Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

THE STEADY STATE HEAT AND TEMPERATURE DISTRIBUTION OF A HOT SPHERE WITHIN AN INFINITE WEDGE

by DAVID W. HORWAT

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

AT

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted , but passages must not be copied without permission of the college and without credit being given in subsequent written or published work.

Newark, New Jersey

1974

APPROVAL OF THESIS

THE HEAT AND TEMPERATURE DISTRIBUTION OF A HOT SPHERE

WITHIN AN INFINITE WEDGE

bу

DAVID W.HORWAT

for

DEPARTMENT OF CHEMICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

Ъy

FACULTY COMMITTEE

APPROVED:

NEWARK , NEW JERSEY

JUNE , 1974

TABLE OF CONTENTS

Subject	Page
Abstract	1
Acknowledgements	2
Symbols used and their meanings	4
List of figures	5
List of tables	6
Introduction	7
Development of model with boundary	
conditions - wedge walls of constant	
temperature	10
Development of model with boundary	
conditions - wedge walls with $dT/d\theta=0$	20
Summary of Results	24
Reference and Bibliography	26
Appendix A - Proof of equation (35)	i
Appendix B - Comparison with Bipolar	
Coordinate solution	iv
Appendix C - Comparison with Toroidal	
Coordinate solution	vii

ABSTRACT

This thesis presents a mathematical model of the steady state heat and temperature distributions of a hot sphere located along the midplane of an infinitely long wedge of any arbitrary central angle. The heat and temperature distributions of this geometric configuration are of immense value, since through the use of this model as a wedge shaped unit cell the description of any number of hot spheres, arranged in a regular planar array can be immediately determined.

The method of reflections is used to solve Laplace's equation , $\nabla^2 T=0$, analytically using the sphere and the wedge walls as boundary conditions. Only the second reflection was obtained, yielding a first order correction.

The resulting model of an individual sphere within a wedge, and an arbitrary number of spheres arranged in a regular polygonal planar array were obtained. The regular planar array was tested and compared with known exact solutions of Laplace's equation in Bipolar coordinates [for the solution of two spheres in space] and Toroidal coordinates [for the solution approximating an extremely large number of densely packed spheres in a regular planar array] . The model tested accurately in the comparison with Bipolar coordinates, while the comparison of the developed model with a toroid showed the limitations of a first order correction solution. 1.

ACKNOWLEDGEMENTS

• • • •

The author wishes to gratefully acknowledge Dr. Ernest Bart who, as a source of consistently sound help, encouragement, and guidance, enabled the completion of this research.

DEDICATION

To Pat

SYMBOLS USED AND THEIR MEANINGS

• ...

Symbol	Meaning
а	Sphere radius
A	Unknown function of integration-second reflection
°,°2	Constants of integration for the first reflection
k	Heat transfer coefficient - BTU/hr ft ²
^K 0, ^K 1	Modified Bessel functions of orders 0,1, respectively
	Modified Bessel functions of imaginary order $\iota \tau$
m,n	Integer indices
N	The number of spheres in a regular array
$P_n(x)$	Legendre's functions of order n
Q _n (x)	Legendre's functions of order n
Q	Rate of heat transfer
r ,Φ,φ s	Sphere centered spherical coordinates
T	Temperature at a point in space
T ₁	Temperature at the sphere surface
T ₂	Temperature at the wedge walls - fixed
Tamb	Temperature of the ambient space
V	Dummy variable of integration - first reflection
x _s ,y _s ,z _s	Sphere centered Cartesian coordinates
x,y,z wwww	Wedge centered Cartesian coordinates
x o	Distance from sphere center to wedge vertex
ρ,θ,z	Wedge centered cylindrical coordinates
θ。	One half of the central angle of the wedge unit cell
λ,τ	Separation constants of Laplace's equation
∇	Nabla operator

 $\Psi, \Psi(1), \Psi(2)$ Normalized temperature variables

LIST OF FIGURES

Figure	Subject	Page
1	The wedge shaped unit cell	9
2	Sphere and wedge of constant	
ner e e e e e e e e e e e e e e e e e e	temperature	11
3	Plot of the isotherms of the	· · · · · · · · · · · · · · · · · · ·
	first reflection	14
4	Intersection of the wedge and	
	first reflection isotherms	16
5	Tangency of N spheres	xi

5.

LIST OF TABLES

<u>Table</u>

<u>Subject</u>

Page

 Comparison of first order correction model and Bipolar coordinate solution v.
 Comparison of first order correction model and Toroidal coordinate solution x.

INTRODUCTION

The work presented herein concerns itself with the development of a mathematical model which describes the temperature distribution due to the presence of a hot sphere located along the midplane of an infinite wedge of an arbitrary central angle. Two basic problems are treated; each problem differs only in boundary conditions. The simplest occurs when the wedge walls are held at constant uniform temperature; the second, and far more interesting. problem,occurs when boundary conditions at the wedge walls are $dT/d\theta = 0$.

Problems relating to a sphere within a wedge develop when trying to describe large numbers of hot spheres arrange in a regular planar array. Given the array shown in Figure 1., each sphere can be considered to be located within its own particular wedge-shaped unit cell , of central angle $2\theta_0$. θ_0 in turn is expressible in terms of the number of spheres, N , according to the following relation:

 $\theta \circ = \pi / N$

The walls of the unit cell prove to be lines of symmetry , both for the regular polygonal array and the resulting temperature distribution. The lines of symmetry within the temperature field are mathematically;

 $dT/d\theta = 0$ [on the wedge walls]

7.

The second , more complex model , simultaneously solving Laplace's equation with boundary conditions of $dT/d\theta = 0$ [on the wedge walls] and $T = T_1$ [on the sphere surface], can be developed from the simpler solution, a sphere within a wedge of uniform surface temperature.

9.

DEVELOPMENT OF MODEL - WEDGE WALLS AT CONSTANT TEMPERATURE

The simplest unit cell would consist of a sphere of constant temperature , T_1 , located within a wedge of constant wall temperature T_2 , as shown in Figure 2. The temperature field must be a harmonic function , <u>ie.</u> a solution to Laplace's equation

$$\nabla^2 \mathbf{T} = \mathbf{0} \tag{1}$$

and must also be consistent with the boundary conditions. In this case, the satisfaction of the boundary conditions requires that the temperature of the sphere surface be T_1 and the temperature at the wedge walls be T_2 .

Let
$$\Psi = (T - T_2) / (T_1 - T_2)$$
 (2)

By sudstituting the variable Ψ , defined in equation(2), for the temperature variable ,T, the boundary conditions become normalized in terms of Ψ .

> Ψ (on the sphere surface) = 1 (3) Ψ (on the wedge walls) = 0 (4)

 Ψ is also a solution of Laplace's equation in that : $\nabla^2 T=0$ (1)

T is related to Ψ by transposing equation (2).

$$T = \Psi(T_{1-}T_{2}) + T_{2}$$
 (5)

Performing the required substitution and stipulating that (T_1-T_2) be a non-zero fixed constant one obtains:

Sphere and Wedge of Constant Temperature

$\nabla^2 T = ($	т ₁ -	T_2) $\nabla^2 \Psi =$	0	· .	(6)
Therefore:	ţ.	$\nabla^2 \Psi =$	0	•	(7)
A .					

We now have reduced the problem into the normalized temperature variable with the appropriate boundary conditions.

The problem inherently possesses two dissimilar geometries, wedge-shaped and spherical. No single coordinate system can be used to simultaneously treat both geometries. The method of reflections must be used as an algorithm . The method involves obtaining an infinite number of solutions, each solution individually being the solution to a boundary condition upon one surface, and adding them. The resultant sum is a solution which satisfies the boundary conditions upon both surfaces. Thus, the required solution Ψ will be built up as an infinite series of individual solutions; the odd numbered solutions satisfy the boundary conditions on the sphere surface and the even numbered solutions satisfy the boundary conditions upon the wedge surface.

 $\Psi = \Psi^{(1)} + \Psi^{(2)} + \Psi^{(3)} + \dots + \Psi^{(\infty)}$ (8)

The aim of this thesis will be to obtain up to the second term of this reflection series. The second reflection amounts to a first order correction factor, correcting the temperature field of the sphere in accordance with the effect of the wedge walls. Starting with a sphere of surface temperature $T=T_1$ and a spherical coordinate system based upon the sphere center as an origin, the harmonic function, due to spherical symmetry, will be a function of the spherical radius alone. The boundary restrictions are:

 $\Psi^{(1)} = A \text{ harmonic function}$ $\Psi^{(1)} = 1. \qquad [At the sphere surface, ie. r_s = a]$ $\Psi^{(1)} = A \text{ function of } r_s \text{ alone due to spherical}$

symmetry

In spherical coordinates for $\Psi^{(1)} \neq f(\Phi, \phi)$, the well known solution to Laplace's equation in the region exterior to the sphere is:

$$\Psi^{(1)} = a/r_{s} \tag{9}$$

 $\Psi^{(1)}$ is consistant with the boundary conditions since it is a harmonic function, its value at the sphere surface is 1, and it is a function of r_s alone. It also exhibits the characteristic property that:

 $\lim_{\mathbf{y} \to \infty} [\Psi(1) (\mathbf{x})] = 0$

(10)

Figure 3 shows a plot of the isotherms of $\Psi(1)$ as a function of r_s expressed as multiples of a .

$$\Psi = \Psi(1) + \Psi(2) + \Psi(3) + \dots \Psi(\infty)$$
(8)

$$\Psi = a/r_{s} + \Psi^{(2)} + \Psi^{(3)} + \dots \Psi^{(\infty)}$$
(11)

Truncating after the second reflection term to obtain

14.

a first order correction ,

$$\Psi \simeq a/r_{s} + \Psi^{(2)} \qquad (12)$$

 $\Psi^{(1)}$ based upon sphere surface boundary conditions sets up a temperature field of concentric spheres of constant temperature of value a/r_s . These concentric spheres are cut across by the walls of the wedge , maintained at constant ,uniform temperature. The hot sphere sets up a temperature distribution on the wedge walls. However, since the boundary conditions at the wedge walls require that the wall temperature expressed in terms of Ψ be zero, the second reflection must cancel off the effect of the first reflection, shown in figure 4.

 $\Psi^{(2)} = -\Psi(1)$ [To satisfy that $\Psi=0$ on the wedge walls] This condition must be satisfied only upon the wedge surface and not everywhere else in space. $\Psi^{(2)}$ and $\Psi^{(1)}$ must be linearly independent solutions to Laplace's equation . $\Psi^{(2)}$ must also be a harmonic function.

From geometry, in cartesian coordinates:

111

$$x = x_{o} + x$$

w s (13)

$$y_{w} = y_{s}$$
(14)

$$z_{w} = z_{s}$$
(15)

$$\Psi^{(1)} = a/r_{s} = \underline{a}$$
(16)
$$\sqrt{\frac{x^{2} + y^{2} + z^{2}}{s s s s}}$$

Intersection of Wedge and First Reflection .2Q 25 20 ,25 ,33 .5 .25 .20 1.0 3 5 4 2 θo Figure 4

16

$$\Psi(1) = \frac{a}{\sqrt{(x_w - x_o)^2 + y_w^2 + z_w^2}}$$
(17)
$$\Psi(1) = \frac{a}{\sqrt{x_w^2 - 2x_w x_o + x_o^2 + y_w^2 + z_w^2}}$$
(18)

Shifting to cylindrical coordinates with origin at the wedge center

$$x_{W} = \rho \cos (\theta)$$
 (19)

$$y_{W} = \rho \sin(\theta)$$
 (20)

$$x_W^2 + y_W^2 = \rho^2$$
 (21)

(1) =
$$\frac{a}{\sqrt{\rho^2 - 2x_{o}\rho\cos(\theta) + x_{o}^2 + z_{w}^2}}$$
 (22)

 $\Psi^{(2)}$ must be a harmonic and equal to $-\Psi^{(1)}$ at the wedge walls. Transform analysis indicates that the form of $\Psi^{(2)}$ should be:

Ψ

$$\Psi(2) = \iint_{0}^{\infty\infty} A \cosh(\tau\theta) K \iota \tau(\lambda \rho) \cos(\lambda z_{W}) d\lambda d\tau$$
 (23)

The above solution is valid everywhere within the domain bounded by the wedge , <u>ie</u>. $\infty > \rho \ge 0$, $\infty > z_w > -\infty$. The constant A is really not a constant but an unknown function of the separation constants λ and τ . A can not be a function of the variables ρ , z_w , or θ . At the wedge walls when $\theta = \theta_o$,

$$\Psi^{(2)} = -\Psi^{(1)} = \frac{-a}{\sqrt{\rho^2 - 2x_o\rho\cos(\theta_o) + x_o^2 + z_w^2}}$$
(24)

$$\int_{0}^{\infty} A \cosh(\tau\theta_{o}) K_{1}\tau(\lambda\rho) \cos(\lambda z_{w}) d\lambda d\tau = \frac{-a}{\sqrt{\rho^{2} - 2x_{o}\rho\cos(\theta_{o}) + x_{o}^{2} + z_{w}^{2}}}$$
[25)
Inverting the z_{w} transform yields:

$$\int_{0}^{\infty} A \cosh(\tau\theta_{o}) K_{1}\tau(\lambda\rho) d\tau = -2a/\pi K_{o}(\sqrt{\rho^{2} - 2x_{o}\rho\cos(\theta_{o}) + x_{o}^{2}} - \lambda)$$
(26)
However:

$$\int_{0}^{\infty} K_{1}\tau(\lambda\rho) K_{1}\tau(\lambda x_{o}) \cosh[\tau(\pi-\theta_{o})] d\tau = \pi/2 K_{o}(\lambda/\rho^{2} - 2x_{o}\rho\cos(\theta_{o}) + x_{o}^{2}} - \lambda)$$
(27)
By comparing like terms one can conclude:

$$A = \frac{-4a \cosh[\tau(\pi-\theta_{o})] K_{1}\tau(\lambda x_{o}) \cosh(\tau\theta_{o})] K_{1}\tau(\lambda x_{o})}{\pi^{2} \cosh(\tau\theta_{o})}$$
(28)

$$\Psi^{(2)} = \int_{0}^{\infty} \frac{\cos[\tau(\pi-\theta_{o})] K_{1}\tau(\lambda x_{o}) \cosh(\tau\theta) K_{1}\tau(\lambda\rho) \cos(\lambda z_{w}) d\lambda d\tau[-4a/\pi^{2}]}{(29)}$$
The approximate temperature field may now be expressed as:

$$\Psi = a/\sqrt{-\rho^{2} + 2x_{o}\rho\cos(\theta_{o}) + x_{o}^{2} + z_{w}^{2}}$$

$$-4a/\pi^{2} \int_{0}^{\infty} \frac{\cosh[\tau(\pi-\theta_{o})] K_{1}\tau(\lambda x_{o}) \cosh(\tau\theta) K_{1}\tau(\lambda\rho) \cos(\lambda z_{w}) d\lambda d\tau}{(30)}$$
Q, the rate of heat transfer, can be expressed as the series;

$$Q = Q^{(1)} + Q^{(2)} + Q^{(3)} + \dots Q^{(m)}$$
(31)
Truncating the above series to form a first order correction;

18.

 $Q \simeq Q^{(1)} + Q^{(2)}$ This truncated series can be shown, from Appendix A , to be equal to :

 $Q \simeq 4\pi ka(T_1 - T_2) [1 + \Psi^{(2)} \{x_0, 0, 0\}]$ (32)

This law is analogous to Faxen's law, used primarily hydrodynamics of low Reynold's numbers. At the sphere center $(x_{\circ}, 0, 0)$, $\Psi^{(2)}$ is defined by:

$$\Psi^{(2)} \{ x_{\circ}, 0, 0 \} = -a/x_{\circ} \int_{0}^{\infty} \frac{\cosh[\tau(\pi - \theta_{\circ})] d\tau}{\cosh(\tau \theta_{\circ}) \cosh(\tau \pi)}$$
(33)

$$Q \simeq 4\pi ka(T_1 - T_2) \left[1 - a/x_o \int_{0}^{\infty} \frac{\cosh[\tau(\pi - \theta_o)] d\tau}{\cosh(\tau \theta_o) \cosh(\pi \tau)} \right]$$
(34)

Equation (33) is obtained by evaluating equation (29) at $\rho = x_0, \theta = 0, z = 0.$

$$\Psi^{(2)} \{ x_{\circ}, 0, 0 \} = -4a/\pi^{2} \int_{0}^{\infty} \frac{\cosh[\tau(\pi-\theta_{\circ})]}{\cosh(\tau\theta_{\circ})} [K_{1}\tau(\lambda x_{\circ})]^{2} d\lambda d\tau \quad (35)$$

$$\Psi^{(2)} \{ x_{\circ}, 0, 0 \} = -a/x_{\circ} \int_{0}^{\infty} \frac{\cosh[\tau(\pi-\theta_{\circ})]}{\cosh(\tau\theta_{\circ})} P \quad (1) d\tau(36)$$

Equation (36) is obtained by inverting the λ transform within equation (35). Also due to its conical nature P (1) = 1 for all values of τ . Therefore; $\tau \tau - 1/2$

$$\Psi^{(2)}\{x_{\circ},0,0\} = -a/x_{\circ} \int_{0}^{\infty} \frac{\cosh[\tau(\pi-\theta_{\circ})] d\tau}{\cosh(\tau\theta_{\circ}) \cosh(\pi\tau)}$$
(33)

This completes the development of the models of heat transfer rate and temperature distribution for a hot sphere within the walls of a wedge maintained at constant temperature. This solution leads to the presentation of a more theoretically interesting problem, the problem of a hot sphere in a wedge of boundary conditions $dT/d\theta = 0$. This corresponds to the unit cell to be used in the analysis of a large number of hot spheres arranged in a regular planar array. A solution to this problem involves the identical differential equation as before, namely Laplace's equation; the boundary conditions are now modified.

 Ψ [at the sphere surface] = 1

 $d\Psi^{(1)}/d\theta$ [at the wedge walls] = $-d\Psi^{(2)}/d\theta$ [at the wedge walls] walls]

 $\psi(1)$ remains the same as in the previous problem.

$$\psi(1) = \frac{-a}{\sqrt{\rho^2 - 2x_o\rho\cos(\theta) + x_o^2 + z_w^2}}$$
(37)

$$\frac{d\Psi(1)}{d\theta} = \frac{-ax_o\rho\sin(\theta)}{\left[\sqrt{\rho^2 - 2x_o\rho\cos(\theta) + x_o^2 + z_w^2}\right]^3}$$
(38)

 $\Psi^{(2)}$ will be of the same form as in the previous problem.

$$\Psi^{(2)} = \int_{0}^{\infty} \int_{0}^{\infty} A \cosh(\tau\theta) \operatorname{Kit}(\lambda\rho) \cos(\lambda z_{W}) d\lambda d\tau \quad (39)$$
$$d\Psi^{(2)} d\theta = \int_{0}^{\infty} \int_{0}^{\infty} A \tau \sinh(\tau\theta) \operatorname{Kit}(\lambda\rho) \cos(\lambda z_{W}) d\lambda d\tau \quad (40)$$

Equation (40) is obtained from equation (39) by performing the indicated differentiation with respect to θ . The boundary conditions state that the derivatives with respect to the variable θ must cancel each other only at the wedge walls. { $\theta = \pm \theta_0$ }

$$\int_{0}^{\infty\infty} A\tau \sinh(\tau\theta_{o})K\tau(\lambda\rho)\cos(\lambda z_{w})d\lambda d\tau = \frac{ax_{o}\rho\sin(\theta_{o})}{(\rho^{2}-2x_{o}\rho\cos(\theta_{o}) + x_{o}^{2}+z_{w}^{2})}$$

(41)

Inverting the λ transform,

$$\int_{0}^{\infty} \operatorname{Arsinh}(\tau\theta_{\circ}) \operatorname{Kit}(\lambda\rho) d\tau = 2/\pi \int_{0}^{\infty} \frac{a\rho x \circ \sin(\theta_{\circ}) \cos(\lambda z_{w}) dz_{w}}{(\rho^{2} - 2x_{\circ}\rho\cos(\theta_{\circ}) + x_{\circ}^{2} + z_{w}^{2})^{3/2}}$$
(42)

Evaluating the cosine transform with respect to z_w .

$$\int_{0}^{\infty} A\tau \sinh(\tau\theta_{\circ}) K\iota\tau(\lambda\rho) d\tau = \frac{2ax_{\circ}\lambda\rho\sin(\theta_{\circ})K_{1}(\lambda\sqrt{\rho^{2}-2x_{\circ}\rho\cos(\theta_{\circ})+x_{\circ}^{2}})}{\pi\sqrt{\rho^{2}-2x_{\circ}\rho\cos(\theta_{\circ})+x_{\circ}^{2}}}$$
(43)

To solve for the value of A , the τ transform must be inverted, and a final relation must be derived . Given,

$$\int_{0}^{\infty} K_{1\tau}(\lambda x_{\circ}) K_{1\tau}(\lambda \rho) \cosh[\tau(\pi-\theta)] d\tau = \pi/2 K_{0}(\lambda \sqrt{\rho^{2}-2x_{\circ}\rho \cos(\theta)+x_{\circ}^{2}})$$

$$\frac{d}{d\theta} \int_{0}^{\infty} K_{1\tau}(\lambda x_{\circ}) K_{1\tau}(\lambda \rho) \cosh[\tau(\pi-\theta)] d\tau = \frac{d}{d\theta} \pi/2 K_{0}(\lambda \sqrt{\rho^{2}-2x_{\circ}\rho \cos(\theta)+x_{\circ}^{2}})$$
(45)

Taking the indicated derivative with respect to θ , the following equalities develop:

$$\int_{0}^{\infty} A\tau \sinh(\tau\theta_{\circ}) K\iota\tau(\lambda\rho) d\tau = \frac{2a\lambda\rho x_{\circ} \sin(\theta_{\circ}) K_{1}(\lambda\sqrt{\rho^{2}-2x_{\circ}\rho\cos(\theta_{\circ})+x_{\circ}^{2}})}{\pi\sqrt{\rho^{2}-2x_{\circ}\rho\cos(\theta_{\circ})+x_{\circ}^{2}}}$$
(46)

=4a/
$$\pi^2 \int_{0}^{\infty} \tau K_1 \tau (\lambda x_{\circ}) K_1 \tau (\lambda \rho) \sinh[\tau (\pi - \theta_{\circ})] d\tau$$
 (47)

From these two equalities the value of A can be determined by comparing like terms. One can conclude that the value of A is;

$$A = \frac{4a \sinh[\tau(\pi - \theta_o)] K \iota \tau(\lambda x_o)}{\pi^2 \sinh(\tau \theta_o)}$$
(48)

Having the value of A, $\psi^{(2)} \{x_{\circ}, 0, 0\}$ develops to be:

$$\Psi^{(2)} \{x_{\circ}, 0, 0\} = \int_{0}^{\infty} \int_{0}^{\infty} A K_{1\tau}(\lambda x_{\circ}) d\lambda d\tau \qquad (49)$$

$$\Psi^{(2)} \{x_{\circ}, 0, 0\} = \frac{4a}{\pi^2} \int_{0}^{\infty} \frac{\sinh[\tau(\pi - \theta_{\circ})] K_{1}\tau(\lambda x_{\circ})K_{1}\tau(\lambda x_{\circ}) d\lambda d\tau}{\sinh(\tau \theta_{\circ})}$$
(50)

Inverting the λ transform as before,

$$\Psi^{(2)}\{x_{\circ},0,0\} = a/x_{\circ} \int_{0}^{\infty} \frac{\sinh[\tau(\pi-\theta_{\circ})] d\tau}{\sinh(\tau\theta_{\circ}) \cosh(\pi\tau)}$$
(51)

The model for heat transfer is now:

$$Q = 4\pi ka(T_1 - T_2) \left[1 - a/x_{\circ} \int_{\circ}^{\infty} \frac{\sinh[\tau(\pi - \theta)] d\tau}{\sinh(\tau \theta) \cosh(\pi \tau)} \right] (52)$$

For N spheres arranged in a regular polygon, each individual sphere can be considered to be enclosed in a wedge of central angle θ_o , where $\theta_o = \pi/N$. The heat transfer rate per sphere is:

$$Q = 4\pi k a (T_1 - T_{amb}) [1 - a/x] \int_{0}^{\infty} \frac{\sinh[(\{N-1\}/N)\pi\tau] d\tau}{\sinh[\pi\tau/N] \cosh(\pi\tau)} (53)$$

The rate of heat transfer from the entire array would merely be the rate of heat transfer per sphere , equation (53), multiplied by the number of spheres , N .

The temperature distribution is modeled by,

$$\Psi \simeq \dot{a} / \sqrt{\rho^2 - 2x_o \rho \cos(\theta) + x_o^2 + z_w^2}$$

- $4a/\pi^2 \int_{0}^{\infty} \frac{\sinh[\tau(\pi - \theta_o)]K_1\tau(\lambda x_o)}{\sinh(\tau \theta_o)} \cosh(\tau \theta)K_1\tau(\lambda \rho)\cos(\lambda z_w) d\lambda d\tau$
(54)

Summarizing the results for a hot sphere within the boundaries of a wedge shaped unit cell:

For a wedge of fixed wall temperature, the heat transfer rate Q is:

$$Q \simeq 4\pi ka(T_1 - T_2) \left[1 - a/x_{\circ} \int_{0}^{\infty} \frac{\cosh[\tau(\pi - \theta_{\circ})] d\tau}{\cosh(\tau \theta_{\circ}) \cosh(\pi \tau)} \right]$$

For a wedge of boundary conditions $dT/d\theta = 0$ at the walls.

$$Q \simeq 4\pi ka(T_1 - T_{amb}) [1 - a/x_o \int_{sinh(\pi\tau/N)}^{\infty} \frac{sinh[(\{N-1\}/N)\pi\tau] d\tau]}{sinh(\pi\tau/N) \cosh(\pi\tau)}$$

Where Q is the heat transfer rate per sphere and N is the number of spheres arranged in the regular planar array.

For a single sphere in space, the central angle of the wedge is 180°. The formula in this case degenerates to:

$$Q = 4\pi ka(T_1 - T_{amb})$$

This is known to be the correct solution to the heat transfer rate of a single sphere in space. For two spheres in space, the equation yields:

 $Q = 4\pi ak(T_1 - T_{amb}) [1. - a/2x_o]$

since the value of the integral yields:

 $\int_{0}^{1} d\tau / \cosh(\pi\tau) = 1/2$

The results of this study are shown in Appendix 2. A final regarding the accuracy of the formula appears in Appendix 3 . In Appendix 3 the formula is used to approximate a toroid by allowing the number of spheres to become large. In the case of two spheres in space, the above solution compares most favorably with the answer derived from bipolar coordinates. In the attempt to approximate a toroid, the solution is limited by the a/x value, as shown in Appendix 3.

In summary, a mathematical solution to Laplace's equation was developed for a sphere in a wedge type unit cell. Two types of boundary conditions were considered:a wedge of fixed uniform wall remperature, and a wedge along whose walls the derivative of temperature with respect to a change in the central angle was zero. This latter model was used to describe an array of hot spheres in space arranged in a regular planar array. The model was tested and proved accurate in all cases for one and two spheres. From a comparison with the bipolar coordinate solution to Laplace's equation, the accuracy of the first order correction model was shown to be related to a/x_{\circ} . In an attempt to compare the model with a toroidal coordinate solution the number of spheres was allowed to increase and the inter-sphere spacing was permitted to decrease until all the spheres were tangent. It was found through computer analysis that the value of the geometric view factor;

$\int_{0}^{\infty} \frac{\sinh[(\{N-1\}/N) \pi \tau] d\tau}{\sinh(\tau \theta/N) \cosh(\tau \pi)}$

increased much faster than the decrease in the value of $[a/x_o]$ with the number of spheres. Thus with the spheres max. touching the first order correction model was inaccurate and higher order terms in the reflection series would be needed to achieve accuracy in this case.

24.

Future advances along these lines would be the development of higher order terms in the reflection series, allowing the solution to the problem of a large quantity of spheres touching or similar concentrated systems. The reflection technique may provide a method of simultaneously solving the creeping motion equation and the equation of continuity within the boundaries of a wedge-like unit cell. The resulting model would then be an effective model of sedimentation.

REFERENCE AND BIBLIOGRAPHY

- Bateman, Harry, <u>Tables of Integral Transforms</u>, New York: McGraw-Hill Co., 1954, Vol 1. pp 9-11, Vol 2. pp 175
- 2) Fettis , Harry, <u>Tables of Toroidal Harmonics</u>, <u>Functions of the First Kind</u> , U.S. Government Aerospace Research Labs, Vol 1. Feb. 1969, Vol 2 July 1970.
 - Gradshtegn, I.S. and Ryzhik, I.M., <u>Tables of</u> Integrals, <u>Series</u> and <u>Products</u>, New York, Academic Press, 1965.

3)

- 4) Lebedev, <u>Special Functions and Their Applications</u>, Englewood Cliffs, N.J., Prentice Hall, 1965 pp 221-234
- 5) Happle, John and Brenner, H, Low Reynold's Number Hydrodynamics, Englewood Cliffs, N.J., Prentice Hall, 1965.
- Oberhettinger, Frank, <u>Tables of Bessel Transforms</u>,
 New York, Springer-Verlag, 1972, pp 241-261.

APPENDIX A

Proof of equation (32)

The rate of heat transfer ,Q, is expressible as a series similar in form to the series developed for the temperature , T.

$$Q = Q^{(1)} + Q^{(2)} + Q^{(3)} + Q^{(4)} \dots + Q^{(\infty)}$$
 (A-1)

The form of Q(j) is developed from the definition of Q.

$$Q = -k \int (d \text{ Area}) \cdot dT/dr_g \qquad (A-2)$$

$$Q^{(j)} = ka^{2}(T_{1}-T_{amb}) \int_{\phi=0}^{2\pi} \int_{\phi=0}^{\pi} [d\Psi^{(j)}/dr] sin(\phi) d\phi d\phi (A-3)$$

The variable T is replaced in the definition (A-2) by its equivalent in terms of Ψ , and the resultant equation is integrated over the sphere surface. The form $of[d\Psi^{(j)}/dr]_{sr=a}$ in equation (A-3) is presently known in wedge centered cylindrical coordinates. In order to perform the necessary integration, the function $[d\Psi^{(j)}/dr_s]_{r=a}$ must be translated to a sphere centered spherical coordinate system. To translate the function to spherical coordinates it must be expressed as a beries.

[For odd numbered reflections] $\psi^{(j)} = \sum_{n=m}^{\infty} \sum_{m=0}^{\infty} C r \cos(m\phi) P(\cos(\phi)) (\Delta -5)$ n = m m = 0 m, n = n

1.

Taking the derivative of equations (A-4) and (A-5), and evaluating these functions at the sphere surface. $\begin{bmatrix} d\Psi/dr_{s} \end{bmatrix} = \sum_{s=a}^{\infty} \sum_{n=m}^{\infty} B(n) a \cos(m\phi) P(\cos(\phi)) (A-6)$ $r_{s=a} n=m m=0 n, m n$ [even ref] [even reflection] $\begin{bmatrix} d\Psi/dr \end{bmatrix} = \sum_{r_s=a}^{\infty} \sum_{n=m}^{\infty} \frac{m}{m=0} = 0 \quad n, m \qquad n$ [odd reflection] Integrating these derivatives over the sphere surface. $(j=odd) = -ka^{2}(T_{1}-T_{amb}) \int \int \sum_{\phi=0\phi=0}^{2\pi} \sum_{n=m}^{\pi} \sum_{m=0}^{\infty} \sum_{n=m}^{\infty} (m) -n-2 m \\ cos(m\phi)P(cos\phi)) = cos(m\phi)P(cos\phi)$ $sin(\phi) d\phi d\phi (A-9)$ By examination of the integrals several terms can be eliminated. $2\pi = 0 \quad [\text{ for } m \neq 0]$ $\int \cos(m\Phi) \, d\Phi = 2\pi [\text{ for } m = 0]$ Thus: (j=even) Q = $2\pi ka^2 (T_1 - T_{amb}) \int_{0}^{\pi} \sum_{n=1}^{\infty} B n a P(\cos(\phi))\sin(\phi)d\phi$ (A-10) (j=odd) Q = $2\pi ka^2 (T_1 - T_{amb}) \int_{0}^{\pi} \sum_{n=0}^{\infty} C (n+1)a P(\cos(\phi))\sin(\phi)d\phi$ (A-11) n=0 0,n n Thus: but $\pi = [0 \text{ for } n \neq 0]$ $\int P(\cos(\phi)) \sin(\phi) d\phi = [2 \text{ for } n = 0]$ Therefore; (j=even) Q = 0 (A-12) (j=odd) (m) $Q = -4 k(T_1-T_{amb}) C$ (A-13) 0,0

11.

The rate of heat transfer is merely the sum of the odd terms in Q^{j} . The boundary conditions used with the reflection method indicate that, in general, at the sphere surface.

(next odd) (even)

$$\Psi$$
 [a, ϕ , ϕ] = $-\Psi$ [a, ϕ , ϕ] (A-14)

 $\Psi = \sum_{\substack{n=m \ m=0}}^{\infty} \sum_{\substack{n=m \ m=0}}^{\infty} C \frac{\cos(m\Phi) P^{m}(\cos(\phi))}{n+1} (A-15)$ $= \sum_{\substack{n=m \ m=0}}^{\sum} B a \cos(m\Phi) P^{m}(\cos(\phi))$ $= n=m \ m=0 \ m,n \qquad (A-16)$

One can conclude :

$$(m)$$
 (m) n $n+1$
 $C = -B$ a a $(A-17)$
 m, n m, n
 (m) (m)
 $C = -B$ a $(A-18)$

For n=m=0,

$$\binom{(m)}{C} = -B$$
 a $(A-1)$
0,0 0,0

but

×,

(m) (m) (2m)

$$C = -B = -a \Psi [0,0,0]$$
 (A-19)
 $0,0 = 0,0$

The final summary indicates:

$$Q = 0 \qquad (A-20)$$

$$Q = 0 \qquad (A-20)$$

$$Q = 4\pi ak(T_1 - T_{amb}) \Psi [0,0,0](A-21)$$

$$Q = \sum_{0}^{\infty} Q = 4\pi ak(T_1 - T_{amb}) [1 - \sum_{m=1}^{\infty} \Psi [0,0,0]$$

$$(A-22)$$

$$(2m) \qquad (A-22)$$
Where $\Psi = [0,0,0]$ refers to $\Psi = \text{evaluated at the}$

where Ψ [0,0,0] refers to Ψ evaluated at the (2m) sphere center, or Ψ [x,0,0] which refers to the same position except that wedge centered coordinates are used to express location.

APPENDIX B

Comparison with the exact Bipolar Coordinate Solution

As was indicated by equations(57) and (58) the first order solution for two spheres in space is:

$$Q = 4 ak(T_1 - T_{amb}) [1 - a/2x_o]$$

This type of geometry is identical to the solution of Laplace's equation in bipolar coordinates . The comparison with bipolar coordinates shows that the truncation of higher order terms in the reflection series leaves an error This error approaches zero as the higher order terms of the reflection series become less significant. The first order correction solution will approach the bipolar coordinate solution as a/x, approaches very small numbers. This result is similar to the effect of linearizing a power series by the truncation of terms higher than order 2 and limiting the argument to small values. The first order correction appears to be consistent with the bipolar solution within computer accuracy. The comparison is shown in Table 1. The computer program from which this comparison was derived follows table 1. TABLE 1

	A compar	ison with the e	xact Bipolar	coordinate solut	10
<u>a</u> ,	/ x .	<u>Q - 'lst order</u>	<u>Q -Bipolar</u>	<u>% Error</u>	
	.1000	.9523866	.9500000	-1 2.5x10	
	.0100	.9950249	.9950000	-3 2.5x10	
	.0010	.9995002	.9995000	-5 2.5x10	
	.0001	.9999500	.9999500	-7 2.5x10	
				,	

A comparison with the exact Bipolar coordinate solution

	∳JOH	DAVID HORWAT	
	C	DAVID HURWAT ***THESIS***	
	C .	BIPOLAR SOLUTION AND COMPARISON	
1		IMPLICIT REAL*8(A-H.O-Z)	
÷	8998	FORMAT (*1*)	
		PEINT BRAR	
.,		00.57 + 6 - 1.9	
- *			
₹* 			
1	\ \		
-	×	SERIES = 1.	
.3		Y = AX/2.	
C	51	N = N+1	
1		RN = N	
r.		B0 =DLOG(1•/AX+DSQRT(AX**(-2) - 1•))	
. 5		TERM =DEXP ((RN+•500)*(-B0))/COSH((RN+•500)*B0)	
4		SUM = SUM+TERM	
ι. ·		IF(TERM - 1.0E-30) 52,51,51	
* 5	52	SUM = $DSQRT(AX**(-2) - 1) * SUM$	
7		K = 1	
a		SERIES = SERIES + (Y**K)*(-1.**K)	
. 1		ECOND - CIM _ SEDIES	
· ·		DEDCNT - EDDODICUM#100	
4			
1		PRINT 53	
r	53	FURMAL ('U',8X, A/X VALUE',9X, SUM', 12X, SERIES',	
		\$ 12X, * % ERROR *)	
3		ERROR = PERCNT	
4.		PRINT 59 ,LG,AX,SUM,SERIES,ERROR	
5	59	FORMAT (* *,15,6(E15,7,2X))	
Ġ		$Z = (1 \cdot - SUM) / AX$	
7		PRINT 54 , Z	
20		ZZ = •5	
0		PRINT 55.ZZ	
а. ^с	54	FORMAT (10 THE K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS : 1-ER-	6
Ċ.	5,	S E8.6)	U
. 1	55		
5	55	EDD = 7-77	
~~		ERR = 2-22	
୍କ ଜ	5.0	IF (2) 58,57,58	
4	58	$PCNT = ERR/2*100 \bullet$	
5.		PRINT 56 • ERR, PCNT	
5	56	FORMAT (' THE ERROR BETWEEN K VALUES IS: ',F9.5,3X, 'THE PERCENT ERR	
		\$RRDR IS: ',F9.6)	
7	57	CONTINUE	
ŝ		PRINT 8888	
9		STOP	
С.		END	
1		REAL FUNCTION COSH*8(Z)	
2		IMPLICIT REAL*8(A-H,O-Z)	
	*		
2		CUSH + (DEVD(7) + DEVD(-7)) + 500000000	
		CUBRE & UEARYAI T UEARY-AIITIOUVUUUUUUU	
±∳ ∧			
.)		END	

	AZX V	ALUE	SUM	00	SERIES	% ERROR VII
. 1	0.100		V • 95236000		0.9300000000000	
λDE Κ Tutt κ	VALUE	OF THE B	IPOLAR COORDI	NATE SC	LUTION IS : 0.4	76134
THE FRR	OR BET	WLEN K V	ALUES IS: -0	.02387	THE PERCENT E	RROR IS: -5.012530
						* C0000
2	A/X V 0.1000	ALUE	SUM 0•9950249D	00	0+9950000D 00	0.2500062D-02
						07540
THE K	VALUE	OF THE B	IPOLAR COORDI	NATE SU	0.500000	197512
THE EFR	OR BET	WEEN K V	ALUES IS: -C	• 0024 9	THE PERCENT E	ERROR IS: -0.500013
	AZX V	ALUE	รบัท		SERIES	% ERROR
3	0.1000	00000-02	0.99950020	00	0.9995000D 00	0.25000010-04
) राधार स		CE THE B		NATE S	DUTION IS : 0.4	\$99750
THE K	VALUE	OF OUR F	IRST REFLECT	ION, IS:	0.500000	
THE EKR	OR BEI	WEEN K V	ALUES IS: -C	•00025	THE PERCENT B	ERUR 15: -0.050000
	AZX	ALUE	SUM		SERIES	% ERROR
4	0.1000	0C00D-03	0,99995000	00	0.9999500D 00	0.25000000-06
THE K	VALUE	OF THE E	IPOLAR COORD	INATE S	DLUTION IS : 0.4	499975
THE K	VALUE	OF DUR F	IRST REFLECT	ION IS:	0.500000 THE PERCENT (ERROR IS: -0.005000
e i di Litter						
c	AZX	VALUE	SUM	0.00	SERIES	% ERROR 0.250.0009D-08
J	0.1000	JUUUD-04	0.9999999500			
THE K	VALUE	OF THE E	SIPOLAR COORD	INATE S	DLUTION IS : 0.	499998
THE ERF	VALUE	TWEEN K	ALUES IS: -(0.00000	THE PERCENT	ERROR IS: -0.000500
	A / X /		CUM	÷.,	CEDIEC	Y EDDAD
6	0.100	0000D-05	0•9999995	D 00	0.9999995D 00	0.2495366D-10
	1444.00			INATE C	OF HITTON IS . 0.	50000
THE K	VALUE	OF OUR F	FIRST REFLECT	ION IS:	0.500000	300000
THE ERI	RUR BE	TWEEN K	VALUES IS: -	0.00000	THE PERCENT	ERROR IS: -0.000050
	A/X	VALUE	SUM		SERIES	% ERROR
7	0.100	0000D-06	0+100000	D 01	0.100000D 01	0.4468648D-12
тне к	VALUE	OF THE	BIPOLAR COORD	INATE S	OLUTION IS : 0.	500000
THE K	VALUE	OF OUR I	FIRST REFLECT	ION IS:	0.500000	
I HE ERI	KUK BE		VALUES IS	0.00000	THE PERCENT	ERROR 130.000009
*	A/X	VALUE	SUM	D 01	SERIES	% ERROR
8	0+100	00000-07	0.100000	0 01	0.1000000 01	0.52474020-12
THL K	VALUE	OF THE	BIPOLAR COORD	INATE S	OLUTION IS : 0.	500000
THE FR	VALUL ROR BE	TWEEN K	VALUES IS: -	0.00000	THE PERCENT	ERROR IS: -0.000065
						* =====
9	A/X C.100	VALUE 0000D-08	SUM 0.1000000	D 01	SERIES 0+1000000D 01	% ERKUR 0.5509482D-12
		x				
					-	
				4		

THE K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS : 0.499994 THE K VALUE OF OUR FIRST REFLECTION IS: 0.500000

APPENDÍX C

A comparison with a toroidal coordinate solution

A third comparison can exist for which the accurate and exacting closed form solution to Laplace's equation are known. A large number of spheres, all tangent to each other can be used to approximate a toroid. For N spheres touching, as shown in figure 5, the a/x_o value is related to the number of spheres ,N, by:

$$[a/x_o] = sin(\pi/N)$$

To be larger than this value of a/x_{\circ} , would imply the crushing of spheres into each other.

Comparing the results for a first order correction and the toroidal solution, an immense error is noted which grows with an increase in the number of spheres. These results are depicted in Table 2 . This error is due to the concentrated nature of this system. When spheres tend to touch each other the higher order terms are extremely significant and their truncation leads to a large error. For proper accuracy:

$$[a/x_{o}] / [a/x_{o}] << 1$$

and;

a/x,
$$\int \frac{\sinh[(\{N-1\}/N)\pi\tau] d\tau}{\sinh[\tau\theta/N] \cosh(\pi\tau)} < 1$$

The accuracy of the first order correction is dependent upon the a/x_o values, and until the higher order terms of this reflection series are developed or until accurate closed form solutions to Laplace's equation are developed for spheres in regular polygonal arrays a precise and accurate error analysis is impossible. However combining the results of the computer

comparisons with bipolar and toroidal coordinates one can speculate that the percentage of error might be of the form:

% error =
$$25[a/x_{\circ} / (a/x_{\circ})_{max_{\circ}}]^{2}$$

*

The computer program from which the data in table 2 is derived follows table 2.

TABI	LE	2
		ł

Spheres	<u>Q - 1st order</u>	<u>Q - toroidal</u>	<u>% error</u>
		+ 1	
4	.7071066	.5099413	169.3 %
10	.3090169	.3243985	527.6 %
50	.0627904	. 2070628	1565. %
1000	.00314158	.1275128	4833. %

A comparison with a toroidal coordinate solution

$$\partial / x_0 = SiN(\theta)$$

 $\Theta = \pi / N$

 $(\partial/x_0)_{max} = Sin(\pi/N)$

XÌ

***	WATFIV	VERSION	1.3	***	J08=002	DAVID	HORWAT	74/148 21:39:09 *** WATFIV *	**
***	WATFIV	VERSION	1.3	***	J08=002	DAVID	HORWAT	74/148 21:39:09 *** WATFIV *	**
***	WATFIV	VERSION	1.3	***	J08=002	DAVID	HORWAT	74/148 21:39:09 *** WATFIV *	**
***	WATFIV	VERSION	1.3	***	J08=002	DAVID	HORWAT	74/148 21:39:09 *** WATFIV *	**

	\$J08	DAVID HORWAT
	С	DAVID HORWAT ***THESIS***
	С	TOROIDAL SOLUTION VS. FIRST REFLECTION
1		COMMON N,Z
2		PRINT 1000
З		READ, RNUM
4		PI = 3.1415926535
5		AX = SIN(PI/RNUM)
6		Z = 1./AX
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		$E_{ACTOP} = 2.7PI_{*}SOPT(7_{*}*2_{-1})$
2		SIM = 0.
0		N = -1
* 0		
10	٤ ١	£
	01	
14		RN = N
13		QA = Q(RN - 5000)
14		PA = P(RN - 500000)
15		1 E RM = E * QA/PA
16		PB = P (RN + .50000)
17		QB = Q (RN + .500000)
18		CHECK = PB * QA - QB * PA
19		THEO = 1.7 (RN + .50000)
20		ER = CHECK - THEO
21		PCER = ER / THEO * 100.
55		PRINT 1000
23		PRINT 802 • CHECK+THEO,ER,PCER
24	802	FORMAT(* WRONSKIAN ACTUAL *,E15,7,*WRONSKIAN THEORETICAL *,E15,7
24	802 \$	FORMAT(* WRONSKIAN ACTUAL *,E15.7,*WRONSKIAN THEORETICAL *,E15.7 ,// * ERROR*,E15.7,* PERCENT ERROR *, E15.7)
24 25	802 \$	FORMAT(* WRONSKIAN ACTUAL *,E15.7,*WRONSKIAN THEORETICAL *,E15.7 ,// * ERROR*,E15.7,* PERCENT ERROR *, E15.7) PRINT 1000
24 25 26	802 \$	FORMAT(* WRONSKIAN ACTUAL *,E15.7,*WRONSKIAN THEORETICAL *,E15.7 ,// * ERROR*,E15.7,* PERCENT ERROR *, E15.7) PRINT 1000 E = 2.
24 25 26 27	802 \$	FORMAT(* WRONSKIAN ACTUAL *.E15.7.*WRONSKIAN THEORETICAL *.E15.7 // * ERROR*.E15.7.* PERCENT ERROR *. E15.7) PRINT 1000 E = 2. SUM = SUM + TERM
24 25 26 27 28	802 \$	FORMAT(* WRONSKIAN ACTUAL *,E15.7,*WRONSKIAN THEORETICAL *,E15.7 ,// * ERROR*,E15.7,* PERCENT ERROR *, E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62,61,61
24 25 26 27 28 29	802 \$	<pre>FORMAT(* WRONSKIAN ACTUAL *,E15.7,*WRONSKIAN THEORETICAL *,E15.7 ,// * ERROR*,E15.7,* PERCENT ERROR *, E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62.61.61 SUM = SUM*FACTOR/RNUM</pre>
24 25 26 27 28 29 30	802 \$ 62	<pre>FORMAT(* WRONSKIAN ACTUAL *,E15.7,*WRONSKIAN THEORETICAL *,E15.7 ,// * ERROR*,E15.7,* PERCENT ERROR *, E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62.61.61 SUM = SUM*FACTOR/RNUM NUM = 0.000</pre>
24 25 26 27 28 29 30 31	802 \$	<pre>FORMAT(* WRONSKIAN ACTUAL *,E15.7,*WRONSKIAN THEORETICAL *,E15.7 ,// * ERROR*,E15.7,* PERCENT ERROR *, E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62.61.61 SUM = SUM*FACTOR/RNUM NUM = 0.000 N = RNUM</pre>
24 25 26 27 28 29 30 31 32	802 \$ 62	<pre>FORMAT(* WRONSKIAN ACTUAL *.E15.7.*WRONSKIAN THEORETICAL *.E15.7 ,// * ERROR*.E15.7.* PERCENT ERROR *.E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62.61.61 SUM = SUM*FACTOR/RNUM NUM = 0.000 N = RNUM DELTA = .00001</pre>
24 25 26 27 28 29 30 31 32 33	802 \$ 62	FORMAT(* WRONSKIAN ACTUAL *.E15.7.*WRONSKIAN THEORETICAL *.E15.7 // * ERROR*.E15.7.* PERCENT ERROR *.E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62.61.61 SUM = SUM*FACTOR/RNUM NUM = 0.000 N = RNUM DELTA = .00001 X2 = 0.
24 25 26 27 28 29 30 31 32 33 33	802 \$ 62	<pre>FORMAT(* WRONSKIAN ACTUAL *,E15.7,*WRONSKIAN THEORETICAL *,E15.7 ,// * ERROR*,E15.7,* PERCENT ERROR *, E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62.61.61 SUM = SUM*FACTOR/RNUM NUM = 0.000 N = RNUM DELTA = .00001 X2 = 0. FX0 = FLOAT(N-1)</pre>
24 25 26 27 28 29 30 31 32 33 34 35	802 \$ 62	<pre>FORMAT(* WRONSKIAN ACTUAL *,E15.7,*WRONSKIAN THEORETICAL *,E15.7 ,// * ERROR*,E15.7,* PERCENT ERROR *, E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62.61.61 SUM = SUM*FACTOR/RNUM NUM = 0.000 N = RNUM DELTA = .00001 X2 = 0. FX0 = FLOAT(N-1) INDEX = 0.00</pre>
24 25 26 27 28 29 30 31 32 33 34 35 36	802 \$	<pre>FORMAT(* WRONSKIAN ACTUAL *.E15.7.*WRONSKIAN THEORETICAL *.E15.7 ,// * ERROR*.E15.7.* PERCENT ERROR *.E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62.61.61 SUM = SUM*FACTOR/RNUM NUM = 0.000 N = RNUM DELTA = .00001 X2 = 0. FX0 = FLOAT(N-1) INDEX = 0.00 AREA = 0.000</pre>
24 25 26 27 28 29 30 31 32 33 34 35 36 37	802 \$ 62	<pre>FORMAT(* wRONSKIAN ACTUAL *,E15.7,*WRONSKIAN THEORETICAL *,E15.7 ,// * ERROR*,E15.7.* PERCENT ERROR *, E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62.61.61 SUM = SUM*FACTOR/RNUM NUM = 0.000 N = RNUM DELTA = .00001 X2 = 0. FX0 = FLOAT(N-1) INDEX = 0.000 AREA = 0.000 CONTINUE</pre>
24 25 26 27 28 29 30 31 32 34 35 36 37 38	802 \$ 62	<pre>FORMAT(' WRONSKIAN ACTUAL ',E15.7,'WRONSKIAN THEORETICAL ',E15.7 ,// ' ERROR',E15.7,' PERCENT ERROR ', E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62.61.61 SUM = SUM*FACTOR/RNUM NUM = 0.000 N = RNUM DELTA = .00001 X2 = 0. FX0 = FLOAT(N-1) INDEX = 0.00 AREA = 0.000 CONTINUE X0 = X2</pre>
24 25 26 27 28 29 30 31 32 31 32 34 35 37 38 39	802 \$ 62	<pre>FORMAT(' WRONSKIAN ACTUAL ', E15.7, 'WRONSKIAN THEORETICAL ', E15.7 ,// ' ERROR', E15.7, ' PERCENT ERROR ', E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62.61,61 SUM = SUM*FACTOR/RNUM NUM = 0.000 N = RNUM DELTA = .00001 X2 = 0. FX0 = FLOAT(N-1) INDEX = 0.00 AREA = 0.000 CONTINUE X0 = X2 X1 = X0 + DELTA</pre>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	802 \$ 62	<pre>FORMAT(* WRONSKIAN ACTUAL *,E15.7,*WRONSKIAN THEORETICAL *,E15.7 ,// * ERROR*,E15.7,* PERCENT ERROR *, E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62.61,61 SUM = SUM*FACTOR/RNUM NUM = 0.000 N = RNUM DELTA = .00001 X2 = 0. FX0 = FLOAT(N-1) INDEX = 0.00 AREA = 0.000 CONTINUE X0 = X2 X1 = X0 + DELTA X2 = X1 + DELTA</pre>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	802 \$ 62	<pre>FORMAT(* WRONSKIAN ACTUAL *.E15.7,*WRONSKIAN THEORETICAL *.E15.7 ,// * ERROR*.E15.7,* PERCENT ERROR *.E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62.61.61 SUM = SUM*FACTOR/RNUM NUM = 0.000 N = RNUM DELTA = .00001 X2 = 0. FX0 = FLOAT(N-1) INDEX = 0.00 CONTINUE X0 = x2 X1 = X0 + DELTA X2 = X1 + DELTA IF(INDEX) 5.6.5</pre>
24 25 26 27 28 29 31 32 31 32 33 35 36 37 38 9 40 41 42	802 \$ 62 1	<pre>FORMAT(* WRONSKIAN ACTUAL *,E15.7,*WRONSKIAN THEORETICAL *,E15.7 ,// * ERROR*,E15.7.* PERCENT ERROR *, E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62.61.61 SUM = SUM*FACTOR/RNUM NUM = 0.000 N = RNUM DELTA = .00001 X2 = 0. FX0 = FLOAT(N-1) INDEX = 0.000 AREA = 0.000 CONTINUE X0 = x2 X1 = X0 + DELTA X2 = X1 + DELTA IF(INDEX) 5.6.5 FX0 = FX2</pre>
24 25 26 28 30 31 33 34 35 37 39 41 42 43	802 \$ 62 1	<pre>FORMAT(* WRONSKIAN ACTUAL *.E15.7,*WRONSKIAN THEORETICAL *.E15.7 ,// * ERROR*.E15.7.* PERCENT ERROR *.E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62.61.61 SUM = SUM*FACTOR/RNUM NUM = 0.000 N = RNUM DELTA = .00001 X2 = 0. FX0 = FLOAT(N-1) INDEX = 0.000 AREA = 0.000 CONTINUE X0 = X2 X1 = X0 + DELTA X2 = X1 + DELTA IF(INDEX) 5.6.5 FX0 = FX2 FX1 = FUNC(X1)</pre>
24 25 26 28 30 31 32 34 35 37 39 41 42 43 44	802 \$ 62 1	<pre>FORMAT(* WRONSKIAN ACTUAL *,E15.7,*WRONSKIAN THEORETICAL *,E15.7 ,// * ERROR*,E15.7,* PERCENT ERROR *, E15.7) PRINT 1000 E = 2. SUM = SUM + TERM IF ( TERM - 1.0E-30 ) 62.61.61 SUM = SUM*FACTOR/RNUM NUM = 0.000 N = RNUM DELTA = .00001 X2 = 0. FX0 = FLOAT(N-1) INDEX = 0.000 AREA = 0.000 CONTINUE X0 = X2 X1 = X0 + DELTA X2 = X1 + DELTA IF(INDEX) 5.6.5 FX0 = FX2 FX1 = FUNC(X1) FX2 = FUNC(X2)</pre>

•

49		IF ( TERM - 1.0E-8) 2,2,1
50	2	PRINT 1000
51	1000	FORMAT (* *)
52		PRINT 3, N, AREA, TERM
53	3	FORMAT ( * THE NUMBER OF SPHERES IS: *,14,* THE INTEGRAL IS:*,F15
	đ	5.8, * TOLERANCE *, E15.8)
54		SERIES = 1.0
55		Y = AX * AREA
56		K = 1
57		SERIES = SERIES + ( $Y**K$ )*(-1.**K)
58		ERROR = SUM - SERIES
59		PERCNT = ERROR/SUM*100.
60	53	PRINT , K,AX,SUM,SERIES,ERROR,PERCNT
61		Z = (1 - SUM)/AX
62		PRINT 54 , Z
63		ZZ = AREA
64		PRINT 55,ZZ
65	54	FORMAT (*O THE K VALUE OF THE TURUID CUURDINATE SULUTION IS : *•F8•6)
	9	$5 \in 15 \cdot 6$
66	55	FORMAT(* THE K VALUE OF OUR FIRST REFLECTION IS: *, E 15.6 )
67		ERR = Z - ZZ
68		P(N) = ERR/2*100
69	57	PRINT 50 , ERK, PUNI
70	56	FURMAI (* THE ERROR BETWEEN K VALUES IS: *, F8,3,3X,*THE PERCENT ERR
*** e	3	STOD
71		
12		END
		መግብ እንደን መደጃ መንከ በ መግብ አብ መግኘ እና እ
73		
74		
76		$\Delta PG = 3.1415926535*X/FI (AT(N))$
70		$\mathbf{Y} = \mathbf{A}\mathbf{P}\mathbf{G}$
78		FUNC = TANH(7*Y)/TANH(Y)-1.
79		RETURN
80		END
~ ~		
81		FUNCTION TANH(X)
82		IF(X-25.)2.2.3
83	2	TANH = (EXP(X)-EXP(-X))/(EXP(X)+EXP(-X))
84		GO TO 4
85	3	$TANH = 1 \bullet$
86	4	RETURN
87		END
88		FUNCTION FACTN(MK)
89		K = 1
90		IF (MK) 2,2,3
91	3	DO 1 L = 1,MK
92	1	K = K * L
93	2	FACTN = K
94		RETURN
95		END
96		FUNCTION PSI1(K)
97		SUM =57721506
A8 ⁵		1+1K1 20600

101	2	PSI1 = SUM
102		RETURN
103		END
a 55 A		
104		FUNCTION PSIZ(K)
105		SUM2 = 0.0
106		SUM =57721566 - 2.*ALUG(2.)
107		IF ( K ) 2,2,3
108	3	$KA = 2 \times K - 1$
109		DO 1 L = 1, KA, 2
110	1	SUM2 = SUM2 + 1./FLOAT(L)
111	2	PSI2 = SUM + 2.*SUM2
112		RETURN
113		FND
* * ~		
114		FUNCTION Q(X)
115		CUMMUN N,Z
116		
117		RN = N
118		NRN = X + .51
119		N = NRN
120		RN = NRN
121		DELTA = ALOG(Z+SQRT(Z*Z-1.))
122		FACTOR = 3.1415926535 *EXP(-DELTA*(RN+.5000))
123		K = -1
124		SUM = 0.
125	1	
*~~~ 10#	*	
120		
127		
128		NQ = 2*N+2*K-1
129		IF (NQ) 5,5,7
130	7	DO 3 L = 1, NQ, 2
131	3	NUM = NUM * L
132	5	$NZ = 2 \times K - 1$
133		IF (NZ) 8,8,9
134	9	DO 4 L = 1, NZ, 2
135	4	NUM = NUM*L
136	8	$TERM = FI \Pi \Delta T (NUM) / (2 * * (N+2*K)) / F \Delta CTN (N+K) / F \Delta CTN (K) * FXP (-2 * PK*DFI T \Delta)$
de man nur		
127		
137		$\frac{1}{100} = \frac{1}{100} = \frac{1}$
138		$\frac{1}{1} \left( \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{2} \frac{1}{10} \right)$
139	2	Q = SUM *FACTUR
140		PRINT 99 * N,Z,Q
141	99	FORMAT(* Q *, 12, *-1/2(*, F6.1, *) = *, E12.6)
142		N = A
143		RETURN
144		END
145		FUNCTION P(X)
146		COMMON N.Z
147		SUM1 = 0.00
148		
100		
147		
100		$NKN \leq - A + s = 1$
151		N = NKNZ
152		RN2 = NRN2
153		$DELTA = ALOG(Z + SQRT(Z * Z - 1 \cdot))$
154		FCTOR2 = EXP(-DELTA*(RN2+,5000))/3.14159265

158		DO 3 JG = 1.N	1015
159		K = JG - 1	
160		RK = K	
161		DEN = 1.	
162		$IA = 2 \times K + 1$	
163		$IR = 2 \times N - 2 \times K - 1$	
164		10 - 240 - 240 - 10	
104	4 4	$1 \leftarrow 10 \neq 12 \neq 12 \neq 12$	
100	11	$UU \circ L = IA ID IZ$	
100	6	DEN = DEN#FLUAT(L)	
167	12	TERM = FACIN(N-K-1)/FACIN(K)*EXP(-2*RK*DELTA)*2***(1)	N-2*K)/DEN
168	3	SUMI = SUMI + TERM	
169		SUM1 = SUM1 + FACTOR	
170	2	SUM2 = 0.00	
171		K = -1	
172	4	K=K+1	
173		RK = K	
174		TERM2 = EXP(-2.*RK*DELTA)*(2.*DELTA+PSI1(K)-PSI2(K)+	PSII(K+N)-PSI
	1	\$ 2(K+N))	
175		NUM = 1	
176		$1C = 2 \times N + 2 \times K = 1$	
		15 (10) 13.13.10	
2 T (	10	0071 - 1.102	
170	10	$UU \neq L = 1 \land L \lor \mathcal{L}$	
179	1	NOM = NOM + L	
180	13	$IO = 2\pi K - I$	
181		11 ( 10 ) 14,14,15	
182	15	DD 8 L = 1, ID, 2	
183	8	NUM = NUM*L	
184	14	TERM = FLOAT(NUM)/FACTN(K+N)/FACTN(K)/2.**(N+2*K)*TER	RM2
185		SUM2 = SUM2 + TERM	
186		IF ( TERM - 1.0E-10) 5.4.4	
187	5	SUM2 = SUM2*FCTOR2	
188		P = SUM1 + SUM2	
189		PRINT 9.N.Z.P	
190	9	FORMAT(' $P$ ', 12, '-1/2(', F6, 1, ') = ', E12, 6)	
191		N = A	
192		RETURN	
103		FND	
All and the		hm 2 1 be	
	SENIR!	¥.	
0 <b>0</b> •	101 21	0.71 - 0.1245125 - 0.0	
u 0-1/	21 310	(3.3) = 0.124512E 00	
P 0-1/	21 310	(3.3) = 0.197876E 00	
P 1-1/	2( 31)	$8 \cdot 3 = 0 \cdot 100529E \cdot 02$	
Q 1-1/	2( 318	3.3) = 0.977915E-04	
WRONSKIAN	ACTU/	AL 0.1999993E 01WRONSKIAN THEORETICAL 0.2000000E 01	L
ERROR -C	•6675	720E-05 PERCENT ERROR -0.3337860E-03	
Q 1-1/	21 311	8.3) = 0.977915E-04	
P 1-1/	2( 318	3.3) = 0.160629E 02	
P 2-1/	2( 318	3.3) = 0.681723E 04	
Q 2-1/	21 318	8.3) = 0.115208E-06	
WRONSKIAN	ACTU/	AL 0.6666647E 00WRONSKIAN THEORETICAL 0.66666666E 00	)
ERROR -C	.19669	953E-05 PERCENT ERROR -0.2950430E-03	

```
P = 2-1/2(318.3) = 0.681723E 04
  P = 3-1/2(318.3) = 0.347198E 07
  Q = 3-1/2(318,3) = 0.150809E-09
WRONSKIAN ACTUAL 0.3999990E 00WRONSKIAN THEORETICAL 0.4000000E 00
EFROR -0.9536743E-06 PERCENT ERROR -0.2384186E-03
0 \quad 3-1/2(318.3) = 0.150809E-09
  P = 3-1/2(318.3) = 0.347198E 07
 P = 4-1/2(318.3) = 0.189455E 10
  Q = 4-1/2(318.3) = 0.207278E-12
WRDNSKIAN ACTUAL 0.2857141E 00WRDNSKIAN THEORETICAL 0.2857143E 00
 ERROR -0.1788139E-06 PERCENT ERROR -0.6258488E-04
  Q = 4-1/2(318.3) = 0.207278E-12
  P = 4-1/2(318.3) = 0.189455E 10
  P = 5-1/2(318.3) = 0.107210E 13
  95-1/2(318.3) = 0.293035E-15
WRONSKIAN ACTUAL 0.2222220E 00WRONSKIAN THEORETICAL 0.2222222E 00
ERROR -0.2384186E-06 PERCENT ERROR -0.1072884E-03
 Q = 5-1/2(318.3) = 0.293035E-15
 P = 5-1/2(318.3) = 0.107210E 13
  P = 6 - 1/2(318.3) = 0.620466E 15
  Q = 6-1/2(318.3) = 0.421939E-18
WRONSKIAN ACTUAL 0.1818179E 00WRONSKIAN THEORETICAL 0.1818181E 00
ERROR -0.2384186E-06 PERCENT ERROR -0.1311302E-03
  Q = 6-1/2(318.3) = 0.421939E-18
 P = 6-1/2(318.3) = 0.620466E15
  P \quad 7-1/2(318.3) = 0.364618E 18
 Q = 7-1/2(318.3) = 0.615436E-21
WRONSKIAN ACTUAL 0.1538460E 00WRONSKIAN THEORETICAL 0.1538461E 00
ERROR -0.1788139E-06 PERCENT ERROR -0.1162291E-03
THE NUMBER OF SPHERES IS: 1000 THE INTEGRAL IS: 2239.59000000 TOLERANCE 0.00000000E 00
     1 0.3141587E-02 0.1275128E 00 -0.6035866E 01 0.6163378E 01 0.4833535E 04
THE K VALUE OF THE TOROID COORDINATE SOLUTION IS : 0.277722E 03
THE K VALUE OF OUR FIRST REFLECTION IS: 0.223959E 04
THE ERROR BETWEEN K VALUES IS: ****** THE PERCENT ERROR IS: -0.706415E 03
CORE USAGE
              OBJECT CODE= 9912 BYTES, ARRAY AREA= 60 BYTES, TOTAL AREA AVAILABLE= 63584 BYTES
                NUMBER OF ERRORS= 0, NUMBER OF WARNINGS= 0, NUMBER OF EXTENSIONS=
DIAGNOSTICS
                                                                                               0
COMPILE TIME= 0.59 SEC.EXECUTION TIME= 0.50 SEC. WATFIV - VERSION 1 LEVEL 3 MARCH 1971 DATE= 74/148
```