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ABSTRACT  

This thesis presents a mathematical model of the steady 

state heat and temperature distributions of a hot sphere 

located along the midplane of an infinitely long wedge of 

any arbitrary central angle. The heat and temperature 

distributions of this geometric configuration are of immense 

value,since through the use of this model as a wedge shaped 

unit cell the description of any number of hot spheres, 

arranged in - a regular planar array can be immediately 

determined. 

The method of reflections is used to solve Laplace's 

equation , V2T=O , analytically using the sphere and the 

wedge walls as boundary conditions. Only the second 

reflection was obtained,yielding a first order correction. 

The resulting model of an individual sphere within a 

wedge,and an arbitrary number of spheres arranged in a 

regular polygonal planar array were obtained. The regular 

planar array was tested and compared with known exact 

solutions of Laplace's equation in Bipolar coordinates 

[ for the solution of two spheres in space ] and Toroidal 

coordinates [ for the solution approximating an extremely 

large number of densely packed spheres in a regular planar 

array ] . The model tested accurately in the comparison with 

Bipolar coordinates,while the comparison of the developed 

model with a toroid showed the limitations of a first order 

correction solution. 
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SYMBOLS USED AND THEIR MEANINGS  

Symbol Meaninj  

a Sphere radius 

A Unknown function of integration-second reflection 

C ,C Constants of integration for the first reflection 
1 2 

k Heat transfer coefficient - BTU/hr ft2  

Modified Bessel functions of orders 0,1, respectively 

Modified Bessel functions;of imaginary order 1T 

m,n Integer indices 

The number of spheres in a regular array 

Legendre's functions of order n 

Legendre's functions of order n 

Rate of heat transfer 

r ,0,4 Sphere centered spherical coordinates 

T Temperature at a point in space 

T
1 

Temperature at the sphere surface 

T
2 

Temperature at the wedge walls - fixed 

Tamb Temperature of the ambient space 

V Dummy variable of integration - first reflection 

I 
Sphere centered Cartesian coordinates s s s 

x ,y ,z Wedge centered Cartesian coordinates 
w w w 

Distance from sphere center to wedge vertex 

p,0,z Wedge centered cylindrical coordinates 

00 One half of the central angle of the wedge unit cell 

A,T Separation constants of Laplace's equation 

V Nabla operator 

T,T(1),T(2)Normalized temperature variables 

K ,K 
0 

KIT 
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INTRODUCTION'. 

The work presented herein concerns itself with the. 

development of a mathematical model 1 which describes the 

temperature distribution due to the presence of a hot 

sphere located along the midplane of an infinite wedge 

of an arbitrary central angle. Two basic problems are 

treated; each problem differs only in boundary conditions. 

The simplest occurs when the wedge walls, are held at constant 

uniform temperature; the second, and far more interesting 

problem,occurs when boundary conditions at the wedge walls 

are dT/d0 = 0 . 

Problems relating to a sphere within a wedge develop 

when trying to describe large numbers of hot spheres 

arrange in a regular planar array. Given the array shown 

in Figure l.,each sphere can be considered to be located 

within its own particular wedge-shaped unit cell , of 

central angle 200  . 00  in turn is expressible in terms of 

the number of spheres, N , according to the following relation: 

00 = rt/N 

The walls of the unit cell prove to be lines of 

symmetry , both for the' regular polygonal array and the 

resulting temperature distribution. The lines of symmetry 

within the temperature field are mathematically; 

dT/d0 = 0 [on the wedge walls] 



The second , ore complex model simultaneously 

solving Laplace's equatiori with boundary conditions of 

dT/d0= 0 [on the wedge walls] and T = T1 [on the sphere 

surface] , can be developed from the simpler solution, 

a sphere within a wedge of uniform surface temperature. 



m me 

1. 

ry (' N=6) e s 

9. 



10. 

DEVELOPMENT  OF MODEL  - WEDGE WALLS  AT CONSTANT TEMPERATURE  

The simplest unit cell would consist of a sphere of 

constant temperature , T, located within a wedge of 1 

constant wall temperature T2, as shown in Figure 2. 

The temperature field must be a harmonic function , ie. 

a solution to Laplace's equation 

72T 0 

and must also be consistent with the boundary conditions. 

In this case, the satisfaction of the boundary conditions 

requires that the temperature of the sphere surface be T1 

and the temperature at the wedge walls be T2. 

Let T=(T-T2)/(T1-T2) (2) 

By sudstituting the variable 'Y , defined in equation(2), 

for the temperature variable ,T, the boundary conditions 

become normalized in terms of T. 

T(on the sphere surface) (3) 

M(on the wedge walls)= 0 (4) 

'P is also a. solution of Laplace's 'equation in that : 

:9'2T=0 (1) 

T is related to. T by transposing equation (2). 

T = T(T1_,T2) + T2 (5) 

Performing the required substitution and stipulating that 

(T1-T2) be a non-zero fixed • constant one obtains: 



Sph ere a of CowstaNt Temperatu 



V 2T =( T1- T2 )V 2T = 0 (6) 

Therefore: V 2T 0 (7) 

We now have reduced the problem into the normalized 

temperature variable with the appropriate boundary 

conditions. 

The problem inherently possesses two dissimilar 

geometries, wedge-shaped and spherical. No single 

coordinate system can be used to simultaneously treat both 

geometries. The method of reflections must be used as an 

algorithm . The method involves obtaining an infinite 

number of solutions, each solution individually being the 

solution to a boundary condition upon one surface, and adding 

them. The resultant sum is a solution which satisfies 

the boundary conditions upon both surfaces. Thus, the 

required solution T will be built up as an infinite series of 

individual solutions; the odd numbered solutions satisfy 

the boundary conditions on the sphere surface and the even 

numbered solutions satisfy the boundary conditions upon the 

wedge surface. 

T T = T(1)+ T(2)+ T(3)+  (°') (8) 

The aim of this thesis will be to obtain up to the 

second term of this reflection series. The second reflection 

• amounts to a first order correction factor, correcting 

the temperature field of the sphere in accordance with 

the effect of the wedge walls. 

124 



Starting with a sphere,of surface temperature T=Ti 

and a spherical coordinate system based upon the sphere 

center as an origin, the harmonic function due to 

spherical symmetry, will be a function of the spherical 

radius alone. The boundary restrictions are: 

harmonic function 

[At the sphere surface,ie. 

function of rs alone due to spherical 

symmetry 

In spherical coordinates for the well 

known solution to Laplace's equation in the region 

exterior to the sphere is: 

T(1) air (9) 

T
(1) 

is consistant with the boundary conditions since 

it is a harmonic function, its, value at the sphere 

surface is 1 , and it is a function of r
s 

alone. It 

also exhibits the characteristic property that: 

limit [T(1) (x) ] 0 (10).  
x -' 

Figure 3 shows a plot of the isotherms ofT(1)as a 

function of rs expressed as multiples of a . 

T = T(1)+ T(2)+ 1)(3)+... T(=) ( 8) 

T = a/rs+ T(2)+ 
(co)
T (11) 

Truncating after the second reflection term to obtain 

13. 



.33 
.50 

IsolAerms f th irs R fie ;on 

3 # 

r 



15. 

a firs order co ection 

a/r + T(2) 
S 

 (12) 

(1) T based upon sphere surface boundary conditions 

sets up a temperature field of concentric spheres of 

constant temperature of value a/rs  . These concentric 

spheres are cut across by the walls of the wedge 

maintained at constant ,uniform temperature. The hot 

sphere sets up a temperature distribution on the wedge walls. 

However, since the boundary conditions at the wedge walls 

require that the wall temperature expressed in terms of T 

be zero, the second reflection must cancel off the effect 

of the first reflection, shown in figure 4. 

1,(2) -4'(1) [To satisfy that T=0 on the wedge walls] 

This condition must be satisfied only upon the wedge surface 

and not everywhere else in space. T(2) and T(1) must be 

linearly independent solutions to Laplace's equation 

T(2) must also be a harmonic function. 

From geometry, in cartesian coordinates: 

ym. 0.0 

x
w
= x0+ x 

Yw= 

= 

V x2  + y2  + z2  
s s 



Ia7'ersecl'ioa of Wed 9 e, 

awci F rS t Re lecrioN 



a 

- x.)2  + y2  + z2  w w 

17. 

(17) 

  

 

(18) 
z2 I x2  - 2x

w
x0 + x2 y 2  0  

Shifting to cylindrical coordinates with origin at the 

wedge center 

x =p1 cos (0) . (19), 
w 

yw  =p sin (0) (20) 

x2 
+ yw 

2 
P 

.... 2 (21) 
w -  

a 
(22) 

- 2x0pcos(0) +x, + z2  

T
(2) must be a harmonic and equal to -T(1) at the wedge 

walls. Transform analysis indicates that the form of 

41(2) should be: 

T(2) 
0 

if A cosh(TO) KIT(Xp) cos(Xz
w
) dAdT (23) 

00  

The above solution is valid everywhere within the domain 

bounded by the wedge , ie. 00 > p > 0, co > zw > -00 . 

The constant A is really not a constant but an unknown 

function of the separ ation constants A and T. A can not be 

a function of the variables p, zw 
 , or 0.At the wedge walls 

when 0 00 

T 
(2) 

T(1) =  

 

-a 

  

   

(24) 

  

- 2x0 pcos(80+ x2c; + zw 
 

  



e rate of heat transfer, can be expressed as the series; 

Q= Q
(1)

+ 
(2) +  (1(3)4.... (co)Q (31) 

18. 

0303 

00 

if A cosh(TO.)KIT(Ap)cos(Xz )dAdT=  (25) 
opcos(80+x-1-z124  

Inverting the z transfor yields.: 
w 

f A cosh(T00) KIT(4) -2a/7r K o(41-2x0pcos(00)+x 70(26) 
0 

However: 

1T(4) K1T(Xxo )cosh[T(7f-0 )]dT= 7r/2 K o(Vo2 o pcos(80)+x,; ) 

(27) 

By comparing like terms one can conclude: 

A = - 4a cosh tr(71.-00] KlT(Ax0) (28) 
IT 2  cosh (T00) 

mm 

T(2)= flcosh[T(ff-00]  Klr(Axo)cosh(TOKIT(Ap)cos(az )0:11-[-4a/w2] 
°cosh (TO,) (29) 

The approximate temperature field may now be expressed as: 

- a// p x o pcos (e n) + xo + zW 

0 

-4a/71.2  acosh[T(1.-00)]KtT(Xxo )cosh(1.0)Kti(4)cos(Xzw)dAdt 
cosh(TO.) (30) 

Truncating the above series to form a first order correction; 

Q =
(1) + Q(2) 

This truncated series can be shown, from Appendix A to 

be equal to : 

Q = iiirka( T1-T 2) 1 + T
(2) 

{x0,0,0}] (32) 



19. 

This law is analogous to Faxen's law,used primarily 

hydrodynamics of low Reynolds numbers. At the sphere 

center (x.,0,0) Y (2) is defined by: 

(2) 
T {x.,0,0}= -a/x. Cosh[r(IT-6 0 )) dr ,(33) 

cosh(r6 0 ) cosh(r7) 
CO 

Q m 471ca(T
1
-T

2
)( -a/x°  f cosh[r(IT-0 0 )] dr (34) 

° cosh(r0 0 ) cosh(TrT) 

Equation (33) is obtained by evaluating equation (29) 

at p=g,x0,0=0,z
w 03 CO 

T (2) {x0,0,0}= -4a/ cosh[r(7-0 ° )][Kir(Xx o )]2  dXdt (35) 
00 cosh(r00) 

T
(2)

lx0,0,01= -a/x° 
 c

o 

cosh[r(7-6,)] P (1) dt(36) 
cosh(r00) cosh(7r) tr-1/2 

Equation (36) is obtained by inverting theX transform 

within equation (35). Also due to its conical nature 

P (1) 1 for all values of T. Therefore; 
r-1 / 2  

00 

Y'(2) {x°,0,0}= - a/x. 
0 
 cosh[r(IT-0.)] dT (33) 

cosh(re.) cosh(7t) 

This completes the development of the models of 

heat transfer rate and temperature distribution for a 

hot1  sphere within the walls of a wedge maintained at 

constant temperature. 



This solution leads tc the pi:esentation of a more 

theoretically interesting problempthe problem of a hot 

sphere in a wedge of boundary conditions dT/d0 0 . 

This corresponds to the unit cell to be used in the 

analysis of a large number of hot spheres arranged in a 

regular planar array. A solution to this problem involves 

the identical differential- equation as before,namely 

Laplace's equation;the boundary conditions are now modified. 

'Y[at the sphere surface] 

dT(1)/d0 [at the wedge walls] = -d'1'(2) /d6 [at the wedge 
walls] 

(1) T. remains the same as in theA previous problem. 

T(1)=  

I p 2-2x0 pcos(0)+x21-z2  0 w  

dT
(1) 

-axo psin(0) 
dO   3 

[I p2-2xo pcos(0) +xi +z2  

T(2) will be of the same form as in the previous problem. 

(2) 
T = fiA cash(TO) KiT(4)c0s(Xzw) dXdT (39) 

(2) ("c°  
d /d0 = f f ATsinh(TO)K1T(Ap)cos(X dXdt (40) 

Equation (40) is obtained from equation (39) by performing 

the indicated differentiation with respect to 0 . The 

boundary conditions state that the derivatives with respect 

to the variable 8 must cancel each other only at the wedge 

walls. { 0 = ± 

20. 

a 
(37)  

(38)  

ff ATsinh(T0OKI.T(4)cos(Xz 
00 

dXdt= 
ax„psin(00)  

(p2-2xopcos(00) + 

(41) 

3/2 



 

21. 

Inverting the X transform, 

Aisinh(i00)Kli(Xp)di = 2/r 
apxo sin(00) cos(Az)  dzu  

,, (42) 
(p 2-2xo pcos(0.)+x,i+z2  )3/' 

Evaluating the cosine transform with respect to zw. 

Aisinh(i0.) Kti(4) di= 2ax0Xpsin(0„)1(101/pz-2xn pcos(0.)+x  

742-2x0 pcos(00) + (43) 

To solve for the value of A the T transform must be 

inverted,and a final relation must be derived . Given, 

03 

fKli(Xxo)Kii(4)cosh[i(ff-0)]di=7/2 K0042-2x0 pcos(0)+xD 
0 (44) 

d ftti(Xxo)Kii(Xp)cosh[i(x-0)]di=d r/2 K0(XVp-2x0pcos(0)+x,i) 
de ° dO 

(45) 

Taking the indicated derivative with respect to 0 , the 

following equalities develop: 

tAisinh(i00)Kti(4) di =2aXpx0sin(00)K1(X42-2x0pcos(O n)+xg)  

rip 2-2x0pcos(0.)+x (46) 

00 

=4a/1r2fiKli(Xx0)Kti(Xp)sinh[i(r-00)] di (47) 

From these two equalities the value of A can be 

determined by comparing like terms. One can conclude 

that the value of A is; 

A 4a sinb(i(7-00)] Kti(Xx.) (48) 
72  sinh(TOO 

Having the value of A, T(2)fx0,0,0) develops to be: 

0000 

,0,0 ) =1
6
( A K IT( Xx o) d Xd T (49) 



22. 

C000 

T(2){ 0 ,0,0) = 4a  ff s nh[T(7-0.)] K1T(Xx.)KiT(Xx0)dXdT (50) 
2 oo 

7 sinh(T0 0 ) 

Inverting the X transform as before, 

T
(2)

{x.,0,0) 
CO 

a/x°  f sinh[T(7-0 0 )] dT (51) 
° sinh( TO.) cosh(ITT) 

The model for heat transfer is now: 

4rrka(T1-T 2) [ 1 - / x0 sinh[T(Tr-01 dT (52) 
° sinh(T01 cosh(7T) 

For N spheres arranged in a regular polygon, each 

individual sphere can be considered to be enclosed in a wedge 

of central angle O. , where 0. = 7/N . The heat transfer 

rate per sphere is: 

CO 

Q = 47ka(T
1-T

amb
)[l a/xo f sinh[({N-1)/N)TrT] dT ](53) 

° sinh[7TIN] cosh(TrT) 

The rate of heat transfer from the entire array would merely 

be the rate of heat transfer per sphere , equation (53), 

multiplied by the number of spheres , N . 

The temperature distribution is modeled by, 

a/ 4 2 -2x0 pcos(0)+x 

03CO 

-  4a / 7 2  ff sinh(T(7-00)K1T(Xx.)cosh(TO)KtT(Xp)cos(Xz
w

)dXdT 
00 sinh (T00) 

(54) 



23. 

Summarizing the results for a hot sphere within the 

boundaries of a wedge Shaped unit cell: 

For a wedge Of fixed wall temperature,the heat transfer rate 

Q is: 

4 ka(Ti-T2)[ 1-a/x 0  fcosh[1- (Tr-80)] dt ]  
cosh(T80)cosh(Trt) 

For a wedge of boundary conditions dT/d8= 0 at the walls. 

= 47ka( -T )(1-a/x0  fsinh(({N-1}/N)vr]  
amb sinh(TrT/N) cosh(TTT) 

Where Q is the heat transfer rate per sphere and N is the 

number of spheres arranged in the regular planar array. 

For a single sphere in space, the central angle of the 

wedge is 180 ° . The formula in this case degenerates to: 

Q = 47ka(T -T ) 
1 amb 

This is known to be the correct solution to the heat 

transfer rate of a single sphere in space. For two 

spheres in space, the equation yields: 

Q = 4Trak(T-Tamb)[  1. - a/2x0] 

since the value of the integral yields: 
OD 

f di/cosh(TrT) = 1/2 

The results of this study are shown in Appendix 2. A 

final regarding the accuracy of the formula appears in 

Appendix 3 . In Appendix 3 the formula is used to approximate 

a toroid by allowing the number of spheres to become large. 

In the case of two spheres in space, the above solution compares 

most favorably with the answer derived from bipolar 

coordinates. In the attempt to approximate a toroid, the 

solution is limited by the a/x°  value, as shown in Appendix 3. 



24. 

SUMMARY  

In summary, a mathematical solution to Laplace's 

eqUation was developed for a sphere in a wedge type unit cell. 

Two types of boundary conditions were considered:a wedge 

of fixed uniform wall remperature, and a wedge along whose 

walls the derivative of temperature with respect to a 

change in the central angle was zero. This latter model 

was used to describe an array, of hot spheres in space 

arranged in a regular planar array. The model was 

tested and proved accurate in all cases for one and two 

spheres. From a comparison with the bipolar coordinate solution 

to Laplace's equation, the accuracy of the first order 

correction model was shown to be related to a/x.. In an 

attempt to compare the model with a toroidal coordinate 

solution the number of spheres was allowed to increase and 

the inter-sphere spacing was permitted to decrease until 

all the spheres were tangent. It was found through 

computer analysis that the value of the geometric view 

factor; 
co 

e e 
sinh[({N-1}/N)7Tr] dT  

° sinh(tO/N) cosh(rir) 

increased much faster than the decrease in the value of 

[ a/x. ] with the number of spheres. Thus with the spheres 
max. 

touching the first order correction model was inaccurate and 

higher order terms in the reflection series would be needed 

to achieve accuracy in this case. 



25. 

Future advances along these lines would be the 

development of higher order terms in the reflection series, 

allowing the solution to the problem of a large quantity of 

spheres touching or similar concentrated systems. The 

reflection technique may provide a method of simultaneously 

solving the creeping motion equation and the equation 

of continuity within the boundaties of a wedge-like unit cell4 

The resulting model would then be an effective model of 

sedimentation. 
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APPENDIX A 

Proof of equation (32) 

The rate of heat transfer ,Q, is expressible as a 

series similar in form to the series developed for the 

temperature , T. 

Q=
(1)

+
(2)

+ 
(3)

+ Q (4) + Q(w) (A-1) 

The form of Q(j) is developed from the definition of 

-k f(d Area)' dT/drs  

2m m /.t\  
) = a2

(T1a -T_ f f[dT‘J / /dr
s

]sin(cp) dcpd0 (A-3) 
To 
=04

).
0 

r=a 

The variable T is replaced in the definition (A-2) by its 

equivalent in terms of T, and the resultant equation is 

integrated over the sphere surface. The form of[dT (i) /d r 
tir=a 

in equation (A-3) is presently known in wedge centered 

cylindrical coordinates. In order to perform the necessary 

integration, the function [ dT(i) /dr ] must be translated s r=a  

to a sphere centered spherical coordinate system. To translate 

the function to spherical coordinates it must be expressed 

as a eries. 

For even numbered reflections ] 
( CO 03 

(m) 

4/ 0 ) V 

L 
B r

n 
cos (m0) PII

I
I
I 
 (cos(0) s (A-4) 

n=m m=0 m,n 

[For odd numbered reflections] 
co co (m) (-n-1) 

cos(m0) P (cos()) 
n=m m=0 m,n 

(A-2) 



(m) n-1 
[diqdrs ] = B (n)a cos(m0)P (cos(4)) (A-6) 

rs=a n=m m=0 n,m 

[dT/dr ] 
r =a 

, [even reflection] 
00 00 (m) -n-2 m 
I -C (n+l)a cos(m0)P (cos (q,)) (A-7) 

n=m m=0 noll n 

Taking the derivative of equations(A-4) and (A-5), 

and evaluating these functions at the sphere surface. 

ii. 

[odd reflection] 

Integrating these derivatives over the sphere surface. 

(j=even) 27r
Q =ka

2 7 
((T1-T 2f f 11B n n  a -los(m0)P (coscO)sin(cp)dcpd0 

am°0=0 4=0 n=m m=0 n,m n (A-8) 

(j=odd) 27 00 (m) -n-2 m 
Q =-ka

2
(T1-TarliffIIC(n+l)a cos(m0)P (cos0) 

0=04=0 n=m m=0 n,m n 
sin() dcpd0(A-9) 

By examination of the, integrals several terms can be 

eliminated. 
27 = 0 [ for m0 0 ] 

cos(m0) d0 
0=0 = 27[ for m= 0 ] 

Thus: 
(j=even) TT 00  (m) n-1 

Q 27ka
2
(T1-Tam 1

0 
 1 B. n a P (cos(,))sin(0)d. (A-10) 

- n=1 O,n n 
(j =odd) 2 it c° (m) -n-2 

Q =-27ka (Ti-T
am 
 I 1 C (n+l)a P (cos(0)sin(4)0(A-11) 

° n=0 O,n n 
but 

713  (cos()) sin(0) (14) 
= [ 0 for n 0 ] 

n = [ 2 for n = 0 ] 

Therefore; 
(j=even) 

= 0 (A-12) 
(j=odd) (m) 

= -4 k(T -T
amb ) C (A-13)  

0,0 



The rate of heat transfer is merely the sum of the odd terms 

in Q3 . The boundary conditions used with the reflection method 

indicate that,in general, at the sphere surface. 

(next odd) (even) 
[a,(1),(1)] = -T [ao4,0] (A-14) 

(next odd) 

n=m m=0 

n=m m=0 

(m) 
C cos (m0)' P m(cos(0)  
m,n n  n+l (A-15) 
(m) n a 
B a cos(m0) P

m 
(cos()) 

m,n n 

(A-16) 
One can conclude : 

(in) (m) n n+1 
C = - B a a 
m,n m,n 

For n=m=0, 
(m) (m) 
G = - B a 
0,0 0,0 

but 

(A-17)  

(A-18)  

(m) (m) (2m) 
C = -B a = -a T [0,0,0] (A-19) 
0,0 0,0 

The final summary indicates: 

(2m) 
Q = 0 (A-20) 
(2m+1) (2m) 

Q = 4wak( T1-T
am
b) T [0,0,0](A-21) 

(2m+1) 
Q = X4 

0 

0. (2m) 
47ak(T

1
-T

amb
)(1-I T [0,0,0] 

m=1 
(A-22) 

(2m) (2m) 
Where T [0,0,0] refers to T evaluated at the 

(2m) 
sphere center, or T [x0,0,0] which refers to the same 

position except that wedge centered coordinates are used to 

express location. 



APPENDIX B  

Comparison with the exact Bipolar 

Coordinate Solution 

As was indicated by equations(57) and (58) the first 

order solution for two spheres in space is: 

Q = 4 ak(T-Tamb
) [ 1 -a/2x. ] 

This type of geometry is identical to the solution 

of Laplace's equation in bipolar coordinates . The comparison 

with bipolar coordinates shows that the truncation of 

higher order terms in the reflection series leaves an error 

This error approaches zero as the higher order terms of the 

reflection series become less significant. The first order 

correction solution will approach the bipolar coordinate 

solution as a/xo  approaches very small numbers.This 

result is similar to the effect of linearizing a power 

series by the truncation of terms higher than order 2 

and limiting the argument to small values. The first 

order correction appears to be consistent with the bipolar 

solution within computer accuracy. The comparison is shown 

in Table 1 . The computer program from which this comparison 

was derived follows table 1. 

iv. 



v. 

TABLE 1 

A comparison with the exact Bipolar coordinate solution 

'1st order Q -Bipolar % Error 

-1 
.1000 .95.23866 .9500000 2.5x10 

-3 
.0100 .9950249 .9950000 2.5x10 

-g 
.0010 .9995002 .9995000 2.5x1T 

-7 
.0001 .9999500 .9999500 2.5x10 



q.JOA DAVID HORWAT Vi  
1. DAVID HORWAT ***THESIS*** 
C HIPULAR SOLUTION AND COMPARISON 

IMPLICIT REAL*8(A—H2O—Z) 
MI!.48 EDRMAT ( 11') 

P ANT 8866 
DO 57 LG = 1o9 
READ AX 

t- N = —1 
SUM = Oo 
SERIES =1. 
• = AX/2. 

51 N = N+1 
1 RN = N 

BO =DLOG(1o/AX+DSCIRT(AX4,*(—.2) 1. )) 
TERM =DEXP ((RN+.500)*(-60))/COSH((RN+.500)*B0) 
SUM = SUM+TERM 
IF(TERM — 1.0E-30) 52,51,51 

52 SUM =DSORT(AX**(-2) — 1 • ) *SUM 
7 K = I 

SERIES = SERIES + ( Y**K) * ( —I **K) 
ERROR = SUM — SERIES 
PERCNT = ERROR/SUM*100. 

I PRINT 53 
53 FORMAT (8 06 ,8X0A/X VALUE1 ,9X0SUM",12XOSERIES" 

$ 12X,' % ERROR ') 
ERROR = PERCNT 

4. PRINT 59 ,LG,AX,SUM,SERIES,ERROR 
• 59 FORMAT ( 1  ',15.6(E15.7.2X)) 

Z =(1. — SUM )/AX 
7 PRINT 54 Z 

ZZ = .5 
PRINT 55,ZZ 

• 54 FORMAT ('0 THE K VALUE OF THEBiPOLAR COORDINATE SOLUTION IS : ',F89,6 
$ F8,6) 

55 FORMAT(' THE K VALUE OF OUR FIRST REFLECTION IS: ',F8.6 ) 
2 ERR = Z—ZZ 

IF (Z) 58,57,58 
4 56 PCNT = ERR/Z*100. 

PRINT 56 ERR.PCNT 
56 FORMAT (' THE ERROR BETWEEN K VALUES IS: ',F9.5,3X,'THE PERCENT ERR 

$RROR IS: '11F9.6) 
57 CONTINUE 

PRINT 8888 
STOP 
END 

1 REAL FUNCTION COSH*8(Z) 
IMPLICIT REAL*8(A—H2O—Z) 

CUSH = ( DEXP(Z) + DEXP(—Z) 1500000000 
4 RETURN 

END 



A/x vALuL SUM SERIES X•ERROR vii 
0.1,A10000D 00 0.9523866D 00 0.95000000 00 0.25059510 00 

1 h VAI14 OF THE BIPOLAR COORDINATE SOLUTION IS : 0.476134 
1 K VALUE OF OUR FIRST REFLECTION IS: 0.500000 
114 FRROR B1TW1EN K VALUES IS: -0.02387 THE PERCENT ERROR IS: -5.012530 

A/X VALUE SUM SERIES 
0.10000000-01 0.9950249D 00 0.99500000 00 

• 

% ERROR 
04,2500062D-02 

1 ft K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS : 0.497512 
T IF ocVALUE: OF OUR FIRST REFLECTION IS: 0.500000 

lu. ri-ROR 3LTWEEN K VALUES IS: -0.00249 THE PERCENT ERROR IS: -0.500013 

A/X VALUE SUM SERIES % ERROR 
3 0.10000000-02 0.99950020 00 0.9995000D 00 0.2500001D-04 

THE K VALUE CF THE BIPOLAR COORDINATE SOLUTION IS : 0.499750 
K VALUE OF OUR FIRST REFLECTION, IS: 0.500000 

EkROR BETWEEN K VALUES IS: -0.00025 THE PERCENT ERROR IS: -0.050000 

A/X VALUE SUM SERIES % ERROR 
4 0.1000000D-03 0.99995000 00 0.9999500D 00 0.25000000-06 

THE K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS : 0.499975 
THE K VALUE OF OUR FIRST REFLECTION IS: 04,500000 

EkRCR BETWEEN K VALUES IS: -0.00002 THE PERCENT ERROR IS: -01,005000 

A/X VALUE SUM SERIES X ERROR 
0.10000000-04 0.99999500 00 0.99999500 00 0.2500009D-08 

THE K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS : 0.499998 
THE K VALUE OF OUR FIRST REFLECTION IS: 0.500000 
rHE EORCR BETWEEN K VALUES IS: -0.00000 THE PERCENT ERROR IS: -0.000500 

A/X VALUE SUM SERIES X ERROR 
6 0.1000000D-05 0.9999995D 00 0.9999995D 00 0.24953660-10 

THE K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS : 0.500000 
THE K VALUE OF OUR FIRST REFLECTION IS: 0.500000 
THE ERROR BETWEEN K VALUES IS: -0.00000 THE PERCENT ERROR IS: -0.000050 

A/X VALUE SUM SERIES % ERROR 
7 0.10000000-06 0.10000000 01 0.10000000 01 0.4468648D-12 

THE K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS : 0.500000 
THE K VALUE OF OUR FIRST REFLECTION IS: 0.500000 

THE ERROR BETWEEN K VALUES IS: -0.00000 THE PERCENT ERROR IS: -0.000009 

A/X VALUE SUM SERIES % ERROR 
0.1000000D-07 0.10000000 01  0.10000000 01 0.32474020-12 

K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS. : 0.500000 
TF'r. K VAtUE OF OUR FIRST REFLECTION IS: 0.500000 
rIO FUROR 13ETV4EFN K VALUES IS: -0.00000 THE PERCENT ERROR IS: -0.000065 

A/X VALUE SUM SERIES % ERROR 
0.1000000D-08 0.1000000D 01  0.1000000D 01 0.55094820-12 

1HE K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS : 0.499994 
THr K VALUE OF OUR FIRST REFLECTION IS: 0.500000 



APPENDIX C  

A comparison with a toroidal coordinate solution 

A third comparison can exist'fOr which the accurate 

and exacting closed form solution to Laplace's equation are 

known. A large numUei'Of sphereth,ail tangent to each other 

can be used to approximate a €oroid. For N spheres touching, 

as shown in figure 5 , the a . value is related to the 

number of spheres ,N, y: 

[ a/x. 
]max.= 

 sin(w/N) 

To be larger than this value of a/x., would imply the 

crushing of spheres into each (other. 

Comparing the results for a first order correction and 

the toroidal solution, an immense error is noted which grows 

with an increase in the number of spheres. These results are 

depicted in Table 2 . This error is due to the concentrated 

nature of this system. When spheres tend to touch each other 

the higher order terms are extremely significant and their 

truncation leads to a large error. For proper accuracy: 

[a/x.] / [a/x] << 1 
max. 

a/x°  isinh[({N-1}/N)wr] dr < 1 
° sinh [re/N] cosh(ur) 

The accuracy of the first order correction is dependent 

upon the a/x°  values, and until the higher order terms of 

this reflection series are developed or until accurate 

closed form solutions to Laplace's equation are developed 

for spheres in regular polygonal arrays a precise and 

and; 



ix. 

accurate error analysis is impossible. However combining 

the results of the computer 

comparisons with bipolar and toroidal coordinates one can 

speculate that the percentage of error might be of the form: 

error = 25[a/x0 / ( /x0) ]
2 

max. 

The computer program from which the data in table 2 is 

derived follows table 2 . 



TABLE 2  

A comparison with a toroidal coordinate solution 

Spheres Q - 1st order toroidal % error 

4 .7071066 .5099413 169.3 % 

10 .3090169 .3243985 527.6 % 

50 .0627904 .2070628 1565. % 

1000 .00314158 .1275128 4833. % 

X. 



a/xe siN(e) 
= VA/ 

a ericy N S Aeres 

(aho)nax= Sin( 1714) 

fsqre 5 



*** WATFIV VERSION 1.3 *** JOB=002 DAVID HORWAT 74/148 21:39:09 *** WATFIV *** 

t** WATFIV VERSION 1.3 *** JOB=002 DAVID HORWAT 74/1 48 21:39:09 *** WATFIV *** 

** WATFIV VERSION 1,3 *** JO3=002 DAVID HORWAT 74/1 48 21:39:09 *** WATFIV *** 

*** WATFIV VERSION 1.3 *** JO8=002 DAVID HORWAT 74/148 21:39:09 *** WATFIV *** 

1 
2 
3 
4 
5 
6 

$JOB 
C 
C 

DAVID HORWAT 
DAVID HORWAT ***THESIS*** 
TOROIDAL SOLUTION VS• FIRST REFLECTION 
COMMON N,Z 
PRINT 1000 
READ, RNUM 
PI = 3.1415926535 
AX = SIN(PI/RNUM) 
Z = 1./AX 

7 FACTOR = 2./PI*SORT(Z**2 —I.) 
8 SUM = O. 
9 N = —1 
10 E = 1. 
11 61 N = N+1 
12 RN = N 
13 QA = Q(RN—.5000) 
14 PA = P4RN—.500000 ) 
15 TERM = E*QA/PA 
16 PB = P ( RN + .50000) 
17 OB = Q ( RN + •500000) 
18 CHECK = PB * OA — OB * PA 
19 THEO = 1./ ( RN + .50000) 
20 ER = CHECK — THEO 
21 PCER = ER / THEO * 100. 
22 PRINT 1000 
23 PRINT 802 lo CHECK,THEO,ER,PCER 
24 802 FORMAT(' WRONSKIAN ACTUAL 1 4,E15.70WRONSKIAN THEORETICAL '.E15.7 

$ ,// ERROR°11E15.7.1 PERCENT ERROR '.. E15.7) 
25 PRINT 1000. 
26 E = 2. 
27 SUM = SUM + TERM 
28 IF ( TERM — 1.0E-30 ) 62,61,61 
29 62 SUM = SUM*FACTOR/RNUM 
30 NUM = 0.000 
31 N = RNUM 
32 DELTA = .00001 
33 X2 = 0. 
34 FXO = FLOAT(N-1) 
35 INDEX = 0.00 
36 AREA = 0.000 
37 1 CONTINUE 
38 X0 = X2 
39 X1 = X0 + DELTA 
40 X2 = X1 + DELTA 
41 IF(INDEX) 5,6,5 
42 FXO = FX2 
43 6 FX1 = FUNC(X1) 
44 FX2 = FUNC(X2) 
45 INDEX = INDEX + 1 

46 TERM = (FXO + 4.*FX1 + FX2)/3.*DELTA 
47 AREA = AREA + TERM 

— nr_tl- A-‘4 ., 



49 
50 
51 
52 
53 

2 
1000 

3 

IF ( TERM — 1.0E-8) 2,2,1 
PRINT 1000 
FORMAT (' 6 ) 
PRINT 3.N.AREA.TERM 
FORMAT ( THE NUMBER OF SPHERES IS: ',I4,' THE INTEGRAL 15:1 9F15 

$.80 TOLERANCE',E15.8) 
54 SERIES = 1.0 
55 Y = AX*AREA 
56 K = 1 
57 SERIES = SERIES + (Y**K)*(-1.**K) 
58 ERROR = SUM SERIES 
59 PERCNT = ERR4JR/SUM*100. 
60 53 PRINT , KtAX,SUM,SERIES.ERROR.PERCNT 
61 Z =(1. SUM )/AX 
62 PRINT 54 . Z 
63 ZZ = AREA 
64 PRINT 55,ZZ 
65 54 FORMAT ('0 THE K VALUE OF THE TOROID COORDINATE SOLUTION IS : 'sF8.6) 

$ E 15.6) 
66 55 FORMAT(' THE K VALUE OF OUR FIRST REFLECTION IS: 6 .E 15.6 ) 

67 ERR = Z—ZZ 
68 PCNT = ERR/Z*100. 
69 57 PRINT 56 , ERR.PCNT 
70 56 FORMAT (' THE ERROR BETWEEN K VALUES IS: 1 ,F8.3.3X.6 THE PERCENT ERR 

$RROR IS: '.E 15.6 ) 
71 STOP 
72 END 

73 FUNCTION FUNC (X) 
74 COMMON N • QAX 

75 Z =N 
76 ARG = 3.1415926535*X/FLOAT(N) 
77 Y = ARG 
78 FUNC = TANH(Z*Y)/TANH(Y)-1. 
79 RETURN 
80 END 

81 FUNCTION TANH(X) 
82 IF(X-25.)2.2,3 
83 2 TANH = ( EXP(X)—EXP(—X))/(EXP(X)+EXP(—X)) 
84 GO TO 4 
85 3 TANH = 1. 
86 4 RETURN 
87 END 

88 FUNCTION FACTN(MK) 
89 K = 1 
90 IF (MK) 2,2,3 
91 3 DO 1 L = 104K 
92 1 K = K*L 
93 2 FACTN = K 
94 RETURN 
95 END 

96 FUNCTION PSI1(K) 
97 SUM = —.57721566 
98 IF(K) 2,2,3 

99 3 DO I L = 1.1( 
I NA c I 1 a_ • • r— • ••• • . • 



101 2 PSI1 = SUM 
102 RETURN 
103 END 

104 FUNCTION PSI2(K) 
105 SUM2 = 0.0 
106 SUM = —.57721566 — 2.*ALOG(2.) 
107 IF ( K ) 2.213 
108 3 KA = 2*K-1 
109 DO 1 L = 1,KAs 2 
110 1 SUM2 = SUM2 + 1./FLOAT(L) 
111 2 PSI2 = SUM + 2.*SUM2 
112 RETURN 
113 END 

114 FUNCTION Q(X) 
115 COMMON NoZ 
116 A = N 
117 RN = N 
118 NRN = X + .51 
119 N = NRN 
120 RN = NRN 
121 DELTA =ALOG(Z+SQRT(Z*Z-1.)) 
122 FACTOR = 3+1415926535 *EXP(—DELTA*(RN+.5000)) 
123 K = 
124 SUM = 0. 
125 1 K = K +1 
126 RK = K 
127 NUM = 1 
128 NO = 2*N+2*K-1 
129 IF (NO) 5,5,7 
130 7 DO 3 L = 1010,2 
131 3 NUM = NUM * L 
132 5 NZ = 2*K-1 
133 IF (NZ) 8,809 
134 9 DO 4 L = 1oNZ.2 
135 4 NUM = NUM*L 
136 8 TERM = FLOAT(NUM)/(2.**(N+2*K))/FACTN(N+K)/FACTN(K)*EXP(-2.*RK*DELTA) 

LTA) 
137 SUM = SUM + TERM 
138 IF ( TERM - 1.0E-10) 2,1,1 
139 2 Q •= SUM*FACTOR 
140 PRINT 99 • N,Z,Q 
141 99 FORMAT(' 0 ',120-1/2(°•Fo.10) = '9E12.6) 
142 N = A 
143 RETURN 
144 END 

145 FUNCTION P(X) 
146 COMMON N•Z 
147 SUM1 = 0.00 
148 A = N 
149 RN2 = N 
150 NRN2 = X + .51 
151 N NRN2 
152 RN2 = NRN2 
153 DELTA =ALOG(Z+SQRT(Z*Z-1.)) 
154 FCTOR2 = EXP(—DELTA*(RN2+.5000))/3.14159265 

155 IF(N) 1.2,1 
156 1 CONTINUE 

icArrnin — r- tr • .1. • a- • ••• • • n. 



158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 

11 
6 
12 
3 

DO 3 JG = loN 
K = JG-1 
RK = K 
DEN = 1. 
IA = 2*K+1 
lB = 2*N-2*K-1 
IF ( I8 ) 12,12,11 
00 6 L = IAvIels2 
DEN = DEN*FLOAT(L) 
TERM = FACTN(N—K-1)/FACTN(K)*EXP(-2.*RK*DELTA)*2.**(N-2*K)/DEN 
SUM1 = SUM1 + TERM 

169 SUM1 = SUM1*FACTOR 
170 2 SUM2 = 0.00 
171 K = —1 
172 4 K=K+1 
17.3 RK = K 
174 TERM2 = EXP(-2.*RK*DELTA)*(2.*DELTA+PS11(K)—PSI2(K)+PSI1(K+N)—PSI 

$ 2(K+N)) 
175 NUM = 1 
170 IC = 24N A- 

177 IF ( IC ) 13.13.10 
178 10 DO 7 L = 1.IC.2 
179 7 NUM = NUM*L 
180 13 ID = 2*K-1 
181 IF ( ID ) 14.14.15 
182 15 DO 8 L = 1,10,2 
163 8 NUM = NUM*L 
184 14 TERM = FLOAT(NUM)/FACTN(K+N)/FACTN(K)/2***(N+2*K)*TERM2 
185 SUM2 = SUM2 + TERM 
186 IF ( TERM — 1.0E-10) 5,4.4 
187 5 SUM2 = SUM2*FCTOR2 
188 P = SUM1 + SUM2 
189 PRINT 9.N.Z,P 
190 9 FORMAT(' P 6.12.11 -1/2(1.F6.10) = ',E12.6) 
191 N = A 
192 RETURN 
193 END 

SENTRY 

0 0-1/2( 318.3) = 0.124512E 00 
P 0-1/2( 318.3) = 0.197876E 00 
P 1-1/2( 318.3) = 0.160629E 02 
0 1-1/2( 318.3) = 0.977915E-04 

WRONSKIAN ACTUAL 0,1999993E OIWRONSKIAN THEORETICAL 0.2000000E 01 

ERROR —0.6675720E-05 PERCENT ERROR —0.3337860E-03 

0 1-1/2( 318.3) = 0.977915E-04 
P 318.3) = 0.160629E 02 
P 2-1/2( 318.3) = 0.681723E 04 
Q 2-1/21 318.3) = 0.115208E-06 

WRONSKIAN ACTUAL 0.6666647E 00WRONSKIAN THEORETICAL 0.6666666E 00 

ERROR —0.1966953E-05 PERCENT ERROR —0.2950430E-03 

,AQJ .721Q - • ,, 



P 2-1/2( 318.3) = 0.681723E 04 
P 3-1/2( 318.3) = 0.347198E 07 
Q 3-1/2( 318.3) = 0.150809E-09 

WRONSKIAN ACTUAL 0.3999990E 00WRONSKIAN THEORETICAL 0.4000000E 00 

ERROR -0.9536743E-06 PERCENT ERROR -0.2384186E-03 

O 3-1/2( 318.3) = 0.150809E-09 
P 3-1/2( 318.3) = 0.347198E 07 
P 4-1/2( 318.3) = 0.189455E 10 
O 4-1/2( 318.3) = 0.207278E-12 

WRONSKIAN ACTUAL 0.2857141E 00WRONSKIAN THEORETICAL 0.2857143E 00 

ERROR -0.1788139E-06 PERCENT ERROR -0.6258488E-04 

O 4-1/2( 318.3) = 0.207278E-12 
P 318.3) = 0.189455E 10 
P 5-1/2( 318.3) = 0.107210E 13 
O 5-1/2( 318.3) = 0.293035E-15 

WRONSKIAN ACTUAL 0.2222220E OOWRONSKIAN THEORETICAL 0.2222222E 00 

ERkOR -0.2384186E-06 PERCENT ERROR -0.1072884E-03 

O 5-1/2( 318.3) = 0.293035E-15 
P 5-1/2( 318.3) = 0.107210E 13 
P 6-1/2( 318.3) = 0.620466E 15 
O 6-1/2( 318.3) = 0.421939E-18 

WRONSKIAN ACTUAL 0.1818179E OOWRONSKIAN THEORETICAL 0.1818181E 00 

ERROR .04,2384186E-06 PERCENT ERROR -0.1311302E-03 

O 6-1/2( 318.3) = 0.421939E-18 
P 6-1/2( 318.3) = 0.620466E 15 
P 7-1/2( 318.3) = 0.364618E 18 
O 71/2( 318.3) = 0.615436E-21 

WRONSKIAN ACTUAL 0.1538460E OOWRONSKIAN THEORETICAL 0.1538461E 00 

ERROR -0.1788139E-06 PERCENT ERROR -0.1162291E-03 

THE NUMBER OF SPHERES IS: 1000 THE INTEGRAL IS: 2239.59000000 TOLERANCE 0.00000000E 00 
1 0.3141587E-02 0.1275128E 00 -0.6035866E 01 0.6163378E 01 0.4833535E 04 

THE K VALUE OF THE TOROID COORDINATE SOLUTION IS : 0.277722E 03 
THE K VALUE OF OUR FIRST REFLECTION IS: 0.223959E 04 

THE ERROR BETWEEN K VALUES IS: *******# THE PERCENT ERROR IS: -0.706415E 03 

CORE USAGE OBJECT CODE= 9912 BYTES,ARRAY AREA= 60 BYTES.TOTAL AREA AVAILABLE= 63584 BYTES 

DIAGNOSTICS NUMBER OF ERRORS= 0, NUMBER OF WARNINGS= Os NUMBER OF EXTENSIONS= 0 

COMPILE TIME= 0.59 SEC.EXECUTION TIME= 0.50 SEC. WATFIV VERSION 1 LEVEL 3 MARCH 1971 DATE= 74/148 

*** WATFIV VERSION 1.3 *** JOB=002 DAVID HORWAT 74/148 21:39:09 *** WATFIV *** 
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