Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

AN EXPERIMENTAL STUDY OF
EQUILIBRIUM PARAMETRIC PUMPS
BY
JOHN A. PARK

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE
OF
MASTER OF SCIENCE IN CHEMICAL ENGINEERING
AT
NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written published work.

Newark, New Jersey
1974

ABSTRACT

Parametric pumping is a separation process characterized by periodic changes in axial displacement, coupled with synchronized changes in some variable affecting the position of the interphase equilibrium. Both continuous and semicontinuous pumps were investigated at various operating conditions using a model system of toluene-n-heptane on a silica gel adsorbent. It has been shown that when the penetration distance for the cold cycle is less than or equal to that for the hot cycle and the height of the column, the pump has the capacity of complete removal of solute from one product stream. A quantity which is important in determining pump performance is the equilibrium parameter, b. Pump performance is enhanced by large interphase movement and hence by large values of the equilibrium parameter.
APPROVAL OF THESIS AN EXPERIMENTAL STUDY OF EQUILIBRIUM PARAMETRIC PUMPS BY JOHN A. PARK FOR DEPARTMENT OF CHEMICAL ENGINEERING BY

FACULTY COMMITTEE

APPROVED: \qquad
\qquad

NEWARK, NEW JERSEY
JANUARY, 1974

Deep appreciation and thanks are extended to Dr. H.T. Chen whose guidance and assistance were invaluable and made this project a reality. I would also like to thank L. Rak, W. Lin, and J. Gudzer for their assistance in executing experiments and analyzing results.

Parts of this research project have been published by Separation Science, Vol. 9, 35, 1974.

TABLE OF CONTENTS
Abstract i
Approval Page ii
Acknowledgments iii
Table oi Contents iv
List of Figures v
List of Tables v
Introduction 1
Experimental 3
A. Scope of Investigation 3
B. Description of Apparatus 3
G. Experimental Procedure 6
Theory 9
Results and Discussion 13
Conclusion 27
Nomenclature 29
Appendices 31
A. Theory 32
B. Sample Analysis 42
C. Flow Data 59
D. Calculations 85
References 88

LIST OF FIGURES

1. Schematic Diagram of Experimental Apparatus. 5
2. The Semicontinuous Parametric Pump. 83. The Effect of $\overline{\mathrm{y}}_{\mathrm{O}}$ and \emptyset_{B} Upon Separation forthe Semicontinuous and Continuous Pumps.18
3. The Effect of $\emptyset_{T}+\varnothing_{\mathrm{B}}$ Upon Separation. 19
4. The Effect of $\frac{\pi}{C}$ Upon Separation. 20
5. Comparison of Different Operating Temperatures. 21
6. Region 1 Operation with Small \emptyset_{T}. 22
7. Sufficient \emptyset_{T} Contrasted with Insufficient ϕ_{T}. 23
8. Comparison of Region 1 with Region 2. 24
9. Experimental Shift of Bottom Product Concen- tration. 25
10. Experimental Error 26
11. z-t Characteristics for Region 1. 41
LIST OF TABLES
12. Experimental and Model Parameters. 17

INTRODUCTION

Thermal parametric pumping is a separation process characterized by periodic changes in axiəl displacement of a fluid coupled with synchronized changes in temperature. A jacketed column with top and bottom variable volume reservoirs is packed with a solid adsorbent (silica gel) and filled with a binary mixture (toluene-n-heptane). Reciprocal pumping action by the reservoirs causes either upflow or downflow of the fluid through the bed, while the column jacket and two temperature controlled baths provide the medium for the synchronized temperature changes.

This process has three modes of operation; batch, continuous, and semicontinuous. Batch operation is defined as a constant hot-upflow half cycle followed by a colddownflow half cycle without feed input or product withdrawal. Continuous operation incorporates constant feed input and product withdrawal during the entire cycle. The semicontinuous mode is batch operation during the hot-upflow and continuous operation during the cold-downflow half cycle.

Previously, the semicontinuous and continuous pumps have been investigated by Chen and co-workers $(\underline{1}, \underline{2}, 3)$ and analyzed in terms of an equilibrium theory (4,5) describing pump performance. It has been shown that under certain conditions the parametric pump can completely remove solute from one product stream and give arbitrarily large enrichment
of solute in the other product stream. The conditions which determine the separation are defined in terms of penetration distances and column height.

This project experimentally investigates the effect of various process parameters upon relatively high separations.

EXPERIMENTAL

A. Scope of Investigation

This project investigated the sensativity of the equilibrium parametric pump to various operating parameters; while obtaining high separation factors (the ratio of solute concentration in the two product streams). Thus, only region l operation of the pump will be considered. The operating parameters considered were product flow rate, feed flow rate, feed concentration, time, temperature, and mode of operation. Table 1 indicates the sequential details of this investigation.

B. Description of Apparatus

The thermal, liquid-solid phase, parametric pump shown in Figure 1 is similar to that used previously ($\underline{2}, \mathbf{2}$) and can be described as follows: (refer to Figure 1)

1. The adjustable length, jacketed, glass adsorption column was an Ace Glass Adjusta-Chrom Recycling Column (5819-06) with an inside diameter of . Ol meters and a length of $\cdot 90$ meters.
2. Top and bottom reservoirs, located at either end of the column, along with the feed apparatus were 50 cc Becton and Dickinson, multifit, luer-lok tip, glass syringes. The syringes were automatically operated by variable speed infusion and withdrawal syringe pumps made by Harvard Apparatus
(series 940). The reservoir pump, which was set for reciprocal operation, was orientated in a vertical position which, along with a glycerin seal, minimized fluid losses. Also, small magnetic stirrers were placed in the reservoir syringes in order to meet the requirement of perfect mixing within the reservoir. The feed pump was orientated in a horizontal position and was set for parallel operation.
3. The reservoir, feed, and product lines were 0.063 inches OD X 0.031 inches ID teflon tubing (by Chromatronox Incorporated).
4. The sampling apparatus was two Micrometric Capillary Valves by Gilmont (M7100) and two 25 ml graduated cylinders.
5. Two Lauda Circulators, which are constant temperature, circulating baths, by Brinkmann Instruments Incorporated (models $\mathrm{K}-2$ and $\mathrm{K}-2 / \mathrm{R}$) provided hot and cold water mediums.
6. Standard $\frac{1}{2}$ inch rubber tubing and two 3 way universal operation ASCO solenoid valves (cat \#8320A107) provided the means for switching the column temperature.
7. A recycling timer, type A-Tandem by Industrial Timer Corporation controlled the half cycle time and synchronized the column temperature with the

m

FIGURE 1

> direction of fluid flow.
> 8. Samples were analyzed for toluene content using a Beckmann DBG spectrophotometer operating in the ultraviolet spectrum region.

C. Exnerimental Procedure

Preparation for an experimental run started with the lubricating of the reservoir and feed syringes with glycerin. Two cc of glycerin was left in the vertically orientated top and bottom reservoirs to provide a seal which prevented evaporation losses. Glycerin served the dual purpose of lubricant and seal because of its high viscosity (900 centipoises at $25^{\circ} \mathrm{C}$), relatively high specific gravity (1.3 at room temperature), and low solubility in heptane-toluene solution ($\langle .03 \%$ at room temperature).

The column was packed with dry $30-60$ mesh, chromatographic grade silica gel and the interstitial volume in the column, along with the feed and reservoirs, was filled with feed solution of toluene and n-heptane at ambient temperature. To facilitate the removal of air from the system, the column was vibrated as the feed solution was introduced.

After the hot and cold baths had reached steady state at their specified temperatures, the run was initiated with upflow on the hot half cycle and continued for $\frac{\pi}{\omega}$ time units. Flow and temperature were then switched to downflow on a cold half cycle, $\frac{\pi}{\omega}$ time units in duration, to complete
one cycle. The dead volumes V_{T} and V_{B} for top and bottom reservoirs respectively, were $4 \mathrm{cc}(2 \mathrm{cc}$ glycerin, 1 cc stirrer volume, and l cc solution). The reservoirs had a a displacement volume of $Q \frac{\pi}{\mathcal{L}}$ where Q is the reservoir displacement rate and $\frac{\pi}{\omega}$ is the half cycle time. The feed rate was $\left(\varnothing_{\mathrm{T}}+\varnothing_{\mathrm{B}}\right) Q, \varnothing_{\mathrm{T}}$ and \varnothing_{B} being the ratio of product volumetric flow rate to the reservoir displacement rate for top and bottom reservoirs respectively.

Removing the top and bottom product while constantly introducing feed solution during both hot and cold half cycles is termed continuous operation. On the other hand, batch mode is operating the apparatus without feeding or sampling during the cycle. Semicontinuous is batch operation during the hot half cycle and continuous operation during the cold half cycle. Top and bottom products are withdrawn at $\emptyset_{\mathrm{T}} \mathrm{Q}$ and $\emptyset_{\mathrm{B}} \mathrm{Q}$ respectively.

After approximately 16 cycles, the run is terminated and the the samples analyzed for toluene content using the Beckmann DBG spectrophotometer operating in the ultraviolet region (see appendix B).

The Semicontinuous Parametric Pump
FIGURE 2

THEORY

Chen and Hill have extended the equilibrium theory of Pigford, Baker and Blum (5) and derived mathematical expressions describing pump performance (1). Three possible regions of pump operation were shown to depend upon the height of the column and the ratio of the penetration distances of the hot half cycle to that of the cold half cycle, i.e. L_{1} / L_{2}. Considering only pumps with the feed at the top, L_{1} / L_{2} can be expressed in terms of ϕ_{B} and the equilibrium parameter b as:

$$
\begin{equation*}
\frac{L_{1}}{L_{2}}=\left(\frac{1+b}{1-b}\right)\left(\frac{1-\phi_{B}}{1+\phi_{B}}\right) \tag{1}
\end{equation*}
$$

for the continuous pump, and

$$
\begin{equation*}
\frac{L_{1}}{L_{2}}=\left(\frac{1+b}{1-b}\right)\left(\frac{1}{1+\phi_{B}}\right) \tag{2}
\end{equation*}
$$

for the semicontinuous pump. The cold half cycle penetration distance, L_{2}, in both continuous and semicontinuous pump is express as:

$$
\begin{equation*}
L_{2}=\frac{v_{0}\left(1+\phi_{B}\right) \frac{\pi}{\omega}}{(1+b)\left(1+\frac{1}{2}\left(m_{1}+m_{2}\right)\right)} \tag{3}
\end{equation*}
$$

while L_{1} for the continuous and semicontinuous pump is:

$$
\begin{equation*}
L_{1}=\frac{v_{0}\left(1-\phi_{B}\right) \frac{\pi}{\omega}}{(1-b)\left(1+\frac{1}{2}\left(m_{1}+m_{2}\right)\right)} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{1}=\frac{v_{0} \frac{\pi}{(u)}}{(1-b)\left(1+\frac{1}{2}\left(m_{1}+m_{2}\right)\right)} \tag{5}
\end{equation*}
$$

respectively. The equilibrium parameter is defined as follows:

$$
\begin{equation*}
b=\frac{\frac{1}{2}\left(m_{1}-m_{2}\right)}{1+\frac{1}{2}\left(m_{1}+m_{2}\right)} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{i}=\frac{P_{S}(1-\epsilon) M_{i}(T)}{\epsilon} \tag{7}
\end{equation*}
$$

Mi(T) is the equilibrium distribution coefficient at temperature Ti . See appendix A for derivation of expressions for L_{1}, L_{2}, and b.

The three possible regions of pump operation are:
Region 1:

$$
\mathrm{L}_{1} / \mathrm{L}_{2} \geq 1
$$

$\mathrm{L}_{2} \leq \mathrm{h}$
Region 2:
$\mathrm{L}_{1} / \mathrm{L}_{2} \leq 1$
$\mathrm{L}_{2} \leq \mathrm{h}$
Region 3:
$\mathrm{L}_{1}>\mathrm{h}$
$\mathrm{L}_{2}>h$

It has been shown that only region 1 pump operation yields high separation factors. An indication of the separation is the ratio of the concentration of the bottom product on the cold half cycle to the concentretimon of the feed, ie. $y_{B P 2} / y_{0}$. For region 1 operation, the theoretical expression for $\left\langle y_{B P 2}\right\rangle / y_{0}$ is (1)

$$
\begin{equation*}
\frac{\left\langle y_{B P 2}\right\rangle_{n}}{y_{0}}=\left(\frac{1-b}{1+b}\right)\left(\frac{\frac{1-b}{1+b}+C_{2}}{1+C_{2}}\right)^{n-1} \tag{9}
\end{equation*}
$$

furthermore, at $t=\bigcirc \bigcirc$

$$
\begin{equation*}
\frac{\left\langle y_{\mathrm{BP} 2}{ }^{2} \mathrm{OO}\right.}{y_{0}}=0 \tag{10}
\end{equation*}
$$

Equation 10 states that at steady state there is no solute in the bottom product and all the solute supplied by the feed is in the top product. The expression for the top product concentration is:

$$
\begin{equation*}
\left\langle y_{\mathrm{BP} 2}\right\rangle=y_{0}\left(1+\frac{\phi_{\mathrm{B}}}{\Phi_{\mathrm{T}}}\right. \tag{11}
\end{equation*}
$$

Equation (9) provides a relation from which b can be predicted. Taking the natural logs of equation (9) yields:

$$
\begin{equation*}
\ln \frac{\left\langle y_{B P 2}\right\rangle_{n}}{y_{6}}=(n) \ln \left(\frac{\frac{1-b}{1+b}+C_{2}}{1+C_{2}}\right)+\ln \left(\frac{1-b}{1+b}\right)-\ln \left(\frac{\frac{1-b}{1+b}+C_{2}}{1+C_{2}}\right) \tag{12}
\end{equation*}
$$

Since b and C_{2}, the ratio of the bottom reservoir dead volume to the displacement, are constants, equation (12) describes a straight line with a slope α of

$$
\begin{equation*}
\alpha=\ln \left(\frac{1-b}{1+b+c_{2}}\right) \tag{13}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
b=\frac{1-e^{\alpha}-c_{2}\left(e^{\alpha}-1\right)}{1+e^{\alpha}+C_{2}\left(e^{\alpha}-1\right)} \tag{14}
\end{equation*}
$$

The equilibrium parameter can also be calculated from equilibrium data (see appendix A).

The quantity b is a measure of the extent of solute movement between phases due to column temperature change. b can be any value between zero and one, where $b=0$ indicates the equilibrium distribution is insensitive to temperature, and $b=1$ implies extreme temperature sensitivity.

RESULTS AND DISCUSSION
Eleven experimental runs were executed with conditions set so that region l operation of the pump would result, i.e. $L_{1} / L_{2} \geq 1$ and $L_{2} \leq h$. The process variables for the experimental runs are shown in table 1.

Experimental data was compared with calculations based on the transient equations ($\underline{1}, \underline{2}, \underline{3}$) derived from the equilibrium theory. The primary assumptions of the theory are (see appendix A):
l. local interphase equilibrium exists with a linear distribution having a temperature dependent coefficient, i.e. $x=\bar{M}(T) y$
2. effects of axial diffusion are negligible
3. there are instantaneous temperature changes
4. there is plug flow displacement of fluid
5. the densities of the fluid and the solid are constant.

Figures 3 and 4 show the effect of feed concentration, product flow rate, and feed flow rate upon the bottom product concentration for the semicontinuous and continuous pumps. The agreement between experimental and calculated results is reasonably good. It is evident that y_{0}, \emptyset_{B}, and $\phi_{\mathrm{T}}+\phi_{\mathrm{B}}$ have negligible effect upon the bottom product concentration, $\left\langle y_{B P 2}\right\rangle{ }_{n} / y_{0}$, provided that equilibrium of adsorbate between the two phases has been established ($\frac{\pi}{\omega} \geq$ 10 min.$)$. These figures demonstrate that $\left\langle\mathrm{y}_{\mathrm{BP} 2}\right\rangle_{\mathrm{n}} / \mathrm{y}_{\mathrm{O}}$ and n are inversely proportional and as n becomes large, $\mathrm{y}_{\mathrm{BP} 2} \mathrm{n} / \mathrm{y}_{0}$
approaches zero as predicted by equation (10). Equation (9) states that the bottom product concentration transient depends upon b and c_{2}, where $c_{2}=V_{B} /\left(Q \frac{\pi}{(2)}\right)$, and b is the dimensionless equilibrium parameter defined by equation (28). The values for b were calculated using equation (14) and were found to be 0.22 and 0.15 for $T_{1}=70^{\circ} \mathrm{C} T_{2}=4^{\circ} \mathrm{C}$ and $\mathrm{T}_{1}=60^{\circ} \mathrm{C} \mathrm{T}_{2}=25^{\circ} \mathrm{C}$ respectively. Pump performance is enhanced by large values of b and thus by large $|\alpha|$ (absolute value of α), where α defined in equation (13) is the slope of the plot $\ln \left(\left\langle y_{\mathrm{BP} 2}\right\rangle_{\mathrm{n}} / \mathrm{y}_{0}\right)$ vs n . For large values of b the transient time for depletion of solute from the bottom product would be very short and approach zero ($\alpha=-\infty$) as b approached one. Furthermore, as $b \rightarrow 0$, and $\alpha \rightarrow 0$ no separation can occur. Figure 3 and equation (11) indicate that an arbitrary high degree of enrichment of the top product may be obtained by adjusting \varnothing_{B} provided steady state has been attained at a given $\emptyset_{\mathbb{T}^{+}} \emptyset_{\mathrm{B}}$. This arbitrary degree of enrichment is not a function of b.

Figures 3 and 4 also show that the semicontinuous and continuous pumps are similar in nature. The principal difference between the two modes is the region switching points. For example, region 1 operation ($L_{1} / L_{2} \geq 1$ and $L_{2} \leq h$) of the semicontinuous pump can be defined as $\emptyset_{B} \leq 2 b /(1-b)$ while for the continuous pump $\phi_{B} \leq b$ (3).

Figure 5 illustrates the effect of cycle time upon separation and gives some insight into the time required
to reach local interphase equilibrium. If $\frac{\pi}{\omega} \geq 10$ minutes, complete solute removal is possible. When $\frac{\pi}{\omega} \leq 3$ minutes, only partial solute removal was obtained because the time was insufficient to reach equilibrium of the adsorbate between the solid and liquid phases.

Figure 6 together with the three previous graphs, gives experimental verification of assumption 1 . A linear equilibrium relation with a temperature dependent coefficient is a good assumption. Furthermore, the degree of depletion of solute in the bottom product is solely a function of temperature (the value of b) and C_{2} provided the pump is operated in region 1 with $\frac{\pi}{\omega} \geq 10$ minutes.

The remaining figures describe some of the experimental idiosyncrasies of the parametric pump. Consider figure 7 where $\left\langle y_{\mathrm{BP} 2}\right\rangle_{\mathrm{n}} / \mathrm{y}_{0}$ decreases as n increases up to a point where a drastic increase with n occurs. Run 3 was well. within the criteria for region $I\left(L_{1} / L_{2}=1.13\right.$ and $\left.L_{2}=53 \mathrm{~cm}\right)$, but yet the final separation was poor. During this run, no top product was removed ($\varnothing_{\mathrm{T}}=0$) which meant no toluene was removed from the system for the first 12 cycles. Eventually the toluene contained in the feed had to appear in the bottom product, i.e. the l3th cycle. The time at which the upward trend of the graph starts can be prolonged or partially eliminated by increasing the heient of the column, decreasing y_{0}; but to eliminate it completely a sufficient quantity of top product must be withdrawn. Figures 7 and 8
demonstrate the observation that the upward trend can be eliminated or prolonged by varying $\mathrm{y}_{0}, \varnothing_{\mathrm{T}}$ and y_{O} respectively at a specified h.

Figure 9 shows two runs which demonstrate region 2 operation. For run $9, \mathrm{~L}_{1}=54 \mathrm{~cm}$ and $\mathrm{L}_{2}=54 \mathrm{~cm}$ which by definition is a switching point or border between region 1 and region 2. It is highly likely that the process variables were such that region 2 operation resulted.

Figure 10 illustrates an interesting experimental error and its results. On the 8th cycle of run 10A, the temperature of the column did not change and two hot half cycles were run instead of the alternate hot and cold half cycles. Notice this resulted in a horizontal shift of two cycles. Furthermore, subsequent data continued with the same slope, α, as run lOB which did not contain a temperature switching error.

Table 1 Experimental and Model Parameters

Run Number	Mode	$\begin{gathered} \mathrm{T}_{1} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mathrm{T}_{2} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\underset{(\min)}{\frac{\pi}{\omega}}$	\bar{y}_{0} mole frac	$\binom{Q}{(c)}$	$\varnothing_{\mathrm{T}} \emptyset_{\mathrm{B}}$	ϕ_{B}	C_{1}	C_{2}	$\stackrel{L_{1}}{\mathrm{~cm}_{\mathrm{m}}}$	$\left(\begin{array}{c} \mathrm{L}_{2} \\ (\mathrm{~cm}) \end{array}\right.$	b
1	Semi	70	4	20	0.10	40	0.4	0.22	0.10	0.15	60	46	0.22
2	Semi	70	4	20	0.10	40	0.4	0.25	0.14	0.15	60	48	0.22
3	Semi	70	4	20	0.10	40	0.4	0.4	0.12	0.15	60	53	0.22
4	Semi	70	4	20	0.10	40	0.5	0.4	0.13	0.14	60	53	0.22
5	Semi	70	4	20	0.10	40	0.4	0.32	0.12	0.13	60	50	0.22
6	Semi	70	4	20	0.05	40	0.4	0.31	0.11	0.15	60	50	0.22
7	Semi	70	4	10	0.05	40	0.4	0.32	0.13	0.15	60	50	0.22
8	Semi	70	4	10	0.10	40	0.4	0.31	0.13	0.16	60	50	0.22
9	Semi	60	25	10	0.05	40	0.4	0.34	0.13	0.13	54	54	0.15
10 A	Semi	60	25	10	0.05	40	0.4	0.17	0.12	0.13	54	47	0.15
10 B	Semi	60	25	10	0.05	40	0.4	0.17	0.12	0.13	54	47	0.15
11	Semi	60	25	10	0.05	40.	0.5	0.17	0.12	0.13	54	47	0.15
12	Cont	60	25	20	0.034	40	0.4	0.07	0.12	0.13	51	43	0.15
13	Cont	70	4	20	0.10	40	0.4	0.15	0.14	0.15	51	44	0.22
14*	Semi	60	25	3	0.05	15	1.02	0.23	0.35	0.43	22	19	

* Equilibrium theory can not be applied.

Effect of \vec{y}_{O} and $\phi_{\text {A }}$ Upon Separation For Semicontinuous
Andinuous Pumps Figure 3

Region 1 Operation With Small ϕ_{T} Figure 7

Comparison Of Region 1 With Region 2
Figure 9

Experimental Shift of Bottom Product Concentration
Figure 10

Figure 11

CONCLUSION

Region 1 operation of continuous and semicontinuous pumps were investigated to determine the effect of certain process variables upon the separation of the binary components. The variables investigated were temperature, time, feed concentration, feed flow rate, mode of operation, and the product flow rate. Conclusions of this research are as follows:

1. Both pumps have the capability to completely remove solute from one product stream and give an arbitrary enrichment in the other stream provided interphase equilibrium has been attained, i.e. $\frac{\pi}{\omega}>10$ minutes.
2. The degree of depletion of solute in the bottom product stream is a function of reservoir dead volume, temperature, and temperature changes which cause the interphase solute movement.
3. As the temperature difference between T_{1} and T_{2} increases, the value of the equilibrium parameter increases and pump performance is enhanced.
4. $y_{0}, \emptyset_{\mathrm{B}}$, and $\phi_{\mathrm{T}^{+}} \emptyset_{\mathrm{B}}$ have negligible effect upon the bottom product concentration.
5. At steady state and a given feed rate, the adjustment of \emptyset_{B} gives an arbitrary degree of enrichment in the top product stream.
6. The semicontinuous and continuous pumps are
similar in nature. The degree of separation is not a function of the mode of operation.
7. The primary assumptions of the equilibrium theory are valid since the agreement between theory and experiment is relatively good.

NOMENCLATURE

$\mathrm{b}=\begin{aligned} & \text { dimensionless equilibrium parameter defined by equa- } \\ & \text { tion (28). }\end{aligned}$
$c_{1}=V_{T} /\left(Q \frac{\pi}{\omega}\right)$, ratio of dead volume of the top reservoir to displacement, dimensionless.
$C_{2}=V_{B} /\left(Q \frac{\pi}{\omega}\right)$, ratio of dead volume of the bottom reservoir
$\mathrm{F}=$ volumetric flow rate/reservoir displacement rate entering or leaving the column, dimensionless.
$h=$ column height, cm.
$L=$ penetration distance defined by equations (3), (4), and (5).
$M=x / \bar{y} \quad \bar{M}=x / y$
$m=$ equilibrium constant parameter defined by equation (17), dimensionless.
$\mathrm{N}=$ final cycle of pump operation.
$\mathrm{n}=\mathrm{cycle}$ number
$Q=$ reservoir displacement, cc/sec.
$T=$ temperature, ${ }^{\circ} \mathrm{C}$.
$\mathbf{v}=$ interstial velocity, cm/sec.
$V_{T}=$ top reservoir dead volume, cc.
$V_{B}=$ bottom reservoir dead volume, cc.
$x=$ concentration of solute in the solid phase, g mole/g.
$y=$ concentration of solute in the liquid phase, g mole/cc.
$\bar{y}=$ concentration of solute in the liquid phase, g mole/g. $\rangle=$ average value.

Greek letters:
$\alpha=$ slope of line on plot of $\ln \left(\left\langle y_{\mathrm{BP} 2}\right\rangle_{\mathrm{n}} / \mathrm{y}_{0}\right)$ vs n.
$\rho_{s}=$ density of the solid, g / cc.
$\rho_{f}=$ density of the fluid, g/ce
$\epsilon=$ void fraction in packing, dimensionless.
$\emptyset=$ product volumetric flow rate/reservoir displacement rate, dimensionless.
$\frac{\pi}{\omega}=$ duration of half cycle, time units.

Subscripts:

$0=$ initial condition.
1 = upflow or hot half cycle.
2 = downflow or cold half cycle.
$\mathrm{BP}=$ bottom product. ,
$\mathrm{TP}=$ top proouct.
$B=$ stream from or to bottom of the column.
$T=$ stream from or to top of the column.
$\infty=$ steady state.

APPENDICES

Appendix A

 TheoryTHEORY (References $\underline{1}, \underline{2}, \mathbf{3}$)

Expression for L_{1}, L_{2}, and b have been developed from the so called internal equations of the parametric pump. Assuming no axial diffusion, the equation of transport, obtained from a material balance around a differential volume of the liquid and solid phase in the column, is:

$$
\begin{equation*}
\epsilon D \frac{\partial^{2} y}{\partial z^{2}}+\epsilon v \frac{\partial y}{\partial z}+\epsilon \frac{\partial y}{\partial t}+(1-\epsilon) \rho_{S} \frac{\partial x}{\partial t}=0 \tag{15}
\end{equation*}
$$

net flow by + net flow by rate of accum axial diffusion ${ }^{+}$bulk movement ${ }^{+}$ulation on liq.

$$
\begin{aligned}
& \text { rate of accum } \\
& \text { ulation on solid }
\end{aligned}=0
$$

We can eliminate x in equation (15) if an instantaneous linear equilibrium relationship is assumed, i.e. $x=M(T) \bar{y}$ or $x=M(T) y / \rho_{f}=\bar{M}(T) y$. Differentiation yields

$$
\begin{equation*}
\frac{d x}{d t}=y \frac{\partial \bar{M}(T)}{\partial t}+\bar{M}(T) \frac{\partial y}{\partial t} \tag{16}
\end{equation*}
$$

and substituting equation (16) into (15) we find

$$
\epsilon v \frac{\partial y}{\partial z}+\epsilon \frac{\partial y}{\partial t}+(1-\epsilon) p_{S}\left(\bar{M}(T) \frac{\partial y}{\partial t}+y \frac{\partial \bar{M}(T)}{\partial T} \frac{\partial T}{\partial t}\right)=0
$$

Rearranging gives

$$
\left(1+\frac{(1-\epsilon) \rho_{S} \bar{M}(T)}{\epsilon}\right) \frac{\partial y}{\partial t}+v \frac{\partial y}{\partial z}+\frac{(1-\epsilon) \rho_{S}}{\epsilon} \frac{\partial \bar{M}(T)}{\partial T} \frac{\partial T}{\partial t}=0
$$

By assuming constant fluid and solid densities and letting

$$
\begin{equation*}
m=\frac{(1-\epsilon) \rho_{S} \bar{M}(T)}{\epsilon} \tag{17}
\end{equation*}
$$

we have

$$
\begin{equation*}
(1+m) \frac{\partial y}{\partial t}+v \frac{\partial y}{\partial z}=-\frac{\partial m}{\partial T} \frac{\partial T}{\partial t} y \tag{18}
\end{equation*}
$$

This hyperbolic partial differential equation can be solved by the method of Lagrange-Charpit. Within the method of solution lies the mathematical definitions of L_{1}, L_{2}, and b. Taking the right hand terms of equation (18), we let

$$
\begin{equation*}
-\frac{\partial m}{\partial T} \frac{\partial T}{\partial t} y=\left(\frac{\partial y}{\partial s}\right)_{\theta} \tag{19}
\end{equation*}
$$

where

$$
y=y(z, t)=y(s, \theta) \quad z=z(s, \theta) \quad t=t(s, \theta)
$$

Obviously

$$
\begin{equation*}
\left(\frac{\partial y}{\partial s}\right)_{\theta}=\left(\frac{\partial t}{\partial s}\right)_{\theta} \frac{\partial y}{\partial t}+\left(\frac{\partial z}{\partial s}\right)_{\theta} \frac{\partial y}{\partial z} \tag{20}
\end{equation*}
$$

and comparing equation (20) with (19) while holding constant we see

$$
\frac{d t}{d s}=1+m \quad \text { and } \quad \frac{d z}{d s}=v
$$

then

$$
\begin{equation*}
\frac{d z}{v}=\frac{d t}{1+m}=\frac{-d y}{\frac{\partial m}{\partial T} \frac{\partial T}{\partial t} y} \tag{21}
\end{equation*}
$$

Rearrangement of the first equality in equation (21) yields

$$
\begin{equation*}
\frac{d z}{d t}=\frac{v}{1+m} \tag{22}
\end{equation*}
$$

Assuming instantaneous temperature changes and instantaneous equilibrium between adsorbate in the liquid and solid phases, it is evident both $T(t)$ and $m(t)$ are periodic square waves. Graphically

and mathematically

$$
T=T_{0}+T S q(\omega t)
$$

$$
m=m_{0}-\alpha S q(\omega t)
$$

In other words, $m=m_{0^{-a}}$ for hot upflow and $m=m_{0^{+}}$a for
cold downflow.
Furthermore, the velocity of the concentration front within the column, $d z / d t$, is also a periodic square wave, represented by

Expressions for v_{1} and v_{2} are found by material balances. Consider a semicontinuous pump's top reservoir, feed, and product lines on the cold downflow half cycle.

A material balance yields

$$
\begin{gathered}
Q+Q\left(\phi_{T}+\phi_{B}\right)=Q \phi_{T}+Q F_{T 2} \\
F_{T 2}=1+\phi_{B}
\end{gathered}
$$

Since $Q \mathrm{cc} / \mathrm{sec}=\left(\mathrm{v}_{\mathrm{o}} \mathrm{cm} / \mathrm{sec}\right)\left(\mathrm{A} \mathrm{cm}^{2}\right)$; the downflow velocity is expressed as $\mathrm{v}_{2}=\mathrm{v}_{0}\left(1+\emptyset_{\mathrm{B}}\right)$. Similarly, a material balance around the top reservoir of a semicontinuous pump in a hot upflow half cycle,

yields

$$
Q=Q F_{T 1}
$$

It follows that $v_{1}=v_{0}$. For a continuous pump in a hot upflow half cycle we find

$$
\begin{gathered}
F_{\mathrm{T} 1} \mathrm{Q}+\mathrm{Q}\left(\phi_{\mathrm{T}}+\phi_{\mathrm{B}}\right)=\mathrm{Q}+\mathrm{Q} \phi_{\mathrm{T}} \\
\mathrm{~F}_{\mathrm{T} 1}=1-\phi_{\mathrm{B}}
\end{gathered}
$$

and therefore $\mathrm{v}_{1}=\mathrm{v}_{\mathrm{O}}\left(1-\phi_{\mathrm{B}}\right)$. It is obvious that semicontinyous and continuous pumps have the same downflow velocity expression.

For the semicontinuous pump, substitution of v_{1} and \mathbf{v}_{2} into equation (22) yields

$$
\begin{equation*}
\frac{d z}{d t}=\frac{v_{0}\left(1+\phi_{B}\right)}{1+m_{0}+a}=\frac{v_{0}\left(1+\phi_{B}\right)}{\left(1+m_{0}\right)(1+b)} \tag{23}
\end{equation*}
$$

for downflow, and

$$
\begin{equation*}
\frac{d z}{d t}=\frac{v_{0}}{1+m_{O}-a}=\frac{v_{0}}{\left(1+m_{0}\right)(1-b)} \tag{24}
\end{equation*}
$$

for upflow, where

$$
\begin{equation*}
b=\frac{a}{1+m_{0}} \tag{25}
\end{equation*}
$$

Knowing that

$$
m_{0}=\frac{m_{1}+m_{2}}{2}
$$

and

$$
\begin{equation*}
a=m_{2}-m_{0}=m_{0}-m_{1} \tag{27}
\end{equation*}
$$

we find from equation (25) that

$$
\begin{equation*}
b=\frac{\frac{1}{2}\left(m_{2}-m_{1}\right)}{1+\frac{1}{2}\left(m_{1}+m_{2}\right)} \tag{28}
\end{equation*}
$$

Equations (23) and (24) represent the slope of the y constant characteristic lines on a z vs t plot (see Figure ll). These two equations can be integrated to
yield expression for L_{1} and L_{2} (see equations (3), (4), and (5)).

Rearranging the second equality in equation (21), we obtain

$$
-\frac{d y}{y}=\frac{\frac{\partial m}{\partial T} \frac{\partial T}{\partial t} d t}{1+m}
$$

which upon integration yields

$$
\ln y=-\ln (1+m)+K=-\ln \left(1+m_{0}-\alpha S_{q}((\omega t))+K\right.
$$

It follows that

$$
\ln y=-\ln (1-b \operatorname{Sq}(\omega t))+k
$$

and

$$
\begin{equation*}
\frac{d \ln y}{d t}=\frac{d \ln \left(1-b S_{q}(\omega t)\right)}{d t} \tag{29}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
y(1-b S q(\omega t))=\bar{K} \tag{30}
\end{equation*}
$$

which implies y constant characteristics. Equation (29) represents the change in y along the characteristic directions.

Pump performance relations are derived by combining equation (30) with certain external relations obtained by material balances. See Reference (1) for the method
to and solutions of pump performance.

Calculation of b from equilibrium data (Ref 2)
On a linear $x-y$ diagram, $x=\bar{M}(T) y$, the area beneath the line can be expressed as an integral or the area of a triangle, i.e.

$$
\int_{0}^{y} x_{1} d y_{1}=\frac{1}{2} x y=\frac{1}{2} \bar{M}(T) y^{2}
$$

It follows that

$$
\bar{M}(T)=\frac{2}{y^{2}} \int_{0}^{y} x_{1} d y_{1}
$$

where x_{1} and y_{1} are observed values.
Equation (17) can now be expressed as

$$
\begin{equation*}
m_{i}=\left[\frac{(1+\epsilon) P_{s}}{\epsilon}\right] \frac{2}{y^{2}} \int_{0}^{y} x_{1} d y_{1} \tag{31}
\end{equation*}
$$

It is now possible to obtain m_{1} and m_{2} at T_{1} and T_{2} respectively. b can be calculated from equation (28).

Appendix B

Sample Analysis

SAMPLE ANALYSIS
Beer's law states: for absorbing solutes, the decrease in the radiant power of a beam of parallel monochromatic radiation with b, the path length, is proportional to I, the intensity, and the concentration, y, of the solution. Mathematically this is:

$$
\frac{d I}{d b}=-a I y
$$

Separating the variables and integration between the limits of Io to I and 0 to b yields:

$$
\begin{gathered}
\ln \frac{I}{I_{0}}=-a b y \\
A=\ln \left(\frac{1}{T}\right)=\ln \frac{I_{0}}{I}=a b y
\end{gathered}
$$

where

$$
\begin{aligned}
& A=\text { absorbance } \\
& T=\text { transmittance } \\
& I=\text { intensity or radiant power } \\
& \text { Io intensity of incident light } \\
& a=\text { absortivity, a constant } \\
& b=\text { path length or sample cell's thickness } \\
& y=\text { concentration }
\end{aligned}
$$

Pure n-heptane does not absorb over the range of l50mu to 300 mu while toluene does and has a maxium peak at 262 mu . The concentration of the samples can be calculated using Beer's Law.

When necessary, the samples were diluted with nheptane to reduce the height of the absorption peak so that the concentration would fall within the scale of the instrument. This introduced a dilution factor into the calculation for the unknown concentration. For example, 1 ml of sample diluted with 5 ml of n -heptane gave a dilution factor of 6. If l ml of this solution was diluted with another 5 ml of solvent, the dilution factor would be 36. Since the concentration and absorption of the feed are known (y_{0} and A_{0} at 262mu), the concentration of sample n can be calculated.

$$
\begin{equation*}
y_{n}=y_{0}\left[\frac{A_{n}(\text { dil. fac. })_{n}}{A_{0}(\text { dil. fac. })_{0}}\right] \tag{32}
\end{equation*}
$$

The tabulated experimental analysis results follow.

Data Sheet
Analysis Run 1
Bottom
Product

Cycle	Dilution Factor	Absorbance A	$\frac{\mathbf{y}_{\text {BP2 }}}{\mathrm{y}_{0}}$
Feed	396	34.0	\cdots
5	216	23.0	0.368
7	36	40.5	0.108
9	6	56.0	0.0249
11	6	18.0	0.00802
12	1	46.0	0.00341
14	1	29.0	0.00215
15	1	$0 *$	$\ldots .$.
16	1	$0 *$	$\ldots .$.

Top
Product

Cycle	Dilution Factor	Absorbance A	$\frac{\mathbf{y}_{\mathrm{BP} 2}}{\mathbf{y}_{0}}$
9	576	57.5	1.97
12	576	66.0	2.26
14	576	73.0	2.49
15	396	79.0	2.32
16	306	80.0	2.35

* O indicates that the sample was of higher purity than the reference which was Spectro-quality n-heptane (MC\&B).

Data Sheet

Analysis Run 2
Bottom
Product

Cycle	Dilution Factor	Absorbance A	$\mathrm{y}_{\text {BP2 }}$
			${ }^{1} 0$
Feed	216	78.1	-----
4	396	26.8	0.629
5	216	32.5	0.416
6	36	100	0.2134
8	36	22.3	0.0476
10	6	32.0	0.014
12	6	20.0	0.00711
13	1	24.5	0.00145
15	1	<0	-----
16	1	<0	---

Top
Product

Cycle	Dilution Factor	Absorbance A	$\frac{\mathrm{y}_{\mathrm{BP} 2}}{\mathrm{y}_{0}}$
7	1296	18.5	1.42
8	1296	19.2	1.48
10	1296	27.9	2.15
12	1296	28.0	2.15
14	1296	33.1	2.54
16	1296	32.8	2.52

Data Sheet
Analysis Run 3
Bottom
Product

Cycle	Dilution Factor	Absorbance A	$\mathrm{y}_{\text {BP2 }}$
			y_{0}
Feed	216	74.0	-
4	216	27.5	0.372
5	216	20.0	0.270
6	216	6.0	0.0812
7	36	46.5	0.105
8	36	19.0	0.0428
10	6	37.0	0.0139
11	6	12.0	0.00450
12	1	22.0	0.00138
14	1	62.0	0.00387
15	36	78.0	0.176
16	216	9.0	0.122
17	216	15.7	0.212

Top
Product
No top product was taken during this run.

Data Sheet
Analysis Run 4
Bottom
Product

Cycle	Dilution Factor	$\underset{A}{\text { Absorbance }}$	$\frac{\mathrm{y}_{\mathrm{BP} 2}}{\mathrm{y}_{0}}$
Feed	216	95.0	-----
5	216	39.5	0.416
7	36	88.0	0.154
8	36	52.0	0.0912
9	36	86.0	0.151
10	36	102.	0.179
11	216	15.0	0.144
12	36	88.0	0.154
13	36	59.0	0.104
14	36	79.0	0.139
16	36	61.0	0.107

Top
Product

Cycle	Dilution Factor	Absorbance \mathbf{A}	$\frac{y_{\mathrm{BP} 2}}{\mathrm{y}_{0}}$
8	1331	29.0	1.88
11	1331	30.0	1.95
14	1331	36.0	2.34
16	1331	34.0	2.21

Data Sheet
Analysis Run 5
Bottom
Product

Cycle	Dilution Factor	Absorbance A	$y_{B P 2}$ Feed
4	216	82.0	y_{0}
5	216	45.0	0.549
6	216	49.0	0.598
7	216	11.0	0.134
8	216	7.0	0.0854
9	216	16.0	0.0195
10	36	22.0	0.0447
11	6	61.0	0.0207
12	1	83.0	0.00745
13	6	3.0	0.00469
14	1	22.0	0.00226
15	1	34.0	0.00745
16	1		0.00430

Top
Product

Cycle	Dilution Factor	Absorbance A	$\frac{y_{B P 2}}{y_{0}}$
5	1296	13.0	1.61
7	2197	11.5	1.43
10	2197	17.0	2.11
12	2197	17.0	2.11

Cycle	Dilution Factor	Absorbance	$\mathbf{y}_{\mathrm{BP} 2}$
	2197	19.0	y_{0}
15	2197	18.0	2.36
16	1331	18.0	2.23
			2.55

Data Sheet
\(\left.$$
\begin{array}{lccc}\text { Analysis Run } 6 & & & \\
\begin{array}{l}\text { Bottom } \\
\text { Product }\end{array} & & & \\
\text { Cycle } & \begin{array}{c}\text { Dilution } \\
\text { Factor }\end{array}
$$ \& \begin{array}{c}Absorbance

Feed\end{array} \& 121\end{array}\right]\)| $\mathrm{y}_{\mathrm{BP} 2}$ |
| :---: |
| 5 |

Data Sheet

Analysis Run 7			
Bottom Product	Dilution Factor	Absorbance Cycle	121

Top
Product

Cycle	Dilution Factor	Absorbance A	$\frac{\mathrm{y}_{\mathrm{BP} 2}}{\mathrm{y}_{0}}$
6	121	100	1.43
8	1331	13.5	2.12
11	1331	13.5	2.75
14	1331	22.0	3.4 .6
17	24.5	3.85	

*Chromo-qualiey n-heptane used as the reference.

Data Sheet
Analysis Run 8
Bottom
Product

Cycle	Dilution Factor	$\begin{gathered} \text { Absorbance } \\ \text { A } \end{gathered}$	$\frac{y_{B P 2}}{y}$
			y_{0}
Feed	216	80.0	-----
4	126	75.0	0.547
6	231	17.0	0.227
7	231	9.0	0.120
9	36	15.0	0.0313
11	6	28.0	0.00972
13	1	65.0	0.00376
15	1	27.0	0.00156
17	21	6.0	0.00729
18	36	17.0	0.0354

Top
Product

Cycle	Dilution Factor	Absorbance A	$\frac{y_{\mathrm{BP} 2}}{\mathrm{y}_{0}}$
6	1331	16.0	1.23
8	1331	24.5	1.89
11	1331	30.0	2.31
14	1331	32.5	2.50
17	1331	34.0	2.62

Data Sheet
Analysis Run 9
Bottom
Product

Cycle	Dilution Factor	Absorbance A	$\frac{y_{B P 2}}{y_{0}}$
Feed	121	75.0	.$--{ }^{2}$
1	121	61.0	0.813
3	121	33.0	0.440
4	121	27.0	0.360
6	121	17.0	0.227
8	121	10.0	0.133
10	121	6.5	0.0867
12	121	6.5	0.0867
14	36	24.0	0.0952
16	36	41.0	0.0163

Top
Product

Cycle	Dilution Factor	Absorbance A	$\frac{y_{B P 2}}{y_{0}}$
7	1331	10.0	1.47
10	1331	13.5	1.98
13	1331	15.0	2.20
15	1331	16.0	2.35
16	1331	16.5	2.42

Data Sheet
Analysis Run 10A
Bottom
Product

Cycle	Dilution Factor	$\underset{A}{\text { Absorbance }}$	$\frac{\mathrm{y}_{\mathrm{BP} 2}}{\mathrm{y}_{0}}$
Feed	121	75.0	-----
3	121	32.0	0.427
4	36	81.5	0.323
6	36	41.0	0.163
7	36	29.0	0.115
8	36	24.0	0.0952
9	36	23.5	0.932
11	36	33.5	0.133
13	36	20.0	0.0793
15	6	69.0	0.0456
16	6	55.0	0.0377

Top
Product

Cycle	Dilution Factor
6	396
8	726
10	726
11	1331
14	1331
15	1331

Data Sheet
Analysis Run 10B
Bottom
Product

Cycle	Dilution Factor	Absorbance A	$y_{B P 2}$ Feed
121	77.3	.$- y_{0}$	
3	121	36.5	0.473
4	36	99.0	0.381
6	36	57.5	0.222
8	36	34.0	0.131
9	11	88.5	0.104
11	6	75.5	0.0485
13	6	43.0	0.0276
15	6	21.5	0.0138
16	6	16.5	0.0106

Top
Product
Cycle
Dilution Factor

6
8
10
13
15
16
216
216
216
396
726
726

Absorbance	y_{A}
$\frac{\mathrm{y}_{\mathrm{BP} 2}}{}$	
50.5	y_{0}
59.0	1.17
65.3	1.36
41.0	1.51
22.0	1.74
23.5	1.71
	1.83

Data Sheet
Analysis Run 11
Bottom
Product

Cycle	Dilution Factor	Absorbance A	$\mathrm{y}_{\mathrm{BP} 2}$ Feed
121	69.0	y_{O}	
3	121	29.5	0.428
5	36	61.0	0.263
7	21	68.0	0.171
9	11	78.5	0.103
11	6	79.5	0.0571
13	6	48.0	0.0345
15	6	27.5	0.0198
16	6	22.0	0.0158

Top
Product

Cycle	Dilution Factor	Absorbance A	$\frac{\mathrm{y}_{\mathrm{BP} 2}}{\mathrm{y}_{\mathrm{O}}}$
6	216	49.5	1.28
8	216	55.0	1.42
10	216	58.0	1.50
13	396	35.0	1.66
15	726	19.5	1.70
16	726	19.5	1.70

Data Sheet
Analysis Runs 12-13-14
This data was obtained from other sources, see page 81.

Appendix C
Flow Data

Data Sheet
Run 1 Semicontinuous

Cycle	$\begin{gathered} \text { Feed } \\ \text { cc } \\ \text { Left Right } \end{gathered}$	Reservoir cc Bottom Top	Product c Bottom Top
Initial	$46 \quad 45$	444	--- ---
1	--	744	--- ---
	3938	454	2.37 .4
2	-- --	744	---
	3231	$44 \quad 4$	8.6 6.5
3	-- --	644	---
	$24 \quad 23$	424	8.46 .6
4	-- --	444	--- ---
	1615	444	3.56 .5
Feed	50	444	--- ---
5	--	844	-
	35	444	11.06 .8
6	--	744	--- ---
	19	447	9.46 .5
7	--	$7 \quad 44$	-
	3	447	9.26 .7
Feed	50	$44 \quad 4$	--- ---
8	--	544	---
\cdot	35	414	1.26 .6
9	--	444	---
	20	444	8.26 .7

Cycle	Feed cc	$\begin{gathered} \text { Reservoir } \\ \text { cc } \\ \text { Bottom Top } \end{gathered}$		Product c C Bottom Top	
10	--	7	44	---	---
	5	43	4	1.8	6.3
Feed	50	43	4	---	--
11	--	7	44	---	---
	35	44	4	13.2	6.5
12	--	5	44	---	---
	19	44	4	5.0	6.5
13	--	6	44	---	---
	-	45	4	---	---
Feed	50	45	4	--	-
14	--	5	44	---	---
	35	44	4	--	6.3
15	--	7.5	44	---	---
	20	44	4	14.8	6.6
16	--	6	44	---	-
	4	44	4	4.1	6.6

Data Sheet
Run 2 Semicontinuous

| Cycle | Feed
 cc | Reservoir
 cc | Pottom | Product
 cc |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Initial | 50 | 45 | 5 | Botom |

$\left.\begin{array}{ccrcc}\text { Cycle } & \begin{array}{c}\text { Feed } \\ \text { co }\end{array} & \begin{array}{c}\text { Reservoir } \\ \text { cc }\end{array} & \begin{array}{c}\text { Pot Tom }\end{array} & \begin{array}{c}\text { Product } \\ \text { cc }\end{array} \\ \text { Feed }\end{array}\right)$

Data Sheet
Run 3 Semicontinuous

Cycle	Feed cc	Rese Bottom	$\begin{aligned} & \text { voir } \\ & \text { Top } \end{aligned}$	Product cc Bottom Top
Initial	40	45	5	--- ---
1	--	5	46	-
	26	47	5	12.4---
2	--	7	45	-
	11	47	5	13.4---
Feed	45	47	5	-
3	--	7	46	-
	33	45	5	9.0 ---
4	--	6	46	--- ---
	20	46	5	15 ---
5	--	6	45	-
	5	45	5	11.0
Feed	45	45	5	- ---
6	--	6	44	-----
-	30	44	5	12.6---
7	--	5	45	- ---
	17	43	5	13.8 ---
Feed	45	43	5	--- ---
8	--	5	41	--- ---
	33	41	5	9.4 ---
9	--	4	44.	--- ---
	18	44	4	13.8 .--

Cycle	$\begin{aligned} & \text { Feed } \\ & \text { cc } \end{aligned}$	$\begin{gathered} \text { Reservoir } \\ \text { cc } \\ \text { Bottom Top } \end{gathered}$		Product cc Bottom Top
Feed	40	44	4	--
10	--	4	43	--- ---
	25	45	5	10.2 ---
11	--	10	45	-
	10	45	4	16.5 ---
Feed	45	45	4	--- ---
12	--	6	46	------ - - -
	29	47	5	11.8---
13	--	7	45	--
	13	48	5	13.4 ---
Feed	45	48	5	-- ---
14	--	7	45	--- ---
	29	45	5	14.6 ---
15	--	7	46	-
	12	46	5	16.0
Feed	25	46	5	--- ---
16	--	5	45	--
	10	45	5	15.4 ---

Data Sheet
Run 4 Semicontinuous

Cycle	Feed cc	Reser Bottom	Toir	Product cc Bottom Top
Initial	40	45	4	--- ---
1	--	6	45	--- ---
	25	45	5	11.72 .8
Feed	45	45	5	-
2	--	5	47	--- ---
	23	45	6	15.83 .6
Feed	47	45	6	-
3	--	6	46	-
	25	45	5	15.84 .2
4	--	5	46	-
	4	44	7	13.63 .6
Feed	45	44	7	-----
5	--	5	45	-
	25	44	5	13.84 .0
- 6	--	5	45	--- ---
	5	45	5	11.83 .9
Feed	46	45	5	--- ---
7	--	5	45	--- ---
	26	45	5	13.02 .4
8	--	6	46	--
	7	45	5	12.83 .8

Cycle	Feed cc	Reservoir c Bottom Top		$\begin{gathered} \text { Product } \\ \text { cc } \\ \text { Bottom Top } \end{gathered}$
Feed	47	45	5	--- ---
9	--	5	46	--- ---
	27	45	5	11.02 .6
10	--	5	46	--- ---
	7	45	5	$13 \quad 13.2$
Feed	45	45	5	--- ---
11	-*	5	45	--- ---
	24	44	5	14.63 .7
Feed	45	44	5	--
12	--	5	45	---
	26	45	5	9.84 .3
13	--	6	46	--- ---
	7	45	5	13.83 .6
Feed	45	45	5	--
14	--	6	46	--- ---
	25	45	5	11.83 .8
- 15	--	6	46	--- ---
.	5	45	5	16.53 .8
Feed	30	45	5	--- ---
16	--	5	45	---
	10	44	5	14.23 .5

Data Sheet
Run 5 Semicontinuous

Cycle	Feed ce	Rese Botto		Product cc Bottom Top
Initial	45	45	5	--- ---
1	--	6	44	--- ---
	28	45	5	10.31 .3
2	--	7	43	--- ---
	12	46	5	11.43 .1
Feed	46	46	5	--- ---
3	--	6	45	--- ---
	26	45	5	10.22 .2
4	--	25	45	--- ---
	10	45	6	13.02 .7
Feed	45	45	6	--- ---
5	--	8	45	--- ---
	31	45	5	14.22 .2
6	--	6	44	--- ---
	16	43	5	13.42 .0
Feed	45	43	5	---
7	--	5	44	--- ---
	31	39	5	13.62 .2
8	--	4	41	--- ---
	12	41	4	10.01 .0
Feed	50	41	4	-

Cycle	Feed cc	Reser cc Bottom	oir Top	$\begin{gathered} \text { Product } \\ \text { cc } \\ \text { Bottom Top } \end{gathered}$
9	--	5	43	-
	36	40	5	10.02 .1
10	--	5	45	-
	21	42	5	12.21 .7
11	--	4	42	-
	6	42	4	6.62 .1
Feed	51	42	4	-- ----
12	--	4	43	-
	35	44	4	13.62 .4
13	--	4	43	--- ---
	20	43	4	8.61 .9
14	--	4	44	---
	4	43	4	12.62 .0
Feed	42	43	4	--
15	--	4	44	--- ---
	26	44	4	8.22 .1
16	--	4	44	--
	10	44	4	14.62 .3

Data Sheet
Run 6 Semicontinuous

Cycle	Feed ce
Initial	40
1	--
2	25
Feed	$-\infty$
3	-12
	45
4	$-\infty$
	15
Feed	46

6	--
Feed	14
7	$-\cdots$
	28
8	$-\cdots$
	13
Feed	50

$\begin{gathered} \text { Reservoir } \\ c c \end{gathered}$		
Bottom	Top	
44	4	-
5	44	--- ---
44	5	9.0 2.1
6	45	---
45	5	10.82 .0
45	5	--
6	44	-
45	5	11.42 .4
6	45	--
45	5	12.62 .5
45	5	--
6	44	. --- ---
45	4	11.42 .0
7	45	--
45	5	10.62 .7
45	5	--
6	45	-
45	4	11.02 .1
4	45	---
44	4	10.62 .1
44	4	-

Cycle	Feed cc	$\begin{gathered} \text { Reservoir } \\ \text { cc } \\ \text { Botom Top } \end{gathered}$		$\begin{gathered} \text { Product } \\ \text { cc } \\ \text { Bottom Top } \end{gathered}$
- 9	--	4	44	--
	35	44	4	7.01 .9
10	--	6	45	-
	19	45	4	11.23 .0
11	--	5	46	-
	4	45	5	12.12 .0
Feed	50	45	5	-- ---
12	--	5	45	--- ---
	34	44	4	9.81 .9
13	--	4	44	--- ---
	19	45	5	11.02 .0
14	--	7	44	--- ---
	4	45	4	10.62 .0
Feed	43	45	4	-- ---
15	--	5	45	--- ---
	27	44	4	9.62 .1
16	--	5	45	-
	12	45	4	12.72 .2

Data Sheet
Run 7 Semicontinuous

Cycle	Feed cc	$\begin{aligned} & \text { Reservoir } \quad \text { cc } \\ & \text { Bottom Top } \end{aligned}$		Product cc Bottom Top	
Initial	45	45	5	---	---
1	--	6	45	---	---
	30	45	5	2.0	9.4
2	--	7	45	---	---
	15	46	5	2.4	9.8
Feed	48	46	5	---	---
3	--	6	46	---	---
	32	45	5	2.2	11.4
4	--	6	45	---	---
	17	46	5	2.2	10.6
Feed	45	46	5	---	---
5	--	6	46	--	---
	30	46	5	1.7	10.8
6	--	7	45	---	---
	15	45	5	2.2	11.4
Feed	50	45	5	-	---
7	--	7	45	---	---
	34	46	5	2.4	11.4
8	--	6	46	---	-
	18	47	5	2.3	11.4
9	--	8	46	---	---
	2	46	6	2.3	13.0

Cycle	Feed cc	$\begin{gathered} \text { Reservoir } \\ \text { ce } \\ \text { Bottom Top } \end{gathered}$		Product cc Bottom Top	
Feed	50	46	6	---	---
10	--	5	46	---	---
	34	45	5	2.2	11.3
11	--	5	46	---	---
	18	45	5	1.8	11.6
Feed	52	45	5	---	---
12	--	4	45	--	---
	36	44	5	1.7	9.0
13	--	5	45	---	---
	20	45	5	2.2	11.8
14	--	5	46	---	---
	4	45	5	2.3	13.4
Feed	40	45	5	--	---
15	--	5	46	---	---
	24	44	5	2.0	10.4
16	--	6	46	---	---
	8	46	5	2.2	11.6

Data Sheet
Run 8 Semicontinuous

Cycle	Feed cc	Reservoir c Bottom Top		Product cc Bottom Top	
Initial	42	44	4	--	--
1	--	5	45	---	---
	26	45	5	8.2	1.4
2	--	5	45	---	---
	10	45	5	8.4	1.2
Feed	45	45	5	---	--
3	--	5	46	-	---
	29	45	5	9.2	1.8
4	--	9	45	---	---
	14	45	5	13.4	2.3
Feed	45	45	5	--	---
5	--	6	46	---	---
	30	46	5	11.4	2.3
- 6	--	7	46	-	---
	14	46	5	12.6	1.8
Feed	44	46	5	---	--
7	--	5	45	---	---
	28	45	5	9.8	2.0
8	--	5	45	---	---
	12	45	5	11.0	1.8
Feed	45	45	5	---	---

Cycle	Feed cc	Reser c Bottom	oir Top	$\begin{gathered} \text { Product } \\ \text { cc } \\ \text { Bottom Top } \end{gathered}$
9	--	6	46	--- ---
	29	46	5	9.03 .5
10	--	6	46	--- ---
	13	46	5	11.21 .8
Feed	45	46	5	--- ---
11	--	5	46	---
	30	45	5	10.22 .0
12	--	6	47	-- ---
	14	46	5	11.02 .0
Feed	45	46	5	--- ---
13	-	7	45	--- ---
	29	47	5	10.62 .0
14	--	9	46	--- ---
	13	47	5	11.62 .0
Feed	44	47	5	--- ---
15	--	7	45	-- ---
	29	46	5	11.21 .8
16	--	8	46	--- ---
	13	47	6	10.42 .2

Data Sheet
Run 9 Semicontinuous

Cycle	Feed cc	$\begin{gathered} \text { Reservoir } \\ \text { cc } \\ \text { Bottom Top } \end{gathered}$		$\begin{gathered} \text { Product } \\ \text { cc } \\ \text { Botom Top } \end{gathered}$
Initial	45	44	4	--- ---
1	--	5	45	--- ---
	27	45	5	13.22 .0
2	--	6	45	--- ---
	11	44	6	13.22 .1
Feed	45	44	6	--- ---
3	--	6	45	--- ---
	29	45	5	12.82 .0
4	--	6	45	-
	13	45	5	13.62 .0
Feed	50	45	5	--- ---
5	--	6	45	--- ---
	34	45	5	13.62 .0
6	--	6	45	-
	18	45	5	13.32 .1
Feed	45	45	5	-
7	--	5	45	--- ---
	28	44	5	13.12 .1
8	--	5	45	-
	12	44	6	13.22 .0
Feed	45	44	6	--

Cycle	Feed cc	Reser \square Bottom	Toir	$\begin{gathered} \text { Product } \\ \text { cc } \\ \text { Bottom Top } \end{gathered}$
9	--	4	45	--- ---
	29	43	6	13.62 .1
10	--	4	44	--- ---
	13	43	6	13.42 .0
Feed	42	43	6	--- ---
11	--	4	45	--- ---
	27	44	5	12.62 .1
12	--	5	45	-
	12	44	5	13.41 .6
Feed	45	44	5	------
13	--	5	45	-
	30	44	5	11.42 .0
14	--	5	45	-
	15	44	5	13.02 .0
Feed	43	44	5	-- ---
15	--	4	44	---
	28	44	5	12.42 .0
16	--	5	44	--- ---
	12	44	5	13.82 .0

Data Sheet
Run 10A Semicontinuous
$\left.\begin{array}{ccrrrr}\text { Cycle } & \begin{array}{c}\text { Feed } \\ \text { cc }\end{array} & \begin{array}{c}\text { Reservoir } \\ \text { cc } \\ \text { Bottom }\end{array} & \begin{array}{c}\text { Product } \\ \text { cc }\end{array} \\ \text { Initial } & 45 & 45 & 5 & \text { Top } \\ \text { Bottom }\end{array}\right]$

Cycle	Feed cc	Reservoir cc Bottom Top		Product c Bottom Top	
9	--	5	45	--	---
	28	44	5	8.1	8.0
10	--	4	43	---	---
	12	43	4	7.4	8.0
Feed	45	43	4	-	---
11	--	4	44	---	---
	28	45	5	4.8	8.1
12	-	5	45	---	-
	12	45	5	6.8	8.0
Feed	46	45	5	--	-
13	--	5	46	-	---
	30	45	5	7.4	8.0
14	-	5	46	---	---
	14	45	5	7.6	7.9
Feed	45	45	5	---	-
15	--	6	46	-	---
-	29	45	5	7.8	7.9
16	--	5	45	---	--
	12.5	45	5	7.0	8.1

Data Sheet
Run 1OB Semicontinuous
$\left.\begin{array}{ccrrr}\text { Cycle } & \begin{array}{c}\text { Feed } \\ \text { cc }\end{array} & \begin{array}{c}\text { Reservoir } \\ \text { cc }\end{array} & \begin{array}{c}\text { Pottom }\end{array} & \begin{array}{c}\text { Product } \\ \text { cc }\end{array} \\ \text { Initial } & \text { Bottom }\end{array}\right]$

Cycle	Feed c			Product cc Bottom Top	
9	--	5	44	--	---
	30	44	4	6.4	7.7
10	--	5	45	---	---
	14	45	5	6.8	8.0
Feed	45	45	5	---	--
11	--	5	45	--	---
	30	45	5	7.6	7.4
12	--	5	46	---	---
	14	45	5	8.0	8.0
Feed	45	45	5	--	-
13	--	5	46	---	---
	30	45	5	8.2	7.7
14	--	5	45	---	---
	14	45	5	7.5	8.1
Feed	45	45	5	---	---
15	--	5	45	--	---
	30	45	5	7.8	8.1
16	--	5	45	---	---
	14	45	5	8.5	8.0

Data Sheet
Run 11 Semicontinuous

Cycle	Feed cc	$\begin{gathered} \text { Reservoir } \\ \text { cc } \\ \text { Bottom Top } \end{gathered}$		Product cc Bottom Top	
Initial	43	45	5	---	---
1	--	5	45	---	---
	23	45	5	8.0	8.0
2	--	5	45	---	--
	3	45	5	7.0	9.8
Feed	46	45	5	---	---
3	--	5	45	---	---
	26	42	4	10.2	9.0
4	--	4	43	---	---
	7	42	4	8.0	9.0
Feed	46	42	4	---	---
5	--	4	44	---	---
	27	44	4	7.8	9.3
6	--	5	45	---	---
	6.5	44	5	8.8	10.0
Feed	46	44	5	---	---
7	--	5	45	---	---
	26	45	5	8.8	10.0
8	--	5	45	--	---
	6	45	4	9.0	9.5
Feed	46	45	4	-	-

Cycle	Feed cc	$\begin{gathered} \text { Reservoir } \\ \text { cc } \\ \text { Bottom Top } \end{gathered}$		$\begin{gathered} \text { Product } \\ \text { cc } \\ \text { Bottom Top } \end{gathered}$	
9	--	5	45	---	---
	26	45	5	8.6	10.0
10	--	5	45	---	---
	6	45	5	8.5	10.0
Feed	46	45	5	---	---
11	--	5	45	---	---
	26	45	5	9.0	9.5
12	--	5	46	---	---
	6	45	5	10.0	9.5
Feed	46	45	5	---	---
13	--	5	45	---	---
	27	45	5	9.0	9.3
14	--	5	45	---	---
	7	45	5	9.4	9.5
Feed	46	45	5	---	---
15	--	5	45	---	---
	26	45	5	9.1	9.3
16.	--	5	45	---	---
	6	46	5	10.2	9.0

Data Sheet
Runs 12-13-14
These runs were obtained from other sources.
Run 12 Continuous--Executed by W. Lin on $6 / 7 / 73$.
Run 13 Continuous--Taken from a thesis by Rak, I. An
Experimental Study of Continuous Parametric
Pumping. Newark College of Engineering (1972).
Run 14 Semicontinuous--Executed by J. Gudzer.

Appendix D
Calculations

CALCULATIONS

The method to calculate the theoretical results is given below.

1. A least square analysis was performed on the bottom product sample analysis data (see appendix B for sample analysis calculations). This compotation yielded a value of α.
2. C_{1} and C_{2} were calculated from the flow data given in appendix C.
$C_{1}=\frac{\sum_{n=1}^{N}\left(V_{T} / Q \frac{\pi}{(1)}\right)_{n}}{N}$ and $C_{2}=\frac{\sum_{n=1}^{N}\left(V / Q \frac{\pi}{(1)}\right)_{n}}{N}$
where N is the final cycle of pump operation.
3. The experimental value of b could now be found using equation (14).
4. \varnothing_{B} was obtained from the experimental flow data.

$$
\phi_{B}=\frac{\sum_{n=1}^{N}\left(V_{B P} / Q \frac{\pi}{(2)}\right)_{n}}{N}
$$

5. L_{2} was calculated using equation (3) for the semicontinuous pump.

$$
L_{2}=\frac{V_{0}\left(1+\phi_{B}\right) \frac{\pi}{(1)}}{(1+b)\left(1+\frac{1}{2}\left(m_{1}+m_{2}\right)\right)}
$$

where

$$
\begin{aligned}
& m_{0}=\frac{1}{2}\left(m_{1}+m_{2}\right)=1.88 \\
& \epsilon=0.38 \\
& v_{0}=Q /\left(\pi r^{2} \epsilon\right)
\end{aligned}
$$

6. The variables calculated above along with $\phi_{T}+\phi_{\mathrm{B}}$ and h serve as data for computer programs written by Dr. H.T. Chen. These programs solve for the transient concentration ratio. They have the flexibility to solve for all possible combinations of the parameters read in, provided the number of each parameter to be considered is specified on the data cards. A listing of the programs can be found in a thesis by E.H. Reiss, Separations Via Semicontinuous Parametric Pumping, Newark College of Engineering, 1972.

REFERENCES
(1) H.T. Chen and F.B. Hill. Separation Science, 6 (3), 411 (1971).
(2) H.T. Chen, J.L. Rak, J.D. Stokes, and F.B. Hill. AIChE I. 18, 356 (1972).
(3) H.T. Chen, E.H. Reiss, J.D. Stokes, and F.B. Hill. AIChE J. 19, 589 (1973).
(4) R.A. Gregory and N.H. Sweed. Chem Eng. J., I, 207 (1970).
(5) R.L. Pigford, B. Baker, and D.E. Blum. Ind. Eng. Chem. Fundam., 8 , 144 (1969).
(6) N.H. Sweed. PhD Dissertation, Princeton University (1968).

