Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

OF CLOSE MOLAR VOLUMES

BY

DILIP K. KAPASI

A THESIS

PRESENTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE
OF
MASTER OF SCIENCE IN CHEMICAL ENGINEERING
AT
NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

NEWARK, NEW JERSEY
1974

Abstract

The approximate physical model for solute-solvent inter actions presented by J. M. Prausnitz and R. Anderson ${ }^{1}$ is briefly discussed. Applicability of Weimer, Prausnitz ${ }^{3}$ and Helpinstill, Van Winkle ${ }^{7}$ models is investigated using experimental values of activity coefficients for C_{5} hydrocarbons in 13 solvents including one nonpolar and 12 polar solvents. Independent correlations, based on our experimental values at $45^{\circ} \mathrm{C}$ for normal and isopentane have been developed. Although the required thermodynamic properties are obtained through a comparative analysis of all the available and estimated methods, dependable values of activity coefficients for Isopentane and l-Pentene could not be obtained through the experiments. Developing separate correlations for normal and isoparaffins, therefore, could not be made possible.

It is concluded that, in spite of the close molar volumes, the main contributions to the selectivity functions result from physical effects, especially from dispersion forces. Selectivities have been better correlated using our model (after adjusting the values of solutes solubility parameters) than predicted by other models ${ }^{3,7}$. Effects of chemical forces could not be precisely stated.

APPROVAL OF THESIS

SOLVENTS SCREENING FOR HYDROCARBONS SEPARATION OF CLOSE MOLAR VOLUMES

BY

DILIP K. KAPASI

FOR

DEPARTMENT OF CHEMICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

BY
FACULTY COMMTTTEE

APPROVED

NEWARK, NEW JERSEY

JUNE, 1974

ACKNOW LEDGEMENTS

The author wishes to express his thanks to Dr. Tassios, who as a friend more than an advisor, provided continued encouragement in preparation of this work. The very detailed and useful remarks of his, have been very valuable in bringing out applicability of our correlations along with those available in this literature.

Thanks are also due Ms. Patricia Souder, who did all the typing in a very limited time.
Chapter No. Title12 Theory and Background6
3 Equipment and Procedures 15
4 Selection of Systems 18
5 Evaluation of Parameters 20
6 Experimental Results 28
7
Correlation of Infinite Dilution
Activity Coefficients 298 Correlation of Infinite Dilution
Selectivities 37
9 Discussion 43
10 Conclusion 51
References 52
Nomenclature 56
Tables 59
Figures 110
Appendix

LIST OF TABLES

Table No. Description Page
List of Solvents and their characteristics 59
Values of necessary parameters 61
Experimental determination of activity coefficients 64
4 Infinite dilution coefficients for $\mathrm{n}-\mathrm{C}_{5}$, i-C C_{5} and $=C_{5}$ 70
$5-16 A$ Calculated and experimental values of \boldsymbol{r}^{∞} 71
17-24A Calculated and experimental values of \boldsymbol{S} 87
25-30 Contributing terms to the selectivity 99
31 Chemical Effects 1053233
Summary of various correlations 106
Comparis on of this work with $\mathrm{W}-\mathrm{P}^{3}$ and $\mathrm{H}-\mathrm{V}^{7}$ 107

LIST OF FIGURES

Fig. No.	Description	Page
1	Experimental Set-up	17
$2-11$	X-Y plots	$110-119$
$12-17$	$X^{\prime}-Y^{\prime}$ plots	$120=-125$
$18-21$	Chemical Effects $Q \quad$ vs K_{x}	$126-129$

LIST OF APPENDIX

Appendix No.	Description	Page
I	Typical determination of necessary properties, and parameters	130
II	List of Solvent parameters, their sources and calculated values	137
IV	Experimental log Sheet	142
V.	Chromatogram	144
VI	Typical calculation of infinite dilution activity coefficient	150
	Regression Analysis	152

CHAPTER 1

INTRODUCTION

Separation of close boiling components or azeotropic mixtures in chemical industries is often accomplished by using extractive distillation. This requires use of a polar solvent having much higher selectivity for one type of hydrocarbon than for the other. Selectivity is the ability of a solvent to increase or decrease the volatility of one type of molecule relative to the other. Defining the relative volatility of component i with respect to j,

$$
\alpha_{i j}=\frac{r_{i} p_{i}^{0}}{r_{j} p_{j}^{0}}
$$

where p_{i} and p_{j} are the vapor pressures of i and \mathfrak{j} components, respectively.
and $S_{i j}=\frac{r_{i}}{r_{j}} \cdots(B)$ is the selectivity of i with respect to j in the presence of the solvent.

Criterion of a better separation is thus, the value of relative volatility, its value being away from unity.

Measurement of the activity coefficients and thus the selectivity can be done experimentally using various available methods for every system in consideration. However, for estimation and screening purposes, thermodynamic models based on the present knowledge of solute-solvent interations including an allowance for any unknown interactions empirically, have been developed $1,2,3,7$. The original

Scatchard-Hildebrand ${ }^{2}(5-H)$ relation for excess Gibbs free energy of mixing is $\Delta G^{E}=\phi_{1} \phi_{2}\left(x_{1} v_{1}+x_{2} v_{2}\right)\left(C_{11}+C_{22}-C_{12}\right)$
where C_{11} and C_{22} are pure component cohesive energies defined

$$
\text { as } \begin{aligned}
C_{i i} & =\frac{\Delta u_{i}}{v_{i}}=\frac{\text { molar energy of vaporization }}{\text { molar volume }}(\mathrm{cal} / \mathrm{cc}) \\
& =\lambda_{i}^{2}, \lambda_{i} \text { is the solubility parameter }
\end{aligned}
$$

and C_{12} as $C_{i j}=\left(C_{i i} C_{j j}\right)^{1 / 2}$
ϕ_{1}, ϕ_{2} are the volume fractions defined as $\frac{\phi_{i}}{\rho_{i}}=\frac{x_{i} v_{i}}{\sum_{i=i}^{n} x v_{i}}-(2)$
$x-m o l e f r a c t i o n, v-m o l a r ~ v o l u m e ~(c c / g m o l)$
Weimer and Prausnitz ${ }^{3}$ (W-P) extended the original $\mathrm{S}-\mathrm{H}^{2}$
model to include the effects of a polar solvent, and obtained

$$
\begin{equation*}
\Delta G^{E}=\phi_{1} \phi_{2}\left(x_{1} v_{1}+x_{2} v_{2}\right)\left[\left(\lambda_{1}-\lambda_{2}\right)^{2}+\pi_{1}^{2}-2 \Psi_{12}\right] \tag{3}
\end{equation*}
$$

where, T_{1}, is the polar solubility parameter of the solvent and Ψ_{12} is the term added to include induction effects between the polar and nonpolar molecules.

Correcting for change of volume upon mixing by adding Flory-Huggins entropy term, $\mathrm{W}-\mathrm{P}$ model obtained infinite dilution coefficient as,

$$
R T \ln r_{2}^{\infty}=v_{2}\left[\left(\lambda_{1}-\lambda_{2}\right)^{2}+T_{1}^{2}-2 \psi_{12}\right]+R T\left[\ln \frac{v_{2}}{v_{1}}+1-\frac{v_{2}}{v_{1}}\right]-(4)
$$

Helpinstill and Van Winkle ${ }^{7}(\mathrm{H}-\mathrm{V})$ extended the $\mathrm{W}-\mathrm{P}$ model
to take into effects of slightly polar solutes. Corresponding H-V model equation to obtain infinite dilution coefficient is,

$$
\begin{equation*}
R T \ln \gamma_{2}^{\infty}=v_{2}\left[\left(\lambda_{1}-\lambda_{2}\right)^{2}+\left(\tau_{1}-\tau_{2}\right)^{2}-2 \Psi_{12}\right]+R T\left[\ln \frac{v_{2}}{v_{1}}+1-\frac{v_{2}}{v_{1}}\right]-\cdots(\tag{5}
\end{equation*}
$$

To evaluate the induction energy term Ψ_{12}, in terms of known physical properties, eq. 4 and 5 are rearranged as, $R T \ln \gamma_{2}^{\infty}-V_{2}\left(\lambda_{1}-\lambda_{2}\right)^{2}-R T\left[\ln \frac{v_{2}}{V_{1}}+1-\frac{V_{2}}{v_{1}}\right]=V_{2}\left[T_{1}^{2}-2 \psi_{12}\right] \mathrm{W}-\mathrm{PEQ}$.

$$
=V_{2}\left[\left(\pi_{1}-T_{2}\right)_{12}^{2}-\psi_{12}^{\psi}\right] H-V E Q .
$$

By plotting the parameters as $X=R T \ln r_{2}^{\infty}-v_{2}\left(\lambda_{1}-\lambda_{2}\right)^{2}-R T\left[\ln \frac{v_{2}}{v_{1}}+1-\frac{v_{2}}{v_{1}}\right]$ and $Y=V_{2} \tau_{1}^{2}$ for $W-P^{3}$ model OR $Y=V_{2}\left(\tau_{1}-\tau_{2}\right)^{2}$ for $H-V$ model; a linear relationship was obtained in both the researches. However, values of the slopes of these Y vs X lines varied depending upon the class of hydrocarbon solutes considered. This corresponds to yield an empirical equation to determine induction energy term Ψ_{12} as,

$$
\begin{align*}
\Psi_{12} & =k \tau_{1}^{2} \tag{7}\\
& =k\left(T_{1}-\tau_{2}\right)^{2} \tag{7A}
\end{align*}
$$

Substituting eq. 7 and 7 A in eq. 6 and 6 A respectively,

$$
\begin{align*}
\operatorname{RT} \ln r_{2}^{\infty}-v_{2}\left(\lambda_{1}-\lambda_{2}\right)^{2}-\operatorname{RT}\left[\ln \frac{v_{2}}{v_{1}}+1-\frac{v_{2}}{v_{1}}\right] & =(1-2 k) v_{2} \tau_{1}^{2}-\cdots(i \tag{8}\\
& =(1-2 k) v_{2}\left(\pi_{1}-\pi_{2}\right)^{2}-\cdots(i
\end{align*}
$$

' k ' can be, therefore, calculated from slope of $\mathrm{Y}-\mathrm{X}$ line as,
$k=\frac{1-(\text { Slope of } Y-X p l o t)}{2}$
W-P ${ }^{3}$ correlation for the term Ψ_{12} has been developed for systems of saturated n -paraffinic solutes in the polar solvents, while,
$H-V^{7}$ have correlated term for saturated n-paraffinic, unsaturated and aromatic hydrocarbons. The average error (\%) in determining ${ }^{\prime} \ln \gamma_{2}^{\infty}$ ' through these models have been reported as within 10% for $\mathrm{W}-\mathrm{P}^{3}$ and 6% for $\mathrm{H}-\mathrm{V}^{7}$ model.

It may be noticed here that the induction energy term as calculated through eq. 7 or 7 A contains all energies between 1 and 2 , but does not include any specific forces leading to formation of any complex molecules in the solution. ${ }^{1}$ These forces are generally described as chemical forces and are results of acid-base interactions following the Lewis definitions. ${ }^{12}$

Selectivity of a pair of solutes in a solvent can be obtained using above models by taking the ratio of infinite dilution cocfficients as determined through the correlations.

It is the purpose of this work to:
(1) examine the feasibility of developing two separate correlations for normal and isoparaffins in various solvents.
(2) examine the contributions to the selectivity of a pair of paraffins solutes of close molar volumes in several solvents.
(3) evaluate the general applicability of the $\mathrm{W}-\mathrm{P}^{3}$ and $\mathrm{H}-\mathrm{V}^{7}$ models in determining the activity coefficients and selectivities.
(4) observe contributions of chemical effects, if any.
(5) establish more reliable approach in the screening of potential solvents for hydrocarbon solutes.

For this purpose, infinite dilution activity coefficients values of $\mathrm{n}-\mathrm{C} 5$ and iso--C5 (differences in molar volumes less than 1%) have been determined using gas-liquid chromatography. Literature values are also utilized.

CHAPTER 2

THEOR Y AND BACKGROUND

Infinite Dilution Activity Coefficients through
Gas Liquid Chromatography (GLC)
The theoretical and experimental aspects of determining infinite dilution activity coefficients through GLC have been extensively discussed in the literature ${ }^{6,38,42}$. The solvent is employed as the partitioning liquid in a chromatographic column, and a small a mount of the solute is injected in the column. Then, according to Porter, et. al.

$$
\begin{equation*}
r_{2}^{\infty}=\frac{M_{s} R T}{H_{i}^{0} P_{i}^{0}} \tag{10}
\end{equation*}
$$

For infinite dilution conditions, Kwantes and Rijnders have \mathfrak{c} uggested that the amount of solvent on the solid support must be at least $15 \mathrm{w} t \%$, and Porter, et. al. have suggested that amount of solute charged should be as small as possible. The partition coefficient H_{i}° can be calculated as ${ }^{37}$

$$
\begin{equation*}
H_{i}^{0}=\frac{V_{g}^{0}-V_{\text {air }}^{0}}{V_{\text {sol vent }}} \tag{11}
\end{equation*}
$$

where, V_{g}^{0} is the corrected retention volume.

Martire and Pollara ${ }^{4}$ obtained following expression for determining the activity coefficients with certain assumptions.

$$
\begin{equation*}
r_{i}^{\infty}=\frac{1.704 \times 10^{4}}{M P_{i}^{0} V_{g}^{0}} \tag{12}
\end{equation*}
$$

where, $V_{g}^{0}=\frac{D V}{2 S} \cdot \frac{273}{T_{f}} \cdot \frac{P_{0}-P_{w}}{P_{0}} \cdot \frac{3}{2}\left[\frac{\left(P i / P_{0}\right)^{2}-1}{\left(P_{i} / P_{0}\right)^{3}-1}\right]$
The assumptions are:
i) The partition coefficient, H_{i}^{0} is a constant
ii) The solute component is at infinite dilution in liquid phase.
iii) Column behaves as a hypotehtical one with no pressure drop across it.
iv) Equilibrium exists at all points in the column
v) There is no absorption of solute upon solid support
vi) The liquid phase behaves as the bulk partitioning liquid
vii) None of the solute-solute, solute-carrier gas or carrier gas-carrier gas interactions takes place in the vapor phase.

The justifications of these various assumptions are discussed by Martire and Pollard ${ }^{38}$. The agreement of the GLC values with similar static data constitutes the major justification of various assumptions ${ }^{5,11}$.

II The Physical Model to determine activity coefficient and Selectivity
I. its general form, Scatchard-Hildebrand equation for
G^{E}, the excess Gibbs energy of mixing, is given as:
$\Delta G^{E}=\phi_{1} \phi_{2}\left(x_{1} v_{1}+x_{2} v_{2}\right)\left(c_{11}+c_{22}+c_{12}\right)$
If both the species are nonpolar, the various (${ }^{\prime} C^{\prime \prime}$ terms)
energy density terms are defined as,

$$
\begin{array}{ll}
C_{11}=\frac{\Delta U_{1}}{V_{1}}=\lambda_{1}^{2}, & \begin{array}{l}
\text { being the solubility parameter } \\
\text { of cornponent } 1
\end{array} \\
C_{22}=\frac{\Delta U_{2}}{V_{2}}=\lambda_{2}^{2}, & \begin{array}{l}
\text { being the solubility parameter } \\
\text { of component } 2
\end{array} \\
C_{12}=\left(\lambda_{1}^{2} \cdot \lambda_{2}^{2}\right)^{1 / 2}=\lambda_{1} \cdot \lambda_{2}
\end{array}
$$

Substituting these energy density terms in the eq. 1 ,
Scatchard-Hildebrand (S-H) equation becomes,

$$
\begin{equation*}
\Delta G^{E}=\phi_{1} \phi_{2}\left(x_{1} v_{1}+x_{2} v_{2}\right)\left(\lambda_{1}-\lambda_{2}\right)^{2} \tag{14}
\end{equation*}
$$

Considering one of the species (solvent) being polar, Weimer and Prausnitz extended $\mathrm{S}-\mathrm{H}$ model by defining the polar component (polar component-1) 'C'termas,
$C_{11}=\frac{\Delta U_{1}(\text { TOTAL })}{V_{1}}=\frac{\Delta U_{1}}{V_{1}}+\frac{\Delta U_{1}}{\substack{\text { NONPOLAR } \\ \text { PART }}}=\lambda_{1}^{2}+T_{1}^{2}$ PARAR
where T_{1} is the polar solubility parameter.
To correct for the original assumption of no volume change upon mixing, a term corresponding to the Flory ${ }^{39}$ - Huggins ${ }^{40}$ energy of mixing was added. To include induction effects due to polar-nonpolar interations, term Ψ_{12} was also added. Resulting $W-P$ equation expressing the excess energy is,

$$
\begin{equation*}
\Delta G^{E}=\phi_{1} \phi_{2}\left[x_{1} v_{1}+x_{2} v_{2}\right]\left[\left(\lambda_{1}-\lambda_{2}\right)^{2}+\pi_{1}^{2}-2 \psi_{12}\right]+R T\left[x_{1} \ln \frac{\phi_{1}}{x_{1}}+x_{2} \ln \phi_{2}\right] \tag{16}
\end{equation*}
$$

Extending the $W-P$ equation to include effects due to another polar component, Helpinstill and Van Winkle ${ }^{7}(\mathrm{H}-\mathrm{V})$ defined the C_{22} term as,

$$
C_{22}=\frac{\Delta U_{2}}{V_{2}}=\frac{\Delta U_{2}\binom{\text { NON }}{\text { POLAR }}}{V_{2}}=\frac{\Delta U_{2}(\text { POLAR })}{V_{2}}=\frac{\lambda^{2}}{2}+\tau_{2}^{2}--(17)
$$

where τ_{2} is the polar solubility parameter of the solute component 2.

The expression for excess Gibbs Energy, including the Flory-Huggins entropy term and the induction term Ψ_{12}, then becomes:

$$
\begin{align*}
\Delta G^{E}=\phi_{1} \phi_{2}\left[x_{1} v_{1}+x_{2} v_{2}\right]\left[\left(\lambda_{1}-\lambda_{2}\right)^{2}\right. & \left.+\left(T_{1}-T_{2}\right)^{2}-2 \Psi_{12}\right] \\
& +R T\left[x_{1} \ln \frac{\Phi_{1}}{x_{1}}+x_{2} \ln \frac{\Phi_{2}}{x_{2}}\right] \tag{18}
\end{align*}
$$

Differentiating this eq. 18 with respect to x_{2}, and taking the limits as x_{2} approaches zero, Helpinstill and Van Winkle ${ }^{7}$ related the activity coefficient at infinite dilution conditions as:
$R T \ln \gamma_{2}^{\infty}=V_{2}\left[\left(\lambda_{1}-\lambda_{2}\right)^{2}+\left(T_{1}-T_{2}\right)^{2}-2 \Psi_{12}\right]+R T\left[\ln \frac{V_{2}}{V_{1}}+1-\frac{V_{2}}{V_{1}}\right]$

It can be noticed here that, eq. 18, 5 are general equations relating activity coefficient at infinite dilution with various physical parameters for the interaction between polar-polar species, from which eq. 4, 14, 16 for nonpolar-nonpolar, or polar-nonpolar interactions can be derived.

Evaluation of all the necessary terms in eq. 5, except the induction energy term Ψ_{12} is discussed in the following chapters. The
induction energy term Ψ_{12}, in terms of physical properties, is empirically correlated. Rearranging the general eq. 5 as:

$$
\begin{equation*}
R T \ln Y_{2}^{\infty}-V_{2}\left(\lambda_{1}-\lambda_{2}\right)^{2}-R T\left[\ln \frac{V_{2}}{V_{1}}+1-\frac{V_{2}}{V_{1}}\right]=V_{2}\left[\left(T_{1}-T_{2}\right)^{2}-2 \Psi_{12}\right] \tag{6A}
\end{equation*}
$$

For systems with $\boldsymbol{T}_{2}=0.0$ (nonpolar solutes in polar solvents) using activity coefficients values of Pierotti and Gerster et. al. W-P ${ }^{3}$. observed a linear relationship by plotting

$$
\begin{aligned}
Y=R & \ln r_{2}^{\infty}-V_{2}\left(\lambda_{1}-\lambda_{2}\right)^{2} \\
& -R T\left[\ln \frac{v_{2}}{v_{1}}+1-\frac{v_{2}}{v_{1}}\right] \text { vs } \quad X=V_{2}\left[\tau_{1}-\tau_{2}\right]^{2}
\end{aligned}
$$

Similarly, H-V obtained a linear relationship for systems containing saturated, unsaturated and aromatic (polar solutes, $\tau_{2}>0.0$) solutes in polar solvents by plotting,
$Y=R T \ln r_{2}^{\infty}-V_{2}\left(\lambda_{1}-\lambda_{2}\right)^{2} \quad$ vs $\quad X=V_{2}\left[T_{1}-\tau_{2}\right]^{2}$
$-R T\left[\ln \frac{v_{2}}{v_{1}}+1-\frac{v_{2}}{v_{1}}\right]$
A linear relationship between these two parameters shows that induction energy term Ψ_{12} is proportional to $\left(\tau_{1}-\tau_{2}\right)^{2}$, which means

$$
\Psi_{12}=k \tau_{1}^{2}---(7) \text { or } \Psi_{12}=k\left(\tau_{1}-\tau_{2}\right)^{2}---(7 \mathrm{~A})
$$

Substituting these values in eq. 6 and 6A, respectively,

$$
\begin{aligned}
R T \ln V_{2}^{\infty}-V_{2}\left(\lambda-\lambda_{2}\right)^{2}-R T\left[\ln \frac{v_{2}}{v_{1}}+1-\frac{v_{2}}{v_{1}}\right] & =(1-2 k) V_{2} \tau_{1}^{2},--(8) \\
& =(1-2 k) v_{2}\left(\tau_{1}-\tau_{2}\right)^{2}--(8 A)
\end{aligned}
$$

' k ' can be evaluated as:

$$
\begin{equation*}
\mathrm{k}=\frac{1-\text { Slope of X vs Y plot }}{2} \tag{9}
\end{equation*}
$$

Table No. 32 gives the reported correlations for induction energy term Ψ_{12} for different class of hydrocarbon solutes in polar solvents.

In their lists of solutes $\mathrm{W}-\mathrm{P}^{3}$ and $\mathrm{H}-\mathrm{V}^{7}$ do not indicate including branches chain saturated hydrocarbons. When comparing the induction energy forces resulted due to interaction of a straight chain hydrocarbon solute in the polar solvent, with those due to interaction of a branched chain hydrocarbon, some difference in their values is expected because of different structural arrangement. However, this is subject to investigation.

Prausnitz and Anderson ${ }^{1}$ expressed selectivity in terms of the physical model and analysed the contributing factors to the selectivity in the following manner.

For the system of components 1 (polar) and 2, 3 (nonpolar); activity coefficients as predicted through the physical models following above eq. 5, are:

R $T \ln \gamma_{2}^{\infty}=V_{2} \tau_{1}^{2}+\left[V_{2}\left(\lambda_{1}-\lambda_{2}\right)^{2}\right]-2 V_{2} \Psi_{12}+R T\left[\ln \frac{V_{2}}{V_{1}}+1-\frac{V_{2}}{V_{1}}\right]$
R $T \ln \gamma_{3}^{\infty}=V_{3} \tau_{1}^{2}+\left[V_{3}\left(\lambda_{1}-\lambda_{3}^{2}\right)^{2}\right]-2 V_{3} \Psi_{13}+R T\left[\ln \frac{v_{3}}{V_{1}}+1-\frac{v_{3}}{v_{1}}\right]$

Subtracting eq. 20 from eq. 19
$R T \ln S_{23}=R T \ln \frac{r_{2}^{\infty}}{r_{3}^{\infty}}=\left[\left(v_{2}-v_{3}\right) T_{1}^{2}\right]+\left[v_{2}\left(\lambda_{1}-\lambda_{2}\right)^{2}-v_{3}\left(\lambda_{1}-\lambda_{3}\right)^{2}\right]$

$$
\begin{align*}
& +\left[2 V_{3} \Psi_{13}-2 V_{2} \Psi_{12}\right] \\
& +\left[R T\left(\ln \frac{V_{2}}{V_{3}}-\frac{V_{2}-V_{3}}{V_{1}}\right)\right] \tag{21}
\end{align*}
$$

The four bracketed terms in eq. 21 are, respectively, Polar, Dispersion, Induction and Flory-Huggin's entropy terms contributing to the selectivity $S_{23^{\circ}}$. Using notations,
$R T \ln S_{23}=P+D+I+F ; \quad$ where $P=\left(V_{2}-V_{3}\right) \pi_{i}^{2}$

$$
\begin{aligned}
\mathrm{D} & =v_{2}\left(\lambda_{1}-\lambda_{2}\right)^{2}-v_{3}\left(\lambda_{1}-\lambda_{3}\right)^{2} \\
I & =2 v_{3} \Psi_{13}-2 v_{2} \Psi_{12} \\
\text { and } \quad \mathrm{F} & =R T\left[\ln \frac{v_{2}}{v_{3}}-\frac{v_{2}-v_{3}}{v_{1}}\right]
\end{aligned}
$$

Prausnitz and Anderson ${ }^{1}$, in view of the eq. 22 suggested following conclusions in regards to contributions to the selectivities.
i) In absence of chemical effects, inductive term does not make a major contribution to the selectivity.
ii) Polar effect is proportional to the difference in molar sizes of the two hydrocarbons to be separated.
iii) In case of solute components of close or identical size polar term vanishes; and the dispersion term cannot account for significant selectivity; and for such cases selectivity can be based on the chemical forces which will selectively increase the induction energy between the solvent and one of the hydrocarbons.

From above discussion, it can be seen that selectivity can be determined from solution theory concept of physical effects. A rigorous treatment to determine selectivity from eq. 19 and 20 or from eq. 22 is given in later chapters.

It is interesting to note here that in the case of separation of hydrocarbons having small but significant differences (as in $\mathrm{C}_{4}-\mathrm{C}_{5}$ class) in their molar volumes some selectivity can be still achieved on the basis of size difference and difference in nonpolar solubility parameters of the solutes. Spelyng and Tassios ${ }^{33}$ in their work using n -octane and isooctane (close $\%$ molar volumes) as solutes in different solvents have concluded that main contributions to the selectivity result from physical effects, especially from dispersion forces. They found no significant contributions to the selectivity from chemical effects.

III Chemical Effects

The chemical viewpoint of solution considers that nonideality in solution results from association and solvation of molecules resulting sometimes into formation of complexes. The inductive energy term Ψ does not include any specific forces leading to the formation of complex. Accordingly, a complex is result of an acid-base interaction following Lewis definitions that a base (solute) is an electron donor) having low ionization potential and an acid (electron
acceptor) having large electron affinity. Ionization potentials have been known for many organic compounds. However electron affinity has only been indirectly indicated through Sigma or Lewis Scales expressing Lewis acidities.

Presence of chemical effects and their contributions to the activity coefficient and selectivity functions in solute-solvent interactions has been studied by Prausnitz and Harris ${ }^{12}$. They have established a relative approximate scale of Lewis acidities for typical organic compounds, which can be of direct use for estimation of solvent selectivities in extractive separations.

However, Spelyng and Tassios ${ }^{33}$ have attempted to explain the differences between observed and calculated values of selectivities through chemical effects by plotting the quantity $Q=R T\left(\ln S_{\text {OBS }}-\ln S_{\text {GALE }}\right)$ against relative Lewis acidity $\left(\mathrm{K}_{\mathrm{x}}\right)$ of the solvents, and concluded that there is no interdependency and chemical effects do not contribute significantly to the selectivity even in case of close molar volumes.

CHAPTER 3

EQUIPMENT AND PROCEDURES

A Varian-Autoprep model A700 Gas Chromatograph equipped with a 4.5 feet (1/8 in. OD) Stainless Steel column was used in this study. The column was packed with high performance Glass beads as inert solid supports of recommended maximum liquid loading of 5%. The inert gas employed was high purity He with its flow rate ranging from 20 to $60 \mathrm{cc} / \mathrm{min}$ as the case may be. He flow rate for a particular run was measured within 1% with the help of a soap-film flowmeter attached at the chromatograph outlet.

Each solvent was injected into the column after complete removal of the previous solvent by increasing and maintaining the column at temperature 20 to 30 degrees higher than the boiling point of the solvent for a minimum of six hours. Solvent placement into the column was made possible by maintaining the injector, and the detector cells at temperature higher than the boiling point of the solvent while maintaining column temperature at room conditions. After each injection of solvent, sufficient time was allowed to have complete and uniform distribution of solvent in the column. Most of the solvents used have a negligible vapor pressure at the operating temperature, however loss of solvent per unit time was computed for every solvent
so that accurate amount of solvent present at any time can be precisely used in the calculations. This was done by measuring the weight of the column before,\&after the injection of the solvent and at intermediate periods as well as at the end of the run. Temperature of the chromatographic block was maintained at $45^{\circ} \mathrm{C}$ within 1% accuracy with the help of temperature controller.

He outlet Pressure

CHAPTER 4

SELECTION OF SYSTEMS

In order to develop two separate correlations for predicting activity coefficients and selectivity terms for normal and isoparaffins, n-Pentane and Isopentane were considered as solutes in various polar solvents. Selection of these solutes and the solvents was based on the availability of useful information of solubility parameters and activity coefficients in some cases. The difference in their molar sizes is only 0.7%. Lower hydrocarbons could not be attempted because of their high vapor pressures at the temperatures considered. 1-Pentene was also employed in each run to obtain its activity coefficient values.

To minimize the loss of weight per time of active operation of the column, solvents should have very low vapor pressure at the temperature of the experiment. For this reason solvents selected have a reasonably high boiling point. Selection of solvents was also based on their polar solubility parameters in the range of 0 to 10 . Most of the solvents are included in the work of Gerster, et, al. ${ }^{11}$ so that the results of this study can be compared with those of a static measurements. To consider the chemical effects on selectivity, five of the solvents were selected on the basis of their stand on the Lewis
acidity constants scale ${ }^{12}$.
The hydrocarbons used were of 99.0 mole percent minimum purity, and obtained from Eastman Kodak Company. The solvents were obtained from Eastman Kodak Company, K and K Chemicals and Fisher Scientific Co.

Table No. 1 lists all the solvents with their formula and B. Pt.

CHAPTER 5

EVALUATION OF REQUIRED PARAMETERS

Specific Volume, v cc/gmol
Specific volumes of Hydrocarbons at different temperatures are readily available in literature ${ }^{8,16}$. Specific volumes or density data for solvents selected, however, are scattered and limited and are not sufficient to exactly predict the volumes at $45^{\circ} \mathrm{C}$. Reid and Sherwood and Hougen, Watson and Ragatz presents correlation of obtaining liquid densities for molar volumes on the basis of critical properties and reduced densities. Accordingly, the reduced density is a function of reduced temperature, pressure and compressibility factor. If the critical constants P_{c}, W_{c}, T_{c} and Z_{c} of a compound are determined and density (gms/cc) at any temperature (say T_{1}) is known, then reduced density of the liquid at temperature T_{1} or reduced temperature $T_{r 1}=T_{1} / T_{C}$ and reduced pressure $p_{r l}=p_{1} / p_{c}$ is obtained using the given tables. This value is to be corrected for the value of z_{c} other than 0.27 as,

$$
Q_{Y_{1}}^{\prime}=S_{r_{1}}+D\left(Z_{c}-0.27\right), \begin{align*}
& \text { where } D \text { is a correction factor } \tag{23}\\
& \text { to be read from the tables }
\end{align*}
$$

Similarly, reduced density at other temperature T_{2} is obtained. Then, density at temperature T_{2} is given as:

$$
\begin{equation*}
\rho_{2}=\frac{\rho_{1} \rho_{r_{2}}^{\prime}}{\rho_{r_{1}}^{\prime}} \tag{24}
\end{equation*}
$$

and specific volume as: $\quad V_{2}=\frac{\rho_{r_{1}}^{\prime} M}{S_{1} \rho_{r_{2}^{\prime}}^{\prime}} \quad \mathrm{cc} / \mathrm{gmol}$
Determination of specific volumes using above estimation requires knowledge of critical properties and density at one temperature. Unfortunately however, critical constants of only some of the solvents have been reported in available literature sources. An estimation procedure for determination of critical constants of organic compounds specially recommended for the purpose is the Lyderson's method ${ }^{14}$ and has been extensively used in this work.

Nonpolar Solubility Parameter

For a nonpolar molecule according to the Scatchard and Hildebrand theory,

$$
\begin{align*}
\lambda_{2}=\frac{\Delta U_{2}}{V_{2}} & =\frac{\text { Energy of vaporization (cal/gmole) }}{\text { Specific volume (cc/gmol) }} \\
& =\frac{\Delta H_{2}-R T}{V_{2}} \tag{25}
\end{align*}
$$

Heat of vaporization of hydrocarbons at different temperatures can be obtained through Clausius-Clape 7 yon equation using Vapor

Pressure data. Thus at temperature T,

$$
\begin{equation*}
\Delta H_{2}=\frac{1}{P}\left|\frac{d P}{d T}\right|_{T} R T^{2} \tag{26}
\end{equation*}
$$

Nonpolar solubility parameters λ_{1} for $n-P e n t a n e$ and Is opentane following the above calculations at $45^{\circ} \mathrm{C}$ are 6.94 and 7.29 (cal/cc) ${ }^{1 / 2}$ respectively.

Solubility parameters of Polar solvent, $\quad \lambda_{1}$ and τ_{1}
As discussed earlier, the energy of vaporization of a polar molecule consists of two parts, i) Nonpolar and ii) Polar.

$$
\begin{align*}
\frac{\Delta U_{1}}{V_{1}}(\text { TOTAL }) & =\frac{\Delta U_{1}}{V_{1}}(\text { NONPOLAR })+\frac{\Delta U_{3}}{V_{1}}(\text { POLAR }) \\
& =\lambda_{1}^{2}+\tau_{1}^{2} \tag{28}
\end{align*}
$$

$\frac{\Delta U_{1}}{V_{1}}$ (Total) : The total energy change of vaporization (left side of the eq. 27 can be determined in one of the following ways.
A. If reliable vapor pressure data of the solvent over a suitable range are available, $\mathrm{dP} / \mathrm{dT}$ slope at the required temperature $\left(45^{\circ} \mathrm{C}\right.$ in our case) is obtained to evaluate Heat of Vaporization H of the solvent at the temperature using Clausius-

Claperyron equation. Knowing the heat of vaporization ΔH can be calculated through the equation

$$
\begin{equation*}
\frac{\Delta U}{V}=\frac{\Delta H-R T}{V} \tag{29}
\end{equation*}
$$

if Antoine constants B and C of the vapor pressure equation for the Solvent are known, $\Delta U / v$ can be obtained also through the eq. 33 on page No . 25.
B. If vapor pressure data are not available in the range require ϵ or are scattered or cannot be precisely used without involveing a serious error, an estimation method to determine heat: of vaporization at $45^{\circ} \mathrm{C}$ can be used. Reid and Sherwood presents two of the modifications to the reduced Kirchoff's equation to determine the heat of vaporization at the boiling point of the solvent. Using Klein-Fishtine modification we have,

$$
\begin{equation*}
\Delta H_{b}=\left[\frac{2.303 R T_{b} T_{c} K_{v} \log _{10} P_{c}}{T_{b}-T_{c}}\right]\left(1-\frac{1}{P_{c} T_{b \gamma}^{3}}\right)^{1 / 2} \tag{30}
\end{equation*}
$$

Where $K_{v}=1.045$ for our
Solvents since $T_{b}>300^{\circ} \mathrm{K}$
From this, at any temperature $T\left(T_{r}\right)$, using Watson correlation

$$
\begin{equation*}
\Delta H=\Delta H_{b}\left[\frac{1-T_{\gamma}}{1-T_{r b}}\right]^{0.38} \tag{31}
\end{equation*}
$$

Substituting eq. 31 in eq. 30, and simplifying

$$
\begin{array}{r}
\Delta H=\frac{4.781984 T_{b} T_{c} \log _{10} P_{c}}{T_{c}-T_{b}}\left(1-\frac{T_{c}^{3}}{P_{c} T_{b}^{3}}\right)^{1 / 2} \\
\times\left(\frac{T_{c}-T}{T_{c}-T_{b}}\right)^{0.38} \tag{32}
\end{array}
$$

$\left.\frac{\Delta U}{v}\right|_{\text {TOTAL }}$
can be then evaluated using equations 29 and
32. It may be noted here that again critical constants
are required to use this correlation.
In the case of solvents of known or limited vapor pressure data the values of ΔH calculated using method B have been compared with those obtained using methodA and are found to be in close agreement as shown in Appendis No. II.
$\left.\frac{\Delta u}{V}\right|_{\substack{\text { NOMPOLAR: } \\ \text { PART }}}$ The dispersion of nonpolar contribution to the energy of FOR POLAR species
vaporization of a polar species is evaluated using the homomorphucomept
In the definition proposed by Bondi and Simkin ${ }^{7}$, the homomorph of a compound is the equistructural hydrocarbon at the same reduced temperature. More recently, Anderson ${ }^{8}$ suggested that the homomorph should have the same molar volume as the solvent. Since experimental data indicate that the properties of a series of similar liquids such as Aliphatics, vary in a smooth predictable manner, it has been possible to construct "homomorph plots" from which the dispersion energy density at any desired temperature can be read. Weimer and

Prausnitz ${ }^{3}$ and Helpinstill and Van Winkle in their work have produced homomorph plots for n-Paraffins, Cycloparaffins and Aromatic hydrocarbons. By simple thermodynamics it has been shown that

$$
\begin{equation*}
\Delta U=\frac{2.303 R T^{2} B}{(t+C)^{2}}-R T \tag{33}
\end{equation*}
$$

where B and C are the constants of Antonie's equation,

$$
\log _{10} p=A-\frac{B}{t+C}
$$

$W-P^{3}$ used properties of nonpolar hydrocarbons to construct these plots with the ordinates $\frac{\Delta U_{1}}{V_{1}}=\lambda_{1}^{2}$ and the abscissa of ' v ', the specific volume. Using the plots, square root of the ordinate value corresponding to the specific volume of the equivalent homomorph hydrocarbon compound of the solvent gives the value of

$$
\left(\frac{\Delta u_{1}}{v_{1}}\right) \text { /polar part : }
$$

This term and the polar solubility parameter σ_{1} are determined by the difference, from the equation:

$$
\begin{equation*}
\Gamma_{1}=\left[\frac{\Delta u_{1}}{v_{1}}-\lambda_{\text {TOTAL }}^{2}\right]^{1 / 2} \tag{34}
\end{equation*}
$$

Typical calculations for the determination of these parameters as well as the specific volume and the critical constants are presented in Appendix I.

Since accurate information of critical properties and vaporpressure data is not available for some of the solvents used in the
experiments, values of λ_{1} and τ_{1} are obtained using two separate procedures. Primarily, values of λ_{1} and Π_{1} in Set I (procedure 1) are calculated using estimated values of heat of vaporization through eq. 32 ., while for those in Set II (procedure 2) heat of vaporization is calculated using reliable vapor pressure data. The two procedures are as follows:

Procedure 1 (SET I)

Critical properties $P_{c}, T_{c}, V_{c}, Z_{c}$ are estimated using Lyderson's techniques. Specific volume ' v ' is calculated using these properties. Nonpolar solubility parameter is obtained using homomorph plots. Total heat of vaporization is obtained using eq. 32 (Method B). Polar solubility parameter T_{1} is then obtained through eq. 34 .

Procedure 2 (SET II)

Critical properties are obtained from literature sources. In cases when they are not available, Lyderson's estimation techniques are used. Specific volume and nonpolar solubility parameter are calculated using these critical properties and homomorph plots. The heat of vaporization is calculated using vapor-pressure data in the suitable range or using Antoine's vapor-pressure equation constants (MethodA). Polar solubility parameter T_{1} is then calculated through equations 29 and 34.

Appendix II presents the values of $\Delta H, \lambda_{1}$ and T_{1}
following the various properties and the procedure used for calculation.
Table No. 2 summerizes these values of parameters.

CHAPTER 6

EXPERIMENTAL RESULTS

Table No. 3 presents all the measurements involved in the experiments in the determination of the activity coefficients and the obtained activity coefficient values. Since more than one measurement was involved, the mean values are also included. These mean values are summarized in the Table No. 4 against the values available in the literature. A typical experimental log-sheet for the solvent Dimethyl Acetamide is shown in the Appendix III. Corresponding chromatugrams are presented in the Appendix IV.

From Table No. 4, we can see that our values of activity coefficients for n-Pentane are in a close agreement with those obtained in the literature ${ }^{11,43}$. For 1-Pentene, however, our values are as off as 40% in case of Furfural. Activity coefficients for Isopentane in these solvents could not be obtained from any literature sources to our knowledge. For comparison purpose; Martes and Colburn ${ }^{44}$ values for C_{4} hydrocarbons in Furfural are given in Table No. 4.

CHAPTER 7

CORRELATION OF INFINITE DILUTION ACTIVITY COEFFICENTS

a) The Equation:

The extended $\mathrm{H}-\mathrm{W}^{7}$ model equation for the induction energy
term Ψ_{12} for a general system (of any polar-non-polar components) is:

$$
\begin{equation*}
\Psi_{12}=k\left(\tau_{1}-\tau_{2}\right)^{2} \tag{7A}
\end{equation*}
$$

Corresponding equation for activity coefficient at infinite
dilution is,

$$
\begin{align*}
\operatorname{RT} \ln \gamma_{2}^{\infty}-v_{2}\left(\lambda_{1}-\lambda_{2}\right)^{2}-R T\left[\ln \frac{v_{2}}{v_{1}}+1-\frac{v_{2}}{v_{1}}\right] & =v_{2}\left[\left(\tau_{1}-\tau_{2}\right)^{2}-2 \psi_{12}\right] \\
& =(1-2 k) v_{2}\left(\tau_{1}-\tau_{2}\right)^{2} \tag{8A}
\end{align*}
$$

Defining the two parameters ' X ' and ' Y ' as,

$$
\begin{align*}
& Y=R T \ln Y_{2}^{\infty}-V_{2}\left(\lambda_{1}-\lambda_{2}\right)^{2}-R T\left[\ln \frac{V_{2}}{V_{1}}+1-\frac{V_{2}}{V_{1}}\right] \tag{35}\\
& X=V_{2}\left(T_{1}-T_{2}\right)^{2} \tag{36}
\end{align*}
$$

Or for nonpolar paraffinic solutes, since $\tau_{2}=0.0$
$x=V_{2} T_{1}^{2}$
Equation 8A shows that a plot of 'Y 'vs ' X ' should yield a straight line.
b) Non Zero Intercept:

Equation 8A suggests that a plot of Y vs X should yield a straight line passing through origin. However, as a first attempt to correlate the data, an intercept was allowed in the regression analysis. Fig. 2 through 5 present such plots for the solutes $\mathrm{n}-\mathrm{Pentane}$ and Isopentane for the two sets (Set I and II) of solvent parameters λ_{1} and T_{1} Fig. 6 and 7 present such plots for 1-Pentene, a polar solute. Linear regression analysis for the points (X, Y) is shown in the Appendix VI.

Linear regression analysis, allowing for an intercept, for our data yielded the following. $Y=$ (slope) $X+$ intercept $; \quad k=\frac{1-\text { Slope }}{2} \cdots-(8 B)$
For $n \cdots$ Pentane: Using Set I data $Y=0.165 X 498.5 \quad \frac{k}{0.417\left(k_{2}\right)}$ (component 2) for $\lambda_{1} \& T_{1}$ Using Set II data $Y=0.176 \mathrm{X}+146.4 \quad 0.412\left(\mathrm{k}_{2}\right)$ for $\lambda_{1} \& \tau_{1}$

For Isopentane, (component 3) Using Set I data $Y=0.167 X+226.1$ $0.416\left(\mathrm{k}_{3}\right)$ for $\lambda_{1} \& \tau_{1}$ Using Set II data $Y=0.178 \mathrm{X}+248.3 \quad 0.411\left(\mathrm{k}_{3}\right)$ for $\lambda_{1} \& T_{1}$

For 1-Pentene \quad Using Set I data $Y=0.183 \mathrm{X}-200 \quad 0.408\left(\mathrm{k}_{4}\right)$ (component 4) for $\lambda_{1} \& T_{1}$
Using Set II data $Y=0.193 \mathrm{X}-130 \quad 0.403\left(\mathrm{k}_{4}\right)$ for $\lambda_{1} \& \Pi_{j}$

From these equations calculated values of activity coefficients
(GAMAC) γ^{∞} were determined.

Percentage Difference (PD) in calculating these coefficients through correlations is calculated as:

$$
\begin{equation*}
(P D)=\frac{\log r_{E X P T}-\log r_{C A L}}{\log r_{E \times P T}} \times 100 \tag{38}
\end{equation*}
$$

Percentage Difference PD is calculated as

$$
\begin{equation*}
[P D]=\frac{r_{\text {EXPT }}-r_{C A L}}{r_{E \times P T}} \times 100 \tag{38A}
\end{equation*}
$$

Average Absolute Deviation (AAD) is then, calculated as:

$$
\begin{equation*}
A A D=\frac{\sum|P D|}{\text { No. of solvents }} \tag{39}
\end{equation*}
$$

Results of these correlations are presented in Table No. 5 through 8. As it can be seen from the tables No. 5 and 6, for n-Pentane, using Set I (estimated) values of λ_{1} and Π_{1}, Average Absolute Deviation (AAD) in determining $\boldsymbol{\gamma}_{2}^{\infty}$ is 8.7%, with maximum of 17% for 2-5 Hexanedione. However, using Set II (ΔH from vapor-pressure) values for these parameters, $A A D$ is 16.0% with a maximum of 54% for Trimethyl Phosphate.

Similarly, for Isopentane (from Tables No. 7 and 8), using Set I values, AAD in determining γ_{3}^{∞} is 8% with a maximum of 13% in case of Acetophenone, while using Set II values, AAD is 14.4% with a maximum of 48% for Trimethyl Phosphate.

Since the purpose of this research is mainly to investigate correlations for straight and branch chained saturated nonpolar hydrocarbon solutes, l-pentene being polar and unsaturated is, not considered any further.

Only one nonpolar solvent, Dodecane, is included in the regression analysis of our data. Other hydrocarbon solvents, nTetracosane, n-Pentatriacontane, n-Eicosane and Squalane are not included since their ' Y ' values are not close to the origin, being away from the origin in the range of 600 to $-600 \mathrm{cal} / \mathrm{gmol}$. These points are, however, shown on the plots.
c) Forcing the intercept to be zero:

In this case, the regression analysis of the Yvs X data was forced to yield a straight line passing through zero as suggested by eq. 8A. Following expressions were obtained for

$$
\begin{equation*}
Y=(\text { slape }) X \tag{8C}
\end{equation*}
$$

Set I points:

n-Pentane:	$\mathrm{Y}=0.182 \mathrm{X}$	$\frac{\mathrm{k}}{0.409\left(\mathrm{k}_{2}\right)}$
Isopentane:	$\mathrm{Y}=0.205 \mathrm{X}$	$0.398\left(\mathrm{k}_{3}\right)$
1-Pentene:	$\mathrm{Y}=0.136 \mathrm{X}$	$0.432\left(\mathrm{k}_{4}\right)$

Set II points

n-Pentane:	$\mathrm{Y}=0.197 \mathrm{X}$	$0.401\left(\mathrm{k}_{2}\right)$
Isopentane:	$\mathrm{Y}=0.215 \mathrm{X}$	$0.393\left(\mathrm{k}_{3}\right)$
1-Pentene:	$\mathrm{Y}=0.145 \mathrm{X}$	$0.428\left(\mathrm{k}_{4}\right)$

Activity coefficients from the correlations (GAMAC1) are calculated using above equations. Percentage Differences (PD) and Average Absolute Deviation (AAD) are calculated as in (b). Above lines are shown on the plots - fig. 2 through 7. Results of these correlations are presented in Tables No. 9 through 12.

As it can be seen from Table No. 9 and 10, for n-Pentane using Set I points, AAD in determining γ_{2}^{∞} is 7.8% with a maximum of 18.3% in case of $2-5$ Hexanedione, using Set II points, AAD is 14.3% with a maximum of 57% in case of Trimethyl Phosphate. Similarly, from Tables No. 11 and 12 for Isopentane, using Set I datapoints, AAD in determining Γ_{3}^{∞} is 8.5% with a maximum of 29% in case of Acetophenone, and using Set II points, AAD is 13.5% with a maximum of 54% for Trimethyl Phosphate.

As it can be seen from part (b) and (c), the value of k_{2} and k_{3} in eq. 7 A , from our correlation of the data, is in the neighborhood of 9.4 for the $\mathrm{n}-\mathrm{C}_{5}$ and iso $-\mathrm{C}_{5}$ hydrocarbons.
d) Adjusting the nonpolar solute parameter λ_{2} values:

Hildebrand has stated that by adjusting the paraffin solute solubility parameters, activity coefficients through the solution theory concept can be better correlated. Kyle and Leng in screening the solvents for extractive distillation purpose, observed that adjusting the conventional paraffin solute solubility parameter (obtained from energy of vaporization) agreement between experimental and calculated values of $r_{2}^{\infty} / r_{3}^{\infty}$ was improved.

In attempting to correlate our data better, solute solubility parameters obtained from energy of vaporization, were adjusted.

It is observed from tables 13 through 16A that by lowering the values of $n-C_{5}$ and $\mathrm{i}-\mathrm{C}_{5}$ solubility parameters the value of intercept of the regressed line can be markedly brought near to origin, but the values of Average Absolute Deviation and the Maximum \% error are not reduced. Increased disagreement is observed in some cases. Increasing these solubility parameters make the values of intercept larger, which is against the theoretical prediction.

For Set I points, following equations are obtained, after adjusting the value of solute solubility parameter,

For n-Pentane: $\quad 0.2 \quad$ (b) $Y=0.163 X+25.9 ; \mathrm{k}_{2}=0.418$
$\begin{aligned} & \text { and } \lambda_{3} \text { by } \quad \begin{aligned} \text { (c) } Y & =0.167 X \quad ; \mathrm{k}_{2} \\ 0.6 & \text { (b) } \mathrm{Y}\end{aligned}=0.159 \mathrm{X}+28.9 ; \mathrm{k}_{3}=0.420 \\ & \text { (c) } \mathrm{Y}=0.164 \mathrm{X} \quad ; \mathrm{k}_{3}=0.418\end{aligned}$
Subtracting 0.2 from n-Pentane solubility parameter as obtained from energy of vaporization, results with and without intercept for Set I points are given in Tables no. 13 and 13A. Subtracting 0.6 from the Isopentane solubility parameter, results are given in Tables No. 14 and 14A. Fig. 8 for $\mathrm{n}-$ Pentane and Fig. 9 for Isopentane plots the corresponding X vs Y points.

As it can be seen from the Tables No. 13 and 13A, the AAD of determining γ_{2}^{∞} is 9.3% with a maximum of 19% error in case of 2-5 Hexanedione. Also, for Isopentane, from Tables No. 14 and 14A, AAD is about 9.4% with a maximum of 18 T error in case of $2-5$

Hexanedione. The value of the intercept, however, is reduced from 98.5 to 25.9 in case of n -Pentane and 226.1 to 28.9 in case of Isopentane.

Following equations are obtained, for Set II points, on adjusting the solute solubility parameters.

Lowering λ_{2} by
For n-Pentane:
0.5
(b) $Y=0.167 X-17 \quad 0.416\left(\mathrm{k}_{2}\right)$
and λ_{3} by
(c) $Y=0.164 \mathrm{X}$
$0.418\left(\mathrm{k}_{2}\right)$
For Isopentane
0.9
(b) $\mathrm{Y}=0.162 \mathrm{X}-15.2$
0.419 (k3)
(c) $Y=-.160 \mathrm{X}$
$0.420\left(\mathrm{k}_{3}\right)$

Subtracting 0.5 from n -Pentane solubility parameter as obtained from energy of vaporization, results fro Set II points are given in Tables No. 15 and 15A. Subtracting 0.9 from the Isopentane solubility parameter, results are given in Tables No. 16 and 16A. Figure 10 for n-Pentane . and Fig. 11 for Isopentane plots the corresponding X vs Y points.

As it can be seen from the Tables No. 15 and 15A, the AAD of determining γ_{2}^{∞} is 18.3% with a maximum of 60% error in case of Trimethyl Phosphate. Also, for Isopentane, from Tables No. 16 and $16 \mathrm{~A}, \mathrm{AAD}$ in determining Υ_{3}^{∞} is about 18% with a maximum of 60% error in case of.Trimethyl Phosphate. The value of the intercept, however;
in case of n-Pentane is reduced from 146.4 to -17 by subtracting 0.5 from $\boldsymbol{\lambda}_{2}$, while for Isopentane it is reduced from 248.3 to -15.2 by subtracting 0.9 from the $\frac{\lambda}{3}$ values obtained from energy of vaporization. This shows that, in determining activity coefficients from our correlation for C_{5} hydrocarbons, adjusting the values of solute solubility parameter arbitrarily does not improve to yield better correlation, except for the fact that it helps reducing the intercept of the regressed lines.

CHAPTER 8

CORRELATION OF INFINITE DILUTION SELECTIVITIES

al) The Equation:
Rearranging eq. 22, the expression for selectivity in a system containing a polar solvent and nonpolar solute, we have:
$R \mathrm{~T} \ln \mathrm{~S}_{23}-\mathrm{P}-\mathrm{D}-\mathrm{F}=\mathrm{I}$ (Induction Energy term)

$$
\begin{array}{ll}
& =2 v_{2} \psi_{12}-2 v_{3} \psi_{13} \\
\left(\underset{\text { and }}{\text { substituting for } \psi_{13}},\right. & =2 v_{2} k_{2} \tau_{1}^{2}-2 v_{3} k_{3} \tau_{1}^{2} \tag{40}
\end{array}
$$

We have shown earlier that constants k_{2} and k_{3} for $n-C_{5}$ and iso-C5 are nsarly equal, and therefore writing $\mathrm{k}_{2}=\mathrm{k}_{3}=\mathrm{k}$ in eq. 40 ,
$R T \ln S_{23}-P-D-F=2 k \sigma_{1}^{2}\left(V_{2}-V_{3}\right)$

$X^{\prime}=\left(V_{2}-V_{3}\right) \cdot T_{1}^{2}$
and $\quad Y^{\prime}=R T \ln S_{23}-P-D-F$
Equations 41 through 43 show that a plot of X^{\prime} vs Y^{\prime} should be a straight line with a slope of ' $2 \mathrm{~K}^{\prime}$ and passing through origin. bl) Non Zero Intercept:

Eq. 41 suggests that a plot of X^{\prime} vs Y^{\prime} should yield a straight line passing through origin. However, as a first attempt to correlate selectivities, an intercept was allowed in the regression analysis.

Fig. 12 and 13 present such plots for the $n-C_{5}$ and iso- C_{5} solutes using both the sets (Set I and II) of solvent solubility parameters λ_{1} and Π_{1}.

Linear regression analysis of the X^{\prime}, Y^{\prime} points, allowing for an intercept, for Set I yielded following equation.

$$
\begin{equation*}
Y^{\prime}=-0.630 X^{\prime}-127.6 \tag{44}
\end{equation*}
$$

Calculated values of selectivities through this equation and the \% Error (PD) in determining them are tabulated in Table No. 17. $P D$ is defined as,

$$
\mathrm{PD}=\% \text { Difference } \quad=\frac{\left(S_{\text {expt }}-S_{\mathrm{cal}}\right) \times 100}{S_{\text {expt }}}
$$

Average Absolute Deviation $=\mathrm{AAD}=\frac{\sum|\mathrm{PD}|}{\text { no. of solvents }}$
From Table No. 17, it can be seen that AAD in determining selectivity through equation above, is 8%, with the maximum of 14.7% error.

Similar analysis for Set II points gave,

$$
\begin{equation*}
Y^{\prime}=-0.498 X^{\prime}-101.8 \tag{45}
\end{equation*}
$$

with an AAD of 9.3% and a maximum of 20.4% error in determining selectivity. Results using this equation are presented in Table No. 18.
cl) Forcing the intercept to be zero:

In this case, as suggested by the equation No. 41, the regressed
line was forced to pass through origin. Following equation was obtained for Set I points:

$$
\begin{equation*}
Y^{\prime}=2.565 \mathrm{X}^{\prime} \tag{46}
\end{equation*}
$$

with an AAD of 10.7% and a maximum of 33% error in determining selectivities through this equation. Results using this equation are presented in Table No. 19.

Similar equation for Set II is, $\quad Y^{\prime}=1.724 \mathrm{X}^{\prime}$
with an AAD of 10.9% and a maximum of 34.7% error in determining the selectivity through this equation. Corresponding results are presented in Table No. 20.

Fig. 12 and 13 also show above lines for Set I and II respectively.

Adjusting the nonpolar solutes parameters: $\left(\lambda_{2}\right.$ and $\left.\lambda_{3}\right)$
As it can be seen from Tables No, 17 through 20, large amount of \% differences (PD) are observed in determining selectivities through the correlations for some of the solvents. Following the earlier discussion (in part 'd'), paraffin solute parameters are adjusted in order to better correlate the selectivities. These adjustments are done in the following two ways.
d11) Adjusting both the solutes parameters (λ_{2} and λ_{3}):
Since we already have adjusted the individual solute parameters
in attempt to better correlate the activity coefficients for each set
(I and II), these values (adjusted in part 'd') are attempted. Following equations are obtained.

For Set I points:

Subtracting from $(\lambda)_{\text {E. }}$.
Adjusted
Values
$\begin{array}{lll}0.2 & \mathrm{n}-\mathrm{C}_{5}, \lambda_{2}=6.94 & 6.74 \\ 0.6 & \text { iso }-\mathrm{C}_{5}, \frac{\lambda_{3}}{}=7.29 & 6.69\end{array}$
(b) allowing for an intercept: $\quad Y^{!}=-1.382 X^{\prime}-2.92$
(c) zero intercept $\quad: \quad Y^{\prime}=-1.37 \mathrm{X}^{\prime}$

The AAD of determining selectivities through these equations, as shown in Tables 21 and 21 A is less than 2% with a maximum of 4.2% in case of n -Methyl Pyrrolidone. Fig. 14 plots above equations on $X^{\prime}-Y^{\prime}$ coordinates.

Similarly, for Set II points:

the equations obtained are:
b) allowing for an intercept: $\quad Y^{\prime}=-1.580 X^{\prime}-1.77$
c) zero intercept $\quad Y^{\prime}=-1.56 \mathrm{X}^{\prime}$

The AAD of determining selectivities through these equations, as shown in Tables 22 and 22A is less than 2.4%, with a maximum of 6%
error in the case of Trimethyl Phosphate. Fig. 15 plots above lines on $X^{\prime}-Y^{\prime}$ co-ordinates.

Results above show that remarkable correlation of selectivities through solution theory is achieved by adjusting the values of paraffin solubility parameters as obtained from energy of vaporization (E.V.).
d12) Adjusting one of the solute's solubility parameter:
As we may see, the successful correlation of selectivities in part (d11) is attributed mainly to the adjusted values of solute 31 solubility parameters, as suggested by Hildebrand and Kyle and Leng. Logically then, is to attempt this adjustment only to one of the hydrocarbons instead of both.

Subtracting $0.4(0.6-0.2=0.9-0.5)$ from the Isopentane Solubility parameter yelded following results.

For Set I:

(b) allowing for an intercept : $\quad Y^{\prime}=-1.380 X^{\prime}-5.84$
(c) zero intercept $: \quad Y^{\prime}=-1.234 X^{\prime}$

Fig. 16 presents above equations on X^{\prime} vs Y^{\prime} co-ordinates.
The AAD of determining selectivities through above equations, as seen in Tables 23 and 23 A is within 2% with a maximum of 4.3% error in case of n-Methyl Pyrrolidone.

Similar results for Set II:

$\begin{array}{ll}\text { (b) allowing for an intercept } & : Y^{\prime}=-1.571 X^{\prime}-8.93--(54) \\ \text { (c) zero intercept } & : Y^{\prime}=-1.376 X^{\prime} \quad--(55)\end{array}$
Fig. 17 presents above two equations on X^{\prime} vs Y^{\prime} co-ordinates.
The AAD of determining selectivities through above equations,
as seen in Tables 24 and 24 A is within 2.5% with a maximum of 6.0% error in the case of Trimethyl Phosphate.

Above results show that changing only one of the paraffin solutes parameters is really a necessary adjustment, in our systems, to be able to improve the correlation of selectivities. This, however, may or may not be true in other systems.

CHAPTER 9

DISCUSSION

Reliability of our results:
As we can see in Table No. 4, our values of activity coefficients of n-Pentane are well comparable with those obtained by Gerster, et. al. ${ }^{11}$ However, when comparing similar values for 1-Pentene, our values are different and deviate as large as 40\% in determining actual values in case of Furfural. Considering the worst case of Furfural, from Table No. 4, we notice that,

For C_{5} hydrocarbons, $\mathrm{S}_{24}=13.10 / 7.49=1.75$, @ $45^{\circ} \mathrm{C}$ Ref. 11

$$
\begin{aligned}
& S_{24}=12.8 / 7.12=1.80, @ 45^{\circ} \mathrm{C} \text { Ref. } 43 \\
& S_{24}=13.27 / 4.52=2.93, @ 45^{\circ} \mathrm{C}, \text { this work }
\end{aligned}
$$

For C_{4} hydrocarbons $\mathrm{S}_{24}=11.0 / 6.5=1.68,50^{\circ} \mathrm{C}$, Ref. 44

Isopentane activity coefficients in the solvents are not available in the literature, to our knowledge. However, Mertes and Colburn ${ }^{44}$ have reported, for $n-B u t a n e$ and Isobutane in Furfural,

$$
\begin{aligned}
& S_{23}=11.0 / 12.5=0.88, @ 50^{\circ} \mathrm{C} \text { Ref. } 44 \\
& S_{23}=13.27 / 13 / 57=0.98 @ 45^{\circ} \mathrm{C}, \text { this work }
\end{aligned}
$$

It appears therefore, that in light of the fact that our values of 1-Pentene being significantly different in some cases, our values
of activity coefficients for Isopentane could be in a possible error. Nevertheless, experiments were carefully performed and a great amount of reproduc ibility (See Table No. 3) was also observed, above deviations could be due to relatively impure samples or some unknown experimental errors.

Following discussions are, however, based on the assumption of validity of our experimental results.

A Development of two separate correlations for the Induction Energy Term, Ψ

As we can see from Fig. 2 through 5, the values of slopes of regressed X - Y line, relating the physical properties with infinite dilution coefficients of saturated hydrocarbons, ranges from 0.164 to 0.215 . The value of slope in each case, physically, depends upon various factors such as; type of hydrocarbon, i. e, straight chained or branched chain; source of solvent properties used in developing the correlation, i.e. using estimation techniques or from vapor pressure data; and the experimental error in determination of activity coefficients at infinite dilution conditions. As a result, it is difficult to observe, in our work, the nature of the X - Y line plots and thus to develop two separate equations of induction energy term Ψ. for two types of saturated hydrocarbons, straight chained and branch chained paraffins.

Correlation of infinite dilution activity coefficients:
From Tables No. 5 through 16A and 33, we can see that infinite dilution coefficient can only be estimated using the different models, since the percentage errors in some cases are more than 100%. Adjustments in the values of solutes solubility parameters are based on certain guidelines as follows.

For the regression with ZERO intercept, we could not find any favorable adjustment to the solute's solubility parameter that will reduce the magnitude of average absolute deviation for all of the solvents in consideration. It may be noted here that, by increasing the $\mathrm{n}-\mathrm{C}_{5}$ or iso $-\mathrm{C}_{5}$ solubility parameters, scattering of the points is increased and any improvement in \% error for some of the solvents is more than offset by obtaining very large $\%$ errors in others. Also, for the regression ALLOWING for an intercept, increasing these parameters bring about a further shift of the line away from the origin. The adjustments which are made, are in fact, those necessary to reduce deviations in determining the selectivities. As can be seen in Table 33, these adjustments bring about excellent correlation of selectivities, but slightly increase the Average Absolute Deviation in determining the activity coefficients.

C Correlation of Selectivities:

From Tables No. 17 through 24A and No. 33, we can see that selectivities can also be only estimated using these correlations. We have noticed that adjusting the values of paraffin's solubility parameters brought about excellent improvement in correlating the selectivities.

D Comparison of this work with $\mathrm{W}-\mathrm{P}^{3}$ and $\mathrm{H}-\mathrm{V}^{7}$ studies:
Table no. 33 summarizes all the necessary informations for this comparison. For the 13 solvents used in developing our correlations, we notice that, for C_{5} hydrocarbons:

1. in determining values of Activity coefficients, (ln γ):

Our results without adjusting parameters yielded minimum error (14%) as compared to those obtained using $W-P^{3}$ or H-V ${ }^{7}$ models (18%).
2. in determining Selectivities (S_{23}):

Our results, AFTER adjusting the values of solutes' solubility parameters, yielded minimum error (2.4%) as compared to those using $\mathrm{W}-\mathrm{P}^{3}(7.4 \%)$ and $\mathrm{H}-\mathrm{V}^{7}(6.7 \%)$. WITHOUT adjusting for the parameters, our results yielded 10.8% error.

For Solvents No. 20, 21 and 22, NOT included in the development of our correlation, $\mathrm{W}-\mathrm{P}^{3}$ correlations gave the most reliable values, following the $\mathrm{H}-\mathrm{V}^{7}$ correlations, and our correlations

WITHOUT adjustment of parameters. Correlations using previous

 adjustments (for solvents No. 1-13), yielded the worst results, showing that the magnitude of adjustments of these parameters depends on various factors, not so well known.For C_{8} hydrocarbons, NOT included in the study, in two of the solvents used in the experiments, no favorable conclusion can be drawn in determining activity coefficients, since all the correlations give values of very large $\%$ error. Selectivities obtained through the correlations are also widely different and no favorable conclusion can be drawn except for the fact that values using previous adjustments are closest to the experimental values of selectivities.

D Recommended Procedure:
For a given pair of solutes, a list of potential solvents is established based on literature information.
A) If the difference in molar volumes of the hydrocarbon solutes to be separated is high, more than 5%, consider solvents of high polar cohesive energy.
B) If molar volumes are close, difference less than 5%, following procedure may be adopted.
i) Consult the references $11,24,45$. In view of the large amount of experimental data covered in these sources, information on some of the systems under consideration might be included.
ii) If any of the hydrocarbons belong to the three groups (saturated, unssturated, or aromatic),
a) For a precise information of activity coefficients and selectivities, obtain correlations using experimental values of activity coefficients.
b) In absence of experimental data, some reliable values of activity coefficients from literature sources may be used to develop necessary correlations.

In developing these correlations from limited informations (a or b), adjust the values of solutes' solubility parameters to obtain the values of slopes (of $X-Y$ or $X^{\prime}-Y^{\prime}$ lines) as reported by $W-P^{3}$ for proper case. Use these values of parameters to estimate activity coefficients and selectivities for systems with other solvents.
c) In absence of experimental or any reliable values of activity coefficients, use $\mathrm{W}-\mathrm{P}^{3}$ correlations to estimate these values.
iii) This work may be referred in dealing with systems involving separating of normal and isoparaffins from their mixtures using solvents extraction.
iv) This work may also be referred to obtain various necessary properties of some known solvents. These properties are, critical properties, specific volumes and solubility parameters.

E Contributions of Various Terms to the Selectivity Function $\quad \mathrm{RT} \ln \mathrm{S}_{23}:$

The selectivity function $R T 1 n S_{23}$, as defined earlier, is

$$
\begin{align*}
R T \ln S_{23} & =P+D+I+F \tag{22}\\
\text { where, } P & =\text { Polar effects }=\left(v_{2}-v_{3}\right) T_{1}^{2} \\
D & =\text { Dispersion effects }=v_{2}\left(\lambda_{1}-\lambda_{2}\right)^{2}-v_{3}\left(\lambda_{1}-\gamma_{3}\right)^{2} \\
I & =\text { Induction effects }=2 v_{3} \psi_{13}-2 v_{2} \Psi_{12} \\
\text { and, } \quad F & =\text { Entropy effects }=R T\left(\ln \frac{v_{2}}{v_{3}}-\frac{v_{2}-v_{3}}{v_{1}}\right)
\end{align*}
$$

Tables No. 25 and 26 tabulate these contributions for the selectivities we have calculated using Set I and Set II properties respectively, without adjusting values of solubility parameters. Tables No. 27 and 28 tabulate similar contributions for Set I and II, after adjusting both the solutes' solubility parameters while Tables No. 29 and 30 list the same after adjusting only one of the solubility parameters, for Set I and II respectively.

It can be seen from Tables No. 25 and 26 , that major contributing term to the selectivity is the 'dispersion' term. However,
after adjusting the values of solutes' solubility parameters, in order to better correlate the selectivities, dispersion forces no more remain to be controlling ones, as we can see from Tables No. 27 through 30.
$F \quad$ Chemical Effects in the solution
Harris and Prausnitz ${ }^{12}$ in their work, have suggested possibility of using a Lewis acidity scale for polar organic compounds to correlate variety of kinetic and thermodynamic physiochemical measurements. Since these effects result from the solvent's ability to accept the electrons, the strength of a complex resulting from an acid-base interaction depends on the ionizational potential of the Lewis base (electron donor) and on the electron affinity of the Lewis acid (electron acceptor).

Since the difference in the ionizational potentials of the two hydrocarbons () is larger than the difference in molar volumes (0.68%), chemical effects were sought for by plotting the quantity $Q=R T \ln S_{230 b s}-R T \ln S_{23}$ cal against K_{X}, the relative Lewis acidity of the solvents, where available. Table No. 31 presents values of K_{X} and Q for various types of selectivities calculated earlier.

Figure 18 through 21 present such plots using various selectivities we have calculated through correlations, earlier. As we can see from these figures, there does not appear to be existing any smooth relationship between ' Q ' and ' K_{X} '.

CONCLUSION

Following conclusions are made from this study.

1. In view of the uncertainty of the data of solvent properties for all of the solvents, and uncextain values of experimental activity coefficients for Isopentane, separate correlations for induction energy term (ψ) for normal and Isoparaffins could not be developed.
2. For C5 hydrocarbons, adjusting the values of solute solubility parameters do not help better correlate the activity coefficients through our correlations.
3. Adjusting the values of solute solubility parameters, however, bring about excellent improvements in correlating selectivities through our correlations.
4. Dispersion forces appear to contribute most to the selectivity functions.
5. Effects of chemical forces cannot be precisely determined.
6. Prausnitz, J. M., Anderson, R., A. I. Ch. E. Journal, Vol. 7 , No. 1, March 1961, pp 96-101.
7. Hildebrand, J. H., Scott, R. L., "Regular Solutions," Prentice Hall, Inc., Englewood Cliffs, N. J. 1962.
8. Weimer, R. F., Prausnitz, J. M., Hydrocarbon Processing, 44, No. 9, September 1955, pp 237-242.
9. Martire, D. E., Pollara, L. Z., Journal of Chemical and Engineering Data, 10, 40(1965)
10. Everett, D. H., Stoddart, C. T. H., Trans Faraday Society, 57, 746(1961)
11. Porter, P. D., Deal, C. H., Stross, F. H., Journal of American Chemical Society, 78, 2999(1956)
12. Helpinstill, J. G., Van Winkle, M., Industrial and Engineering Chemicstry, Process Design and Development, 7 , No. 2, April 1968, pp 213-220. 8. American Petroleum Institute Research Project No. 44, "Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds," 1953.
13. Bondi, A., Simkin, D. J., Journal of Chemical Physics, 25, 1073(1956); A. I. Ch. E. J., 3, 473 (1957)
14. Anderson, R., Ph. D. dissertation, Department of Chemical Engineering, University of California, Berkeley, 1961.
15. Gerster, J. A., Gorton, J. A., and Eklund, R., J. C\&E.

Data, 5 , No. 4, October 1960, pp 423-429.
12. Harris, H. G. Prausnitz, J. M., Journal of Chromatographic Science, 7, 685(1967)
13. Lyderson, A. L., "Estimation of Critical Properties of Organic Compounds by the method of group Contribution," "University of Wisconsin, Eng. Expt. Sta. Report No. 3, Madison, Wisconsin, 1955.
14. Reid, R. C., Sherwood, R. K., "Properties of Gases and Liquids. "McGraw-Hill Publications, N. Y. 1958.
15. Hougen, O. A., Watson, K. M., and Ragatz, R.A., "Chemical

Process Principles," "Part II, John Wiley\&Sons, Inc., New York, 1968.
16. Perry, J. H., Chilton, C. H. Kirkpatrik, S. D., "Chemical Engineer's Handbook, " 4th Edition, McGraw-Hill Publications, 1963.
17. G A F Corporation, Technical Bulletin No. 6200-002, 1971.
18. Dictionary of Organic Compounds, Vol. 1 through 5, New York Oxford University Press, 1965.
19. Bielstein Handbuch Der Organischen Chemie Vierte Auflage, Volumes
20. Lange, N. A., "Handbook of Chemistry and Physics,"
(Chemical Rubber Company), 52nd Edition, 1972.
21. Dreisbach, R. R., Adv. Chem. Ser: Nos. 15, 22, 29 (1955, 59,61)
22. Benson, S. W., Kistiakowsky, G. B., Journal of American Chemical Society, 64, 1942, pp 80-86.
23. G A F Corporation, Technical Bulletin No. 9653-002, 1972.
24. Pierotti, G. I., Deal, C. H., Derr, E. L., Document No. 5782, American Documentation Institute, Washington, D.C. 1958
25. Gambill, W. R., A. I. Ch. E. Journal, 15, No. 3, 1969, pp 461-2.
26. Timmerman
27. Jordan, T. E., "Vapor Pressure of Organic Compounds", Interscience Publications, New York, 1954.
28. Stull, D. E., Ind. Eng. Chem., 39, No. 4, 1957, pp 517-50.
29. E. I. DuPont de Nemours and Co., Industrial Chemical

Department, Technical Service Center.
30. Shchigoler, "Mathematical Analysis of Observations," American Elseview Publisher, 1965.
31. Hildebrand, J. E., Journal of Chemical Physics, 18, No. 10 1950, pp 1337-8
32. Kyle, B. G., Leng, D. E., Industrial and Engineering Chemistry, 57, No. 2, 1965, pp 43-8
33. Spelyng, W. A., Tassios, D. P., "Solvent Selectivity for

Hydrocarbons with close molar volumes", Chem. Eng. Thesis, Newark College of Engineering, Newark, N. J. 1972.
34. Luder, W. F., Zuffanti, S., 'The Electronic Theory of Solids and Gases", Wiley, New York (1956)
35. James, A. T., Martin, A.J.P., Biachem. J., 50, 679 (1952)
36. Kwantes, A., Rijnders, G. W. A., "Gas Chromatography"
D. H. Desty, Ed., Academic Press, London, England, 1958, p 125
37. Sheets, M. P., Marchello, J. M., Petroleum Refiner, 42,99 (1963)
38. Martixe, D., E., Pollara, L. Z., Chapter 10, "Advances in Chromatography"; by J. C. Giddings, and R. A. Keller, Vol. 1, 1965. Marcel Decker, New York.
39. Flory, P. J., J. Chem. Phys., 9, 660 (1951)
40. Huggins, M. L., J. Chem. Phys., 9, 440 (1941)
41. Martire, D. E., in Fowler, L., Editor, "Gas Chromatography", Academic Press, New York and London, 1963 p 33.
42. Tassios, D. P., Ind. Eng. Chem. Process. Des. Develop., Vol. II, No. 1, 1972 p 43
43. Baumgarten, P. K., Gerster, J. A., Industrial and Engineering Chemistry, Vol. 46, No. 11, 1954 p 2396
44. Mertes, T. S., Colburn, A. P., Industrial and Engineering Chemistry, Vol. 39, No. 6, 1947, b 787
45. Hala, E., et al, Vapor-Liquid Equilibrium, 2nd Edition, Pergamon Press, Inc., Long Island, N. Y. (1968)

NOMENCLATURE		
AAD	$=$	Average Absolute Deviation
A, B, C	$=$	Constants of Antonie's Vapor Pressure equation
$\mathrm{c}_{\text {ii }}$	$=$	Pure component cohesive energy density
c_{ij}	$=$	Cohesive energy density for the interaction
		between unlike species
D	$=$	Dispersion forces contribution to the Selectivity,
		cal/gmol; Distance between the Chromatographic
		peaks, inches
I	$=$	Induction forces contribution to the Selectivity cal/gmol
F	$=$	Flory-Huggins Entropy term contribution to the
		Selectivity, cal/gmol
H	$=$	Heat of vaporization, cal/gmol
H_{i}	$=$	Infinite dilution partition coefficient
G	$=$	Free energy, cal/gmol
k	$=$	Constant of Proportionality
$\mathrm{M}_{\text {S }}$	$=$	Moles of stationary solid phase in the column.
M	$=$	Molecular weight of the Solvent
in	$=$	Number of components
p	$=$	Polar forces contribution to the Selectivity, cal/mol
PD	$=$	Percentage difference
P_{c}	$=$	Critical Pressure, atm
p_{i}	$=$	Column Inlet pressure, mm Hg abs
p_{0}	$=$	Column Outlet pressure, mm Hg abs

P_{w}	$=$ Water vapor pressure at temperature $\mathrm{T}_{\mathrm{f}}, \mathrm{mm} \mathrm{Hg}$ abs
Pio	$=$ Vapor pressure of pure $\mathrm{i}, \mathrm{mm} \mathrm{Hg}$ abs
R	$=$ Gas constant, $\mathrm{Cal} /{ }^{\circ} \mathrm{K}$ gmol
S	$=$ Selectivity; Solvent a mount in the column, gms
T	$=$ Temperature, ${ }^{\circ} \mathrm{K}$
T_{b}	$=$ Boiling Point, ${ }^{\circ} \mathrm{K}$
T_{c}	$=$ Critical Temperature, ${ }^{\circ} \mathrm{K}$
T_{f}	$=$ Temperature at the Soap-film end, ${ }^{\circ} \mathrm{K}$
T_{r}	$=$ Reduced temperature, $\mathrm{T} / \mathrm{T}_{\mathrm{c}}$
U	$=$ Energy of vaporization, cal/gmol
V	$=$ Specific volume, cc/gmol
V_{c}	$=$ Critical volume, cc/gmol
V_{g}	$=$ Corrected Retention volume, cc/gmol
V	$=$ He gas flow rate, cc/min
X	$=$ Mole fraction
X, Y	$=$ Parameters as defined by equations 31 and 32
$\mathrm{X}^{1}, \mathrm{Y}^{1}$	$=$ Parameters as defined by equations 42 and 43
Z_{c}	$=$ Critical compressibility factor
Subscripts	
1	$=$ Solvent component
2, 3, 4	$=$ Solute components; n-pentane, isopentane, and l-pentene respectively
E. V.	
c	$=$ At critical conditions
r	$=$ At reduced conditions

Greek Letters

$$
\phi_{i}=\text { Volume fraction, defined as }=\frac{v_{i} x_{i}}{v_{i} x_{i} v_{j} x_{j}+v_{k} x_{k}}
$$

$\boldsymbol{\gamma}^{0}=\boldsymbol{\gamma}^{\infty}=$ Activity Coefficient at Infinite dilution
$\boldsymbol{\gamma}=$ Non Polar solubility parameter, $(\mathrm{cal} / \mathrm{cc})^{1 / 2}$
$\psi=$ Ineraction term, cal/cc
$\alpha=$ Relative volatility
$T=$ Polar Solubility parameter, $(\mathrm{cal} / \mathrm{cc})^{1 / 2}$
$\rho=$ Density, gms/cc
$\rho_{\gamma}=$ Reduced density, uncorrected
$\rho_{\gamma}^{\prime}=$ Corrected reduced density
$\Delta=$ Change, incremental
Others

$\left.\frac{d P}{d T}\right\|_{T} \quad=\quad$ Slope of the vapor pressure curve at temperature T,	
	$\mathrm{mm} /{ }^{\circ} \mathrm{K}$

$P D \quad=\quad$ Quantities - in () indicate $\%$ differences in determining log quantities.

- in [] indicate \% differences in determining actual quantities.

List of Solvents and their properties
Solvent Name and Number

Formula
B. Pt. ${ }^{\circ} \mathrm{C}$

1 - Butyrolactone (BTLA)204

2 Acetonyl Acetone (HEXD)

3 Dimethyl Sulfoxide (DMSX)
$\mathrm{CH}_{3} \mathrm{~S}=\mathrm{O}$
195
$\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{P}$
197.2
4. Trimethyl Phosphate (TMPH)
$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}$
130
5 Cyclopentanone (CYCP)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ 210.85

6 Nitrobenzene (NTBZ)
$\mathrm{C}_{12} \mathrm{H}_{26}$
216.3

8 N-Methyl Pyrrolidone (NMPJ)
9 Dimethyl.Acetamide (DMAA)

10 Acetophenone (ACPH)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$
202

11 Diethyl Oxalate (DEOX)

12 Dimethyl Formamide (DMFM)

C H_{3}
149.56

13 Furfural (FURF)
161.7

- See Table No. 3 for References

TABLE \#1 (Cont'd)
Following is the list of Solvents for which Activity Coefficients at Infinite dilution are obtained from the reported literature data.

Solvent Name and Number	Formula	B. Pt. ${ }^{\circ} \mathrm{C}$
14	n-Tetracosane (TRCS)	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{22} \mathrm{CH}_{3}$
15	n-Pentatriacontane (PTCT)	$\mathrm{C}_{35} \mathrm{H}_{72}$
16	n-Eicosane (EICS)	$\mathrm{C}_{20} \mathrm{H}_{42}$
17	Squalane (SQAL)	$\mathrm{C}_{30} \mathrm{H}_{62}$

Table No. 2: Values of Specific Volume (v), solubility parameters of solvent (λ_{1}, π_{1}) obtained using different methods

		Spec	fic Volume		lubility	arameters	s(cal/c	$\begin{aligned} & 1 / 2 \\ & \hline \end{aligned}$
			(cc/gmol)		Nonpola	Part	Polar	art
			from Reduced		λ_{1}		T_{1}	
			Density			thods		hod
No.	Name	${ }^{\circ} \mathrm{C}$	cal prop.	Literature!		ots	B	A
					Set I	Set II	Set I	Set II
1	BTLA	45	78.03	--	9.49	9.49	8.42	8.70
2	HEXD	45	119.88	--	8.08	8.08	6.55	6.53
3.	DMSX	45	72.56	--	$8.52{ }^{\text {! }}$	$8.52!$	--	9.47
4	TMPH	45	117.911	--	$7.41{ }^{\text {! }}$	$7.41{ }^{\text {! }}$	--	5.82
5	CYCP	45	90.95	--	8.61	8.61	5.49	5.61
6	NTBZ	45	104.69	104.10	9.43	9.43	5.39	5.76
7	DODE	45	232.75	232.8	7.69	$7.35{ }^{+}$	0.00	0.00
8	NMPL	45	98.2	98.6	9.01	9.01	6.50	7.16
9	DMAA	45	94.8	95.3	8.23	8.09!	6.89	6.75
10	ACPH	45	123.3	119.8	9.20	9.30 !	3.57	4.12
11	DEOX	45	139.0	139.3	7.83	7.88!	6.22	6.28
12	DMFM	45	78.8	79.0	8. $10{ }^{\text {! }}$	8.07	7.97	8.10
13	FURF	45	84.8	84.8	8.88	$8.81{ }^{\text {! }}$	7.22	7.34
14	TRCS	93.9	447.5	--	7.19	6.83 !	'0.00	0.00
15	PTCT	93.9	628.8	--	5.15	6.70 !	0.00	0.00
16	EICS	53.2	364.3	--	7.78	$7.76!$	0.00	0.00
		74.1	370.4	--	7.63	7.50 !	0.00	0.00
		93.9	376.1	--	7.50	$7.37{ }^{\text {! }}$	0.00	0.00

> 62.
> 17 SQAL

TABLE NO. 3

64.

$\frac{\text { EXPERIMENTAL DETERMINATION OF ACTIVITY COEFFICIENTS @ } 45^{\circ} \mathrm{C}}{\mathrm{mm} \quad \mathrm{mm} \mathrm{mm} \mathrm{mm}}$

$\begin{array}{lllllllllllllll}3 & \text { DMSX } & n c_{5} & 20.7 & 0.300 & 1.997 & 0.685 & 23 & 758 & 938.3 & 21.1 & 1020 & 78 & 59.51\end{array}$
$\begin{array}{llllllllllllll}\text { i.c.c. } & 20.7 & 0.220 & 1.909 & 0.685 & 23 & 758 & 938.3 & 21.1 & 1324 & 78 & 59.29\end{array}$
$4 \begin{array}{lllllllllllllllll}4 & \text { TMPH } & n-c_{5} & 27.8 i & 0.46 & 2.669 & 0.685 & 26 & 757 & 958.0 & 25.2 & 1020 & 140 & 22.15\end{array}$

$\begin{array}{llllllllllll}=c_{5} & 27.0 & 1.25 & 2.642 & 0.685 & 26 & 757 & 958.0 & 25.2 & 1263 & 140\end{array} \quad 6.49$

TABLENO. 3

65.

TABLE NO. 3

66.

TABLE NO. 3
EXPERIMENTAL DETERMINATION OF ACTIVITY COEFFICIENTS @ $45^{\circ} \mathrm{C}$

	vent Name	Solute	$\underset{\mathrm{V}}{\mathrm{cc} / \mathrm{mi}}$	$\begin{aligned} & \text { in } \\ & \mathrm{D} \end{aligned}$	$\begin{gathered} \mathrm{gms} \\ \mathrm{~S} \end{gathered}$	$\underset{Z}{\mathrm{in} / \min }$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \mathrm{TF} \end{aligned}$	$\begin{gathered} \mathrm{mm} \\ \mathrm{Hg} \\ \mathrm{p}_{\mathrm{o}} \end{gathered}$	$\begin{aligned} & \mathrm{mn} \\ & \mathrm{mg} \\ & \mathrm{p}_{\mathrm{i}} \end{aligned}$	$\begin{gathered} \mathrm{mm} \\ \mathrm{Hg} \\ \mathrm{p}_{\mathrm{w}} \end{gathered}$	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{Hg} \\ & \mathrm{p}_{\mathrm{io}} \end{aligned}$	M	r_{2}^{∞}	$r_{3}^{\infty} r_{4}^{\infty}$
11	DEOX	$\mathrm{n}-\mathrm{C}_{5}$	29.7	1.605	2.3848	0.685	24.0	756	936.7	22.4	1020	146	1.922	
			29.7	1.575	2. 3834	0.685	24.0	756	936.7	22.4	1020	146	5.013	
			"	1.570	2.3816	"	"	"	"	11	"	"	5.025	
			"	1.510	2. 3798	"	"	"	11	11	"	11	5.220	
			"	1.535	2. 3786	"	"	"	"	"	"	"	5.133	
											Meam 5 5.060			
		$i \cdot c_{s}$	29.8	1.200	2. 3753	. 0.685	24.0	756	936.7	22.4	1324	146		5.052
			"	1. 200	2.3742	0.685	"	"	"	"	"	"		5.050
			30.4	1.190	2.3730	"	"	"	934.2	"	"	"		4. 970
			"	1.160	2.3718	"	"	"	"	"	"	"		5.094
			"	1. 155	2.3703	"	"	"	"	"	"	"		5.113
													Mean \rightarrow	5.033

$$
\begin{aligned}
& \begin{array}{lllllllllll}
=C_{S} & 30.4 & 2.840 & 2.3686 & 0.685 & 24.0 & 756 & 934.2 & 22.4 & 1263 & 146
\end{array} \quad 2.178 \\
& 112.800 \\
& 2.3659 \quad 0.685 \quad \text { " " } \\
& \text { " " " } \\
& 2.207 \\
& 2 \\
& \text { Mean*2. } 186
\end{aligned}
$$

INFINITE DILUTION ACTIVITY COERFICIENTS •

FOR C_{5} HYDROCARBONS, n-PENTANE, ISOPENTANE, 1-PENTENE

*Values for C_{4} Hydrocarbons, n -Butane, Isobutane and I-Butene

TABLE No. 5
CALCULATED AND EXPERIMENTAL VALUES OF γ_{z}^{∞} FOR n. Pentane SOLUTE IN VARIOUS SOLVENTS, BASED ON EQ. 8 A AND 88 , AND USING SET I properties, allowing for an intercept

SOLVENT		EXPERIMENTAL r_{2}^{∞} (GAMA)	$\begin{aligned} & \text { CALCULATED } \\ & \sqrt{2}_{\infty}^{\infty} \\ & \text { (GAMAC) } \end{aligned}$	\% DIFF (PD)	FOR FIG.No. 2	
No.	NAME				X	Y
1	BTLA	21.77	33.66	-14.2	8525	1234
2	HEXD	8.38	5.79	17.4	5167	1188
3	DMSX	62.77	-	-	-	-
4	TMPH	22. 17	-	-	-	-
5	CYCP	4.32	4. 94	- 9.1	3630	615
6	NTBZ	7.50	9.39	-11.2	3498	535
7	DODE	0.95	: 1.09	[11.2]	0	12
8	NMPL	9.69	9.83	- 1.0	5086	932
9	DMAA	7.83	6.94	5.8	5706	1119
10	ACPH	5.01	4.63	4.9	1530	402
11	DEOX	5.06	4.55	6.6	4651	936
12	DMFM	11.26	9.97	5.5	7641	1440
13	FURF	13.27	11.49	5.6	6264	1226
6	NTBZ	7.50	-	-	4332	535*
14	TRCS@93.9 ${ }^{\circ} \mathrm{C}$				0	116*
15	PTCT@93.90 ${ }^{\circ}$				0	- 31%
16	EICS@53.20${ }^{\circ} \mathrm{C}$				0	--178\%
	$\therefore @ 64{ }^{\circ} \mathrm{C}$				0	-128*
$@ 93.9^{\circ} \mathrm{C}$					0	-249*
17	SQAL	$3^{\circ} \mathrm{C}$			0	78*
		${ }^{\circ} \mathrm{C}$			0	68\%
		. $9^{\circ} \mathrm{C}$			0	74*

*Show Points

$$
\begin{aligned}
& \\
\text { MAD } & =8.7 \% \\
\text { MAXIMUM } & \% \text { ERROR }
\end{aligned}=17.4 \%
$$

72.

TABLE N 0.6
CALCULATED AND EXPFRIMENTAL VALUES OF Y_{2}^{∞} FOR n-Pentane SOLUTE IN VARIOUS SOLVENTS, BASED ON EQ. 8 A AND 8 B, AND USING SET II PROPERTIES, ALEOWING FOR AN INTERCEPT

*Show points

$$
\begin{array}{rlrl}
& & \text { AAD } & =16 \% \\
\text { MAXIMUM } & \% & =1
\end{array}
$$

TABLE NO. 7
CALCULATED AND EXPERIMENTAL VALUES OF T_{3}^{∞} FOR ISOPENTANE SOLUTE IN VARIOUS SOLVENTS, BASED ON EQ. 8 A AND $8 B$, AND USING SET I PROPERTIES, ALLOWING FOR AN INTERCEPT

SOLVENT		EXPERTMENTAL	CALCULATED	\% DIFF	FOR	G.No. 4
No. NAME		(GAMA)	(GAMAC)	(PD)	X	Y
1	BTLA	22.49	31.13	-10.14	8582	1453
2	HEXD	8.29	6.36	12.5	5202	1261
3	DMSX	59.98	-	-	-	-
4	TMPH	20.81	-	-	-	-
5	CYCP	4.51	5.02	- 7.0	3655	769
6	NTBZ	7.74	8.61	- 5.2	3522	747
7	DODE	0.98	'. 1.04	[-6.2]	0	81
8	NMPL	9.59	9.55	Q. 2	5122	1083
9	DMAA	8.19	7.49	4.3	5745	1242
10	ACPH	5.38	4.33	12.9	1541	620
11	DEOX	5.03	5.16	- 1.5	4683	992
12	M	11.53	11.03	1.8	7692	1537
13	FURF	13.53	11.40	6.6	6306	1387
	NTBZ				4361	747*
1	TRCS				0	-225*
15	PTCT				0	69*
16	EICS	. $2^{0} \mathrm{C}$			0	-225*
		. $1^{\circ} \mathrm{C}$			0	-291*
		. $9^{\circ} \mathrm{C}$			0	-364*
17	SQAL	${ }^{\circ} \mathrm{C}$			0	91*
		. $1^{0} \mathrm{C}$			0	72*
		. $9^{\circ} \mathrm{C}$			0	56*

*Show points

TABLE No. 8
CALCULATED AND EXPERTMENTAL VALUES OF γ_{3}^{∞} FOR ILOPENTANE SÓLUTE IN VARIOUS SOLVENTS, BASED ON EQ. 8 A AND $8 B$, AND USING SET II PROPERTIES, ALLOWING FOR AN INTERCEPT

SOLVENT		$\begin{gathered} \text { EXPERTMENTAL } \\ \gamma_{3}^{\infty} \\ \text { (GAMA) } \end{gathered}$	$\begin{gathered} \text { CALCULATED } \\ r_{3}^{\infty} \\ \text { (GAMAC) } \end{gathered}$	\% DIFF (PD)	FOR FIG.No. 5	
No.	NAME				X	Y
1	BTLA	22.49	44. 10	-21.6	9160	1453
2	HEXD	8.29	7.16	6.9	5174	1261
3	DMSX	59.98	35.96	12.5	10854	2504
4	TMPH	20.81	4.72	48.8	4108	1917
5	CYCP	4.51	5.71	-15.6	3760	769
6	NTBZ	7.74	10.91	-16.8	4021	747
7	DODE	0. 98	i. 1.20	[21.8]	0	100
8	NMPL	9.59	12.54	-11.9	6217	1185
9	DMAA	8.19	7.67	3.1	5518	1272
10	ACPH	5.38	5.74	- 3.8	2060	575
11	DEOX	5.03	6.01	-10.9	4772	986
12	DMFM	11.53	14.34	- 8.9	7946	1525
13	FURF	13.53	13.46	. 23	6530	1414
9	DMAA				6850	1272\%
10	ACPH				1842	575*
11	DEOX				4216	948\%
12	DMEM				6383	1525*
14	TRCS				0	- 92*
15	PTCT				0	- $4 *$
16	EICS @	.$^{\circ}{ }^{\circ} \mathrm{C}$			0	-217\%
	@7	. $1^{\circ} \mathrm{C}$			0	-229*
		. $9^{\circ} \mathrm{C}$			0	-300*
17	SQAL@5	. $2^{\circ} \mathrm{C}$			0	-317*
	@	. $1^{\circ} \mathrm{C}$			0	-380\%
		. $9^{\circ} \mathrm{C}$			0	-456*

*Show Points

$$
\begin{array}{rlrl}
\text { AAD } & =14.4 \% \\
\text { MAXIMUM } & \% \text { ERROR } & =48.8 \%
\end{array}
$$

TABLE NO. 9
CALCULATED AND EXPERIMENTAL VALUES OF r_{2}^{∞} FOR n-PENTANE SOLUTE IN VARIOUS SOLVENTS, BASED ON EQ. 8 A AND 8 C , AND USING SET I PROPERTIES, ALLOWING $Z E R O$ INTERCEPT

SOLVENT		$\begin{gathered} \text { EXPERTMENTAL } \\ r_{2}^{\infty} \\ \text { (GAMA) } \end{gathered}$	$\begin{aligned} & \text { CALCULATED } \\ & \gamma_{2}^{\infty} \\ & \text { (GAMAC) } \end{aligned}$	\% DIFF (PD)	FOR FIG.No. 2 X Y
1	BTLA	21.77	36.08	-16.4	SEE TABLE
2	HEXD	8.38	5.68	18.3	NO. 5
3.	DMSX	62.77	-	-	
4	TMPH	22. 17	-	-	
5	CYCP	4. 32	4.65	- 5.0	
6	NTBZ	7.50	8.82	- 8.0	
7	DODE	0.95	0.93	- 2.1	
8	NMPL	9.69	9.62	0.34	
9	DMAA	7.83	6.91	6.9	
10	ACPH	5.01	4.12	12.1	
11	DEOX	5.06	4.40	8.6	
12	DMFM	11.26	10.44	3.1	
	FURF	13.27	11.60	5.2	

$$
\mathrm{AAD}=7.8 \%
$$

MAXIMUM \% ERROR $=18.3 \%$

TABLE NO. 10
CALCULATED AND EXPERIMENTAL VALUES OF γ_{2}^{∞} FOR n-DENTANE SOLUTE IN VARIOUS SOLVENTS, BASED ON EQ. 8 A AND 8 C , AND USING SET II PROPERTIES, ALLOWING zERO INTERCEPT

SOLVENT		$\begin{aligned} & \text { EXPERTMENTAL } \\ & \gamma_{2}^{\infty} \\ & \text { (GAMA) } \end{aligned}$	$\begin{gathered} \text { CALCULATED } \\ \boldsymbol{\gamma}_{2}^{\infty} \\ \text { (GAMAC) } \end{gathered}$	\% DIFF (PD)	FOR FIG.No. 3 X \quad Y
1	BTLA	21.77	52.96	-28.8	SEE TABLE
2	HEXD	8.38	6.'37	12.9	NO. 6
3	DMSX	62.77	40.05	10.8	
4	TMPH	22.17	3.73	57.2	
5	CYCP	4. 32	5.24	-13.2	
6	NTBZ	7.50	11.19	-19.8	
7	DODE	0.95	i. 0.86	- 9.5	
8	NMPL	9.69	12.57	-11.5	
9	DMAA	7.83	6.92	6.0	
10	ACPH	5.01	5.47	- 5.4	
11	DEOX	5.06	5.15	- 1.2	
12	DMFM	11.26	13.97	-8.9	
13	FURF	13.27	13.77	-1. 4	

$$
\begin{array}{rlrl}
\text { AAD } & =14.3 \% \\
\text { MAXIMUM } & \% & =57.2 \%
\end{array}
$$

TABLE NO. Il
CALCULATED AND EXPERIMENTAL VALUES OF r_{3}^{∞} FOR ISOPENTANE SOLUTE IN VARIOUS SOLVENTS, BASED ON EQ. 8 A AND 8 C , AND USING SET I PROPERTIES, ALLOWING ZERO INTERCEPT

SOLVENT		EXPERTMENTAL	CALCULATED	\% DIFF	FOR	G.No.
	NAME	(GAMA)	(GAMAC)	(PD)	X	Y
1	BTLA	22.49	36.52	-15.6	8582	1453
2	HEXD	8.29	6.09	14.6	5202	1261
3	DMSX	59.98	-	-	-	-
4	TMPH	20.81	-	-	-	-
5	CYCP	4.51	4.37	2.1	3655	769
6	NTBZ	7.74	7.44	1.9	3522	747
7	DODE	0.98	$\bigcirc 0.87$	6.5	0	81
8	NMPL	9.59	9.09	2.4	5122	1083
9	DMAA	8.19	7.40	4.8	5745	1242
10	ACPH	5.38	3. 32	28.6	1541	620
11	DEOX	5.03	4.78	3.2	4683	992
12	DMFM	11.53	12.27	2.5	7692	1537
13	FURF	13.53	11.66	5.7	6306	1387

TABLE NO. 12
CALCULATED AND EXPERTMENTAL VALUES OF γ_{3}^{∞} FOR ISNPENTANE SOLUTE IN VARIOUS SOLVENTS, BASED ON EQ. 8 A AND 8 C, AND USING SET II PROPERTIES, ALLOWING ZERO INTERCEPT

SOLVENT		EXPERTMENTAL	CALCULATED	\% DIFF	FOR	G.No.
No. NAME		(GAMA)	(GAMAC)	(PD)	X	Y
1	BTLA	22.49	50.50	-25.9	9160	1453
2	HEXD	8.29	6.52	11.4	5174	1261
3	DMSX	59.98	45.39	6.8	10854	2504
4	TMPH	20.81	4.04	54.0	4108	$\cdot 1917$
5	CYCP	4.51	4.79	- 3.9	3760	769
6	NTBZ	7.74	9.29	-8.9	4021	747
7	DODE	0.98	'. . 85	13.3	0	100
8	NMPL	9.59	12.12	-10.4	6217	1185
9	DMAA	8.19	7.12	6.6	5518	1272
10	ACPH	5.38	4.36	12.5	2060	575
11	DEOX	$5 . .03$	5.34	- 3.6	4772	986
12	DMFM	11.53	15.31	-11.6	7946	1525
13	FURF	13.53	13.24	. 85	6530	1414

TABLE NO. 13
CALCULATED AND EXPERTMENTAL VALUES OF γ_{2}^{∞} FOR n-Pentane SOLUTE IN VARIOUS SOLVENTS, BASED ON EQ. 8 A AND Portd, AND USING SET \mathcal{I} PROPERTIES, ALLOWING FOR AN INTERCEPT, AND WITH THE ADJUSTMENTS OF SOLUBILITY PARAMETERS AS : $\lambda_{2(a)}=\frac{\lambda_{2}}{2}-0.2$

*Show Points

| AAD | $=9.3 \%$ |
| ---: | :--- | ---: | :--- |
| MAXIMUM $\%$ ERROR | $=19.4 \%$ |

TABLE NO. 13A
CALCULATED AND EXPERIMENTAL VALUES OF γ_{2}^{∞} FOR n-Pentane SOLUTE IN VARIOUS SOLVENTS, BASED ON EQ. 8 A AND " d ", AND USING SET I PROPERTIES, ALLOWING ZERO INTERCEPT, AND WITH THE ADJUSTMENTS OF SOLUBILITY PaRAMETERS AS :

$$
\lambda_{2(a)}=\lambda_{2}-0.2
$$

SOLVENT		EXPERIMENTAL	CALCULATED	\% DIFF.	FOR	FIG. No.
No. NAME		(GAMA)	(GAMAC)	(PD)	X	Y
1	BTLA	21.77	36.2	-16.5	8525	1106
2	HEXD	8.38	5.53	19.6	5166	1128
3	DMSX	62.77	-	-	-	-
4	TMPH	22.17	-	-	-	-
5	CYCP	4.32	4.89	- 8.4	3630	530
6	NTBZ	7.50	9.89	-13.7	3498	411
7	DODE	0.95	. 99	4.3	0	- 29
8	NMPL	9.69	10.1	- 1.7	5087	827
9	DMAA	7.83	6.72	7.5	5706	1052
10	ACPH	5.01	4.76	3.2	1531	288
11	DEOX	5.06	4.26	10.7	4651	888
12	DMIM	11.26	9.58	6.6	7641	1380
13	FURF	13.27	11.69	4.9	6264	1129

AAD	$=8.9 \%$
MAXIMUM $\%$ ERROR	$=19.6 \%$

TABLE NO. 14
calculated and expertmental values of r_{3}^{∞} for Isopentane solute IN VARIOUS SOLVENTS, BASED ON EQ. 8 A AND partd, AND USING SET I properties, allowing for an intercept, and with the adjustments OF SOLUBILITY FARAMETERS AS : $\lambda_{3(a)}=\lambda_{3}-0.6$

SOLVENT		EXPERIMENTAL (GAMA)	CALCULATED (GAMAC)	\% DIFF. (PD)	$\begin{array}{r} \text { FOR } \\ \mathrm{X} \end{array}$	FIG. No. Y
1	BTLA	22.49	36.53	-15.6	8582	1089
2	HEXD	8.29	5.63	18.4	5201	1103
3	DMSX	59.98	-	-	-	-
4	TMPH	20.81	-	-	-	-
5	CYCP	4.51	5.11	-8.2	3655	533
6	NTBZ	7.74	10.58	-15.3	3522	392
7	DODE	0.98	1.06	7.9	0	- 20
8	NMPL	9.59	10.47	- 3.9	5121	789
9	DMAA	8.19	6.80	8.8	5744	1061
10	ACPH	5.38	5.18	2.3	1541	298
11	DEOX	5.03	4. 33	9.3	4683	870
12	DMFM	11.53	9.46	8.2	7692	1380
13	FURF	13.53	11.94	4.8	6306	1112
6	NTBZ				4361	392*
14	TRCS				0	-537*
15	PTCT				0	131*
16	$\begin{array}{r} \text { EICS@ } \\ \text { @ } \end{array}$				0	-545% -633%
					0	-633*
17	SQAI	${ }^{\circ} \mathrm{C}$			0	-733*
					0	27\%
					0	- 8*

*Show Points

| AAD | $=9.4 \%$ | |
| ---: | :--- | ---: | :--- |
| MAXIMUM | $=$ ERROR | $=18.4 \%$ |

TABLE NO. 14A

CALCULATED AND EXPT:RIMENTAL VALUES OF r_{3}^{∞} FOR ISOPENTANE SOLUTE IN VARIOUS SOLVENTS, BASED ON EQ. 8 A AND part'', AND USING SET I PROPERTIES, ALLOWING ZERO INTERCEPT, AND WITH THE ADJUSTMENTS OF SOLUBILITY PARAMETERS AS :

$$
\lambda_{3(a)}=\lambda_{3}-0.6
$$

SOLVENT		EXPERIMENTAL	CALCULATED	\% DIFF.	FOR	G. No.
No. NAME		(GAMA)	(GAMAC)	(PD)	X	Y
1	BTLA	22.49	37.28	-16.3	8582	1089
2	HEXD	8.29	5.59	-18.6	5209	1103
3	DMSX	59.98	-	-	-	-
4	TMPH	20.81	-	-	-	-
5	CYCP	4.51	5.02	-7.1	3655	533
6	NTBZ	7.74	10.38	-14.4	3522	392
7	DODE	0.98	1.017	3.2	0	- 20
8	NMPL	9.59	10.41	- 3.6	5121	789
9	DMAA	8.19	6.79	8.9	5744	1061
10	ACPH	5.38	5.01	4.3	1541	298
11	DEOX	5.03	4.29	9.9	4683	870
12	DMFM	11.53	9.58	7.6	7692	1380
13	FURF	13.53	11.97	4.7	6306	1112

AAD	$=9 \%$
MAXIMUM $\%$ ERROR	$=18.6 \%$

CALCULATED AND EXPERTMENTAL VALUES OF γ_{2}^{∞} FOR n-Pentane SOLUTE IN VARIOUS SOLVENTS, BASED ON EQ. 8 A AND part' ϕ^{\prime}, AND USING SET' II PROPERTIES, ALLOWING FOR AN INTERCEPT, AND WITH THE ADJUSTMENTS OF SOLUBILITY PARAMETERS AS :

$$
\lambda_{2(a)}=\lambda_{2}-0.5
$$

SOLVENT		EXPERTMENTAL	CALCuLated	\% DIFF.	FOR	FIG. No.
No.	NAME	(GAMA)	(GAMAC)	(PD)	X	Y
1	BTLA	21.77	56.47	-31.0	9099	898
2	HEXD	8.38	6.30	13.5	5139	1021
3	DMSX	62.77	32.73	15.7	10782	2192
4	TMPH	22. 17	3.42	60.3	4080	1845
5	CYCP	4.32	6.14	-23.9	3735	384
6	NTBZ	7.50	15.12	-34.8	3994	206
7	DODE	0.95	0.95	3.5	0	- 20
8	NMPL	9.69	13.42	-14.3	6175	807
9	DMAA	7.83	6.74	7.3	5481	992
10	ACPH	5.01	7.92	-28.4	2047	35
11	DEOX	5.06	5.00	. 76	4744	782
12	DMIM	11.26	12.22	- 3.4	7892	1248
13	FURF	13.27	14.65	- 3.8	6487	1002
9	DMA				6803	1020*
10	ACP				1830	155*
11	DEO				4187	570\%
12	DMF				6340	1380*
14	TRC				0	- 90%
15	PTC				0	- 2*
16	EIC				0	-220*
					0	-246*
					0	-285\%
17	SQA	$2^{\circ} \mathrm{C}$			0	-270\%
		${ }^{\circ} \mathrm{C}$			0	-295*
		$9^{\circ} \mathrm{C}$	$\mathrm{AAD}=18$		0	-325*
		MAXIMUM \% E	$=60$			

*Show Points

TABLE NO. 15 A
CALCULATED AND EXPERIMENTAL VALUES OF γ_{2}^{∞} FOR n-Pentane SOLUTE IN VARIOUS SOLVENTS, BASED ON EQ. 8 A AND prart'd'; AND USING SET II PROPERTIES, ALLOWING $z \in R O$ INTERCEPT, AND WITH THE ADJUSTMENTS OF SOLUBILITY PARAMETERS AS :

$$
\lambda_{2(a)}=\lambda_{2}-0.5
$$

AAD	$=18.3 \%$
MAXIMUM \% ERROR	$=60.1 \%$

TABLE NO. 16
CALCULATED AND EXPERTMENTAL VALUES OF γ_{3}^{∞} FOR ISOPENTANE SOLUTE IN VARIOUS SOLVENTS, BASED ON EQ. 8A AND part'd', AND USING SET II. PROPERTIES, ALLOWING FOR AN INTERCEPT, AND WITH THE ADJUSTMENTS OF SOLUBILITY PARAMETERS AS :

$$
\lambda_{3(a)}=\lambda_{3}-0.9
$$

TABLE NO. 16A
CALCULATED AND EXPFRIMENTAL VALUES OF r_{3}^{∞} FOR ISOPENTANE SOLUTE IN VARIOUS SOLVENTS, BASED ON EQ. 8A AND part';'; AND USING SET II properties, allowing zero intercept, and with the adjustments OF SOLUBILITY PARAMETERS AS : $\lambda_{3(a)}=\lambda_{3}-0.9$

SOLVENT		EXPERIMENTAL	CALCULATED	\% DIFF.	FOR	G. No.
No. NAME		(GAMA)	(GAMAC)	(PD)	X	Y
1	BTLA	22.49	56.82	-29.8	9161	875
2	HEXD	8.29	6.37	12.4	5175	991
3	DMSX	59.98	31.56	15.7	10855	2137
4	TMPH	20.81	3. 44	59.3	4108	1793
5	CYCP	4.51	6.37	-22.8	3760	382
6	NTBZ	-7.74	15.98	-35.4	4021	183
7	DODE	0.98	1.00	2.0	0	- 10
8	NMPL	9.59	13.64	-15.6	6217	769
9	DMAA	8. 19	6.78	8.9	5518	1000
10	ACPH	5.38	8.52	-27:3	2060	38
11	DEOX	5.03	5.05	- . 17.	4772	760
12	DMFM	11.53	12.01	- 1.7	7946	1242
13	FURF	13.53	14.82	- 3.5	6530	984

$$
\begin{aligned}
\text { AAD } & =18 \% \\
\text { MAXIMUM } \% \text { ERROR } & =59.3 \%
\end{aligned}
$$

TABLE NO. 17
CALCULATED AND EXPERTMENTAL VALUES OF S_{23} FOR C_{5} HYDROCARBONS (normal and iso), BASED ON EQ. 44 AND USING SET 5 PROPERTIES, ALLONING FOR AN INTERCEPT

SOLVENT		EXPERIMENTAL	Calculated	\% DIFF.	FOR	FIG.No.
No. NAME		(SOBS)	(SCAL)	(PD)	X	Y
1	BTLA	0.968	1.081	-11.7	-58	-161
2	HEXD	1.011	0.910	10.0	-35	- 39
3	DMSX	1.046	-	-	-	-
4	TMPH	1.066	-	-	-	--
5	CYCP	0.958	0.983	-27	-25	-129
6	NTBZ	0.969	1.091	-12.6	-24	-188
7	DODE	0.964	0.879	8.9	0	- 69
8	NMPL	1.010	1. 029	- 1.8	-34	-117
9	DMAA	0.956	0.927	3.0	-39	- 84
10	ACPH	0.931	1.068	-14.7	-10	-208
11.	DEOX	1.005	0.881	12.3	-31	- 24
12	DMFM	0.977	0.903	7.5	-51	- 45
13	FURF	0.981	1.001	- 2.7	-42	-118
6	NTBZ				-30	-182*
14	TRCS				0	109*
15	PTCT				0	- $38 *$
16	EICS@53.20 ${ }^{\circ} \mathrm{C}$				0	78*
	$@ 74.1^{\circ} \mathrm{C}$				0	92\%
	$@ 93.9^{\circ} \mathrm{C}$				0	115*
17	SQAL@53.20 ${ }^{\circ} \mathrm{C}$				0	- 12\%
	$@ 74.1^{\circ} \mathrm{C}$				0	- 3*
	$@ 93.9^{\circ} \mathrm{C}$				0	1*

*Show Points

$$
\begin{aligned}
\text { AAD } & =8.0 \% \\
\text { MAXIMUM \% ERROR } & =14.7 \%
\end{aligned}
$$

TABLE NO. 18
CALCULATED AND EXPERTMENTAL VALUES OF S_{23} FOR C_{5} HYDROCARBONS (normal and iso), BASED ON EQ. 45 AND USING SET II PROPERTIES, ALLOWING FOR AN INTERCEPT

CALCULATED AND EXPERTMENTAL VALUES OF S_{23} FOR C_{5} HYDROCARBONS (normal and iso), BASED ON EQ. 46 AND USING SET $\underset{\text { PROPERTIES, }}{ }$ ALLOWING ZERO INIERCEPT

SOLVENT		EXPERTMENTAL	CALCULATED	\% DIFF.	FOR	FIG。No.
No.	NAME	(SOBS)	(SCAL)	(PD)	X	Y
	BTLA	0.968	0.988	- 2.1	-58	-161
2	HEXD	1.011	0.933	7.8	-35	- 39
3	DMSX	1.046	-	-	-	-
4	TMPH	1.066	-	-	-	-
5	CYCP	0.958	1.063	-11.0	-25	-129
6	NTBZ	0.969	1. 185	-22.3	-24	-188
7	DODE	0.964	1.076	-11.5	0	- 69
8	NMPL	1.010	1.058	- 4.7	-34	-117
9	DMAA	0.956	0.934	2.4	-39	- 84
10	ACPH	0.931	1.240	-33.3	-10	-208
11	DEOX	1.055	0.919	8.5	-31	- 24
12	DMFM	0.977	0.851	12.8	-51	- 45
13	FURF	0.981	0.995	- 1.5	42	-118

$$
\begin{aligned}
\text { AAD } & =10.7 \% \\
\text { MAXIMUM \% ERROR } & =33.3 \%
\end{aligned}
$$

TABLE No. 20
CALCULATED AND EXPERIMENTAL VALUES OF S_{23} FOR C_{5} HYDROCARBONS (normal and iso), BASED ON EQ. 47 AND USING SFT II PROPERTIES, ALLOWING ZERO INTERCEPT

SOLVENT		EXPERTMENTAL	CALCULATED	\% DIFF.	FOR	FIG.No.
No.	NAME	(SOBS)	(SCAL)	(PD)	X	Y
1	BTIA	0.968	1.05	- 8.4	-62	-157
2	HEXD	1.011	0.978	3.3	-35	- 39
3	DMSX	1.046	0.882	15.7	-73	- 18
4	TMPH	1.066	0.923	13.4	-28	43
5	CYCP	0.958	1. 095	-14.3	-25	- 12
6	NTBZ	0.969	1. 205	-24.4	-27	-185
7	DODE	0.964	1.028	- 6.6	0	- 40
8	NMPL	1.010	1. 037	- 2.6	-42	- 88
9	DMAA	0.956	0.972	- 1.6	-37	-74
10	ACPH	0.931	1. 254	-34.7	-14	-212
11	DEOX	1.005	0.963	4.1	-32	- 29
12	DMFM	0.977	0.913	6.6	-53	- 49
13	FURF	0.981	1.038	- 5.9	-44	-112

$$
\begin{aligned}
\text { AAD } & =10.9 \% \\
\text { MAXIMUM \% ERROR } & =34.7 \%
\end{aligned}
$$

TABLE NO. 21
CALCULATED AND EXPERIMENTAL VALUES OF S_{23} FOR C_{5} HYDROCARBONS (normal and iso), BASED ON EQ. 48 AND USING SET I PROPERTIES, ALLOWING FOR AN INTERCEPT, AND ADJUSTING PARAMETERS As: $\lambda_{3}(a)=\lambda_{2}-0.2: \lambda_{3(a)}=\lambda_{3}-0.6$

SOLVENT		EXPERTMENTAL	Calculated	\% DIFF.	FOR	FIG。No.
No. NAME		(SOBS)	(SCAL)	(PD)	X	Y
1	BTLA	0.968	0.972	-0.4	-57	75
2	HEXD	1.011	0.988	2.3	-35	560
3	DMSX	1.046	-	-	-	-
4	TMPH	1.066	-	-	-	-
5	CYCP	0.958	0.972	-1.5	-25	22
6	NTBZ	0.969	0.951	1.9	-24	42
7	DODE	0.964	0.973	-0.9	0	- 8
8	NMPL	1.010	0.968	4.2	-35	+72
9	DMAA	0.956	0.989	-3.4	-39	29
10	ACPH	0.931	0.948	-1.8	-10	0
11	DEOX	1.055	0.991	1.4	-31	50
12	DMFM	0.977	1. 002	-2.6	-52	53
13	FURF	0.981	0.977	. 4	-42	58
6	NTBZ				-30	-20*
14	TRCS				0	250\%
15	PTCT				0	148*
16	EICS				0	130*
	-				0	225*
					0	290*
17	SQAL@	${ }^{\circ} \mathrm{C}$			0	45*
	@				0	25*
					0	10*

*Show Points

$$
A A D=1.9 \%
$$

MAXIMUM \% ERROR $=4.2 \%$

TABLE NO. 21 A
CALCULATED AND EXPERTMENTAL VALUES OF S_{23} FOR J_{5} HYDROCARBONS (normal and iso), BASED ON EQ. 49 ,AND USING SET $工$ PROPERTIES, ALLOWING ZERO INTERCEPT, AND WITH THE ADJUSTMENTS OF SOLUBILITY PARAMETERS AS : $\lambda_{2}(a)=\lambda_{2}-0.2$
$\lambda_{3}(a)=\lambda_{3}-0.6$

SOLVENT	EXPERIMENTAL	CaLculated	\% DIFF.	FOR	FIG No.
No. NAME	(SOBS)	(SCAL)	(PD)	X	Y
1 BTLA	0.968	0.969	-0.2	-57	75
2 HEXD	1.011	0.989	2.2	-35	60
3 DMSX	1.046	-	-	-	-
4 TMPH	1.066	-	-	-	-
5 CYCP	0.958	0.974	-1.7	-25	22
6 NTBZ	0.969	0.952	1.7	-24	42
7 DODE	0.964	0.977	-1.3	0	-8
8 NMPL	1.010	0.968	4.2	-35	72
9 DMAA	0.956	0.989	-3.4	-39	29
10 ACPH	0.931	0.951	-2.2	-10	0
11 DEOX	1.005	0.992	1.3	-31	50
12 DMFM	0.977	1.000	-2.5	-52	53
13 FURF	0.981	0.977	0.4	-42	58

$$
\begin{aligned}
\text { AAD } & =1.9 \% \\
\text { MAXIMUM \% ERROR } & =4.2 \%
\end{aligned}
$$

TABLE NO. 22
CALCULATED AND EXPERTMENTAL VALUES OF S_{23} FOR C_{5} HYDROCARBONS (normal and iso), BASED ON EQ. 50 , AND USING SET II PROPERTIES, ALLOWING FOR AN INTERCEPT, AND WITH THE ADJUSTMENTS OF SOLUBILITY PARAMETERS AS :

$$
\begin{aligned}
& \lambda_{2(a)}=\lambda_{2}-0.5 \\
& \lambda_{3}(a)=\lambda_{3}-0.9
\end{aligned}
$$

*Show Points

TABLE NO. 22A
CALCULATED AND EXPERIMENTAL VALUES OF S_{23} FOR C_{5} HYDROCARBONS (normal and iso), BASED ON EQ. 51 ,AND USING SET II PROPERTIES, ALLOWING ZERO INTERCEPT, AND WITH THE ADJUSTMENTS OF SOLUBILITY PARAMETERS AS :

$$
\begin{aligned}
& \lambda_{2(a)}=\lambda_{2}-0.5 \\
& \lambda_{3(a)}=\lambda_{3}-0.9
\end{aligned}
$$

SOLVENT	EXPERIMENTAL	CALCULATED	\% DIFF.	FOR	FIG No.
No. NAME	(SOBS)	(SCAL)	(PD)	X	Y
1 BTLA	0.968	0.989	-1.8	-61	84
2 HEXD	1.011	0.995	1.6	-35	64
3 DMSX	1.046	1.021	2.4	-73	127
4 TMPH	1.066	1.004	5.8	-28	80
5 CYCP	0.958	0.976	-1.9	-25	27
6 NTBZ	0.969	0.956	1.3	-27	50
7 DODE	0.964	0.978	-1.4	0	- 9
8 NMPL	1.010	0.986	2.4	-42	80
9 DMAA	0.956	0.998	-4.4	-37	30
10 ACPH	0.931	0.948	-1.8	-14	10
11 DEOX	1.055	0.996	0.8	-32	54
12 DMFM	0.977	1.013	-3.6	-53	60
13 FURF	0.981	0.987	-0.7	-44	63

$$
\begin{aligned}
\text { AAD } & =2.3 \% \\
\text { MAXIMUM \% ERROR } & =5.8 \%
\end{aligned}
$$

TABLE NO. 23
CALCULATED AND EXPERTMENTAL VALUES OF S_{23} FOR C_{5} HYDROCARBONS (normal and iso), BASED ON EQ. 52 , AND USING SET I PROPERTIES, ALLOWING FOR AN INTERCEPT, AND WITH THE ADJUSTMENTS OF SOLUBILITY PARAMETERS AS :

$$
\lambda_{3}(a)=\lambda_{3}-0.4
$$

TABLE NO. 23 A

CALCULATED AND EXPFRIMENTAL VALUES OF S_{23} FOR C_{5} HYDROCARBONS (normal and iso), BASED ON EQ. 53 , AND USING SET I PROPERTIES, ALLONING ZERO INTERCEPT, AND WITH THE ADJUSTMENTS OF SOLUBILITY PARAMETERS AS :

$$
\lambda_{3(a)}=\lambda_{3}-0.4
$$

SOLVENT	EXPERIMENTAL	CALCULATED	\% DIFF.	FOR	FIG No.
No. NAME	(SOBS)	(SCAL)	(PD)	X	Y
1 BTLA	0.968	0.968	0.0	-58	71
2 HEXD	1.011	0.989	2.2	-35	57
3 DMSX	1. 046	-	-	-	-
4 TMPH	1.066	-	-	-	-
5 CYCP	0.958	0.976	-1.8	-25	19
6 NTBZ	0.969	0.955	1.4	-24	39
7 DODE	0.964	0.981	-1.8	0	-11
8 NMPL	1.010	0.969	4.1	-35	69
9 DMAA	0.956	0.989	-3.4	-39	27
10 ACPH	0.931	0.955	-2.6	-10	-4
11 DEOX	1. 055	0.992	1. 3	-32	47
12 DMFM	0.977	1.000	-2.3	-52	50
13 FURF	0.981	0.976	0.4	-44	55

$$
\begin{aligned}
\text { AAD } & =1.94 \% \\
\text { MAXIMUM \% ERROR } & =4.1 \%
\end{aligned}
$$

TABLE NO. 24
CALCULATED AND EXPERIMENTAL VALUES OF S_{23} FOR C_{5} HYDROCARBONS (normal and iso), BASED ON EQ. 54 , AND USING SETT II PROPERTIES, ALLOWING FOR AN INTERCEPT, AND WITH THE ADJUSTMENTS OF SOLUBILITY PARAMETERS AS :

$$
\lambda_{3(a)}=\lambda_{3}-0.4
$$

*Show Points

$$
\text { TABLE No. } 24 \mathrm{~A}
$$

CALCULATED AND EXPERTMENTAL VALUES OF S_{23} FOR C_{5} HYDROCARBONS (normal and iso), BASED ON EQ. 55 , AND USING SET II PROPERTIES, ALLOWING ZERO INTERCEPT, AND WITH THE ADJUSTMENTS OF SOLUBILITY PARAMETERS AS :

$$
\lambda_{3(a)}=\lambda_{3}-0.4
$$

SOLVENT	EXPERTMENTAL	CALCULATED	\% DIFF.	FOR	FIG No.
No. NAME	(SOBS)	(SCAL)	(PD)	X	Y
1 BTIA	0.968	0.983	-1.5	-62	75
2 HEXD	1.011	0.997	1.4	-35	57
3 DMSX	1.046	1.014	3.1	-73	120
4 TMPH	1.066	1.007	5.5	-27	74
5 CYCP	0.958	0.981	-2.4	-25	19
6 NTBZ	0.969	0.962	0.7	-27	42
7 DODE	0.964	0.988	-2. 4	0	-15
8 NMPL	1.010	0.987	2.3	-42	73
9 DMAA	0.956	1.000	-4.6	-37	23
10 ACPH	0.931	0.956	-2.8	-14	2
11 DEOX	1.055	1.000	0.6	-32	48
12 DMFM	0.977	1.010	-3. 4	-53	52
13 FURF	0.981	0.988	-0.8	-44	55

$$
\begin{aligned}
\text { AAD } & =2.4 \% \\
\text { MAXIMUM \% ERROR } & =5.5 \%
\end{aligned}
$$

TABLE NO. 25

CONTRIBUTING FORCES TO THE SELECTIVITY FUNCTIONS
FOR C_{5} HYDROCARBONS (normal and iso) IN VARIOUS SOLVENTS USING SET I PROPERTIES

SOLVENT No. NAME	POLAR	DISPERSION	INDUCTION	ENTROI	$Y Y^{\prime} Y$	$\begin{array}{r} \mathrm{P}+ \\ \ln \mathrm{S} \end{array}$
1 BTLA	-53	196	-46	2.4	-161	-20
2 HEXD	-35	81	-28	. 04	- 38	8
3 DMSX	--	--	--	--	--	--
4TMPH	--	--	--	--	--	--
5 CYCP	-25	125	-19	1.4	-129	-28
6 NTBZ	-23	125	-19	0.7	-187	-18
7 DODE	0	48	0	-2.6	-69	-24
8 NMPL	-35	157	-28	1.0	-117	6
9 DMAA	-39	93	-30	1.2	-84	-29
10 ACPH	-11	173	-8	0.04	-208	-46
11 DEOX	-31	60	-25	-0.6	-25	4
12 DMFM	-52	80	-41	2.3	-46	-16
13 FURF	-43	146	-33	1.8	-118	-13

TABLE NO. 26

CONTRIBUTING FORCES TO THE SELECTIVITY EUNCTIONS
FOR C_{5} HYDROCARBONS (normal and iso) IN VARIOUS SOLVENTS USING SET II PROPERTIES

SOLVENT No. NAME	POLAR	DISPERSION	INDUCTITON	ENTROPY	$Y^{\prime} Y_{R T}^{\prime+}$	$\begin{aligned} & p+I \\ & n S_{2} \end{aligned}$
1 BTLA	-62	196	-49	2.3	-157	-21
2 . HEXD	-34	81	-28	0.03	- 39	8
3 DMSX	-73	117	-58	2.8	-18	29
4 TMPH	-28	25	-22	0.10	43	40
5 CYCP	-25	125	-20	1.4	-128	-26
6 NTBZ	-27	191	-22	0.7	-184	-20
7 DODE	0	19	0	-2.1	- 40	-23
8 NMPL	-42	133	-33	1.0	- 88	-48
9 DMAA	-37	82	-30	1.2	- 74	-27
10 ACPH	-14	181	-11	0.03	-212	-45
11 DEOX	-32	64	-26	-0.6	- 29	3
12 DMFM	-53	85	-43	2.3	-49	-15
13 FURF	-44	141	-35	1.8	-112	-13

TABLE NO. 27

CONTRIBUTING FORCES TO THE SELECTIVITY FUNCTIONS
FOR C_{5} HYDROCARBONS (normal and iso) IN VARIOUS SOLVENTS USING SET I PROPERTIES, AND AFTER adjusting the values of solute's solubility paraMETER AS :

$$
\lambda_{2(a)}=\lambda_{2}-0.2 ; \quad \lambda_{3(a)}=\lambda_{3}-0.6
$$

SOLVENT No. NAME	POLAR	DISPERSION	INDUCTION	ENTROPY	$\begin{gathered} Y^{\prime} \\ = \\ Y^{\prime} \\ \hline \end{gathered}$	$\begin{aligned} & +D+F \\ & \ln S_{23} \end{aligned}$
1 BTLA	-57	-39	-46	2.3	75	-19
2 HEXD	-35	-18	-28	0.03	60	7
3 DMSX	--	--	--	--	--	--
4 TMPH	--	--	--	--	--	--
5 CYCP	-25	-26	-20	1.4	22	-27
6 NTBZ	-24	-39	-19	0.6	42	-20
7 DODE	0	-12	0	-2.1	-8	-20.
8 NMPI.	-34	-32	-27	1.0	72	7
9 DMAA	-39	-20	-31	1.2	29	-30
10 ACPII	-10	-35	- 8	0.03	0	-45
11 DEOX	-32	-14	-25	-0.6	50	4
12 DMFM	-52	-17	-41	2.2	53	-14
13 FURF	-42	-30	-34	1.8	58	-14

$$
\lambda_{z(a)}=\text { Adjusted value }
$$

TABLE NO. 28

CONTRIBUTING FORCES TO THE SELECTIVITY FUNCTIONS
FOR C_{5} HYDROCARBONS (normal and iso) IN VARIOUS SOLVENTS USING SET II PROPERTIES, AND AFTER adJusting the values of solute's SOLUBILIty paraMETER AS :

$$
\lambda_{2(a)}=\lambda_{2}-0.5 ; \lambda_{3(a)}=\lambda_{3}-0.9
$$

SOLVENT POLAR DISPERSION INDUCTION ENTROPY $Y^{\prime}+P+D+F$
No. NAME
POLAR DISPERSION INDUCTION ENTROPY $\begin{array}{r}\mathrm{Y}+\mathrm{P}+\mathrm{D}+\mathrm{In} \mathrm{S}_{3}+\end{array}$

1 BALA	-62	-45	-49	2.3	84	-21
2 HEXD	-34	-22	-28	0.03	64	8
3 DMSX	-75	-28	-58	2.8	128	29
4 MPH	-28	-12	-22	0.10	81	41
5 CYCP	-25	-30	-20	1.4	27	-26
6 NTBZ	-27	-44	-22	0.6	50	-21
7 DUDE	0	-12	0	-2.1	0	-21
8 NMPL	-42	-33	-33	1.0	80	6
9 DNA	-37	-23	-30	1.2	30	-30
10 ACPH	-14	-42	-11	0.03	10	-46
11 DEOX	-32	-19	-26	-0.6	55	4
12 DMFM	-53	-24	-43	2.3	60	-17
13 TURF	-44	-34	-35	1.8	63	-16

$$
\lambda_{2(a)}=\text { Adjusted value }
$$

TABLE No. 29

CONTRIBUTING FORCES TO THE SELECTIVITY FUNCTIONS
FOR C_{5} HYDROCARBONS (normal and iso) IN VARIOUS SOLVENTS USING SET I PROPERTIES, AND AFTER adjusting the values of SOLUTE's SOLUBILITY PARAMETER AS :

$$
\lambda_{3(a)}=\lambda_{3}-0.4
$$

$$
\lambda_{3(a)}=\text { Adjusted value }
$$

TABLE NO. 30

CONTRIBUTING FORCES TO THE SELECTIVITY FUNCTIONS
FOR C5 HYDROCARBONS (normal and iso) IN VARIOUS SOLVENTS USING SET II PROPERTIES, AND AFTER ADJUSTING THE VALUES OF SOLUTE's SOLUBILITY PARAMETER AS :

$$
\lambda_{3(a)}=\lambda_{3}-0.4
$$

$\gamma_{3(a)}=$ Adjusted value

TABLE NO. 31

$$
Q=R T\left(\ln S_{O B S}-\ln S_{C A L}\right) \text { vs } K_{X}
$$

Lewis Relative Acidity Scale $Q\left(\right.$ ccAtm $\left./ g m_{0 l}\right)=R T\left(\ln S_{O B S}-\ln S_{C A L}\right)$
K_{x} Using SCAL from

Summary of Various Correlations for Induction Energy Term ψ and their Reported Reliability

Correlations

Average	Maximum
\%Error in	\% Error
Calculating	
$\left(\ln y^{\infty}\right)$	

I For Saturated Hydrocarbons

W-P Model

$$
\Psi_{12}=0.396 \tau_{1}^{2}
$$

10
H-W Model

$$
\begin{array}{r}
\Psi_{12}=0.399\left(T_{1}-T_{2}\right)^{2} \\
\text { with } T_{2}=0
\end{array}
$$

This work ${ }^{+}$
(1) $\psi_{12} \quad=0.402\left(\tau_{1}-\tau_{2}\right)^{2}$

For n-Paraffins, $T_{2}=0$
(2) $\psi_{13}=0.393\left(T_{1}-T_{3}\right)^{2}$

14
54

II For Unsaturated Hydrocarbons
$\begin{array}{llll}\text { W-P Model: } \quad \psi_{14}=0.415\left(T_{1}\right)^{2} \\ \text { H-W Model: } \quad \psi_{14}=0.388\left(T_{1}-T_{4}\right)^{2} & - \\ 8.5\end{array}$
This work $: \quad \Psi_{14}=0.428\left(T_{1}-\tau_{4}\right)^{2}$

Notes:

+ Using Set II properties and allowing for NO intercepts on $\mathrm{X}-\mathrm{Y}$ plots
1 Solvent Component
2 n-Paraffins Solute Component
3 Isoت̈paraffin Solute Component
4 Polar(unsaturated) Solute Component

Comparison of This Work with $\mathrm{W}-\mathrm{P}^{3}$ and $\mathrm{H}-\mathrm{V}^{7}$

		r_{2}^{∞} @ 4	$45^{\circ} \mathrm{C}$ c	$\left.n-C_{5}\right)$			r_{3}^{∞} Q 4	$45^{\circ} \mathrm{C} 45$	Pentane		$S_{23}=r_{2}^{\infty} / r_{3}^{\infty} @ 45^{\circ} \mathrm{C}$			
Solvent No. Name	EyPERIMantal	THIS Wiry ADJ.	WORK withour ADT.		H.V ${ }^{7}$	EXPERI. mental	THIS With ADJ.	WORK wirtour ADJ.	$W \cdot p^{3}$	$\mathrm{H}-7$	Experi. MENTAL	THIS with ADJ.	WORK Wirhour ADJ.	$W \cdot P^{3} \quad H \cdot V^{7}$
10 ACPH	5.01	8.07	5.477	6.3 (11)	6.2 (11)	5.38	8.52	4.36	$\begin{aligned} & 5.73 \\ & (11) \end{aligned}$	$\begin{aligned} & 5.64 \\ & (11) \end{aligned}$	$\begin{gathered} 0.931 \begin{array}{ccc} .947 & 1.255 & 1.101 .10 \\ {[1.72]} & {[34.8]} & {[18.2][18.2]} \end{array} \end{gathered}$			
11 DEOX	5.06	5. 04	5.17	5.3 (3)	5.2 (3)	5.03	5.05	5.34	5.55 (4)	5.60 (4)	$\begin{gathered} 1.0061 .0000 .963 \quad 0.950 .94 \\ {[1][4.2][5.6][6]} \end{gathered}$			
12 DMFM	11.26	12. 16	13.97	14.2 (9)	14.2 (9)	11.53	12.01	15.31	$\begin{aligned} & 15.45 \\ & (10) \end{aligned}$	$\begin{aligned} & 15.40 \\ & (10) \end{aligned}$	0.976	$\begin{aligned} & 1.010 \\ & {[3.57]} \end{aligned}$	$\begin{aligned} & 0.913 \\ & {[6.5]} \end{aligned}$	$\begin{array}{cc} 0.92 & 0.92 \\ {[6]} & {[6]} \end{array}$
13 FURF	13.27	14.66	13.77	13.9 (3)	13.8 (3)	13.53	14.82	13.24	13.75 (3)	$\begin{aligned} & 13.65 \\ & (3) \end{aligned}$	$\begin{gathered} 0.9810 .988 \quad 1.038 \quad 1.011 .01 \\ {[1]} \end{gathered}\left[\begin{array}{ccc} 0.8] & {[3]} & {[3]} \end{array}\right.$			
20^{*}	15.42^{11}	8. 00	12. 3	, FA. 0	13.0	-	8.51	13.4	13.8	13.8	-	0.94	. 92	1.01.94
21^{+}	26.94^{11}	20.00	23.5	25.4	24.6	-	17.9	20.4	21.2	21.?	-	1. 12	1. 15	1.201 .16
22^{+}	4.41^{11}	3.00	3.3	3.7	3.5	-	3.12	3.06	4.2	4.2		0.96	0.98	.89 .84
AAD\%	-	18.3	14.3	18	18		18	13.4	18	18		2.4	10.8	7.4 6.7
Max. \%		60	57	53	51		60	54	54	56		4.6	35	1818
Error		(Octane)@90 ${ }^{\circ} \mathrm{C} *$				(Isooctane)@90 ${ }^{\circ} \mathrm{C}$					Selectivity $\mathrm{S}_{23}=@ @ 90^{\circ} \mathrm{C}$			
6 NTBZ	$3.95{ }^{33}$	$\left(43^{2}\right)$	$\begin{aligned} & 8.5 \\ & (55) \end{aligned}$	$\begin{gathered} 8.4 \\ (55) \end{gathered}$	8.4 (55)	5.95	$\left.\frac{10 i}{(3 i}\right)^{4}$	$(45)^{1}$	$(42 .)^{5}$	$\left.{ }^{12} 42\right)^{5}$	1.06	${ }_{35}^{0.69}$	${ }_{39}{ }^{65}$	${ }_{37}^{0.67} 37^{0.67}$
11 DEOX	4.41^{33}	$(42\}$	$(2,4)$	735	(3.5)	3.88^{33}	$182{ }^{2}$	$(83)^{11}$	$(86)^{\circ}$	12.6	1. 16	038^{2}	$0_{52} 56$	$0_{4} 7^{62} 0_{4} 62$

[] - \%Difference in actual values, $\quad+$ - Solvents NOT included in developing our correlations.
(.) - \% Difference in log quantities. . *-Solutes NOT included in developing our correlations.

GENERAL NOTES FOR FIG. 2 THROUGH 21

FIG.N0. 6

FIG.NO. 7

(1) $r^{\prime}=2.365 x^{\prime}$
(2) $y^{\prime}=-2630 X^{\prime}-127.6$ - MATHEMATICAL EQUATION

$$
X^{\prime}=T_{1}^{2}\left(V_{2}-V_{3}\right) \text { CAL/GMOL }
$$

$$
-200 \quad-160 \quad-120
$$

$$
\begin{aligned}
& \frac{\text { SELECTIVITY FUNCTIONS } X^{\prime} V S ~}{\prime} \\
& \text { USING SET II PROPERTIES } \\
& 0.172 X^{\prime} \\
& 0.408 X^{\prime}-102
\end{aligned}
$$

SELECTIVITY FUNCTIONS x^{\prime} vS y^{\prime}
USING SET I PROPERTIES AND
ADJUSTING THE PARAMETERS
AS : $\lambda_{3(a)}=\lambda_{3}-0.4$.
(1) $Y^{\prime}=-1.23 X^{\prime}$
(2) $Y^{\prime}=-1.38 x^{\prime}-5.8$

EIG. NO. 18

EIG.NO.21

APPENDIX I

Determination of Critical Properties, Specific Volume, Polar Solvent Solubility Parameters λ_{1} and $\pi_{1}: \quad$

Critical Properties
In absence of reliable data Critical Properties are determined through estimation procedures as follows.

Critical Temperature (T_{c}) is obtained by Lyderson's method ${ }^{13,14}$ Accordingly, $\quad \theta=0.567+\sum \Delta T-\left(\sum \Delta T\right)^{2}$

$$
\text { and } \quad \mathrm{T}_{\mathrm{c}}=\mathrm{T}_{\mathrm{b}} / \theta
$$

Critical Pressure (P_{c}) is obtained by Riedel's method. 14

$$
P_{c}=M /(\Sigma \Delta P+0.34)^{2}
$$

Critical Volume (V_{c}) is obtained by Lyderson's method. ${ }^{14}$

$$
\mathrm{V}_{\mathrm{c}}=40+\sum \Delta \mathrm{V}
$$

where $\sum \Delta \mathrm{T}, \sum \Delta \mathrm{P}, \sum \Delta \mathrm{V}$ are the sum of the contributions made by the individual atoms and their bondings in the compound. FOR DI ETHYL OXALATE:

Critical Temperature T_{c} :

$$
\begin{aligned}
\sum \Delta T & =2(0.020+0.020+0.040=0.021) \\
& =0.202 \\
\theta & =0.567+0.202-(0.202)^{2}=0.7282 \\
\mathrm{~T}_{\mathrm{c}} & =\mathrm{T}_{\mathrm{b}} / \theta=458.55 / 0.7282=629.71 \circ^{\circ} \mathrm{K}
\end{aligned}
$$

Critical Pressure P_{c} :

$$
\begin{aligned}
\sum \Delta P & =2(0.227+0.227+0.29+0.16) \\
& =1.808 \\
P_{c} & =M /\left(\sum \Delta \mathrm{P}+0.34\right)^{2} \\
& =146.123 /(1.808+0.34)^{2} \\
& =31.614 \mathrm{~atm}
\end{aligned}
$$

Critical Volume V_{C} :

$$
\begin{aligned}
\sum \Delta V & =4(55)+2(60)+2(20) \\
& =380 \\
V_{c} & =40+380=420 \mathrm{cc} / \mathrm{gmol}
\end{aligned}
$$

Compressibility factor Z_{c} :

$$
\begin{aligned}
Z_{c} & =\left(P_{c} V_{c}\right) / \mathrm{R}_{c} \\
& =0.2569
\end{aligned}
$$

Specific Volume v cc/gmol at $45^{\circ} \mathrm{C}$
Density $\quad \varsigma_{4}^{20}=1.0785$
$Z_{c}=0.2569$
At $20^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{rl}}=\frac{293.15}{629.71}=0.4655$
Using the Table \#48 in Chemical Process Principles, ${ }^{15}$

$$
\rho_{\gamma_{1}}=3.0016
$$

and $\quad \varrho_{\gamma_{1}}^{\prime}=3.1192$ when corrected for $Z_{c} \neq 0.27$
$\begin{aligned} T_{r_{2}} & =318.15 / 629.71=0.5053\end{aligned} \quad 132$.
At $45^{\circ} \mathrm{C}, \mathbb{Q}_{\mathrm{r} 2}=2.9272$ using Table 48 in Chemical Process Principles

$$
\rho_{r 2}^{\prime}=3.0434 \text { when corrected for } Z \neq 0.27
$$

Specific Volume v_{2} at $45^{\circ} \mathrm{C}$ is then,

$$
\begin{aligned}
\mathrm{V}_{2} & =\frac{\rho_{\mathrm{r}_{1}}^{\prime} \cdot \mathrm{M}}{\rho_{\mathrm{r} 2}^{\prime} \cdot \zeta_{1}} \\
& =(3.1192 \times 146.13) /(3.0434 \times 1.0785 \\
& =138.858
\end{aligned}
$$

Helpinstill and Van Winkle have reported Specific Volume v2 of Diethyl Oxalate at $45^{\circ} \mathrm{C}$ as $139.3 \mathrm{cc} / \mathrm{gmol}$.

Comparing with the reported value,

$$
\begin{aligned}
\% \text { Error of Estimation } & = \\
& =-0.317 \%
\end{aligned}
$$

$$
\frac{-139.3=138.858}{139.3}
$$

Specific Volume of $139.3 \mathrm{cc} / \mathrm{gmol}$ is used for our purpose.
Solubility Parameters of Polar Solvent, λ_{1} and $\tau_{1}=$

As discussed earlier, (p. 22)

$\underline{\left(\Delta U_{1} / v_{1}\right) \text { total: }}$

(A) Vapor Pressure Method (p. 22)

Vapor Pressure data for Diethyl Oxalate are given below:

$\mathrm{P}(\mathrm{mm})$	11	15	25	740	760
$t\left({ }^{\circ} \mathrm{K}\right)$	74	$\ddots 8$	106	181	185
$(1 / \mathrm{T}) \times 10^{4}$	28.805	28.48	26.374	22.019	21.807
$\log (\mathrm{p})$	1.0414	1.1761	1.3980	2.8693	2.8808

The consistency of the data is checked by polotting $\log (\mathrm{p}) \mathrm{Vs}$. $1 / T$ in figure 22 , where it is evident that the data are scattered and can be used only with proper interpretation

Considering the first three points (lower side)
Slope, $\left(\frac{\mathrm{dp}}{\mathrm{dT}}\right)_{78^{\circ}}=0.86\left(\mathrm{~mm} /{ }^{\circ} \mathrm{K}\right)$
and $\quad \Delta_{H_{7}}{ }^{\circ} \mathrm{C}=\frac{1}{15}(1.987) \cdot(351.15)^{2} \cdot(0.86)$
$=14047.22 \mathrm{cal} / \mathrm{mole}$
Using Waton's Correlation,

$$
\begin{aligned}
\Delta_{\mathrm{H}_{45^{\circ}} \mathrm{C}} & ={\frac{(629.707-318.15)^{0.38}}{(629.707-351.15)^{0.38} \mathrm{x}^{(14047.22)}}}=14658.27 \mathrm{cal} / \mathrm{mole}
\end{aligned}
$$

B) Estimation Method (p. 23)

For Diethyl Oxalate,
$\mathrm{T}_{\mathrm{c}}=629.71^{\circ} \mathrm{K} ; \mathrm{P}_{\mathrm{c}}=31.614 \mathrm{~atm} ; \mathrm{V}_{\mathrm{c}}=420 \mathrm{cc} / \mathrm{gmol} ; \mathrm{Z}_{\mathrm{c}}=0.2569$
and at $45^{\circ} \mathrm{C}, \mathrm{T}=318.15^{\circ} \mathrm{K}$
With all these substituting in equation \#C as discussed earlier,

$$
\begin{aligned}
\Delta \mathrm{H}_{45}{ }^{\circ} \mathrm{C}= & \frac{4.781984 \mathrm{~T}_{\mathrm{b}} \mathrm{~T}_{\mathrm{c}} \log \left(\mathrm{P}_{\mathrm{c}}\right)}{\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{c}}}\left(1-\frac{\mathrm{T}_{\mathrm{c}}^{3}}{\mathrm{P}_{\mathrm{c}} \mathrm{~T}_{\mathrm{b}}^{3}}\right)^{1 / 2}\left(\frac{\mathrm{~T}_{\mathrm{c}}-\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}-\mathrm{T}_{\mathrm{b}}}\right)^{0.38} \\
= & 14557.40 \mathrm{cal} / \text { mole (Compare with the value of } \\
& 14658.27 \text { using Vap. Pressure data) }
\end{aligned}
$$

and therefore,
$\left(\frac{\Delta U_{1}}{v_{1}}\right)=\frac{\Delta H-R T}{v_{1}}=\underline{99.97 \mathrm{cal} / \mathrm{cc}}$
Nonpolar Contribution $\boldsymbol{\lambda}_{1}$

$$
\left.\lambda_{1}=\sqrt{\lambda_{1}^{2}} \quad=\sqrt{\left(\frac{\Delta U_{1}}{V}\right.}\right) \text { nonpolar }
$$

Using the homomorph phot:for n-Paraffins, for

$$
T_{r 2}=\frac{318.15}{629.71}=0.505
$$

$$
\text { and } v=139.3 \mathrm{cc} / \mathrm{gmol}
$$

$$
\lambda_{1}^{2}=\quad \frac{\Delta U_{1}}{v_{1}}=61.3 ; \quad \underline{\lambda_{1}=7.289 \quad(\mathrm{cal} / \mathrm{cc})^{1 / 2}}
$$

Polar Contribution term T_{1}

$$
\begin{aligned}
& \tau_{1}=\sqrt{\left(\left(\frac{\Delta U_{1}}{\mathrm{v}_{1}}\right)_{\mathrm{t}}-\left(\frac{\Delta \mathrm{U}_{1}}{\mathrm{v}_{1}}\right)_{\mathrm{np}}\right)} \\
& \tau_{1}=\begin{array}{ll}
100.69-61.3 & \underline{6.276} \text { Using V.P. data } \\
& =99.97-61.3
\end{array} \underline{\underline{6.218} \text { Using Estimation methods }}
\end{aligned}
$$

Literature Information $\quad \lambda_{1}, \sigma_{1}$

	 Van Winkle	 Prausnitz
$\boldsymbol{\lambda}_{1}$	7.88	8.10
$\boldsymbol{\tau}_{1}$	6.28	5.90

4 APPEARS TO BE MISLEADING DATA

SOLUTE		$\begin{array}{r} P_{c} \\ \text { atm } \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{c}} \\ & \mathrm{cc} / \\ & \mathrm{gmo1} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathbf{e}} \\ \mathrm{K} \end{gathered}$	$\begin{aligned} & V \\ & \mathrm{cc} / \\ & \mathrm{gmol} \end{aligned}$	For set i Andit $(\mathrm{cal} / \mathrm{cc})^{\frac{1}{2}}$		TEMP. ${ }^{\circ} \mathrm{C}$
	NAME					$\boldsymbol{\gamma}$	$\boldsymbol{\tau}$	
2		33.3	304	469.7	120.3	6.94	0.0	45
					121.4	6.87	0.0	53.2
					126.3	6.60	0.0	74.1
					131.3	6.44	0.0	93.9
3	i-C	33.4	306	460.4	121.2	7.29	0.0	45
					123.7	7.11	0.0	53.2
					128.8	6.95	0.0	74.1
					134.0	6.83	0.0	93.9
4	$=\mathrm{C}_{5}$	40.0	305	465	113.0	7.02	1.0 *	45

* Ref. No. 3.7

APPENDIX III

Experimental Log Sheet\#
Solvent: Dietyl Oxalate

Mol. Wt. 146.15
Date: February 18, 1973
B. P. $185.4^{\circ} \mathrm{C}$

1) Weight of Column + Solvent + Inerts + Wire $=x_{1}=145.6061 \mathrm{gms}$
2) Weight of Column + Inerts + Wire $=x_{2}=$ 143.2165 gms
3) Time when He gas flow started through the column: 8:00 A. M.
4)

Hegas	cc	20	20	20	20	20	20	20
Flow	sec	40.3	40.2	40.4	39.4	39.5	39.3	39.3
Rate, V	cctin		777			-30.45		

5) Hg mamometer Left $\frac{+3.8^{\prime \prime}}{+3.75^{\prime \prime}}$ Right $\frac{-3.3^{\prime \prime}}{-3.25^{\prime \prime}}$

Water mamometer Left $=0.5^{\prime \prime}$ Right $-0.5^{\prime \prime}$
6) Weight of column after 10 minutes of He flow at the desired

$$
\text { rate }=\quad x_{3}=145.6031 \mathrm{gms}
$$

7) Soap film temperature $\mathrm{T}_{\mathrm{f}}=24^{\circ} \mathrm{C}$
8) Column Block Temperature $\mathrm{T}_{\text {fo }}=45^{\circ} \mathrm{C}$
9) Solute injection time distance $D^{\prime \prime}$ between
Hr. Min. Air and the Solute peaks

	$8-16$	1.605
n-Pentane	$8-21$	1.575
	$8-27$	1.570
	$8-33$	1.510
Iso Pentane	$8-37$	1.535
	$8-48$	1.200
	$8-52$	1.200
	$8-56$	1.190
	$9-00$	1.160
$1 .-P e n t e n e$	$9-05$	1.155
	$9-11$	$2-840$
	$9-20$	2.800

Time	Distance	Distance
Hr. -	D_{1} bet. Air	D_{2} Solute $_{1}$
Min.	Solute $_{1}$	

n-Pentane + 1-Pentene	$9-26$	1.515	2.810
IsoPentane + 1-Pentene	$9-32$	1.220	2.855
n-Pentane + IsoPentane	$9-40$	No separation achieved	

10) Weight of Column + Inerts + Solvent + Wire at the end of the run, time $9-45, x_{4}=145.5750 \mathrm{gms}$.
11) Recorder Chart Speed $Z=0.685 \mathrm{in} / \mathrm{min}$
12) Vapor Pressure of Water at the Soap film meter end temperature $\mathrm{T}_{\mathrm{f}}=\underline{24^{\circ} \mathrm{C}}, \quad \mathrm{p}_{\mathrm{w}}=\underline{22.377 \mathrm{~mm}} \mathrm{Hg}$ Abs.
13) Solute Vapor Pressure at the temperature of the experiment $\mathrm{T}_{\text {fo }}, \mathrm{p}_{\text {io }}$ as:

Solute
n-Pentane
Iso Pentane

1-Pentene
倍

Vapor Pressure $\mathrm{mm} \mathrm{Hg} \mathrm{Abs}$.
1020.00
1323.86
1262.81

APPENDIX IV

 Figure No. 24: Chromatogram of IsoPentane in Diethyl Oxalate Figure No, 25: Chromatogram of 1-Pentene in Diethyl Oxalate Figure No. 2\%: Chromatogram of (n-Pentane +1 -Pentene in Diethyl Oxalate)

Figure No. 27: Chromatogram of (Isopentane + 1-Pentene in Diethyl Oxalate)

APPENDIX V

Calculation of Infinite Dilution Activity Coefficient Through Gas Liquid Chromatography:

Set time $t=O$ when He gas flow started.
Weight of Solvent + Inerts + Column + Wire $\quad=x_{1}=145.6061 \mathrm{gms}$
Weight of Column + Inentar + Wire $\quad=x_{2}=143.2165 \mathrm{gms}$
Weight of Solvent at time $t=0, \quad S_{O}=\left(x_{1}-x_{2}\right)=\quad 2.3986 \mathrm{gms}$
Weight of Solvent after 10 minutes of He flow

$$
\text { passed + Inerts + Column + Wire } \quad=x_{3}=145.6031 \mathrm{gms}
$$

Weight of Solvent after 10 minutes of flow $=\left(x_{3}-x_{2}\right)=2.3866 \mathrm{gms}$ 1) Rate of Loss of Solvent $=\frac{\left(x_{1}-x_{2}\right)-\left(x_{3}-x_{2}\right)}{10}=r_{1}=0.0003 \mathrm{gms} / \mathrm{min}$

Weight of Solvent at the end of run $=S_{f}=x_{4}-x_{2}=2.3585 \mathrm{gms}$ at $t=\min$ 2) Rate of Loss of Solvent $=\frac{\left(x_{1}-x_{2}\right)-\left(x_{4}-x_{2}\right)}{t}=r_{2}=0.00029 \mathrm{gms} / \mathrm{min}$ Average Rate of Solvent $=\left(r_{1}+r_{2}\right) / 2=r-0.2981 \times 10^{-2} \mathrm{gms} / \mathrm{min}$ Weight of Solvent in the column at any intermediate time t minutes after the start $S_{t}=S_{O}-t . r$ gms

He-Inlet pressure $p_{i n}=7.1,7.0$ in Hg

$$
=936.74,934.2^{\mathrm{mm} \mathrm{Hg} \mathrm{Abs}} .
$$

He-Outlet pressure $p_{0}=1^{\prime \prime} \quad$ in water $=756.00 \mathrm{~mm} \mathrm{Hg} \mathrm{Abs}$.

With the above Variables known, and the values of He Velocity V, Distance D between the Air and Solute peaks on Chromatogram, Recorder Chart Speed Z, Soap film temperature T_{f}, Water Vapor pressure P_{w}, and the partial pressure of the Solute $p_{i o}$ at the temperature $\mathrm{T}_{\mathrm{f}}\left(45^{\circ} \mathrm{C}\right)$ of the experiment:

Infinite Dilution Coefficient of Solute (2) in Solvent (1) is obtained as,

$$
=\frac{\left.(1.704) \cdot 10^{7} \cdot \mathrm{Z} \cdot \mathrm{~S} \cdot \mathrm{~T}_{f} \cdot \mathrm{p}_{\mathrm{o}} \cdot 2 \cdot \frac{\left(\left(\mathrm{p}_{\mathrm{i}} / \mathrm{p}_{o}\right)^{3}-1\right)}{\left(\mathrm{p}_{\mathrm{i}} / \mathrm{p}_{\mathrm{o}}\right)^{2}-1}\right)\left(\mathrm{p}_{\mathrm{io}} \cdot \mathrm{D} \cdot \mathrm{~V} \cdot(273) \cdot\left(\mathrm{p}_{\mathrm{o}}-\mathrm{p}_{\mathrm{w}}\right) \cdot 3\right.}{\left({ }^{3}\right)}
$$

Above calculations have been made with the help of a FORTRAN Programming for each of the Solvents selected.

APPENDIX \#VI

Following is a mathematical analysis of the observed experimental data points (n points) to be correlated. ${ }^{30}$

Let the data points $\mathrm{b}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}\right)$, where $\mathrm{k}=1,2, \ldots \ldots, \mathrm{n}$. Part b: Non zero intercept

Attempting to fit this data to a Straight line - linear regression equation, let the equation of the line fitting the data the best be

$$
\begin{equation*}
Y=a+b X- \tag{1}
\end{equation*}
$$

where a and b represent the intercept and the slope
of the line.
Also, let

$$
\begin{equation*}
\phi_{k}=y_{k}-a-b x_{k} \tag{2}
\end{equation*}
$$

Applying the Least Square Technique, let

$$
\begin{equation*}
\phi=\sum_{k=1}^{k=n} \phi_{k}=\sum_{k=1}^{k=n}\left(y_{k}-a-b x_{k}\right)^{2} \tag{3}
\end{equation*}
$$

and for the minimum value of ϕ,

$$
\begin{equation*}
\frac{\partial \phi}{\partial a}=0 \quad \text { and } \quad \frac{\partial \phi}{\partial b}=0 \tag{4}
\end{equation*}
$$

Therefore, the two conditions are
and $\quad \begin{aligned} & \sum_{k=1}^{k=n}\left(y_{k}-a-b x_{k}\right)=0 \\ & \sum_{k=1}^{k=n}\left(y_{k}-a-b x_{k}\right)=0\end{aligned}$

Rearranging,

Dividing by n equation \#6 becomes
$a=b \bar{x}-\bar{y}=0$

Using definitions, we also have
$\sum_{k=1}^{k=n} x_{k}^{2} / n=\sigma_{x}^{2}+\bar{x}^{2}$
and $\sum_{k=1}^{k=n} x_{k} Y_{k} / n=\nu_{11}=\mu_{11}+\bar{x} \cdot \bar{y}-$

Substituting these in (7)
$\overline{a x}=b\left(\sigma_{x}^{2}+\bar{x} \cdot \bar{x}\right)-\left(\bar{x} \cdot \bar{y}+\mu_{11}\right)=0$

Rewriting this as,
$a \bar{x}+b \bar{x}^{2}-\bar{x} \bar{y}+b \sigma_{x}^{2}-\mu_{11}=0$

The first three terms in (12) are equal to zero because of (6)

Therfore,
and

$$
\begin{equation*}
a+b \bar{x}=\bar{y} \tag{13}
\end{equation*}
$$

$b \sigma_{x}^{2}=\mu_{11}$
and $\quad b=\frac{\mu_{11}}{\sigma_{x}^{2}} \quad$ and $\quad a=y-\frac{\mu_{11} \bar{x}}{\sigma_{x}^{2}}$
The Straight Line Equation is, then
$\mathrm{y}-\overline{\mathrm{y}}=\frac{\mu_{11}}{2}$ ($\left.\mathrm{x}-\overline{\mathrm{x}}\right)$
where

$$
b=\frac{\mu_{11}}{\sigma_{x}^{2}}=\text { Coefficient of Regression }
$$

$$
\bar{x}=\sum_{k=1}^{k=n} x_{k} / n \quad \bar{y} \quad=\sum_{k=1}^{k=n} \gamma_{k} / n
$$

and

$$
\mu_{11}=\left(\frac{1}{n} \sum_{k=1}^{k=n} x_{k} y_{k}\right)-\bar{x} \cdot \bar{y} \sigma_{x}^{2}=\frac{1}{n} \sum_{k=1}^{k=n}\left(x_{k}^{2}-\bar{x}\right)^{2}
$$

Above results can be written as,
$B=$ slope of the regressed line $\left(Y=A+B_{x}\right)$

$$
=\frac{X Y A V-(X A V)(Y A V)}{X X A V-(X A V)(X A V)}
$$

and
$A=(Y A V)-(B)(X A V)$
Part c: Zero intercept: When the line $Y=A+B X$ is forced to pass through origin, eq. 3 then becomes

$$
\begin{equation*}
\phi=\sum_{k=1}^{k=n} \phi_{k}=\sum_{k=1}^{k=n}\left(y_{k}-b_{1} x_{k}\right)^{2} \tag{19}
\end{equation*}
$$

For minimum $\oint_{k=n}, \quad \frac{\partial \phi}{\partial b_{1}}=0 \quad$ leads to,
Rearranging, $\quad b_{1}=\sum_{k=1}^{k=n} \gamma_{k} x_{k} / \sum_{k=1}^{k=n}\left(x_{k} \cdot x_{k}\right)=\frac{\text { SUMY }}{\text { SUMXX }}$

> or
> $B_{1}=\frac{\text { SUMXY }}{\text { SUMXX }}=\frac{\text { XYAV }}{X X A V}-\ldots-\ldots-\ldots-\ldots$ -

