Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

DESIGN OF MULTIPASS

FRACTIONATING TRAYS

BY

PAUL W. BECKER

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE

WITH A MAJOR IN

CHEMICAL ENGINEERING

AT

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey

May, 1974

ABSTRACT

Multipass fractionating trays are vapor-liquid contacting devices with high liquid handling capabilities which can be economically used in large fractionating towers. However, process design engineers in the chemical and petroleum industries seem to have an aversion to specifying multipass trays for their tower designs. This thesis presents the case for using multipass trays as well as methods for their design.

Because multipass trays are not symmetrical, as one and two pass trays are, the liquid and vapor need not split equally between the three or four passes. Equations are developed which enable the vapor and liquid flowrate for each pass to be determined. A computer program is presented which is capable of either rating existing multipass trays or designing multipass trays for new services. Also, techniques for the optimum design of multipass trays are suggested.

The present energy shortage has provided strong incentive to build larger refineries, which means larger capacity fractionation towers are required. This thesis demonstrates how the use of multipass trays can reduce investment costs for these large towers.

The use of the tools presented in this thesis enable process engineers to design multipass trays without relying on the proprietary techniques and programs of others, not readily available to them. It is hoped that this will enable multipass trays to be specified whenever they are economically justified.

ii

APPROVAL OF THESIS

DESIGN OF MULTIPASS

FRACTIONATING TRAYS

BY

PAUL W. BECKER

FOR

DEPARTMENT OF CHEMICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

BY

FACULTY COMMITTEE

APPROVED:

NEWARK, NEW JERSEY

MAY, 1974

ACKNOWLEDGEMENTS

The author wishes to acknowledge the guidance provided by his advisor, Dr. Ralph Cecchetti, an adjunct professor at Newark College of Engineering. Thanks are also due to Mr. Richard K. Neeld, at Esso Research and Engineering Company, whose expertise in the area of fractionating tower internal design has been of great value. The author would also like to acknowledge the assistance of Mr. Hal Margo, of Exxon Chemical Company, in developing convergence techniques used in the computer program, and of the author's contacts at the major American tray vendors for the information they have provided. Finally, sincerest thanks are due to the author's wife, Judith, and son, Brian, for their encouragement and patience during the course of his studies, and to Mrs. Gale Salit for her efficient typing of this thesis. The author wishes to dedicate this thesis to the late Dr. Erwin Amick, of Columbia University, whose instruction inspired the author's interest in the area of fractionation.

v

TABLE OF CONTENTS

CHAPTER		PAGE
I	INTRODUCTION	1
		-
	What is a Mu ltipass Tray? Advantages of Multipass Tray Design.	1
	Why Multipass Trays are Important.	2
	What Has Been Done So Far?	5 6
II	METHODS OF DESIGNING MULTIPASS TRAYS	9
	Background: One and Two Pass Trays	. 9
	Three and Four Pass Trays	12
III	EQUATIONS FOR THREE AND FOUR PASS TRAYS	16
	Equations For Determining Liquid and Vapor Splits	16
	Derivation of Critical Pressure Drop Equations	20
	Proofs That Shared Downcomers Have Equal Backups	22
IV	COMPUTER PROGRAM FOR RATING AND DESIGNING MULTIPASS TRAYS	25
	Equations Used to Rate Designs	25
	Convergence Techniques	30
·	How to Use the Program	33
	Design Logic	34
	Use of the Program to Improve Initial Design	40
V	SAMPLE PROBLEMS	42
	Discussion of Sample Problem Output	67
VI	RECOMMENDATIONS FOR THE OPTIMUM DESIGN OF MULTIPASS TRAYS	68
VII	CONCLUSIONS	74
	APPENDIX	76
		70
	REFERENCES	91
	VITA	92
	NOMENCLATURE	~~
		.93

vi

LIST OF FIGURES

FIGURE		PAGE
1	Liquid and Vapor Flow Patterns on Trays	3
2	Photograph of a Four Pass Tray	8
3	One Pass Tray Flow Patterns and Pressure Drops	١D
4	Two Pass Tray Flow Patterns and Pressure Drops	11
. 5	Design of Center and Off-Center Downcomers With and Without Vapor Crossover	仲
6	Three Pass Tray Flow Patterns and Pressure Drops	17
7	Four Pass Tray Flow Patterns and Pressure Drops	19
8	Three Pass Tray Geometry	36
9	Four Pass Tray Geometry	31
10	Methods of Providing for Equal Downcomer Lengths	69

CHAPTER I

INTRODUCTION

What is a Multipass Tray?

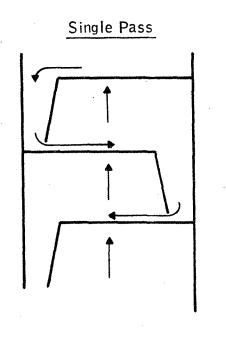
Fractionating columns in the chemical and petroleum industries generally utilize perforated metal trays as the contacting devices. These sieve trays facilitate the countercurrent contacting of vapor and liquid. Liquid flows across the tray and contacts the vapor which is bubbling through the perforations. The liquid passes downward from tray to tray via downcomers.

The most common and simplest type of crossflow tray is the single pass tray. On a single pass tray, the liquid travels in only one path, and there is only one contacting or bubble area on each tray. There is also only one downcomer leaving each tray.

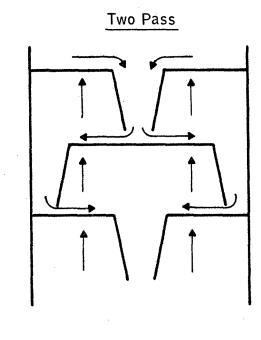
Another common type of crossflow tray is the two pass tray. On this type of tray, there are two different paths in which liquid may flow, as well as two distinct bubble areas. Half of the trays have a single center downcomer while every other tray has two outboard downcomers.

Multipass trays, while not used very often, have distinct advantages over single or two pass trays. Multipass trays generally have three or four passes, although five pass trays have at least been considered (1). Three and four pass trays have three or four different liquid paths and distinct bubble areas on each tray. A three pass tray

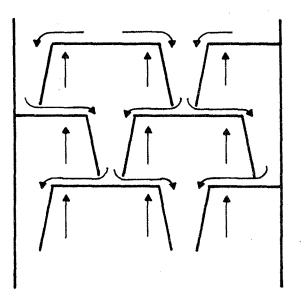
has two downcomers on each tray: one outboard and one off-center. Half of the four pass trays have two downcomers - both off-center. Every other tray has three downcomers: two outboard and one center.

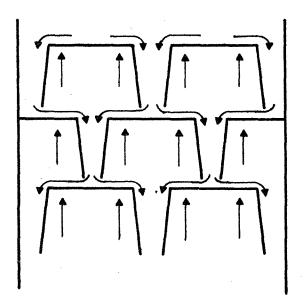

The liquid and vapor flow patterns on all four types of trays are depicted in Figure 1.

Advantages of Multipass Tray Design


The use of multipass trays becomes economically attractive for large towers. A tower's vapor handling capacity increases proportionately to the tower cross sectional area. Therefore, vapor capacity is proportional to the square of the diameter. However, a tower's liquid handling capacity is proportional to the weir length over which the liquid flows on each tray. Therefore, for a one pass tray, the liquid handling capacity is linearly proportional to the tower diameter.

By increasing the number of passes, the weir length per tray is increased. Therefore, a two pass tray will have almost twice the liquid handling capacity of a one pass tray; a three pass tray will have almost three times the liquid handling capacity; and so on. Therefore, using multiple passes helps the liquid capacity increase as rapidly as the vapor capacity.


For example, a 20 foot diameter tower has roughly four times the vapor capacity of a 10 foot diameter tower. However, if both towers are single pass, the 20 foot diameter tower has only twice the liquid capacity. If the 20 foot tower is made two pass, then it will be able



•

Three Pass

Four Pass

Figure 1 LIQUID AND VAPOR FLOW PATTERNS ON TRAYS

to handle four times the liquid rate, and four times the vapor rate. If the 10 foot tower was already two pass, then the 20 foot tower would have to be four pass in order to handle four times the vapor and liquid. In such a case, if multipass trays are not used, tower diameter would have to be increased to handle the liquid loading, although it would not be necessary to handle the vapor loading.

Another reason for going to multipass trays is that several capacity correlations indicate that <u>vapor</u> capacity is also dependent on the weir length available for liquid flow (7). The explanation for this is that with a larger weir length, the froth height on a tray is lower. This permits more space for vapor disengaging above the tray, and therefore increased vapor capacity. Because increasing the number of liquid passes decreases the liquid height on each tray, it also decreases the tray pressure drop. This, in turn, decreases the liquid backup in the downcomer. Therefore, multipass trays also provide for designs with lower tray spacings.

The one disadvantage to a multipass tray is that it has a shorter flowpath in which the liquid travels on each tray. There is some evidence that shorter flowpaths reduce tray efficiency (4). But most tray efficiency correlations do not take liquid flowpath into account (8), and it is doubtful that this has much of an effect on large diameter towers, which have large flowpath lengths regardless of the number of liquid passes.

Why Multipass Trays Are Important

The previous section has demonstrated how multipass trays are economically attractive for large towers. With the present energy shortage and the world need for economic expansion of petroleum capacity, there is a strong incentive to build larger and larger refineries. Since single train plants are the most economical, larger capacity fractionating towers are required. For example, atmospheric crude distillation towers in large refineries can be over 30 feet in diameter. With the use of multipass trays, these towers can be designed with smaller diameters, and, therefore, at lower cost.

Another attractive use of multipass trays is in superfractionators. These are towers used to separate close boiling mixtures into high purity components. Some examples are propane/propylene splitters and ethane/ethylene splitters. These difficult separations require a high reflux rate, or liquid loading, and a large number of trays, and, therefore, a larger diameter and a high tower height. In fact, depending on the plant's location and local height restrictions (e.g. if it is near an airport), the tower may have to be split into two shells. Because, as mentioned in the previous section, multipass trays can decrease tower height and diameter, tower investment for superfractionators can be reduced.

Another reason the use of multipass trays is economically attractive is that it can eliminate the need for special, high cost fractionating devices in some cases. Proprietary devices have been

developed for use especially in heavily liquid loaded services, such as high pressure light ends towers and absorbers and strippers. These devices are marketed at premium prices because they are patented. In some cases, conventional sieve trays designed for three or four liquid passes may have liquid handling capabilities comparable to such proprietary devices. Because the sieve tray is non-proprietary, no premiums need be paid for patented technology.

What Has Been Done So Far?

It has been noted that, "There seems to be an aversion in the industry to using multipass trays (4).". This is probably because engineers do not know how to design them. The main problem is that unlike one or two pass trays, multipass trays are not absolutely symmetrical. This makes engineers worry about the hydraulic performance of multipass trays, since the liquid and vapor will not necessarily split into three or four <u>equal</u> parts to travel through each of the passes. Therefore, the design of multipass trays requires a little more work (which may be the real reason engineers shy away from such designs).

Actually, engineers who do not work for a tray vendor have no instructional manual in the design of multipass trays. An investigation of the literature has shown no articles or texts which show <u>how to</u> design multipass trays, although Jamison (4) does make some suggestions, and some tray vendors' manuals do give methods of setting up designs (1). However, most tray vendors consider their detailed design techniques

proprietary, and, therefore, do not make them publicly available.

The main drawback to engineers designing multipass trays is that there is no publicly available program for either rating or designing multipass trays. Tray vendors do have their own proprietary programs which utilize their own special design techniques. But there are various methods of designing multipass trays, and, therefore, each vendor's program uses their own technique.

The purpose of this thesis is to present the various methods of designing three and four pass sieve trays, with the appropriate design equations required. In addition, a computer program is presented for the rating of existing multipass trays and for the design of new multipass trays. This program utilizes publicly available correlations for capacity and pressure drop. These equations can be replaced with the user's own proprietary correlations if he wishes. The remainder of this thesis describes the development of these design methods and the program.

A photograph of a four pass tray is shown in Figure 2.

Although the methodology presented in this thesis can be applied to single and double pass trays, their design is not elaborated on in this work. The design of such trays is common knowledge to most process engineers.

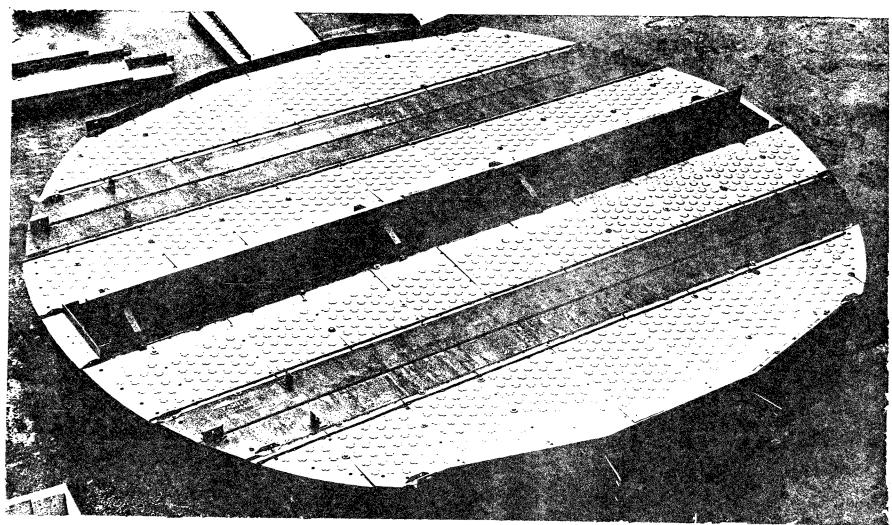
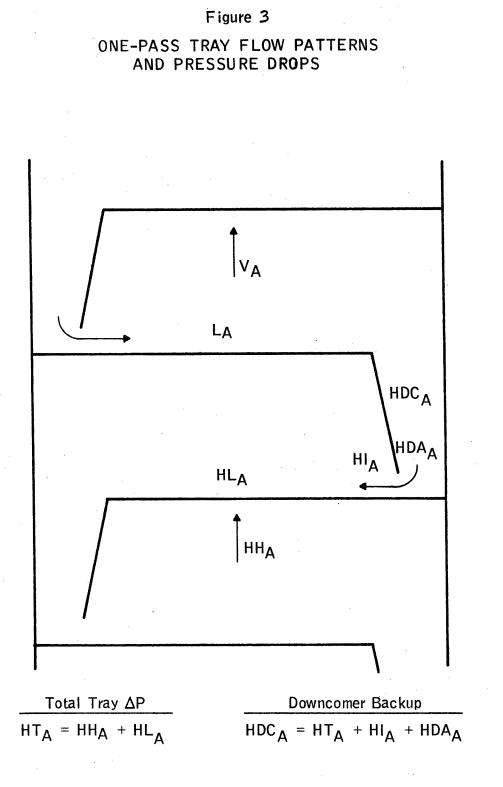


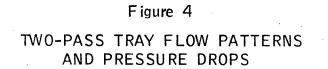
FIGURE 2

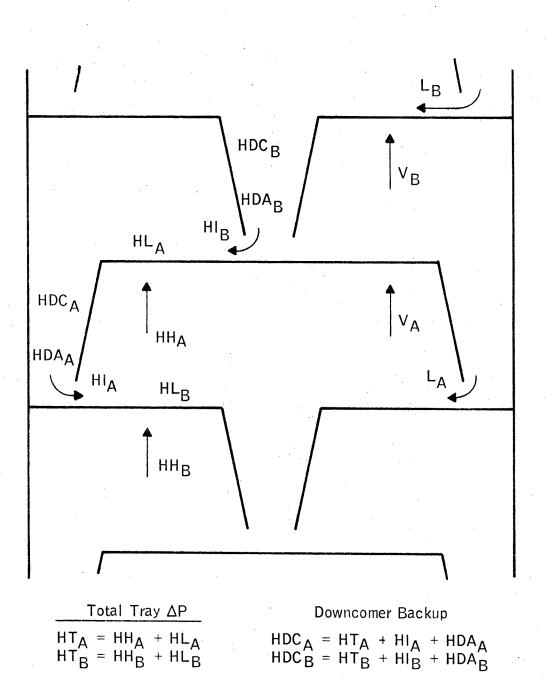
Photograph of Four Pass Tray. Courtesy of F.W. Glitsch & Sons, Inc.

CHAPTER II

METHODS OF DESIGNING MULTIPASS TRAYS


Background: One and Two Pass Trays


The design of one and two pass trays for fractionating columns is relatively straightforward. Nearly every chemical process design engineer in the petroleum and chemical industries has done at least one such design. Figures 3 and 4 depict the liquid and vapor flow patterns and pressure drop equations for one and two pass trays, respectively.


On a single pass tray, there is only one path or bubble area for the liquid and the vapor to travel from tray to tray. The vapor rate on the single pass obviously equals the total vapor rate, and the liquid rate on the single tray pass obviously equals the total liquid rate.

On a two pass tray, both the vapor and liquid have a choice of two paths to take in traveling from tray to tray. But as can be seen in Figure 4, a two pass tray is completely symmetrical. The vapor and liquid have no preference as to which path to travel and consequently split equally into the two paths.

The only way the fluids will not split equally is if something such as improper shop fabrication upsets the symmetry of the trays. For example, if there are more perforations on one side of the tray than the other, the vapor will preferentially travel through this side. Since the total tray pressure drop across each side of the tray <u>must</u> be equal, the liquid will preferentially travel across the other side. However,

because two pass trays are always designed symmetrically, an unequal split can only occur as a result of holes plugging or improper field construction or shop fabrication.

In determining the vapor and liquid splits on a two pass tray, the four unknowns (V_A , V_B , L_A , L_B) are determined by the following four simple equations:

- (1) $V_A = V_B$
- (2) $V_A + V_B = V_{total}$
- (3) $L_A = L_B$
- (4) $L_A + L_B = L_{total}$

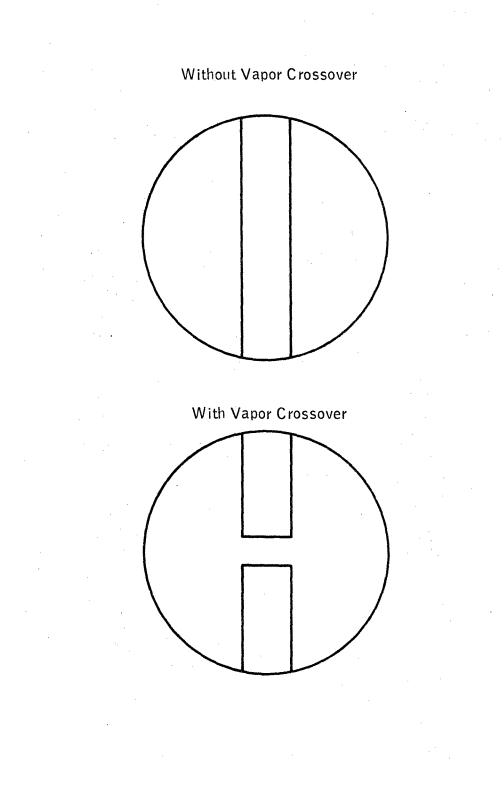
Where V_X is the vapor rate in cubic feet per second for pass X, L_X is the liquid rate in gallons per minute for pass X. The subscript total refers to rates for the entire tray. Knowing V_{total} and L_{total} , it is obvious that the flowrate through any given pass is equal to one-half the total flowrate.

Three and Four Pass Trays

The design of three and four pass trays, however, is not as straightforward. Although multipass trays are not symmetrical, there are enough equations to solve for the six unknowns in a three pass design, and the eight unknowns in a four pass design. These equations are presented in the next chapter.

There are several methods of setting up multipass tray designs. Because the liquid and vapor do not necessarily have symmetrical paths to choose from, the liquid and vapor do not split equally. That is, unless great care is taken in the design, the liquid and vapor flowrate for each pass of a three or four pass tray is not equal to one-third or one-fourth the total flowrate. In order to prevent possible vapor maldistribution from propogating itself, trays are often designed with passageways for vapor to travel from one pass to another.

The most common method of providing for such vapor crossover is to design the inboard or off-center downcomers (those which are not segmental) as envelope or box downcomers. This is depicted in Figure 5. These downcomers are of almost rectangular shape and are fabricated as two separate downcomers. A space is left between them through which vapor can cross over from one pass to another. If no provision for vapor crossover is desired, the downcomer extends across the entire tray with no separation.


Another method of providing for vapor crossover is to place a horizontal pipe or duct running across the downcomer through which vapor can travel. Jamison (4) has suggested this technique.

Through the use of vapor crossover, the pressure above any tray is equalized. Therefore, trays designed with vapor crossover have a different set of equations than trays designed without vapor crossover. Therefore, four sets of equations for determining liquid and vapor splits are presented in the next chapter: three and four pass trays, with and without vapor crossover.

There are two basic methods of laying out the plan view of three

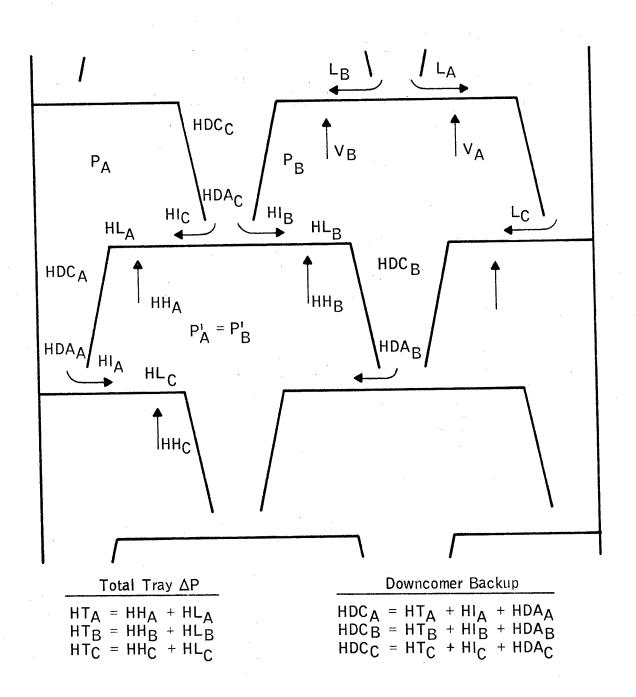
Figure 5

DESIGN OF CENTER AND OFF-CENTER DOWNCOMERS WITH AND WITHOUT VAPOR CROSSOVER

and four pass trays. The first method consists of designing for equal liquid flow path lengths. That is, equal distances the liquid must travel in its course from downcomer to downcomer. The other method is to design for equal bubbling areas. That is, the perforated area in which vapor-liquid contacting takes place should be the same for each pass. Each of these methods has its own advantages and disadvantages. Neither is generally accepted as the "proper" method because some tray vendors design for equal flowpath length, while others design for equal bubbling areas.

Some vendors probably prefer the equal flowpath length method because it is easy to fabricate. All tray panels can be made of equal widths. Some also claim that since tray efficiency is dependent on flowpath length, such a design provides for equal tray efficiencies. The equal bubble area method is preferred by some because they can then attempt to design for equal liquid and vapor flowrates for each pass. Chapter VI of this thesis describes how the equal bubble area method can be used in the optimum design of multipass trays.

CHAPTER III


EQUATIONS FOR THREE AND FOUR PASS TRAYS

The liquid and vapor splits for a multipass tray are determined by various pressure drop equations. There are enough equations to solve for each of the unknown liquid and vapor flowrates on a multipass tray. Because vapor crossover affects the tray pressure drop relationships, a separate but related set of equations are necessary for tray designs with vapor crossover. The first section of this chapter presents the pressure drop equations for the four types of multipass tray designs (three and four pass, each with and without vapor crossover) which are necessary and sufficient to completely determine the liquid and vapor flowrates in each pass. The next section presents the derivation of the critical equations. Finally, it is shown that through the use of these equations, the calculated downcomer backup of a downcomer which is shared by two passes of a multipass tray, is indeed the same, regardless of which pass it is calculated for.

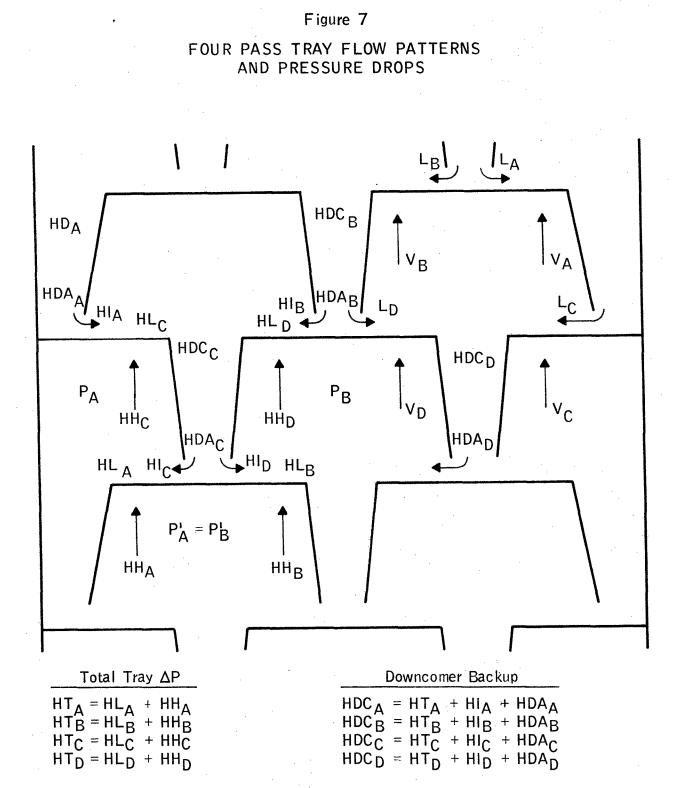
Equations For Determining Liquid and Vapor Splits

Three pass, no vapor crossover. The vapor and liquid flow patterns and pressure drops of a three pass tray are shown in Figure 6. The following six equations (Al to A6) can be used to determine the three vapor and liquid rates, one for each pass. The first three equations determine the liquid split, and the last three equations determine the vapor split.

THREE-PASS TRAY FLOW PATTERNS AND PRESSURE DROPS

- (A1) $L_A \rightarrow L_C$
- (A2) $HI_C + HDA_C HT_A = HI_B + HDA_B HT_B$
- (A3) $L_A + L_B + L_C = L_{total}$
- (A4) $V_A = V_C$
- (A5) $HT_A + HT_C = 2 \times HT_B$
- (A6) $V_A + V_B + V_C = V_{total}$

Where HIX is the inlet head on pass X, HDAX is the head loss under the downcomer for pass X, and HTX is the total tray pressure drop on pass X.


Three pass with vapor crossover. If provision is made for vapor to crossover through the off-center downcomer, equations (A4) and (A5) above can be replaced with the two equations below (B4 and B5). Note that equation (B5) is merely a simplification of equation (A5) knowing (B4) is true.

(B4) $HT_A = HT_B$

(B5) $HT_B = HT_C$ ($HT_A + HT_C = 2 \times HT_B$)

Four pass, no vapor crossover. The vapor and liquid flow patterns and pressure drops for a four pass tray are shown in Figure 7. The following eight equations (Cl to C8) can be used to determine the four liquid and vapor rates, one for each pass. The first four equations determine the liquid split, and the last four equations determine the vapor split.

- (C1) $L_A = L_C$
- (C2) $L_B = L_D$
- (C3) $HI_C + HDA_C HT_A = HI_D + HDA_D HT_B$

- (C4) $L_A + L_B + L_C = L_{total}$
- (C5) $V_{A} = V_{C}$
- (C6) $V_B = V_D$ (2 x V_A + 2 x $V_B = V_{total}$)
- (C7) $HT_A + HT_C = HT_B HT_D$
- (C8) $V_A + V_B + V_C + V_D = V_{total}$

Four pass with vapor crossover. If provision is made for vapor to crossover through the off-center and center downcomers, equations (D5) to (D8) below replace equations (C5) to (C8) above. Note that equation (D6) is merely a simplification of (C6) once (D5) is true. Also, note that (C6) is a simplification of (D6) once (C5) is true.

- (D5) $HT_A = HT_B$
- (D6) $HT_C = HT_D$ ($HT_A + HT_C = HT_B + HT_D$)
- (D7) $2 \times V_A + 2 \times V_B = V_{total}$
- (D8) $2 \times V_C + 2 \times V_D = V_{total}$

Derivation of Critical Pressure Drop Equations

Upon studying Figures 6 and 7, most of the equations presented above become obvious. However, the four pressure drop equations which determine the critical vapor and liquid splits (A2, A5, C3, C7) are derived below.

Equation (A2). The critical liquid split on a three pass tray occurs at the bottom of the off-center downcomer. The liquid will split such that the pressure drop it must overcome in each possible path is exactly equal. The pressure it must overcome is equal to the sum of the inlet head of liquid (HI) the head loss it undergoes in going through the area under the downcomer (HDA), and the pressure level in the chamber it is entering. Therefore,

(E1) $HI_C + HDA_C + P_A = HI_B + HDA_B + P_B$

Where Px is the pressure level above pass X.

The pressure level in the chamber (P_A, P_B) is equal to the pressure level below that chamber (P'_A, P'_B) minus the tray pressure drop through that pass (HT_A, HT_B). That is

(E2) $P_A = P'_A - HT_A$

(E3) $P_B = P'_B - HT_B$

Where P'_X is the pressure level below pass X. Substituting equations (E2) and (E3) into equation (E1),

(E4) $HI_C + HDA_C + P'_A - HT_A = HI_B + HDA_B + P'_B - HT_B$ Since the pressures P'A and P'_B are for the same chamber,

(E5) $P'_{A} = P'_{B}$

Therefore, substituting (E5) into (E4) gives equation (A2).

(A2) $HI_C + HDA_C - HT_A = HI_B + HDA_B - HT_B$

Equation (A5). For trays without vapor crossover, we must consider a pressure balance across two trays because for any one tray, one vapor flow chamber is completely closed off from the other chamber. The vapor from the chamber above pass C travels through the chamber above pass A before it returns to another chamber above another pass C. It cannot travel through the chamber above pass C, then through the chamber above pass B, because $V_A = V_C$ as defined by equation (A4). Therefore,

(F1) $HT_A + HT_C = HT_B + HT_B$

(A5) $HT_A + HT_C = 2 \times HT_B$

Equation (C3). As with the three pass tray, the critical liquid split occurs at the bottom of the off-center downcomer, and the same type of pressure balance is required:

(G1)
$$HI_C + HDA_C + P_A = HI_D + HDA_D + P_B$$

(G2) $P_A = P_A - HT_A$
(G3) $P_B = P_B - HT_B$
(G4) $HI_C + HDA_C + P_A - HT_A = HI_D + HDA_D + P_B - HT_B$
(G5) $P_A = P_B$
(C3) $HI_C + HDA_C - HT_A = HI_D + HDA_D - HT_B$

Equation (C7). As with the three pass tray, consider the pressure balance across two trays. Vapor from the chambers above passes C and D, must pass through the chambers above passes A and B respectively. Therefore,

(C7) $HT_A + HT_C = HT_B + HT_D$

Proofs That Shared Downcomers Have Equal Backups.

On multipass trays, liquid from two different passes can flow into a single shared downcomer. For example, liquid from passes B and C on a three pass tray share a common downcomer, as does liquid from passes C and D on a four pass tray. Because the liquid in these downcomers blend and actually form one column of liquid, the downcomer backup (the static head equal to the height of this column) must be the same regardless of which pass it is calculated for. That is, for a three pass tray, HDc must equal HD_B ; and for a four pass tray, HD_C must equal HD_D . This is proven below.

<u>Three pass.</u> By definition, the backup in a downcomer is equal to the sum of the total tray pressure drop (HT), plus the head loss under the downcomer (HDA), plus the inlet head (HI). Therefore,

(H1) $HDC_B = HT_B + HDA_B + HI_B$

(H2) $HDC_C = HT_C + HDA_C + HI_C$

Where HDC_X is the downcomer filling in the downcomer from pass X. For HDC_B to be equal to HDC_C , the following must hold,

(H3) $HDC_B - HDC_C = 0 = HT_B + HDA_B + HI_B - HT_C - HDA_C - HI_C$ Now from previous equations,

(A5) $HT_A + HT_C = 2 \times HT_B = HT_B + HT_B$

(H4) $HT_B - HT_C = HT_A - HT_B$

Substituting (H4) into (H3)

(H5) $0 = HT_A + HDA_B + HI_B - HT_B - HDA_C - HI_C$

Rearranging, this equation is the same as the identity of equation (A2),

(A2) $HI_C + HDA_C - HT_A = HI_C + HDA_B - HT_B$

Therefore, (H3) is true, and

(H6) $HDC_B = HDC_C$

Q.E.D.

Four pass. Following the logic used in the derivation for three passes above:

(11) $HDC_C = HT_C + HDA_C + HI_C$ (12) $HDC_D = HT_D + HDA_D + HI_D$ We will prove

(13) $HDC_C - HDC_D = 0 = HT_C + HDA_C + HI_C - HI_D - HDA_D - HI_D$ Using the following equations:

(C7) HTA + HT_C = HT_B + HT_D

(14) $HT_C - HT_D = HT_B - HTA$

(15) $O = HT_B - HT_A + HDA_C + HI_C - HDA_D - HI_D$

Now (I5) is the same as the identity (C3) rearranged. Therefore, (I3) is true, and

(16) $HDC_{C} \simeq HDC_{D}$

Q.E.D.

CHAPTER IV

COMPUTER PROGRAM FOR RATING AND DESIGNING MULTIPASS TRAYS

A computer program has been written to rate existing multipass trays and to design three and four pass trays for new services. This program uses the equations presented in the preceding chapter to determine the vapor and liquid loadings for each pass.

Equations Used to Rate Designs

In order to rate or design trays, equations are necessary for the various pressure drops required, as well as for tray capacity and efficiency. This section presents the equations used in this program. Most are published equations although the jet flood capacity equation is not from any single source but is contrived to represent known trends in tower capacity. The equations chosen are not intended to be recommended as the best possible equation available. It is expected that those interested in using this program will substitute some or all of these rating equations with their own proprietary rating equations.

Jet Flood. The jet flood point normally sets the maximum vapor capacity of a sieve tray. Jet flooding is the condition in which liquid entrained from one tray to the next by the vapor jets becomes excessive. Tower pressure drop increases significantly, and the tower may become filled with liquid. Tray efficiency decreases drastically.

Many tower capacity correlations predict the vapor velocity through the bubble area at which jet flooding occurs. This jet flood

point decreases as the liquid rate across the weir increases. This program calculates the percentage of the flood point at which the tray is operating for each pass. A desirable design is generally at about 85 percent of the flood point. This maximizes tower capacity without debiting tower efficiency due to excessive entrainment.

The following equation used in this program to calculate the jet flood point is not taken from any one source. It is a contrived equation based on known trends in tower capacity.

 (V_L/A_B) flood = HFACT1 x 0.55 - 0.035 (GPHFTWEIR/1000) where $V_L = CFS_V$ $\sqrt{\rho V/\rho_L - \rho_V}$ and HFACT1 = $\frac{H/24}{H/24}$

Where V_L is the vapor load in cubic feet per second, A_B is the bubble area, CFS_V is the vapor flowrate in cubic feet per second, ρ_V is the vapor density in pounds per cubic foot, ρ_L is the liquid density in pounds per cubic foot, H the tray spacing in inches, HFACTL is a tray spacing capacity factor, and GPHFTWEIR is the liquid weir loading in gallons per hour per foot of weir length.

Allowable downcomer inlet velocity. As the frothy liquid from the tray enters the downcomer, the froth disengages. The liquid goes down through the downcomer to the next lower tray while the vapor goes up through the vapor space to the next higher tray. There is an upper limit to the velocity at which the froth can enter the downcomer and successfully disengage without carrying vapor downward to be recycled to the tray below.

This allowable downcomer inlet velocity increases as the tray spacing increases. As the tray spacing or downcomer height increases, the disengaging residence time increases, and, therefore, the vapor and liquid separate more easily. The allowable velocity also increases as the difference between the liquid and vapor densities ($\rho_{\rm L} - \rho_{\rm V}$) increases. As the liquid and vapor densities come closer, the two phases are more difficult to separate, and, therefore, a lower downcomer inlet velocity is allowed.

ALLVEL = HFACT2 x RHOFAC

Where HFACT2 = H/24

and RHOFAC = $f(\rho_L - \rho_V)$

Where ALLVEL is the allowable downcomer inlet velocity, HFACT2 is a tray spacing downcomer design factor and RHOFAC is a function of the density difference.

Dry tray pressure drop. The dry tray pressure drop is the pressure drop the vapor would undergo in passing through the tray's perforations if there were no liquid on the tray. This is calculated from a typical velocity head equation. All pressure drop equations used are similar to those presented by Smith (9). To simplify the dry tray pressure drop equation, the constant C_{VO} was set at an average value of 0.70. The literature gives several methods of predicting C_{VO} , including correlating it with the ratio of hole to bubble area (A_O/A_B) and the ratio of hole diameter to tray thickness (D_O/TT).

HH = 0.186 $(1/C_{VO})^2 V_0^2 (\rho_V/\rho_L)$

where $V_0 = CFSV/A_0$

and $C_{VO} = 0.70$

where HH is the dry tray pressure drop, V_0 is the vapor velocity through the open area to feet per second, A0 is the open area in square feet, and CyO is a dry tray pressure drop coefficient.

<u>Clear liquid height</u>. The height of the froth on a tray is given as the sum of the weir height, plus the static head of the crest of liquid overflowing the weir (the Francis weir formula). The static head of this froth, as a clear liquid, is equal to the froth height multiplied by an aeration factor (β). Some texts give β as a function of the weir liquid loading and the ratio of weir length to diameter (9). This program uses average values of 0.70 and 1.00 for β and F_W, respectively.

 $HL = \beta$ (HOW + HWO)

Where $\beta = 0.70$

 $HOW = 0.48 F_W (GPM/LWO)^{2/3}$

and $F_W = 1.00$

Where HL is the clear liquid height on a tray, HOW is the crest over the weir, HWO is the outlet weir height in inches, β is an aeration factor and F_W is a weir factor, GPM is liquid flowrate in gallons per minute, and LWO is the weir length in inches.

<u>Total tray pressure drop.</u> The total pressure drop a vapor undergoes in passing from one tray to another (HT) is generally agreed to be equal to the sum of the dry tray pressure drop plus the clear liquid head on the tray.

HT = HH + HL

Inlet head. The static head of liquid at the tray inlet is used in calculating downcomer filling. It is usually equal to the clear liquid height on a sieve tray (a sieve tray is generally regarded to have no crossflow pressure gradrent) unless there is an inlet weir. If there is an inlet weir, the inlet head is equal to the inlet weir height plus the crest over the inlet weir. Since the liquid at this point is clarified, no aerator factor is necessary (i.e. $\beta = 1.00$).

Without an inlet weir HI = HL

With an inlet weir HI = 0.48 FW (GPM/LWI)^{2/3} + HWI Where HI is the inlet head, LWI is the inlet weir length in inches and

HWI is the inlet weir height in inches.

<u>Head loss under downcomer</u>. As the liquid passes through the area under each downcomer, it changes direction from vertical to horizontal. This requires a pressure loss (HDA) which is predicted by the submerged weir formula.

 $HDA = 0.06 (GPM/A_{ID})^2$

where $A_{UD} = C \times L_{UD}$

where A_{UD} is the area under the downcomer in square inches, C is the downcomer clearance in inches, and L_{UD} is the length under the downcomer in inches.

By curving the outlet lip of the downcomer, this head loss is reduced. If a shaped lip downcomer is used, this program calculates the head loss to be one-half the value calculated by the above equation.

<u>Downcomer filling</u>. A static head of liquid builds up in the downcomer (HDC) to compensate for the pressure drop between trays plus enough head to overcome the tray inlet head and the head loss under the downcomer.

HDC = HT + HI + HDA

If a recessed box or inlet weir is used, HDA is doubled, because the liquid makes two turns in leaving the downcomer.

If downcomer filling is excessive, liquid may back up to the tray above and flood the column. Because the froth in the downcomer is not completely clarified, it is generally recommended that the downcomer clear liquid filling not exceed 50 percent of the tray spacing.

<u>Tray efficiency.</u> There are many tray efficiency equations. This program uses a simple correlation of overall tray efficiency with the liquid fluidity on the tray, as presented by Maxwell (8). The liquid fluidity is defined as the reciprocal of the liquid viscosity in centipoises.

Convergence Techniques.

The equations presented in Chapter III are solved simultaneously to determine the liquid and vapor flowrates in each pass. These convergence techniques are summarized in this section.

Three pass, no vapor crossover.

1. Guess $L_A = L_B = L_C = L_{total}/3$ $V_A = V_B = V_C = V_{total}/3$ 2. Calculate HL, HDA, and HI for each pass

3. Calculate HH and HT for each pass

4. Solve for V_A such that

 $HH_A = HT_B + HI_C + HDA_C - HL_A - HI_B - HDA_B$ which is equivalent to equation (A2)

5. Recalculate
$$V_C = V_A$$

 $V_B = V_{total} - V_A - V_C$

Return to Step 3 until VA is converged.

6. Once V_A is converged, solve for L_A such that HL_A = 2 x HT_B - HT_C - HH_A

which is equivalent to equation (A5)

7. Recalculate $LC = L_A$

 $LB = L_{total} - L_A - L_C$

Return to Step 2 until LA is converged.

Three pass, with vapor crossover.

1. Guess
$$L_A = L_B = L_C = L_{total}/3$$

 $V_A = V_B = V_C = V_{total}/3$

- 2. Calculate HL, HDA, and HI for each pass
- 3. Solve for L_A such that

 $HI_C = HI_B + HDA_B + HDA_C$

which is equivalent to equations (A2) and (B4)

4. Recalculate $L_C = L_A$

 $L_B = L_{total} - L_A - L_C$

Return to Step 2 until LA is converged

5. Solve for V_B such that

 $HH_B = HT_C - HL_B$

6. Solve for V_A such that

 $HH_A = HT_B - HLA$

which is equivalent to equation (B4)

7. If $V_A + V_B + V_C$ does not equal V_{total} , recalculate $V_C = V_{total} - V_A - V_B$

Repeat, starting at Step 5, until $V_A + V_B + V_C$ does equal V_{total}

Four pass, no vapor crossover.

1. Guess $L_A = L_B = L_C = L_D = L_{total}/4$

$$V_A = V_B = V_C = V_C = V_{total}/4$$

- 2. Calculate HL, HDA, and HI for each pass
- 3. Solve for V_A such that

 $HH_A = HT_B + HI_C + HDA_C - HL_A - HI_D - HDA_D$

which is equivalent to equation (C3)

4. Recalculate $V_C = V_A$

 $V_B = V_D = 0.5 V_{total} - V_A$

Return to Step 3 until VA is converged

5. Solve for L_A such that

 $HL_A = HT_B + HT_D - HT_C - HH_A$

- . which is equivalent to equation (C7)
- 6. Recalculate $L_C = L_A$

 $L_B = L_D = 0.5 L_{total} - L_A$

Return to Step 2 until LA is converged

Four pass, with vapor crossover.

1. Guess
$$L_A = L_B = L_C = L_D = L_{total}/4$$

 $V_A = V_C = V_{total}/4$

2. Calculate HL, HDA, and HI for each pass

3. Solve for LC such that

HIC = HID + HDAD - HDAC

which is equivalent to equations (C3) and (D5)

4. Recalculate $L_A = L_C$

 $L_B = L_D = 0.5 L_{total} - L_A$

Return to Step 2 until LA is converged

5. Recalculate
$$V_B = 0.5 V_{total} - V_A$$

6. Solve for V_A such that

 $HH_A = HT_B - HL_A$

which is equivalent to equation (D5)

Return to Step 5 until V_A is converged

- 7. Recalculate $V_D = 0.5 V_{total} V_C$
- 8. Solve for V_C such that $HH_C = HT_D - HL_C$ which is equivalent to equation (D6) Return to Step 5 until V_C is converged

How to Use the Program

This section describes how to fill out the input form for the eight possible options this program is capable of evaluating. These are three and four pass trays, each with or without vapor crossover, and each as either a rating or a design case.

The input form for this program is presented on the next page. The input form is, for the most part, self-explanatory. The following are notes describing the use of this input form, as referenced by the numbers in parentheses on the form. Note that all 14 cards must be submitted for each case. Even if there is no input on a card for a given case, a blank card must still be submitted in its place.

Any alphanumeric titles may be placed on these three cards.
 They will be printed out exactly as submitted.

2. At the present time, this information is not used by the program. It is simply read and printed out as submitted.

3. Omit for a design case. Submit a blank card if entire information on a card is to be omitted.

4. Enter geometry values as described in Figure 8 and Figure9. All geometry values are in inches.

5. Enter 0.0 or a blank card if another case follows. Enter
 1.0 if this is the last case.

Design Logic.

This section describes the logic that this computer program uses to design three and four pass trays. Given the liquid and vapor loadings and the number of tray passes, the program proceeds to develop a tray design in the manner described below.

Tray spacing is set at 24 inches. This is a typical tray spacing

CARD #1 CARD #2

#3

CARD #4

CARD #5

CARD #6

CARD #7

CARD #8 (3,4) CARD #9 (3,4)

		¥.						E						N			L							T	E					1	/ A				U			IT	Y																		10						R			
1	2	3	4	5	1	,	7	8	T	9	10	Ţ	1	12	1	3	14	L	5	16	1	7	18	Ļ	19	2	0	2	1	22	23	2	4	25	26	5	27	28	2	9 :	20	31	3	2	33	34	1 3	15	36	3	7	38	3	94	0	41	14	2	43	44	4	5	16	47	4	8
			1	T	Ť			ſ	Ť			t	1		T	Ť			1			Ţ		t		Ť		Γ	İ			T	1		1	Ť			T	Ť		-	1	1			÷			T	Ť		-	Ť			t	1			T	1			T	-

1.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 23 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

		LI				R A H F		Ē					1		N. AL														DI			TΥ					LI	QU	10) \ CI	, ! \$	c	551	T١	1	ľ	S				C E E S					N	
1	2	3	4	5	(5	7	8	9	1	0	11	12	13	14	¢1	5 1	6	17	18	i 19	9 2	20	21	2	2 2	32	4 2	5 2	ю	27	28	29	30	31	3	2; 3	33	4	35	36	37	38	39	40	Į	114	12	43	44	45	4	4	4	8 4	19	5
				Ī	T		•		-	T	T					1	1		•		Ī	1			-	T	T		•						Γ		1			:	•					T		1			[ĺ				

		т					F			R E						PR PS						
1	2	2	3	4		5	:6		7	8	9	10	11	12	13	14	15	16	17	18	19	20
	÷	;		:	-		÷	1	•	:	1				1		1	-	•		i .	:

		ы		-	F			55	E :	\$				н	0						E 1 (2		R					т				DIA T (ET	E	R								P A E S			5		-
6	2	3		ı İ	5	6		7	8	1	,	10	11	1	2	13	14	h	5	16	1	7	18	19	20	2	1 2	22	3	24	25	26	27	21	1 2	9	30	31	32	2 3	33	4	35	36	37	/ 3	8 3	9 4)
Ľ			-				-	•		-					-			•	•							Γ	Ι				•					T							•		-				_

				WI	DT	н	#	1							W	D	τн	#	2								ND	τH	#1	3						WIE)1	4 4	4						W	/ID	TH	#	5	
				W1	DT	H	*(5			Ι				W	D	TH	#	7							۷	ID	TH	#1	5		Ι				WIE	T	1 1	9			Ι			W	/ID	TH	#	10	_
1	2	-	3	4	5	6	7	: 8	, 9	-1	oh	11	2	13	14	15	,16	17	, P	8 ; 1	9 :	20	21	22	23	24	25	26	27	28	9	10 3	1.3	2'3	3,3	14 3	15 3	ю 3	7 3	38 3	9 40)4	14	2 :43	3_4	4 4	5 4	6 4	7:48	B
								; .	÷	1	T							• • •••	1	-+	-+					:		•	:			Τ	:	ł			,	•				Т			T					
		÷		1					:	1	t	Ť		••••			1.				•					•		-		· •••••		1				,	1	Ľ	· · · ·			ľ		-	Ĩ	1				

	OUTLET WEIR HWO	нт		WEIR HT HWI	DC	CLEAR	ANCE		E AREA SQ FT	SHAPED LIP	RECESSED BOX	· ·
	1 2 3 4 5 6 7 8	9 10	11 12 13 14	15 16 17 18 19 20	21 22 23	3 24 25 26 2	27 28 29 30	31 32 33 34 3	5 36 37 38 39 40	0 41 42 43 44 45 46 47 48 49	50 51 52 53 54 55 56 57 58 59 60	
CARD #10 (3,4)	•			•		•			•	•	•	PASS A
CARD #11 (3,4)	•			•		•				•		PASS B
CARD #12 (3,4)	•			•		•				•	•	PASS C
CARD #13 (3,4)	•			•		•			•	•	•	PASS D

CARD #14 (5)

1 2 3 4 5 6 7 8 9 10

•

TITLE 1 (1)

TITLE 2 (1)

TITLE 3 (1)

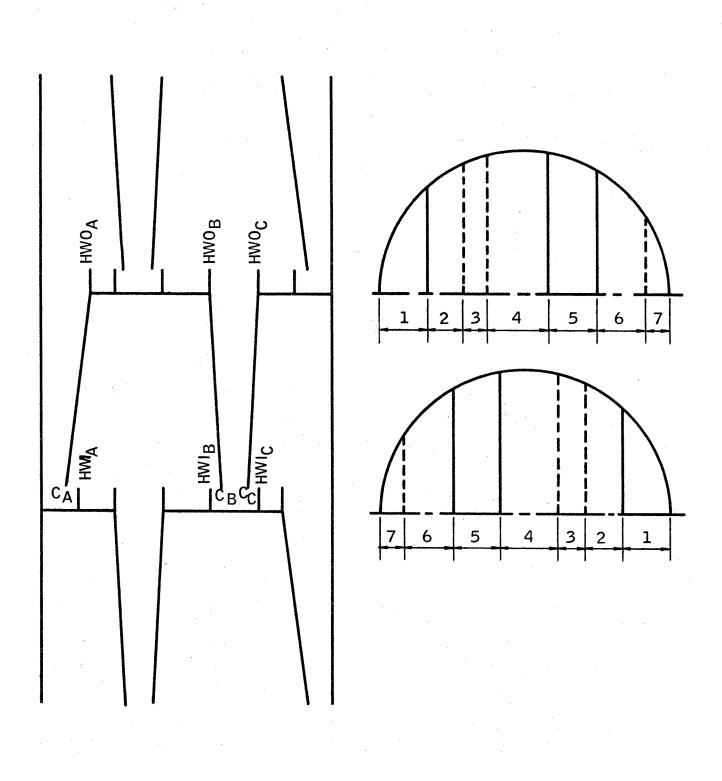
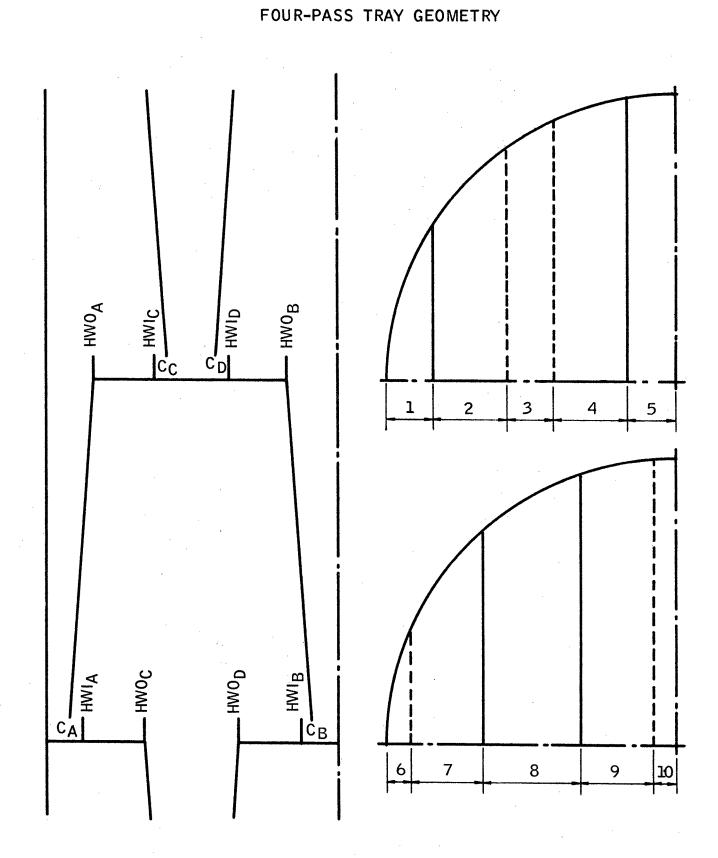



Figure 8 THREE-PASS TRAY GEOMETRY

used in commercial fractionation towers.

A diameter is then selected using double table lookups (see Table 2 and Table 3 in the Fortran computer program presented in the appendix) with vapor load and volumetric liquid rate as parameters. These tables were not developed from any single source, but are based on the data presented by a tray vendor (6). They follow the general trends that vapor capacity increases with tower diameter and decreases with liquid rate.

The minimum diameter for three pass trays is 7 feet, for four pass trays it is 10 feet. This program is incapable of designing three pass trays for liquid rates greater than 5000 GPM, four pass trays for liquid rates greater than 6000 GPM, and all trays for vapor loads (V_L) greater than 100 CFS. These are the limits of the prediction methods used (7).

The program determines the allowable downcomer inlet velocity as described in a previous section (see Table 1 of the program in the appendix). The total downcomer area is then calculated as the area required to maintain the total downcomer inlet velocity exactly at the allowable level. This total downcomer area is then divided into parts for each pass as proposed by a tray vendor (1). All downcomers are straight. That is, the inlet area is equal to the outlet area.

Now the program has a tower cross-sectional area and a total downcomer area. It then splits the remaining bubble area into three

or four segments with equal flow path length. Although this thesis does not propose that equal flow path length designs are the most desirable, it is a common method of designing multipass trays, and is therefore the only method used by this program.

At this point, the program has the entire plan layout (top view) of the tray. Now the program sets the outlet weir height (HWO) so that the average clear liquid height (HL) is 3 inches. It sets the hole area (A_O) so that the average dry tray pressure drop (HH) is 2 inches. These are typical design values which should give good operability and efficiency. It then sets the downcomer clearance (C) so that the average head loss under the downcomer (HDA) is 1 inch. The maximum downcomer clearance is 3 inches, and the program will design a shaped lip downcomer if HDA is greater than 1 inch with a 3 inch straight lip downcomer. This yields an average tray pressure drop (HT) of 5 inches and an average downcomer filling of 9 inches, or 37.5 percent of the 24 inch tray spacing.

The following section describes how these suggested values can be adjusted to obtain a more desirable design than is printed out by the program. For example, if the particular circumstances require a low pressure drop (e.g. a low pressure service), low weir heights and higher open areas will reduce both the clear liquid height and the dry tray pressure drop, which, in turn, reduces the total tray pressure drop.

The program does not design for recessed inlet boxes or inlet weirs. A recessed inlet box is a sump below the downcomer to assure that no vapor can enter the downcomer through the clearance. That is, it is a method of providing a positive seal on the downcomer.

Use of the Program To Improve Initial Design.

It is not proposed that this program will give an optimum design the first time it is run. In fact, the first design the program picks can have several deficiencies. In order to make optimum use of this program as a design tool, the original design case should be altered as necessary and rerun as a rating case. This may have to be done several times until a final optimum design is reached. Several possible deficiencies of a design case are described below.

The program only designs for 24 inch tray spacing. Greater or smaller tray spacings may be chosen to increase tower capacity, reduce downcomer filling or reduce tower height.

The program chooses a tower diameter which can have any value. Very often a company prefers to order tower shells on one foot or half foot diameter increments. Therefore, the diameter chosen by the program should be changed to conform to the specific standard procedures of the user.

Similarly, flow path lengths, downcomer widths, weir heights, and downcomer clearances are often preferred to be specified on some standard increment (say one quarter inch). Since the program chooses any value it needs to meet its design logic, these values should be changed to conform with specific standard procedures of the user.

The program also sets all weir heights and clearances equal. Therefore, clear liquid heights and other pressure drop values can vary greatly for different passes even though the average value conforms with the design logic of the program. Therefore, it is suggested that the original values be altered to equalize pressure drops somewhat. In particular, the outboard downcomer (the shortest downcomer) clearance should usually be increased and the outboard downcomer weir height should usually be decreased.

Also, although the average downcomer velocity is at the allowable limit, the velocity for any one downcomer may exceed this limit. The suggestions in the preceding paragraph should help in balancing the downcomer inlet velocities.

Although this program may not give an optimum design on the first trial, good engineering judgment can be used to obtain an economic and well-balanced design with one or two additional trials.

CHAPTER V

SAMPLE PROBLEMS

This chapter presents sample problems run on the Multipass Tray Design computer program. Included are input forms and two pages of printout for each of the following eight cases:

1. Four pass rating case, no vapor crossover.

2. Four pass rating case, with vapor crossover.

3. Three pass rating case, no vapor crossover.

4. Three pass rating case, with vapor crossover.

5. Four pass design case, no vapor crossover.

6. Four pass design case, with vapor crossover.

7. Three pass design case, no vapor crossover.

8. Three pass design case, with vapor crossover.

The printouts include all inputted information, tray geometry information, vapor and liquid loadings per pass, pressure drops and downcomer backup in inches of hot liquid, percent of jet flood, downcomer inlet velocity, and overall tray efficiency.

Note that for four pass trays, the downcomer for passes C and D are shared, and, for three pass trays the downcomer for passes B and C are shared. Also, for four pass trays, a single downcomer is used for liquid from two individual passes B. On the program printout, these downcomers are split in half, and downcomer inlet velocities per pass are calculated by dividing the liquid flowrate per pass by the area of the "half" downcomer.

) #1			NCE TEST (ASE: FOUR	PASS RATI	NG			 TITLE 1 (
#2			DESIGNER:	P.W.BECKER					 TITLE 2 (
*3			NØ VAPØR (ROSSOVER					 TITLE 3 (
	VAPOR RATE	MIN. VAPOR RATE	VAPOR DENSITY		R CROSSOVER	ľ			
	MLBS/HR	MLBS/HR (2)	LB/CU FT	I. = VAPOR					
	1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 16 17 18 19 20	huutuu ka ka ka ka ka ka ka ka ka ka ka ka ka	0 31 32 33 34 35 36 37 38 39 40	41 42 43 44 45 46 47 48 49 50				
#4	618.	309.	1.403		0.				
	· •			T					
	LIQUID RATE MLBS/HR	MIN. LIQ. RATE MLBS/HR (2)	LIQUID DENSITY LB/CU FT	LIQUID VISCOSITY CP	SURFACE TENSION DYNES/CM (2)				
	1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40	4 1 42 43 44 45 46 47 48 49 50		· .		
#5	554.6	272•3	31.55	0.113	6.16				
	terret and any part for the terret of the second second second second second second second second second second	<u></u>							
	TEMPERATURE	PRESSURE							
	DEG F (2)	PSIA (2)							
	the second second second second second second second second second second second second second second second s	11 12 13 14 15 16 17 18 19 20 25•							
#6	140.	1230							
	NO. OF PASSES	HOLE DIAMETER	TOWER DIAMETER	TRAY SPACING					
	3 OR 4	INCHES (2)	FEET (3)	INCH ES (3)					
	1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40					
#7	4.	0.38	13.5	21.					
	••••••••••••••••••••••••••••••••••••••								
	WIDTH #1	WIDTH #2	WIDTH #3	WIDTH #4	WIDTH #5				
	WIDTH #6	WIDTH #7	WIDTH #8	WIDTH #9	WIDTH #10				
				31 32 33 34 35 36 37 38 39 40					
#8 (3, 4)	19.4375	26 • 56 25	9.25	21.75	4.0				
#9 (3,4)	19.4375	26.5625	9.25	21.75	A. 0				
			·						
	OUTLET WEIR NT HWO	INLET WEIR HT HWI	DC CLEARANCE C	HOLE AREA AO - SQ FT	SHAPED LIP	RECESSED BOX = 1.0	•		
	1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40	41 42 43 44 45 46 47 48 49 50	51 52 53 54 55 56 57 58 59 60			
#10 (3,4)	1.25	•	1.54	2.39	•	•	PASS A		
#11 (3,4)	2.13		1.0	2.39	•	•	PASS B		
#12 (3,4)	Z.D		1.0	2.39	•	•	PASS C		
#13 (3,4)	2.0	•	1.0	2.39	•	•	PASS D		
	L			L	,, , , , , , , , , , , , , , , , ,				
	1 2 3 4 5 6 7 8 9 10								
#14 (5)	•								

GESIGN AND PATING PROGRAM FOR THREE AND FOUR PASS SIEVE TRAYS

NCE TEST CASE: FOUR PASS HATI ()

DESIGNER: P.W.BECKER

NO VAPOR CROSSOVER

OPERATING CONDITIONS

MEBS/HR VAPOR MAX		619.000	MLBS/HR LIQUID MAX		544.600
ML8S/HR VAPOR MIN		309.000	MLBS/HR LIQUID MIN		272.300
LBS/CU ET VAPOR AT COND		1.403	LOS/CU FT LIQUID AT COND		31.550
TRAY LIQUID TEMPERATURE	DEG F	140.000	SURFACE TENSION AT COND	DYNES/CM	5.150
OPERATING PRESSURE	PSIA	125.000	VISCOSITY AT COND	CP	0.113
CFS VAPOR AT COND		122.357	LIQUID FLOW RATE	GPM	2151.932
VAPOR LOAD	CES	26.395			

TRAY GEOMETRY

DIAMETER	FT	13.50
TRAY SPACING	IN	21.00
NUMBER OF PASSES		4.00
HOLE DIAMETER	IN	0.38
CROSS SECT AREA	SQ FT	143.14
BUBBLE/CROSS SECT AREA	PCT	66.86
VAPOR CROSSOVER (YES OR NO)		NÜ

		PASS 4	PASS B	PASS C	PASS D
DOWNCOMER INLET WIDTH **	IN	19.438	4.030	4.625	4.625
DOWNCOMER OUTLET WIDTH ##	IN	19.433	4.000	4.625	4.625
FLOW PATH LENGTH	IN	26.563	21.750	26.563	21.750
CHORD LENGTH AT TUP OF DC	IN	105.285	152.018	145.884	153,568
CHORD LENGTH AT BTM OF DC	IN	105.285	152.018	145.884	153.568
DC INLET AREA	SQ FT	9.703	4.390	4.742	4.879
DC OUTLET AREA	SO FT	9.709	4.390	4.742	4.879
OUTLET WEIR HEIGHT .	IN	1.250	2,130	2.000	2.000
INLET WEIR HEIGHT ON TRAY BELOW	IN	0.0	0.0	0.0	0.0
DC CLEARANCE TO TPAY BELOW	IN	1.540	1.000	1.000	1.000
SHAPED LIP (YES OR NO)	•	NC.	NÜ	NO	NO
RECESSED BOX (YES OR ND)		NC	C/A	NO	NO
BUBBLE AREA	SQ FT	23.001	24.250	23.601	24.250
FREE AREA .	SQ FT	33,308	23.540	29.343	29.128
HOLE AREA	SQ FT	2.200	2.390	2,390	2,390
HOLE/BURBLE AREA	PCT	12,127	9.356	13.127	°.856

HALF WIDTH FOR PASSES B.C.D

.

PAGE1

LOADINGS PER PASS		PASS A	PASS B	PASS C	PASS D
GPM LIQUID		549.469	526.497	549.469	526,49
GPH/FT WEIR		3757.569	2339.732	2711.851	2468.471
CES VAPOR		30.994	30.184	30.994	30.184
VAPOR LCAD	CFS	5.685	6.512	6.535	6.512
VLOAD/BUBBLE AREA	FPS	0.283	0.269	0.283	0,269
LOAD/CFS LIQUID		5.461	5.551	5.401	5,551
DOWNCOMER FILLING CALCULATION	N S		·		
	• • •				· · · ·
DRY TRAY PRESSURE DROP (HE	H) IN	2.839	2.692	2.839	2.692
CLEAR LIQUID HEIGHT (HI	.) IN	1.386	2.228	2.214	2.164
TOTAL TRAY PRESSURE DROP (HT	F) IN	4.725	4.921	5.053	4.85
INLET HEAD (H)	D IN	2.214	2.164	1.886	2.228
DC HEAD LUSS (HE	DA] IN	0.689	0.634	9.851	0.70
DC FILLING (HI	DC) IN	7.628	7.719	7.790	7.790
DC FILLING	PCT	36.325	36.756	37.097	37.097
ADDITIONAL CALCULATIONS					
		·	· · · · · ·		· .
PERCENT JET FLOOD		73.979	62.073	67.525	62.721
C INLET VELOCITY	EPS	0.126	0.257	0,258	0.240
	1.5	_ dereo			·.
			- · · · ·		
ALLOWABLE DC INLET VELOCITY	EPS	0.341			

OVERALL TRAY EFFICIENCY PCT

98.833

5

PAGE 2

			n en die Ten an andere alle der Andere Andere Andere Andere andere andere andere andere andere andere andere an		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	1 2 3 4 5 6 7 8 9 1	0 11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40	41 42 43 44 45 46 47 48 49 50	51 52 53 54 55 56 57 58 59 60 6	1 62 63 64 65 66	57 68 69 70 71 72 73 74 75 76 77	78 79 80
CARD #1			NCE TEST C	ASE: FØUR P. W. BECKEK	PASS RATI				TITLE 1 (1)
CARD #2			DESIGNER	P. W. BECKER					TITLE 2 (1)
CARD #3			WITH VAPBR	CROSSOVER					TITLE 3 (1)
	VAPOR RATE	MIN. VAPOR RATE	VAPOR DENSITY		OR CROSSOVER				
	MLBS/HR	MLBS/HR (2)	LB/CU FT	1. = VAPOR	CROSSOVER				
	1 2 3 4 5 6 7 8 9 1	0 11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40	41 42 43 44 45 46 47 48 49 50				
CARD #4	618.	309.	1.403		1.				
		*	·						
	LIQUID RATE MLBS/HR	MIN. LIQ. RATE MLBS/HR (2)	LIQUID DENSITY LB/CU FT	LIQUID VISCOSITY CP	SURFACE TENSION DYNES/CM (2)				
		11 12 13 14 15 16 17 18 19 20		31 32 33 34 35 36 37 38 39 40					
CARD #5	554.6	272.3	31.55	0.113	6.16				
	TEMPERATURE	PRESSURE							
	DEG F (2)	PSIA (2)							
	- I was a second s	11 12 13 14 15 16 17 18 19 20							
CARD #6	140.	125.							
	NO. OF PASSES	HOLE DIAMETER	TOWER DIAMETER	TRAY SPACING					
	3 OR 4	INCHES (2)	FEET (3)	INCHES (3)					
	1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40					
CARD #7	4.	0.38	13.5	21.					
	WIDTH #1	WIDTH #2	WIDTH #3	WIDTH #4	WIDTH #5				
	WIDTH #6	WIDTH #7	WIDTH #8	WIDTH #9	WIDTH #10				
		11 12 13 14 15 16 17 18 19 20		31 32 33 34 35 36 37 38 39 40	41 42 43 44 45 46 47 48 49 50 4 • O				
CARD #8 (3,4)	19.4375	26 5625	9.25 9.25	21.75	4.0				
CARD #9 (3,4)	19	26.5625	7.45	4.0					
	OUTLET WEIR HT	INLET WEIR HT	DC CLEARANCE	HOLE AREA	SHAPED LIP	RECESSED BOX			
	нжо	HWI	C	AO - SQ FT	5 1.0	= 1.0	,		
	1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 16 17 18 19 20			41 42 43 44 45 46 47 48 49 50	51 52 53 54 55 56 57 58 59 60			
CARD #10 (3,4)	1.25	•	1.54	2.39	•	•	PASS A		
CARD #11 (3,4)	2.13	•	1.0	2.39	•	• • • • • • • • • • • • • • • • • • • •	PASS B		
CARD #12 (3,4)	200	•	1.0	2.39	•	•	PASS C		
CARD #13 (3,4)	2.0	•	1.0	2.39			PASS D		
		1							
	1 2 3 4 5 6 7 8 9 10								

CARD #14 (5)

•

-46

DESIGN AND RATING PROGRAM FOR THREE AND FOUR PASS SIEVE TRAYS

NCE TEST CASE: FOUR PASS PATING

DESIGNER: P.W.BECKER

WITH VAPOR CROSSOVER

OPERATING CONDITIONS

TRAY LIQUID TEMPERATURE OPERATING PRESSURE CFS VAPOR AT COND VAPOR LOAD TRAY GEOMETRY	DEG F PSIA CES	140.000 125.000 122.357 26.395	SURFACE TENSION AT COND VISCUSITY AT COND LIQUID FLOW RATE	DYNES/CM CP GPM	6.160 0.113 2151.932
MLBS/HR VAPDE MAX MLBS/HR VAPDE MIN LBS/CU ET VAPDE AT COND TRAY LIQUID TEMPERATURE	D53 F	617.000 309.000 1.403 140.000	MLBS/HR LIQUID MAX MLBS/HR LIQUID MIN LBS/CU FI LIQUID AT COND SURFACE TENSION AT COND	DYNES/CM	544.600 272.300 31.550 6.160

DIAMETER	FT	13.50	
TRAY SPACING	IN	21.00	
NUMBER OF PASSES		4.00	
HOLE DIAMETER	IN .	0.39	
CROSS SECT AREA	SQ FT	143.14	
BUBBLE/CROSS SECT AREA	PCT	66.86	
VAPOR CROSSOVER (YES OR NO)		YE S	
•			

			,		
		PASS A	PASS B	PASS C	PASS D
DOWNCOMER INLET WIDTH **	IN	19.438	4.000	4.625	4.625
DOWNCOMER OUTLET WIDTH ** Flow path length	IN IN	19.438 26.563	4.000 21.750	4.625 26.563	4.625 21.750
CHORD LENGTH AT TOP OF DC Chord Length at BTM of DC	- 14 IN	105.285	162.018 162.018	145.884 145.884	153.568 153.568
DC INLET AREA DC OUTLET AREA	SQ FT SQ FT	9.708 9.708	4 • 390 4 • 390	4.742	4.879 4.879
OUTLET WEIR HEIGHT INLET WEIR HEIGHT ON TRAY BELD	IN	1.250	2.130 0.0	2.000	2.000
DC CLEARANCE TO TRAY BELOW SHAPED LIP (YES OR NO)	IN	1.54,0	1.030	1.000	1.000
RECESSED BOX (YES OR NO)		NO NO	N13 NU	. נא כא	NO NO
BUBBLE AREA	SQ FT	23.501	24.250	23,601	24.250
FREE APEA HOLE AREA	SQ FT SQ FT	33.308	28.640 2.390	28.343 2.340	29.128 2.390
HOLE/BUBBLE ARTA	PCT	10.127	9.856	10.127	9.856

.

 PAGE1

				PAGE 2	
				· • .	1
LOADINGS PER PASS		PASS A	PASS B	P455 C	PASS D
GPM LIQUID GPH/FT WEIR CFS VAPOR VAPOR LOAD VLOAD/BUBBLE AREA	7 F S	574.215 3926.804 31.387 6.771 0.287	501.750 2229.756 29.792 6.427 0.265	574.216 2533.939 30.316 5.540 0.277	501.750 2352.444 30.862 6.658 0.275
VLOAD/CES LIQUID Downcomer filling calculat	IONS	5.292	5.749	5.112	5.955
CLEAR LIQUID HEIGHT TOTAL TRAY PRESSURE DROP INLET HEAD DC HEAD LOSS	(HH) IN (HL) IN (HT) IN (HT) IN (HDA) IN (HDC) IN PCT	2.911 1.917 4.828 2.233 0.753 7.818 37.230	2.623 2.205 4.828 2.140 0.575 7.544 35.922	2.716 2.238 4.954 1.917 0.930 7.900 37.144	2.815 2.140 4.955 2.205 0.641 7.801 37.145
ADDITIONAL CALCULATIONS					
PERCENT JET FLOOD DC INLET VELOCITY	FPS	76.091 0.132	60.727 9.255	66•727 0•270	63.534 0.229
ALLOWABLE DC INLET VELOCITY	r fps	0.341			
OVERALL TRAY EFFICIENCY	PCT	98.833	· · · · ·	·	• •

CARD #14 (5)

DESIGN AND RATING PROGRAM FOR THREE AND FOUR PASS SIEVE TRAYS

NCE TEST CASE: THREE PASS BATING

DESIGNER: P.W.BECKER

NO VAPOR CROSSOVER

OPERATING CONDITIONS

MLBS/HR VAPOR MAX MLBS/HP VAPOR MIN LBS/CU ET VAPOR AT COND TRAY LIQUID TEMPERATURE OPERATING PRESSURE CFS VAPOR AT COND VAPOR LOAD	DEG F PSIA CFS	619.000 309.000 1.403 140.000 125.000 122.357 26.396	MLBS/HR LIQUID M MLBS/HR LIQUID M LBS/CU FT LIQUID SURFACE TENSION VISCOSITY AT CUN LIQUID FLOW RATE	ITN . DAT COND AT COND DYNES/CM ID CP	544.600 272.300 31.550 6.160 0.113 2151.932
TRAY GEOMETRY					
DIAMETER TRAY SPACING NUMBER OF PASSES HOLE DIAMETER CROSS SECT AREA BUBBLE/CROSS SECT AREA VAPOR CROSSOVER (VES OR NO)	IN 21 3 IN 0 SQ FT 143 PCT 49	• 50 • 00 • 30 • 14 • 30 ND			
		PASS A	PASS B	PASS C	PASS D
DOWNCOMER INLET WIDTH ** DOWNCOMER OUTLET WIDTH ** FLOW PATH LENGTH CHORD LENGTH AT TOP OF DC CHORD LENGTH AT BIM OF DC DC INLET AREA DC OUTLET AREA OUTLET WEIR HEIGHT INLET WEIR HEIGHT ON TRAY BE DC CLEARANCE TO TRAY BELOW SHAPED LIP (YES OR NO) RECESSED BOX (YES OR NO)	IN IN IN SQ FT SO FT IN ELGW IN	24.000 21.000 24.000 115.332 109.019 13.163 10.854 1.250 0.0 1.540 NO	12.000 10.500 24.000 150.273 160.273 13.286 11.662 2.130 0.0 1.000 NO	12.000 10.500 24.000 144.924 147.734 12.506 11.091 2.000 0.0 1.000 NJ NJ	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BUBBLE AREA FREE AREA HOLE AREA HOLE/6038LE AREA	SQ FT SQ FT SQ FT PCT	22.174 32.302 2.390 10.778	26,949 39.612 2.660 9.870	21.449 33.205 2.390 11.143	0.0 0.0 0.0 0.0 0.0

** HALF WIDTH FOR PASSES 3,C,D

PAGE1

.

PAGE 2

LOADINGS PER PASS PASS A PASS B PASS C PASS D _____ _____ ---------------GPM LIQUID 710.954 718.024 716.954 0.0 GPH/FT WEIR 4475.820 3561.914 0.0 3225.575 CES VAPOR 0.0 39.631 43.094 39.631 VAPOR LOAD CES 8.550 9.297 8.550 0.0 VLOAD/BUBBLE AFEA FPS 0.386 0.345 0.399 0.0 VLOAD/CES LIQUID 5,352 5.352 5.811 0.0 DOWNCOMER FILLING CALCULATIONS ---______ DRY TRAY PRESSURE DROP (HH) IN 4.641 4.430 4.641 0.0 CLEAR LIQUID HEIGHT 2.376 0.0 (HL) IN 2.012 2.435 TOTAL TRAY PRESSURE DROP 7.018 0.0 (HT) ΞN 6.653 6.835 INLET HEAD (HI) IN 2.012 0.0 2.376 2.405 DC HEAD LOSS (HDA) IN 0.0 1.094 1.413 1.204 DC FILLING (HDC) IN 10.123 10.442 0.0 10.444 DC FILLING PC T 48.207 49.732 49.725 0.0 ADDITIONAL CALCULATIONS PERCENT JET FLOUD 107.753 85.901 102.258 0.0 DC INLET VELOCITY FPS 0.121 0.120 0.128 0.0 ALLOWABLE DC INLET VELOCITY FPS 0.341 OVERALL TRAY EFFICIENCY PCT 98.833

 $\tilde{\mathcal{O}}$

RD #1			NCE TEST C	ASE: THRE	E PASS RAT	ING			TITLE 1 (
D #2			DESIGNER.	P.W. BECKER	2				TITLE 2
ND #3			WITH VAPOR						TITLE 3
	F	7	T	T		}			
	VAPOR RATE MLBS/HR	MIN. VAPOR RATE MLBS/HR (2)	VAPOR DENSITY LB/CU FT	0. = NO VAP 1. = VAPOR	OR CROSSOVER CROSSOVER				
		- <u> </u>	+ · · · · · · · · · · · · · · · · · · ·	21 22 22 24 25 26 37 38 30 4	0 41 42 43 44 45 46 47 48 49 50				
D #4	618.	309.	1.403	31 32 33 34 33 36 37 30 37 4					
					<u></u>				
	LIQUID RATE MLB5/HR	MIN. LIQ. RATE MLB5/HR (2)	LIQUID DENSITY LB/CU FT	LIQUID VISCOSITY CP	SURFACE TENSION DYNES/CM (2)				
	1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40	41 42 43 44 45 46 47 48 49 50				
ID #5	554.6	272.3	31.55	0.113	6.16				
	t <u>erritori este de la conte</u> nsional de la contensional de la c	•W							
	TEMPERATURE DEG F (2)	PRESSURE PSIA (2)							
	1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 16 17 18 19 20	· .						
D #6	140.	125.							
	NO. OF PASSES 3 OR 4	HOLE DIAMETER INCHES (2)	TOWER DIAMETER FEET (3)	TRAY SPACING INCH ES (3)					
	1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40					
D #7	3.	0.38	13.5	21.					
			handing of Entertheory Manhamation & stand						
	WIDTH #1	WIDTH #2	WIDTH #3	WIDTH #4	WIDTH #5				
	WIDTH #6	WIDTH #7	WIDTH #8	WIDTH #9	WIDTH #10				
	· · · · · · · · · · · · · · · · · · ·	11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30		41 42 43 44 45 46 47 48 49 50				
D #8 (3,4)	24.	24•	21.	24•	24.				
D #9 (3,4)	24.	21.	•	•	•				
	~			r	· · · · · · · · · · · · · · · · · · ·				
	OUTLET WEIR HT	INLET WEIR HT HWI	DC CLEARANCE C	HOLE AREA AO - SQ FT	SHAPED LIP	RECESSED BOX = 1.0			
	1 2 2 4 5 4 7 8 9 10	1122 12 14 15 16 17 18 10 20		21 22 22 24 25 26 27 28 20 40	41 42 43 44 45 46 47 48 49 50	51 52 53 54 55 56 57 58 59 60			
	1.25		1.54		2.39		.		
5 #10 (3,4)	2.13		1.0		2.66		PASS A		
> #11 (3,4)		•		••••••	2.39	a national states and the second states of the seco	PASS B		
D #12 (3,4)	2.0	•	1.0	•		• • • • • • • • • • • • • • • • • • • •	PASS C		
D #13 (3,4)	•	•	•	•	•	•	PASS D		
	1 2 3 4 5 6 7 8 9 10								
#14 (5)	•								

DESIGN AND RATING PROGRAM FOR THREE AND FOUR PASS SIEVE TRAYS

.

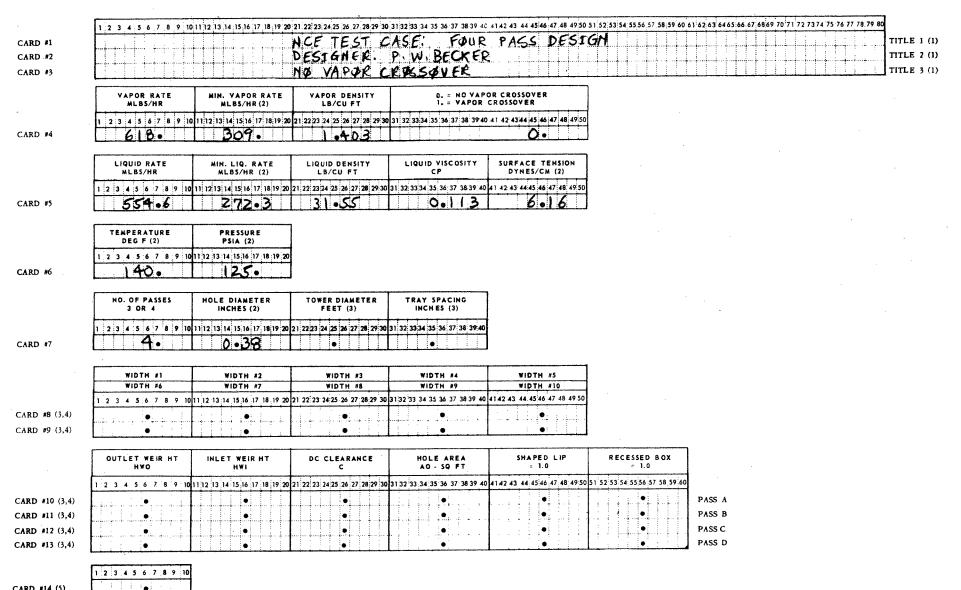
PAGE1

NCE TEST CASE: THREE PASS RATING

DESIGNER: P.W.BECKER

WITH VAPOR CROSSOVER

OPERATING CONDITIONS


. ¹7

MLBS/H® VAPOR MAX MLBS/HR VAPOR MIN LBS/CU FT VAPOR AT COND TRAY LIQUID TEMPE®ATURE OPERATING PRESSURE CFS VAPOR AT COND VAPOR LOAD	DEG F PSIA CFS	613.000 309.000 1.403 140.000 125.000 122.357 26.395	MLBS/HR LIQUID M MLBS/HR LIQUID A LBS/CU FT LIQUID SURFACE TENSION VISCOSITY AT COM LIQUID FLOW RATH	MIN D AT COND AT COND ND	DYNES/CM CP GPM	544.600 272.300 31.550 6.160 0.113 2151.932
TRAY GEOMETRY						
DIAMETER TRAY SPACING NUMBER OF PASSES HOLE DIAMETER CROSS SECT AREA BUBBLE/CROSS SECT AREA VAPOR CROSSOVER (YES DR NO)	IN 21. .3 IN 0 SQ FT 143. PCT 49	• 50 • 00 • 33 • 14 • 30 YE S				•
		PASS 4	PASS B	PASS	<u>C</u>	PASS D
DOWNCOMER INLET WIDTH ** DOWNCOMER OUTLET WIDTH ** FLOW PATH LENGTH CHORD LENGTH AT TOP DF DC CHORD LENGTH AT BTM DF DC DC INLET AREA DC OUTLET AREA OUTLET WEIR HEIGHT INLET WEIR HEIGHT INLET WEIR HEIGHT ON TRAY BE DC CLEARANCE TO TRAY BELOW SHAPED LIP (YES DR NO) RECESSED BOX (YES DR NO)	IN IN IN SQ FT SQ FT IN FLOW IN	24.000 21.000 24.000 115.332 109.019 13.168 10.854 1.250 0.0 1.540 NG	12.000 10.500 24.000 160.273 13.286 11.662 2.130 0.0 1.000 NO	12.0 10.5 24.0 144.9 147.7 12.5 11.0 2.0 0.0 0.0 1.0 NO	00 24 34 05 91 20	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SUBBLE AREA FREE AREA HOLE AREA HOLE/BUBBLE AREA	SQ FT SQ FT SQ FT PCT	22.17+ 32.302 2.399 10.778	26.949 38.612 2.660 9.870	21.4 33.2 2.3 11.1	65 70	0.0 0.0 0.0 0.0

** HALF WINTH FOR PASSES B,C,D

S

	•				PAGE	2	
			·				
	LOADINGS PER PASS		PASS A	PASS B	PASS C	PASS D	
:	GPM LIQUID		730,921	690.290	730.921	0.0	
	GPH/FT WEIR		4552.391	3101.006	3630.805	0.0	
	CFS VAPOR		40+347	43.209	38.792	0.0	
	ναροκ μοάρ	C = S	3.70+	9.321	8.369	0.0	
	VLCAD/BUBBLE AREA	FPS	0.303	0.346	0,390	0.0	
	VLDAD/CFS LIQUID		5.345	6.060	5.139	0.0	
	DOWNCOMER FILLING CALCULATIONS						
	DRY TRAY PRESSURE DROP (HH)	I٩	4.811	4.4 54	4,447	0.0	
		IN	2.025	2.331	2.389	0.0	
		IN	6.937	6.835	6.835	0.0	
		IN	2.339	2.381	2.026	0.0	
) IN	1.137	1.113	1.468	0.0	
) IN	10.362	10.329	10.330	0.0	
	DC FILLING	PCT	49.345	49.185	49.191	0.0	
	ADDITIONAL CALCULATIONS	· -		• .			
	PERCENT JET FLOOD		110.636	85.206	100.716	0.0	
	DC INLET VELOCITY	FPS	0.124	0.116	0.130	0.0	
	ALLOWABLE DC INLET VELOCITY	FPS	0.341				

CARD #14 (5)

សូ

PESION AND PATING PROGRAM FOR THREE AND FOUR PASS SIEVE TRAYS

NCE TEST CASE: FOUR PASS DESIGN

DESIGNER: P.W.BECKER

NO VAPOR CROSSOVER

OPERATING CONDITIONS		•				
MLBS/HR VAPJR MAX MLBS/HR VAPJR MIN LBS/CU FT VAPJR AT COND TRAY LIQUID TEMPERATURE OPERATING PRESSURE CFS VAPOR AT COND VAPOR LUAD	DEG F PSIA CFS	612.000 309.000 1.403 140.000 125.000 122.357 25.356	MLBS/HR LIQUID M MLBS/HR LIQUID M LBS/CU FT LIQUID SURFACE TENSION VISCOSITY AT CON LIQUID FLOW RATE	IN AT COND AT COND D	DYNESZCM CP GPM	544.600 272.300 31.550 6.160 0.113 2151.932
TRAY GEOMETRY	(1.5	د ۳ د د د ۲				
TRAF GELMEIRE						
DIAMETER TRAY SPACING		• 80 . • 00			1.1	
NUMBER OF PASSES		.00				
HOLE DIAMETER		•38				
CRUSS SECT AREA	SQ FT 109					
BUBBLE/CROSS SECT AREA		.40				
APOR CROSSOVER (YES OR NO)		NO		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
		PASS 4	PASS B	PASS C		PASS D
DOWNCOMER INLET WIDTH **	IN	8.395	3.593	- 3, 531		3.531
DOWNCOMER OUTLET WIDTH **	IN	3.395	3.593	3.531		3.531
LOW PATH LENGTH	IN	25.889	25.839	25.889		25.889
HORD LENGTH AT TOP DF DC	IN	69.072	141.665	121.320		128.612
HORD LENGTH AT BTM OF DC	Î N	69.072	141.665	121.320		128.612
C INLET AREA	SQ FT	2.804	3.452	3.009		3.101
C OUTLET AREA	SQ FT	2.804	3.452	3.009		3.101
UTLET WEIR HEIGHT	IN	2.944	2.944	2.944		2.944
NLET WEIR HEIGHT ON TRAY BE		0.0	0.0	0.0		0.0
C CLEARANCE TO TRAY BELOW - HAPED LIP (YES OR NO)	IN	1.144	1.144	1.144		1.144
ECESSED BOX (YES OR NO)		s NG	NO	CA		ND
EUDODEN DEA (TES UK NU)		NL.	NO	NO		ND
UBBLE AREA	SO FT	17,549	24.807	17.549		24.807
REE AREA	SQ FT	20.353	28.259	20,558		27,909
						3.250
ICLE AREA .	SQ FT	2.361	3.260	2.361		20200

** HALP WIDTH FOR PASSES 3,C,D

PAGE1

LEADINS PE- PASS		PASS A	PASS B	PASS C	PASS D
GPM LIGIIO		495.924	590.042	495.924	580,042
GPH/FT REIR		5169.500	2948.019	2943,169	3247.218
CFS VAPTA		25.075	36.134	25.075	36.104
VAP34 1_40	CFS	5.409	7.789	5.409	7.789
VLCAD/HIRBLE AREA	FP S	0.309	0.314	0.308	0,314
VLCADVIES LIQUID		4.805	6.026	4,895	5.026
DOWNCIMER FILLING CALCULAT	IONS				
		1 005	2.071	1,905	2,071
	(HH) IN	1.905 3.312	2.921	2,920	2,978
	(HL) IN (HT) IN	5.216	4.991	4.825	5.049
	(HI) IN	2,920	2,978	3, 312	2.921
	(HDA) IN	2,363	0.769	0.765	0.933
	(HDC) IN	10.500	8.738	8.903	8.902
DC FILL D'IG	PCT	43.749	36.410	37.094	37.093
ADDITIONAL CALCULATIONS					
PERCENT JET FLOOD		83.518	70.266	68.959	71.953
DC INLET VELOCITY	FPS	0,394	0.374	0.367	0.417
					· · ·
ALLEWAGEE DC INLET VELOCITY	Y FPS	0.390		· .	

OVERALL TRAY EFFICIENCY

PCT

98.833

PAGE 2

	.								7
	1 2 3 4 5 6 7 8 9 1	0 11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30				61 62 63 64 65 66 67 686	9 70 71 72 73 74 75 76 77 78 79 5	7
ARD #1			NCE LEST L	ASF: FOUR P.W. BECKE		Ø/1			TITLE 1 (
ARD #2			DESIGNER:	CRASSAVE	K				TITLE 2 (
ARD #3			WITH VARA	CRASSAVER					
	VAPOR RATE	MIN. VAPOR RATE	VAPOR DENSITY	0. = NO VAP	OR CROSSOVER]			
	MLBS/HR	MLBS/HR(2)	LB/CU FT	I. = VAPOR					
100 -1		0 11 12 13 14 15 16 17 18 19 24	a second s	31 32 33 34 35 36 37 38 39 40		-			
ARD #4	618.	309.	1.403		•	J			
	LIQUID RATE	MIN. LIQ. RATE	LIQUID DENSITY	LIQUID VISCOSITY	SURFACE TENSION				
	MLBS/HR	MLBS/HR (2)	LB/CU FT	CP	DYNES/CM (2)				
	terreturne to a standard and the standard and the standard and the standard and the standard and the standard a	0 11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30		41 42 43 44 45 46 47 48 49 50				
ARD #5	554.6	272.3	31.55	0.113	6.16				
	F	.	1						
	TEMPERATURE DEG F (2)	PRESSURE PSIA (2)							
	1 2 3 4 5 6 7 8 9 1	0 1 1 12 13 14 15 16 17 18 19 20							
ARD #6	140.	125.							
					· ·				
	NO. OF PASSES 3 OR 4	HOLE DIAMETER INCHES (2)	TOWER DIAMETER FEET (3)	TRAY SPACING INCHES (3)	а. С				
			• • • • • • • • • • • • • • • • • • •						
		11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30						
ARD #7	4.	0•38	•		l				
	WIDTH #1	WIDTH #2	WIDTH #3	WIDTH #4	WIDTH #5				
	WIDTH #6	WIDTH #7	WIDTH #8	WIDTH #9	WIDTH #10				
	1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40	41 42 43 44 45 46 47 48 49 50				
ARD #8 (3,4)	•	•	•	•					
ARD #9 (3,4)	•	•	•	•	•				
$(1,1) \in \mathbb{R}^{n}$	r	T			T	r			
	OUTLET WEIR HT	INLET WEIR HT HWI	DC CLEARANCE C	HOLE AREA AO - SQ FT	SHAPED LIP	RECESSED BOX			
	1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40	41 42 43 44 45 46 47 48 49.50	51 52 53 54 55 56 57 58 59 60			
RD #10 (3,4)		•	•	•		•	PÁSS A		
RD #11 (3,4)	•	•	•		•		PASS B		
RD #12 (3,4)	•	•	•	•	•	•	PASS C		
		•	•	•	•	•	PASS D		
RD #13 (3,4)									
RD #13 (3,4)		•							
RD #13 (3,4)	1 2 3 4 5 6 7 8 9 10]					·		

DESIGN AND RATING PROGRAM FOR THREE AND FOUR PASS SIEVE TRAYS

PAGE1

NCF TEST CASE: FOUR PASS DESIGN

DESIGNER: P.W. BECKER

WITH VAPOR CROSSOVER

ΟP	ĒÞ	AT	IN	G	CO	ND	IT	D	N	S
		_								

OPERATING PRESSURE

CFS VAPOR AT COND

MLBS/HR VAPOR MAX		613.0
MEBS/HR VAPOR MIN		309.0
LBS/CU FT VAPOR AT COND		1.4
TRAY LIDUID TEMPERATURE	DEG F	140.0

PSIA

CFS

613.000	MEBS/HR LIQUID MAX		544.600
309.000	MLBS/HR LIQUID MIN		272.300
1.403	LBS/CU FT LIQUID AT COND	*	31.550
140.000	SURFACE TENSION AT COND	DYNES/CM	6.160
125.000	VISCOSITY AT COND	CP	0.113
122.357	LIQUID FLOW RATE	GPM	2151.932
25.396			

T	R	44	G	E	Э	М	ε	T	R	Y	
	-			_	_	_	_	_	_	_	

VAPOR LOAD

DIAMETER	FT	11.80
TRAY SPACING	IN	24.00
NUMBER OF PASSES		4.00
HOLE DIAMETER	IN	0.38
CROSS SECT AREA	SQ FT	109.45
BUBBLE/CROSS SECT AREA	PCT	77.40
VAPOR CROSSOVER (YES OR NO)		YES

		÷	

· · · · · · · · · · · · · · · · · · ·	÷ .	PASS A	PASS B.	PASS C	PASS D
		**********			*******
DOWNCOMER INLET WIDTH **	IN	8.396	3.593	3.531	3,531
DOWNCOMER CUTLET WIDTH **	IN	3.396	3.593	3.531	3.531
FLOW PATH LENGTH	IN	25.889	25.889	25.899	25.889
CHORD LENGTH AT TOP OF DC	IN .	69.072	141.665	121.320	128,612
CHORD LENGTH AT BTM OF DC	IN	69.072	141.665	121.320	128,612
DC INLET AREA	SQ FT	2.804	3.452	3.009	3.101
DC JUTLET AREA	SQ FT	2.804	3.452	3.009	3.101
OUTLET WEIR HEIGHT	IN	2.944	2,944	2.944	2.944
INLET WEIR HEIGHT ON TRAY BELD	DW IN	0.0	0.0	0.0	0.0
DC CLEARANCE TO TRAY BELOW	IN	1.144	1.144	1.144	1.144
SHAPED LIP (YES OR NO)		NC	NO	CZ	NO
RECESSED BOX (YES OP NO)		NO	NO NO	4 0	ND
B1331= AREA	SO FT	17.549	24, 807	17.549	24.807
FREE AREA	SQ FT	20.353	28.259	29,558	27.909
HOLE AREA	SN FT	2.361	3.250	2.361	3.260
HOLF/BUBBLE AREA	PC T	13.451	13.141	13.451	13.141

				•	•			PAGE	2	
•						۰.				
ı	LOADINGS PER PASS			PASS A	×.	PASS B	PAS	S C	PASS D	
	GPM LIQUID GPH/FT WEIR CFS VAPOR /APOR LOAD /LUAD/BUBBLE AREA /LOAD/CFS LIQUID		CFS FPS	470.939 4909.559 24.490 5.291 1.301 5.032		604.953 3074.705 36.698 7.917 0.319 5.873	2 7 9 2	0.998 5.239 6.119 5.635 0.321 5.369	604.968 3386.761 35.060 7.563 0.305 5.611	· ·
(-	DOWNCOMER FILLING CALCULA	TICNS								
C T 1 C C	DRY TRAY PRESSURE DROP LEAR LIQUID HEIGHT TOTAL TRAY PRESSURE DROP INLET HEAD C HEAD LOSS DC FILLING DC FILLING	(HH) (HL) (HT) (HI) (HDA) (HDC)	IN IN IN IN	1.315 3.270 5.085 2.891 2.132 10.108 42.115	. •	2.139 2.945 5.085 3.004 0.836 8.925 37.188		2.067 2.891 4.957 3.270 0.691 8.918 7.158	1.953 3.004 4.957 2.945 1.014 8.917 37.153	
4	DDITIONAL CALCULATIONS									
	PERCENT JET FLOOD IC INLET VELOCITY		FPS	79.577 0.374		72.139 0.391		1.008 0.349	70.663 0.435	• •
				· ·						
. A	LLGWARLE DC INLET VELOCI	ŤΥ	FPS	0.390	•			. '		
0	VERALL TRAY EFFICIENCY		PCT	98.833						
				· .					·	

		0 11 12 13 14 15 16 17 18 10 2	0 21 22 23 24 25 26 27 28 29 30	21 22 22 24 25 24 37 28 20 4	N 41 42 43 44 45 44 47 48 49 50	51 52 53 54 55 56 57 58 59 60	A1 67 63 6465 66 4	7 68 69 70 71 72 7174	75 74 77 78 79 80	
D #1			NE TELT (ASE: THRI		the second second second second second second second second second second second second second second second s				.E 1 ()
, #1) #2			DECECNEN	P. W. BECKE					a colored to the second second	.E 2 (
				RUSSOVER	S					
#3			NØ VAPØR C	CASSON EK					<u></u>	.E 3 (
	VAPOR RATE	MIN. VAPOR RATE	VAPOR DENSITY	0. = NO VAP	OR CROSSOVER]				
	MLBS/HR	MLBS/HR (2)	LB/CU FT	I. = VAPOR	CROSSOVER					
			0 21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 4						
#4	618.	309.	1.403		D •	j				
	LIQUID RATE MLBS/HR	MIN. LIQ. RATE MLBS/HR (2)	LIQUID DENSITY	LIQUID VISCOSITY	SURFACE TENSION DYNES/CM (2)					
			21 22 23 24 25 26 27 28 29 30		+					
#5	554.6	272.3	21.55	0.113	6.16					
*)			51.00							
	TEMPERATURE	PRESSURE	1							
	DEG F (2)	PSIA (2)								
	1 2 3 4 5 6 7 8 9 1	011 12 13 14 15 16 17 18 19 2								
#6	140.	125.	1							
			1							
	NO. OF PASSES 3 OR 4	HOLE DIAMETER	TOWER DIAMETER FEET (3)	TRAY SPACING INCHES (3)]					
5	1 2 3 4 5 6 7 8 9 10	0 11 12 13 14 15 16 17 18 19 2	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40	1					
#7	3.	0.38		•						
	L ataria da da <u>da Contra da</u>				1					
	WIDTH #1	WIDTH #2	WIDTH #3	WIDTH #4	WIDTH #5		•			
	WIDTH #6	WIDTH #7	WIDTH #8	WIDTH #9	WIDTH #10					
	1 2 3 4 5 6 7 8 9 10	0 1 1 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40	41 42 43 44 45 46 47 48 49 50					
#8 (3,4)		•	••••••••••••••••••••••••••••••••••••••	•	•					
#9 (3,4)		•	•	•	•					
		.	•····							
	OUTLET WEIR HT	INLET WEIR HT	DC CLEARANCE	HOLE AREA	SHAPED LIP	RECESSED BOX				
	HWO	HWI	c	AO - SQ FT	- 1.0	= 1.0				
	1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40	41 42 43 44 45 46 47 48 49 50	51 52 53 54 55 56 57 58 59 60				
#10 (3,4)	•	•	•	•	•	•	PASS A			
#11 (3,4)	•	•	•	•	•	•	PASS B			
#12 (3,4)	•	•	•	•	•	•	PASS C			
#13 (3,4)	•	•	•	•	•	•	PASS D			
	L	<u></u>					•			
	1 2 3 4 5 6 7 8 9 10]								
14 (5)	•	1								
		4								

DESIGN AND RATING PROGRAM FOR THREE AND FOUR PASS-SIEVE TRAYS

NCE TEST CASE: THREE PASS DESIGN

DESIGNER: P.W.BECKEP

NO VAPOR CROSSOVER

OPERATING CONDITIONS

MLBS/HR VAPOR MAX MLBS/HR VAPOR MIN LBS/CU FT VAPOR AT COND TRAY LIQUID TEMPERATURE OPERATING PRESSURE CFS VAPOR AT COND VAPOR LOAD	DEG F PSIA CFS	613.00 309.000 1.403 140.000 125.000 122.357 26.395	ML9S/HR LIQUID M MLBS/HR LIQUID M LBS/CU FT LIQUID SURFACE TENSION VISCOSITY AT CON LIQUID FLOW RATE	IN AT COND AT COND DYN	544.600 272.300 31.550 ES/CM 6.160 0.113 2151.932
TRAY GERMETRY					
DIAMETER	FT 11	. 94			
TRAY SPACING		00			
NUMBER OF PASSES		.00			
HOLE DIAMETER .		.38	· · · ·		
CROSS SECT AREA	SQ FT 111		1		
BUBBLE/CROSS SECT AREA		.71			
VAPOR CROSSOVER (YES DR ND)		NO		and the second second second second second second second second second second second second second second second	
		PASS 4	PASS B	PASS C	PASS D
DOWNCOMER INLET WIDTH **	IN	10.685	4.445	4.445	0.0
DOWNCOMER OUTLET WIDTH **	IN	10.686	4.445	4.445	0.0
FLOW PATH LENGTH CHURD LENGTH AT TOP DF DC	IN	37.655	37.655	37.655	· 0,0
CHORD LENGTH AT TOP OF DC	I N I N	75.693 75.693	140.414 140.414	135.412 135.412	0.0
DC INLET AREA	SQ FT	3.887	4.342	4,242	0.0
DC DUTLET AREA	SQ FT	3.887	4.342	4.242	0.0
DUTLET WEIR HEIGHT	IN	2,678	2,678	2,678	0.0
INLET WEIR HEIGHT ON TRAY B		0.0	0.0	0.0	0.0
DC CLEARANCE TO TRAY BELOW	IN	1,499	1.499	1.499	0.0
SHAPED LIP (YES OR NO)		NG	N-3	E CO	ND
RECESSED BOX (YES OR NU)		N.C	ND	NO	NO
BUBBLE AREA	SO FT	29,192	28,561	29.192	0.0
FREE AREA	SO FT	33.079	32,903	33.434	0.0
HOLE APEA	SO FT	3.485	4.272	3.485	0.0

** HALE STOTH FOR PASSES 3.0.0

HOLE/BUBBLE APEN POT

11,977

14.956

11.937

0.0

62

PAGE1

		• •			
LOADINGS PER PASS		PASS A	PASS B	PASS C	PASS D
GPM LIQUID GPH/FT WEIR CFS VAPOR VAPOR LOAD VLOAD/BUHBLE AFES VLOAD/BUHBLE AFES	CFS FPS	692.473 6491.785 37.353 3.059 0.275 5.299	786.957 4035.438 47.651 10.230 0.350 5.852	632.473 3628.785 37.353 8.353 0.276 5.299	0.0 0.0 0.0 0.0 0.0 0.0
DOWNCOMER FILLING CALCULATIONS	s .				
CLEAR LIQUID HEIGHT (HL) TOTAL TRAY PRESSURE DROP (HT) INLET HEAD (HI) DC HEAD LOSS (HDA) IN) IN) IN) IN) IN) IN PCT	1.940 3.332 5.271 2.863 2.170 10.304 42.934	2.101 2.936 5.036 2.936 0.839 8.811 36.711	1,940 2,863 4,803 3,332 0,678 8,912 36,718	0.0 0.0 0.0 0.0 0.0 0.0 0.0
ADDITIONAL CALCULATIONS					
PERCENT JET FLOOD DC INLET VELOCITY	EPS	85•516 0•391	88.051 0.434	65•258 0•358	0.0
		- -			
ALLOWABLE DC INLET VELOCITY	FPS	0.390			
OVERALL TRAY EFFICIENCY	PCT	98.833			

Ś

HULTIPASS TRAY DESIGN PROGRAM

	1 2 3 4 5 6 7 8 9	0 11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 3	0 31 32 33 34 35 36 37 38 39 4	1 41 42 43 44 45 46 47 48 49 50	51 52 53 54 55 56 57 58 59 60	61 62 63 64 65 66 67 68 89 70 71 72 73 74 75 76 77 78 79 80
CARD #1			NCE TELT (ASE: THEE	F PAGS DES		TITLE 1 (1)
CARD #2			DESTENE	P.W.BECKER	an an an an an an an an an An An An An An An An An An An An An An		TITLE 2 (1)
CARD #3			WETH VAPOL	CROSSOVER			TITLE 3 (1)
	r		T			<u> </u>	
	VAPOR RATE MLBS/HR	MIN. VAPOR RATE MLBS/HR (2)	VAPOR DENSITY LB/CU FT	0. = NO VAP 1. = VAPOR	OR CROSSOVER CROSSOVER	· ·	
	1 2 3 4 5 6 7 8 9 1	0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 20	21 22 23 24 25 26 27 28 29 3	0 31 32 33 34 35 36 37 38 39 4	41 42 43 44 45 46 47 48 49 50	1	
CARD #4	618.	309.	1.403		1.]	
	,		V .				
	LIQUID RATE MLB5/HR	MIN. LIQ. RATE ML85/HR (2)	LIQUID DENSITY LB/CU FT	LIQUID VISCOSITY CP	SURFACE TENSION DYNES/CM (2)		
	1 2 3 4 5 6 7 8 9 10			· · · · · · · · · · · · · · · · · · ·	41 42 43 44 45 46 47 48 49 50		
CARD #5	554.6	272.3	31.55	0.113	6.16		
						1	
	TEMPERATURE	PRESSURE					
•	DEG F (2)	PSIA (2)	,				
		11 12 13 14 15 16 17 18 19 20					
CARD #6	140.	143.					
	NO. OF PASSES	HOLE DIAMETER	TOWER DIAMETER	TRAY SPACING	1		
	3 OR 4	INCHES (2)	FEET (3)	INCH ES (3)			
		11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40			
CARD #7	3.	0.38	•	•			
	WIDTH #1	WIDTH #2	WIDTH #3	WIDTH #4	WIDTH #5		
	WIDTH #6	WIDTH #7	WIDTH #8	WIDTH #9	WIDTH #10 41.42.43 44.45 46 47 48 49 50		
CARD #8 (3,4)		11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40	4 AZ A3 44 43 40 47 40 47 50		
CARD #9 (3,4)		•	•				
						· ·	
	OUTLET WEIR HT HWO	INLET WEIR HT HWI	DC CLEARANCE C	HOLE AREA AO - SQ FT	SHAPED LIP = 1.0	RECESSED BOX = 1.0	
	1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40	41 42 43 44 45 46 47 48 49 50	51 52 53 54 55 56 57 58 59 60	
ARD #10 (3,4)	•	•	•	•	•	•	PASS A
ARD #11 (3,4)		•	•	•	•	•	PASS B
ARD #12 (3,4)	•	•	•	•	•	•	PASS C
ARD #13 (3,4)	•		•	•	•	•	PASS D
		1					
	1 2 3 4 5 6 7 8 9 10						
ARD #14 (5)	•0						

\$

DESIGN AND RATING PROGRAM FOR THREE AND FOUR PASS SIEVE TRAYS

NCE TEST CASE: THREE PASS DESIGN

DESIGNER: P.W. BECKER

WITH VAPOR CROSSOVER

OPERATING CONDITIONS

MLBS/HR VAPOR MAX MLBS/YR VAPOR MIN LBS/CU FT VAPOR AT COND TRAY LIQUID TEMPEPATURE OPERATING PRESSURE CFS VAPOR AT COND VAPOR LOAD	DEG F PSIA CFS	618.001 309.000 1.403 140.000 125.000 122.357 26.395	MLBS/HR LIQUID MA MLBS/HR LIQUID MI LBS/CU FT LIQUID SURFACE TENSION A VISCOSITY AT COND LIQUID FLOW RATE	N AT COND T COND DYN	
TRAY GEOMETRY					
TRAY SPACING NUMBER OF PASSES HOLE DIAMETER CROSS SECT AREA	IN IN SQ FT 1	11.94 24.00 3.00 0.38 11.89 77.71 YES			
		PASS A	PASS B	PASS C	PASS D
DOWNCOMER INLET WIDTH ** DOWNCOMER OUTLET WIDTH ** FLOW PATH LENGTH CHORD LENGTH AT TOP OF DC CHORD LENGTH AT BTM OF DC DC INLET AREA DC OUTLET AREA DUTLET WEIR HEIGHT INLET WEIR HEIGHT DC CLEARANCE TO TRAY BELOW SHAPED LIP (YES UR NU) RECESSED BOX (YES UR NU)	IN IN IN SQ FT SQ FT IN CW IN	10.686 10.686 37.655 75.693 75.693 3.887 3.887 2.673 0.0 1.499 NO	4.445 4.445 37.655 140.414 140.414 4.342 2.678 0.0 1.499 NO NO	4.445 4.445 37.655 135.412 135.412 4.242 4.242 2.678 0.0 1.499 NU NJ	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BUBBLE AREA FREE AREA HOLE AREA HOLEZBUBBLE AREA	SQ FT SQ FT SQ FT PCT	29.192 33.079 3.485 11.937	28.561 32.933 4.272 14.956	29.192 33.434 3.485 11.037	0.0 0.0 0.0 0.0

** HALF WIDTH FUR PASSES B,C,D

PAGE1

DADINGS PER PASS		PASS A	PASS B	PASS C	PASS D
SPM LIQUID		657.953	836.015	657,958	0.0
PH/FT WEIP		6253.598	4286,344	3498.439	0.0
FS VAPOR		35.404	47.175	39.776	0.C
APOR LOAD	CFS	7.633	10.177	8.581	0.0
LOADZBUBBLE ARFA	FPS	. 0 <u>,</u> 252	D • 355	0.294	0.0
LOAN/CES LIQUID		5.210	5.463	5.853	0.0
DOWNCOMER FILLING CALCULA	TIONS				
RY TRAY PRESSURE DROP	(HH) IN	1.742	2.059	2.199	0.0
LEAR LIQUID HEIGHT	(HL) IN	3.295	2.979	2.839	0.0
OTAL TRAY PRESSURE DROP	(HT) IN	5.039	5.038	5.039	0.0
NLET HEAD	(HI) IN	2,839	2.979	3.296	0.0
IC HEAD LOSS	(HDA) IN	2.017	0.946	0.630	0.0
C FILLING	(HDC) IN	9.895	8.964	8,965	· 0.0
C FILLING	PCT	41.230	37.350	37.356	0.0
DOITIONAL CALCULATIONS					
ERCENT JET FLOOD		79.056	89.091	68.751	0.0
C INLET VELOCITY	FPS	0.377	0.429	0.346	0.0
				1 A.	
			· .	· ·	
				· ·	4
LLOWABLE DC INLET VELOCI	TY EPS	0.390		· · · · ·	•

OVERALL TRAY EFFICIENCY PCT 98.833

PAGE 2

99

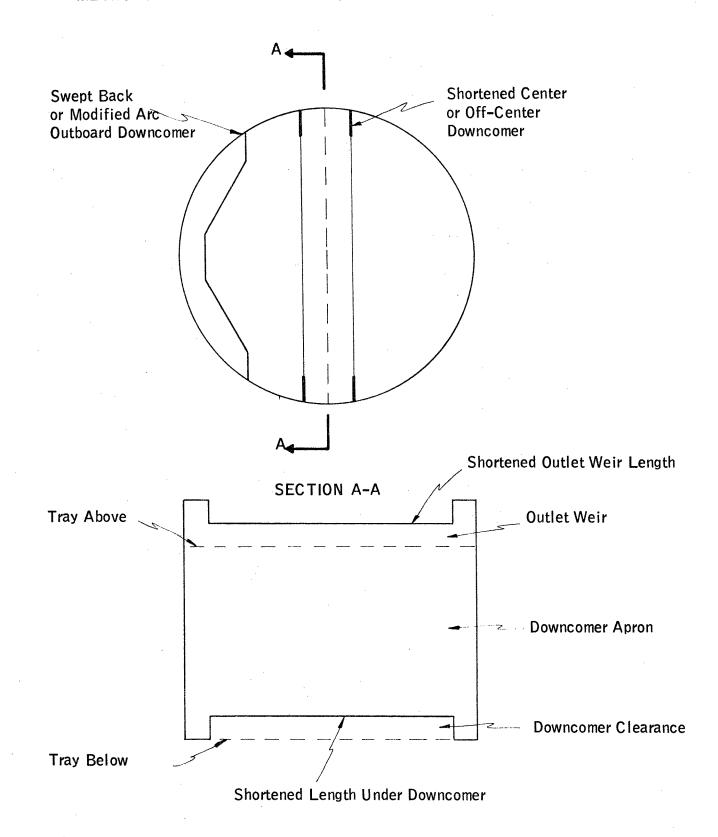
Discussion of Sample Problem Output

The output for the first two sample problems (four pass rating cases) show that these trays should have no problems operating under the conditions inputted. The highest downcomer filling is about 37 percent, the highest percentage of jet flood is about 76, and the downcomer velocity for each downcomer is below the allowable value of 0.341 feet per second.

The three pass rating cases do show some potential problems, For both cases, the vapor velocities for passes A and C exceed 100 percent jet flood. This indicates that if the tower were run under these conditions, it is likely to flood. Note, however, that the downcomer velocities are well below the allowable level. Therefore, this tower could be made operable by changing the tray geometry so that the downcomers are smaller (this will increase the downcomer inlet velocities) and the bubbling areas greater. (This will reduce the percentages of jet flood.)

The three and four pass designs are, of course, workable, although downcomer velocities for some individual downcomers are slightly higher than allowable. Methods of balancing and improving such designs are discussed in Chapter IV.

CHAPTER VI


RECOMMENDATIONS FOR THE OPTIMUM DESIGN OF MULTIPASS TRAYS

This chapter presents the techniques recommended for the optimum design of multipass trays. The use of these techniques should provide designs with maximum flexibility and should eliminate those potential problems which have made engineers apprehensive about specifying multipass trays. In summary, the following rules are proposed for the design of multipass trays. They guarantee equal vapor and liquid flow rates for each pass.

- Design for equal bubble areas and equal hole areas for each tray pass. This will enable each pass to accommodate equal vapor loadings. Equal downcomer areas are not necessary, and downcomers should be designed to meet the other criteria recommended.
- 2. Equalize weir lengths and lengths under downcomers for each pass, using the techniques depicted in Figure 10. Also, specify equal downcomer clearances and weir lengths for each pass. This will make the resistance to liquid flow the same for each pass.
- 3. Provide for vapor crossover through the downcomers using either pipes, ducts, or box-type downcomers, depicted in Figure 5. The box-type downcomer may be preferred by tray vendors as it is easier to fabricate. Also, the box-type downcomer provides another means of reducing downcomer weir

Figure 10

METHODS OF PROVIDING FOR EQUAL DOWNCOMER LENGTHS

length, as in recommendation 2. Vapor crossover will make the total tray pressure drop across each pass equal, and will provide a means of any vapor maldistribution (e.g. due to poor distribution at vapor inlet nozzles) to be corrected.

The first recommendation provides for equal dry tray pressure drops (HH) for each pass. The second recommendation provides for equal clear liquid heights (HL) and equal downcomer head losses (HDA) for each pass. If no inlet weirs or equal inlet weir heights and lengths are used, the tray inlet head (HI) will also be equal for each pass. Therefore, the total tray pressure drop (HT) will be equal for each pass. This is guaranteed by the third recommendation. Based on the equations presented in Chapters III and IV, these three recommendations guarantee equal vapor and liquid flowrates for each pass.

Although such a design may be slightly more difficult to fabricate than an equal flowpath length design (which can utilize tray panels of the same width), it has distinct advantages. An equal flowpath design, or, for that matter, any design, <u>can</u> be specified to provide any desired vapor and liquid split between the three or four passes. However, the desired split will <u>only</u> occur at the design vapor and liquid loadings. If the total vapor and liquid rates vary at all from the design values, the split will vary.

This variation is due to the fact that the clear liquid height equation is dependent on a term which includes the liquid rate, plus

a constant term dependent on the weir height:

 $HL = \beta (HOW \tau HWO)$

Where HWO = $0.48 \times F_W (GPM/LWO)^{2/3}$

The head over the weir (HOW) depends on the liquid rate (GPM), but the weir height (HWO) is a constant.

For example, suppose the total liquid flowrate is 4000 GPM on a four pass tray. If the tray is designed for equal weir length and height, the clear liquid height for each pass will be equal. With weir height set at 2 inches and every weir length set at 200 inches, the clear liquid height for each pass with 1000 GPM is 2.38 inches $(F_W = 1.0, \beta = 0.7)$.

HL = 0.7
$$\left[0.48 \times 1.0 \times (1000/200)^{2/3} + 2.0\right]$$

= 2.38 inches

If one weir length is 240 inches, and another 120 inches, the two clear liquid heights can still be made equal for an equal liquid split by making the longer weir 2.16 inches high and the shorter weir only 1.43 inches high.

$$HL_{A} = 0.7 \left[0.48 \times 1.0 \times (1000/240)^{2/3} + 2.16 \right]$$

= 2.38 inches
$$HL_{B} = 0.7 \left[0.48 \times 1.0 \times (1000/120)^{2/3} + 1.43 \right]$$

= 2.38 inches

This example shows how even designs with unequal weir lengths <u>can</u> be made to have equal clear liquid heights for any given set of loadings. Only the weir height need be varied.

Suppose, however, that during the course of a tower's life, it must be operated at less than design rates. Suppose half rates, or a total liquid rate of 2000 GPM, were run through the tower. The equal weir length design would <u>still</u> have equal clear liquid heights for each pass.

HL =
$$0.7 \left[0.48 \times 1.0 \times (500/200)^{2/3} + 2.0 \right]$$

= 2.02 inches

However, the unequal weir length design, which gave equal clear liquid heights for the design rates, does <u>not</u> give equal clear liquid heights for half rates.

$$HL_{A} = 0.7 \left[0.48 \times 1.0 \times (500/240)^{2/3} + 2.16 \right]$$

= 2.06 inches
$$HL_{B} = 0.7 \left[0.48 \times 1.0 \times (500/120)^{2/3} + 1.43 \right]$$

= 1.87 inches

For this reason, if both designs were specified to provide for equal vapor and liquid rates to each pass for the design conditions, only the equal weir length design would have equal splits under <u>all</u> conditions. Only the equal weir length design provides for equal clear liquid heights for all conditions, which, combined with the other recommendations, guarantees equal vapor and liquid splits for each pass. Tray vendors have revealed that equal flowpath length designs have had operability problems due to imbalanced flowrates at other than design conditions (2).

The procedures presented in this chapter guarantee symmetrical multipass tray designs. Therefore, using these recommendations, engineers should have no "aversion" to specifying multipass trays in fractionating towers.

CHAPTER VII

CONCLUSIONS

This thesis has presented the case for the usefulness of multipass trays for large fractionating towers. An example will demonstrate how multipass trays are economically attractive.

Holland, et al (3) have stated that the cost of a tower of constant height increases linearly with capacity.

$$C_2/C_1 = Q_2/Q_1$$

Where C_2 and C_1 are costs for 2 towers and Q_1 and Q_2 are their respective capacities. Because capacity increases linearly with tower cross sectional area, it increases proportionately to the square of the diameter.

$$Q_2/Q_1 = (D_2/D_1)^2$$

Where D_2 and D_1 are the required tower diameters for the two towers. Therefore, tower cost increases with the square of tower diameter.

$$C_2/C_1 = (D_2/D_1)^2$$

Using this relationship we can compare the costs of towers using trays of varying number of liquid passes for a given service. For a system with a liquid load of 2000 GPM and a vapor load (V_L) of 37 cubic feet per second, one tray vendor (7) suggests the diameters given below for a typical column with 24 inch tray spacing. If the cost of the four pass design is set at 100, the relative costs of each of the other designs is given below.

No. of passes	Diameter (ft)	Relative Cost
1	18	192
2	14.5	124
3	13.5	108
4	13.0	100 (Base)

As shown in the table above, one, two and three pass designs are 92, 24 and 8 percent more costly than a four pass design. With the cost of large towers running in the six and seven figure range, substantial savings can be realized if multipass trays are used.

Through the use of the equations, recommendations, and computer program presented in this thesis, multipass fractionating tray design should be made easier to those engineers in the chemical and petroleum industries who do not have access to proprietary procedures. Although multipass trays sometimes have slightly lower tray efficiencies than trays with longer flowpath lengths, this effect becomes negligible for large size towers. Therefore, multipass trays are economical for many large tower designs, and should be specified more frequently by process design engineers.

APPENDIX

Fortran IV Computer Program for Rating and Designing Three and Four Pass Sieve Trays

	E04:374 14	31 RELEAS	± ?•0	MAIN	DATE = 74100	1+/52/38	PAGE
· ·		с					
		Č .	FOUR PASS	SIEVE TRAY RATING	ODGCZAM		
		č	100 FH 33	SILVE HEAT ANTINO	F TO TRAM		
	0001	, i i i i i i i i i i i i i i i i i i i	REAL LEP.	LTUT. L. LEODES.	LIQMIN, LBGAL, LWO, LWI, U	UD.LEP.LTOCON.	
			1 NP	2.017 67 6140637		O STELL LELEOS II	
	0002		REAL LWOTE	T,LUDTOT			
	j)(ra		91MENSION	w(14),HW1(4),HWI(4),C(4),AD(4),TITLE(60)	, ADCI(4), ADCD(4)	
					(4), LFP(4), AB(4), AF(4),		
			2	HI(4),HUD(4),HD(4),SHAPE(4),REC30X(4),AC	48(4)	
			3 .L(4	<pre> XKHP(4), XKGP(4)</pre>	,V(4),VC(4),HT(4),PCTH0	(4),VL(4),	
					<pre>,B(4),ALPHA(2),TABLE1(1</pre>		
	2004				,PCTJET(4),CFSL(4),DCV5	L(4),GPHETD(4)	
	0.005				3 (72) , TABLE4 (18)		
	0006			A/' NO', YES'/	•		
	0007			1 / 8.0, 16.0, 2.			
			1		0.285, 0.314,		
	0009				0.375, 0.390 /		
	3005		1	2 / 11.0, 0.0, 10 4.0, 0.0, 20			
					00., 0,13.3,14.4,15.7,16.9,1	0 3 10 /	
			· · · ·		5,14.9,16.2,17.5,18.9,2		
					4,16.7,18.0,19.4,20.7,2		
					7,18.2,19.7,21.2,22.7,2		
	0009			3 / 11.0, 0.0, 10			
			1	6.0, 0.0, 10		1	
			2 7.0,		5,12.7,13.7,14.7,15.7,1	6.7.17.7.	
					5,13.8,14.8,15.8,17.0,1		
			4 7.0,	8.6,10.6,12.3,13.	7,14.9,16.2,17.4,18.6,1	9.8,21.0,	
			5 7.4,	9.9,12.2,13.8,15.	3,16.5,17.9,19.2,20.5,2	1.8,23.0,	•
			6 8.7,1	1.8,13.9,15.4,16.8	8,18.2,19.5,20.8,22.1,2	3 . 4 , 24 . 7 .	
					9,19.5,21.1,22.7,24.3,2	5.9,27.5 /	
	2010			4 / 15.0,0.0,1.0,			
			1		0,60.4,68.6,76.0,82.4,		
			2.		5,104.5,109.3,113.4,117	.0,120.0 /	
	0011 0012	1200	CALL RELOC				
	0012	1000	<pre>VAPCON = 0 LIQCON = 0</pre>				
	0010	Ç -	L = 0	• 0			
	*	č	USES ENLO	WING TYPICAL VALUE	S FOR 'FW' AND 'BETA'		
		Č.	USES CEEC				
	2014	-	FW = 1,00			· .	
	0015		BETA = 0.7	o .			
		C		-	• • • • • • • • • • • • • • • • • • •		
		C `	USES FOLLO	WING TYPICAL VALUE	E OF CVO		
		С			-		
	0015		CV3 = 0.70			4 M	
	2017		XCVG = 0.1	86*(l./CV0)**2.		•	
		Ç					
		C	READ INPUT	DATA			
		7					
	0013		READ 1001,				
	2010	1001	FREMAT(204				
	2023		- ビーオン コープシステー	-VAPDES, VAPMIN, R	CHEV.CROSS.		

elsisis 70 IA ⊖I	RELEASE	2.0 *AIN	DATE = 74100	14/32/39	P438 0002
		7 HAC(2), HWI(2), C(2), 8 HWO(3), HWI(3), C(3),	AD(1),SHAPE(1),PECBOX AD(2),SHAPE(2),RECBOX AD(3),SHAPE(3),RECBOX AD(4),SHAPE(4),PECBOX	(2), (3),	•
0021		FIRSMAT (2F10.3,F10.5,10X,F10.4,/) 1 2F10.3,F10.5,2F10.4,/) 2 2F10.3,7F10.5,/, 3 F10.3,3F10.5,/, 4 2(5F10.4,/), 5 4(6F10.4,/), 6 F10.4)	,		
	С	INTERMEDIATE CALCULATIONS: LOADIN	IGS AND GEOMETRY		
0022 0023 0024 0025 0025 0025 0025 0027 0028 0028	c	ZERO = 0.0 DRHOL = RHOL / (RHOL - RHOV) VTOT = VAPDES /(RHOV * 3.6) CFSLL= LIQDES /(RHOL * 3.6) LTOT = CFSLL* 448.8 DRHOV = RHOV / (RHOL - RHOV) VLTOT = VTOT * SQRT(DRHOV) IF (TS.EQ.0.0) TS = 24.			
	с с	DOWNCOMER INLET VELOCITY: A TYPIC	AL EQUATION		
0030 0031 0032 0033 0033 0033 0035 0035 0035 0037 0037	C	HFACT2 = TS/24. RHOFAC = (RHOL - RHOV) IF (RHOFAC.LT.16.)RHOFAC = 15. IF (RHOFAC.GT.30.)RHOFAC = 30. ALLVEL = STLU(PHOFAC.TABLE1) ALLVEL = ALLVEL * HFACT2 TOTDCA = CFSLL/ALLVEL IF (DT.GT.0.0) GO TO 1003 IF(VLT0T.GT.100.) GO TO 2154 IF (NP.EQ.3.0) GO TO 1004			
	с С	DESIGN - FOUR PASS			
0040 0041 0042	C	IF(LTDT.GT.6000.) GO TO 2162 DT = DTLU(VLTOT.LTOT.TABLE2) ACS = .735 * (DT**2.)			
0747 0744 2744 2744 2749 2747	с С	4-PASS DC DESIGN ADCI(1) = .21 * TOTDCA ADCO(1) = ADCI(1) w(1) = RISE(100.*ADCI(1)/ACS) x(6) = x(1) w(8) = 5.78 * TOTDCA/0T	× 0.12 × 07		

FURTHAN IV 31	SELEASE 2.0	MAIN	CATE = 74100	14/52/39	PAGE 0003
0049	W(3)	= W(8)			
0.049	w25. =	6.9 *TOTOCA/OT			
1051		+25 /2.			
0051	A(10) =				
0052		(12.*DT-(2.*W(1)+2.*	UT011UT511.7 ND		
2053			P(0)+#4211 7 3P		
	w(2) =				
2054	w (🍐) 😑				
2055	4(7) =	XFPL			
3055	W(9) =	XEDL			
0057	GO TO 1	003			
	С				
		- THREE PASS			
0058	1004 TELLIOT	.ST.5000.) GO TO 2165			
0059					
		LU(VLTOT, LTOT, TABLE3)			
0060		785 * (DT++2.)			
	С				
	C 3-PASS C	DC DESIGN			
0051		= .31 * TUTDCA			
0052					
		= ADCI(1)			
0063	w(1)	= RISE (100.*ADCI(1)	/ACS) = 3.12 = DT		
0064	м(7)	= W(1)			
0065	W(3)	= 8.63 * TOTOCA / DT			
0066	W(3)	= W(5)		•	
0067	XEPL	= (12.*DT-(2.*W(1)+W	(5)))/NP		
0068	₩(2)	= XFPL			
0064	d(4)	= XFPL			
0070	W(6)	= XFPL			
0071	1003 CONTINU				
0072	ACS = 0	•7854 *{DT**2•)			
0073	ADCI(1)	= REA((100. # W(1)))/(1)	2.*DT))*ACS * 0.01		
0074	LW0(1)	=CHRD (100,*ADCI(1)/	ACS) = DT = 0.12		
0075	XWI = WI	1) + W(2)			
0075	XAI	= REA((100. *XW1) /(1	10.0 * 21/*//10*2	•	
0077		= XA1 - ADCI(1)			
0078			C) + DT + D 10		
		= CHRD (100. *XA1 /AC	5) # 91 # Ja12		
0079		= LUD(3)			
0080	LFP(1)				
0091	XW2 = XI	W1 + W(3)/2.			
0.09.2	XA2 = RI	EA((100.*XW2) / (12.*	DT)) *ACS * 0.01		
0083	4000131	= XA2 - XA1			
0084		W2 + W(3)/2.			
0085		EA((100.*XW3) / (12.*)			
			UTT ALS - U.JI		
0.085		9.3.) GU TO 500			
0087		= XA3 - XA2			
0098	LUD(4)	= CH9D (100.*XA3 / A)	(S) × ∩T × 0.12		
0080	LWI(4)	= LUD(4)			
ემან	XW4 = XV	N3 + W(4)			
0.001		EA((100.#XW4)/(12.#DT	1) = ACS = 3,31		
0092		=XA4 - XA3			
)]@l					
	LED(2)				
))344 · • 7)04		= CHPO((100.*XA4/ACS	i) ≈ 0!< ≈ 3.12		
		=(ACS/2.) - XA4			

FORTRAN	١v	G1 4	PELEA SE	2.0		AVI		θάτε	= 74	100	
0096 0097 0093				LWI(1) LUD(1)	=CHR0 (1 = LWI(1)	.00,*40C0(/(12.*ŰŤ) 1)/ACS)			* 0.91 * 0.12	
)399 0100 0101 0102				X45 =	=XA5 - A	0. #X#5)/(12.*DT))	*	ACS	* 0.01	
0103 0104				LW0(3) =		CO.★X45/4	C S)	*	ΩŢ	≭ 0.1 2	
0105 0105				XA6 = RE		××6)/(12.	*DT))	*	4C S	* 0,01	
0107 0109 0109				XA7 = RE	6 + #(8) 4((100.* = XA7 -	XW7)/(12.	*DT))	*	4C S	* 0.01	
0110 0111				LW0(4)		00. #XA7/4	CS)	*	DT	* 0.12	
0112 0113				XA8 = RE		XWB)/(12.	*DT))	*	ACS	* 0.01	
0114 0115 0116				LUD(2) =	CHRD(1 LWI(2)		CS)	*	DT	* 0512	
0117 0118 0119				$\begin{array}{l} ADCO(2) \\ WW3 = W(\\ WW8 = W(\end{array}$)-XA8					
0120			500	GO TO 50 ADCO(2)	-	¥42					
0122			,00	LUD(2)	= CHRD (100. * XA3	/ ACS) *	DT *	0.12		
0123 0124				LWI(2) ADCO(1)			/(12.*DT))*ACS	* 0	.01	
0125 0126				LUD(1) LWI(1)			1)/ACS) *	DT *	0.17	2	
0127 0128				XW4 = W(YA4 = 25			*DT))*ACS	* 0	• •		
0129				AB(3) =	XA4 - ADI	CO(1)					
0130 0131				LWO(3) LFP(3)		100. *XA4	/ ACS) *	DT *	0.12		
0132 0133				XW5 = XW	4 + W(5)		*DT))*ACS	÷ 0	. .		
0134				ADCI(3)	= XA5 - 2	XA4	+01 1 1=AC3	÷ 0.			
0135 0136				XW6 = XW XAb = RE			*DT))*ACS	* 0.	21		
0137 0138				ADCI(2)			ACS) * DT	* ^			
0139				AB(2) =	ACS - XAE		ucs1 - U:	* U•.	12		
0140 0141				LFP(2) = LFP(4) =							
0142 0143				AB(4) =	0.0						
0144				LUD(4) = LWI(4) =						•	
0145 0146				₩0(4) = AUCI(4)=							
0147				1000(4)=	0.)						
0148 0149				NH3= 4(3) WW9= 4(5)							

	FORTREN IV G1	RELEASE	2.0 MAIN	DATE = 74106	1+/52/33	PAGE 000
:	2150		CONTINUE			· · ·
		C C	CALCULATING MINIMUM PREE	AREAS		
		С				
	0151		AF(1) =	AB(3) + ADCO(1)		
	0152		IF(NP.EQ.3.)30 TO 502			
	2173		4F(2) =	AB(4) + ADCD(2)		
	2154		AF(3) =	AB(1) + ADCO(3)		
	0155		ΔF(4) =	A8(2) + ADCO(4)		
	0155		$ABAS = AMINI({2*AB(1)} +)$	2#48(2))/ACS ,(2*48(3)+2*	AB(4))/ACS)#100.	
	2167		GO TO 503			
	2153	502	AF(2) = AF(2) + ADCO(2)			
	2153		$\Delta F(3) = \Delta B(1) + \Delta DC T(3)$			
	0150		AF(4) = 0.0			
	0161		ABAS = ((AB(1) + AB(2) + AB(3))))/ACS)*100.		
	D102	503	CONTINUE			
	0153		IF(C(1).NE.0.0) GO TO 55:	33		
		С				
		C	DESIGN OF CLEARANCE,WEIR	HEIGHT, AND HOLE AREA		
		с с	SET HWO SUCH THAT HC = 3	TNELLEE		
	0164	U				
			LWOTOT = LWO(1) + LWO(2) + LWO(2) + LWOTOT = LWO(1) + LWO(2) + L		•	
	0165			LTOT/LWOTOT)**0.667))/BET	A .	
	0165		00 901 I=1,4			
	0167	901	HWO(I) = HWOX			
	0169		IF(NP.EQ.3.0) HWD(4)=0.0			
		С	SET C SUCH THAT HUD = 1	I NCH		
		С	CMAX = 3 INCHES			
	•	C	CMIN = 1 INCH			
	0154		LUDTOT=LUD(1)+LUD(2)+LUD			
	9173 -		DO 902 I=1,4 SHAPE(I) = 0.0			
	0171		SHAPE(I) = 0.0			
	0172	902	C(I)=.2449* LTOT/LUDTOT			
•	0173		IF(C(1).LE.3.0) GO TO 903	3		
	0174		DO 904 I=1,4			
	0175		SHAPE(I) = 1.0	•		
	0176		C(1)=.1732* LTOT/LUDTOT			
	2177	904	C(I) = AMINI(C(I), 3.0)			
	2178		DO 906 I=1,4			
	2179		C(I) = AMAXI (C(I), 1.0)			
	3193	/00	$IF (NP \cdot EQ \cdot 3 \cdot 0) C(4) = 0$)- 0		
	0100	C	SET AD SUCH THAT HED = 2	INCHES		
	2131		ADTOT = (SQRT ((XCVD*RHOV)			
	0183		IF(NP.EQ.4.0)G0 TO 905		· .	
	3163 3183		$AD(1) = 0.31 \times A0T0T$		· · · · ·	
	2194 -		$AO(2) = 0.31 \times AO(3)$ $AO(2) = 0.38 \times AO(3)$		-	
	0135					
			$\Delta \Theta(3) = 0.31 \pm \Delta \Theta T \Theta T$			
	014-		AO(4) = 0.0			
	2137		GD TO 5503			
	5144		47(1) = 0.21 *AOTOT			
	0123		$\Delta \Theta(2) = 0.23 \times \Delta \Theta T O T$			
			AD(3) = 0.21 #ADTOT			
	<u> </u>		A0(4) = 0,29 ≭A0TOT			
			CONTINUE			

ŵ

α

FORTRAN IV GI	R EL EA SE	2.3	MAIN	DATE = 74100	14/52/38	PAGE 0006
0193		M≖NP				
2194		00 2 I=1,0				
0195	2		AO(I)/AB(I))*100.			
0196	c	IFINPat Qada) ADAB(4)=C.C			
	č	DOUBLE TRIA	AL AND ERROR TO D	ETERMINE LIQUID AND	VAPOR FLOW SPLITS	
	С		FOUR PASS - NO V			
	C			R PASS IS 1/4 TOTAL		
	Ċ	DO LOOP FOR	R VAPOR SPLIT(50)	WITHIN DO LOOP FOR	LIQUID SPLIT(100).	
0197	С	[F(Nº.E0.3.) GO TO 504	,		
0193		L(1) = LTCT				
0199		DELTAL = .C				
0200		07 100 JL=1			x	
0.501		L(2) = 0.5	50 * LTOT - L(1)			
0202		L(3) = L(1)	L)			
0203		L(4) = L(2)				
0204		DO 16 I=1,4				
0205				LWO(I))**0.667 + BET	A=HW0(I)	
0206		IF(SHAPE(I)				
0207	. 11		06 * (L(I) / (C	(I)*LUD(I))) ** 2.		
0208	10	GO TO 13	02 + 1 1 1 1 1 1 1 1	171410017111 44 3		
0209 0210				(I)*LUD(I))) ** 2.)**0.667 + HWI(I)		
0210	15			(I), GT, 0, 0) HUD $(I) =$		
0212	16	CONTINUE	E + CITT + UN + NECOUN		2-100(1)	
0213	10		T.O.O) GU TO 14			
0214		HI(1)=HC(3)				
0215		HI(2)=HC(4)				
0216		HI(3)=HC(1)		•		
0217		HI(4) = HC(2)			· · ·	
0218	14	CONTINUE				
0219		IF(CROSS.NE	.1.0)GO TO 15			
	ç	TOTAL AND C	DOD TO DETERMENT			,
				V4 INDEPENDENTLY	S - WITH VAPOR CROSSOVE	`
	Č.	30272 1 08 2	-3 AND 41/424 43/	V4 INDEPENDENTET		
0220		HI3 = HI(4)	+ HUD(4) - HUD(3	()		
0221			E.0.0) GO TO 303			
0222			3-HWI(3))/0.48			
0223		QLT = QLTER			1 · · · · ·	
0224		QL1 = QLT*L	WE (3)			
0225		IFIABSIQL1-	L(1)).LT.0.01) GC	TO 107		
J 226		IF(QL1.GT.L	(1).AND.DELTAL.LE	-0.0) DELTAL = -0.4 *	OELTAL .	
0227				.0.0) DELTAL = -0.44	DELTAL	
0223		L(1) = L(1)	+ DELTAL			
0220		GO TO 100				
0230			3-BETA*HWC(1))/(0	••48*F6*3ETA)		
0231		QLT= QLTERM				
0232		QL1= QLT*LW		107		
0233			L(1)).LT.0.01) G(571 7 M	
2234 224				.0.0) DELTAL = -0.4*		
0233 0235		$\frac{2F(J)}{L(1)} = L(1)$.0.)) DELTAL = -0.43	Alle CAR AL	

αΝ

	FURTRAN IV G1	RELEASE	2.0	MAIN	DATE = 74100	14/52/38	PAGE COOT
	2237		GC TO 100			•	
		С				•	
		с С	TRIAL AND FR	RUP FOR VAPOR	SPLIT		
	0239		V(1) = VTOT	/4.			
	0239		00 50 IV =1	50			
	3249		$V(2) = 0.5 \pm 1$	VTOT - V(1)			
	0.241		V(3) = V(1) V(4) = V(2)				
	0242 0243		00 20 I=1,4				
	0244		VO(1) = V(1)	/ 40(1)			
	02+5		HED(I)= XCV(((VO(I))**2.)* RHOV / P	HOL	
	0240		HT(I) = HC(I)	<pre>E) + HED(I)</pre>			
	0247	20	CONTINUE			-41(2)	
÷	0248 0249			((HED3*RHOL)/(R	4) -HC(3) -HJD(3) HAV*XCVA))		
	0250		V3 = V03 *				
	0251			- V(3)).LT.0.01) GO TO 55		
	0252	50		L((V(3)+V3)/2+	, 0.49#VTOT)		
	0253		VAPCON=1.0		450(1)		
	0254 0255	25		+HT(4) - HT(3)	/ (0.48*FW*BETA)		
	0256			FERM ** 1.5			
	0257		QLI = QLI	r * LWO(1)			
	0258	101		(1)).LT.0.01) (
	0259				35.0.0) DELTAL = -0.4*DI LE.0.0) DELTAL = -0.4*DI		
	0260 0261		L(1) = L(1)		$Le_{10}, 07 Deerac = -0.44 Dr$		
	0262	100		(L(1),0.49*LTO	T)		
	0263		LIQCON=1.0				
	0264		IFICROSS.NE.	1.01GO TO 135			
		C ·	VAPOR SPLIT	- FOUR PASS - N	WITH VAPOR CROSSOVER		
	0265	С	V(1)=VTOT/4.				
	0266		DD 400 I1=1,				
	0267			* VTOT - V(1)			
	0268		VO(2) = V(2)/				
	0269		HED(2) = XCVC $HT(2) = HC(2)$		N * RHOV / RHOL		
	0270		HED1 = HT(2)				
	0272			((HED1*RHOL)/(F	RH ()V*XCV())		
	0273		V1 = V01	* AO(1)		÷	
	0274			(1)).LT.0.01) (
	0275	400		((V(1)+V1)/2.,C	J. 44*VIUI)		
	0276 0277	4.01	VAPCON = 1.0 V(3) = VTOT/				
	0278		DO 402 I2=1,				
	0279		V(4) = 0.50*	VTOT-V(3)			
	0230		$V \cap (4) = V(4) /$				
)281		- HFD(4) = XC VO ★ - 러T(4) = HC(4)	*((VO(4))**2,) =	× νHUV/RHOL		
	0282 0283			-) - HC(3)			
)234			((HED3#PHOL)/(F			

ap (v

	3745	
,	0236	V3 = V03 ≠ A0(3) IF(ABS(V3-V(3)).LT.0.01) G0 TC 403
	3237	+02 V(3)=AMIN1((V(3)+V3)/2.,0.49*VT)
	3298	VAPCON =1.0
	2239	403 CONTINUE
	0290	60 TO 505
		C
		C THREE PASS
	3291	524 L(4)=0.0
	0292	V(4) = 0.0
	0273	L(1)=LT0T/3.
	1294	DELTAL=+03*LT9T
	0293	NO 600 JL=1,40
•	0296	L(3)=L(1)
	3297	L(2) = L(3) - L(3) - L(1)
	0298	D0 616 $I=1,3$
	329.7	HC(I) = 0.48*BETA*FW*(L(I)/LWO(I))**0.557 + BETA*HWO(I)
	2700	IF(SHAPE(1))611,612
	0301	(1 + (3 + 2) + (1 + (1 + (1 + (1 + (1 + (1 + (1 + (
		$\begin{array}{c} \text{GD} \ \text{TD} \ \text{G13} \end{array}$
	0302	
	0303	512 HUD(I) = 0.03 * (L(I) / (C(I)*LUD(I))) ** 2.
	0304	513 HI(I) =0.48*(L(I)/LWI(I))**0.667 + HWI(I)
	0305	IF(HWI(I).GE.C(I).OR.RECBOX(I).GT.0.0) HUD(I) = 2 HUD(I)
	0306	515 CONTINUE
	0307	IF(HWI(I).GT.0.0) GO TO 614
	3308	HI(1) = HC(3)
	0309	HI(2) = HC(2)
	0310	HI(3) = HC(1)
	0311	614 CONTINUE
	0312	IF(CROSS.NE.1.0) GO TO 615
		C C THREE PASS - L/V SPLIT - WITH VAPOR CROSSOVER
		C
	0313	HI3 = HI(2) + HUD(2) - HUD(3)
	0314	IF(HWI(3),LE.0.0) GO TB 703
	0315	$QLTERM = (HI3-HWI(3))/C_{\bullet}48$
	0316	QLT = QLTERM**1.5
	0317	$\omega_{L1} = OLT \star LWI(3)$
	0313	1F(ABS(QL1-L(1)).LT.0.01) GO TO 607
	5319	$IF(QLL_GT+L(1),AND+DELTAL+LE+C+O) DELTAL = -0.4+DELTAL$
	0320	IF(QL1.LT.L(1).AND.DELTAL.GE.O.C) DELTAL = $-0.4*DELTAL$
	0321	L(1) = L(1) + DELTAL
•	0322	GO TC = CO
·		
	3323	703 QLTERM =(HI3-BETA*HWQ(1))/().48*FW*BETA)
	0324	OLT =OLTERM**1.5
	0325	$QL1 = QLT \neq LWO(1)$
		IF(ABS(QL1-L(1)).LT.0.01) G0 TO 607
	0.326	
	0326 0327	IF(QL1.GT.L(1).AND.UELTAL.LE.0.0) DELTAL = +0.4+0ELTAL
		IF(QL1.GT.L(1).AND.UELTAL.LE.0.0) DELTAL = +0.4*0ELTAL TF(QL1.LT.L(1).AND.DELTAL.GF.C.0) DELTAL = +0.4*DELTAL
	0327 0328	TF(QL1.LT.L(1).AND.DELTAL.GF.C.O) DELTAL = H0.4*DELTAL
	0328 0328 0329	TF(DL1.LT.L(1).AND.DELTAL.GF.C.O) DELTAL = -0.4*DELTAL L(1) = L(1) + DELTAL
	0327 0328	TF(DL1.LT.L(1).AND.DELTAL.GT.C.O) DELTAL = -0.4*DELTAL L(1) = L(1) + DELTAL GRETTE AUD
	0328 0328 0329	TF(DL1.LT.L(1).AND.DELTAL.GT.C.O) DELTAL = -0.4*DELTAL L(1) = L(1) + DELTAL GO TO 400 C
	0328 0328 0329	TF(DL1.LT.L(1).AND.DELTAL.GT.C.O) DELTAL = -0.4*DELTAL L(1) = L(1) + DELTAL GRETTE AUD
	0328 0328 0329	TF(DL1.LT.L(1).AND.DELTAL.GT.C.O) DELTAL = -0.4*DELTAL L(1) = L(1) + DELTAL GO TO 400 C
	0328 0328 0329	TF(DL1.LT.L(1).AND.DELTAL.GT.C.O) DELTAL = -0.4*DELTAL L(1) = L(1) + DELTAL GO TO 400 C
	0328 0328 0329	TF(DL1.LT.L(1).AND.DELTAL.GT.C.O) DELTAL = -0.4*DELTAL L(1) = L(1) + DELTAL GO TO 400 C

	FORTRAN IV 31	PRLE4 SE 2	.O MAIN	EATE = 74100	1+/52/33	PAGE 0009
	•	с				
	3331		1) = VTOT/3.		·	
	7332		50 IV=1,50			
	2333		3) = V(1)			
	0334		2) = VTOT - V(2) - V(3)			
	0335		620 1=1,3			
	0336		$(I) = V(I) / \Delta O(I)$		•	
	0337		D(I)=XCVU ≠ ((VO(I))**2	•)*RHCV/RHOL		
	7738		(I) =HC(I)+HED(I)			
	3339	520 CC	INTINUE			
	0340	HE	D1 = HT(2) + HI(3) + HU	ID(3) - HC(1) - HI(2) - HU	1(2)	
	0341	. V(1 = SQRT((HED1*RHOL)/(RHOV×XCVO))		
	0342	V	= V01* A0(1)			
	0343	T F	(A3S(V1 - V(1)).LT.O.	01) GU TC 655		
	2344	650 VI	1) = AMIN1((V(1)+V1)/2.	, 0.49*VIOT)		
	0345		PCON = 1.0			
	0346		1 = 2. + HT(2) - HT(3) - H			
	0347	ຊເ	TERM = (HC1-BETA*HWO(1)) / (0.48*FW*BETA)		
	0348	ຸດເ	T = QLTERM ** 1.5			
	0349	QL	1 = QLT * LWO(1)			
	0350	601 IP	(ABS(QL1-L(1)).LT.0.01)	GO TO 607		
	0351			.GE.O.O) DELTAL=-0.4*DELTA		
	0352			.LE.0.0) DELTAL=-0.4*DELTA	1L	
	0353		1) = L(1) + DELTAL			
	0354		1) = AMIN1(L(1), 0.49*LT)	(TD)		
	0355		QCON = 1.0			
	0356	607 IF	(CROSS-NE.1.0)GO TO 105			
		C V4 C	POR SPLIT - THREE PASS	- WITH VAPOR CROSSOVER		
	0357		$1) = VT_{0}T/3.$			
	0.358		(2) = V(1)			
	0359		800 13 = 1,50			
	0360		3) = VTOT - V(1) - V(2)			
	0361		801 I=2,3			
	0362		(I) = V(I) / AO(I)			
	0363		D(I) = XC VO*((VO(I)) **2	•J*RHUV/RHUL		
	0364	_	(I) = HED(I) + HC(I)			
	0365		D2 = HT(3) - HC(2)			
)366- 0267		2 = SQRT((HED2*RHOL)/(
	0367 0363		$= \sqrt{92} + \sqrt{21}$	CO TO 9(3		
			(ABS(V2+V(2)), LT, 0, 01)			
	1140		2) =AMIN1((V(2)+V2)/2.,	SIA 11 (TH V ()]]]		
	0369					
	0370	V۵	PCON = 1.0			
	0370 0371	402 CD	PCON = 1.0 NTINUE	· · · · · · · · · · · · · · · · · · ·		
·	0370 0371 0372	00 00 566 00	PCON = 1.0 NTINUE 903 14=1,50			
·	0370 0371 0372 0373	VA 302 CO 00 VC	PCON = 1.0 NTINU= 903 T4=1,50 (1) = V(1)/A0(1)			
	0370 0371 0372 0373 0374	VA 302 CD 00 HE	PCON = 1.0 NTINUE 903 T4=1,50 (1) = V(1)/AO(1) D(1)= XCVO*((VO(1))**2.			
	0370 0371 0372 0373 0374 0375	VA 302 CD 00 VD HE HT	PCCN = 1.0 NTINUF 903 T4=1,50 (1) = V(1)/A0(1) O(1) = XCV0*((VG(1))**2. (1) = HED(1) + HC(1)			
	0370 0371 0372 0373 0374 0375 0375	VA 302 CO VC HE HT HF	PCON = 1.0 NTINUE 903 TA=1,50 (1) = V(1)/A0(1) D(1)= XC VO*((VG(1))**2. (1) = HED(1) + HC(1) D1 = HT(2) - HC(1))*RHCV/RHOL		
	0370 0371 0372 0373 0375 0375 0375 0375	VA 302 Cn 00 VC HE HT HF VC	PCON = 1.0 NTINUE 903 TA=1,50 (1) = V(1)/AO(1) O(1)= XC VO*((VO(1))**2. (1) = HED(1) + HC(1) D1 = HT(2) - HC(1) 1 = SQRT((HED1*RHOL)/)*RHCV/RHOL		
	0370 0371 0372 0373 0374 0375 0375 0375 0377	VA 302 CD 00 VC HE HT HF V7 V1	PCON = 1.0 NT[N:]= 903 T4=1,50 (1) = V(1)/A0(1) 0(1)= XCV0*((VO(1))**2. (1) = AED(1) + HC(1) 01 = HT(2) - HC(1) 1 = SQ*T((HED1*RHOL)/ = V(3) * AC(1).)*RHGV/RHOL (PHOV*XCVC))		
	0370 0371 0372 0373 0375 0375 0376 0376 0377 0379 0379	۷۵ ۲۵ ۵۵ ۳۵ ۲۳ ۴۴ ۲۲ ۷۱ ۲۱	PCON = 1.0 NTINUE 903 TA=1.50 (1) = V(1)/A0(1) D(1) = XC VO*((VO(1))**2. (1) = AED(1) + HC(1) D(1) = HT(2) - HC(1) 1 = SQST((H5D1*RHOL)/ = V(31 * AC(1) (ABS(V1-V(1)).LT.C.01))*RH@V/RH0L (РЧОV*XCVC)) Бо ТО 304		
	0370 0371 0372 0373 0374 0375 0375 0375 0377	۷۵ ۲۵ ۵۵ ۳۵ ۲۳ ۴۴ ۲۲ ۷۱ ۲۱	PCON = 1.0 NT[N:]= 903 T4=1,50 (1) = V(1)/A0(1) 0(1)= XCV0*((VO(1))**2. (1) = AED(1) + HC(1) 01 = HT(2) - HC(1) 1 = SQ*T((HED1*RHOL)/ = V(3) * AC(1).)*RH@V/RH0L (РЧОV*XCVC)) Бо ТО 304		

sto

сл 00

	FORTRAN IV GI	RELEASE 2.0	MAIN	CATE = 74100	14/52/38	PAGE CON	10
	0391	VAPCON = 1	1.0		· ·		
	0382	804 TRVVT = VI	(1)+V(2)+V(3)				
	0383	IF (ABS(TS	RYVT - VTOTI .ST. 0.0	30 70 799			
	0394	505 CONTINUE					
	3395	DN 404 I =	=1,4				
	0386	V0(I)=V(I)					
	0337	HED(I)= XC	CVG ★ ((VO(I))×*2.) >	< RHCV Z RHOL			
	0388	404 HT(I) = HE	ED(I) + HC(I)			·	
		с					
	· · · · ·		FILLING CALCULATIONS				
		С					
	0389	105 00 106 1=1	1,4				
		C					
			LIQUID GRADIENT ACRO	JSS TRAY			
		C					
	0390	GRAD = 0.0	0 T(I)+HUD(I)) +	UT / T) A C 9 4 0			
	0391 0392	106 CONTINUE	TTTT++UD(1177 +	HIII + OKAD			
	0393	00 3 I=1+M	u .				
	0394		" =(HD(I)/TS)×100,				
	0395		(1) * SQRT(DRHOV)	·			
	0396		(I) * SQRT(DRHOV)				
	0397		VL(I) / AB(I)				
	0393		VL(1) /(L(1)/448.8)				
	0399		=(L(I)*60.)/(LWO(I)/	(12.)			
	2400	3 CONTINUE					
		C .					
			L CALCULATIONS	· · · · · · · · · · · · · · · · · · ·			
		C C					*
		C JET FLOOD:	A TYPICAL EQUATION				
	o / o .						
	0401	DO 203 I=1	SQRT(TS/24.)				
				35 * (GPHFT#(I)/1000			
÷	0403 0404		=(VLAB(I)/VBJET(I)) *		•		
	0405	DO 204 1=1		1000			
	0405		L(I)/448.8				
	0407		= CFSL(I)/ADCI(I)				
		c		Ŧ			
		- C					
		C TRAY EFFIC	LIENCY				
	0408	C FLUID = 1.		•			
	0409		ST.14.) FLUID=14.				
	0410		(LU(FLUID,TABLE4)				
	- 1	C PRINTING R					
		C					
	0411	00 1 I=1,4	+				
	0412	A(I)=ALPHA					
	3613		().GT.).)) A(1)=ALPHA	(2)			
	0414	3([)=4LPHA					
					•		
	3415	JECRECROXC	4).GT.0.0) 4(I)=ALPH	IA (Z)	· . ·		

.

	FORTHAN IV G1	PELEASE 2.0	MAIN	EATE = 74130	1-/52/38	PAGE 0011
	0417	CROSSI =	= ALPHA(1)			
÷	0413	IF (CROSS	65GT.0.0) CROSSI = A	ALPHA(2)		
	0419	PRINT 200			•	
	342)	2001 FORMAT(1H	H1.//,34X, PESIGN AND	DIRATING PROGRAM FOR TH	THREE AND FOUN PA	
	0421		E TRAYS',25X, 'PAGE1',/	/)		
			02, TITLE			
	0422		(24X,2°44,//),24X ,?0	JA4 ,/)	· ·	
	0423	PRINT 200				
	2424		X, OPEPATING CONDITIO	(' SNL		
	0425	PRINT 200				
	2425	2304 FORMAT(1)	X , !	!,/)		
)427		05,VAPDES, LIDDES	•••		
	7423				VHR LIGHTD MAX!,	
		122X.F13.3		ACCAPTED AFTER A	In Ergory	
	3429		106.VAPMIN. LIQMIN			· · · ·
	3433				THO A TOUTO ATMEN	· · · · ·
	1 C + C	2000 "UKTRILA	ANTHERSTHR VAPOR PLINT	•,22X,F10.3,10X,*MLBS/F	HR LIQUID MINT+	х х
	A	122X,F10.3				
	0431		07,RHOV, PHOL			
	0432			COND',16X,F10.3,10X,		
				AT COND + 16X, F10.3)		
	0433	PRINT 200	08, TEMP, SURF			
	3434			RATURE',6X, DEG F',5X, F	F10.3.10X.	
				'DYNES/CM',2X,F10.3)		
	3435		09.PSIA.VISC	britadr arr yarry a can c		
	0,436 ·			E',11X,'PSIA',6X,F10.3,	104	
	0420		TY AT COND*,13X, CP*,			
	0437		10.VTOT,LTOT	8X,F10.3)		
	0433					
	0433		X, CFS VAPOR AT COND!		•	
	• • • •		FLOW RATE',14X, 'GPM',	7X,F10.3)		
	0439	PRINT 201				
	3440		X, VAPOR LOAD', 19X, 'C	,FS',7X,F10.3,/)		
	0441	PRINT 201			1 A	
	3442	2012 FORMAT(1X	X, TRAY GEDMETRY!)			
	2443	PRINT 201	13			
	0444	2013 FORMAT(1)	1_!!,/}	· .	·	
	0445	PRINT 201	14_DT			
	3445			EV CL'SS	· · · · · ·	
	0447		X, 'DIAMETER', 21X, 'FT'	+DX+F0+21		
		PRINT 201	15,15			
	3448		X, TRAY SPACING ', 17X,	'IN',5X,F6.21		
	3447	PPINT 2010				-
	3452		X, 'NUMBER OF PASSES',2	20X,F6.2)		
	3451	PPINT 201				
)452	2017 FORMAT(1X	X, HOLE DIAMETER', 16X	.'IN',5X,F6.2)		•
	0-+53	PPINT 2018				• •
	3454		X, CROSS SECT AREA . 14	4X . 150 FT 1.2X. F6.2)		
	3455	PPINT 2019		ing owner party and		
	3455			AREA*,7X, *PCT*,4X, F6.2	3	
	34#7	PRINT 2120		AKEAT # (A # FUI - # TATE U.E.	2 F .	
	0457 345a					
			X, VAPOR CROSSOVER (YE	ES OR NUTTIEX, ASI/1		
	3453	PRINT 2020				
	3440			PASS B 1,10X,1 PAS	SS C 1,10X,	
		11 P#35 D				
	3452	001111 2021				,
	34-7			+,10X,+	*.10X.	
			··	Y		

	1''./)
3463	IF(NP.E0.4) 30 TO 2122
0454	PRINT 2022, W(1), WW5, WW5, ZERO
0455	PRINT 2023, W(7), WW3, WW3, ZFR)
0468	GO TO 2124
0400	2122 PRINT 2022, W(1), W(5), WW8, WW8
3463	2)22 FORMAT(1X, *DOWNCOMER INLET WIDTH ***,8X,*IN*,5X,4(F10,3,1CX))
0469	
0470	PRINT 2023, W(6), W(10), WW3, WW3
0471	2723 FORMAT(LX,'DOWNCOMER OUTLET WIDTH ##',7X,'IN',5X,4(F10.3,10X))
0471	2124 PFINT 2024, (LFP(1), I=1,4)
	2324 FORMAT(1X,'FLOW PATH LENGTH',16X,'IN',5X,4(F10.3,10X))
0473	PRINT 2025, (LWO(1), I=1,4)
3474	2325 FORMATILX, CHORD LENGTH AT TOP OF DC',7X, 'IN',5X,4(F10.3,13X))
0475	PRINT 2026, (LUD(1), I=1,4)
0476	2026 FORMAT(1X, CHORD LENGTH AT BTM OF DC',7X, 'IN',5X,4(F10,3,10X))
0477	PPINT 2027, (ADCI(I), I=1,4)
0478	2027 FORMAT(1X, OC INLET AREA', 19X, 'SQ FT', 2X, 4(F10, 3, 10X))
0479	PRINT 2028, (ADCO(I), I=1,4)
3480	2028 FORMAT(1X, 'OC DUTLET AREA', 18X, 'SQ FT', 2X,4(F10.3,10X))
0481	PRINT 2029, (HWO(I), I=1,4)
7482	2029 FJRMAT(1X,'OUTLET WEIR HEIGHT',14X,'IN',5X,4(F10,3,10X))
0483	PRINT 2030, (HWI(I), I=1,4)
0484	2030 FORMAT(1X, INLET WEIR HEIGHT ON TRAY BELOW IN', 5X, 4(F10, 3, 10X))
0485	PRINT 2031,(C(I),I=1,4)
2486	2031 FORMAT(1X, DC CLEARANCE TO TRAY BELOW', 6X, 'IN', 5X, 4(F10.3, 10X))
0497	PRINT 2032, (A(I), I=1,4)
0489	2032 FORMAT(1X, SHAPED LIP (YES OR NO), 21X, 4(A3, 17X))
0489	PRINT 2033, (B(I), I=1,4)
0490	2033 FORMAT(1X,'RECESSED BOX (YES OR NO)',19X,4(A3,17X),/)
0491	PRINT 2034, (AB(I), I=1, 4)
0492	2034 FORMAT(1X, 'BURBLE AREA', 21X, 'SQ FT', 2X, 4(F10.3, 10X))
0493	PRINT 2035, (AF(I), I=1, 4)
0494	2035 FORMAT(1X, FREE AREA ,23X, SQ FT ,2X,4(F10.3,10X))
0495	PRINT 2036, (AD(I), I=1,4)
0495	2036 FORMAT(1X, HOLE AREA, 23X, SQ FT, 2X, 4(F10, 3, 10X))
0497	PRINT 2037, (ADAB(I), I=1,4)
0498	2037 FORMAT(1X,'HOLE/BUBBLE AREA',16X,'PCT',4X,4(F10,3,10X),//)
0499	PRINT 2038
0 50 0	2038 FORMAT(1X, ** HALF WIDTH FOR PASSES B,C,D*)
0501	PRINT 2135
0502	2135 FORMAT(1H1,90X, 'PAGE 2')
0503	IF(VAPCON.GT.0.0)G0 TO 3001
0504	PRINT 2136
0505	2136 FORMAT(//)
0506	GO TO 3002
3507	3001 PRINT 2137
0508	2137 FORMAT('NOTE: VAPOR SPLIT DID NOT CONVERGE IN FO TRIALS - VAPOR SP ILIT OF SOTH TRIAL IS USGO!,/)
0509	3002 IF(LIOCON, ST. 0.0) ST T 3003
0510	PPINT 2136
0511	30 TO 3004
0512	3009 PRINT 2138
2513	2139 FORMAT(INOTE: LIQUID SPLIT DID NOT CONVERSE IN 43 TAIALS - LIQUID
	ISPLIT OF 4CTH TRIAL IS (SEC!,/)

0) 60

FORTRAN IV 31	RELEASE 2.0 MAIN UATE = 74100 14/52/33 PAGE 0013
C 514	3004 CONTINUE
0515	PPINT 2039
0516	2339 FOR MAT(1X, +LDACTINGS PER PASS +, 22X, + PASS A +, 10X,
3	1' PASS 5' ',10X,' PASS C' ',10X,' PASS O' ')
0517	
0519	
3.13	204) FORMAT(1X,'',10X,'',10X,'',10X,
0519	
0520	IF(NP.E3.4.) 32 TO 2141
0521	
	VL(4) = 0.0
0522	VLAB(4) = 2.0
2523	S(4) =0.0 HED(4) =0.0
0524	
3525	$HC(4) = 2 \cdot 0$
0526	HT(4) =0.0 HI(4) =0.0
0527	
0528	HUD(4) =0.0
0529	HD(4) = 0.0
0530	PCTHD(4) = 0.0
0531	PCTJET(4) = 0,0
0532	DCVEL(4) = 3.0
0533	2141 PRINT 2041,(L(I),I=1,4)
0 5 3 4	2041 FORMAT(1X,'GPM LIQUID',29X,4(F10.3,10X))
0535	PRINT 2042, (GPHFTW[I], I=1,4)
0536	2042 FORMAT(1X,'GPH/FT WEIR',28X,4(F10,3,10X))
0537	PRINT 2043, (V(I), I=1,4)
0538	2043 FDRMAT(1X, CFS VAPOR', 30X, 4(F10, 3, 10X))
0539	PRINT 2044, (VL(I), I=1,4)
0540	2044 FORMAT(1X, 'VAPOR LOAD', 22X, 'CFS', 4X, 4 (F10.3, 10X))
0541	PRINT 2045, (VLAB(I), I=1,4)
0.542	2045 FORMAT(1X, 'VLOAD/BUBBLE AREA', 15X, 'FPS', 4X, 4(F10.3, 10X))
0543	PRINT 2046, (\$(1), I=1,4)
3544	2046 FORMAT(1X, 'VLGAD/CFS LIQUID',23X,4(F10.3,10X),/)
0545	PRINT 2047
0546	2047 FORMAT(1X, DOWNCOMER FILLING CALCULATIONS')
0547	PRINT 2048
3548	2348 FORMAT(IX,
0549	PRINT 2049, (HED(I), I=1,4)
3550	2049 FORMAT(1X, 'DRY TRAY PRESSURE DROP',4X, '(HH) IN',5X,4(F10.3,10X))
0551	PRINT 2050, (4CIT), I=1,4)
0552	2050 FORMAT(1X, 'CLEAR LIQUID HEIGHT', 7X, '(HL) IN', 5X, 4(F10, 3, 10X))
0553	PRINT 2051, (HT(I), I=1,4)
5554	2051 FORMAT(1X,'TOTAL TRAY PRESSURE DROP (HT) IN',5X,4(F10.3,10X))
0555	
3556	PRINT 2052. (HI (I), $I=1,+$)
0,550 0,557	2052 FORMAT(1X,'INLET HEAD',16X,'(HI) IN',5X,4(F10.3,10X))
	PRINT 2053, $(+UO(1), I=1, 4)$
0558	2053 FORMAT(1X,'02 HEAD LOSS',14X,'(HDA) IN',5X,4(F10,3,10X))
3559	P314T 2054, (→3(I),1=1,4)
2562	2054 ERRMAT(1X,'DC FILLING',15X,'(HDC) IN',5X,4(F10,3,10X))
0551	PRINT 2055, (°CTHP(I), I=1,4)
<u>)502</u>	2055 EDRMAT(1X, 'DC FILLING', 22X, 'PCT', 4X, 4(F10, 3, 10X), /)
3553	PRINT 2054
3 5 m m	2056 FORMAT(1X, *ADDITIONAL CALCHLATIONS*)

FORTRAN IV G1	RELEASE D.O	MATN	DATE = 74100	14/52/38
3565	2057 ECRMAT(1	x, !	!,/)	•
3567	PRINT 20	56, (PCTJET(I), I=1,4)	· ·	
2569	2058 FORMAT(1	X. PERCENT JET FLOOD	+,22X,4(F10,3,10X))	
0569	PRINT 20	59,(DCVEL(I),I=1,4)		
0570	2059 FORMAT(1	X. DC INLET VELOCITY	1,15X, FPS1,4X,4(F10.3	,16X))
0571	PRINT 21	61,ALLVEL		
3572	2151 EDRMAT(/	////.IX, 'ALLOWABLE D	C INLET VELOCITY . 5X. *	FPS',4X,F10.3)
0573	22 TNT 22	51,90°=CÝ		
3574	2361 FORMET(/	V, LX, POVERAEL TRAY E	FFICIENCY +, 9X, + PCT+, 4X	,F10.3)
0575	<u> </u>	00		
3576	2142 PKTNT 71	43		
0577	2163 PREMAT(1	HI, THIS PROGRAM CAN	NUT DESIGN 4-PASS TRAY	S FOR LIQUID RAT
	185 GREAT	ER THA' + 5000 GPM. 1)		
0578	GR TE 22	00		
0579	2164 PRINT 21	65		
0580	2165 FOPMAT(1	H1, THIS PROGRAM CAN	NOT DESIGN TRAYS FOR V	APOR LOADS GREAT
	1ER THAN	100 CFS. 1)		
0581	GO TO 22	00		
0582	2166 PRINT 21	67		
0583	2167 FORMAT(1	H1, THIS PRUGRAM CAN	NOT DESIGN 3-PASS TRAY	S FOR LIQUID RAT
	1ES GREAT	ER THAN 5000 GPM. 1)		
0584	SU TO 22	00		
0585	ELNITHON GUSS			
0586	15 (737 1	N.EQ.0.0) 30 TO 1000		
0597	STOP			
0588	END			
and the second second				
,				

90

PASE 0014

REFERENCES

- <u>Ballast Tray Design Manual</u>. Dallas: Fritz W. Glitsch and Sons, Inc., 1967.
- 2. Becker, P.W., Personal communications with representatives of tray vendors, 1972-1974.
- Holland, F.A., Watson, F.A., Wilkinson, J.K., "How to Estimate Capital Costs," <u>Chemical Engineering</u>, Vol. 81, no. 7, April 1, 1974, pp. 71-76.
- 4. Jamison, R.H., "Internal Design Techniques," <u>Chemical Engineering</u> <u>Progress</u>, Vol. 65, no. 3, March, 1969, pp. 46-51
- 5. King, C.J., <u>Separation Processes</u>, New York: McGraw-Hill Book Co., 1971, pp. 544-608.
- 7. <u>Koch Flexitrays</u>, Bulletin Rt-5, Wichita: Koch Engineering Company, 1968, pp. 1-8.
- Maxwell, J.B., <u>Data Book on Hydrocarbons Application to Process</u> <u>Engineering</u>. Princeton, New Jersey: D. Van Nostrand Company, Inc., 1950, p. 245.
- 9. Smith, B.D., <u>Design of Equilibrium Stages Processes</u>, New York: McGraw-Hill Book Co., 1963, pp. 539-569 (Chapter by J.R. Fair).

Paul Becker was born in New York City in 1948. He attended public schools and the Bronx High School of Science. In 1970, he obtained a Bachelor of Science in Chemical Engineering from Columbia University School of Engineering and Applied Science in New York. At Columbia, Paul was student chapter president of the American Institute of Chemical Engineers, Editor of the <u>Columbia Engineering Quarterly</u>, an officer of Tau Beta Pi (national engineering honor society), and a member of Phi Upsilon Lambda (national chemistry honor society). As an undergraduate he was the recipient of the AICHE Scholarship award and the George Vincent Wendell medal for scholarship, character, and service.

Since 1970 Paul has been employed by Esso Research and Engineering Company in Florham Park, New Jersey. Until 1974 he worked in the Technology Department conducting R & D projects in the area of fractionation, and served as tower design consultant for engineers in the company. He is currently working in the Special Projects Design Division as a process design engineer.

Paul entered Newark College of Engineering in the Fall of 1971 as a part-time evening student and began working on this thesis in the Spring of 1973. The computer program presented in this thesis was developed through the use of the IBM 370 computer facilities of the Exxon Corporation Mathematics Computing and Systems Department in Florham Park.

VITA

NOMENCLATURE

AB	Bubbling area, square feet. Perforated area in which vapor and liquid contact each other.
ALLVEL	Allowable downcomer inlet velocity, feet per second.
A _O	Open area or hole area, square feet.
AUD	Area under downcomer, square inches.
С	Downcomer clearance, inches.
cfsv	Vapor rate, cubic feet per second at conditions.
c _{vo}	Dry tray pressure drop coefficient, dimensionless.
D _O	Hole diameter, inches.
F _W	Weir factor used in clear liquid height equation, dimensionless.
GPHFTWEIR	Liquid weir loading, gallons per hour per foot of weir length.
GPM	Liquid rate, gallons per minute.
H	Tray spacing, inches.
HDA	Head loss under the downcomer, inches of liquid at con- ditions.
HDC = HD	Downcomer static backup, inches of liquid at conditions.
HFACT1	Tray spacing capacity factor used in jet flood equation, dimensionless.
HFACT2	Tray spacing capacity factor used in allowable downcomer inlet velocity equation, dimensionless.
нн	Dry tray pressure drop, inches of liquid at conditions.
HI	Inlet head, inches of liquid at conditions.
HL.	Clear liquid height, inches of liquid at conditions.
HOW	Head of crest over weir, inches of liquid at conditions.
HT	Total tray pressure drop, inches of liquid at conditions.
HWI	Inlet weir height, inches.

HWO	Outlet weir height, inches.
L.	Liquid rate, gallons per minute
LUD	Length of chord at bottom of downcomer, inches.
LWI	Length of inlet weir, inches
LWO	Length of outlet weir, inches.
P	Pressure level in chamber above pass, any pressure dimension.
Р'	Pressure level in chamber below pass, any pressure dimension.
RHOFAC	Density difference capacity factor used in calculating allowable downcomer inlet velocity. A function of $(\rho_L - \rho_V)$, dimensionless.
TT	Tray thickness, inches
v	Vapor rate, cubic feet per second.
vL	Vapor load = CFSy $\sqrt{\rho_V/\rho_L} - \rho_V$, cubic feet per second.
v _o	Vapor velocity through the perforations = CFSy/A ₀ , feet per second.
β	Aeration faction used in clear liquid height equation, dimensionless.
ν	Vapor density at conditions, pounds per cubic foot.
ρ _L	Liquid density at conditions, pounds per cubic foot.
Subscripts	
A,B,C,D	Identify variable with one of the tray passes.
total	Tiontifics monichly as here in for the

total Identifies variable as total value for all passes.