=1*LPTS
L L = 1 * ( J J - 1 ) » N M U L T
F F ( J J ) = F ( L L )

205  T I M E L ( J J ) = T IM E ( L L )
CALL PLTVA R(T IM EL*FFtLPTS)
GO TO ( 1 0 0 0 * 1 0 0 1 ) *K

1000 W RITE( 6 * 3 0 1 )
301 FORMAT(20X* » F ( T ) = Z 1 ( T ) » )

GO TO 100
1001 W RITE( 6 * 3 0 2 )

302  FO R M A T (20X *»F (T )= L A M B D A 1(T )» 
100 CONTINUE

DO 735 J=1*LPTS  
U 1 ( J ) = S N G L ( - B / R 3 ) * F F ( J )

735  U 2 ( J ) = S N G L ( C / R 4 ) * F F ( J )
CALL PLTVAR(TIMEL*U1*LPTS)  
WRITE( 6 * 3 0 5 )

305  F O R M A T ( 2 0 X * * F ( T ) = U 1 ( T ) »)
CALL PLTVAR(TIMEL*U2*LPTS)  
WRITE( 6 , 3 0 6 )

3 06  F O R M A T ( 2 0 X , * F ( T ) SU 2 ( T ) • )
9 9 9 8  ENDFILE 52  

REWIND 52
DO 500  K=1*NPTS  
READ( 5 2 , 5 3 0 ) WW 

500  U2(K)=WW
CALL PLTVAR(TIMEL*U2*NPTS)  
W RITE( 6 * 5 3 1 )

531 F O R M A T ( 2 0 X * * F ( T ) = V ( T ) * )
530  FORMAT(E15.6)

9 9 9 9  STOP 
END



SUBROUTINE FUNC1( Y*T*D Y)
DOUBLE PRECISION A*B *C *Y *T*D Y *R 3*R 4*D D tA P LT*B P LT# C P L T*V  
DIMENSION Y ( 3 ) * D Y (3 ) * V N O IS E < 4 )
COMMON NOFNS* A * B * C t R3 * R4 * APLT * BPLT* CPLT * V 
CALL RAN6EN( V N 0 IS E *4 )
V = V N 0 IS E (4 )
D D = - 8 * ( 1 , / R 3 ) * B * C * ( I » / R 4 ) * C  
D Y ( 1 ) = A * Y ( 1 ) + D D *Y (2 )
D Y ( 2 ) = - A * Y < 2 )
OY( 3 ) =APLT# Y ( 3 ) + B P L T * ( - 1 . / R 3 ) * B * Y ( 2 ) *CPLT*V
NOFNS=NOFNS+l
RETURN
END



SUBROUTINE RANGEN(VNOISEfN)  
DIMENSION VN OISE(2 0 )
CALL RANORM(VNOISE»4)
DO 1 K=1*N  

1 V N O I S E ( K ) = V N 0 I S E ( K ) / 6 .  
RETURN 
END



SUBROUTINE OUT1( Y ,D Y * N * X * S P T Y P E * * )
DOUBLE PRECISION A ,B ,C*R 3 ,R 4»A PLT»BP LT  

COMMON NOFNS* A * B » C , R 3 , R4 »APLT«BPLT, CPLT• 
LOGICAL SPTYPE 
REAL Z ,XX
DOUBLE PRECISION Y*D Y ,X  
DIMENSION Y ( 3 ) * D Y ( 3 ) » Z ( 3 )
IF ( .N O T .S P T Y P E )  GO TO 100 
DO 20 K=1 »N 

20 Z ( K ) s S N G L ( Y ( K ) )
XX=SNGL(X)
W RITE( 5 0 * 1 0 )  X X , ( Z ( K ) * K = 1 * 3 )
W RITE( 5 1 , 1 1 ) X , ( Y ( K ) , K = 1 , 3 )

11 FORMAT(4D25.16)
10 FORMAT(4E15.6)

W RITE( 5 2 , 1 2 ) V 
12 FORMAT(E15.6)

100 RETURN 
END

Figure E.8 Listing of program PFOB1P



APPENDIX F

MINIMUM COVARIANCE ESTIMATION 

For a plant
dx(t,.) = A(t)x(t,.) + B(t) u(t) + C(t)v(t,.) F.l
3t
with measurement
z(t,.) = H(t)x(t,.) + w(t,.) F.2
it is desired to obtain an optimal filter constrained by 
dx(t) = F(t) x(t) + G (t) z(t) + D(t)u(t) F.3
where F, G, and D are to be found. Define the error 
&(t,.) = x(t,.) - x(t) F.4
then
cft(t,.) = [A(t) - G(t) H(t) - F(t)]x(t.,) + F(t)%(t.,)
3t

+C(t)v(t,.) -G(t)w(t,.) + [B(t) -D(t)]u(t) F.5
If the filter is to be unbiased, then
e < Sft,.)) = Et aS(t,.)) =ovt£r,

3t 1 f .6
Equation F.6 holds if

D(t) = B(t) F.7
and

F (t) = A(t) - G(t) H(t) F.8
and if Uv(t) = p^Ct) = OVt^Ti or if not zero they are known 
Vt and can be subtracted out. With these conditions substituted, 
F.5 becomes
dx(t) = A(t)x(t) + G(t) [z(t) - H(t)x(t) ] + B(t)u(t) F.9
at
from which an optimal unbiased estimate can be generated once 
G(t) is found. The matrix G(t)is chosen to minimize the error
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covariances Wv,, V^^and at final times, i.e. at t^, 
according to the weighted performance measure

tftf
J(G) = J J tr{3 V ^ (t,T) + R(t)3Vyv;(t,T) 

t0t0 7 ? *

+S (t) 3V. XV (t,t) 4Q (t) av ̂  (t, t) }dtdT
3r^ d ? ™

F.10
The physical meaning of J is determined from the following diagram.

Since

V^(t,T)

T

Figure F.l 
Boundary cost of error covariance

Vrf ,2 dtdx F.ll
o o

and

ff
-o

VrfJ R(t)V'w*(t,tp)dt = j j R(t)3\£Mt,x)dtdTL ™ LL St**
F.12

o o
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the terms in F.10 are seen to be terminal cost terms. Similar 
relations hold for all four terms in J.
The a priori data required is
V (t,T), vVJW(t,T) and Vw (t,x) \/(V)f T F.13
and
^&(t,t0>,v^(t,t0),vv^(t,t0), and F.14

It can be shown by analysis similar to that in Appendix A, 
that the error covariance must satisfy
3VV0 (t, T) = [A.(t) -G (t) H (t) ] ■ (t, t)■+C (t) (t, T) -G (t) (t, t)
3t

F.15
Similarly,
9V Mt,x)=V Mt,T) [A(t)-G(t)H(t)K+V (t,T)C"(r)-V (t,r)G"(T)•g-vx ' vx ' w  vw p

and

« c (t/T)=Vwx(t'T)’em F,17
Substituting F.15 tlirough F.17 into F.10 and choosing the weights 

R(t) = G(t)H(t)
Q(t) = C(t) F.18

with S(t) arbitrary, an unconstrained dynamic optimization 
problem results. Applying variational techniques similar to 
those used in Appendices C and D, Theorem 6.1 can be proven.
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