Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

by.

DAVID W: HORWAT

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

AT

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the college and without credit being given in subsequent written or published work.

Newark, New Jersey
1974

APPROVAL OF THESIS

the heat and temperature distribution of a hot sphere WITHIN AN INFINITE WEDGE
by
DAVID W.HORWAT
for
DEPARTMENT OF CHEMICAL ENGINEERING
NEWARK COLLEGE OF ENGINEERING
by
faculty committee

APPROVED:
\qquad

NEWARK , NEW JERSEY
JUNE , 1974

TABLE OE CONTENTS

Subject Page
1
Abstract
2
Acknowledgements
Symbols used and their meanings 4
List of figures 5
List of tables 6
Introduction 7Development of model with boundaryconditions - wedge walls of constanttemperature10
Development of model with boundary
conditions - wedge walls with $d T / d \theta=0$ 20
Summary of Results 24
Reference and Bibliography 26
Appendix A - Proof of equation (35) 1Appendix B - Comparison with BipolarCoordinate solutionIv
Appendix C - Comparison with Toroidal Coordinate solution viii

$\triangle B S T R A C T$

This thesis presents a mathematical model of the steady state heat and temperature distributions of a hot sphere located along the midplane of an infinitely long wedge of any arbitrary central angle. The heat and temperature distributions of this geometric configuration are of immense value, since through the use of this model as a wedge shaped unit cell the description of any number of hot spheres, arranged in.a regular planar array can be immediately determined.

The method of reflections is used to solve Laplace's equation, $\nabla^{2} T=0$, analytically using the sphere and the wedge walls as boundary conditions. Only the second reflection was obtained,yielding a first order correction.

The resulting model of an individual sphere within a wedge, and an arbitrary number of spheres arranged in a regular polygonal planar array were obtained. The regular planar array was tested and compared with known exact solutions of Laplace's equation in Bipolar coordinates [for the solution of two spheres in space] and Toroidal coordinates [for the solution approximating an extremely large number of densely packed spheres in a regular planar array] . The model tested accurately in the comparison with Bipolar coordinates, while the comparison of the developed model with a toroid showed the limitations of a first order correction solution.

ACKNOWLEDGEMENTS

The author wishes to gratefully acknowledge Dr. Ernest Bart who, as a source of consistently sound help, encouragement, and gutdance, enabled the completion of this research.

DEDICATION

To Pat

Symbol	Meaning
a	Sphere radius
A	Unknown function of integration-second reflection
$\mathrm{C}_{1}, \mathrm{C}_{2}$	Constants of integration for the first reflection
k	Heat transfer coefficient - BTU/hr ft ${ }^{2}$
$\mathrm{K}_{0}, \mathrm{~K}_{1}$	Modified Bessel functions of orders 0,1 , respectively
Kı $\mathrm{K}^{\text {c }}$	Modified Bessel functions of imaginary order 1τ
m, n	Integer indices
N	The number of spheres in a regular array
$\mathrm{P}_{\mathrm{n}}(\mathrm{x})$	Legendre's functions of order n
$Q_{n}(x)$	Legendre's functions of order n
Q	Rate of heat transfer
$\mathbf{r}_{\mathbf{S}}, \Phi, \phi$	Sphere centered spherical coordinates
T	Temperature at a point in space
T_{1}	Temperature at the sphere surface
T_{2}	Temperature at the wedge walls - fixed
$\mathrm{T}_{\mathrm{amb}}$	Temperature of the ambient space
V	Dummy variable of integration - first reflection
x_{s}, y_{s}, z_{s}	Sphere centered Cartesian coordinates
x_{W}, y_{w}, z_{w}	Wedge centered Cartesian coordinates
x 。	Distance from sphere center to wedge vertex
ρ, θ, z	Wedge centered cylindrical coordinates
θ 。	One half of the central angle of the wedge unit cell
λ, τ	Separation constants of Laplace's equation
∇	Nabla operator
$\Psi, \Psi(1), \Psi($	Normalized temperature variables

Figure1The wedge shaped unit cell92 Sphere and wedge of constanttemperature113 Plot of the isotherms of thefirst reflection14
4 Interiection of the wedge andfirst reflection isotherms16
5 Tangency of N spheres xi

LIST OE TABLES

Table

1
Comparison of first order correction model and Bipolar coordinate solution v.

2 Comparison of first order correction model and Toroidal coordinate solution x.

INTRODUCTION

The work presented herein concerns itself with the development of a mathematical model'which describes the temperature distribution due to the presence of a hot sphere located along the midplane of an infinite wedge of an arbitrary central angle. Two basic problems are treated; each problem differs only in boundary conditions. The simplest occurs when the wedge walls are held at constant uniform temperature; the second, and far more interesting. problem, occurs when boundary conditions at the wedge walls are $d T / d \theta=0$.

Problems relating to a sphere within a wedge develop when trying to describe large numbers of hot spheres arrange in a regular planar array. Given the array shown in Figure 1., each sphere can be considered to be located within its own particular wedge-shaped unit cell, of central angle $2 \theta_{0}$. θ_{0} in turn is expressible in terms of the number of spheres, N, according to the following relation:

$$
\theta_{0}=\pi / N
$$

The walls of the unit cell prove to be lines of symmetry, both for the regular polygonal array and the resulting temperature distribution. The lines of symmetry Within the temperature field are mathematically;

$$
\mathrm{dT} / \mathrm{d} \theta=0 \text { [on the wedge walls] }
$$

The second, more complex model, simultaneously solving Laplace's equation with boundary conditions of $d T / d \theta=0$ [on the wedge walls] and $T=T_{1}$ [on the sphere surface], can be developed from the simpler solution, a sphere within a wedge of uniform surface temperature.

DEVELOPMENT OF MODEL = WEDGE WALLS AT CONSTANT TEMPERATURE

The simplest unit cell would consist of a sphere of constant temperature, T_{1}, located within a wedge of constant wall temperature T_{2}, as shown in Figure 2 . The temperature field must be a harmonic function ie. a solution to Laplace's equation

$$
\begin{equation*}
\nabla^{2} \mathrm{~T}=0 \tag{1}
\end{equation*}
$$

and must also be consistent with the boundary conditions. In this case, the satisfaction of the boundary conditions requires that the temperature of the sphere surface be T_{1} and the temperature at the wedge walls be T_{2}.

$$
\begin{equation*}
\text { Let } \Psi=\left(T-T_{2}\right) /\left(T_{1}-T_{2}\right) \tag{2}
\end{equation*}
$$

By sudstituting the variable Ψ; defined in equation (2), for the temperature variable, T, the boundary conditions become normalized in terms of Ψ.

$$
\begin{align*}
& \Psi(\text { on the sphere surface })=1 \\
& \Psi(\text { on the wedge walls })=0 \tag{4}
\end{align*}
$$

Ψ is also a solution of Laplace's equation in that :

$$
\begin{equation*}
\nabla^{2} \mathrm{~T}=0 \tag{1}
\end{equation*}
$$

T is related to Ψ by transposing equation (2).

$$
\begin{equation*}
T=\Psi\left(T_{1-} T_{2}\right)+T_{2} \tag{5}
\end{equation*}
$$

Performing the required substitution and stipulating that $\left(T_{1}-T_{2}\right)$ be a non-zero fixed constant one obtains:

Sphere and Wedge of Constant Temperature

Figure 2

$$
\begin{align*}
\nabla^{2} \mathrm{~T}=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \nabla^{2} \Psi & =0 \tag{6}\\
\text { ore: } & \nabla^{2} \Psi \tag{7}
\end{align*}=0
$$

We now have reduced the problem into the normalized temperature variable with the appropriate boundary conditions.

The problem inherently possesses two dissimilar geometries, wedge-shaped and spherical. No single coordinate system can be used to simultaneously treat both geometries. The method of reflections must be used as an algorithm. The method involves obtaining an infinite number of solutions, each solution individually being the solution to a boundary condition upon one surface, and adding them. The resultant sum is a solution which satisfies the boundary conditions upon both surfaces. Thus, the required solution ψ will be built up as an infinite series of individual solutions; the odd numbered solutions satisfy the boundary conditions on the sphere surface and the even numbered solutions satisfy the boundary conditions upon the wedge surface.

$$
\begin{equation*}
\psi=\psi^{(1)}+\psi^{(2)}+\psi^{(3)}+\ldots \ldots \psi^{(\infty)} \tag{8}
\end{equation*}
$$

The aim of this thesis will be to obtain up to the second term of this reflection series. The second reflection amounts to afirst order correction factor, correcting the temperature field of the sphere in accordance with the effect of the wedge walls.

Starting with a sphere of surface temperature $T=T_{1}$ and a spherical coordinate system based upon the sphere center as an origin, the harmonic function, due to spherical symmetry, will be a function of the spherical radius alone. The boundary restrictions are:

$$
\begin{aligned}
\Psi(1)= & \text { A harmonic function } \\
\Psi(1)= & \left.1 \text {. [At the sphere surface, ie. } r_{s}=a\right] \\
\Psi(1)= & \text { A function of } r_{s} \text { alone due to spherical } \\
& \text { symmetry }
\end{aligned}
$$

In spherical coordinates for $\psi^{(1)} \neq f(\Phi, \phi)$, the well known solution to Laplace's equation in the region exterior to the sphere is:

$$
\begin{equation*}
\Psi(1)=a / r_{s} \tag{9}
\end{equation*}
$$

${ }_{\psi}(1)$ Is consistant with the boundary conditions since it is a harmonic function, its value at the sphere surface is 1 , and it is a function of r_{s} alone. It also exhibits the characteristic property that:

$$
\begin{equation*}
\operatorname{limit}[\Psi(1) \underset{x \rightarrow \infty}{(x)}]=0 \tag{10}
\end{equation*}
$$

Figure 3 shows a plot of the isotherms of $\Psi(1)$ as a function of r_{s} expressed as multiples of a.

$$
\begin{align*}
& \psi=\psi(1)+\psi(2)+\psi(3)+\ldots \psi(\infty) \tag{8}\\
& \psi=a / r_{s}+\psi(2)+\psi(3)+\ldots \psi(\infty) \tag{11}
\end{align*}
$$

Truncating after the second reflection term to obtain

Isotherms of the First Reflection

Figure 3
a first order correction,

$$
\begin{equation*}
\Psi \simeq a / r_{s}+\Psi(2) \tag{12}
\end{equation*}
$$

$\Psi(1)$ based upon sphere surface boundary conditions sets up a temperature field of concentric spheres of constant temperature of value a / r_{s}. These concentric spheres are cut across by the walls of the wedge, maintained at constant, unfform temperature. The hot sphere sets up a temperature distribution on the wedge walls. However, since the boundary conditions at the wedge walls require that the wall temperature expressed in terms of Ψ be zero, the second reflection must cancel off the effect of the first reflection, shown in figure 4.

$$
\Psi(2)=-\Psi(1)[\text { To satisfy that } \psi=0 \text { on the wedge walls] }
$$

This condition must be satisfied only upon the wedge surface and not everywhere else in space. $\Psi(2)$ and $\Psi(1)$ must be Inearly independant solutions to Laplace's equation $\Psi(2)$ must also be a harmonic function.

From geometry, in cartesian coordinates:

$$
\begin{align*}
& x_{w}=x_{0}+x_{s} \tag{13}\\
& y_{w}=y_{s} \tag{14}\\
& z_{w}=z_{s} \tag{15}\\
& \Psi^{(1)}=a / r_{s}=\frac{a}{\sqrt{x_{s}^{2}+y_{s}^{2}+z_{s}^{2}}} \tag{16}
\end{align*}
$$

Intersection of Wedge and First Reflection

$$
\begin{align*}
& \Psi(1)=\frac{a}{\sqrt{\left(x_{w}-x_{0}\right)^{2}+y_{w}^{2}+z_{w}^{2}}} \tag{17}\\
& \Psi(1)=\frac{a}{\sqrt{x_{w}^{2}-2 x_{w} x_{0}+x_{0}^{2}+y_{w}^{2}+z_{w}^{2}}} \tag{18}
\end{align*}
$$

Shifting to cylindrical coordinates with origin at the wedge center

$$
\begin{align*}
& x_{w}=\rho \cos (\theta) \tag{19}\\
& y_{w}=\rho \sin (\theta) \tag{20}\\
& x_{w}^{2}+y_{w}^{2}=\rho^{2} \tag{21}
\end{align*}
$$

$$
\begin{equation*}
\Psi(1)=\frac{a}{\sqrt{\rho^{2}-2 x_{0} \rho \cos (\theta)+x_{0}^{2}+z_{w}^{2}}} \tag{22}
\end{equation*}
$$

$\Psi^{(2)}$ must be a harmonic and equal to $-\Psi(1)$ at the wedge walls. Transform analysis indicates that the form of $\psi(2)$ should be:

$$
\begin{equation*}
\Psi(2)=\int_{0}^{\infty} \int_{0}^{\infty} A \cosh (\tau \theta) K i \tau(\lambda \rho) \cos \left(\lambda z_{w}\right) d \lambda d \tau \tag{23}
\end{equation*}
$$

The above solution is valid everywhere within the domain bounded by the wedge, ie. $\infty>\rho \geq 0, \infty>z_{w}>-\infty$. The constant A is rally not a constant but an un own function of the separation constants λ and τ. A can not be a function of the variables ρ, z_{w}, or θ. At the wedge walls when $\theta=\theta_{0}$,

$$
\begin{equation*}
\Psi(2)=-\Psi(1)=\frac{-a}{\sqrt{\rho^{2}-2 x_{0} \rho \cos \left(\theta_{0}\right)+x_{0}^{2}+z_{W}^{2}}} \tag{24}
\end{equation*}
$$

$\int_{0}^{\infty} \int_{0}^{\infty} A \cosh \left(\tau \theta_{0}\right) K_{1} \tau(\lambda \rho) \cos \left(\lambda z_{W}\right) d \lambda d \tau=\frac{-a}{\sqrt{\rho^{2}-2 x_{0} \rho \cos \left(\theta_{0}\right)+x_{0}^{2}+z_{W}^{2}}}$

Inverting the z_{w} transform yields:
$\int_{0}^{\infty} A \cosh \left(\tau \theta_{0}\right) K_{1} \tau(\lambda \rho) d \tau=-2 a / \pi K_{0}\left(\sqrt{\rho^{2}-2 x_{0} \rho \cos \left(\theta_{0}\right)+x_{0}^{2}} \lambda\right)$
Howe ver:

$$
\begin{equation*}
\int_{0}^{\infty} K_{i} \tau(\lambda \rho) K_{i} \tau\left(\lambda x_{0}\right) \cosh \left[\tau\left(\pi-\theta_{0}\right)\right] d \tau=\pi / 2 K_{0}\left(\lambda \sqrt{\rho^{2}-2 x_{0} \rho \cos \left(\theta_{0}\right)+x_{0}^{2}}\right) \tag{27}
\end{equation*}
$$

By comparing like terms one can conclude:

$$
\begin{gather*}
A=\frac{-4 a \cosh \left[\tau\left(\pi-\theta_{0}\right)\right] K_{1 \tau}\left(\lambda x_{0}\right)}{\pi^{2} \cosh \left(\tau \theta_{0}\right)} \tag{28}\\
\Psi^{(2)}=\int_{0}^{\infty} \int_{0}^{\infty} \frac{\cosh \left[\tau\left(\pi-\theta_{0}\right)\right] K_{1} \tau\left(\lambda x_{0}\right) \cosh (\tau \theta) K_{i} \tau(\lambda \rho) \cos \left(\lambda z_{w}\right) d \lambda d \tau\left[-4 a / \pi^{2}\right]}{(29)}
\end{gather*}
$$

The approximate temperature field may now be expressed as:
$y \simeq a / \sqrt{\rho^{2}-2 x_{0} \rho \cos \left(\theta_{0}\right)+x_{0}^{2}+z_{w}^{2}}$

$$
\begin{equation*}
-4 a / \pi^{2} \int_{0}^{\infty} \frac{\cosh \left[\tau\left(\pi-\theta_{0}\right)\right] K_{i} \tau\left(\lambda x_{0}\right) \cosh (\tau \theta) K_{1} \tau(\lambda \rho) \cosh \left(\lambda z_{w}\right) d \lambda d \tau}{\cosh \left(\tau \theta_{0}\right)} \tag{30}
\end{equation*}
$$

Q, the rate of heat transfer, can be expressed as the series;

$$
\begin{equation*}
Q=Q^{(1)}+Q^{(2)}+Q^{(3)}+\ldots Q^{(\infty)} \tag{31}
\end{equation*}
$$

Truncating the above series to form a first order correction;

$$
Q \simeq Q^{(1)}+Q^{(2)}
$$

This truncated series can be shown, from Appendix A, to be equal to:

$$
\begin{equation*}
Q \simeq 4 \pi k a\left(T_{1}-T_{2}\right)\left[1+\psi(2)\left\{x_{0}, 0,0\right\}\right] \tag{32}
\end{equation*}
$$

This law is analogous to Faxen's law, used primarily hydrodynamics of low Reynold's numbers. At the sphere center $\left(x_{0}, 0,0\right), \Psi^{(2)}$ is defined by:

$$
\begin{align*}
& \Psi^{(2)}\left\{x_{0}, 0,0\right\}=-a / x_{0} \int_{0}^{\infty} \frac{\cosh \left[\tau\left(\pi-\theta_{0}\right)\right] d \tau}{\cosh \left(\tau \theta_{0}\right) \cosh (\tau \pi)} \tag{33}\\
& Q \simeq 4 \pi k a\left(T_{1}-T_{2}\right)\left[1-a / x_{0} \int_{0}^{\infty} \frac{\cosh \left[\tau\left(\pi-\theta_{0}\right)\right] d \tau}{\cosh \left(\tau \theta_{0}\right) \cosh (\pi \tau)}\right] \tag{34}
\end{align*}
$$

Equation (33) is obtained by evaluating equation at $\rho=x_{0}, \theta=0, z_{w}=0$.

$$
\begin{align*}
& \Psi^{(2)}\left\{x_{0}, 0,0\right\}=-4 a / \pi^{2} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\cosh \left[\tau\left(\pi-\theta_{0}\right)\right]}{\cosh \left(\tau \theta_{0}\right)}\left[R_{1} \tau\left(\lambda x_{0}\right)\right]^{2} d \lambda d \tau \tag{35}\\
& \Psi^{(2)}\left\{x_{0}, 0,0\right\}=-a / x_{0} \int_{0}^{\infty} \frac{\cosh \left[\tau\left(\pi-\theta_{0}\right)\right]}{\cosh \left(\tau \theta_{0}\right) \cosh (\pi \tau)} P_{1 \tau-1 / 2} \quad \text { (1) } d \tau(36)
\end{align*}
$$

Equation (36) is obtained by inverting thed transform within equation (35). Also due to its conical nature $\mathrm{P}_{1 \tau-1 / 2}(1)=1$ for all values of τ. Therefore;

$$
\begin{equation*}
\Psi(2)\left\{x_{0}, 0,0\right\}=-a / x_{0} \int_{0}^{\infty} \frac{\cosh \left[\tau\left(\pi-\theta_{0}\right)\right] d \tau}{\cosh \left(\tau \theta_{0}\right) \cosh (\pi \tau)} \tag{33}
\end{equation*}
$$

This completes the development of the models of heat transfer rate and temperature distribution for a hot sphere within the walls of a wedge maintained at constant temperature.

This solution leads to the ptesentation of a more theoretically interesting problem, the problem of a hot sphere in a wedge of boundary conditions $d T / d \theta=0$. This corresponds to the unit cell to be used in the analysis of a large number of hot spheres arranged in a regular planar array. A solution to this problem involves the identical differential equation as before, namely Laplace's equation; the boundary conditions are now modified.

$$
\begin{gathered}
\Psi[\text { at the sphere surface }]=1 \\
d \Psi(1) / d \theta[\text { at the wedge walls }]=-d \Psi(2) / d \theta\left[\begin{array}{c}
{[\text { at the wedge }} \\
\text { walls }]
\end{array}\right.
\end{gathered}
$$

$\Psi(1)$ remains the same as in the previous problem.

$$
\begin{gather*}
\psi(1)=\frac{-a}{\sqrt{\rho^{2}-2 x_{0} \rho \cos (\theta)+x_{o}^{2}+z_{w}^{2}}} \tag{37}\\
\frac{d \Psi(1)}{d \theta}=\frac{-a x_{0} \rho \sin (\theta)}{\left[\sqrt{\rho^{2}-2 x_{0} \rho \cos (\theta)+x_{0}^{2}+z_{W}^{2}}\right]^{3}} \tag{38}
\end{gather*}
$$

$\psi(2)$ will be of the same form as in the previous problem.

$$
\begin{align*}
& \Psi^{(2)}=\int_{0}^{\infty} \int_{0}^{\infty} A \cosh (\tau \theta) K_{i} \tau(\lambda \rho) \cos \left(\lambda z_{W}\right) d \lambda d \tau \tag{39}\\
& d \Psi(2) \tag{40}\\
& d \theta=\int_{0}^{\infty} \int_{0}^{\infty} A \tau \sinh (\tau \theta) K_{\imath} \tau(\lambda \rho) \cos \left(\lambda z_{W}\right) d \lambda d \tau
\end{align*}
$$

Equation (40) is obtained from equation (39) by performing the indicated differentiation with respect to θ. The boundary conditions state that the derivatives with respect to the variable θ must cancel each other only at the wedge walls. $\left\{\theta= \pm \theta_{0}\right\}$

$$
\int_{0}^{\infty} \int_{0}^{\infty} \operatorname{A\tau sinh}\left(\tau \theta_{0}\right) \operatorname{Kit}_{1}(\lambda \rho) \cos \left(\lambda z_{w}\right) d \lambda d \tau=\frac{\operatorname{ax} \rho \rho \sin \left(\theta_{0}\right)}{\left(\rho^{2}-2 \operatorname{xo\rho } \cos \left(\theta_{0}\right)+x_{0}^{2}+z_{w}^{2}\right)^{3 / 2}}
$$

Inverting the λ transform,
$\int_{0}^{\infty} A \tau \operatorname{Lnh}\left(\tau \theta_{0}\right) K q \tau(\lambda \rho) d \tau=2 / \pi \int_{0}^{\infty} \frac{a \rho x_{0} \sin \left(\theta_{0}\right) \cos \left(\lambda z_{W}\right) d z_{W}}{\left(\rho^{2}-2 x_{o} \rho \cos \left(\theta_{0}\right)+x_{0}^{2}+z_{W}^{2}\right)^{3 / 2}}$

Evaluating the cosine transform with respect to z_{w}.

$$
\int_{0}^{\infty} \operatorname{A\tau sinh}\left(\tau \theta_{0}\right) K i \tau(\lambda \rho) d \tau=\frac{2 \operatorname{ax} x_{0} \lambda \rho \sin \left(\theta_{0}\right) K_{1} \frac{\left(\lambda \sqrt{\rho^{2}-2 x_{0} \rho \cos \left(\theta_{0}\right)+x_{0}^{2}}\right.}{\pi \sqrt{\rho^{2}-2 x_{0} \rho \cos \left(\theta_{0}\right)+x_{0}^{2}}},(43)}{}
$$

To solve for the value of A, the τ transform must be inverted, and a final relation must be derived . Given,

$$
\begin{array}{r}
\quad \int_{0}^{\infty} K_{i} \tau\left(\lambda x_{0}\right) K i \tau(\lambda \rho) \cosh [\tau(\pi-\theta)] d \tau=\pi / 2 K_{0}\left(\lambda \sqrt{\left.\rho^{2}-2 x_{0} \rho \cos (\theta)+x_{0}^{2}\right)}(44)\right. \\
\frac{d}{d \theta} \int_{0}^{\infty} K_{1} \tau\left(\lambda x_{0}\right) K_{1} \tau(\lambda \rho) \cosh [\tau(\pi-\theta)] d \tau=\frac{d}{d \theta} \pi / 2 K_{0}\left(\lambda \sqrt{\left.\rho^{2}-2 x_{0} \rho \cos (\theta)+x_{0}^{2}\right)}\right. \tag{45}
\end{array}
$$

Taking the indicated derivative with respect to θ, the following equalities develop:

$$
\begin{align*}
& \int_{0}^{\infty} \operatorname{A\tau \operatorname {sinh}}\left(\tau \theta_{0}\right) K i \tau(\lambda \rho) d \tau=\frac{2 a \lambda \rho x_{0} \sin \left(\theta_{0}\right) K_{1} \frac{\left(\lambda \sqrt{\rho^{2}-2 x_{0} \rho \cos \left(\theta_{0}\right)+x_{0}}\right)}{\pi \sqrt{\rho^{2}-2 x_{0} \rho \cos \left(\theta_{0}\right)+x_{0}^{2}}}}{(46)} \\
&=4 a / \pi^{2} \int_{0}^{\infty} \tau K_{1} \tau\left(\lambda x_{0}\right) K_{i} \tau(\lambda \rho) \sinh \left[\tau\left(\pi-\theta_{0}\right)\right] d \tau \quad(4 \tag{46}
\end{align*}
$$

From these two equalities the value of A can be determined by comparing like terms. One can conclude that the value of A is;

$$
\begin{equation*}
A=\frac{4 a \sinh \left[\tau\left(\pi-\theta_{0}\right)\right] K_{1} T\left(\lambda x_{0}\right)}{\pi^{2} \sinh \left(\tau \theta_{0}\right)} \tag{48}
\end{equation*}
$$

Having the value of $\dot{A}, \Psi(2)\left\{x_{0}, 0,0\right\}$ develops to be:

$$
\begin{equation*}
\Psi^{(2)}\left\{x_{0}, 0,0\right\}=\int_{0}^{\infty} A K K \tau\left(\lambda x_{0}\right) d \lambda d \tau \tag{49}
\end{equation*}
$$

$\Psi(2)\left\{x_{0}, 0,0\right\}=\frac{4 a}{\pi^{2}} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\sinh \left[\tau\left(\pi-\theta_{0}\right)\right] K_{1} \tau\left(\lambda x_{0}\right) K_{1} \tau\left(\lambda x_{0}\right) d \lambda d \tau}{\sinh \left(\tau \theta_{0}\right)}$ (50)
Inverting the λ transform as before,
$\psi^{(2)}\left\{x_{0}, 0,0\right\}=a / x_{0} \int_{0}^{\infty} \frac{\sinh \left[\tau\left(\pi-\theta_{0}\right)\right] d \tau}{\sinh \left(\tau \theta_{0}\right) \cosh (\pi \tau)}$

The model for heat transfer is now:
$Q=4 \pi k a\left(T_{1}-T_{2}\right)\left[1-a / x_{0} \int_{0}^{\infty} \frac{\sinh [\tau(\pi-\theta) d \tau}{\sinh (\tau \theta) \cosh (\pi \tau)}\right]$

For N spheres arranged in a regular polygon, each individual sphere can be considered to be enclosed in a wedge of central angle θ_{0}, where $\theta_{0}=\pi / N$. The heat transfer rate per sphere is:

$$
Q=4 \pi k a\left(T_{1}-T_{a m b}\right)\left[1-a / x_{0} \int_{0}^{\infty} \frac{\sinh [(\{N-1\} / N) \pi \tau] d \tau}{\sinh [\pi \tau / N] \cosh (\pi \tau)}(53)\right.
$$

The rate of heat transfer from the entire array would merely be the rate of heat transfer per sphere, equation (53), multiplied by the number of spheres , N.

The temperature distribution is modeled by,
$\Psi \simeq d / \sqrt{\rho^{2}-2 x_{0} \rho \cos (\theta)+x_{0}^{2}+z_{w}^{2}}$
$-4 a / \pi^{2} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\sinh \left[\tau\left(\pi-\theta_{0}\right)\right] K i \tau\left(\lambda x_{0}\right)}{\sinh \left(\tau \theta_{0}\right)} \cosh (\tau \theta) K i \tau(\lambda \rho) \cos \left(\lambda z_{w}\right) d \lambda d \tau$

Summarizing the results for a hot sphere within the boundaries of a wedge shaped unit cell:

For a wedge of fixed wall temperature, the heat transfer rate Q is:

$$
Q \simeq 4 \pi k a\left(T_{1}-T_{2}\right)\left[1-a / x_{0} \int_{0}^{\infty} \frac{\cosh \left[\tau\left(\pi-\theta_{0}\right)\right] d \tau}{\cosh \left(\tau \theta_{0}\right) \cosh (\pi \tau)}\right.
$$

For a wedge of boundary conditions $d T / d \theta=0$ at the walls.

$$
Q \simeq 4 \pi k a\left(T_{1}-T{ }_{a m b}\right)\left[1-a / x_{0} \int_{0}^{\infty} \frac{\sinh [(\{N-1\} / N) \pi \tau] d \tau]}{\sinh (\pi \tau / N) \cosh (\pi \tau)}\right.
$$

Where Q is the heat transfer rate per sphere and N is the number of spheres arranged the regular planar array.

For a single sphere in space, the central angle of the wedge is 180°. The formula in this case degenerates to:

$$
\mathrm{Q}=4 \pi \mathrm{ka}\left(\mathrm{~T}_{1}-\mathrm{T}_{\mathrm{amb}}\right)
$$

This is known to be the correct solution to the heat transfer rate of a single sphere in space. For two spheres in space, the equation yields:

$$
Q=4 \pi a k\left(T_{1}-T_{a m b}\right)\left[1 .-a / 2 x_{0}\right]
$$

since the value of the integral yields:

$$
\int_{0}^{\infty} \mathrm{d} \tau / \cosh (\pi \tau)=1 / 2
$$

The results of this study are shown in Appendix 2. A final regarding the accuracy of the formula appears in Appendix 3 . In Appendix 3 the formula is used to approximate a toroid by allowing the number of spheres to become large. In the case of two spheres in space, the above solution compares most favorably with the answer derived from bipolar coordinates. In the attempt to approximate a toroid, the solution is limited by the a/x。 value, as shown in Appendix 3.

SUMMARY

In summary, a mathematical solution to Laplace's equation was developed for a sphere in a wedge type unit cell. Two types of boundary conditions were considered:a wedge of fixed uniform wall remperature, and a wedge along whose walls the derivative of temperature with respect to a change in the central angle was zero. This latter model was used to describe an array of hot spheres in space arranged in a regular planar array. The model was tested and proved accurate in all cases for one and two spheres. From a comparison with the bipolar coordinate solution to Laplace's equation, the accuracy of the first order correction model was shown to be related to a/x. . In an attempt to compare the model with a toroidal coordinate solution the number of spheres was allowed to increase and the inter-sphere spacing was permitted to decrease until all the spheres were tangent. It was found through computer analysis that the value of the geometric view

factor;

$$
\int_{0}^{\infty} \frac{\sinh [(\{N-1\} / N) \pi \tau] d \tau}{\sinh (\tau \theta / N) \cosh (\tau \pi)}
$$

increased much faster than the decrease in the value of [a/x.] with the number of spheres. Thus with the spheres max. touching the first order correction model was inaccurate and higher order terms in the reflection series would be needed to achieve accuracy in this case.

Future advances along these lines would be the development of higher order terms in the reflection series, allowing the solution to the problem of a large quantity of spheres touching or similar concentrated systems. The reflection technique may provide a method of simultaneously solving the creeping motion equation and the equation of continuity within the boundaries of a wedge-like unit cell. The resulting model would then be an effective model of sedimentation.

1) Bateman, Harry, Tables of Integral Transforms, New York: McGraw-Hill Co.,1954, Vol 1. pp 9-11, Vol 2. pp 175
2) Fettis, Harry, Tables of Toroidal Harmonics, Functions of the First Kind, U.S. Government Aerospace Research Labs, Vol 1. Feb. 1969, Vol 2 July 1970.
3) Gradshtegn,I.S. and Ryzhik,I.M.,Tables of Integrals, Series and Products , New York, Academic Press, 1965 .
4) Lebedev, Special Functions and Their Applications, Englewood Cliffs,N.J.,Prentice Ha11,1965 pp 221-234
5) Happle,John and Brenner, H, Low Reynold's Number Hydrodynamics, Englewood Cliffs,N.J., Prentice Hall, 1965.
6) Oberhettinger, Frank, Tables of Bessel Transforms, New York, Springer-Verlag, 1972,pp 241-261.

APPENDIX A

Proof of equation (32)

The rate of heat transfer, Q, is expressible as a series similar in form to the series developed for the temperature, T.

$$
\begin{equation*}
Q=Q^{(1)}+Q^{(2)}+Q^{(3)}+Q^{(4)} \cdots+Q^{(\infty)} \tag{A-1}
\end{equation*}
$$

The form of $Q(j)$ is developed from the definition of Q.

$$
\begin{aligned}
& Q=-k \int(d \text { Area }) \cdot d T / d r_{s} \\
& Q^{(j)}=k a^{2}\left(T_{1}-T_{a m b} \int_{\phi=0}^{2 \pi} \int_{\phi=0}^{\pi}\left[d \Psi(j) / d r_{s}\right]_{r=a} \sin (\phi) d \phi d \Phi(A-3)\right.
\end{aligned}
$$

The variable T is replaced in the definition (A-2) by its equivalent in terms of Ψ, and the resultant equation is Integrated over the sphere surface. The form of $[d \Psi(f) / d r] r=a$ in equation ($A-3$) is presently known in wedge centered cylindrical coordinates. In order to perform the necessary integration, the function $\left[\mathrm{d} \Psi(\mathrm{j}) / \mathrm{dr} \mathrm{s}_{\mathrm{s}}\right]_{\mathrm{r}=\mathrm{a}}$ must be translated to a sphere centered spherical coordinate system. To translate the function to spherical coordinates it must be expressed as a series.
[For even numbered reflections]

$$
\begin{equation*}
\Psi^{\prime}(J)=\sum_{n=m}^{\infty} \sum_{m=0}^{\infty} B_{m, n}^{(m)} r_{s}^{n} \cos (m \phi) p_{n}^{m}(\cos (\phi)) \tag{A-4}
\end{equation*}
$$

[For odd numbered reflections]

$$
\psi(f)=\sum_{n=m}^{\infty} \sum_{m=0}^{\infty} C_{m, n}^{(m)} r_{s}^{(-n-1)} \cos (m \Phi) p_{n}^{m}(\cos (\phi))
$$

Taking the derivative of equations (A-4) and (A-5), and evaluating these functions at the sphere surface.
a $\left[d \Psi / d r_{s}\right]_{r_{s}=a}=\sum_{n=m}^{\infty} \sum_{m=0}^{\infty} B_{n, m}^{(m)}(n) a^{n-1} \cos (m \Phi) P_{n}^{m}(\cos (\phi))(A-6)$
[even reflection]
$\left[d \Psi / d r_{s}\right]_{r_{s}=a} \sum_{n=m}^{\infty} \sum_{m=0}^{\infty}-C_{n, m}^{(m)}(n+1) a^{-n-2} \cos (m \Phi) P_{n}^{m}(\cos (\phi))(A-7)$
[odd reflection]
Integrating these derivatives over the sphere surface.
$Q^{(j=\text { even })}=k a^{2}\left(T_{1}-T a m b \int_{\phi=0}^{2 \pi} \int_{\phi=0}^{\pi} \sum_{n=m}^{\infty} \sum_{m=0}^{\infty} B_{n, m}^{(m)} n a^{n-1} \cos (m \Phi) P_{n}^{m}(\cos \phi)\right) \sin (\phi) d \phi d \Phi$
$Q^{(j=o d d)}=-k a^{2}\left(T_{1}-T a m b \int_{\Phi=0}^{2 \pi} \int_{\phi=0}^{\pi} \sum_{n=m}^{\infty} \sum_{m=0}^{\infty} C_{n, m}^{(m)}(n+1) a^{-n-2} \cos (m \Phi) P_{n}^{m}(\cos \phi)\right)$
$\sin (\phi) d \phi d \Phi(A-9)$

By examination of the integrals several terms can be
eliminated.

$$
\begin{aligned}
\int_{\Phi=0}^{2 \pi} \cos (m \Phi) d \Phi & =0[\text { for } m \neq 0] \\
& =2 \pi[\text { for } m=0]
\end{aligned}
$$

Thus:
$Q^{(j=\text { even })}=2 \pi k a^{2}\left(T_{1}-T_{a m b} \int_{0}^{\pi} \sum_{n=1}^{\infty} B_{0, n}^{(m)} n a^{n-1} P_{n}(\cos (\phi)) \sin (\phi) d \phi(A-10)\right.$
$Q^{(j=o d d)}=-2 \pi k a^{2}\left(T_{1}-T a m b \int_{0}^{\pi} \sum_{n=0}^{\infty} C_{0, n}^{(m)}(n+1) a^{-n-2} P(\cos (\phi)) \sin (\phi) d \phi(A-11)\right.$
but

$$
\left.\begin{array}{rl}
\int_{0}^{\pi} \mathrm{P}(\cos (\phi)) \sin (\phi) \mathrm{d} \phi & =\left[\begin{array}{l}
0 \text { for } \mathrm{n} \neq 0
\end{array}\right] \\
& =[2 \text { for } \mathrm{n}=0
\end{array}\right]
$$

Therefore;

$$
\begin{align*}
& Q_{Q^{(j=\text { even })}}^{(j=0 d d)}=0 \\
& =-4 k\left(T_{1}-T_{a m b}\right) C_{0 ; 0}^{(m)} \quad(A-12) \tag{A-13}
\end{align*}
$$

The rate of heat transfer is merely the $\bar{s} u m$ of the odd terms in Q^{j}. The boundary conditions used with the reflection method indicate that, in general, at the sphere surface.

$$
\begin{equation*}
\Psi^{(\text {next odd })}[a, \phi, \Phi]=-\psi^{(\text {even })}[a, \phi, \Phi] \tag{A-14}
\end{equation*}
$$

$$
\begin{align*}
\Psi(\text { next odd) } & =\sum_{n=m}^{\infty} \sum_{m=0}^{\infty} C^{(m)} \frac{\cos (m \Phi) P^{m}(\cos (\phi))}{n+1} \\
& =\sum_{n=m \sum_{m=0}^{(m)} \sum_{m, n}^{n} a^{n} \cos (m \Phi) P_{n}^{m}(\cos (\phi))} \tag{A-16}
\end{align*}
$$

One can conclude :

$$
\begin{equation*}
C_{m, n}^{(m)}=-B_{m, n}^{(m)} a^{n} a^{n+1} \tag{A-17}
\end{equation*}
$$

For $\mathrm{n}=\mathrm{m}=0$,

$$
\begin{equation*}
C_{0,0}^{(m)}=-B_{0,0}^{(m)} \mathrm{a} \tag{A-18}
\end{equation*}
$$

but

$$
C_{0,0}^{(m)}=-B_{0,0}^{(m)} a=-a \Psi^{(2 m)}[0,0,0] \quad(A-19)
$$

The final summary indicates:

$$
\begin{aligned}
& \text { (2m) } \\
& \begin{array}{l}
Q \begin{array}{l}
=0 \\
Q^{(2 m+1)}=4 \pi a k\left(T_{1}-T_{a m b}\right)
\end{array} \Psi^{(2 m)}[0,0,0](A-21)
\end{array} \\
& Q=\sum_{0}^{\infty} Q^{(2 m+1)}=4 \pi a k\left(T_{1}-T a m b\right)\left[1-\sum_{m=1}^{\infty} \Psi(2 \mathrm{~m})[0,0,0]\right. \\
& \text { (} \mathrm{A}-22 \text {) }
\end{aligned}
$$

Where $\Psi^{(2 m)}[0,0,0]$ refers to $\Psi^{(2 m)}$ evaluated at the (2m)
sphere center, or $\Psi \quad\left[x_{0}, 0,0\right]$ which refers to the same position except that wedge centered coordinates are used to express location.

APPENDIX B

Comparison with the exact Bipolar

Coordinate Solution

As was indicated by equations (57) and (58) the first order solution for two spheres in space is:

$$
Q=4 a k\left(T_{1}-T_{a m b}\right)\left[1-a / 2 x_{0}\right]
$$

This type of geometry is identical to the solution of Laplace's equation in bipolar coordinates. The comparison with bipolar coordinates shows that the truncation of higher order terms in the reflection series leaves an error This error approaches zero as the higher order terms of the reflection series become less significant. The first order correction solution will approach the bipolar coordinate solution as a/x。 approaches very small numbers.This result is similar to the effect of linearizing a power series by the truncation of terms higher than order 2 and limiting the argument to small values. The first order correction appears to be consistent with the bipolar solution within computer accuracy. The comparison is shown in Table 1 . The computer program from which this comparison was derived follows table 1.

TABLE 1

A comparison with the exact Bipolar coordinate solution

a/x	Q_-1storder	Q-Bipolar	\% Error
.1000	.9523866	.9500000	2.5×10^{-1}
.0100	.9950249	.9950000	2.5×10^{-3}
.0010	.9995002	.9995000	2.5×10^{-5}
.0001	.9999500	.9999500	2.5×10^{-7}

```
4.J!)
DAVID HORWAT
```

(. DAVID HORWAT ***THESIS***

```
(. DAVID HORWAT ***THESIS***
    HWILAR SOLUTION AND COMPARISON
    HWILAR SOLUTION AND COMPARISON
    IMPLICIT REAL*8(A-H,O-Z)
    IMPLICIT REAL*8(A-H,O-Z)
        F|MMAT (*1*)
        F|MMAT (*1*)
        P&INT 8BBE
        P&INT 8BBE
        DO 57 LG=1.9
        DO 57 LG=1.9
        RFAD , AX
        RFAD , AX
        N=-1
        N=-1
        SUM = 0.
        SUM = 0.
    SERIES = 1.
    SERIES = 1.
        Y = AX/2.
        Y = AX/2.
        N = N + 1
        N = N + 1
        RN=N
        RN=N
        BO =DLOG(1./AX+DSQRT(AX**(-2):-1.))
        BO =DLOG(1./AX+DSQRT(AX**(-2):-1.))
        TERM=DEXP ((RN4.500)* (-B0))/COSH(4RN+.500)*BO)
        TERM=DEXP ((RN4.500)* (-B0))/COSH(4RN+.500)*BO)
        SUM = SUM+TERM
        SUM = SUM+TERM
        IF(TERM - 1.OE-30) 52.51.51
        IF(TERM - 1.OE-30) 52.51.51
        SUM = OSQRT(AX**(-2) - 1.)*SUM
        SUM = OSQRT(AX**(-2) - 1.)*SUM
        K = 1
        K = 1
        SERIES = SERIES + (Y**K)*(-1***K)
        SERIES = SERIES + (Y**K)*(-1***K)
        ERROR = SUM - SERIES
        ERROR = SUM - SERIES
        PERCNT = ERROR/SUM*100.
        PERCNT = ERROR/SUM*100.
        PRINT 53
        PRINT 53
        FORMAT (*O* 8X,*A/X VALUE*.9X.'SUM**12X.'SERIES* *
        FORMAT (*O* 8X,*A/X VALUE*.9X.'SUM**12X.'SERIES* *
    $ 12X,* % ERROR *)
    $ 12X,* % ERROR *)
        ERROR = PERCNT
        ERROR = PERCNT
    PRINT 59,LG,AX,SUM,SERIES,ERROR
    PRINT 59,LG,AX,SUM,SERIES,ERROR
    FORMAT (* *IS.6(E15.7.2X))
    FORMAT (* *IS.6(E15.7.2X))
    Z (1. - SUM //AX
    Z (1. - SUM //AX
    PRINT 54,Z
    PRINT 54,Z
    ZZ = . 5
    ZZ = . 5
    PRINT 55,ZZ
    PRINT 55,ZZ
    FORMAT (O THE K VALUE OF THE GIPOLAR COORDINATE SOLUTION IS : *FBOG
    FORMAT (O THE K VALUE OF THE GIPOLAR COORDINATE SOLUTION IS : *FBOG
    $ F8.6)
    $ F8.6)
    FORMAT(* THE K VALUE OF OUR FIRST REFLECTION IS: *,F8.6)
    FORMAT(* THE K VALUE OF OUR FIRST REFLECTION IS: *,F8.6)
    ERR = Z-ZZ
    ERR = Z-ZZ
    IF (Z) 58.57.58
    IF (Z) 58.57.58
    PCNT = ERR/Z*100.
    PCNT = ERR/Z*100.
    PRINT 56, ERR,PCNT
    PRINT 56, ERR,PCNT
    FORMAT ( THE ERROR BETWEEN K VALUES IS: *,F9.5.3X. THE PERCENT ERR
    FORMAT ( THE ERROR BETWEEN K VALUES IS: *,F9.5.3X. THE PERCENT ERR
        $RROR IS: ,F9.6)
        $RROR IS: ,F9.6)
            CONTINUE
            CONTINUE
            PRINT 8888
            PRINT 8888
            STOP
            STOP
    END
    END
    REAL FUNCTION COSH*8(Z)
    REAL FUNCTION COSH*8(Z)
    IMPLICIT REAL*8(A-H*O-Z)
    IMPLICIT REAL*8(A-H*O-Z)
CUSH=(DEXP(Z) + DEXP(-Z))*.500000000
    RETURN
    END
```

```
7:! K VAIHF OF: THF HIPOLAF COORDINATE SOLUTION IS: 0.476134
1:1. K VALUE OF OUR FIRST REFLECTION IS: 0.500000
H:FROR H{T WIEN K VALUES IS: -0.02387 THE PERCENT ERROR IS: -5.012530
\begin{tabular}{cccccc} 
& A/XVALUE & SUM & SERIES & & \% ERROR \\
\(2.10000000-01 ~\) & 0.9950249000 & 0.9950000000 & \(0.25000620-02\)
\end{tabular}
```

Tit K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS : 0.497512 THF k, VALUE UF OUR FIRST REFLECTION IS: 0.500000 TH. FFRUR BETWEEN K VALUES IS: -0.0024' 9 THE PERCENT ERROR IS: -0.500013

| | A/XVALUE | SÚM | SERIES | X ERROR |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | $0.1000000 D-02$ | 0.9995002000 | 0.9995000000 | $0.25000010-04$ |

THE K VALUE CF THE BIPOLAR COORDINATE SOLUTION IS : 0.499750 TII: K VALUE OF OUR FIRST REFLECTION, IS: 0.500000
IH EKROR RETWEEN K VALUES IS: -0.00025 THE PERCENT ERROR IS: -0.050000

	A/XVALUE	SUM		SERIES	\% ERROR	
4	$0.1000 C O O D-03$	0.99995000	00	0.99995000	00	$0.25000000-06$

THE K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS: 0.499975 THE K VALUE OF OUR FIRST REFLECTION IS: 0.500000 THE EFRCR EETWEEN K VALUES IS: -0.00002 THE PERCENT ERROR IS: -0.005000

	A/XVALUE	SUM		SERIES		\% ERROR
5	$0.1000000 D-04$	$0.9999950 D$	00	0.99999500	00	$0.2500009 D-08$

THE K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS: 0.499998
THE K VALUE OF OUR FIRST REFLECTION IS: 0.500000
TH EHRCR BETWEEN K VALUES IS: -0.00000 THE PERCENT ERROR IS: -0.000500

	a/x value	SUM		SERIES		\% ERROR
6	0.10000000-05	0.99999950	00	0.99999950	00	$0.2495366 \mathrm{D}-10$

THE K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS : 0.500000
THE K VALUE OF OUR FIRST REFLECTION IS: 0.500000
THF ERRUR EETWEEN K VALUES IS: -0.00000 THE PERCENT ERROR IS: -0.000050

THE K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS : 0.500000
THE K VALUE OF DUR FIRST REFLECTION IS: 0.500000
THE EFFOR EETWEEN K VALUES IS: -0.00000 THE PERCENT ERROR IS: -0.000009
A/X VALUE
$8 \quad 0.10000000-07$
SUM
0.1000000001
SERIES
0.1000000001
\% ERROR
0.3247402D-12

THL K VALUE OF THE BIPOLAR COORDINATE SOLUTION IS : 0.500000 THF K VAI UI UF OUH FIRST REFLECTION IS: 0.500000 THA FURGR BITWEEN K VALUES IS: -0.00000 THE PERCENT ERROR IS: -0.000065

$$
\begin{array}{cccccc}
& \text { A/XVALUE } & \text { SUM } & & \text { SERIES } & \\
9 & 0.10000000-08 & 0.1000000001 & 0.1000000001 & 0.55094820-12
\end{array}
$$

APPENDIX C

A comparison with a toroidal coordinate solution
A third comparison can exist for which the accurate and exacting closed form solution to Laplace's equation are known. A large number óf sphéres, all tangent to each other can be used to approximate a torold. For N spheres touching, as shown in figure 5 , the a/x。 value is related to the number of spheres, N, by:

$$
\left[a / x_{0}\right]_{\max }=\sin (\pi / N)
$$

To be larger than this value of a / x, would imply the crushing of spheres into each other.

Comparing the results for a first order correction and the toroidal solution, an fmense error is noted which grows with an increase in the number of spheres. These results are depicted in Table 2 . This error is due to the concentrated nature of this system. When spheres tend to touch each other the higher order terms are extremely significant and their truncation leads to a large error. For proper accuracy:

$$
\left[a / x_{0}\right] /\left[a / x_{0}^{1}\right]_{\max } \ll 1
$$

and;

$$
a / x_{0} \int_{0}^{\infty} \frac{\sinh [(\{N-1\} / N) \pi \tau] d \tau}{\sinh [\tau \theta / N] \cosh (\pi \tau)}<1
$$

The accuracy of the first order correction is dependent upon the a/xo values, and until the higher order terms of this reflection series are developed or until accurate closed form solutions to Laplace's equation are developed for spheres in regular polygonal arrays a precise and

```
accurate error analysis is impossible. However combining
the results of the computer
comparisons with bipolar and toroidal coordinates one can
speculate that the percentage of error might be of the form:
\[
\% \text { error }=25\left[a / x_{0} /\left(a / x_{0}\right)_{\max }\right]^{2}
\]
```

The computer program from which the data in table 2 is derived follows table 2 .

TABLE 2

A comparison with a toroidal coordinate solution

Spheres	Q-1storder	Q - toro1dal	\%error
4	.7071066	.5099413	169.3%
10	.3090169	.3243985	527.6
50	.0627904	.2070628	1565.

Tangency of N Spheres

$$
\begin{aligned}
& \partial / x_{0}=\sin (\theta) \\
& \theta=\pi / N \\
& \left(\partial / x_{0}\right)_{\max }=\sin (\pi / N)
\end{aligned}
$$

** WATFTV VERSION $1.3 * * *$ JOB=002
DAVID HORTAT
$74 / 14821: 39: 09 * * *$ ATFIV ***

```
$ J08
c
C DAVID HORWAT ***THESIS***
    TERM = {FXO * 4.*FX1 +FX2)/3**ELTA
    AREA = AREA + TERM
```

1
1
2
3
4
5
6
6
7
8
8
9

```
49
0
2
    PRINT 3.N.AREA.TERM
    FORMAT ( THE NUMBER OF SPHERES 1S: * I4.* THE INTEGRAI IS:,F15
    *.3."TOLERANCE. E15.6)
        SERIES = 1.0
        Y = AX*AREA
        K=1
        SERIES = SERIES * (Y**K)*(-1,***K)
        ERROR = SUM - SERIES
        PERCNT = ERROR/SUM*100.
        PRINT , K,AX.SUM,SERIES.ERROR,PERCNT
        Z =1. - SUM |/AX
        PRINT 54, 2
        ZZ = AREA
        PRINT 55.2Z
        FORNAT (O THE K VALUE OF THE TOROID COORDINATE SOLUTION IS : *F.G)
    $ E 15.6)
        FORMAT(" THE K VALUE OF OUR FIRST REFLECTION IS: ,E 15.6)
        ERR = Z-ZZ
        PCNT = ERR/Z*100.
    7 PRINT 56 ERR.PCNT
        FORMAT (" THE ERROR BETWEEN K VALUES IS: .F8.3.3X, THE PERCENT ERR
        SRROR IS: ,E 15.6)
        STOP
        END
    FUNCTION FUNC (X)
    COMMON N , OAX
    Z =N
    ARG = 3.1415926535*X/FLOAT(N)
    Y = ARG
    FUNC = TANH(Z*Y)/TANH(Y)-1
    RETURN
    END
    FUNCTION TANH(X)
    IF(x-25.)2,2,3
    TANH=(EXP(X)-EXP(-X))/(EXP(X)+EXP(-X))
        GO TO 4
        TANH=10
        RETURN
    END
    FUNCTION FACTN(MX)
    k = 1
    IF (MK) 2.2.3
    DO 1 L = 1.MK
    K=K素L
    ACTN =K
    RETURN
    END
    FUNCTION PSI1(K)
    SUM = - 57721566
    IF(K) 2.2.3
```

```
1 0 1
```

150
159
$k=J G-1$
$R K=K$
DEN $=1$.
$I A=2$ 本 $x+1$
H $\mathrm{H}=2 * \mathrm{~N}-2 * K-1$
IF (IB) $12,12,11$
$006 \mathrm{~L}=1 \mathrm{~A} \cdot 1 \mathrm{~B} \cdot 2$
DEN = DEN*FLOATIL
TERM = FACTN(N-K-1)/FACTN(K)*EXP(-2**R*OELTA)*2.**(N-2*K)/DEN
SUM $=$ SUM $1+$ TERM
SUM1 = SUM1FFACTOR
SUM2 $=0.00$
$K=-1$
$k=k+1$
$R K=K$

```

```

 \(32(K+N))\)
 NUM \(=1\)
 \(1 C=2 N+2 x^{2} k-1\)
 IF (TC, 13.13.10
 DO 7 L \(=1,16.2\)
 NUM \(=\) NUM*
 \(T D=2 k K-1\)
 IF \(10,14.14 .15\)
 DO \(8 \mathrm{~L}=1.10 .2\)
 NUM \(=\) NUM*L
 TERM \(=\) FLGAT(NUM)/FACTN(K*N)/FACTN(K)/2***N+2*K)*TERM2
 SUMZ \(=\) SUM2 + TERM
 IF (TERM - 1.OE-10) 5,4,4
 SUM2 \(=\) SUM2*FCTOR2
 \(P=\) SUM1 + SUM2
 PRINT 9,N.Z.P
 FORMAT: \(p\). \(2, *-1 / 2(*, F 6,1, *=*, E 12,6)\)
 \(N=A\)
 RETURN
 END
 SENTRY
$00-1 / 2(318.3)=0.124512 E 00$
$p \quad 0-1,2(318.3)=0.197876 \mathrm{E} 00$
P $1-1 / 2(318.3)=0.160629 E 02$
$0 \quad 1-1 / 2(318.3)=0.977915 E-04$

```

WRONSKIAN ACTUAL \(0.1999993 E\) OIWRONSKIAN THEORETICAL O. \(2000000 E 01\)
ERROR -0.6675720E-05 PERCENT ERROR -0.3337860E-03
a \(1-1 / 2(318.3)=0.977915 E-04\)
P \(1-1 / 2(318.3)=0.160629 E 02\)
\(p \quad 2-1 / 2(318.3)=0.681723 E 04\)
Q \(2-1 / 2(318.3)=0.115208 E-06\)
WRONSKIAN ACTUAL O.6666647E OOWRONSKIAN THEDPETICAL O.6666666E OO
ERROR -0.1966953E-O5 PERCENT ERROR -0.2950430E-03
\(p \quad 2-1 / 2(318.3)=0.631723 E 04\)
\(p \quad 3-1 / 2(318.3)=0.347198 E 07\)
\(p \quad 3-1 / 2(318.3)=0.347198 E 07\)
\(0 \quad 3-1 / 2(318.3)=0.150809 E-09\)
WRONSKIAN ACTUAL O.3999990E OOWRONSKIAN THEORETICAL O. \(4000000 E 00\)
EFROR - \(0.9536743 E-06\) PERCENT ERROR \(-0.2384186 E-03\)
\(03-1 / 2(318.3)=0.150809 E-09\)
\(P \quad 3-1 / 2(318.3)=0.347198 E 07\)
p \(4-1 / 2(316.3)=0.189455 E 10\)
a \(4-1 / 2(316.3)=0.207278 E-12\)
WRONSKIAN ACTUAL O.2857141E OOWRONSKIAN THEORETICAL O.28S7143E 00
ERROR - \(0.1788139 E-06\) PERGENT ERROR \(-0.6258488 E-04\)
Q \(4-1 / 2(318.3)=0.207278 E-12\)
\(p \quad 4-1 / 2(316.3)=0.189455 E 10\)
P \(5-1 / 2(318.3)=0.107210 E 13\)
Q \(5-1 / 2(318.3)=0.293035 E-15\)
WRONSKIAN ACTUAL \(0.2222220 E\) OOWRONSKIAN THEORETICAL O.2222222E OO
```

ERFOR -0.2384186E-06 PERCENT ERROR -0.1072834E-03

```
\(Q \cdot 5-1 / 2(318.3)=0.293035 E-15\)
P \(5-1 / 2(318.3)=0.107210\) E 13
\(p\) 6-1/2(318.3) \(=0.620466 \mathrm{E} 15\)
\(\mathrm{a} 6-1 / 2(318.3)=0.421939 E-18\)
WRONSKIAN ACTUAL \(0.181 B 179 E\) OORONSKIAN THEORETICAL
\(0.1818181 E 00\)
ERROR - \(0.2364136 E-06\) PERCENT ERROR -0.1311302E-03
\(a \quad 6-1 / 2(318.3)=0.421939 E-18\)
\(p \quad 6-1 / 2(318.3)=0.620466 E 15\)
\(p \quad 7-1 / 2(318.3)=0.364618 E 18\)

Q \(7-1 / 2(318.3)=0.615436 E-21\)
WRONSKIAN ACTUAL \(0.1538460 E\) OOWRONSKIAN THEORETICAL O. \(1538461 E 00\) ERROR -0.1788139E-06 PERCENT ERROR -0.1162291E-03

THE NUMBER OF SPHERES IS: 1000 THE INTEGRAL IS: 2239.59000000 TOLERANCE \(0.00000000 E 00\) 1 0.3141587E-02 0.1275128E 00 \(0.0 .6035866 E 01 \quad 0.6163378 E \quad 01 \quad 0.4833535 E \quad 04\)

THE K VALUE OF THE TOROID COOROINATE SOLUTION IS: 0. \(277722 E 03\) THE K VALUE OF OUR FIRST REFLECTION IS: \(0.223959 E 04\)
THE ERROR EETWEEN K VALUES IS: ******* THE PERCENT ERROR IS: -0.706415E 03
CORE USAGE OBAECT CODE = 9912 EYTES.ARPAY APEA= GO GYTES.TOTAL AREA AVAILABLE= GJSB4 GYTES
DIAGNOSTICS NUMBER OF ERRORS = O, NUMEER OF WARNINGS= O NUMBER OF EXTENSIONS= O
COMPLLE TIME= 0.59 SEC,EXECUTION TIME= 0.50 SEC. WATFIV-VERSION 1 LEVEL 3 MARCH 1971```

