Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

A STUDY OF AN ADIABATIC TUBULAR

REACTOR FOR THE MULTIPLE CHLORINATION OF METHANE

ΒY

RICHARD L. BRAUN

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

 $\mathbf{T}\mathbf{A}$

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

> Newark, New Jersey 1974

APPROVAL OF THESIS

A STUDY OF AN ADIABATIC TUBULAR

REACTOR FOR THE MULTIPLE CHLORINATION OF METHANE

ΒY

RICHARD L. BRAUN

FOR

DEPARTMENT OF CHEMICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

ΒY

FACULTY COMMITTEE

APPROVEL.

NEWARK, NEW JERSEY

JUNE, 1974

ABSTRACT

A computer program has been developed which simulates the multiple chlorination of methane in an adiabatic, tubular reactor. Euler's method is used to approximate the solutions of the programs differential equations.

The program is designed to determine the amount of an inert diluent required in the feed stream to attain some specified conversion of methane in a safe and efficient temperature range. Particular emphasis is put on determining the amount of diluent required to attain 98% conversion of methane at an outlet temperature of 723°K. The program also determines the reactor volume necessary to achieve the specified conversion, and the product distribution at the reactor outlet.

The three diluents investigated were CCl_4 , HCl, and N₂. Relationships between reactor volume required to attain 98% conversion of methane at an outlet temperature of 723^oK and reactant feed temperature are presented for each diluent. The use of elevated pressure to reduce the reactor volume of the HCl inerted system is also discussed.

The developed program is readily adaptable to any set of operating data and should provide a useful tool for designing adiabatic, tubular reactors for exothermic, competitive, consecutive reactions.

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Dr. Deran Hanesian for his guidance and encouragement in this endeavor.

TABLE OF CONTENTS

	PAGE
APPROVAL PAGE	i
ABSTRACT	ii
ACKNOWLEDGEMENTS	111
TABLE OF CONTENTS	iv
LIST OF FIGURES	vi
LIST OF TABLES	viii
INTRODUCTION	l
LITERATURE SEARCH	4
Reaction Kinetics	. 4
Basic Data	5
THEORY	6
Determination of Reaction Temperature Range	6
Establishment of Rate Constants	8
Thermodynamic Considerations	14
Free Energy and Equilibrium Constants	14
Specific Heat and Heat of Reaction	17
Establishment of the Mathematical Model	20
Mass Balance	20
Energy Balance	23
Computer Program	25
DISCUSSION OF RESULTS	28
Carbon Tetrachloride as an Inert Diluent	30
Hydrogen Chloride as an Inert Diluent	33
Nitrogen as an Inert Diluent	38

A Comparison of Three Diluents	44
Effect of Pressure on the HCl System	47
CONCLUSIONS	49
RECOMMENDATIONS	51
NOMENCLATURE	52
REFERENCES	54
APPENDIX	56
APPENDIX TABLE OF CONTENTS	57

PAGE

LIST OF FIGURES

NUMBER	TITLE	PAGE
1	Temperature Dependency of the Chlorina- tion of Methane Reaction Rate	9
2	Temperature Dependency of the Chlorina- tion of Methyl Chloride Reaction Rate	11
3	Temperature Dependency of the Chlorina- tion of Methylene Chloride Reaction Rate	12
4	Temperature Dependency of the Chlorina- tion of Chloroform Reaction Rate	13
5	Resolved Rate Constant Data for Multiple Chlorinations of Methane	15
6	Logic Diagram	27
7	Variation of Reactor Volume With Inlet Temp. Using CCl4 as the Diluent	32
8	Product Distribution Vs. Moles Cl ₂ Reacted/Mole CH4, T ₀ = 573°K, I = 15.0 Moles CCl4/Mole CH4	35
9	Variation of Reactor Volume With Inlet Temp. Using HCl as the Diluent	37
10	Product Distribution Vs. Moles Cl_2 Reacted/Mole CH4, $T_0 = 573^{\circ}K$, I = 51 Moles HCl/Mole CH4	39
11	Variation of Reactor Volume With Inlet Temp. Using N ₂ as the Diluent	41
12	Product Distribution Vs. Moles Cl_2 Reacted/Mole CH_4 , $T_0 = 573^{\circ}K$, I = 50 Moles N_2 /Mole CH_4	43
13	Comparison of the Variation in Reactor Volume With Inlet Temp. for the Three Diluents Studied	45
14	Product Distribution Vs. Moles Cl_2 Reacted/Mole CH_4 , $T_0 = 573^{\circ}K$, $I = 51$ Moles HCl/Mole CH_4 , $P = 2.8$ Atm	48

		vii
NUMBER	TITLE	PAGE
15	Product Distribution Vs. Moles Cl_2 Reacted/Mole CH_4 , $T_0 = 523^{\circ}K$, $I = 11.3$ Moles CCl_4 /Mole CH_4	59
16	Product Distribution Vs. Moles Cl ₂ Reacted/Mole CH ₄ , T ₀ = 523°K, I = 38 Moles HCl/Mole CH ₄	60
17	Product Distribution Vs. Moles Cl_2 Reacted/Mole CH4, $T_0 = 523^{\circ}K$, $I = 38$ Moles N ₂ /Mole CH4	61

LIST OF TABLES

NUMBER	TITLE	PAGE
1	Free Energy of Reaction and Equilibrium Constants for Chlorination Reactions.	16
2	Constants for Molal Specific Heats of Gases	18
3	Constants for Heat of Reaction of Chlo- rination Reactions	19
4	Regression Equations for Predicting Con- version of Methane for Various Diluent Ratios	29
5	Results of Computer Study Using CCl4 as the Inert Diluent, Reactor Pressure - l Atm	31
6	Reactor Volume Required for Obtaining Various Degrees of Methane Conversion	34
7	Results of Computer Study Using HCl as the Diluent, Reactor Pressure - l Atm	36
8	Results of Computer Study Using HCl as the Diluent, Reactor Pressure - 2.8 Atm	36
9	Results of Computer Study Using N ₂ as the Diluent, Reactor Pressure - l Atm	40

INTRODUCTION

Series reactions such as the successive chlorination of methane or benzene, are industrially important type reactions. The general representation of such a reaction is

 $A \xrightarrow{+B,k_1} R \xrightarrow{+B,k_2} S \xrightarrow{+B,k_3} T.$ (10)

The thermal chlorination of methane in the vapor phase follows this reaction pattern and may be represented as follows

 $CH_4 \xrightarrow{+Cl_2, k_1} CH_3 Cl \xrightarrow{+Cl_2, k_2} CH_2 Cl_2 \xrightarrow{+Cl_2, k_3} CHCl_3 \xrightarrow{+Cl_2, k_4} CCl_4.$

The industrial importance of this reaction is indicated by the 1972 U. S. production statistics

Methyl chloride	-	200 million pounds	(17)
Methylene chloride	-	300 million pounds	
Chloroform	-	200 million pounds	
Carbon Tetrachloride	-	l billion pounds.	

These quantities are expected to double in the next decade.

Because the exothermic process is extremely temperature sensitive, and there is a close correlation between temperature, reaction time, and product distribution, careful control of the reaction temperature is imperative to product quality and safe operation. Various methods have been employed to control reaction temperature. Reaction moderating catalysts have been used as well as various light sources.⁽¹³⁾ On

1201

the laboratory scale McBee, Hass, Nether and Strickland (14)designed a multiple feed port reactor for feeding chlorine into a flowing stream of methane. Johnson, Parsons, and Roberts (6) used a fluid bed reactor to moderate the reaction temperature of the vapor phase reaction.

While all these techniques have merit, a more practical method for controlling the temperature of the vapor phase reaction in an industrial reactor appears to be recycling an inert diluent along with the reactants. The unreactive inert would act as a heat sink for the heat generated by the four exothermic reactions. By using the proper amount of inert a simple adiabatic, tubular, reactor, of proper volume, could be used to produce the chlorinated methanes over a safe and efficient temperature range. Product degradation would be minimized and the problem of flaming in the reactor avoided. Such a reaction system would also avoid the scale up complications, which might be associated with scaling complex fluid bed reactors and multiple feed reactors from laboratory and pilot plant size to industrial scale.

The purpose of this present work is to simulate the multiple chlorination of methane in an industrial size, adiabatically operated, tubular reactor. The reactor model will be used to determine

 The amount of inert diluent required in the feed stream to properly moderate the reaction temperature over a safe and efficient operating range.

- 2) The reactor volume necessary to achieve a specified conversion of the methane.
- 3) The variation in product distribution with reactor operating conditions.

Based on these results optimum operating conditions will be discussed.

LITERATURE SEARCH

Reaction Kinetics

The reaction kinetics of the thermal chlorination of methane has been studied by a number of investigators. Pease and Walz⁽¹⁶⁾ established that the rate of chlorination of methane in the vapor state without the presence of oxygen is proportional to the concentrations of methane and chlorine. This observation has been confirmed by other authors^{(12),(18)} who found the successive chlorinations of methane to be bimolecular, irreversible and hence kinetically second order.

We can then state that the successive chlorination of methane fits into a class of homogeneous, competitive, consecutive reactions which can be represented by the following set of equations.

$$cH_4 + cl_2 \xrightarrow{k_1} cH_3 cl + Hcl \qquad (1)$$

$$CH_3Cl + Cl_2 \xrightarrow{K_2} CH_2Cl_2 + HCl$$
 (2)

$$CH_2Cl_2 + Cl_2 \xrightarrow{K_3} CHCl_3 + HCl$$
(3)

$$CHCl_3 + Cl_2 \xrightarrow{\kappa_4} CCl_4 + HCl \qquad (4)$$

The rate constants for the four reactions have been studied by various authors. Pease and Walz determined rate constants in terms of sec.⁻¹.atm.⁻¹ for reactions (1) and (2) run in glass tubes in the temperature range of 225 to

245°C. Johnson, Parsons, and Roberts obtained rate constants for all four reactions also in terms of sec.⁻¹. atm.⁻¹. These experiments were carried out in a fluid bed reactor. Arai⁽¹⁾ studied the rate constants of all four reactions in the temperature range of 275 to 370°C in electrically heated tubes. His data are presented in terms of gm mole.hr⁻¹.ml⁻¹.atm⁻².

The data of these investigators is presented in Figures 1 to 4. For the purposes of this study all rate constant data is presented in terms of ft³.lb mole⁻¹.hr⁻¹. The following conversions were used to convert the data of the various authors to the desired units.

$$k(ft^{3} \cdot lb \ mole^{-1} \cdot hr^{-1}) = k(gm \ mole \cdot hr^{-1} \cdot ml^{-1} \cdot atm^{-2})(T^{2})(1.07 \times 10^{2})$$
$$= k(sec^{-1} \cdot atm^{-1})(T)(4.73 \times 10^{3})$$
(5)

Basic Data

The literature was also searched for thermodynamic data necessary for the solution of the energy balance equation. The pertinent data, specific heats, free energies of reactions, and heats of formation were obtained from the JANAF Tables⁽⁵⁾.

THEORY

The expressions necessary to develop a mathematical model for the thermal chlorination of methane in an adiabatic, plug flow reactor are considered below. The development which follows assumes ideal performance and neglects pressure drop in the reactor.

Determination of Reaction Temperature Range

As previously noted the reaction between chlorine and methane involves four successive, highly exothermic, reactions. Each generates approximately 45,000 BTU per 1b mole of compound reacted. If this heat is not controlled the temperature of the reacting mass will rise to a point where other secondary reactions predominate and the formation of unwanted by-products becomes significant.

Various authors have found that if the temperature of the reaction is not carefully controlled, deleterious side reactions can occur which may result in product degradation at best and flaming in the reactor or violent explosions at worst. According to Jones, Allison, and Meighan⁽⁷⁾ "if the temperature of the reaction rises above 500° C, the reaction may react explosively to form carbon according to the formula"

$$CH_{\mu} + 2Cl_2 \longrightarrow C + 4HCl.$$
 (6)

Wilson and Howland (19) confirm this and show that the above reaction generates heat at a rate of over 100,000 BTU per lb mole of methane reacted. They also state that as carbon is formed it accelerates the reaction autocatalytically which leads to the production of additional carbon. Other factors studied by these authors show that while the chlorination reactions are moderate at 250°C, they are rapid at 400°C and all components present, except for carbon tetrachloride, are liable to decompose exothermally at temperatures above 450°C.

Pease and Walz in their chlorination study found that at reaction temperatures above 400° C when methane is in excess the reaction is rapid but not explosive; however, when chlorine is in excess the mixture may become explosive. According to Kirk and Othmer⁽⁸⁾ all commercial processes for the manufacture of chloromethanes are operated in the temperature range of 350 to 500°C. Using this temperature range takes advantage of the high reaction rates without reaching decomposition temperatures.

Various techniques have been tried to moderate the reaction temperature. McBee, Hass, and Nether used a multiple feed port reactor for feeding chlorine into a flowing stream of methane. Johnson, Parsons, and Roberts used a fluid bed reactor to moderate the reaction temperature. They also found that when the reaction temperature reaches 450°C, unless the chlorine molar concentration is below 10 to 15%, ignition and pyrolysis can take place in the reactor.

From the preceding discussion it is clear that when performing the multiple chlorination of methane it is important to make constructive use of the high heats of reactions without creating a temperature situation in the reactor which might cause uncontrollable reactions. The literature clearly stresses the fact that at temperatures below 250° C the thermal chlorination reactions are slow and sluggish, while at a temperature above 500° C product degradation is likely to occur because the rates of side reactions predominate. For the purposes of this work, it was therefore decided to study the reactions in the temperature range of 250° C (523° K) to 450° C (723° K). This range seems particularly desirable for industrial purposes as it achieves high rates of reaction without reaching temperatures which cause undesirable side reactions.

Establishment of Rate Constants

In establishing rate constant data for this study the literature search uncovered three major sources. Since some variation between the data existed, resolution was necessary.

As can be seen in Fig. 1 rate constants of Pease and Arai for the methane reaction, Eq. 1, are in agreement. Both authors also determined the activation energy of the reaction to be approximately 31,000 calories/gm mole. While the data of Johnson, Parsons, and Roberts differs from the other investigators, this is expected since they observed that the energy of activation of the methane reaction is significantly reduced

to 20,000 calories/gm mole when the reaction is carried out in a fluid bed reactor. However, in a separate experiment performed in an empty tubular reactor, similar to that of Pease, they obtained an energy of activation in close agreement with that proposed by Arai and Pease.

The consistancy of the rate constant data for the methane chlorination in an empty plug flow reactor is apparent from the above data, and thus, for the purposes of this study the data of Arai were selected.

Figure 2 shows the rate constants of Johnson, Parsons, Roberts and Arai for the chlorination of methyl chloride. Both investigators found an activation energy for this reaction of approximately 18,000 calories/ gm mole. Johnson, Parsons and Roberts also observed that the ratio of k_2 to k_1 to be 2.0. This was confirmed by Pease and Natta⁽¹⁵⁾, who found k_2/k_1 to be approximately 2 at a temperature of 315° C. The rate constant data were therefore determined by using an activation energy of 18,000 calories/gm mole and a value of k_2 at 315° C of $1.1x10^{6}$ ft³·1b mole⁻¹·hr⁻¹ which represents a ratio for k_2/k_1 of 2.0.

As can be seen in Fig. 3 the data of both investigators are in excellent agreement for the methylene chloride chlorination. Resolution was therefore unnecessary.

Average values of the data presented in Fig. 4 were taken to obtain the relationship between rate constant (k_{l_L}) and

temperature (T) for the chloroform reaction. The ratio of k_4/k_1 at 315°C obtained from the averaged data is 0.38. This value agrees with the k_4/k_1 ratio reported by Kobert and Troltenier⁽⁹⁾.

Rate constants versus reciprocal of absolute temperature for the four successive chlorinations are presented in Fig. 5. The equations which represent these data according to the Arrhenius law are

$$k_1 = 7.980 \times 10^{16} \cdot \exp(-30036/RT)$$
(7)

$$k_2 = 5.479 \times 10^{10} \cdot \exp(-17962/RT)$$
 (8)

$$k_3 = 5.894 \times 10^{12} \cdot \exp(-18930/RT)$$
 (9)

$$k_{\mu} = 3.480 \times 10^{12} \cdot \exp(-19415/RT)$$
 (10)

Thermodynamic Considerations

Free Energy and Equilibrium Constants

Free energy data for the reactants and products of the four chlorination reactions was obtained from JANAF Tables. Free energy changes for each reaction were then calculated at temperatures of 500 and 700° K, the extremeties of the operating range. Equilibrium constants were calculated using the equation

$$K_{eq} = \exp(-\Delta F/RT)$$
(11)

Results are summarized in Table 1. These data were in close agreement with that of Wilson and Howland, also shown in Table 1.

TABLE 1

<u>Free Energy of Reaction and Equilibrium</u> <u>Constants for Chlorination Reactions</u>

Reaction	∆F 500 ⁰ K	ΔF 700 ⁰ K	^K eq 500 ⁰ K	Keq 700 ⁰ K
Chlorination of	-26287	-26886	3.4x10 ¹¹	2.66x10 ⁸
СН4	(-25308)	(-25928)	(9.8x10 ¹⁰)	(l.lx10 ⁸)
Chlorination of	-23858	-24027	2.93x10 ¹⁰	3.38x10 ⁷
CH3Cl	(-23691)	(-23912)	(2.0x10 ¹⁰)	(2.6x10 ⁷)
Chlorination of	-23504	-23261	2.05x10 ¹⁰	1.94x10 ⁷
CH2Cl2	(- 22719)	(-22548)	(7.3x10 ⁹)	(9.9x10 ⁶)
Chlorination of	-20521	- 19799	1.01x10 ⁹	1.60x10 ⁶
CHCl3	(-21412)	-	(4.2x10 ¹¹)	-

1) ΔF in calories per gm mole

2) Wilson's data shown in parenthesis

As stated by Levenspiel⁽¹¹⁾ " $K_{eq} >> 1$ indicates that practically complete conversion is possible and the reaction can be considered to be irreversible". Since irreversibility exists and all reactions proceed essentially to completion, it was deemed unnecessary to calculate the equilibrium conversion.

Specific Heat and Heat of Reaction

The specific heat and heat of formation data obtained from the literature were used to derive the basic equations necessary for the solution of the energy balance. The heat of formation of the components was used to determine the heat of reaction of the four primary chlorinations at various temperatures using the following equation

$$\left[\Delta H_{R} = \Sigma \Delta H_{F}(\text{products}) - \Sigma \Delta H_{F}(\text{reactants})\right]_{T=0K}$$
(12)

These data along with the specific heat were programed into the 1130 computer and using a International Business Machines regression analysis routine $MULTR^{(4)}$, based on least square polynomial fit, equations relating specific heat and heat of reaction as functions of temperature were obtained. These equations are shown in Tables 2 and 3. Values from the derived equations were checked with published data, and found to be in excellent agreement.

TABLE 2

Constants for Molal Specific Heats of Gases

Equation Form: $cp = a + b \cdot 10^{-2}T - c \cdot 10^{-5}T^{2}$ where T is in ^oK; BTU/(lb mole)(^oK)

Component	<u>a</u>	<u>b</u>	<u></u>
CH4	7.826	2.40	· ••••
сн ₃ сі	5•372	4.50	1.684
CH ₂ Cl ₂	9.143	5.112	2.365
chci3	16.731	4.878	2.558
ccl ₄	26.617	4.176	2.468
HCl	11.905	.1458	-
Cl ₂	14.494	.1944	-
N2	11.578	.2376	-

TABLE 3

Constants for Heat of Reaction of

Chlorination Reactions

Equation Form: $\Delta H_R = a + b \cdot T + c \cdot 10^{-2} T^2 + d \cdot 10^{-6} \cdot T^3$ where T is in ^oK; BTU/lb mole

Reaction		<u> </u>	<u> </u>	<u> </u>	d	
Chlorination	of	CH4	-44699	-0.7041	.2662	-1.5005
Chlorination	of	сн ₃ сі	-43704	3.6186	-3.7152	-0.6007
Chlorination	of	CH ₂ Cl ₂	-46135	7.2468	-0.0053	1.4998
Chlorination	of	CHC13	-43576	9.2448	-0.7250	0.0225

Establishment of the Mathematical Model

Mass Balance

The thermal chlorination of methane fits into a class of competitive-consecutive reactions which can be represented by equations 1 to 4. Since the reactions are irreversible, constant volume, and bimolecular, the rate expressions describing the above reactions are

$$r_{CH_{\mu}} = dC_{CH_{\mu}}/dt = -k_1 C_{CH_{\mu}} C_{Cl_2}$$
(13)

$$r_{CH_{3}C_{1}} = dC_{CH_{3}C_{1}}/dt = k_{1}C_{CH_{4}}C_{C1_{2}} - k_{2}C_{CH_{3}C_{1}C_{1}C_{1}}$$
(14)

$$r_{CH_2Cl_2} = dC_{CH_2Cl_2}/dt = k_2C_{CH_3Cl_2} - k_3C_{CH_2Cl_2}C_{Cl_2}$$
(15)

$$r_{CHCl_{3}} = dC_{CHCl_{3}}/dt = k_{3}C_{CH_{2}Cl_{2}}C_{Cl_{2}} - k_{4}C_{CHCl_{3}}C_{Cl_{2}}$$
(16)

$$\mathbf{r}_{\mathrm{CCl}_{4}} = \mathrm{d}_{\mathrm{CCl}_{4}}/\mathrm{d} \mathbf{t} = \mathbf{k}_{4} \mathrm{C}_{\mathrm{CHCl}_{3}} \mathrm{Ccl}_{2} \tag{17}$$

$$\mathbf{r}_{\text{HCl}} = \frac{dc_{\text{HCl}}}{dt} = \frac{k_1 c_{\text{CH}_4} c_{\text{Cl}_2}}{+k_3 c_{\text{CH}_2} c_{\text{Cl}_2}} + \frac{k_2 c_{\text{CH}_3} c_{1} c_{1}}{+k_4 c_{\text{CHCl}_3} c_{12}}$$
(19)

For purposes here the rate expressions will be written in terms of total pressure and component mole fractions. The mathematical manipulation for converting the methane rate expression is shown below and the other rate expressions are similar. Since the ideal gas law applies

$$C_{CH_{\mu}} = P_{CH_{\mu}}/RT$$
 (20)

$$C_{Cl_2} = P_{Cl_2}/RT$$
 (21)

and according to Dalton's law of partial pressures

$$P_{CH_{\mu}} = P_{TOT} \cdot y_{CH_{\mu}}$$
(22)

$$P_{Cl_2} = P_{TOT} \cdot y_{Cl_2}$$
 (23)

Combining equations 20 and 22 and equations 21 and 23 and substituting the results into Eq. 13, Eq. 24 results.

$$\mathbf{r}_{\mathrm{CH}_{\mu}} = \frac{-\mathbf{k}_{1} \cdot \mathbf{P}_{\mathrm{TOT}}^{2} \cdot \mathbf{y}_{\mathrm{CH}_{\mu}} \cdot \mathbf{y}_{\mathrm{Cl}_{2}}}{(\mathrm{RT})^{2}}$$
(24)

The other rate expressions written in this form are:

$$\mathbf{r}_{\mathrm{CH}_{3}\mathrm{Cl}} = \frac{\mathbf{P}_{\mathrm{TOT}}^{2}}{(\mathrm{RT})^{2}} \left(\mathbf{k}_{1} \cdot \mathbf{y}_{\mathrm{CH}_{4}} \cdot \mathbf{y}_{\mathrm{Cl}_{2}} - \mathbf{k}_{2} \mathbf{y}_{\mathrm{CH}_{3}\mathrm{Cl}} \cdot \mathbf{y}_{\mathrm{Cl}_{2}} \right)$$
(25)

$$\mathbf{r}_{CH_2Cl_2} = \frac{P_{TOT}^2}{(RT)^2} \left(\mathbf{k}_2 \cdot \mathbf{y}_{CH_3Cl_2} \cdot \mathbf{y}_{Cl_2} - \mathbf{k}_3 \cdot \mathbf{y}_{CH_2Cl_2} \cdot \mathbf{y}_{Cl_2} \right)$$
(26)

$$\mathbf{r}_{\mathrm{CHCl}_{3}} = \frac{\mathbf{P}_{\mathrm{TOT}}^{2}}{(\mathrm{RT})^{2}} \left(\mathbf{k}_{3} \cdot \mathbf{y}_{\mathrm{CH}_{2}\mathrm{Cl}_{2}} \cdot \mathbf{y}_{\mathrm{Cl}_{2}} - \mathbf{k}_{4} \cdot \mathbf{y}_{\mathrm{CHCl}_{3}} \cdot \mathbf{y}_{\mathrm{Cl}_{2}} \right)$$
(27)

$$\mathbf{r}_{\mathrm{CCl}_{4}} = \frac{\mathbf{P}_{\mathrm{TOT}}^{2}}{(\mathrm{RT})^{2}} \left(\mathbf{k}_{4} \cdot \mathbf{y}_{\mathrm{CHCl}_{3}} \cdot \mathbf{y}_{\mathrm{Cl}_{2}} \right)$$
(28)

$$\mathbf{r}_{Cl_{2}} = -\frac{\mathbf{P}_{TOT}^{2}}{(\mathbf{RT})^{2}} \left(\mathbf{k}_{1} \cdot \mathbf{y}_{CH_{4}} \cdot \mathbf{y}_{Cl_{2}} + \mathbf{k}_{2} \cdot \mathbf{y}_{CH_{3}} \mathbf{cl} \cdot \mathbf{y}_{Cl_{2}} + \mathbf{k}_{3} \cdot \mathbf{y}_{CH_{2}} \mathbf{cl}_{2} \cdot \mathbf{y}_{Cl_{2}} + \mathbf{k}_{4} \cdot \mathbf{y}_{CHCl_{3}} \cdot \mathbf{y}_{Cl_{2}} \right)$$
(29)

$$\mathbf{r}_{\mathrm{HC}_{1}} = \frac{\mathbf{P}_{\mathrm{TOT}}^{2}}{(\mathrm{RT})^{2}} \begin{pmatrix} k_{1} \cdot \mathbf{y}_{\mathrm{CH}_{4}} \cdot \mathbf{y}_{\mathrm{Cl}_{2}} + k_{2} \cdot \mathbf{y}_{\mathrm{CH}_{3}} \mathrm{cl}^{\cdot \mathbf{y}_{\mathrm{Cl}_{2}}} \\ + k_{3} \cdot \mathbf{y}_{\mathrm{CH}_{2}} \mathrm{cl}_{2} \cdot \mathbf{y}_{\mathrm{Cl}_{2}} + k_{4} \cdot \mathbf{y}_{\mathrm{CHCl}_{3}} \cdot \mathbf{y}_{\mathrm{Cl}_{2}} \end{pmatrix}$$
(30)

With all rate expressions properly defined, the component mass balances for all species involved in the reaction system are developed. In preparing the mass balances the plug flow assumption is made. It is further assumed that there is negligible diffusion relative to the bulk $flow^{(3)}$.

Let P and Q be two planes containing between them an infinitesimal part dV_R of the total reactor volume, V_R . Let F_{TOT} be the total molar flow rate across either of these planes. This is a valid restriction for the complex chloromethane system since the total moles in the system is fixed by the stociometry of the reaction and is constant at any point in the reactor. Further let y_1 and $y_1 + dy_1$ be the lb moles of any component per unit lb mole of the fluid at planes P and Q respectively. In accordance with the plug flow assumption these mole fractions are uniform over the cross section as is the reaction rate and the molar flow rate. Finally let r_1 be the reaction rate of any component i. Then by mass balance.

$$F_{TOT}(y_1 + dy) = F_{TOT}y_1 + r_1 dV_R$$
(31)

$$\mathbf{F}_{\mathrm{TOT}} \mathrm{d}\mathbf{y}_{1} = \mathbf{r}_{1} \mathrm{d}\mathbf{V}_{\mathrm{R}} \tag{32}$$

$$\frac{\mathrm{d}\mathbf{y}_{\mathbf{i}}}{\mathrm{d}\mathbf{V}_{\mathrm{R}}} = \frac{\mathbf{r}_{\mathbf{i}}}{\mathbf{F}_{\mathrm{TOT}}} \tag{33}$$

Based upon this analysis individual mass balance equations for all reacting species can be rewritten as:

$$dyCH_{\mu}/dV_{R} = r_{CH_{\mu}}/F_{TOT}$$
(34)

$$dyCH_{3}C1/dV_{R} = r_{CH_{3}C1}/F_{TOT}$$
(35)

$$dyCH_2Cl_2/dV_R = r_{CH_2Cl_2}/F_{TOT}$$
(36)

$$dyCH_{3}Cl/dV_{R} = r_{CHCl_{3}}/F_{TOT}$$
(37)

$$dyCCl_{\mu}/dV_{R} = r_{CCl_{\mu}}/F_{TOT}$$
(38)

$$dycl_2/dV_{\rm R} = r_{\rm Cl_2}/F_{\rm TOT}$$
(39)

$$dyHCl/dV_{R} = r_{HCl}/F_{TOT}$$
(40)

Energy Balance

Since the reaction takes place adiabatically and the system is an exothermic one, the temperature will rise as the reactor volume, V_R , increases. As the reactions take place the heat liberated in a differential volume, dV_R , due to the four simultaneous chlorinations must equal the gain in enthalpy of the following stream. Mathematically the heat generation terms may be expressed as

Heat Generation = $\Delta H_{R_1} \cdot F_{CH_4} \cdot X_{CH_4} + \Delta H_{R_2} \cdot F_{CH_3}Cl \cdot X_{CH_3}Cl$

+
$$\Delta H_{R_3} \cdot F_{CH_2Cl} + X_{CH_2Cl_2} + \Delta H_{R_3} \cdot F_{CHCl_3} \cdot X_{CHCl_3}$$
(41)

The gain in enthalpy of the stream may be expressed as Enthalpy Gain = Molar Flow rate · Specific Heat · Temperature or Enthalpy Gain = $(F_{CH_4} \cdot cP_{CH_4} + F_{CH_3}c1 \cdot cP_{CH_3}c1 + F_{CH_2}c1_2 \cdot cP_{CH_2}c1$ $+ F_{CHC1_3} \cdot cP_{CHC1_3} + F_{CC1_4} \cdot cP_{CC1_4} + F_{C1_2} \cdot cP_{C1_2}$ $+ F_{HC1} \cdot cP_{HC1} + F_{N_2} \cdot cP_{N_2}) dT$ (42)

Since

$$\mathbf{F}_{\mathrm{CH}_{l_{L}}} \cdot \mathbf{X}_{\mathrm{CH}_{l_{L}}} = \mathbf{r}_{1} \mathrm{dV}_{\mathrm{R}} \tag{43}$$

$$F_{CH_3Cl} \cdot X_{CH_3Cl} = r_2 dV_R$$
 (44)

$$\mathbf{F}_{\mathrm{CH}_{2}\mathrm{Cl}_{2}} \cdot \mathbf{X}_{\mathrm{CH}_{2}\mathrm{Cl}_{2}} = \mathbf{r}_{3} \mathrm{dV}_{\mathrm{R}}$$
(45)

$$F_{CHCl_3} \cdot X_{CHCl_3} = r_4 dV_R \tag{46}$$

and

$$\mathbf{F}_{\mathrm{CH}_{l_{L}}} = \mathbf{F}_{\mathrm{TOT}} \cdot \mathbf{y}_{\mathrm{CH}_{l_{L}}} \tag{47}$$

$$F_{CH_3Cl} = F_{TOT} \cdot y_{CH_3Cl}$$
(48)

$$\mathbf{F}_{\mathrm{CH}_{2}\mathrm{Cl}_{2}} = \mathbf{F}_{\mathrm{TOT}} \cdot \mathbf{y}_{\mathrm{CH}_{2}\mathrm{Cl}_{2}} \tag{49}$$

$$\mathbf{F}_{\text{CHCl}_3} = \mathbf{F}_{\text{TOT}} \cdot \mathbf{y}_{\text{CHCl}_3} \tag{50}$$

$$\mathbf{F}_{\mathrm{CCl}_{\mu}} = \mathbf{F}_{\mathrm{TOT}} \cdot \mathbf{y}_{\mathrm{CCl}_{\mu}} \tag{51}$$

$$F_{Cl_2} = F_{TOT} \cdot y_{Cl_2}$$
 (52)

$$\mathbf{F}_{\text{HCl}} = \mathbf{F}_{\text{TOT}} \cdot \mathbf{y}_{\text{HCl}}$$
(53)

$$\mathbf{F}_{N_2} = \mathbf{F}_{TOT} \cdot \mathbf{y}_{N_2} \tag{54}$$

the energy balance may be written in its final form:

$$\sum_{n=1}^{4} \Delta H_{R_n} \cdot \mathbf{r}_n \cdot dV_R = \sum_{i=1}^{8} F_{TOT} \cdot \mathbf{y}_i \cdot c\mathbf{p}_i \cdot dT$$
(55)

$$\frac{\mathrm{d}\mathbf{V}_{\mathrm{R}}}{\mathrm{d}\mathbf{T}} = \frac{\mathbf{F}_{\mathrm{TOT}} \quad \sum_{i=1}^{8} \mathbf{y_{i} \cdot cp_{i}}}{\frac{1}{4}} \qquad (56)$$

Computer Program

A computer program was developed for solving the mass and energy balance equations previously described. For purposes of this study, temperature was used as the independent variable and component mole fraction and reactor volume as the dependent (solution) variables. The initial conditions are

 $T_0 = T(0) = \text{Inlet feed temperature}$ $V_R(T_0) = V_0 = 0$ $y_1(V_0) = y_{10} = \frac{F_{10}}{F_{TOT}} .$
The mass and energy equations are then solved by a technique known as Euler's method for the approximate solution of first order differential equations. This method is described in detail by Carnahan, Luther, and Wilkes⁽²⁾.

If the step change is given by ΔT , then,

$$V_{R_{m}} = V_{R_{m-1}} + \Delta T \left(\frac{dV_{R}}{dT}\right)_{m-1}$$
(57)

$$\mathbf{y}_{\mathbf{i}_{m}} = \mathbf{y}_{\mathbf{i}_{m-1}} + \Delta \mathbf{V}_{\mathrm{R}} \left(\frac{\mathrm{d}\mathbf{y}_{\mathbf{i}}}{\mathrm{d}\mathbf{V}_{\mathrm{R}}} \right)_{\mathrm{m-1}}$$
(58)

Here V_{R_m} and y_{i_m} are respectively the reactor volume and component mole fractions at $T = m\Delta T$. At the beginning of the mth step the values of $y_{i_{m-1}}$ and $V_{R_{m-1}}$ have already been calculated. The values of dV_R/dT and dy_i/dV_R can be computed from equations 33 to 40 and Eq. 56. Then V_{R_m} and y_{i_m} can be computed from equations 57 and 58. The process is repeated for subsequent steps until the desired conversion of methane or the upper temperature limit is reached.

The program contains provision for printing values for temperature, reactor volume, conversion of methane, moles Cl_2 reacted/mole CH_4 , and product distribution of specified values of m. The logic diagram for the program is shown in Figure 6, and the program is given in the Appendix.

FIG. 6 LOGIC DIAGRAM

DISCUSSION OF RESULTS

In this study, control of the reaction temperature of the multiple chlorination of methane by three inert diluents, carbon tetrachloride, CCl_{4} , hydrogen chloride, HCl, and nitrogen, N₂, was investigated. While each is compatible with the reaction system, the two former are available as reaction products.

The reactant feed rates chosen for the study were 10 lb moles/hr CH_4 and 42 lb moles/hr Cl_2 . This feed stream was chosen since it is typical of the size used to feed a large reactor. A reactor or battery of reactors capable of handling this feed could produce several million pounds of chlorinated methanes per year. The reactant feed temperatures studied were $523^{\circ}K$ ($250^{\circ}C$), $543^{\circ}K$ ($270^{\circ}C$), $553^{\circ}K$ ($280^{\circ}C$), $563^{\circ}K$ ($290^{\circ}C$), and $573^{\circ}K$ ($300^{\circ}C$). The outlet temperature was set at $723^{\circ}K$ ($450^{\circ}C$).

For each feed temperature a set of three equations was developed relating conversion of methane as a function of 1b moles of diluent in the feed stream per 1b mole of CH_4 . These equations, presented in Table 4, were obtained by making a number of runs at each inlet temperature for various values of the diluent ratios. Values of conversion so obtained from each run were then correlated with the diluent ratio used. A regression equation at each inlet temperature for each inert

TABLE 4

REGRESSION EQUATIONS FOR PREDICTING CONVERSION

OF METHANE FOR VARIOUS DILUENT RATIOS

Equation Form: $X_A = A \cdot 10^{-1} + B \cdot 10^{-2} \cdot I + C \cdot 10^{-3}$.	uation Form: X	<i>i</i> =	A•10 ⁻¹	+	B•10 ⁻² •I	+	c.10-3.	ľ
--	----------------	------------	--------------------	---	-----------------------	---	---------	---

	<u>A</u>	<u></u> B	C
$T_0 = 523^{\circ}K$			
ccl4	3.3671	10.007	3.82
HCl	7.5970	0.574	
N ₂	7.8527	0.511	
$T_0 = 543^{\circ}K$,
ccl4	3.7480	8.283	2.76
HCl	7.2074	0.610	
N ₂	7.3810	0.588	
$T_0 = 553^{\circ}K$			
ccl_{4}	2.9865	9.048	2.95
HCl	7.3905	0.534	
N ₂	7.2436	0.579	
$T_0 = 563^{\circ}K$			
ccl ₄	7.4724	1.650	
HCl	7.3729	0.509	
N ₂	7.1842	0.556	
$T_0 = 573^{\circ}K$			
CC14	2.5288	8.583	2.49
HCl	7.0787	0.539	
N2	6.9019	0,582	

relating $X_A = f(I)$ was then obtained by using the International Business Machine regression analysis routine, MULTR, previously mentioned. (See page 17 and reference 4.) These equations were used to predict, at each inlet temperature, the amount of a particular inert required to achieve a conversion of 98% at an outlet temperature of 723°K. The predicted amount of inert was used to predict the reactor volume and product distribution.

Carbon Tetrachloride As An Inert Diluent

Results of using CCl_4 as an inert diluent and operating the reactor at 1 atmosphere are summarized in Table 5 and Figure 7. As T_0 is increased from 523 to 573°K the amount of CCl_4 necessary to achieve 98% conversion at an outlet temperature of 723°K increases from 11.3 lb moles/lb mole CH_4 to 15.0 lb moles/lb mole CH_4 . Roughly for each 10° rise in inlet temperature one additional lb mole of CCl_4 per lb mole of CH_4 is required in the feed stream.

As the inlet temperature increases from 523 to 573°K the reactor volume required to achieve 98% conversion decreases from 5720 ft³ to 990 ft³. Closer inspection of these data show that as the inlet temperature decreases from 573 to 543°K, a 30° change, the reactor volume approximately doubles. Reactor volume doubles again upon reducing inlet temperature an additional 20°, from 543 to 523°K. As can be seen from Figure 7, lowering the inlet temperature to below 523°K causes

TABLE 5

RESULTS OF COMPUTER STUDY USING

CC14 AS THE INERT DILUENT

т _О	I	V _R Product Dist (Mole Fra		Product Distribution (Mole Fraction)				V _R Product Distribu (Mole Fraction		
(°K)	$\left(\frac{\text{Moles CCl}_{4}}{\text{Mole CH}_{4}}\right)$	(ft ³)	сн ₃ сі	CH2C12	снс1 ₃	CC14				
523	11.3	3940	.0228	.4982	.1954	.2836				
543	12.5	2060	.0232	.5218	.1913	.2637				
553	13.3	1580	.0223	• 5288	.1893	.2600				
563	14.1	1230	.0227	• 5403	.1870	.2499				
57 3	15.0	990	.0225	• 5525	.1848	.2397				

Reactor Pressure - 1 Atm

even more substantial increases in the volume. Increasing the feed temperature beyond 573° K provides only minor reduction in the reactor volume. It was also determined that a reactor volume of 350 ft³ is required to increase methane conversion from 50 to 98% and this volume is independent of inlet temperature and diluent ratio. However, Table 6 shows that the total reactor volume required to attain 50% conversion changes drastically with feed temperature and diluent ratio.

Product distribution at low inlet temperatures favors formation of CCl_4 , ca. 30%, and lowers formation of CH_2Cl_2 ca. 49%. A high inlet temperature lowers formation of CCl_4 , ca. 24%, and increases formation of CH_2Cl_2 , ca. 55%. Formation of $CHCl_3$ remains relatively constant, ca. 19%. Only a slight amount of CH_3Cl , ca. 2%, is present at the exit of the reactor at these conditions. See Figure 8 for typical results.

Hydrogen Chloride As An Inert Diluent

Results of using HCl as an inert diluent and operating the reactor at 1 atmosphere are summarized in Table 7 and Figure 9. Increasing the inlet temperature from 523 to 573°K increases the amount of HCl from 38 to 51 lb moles/lb mole CH_4 . An additional 3 lb moles HCl/lb mole CH_4 is required for each 10° increase in inlet temperature.

TABLE 6

REACTOR VOLUME REQUIRED FOR OBTAINING

	VARIOUS DEGREES OF CH	CONVERSION
Т _О	VR	VR
	For $X_A = 0$ to 0.5	For $X_A = 0.5$ to 0.98
<u>(°K)</u>	(ft ³)	(ft ³)
<u>CC14</u>		
523	3510	430
543	1710	350
553	1230	350
563	910	320
573	690	300
HCl		
523	24200	3200
543	12900	3100
553	9200	2600
563	7000	2600
573	5300	2500
N ₂		
523	24400	3400
543	11500	2500
553	8800	2500
563	6800	2400
573	5200	2300

RESUL	rs of computer	STUDY US	SING HCl	AS THE I	NERT DILL	JENT
	React	tor Press	sure - 1	Atm		
т _О	I	v _R	Prod	luct Dist	ribution	
(⁰ K)	$\left(\frac{\text{Moles HCl}}{\text{Mole CH}_{4}}\right)$	(ft ³)	снзсі	CH2C12	CHC13	ccl4
523	38	27400	.0224	•4950	.1956	.2862
543	43	15800	.0194	.5051	.1919	.2861
553	45	11800	.0213	• 52 36	.1895	.2659
563	48	9600	.0207	• 5318	.1876	.2607
573	51	7800	.0214	• 54 51	.1852	.2484

TABLE 7

i

TABLE 8

RESULTS OF COMPUTER STUDY USING HC1 AS THE INERT DILUENT Reactor Pressure - 2.8 Atm

ТО	I	v _R	Product Distribution					
(°K)	$\left(\frac{\text{Mole HCl}}{\text{Mole CH}_4}\right)$	(ft ³)	сн ₃ сі	CH2C12	CHC13	ccl ₄		
553	45	1510	.0213	• 52 34	.1893	.2658		
563	48	1220	.0207	• 5314	.1874	.2605		
573	51	990	.0214	• 54 50	.1852	.2483		

The reactor volume decreases from 27,400 ft³ to 7,800 ft³ over the temperature range studied. It was observed that when the feed temperature is increased from 543 to 573°K, the reactor volume is approximately halved, from 15,800 ft³ to 7800 ft³. When feed temperature is decreased from 543 to 523°K, a 20° change, the reactor volume nearly doubles. As can be seen from Figure 9, lowering inlet temperature below 523°K causes even more substantial increases in reactor volume. Only minor reduction in volume is observed by increasing inlet temperature above 573°K.

The reactor volume required to increase methane conversion from 50 to 98% varies only slightly 2500 ft³ to 3200 ft³ regardless of the feed temperature. However, the reaction volume required to attain 50% conversion increases from 5300 ft³ to 24,200 ft³ as inlet temperature is decreased from 573 to 523°K. See Table 6.

As with CCl_4 , low feed temperatures favor formation of CCl_4 while higher feed temperatures favor formation CH_2Cl_2 . Formation of $CHCl_3$ remains relatively constant. See Figure 10, for typical results.

Nitrogen As An Inert Diluent

Results of using N_2 as an inert diluent and operating the reactor at 1 atmosphere are summarized in Table 9 and Figure 11, and closely parallel those of HCl. Increasing the feed temperature from 523 to 573°K increases the diluent ratio

TABLE 9

RESULTS OF COMPUTER STUDY USING

N₂ AS THE INERT DILUENT

Reactor Pressure - 1 Atm

T ₀	I	VR	Product Distribution					Product Distribution		oduct Distribution	
(°K)	$\left(\frac{\text{Moles }N_2}{\text{Mole }CH_4}\right)$	(ft ³)	сн ₃ с1	CH ₂ Cl ₂	CHC13	cc14					
523	38	27800	.0193	•4834	.1951	• 3045					
543	41	14000	.0240	• 52 3 3	.1909	. 2595					
553	44	11300	.0216	• 52 56	.1893	.2634					
563	47	9200	.0208	• 5328	.1873	.2599					
573	50	7500	.0213	• 5449	.1852	.2489					

from 38 to 50 lb moles N_2/lb mole CH_4 . As with HCl 3 lb moles N_2/lb mole CH_4 additional is required for each $10^{\circ}C$ rise in inlet temperature.

The reactor volume decreases from 27,800 ft³ to 7500 ft³ over the temperature range studied. It was observed that when inlet temperature is increased from 543 to 573°K the reactor volume is approximately halved. When T_0 is decreased from 543 to 523°K, a 20° change, the volume doubles. The same observation can be made for N_2 as was made for CCl₄ and HCl. Lowering the feed temperature below 523°K causes a substantial increase in reactor volume, while increasing it above 573°K reduces the volume by only a minor amount.

The reactor volume required to increase methane conversion from 50 to 98% is nearly constant at 2500 ft³ regardless of the feed temperature. However, the reactor volume required to attain 50% conversion increases from 5200 - 24,400 ft³ as inlet temperature is decreased from 573 to 523° K. See Table 6.

Product distribution is nearly identical to the distribution obtained when CCl_4 and HCl is used. Low feed temperatures favor formation of CCl_4 , while high feed temperatures favor formation of CH_2Cl_2 . See Figure 12 for typical results.

A Comparison of Three Diluents

When designing an adiabatic reactor capable of achieving 98% conversion of methane at an outlet temperature of 723°K, approximately 65% of the available Cl_2 is consumed. When fed with 10 lb moles/hr (160 lbs) of CH_4 and 42 lb moles (2982 lbs) of Cl_2 , the reactor will produce approximately 1100 lb/hr of chlorinated product. The composition of this product stream varies slightly with inlet temperature and diluent ratio.

Because a large amount of heat is generated by the highly exothermic chlorinations, large amounts of inert are required to maintain a safe operating temperature of below 723°K. The correlation between feed temperature and diluent ratio shows the following masses of inerts are required as inlet temperature varies from 523 to 573°K:

> CCl₄ - 17,600 to 23,400 lbs/hr HCl - 14,000 to 18,900 lbs/hr N₂ - 10,600 to 14,000 lbs/hr.

While more CCl_4 is required than either HCl or N₂, a reactor designed using CCl_4 as the inert is considerably smaller than one using either HCl or N₂. Figure 13 shows the volume of the CCl_4 reactor at inlet temperatures ranging from 523 to 573°K is approximately one-tenth that of the other inert gases at comparable inlet temperatures. Therefore, on a volumetric basis, one would choose the reactor with CCl_4

Fig. 13

as the inert. However, consideration must be given to the additional equipment and processing costs which would be incurred when vaporizing the large amount of the relatively high boiling CCl_4 . It seems similar costs would not be encountered when using HCl or N₂ as the recycle gas instead of CCl₄.

It was also observed that as the reaction mass approaches the exit of the reactor with CCl_{4} as the inert the reaction temperature is rising rapidly over a relatively small volumetric element, i.e., 5° over 5 to 7 ft³. In the case of using HCl or N₂ the temperature rise at the exit is more moderate, i.e., 3° over 30 to 50 ft³. This moderate temperature rise at the exit of the reactor is a definite advantage when quenching the product stream prior to purification.

While the volume of the reactors using HCl or N_2 are nearly equivalent, HCl would be preferred since it is available in large quantities as a reaction by-product and it could be removed from the product stream more easily than N_2 .

Finally the study indicates regardless of which inert is used, the inlet temperature of the feed stream should be varied from 543 to 573°K. Feed temperatures below 543° K require too large a reactor volume, while temperatures above 573° K necessitate additional heating of the feed stream with little reduction in the reactor volume.

Effect of Pressure on The HCl System

While using the HCl inerted system has definite advantages over either the CCl_4 or N_2 systems, the reactor volume is considerably larger than the volume of a CCl_4 inerted system operated at comparable temperature and pressure. However, since reactor volume is directly proportional to the inverse of the total pressure squared, consideration was given to increasing the pressure on the HCl system in order to obtain a reduction in volume.

For inlet temperatures ranging from 553 to 573°K, it was determined that operating the HCl at approximately 3 atm. achieved reactor volumes comparable to those obtained on the CCl_{lL} system operated at 1 atm. See Table 8.

The quantity of HCl required and product distribution did not change with the increase in pressure. Figure 14 shows typical product distribution results which compare with Figure 10. Although only 3 atmospheres, is necessary to reduce the reactor volume to a size comparable to the CCl₄ recycle systems, further increases in pressure may be utilized for additional benefits.

CONCLUSIONS

The conclusions made are:

- 1. The presence of inert diluents, such as CCl_{4} , HCl, or N_{2} , in the reactant feed stream of an adiabatic tubular reactor for the multiple chlorination of methane can effectively moderate the exothermic chlorination reactions so 98% conversion of methane is achieved at a maximum outlet temperature of 723°K.
- 2. The amount of any inert diluent required depends on the feed temperature of the reactants. Correlations between conversion of methane and amount inert at various feed temperatures were developed.
- 3. The reactor size is dependent on the total pressure of the system and the inlet temperature. The reactor volume is directly proportional to the reciprocal of the total pressure squared. A correlation between reactor volume and inlet feed temperature was developed for each inert.
- 4. When 98% conversion of the methane is obtained, product distribution at the outlet of the reactor varied slightly with the inlet temperature and the amount of diluent in the feed stream. Product distribution is essentially independent of total pressure.
- 5. To obtain 98% conversion, HCl is the recommended diluent. The feed temperature should range from 553 to 573°K and the reactor should be operated at an elevated pressure. An HCl system operated at approximately 3 atm. and a

feed temperature of 573°K would require 51 lb moles HCl per lb mole of methane to achieve 98% conversion of the methane at an outlet temperature of 723°K. The volume of this reactor would be 990 ft³ per 10 lb moles of CH_4 fed. This reactor system would produce the following product stream

CH₄ - 3 lb/hr CHCl₃ - 10 lb/hr CH₂Cl₂ - 450 lb/hr CHCl₃ - 215 lb/hr CCl₄ - 385 lb/hr .

RECOMMENDATIONS

The following recommendations are made:

- 1. While the use of HCl diluent in a reactor operated at elevated pressure is recommended, the optimum pressure was not found. This can only be accomplished by equating the cost of designing and installing a small high pressure reactor and the required accessories with the cost of a larger lower pressure reactor and its accessories.
- 2. If additional chlorination is required to all CCl₄ for example, the use of inert diluent in a non-isothermal, non-adiabatic reactor should be investigated. The program presented in this study can easily be amended to account for heat transfer through the reactor walls, which is necessary in a non-isothermal, non-adiabatic system.
- 3. While the recommended operating conditions discussed are reasonable based on the data generated, the true optimum reactor design can be determined only by reviewing the overall process economics.

Consideration must be given to equipment and operating costs of such factors as:

1) utilities

2) preparation of the reactant and inert feed streams

3) product separation and purification

before the optimum reactor can be designed.

NOMENCLATURE

Ci	Concentration of components, 1b mole/ft3.
ср	Specific heat, BTU/(lb mole)(^O K).
Е	Activation energy, calories/mole.
Fi	Feed rate of components, lb mole/hr.
F _{TOT}	Total feed rate, lb mole/hr.
$\Delta \mathbf{F}$	Free energy of reaction, cal./(gm mole)(^O K).
ΔH_{F}	Heat of formation, BTU/1b mole.
ΔH_{R}	Heat of reaction, BTU/1b mole.
I	Diluent ratio, 1b moles of inert per 1b mole of $\text{CH}_{4}.$
k	Reaction rate constant, $ft^3/(lb mole)(hr)$.
к ⁰	Frequency factor.
Keq	Thermodynamic Equilibrium constant.
Pi	Partial pressure of key components, atm.
P _{TOT}	Total pressure, atm.
ri	Reaction rate of key components, lb moles/(ft ³)(hr).
R	Ideal gas law constant 1.98 cal./(gm mole)(^o K) 0.73 (ft ³)(atm.)/(lb mole)(^o R).
t	Time, hrs.
Т	Temperature, ^O K.
VR	Reactor volume, ft ³ .
x _A	Conversion of CH_4 .
xi	Conversion of key component.
Уì	Component mole fraction.

Subscripts

Subscripts	<u>5</u>
i	Refers to any key component.
F	Leaving, final, or outlet condition.
n	Refers to reaction number.
0	Entering, initial, or inlet condition.
1,2,3,4	Refers to the four key chlorination reactions.

÷

REFERENCES

- 1. Arai, Kogyo Kagaka Zasshi, Vol. 61, pp. 1231-3, (1958).
- 2. Carnahan, B., Luther, H. A., Wilkes, J. O., <u>Applied</u> <u>Numerical Methods</u>, Wiley and Sons Inc., New York, 1969, pp. <u>344-347</u>.
- 3. Denbigh, K., <u>Chemical Reactor Theory</u>, Cambridge University Press, Great Britain, 1965, p. 38.
- 4. International Business Machines Application Program Manual, 1130 Scientific Subroutine Package, Subroutine MULTR, Dec., 1968.
- 5. <u>JANAF Thermochemical Tables</u>, Prepared Under Air Force Contract by Dow Chemical Co., 2nd Edition, (June 1971).
- Johnson, P. R., Parsons, J. L., Roberts, J. B., "Making Chloromethanes", <u>Industrial And Engineering Chemistry</u>, Vol. 51, No. 4, pp. 499-506.
- 7. Jones, Allison, Meighan, "Technical Paper 255", U. S. Bur. Mines, (1921).
- 8. Kirk, Othmer, Chlorocarbons and Chlorohydrocarbons, <u>Encyclopedia of Chemical Technology</u>, Vol. 5, Wiley and Sons Inc., New York, 1961, pp. 100-138.
- 9. Kobert, D., Troltenier, U., "Nachbildung Einer Mehastufenreaktion Mit Rückfüchrung Auf Dem Analogrechner", <u>Chemie-Ing.-Techn.</u>, 38 Jahrg. 1966/Heftz.
- 10. Levenspiel, O., <u>Chemical Reaction Engineering</u>, Wiley and Sons Inc., New York, 1967, p. 182.
- 11. Levenspiel, 0., op. cit., p. 208.
- 12. Maget, H. J. R., "Product Distribution of Consecutive Competitive Second Order Reactions", <u>Journal of</u> <u>Polymer Science</u>, Vol. 2, Part A, p. 1281, (1964).
- 13. McBee, E. T., "Halogenation", <u>Industrial</u> and <u>Engineering</u> <u>Chemistry</u>, Vol. 40, pp. 1611-1617, (September, 1948).

- 14. McBee, E. T., Hass, H. B., Neher, G. M., Strickland, H., "Chlorination of Methane", <u>Industrial and Engineering</u> <u>Chemistry</u>, Vol. 34, No. 3, pp. 296-300, (1942).
- 15. Natta, G., Mantica, E., "The Distribution of Products In A Series of Consecutive, Competitive Reactions", Journal of the American Chemical Society, Vol. 74, pp. 3152-6, (1952).
- 16. Pease, R. N., Walz, G. F., "Kinetics of the Thermal Chlorination of Methanes", Journal of the American Chemical Society, Vol. 53, pp. 3728-3737, (1931).
- 17. "U.S. Chemical Industry, The Products It Makes", <u>Chemical and Engineering News</u>, p. 11, (June 4, 1973).
- 18. Wilson, M. J. C., Howland, A. H., "Chlorination of Methane", <u>Fuel</u>, Vol. 28-6, pp. 127-135, (1949).
- 19. Wilson, M. J. C., Howland, A. H., Ibid., p. 134.

APPENDIX

TABLE OF CONTENTS

FIGURES		PAGE
15	Product Distribution Vs. Moles Cl_2 Reacted/Mole CH_4 , $T_0 = 523^{\circ}K$, I = 11.3 Moles CCl_4 /Mole CH_4	59
16	Product Distribution Vs. Moles Cl_2 Reacted/Mole CH4, $T_0 = 523^{\circ}K$, I = 38 Moles HCl/Mole CH4	60
17	Product Distribution Vs. Moles Cl_2 Reacted/Mole CH4, $T_0 = 523^{\circ}K$, I = 38 Moles N ₂ /Mole CH ₄	61
PROGRAMS	·	
1	Program Symbols for Chemical Reactor Model	62
2	Function Statements	63
3	Subroutine INPUT	64
4	Subroutine DERV	65
5	Subroutine NMOLF	. 66
6	Main Program	67
7	Subroutine OTPUT	68
COMPUTER	RUNS	
1	Inlet Temp 523 ⁰ K, 11.3 Moles CC14/ Mole CH4	70
2	Inlet Temp 543 ⁰ K, 12.5 Moles CCl4/ Mole CH4	72 [;]
3	Inlet Temp 553 ⁰ K, 13.3 Moles CCl ₄ / Mole CH ₄	74
4	Inlet Temp 563 ⁰ K, 14.1 Moles CCl ₄ / Mole CH ₄	76
5	Inlet Temp 573 ⁰ K, 15.0 Moles CCl4/ Mole CH4	78

COMPUTER RUNS

1 . .

6	Inlet Temp 523 ⁰ K, 38 Moles HCl/ Mole CH4	80
7	Inlet Temp 543 ⁰ K, 43 Moles HCl/ Mole CH4	82
8	Inlet Temp 553 ⁰ K, 45 Moles HCl/ Mole CH ₄	84
9	Inlet Temp 563 ⁰ K, 48 Moles HCl/ Mole CH ₄	86
10	Inlet Temp 573 ⁰ K, 51 Moles HCl/ Mole CH ₄	88:
11	Inlet Temp 523 ⁰ K, 38 Moles N ₂ / Mole CH ₄	9 9
12	Inlet Temp 543 ⁰ K, 41 Moles N ₂ / Mole CH ₄	92
13	Inlet Temp 553 ⁰ K, 44 Moles N ₂ / Mole CH4	94
14	Inlet Temp 563 ⁰ K, 47 Moles N ₂ / Mole CH4	96
15	Inlet Temp 573 ⁰ K, 50 Moles N ₂ / Mole CH4	98
16	Inlet Temp 553 ⁰ K, 45 Moles HCl/ Mole CH ₄ , P - 2.8 atm	700
17	Inlet Temp 563 ⁰ K, 48 Moles HCl/ Mole CH ₄ , P - 2.8 atm	102
18	Inlet Temp 573 ⁰ K, 51 Moles HCl/ Mole CH4, P - 2.8 atm	104

PAGE

- 84

PAGE	2	02/07/74	DV523	CHEMICAL	REACTION	MODEL	FOR	R•	BRAUN	73	JAN
c `	SYMBOL	DESCRIPTI	ON								
c	ACONV	CONVERSION	OF METH	ANE							
c	AT	ACTUAL TEM	PERATURE	DEG K							
c	Α	METHANE									
č	B	CHLORINE									
ċ	с	METHYL CHL	ORIDE								
ċ	D	METHYLENE	CHLORIDE								
č	E	CHLOROFORM									
с	F	CARBON TET	RACHLORI	DE							
с	N	NITROGEN									
с	S	HYDROGEN C	HLORIDE								
c	CLOM	MOLES OF C	HLORINE	REACTED P	ER MOLE O	F METHA	NE				
C	CP	HEAT CAPAC	ITY, RTU,	LB.MOLE*D	EGK						
С	CPUSD	SPECIFIC	HEAT EQU	JIVALENT T	0 CP						
c	COEF	COEFFICIE	NTS OF F	RATE EQUAT	ION TERMS						
c	COFFU	COEFFICIE	NTS OF F	ATE EQUAT	ION TERMS	EQUIVA	LENT	τo	COEF		
с	CON 1	FREQUENCY	FACTOR								
с	CON 2	CONVERSION	FACTOR	1.8							
с	CON 3	CONSTANT	IN CP FO								
С	CON 4	CONSTANT	IN CP EC) .							
с	CON 5	CONSTANT	IN CP EC).							
C	CON 7	CONSTANT	IN DHR B	EQ.							
С	CON 8	CONSTANT	IN DHR B	EQ.							
C	CON 9	CONSTANT	IN DHR	Q.							
C	CON10	CONSTANT	IN DHR I	EQ.							
с	DHR	HEAT OF RE	ACTION+	BTU/LB.MOL	E						
С	DHRUD	HEAT OF I	NDIVIDU	AL REACTIO	NS EQUIVA	LENT TO	DHR				
С	DL	CHANGE IN	REACTO	R VOLUME							
С	DT	TEMPERATUR	E CHANG	-							
C	DY	CHANGE IN	MOLE FI	RACTIONS O	F COMPONE	NTS					
С	E	ACTIVATIO	IN ENERG	Y							
С	FAC	MOLAR FEE	D RATE	OF METHANE	+LB-MOLE/	HR					
ç	FPO	MOLAR FEE	D RATE	OF CHLORIN	E+LB-MOLE	/HR					
C	FFO	MOLAR FEE	DRATE	OF CARBON	TET .LR-MO	LE/HR					
C	FNO	MOLAR FEE	D RATE	OF NITROGE	N.LB-MOLE	ZHR					
ç	FSO	MOLAR FEED	RATE O	F HCL+LR-M	OLE/HR						
ç	FTOT	TOTAL MOL	AR FEED	RATE +LB-M	OLE/HR						
C	GSCON	GAS CONST	ANT +0+7	302 ATM*CL	FT/ LB-M	IOLE #DEC	3 R				
Ç	HETRE	OVERALL EN	THALPY	BALANCE							
C	I	INDEX OF	EQUATIO	N							
C	J	INDEX OF	TERM OF	EQUATION							
C	L	REACTOR \	OLUME								
PAGE	3	02/07/74	DV 523	CHEMICAL	REACTION	MODEL	FOR	R.	BRAUN	73	I JAN

r – Gr	7	02707774 DV525 CHEMICAL REACTION MODEL FOR R. BRAUN 75 JAN	
c	NERTN	RATIO OF NITROGEN TO METHANE IN FEED STREAM	
ć	NRHCL	RATIO OF HEL TO METHANE IN FEED STREAM	
ċ	NRTCT	RATIO OF CARBON TET TO METHANE IN FEED STREAM	
Ċ	NMOL F	NORMALIZED MOLE FRACTION OF CHLORINATED COMPONENTS	
ċ	P	PRESSURF.ATM	
c	R	GAS CONSTANT+1-9878TU/L8-MOLE+DEG R	
с	RAC	CORRECTED RATE CONSTANT	
с	RTAVK	CORRECTED PATE CONSTANT EQUIVALENT TO RAC	
с	REHET	OVERALL HEAT OF REACTION.BTU/LB-MOLE*DEG K	
С	RERAT	REACTION RATE+LP+MOLE/CU+FT#HR	
с	RRATE	RFACTION RATE EQUIVALENT TO RERAT	
С	RRATV	EQUIVALENT TO RRATE	
С	RATPR	EQUIVALENT TO REATV	
C	RTCON	RATE CONSTANT+CU+FT+/LB+MOLE*HR	
с	т	INDEX OF TEMPERATURE ALONG THE TUBE	
С	TERM	TERMS IN RATE EQUATION	
С	TRM	TERM IN RATE EQUATION EQUIVALENT TO TERM	
С	TO	INITIAL TEMPERATURE+DEG K	
С	TMAX	MAXIMUM OUTLET TEMPERATURE,DEG K	
С	XA	CONVERSION OF METHANE	
с	XAMAX	MAXIMUM CONVERSION OF METHANE	
с	YO	INITIAL MOLE FRACTION	
C	YUSE 2	FQUIVALENT TO Y	
C	Y	MOLE FRACTIONS OF COMPONENTS	
c			
С			
	A=2•		
	CALL	FXIT	
	END		

FUNCTION CP (CON2, CON3, CON4, CON5, T) CP = CON2*(CON3+CON4*T-CON5*T*T) RETURN END FUNCTION DHR (CON2, CON7, CON8, CON9, CON10, T) DHR= CON2*(CON7+CON8*T+CON9*T*T+CON10*T*T*T) RETURN END FUNCTION HETRE (FTOT, Y, CP) DIMENSION Y(8), CP(8) HETRE=0. DO 35 J=1.8 35 HETRE= HETRE+ FTOT*Y(J)*CP(J) RETURN END FUNCTION REHET (DHR, RERAT) DIMENSION DHR(4) +RERAT(4) REHET=0. DO 30 J=1.4 30 REHET= REHET+ DHR(J)*RERAT (J) RETURN END FUNCTION ACONV(YA, YAO) ACONV = 1 - (YA/YAO)RETURN END FUNCTION CLOM (YBO + YB + YAO)

С

FUNCTION CLOM (YBO) YB , YAO) CALCULATE MOLES OF CHLORINE REACTED PER MOL OF METHANE. CLOM = (YBO - YB) / YAO RETURN END FUNCTION FTOT(F,M) DIMENSION F (2) FTOT= 0. DO 29 I=1,M 29 FTOT= FTOT+ F(I) RETURN END

FUNCTION YO (FO, FTOT) YO = FO/FTOT RETURN END

FUNCTION RTCON (CON1, E, R, T) RTCON = CON1*FXP(-E/(R*T)) RETURN FND

FUNCTION RAC (RTCON,P,GSCON,T) RAC= (RTCON*P*P/(GSCON*GSCON*T*T))/3.24 RETURN END

> FUNCTION TERM (COEF+RAC+YI+YJ) TERM= COEF*RAC*YI*YJ RETURN FND

FUNCTION RERAT (TERM.M) DIMENSION TERM(2) RERAT = 0. DO 25 J=1.M 25 RERAT = RERAT + TERM(J) RETURN END

```
SUBROUTINE INPUT
      INTEGER T
      REAL L (51) , MOLFC (8)
      COMMON KIN,KOU,P,TO,R,GSCON,FTOTL,CON2,DL(51),L ,FO(B),CON1(4),
            E(4), CON3(8), CON4(P), CON5(8), CON7(8), CON8(8),
     1
            CON9(8), CON10(8), COEF(7,4), TMAX
     2
      COMMON RATEK(4) + RTAVK(4) + TRM(4) + CPUSD(8) + DHRUD(4) +
     1
           Y(8, 51) , RRATE(8, 51) , DT, XA,
                                                DY(8, 51), T,
                                                                    AT
     2 . XAMAX . MOLFC
      KOU=3
      KIN=2
          READ INPUT FROM CARDS.
C
                              (FO(I), I = 1, 8)
      READ (KIN,101)
      FORMAT (8F 9.2)
 101
        TEST IF ALL VALUES OF FO ARE O.
C
      DO 95 I = 1 + 8
      IF (FO(I))
                       96 , 95 , 96
 95
      CONTINUE
      CALL FXIT
C
         IF SO , THEN EXIT.
 96
      CONTINUE
      READ (KIN+102) ( CON1(I)+E(I) +I=1+4)
 102
      FORMAT(4(E10.3.F8.0))
      READ (KIN+103) CON2
      FORMAT (F4.2)
 103
      RFAD (KIN,104)
                             ( CON3(I),CON4(I),CON5(I) ,I=1,8)
      FORMAT (2(F8.4.2F10.3))
 104
      RFAD (KIN+105) ( CON7(I) + CON8(I) + CON9(I) + CON10(I) + I=1+4)
             (F8.0.F9.4. 2E13.3)
 105
      FORMAT
      READ (KIN+201) P+GSCON+R+TG+DT+TMAX+XAMAX
 201
      FORMAT (F5.2.2F8.4.F9.1.F7.3.F9.2.F7.4)
      RFAD (KIN,202) ((COEF(1,J),J=1,4),I=1,7)
 202
      FORMAT (36F2.0)
         PRINT INPUT.
C
      WRITE(KOU,301)
                               (FO(I), I = 1, 8)
 301
      FORMAT (1H1+
                       FBC
                                          FNO
                                                   FAO
                                                            FCO
                                                                     FDO
                                FF0
                    FS01/(8F9+2))
          FEO
     1
      WRITE (KOU+302) ( CON1(I)+E(I) +I=1+4)
      FORMAT (1H0, FREQ FACTOR
 302
                                ACT_ENERGY!/(E15.5.F13.0))
      WRITE (KOU+303) CON2
 303 FORMAT (1H0, CONV FACTOR!/F5.2)
PAGE 18
            02/07/74
      WRITE (KOU+304) ( CON3(I)+CON4(I)+CON5(I) +I=1+8)
     FORMAT (1H0, 'CONST OF CP'/(F10.4, 2E15.4))
 304
      wRITE (KOU,305) ( CON7(I),CON8(I),CON9(I),CON10(I) ,I=1.4)
      FORMAT (1H0, CONST OF REACTION HEAT'/(F10.0, F10.4, 2E15.3))
 305
      WRITE (KOU+401) P+GSCON+R+TO+DT+TMAX+XAMAX
 401 FORMAT (1H0,5X,*P
                                 GSCON
                                             R
                                                      ΤO
                                                                 DT
     1 TMAX
                     XAMAX 1/7F10.4)
      WRITE (KOU,402) ((COEF(I,J),J=1,4),I=1,7)
 402
      FORMAT (1H0, *COEF*/(4F4.0))
      RETURN
      FND
FFATURES SUPPORTED
 ONE WORD INTEGERS
CORE REQUIREMENTS FOR INPUT
 COMMON
         2942 VARIABLES
                               4 PROGRAM
                                             564
RFLATIVE ENTRY POINT ADDRESS IS 00D2 (HEX)
END OF COMPILATION
```

```
+F0(8)+CON1(4)+ 1
COMMON KIN+KOU+P+T0+R+GSCON+FTOTL+CON2+DL(51)+L
```

```
E(4),CON3(8),CON4(8),CON5(8),CON7(8),CON8(8),
    1
             CON9(8) + CON10(8) + COEF(7+4) + TMAX
    2
      COMMON RATEK(4), RTAVK(4), TRM(4), CPUSD(8), DHRUD(4),
                                                   DY(8, 51) , T.
                                                                       AT
            Y(8, 51) , RRATE(8, 51) , DT, XA,
     1
     2 . XAMAX . MOLEC
      EQUATION 1 TO CALCULATE RATE CONSTANT
C
      TUSED=AT
      DO 35 J=1.4
      CON= CON1(J)
      EUSED= E(J)
      RATEK(J) = RTCON (CON+EUSED+R+TUSED)
      FOUATION 2 TO CALCULATE FOR CALCULATING CORRECTED RATE CONSTANT
с
      RKUSD≈ RATEK(J)
      RTAVK(J) = RAC (RKUSD, P, GSCON, TUSED)
 35
      EQUATION 3 TO CALCULATE INITIAL MOLE FRACTIONS
C
      IF (T-1)
                      50 , 40 , 50
      CONTINUE
 40
      DO 45 I=1+8
      FUSED= FO(1)
      Y(I+1) = YO(FUSED+FTOTL)
 45
 50
      CONTINUE
C
      EQUATION 4 TO CALCULATE TERMS OF RATE EQUATION
      DO 65 I=1,7
      DO 55 J=1,4
      COEFU= COEF(I+J)
      RTAVU= RTAVK(J)
      YUSED= Y(J+3+ T )
      YBU= Y(1+ T )
 55
      TRM(J) = TERM(COEFU, RTAVU, YUSED, YBU)
С
      FQUATION 5 TO CALCULATE REACTION RATE
      RRATE(I+T)= RERAT(TRM+4)
С
      FQUATION 6 TO CALCULATE DY
      RRATV(I) = RPATE(I+T)
C
      FQUATION 1' TO CALCULATE COMPONENT SPECIFIC HEAT
      TUSED#AT
      00 75 J=1.8
```

SUBROUTINE DERV INTEGER T

REAL L (51) , MOLFC (8)

DIMENSION YUSE2 (8) + RRATV (8)

```
PAGE 20
            02/07/74
      CONU3= CON3(J)
      CONU4= CON4(J)
      CONU5= CON5(J)
 75
      CPUSD(J) = CP(CON2+CONU3+CONU4+CONU5+TUSED)
      EQUATION 2' TO CALCULATE COMPONENT HEAT OF REACTION
C
      DO 85 J=1.4
      CONUT= CONT(J)
      CONU8= CON8(J)
      CONU9= CON9(J)
      COULO = CONIC(J)
      DHRUD(J) = DHR(CON2,CONU7,CONU8,CONU9,COU10,TUSED)
 85
      DO 95 J=1.8
      YUSE2(J) = Y(J + T)
 95
C
      EQUATION 5' TO CALCULATE HEAT BALANCE
 65
      CONTINUE
      DL(T)==DT*HETRE(FTOTL,YUSE2,CPUSD)/REHET(DHRUD,TRM)
      DO 98 I = 1 + 7
      DY(I+T) = RRATE(I+T) *DL (T ) / FTOTL
 98
      nY(8,T) = 0.
C
      FQUATION 7 TO CALCULATE CONVERSION OF COMPONENT A-(XA)
      YAU = Y(4,T)
      YA0 = Y(4 + 1)
      XA= ACONV(YAU, YAO)
      CALL NMOLF
      RETURN
      END
```

```
SUBROUTINE NMOLE
     SUBROUTINE TO CALCULATE NORMALIZED MOL FRACTION.
C
     INTEGER T
     REAL L (51) , MOLFC (8) , NMOLS
     COMMON KIN,KOU,P,TO,R,GSCON,FTOTL,CON2,DL(51),L ,FO(8),CON1(4),
            E(4), CON3(8), CON4(8), CON5(8), CON7(8), CON8(8),
    1
           CON9(8), CON10(8), COEF(7,4), TMAX
    2
     COMMON RATEK(4), RTAVK(4), TRM(4), CPUSD(8), DHRUD(4),
           Y(8, 51), RRATE(8, 51), DT, XA, DY(8, 51), T, AT
    1
    2 . XAMAX . MOLFC
     K = T
     YFS = Y(2,K) - Y(2,1)
     NMOLS = YFS
     DO 31 J = 4, 7
 31
     NMOLS = NMOLS
                       + Y (J , K )
     DO 34 J = 4, 7
     MOLFC (J) = Y (J + K) / NMOLS
 34
     MOLFC(2) = (Y(2,K) - Y(2,1)) / NMOLS
     RETURN
     END
```

```
C
                DV523 MAIN PROGRAM.
                INTEGER T
                REAL L (51) . MOLFC (8)
                REAL NERTN , NRTCT , NRHCL
                DIMENSION IV ( 8 )
                COMMON KIN+KOU+P+TO+R+GSCON+FTOTL+CON2+DL(51)+L +FO(8)+CON1(4)+
              1
                                   E(4) + CON3(8) + CON4(8) + CON5(8) + CON7(8) + CON8(8) +
                                   CON9(8) + CON10(8) + COEF(7+4) + TMAX
                COMMON RATEK(4), RTAVK(4), TRM(4), CPUSD(8), DHRUD(4),
              1
                               Y(8, 51) , RRATE(8, 51) , DT, XA,
                                                                                                                              DY(8, 51) , T,
                                                                                                                                                                                      AT
              2 • XAMAX • MOLFC • CLRM
                DATA IV / 6 , 5 , 8 , 1 , 2 , 3 , 4 , 7 /
                NC = 8
   12
                 T=1
                CALL INPUT
                 AT=TO
                 FTOTL = FTOT(F0,NC)
                 L(T) = 0.
                 CALCULATION OF INERT NITROGEN, CARBON TETRACHLORIDE AND
С
С
                           HYDROCHLORIC ACID
                 NERTN = FO (3) / FO (4)
                 NRTCT = F0 (2) / F0 (4)
                 NRHCL = FO (8) / FO (4)
                 WRITE ( KOU + 310 ) NERTN + NRTCT + NRHCL + TO
   310 FORMAT ( 1 H1 , 25 X , 'INERT COMPONENTS' /

1 5 X , 'NITROGEN =' , F 8.2 , 5 X , 'CARBON TET =' , F 8.2 ,
                         5 X + HCL =! + F 8.2 //
               2
                        10 X + 'INLET TEMPERATURE = ' + F 6.1 // )
               3
                           PRINT NEW HEADINGS
 С
                 WRITE ( KOU , 311 )
    311 FORMAT ( 1 HO , 1 X , 'COUNTER' , 4 X , 'TEMPERATURE' , 4 X ,
                         VOLUME' + 6 X + 'XA' + 6 X + 'MOL FA' + 4 X + 'MOL FC' + 4 X + 'MOL FD' + 4 X + 'MOL FE' + 4 X + 'MOL FF'
              1
               2
                         + 4 X + 'MOL CL2 REACT/ MOL CH4' )
                 WRITE ( KOU + 313 )
    313 FORMAT ( 1 H , 15 X , 'DEG. K' , 7 X , 'CU.FT.' )
WRITE ( KOU , 312 )
    formed a g g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a g x a
               5
```

```
PAGE 24 02/07/74
```

```
CONTINUE
21
      CALL DERV
      DO 35 I = 1 + NC
      IA = IV (I)
35
      Y(I \bullet T+1) = Y(I \bullet T) + DY(IA \bullet T)
C
         ADD CALCULATION OF CHLOINE TO METHANE REACTION RATIO TO MAIN
      YBO = Y (1 + 1)
      YAC = Y \{ 4 + 1 \}
      IF ( T - 1 ) 43 , 43 , 45
      YB = Y ( 1 + 1 )
43
      GO TO 47
      Y^{\mathbf{P}} = Y (1, T)
 45
 47
      CONTINUE
      CLRM = CLOM ( YBO , YB , YAO )
      L(T+1) = L(T) + DL(T)
      CALL OTPUT
      T=T+1
      AT = AT + DT
      IF (XA-XAMAX) 100,100,999
      IF (AT- TMAX) 21+21+999
 100
      GO TO 12
 999
      END
```

```
SUBROUTINE OTPUT
      INTEGER T
     REAL L (51) , MOLFC (8)
     COMMON KIN,KOU,P,TO,R,GSCON,FTOTL,CON2,DL(51),L ,FO(8),CON1(4),
            E(4),CON3(8),CON4(8),CON5(8),CON7(8),CON8(8),
     1
            CON9(8), CON10(8), COEF(7,4), TMAX
     2
     COMMON RATEK(4), RTAVK(4), TRM(4), CPUSD(8), DHRUD(4),
          Y(8, 51), RRATE(8, 51), DT, XA, DY(8, 51), T, AT
     1
     2 . XAMAX . MOLFC . CLRM
C
         PRINT OUTPUT.
         BELOW IS FOR CTPUT ROUTINE
С
        PAT IS PRINTED ACTUAL TEMPERATURE
С
      PAT = AT + .05
     WRITE ( KOU , 320 ) T , PAT , L (T) , XA , ( MOLFC ( J ) , J=4,7 )
     1 . MOLFC ( 2) . CLRM
 320 FORMAT ( 1 H , 4 X , I 2 , 8 X , F 8.1 , 4 X , F 9.2 , 4 X ,
    17(F6.4,4X))
      RETURN
      END
```

FBO 42.00	FF0 113.00	FNO 0.00	FAO 10.00	FCO 0.00	FDO 0.00	FEO 0.00	FS0 0.00	
FREQ FACTO 0.798001 0.139101 0.589401 0.457701	R ACT E 17 E 18 E 13 E 18 E 18	ENERGY 30036. 29902. 18930. 33290.						
CONV FACTO	R							11.
CONST 01 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140	F CP 0.10801 0.23201 0.13201 0.13501 0.25001 0.28401 0.27101 0.81001	E-02 E-01 E-02 E-01 E-01 E-01 E-01 E-01	0.0000E 0 0.1371E-0 0.0000E 0 0.0000E 0 0.9357E-0 0.1314E-0 0.1421E-0 0.0000E 0	0 4 0 5 4 4 0				} Moles CCl ₄ /Mole
CONST OF -24833. -24280. -25631. -24209.	REACTION -0.3912 1.6770 4.0260 5.1360	HEAT 0.147 -0.206 -0.292 -0.402	7E-02 5E-03 2E-02 2E-02	-0.833E -0.333E 0.833E 0.125E	-06 -06 -06 -05			сн _џ
P 1.0000	GSC01 0.7300	N R 1.9870	TO 523.0001	4.00	DT)00 723	TMAX .0001 9	XA 9.0000	MAX
COEF -1. 0. 0. 11. 0. 0. 11. 0. 0. 1. 0. 0. 0. -111. 1. 1. 1.	0. 0. 0. -1. 1. -1.							

Run 1

Inlet Temp. - 523°K

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C.103 2.1505 C.2017 C.2528 J.3.40 C.3554 C.4070 C.4070 C.5026 C.5626 C.5626 C.5626 C.5626 C.5626 C.7194 C.7719 D.6677 C.7719 C.8773 J.9302 C.9331 1.0362
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1505 C.2017 C.252d J.3,40 C.457C C.4587 C.5626 C.5626 C.5626 C.5626 C.5154 C.7719 C.3154 C.7719 C.3773 J.9302 C.9331 L.5362
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C.2017 C.2528 J.3)40 J.3554 C.4070 C.4087 C.5026 C.5626 O.6147 D.6670 C.7194 C.7719 J.6246 C.8773 J.9302 C.9331 J.0362
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C.2524 J.3.40 J.3.554 C.407C C.4057 C.5526 G.5526 G.6147 C.6670 C.7719 J.6470 C.7719 J.6246 C.8773 J.9302 C.9331 1.0362
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C.2528 J.3).4C C.3554 C.4C7C C.4587 C.5526 C.5526 C.5526 C.5526 C.7194 C.7719 J.6670 C.7719 J.67249 C.8773 J.9302 C.9631 1.5362
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.3240 3.3554 2.4670 2.4587 3.5126 0.6526 0.6147 0.6670 0.7119 0.670 0.7719 0.8246 C.8773 0.9302 C.9331 1.0362
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.3554 2.4676 2.4676 2.5626 0.6147 0.6673 0.6719 0.6246 0.8773 0.9302 0.9331 1.5362
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C.+CTC C.+CB7 C.5526 C.5526 C.5526 C.5526 C.7194 C.7194 C.7719 D.85246 C.8773 C.9302 C.9331 1.C362
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C.+010 C.+010 C.5526 C.5526 C.5526 C.5719 C.7194 C.7719 D.8246 C.8773 J.9302 C.9631 1.0362
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C.+>67 C.5526 C.5526 C.5526 C.5719 C.7194 C.7719 C.5749 C.8773 C.9302 C.9331 L.5362
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5106 C.5626 C.56147 C.6670 C.7194 C.7194 D.6246 C.8773 C.9302 C.9631 1.0362
12 567.0 3263.85 0.3887 0.6112 0.2477 7.1090 1.0308 2.0010 13 571.0 3285.35 0.4140 0.5859 0.2529 0.1225 0.0308 0.0019 14 575.0 3355.37 0.4384 0.5516 0.2569 0.1225 0.0430 0.0019 15 579.0 3415.91 0.4619 0.5380 0.2591 0.1503 0.0494 0.0025 14 587.0 3554.430 0.5070 0.2561 0.1573 0.0629 0.0025 14 587.0 3554.430 0.5070 0.25674 0.1657 0.0629 0.0025 17 597.0 3554.47 0.5236 0.2599 0.1936 0.0698 0.0030 19 591.0 3554.47 0.5236 0.2599 0.1936 0.0698 0.0030 10 595.0 3589.873 0.5495 0.42594 0.22583 0.2081 0.0698 0.0030 10 595.0 3599.63 354.9720 0.42959 0.2587 0.2286 0.20769 0.0051 20 599.0 3221.08 0.5299 0.42563 0.22851 0.0281 0.0769 0.0055 21 603.0 364.63 0.5299 0.4255 0.2257 0.0251 0.0255 22 607.0 3673.56 $0.629.2$ 0.3756 0.2297 0.2257 0.2355 0.2124 24 615.0 373.55 0.6665 0.3531	C-5626 G-6147 C-6670 C-7194 G-7719 G-8246 C-8773 J-9302 C-9631 1-6362
13 971.0 3285.35 0.4140 0.5859 0.2529 0.1228 0.0367 0.014 14 575.0 3353.35 0.4140 0.5859 0.2529 0.1228 0.0367 0.0019 15 575.0 3458.51 0.4484 0.5516 0.2566 0.1367 0.0019 14 583.0 0.4551 0.4419 0.5330 0.2591 0.4503 0.0494 0.0225 14 583.0 0.4544 0.5151 0.2566 0.1793 0.0541 0.0232 17 597.0 3514.33 0.5070 0.4929 0.2606 0.1793 0.0698 0.0631 19 591.0 3589.63 0.54955 0.44713 0.2583 0.2081 0.0698 0.0631 10 595.0 3589.63 0.54955 0.4504 0.2583 0.2081 0.0769 0.0051 20 599.0 321.08 0.5700 0.42959 0.2085 0.2081 0.0769 0.0051 21 603.0 3673.55 0.4509 0.4283 0.2257 0.20840	0+6147 0-6670 0-7194 0-719 0+8246 0-8773 0-9302 0-9331 1-0362
14 575.0 255.35 0.4484 0.5616 0.2566 0.1267 0.0430 0.0019 15 579.0 3+15.91 0.4484 0.5536 0.2566 0.1563 0.0490 0.0025 14 583.0 2465.46 0.4419 0.5330 0.2561 0.0430 0.0025 14 583.0 2465.46 0.419 0.5330 0.2501 0.4503 0.0025 14 583.0 2465.46 0.419 0.5330 0.2501 0.45503 0.00494 0.00225 14 583.0 2465.46 0.4120 0.4509 0.20561 0.00430 0.0041 18 591.0 3554.47 0.5232 0.4713 0.2559 0.2051 0.0051 19 595.0 3589.63 0.5700 0.2558 0.2051 0.2059 0.2051 0.0051 10 603.0 3640.83 0.599 0.4100 0.2551 0.2051 0.2051 22 607.0 3673.55	0.6670 C.7194 C.7719 D.8246 C.8773 J.9302 C.9361 1.0362
14 575.0 3-55.91 0.44619 0.5360 0.45361 0.40420 0.0025 15 579.0 3-15.91 0.4619 0.5380 0.4596 0.45361 0.0025 14 583.0 3469.46 0.4142 0.55151 0.42604 0.4049 0.0025 17 597.0 3514.43 0.5070 0.4929 0.2606 0.1793 0.6698 0.0021 19 591.0 3554.47 0.5232 0.4713 0.2599 0.6698 0.0021 10 595.0 3589.63 0.5495 0.4504 0.2583 0.2081 0.0698 0.0023 10 595.0 3589.63 0.5495 0.4504 0.2583 0.2081 0.0041 12 503.0 3649.63 0.5700 0.4295 0.2585 0.2081 0.0051 22 607.0 3673.56 0.6053 0.3705 0.2427 0.25817 0.0983 0.0105 22 607.0 3673.56 0.6053 0.3705 0.2427 0.25817 0.0983 0.0105 22	C.7194 C.7719 D.8246 C.8773 J.9302 C.9631 1.0362
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C.,779 C.,779 C.8246 C.8773 J.9302 C.9331 1.0362
14 583.0 345%.46 0.4146 0.5151 0.26504 0.1607 0.05511 0.0021 17 587.0 3514.30 0.5070 0.4929 0.2650 0.1733 0.6629 0.0031 19 591.0 3554.47 0.5231 0.4713 0.2599 0.1936 0.0698 0.0030 10 595.0 3589.63 0.5495 0.4504 0.2583 0.2081 0.0698 0.0030 10 595.0 3589.63 0.5495 0.4504 0.2583 0.2081 0.0698 0.0030 11 603.0 364.43 0.5599 0.4299 0.2556 0.22517 0.0963 0.0055 22 607.0 3673.56 0.6293 0.3716 0.2422 0.2557 0.0963 0.0105 23 411.0 3695.69 0.6283 0.3716 0.22900 0.22805 0.1263 0.0144 25 619.0 373.51 0.66665 0.3351 0.22950 0.2123 0.2950 0.1267 0.0193 25 619.0 373.51 0.66665 <th>C.7719 D.8246 C.8773 J.9302 C.9331 1.0362</th>	C.7719 D.8246 C.8773 J.9302 C.9331 1.0362
17 587.0 3514.30 0.5070 0.4929 0.2066 0.1793 0.6629 0.0041 19 591.0 3554.47 0.5230 0.4713 0.2599 0.1936 0.0058 0.0030 10 591.0 3554.47 0.5230 0.4713 0.2599 0.1936 0.0058 0.0030 10 595.0 3589.53 0.4505 0.4259 0.2585 0.2226 0.0840 0.0059 20 599.0 3521.08 0.5039 0.4100 0.2585 0.2276 0.0840 0.0055 21 603.0 3640.83 0.5039 0.4100 0.2582 0.2371 0.0911 0.0055 22 607.0 3673.55 0.6092 0.3716 0.2427 0.2642 0.105 23 411.0 3695.49 0.6282 0.3716 0.2390 0.2806 0.1126 0.0144 25 619.0 3713.51 0.66465 0.3531 0.2333 0.2950 0.1126 0.0144 25 619.0 373.51 0.66825 0.3174 0.2270	0+8246 C+8773 C+9302 C+9331 1+0362
18 591.0 3554.47 C.5232 J.4713 C.2599 Q.1936 C.6698 J.0030 10 595.0 3589.03 0.5495 0.4504 0.2583 0.2081 1.0769 J.0051 10 595.0 3589.03 0.5495 0.4504 0.2583 0.2081 1.0769 J.0051 20 599.0 1821.08 0.5720 0.4295 0.2526 0.23810 1.0769 J.0051 21 603.0 3640.83 0.5299 J.41JJ 0.2526 0.2371 0.0011 0.0055 22 607.0 3673.55 0.6029 0.3716 0.24290 0.2557 0.0935 0.0105 23 411.0 3695.69 0.6282 0.3716 0.24200 0.22805 0.1255 0.0123 24 615.0 3733.51 0.66665 0.3351 0.22300 0.22805 0.1126 0.0144 25 619.0 3733.51 0.66625 0.3174 0.22370 1.0205 0.	C.8773 J.9302 C.9331 1.0362
10 595.6 3589.63 0.5495 0.4504 0.2583 0.2081 0.0769 0.0061 20 599.0 1221.08 0.5700 0.2299 0.2886 0.2226 0.0840 0.0074 21 603.0 3603.63 0.5399 0.4100 0.2826 0.2311 0.0911 0.005 22 607.0 3673.56 0.4095 0.3705 0.2427 0.2517 0.0963 0.0105 23 411.0 3675.69 0.6282 0.3716 0.2427 0.2662 0.1055 0.0123 24 615.0 373.51 0.66463 0.3551 0.2393 0.2950 0.1126 0.0147 25 619.0 373.51 0.66468 0.3351 0.22950 0.1127 0.0167 25 619.0 373.51 0.66455 0.3174 0.2270 0.2055 0.1267 25 623.0 3749.75 0.66255 0.3174 0.2270 0.3035 0.1336 0.2217	0.9302 0.9831 1.0362
1 573.0 363	C.9831 1.0362
21 603.c 364.c 36	1.0362
21 603.0 3640.83 0.53.99 0.400.00 0.2526 0.2371 0.0011 0.0055 22 607.0 3673.55 0.409.9 0.3705 0.4407 0.2517 0.0963 0.0105 23 411.0 3695.69 0.6282 0.3716 0.2447 0.2562 0.1055 0.0123 24 615.0 3715.58 0.66463 0.3531 0.2390 0.2806 0.1126 0.0144 25 619.0 373.51 0.66463 0.3531 0.2390 0.2950 0.1126 0.0144 25 619.0 373.51 0.66463 0.3531 0.2390 0.2950 0.1126 0.0144 25 619.0 373.51 0.66255 0.3174 0.2270 7.003 7.1267 0.0193 27 627.0 3764.51 0.6907 0.3072 0.3235 0.1336 0.0221 28 631.0 3777.98 0.7263 0.4234 0.42375 0.40375 0.4023 28 631.0 3777.98 0.7263 0.42375 0.4132 0.43375	1.0362
22 607.0 3673.56 0.609.5 2.370.5 0.2.87 0.2517 0.0963 0.3716.5 73 41.0 3695.69 0.6282 0.3716 0.2422 0.562 0.1055 0.0123 24 615.0 3715.58 0.6665 0.3551 0.22805 0.1126 0.0124 25 619.0 3733.51 0.66665 0.3351 0.2333 0.2950 0.1126 0.0193 25 619.0 3733.51 0.66655 0.3174 0.2270 0.3050 0.1267 0.0193 25 623.0 3749.75 0.6825 0.3174 0.2270 0.3235 0.1267 0.0193 27 57.0 3764.51 0.6900 0.3702 0.3235 0.1236 0.0221 28 631.0 3777.98 0.7165 0.2234 0.4132 0.3375 0.4140 0.6253 28 631.0 3777.98 0.7165 0.2234 0.4132 0.3375 0.4140 0.6253	
73 411.0 3695.69 0.6282 0.3716 0.2442 0.5562 0.1055 0.0123 24 615.0 3715.58 0.66465 0.3531 0.2390 0.22805 0.1126 0.0144 25 619.0 373.51 0.66468 0.3531 0.2333 0.2950 0.1197 0.0167 25 619.0 373.51 0.66468 0.3331 0.2333 0.2950 0.1197 0.0167 25 673.0 3749.75 0.6625 0.3174 0.270.3 0.3235 0.1336 0.0221 27 6.70.0 3764.51 0.6977 0.3002 0.703.3 0.3235 0.1336 0.0221 28 631.0 3777.98 0.7165 0.2634 0.1337 0.1404 0.6253 20 601.0 3777.98 0.7165 0.2634 0.1337 0.1404 0.6253	1.0394
24 615.0 3715.58 0.6665 0.3531 0.2390 0.2806 0.1126 0.0144 25 619.0 3733.51 0.6668 0.3351 0.2393 0.2950 0.1126 0.0144 25 623.0 3749.75 0.66825 0.3174 0.2270 0.0233 0.2950 0.1267 0.0193 27 627.0 3764.51 0.66907 0.0702 0.0235 0.1336 0.0221 28 631.0 3777.98 0.7165 0.2634 0.13375 0.1404 0.6253	1.1428
17 619.0 373.51 0.64646 0.3351 0.6233 0.2335 0.2050 0.1197 0.0167 25 623.0 3749.75 0.66825 0.3174 0.2270 7.5033 7.1267 0.0193 27 6.77.0 3764.51 0.6997 0.3002 0.7003 0.3235 0.1336 0.0221 28 631.0 3777.98 0.7165 0.2634 0.2192 0.3375 0.1404 0.6253	1.1962
25 61940 3793431 346460 043331 042333 042430 11147 140167 25 67340 374975 0.66825 9.3174 0.2270 7.3003 7.1267 0.0193 27 6.2740 3764451 0.6697 0.3022 0.2233 0.3235 0.1336 0.0221 28 631+0 3777.988 0.7165 0.2234 0.2132 0.3375 0.1404 0.6253	1 1/07
25 623-0 3749-75 0-6825 3-3174 0-6270 1-5073 0-1267 0-6053 77 627-0 3764-51 0-6907 0-3762 0-703 0-3235 0-1336 0-6223 28 631-0 3777-98 0-7165 0-62634 0-6132 0-6375 0-1404 0-6253	1.2471
27 627.0 3764.51 0.6967 0.3002 0.7203 0.3235 0.1336 0.0221 28 631.0 3777.98 0.7165 0.2234 0.2192 0.3375 0.1404 0.0253	1.0.24
28 6316 3777.98 J.7165 J.2634 J.2132 J.3375 J.4444 J.6253	1.3571
	1.4110
-// bitel 1/90es/ Dels/Y de/b/U De/D/D Destals Dela() Deuxil	1-4649
20 639-0 3801-66 0-7480 0-2610 0-1979 0-3660 0-1536 0-0326	1.5190
	1 2327
	443134
	1.6279
33 651.0 3830.87 0.7945 0.2054 0.1723 0.4037 0.1719 0.0465	1.6319
34 555+C 3839+31 ^+8089 0+1910 ^+1634 ^+4158 C+1775 C+0521	1.7364
35 659+0 3847+22 3+8279 0+1770 3+1542 3+4275 0+1828 0+3582	1.7910
36 663-0 3854-67 0.8365 0.3634 0.1450 0.4387 0.1878 0.0645	1.8.58
37 KET 3 3861.77 0.8496 0.1503 0.1356 0.4497 0.100 0.100	1.116.
	1.2572
39 0/380 38/4e/9 045/45 041234 041155 044082 C4100 040070	2 i
4C 679+C 3885+91 C+8863 C+1136 C+1075 C+4765 C+2036 D+0755	2.3659
41 583+C 3995+9C C+8976 0+1023 C+0992 C+484C C+2064 C+1689	2+1213
47 687+0 3892+49 0+9083 0+0916 0+0891 0+4904 0+2085 0+1202	2.1768
43 66140 3609402 0.018/ 0.0813 0.0803 0.4967 3.2133 3.1335	2324
	442504
47 6774- 3408+72 449374 46629 U+0631 4+5028 4+2128 4+1946	203444
46 703+0 3913+94 0+9460 0+0539 0+0551 0+50+3 0+2100 0+1765	2.4000
47 707+0 3010+11 0+0530 0+7460 0+0475 0+5043 0+2063 0+1937	2-4547
48 711+0 392++27 6+9610 0+0327 2+0403 2+5027 2+2057 1+2123	2
	2.4332
20 715_0 3075_23 5_6677 5_375 5_0337 5_10975 5_3075 5_7	1.5126
49 71540 3025443 349673 340332 340337 34975 34222 241155	2.49324 2.5126 2.5091
49 715.6 3929.43 0.9673 0.0321 0.0337 0.4900 0.2020 0.2025 50 719.6 3934.63 0.9738 0.7261 7.0277 0.4045 0.1972 0.2542	2.4352 2.5126 2.5351 2.6257
49 715+6 3929+43 0+9673 0+0321 0+0337 0++905 0+2020 0+1225 50 719+0 3934+63 0+9738 0+7261 0+0277 0++9+5 0+1972 0+2542 51 727+0 3930+50 0+9700 0+0209 0+0223 0+4877 0+1913 0+2776	2 • 4 3 52 2 • 5 1 2 6 2 • 5 0 9 1 2 • 6 2 5 7 2 • 6 6 2 5

MOL FA MOL FC

1.0000

2.0202

MOL +D MOL FE MOL FF MOL CL2 REACT / MOL CH4

0.0000 0.0000 0.0000 0.0000

.

INLET TEMPERATURE = 523.0

COUNTER TEMPERATURE VOLUME DEG. K CU-FT.

522.0

2

INERT COMPONENTS NITROGEN = 0.00 CARBON TET = 11.30 HCL = 0.00

0_00

XA

FB0 42.00	FF0 125.00	FNO 0.00	FAO 10.00	FCO 0.00	FDO 0.00	FEO 0.00	FS0 0.00		
FREQ FACTO 0.79800 0.13510 0.58940 0.45770	OR ACT DE 17 DE 18 DE 13 DE 18 DE 18	ENERGY 30036. 29902. 18930. 33290.							
CONV FACTO 1.80	DR							12.5	Inl
CONST C 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140	OF CP 0.1080E 0.2320E 0.1320E 0.1350E 0.2500E 0.2840E 0.2710E 0.8100E	-02 0 -01 0 -02 0 -01 0 -01 0 -01 0 -01 0 -01 0	0.0000E 00 0.1371E-04 0.0000E 00 0.0000E 00 0.9357E-05 0.1314E-04 0.1421E-04 0.0000E 00					Moles CCl4/Mole (et Temp 543°K
CONST OF -24833. -24280. -25631. -24209.	REACTION 1 -0.3912 1.6770 4.0260 5.1360	HEAT 0.147 -0.206 -0.292 -0.402	ZE-02 DE-03 DE-02 DE-02	-0.833E-06 -0.333E-06 0.833E-06 0.125E-05				4 ¹ HC	,
P 1.0000	GSCON 0.7300	R 1.9870	то 543.0001	DT 3.6000	723.00	TMAX 01 99.	XAMAX 0000		
COEF -1. 0. 0 11. 0 0. 11 0. 0. 1 0. 0. 0 -111 1. 1. 1	· 0. · 0. · -1. · 1. · 1. · 1.						• •		

N

Run

					**			~	
		n. nr	0.0000	1.0000	0,0000	0.0000	3.2000	U a Clu u C	
1	542.00		0 0460	9505	2.2494	0.0003	0.000	2.0000	
2	. 546+6	207043	0.00474	0.0757	0.00	3.0046	0.0000	0.0000	J.J.591
3	550+2	526.63	3+0945	J = 9 J 3 =		1.0123	5.5004	22000	C.1491
Ĺ	553.8	722.56	0.1360	C.2639	0.44224	0 0 0 2 2 1	0.0013	0.0000	3.1993
Ĩ	557.4	995.80	0.1744	0+8255	3.1509		0.000		3.2498
-		1022.95	0.2103	0.7896	0.1738	0.0334	20029	0.00000	2
6	20.00	1120.10	2.2440	2.7559	0,1930	0.0458	0.0051		0.0433
7	284+6		0 7760	2.7742	0.2099	0.0589	0.0079	0.0001	0.3911
9	568+2	123**16	0.00/1	0.4039	0.2220	3.2726	0.0112	0.0002	3+4020
2	571+8	1323+21	0.3001.	0.0730	0.3327	2.0869	3.0150	0.0003	C+4530
• •	575+4	1395+68	0.3350	2+5549	0.2323	0 1013	0.0102	2.0005	0.5042
. .	E79.0	1460.50	0.3625	^. 6373	3+Z414	0.1013	0.0317	1.3008	2.5555
1.	687.4	1516-24	0.3891	0.6108	C.2482	Ce1152		0 5013	0.4069
12	50200	1565.15	0.4145	C.5853	C.2534	C.1312	60221		0 6 6 8 6
13	388+2	1000017	0.4392	0.5607	0.2572	0.1464	0.0339	0.0010	0.0004
14	589+8	10.7.4	0 4 6 3 0	0.3360	n.2597	3.1617	0.0394	0.0021	0.1101
15	593+4	1646+45	0.4030	0 5130	7,2610	~ 1772	0.0451	0.0027	0.7618
16	597.0	1680.40	0.4861	0.0108	0.2010	2 1027	5.0510	3.2034	0.6137
1 7	600+6	1710.72	0.5084	2.4915	0.2012	0.0000	0.0570	5.0043	C.8656
1.0	674.2	1737.29	0.5301	3.4698	0.2604	0.2083	0.0970	0.0043	0.0177
12	(07.5	1767-34	0.5512	5.4487	Q.2587	3.2239	C+C633	0.0074	0 0400
19	501+5	1786 67	0.5717	0.4282	C.2561	0.2395	0.0695	J . CG.04	6.7077
20	611.4	1/04+44	0 2017	0.4082	0.2529	C.255C	0.0760	J.CC76	1.0221
21	515.0	1904+43	0.771		0,2490	2.27CA	0.0825	5.0091	1.0745
22	618+6	1822.63	3.6112	0.2007		3.2860	0.0891	0.0107	1.1269
23	622.2	1839+24	0.5302	0.3697	5+2442	3.2000	0.0057	0-0126	1.1795
23	A75.8	1854+45	0.6487	0+3512	0.2390	0.20.2	0.0707	0 0144	1.2322
24	620-6	1864.44	0.6668	0.3331	0.2332	0.3165	0.1023	0.0140	1.9340
25	027.4	1001.33	0.6844	0.3155	C+2269	3.3316	0.1089	0.0109	102047
26	633+0	1001 34	0.7016	0.2983	0.2201	C•3464	3.1154	0.0195	110011
77	635+6	1593420	0 7104	0.0015	0.2125	2.3611	0,1219	223	1.3907
28	640•2	1904+34	0+/184	0.20.00	0 00000	- 3754	1784	0.0255	1.4-37
29	643.8	1914.66	0.7347	0+2652		0 2005	2.1347	0.0290	1.4969
24	£47.4	1924.30	0+7507	^•249Z	~•14/3	0.0070	0 1630	0.0328	1.5501
	451-1	1933.35	3.7662	0.2337	0.1591	0.4032	0.1410	0.0320	1.4034
31	89100	1941.87	0.7813	0.2186	0.1805	0.4165	0.1470	0.0070	100004
32	634+3	1040 01	0.7960	C. 2039	0.1718	3+4294	0.1530 *	0.40417	1.0300
33	658+2	1949091	0.0103	3.1896	0.1628	0.4419	0.1587	0.0468	1.7104
34	661+8	1957+29	0.0103	0 1757	1 1 5 1 7		0.1642	0.0524	1.7649
35	665.4	1964.80	C.8Z4Z	0.1/2/		C (45)	1495	0.0586	1.2177
36	669.0	1971.73	0.8377	^ . 1622	. 0.1444	0+4621	202022		
20	30,11								
								•	
							1.1765	0.0653	1.8715
·_,	675-6	1978+37	0.6507	3+1492	0.1351				1.9255
31	676-7	1994.76	0.3633		0.1257	3.4855		5.0203	1.0795
34	270-5	1000.04	2.8754	0+1245	C.1164	2+4947	04-034		2 27
35	5	1006-01	3.8870	:.129	3.1071	0.5029	0.1372	0.0096	2.0221
40	683+4	1770873	0.9667	0,1017	2.2979	0.5102	1.1917	2.2993	2.54.9
41	687.0	2002.016				0.6145		1.1098	2.1-23
47	690.6	ZC0F+45	3+9088			0.5216		3.1214	2.1968
43	694.2	2014+06	0.9190	်နှင့်မင်ပြီး			1077	2.1339	2.2015
4.6	697-2	2010+59	0.9285	C+1714	0+0714	وتعدون	₩# # 7 5	1476	2.3:62
44	701-4	2025.00	r.9376	r.r523	0.0431	0.0280		. 1475	2. 1011
43	705 0	2030.50	J.946u	0 a 6539	0.0551	0.5291	682723	V#+042	2
46	705.0	2030-50	1,9516	0.0461	C.C476	0.5288	0.1985	0.1737	204102
47	708+6	2033094	0.0410	0.0100		3.5263	1.1972	C+1963	2.4713
4 9	712+2	2041+47		34 337		5.5733	L. 1946	U.2123	2.5267
	715.8	2046+91	0.9675	0.032→	0.000			2.355	2.5522
49			· 0734	6.1265	0.0281		تعليفت		
49	719-4	2052+49	J # 7 1 J 4					1,25,67	7.5378
49 50	729+4	2052+49	0.9786	7.0213	2.0227	0.5106	5.1872	0.2550	2.5378

MOL FC MOL FD

_---

MOL FA

.

MUL FE MOL FF MOL CL2 REACT / MOL CH4

INLET TEMPERATURE = 543.0

TEMPERATURE

DEG. K

COUNTER

.

INERT COMPONENTS NITROGEN = 3.00 CARBON TET = 12.50 HCL = 0.00

VOLUME

CU.FT.

XA

--

FB 0 42.00	FFO 133.00	FNO 0.00	FA0 10.00	FCO 0.00	FDO 0.00	FEO 0.00	FSO 0.00				
FREQ FACTO 0.79800 0.13010 0.58940 0.45770	OR ACT DE 17 DE 18 DE 13 DE 18 DE 18	ENERGY 30036. 29902. 18930. 33290.									
CONV FACTO 1.80	OR								13.3	In	
CONST 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 8.6140	DF CP 0.108 0.232 0.132 0.135 0.135 0.284 0.271 0.810	0E-02 0E-01 0E-02 0E-01 0E-01 0E-01 0E-03	0.0000E 0.1371E 0.0000E 0.0000E 0.9357E 0.1314E 0.1421E 0.0000E	00 -04 00 00 -05 -04 -04 00					Moles CCl ₄ /Mole CH	let Temp 553 ⁰ K	Run 2
-24833. -24280. -25631. -24209.	-0.3912 1.6770 4.0260 5.1360	0.14 -0.20 -0.29 -0.40	47E-02 06E-03 92E-02 02E-02	-0.833E -0.333E 0.833E 0.125E	-06 -06 -05	·			4		
P 1.0000	GSC 0.7300	ON 1.9870	R 0 553.00	TO 001 3.4	DT 000 7	TMAX 23.0001	99.0000	XAMAX			
COEF -1. 0. 0 11. 0 0. 11 0. 0. 1 0. 0. 0 -111 1. 1. 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										

		INERT COMPONENTS			
NITROGEN ≈	0.00	CARBON TET =	13.30	HCL =	0.00

INLET TEMPERATURE = 553.0

FOUNTER	TEMPERATURE DEG. K	VOLUME CU+FT+	XA	MOL FA	MOL FC	MOL FD	HOL FE	MCL FF	HOL CL2 REACT/ MOL CH4
									2 0000
1	553.C	0.00	0.0000	1.0000	0.0000	0.0000	0.0000		
2	556+4	198.24	0.0494	0.9505	0.0494		0.0000	0.0000	0.0001
3	559.8	363.24	0.0945	0.9054	0.0844	3.0045	0.0000	0.0000	0.1401
4	563+2	501.77	0.1360	0.8639	0.1233	0.0123	0.0003	1.0000	0.1002
5	566+6	619.08	0.1746	0+9253	0.1510	0.0223	0.0011	3.0000	0.1333
6	570.0	719.21	0.2106	0.7893	0.1741	C.0339	0.0025	0.0000	0.2491
7	573•4	805+31	0.2445	0 • 75 54	C.1934	0.0466	0.0044	0.0000	0.3003
8	576.8	879.84	0.2766	0.7233	0.2093	0.0602	0.0068	0.0001	0.3510
9	580.2	944.74	0.3071	0.6928	0+2225	0.0745	0.0098	0.0002	0.4019
10	583.6	1001.58	0.3361	0.6638	0.2333	0.0892	0.0132	0.0003	0.4529
11	587+0	1051.62	0.3639	0.6360	0.2420	0.1043	0.0170	0.0005	0.5040
12	590+4	1095+88	0.3906	0.6093	0.2488	C+1198	0.0211	C.0007	0.5552
13	593+8	1135.20	0.4163	0.5836	0.2540	0.1355	0.0256	2.0011	0.6065
14	597.2	1170+30	0.4411	0.5588	C.2577	0.1513	0.0304	0.0015	0+6581
15	600+6	1201.75	0.4651	0.5348	0.2601	0.1674	C.0355	0.0019	0.+7695
15	604.0	1230.03	0.4883	0.5116	C.2613	0.1835	0.0408	0.0025	C • 7613
17	607.4	1255.57	0.5108	0.4291	0.2614	0.1996	0.0464	0.0032	0.8131
13	610.8	1278+72	0.5326	0+4673	0+2605	0.2158	0.0521	0+0040	C.8650
19	614.2	1299.77	0.5538	0.4461	0.2587	0.2320	0.0580	0.0049	0.9169
20	617+6	1318.97	0.5744	0.4255	0.2561	0.2482	0.0640	0.0060	0.9690
21	621.0	1336.56	0.5945	0.4054	0.2526	0.2543	0.0702	0.0072	1.0212
22	624.4	1352.71	0.6141	0.3858	0.2485	0.2804	0.0764	0.0086	1.0734
23	527.8	1367.60	0.6331	0.3668	C.2437	0.2963	C.0827	0.0102	1,1258
24	631.2	1381.37	0.6517	0.3482	0.2384	0.3121	0.0891	0.0120	1.1782
25	634.6	1394.14	0.6698	0.3301	C.2324	0.3277	0.0955	0.0139	1.2308
26	638+0	1405.02	0.6374	0.3125	0.2260	0.3432	0.1020	0.0162	1,2834
27	641.4	1417.12	0.7047	3+2952	0.2191	0.3584	0.1084	0.0186	1.3361
2.8	644.8	1427.51	0.7214	0.2785	0.2117	0.3733	0.1148	0.021 4	1.3859
20	649 . 2	1437.28	0.7378	0.2621	C+2040	0.3880	0+1212	0.0244	1.4418
30	651.6	1446-48	0.7537	0.2462	0.1960	0.4023	0.1275	0.0278	1.4948
21	455-0	1485.10	0.7602	C-2307	0.1876	0.4162	0.1337	0.0315	1.5479
35	658+4	1463.45	3.7843	0.2156	2.1790	0.4297	3.1398	0.0357	1.6010
22	661.8	1471.32	0.7990	0.2009	0.1701	C•4423	0.1458	0.0402	1.6543
34	665.2	1478.83	0.8133	0.1866	0.1611	0.4553	C.1516	0.0452	1.7077
25	663+6	1486.04	0.8271	0.1728	0.1519	C.4672	0.1572	0.0507	1.7611
36	672.0	1492.97	0.8405	0.1594	0.1426	0.4785	0.1626	0.0567	1.8147
. 0	01110								
		1					• •		
							· · · · · ·		
37	675.4	1499.55	0.8535	0.1465	0.1332	0.4893	C.1677	6.0633	1.8683
3.6	678.8	1506.15	0.8659	0.1340	0.1238	2.4983	0.1725	3.0766	1.9221
33	682.2	1512.46	0.8780	0.1219	0.1144	0.5073	v.1771	0.0786	1.9759
40	685.6	1518-62	0.8895	0.1104	0.1051	0.5158	0.1812	0.0873	2+0299
41	629.0	1524.66	0.9006	0+0993	0.0959	0.5228	C.1849	3.3968	2.0540
~ 1	697-4	1530.63	0.9111	0.0288	0.0869	0.5287	0.1881	3.1373	2.1382
43	695.9	1536-47	0.9211	5.0748	0.0791	0.5334	5.1938	0.1187	2.1925
LL.	529.2	1542.30	0.9304	0.0593	0.0495	0.5369	0.1928	3.1311	2.2.69
45	702.6	1548.11	0.4304	2.3605	2.0614	3.5389	0.1943	0.1447	2 . 3 . 1 4
49	706.0	1940111	0.9477	0.0000	0.0575	- <u>5305</u>	0.1950	0.1595	2.3561
~ 0	700+0	1550.75	0.0552	0.04/4	2.2441	C.5384	0.1949	0.1756	2.4109
/	10707	1965.63	0 - 96 94 0 - 96 94	0.0375	0.0302	C. 5953	1020	0.1921	2.4659
*3	1.2.4C	1671.60	0.0407	0.0210	0.0376		1925	0.2121	2,5210
400 10 10	-0+4	10/1000	0 8 7 6 C 1	0.0312	0.0212	0.5254	0,1207	0.2325	2.5763
5.5	1	1559.07	0.070=	0.0202	0.0010	0 6177	0.1852	7.34/6	2.6317
- :	12311	「口てのをす母	242432	1 • . e. 16•		5 8 - A 1		0.2040	2 - 4 4 4 1

75.

à

FBO 42.00	FFO 141.00	FNO 0.00	FAO 10.00	FCO 0.00	FDO 0.00	FEO 0.00	FSO 0.00	
FREQ FACTO 0.79800 0.13910 0.58540 0.45770	E 17 E 17 E 18 E 13 E 18 E 18	ENERGY 30036. 29902. 18930. 33290.						
CONV FACTO 1.80	R							
CONST 0 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140	F CP 0.1080 0.2320 0.1320 0.1350 0.2500 0.2840 0.2710 0.8100	E-02 E-01 E-02 E-01 E-01 E-01 E-01 E-01	0.0000E 0.1371E- 0.0000E 0.0000E 0.9357E- 0.1314E- 0.1421E- 0.0000E	00 04 00 05 04 04 00				
CONST OF -24833. -24280. -25631. -24209.	REACTION -0.3912 1.6770 4.0260 5.1360	HEAT 0.147 -0.206 -0.292 -0.402	7E-02 5E-03 2E-02 2E-02	-0.833E -0.333E 0.833E 0.125E	-06 -06 -06 -05			
P 1.0000	GSC0 0.7300	N R 1.9870	563.00	TO 01 3.2	DT 000 723	TMAX .0001	99.0000	XAMAX
COEF -1. 0. 0 11. 0 0. 11 0. 0. 1 0. 0. 0 -111 1. 1. 1	0. 0. 0. -1. 1. -1. 1.							

Run 4

76.

14.1 Moles $CCl_{4}/Mole CH_{4}$

Inlet Temp. - 563°K

INCRT COMPONENTS NUTROGET # C.CC CARBUN TET # 14-10 HCL # C.CC

INLET TEMPERATURE = 563+0

COUNTER	TEMPERATURE DEG. K	VOLUME CU+FT+	XA	MOL FA	AGE FC	NGL FD	SGE FE	MUL FF	HUL CL2 NE	ACT/ HUL	Cn4
1	563.0	0.00	0.0000	1.0000	0,0000	0.0000	0,1001	00000	0,0000		
· 2	566+2	135.73	0.0491	0.9508	C.0491	3.0000	0.0000	0.0000	0.0491		
3	369 . 4	252+27	0.0939	3.9060	0.029-	0.00.5	0.0000	2.0000	0.0952		
4	572.6	350.73	0.1353	0.8646	2.1228	0.0122	0.0002	0.0000	0.1482		
5	575+8	435.3E	0.1738	0.9261	C.1505	0.0222	3.0009	0.0000	0.1980	· · ·	
6	577+0	500+71	3905+0	0.7901	0.1736	0.0339	0.0021	0.0000	0+2481		
7	. 582+2	572+66	0.2437	3.7562	0.1930	C+C468	0.0037	0.0000	0.2983		
9	585+4	628.79	0.2759	0.7241	0.2090	0.0607	C.0059	0.0001	0.3487		
3	582+5	678.32	0.3063	0.6935	G.2223	G.ü753	C.0084	C.0001	0.3992		
15	591.9	722.26	0.3355	0+6644	0.2332	0.0905	3.3114	0.0003	C•4498		
11	595.0	761.43	0.3634	C+6365	0.2420	0.1060	0.0148	3.0304	0.5006		
12	598.2	796+49	0.3902	0+6097	0.2489	0.1223	0.0185	C.CC07	0.5515		
13	601.4	825.01	3.4160	2.5839	0.2541	0.1382	0.0226	0.0010	0.6025		
:4	604+6	856.47	0+4408	C.5591	0.2579	0.1545	0.0269	0.0013	0.6535		
15	607+8	882.24	0.4649	0.5350	0.2603	0+1711	0.0316	0.0018	C+7047		
16	611.0	905.65	C.4892	0.5119	0.2615	0.1877	0.0365	0.0023	C.7560		
	61++2	927.06	0.5137	3.4892	0.2617	0.2044	0.0416	0.0029	0.8074		
18	617.4	945.64	0.5326	0.4673	0.2605	0.2211	0.0469	0.0037	0.8589		
10	620.6	964.62	0.5539	3.4460	3.2590	0.2379	C.0524	0.0045	0.9104		
20	623.8	981.19	0.5746	0.4254	0.2563	0.2545	0.0580	0.0055	0.9521		
21	627.0	996.53	0.5947	0+4352	0.2529	0+2712	0.0638	0.0067	1.0138		
77	630+2	1010.70	3.6143	0.3856	0.2437	C+2877	0.0697	3.0080	1.0656		
73	633.4	1023.91	2.6334	0.3566	2.2439	0.3041	C.C757	0.0094	1,1175		
24	636.6	1036.23	0.6520	0.3480	C.2385	0.3204	G.0818	0.0111	1.1695		
25	639.8	-1047.75	0.6701	0.3298	0+2326	C.3364	0.0880	0.0130	1.2216		
26	643.C	1356.57	0.6677	C-3122	0.2261	C.3523	0.0941	0.0150	1.2738		
<u>,</u>	545.2	1058.75	0.7050	0.2949	0.2192	0.3679	0.1004	0.0174	1,3261		
2.5	649+4	1078.36	3.7217	0.2782	C.2118	3832	J.1066	∂ •J200	1.3784		
29	657.6	1027.47	0.7361	0.2615	0.2041	0.3982	J.1128	3.0229	1.4308		
30	655+8	1096.12	0.7540	0.2459	0.1960	0+4128	0.1190	0.0261	1.4833		
31	659+0	1104.36	0.7695	2+2304	0.1877	0.4270	0.1251	0.0296	1.5359		
32	662.2	1112+24	0.7846	0.2153	0.1790	3+4408	0.1312	0.0335	1.5886		
33	665 • 4	1119.79	C.7993	0.2006	2.1701	C+4540	C.1371	0.0378	1.5414		
34	668.6	1127.06	0.8135	0.1864	0.1611	3.4667	0.1429	0.0426	1.6942		
35	671.3	1134.07	0.8273	0.1726	0.1519	0.4785	C+1486	0.0478	1.7472		
36	675.0	1140.87	0.8407	0.1592	0.1426	3.4903	0.1540	0.0536	1.8002		
27.	678.2	1147.47	0.8536	G.1463	0.1332	0.5010	2+1593	0.0599	1.0.44		
30	581.4	1153.91	0.8661	3.1337	2+1258	0.000	0+1543	0.0009	1 0500		
37	624.6	1160+20	0.00.00	0.1219		0.2272	0.1070	0.0170	2.0133		
40	68.68	1158+39	443070		0.2026	0.02/7	0 1 1 24	0 00027	2		
÷.	691.00	11/2+49	0.9000	0.0073		0.03300	0+1774	0 10721	2 1 2.04		
47	594.7	11/2.52	0.511		0.0010	343409	0.1309		2.1203		
43	67 +4	*********	0.030-	• L : 3 Y			u≉⊾04-0 ∖ 13≠e	0 1251	2.2281		
	100+6	7 - + 4 7	0.9304	2.075	J + J 0 7 /	0.2470	4 1 2 2	1 1 2 2 2	2.2921		
45	10108	12044/	0.9393	0.0000			- 1004	- 1574	2020ES 7.3367		
4.5	101+0	1.000 + H M	7 - 5			C 10014	+1575	000000	2.3905		
4 i	140 ez	1000+00	- 0411	•	10000000000000000000000000000000000000	6.77		1221	2.5355		
48	2 4 4 5 7 4 4 7 4 7 4	1020-21	0.060/	0.0315	0-0333	0.5457		0.7.145	2.2.73-		
	· + 0 + 0	1077.70	0.7004	0.0343	0.0274	0.5370	0.1942	0.2233	7,6640		
 	733 5	1222.00	0.0707	1, 12, 17	1.17-7	• 2 g = 3		0.7447	1.6.89		
-	(Z2+U	-6330	- 4 7 7 4				ه شربا ش ۹ ب	V			

77.

wage 3

FBO 42.00	FFO 150.00	FNO 0.00	FA O 10.00	FC0 0.00	FDC 0.00) FEO) 0.00	FSO 0.00				
FREQ FACTO 0.79800 0.13910 0.58940 0.45770	R ACT E 17 E 18 E 13 E 18 E 18	ENERGY 30036. 29902. 18930. 33290.									
CONV FACTO 1.80	R								15.0	InJ	
CONST 0 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140	F CP 0.108 0.232 0.132 0.135 0.250 0.284 0.271 0.810	0E-02 0E-01 0E-02 0E-01 0E-01 0E-01 0E-01 0E-03	0.0000E 0.1371E 0.0000E 0.0000E 0.9357E 0.1314E 0.1421E 0.0000E	E 00 E-04 E 00 E 00 E-05 E-04 E-04 E 00					Moles CCl ₄ /Mole (let Temp 573 ⁰ K	Run 5
CONST OF -24833. -24280. -25631. -24209.	REACTION -0.3912 1.6770 4.0260 5.1360	HEAT 0.14 -0.20 -0.29 -0.40	7E-02 6E-03 2E-02 2E-02	-0.83 -0.33 0.83 9.12	3E-06 3E-06 3E-06 5E-05				μHC		
P 1.0000	GSC0 0.7300	N R 1.9870	573.0	TO 0001 3	DT 0000	TMAX 723.0001	99.0000	XAMAX			
COEF -1. 0. 0. 11. 0. 0. 11. 0. 0. 1. 0. 0. 1.	0. 0. -1. 1.										

-1. -1. -1. -1. 1. 1. 1. 1.

		INERT COMPONENTS			
VITROGEN =	0.00	CARBON TET =	15.00	MCL =	0.00

INLET TEMPERATURE 573.0

COUNTER	TEMPERATURE DES. K	VDLUHE CU.FT.	XA	MOL FA	NOL FC	MOL FO	MOL FE	MOL FF	MOL CL2 REACT / MOL SH4
1	573.0	0.00	3.0000	1.0000	3.0100	0.0007	0.000	မောင်မိမမ	0.0000
2	376+0	26+46	3.0487	n.9512	2.0487	0.1001	1.1235	4.1406	C+C487
	579+0	172.07	3+ <u>5643</u>	n.9n66	n.n899	∩ ∎"044		0,00000	0.0070
4	552+0	250+48	0.3-5	0+3654	v+1221	0.0121		မ်းခင်းမိုင်မိုင်	Q+14/1
5	735.0	312.74	0.1728	0.8271	0,1499		1.008		L-1957
4	£7	367.43		***11	C+1771	C+0338	0.0018	0.0000	J • Z + D 4
-	591.0	415+76	0+2427	Ge 7572	C+1925	202469	0.0032		C+2762
8	594+0	452+73	2.2749	2+7251	0+2036	0.0610	1.0050	0.0000	0+3402
^	0.723	497.13	0.3053	1+5946	2.2220			မရမ်မြန်	3703
15	600.00	531.61	ú • 3345	0.6554	2.2350	2.291.2	440099		0.4466
:1	0.600	562.70	0+3625	2+6374	3.2413	0.1272	0.0129	2.0004	
12	506.0	500.00	0.3593	0.6106	0.2488	J.1236	C.0162	1.006	6+5+74
13	609.0	616.47	0+4152	0.5847	0+25+2	3.1402	C-0199	0.0009	0.5980
14	612.0	639.82	3+4402	0.5598	0.2580	3.1570	0.0238	0.0012	Q.6487
15 -	615.0	661.21	3.4643	0.5356	3.2605	Ja1740	0.0280		0.6794
16	518.5	. 680.65	3.4876	2.5123	3.2617	0.1911	0.0325	0.0021	0.7503
17	521.0	678+96	3.5102	0+4597	0.2619	5.2083	0+0372	0.0027	0.8012
15	624.0	715.70	0.5322	3+4677	0+2610.	0.2256	0.0421	0.0033	0.8523
ja	527.C	731.23	0.5535	3.4464	0.2592	0.2428	0.0472	J.3041	0.9034
20	630.0	745+66	3.5742	0.4257	3.2566	0.2399	0.0525	0.0051	0.9546
21	633.0	759+13	0.5944	0+4055	0.2532	0+2770	0.3579	0.0061	1.0059
	535.0		2.6140	C.3959	0.2490	0.2940	0.0634	0.0073	1.0573
23	633+0	703.54	0.6331	0.3668	0.2442	0.3109	0.0691	3.3087	1.1087
74	642.0	794.66	0.6517	2.3482	0.2388	3.3276	0.0749	· 0.0102	1.1603
25	645."	925.15	2+6699	2.3300	2.7329	2.3441	0.2808	0.0120	1.2119
2.5	548-0	815+38	2.6876	0.3123	0.2264	2.3603	0.0867	9.0140	1.2636
77	651.0	824+49	C.7048	0.2951	0.2195	2.3763	C.0927	0.0161	1.3153
78	65400	833-45	0.7214	A. 7787	2.7171	2.3922	C.C927	651C+C	1+3672
-	657-0	867.00	0.7380	0.2520	0.2044	0.4073	0.1048	0.0213	1+4191
2	560-0	450.19	3-7539	2.7460	0.1963	0.6223	0.1108	2.0243	1.4711
21	663-1	959.04	3.7694	0.2305	0.1979	0.4365	0.1165	0.0277	1.5232
20	666-3	865.60	3-7845	0.2155	0.1793	0.4508	0.1228	0.0314	1+5754
12	469.0	200000	0.7991	0.2009	0.1704	0.4644	0.1287	0.0355	1=6276
	672-2	870.07	0,9123	A.1956	0.1614	2.4773	0.1345	5.0400	1+6800
25	675	994.84	3.8271	0.1778	0.1522	0.4696	0-1402	0.0450	1.7324
36	678.0	873.54	0.8405	0+1594	3.1429	0.5013	2+1457	0.0505	1.7849
	2								
27	683	977,78	1-2534	7.1465	0,1995	0.5121	1.151u	3.0555	1.3375
38	684.0	906-51	Ú.865≈	0.1341	0.1242	0.5222	0.1562	3.0631	1.8902
10	687.0	912.83	3.3772	3.1221	0.1148	J.5313	0.1611	0.0764	1.0429
Ĩ.	690.0	919.C7	0.8827	°.1106	2.1055	2.5395	3+1657	0.0785	1.9953
<u>4</u> 1	693.0	925.26	6.9.03	0.0996	3.0944	3.5466	3.1699	0.0872	2.0480
2.7	696.0	931.42	0.9107	0.0392	0.0874	3.5525	0.1735	0.0969	2.1018
<u> </u>	600 . 0	137.56	2.9207	0.0797	0.0786	2.5573	2.1772	3.1074	2.1550
	722.0	9.1.72	9301		2.0721	2.5627	3.1301	0.1190	2+2-63
		0.9.71	0.0370		2.062	2,5627	2.1824	2.1316	2.2617
4)	709.0	356.16	1.9471		3.2547	2.5637	2.1542	3.1434	2.3152
40	711.0	562.68	0.9547	1.045	0.0465	1.5621	2.1852	1605	2.3685
4,3	714.0	10.3A2	2,9617	3 6 7	0.0400	2.55.22	0.1954	3.1768	2.6227
*3	717-0	7907516 07516	0.0460		2, 1334	0.3519	Calat-		2 + 566
+ J = ^	720.0	997-17	~_6737		0,00000	3,8494	3-1233	3,2138	2.5206
24		326.75	0.0707		0,00.4	1.1614	0,1000	2.2342	2.5000
5 i	· C 2 • U	757855					~ * * * ~ ~ ~ ~	~~~~~	

FBO 42.00	FF0 0.00	FNO 0.00	FAO 10.00	FCO 0.00	FD(0.0(0 FEO 0 0.00	FSO 380.00				
FREQ FACTOR 0.79800E 0.13910E 0.58940E 0.45770E	ACT 17 18 13 18	ENERGY 30036. 29902. 18930. 33290.									
CONV FACTOR 1.80									38	In	
CONST OF 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140	CP 0.1080 0.2320 0.1320 0.1350 0.2500 0.2840 0.2710 0.8100	DE - 02 DE - 01 DE - 02 DE - 01 DE - 01 DE - 01 DE - 01 DE - 03	0.0000E 0.1371E- 0.0000E 0.0000E 0.9357E- 0.1314E- 0.1421E- 0.0000E	00 -04 00 -05 -04 -04 00					Moles HCl/Mole CH ₄	ılet Temp 523 ⁰ K	<u>Run</u> <u>6</u>
-24833. -24280. -25631. -24209.	-0.3912 1.6770 4.0260 5.1360	0.147 -0.206 -0.292 -0.402	E-02 E-03 E-02 E-02	-0.833 -0.333 0.833 0.125	3E-06 3E-06 3E-06 5E-05				·		
P 1.0000	GSCO 0.7300	N R 1.9870	TO 523.0001	4.	DT 0000	ŤMAX 723.0001	99.5000	XAMAX			
COEF -1. 0. 0. 11. 0. 0. 11. 0. 0. 1. 0. 0. 0. -111. 1. 1. 1.	0. 0. -1. 1. -1. 1.										

INERT COMPONENTS NUTRØGEN = 0.00 CARBON ILT = 0.00 HCL = 38.00

INLET TEMPERATURE - 523.0

-

COUNTER	TEMPERATURE DEG. K	VOLUME CU.FT.	XA	mol fa	YOL FC	MOL FD	MOL FE	MOL FF	MOL CLE REACT / MOL CH4
	612.*								
2	577.0		0.0000	1.0000	0,0000	0.0000	0.0000	0.5600	
1	571.0	#110+#D	0.00009	0.5495	- U . U . U . U . U . U . U . U . U . U	3.3063	ũ ≠3000	0.0000	3.0509
<u> </u>	575-0	11557 00	0.0971	0.9028	0.0022	0.00-9	2.0000	0.0000	0.1021
5	555.0	1100303039	0.1394	3+3605	C.1259	0.0123	0.0006	5.0000	0.1535
6	543.0	+ 3702+44	2.1783	0.8216	C.1536	0.0226	0.0021	5.0000	0.2051
-	547.0	17510 07	0.2144	J.7855	0.1763	J.J336	0.0044	3.0000	0.2569
E	551.0	10231.18	J+2482	0.7517	0.1951	0.0454	0.0075	0.0000	0.3089
ş	555.6	100001010	0.2800	2+7199	0.2107	0.7578	0.0113	0.0001	0.3610
1.	550.0	371.7	0.0101	0+6898	0.2234	0.0706	0.5157	0.0003	0.4132
	553.0	20347499	0.3338	3+6611	0.2335	0.0833	0.0206	0.0005	3.4655
22	547-0	2102:040	0.3662	3+5337	0.2422	0.0972	0.0260	0.0017	0.5179
19	571.0	22200404	0.3926	0.6073	0.2487	0.1109	0.0318	0.0011	C. 5704
14	575-0	22074+63	0+4179	C+5820	0.2537	0.1247	0.0379	0.0015	2.6231
15	570.0	2333/8/0	U+4423	C+5576	0.2572	0.1387	0.0442	0.0020	0.6758
16	592.7	23126+81	3+4659	0+5340	0.2595	0+1528	0.0508	0.0026	C . 7286
	70240	24120+73	C.4888	0+5111	0.2606	0+1670	0.0576	0.0034	0.7815
10	501 o	24438+05	0.5109	C+4890	0.2606	3.1814	3.2646	0.0042	0.8344
10	591+0	24716+12	0.5325	C•4674	0.2597	C+1957	0.0716	0.0052	0.4875
20	595±G	24960+55	0.5534	0+4465	0.2579	0.2102	0.0788	0-0066	0-0404
23	299+0	25177.16	0.5738	0.4261	C.2553	0.2247	0.3863	0.0077	0.6930
21	603.0	25369.15	0.5937	0+4362	0.2520	0.2392	0.0937	0.0197	
22	607+9	25540+25	0+6130	C+3969	0.2479	0.2536	0.1005	0.0100	1.1005
23	611.3	25693.35	0.6319	0+3680	0.2432	0.2681	0.1077	0.0170	
24	615+0	25830.89	0.6503	0+3496	0.2379	0-2825	0.3146	0 00140	1.1340
25	619+0	25954.93	0+6683	0.3316	0.2321	3.2965	0.1330	0.0149	1.2076
26	623.0	26067.24	0+6859	0+3140	0.2258	0.2110	0.1203	0.01/3	1+2612
21	627+0	26169.31	0.7030	0+2069	0.2190	0.3250	0.1360	0.0199	1+3149
26	631+3	26262.44	0.7197	0.2802	0.2110	2-3180	3 14 30	3.0228	1+3087
23	635.0	26341.73	0.7360	0.2639	0.2042	3,3675	3 1405	0+0260	1+4226
30	639+0	26425-16	0+7519	0.2420	0.1963	3-3450	0 16/0	0.0296	1.4765
31	643+0	26498.55	3.7673	0.2326	0-1880	0.1701	0.1000	0.0335	1.5306
32	647+0	26565.64	C.7824	0.2175	0.1765	0.3015	4+1023	0403 /8	1+5847
33	651+0	26628.04	0.7971	0.2028	0.1707	0.4043	041004	0+0425	1.4390
34	655.0	26626.33	0.3114	0.1885	0.1414	0.4043	0.1742	0.0477	1.6933
35	659+0	26740.99	0.8252	3.1747	0.1537	00002	61198	0.0534	1.7477
35	663.0	26792.46	0.8386	0.1613	0 1.2/	G + 4 2 7 7	0.1851	0.0596	1.8022
					081434	3.4387	0.190 0	0.3564	1.8568
									•
77	547.0	364/3 18							
38.	671.0	76807.95	0.0015	0+1483	G.1341	3 • 44 90	0.1945	0.0738	1.9114
37	675+0	20001033	U + 2042	0+1397	0+1249	0 • 4587	0.1986	0.5819	1.9662
40	67540	20731442	0.5070	3+1236	0.1154	0+4676	J.2023	0.0908	2+0211
41	683.0	2007/0400	0 5000	0+1120	0.1062	C=4757	J. 2055	3.1004	2.0761
42	687.0	2 91062 55	0.0995	201009	0+0970	0.4829	C.2081	0.1109	2.1313
43	691.0	210000000	0.9097	0,002	0.2879	0+4891	0.2101	3.1224	2.1865
<u></u>	695.			0.0901	0.0791	C+4942	0.2115	0.1348	2.2418
45	670.0	LILLU073	J # ¥ Z 7 4	0.0705	0.0705	3.4982	3.2122	3.1434	2.2973
46	7	21.423.44	•730	0.0615	0+0522	C.5000	0.2122	1.1631	2,1529
		2120-043	0.9468	0.0531	0.0543	3.5022		1791	7.4087
49	777 0	2/43/+58	0.7546	0.0453	3.3468	0.5021	0.2092	0.1964	2.4645
40	71120	2/272.59	0+9618	0.0351	0.0398	3.5003	0.2364	3.2151	2-5236
± *	11300	21325.14	3.9633	2.0316	1.032Z	2.497.	4.2326		5.0767
11	1.2.4.	2/345+52	2+2742	0+0257	3.0273	3.4919	0.1977	0.2571	
·-	17360	21320112	3.9793	0.0206	0.0220	2.4851	5.1917	3.2803	2.4.396
								~~~~~	

•

FBO 42.00	FFO 0.00	FNO 0.00	FAO 10.00	FCO 0.00	FDC 0.00	FEO 0.00	FSC 430.00	)			
FREQ FACTOR 0.79800E 0.13910E 0.58940E 0.45770E	ACT 17 18 13 18	ENERGY 30036. 29902. 18930. 33290.									
CONV FACTOR 1.80									43	In	
CONST OF 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140	CP 0.1080 0.2320 0.1320 0.1350 0.2500 0.2840 0.2710 0.8100	E-02 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-03	0.0000E 0.1371E- 0.0000E 0.0000E 0.9357E- 0.1314E- 0.1421E- 0.0000E	00 -04 00 -05 -04 -04 00					Moles HCl/Mole $CH_{4}$	1let Temp 543 ⁰ K	<u>Aun</u> 2
-24833. -24280. -25631. -24209.	-0.3912 1.6770 4.0260 5.1360	0.147 -0.206 -0.292 -0.402	E-02 E-03 E-02 E-02	-0.833F -0.333F 0.833F 0.125F	5-06 5-06 5-05					•	
P 1.0000	GSCON 0.7300	B 1.9870	543.00	то 901 3.6	DT 5000 7	TMAX 23.0001	99.5000	XAMAX			
COEF -1. 0. 0. 11. 0. 0. 11. 0. 0. 1. 0. 0. 0. -111.	0. 0. -1. 1. -1.										

1. 1. 1. 1.

		j.							
7830 7830 442 445 457 777 787	672+6 676+2 679+8 683+4 687+0 690+6 690+6 690+7 697+8 701+4 705+0 708+0 712+2 715+7 715+7	15148.09 15198.59 15247.48 15255.02 15341.42 15386.52 15431.72 15563.94 15607.95 15662.27 15667.10 1570.464	C.8597 0.8721 0.8840 0.8953 0.9062 0.9065 0.9263 0.9355 0.9441 0.9521 0.9594 0.9594 0.9594 0.9721	0+1401 0+1278 0+1159 0+1046 0+0937 0+0834 0+0735 0+0844 0+05588 0+05588 0+0478 0+05588 0+0338 0+0078 0+0078	C.1284 O.1289 C.1055 C.1005 C.00511 C.00511 C.00540 C.00540 C.00540 C.00540 C.00555 C.00555 C.00555 C.00239	C.4779 3.44871 G.45527 C.55070 C.55141 3.55181 3.5216 C.5216 G.5216 C.5197 C.515197 C.515297 C.515297 C.515297 C.515297	C.1820 C.1866 V.1935 C.1945 C.1977 O.2033 C.2036 C.2036 C.2036 C.2037 C.2037 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2027 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.2037 C.	3.0713 3.0793 J.3032 J.40978 J.1065 0.1198 0.1324 J.1610 J.1772 0.1772 0.17748 0.2138 0.2234 J.2344	1.9159 1.5707 2.3257 2.3257 2.3358 2.1510 2.2469 2.3375 2.34132 2.44591 2.5251 2.5612 2.46376
51	723.0	15789.12	0.9822	0.0177	C.3190	0.4950	C.1877	3+2804	2.6944

COUNTER	TEMPERATURE DEG. K	VOLUME CU.ET.	X 4	NOL FA	MOL FC	MOL FD	MOL FE	MGL FF	NOL CL2 REACT / MOL CH4
						A	1.000	0.0000	0.000
1	543.3	0.00	2.2000	1.000	0.0517	0.000		0.000	2.0511
2	546+5	2219.21	3.3511	2.9488	0.0001	0.00.0	2,0000	1.1110	0.1025
. 3	550+2	4034+75	0.0975	• • • 24	2 4 2 7 2 3 0 1 0 2 5	0.0131	5.0004	3.0.35	G-1541
4	553.8	5532.39	0.1401	0.8598			2.0015	0.0000	2.2059
5	557+4	6779+01	0.1794	0.8205	0.1345	0 0 2 34		1.1302	2.2579
6	561 <b>.</b> C	7825.80	C.2151	0.7938	0.11/6				3.3100
7	564+6	8711.97	0,2505	0.7495		0.0437	0.0086	0.0001	0.3523
8	568.2	9467.73	3.2329	0+7170	0.2123		2 2 2 2 2 2 2	0.0007	0.4147
ő	571.8	10116+68	3.3136	0.6863	0+2252	.0.0124		J. J. J. J. L.	
1.5	575.4	10677.38	0.3429	3+6573	0.2356	0.0906		5.0004	.5198
11	579.0	11164.62	0.3769	0.6290	C.2439	0.1055			0.5725
12	582+6	11590.30	3.3977	0.6022	0.2504	0+1207	0+0293	0.0013	0.4253
13	586+2	11964.04	0.4235	0+5764	0.2552	0.1361	0.0307	0.0010	C-4781
1.4	589.8	12293.74	3.4484	0.5515	C.2585	0.1517	0.000		n mall
15	593.4	12585.88	0+4724	C•5275	C.2605	0.1673	1 a 34 2 a	0.0020	0 7941
16	597+0	12845+86	0.4955	C+5°43	0.2614	0.1930	0.0481		0 0 3 7 3
1 -	600+6	13078.16	0.5181	0+4818	0.2611	0.1983	0+0543	0.00.30	0.9905
1.	604+2	13286.55	0.5400	0.4599	0.2599	0.2145	0.0607	1960-047 1375	0.0.37
10	607+8	13474.22	0.5612	0.4387	0+2577	0.2303	0.0673	0.0058	0.9457
. 17	611.6	13643-85	0.5818	C.4181	0.2547	0.2460	0,0740	0.0070	0.99711
20	615-0	13797.74	0.6019	0.3980	C•2510	0.2617	0.0807	0.0084	1.0203
21	619-6	13937.86	2.6215	2.3794	0.2455	0.2772	0.0875	2.0102	1.1040
22	677.7	14065-89	0.6405	0.3594	0.2415	3+2927	0.0944	C.0118	1.15/0
23	496.0	14163.28	0.6590	0.3409	0.2358	0.3080	0.1012	0.0138	1+2112
24	623+6	14 701.30	0+6771	0.3229	0+2296	0.3232	0.1081	0.0160	1.2650
25	6734	14391-04	0.6947	0.3052	0.2229	0.3381	0.1150	0.0186	1.3185
26	(34.4	14483.45	0.7119	0.2880	2+2158	0.3528	0.1218	0.0213	1+3727
27	636.6	1/560.37	3.7296	0.2713	0.2082	0.3673	J.1255	0.0244	1.4266
79	640+2	14440.53	0.7449	0.2550	0.2003	0.3814	0.1352	0.0279	1.4807
29	64308	14047822	0.7608	0.2391	0.1920	0.3952	3.1417	0.0317	1.5348
30 .	04/14	14725-00	0.7762	0.2237	0.1835	0.4086	0.1481	0.0359	1.5890
31	651+S.	14192807	0.7912	0.2087	C.1747	0.4216	0.1544	0.0405	1.6432
32	654+0	14034-40	0.9058	0.1941	C.1657	3.4340	2.1604	0.0455	1.6976
33	658+2	14724047	0.8700	0.1700	0.1565	0.4460	0+1662	0:0511	1.7521
34	661+8	14954+23	1.4337	0-1667	3.1.72	0.4573	0.1716	0.0572	1.3.60
35 36	665+4 669+0	15041+21	0.8470	0.1530	C.1378	0.4680	0.1771	0.0639	1.8612

INLET TEMPERATURE = 543.0

INERT COMPONENTS NITROGEN = 0.00 CARBON TET = 0.00 HCL = 43.00

					ч.,					
FBO 42.00	FF0 0.00	FNO 0.00	FAO 10.00	FCO 0.00	FDO 0.00	FEO 0.00	FSO 450.00			
FREQ FACTOR 0.79800E 0.13910E 0.58940E 0.45770E	ACT 17 18 13 18	ENERGY 30036. 29902. 18930. 33290.		· ·						
CONV FACTOR 1.80								,	45 H	
CONST OF 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140 CONST OF E -24833 -24280 -25631 -24209	CP 0.1080E 0.2320E 0.1320E 0.1350E 0.2500E 0.2840E 0.2710E 0.8100E REACTION -0.3912 1.6770 4.0260 5.1360	-02 -01 -02 -01 -01 -01 -03 HEAT -0.206 -0.292 -0.402	0.0000E 0.1371E-( 0.0000E 0.0000E 0.9357E-( 0.1314E-( 0.1421E-( 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E	-0.833E- -0.333E- -0.333E- 0.833E- 0.125E-	06 06 06 05				nlet Temp 553 ⁰ K Moles HCl/Mole CH.	Run 8
P 1.0000	GSCON 0.7300	R 1.9870	тс 553.0001	) I 3.400	от 0 723.0	TMAX 001 99	XAMA: .5000	X		
COEF -1. 0. 0. 11. 0. 0. 11. 0. 0. 1. 0. 0. 0. -111. 1. 1. 1.	0. 0. -1. 1. -1. 1.									

# INERT COMPONENTS NETROGEN : 0.00 CARSON TET = 0.00 HCL = 45.00

INLET TEMPERATURE = 553.0

COUNTER	TEMPERATURE DEG. K	VOLUME CU.FT.	XA	FOL FA	MOL FC	MAL FO	MOL FE	MOL FF	MOL CLZ REACT / MOL CH4
1	553.0								
2	556		0.0000	10000		ပစ္မမ္မမ္မမ္	usiQu0	نا ۽ ٽاٽ ۽ ل	3.3050
3	554.8	2710.61			0.0512	2.0000	2.0000	2.0000	C.0502
4	563.2	3765.17			444913		1.1200	22	J.J.J.B
5	66.6	4611.47	········			0.0127	2013		1516
٤	577.0	5270.00	0 01 75	0.007.20	001027	تدعيه وا		تاناتها	0.2026
7	573.4	407 41		0.054	2+1760	0 <b>.</b> 0348	0+0025	2.0000	0.2537
à	576.8	2577.60	<b>♦</b> 2400 3 3000	0.0022	0+1952	0.0478	0.0046	3.0000	2.3050
<u> </u>	560.2	7041.31	0.25-0	24/299	0.2110	0.0615	0.0071	0001	0.3564
1.	787.4		0.5.0.	G . C . J Z	0 + ZZ1	<u>7</u> 61	3.3132	2.3422	U. 44086
	587.0		0.3395	2+6620	C.2347	0.0911	0.0127	6.0003	0.4596
52	590.40	1030.05		3.6322	C+2432	3.1354	2.0176	0.0005	0.5113
	503 0	6-56-68	0.3947	0+6092	û•2498	0.1221	0.0219	0.0008	L 15532
1	507 0	8482413	0+4205	5.5794	3.2548	0.1379	6.3265	0.0011	L.6151
16	500 4	5142.82	4454	2.5545	2.2533	0.1539	0.0314	2.0015	3.6671
14	000.0	8976.3	0.4694	0.5305	0.2605	0.1700	5.0367	1.0020	7192
10	004+0	9-39+24	0+4926	0.5073	0.2615	3.1862	0.0421	0.0026	
10	607.4	9379.71	<b>~</b> •5151	C∎4848	0.2614	2.2025	C.0475	0.003.	1 3736
• 1 -	614.8	9552.32	0.5370	0.4629	0.2603	0.2187	2.0535	0.0042	0.0750
7.4	614.Z	9705.31	0.5582	0.4417	0.2533	0.2350	0.0596		0.0707
20	617.6	9852.58	0.5700	0.4211	C.2534	0.2512	0.0658	0.0052	V • 7434
21	621.0	9983.77	3-5989	0+4010	0.2518	0.2573	0.0730	0.0000	
- 2	624.4	10104.31	G.6124	0.3815	0.2475	2.28.43	2.076.		-+
43	627.8	13215.42	3+6374	C.3625	0.2426	0.7645			1 1 2 2 2
24	631.2	10319.16	0.6560	0.3439	0.2371	0.3150	0.0011		1.1385
23	634.6	10413.52	0+6740	0.3259	0.2310	3. 3364	0.0070	0.0124	1.1912
26	638.0	10502.26	0.6916	2.3083	0.7744	0.3662	0.0915	0.0145	1.2440
27	641.4	10585+13	0.7368	3.2912	0.2174	0-3611	0.1120	0.0108	4.2969
22	644+8	10662.76	0.7255	3+2744	0.2099	0.3754	001173	0.0293	
20	64ĉ.Z	10735.72	0.7417	0.2592	0.2021	0.3004		0.0222	1.4028
30	651.6	10804.52	3.7576	6+2423	0.1030	3.4744	Je 1201	0.0253	1.4559
31	655.0	10869.60	3.7730	0.2269	0.1055			3.3288	1.5091
32	658.4	10931.38	0.7580	0.2119	0.749			0.5327	5623
33	651.5	10990.22	0.8026	3.1373	0.1670		U+1425	0.0369	1.6157
34	665.2	11046+45	3.8167	2.1232	0.1683		0.1485	0.0415	1.6691
35	668.6	11100.36	0.8304	0.1695	0.1/0.	0.44208	0+15+3	0.0467	1.7225
36	672.0	11152.27	0.8437	0.1542	0 1.03	0.4054	0.1599	0+0524	1.7761
			000-51	041302	001405	0.4195	J•1653	0.0586	1.8297
	•								
37	373.4	11201-40	Se # 5 4 .						
38	0 3.00	11290.99	0.0000 0.0000		-+1309	3.+895	2+1704	0.2654	1.0535
39	332.2	11293.77	000000	0 1101	0 11 22	3+4992	0.1752	G•0728	1.9373
4 0	035:6	11344.46	3.4977	1	0.1000	0.5079	4.1706	û e û z l û	1.9512
41	6Ê7.3	11389.75	0.00022	0.0040		3+2126	0.1336	2.0900	2.0452
42	672+4	11	0.2136			0.5222	J.1672	<b>u</b> .0397	2+3753
43	695.8	11470.41	0.9231	0.000	0+0548	3.5273	C.19C3	<u>üsllü</u>	2.1030
44	699.2	1152 .15	0.010/	100.00	0.0.51	0.532.		0.1221	2.2-79
45	702.6	11565.75			0.0007	0.5351	0.1748	C.1349	2.2023
46	736.5	116.3.37	0.074.00	0.0100	0.0599	0.5368	0.1961	J.1468	203 603
47	769.4	11653.21	98/9/4 6.966.		0.0518	2.53/0	<b>C.19</b> 56	3.1539	2.5725
4.9	712.9	116-1	V . 7 2 0 7	Je 1,4 31	0.0446	2.2356	0.1963	3.1002	2.4263
43	7.6.2		0.7015		0.0375	2 • 2326	2.1951	0.1981	2.4010
90 0	7.7.6	1787.82			0.03.0	0.9270	0.1930	3,2174	2.5564
j:	723.0	11-5-64-	V + 3 + 2 + 2 +		u+u259	002644	2.1393	2.23.2	2
			0 \$ 70.74	U . U . 73	500207	10111		2-00	2.6407

58

FBO 42.00	FF0 0.00	FNO 0.00	FAO 10.00	FCO 0.00	FDO 0.00	FEO 0.00	FSO 480.00		
FREQ FACTOR 0.79800E 0.13910E 0.58940E 0.45770E	ACT 17 18 13 18	ENERGY 30036. 29902. 18930. 33290.							
CONV FACTOR 1.80									48
CONST OF 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140 CONST OF H -24833. -24280	CP 0.1080 0.2320 0.1320 0.1350 0.2500 0.2840 0.2710 0.8100 REACTION -0.3912	DE-02 DE-01 DE-02 DE-01 DE-01 DE-01 DE-01 DE-03 HEAT 0.147	0.0000E 0 0.1371E-0 0.0000E 0 0.0000E 0 0.9357E-0 0.1314E-0 0.1421E-0 0.0000E 0 E-02	00 04 00 05 04 00 -0.833E-	.06				Moles HCl/Mole CH ₄
-25631. -24209.	4.0260 5.1360	-0.292 -0.402	E-02 E-02	0.833E- 0.125E-	.06 .05				
P 1.0000	GSCON 0.7300	R 1.9870	TO 563.0001	3.20	DT 00 723.	TMAX 0001	99.5000	XAMAX	
COEF -1. 0. 0. 11. 0. 0. 11. 0. 0. 1. 0. 0. 0.	0. 0. -1. 1.								

-1. 1. -1. -1. 1. 1.

-1. l.

86.

Run 2

Inlet Temp. - 563^oK

INCET CONPOSEDITS NITROGEN CODE CARBON TET GOD HEL 48.00 .

ILLET TEMPERATURE = 563.0

Counter	TEMPENATURE DEG. K	VOLUNE CV+FT.	Xt	MOL FA	ನ್ನು ಕಿರ	MOL TO	mal FC	POL FF	MOL CLE REACT / MOL CH4
1	\$43.0							+	
-		• • • • • • • •	••••	•	1•7777	<b></b>	2.2012	<b></b>	0.000 U
3	1.41.44	1000000					1.11.1		
	177.4	2716.71	<u>.</u>		2.0911	1.1047	2.0000	î	C . L C C C
5	575.2	3370.00	• • • •		· · · · · · · · · · · · · · · · · · ·	· · · 27	0.0002	0.00000	0.1.12
5	579.0	30.0 00		لو تر د د	0.1527		1.0010	2.0000	3.2123
-	587.7	3940020	د د م ه ب	3.7566	0.1759	J. J	1:0022	0.00000	2.2536
e	595.1	4434.60	J+2+7=	0.7522	2.1992	2.2433	0.0039	2.0000	2.3242
Ģ	585.0	4701400	0.2821	0+7198	2+2112	0.0425	2.0062	0.0001	2.3554
:	561.8	222.042	0.3105	0.6890	<b></b> 22-3	0.0775	0.00088	0.0002	HAMHDO
	505.0	239100	G + 34 C 2	. 6. 76	0.2350	0.0929	0.0120	0.0003	0
12	508.3	2892+64	0.365-	0+6315	0.2435	3.1283	0.0155	0.0015	0,5099
12	273 <b>42</b>	0104+93	0+3954	7+5745	0+2502	0+1250	0.0194	2.0007	0.5613
34	00.44	6408+69	0+4214	0.5785	0+2552	u=1414	202230	1 2.0010	0.4133
1 5	0.4.0	6628.75	0+4464	0+5535	0.2557	J. 1900			0.445t
	0	6825	2+4705	5.3294	2.2625		1.1320		
		7009.54	0.4939	0.5060	2.2618	1917	1,3380	0.0024	- 7600
	014+2	7175+08	ພິ.ອີໂຍອ	i+834	0.2010			2 2 2 2 2 3 3	0 4911
10	61,7•4	7 <b>326</b> .68	0.5323	3.4614	0.2605	3.2253	3.5.87	0.0031	0.0732
	520.6	7455.07	3.5578	2.4401	0.2594		1.0564	0.0037	0.8/32
	ò23•8	7594+37	C.5805	3+4294	0.2550	0.7500		0.0040	0.9254
21	627.C	7713.11	0+6007	2.3992	0.2515			0.0059	Je9171
22	£30.2	7823.24	0+6203	2.3794	0.7474	2.2021	0.0001		1+2300
73	533.4	7025+72	0.639-	0.3635	7.7473	0 309-	0.0722	0.0084	1.0024
24	636+6	8021.37	0.6580	0.3410	0.2367		5784	0.0100	1.1349
25	639.8	8110.91	0.6761	0.3236	0.2307	- 3400	0+0846	0.0117	1.1874
26	643.0	8174.99	0.6937	2.3767	0.2730	0+3408	2.0909	3.0137	1.2400
27	646.2	3274.13	3.7103	2.2002		0.3306	C+0972	0.0159	1.2927
28	049 . 4	5349.00	0.7276	0.3009		• 3721	2+1036	2.0183	1.3455
29	652.6	8419.95	3.7430	0.02.23	0.2092	0.36.73	2.1099	J.J.211	1.0783
31	655.8	8487.29	0.7569		0+2012		J•1163	0.0241	1.4512
- !	652.3	5557.57	7 7767	0+2401	0.1930	2+4196	C+1226	0.0275	1.5041
32	562.2	8613.05	3 3 3 3 2	24242	0.1945	0.4306	C•128€	0.0312	1.9971
23	663.4	5677.25		542097	3+1757	3.444]	0+1349	0.0353	1.6102
34	140.4	0710 04	0.0100	0+1752	2.1007	5.4372	0+1409	0.0398	1.5634
35	671.8	9749 74		T+1911	0.1575	0:4695	0.1468	2.2448	2.7267
36	676.0	7/020/4			0.1403	3.4813	3.1525	2.0503	1.77
50	5.7*0	2010094	J+8458	0.1541	0.1389	J•4924	0+1560	3.3563	1.8234
	578 <b>.2</b>	8885.58	0.8585	2.1114	7.1715				
77	691+4	2939419	2.2729						
30	634.5	6763+66	0.2021	0.1177				ت ت الله الله الله الله	ۇباد ۋە ب
47	687.F	9037.30	2.8942			0.24.05		မ်းစပ်ခုန်	1.000
41	691.0	9095.20	2.9740	10.0061		3252	- • 47 (Z	û∙u=°C	- + 7
42	694+2	9132.03	3.9151		• • • • • • • • • • • • • • • • • • • •	°•124€		1.1741	£
43	057.4	9111.11	1.9245			ز د د ر ه .	v • 12 + 5	-•i- ⁻ i	Le a Harris
4	707.6	9277.00	A.93.1	10 - DU - A-2A		J + 24 - C			2.1.90
			2.24		• 762		1.1177		L+2-4.
46	707.0	9322.13		•	• • • • • •	n.:49n	1.1012	2+2+-2	2.0162.
	-10.7	0.000.00	0.70.00		4 <b>6 6</b> 6 6 7	0.2477	L+1922	3.138	_ • Juží
. <b>-</b>		0110000		• · · • • •			• 1 7 1 -	0	
Ý	7.6.6	9465.36			C+0310	2.5423	1.191-		
5.5	119.8	2512.04	0.014		4.4347		0.1000		2
-:		724C#7#		0	0.0252	○ ● 2 3 C C	1274		4 9 2 2 4 D
		8 - F 4 8 - 2	101010		0.2412	2.52.2	C.1316	4.2553	a 6 30 "

...

FBO 42.00	FFO 0.00	FNO 0.00	FAO 10.00	FCO 0.00	FDO 0.00	FEO 0.00	FSO 510.00				
FREQ FACTO 0.79800 0.13910 0.58940 0.45770	R ACT E 17 E 18 E 13 E 13 E 18	ENERGY 30036. 29902. 18930. 33290.									
CONV FACTO	R								51	, II	
CONST 02 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140	F CP 0.1080 0.2320 0.1320 0.1350 0.2500 0.2840 0.2710 0.8100	E-02 E-01 E-02 E-01 E-01 E-01 E-01 E-03	0.0000E 0.1371E- 0.0000E 0.0000E 0.9357E- 0.1314E- 0.1421E- 0.0000E	00 -04 -00 -04 -04 -04 -00					Moles HCl/Mole CH	nlet Temp 573 ⁰ K	<u>Run 10</u>
CONST OF -24833. -24280. -25631. -24209.	REACTION -0.3912 1.6770 4.0260 5.1360	HEAT 0.14 -0.20 -0.29 -0.40	7E-02 6E-03 2E-02 2E-02	-0.833F -0.333F 0.833F 0.125F	5-06 5-06 5-06 5-05			·	4		
P 1.0000	GSC0 0.7300	N R 1.9870	т 573.000	0 1 3.0	DT 1000 723.	TMAX	х 99.0000	AMAX			
COEF -1. 0. 0. 11. 0. 0. 11. 0. 0. 1. 0. 0. 1. 0. 0. 0.	0. 0. 0. -1. 1.										

-1. -1. -1. -1. 1. 1. 1. 1.

		INERT COMPONENTS				
NITROGEN =	0.00	CARBON TET =	0.00	HCL =	51.00	

INLET TEMPERATURE = 573.0

COUNTER	TEMPERATURE DEG. K	VOLUME CU.FT.	XA	MOL FA	MOL FC	MOL FD	MOL FE	MOL FF	MOL CL2 REACT/ MOL C	H4
	671.0					*****		******	بهی با ه با خری <del>با شرا با م</del> با هم با ها ا	
÷.	575.0	760.26	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
3	579.0	1410.55	0.0949	0.9703	0.0496	0.0000	0.0000	0.0000	0+0496	
4	582.0	1972.37	0-1347	0.9090	0.1903	0.0046	0.0000	0.0000	0.0996	
5	585+0	2461.03	0-1744	0.032	0.1010	0.0125	0.0002	0.0000	0.1497	
6	588+0	2891.72	0.2118	0.7881	0.1750		0.0008	0.0000	0.2001	
7	591.0	3271.53	0.2441	0.7538	0.1944	0.0483	0.0018	0.0000	0.2508	
8	594+0	3609-14	0.27#5	0.7714	0.2106	0.0402	0.0033	0.0000	0.3012	
9	597+0	3910.83	0.3093	0.4904	0.2237	0.0777	0.0032	0.0000	0.3520	
10	600.0	4181.73	0.3387	0.4412	0.2345	0.0935	0.0103	0.0001	0.4028	
11	603.0	4426+07	0-3669	0.6330	0.2432	0.1097	0.0134	0.0003	0.4338	
12	606.0	4647.36	0.1919	0.6060	0.2500	0.1263	0.0169	0.0004		
13	609+0	4848.55	0.4199	0.5800	0.2551	0.1431	0.0204	0.0008	0.4077	
14	612+0	5032.16	0.4449	0.5550	0.2587	0.1401	0.0247	0.0009		
15	615+0	5200.30	0.4692	0. 5307	0.2609	0.1773	0.0247	0.0017	V+0787	
16	618+0	5354.79	0.4926	0.5073	0.2620	0.1946	0.0336	0.0023	0.7616	
17	621+0	5497.21	0.5153	0.4846	0.2619	0.2120	0.0385	0.0028	0.0170	
18	624+0	5628.91	0.5373	0+4626	0.2608	0.2293	0.0415	0.0015	0.0446	
19	627+0	5751.08	0.5586	0.4413	0.2987	0.2465	0.0488	0.0044	0.0143	
20	630+0	5864.73	0.5794	0+4205	0.2559	0.2639	0.0542	0.0051	0.0470	
21	633+0	5970.78	0.5996	0+4005	0.2522	0.2810	0.0597	0.0054	1.0197	
22	636.0	6070.03	0.6192	0.3807	0.2479	0.2961	0-0654	0.0077	1.0715	
23	639.0	6163.17	0.6383	0.3616	0.2429	0.1149	0.0712	0.0091	1.1284	
24	642+0	6250.83	0.6569	0+3430	0+2373	0.3316	0.0771	0.0108	1.1784	
25	645+0	6333.58	0.6751	0+3248	0.2311	0.3481	0.0831	0-0126	1.2276	
26	648+0	6411.90	0.5927	0+3072	0.2245	0.3643	0.0892	0.0144	1.2794	
27	651+0	6486+25	0.7099	0.2900	0.2173	0.3802	0.0953	0.0159	1.3314	
28	654+0	6557.04	0.7266	0-2733	0+2098	0.3958	0.1014	0.0195	1,3840	
29	657+0	6624.62	0.7429	0+2570	0.2019	0.4110	0.1076	0.0223	1.4363	
30	660+0	6689+33	0.7588	0 + 2411	0-1937	0.4258	0.1137	9.0255	1.4857	
31	663+0	6751.48	0.7742	0+2257	0+1852	0.4401	0.1198	0.0290	1.9411	
32	666+0	6811.35	0.7892	0+2107	0+1765	0.4540	0.1258	0.0328	1.5936	
33	669+0	6869.19	0.8038	0+1951	0+1675	0.4673	0.1318	0.0371	1.6442	
34	672.0	6925+25	0.8179	0+1820	0+1584	0.4800	0.1376	0.0418	1.6989	
37	672+0	6979.75	0.8316	0+1683	0+1491	0.4920	0,1434	0.0470	1.7516	
30	678+Q	7032.91	0.5448	0+1551	0.1397	0.5033	0.1489	0.0527	1.8044	
			· ·						, ·	
37	651-0	7084.93	0.8576	0.1423	0.1304	0.5138	0.1543	0.0500	1.0573	
38	684+0	7136.01	0.8699	0.1300	0.1210	0.6235	0.15943	0.0460	1487/3	
39	687+0	7186.32	0.8817	0.1182	0.1116	0.5322	0.1643	0.0735	1.9102	
40	690+0	7236.05	0.8931	0.1068	0.1024	0.5199	0.1488	0.0010	2.0144	
. 41	693.0	7285.39	0.9039	0.0960	0.0932	0.5466	0.1790	0.0910	2.0494	
42	696+0	7334.50	0.9142	0+0857	0.0843	0.5520	0.1767	0.1010	2.1210	
43	699+0	7383.57	0.9240	0.0759	0.0756	0.5562	0.1800	0.1119	2.1764	
44	702.0	7432.77	0.9332	0.0667	0+0673	0.5590	0.1828	0.1219	2.2299	
45	705+0	7482+29	0.9418	0.0581	0.0592	0.5604	0.1850	0.1171	2.2835	
46	708.0	7532.29	0.9498	0.0501	0.0516	0.5602	0.1864	0.1514	2.3371	
47	711+0	7582.97	0.9572	0-0427	0.0444	0.5585	0.1872	0.1669	2,3911	
48	714=0	7634.52	0.9639	0 = 03 60	0+0377	0.5550	0.1872	0.1839	2.6451	
49	717.0	7687.13	0.9700	0.0299	0.0316	0.5498	0.1862	0.2022	2.4993	
50	720+0	7741.00	0.9755	0+0244	0.0260	0.5429	0.1844	0.2220	2.5535	
51	723+0	7796.34	0.9803	0.0196	0.0210	0.5342	0.1815	0.2434	2.6079	

FBO 42.00	FF0 0.00	FNO 380.00	FA0 10.00	FCO 0.00	FDO 0.00	FEO 0.00	FS( 0.0(	)			
FREQ FACTOR 0.79800E 0.13910E 0.58940E 0.45770E	ACT 17 18 13 18	ENERGY 30036. 29902. 18930. 33290.									
CONV FACTOR 1.80									щ Ш	Ц	
CONST OF 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140	CP 0.10801 0.23201 0.13201 0.13501 0.25001 0.28401 0.27101 0.81001	E-02 E-01 E-02 E-01 E-01 E-01 E-01 E-03	0.0000E 0 0.1371E-0 0.0000E 0 0.0000E 0 0.9357E-0 0.1314E-0 0.1421E-0 0.0000E 0	00 00 00 05 04 04 00					8 Moles N ₂ /Mole CH ₄	nlet Temp 523°K	<u>Run</u> 11
CONST OF E -24833. -24280. -25631. -24209.	-0.3912 1.6770 4.0260 5.1360	HEAT 0.147 -0.206 -0.292 -0.402	2E-02 5E-03 2E-02 2E-02	-0.833E -0.333E 0.833E 0.125E	-06 -06 -05				Ŧ		
P 1.0000	GSC0 0.7300	N R 1.9870	тс 523.0001	) . 4.0	DT 000 723	TMAX 0001	99.5000	XAMAX			
COEF -1. 0. 0. 11. 0. 0. 11. 0. 0. 1. 0. 0. 0. -111. 1. 1. 1.	0. 0. -1. 1. -1. 1.										

•06

INLET TEMPERATURE = 523+0

COUNTER	TEMPERATURE DEG. K	VOLUME CU.FT.	XA	MOL FA	MOL FC	MUL FD	MOL FE	MOL FF	HOL CL2 REACT/ MOL CH4
,	E 33.0								
2	52300	5.00	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	52100	4323+27	0.0514	. 0.9485	0.0514	0.0003	0.0000	0.0000	0.0514
,	991.0	8639.73	0.0981	C+9018	0.0931	0.0050	0.0000	0.0000	0.1031
-	535+0	11671+44	0.1407	C+8592	0.1270	0.0130	0.0006	0.0003	G+1551
2	539.0	14104+43	0.1799	C.820C	0.1547	0.0230	0.0021	0.0000	0.2073
<u>°</u>	543+0	16076+84	3.2163	C.7836	0+1776	0.0341	0.0045	0.0000	0.2597
7	547+0	17591.55	0+2504	0.7495	0.1964	0.0461	0.0077	0.0000	0+3123
8	551+0	19025+35	0.2824	0.7175	0.2119	0.0587	0.0116	0.0001	0.3649
9	555.0	20136+16	0.3128	0.6871	0.2246	0.0717	0.0161	0.0003	0.4178
10	559+0	21068.21	0.3417	0+6582	0.2349	0.0850	0.0212	0.0005	0.4707
11	563.0	21955+64	0.3693	0.6306	0.2431	0.0986	0.0267	0.0008	0.5228
12	567.0	22525+12	0.3958	6-60-1	0.2495	3-1124	0.0376	0.0011	0 6770
13	571.0	23097.68	0.4213	0.5786	0-2543	0.1264	0.0389	0.0015	0.4305
14	575.0	23590.07	0.4459	0.5540	0.2577	0.1405	0.0454	0.0011	0.6303
15	579.0	24015.75	0.4696	0.5303	0.7809	0.14403		0.0021	0.0037
16	583.0	24385.58	0.4976	0-5073	0 2407	0 1401	0.0522	0.002/	0+/3/2
17	587.0	24708.44	0.6160	0.0013	0.2007	0.1071	0.0591	0.0035	0.7908
1.8	501.0	24/001.50	0 53/7	0.4047	0.2606	0.1836	0.066Z	0.0044	0.8445
19	505.0	28761.07	0.5570	0.4032	0.2395	0.1981	0.0735	0.0054	0.8984
10	59510	29241402	0.55/8	0.4421	0.2575	0.2126	C = 3808	0.0066	0.9523
20	39940	23401472	0.5783	G+4216	0.2547	3.2272	0.0882	0.0080	1.063
21	603+0	23651.11	0.5983	0.4016	0.2511	0.2418	0.0956	0.0096	1.0604
22	607+0	25832.69	0+6178	0.3821	0+2469	0 • 2364	0.1030	0.0113	1.1146
23	611.0	25989.39	0.6368	0.3631	0.2420	0.2709	0.1105	0.0133	1.1688
24	615.0	26130.32	0 • 6 5 5 3	0.3446	0.2364	0.2853	0.1178	0.0155	1,2232
25	619.0	26257.57	0+6734	0.3265	0.2304	0.2997	0.1252	0.0180	1,2777
26	623.0	26372.93	0.6910	0.3089	0.2238	0.3139	0.1324	0.0708	1. 1323
27	627.0	26477.92	0.7082	0.2917	C-2168	0.3279	0.1395	0.0238	1. 1870
28	631.0	26573.85	0.7250	0.2749	0.2094	0.3418	0.1445	0.0272	1.4417
29	635.0	26661.85	0.7414	0.2585	0.2016	0.3554	0.1633	0.0212	1.000
30	639.0	26742+88	0.7574	0.2425	0.1016	0.3680	0 1400	0.0309	1.4700
31	643.0	26817.79	0.7779	0.2770	0 10/0	0.0010	041000	0.0351	1+5516
37	647+0	26887.33	0.7880	2.2110	0 1747	0.0010	0.1004	0.0395	1.0000
33	651-0	26052.14	0.8037	0 1073	0 1/72	0.3947	0.1726	0.0446	1.6618
34	665.0	27012.70	- 0.0170	001972	0.10/2	0.4007	0.1786	0.0500	1.7171
16	659-0	27040.79	0.8300	0+1829	C+1281	0.4185	0.1843	0.0560	1.7725
34	647 0	27007070	0.6309	0.1940	3.1488	0.4297	0.1896	0.0626	1.8280
30	00000	2/123.55	0.8443	0.1556	0.1394	0.4404	0.1945	0.0498	1.8836
37	667.0	27174.51	0+8573	0.1426	0.1299	0.4504	0.1991	0-0777	1.0303
38	671+0	27223.02	0.8698	0.1301	0.1205	0.4597	0.2032	0-0863	******* 1.0951
30	675.0	27269.40	0.8819	0.1180	0.1110	0.4621	0.2069	0.0057	
40	679.0	27313.94	C.8934	0.1065	2.1016	0.4757	0.2099	3.1060	2.1277
41	683.0	27356.91	0.9045	0.0954	0.0924	0.4423	0.2120	0.1171	3 7434
42	687.0	27398.58	0.9150	0.0849	0.0933	0 4 4 7 D	0 21.24	0.1202	2.1034
43	691.0	27439.17	1.9249	0.0760	0.0745	0 0 0 0 0 0	0.2145	0.1293	2.2198
44	695.0	27478.91	0.9343	0.0654	0.0450	J + 4762	0+2134	0+1426	2.2762
45	699.0	27518.01	0.9431	0.0540		0.4723	0.2128	0.1571	2.3329
46	703-0	27556.60	0.0611	0 0/84	0.05//	0.4971	G•2153	3.1728	2.3397
47	707.0	27505.15	0.0504	0.0435	0.0200	0.4973	C.2139	0.1899	2.4466
6.9	711.0	27523 60	J 87308	0.0411	0.0426	0.4761	0.2116	0.2084	2.5037
40	716.0	4 (032839	0.9057	0.0342	0.0358	0.4931	C+208Z	C.2285	2.5609
50	710 0	210/2023	0.9719	0.0280	C+0296	0.4884	0+2037	0.2501	2.6184
54	172.0	2/71102/	0.9774	0.0225	0.0239	0.4820	0.1980	0.2734	2.6760
51	723.0	27750+94	0.9823	0+0176	0+0189	0.4737	2.1912	0.2784	2.7335

16

FBO 42.00	FF0 0.00	FNO 410.00	FAC 10.00	FCO 0.00	FDC 0.00	FEO 0.00	FSC 0.00	)   			
FREQ FACTOR 0.79800E 0.13910E 0.58940E 0.45770E	A( 17 18 13 18	CT ENERGY 30036. 29902. 18930. 33290.	<b>*</b>								
CONV FACTOR									. <del>t</del>	н	
CONST OF 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140 CONST OF E -24833. -24280. -25631. -24209.	CP 0.108 0.232 0.132 0.139 0.250 0.284 0.275 0.810 BEACTION -0.3912 1.6770 4.0260 5.1360	BOE-02 20E-01 20E-02 50E-01 50E-01 50E-01 50E-01 50E-03 N HEAT 2 0.147 0 -0.202 0 -0.292 0 -0.402	0.0000E 0.1371E-0 0.0000E 0.0000E 0.9357E-0 0.1314E-0 0.1421E-0 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.0000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.000E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.00E 0.	00 04 00 05 04 00 -0.833E 0.833E 0.125E	S-06 S-06 S-06 S-05				l Moles N ₂ /Mole CH ₄	nlet Temp 543 ⁰ K	<u>Run 12</u>
P 1.0000 COEF	GS( 0.730(	CON R 1.9870	тс 543.0001	) - 3.6	DT 5000 723	TMAX 3.0001	99:5000	XAMAX			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 0. -1. 0. -1. 1.										

## INERT COMPONENTS NITROGEN = 41+00 CARBON TET = 0+00 mCL = 0+00

INLET TEMPERATURE = 543.0

	COUNTER	TEMPERATURE DEG. K	VOLUME CU+FT+	XA	MOL FA	MOL FC	MOL FD	MCL FE	HOL FF -	HOL CU2 REA	СТИ МОЦ СН4
	1	543.C	0.00	0.0000	1.0000	0.0000	0.0000	0.0000	0.000	0.0000	
	2	546.6	1979.57	3.3496	C.9503	0.0496	0.0000	3.0000	0.000	0.0496	
	3	550.2	3600.85	0.0948	0.9051	0+0902	0.0046	0.0000	0.0000	0.0995	
	4	553+8	4939.28	0.1364	0.8635	0.1236	0.0124	0.0004	0.0000	G.1 96	
	5	557+4	6053.85	0.1749	0.8250	0.1512	0.0222	0.0013	0.0000	0.2000	
•	6	561.0	6989.87	0.2108	0.7891	0.1742	0.0336	0.0029	0.0000	0.2505	
	7	564+6	7782.18	0.2445	0.7554	0.1933	0.0459	0.0052	0.0000	0.3011	
	8	568.2	8457.68	0.2764	C • 7235	0.2091	0.0591	0.0079	0.0001	0.3519	
	9	571.8	9037+44	0.3066	0.6933	0.2222	0.0728	0.0113	0.0002	0.4029	
	10	575.4	9538.06	0.3355	0+6644	0.2329	0.0870	0.0150	0.0003	0.4539	
	11	579.0	9972.79	0.3630	0.6369	0.2415	0.1016	0.0192	0.0006	0.5051	
	12	552+6	10352.29	0.3895	0.6104	0.2483	0.1164	0.0238	0.0008	0.5563	
	13	586+2	10685.20	0.4150	0.5349	0.2535	0.1314	0.0287	0.0012	0.6077	
	14	589+8	10978.60	0.4395	0.5004	0.2573	0.1466	0.0340	0.0016	0.6591	
	15	593.4	11238.32	0.4633	0.5366	0.2597	0.1619	0.0394	0.0021	0.7107	
	15	597.0	11469.19	0.4863	0.5136	0.2610	0.1773	0.0451	0.0027	0.7623	
	17	600.6	11675.26	0.5086	0.4913	0.2611	0.1928	0.0510	0.0034	0.8140	
	18	604.2	11859.89	0.5302	0+4697	0.2604	0.2083	0.0571	0.0043	0.8658	
	. 19	607+8	12025+96	0.5512	0+4487	0.2587	0.2239	0.0633	0.0053	0.9177	
	20	611.4	12175.87	0.5717	0+4282	0.2562	0.2394	0.0696	0.0064	0.9697	
	21	615+0	12311.69	0.5916	0+4083	0.2529	0.2549	0.0760	0.0077	1.0218	
	27	618+6	12435.17	0.6110	0.3889	0.2489	0.2704	0.0825	0.0091	1.0740	
	23	622.2	12547.84	0+6299	0 • 3700	0.2443	0.2858	0.0890	0.0107	1.1262	
	24	625.8	12650+98	0.6484	0+3515	0.2391	0.3010	0.0956	0.0126	1.1785	
	25	629+4	12745.74	0+6664	0.3335	0,2333	0.3162	0.1021	0.0146	1.2309	
	26	633.0	12833.08	0.6839	0.3160	0.2270	0.3312	0.1087	0.0169	1.2834	
	27	636+6	12913.86	0.7010	0.2989	0.2203	0.3460	0.1152	0.0194	1.3360	
	28	640.2	12988.83	0.7177	0.2822	0.2131	0.3605	0.1217	0.0223	1.3887	
	29	643.8	13058.63	0+7340	0.2659	0.2056	0.3748	0.1280	0.0254	1.4414	
	30	647.4	13123.86	0.7499	0.2500	0.1977	0.3889	0.1343	0.0288	1,4942	
	31	651+0	13185.02	0.7654	0.2345	0.1895	0.4026	0.1405	0.0326	1.5472	
	32	654+6	13242.55	0.7804	0.2195	0.1810	0.4159	0.1466	0.0368	1.6002	
	33	658+2	13296.88	0.7951	0.2048	0.1723	0+4287	0.1524	0.0414	1.6533	
	34	661.8	13348.35	0.8093	0.1906	0.1634	0.4412	0.1581	0.0465	1.7065	
	35	665+4	13397.30	0.8232	0.1767	0.1544	0.4531	0+1636	0.0520	1.7598	
	36	669+C	13444.01	0.8366	0.1633	0.1452	0 • 4644	0.1688	0.0581	1.8132	
	• •										
	37	672+6	13488.76	0.8496	0.1503	0.1359	3.4750	0.1737	0.3647	1.8666	
	38	676+2	13531.80	0.8621	0.1378	0.1266	0.4850	C.1784	0.0720	1+9302	
		679+8	13573+35	0.8742	0.1257	0.1173	0 • 4942	G•1826	0.0800	1.9739	
	40	683+4	13613.61	0.6858	0.1141	0.1085	0.5025	0.1865	0.0887	2.0277	
	41	00/+0	19692+80	0.8970	0.1029	0.0989	0.5099	C.1899	0.0982	2.0816	
	*2	690+6	13891.09	0+9076	6.0923	0.0898	0.5163	3+1928	0.1086	2.1357	
	4.5	674+2	13729+66	0.9178	0.0821	0.0810	0.5215	C.1952	0.1200	2.1898	
	44 44 /. =	57/*6	13765+69	0.9274	0.0725	0.0724	0.5256	0.1969	0.1323	2.244	
	47	/01+4	13802.35	0.9364	0.0635	0.0641	0.5283	0.1980	0.1458	2.2985	
	* 3	705+0	13838.78	0.9449	0+0550	0.0562	0.5297	0.1984	0.1604	2.3530	
		100+0	12011 17	0.9527	0.047Z	0.0486	0.5296	0.1980	0.1764	2.4077	
	*0	14442	13911+67	0.9600	0.0399	6.6416	0.5280	0,1967	0.1936	2.4625	
	50 50	110-1	12748+45	0.9066	0.0333	0.0350	0.5246	0.1945	0.2123	2.5175	
	50	1+7+4	14033.63	0.0775	0.0274	0.5290	0.5196	0.1913	0.2325	2 . 5726	
	· · ·	1230 J	14023031	Ue91/8	0.0221	0.0235	0+5128	0.1871	0.2543	2.6279	

FBO 42.00	FF0 0.00	FNO 0.00	FA0 10.00	FCO 0.00	FDO 0.00	FEO 0.00	FSO 0.00				
FREQ FACTOR 0.79800E 0.13910E 0.58940E 0.45770E	ACT 17 18 13 18	ENERGY 30036. 29902. 18930. 33290.									
CONV FACTOR 1.80									44	In	
CONST OF 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140	CP 0.1080H 0.2320H 0.1320H 0.1350H 0.2500H 0.2840H 0.2710H 0.8100H	E-02 E-01 E-02 E-01 E-01 E-01 E-01 E-03	0.0000E 0.1371E-0 0.0000E 0.0000E 0.9357E-0 0.1314E-0 0.1421E-0 0.0000E	00 04 00 00 05 04 04 00					Moles N ₂ /Mole CH ₄	1let Temp 553 ⁰ K	
CONST OF F -24833. -24280. -25631 -24209.	REACTION -0.3912 1.6770 4.0260 5.1360	HEAT 0.147 -0.200 -0.292 -0.402	7E-02 5E-03 2E-02 2E-02	-0.833E -0.333E 0.833E 0.125E	-06 -06 -06 -05					, ,	
P 1.0000	GSCON 0.7300	I R 1.9870	т( 553.0001	) 1. 3.4	DT 000 723	TMAX	99.5000	XAMAX	·		
COEF -1. 0. 0. 11. 0. 0. 11. 0. 0. 1. 0. 0. 0. -111. 1. 1. 1.	0. 0. -1. 1. -1. 1.										

<u>Run</u> 13

• ۲6

NITROGEN = 44.00	INERT COMPONENTS CARRON TET #	0.00	HCL =	0.00
------------------	----------------------------------	------	-------	------

INLET TEMPERATURE = 553.0

COUNTER	TEMPERATURE DEG. K	VOLUME CU.FT.	XA	MOL FA	MOL FC	MOL FD	MUL FE	MOL FF	MOL CL2 REAG	CTV MOL CH4
1	552.0	0.00	0.0030	1.0000	0.0000	0.0000	0.0000	3.3666	0.0000	
ź	550+4	1416.11	0.0499	0.9500	0.0499	0.0000	0.0000	2.0000	0.0499	
3	559.8	2593.84	0.0954	0.9045	C.0907	3.0047	<b>0000</b>	ü.0000	C.1301	
4	563.2	3582.06	0.1372	0+8627	C.1243	0.0126	0.0003	3.0000	0.1505	
5	566+6	4418.49	0.1760	0.8239	0.1521	0.0227	C.CO11	0.000	0.2012	
5	570.0	5132.20	0.2123	0.7876	0.1752	0.0344	0.0026	0.0000	0.2520	
1	5/3+4	5/45./0	0.2463	0.7536	0.1944	0.0473	-+0045	0.0000	0.3030	
8	5/6.8	6276.63	0.2785	0.7214	0.2103	0.0610	0.0370	3.0001	0.3541	
10	580.2	0/38+91	0.3091	0+6908	0.2234	0.0754	0.0100	0.0002	0.4053	
11	222+0	7143470	0.3382	0+6617	0.2341	0.0903	0.0134	0.0003	0.4566	
1 2	500 4	7900000	0.3051	0+6338	0.242	0.1055	0.0173	0.0005	- 0+5081	
12	570.04	/010+14 0005 16	0.3929	0+6970	0.2494	0.1210	0.0215	G.0008	0.5596	
14	507.3	0045415	0.4435	0.5813	0.2345	0.1368	0.0261	0+0011	0+6113	
3 5	500.6	0343801	0 4435	0+3304	0+2581	0+1527	0.0310	0.0015	0.6630	
16	600.0	0770.20	0.4007	0.5365	0+2603	0.1088	0.0361	0.0020	0+7148	
17	607.4	8057.11	0.6191	0.093	0+2514	0.1650	0.0415	0.0026	0.7368	
18	610.8	0772411	0 8350	0 4 4 8 6 8	0.2614	3.2012	3.0471	0.0033	0.8188	
10	614.7	9366.74	0 55/0	0 4 4 3 4 7	0.2504	0.2174	0.0529	0.0041	0+8709	
20	417.4	7200414	0.5752	0.449/	0.2383	0.2336	0.0589	0.0051	0.9230	
21	621.0	7403847	0.5758	0+4231	0.255/	0.2498	0.0650	0.0062	0.9753	
22	62100	9920410	9.3769	0+4030	0.2522	0.2659	0.0712	0.0074	1.0276	
22	627.8	7042614	0.6364	0.3633	0+2480	0.2820	0.0775	0.0088	1.0800	
2.5	621.0	7147411	0.0374	0+3542	0.2431	0.2979	0.0839	0.0104	1.1326	
24	634.6	704/402	0.6740	0+3459	0.2377	0+3136	0.0903	0.6122	1.1851	
25	639.0	10033 44	0.0120	0.3279	0.2317	0.3292	0.0967	0.0142	1.2378	
20	441.4	10023+44	0.7044	0+3102	0.2251	0.3446	0.1032	0.0165	1.2905	
28	644-9	10174.55	0 7234	0.2751	0.2182	0+3598	0.1097	0.0190	1.3434	
20	648.7	10246.16	0.7300	0+2103	0.2108	0+3747	0.1161	0.0218	1.3963	
30	651.6	10211.76	0.7550	0.2000	0.2030	0.3073	0+1225	0.0249	1.4493	
31	655.0	10373.82	0.7713	0.0087	0.1949		0.1289	0.0284	1+5024	
32	658.4	10432.73	0.7843	0.2136	0 1770	0+41/3	0.1351	0.0321	1+5555	
33	661.8	10489.83	0.8000	0.1990	0 1499	0 4430;	0.1412	0.0363	1+6088	
34	665.2	10562.44	0.8151	0.1848	0.1500	0.4563	0 1630	0.0409	1+6021	
35	668.6	10593.85	0.8280	0.1710	0 1507	0.4470	0 150	0.0450	1+ (195	
36	672.0	10643.33	0.8422	0.1577	C.1413	C • 4790	0+1640	0.0518	1.8227	
37	675.4	10691.11	0.8551	0.1448	0.1320	0.4894	0.1691	0.0644	1.8764	
38	6/8+8	10737.43	0.8675	0.1324	0.1226	C•4991	0+1739	0.0718	1.9302	
39	682.2	10782.50	0.8795	0.1204	0.1132	0.5078	0.1784	0.0799	1+5841	
	685+6	10926.52	0.8910	0.1089	0.1039	C.5157	0.1825	0.0887	2.0381	
41	689+0	10869.68	0.9020	0+0980	0.0948	0.5225	0.1861	0.0954	2.3922	
42	692+4	10912.18	0.9124	0+0975	0.0958	C.5282	0.1893	0.1090	2.1465	
43	695.8	10954.18	0.9223	0+3776	0.0770	C.5327	0.1919	0.1206	2.2009	
44	699•Z	10995.88	0.9317	0+3682	0+0685	0.5360	0.1939	0.1332	2.2553	
45	702.6	11037-43	0.9425	0+0594	0.0603	0.5376	0.1952	0.1470	2.3100	
45	706.0	11079.01	0.9487	C+0512	0.0526	C+5382	0+1958	0.1620	2.3647	
÷. *	709.4	11126.81	0.9563	0.0436	C.C452	C.537C	C.1955	0.1783	2.4196	
48	712.8	11152.99	0.9632	0.3367	0.0384	C.5341	0.1946	2.1960	2.4745	
49	716+2	11205+73	0.9695	0+0304	0.0321	0.5296	0.1925	3.2151	2.5298	
50	114+0	11249.23	0.9751	0.0248	0.0264	0.5232	0.1895	0.2358	2.5351	
21	12300	11293+66	0.9800	0.0199	0.0212	0.5151	0.1855	0.2581	2 • 6 4 0 6	

•56

•

FBO 42.00	FF0 0.00	FNO 470.00	FAO 10.00	FCO 0.00	FDO 0.00	FEO 0.00	FSO 0.00		•		
FREQ FACTOR 0.79800E 0.13910E 0.58940E 0.45770E	AC 17 18 13 18	T ENERGY 30036. 29902. 18930. 33290.									
CONV FACTOR 1.80									4	Ц	
CONST OF 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140	CP 0.108 0.232 0.132 0.135 0.250 0.284 0.271 0.810	0E-02 0E-01 0E-02 0E-01 0E-01 0E-01 0E-01 0E-03	0.0000E 0 0.1371E-0 0.0000E 0 0.0000E 0 0.9357E-0 0.1314E-0 0.1421E-0 0.0000E 0	0 4 0 5 4 4 0					7 Moles N ₂ /Mole CH	nlet Temp 563 ⁰ K	Run 14
CONST OF H -24833. -24280. -25631. -24209.	EACTION -0.3912 1.6770 4.0260 5.1360	HEAT 0.147 -0.206 -0.292 -0.402	E-02 E-03 E-02 E-02	-0.833E -0.333E 0.833E 0.125E	-06 -06 -06 -05		·		4		
P 1.0000	GSC 0.7300	ON R 1.9870	то 563.0001	3.20	DT 000	TMAX 723.0001	99.5000	XAMAX			*
COEF -1. 0. 0. 11. 0. 0. 11. 0. 0. 1. 0. 0. 0. -111. 1. 1. 1.	0. 0. -1. 1. -1. 1.										

96.

·----

## INERT COMPONENTS NITROGEN # 47.00 CARBON TET = 0.00 HCL = 0.00

INLET TEMPERATURE = 562.0

COUNTER	TEMPERATURE DEG. K	VOLUME CU.FT.	XA	MOL FA	MOL FC	MOL FD	MOL FE	MOL FF	MOL CL2 REACT/ MOL CH4
1	563.0	6.00	0.0000						
ž	566.2	1015.84	0.0498	0.9501	0.0409	0.0000		0.0000	6.0005
3	569.4	1973-07	0.0953	0.9046	0.0904	3.0046	0.0000	0.0000	0.0498
4	572+6	2603.38	0.1372	0.8627	C-17/3	0-0126	010000	0.0000	0.1300
5	575.8	3230.95	0.1761	0.8030	0.1671	0-0228	0.0002	0.0000	0+1504
è	579.0	3774.45	0.2124	0.7075	0.1753	0.0248	0.0010	0.0000	0.2010
7	582.2	4748.41	0.7466	7.7522	0.1944		0.0022	0.0000	0.2517
8	585.4	4664.33	0.2790	0.7208	0.3104	0.0479	0.0039	0.0000	0.3026
9	588+6	5031.39	0.3007	0.4907	0.2200	0.0821	0.0061	0.0001	0+3537
10	591.8	5357.03	0.3391	3.6638	0.2345	0-0933	0.0110	0.0002	0.4048
11	595.0	5647.30	0.3671	0.6328	0-2431	0.1081	0.0152		0.4361
12	598.2	5307-23	0.3941	3.4059	0 2400	0 1001	0.0193	0.0005	0+5075
13	601.4	6140.95	0.4200	0.5799	0.25495	0 1/04	0.0191	0.0007	0.5590
14	604.6	6351.95	0.4450	0.5540	0.2505	0 1 4 0 8	0.0233	0.0010	0.6105
15	607+8	6543.17	0.4401	0.5309	0.2407	0.1971	0.0278	0.0014	0+6622
16	611.0	6717-09	0.4925	0.5074	0.2617	0 1004	0+0326	0.0019	0+7140
17	614.2	6875+82	0.5151	0.6868	0.2616	0.1908	0+0376	0.0024	0+7658
18	617.4	7021.10	3.5271	0.4630	0.2010	0.2074	0.0428	0.0031	0+8177
19	620.6	7154.76	0.5584	0.4475	0.2005	0+2243	0.0483	0.0038	0.8697
20	623.8	7277-80	0.5701	. 0.4300	042383	0.2411	0+0539	0.0047	0.9218
21	627.0	7301.75	0.5002	0.4208	0.255/	0.2579	0.0597	0.0058	0.9740
22	620.2	7407.37	0.59993	0.4006	0.2520	0.2745	0.0656	0.0070	1.0262
23	633.4	7676-44	0.4335	0.3810	0.2477	0.2911	0+0716	0.0083	1+0785
25	636.6	7272404	0.6380	0+3619	0.2427	C+3075	0.0778	0.0099	1+1309
25	630.9	100/00/	0.0300	0.3433	0.2371	0.3238	0.0840	0.0116	1.1834
25	642.0	7773+24	0.8747	C+3252	0.2310	0.3399	Q=0902	0.0135	1.2359
20	64360	7822+87	0.6924	C+3075	0.2243	0.3557	0+0965	0.0157	1+2886
24	040+4	1929+82	0+7096	0.2903	0.2172	0+3712	3.1029	0.0181	1=3413
20	04744	8001.58	0.7264	0.2735	G.ZC97	0.3865	0.1092	0.0208	1+3941
2.9	672+6	9069+59	0.7427	0.2572	0.2019	0+4014	0.1155	0.0238	1.4469
21	622+8	8134+24	0.7586	0+2413	0.1936	0+4159	0.1218	0.0272	1.4999
32	62910	8195+89	0.7741	0.2258	0.1851	0 • 4299	0.1280	0.0309	1.5529
32	002+2	8254+87	0.7891	0.2108	0.1763	0.4435	0.1341	0+0349	1.6060
33	007+4	8311+47	0.9037	0.1962	0.1674	3+4566	0+140Z	0.0394	1×6592
54	668+6	3365+98	0.8179	0.1820	0.1582	0.4691	0.1460	0.0444	1.7125
35	6/1+8	8418.64	0.8316	0.1683	0.1489	0.4810	0.1517	0.0498	1:7658
76	675+0	8489+69	0.8449	0+1550	0.1395	0.4921	0.1572	0.0558	1.8193
							÷	• •	
37	678 • 2	8519.35	0.8577	0.1422	0-1301	0.5025	0-1625	3.0676	1 0700
38	681.4	8567.82	0.8701	0.1298	0.1207	0.5120	2.1675	0.0607	1 5765
39	684+6	8615.32	0.8820	0.1173	5.1119	0.5907	1744	0.0097	1.9203
49	687+5	5662.01	0.9934	0.1065	0.1020	0.5207	0 17/5	0.00//6	1.9602
41	691•C	8702.11	0.9042	0.0957	0.0920	0.5340	0 1806	0.0854	2.0341
42	694.2	8753.77	0.9146	0.0853	0.0820	0.5400	0.1804	0.0959	Z.C88C
43	697.4	8799.18	0.9244	0.0754	0.0359	0.0403	0+1539	0.1054	2.1421
44	700+6	8844.53	0.9334	0.0443	0.0440	0.5444	0.1005	0.11/8	Z+1963
45	703+8	5850.97	2,9423	0.0574		0+24/2	0.1892	0.1304	2.2506
40	707.0	8935.71	0.05.3		0.0587	0.5485	0.1909	0.1440	2.3050
47	710.2	8981.90	0.9570	0.0490	0.0010	0.0404	0.1919	3.1589	2.3596
45	713+4	9029.74	0.7646	0.076/	0.0498	0 • 9465	0.1921	3.1752	2.4:43
49	716+6	9076.42	0.9704	0.0304	0.0301	0+9431	0+1914	0.1928	2 • 4691
50	719+8	9125.13	0.9761	0.0233	0.0309	0.533/9	0+1848	0+2119	2.5241
51	723.0	9175.08	0.09001	0 01 0 2	0+0253	0.5309	C+1872	0.2325	2.5792
		1110.00	1 8 7 Q U Y		0.0204	• 5221	C.1836	C.2547	2.6345

.

97.
FBO 42.00	FF0 0.00	FNO 500.00	FA0 10.00	FCO 0.00	FD0 0.00	FEO 0.00	FSO 0.00				
FREQ FACTOR 0.79800E 0.13910E 0.58940E 0.45770E	AC 17 18 13 18	T ENERGY 30036. 29902. 18930. 33290.									· .
CONV FACTOR 1.80											
CONST OF 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140	CP 0.108 0.232 0.132 0.135 0.250 0.284 0.2710 0.810	0E-02 0E-01 0E-02 0E-01 0E-01 0E-01 0E-01 0E-03	0.0000E 0 0.1371E-0 0.0000E 0 0.0000E 0 0.9357E-0 0.1314E-0 0.1421E-0 0.0000E 0	0 4 0 5 4 4 0				•	50 Moles N ₂ /Mole	Inlet Temp 573	<u>Run</u> 15
CONST OF F -24833. -24280. -25631. -24209.	REACTION -0.3912 1.6770 4.0260 5.1360	HEAT 0.147 -0.206 -0.292 -0.402	7E-02 5E-03 2E-02 2E-02	-0.833E -0.333E 0.833E 0.125E	-06 -06 -06 -05				сн ₄	X ₀ (	
P 1.0000	GSC0 0.7300	ON R 1.9870	то 573.0001	3.0	DT 200 7	TMAX 23.0001	99.5000	XAMAX			
COEF -1. 0. 0. 11. 0. 0. 11. 0. 0. 1. 0. 0. 0. -111. 1. 1. 1.	0. 0. -1. 1. -1. 1.										

·

86

		JJJ2 + 00	0.2210	044421	0.2000	U . 240U	0.0482	0.0043	0.9140
20	630.0	5641+46	0.5766	0.4213	0.2560	0.2632	0.0539	0.0053	0.9657
21	633+0	5743+60	0.5988	0,4011	0.2524	0.2804	0.0594	0.0064	1.0175
22	636.0	5839+20	0.6184	0.3815	0.2481	0.2975	0.0651	0.0076	1.0694
23	639.0	5928.92	0.6376	0.3623	C.2431	0.3144	0.0709	0.0091	1.1213
24	642.0	6013.39	0.6562	0.3437	0.2375	0.3311	0.0768	0.0107	1.1733
25	645.0	6093.12	0.6744	0.3255	0.2314	0.3475	0.0828	0.0125	1.2253
25	648.0	6168+6C	0.6920	0.3079	0.2247	0+3638	0.0888	0+0145	1.2775
27	651.0	6240+26	0.7093	0.2906	0.2176	0.3797	0.0949	0.0168	1.3297
28	654.0	6308+49	0.7260	0.2739	0.2101	0.3954	0.1011	0.0194	1.3819
29	657.0	6373+65	0.7424	0.2575	0.2022	0.4106	C.1072	0.0227	1.4343
30	660.0	6436+05	0.7583	<b>0.2416</b>	0.1940	0.4255	0.1133	0.0253	1.4867
31	663.0	6495.99	0.7738	0.2261	0.1855	0.4399	0.1194	0.0288	1.5303
32	666.0	6553.74	0.7888	0.2111	0.1767	0.4538	0.1255	0.0327	1.5918
33	669.3	6609.54	0.8034	0.1965	0.1677	0.4671	0.1315	0-0369	1.6445
34	672.0	6663+64	0.8176	0.1823	0.1586	0.4798	0.1373	0.0416	1.6973
35	675.C	6716.25	0.8313	0.1686	0.1493	0.4919	0.1431	0.0468	1.7501
36	678.C	6767.58	0.8446	0.1553	0.1399	0.5033	0.1486	0.0525	1.8030
37	681.0	6817+82	0.8574	0.1425	0.1305	0.5139	0.1540	0.0568	1.8560
38	684.0	6867.16	0.3697	0.1302	0.1211	0.5236	0+1592	0.3657	1.9091
39	687.0	6915.78	0.8816	0.1183	0.1117	0.5323	0.1641	0.0733	1.9623
40	690+0	6963.85	0.8930	0.1069	0.1024	0.5401	0+1686	2.0817	2.0156
41	693.0	7011.56	0.9038	0.0961	C.0933	0.5468	C • 1728	0.0908	2.0690
42	696.0	7059.08	0.9142	0.0857	0.0843	0.5522	0.1766	0.1009	2 . 1225
43	679.0	7106.57	0.9240	0.0759	0.0756	0.5564	C+1799	0.1119	2.1761
44	702+0	7154.20	0.9332	0.0667	C+067Z	0.5592	0.1827	0.1239	2.2.398
45	705+0	7202.17	0.9418	0.0581	0.0592	0.5606	0+1849	0.1371	2.2837
46	708.0	7253.63	0.9499	0.0500	0.0515	0.5604	C.1864	0.1514	2.3376
47	711.0	7279.78	0.9573	0.0426	û•0443	C.5586	3.1872	3.1671	2.3917
48	714.0	7349.80	0.9640	0.0359	0.0376	0.5551	0.1871	C.1841	2.4460
4.9	717+0	7400.87	C 9702	0.0297	0.0314	0.5498	0+1862	0.2025	2.5003
50	/20.0	7453.20	0.9756	0.0243	0.0258	0.5428	0.1844	0.2225	2.5548
2.	723+0	7507.00	0.9804	0.0195	0.0209	0.5340	0.1815	0.2439	2.6095

				*****					
1	573.0	0.00	0.0000	1.0000	0.3000	0.0000	3.0000	0.000.0	0.0000
2	576.0	730.64	0.0494	0.9505	0.0494	0.000	0.0000	0.0000	0.0494
3	579.0	1355.78	C.0946	0.9053	C.0900	0.0046	0.0000	0.0000	C.0992
4	582+0	1895+98	0.1362	0.8637	0.1235	0.0124	0.0002	0.0000	0.1492
5	585.C	Z366.8C	0.1750	0.8249	0.1514	0.0227	0.0008	0.0000	C.1994
6	588+0	2780.20	0.2112	0.7887	C.1746	0.0345	C.0018	0.0000	0.2497
7	591+0	3145+57	0.2454	0.7545	0.1940	0.0479	0.0033	0.0000	0.3002
8	594.0	3470-38	0.2777	0.7222	0.2101	0.0623	0.0052	0.0000	0.3508
9	597.0	\$760.57	0.3085	0.6914	C+2234	0.0773	0.0075	0.0001	0.4015
10	600+0	4021.34	0.3379	0.6620	0.2342	0.0930	0.0102	0.0002	0.4324
11	603+0	4256 • 48	0.3660	0.6339	0.2430	0.1092	0.0133	0.0004	0.5033
17	606+0	4469.45	0.3930	0.6069	0.2498	0.1257	0.0167	0.0006	0.5544
13	609+0	4663.10	0.4190	0.5809	0.2549	9.1426	0.0205	0.0009	0.6055
14	612+0	4839.83	0.4441	0.5558	0.2586	0.1596	C.0245	0.0012	0.6567
15	615+0	5001+69	0.4683	0.5316	0.2609	0.1767	0.0289	3-0017	0.7080
16	618.0	5150.43	0.4917	0.5082	0.2619	0.1940	0.0334	0.0022	0.7594
17	621.0	5287.55	0.5144	0.4855	0.2619	0.2113	0.0383	0.0028	0.8109
19	624.0	5414.37	0.5364	0.4635	0.2608	0.2287	0.0433	0.0035	0-8674
19	627.0	5532.00	0.5578	0.4421	0.2589	0.2460	0.0485	0.0043	0.9140
20	630.0	5641+46	0.5786	0.4213	0.2560	0.2632	0.0539	0.0053	0.9657
21	633.0	5743+60	0.5988	0.4011	0.2524	0.2804	0.0594	0.0066	1.0175
22	636.0	5839+20	0.6184	0.3815	0.2481	0.2975	0.0651	0-0076	1.0694
23	639.0	5928.92	0.6376	0.3623	C.2431	0.3144	0.0709	0.0091	1.1213
24	642.0	6013.39	0.6562	0.3437	0.2375	0.3311	0.0768	0.0107	1.1733
25	645.0	6093.12	0.6744	0.3255	0.2314	0.3475	0.0878	0.0125	1.2253
25	648.0	6168+60	0.6920	2.3079	0.2247	0.3638	0.0888	0-0145	1.2775
27	651.0	6240.26	0.7093	0.2906	0.2175	0.3797	0.0949	0.0168	1.3297
28	654+0	6308 . 49	0.7260	0.2739	0.2101	0.3954	0.1011	0-0194	1.3810
29	657.0	6373.65	0.7424	0.2575	0.2022	0.4106	0.1072	0.0222	1.4343
30	660.0	6436+05	0.7583	0.2416	0.1940	0.4255	0.1133	0.0253	1.4847
31	663.0	6495.99	0.7738	0.2261	0.1855	0.4399	0.1194	0.0299	1 6303
32	666.0	6553.74	0.7888	0.2111	0.1767	0-4538	0-1255	0.0327	1,5916
33	669.3	6609.54	0.8034	0.1965	0.1677	0.4671	0.1315	0.0369	2 2 7 2 8
							A	~~~~~	**0443

INLET TEMPERATURE = 573.0

TEMPERATURE

DEG. K

COUNTER

INERT COMPONENTS NITROGEN = 50.00 CARBON TET = 0.00 HCL = 0.00

XA

MOL FA

MOL FC

MOL FD

MOL FE

MOL FF MOL CL2 REACT/ MOL CH4

VOLUME

CU.FT.

FBO 42.00	FF0 0.00	FNO 0.00	FA0 10.00	FCO 0.00	FD0 0.00	FEO 0.00	FSO 450.00	·		,
FREQ FACTOR 0.79800E 0.13910E 0.58940E 0.45770E	ACT 17 18 13 18	ENERGY 30036. 29902. 18930. 33290.						45 1	·	
CONV FACTOR 1.80								Moles	i	.*
CONST OF 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140	CP 0.1080H 0.2320H 0.1320H 0.1350H 0.2500H 0.2840H 0.2710H 0.8100H	E-02 E-01 E-02 E-01 E-01 E-01 E-01 E-03	0.0000E 0.1371E- 0.0000E 0.0000E 0.9357E- 0.1314E- 0.1421E- 0.0000E	00 04 00 05 04 04 00				HCl/Mole CH ₄ , P	<u>Run 16</u>	
CONST OF E -24833. -24280. -25631. -24209.	REACTION -0.3912 1.6770 4.0260 5.1360	HEAT 0.14 -0.20 -0.29 -0.40	7E-02 6E-03 2E-02 2E-02	-0.833E- -0.333E- 0.833E- 0.125E-	06 06 06 05			- 2.8 atm		
P 2.8000	GSCON 0.7300	N R 1.9870	Ť 553.000	0 1 3.40	DT 00 723	TMAX 0001 9	XAMAX 99.5000			
COEF -1. 0. 0. 11. 0. 0. 11. 0. 0. 1. 0. 0. 0. -111.	0. 0. -1. 1. -1.									100.
	⊥.									

		INERT COMPONENTS			
NITROGEN =	0.00	CARBON TET =	0.00	HCL =	45.00

INLET TEMPERATURE = 553.0

COUNTER	TEMPERATURE DEG. K	VOLUME CU+FT+	XA	MOL FA	MOL FC	MOL FD	MOL FE	MOL FF	MOL CL2 REACT/ MOL CH4
1	553.0	0.00	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	556.4	189.42	0.0502	0.9497	0.0502	0.0000	0.0000	0.0000	0.0502
3	559.8	346.89	0.0960	0.9039	0.0913	0.0047	0.0000	0.0000	0.1008
4	563+2	478 • 97	0.1381	0.8618	0.1250	0.0127	0.0003	0.0000	0.1516
5	566+6	590.74	0.1771	0.8228	0.1529	0.0230	0.0012	0.0000	0.2026
6	570.0	686+10.	0.2135	0.7864	0.1760	0.0348	0.0026	0.0000	0.2537
7	573.4	768.06	0.2477	C.7522	0.1952	0.0478	0.0046	0.0000	0.3050
8	576.8	838.99	0.2800	C.7199	0.2110	0.0616	0.0071	0.0001	0.3564
9	580.2	900.74	0.3107	0+6892	0.2241	0.0761	0.0102	0.0002	0.4080
10	583.6	954.81	C.3399	0.6600	C.2347	0.0911	0.0137	0.0003	0.4596
11	587.0	1002.40	0.3679	0.6320	0.2432	0.1064	0.0176	0.0005	0.5113
12	590.4	1044.50	0.3947	0.6052	0.2498	0.1221	0.0219	0.0008	0.5632
13	593+8	1081.90	0.4205	0.5794	0.2548	0.1379	0.0265	0.0011	0.6151
14	597.2	1115.28	0.4454	0.5545	0.2583	0:1539	0.0314	0.0015	0.6671
15	600.6	1145.19	0.4694	0.5305	0.2605	0.1700	0.0367	0.0020	0.7192
16	604•0	1172.09	0.4926	0+5073	0.2615	0.1862	0.0421	0.0026	0.7713
17	607.4	1196.39	0.5151	0.4848	0.2614	0.2025	0.0478	0.0034	0.8235
18	610+8	1218.40	0.5370	0.4629	0.2603	0.2187	0.0536	0.0042	0.8758
19	614.2	1238.43	0.5582	0.4417	0.2583	0.2350	0.0596	0.0052	0.9282
20	617.6	1256.70	0.5788	0.4211	0+2554	0.2512	0.0658	0.0063	0.9807
21	621.0	1273.44	0.5989	0.4010	0.2518	0.2673	0.0720	0.0075	1.0332
22	624+4	1288.81	0.6184	0.3815	0.2475	0.2833	0.0784	0.0090	1.0858
23	627.8	1302.98	0.6374	0.3625	0 • 2426	0 • 2993	0.0848	0.0106	1+1385
24	631.2	1316.09	0.6560	0+3439	0.2371	0.3150	0.0913	0.0124	1 • 1912
25	634+6	1328.25	0.6740	0.3259	0.2310	0.3306	0.0978	0.01.5	1.2440
26	638.0	1339.57	0.6916	0.3083	0.2244	0.3460	0.1043	0.0168	1 . 2969
27	641.4	1350.14	0.7088	0+2912	0 • 2174	0.3611	0.1108	0.0193	1+3498
28	644.8	1360.04	0.7255	0 • 2744	0+2099	0 • 3759	0.1173	0.0222	1+4028
29	648 • 2	1369.35	0.7417	0 • 2582	0.2021	0.3904	0.1237	0.0253	1.4559
30	651+6	1378.12	0.7576	0.2423	0.1939	0+4046	0.1301	0.0288	1+5091
31	655.0	1386.43	0.7730	0.2269	0.1855	0.4183	0.1363	0.0327	1.5623
32	658.4	1394.31	0.7880	0.2119	0.1768	0.4317	0.1425	0.0369	1.6157
33	661.8	1401.81	0.8026	0.1973	0.1679	0.4445	0.1485	0.0416	1.6691
34	665+2	1408.98	0.8167	0.1832	0.1588	0+4568	0.1543	0.0467	1.7225
35	668.6	1415.86	0.8304	0.1695	0.1496	0.4684	0.1599	0.0524	1.7761
36	672 • 0	1422+48	0 + 8437	0.1562	0.1403	0.4795	0.1653	0.0586	1.8297
37	675•4	1428.87	0.8565	0.1434	0.1309	0.4898	0.1704	0.0654	1.8835
38	678+8	1435.07	0.8689	0.1310	0.1215	0.4992	0.1752	0.0728	1.9373
39	682+2	1441.10	0.8808	0.1191	0.1122	0.5079	0.1796	0.0810	1.9912
40	685+6	1446.99	0.8922	0.1077	0.1029	0.5156	0.1836	0.0900	2.0452
41	689.0	1452.77	0.9031	0.0968	0.0938	0.5222	0.1872	0.0997	2.0993
42	692 • 4	1458.46	0.9135	0.0864	0.0848	0.5278	0.1903	0.1104	2.1535
43	695+8	1464.08	0.9233	0.0766	0.0761	0.5321	0.1929	0.1221	2.2079
44	699.2	1469.66	0.9326	0.0673	0.0677	0.5351	0.1948	0.1349	2.2623
45	702 • 6	1475.22	0.9413	0.0586	0.0595	0.5368	0.1961	0.1488	2.3168
46	706+0	1480.78	0.9494	0.0505	0.0518	0.5370	0.1966	0.1639	2.3715
47	709.4	1486.38	0.9569	0.0430	0.0446	0.5356	0.1963	0.1803	2.4263
48	712 • 8	1492.02	0.9638	0.0361	0.0378	0.5326	0.1951	0.1981	2.4813
49	716.2	1497.74	0.9700	0.0299	0.0316	0.5279	0.1930	0.2174	2.5364
50	719+6	1503.55	0.9755	0.0244	0.0259	0.5214	C.1898	0.2382	2.5916
51	723.0	1509.49	0.9804	0.0195	0.0209	0.5131	0.1857	0.2606	2.6469

FBO 42.00	FF0 0.00	FNO 0.00	FA0 10.00	FCO 0.00	FDO 0.00	FEO 0.00	FSC 480.00	)				
FREQ FACTOR 0.79800E 0.13910E 0.58940E 0.45770E	ACT 1 17 18 13 18	ENERGY 30036. 29902. 18930. 33290.							48			•
CONV FACTOR 1.80									Moles	н		
CONST OF 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140	CP 0.1080E- 0.2320E- 0.1320E- 0.1350E- 0.2500E- 0.2840E- 0.2710E- 0.8100E-	-02 -01 -02 -01 -01 -01 -01 -03	0.0000E 0 0.1371E-04 0.0000E 0 0.0000E 0 0.9357E-0 0.1314E-04 0.1421E-04 0.0000E 0	0 4 0 0 5 4 4 0					HCl/Mole CH4, P	nlet Temp 563°	<u>Run 17</u>	
CONST OF H -24833. -24280. -25631. -24209.	REACTION F -0.3912 1.6770 4.0260 5.1360	HEAT 0.147 -0.206 -0.292 -0.402	7E-02 5E-03 2E-02 2E-02	-0.833E- -0.333E- 0.833E- 0.125E-	06 06 06 05			·	- 2.8 atm	Ж		
P 2.8000	GSCON 0.7300	R 1.9870	то 563.0001	3.20	DT 00 7	TMAX 23.0001	99.5000	XAMAX				
COEF -1. 0. 0. 11. 0. 0. 11. 0. 0. 1. 0. 0. 0. -111. 1. 1. 1.	0. 0. -1. 1. -1. 1.											• 20T

COUNTER	TEMPERATURE DEG. K	VOLUME CU.FT.	XA	MOL FA	MOL FC	MOL FD	MOL FE	MOL FF	MOL CL2 REACT/ MOL CH4
1	563.0	0.00	0.000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	566.2	135+32	0.0501	0.9498	0.0501	0.0000	0.0000	0.0000	0.0501
3	569.4	249+48	0.0958	0.9041	C.0911	0.0047	0000.0	0.0000	0.1005
4	572.6	346.71	0.1378	0.8621	0.1248	0.0127	0.0002	0.000	0.1512
5	575.8	430.24	0.1769	0.8230	0.1527	0.0230	0.0010	0.0000	C • 2020
0	579.0	502.57	0.2133	0.7866	0.1759	0.0351	0.0022	0.0000	0.2530
,	582.2	565+64	0.2477	0.7522	0.1952	0.0483	0.0039	0.0000	0.3042
8	585.4	620.98	0.2801	0.7198	0.2112	0.0625	0.0062	0.0001	0.3554
,9	588.6	669.82	0.3109	0.6890	C.2243	0.0775	0.0088	0.0002	C.4068
10	591.8	713+14	0.3403	0.6596	0.2350	0+0929	0.0120	0.0003	0.4583
11	595.0	751+76	0.3684	0.6315	0.2435	0.1088	0.0155	0.0005	0.5099
12	598.2	786.34	0.3954	0.6045	C.2502	0.1250	0.0194	0.0007	0.5615
13	601.4	817.43	0.4214	0.5785	0.2552	0.1414	0.0236	0.0010	0+6133
14	604+6	845.50	0.4464	0.5535	0.2587	0.1580	0.0281	0.0014	0.6651
15	607.8	870+94	0.4705	0.5294	0.2608	0.1748	0.0329	0.0019	C+7170
10	611.0	894+07	0.4939	0.5060	0.2618	0.1916	0.0380	0.0024	0.7690
17	614.2	915+18	0.5165	0.4834	0.2616	0.2084	0.0432	0.0031	0.8211
10	617.4	934.52	0.5385	0.4614	0.2605	0.2253	0.0487	0.0039	0.8732
19	620+6	952+29	0.5598	0.4401	0.2584	0.2421	0.0544	0.0048	0+9254
20	022.0	968+67	0.5805	0.4194	0.2555	0 + 2589	0.0602	0.0059	0.9777
21	627.00	983+81	0.6007	0.3992	0.2518	0.2756	0.0661	0.0071	1.0300
22	630.2	997+86	0.6203	0.3796	0.2474	0.2921	0.0722	0.0084	1.0824
23	633.4	1010.93	0.6394	0.3605	0.2423	0.3085	0.0784	0.0100	1.1349
24	030+0	1023+13	0.6580	0.3419	0.2367	0 • 3248	0.0846	0.0117	1.1874
20	639.8	1034-55	0.6761	0.3238	0.2305	0.3408	0.0909	0.0137	1.2400
20	643.0	1045.28	0.6937	0.3062	0.2238	0.3566	0.0972	0.0159	1.2927
21	646.2	1055+38	0.7109	0.2890	0.2167	0.3721	0.1036	0.0183	1.3455
20	649.4	1064.92	0.7276	0.2723	0.2092	0.3873	0.1099	0:0211	1.3983
29	072.0	10/3.96	0.7439	0.2560	C.2012	0+4021	C.1163	0.0241	1.4512
30	622.8	1082+56	0.7598	0.2401	0.1930	0.4166	0.1226	0.0275	1.5041
22	657.0	1090+76	0.7752	0.2247	0.1845	0.4306	0.1288	0.0312	1.5571
32	002+2	1098+60	0.7902	0.2097	0.1757	0.4441	0.1349	0.0353	1.6102
33	667.4	1106.13	0.8047	0.1952	0.1667	0.4571	0.1409	0.0398	1.6634
34	000.0	1113+37	0.8188	0.1811	0.1576	0.4695	0.1468	0.0448	1.7167
30	671.8	1120.37	0.8325	0.1674	0.1483	0.4813	0.1525	0.0503	1.7700
56	0/5+0	112/010	0.8458	0.1541	0.1389	0•4924	0.1580	0.0563	1.8234
37	678 • 2	1133.76	0.8535	0.1414	0.1295	0.5027	0.1632	0.0630	1.9769
38	681.4	1140.20	0.8708	0.1291	0.1201	0.5121	0.1682	0.0703	1.9305
39	684.6	1146.51	0.8827	0.1172	0.1108	0.5206	0.1729	0.0783	1.9841
40	687.8	1152.71	0.8940	0.1059	0.1015	0.5282	0.1772	0.0870	2.0379
41	691.0	1158.84	0.9048	0.0951	0.0924	0.5346	0.1811	0.0966	2.0918
42	694+2	1164.90	0,9151	0.0848	0.0834	0.5399	0.1845	0.1071	2.1457
43	697.4	1170.93	0.9249	0.0750	0.0748	0.5440	0.1874	0.1186	2+1998
44	700+6	1176.95	0.9341	0.0658	0.0664	0.5467	0.1897	0.1312	2.2540
45	703.8	1182.98	0.9427	0.0572	0.0583	0.5480	0.1913	0.1449	2.3082
45	707.0	1189.04	0.9506	0.0493	0.0507	0.5477	0.1922	0.1598	2.3627
47	710.2	1195.17	0.9580	0.0419	0.0435	0.5458	0.1924	0.1761	2.4172
48	713.4	1201.38	0.9647	0.0352	0.0369	0.5423	0.1917	0.1937	2.4719
49	716.6	1207.70	0.9708	0.0291	0.0307	0.5371	0.1900	0.2128	2.5267
50	719.8	1214+15	0.9762	0.0237	0.0252	0.5300	0.1874	0.2334	2.5816
51	723.0	1220.76	0.9810	0.0189	0.0203	0.5212	0.1838	0.2555	2 • 6 3 6 7

INLET TEMPERATURE = 563.0

INERT COMPONENTS NITROGEN = 0.00 CARBON TET = 0.00 HCL = 48.00

FBO 42.00	FFO 0.00	FNO 0.00	FA0 10.00	FCO 0.00	FDO 0.00	FEO 0.00	FSO 510.00			
FREQ FACTOR 0.79800E 0.13910E 0.58940E 0.45770E	ACT E 17 3 18 2 13 1 18 3	NERGY 0036. 9902. 8930. 3290.							· 51 ]	
CONV FACTOR 1.80									Moles	н
CONST OF 8.0520 14.7871 6.4320 4.3478 2.9846 5.0794 9.2951 6.6140 CONST OF H -24833. -24280. -25631. -24209.	CP 0.1080E 0.2320E 0.1320E 0.1350E 0.2500E 0.2840E 0.2710E 0.8100E REACTION -0.3912 1.6770 4.0260 5.1360	-02 -01 -02 -01 -01 -01 -03 HEAT -0.200 -0.292 -0.402	0.0000E 0.1371E- 0.0000E 0.9357E- 0.1314E- 0.1421E- 0.0000E 7E-02 5E-03 2E-02 2E-02	00 -04 00 -05 -04 -04 00 -0.833 -0.333 0.833 0.125	E-06 E-06 E-06 E-05				HC1/Mole CH4, P - 2.8 atm	nlet Temp 573 ⁰ K
P 2.8000	GSCON 0.7300	R 1.9870	יי 573.000	20 )1 3.	DT 0000	TMAX 723.0001	99.5000	XAMAX		
COEF -1. 0. 0. 11. 0. 0. 11. 0. 0. 1. 0. 0. 0. -111. 1. 1. 1.	0. 0. 0. -1. 1. -1. 1.									

<u>Run 18</u>

ſω

		INERT COMPONENTS			
NITROGEN =	0.00	CARBON TET =	0.00	HCL =	51.00

INLET TEMPERATURE = 573.0

COUNTER	TEMPERATURE DEG. K	VOLUME CU+FT+	XA	MOL FA	MOL FC	MOL FD	MOL FE	MOL FF	MOL CL2 REACT/ MOL CH4
1	573.0	0.00	0.0000	1.0000	0.0000	0.0000			0.0000
2	576+0	96.97	0.0496	0.9503	0.0496	0.0000	0.0000	0.0000	0.0000
3	579.0	179.91	0.0949	0.9050	0.0903	0.0000	0.0000	0.0000	0.0498
í.	582.0	251.57	0.1367	0.9633	0.1000	0.0135	0.0000	0.0000	0.0996
5	585.0	2314.03	0 1755	0.0032	0.1239	0.0125	0.0002	0.0000	0.1497
, i i i i i i i i i i i i i i i i i i i	589 0	314:02	0.2110	0.0244	0.1518	0.0228	0.0008	0.0000	0.2001
7	500+0	202+84	0.2118	0.7881	0.1750	0.0348	0.0018	0.0000	0.2506
,	591.0	41/028	0+2461	0 • 7538	0.1944	0.0482	0.0033	0.00.00	C.3012
8	594.0	460.35	0.2785	0.7214	0.2105	0.0626	0.0052	0.0000	0.3520
9	597.0	498.83	0.3093	0.6906	0.2237	0.0777	0.0076	0.0001	0.4028
10	600.0	533.38	0.3387	0+6612	0.2345	0.0935	0.0103	0.0003	0.4538
11	603.0	564.55	0.3669	0.6330	0.2432	0.1097	0.0134	0.0004	0.5049
12	606.0	592.77	0.3939	0.6060	0.2500	0.1263	0.0168	0.0006	0.5560
13	609.0	618.43	0.4199	0.5800	0.2551	0.1431	0.0206	0.0009	0.6072
14	612.0	541 <b>.85</b>	0 • 4 4 4 9	0.5550	0.2587	0.1601	0.0247	0.0013	0+6585
15	615+0	663.30	0.4692	0.5307	0+2609	0.1773	0.0290	0.0017	0.7099
16	618.0	683.01	0.4926	0.5073	0.2620	0.1946	0.0336	0.0022	0.7614
17	621.0	701.17	0.5153	0.4846	0.2619	0.2120	0.0385	0.0028	0.8129
18	624.0	717.97	0.5373	0.4626	0.2608	0.2293	0.0435	0.0035	0.8545
19	627.0	733.55	0.5586	0.4413	0.2587	0.2466	0.0488	0.0044	0.9162
20	630.0	748.05	0.5794	0.4205	0.2559	0.2639	0.0542	0.0053	0.9679
21	633.0	761.58	0.5996	0.4003	012577	0.2010	0.0507	0.0064	1 0107
22	636+0	774.23	0.6192	0.3807	0.2479	0.2081	0.0454	0 00 77	1 0715
23	639.0	786.11	0.6303	0 3636	0.2419	0 2 7 0 1	0.0004	0.0077	1.0715
24	642-0	707.20	0.6540	0.3430	0 2429	0.3149	0.0712	0.0091	1+1234
25	645.0	191.50	0.00009	0.5450	0.23/3	0.3316	0.0771	0.0108	1.1754
20	845.0	807.85	0.6751	0.3248	0.2311	0.3481	0.0831	0.0126	1.2275
20	648.0	81/+84	0.6927	0+3072	0+2245	0.3643	0.0892	0.0146	1.2796
21	651.0	827.32	0.7099	0.2900	0.2173	0.3802	0.0953	0.0169	1.3318
20	654.0	836.35	0.7266	0.2733	0.2098	0.3958	0.1014	0.0195	1.3840
29	657.0	844.97	0 • 7 4 2 9	0+2570	0.2019	0.4110	0.1076	0.0223	1.4363
30	660.0	853.23	0.7588	0.2411	0.1937	0+4258	0.1137	0.0255	1.4887
31	663.0	861.15	0.7742	0.2257	0.1852	0.4401	0.1198	0.0290	1.5411
32	666•0	868 • 79	0.7892	0.2107	0.1765	0.4540	0.1258	0.0328	1.5936
33	669.0	876.17	0.8038	0.1961	0.1675	0.4673	0.1318	0.0371	1.6462
34	672.0	883.32	0.8179	0.1820	0.1584	0.4800	0.1376	0.0418	1.6989
35	675.0	890+27	0.8316	0.1683	0.1491	0.4920	0.1434	0.0470	1.7516
36	678.0	897.05	0.8448	0.1551	0.1397	0.5033	0.1489	0.0527	1.8044
37	681.0	903.69	0.8576	0.1423	0.1304	0.5138	0.1543	0.0500	1.0573
						•••••			
38	684 • 0	910.20	0.8699	0.1300	0.1210	0.5235	0.1594	0.0659	1.9102
39	687.0	916+62	0.8817	0+1182	0.1116	0.5322	0.1643	0.0735	1.9633
40	690.0	922+96	0.8931	0.1068	0.1024	0.5399	0.1688	0.0818	2.0164
41	693+0	929.25	0.9039	0.0960	0.0932	0.5466	0.1730	0.0910	2.0696
42	696.0	935.52	0.9142	0.0857	0.0843	0.5520	0.1767	0.1010	2,1229
43	699+0	941.78	0.9240	0.0759	0.0756	0.5562	0.1800	0.1110	2-1764
44	702.0	948.05	0.9332	0.0667	0.0673	0.5590	0.1829	0.1220	2
45	705.0	954.37	0.9419	0.0581	0.0593	0 5404	0 1050	0 1071	2
46	708-0	960.75	0.0400	0.0501	0.0592	0 5404	0+1850	0.13/1	2+2835
47	711-0	967.21	0.0570	0.0501	0.0516	0.5602	0+1854	0.1514	2.3373
49	714.0	70/121	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0+0427	0.0444	0.5585	0+1872	0.1669	2.3911
40	714+0	913019	0.9639	0.0360	0.0377	0.5550	0.1872	0.1839	2.4451
47	727.0	980+50	0.9700	0.0299	0.0316	0.5498	0.1862	0 • 20 2 2	2.4993
20	720+0	987.37	0.9755	0+0244	0.0260	0.5429	0.1844	0.2220	2.5535
51	/23.0	994.43	0.9803	0.0196	0.0210	0.5342	0.1815	0.2434	2 • 6079