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ABSTRACT

A comprehensive theory of multiple measurements for the

optimum on-line state estimation and parameter identification in

a class of noisy, dynamic distributed systems, is developed in

this study. Often in practical monitoring and control problems,

accurate measurements of a critical variable arenot available in

a desired form or at a desired sampling rate. Rather, noisy

independent measurements of related forms of the variable may be

available at different sampling rates. Multiple measurements

theory thus involves the optimum weighting and combination of

different types of available measurements. One of the contributions

of this work is the development of a unique measurement projection

method by which off-line measurements may be optimally utilized

for on-line estimation and control.

The analysis of distributed systems often requires the

establishment of monitoring stations. Another contribution of

this study is the development of a measurement strategy, based

on statistical experimental design techniques, for the optimum

spatial monitoring stations in a class of distributed systems.

By incorporating in the optimization criterion, terms re-

presenting the realistic costs of making observations, an algorithm

is developed for an estimator indicator whose values dictate an

observation strategy for the optimum number and temporal intervals

of observations. This, along with the optimum measurement stations

thus provides a comprehensive monitoring policy on which the

estimation and control of a distributed system may be based.

ROBERT W. VAN HOUTEN LIBRARY
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By employing the measurement projection scheme and the

monitoring policy, algorithms are further developed for Kalman-

type distributed filters for the estimation of the state profiles

based on all available on-line and off-line measurements.

In the interest of a realistic engineering application, the

developments in this study are based on a specific class of distributed

systems representable by the mass transport models in environmental

pollution systems. However, the techniques developed are equally

applicable to a broader class of systems, including process control,

where measurements may be characterized by noisy on-line

instrumentation and off-line empirical laboratory tests.

Although pertinent field data were not available for the

research, the multiple measurements techniques developed were

applied to several simulated numerical examples that do represent

typical engineering problems. The results obtained demonstrate

he consistent superiority of the techniques over existing

estimation methods. Methods by which the results of this work

may be integrated into real engineering problems are also discussed
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CHAPTER I

INTRODUCTION AND OBJECTIVES

The classical problem of estimation is that of extracting a signal

from noise corrupted measurements. However, in practical monitoring

problems, the direct measurements of a critical variable may not be

available at a desired sampling rate. Rather, noisy independent measure-

ments of related forms of the variable may be available at different

sampling rates. Further, a frequent limitation of conventional on-line

control methods is that only a few parameters may be measurable on-line.

The optimum weighting and combination of all available types of

measurements thus underlies the basic concepts of the theory of multiple

measurements developed in this study. In distributed systems, the

measurements are spatial and temporal in nature; hence the techniques of

multiple measurements include the optimization of the measurement rates

and stations.

The scope of this research is the development of a comprehensive

multiple measurements theory for the on-line optimum state estimation

and parameter identification in noisy distributed systems. The

specific goals include

(i) the development of a method by which off-line measurements

may be optimally utilized in an on-line estimation or control problem.

(ii) the development of a comprehensive measurement strategy that

includes

a) the determination of the optimum spatial monitoring

stations and

b) an observation strategy for the optimum number and

temporal intervals of measurements.
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(iii) the development of multiple Kalman-type distributed filters

for optimum state estimation.

(iv) the optimum identification of parameters based on all

available measurements.

(v) the application of the multiple measurements techniques

developed to a class of real engineering problems.

The study presents an interesting interdisciplinary approach to

the engineering problems of modeling, analysis and control of environ-

mental pollution systems. The developments are based on a class of

distributed systems representable by the mass transport models of

polluted stream and estuary systems. However, the techniques developed

are equally applicable to a broader class of systems for which there

exists a representative mathematical model and a realistic understanding

of the measurement characteristics.

Owing to the interdisciplinary nature of this work, it is found

necessary to include the review of the pertinent background theory and

prior work in each chapter. The text is organized in an order that may

represent the sequence of the problems in monitoring a dynamic distributed

system. The characteristics of the models, including the state-of-the-

art methods of measurements are presented in the early chapters. The

solution techniques applicable to the models are then presented as a

prelude to the development of the optimum monitoring policy. Algorithms

are later developed for the estimation of the state profiles and the

critical parameters based on various combinations of off-line and on-

line measurements.



Because pertinent field data were not available for the research,

special efforts are made to employ numerical examples that do typify the

realistic engineering problems. The results obtained in the specific

class of problems treated demonstrate the superiority of the techniques

developed over existing estimation and monitoring methods. It is hoped

that in future studies, the results of this work would find useful

applications in real engineering monitoring and control problems.



CHAPTER II 

DEVELOPMENT OF WATER QUALITY MODELS 

FOR ESTUARIES AND RIVERS 

In contrast with the several definitions that have been

given to the term model in scientific literature [ 148 ],

it is defined here as the mathematical formulation and solution

techniques of processes that determine the distribution of

variables of interest in a system. The systems to be modeled

here consist of estuaries and rivers.

Among the various resources associated with these systems

are waterway transportation, shipping and harbor, fresh water

supply, habitat for countless aquatic cultures and recreation.

These activities attract to the boundaries of the water systems

municipal and industrial complexes causing pollutional load. It

is this principal role of estuaries and rivers as receiving waters

for municipal and industrial wastes that underlies the develop-

ment of the models discussed in this chapter.

The specific variables chosen to define water-quality

models vary with the intended uses of that reach of the water

system. Specific models may feature such variables as [ 38 1:

(i) toxic materials and heavy metal ions

(ii) Soluble organics that cause taste and odor in water

supply



(iii) color and turbidity

(iv) pH: alkalinity and acidity

(v) refractory materials that cause foaming

(vi) nitrogen and phosphorous content that cause

eutrophication of lakes

(vii) suspended solids

(viii) excessive temperature resulting in thermal pollution

(ix) salinity

The models considered here emphasize the depletion of

dissolved oxygen content of the natural estuary or river as a

result of the biodegradable organic content of the municipal

and industrial waste loads and urban runoff. Dissolved oxygen

(DO) and biochemical oxygen demand (BOD) are the critical water

quality defining variables considered in the models.

A detailed modeling of an estuary from first principles

involves two separate packages. One package would include the

derivation of equations for such hydrodynamic processes as water

elevation and tidal velocity from conservation of mass and

momentum. The other package would include . equations of the

hydrodynamic and reaction processes that jointly result in the



mass balance of dissolved pollutants. Along with the simultaneous

solution of the equations in the two packages, a complete model

requires knowledge of several other parameters such as

(i) physical dimensions of the estuary

(ii) distribution of atmospheric pressure and surface wind

stresses

(iii) values of all initial and boundary conditions including

the dynamics of all boundary transfer processes,

sources and sinks.

Although such elaborate models are available for some

estuaries F 43 	 I, simplifications such as those necessary in

analysis have been assumed in the models presented in the sequel.

Water elevation dynamics are generally ignored. Treatment of

tidal velocity is given in the next chapter. The rest of this

chapter presents models which represent the mass balance of

dissolved oxygen and biochemical oxygen demand in

(i) a three-dimensional estuary

(ii) a two-dimensional stratified estuary

(iii) a one-dimensional tidal river.



Water Quality Model In  A Three-Dimensional Estuary

The mass balance of a dissolved constituent such as DO or

BOD is determined by the principle of conservation of matter and

may be stated qualitatively as [ 156 1.

time rate of accumula-

tion of constituent in

la fluid element

net rate of flow
of

constituent into

fluid element

time rate of net

production of

constituent in

fluid element

(2. 1)

The differential equation governing the distribution of each constituent

in a three-dimensional model may be written as

(2.2)

where c and u are instantaneous concentration and velocity vector

respectively. 
r
s represents the net production rate due to internal

and external sources and sinks to be discussed shortly. The

effects of the transport processes fall into two categories.

The gradient term represents the effects of local fluid velocity

while the second term represents effects of molecular diffusion.

- 6 -



Owing to the turbulent nature of an estuary, both ''and u

are stochastic processes each having deterministic and random

parts represented as

While each of the random variables c' and u' may be considered as

having an ensemble mean of zero, the mean of the cross product

(u' c') may not be zero. Taking the ensemble average of equation

(2.2) results in a more useful form written as

(2.3)

Among the simplifying assumptions usually applied to the above

process are

(i) by invoking Fick's diffusion-type approximation, each

component of the turbulent term u' c' may be written as

a linear proportion of the concentration gradient; for

example, in the x-direction

where E	 is the coefficient of eddy diffusion.x

- 7 -



(ii) The contribution resulting from molecular diffusion is

several order of magnitude less than that of eddy

diffusion and may be neglected, that is D N O.

(iii) The incompressibility of the fluid and the principle of

conservation of mass result in an approximation

v u = 0

For estuaries where density shows a strong dependence of

salinity and temperature, Boussinesq-type approximation

results in a similar simplification [ 113 ]

Employing the approximations above reduce equation (2.3) to a

form which may represent the distribution of DO or BOD in a three-

dimensional estuarine water quality model

(2,4)

Among the sources of DO are natural reaeration and photosyn-

thesis. Reaeration occurs as oxygen transfers from air into water

across the estuary surface. It increases with surface turbulence

[ 
34 	 and natural mixing of the estuary. This process may be

represented as

8



where Ka is the coefficient of reaeration, G is the instantaneous

DO concentration and Cs is the DO saturation level of the estuary.

The term (C s 	 C) is often referred to as the DO deficit in the

literature of water quality studies. In general, Ka is temporally

and spatially distributed and may be related to the mean non-tidal

advective velocity and depth as in the following empirical reaera-

tion equation

Ka = constant X (mean velocity) n
(depth)

Several authors [ 90, 	 73, 	 33, 	 10 	 have evaluated the

numerical values of the constant and the exponents in the above

formular for several cases of estuaries and streams.

Photosynthesis is a process by which oxygen is transfered

between the water and the suspended algae. This oxygen source

exhibits a diurnal variation with sunlight [ 99 	 I. and also

increases with temperature and the amount of nutrients available to

the algae. It is represented as P in the sequel.

Among the sinks associated with DO are deoxygenation, nitrifica-

tion, respiration demand and benthal deposit demand. Deoxygenation

is a first-order reaction representing the oxidation of soluble

organic waste. It may be represented as

- 9 -



where L is the concentration of BOD. Coefficient of deoxygenation

d 
increases with longitudinal mixing and bottom growth F 13 1

Nitrification represents the oxygen utilization for endogenous

metabolism of the microorganism present in the estuary. This

oxygen demand may be significant in an estuary segment subjected

to well-oxidized effluent loading and may be represented by a first

order decay reaction with a time-lag 	 42 1.

Respiration demand (R) results from consumption of oxygen by

aquatic plants for respiration. This contribution varies with

turbulence and available nutrients. Benthal deposit demand (B)

occurs mostly as a result of the diffusion of the anaerobic

decomposition from the bottom deposits.

The source and sink associated with the BOD process are

due to 	 runoff (La) and BOD-removing processes (K
r
) which may include

oxidation, sedimentation and flocculation.

All the above transport and reaction processes are included

in the following dynamic water quality model of a three-dimensional

estuary

(2.5)

- 10 -



Water Quality Model In A Stratified  Estuary 

In many application problems, two dimensional estuary models

have been considered [ 	 102, 	 52, 	 83, 	 116 	 1. In

addition to easing analysis, this model may represent the water-

quality characteristics of two common estuary types namely

stratified and non-stratified estuaries. Stratification is the

variation of density with depth resulting from salinity instrusion

This density variation influences the tidal velocity distribution

and determines the rate of vertical mixing of dissolved constituents.

Complete vertical mixing characterizes non-stratified estuaries.

Such a system may be represented by a vertically averaged version of

the three-dimensional equations (2.5) and (2.6). This simplication

results in a system of equations

(2.7)

- 11 -



(2.8)

The parameter E
h 

is known as the effective horizontal diffusivity

coefficient and is generally less than the eddy diffusion coefficients

in the three-dimensional model F 113 1.

Stratified estuaries on the other hand are usually shallow

and exhibit vertical mixing at a rate comparable with the tidal

period [ 193 , _	 101 1. Vertical distribution of velocity and

concentration of dissolved constituents must be represented while

the lateral distribution may be averaged. The lateral averaged

version of equations (2.5) and (2.6) representing the water quality

model in a two dimensional stratified estuary may be written as

(2.9)

- 12 -



(2.10)

Water Quality Model In A Tidal River 

A one-dimensional model most appropriately applies to the

segment of the estuary that may be considered vertically and laterally

homogeneous. This condition characterizes the tidal river where

salinity intrusion is minimum. The mathematical model may be

obtained by spatially averaging equations (2.5) and(2.6) over the

cross section (A) of the estuary. This results in

(2.11)

(2.12)

The longitudinal dispersion coefficient E
L 

results from the spatial

variation in velocity and concentration over the cross section and

is several order higher in magnitude than the eddy diffusion co-

efficients in equations (2.5) and(2.6), r135, 50 1.

Equations (2.11) and (2.12) represent a general form of the model

that has been widely used in the one-dimensional analysis of

estuaries r91.951 .

- 13 -



The effect of longitudinal dispersion is most pronounced in

the tidal saline segment of an estuary. It is less important but

still significant in the analysis of tidal non-saline segment of

the estuary. However, upstream where tidal effect can be negligible,

the dispersion term may also be neglected in the model. Publication

[ 34 1 shows an analysis of the relative significance of the

dispersion and advective terms in estuaries and streams. Also,

quite often as in the case of the Passaic and Raritan Rivers in

New Jersey upstream is decoupled from tidal effects by dams in

the river.

This approximation reduces equations (2.11) and (2.12) to

the forms which have been used in the analysis of one-dimensional

water-quality stream models namely

(2.13)

(2.14)

In many studies, terms P, R and B have been used in the above

equation to represent the daily-averaged values of the photo-

synthetic, respiration and benthal deposits effects in the streams

[ 134 1.

- 14 -



Steady-State Water Quality Models 

The models presented in the preceeding sections represent

the dynamics of polluted esturies and streams including the

effects of the unsteady time and spatially varying tidal velocity.

Because of the difficulties associated with the analysis of such

models, several investigators have considered modified models

based on different concepts of the tidal velocity.

The works of Ketchum [ 	 69, 68 	 and Phelps et al [112 ]

were based on the concept of tidal prism exchange where a segment of

the estuary may be considered completely mixed within each tidal

period. Stommel [ 127 	 studied the distribution of concentrations

averaged over a tidal period by considering a velocity term that

represents only the effects of non-tidal fresh water flow.

O'Connor [ 	 95, 93 	 1 developed a different non-tidal model

to derive concentration distribution under slack-time conditions in

esturies with varying cross-section. The equations of the models

resulting from these non-tidal advective approximations have the same

forms as equations (2.11) and (2.12) for one-dimensional cases. How-

ever, the interpretations and the values of the parameters and

concentration distributions vary from one model to another.

- 15 -



An estuary model may be considered at steady state when the

concentration distribution does not change from one point in the

tidal period to the next. In this case the derivatives ---
L and 	 C
t 	 t

may be set to zero. Under this condition, equations (2.11) and

(2.12) reduce to

(2.15)

(2.16)

A similar form of this model has been used in a case study of the

East River in New York F 96 I

The development of some of the mathematical models employed

La the studies of water quality systems have been presented in

this chapter. Present methods of evaluating some of the variables

and parameters in the models are discussed in the next chapter. In

later chapters, techniques are developed and applied for optimum

on-line estimation of critical variables and parameters in some

specific examples of these models.

- 16 -



CHAPTER III 

EVALUATION AND MEASUREMENTS OF VARIABLES 

AND PARAMETERS IN WATER QUALITY SYSTEMS 

A brief review of the state-of-the-art methods of measuring

and evaluating some of the critical water quality variables and

parameters, is presented in this chapter. The principal objec-

tive is to explore the validity and limitations, in a practical

engineering sense, of some of the assumptions that usually

characterize theoretical and analytical approaches. An under-

standing of some of the aspects of engineering practice is

particularly essential for a meaningful application of an inter-

disciplinary approach, such as this study, to the analysis of

water quality systems.

Determining which variables are the most critical to the

successful management of polluted water systems is a subject of

extensive debate among researchers in this field [ 2 	 ]

This is because of the multipurpose use of the water resources

and the variability of the pollutional contents in the municipal,

industrial and agricultural wastes t o which a water system may

be subjected. The discussion in this chapter is limited to those

variables and parameters that characterize the mathematical models

presented in the previous chapter. They emphasize the interplay

between the amount of dissolved oxygen (DO) available in a natural

waterbody and the various oxygen depletion processes, which may

include biochemical oxygen demand (BOD), respiration demand for

aquatic plants (R) and benthal deposit demand (B).

-17-



A detailed discussion on apparatus, pretreatment of polluted

water samples, procedures and instrumentation for measurements in

water quality systems, is beyond the scope of this study. Such

information may be obtained from a reference text on Standard

Methods [ 128 ] and from manuals provided by various instrument

manufacturers [ 8 ,48 , 63 1. The interest here is to delineate some of the

practical features of the multiple measurements estimation tech-

niques developed in the later chapters of this study. These

include

(i) independent measurements of the multiple forms of a

variable

(ii) availability of on-line measurements of certain variables

(iii) measurement error characteristics.

The application of the multiple measurements techniques to

water quality systems is contingent upon the independent measurements

of various forms of the same variable, such as: BOD, total organic

carbon (TOC), chemical oxygen demand (COD) and total oxygen demand

(TOD). The relationships between the various oxygen demands

are explored in the sequel. Furthermore, a part of the objectives

of this study is to develop an on-line optimum estimation method

that may be integrated into an on-line control of a polluted water

system. Hence, interest also is focused here on the on-line and

off-line methods of measuring dissolved oxygen and the various

oxygen demands. In addition, some of the practical problems

-18-



associated with measurements are discussed. An attempt is made,

wherever possible, to determine typical values of the standard

deviations that may be associated with measurement errors. This is

the basis on which measurement variance terms, used later in

numerical examples, are established.

In general, only a few of the parameters that describe the

hydrodynamic and biochemical processes in a water system can be

measured directly. Therefore, empirical methods based on field data

of such variables as DO, BOD, temperature and salinity are used.

For other parameters such as tidal velocity and reaeration co-

efficient, empirical formulae based on the physical properties

of the water systems have been developed. The presentation that

follows includes methods used in practice as well as those that

have been applied in recent theoretical and analytical works.

Measurements Of Variables 

Biochemical Oxygen Demand.

BOD is a measure of the biodegradable organic content of a

polluted river or estuary. It is determined by recording the amount

of oxygen utilized by organisms for aerobic decomposition and

stabilization of the organic content in a water sample. The

standard laboratory procedure involves seeding the polluted water

sample with a microbial population in a BOD bottle. It is then

incubated in a water bath or a special air incubator, in the dark

at a temperature of 20° C.
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Figure III-1 gives a qualitative illustration of the carbon-

oceous reaction in a BOD test. During the synthesis stage, the

microorganisms utilize oxygen and the organic content in the water

sample for energy and growth. The rate of growth decreases with

the amount of nutrient available and may terminate after about

36 hours of incubation. During endogenous metabolism, more

oxygen is consumed, however at a slower rate, for the utilization

of stored metabodies and the cell component of dead organisms.

Complete oxidation of the biodegradable organic content in the

BOD bottle may last up to twenty days. The standard BOD measure-

ment is the amount of oxygen utilized after five days of incuba-

tion (BOD
5
); oxygen consumed for the complete carbonaceous oxidation

is often referred to as the ultimate BOD (BOD
20) .20

Possible causes of errors in BOD measurements.

Among the several factors that may affect BOD measurements

are

(i) disparity between the natural and laboratory environments

(ii) seeding

(iii) nitrification

(iv) toxicity

and (v) human qualitative judgements.
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The apparatus and procedure for a BOD test are not conducive to

measurements in the natural environment of the polluted water

system. However, laboratory BOD measurements may not adequately

report the effects of such natural environmental conditions as

turbulence, temperature, dissolved oxygen concentration and

sunlight. Algae for example, if present in a water sample, may

die for lack of sunlight during incubation and the resulting

organic matter may increase the apparent 53D reading. Among the

recent studies of the effects of temperature changes on DOD

reaction is [ 122 1.

Organisms from settled domestic sewage are by standard,

used for seeding waste water samples. However, in the case of a

polluted stream dominated by industrial wastes, organisms taken

close to the waste outfall are used. 	 In some other cases, it

may be necessary to cultivate a special microbial population

capable of oxidizing a particular waste characteristic. If the

organisms are not acclimated to the waste, a lag results in the

BOD reaction and an error may be introduced into the BOD reading.

Graphical illustrations of the effects of seed concentration and

acclimation are provided in figures (2.6) and (2.7) of [ 38 1

Oxygen demand due to nitrification results from the utili-

zation of the nitrogen content of organic waste by nitrifying

bacteria. This process usually follows the carbonaceous oxidation

process. However, in the case of a stream subjected to well
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oxidized effluents, both processes may occur simultaneously.

The use of polluted river water for seed, therefore, may increase

the apparent DOD measurement.

The presence of heavy metal ions in an industrial waste or

the toxic contamination of dilution water may inhibit the activi-

ties of the oxidizing microorganisms and result in an apparent

decrease in BOD readings. The effect of toxicity on BOD readings

has been studied by [ 87 ]

DOD measurement is an empirical test where the result

accuracy often depends on the experience and judgement of the

analyst to properly identify and pretreat the undesirable com-

ponents of a water sample. Although various reagents are avail-

able to minimize the effects of some of the above processes,

BOD is basically a noisy measurement. The variability of the

sources of errors seems to justify the characterization in later

chapters, of the measurement errors as random and zero mean.

Table 219(1) of [ 128 ] in reporting the effect of seed on BOD

readings shows typical standard deviation values of about 5%

of the mean DOD reading. The overall precision of BOD measure-

ment also is given as about 17%. The standard deviation values

used in the simulation of BOD measurements in this study range

from 5% to 20% of the expected measurements.
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The five day delay in obtaining a BOD reading is an unde-

sirable factor in the automatic control of a treatment plant or

a polluted water system. Other forms of oxygen demand and their

relationship to BOD are discussed next.

Chemical Oxygen .Demand. 

Again a qualitative figure 111-2 is given to illustrate the

relationships between various oxygen demands. COD measures the

total organic carbon content of a polluted water system, except

for some chemical compounds such as benzene which are refractory

to chemical oxidation. The standard test employs potassium

dichromate with temperature reflux to chemically oxidize the

organic content in a water sample. COD measurement takes about

two hours by standard method; however, other faster methods

based on incomplete oxidation of some of the constituent organics

are available [ 64 	 1. In addition, a linear relationship has

been observed between BOD and COD readings for some specific

organic compounds [ 44, 114 I.

Possible causes of error in COD measurements. 

One of the major causes of error in a COD measurement is

the additional oxidation of inorganic compounds such as ferrous

iron, sulfites and nitrogen. A useful reading, therefore, requires

the proper identification of the constituent pollutants in a water

sample.
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Total Organic Carbon.

As shown in Figure 111-2, TOC is a measure of the total organic

content of a polluted stream. The test procedure involves the

combustion of the organic content to water vapor and carbondioxide

and the analysis of the latter to obtain the TOC value. By the

wet chemistry method, the water sample is oxidized in acid prior to

combustion and the CO
2 

output is analyzed using an absorption

train [ 38 1 .

The more recent methods involve a high temperature (900 -

0
100 C) catalytic oxidation of the organic content and the use

of an infra-red spectrophotometer to analyze the resulting CO 2

to obtain a total carbon (TC) measure. The inorganic carbon

such as carbonates, present in the water sample may be removed

with acid prior to injection into the combustion tube. Methods

of removing volatile organics are also available f 120 1.

However, the most recent TOC analyzers contain an additional low

temperature (150 ° C) combustion tube where only the inorganic

carbon content is removed in presence of acid and again in form

of CO
2 . The total organic carbon is then determined by taking

the difference between the total carbon reading and the total

inorganic carbon reading.

According to Helfgott et al in [ 3 	 I TOC measurement takes

between five to fifteen minutes. In addition, several investigators

also have established a linear relationship between BOD and TOC for

some industrial [ 44 	 1 and domestic wastes. The ratio of BOD

to TOC values varies with the specific wastes being tested with
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typical values ranging between 1.35 and 2.62 for industrial and

municipal wastes [ 38 1. The linear function used later in

this study to relate BOD and TOC measurements are based on the

preceding reports.

Possible causes of errors in TOC measurements. 

An incomplete removal of the inorganic carbon content of

the water sample by pretreatment may introduce errors in the TOC

readings. Also, the presence of anions such as NO
3 

may inter-

fere with the absorption pattern of the spectrophotometer F38 1

In addition, the dry phase high temperature oxidation technique

in modern TOC analyzers may not adequately represent the wet

environment of the natural water system. Furthermore, in formaliz-

ing the linear function between BOD and TOC, the error of linear

approximation should be considered, as done later in this study.

Dissolved Oxygen.

Dissolved oxygen is a measure of the amount of oxygen

available in a stream to sustain the survival and the activities

of microorganisms and other aquatic life. The quality criteria

for various water usage are based in part, on the concentration

of dissolved oxygen.

The methods available for DO measurements fall into two

categories; namely, the Winkler Test and the Membrane Electrode
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methods [ 198 ]. In the Winkler Test, the dissolved oxygen in a

water sample is used to oxidize a precipitate of manganous

hydroxide. Upon acidification of the mixture in presence of

iodide ions, iodine equivalent to the concentration of DO in

the water sample is produced. The amount of iodine produced may

be determined by titration or the use of an absorption spectro-

photometer.

The Winkler Test is an off-line measurement process;

however, instrumation capable of on-line DO measurements are

now commercially available. The recent DO meters are based on the

chemical reduction of oxygen in a solution and its diffusion

across special semipermeable membranes. Two types of DO meters

are available namely, Galvanic type [ 81 ] and the Polaro-

graphic type. In the former, the reduction process causes a

current flow which may be calibrated for the DO concentration.

The polarographic meter employs an external emf (usually .8 v)

for the polarization of the indicator electrode.

Possible causes of errors in DO measurements.

Errors may be introduced into the empirical Winkler Test

by the presence in the water sample, of organic compounds that

may interfere with the oxidation of the iodide ions or the produc-

tion of the hydroxide precipitate. In addition, great care is

often required in sampling to prevent agitation and contact of
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the water sample with air, as these may drastically influence

the DO concentration level.

The response of a DO meter is based on the activities of the

oxygen molecules. Therefore, DO readings are very sensitive to

temperature changes and the presence of salinity in the water

samples. Sensitivity of DO meters also has been found to

decrease with age in a comparative study of DO measurement methods

[ 34 	 An accuracy of about 0.1 mg/liter has been specified by

several manufacturers manuals.

Hydrodynamic Variables 

Tidal Velocity.

The successful management of a polluted water system requires

an adequate knowledge of the hydrodynamic characteristics of the

system, including tidal velocity distribution and the dispersion

coefficients. Extensive research has been conducted in recent

years on the tidal velocity distribution in several estuary cases.

In general, three different approaches have been applied namely,

[ 55 ]

(0 continuity and momentum equation approach

(ii) cubature method

(iii) direct measurement
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Tidal velocity may be evaluated from first principles by the

simultaneous solution of a pair of non-linear hyperbolic first-

order partial differential equations which represent mass and

momentum conservation in the estuary. For a one-dimensional

case, these equations may be written as

(3.1)

(3.2)

where U is the tidal velocity; Q is the flow rate; h is the

instantaneous tidal height; b and A are the width and cross

sectional area; g is the gravitational acceleration and (C - R)

represents the roughness property of the estuary. Various forms

of equations have been derived by several investigators [ 37 ,

54 	 ] and the solutions usually obtained by finite-difference

methods, nave been applied to several estuaries [ 126 	 , 150 ,

151 	 Field measurements of the tidal elevations at the ocean

boundary and the freshwater flow at the head of the tide region

are usually applied as the boundary conditions in solving

equations (3.1) and (3.2).

If data on the distributions of tidal amplitude and phase

are available, the tidal velocity distribution may be obtained

by integrating the continuity equation (3.1). This is known as the
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cubature method. Analysis based on this method and the assump-

tion of a harmonic tidal flow has been applied to obtain tidal

velocity distributions in a one-dimensional model of the Delaware

Estuary [ 51 ] and a two-dimensional model of the Galveston Bay

[ 116 ]

Although the results in [ 51 1 demonstrated that the tidal

velocity in a constant density region of an estuary may not be a

harmonic function of the tidal period, harmonic approximation of

the foam

(3.3)

has been used in many studies. This may provide a useful representa

tion in analysis, especially when direct field measurements are

available for the freshwater flow O
F 

(x), maximum tidal velocity

UT (x) and the tidal phase F (x).

Tidal velocity distribution resulting from vertical transport

in the salinity intrusion region of a two-dimensional estuary

has been studied in recent years. Experimental data collected

from the salinity intrusion flume at Waterway Experiment Station

[ 52 , 	 53 ] show a time-averaged tidal velocity distribution

with a logarithmic vertical profile. Similar results were obtained

in a study of velocity profiles [ 123 ]. The results from these

-31-



reports are presented later in Chapter VI and used in a numerical

example of a saline two-dimensional estuary.

Dispersion Coefficient.

Because dispersion of pollutants is a result of the spatial

variations in the tidal velocity over a cross-section, more

research has been performed on the latter phenomenon. Early

studies on evaluating longitudinal dispersion are represented

by the work of Taylor [ 135 ] and Elder [ 39 	 ]. Various

forms of Taylor's equation [ 55 ]

(3.4)

have been employed to determine the dispersion term E
L for a

undirectional flow in a pipe. A modified form of this equation

for an oscillatory flow was developed in [ 54 ] and has been

used successfully to predict distribution in a dye experiment on

the Pomomac River [ 56 ].

However, in general empirical methods are used to evaluate

the dispersion in the natural water systems. Usually, the disper-

sion distribution is obtained by curve-fitting field measurements

of the salinity distribution. The later also may be represented

by equation (2.11) except that the decay rate K = 0 for a conserva-

tive constituent such as salinity. By this approach, the spatial

variation in longitudinal dispersion coefficient also may be

obtained.
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Biochemical Parameters 

BOD Removing Coefficient (K
r
).

The biological stabilization of the organic content of a

polluted water body may be considered a first-order reaction of

the form

(3.5)

where L is the BOD concentration of the unstabilized organics.

The reaction rate K
r 

represents all the BOD removing processes

which may include carbonaceous oxidation, sedimentation, floccula-

tion and volatilization. The numerical value of K
r 
may decrease

along the stretch of a stream as the suspended solids, volatile

organics and flocculants are removed.

Deoxygenation Coefficient (K
d
).

Deoxygenation is the process by which dissolved oxygen in

a stream is depleted as a result of carbonaceous oxidation.

This process may be written as

where c is the DO concentration. In the absence of sedimentation

and other non-oxidation processes K
d 

= K
r

.

-33-



In practice, empirical methods are employed to evaluate both

K
r 
and Kd, and data of the DO and BOD distributions under steady

state low-flow conditions are used. The numerical values for K
r

and Kd are computed form best-fit logarithmic plots of the DO

and BOD distributions. To properly represent the steady state

conditions, ultimate BOD values (BOD 20 ) are usually used in the

analysis, and empirical temperature coefficients to adjust for

temperature changes are applied [ 38 1. A recent study relating

K
d 

to the reaction rate in a BOD bottle test is contained in

[ 13 	 ].

Reaeration Coefficient (K
a
).

Reaeration coefficient may be computed from the empirical

reaeration equation presented in Chapter II. On the other hand,

it may be computed directly from BOD and DO data by the curve-

fitting method. Among the recent studies using the latter

method is [ 30 ].

Sources and Sinks.

Photosynthesis has been shown to be representable by a

summation of diurnal harmonic function [ 99 1. The coefficients

of each harmonic may then be evaluated by applying the curve-

fitting method to field data of DO taken on a diurnal basis.
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It may also he evaluated from chlorophyll measurements in cases

of isolated algae region.. Respiration and benthal deposit rates

may also be computed by the curve-fitting method tied in with

bottom deposit respiration methods

Application of the curve-fitting method in most of the cases

above require a proper identification of the regions along the

river in which each process dominates. In addition, the evaluation

is an off-line process and numerical values often represent steady

state stream conditions. The reliability of such determination

is not considered very good, and, thus Environmental Protection

Agency, Region II Headquarters refused to release such information

to Dr. Perlis. In Chapter VIII, on-line estimation

for some of these parameters is developed both for steady and non-

steady state conditions. A review of measurements and parameter

evaluations in water quality systems has been given in this

chapter. Some of the practical features in measurements that

have been discussed in the preceding, are incorporated in the

developments in later chapters.
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CHAPTER IV

SOLUTION TECHNIQUES OF WATER QUALITY MODELS 

In later chapters, algorithms are derived to optimally

estimate the state profiles and parameters in some water quality

models. This development requires the solution of equations

similar to the parabolic partial differential equations presented

in Chapter II. In addition to presenting the solution techniques

used in this study, this chapter includes a brief review of tech-

niques that have been applied by other investigators.

The solution techniques for water quality models fall into

two broad categories namely

(i) analytical close-form approach

(ii) numerical approach

Analytical approach was used extensively in early pollution

studies of stream models such as the classical Streeter-Phelps

equation [ 131 1. In more recent studies O'Connor [96,981

and Thomann [ 141 , 140 	 , 138 	 , 139 	 I have applied

different analytical solution methods to steady-state water

quality systems segmented into reaches in which the physical

hydraulic and reaction rate parameters are constants or well

defined.
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Time-varying analytical solutions have been derived mostly

for simple one-dimensional systems subject to slug or constant

load at the boundary. Such a solution is used in the measurements

projection scheme presented in Chapter V.

As the time and spatial variations in parameters and inputs

are included in a model, analytical solutions become complex,

impractical and in most cases unavailable. In these cases, various

finite-difference approximation techniques have been applied

using high-speed digital computers [41, 156, 36 1.

Analog [ 94 1 and hybrid computers [ 147 , 133 1 also have

been applied in some case studies.

For the stream and estuary cases considered in this study,

the explicit-finite difference method was used. The problems of

stability and boundary conditions associated with finite-difference

methods are also discussed in this chapter.

Analytical Solutions 

Continuous solution approach to steady state problems.

The solution to the steady state DO and BOD equations in a

one-dimensional, constant parameter tidal river presented in

equations (2.15) and (2.16) may be written as
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(4.1)

(4.2)

(4.3)

(4.4)

The minus signs in the j terms apply to regions x > o.

In general, each equation may be written in a form

(4.5)

where g is the corresponding j term for x < o. This last equation

applies to segmented reaches of a river or estuary at steady state,

and the complete concentration profiles is obtained by matching

appropriate boundary conditions 	 This method developed by O'Connor

[ 92 	 1 has been applied successfully in the analysis of the

Delaware Estuary [ 98 1 and the East River in New York [ 96 1.
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Finite section approach to steady state problems.

This approach developed by Thomann [ 138 J may be con-

sidered a subset of the finite-difference method discussed in

the sequel. Rather than applying an analytical closed form

solution, this method approximates the differential equations

between the segments. The basic equation relating the para-

meters and concentration distribution of a pollutant L in three

adjacent well-mixed river segments i - 1, i and i + 1 may be written

as

(4.6)

where V
i 
is the volume of segment i, Q

. - 1,i 
is the net flow and

is a dimensionless mixing coefficient between segmentsαi - 1,i

i - 1 and i. Coefficients E¹
i - 1i is defined as the bulk

dispersion and differs in value from the longitudinal dispersion

term discussed Chapter II.

Applying this method to a steady state problem reduces the

system differential equations to n simultaneous algebraic equations

where n is the number of segments. This method has the advantage
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of coping with systems with spatially varying parameters. This

approach has also been extended to solving time-varying problems

C104 ].

However, the emphasis in this study is an on-line estimation

which requires transient solutions as well. Therefore, the pre-

ceding steady state methods were used only in the preliminary

stages of this study.

Real time  solutions.

In general, complete closed-form solutions including the

transient response are not available for many practical problems

in water quality analysis. However, when available for simple

cases, they provide a valuable tool for verifying the accuracies

of solutions obtained by other approximations for more complex

problems. The presentation here is limited to the two types of

real time solutions employed in the measurements projection

schemes developed in Chapter V.

For the constant parameter, one-dimensional stream with

negligible despersion considered in Chapter VII, the state

equations of the BOD and DO profiles may be written as in (2.13)

and (2.14)
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Using solution method of characteristics 	 33 , 71 	 1, the

response of the homogeneous system to an initial condition at

(x . t 	 may be written as

(4.8)

(4.9)

The solution is along the characteristics x , t o and only three
o 	 o

of the variables x, t, x
o 

and t
o 
may be specified independently.

The foregoing solution is used later in Chapter V to project

an off-line noisy measurement taken at point (x
o

, 	 T) to an

on-line estimation point (x , t).
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The responses of BOD distribution to a slug input in the

specific estuary cases to be treated later are now presented. The

differential equation describing the BOD distribution in a well-

mixed one-dimensional estuary with constant dispersion and decay terms

is written as

Under steady flow condition, U may be assumed constant and the

transient response of the system to an instantaneous load W (lb/ area)

released at point (x_, t) may be written as

where

(4.10)

In the tidal region of the estuary, the velocity U(x,t) may be

approximated by a harmonic function

(4.11)

Under this condition, the transient BODE response becomes [ 55
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(4.12)

Similarly, BOD distribution in a two dimensional estuary may be

represented as

(4.13)

In the specific example treated later, a one-dimensional flow is

assumed

v
(x,z,t) = 0

Although spatially varying tidal velocity 
U(x,z,t) 

also is con-

sidered, it suffices for the purpose of this presentation to

assume a spatially averaged velocity of the form in equation

(4.11). The transient response of the two dimensional estuary

under the foregoing conditions to a slug load W (lb/ depth)

may then be written as [ 55, 156 ].

(4.14)
where a,b, and c are defined in (4.10)
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The transient responses in equations (4.10), (4.12) and (4.14)

are programmed to project off-line BOD measurements taken at a general

point (xo, zo, t
o
) to an on-line estimation point (x

m 
z
m, 

t).

Finite-Difference Techniques 

Availability of high speed and large memory size computers

has increased the application of finite-difference solution

techniques to water quality problems. Basically, finite difference

representation of a partial derivative is a truncated Taylor series

approximation.

In this study, temporal partial derivatives are represented

using a forward difference formulation

(4.15)

and spatial derivates are represented using a central difference

formulation

(4.16)

(4.17)

Ax and At are the spatial and temporal grid increments.

When the finite-difference representation of a differential

equation is such that the value of a variable L 	 is
x, t +

expressed only in terms of its values at a previous time step

L (x,t), an explicit finite difference formulation results.

However, when the values of L
(x, t 	 7',t) 

at various spatial points

are related in an equation, an implicit formulation results.
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The explicit finite difference formulation was found appropriate

for the on-line state estimation schemes developed in this study.

However, the implicit finite difference methods have been applied

in other water quality studies such as r 156 ]

In the following, the explicit finite difference equations

of some specific estuary conditions are presented.For an example of

a one-dimensional well mixed, non-saline estuary system with con-

stant dispersion and decay terms, application of (4.15), (4.16),

(4.17) to (2.11) and (2.12) yields.

(4.18)

(4.19)
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For the two-dimensional stratified estuary system treated

in Chapter IX, the explicit finite difference representation of

equations (2.9) and (2.10) become

(4.20)

and

(4.21)
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where a one-dimensional tidal flow in the x-direction is assumed and

the photosynthetic and other zero-order sources are neglected.

Boundary Conditions and Stability Requirements 

Stability criteria.

A major problem that may plague a finite difference computa-

tional scheme, if care is not exercised, is the instability of solu-

tions resulting from uncontrollable amplification of numerical

errors. These errors are usually introduced by the finite-

difference approximations of the system differential equations and

inappropriate initial and boundary conditions.

Avoidance of this problem was crucial to successful develop-

ment of the computer programs used in this study because

(i.) The distinct effect of simulated measurement noise was

being investigated.

(ii.) On-line parameter estimates based on noisy measurements

might violate the stability conditions especially during

the initial time steps of an iteration scheme.

Care had to be taken, especially in the study of the two-dimensional

estuary with non-linear distributed tidal velocity (Chapter IX) to

ensure that the maximum expected parameter estimate errors satisfy

the stability criteria.
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Leendertae [ 78 1 and Lily [ 80 1 have presented detailed

analysis of stability problems in finite difference solutions of some

mass transport equations. Dresnack and Dobbin [ 36 1 have also

developed a two-step explicit method by which the convective

process is operated in one-step and the the dispersive and other

processes are operated in the computation of distribution profiles

in a tidal river.

The preceeding methods guarantee that the coefficients of

the individual concentration in (4.18) and (4.19) are positive. The

positiveness of the coefficients has been chosen as the basis for

establishing stability criteria in this and many other studies

[ 156].

Applying this conditions to (4.18) and (4.10), yields

and

from which the stability criteria for the one-dimensional tidal

estuary are derived as

(4.22)
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U 	 is the maximum tidal velocity and [K , K 1 	 is the larger
max	 r a max

of the two decay rates which usually is K
a

For the two-dimensional estuary with zero vertical velocity,

the stability criteria become

(4.24)

and

Boundary conditions. 

The central difference formulation employed in this study

allows computation of concentrations only at the internal points

of the spatial-temporal grid. Conditions that satisfy the appro-

priate transfer processes at the boundaries are required for

complete ,solutions. Several methods of extrapolation of solutions

at the boundaries of finite difference grids have been investigated

by f156 1.

In this study, upstream boundary conditions are assumed to

be determined from measurements and are implemented in the sequel by

the addition of simulated random noise to a specific boundary

value. The grid downstream boundary conditions are readily

established for the case of a stream with negligible dispersion.
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It is known from the behavior of the physical system that steady

state conditions are reached shortly after the time required to

flush the stream reach has elapsed, that is at

t > ss
U

where ss is the length of the reach and U is the velocity of flow.

It is sufficient, therefore, to choose a grid with a downstream

boundary located a few grid points beyond the physical boundary

of the reach. By this technique, an arbitrary downstream boundary

condition may be assumed without introducing errors into the

computation. This approach has been successfully applied in

[36 1.

The time it takes a solution to reach essential steady state

in a dispersive-advective system depends on the relative values

of the coefficients. If the coefficients are known, it is possible

to determine the size of the grid required such that arbitrary

boundary conditions may be applied as mentioned above. A system

with comparable effects of the dispersive and advective terms may

require a very large grid to satisfy this condition.

An alternative approach is to approximate the value of the

solution at the boundary of the grid by linear extrapolation of

the values at adjacent internal grid points. In this study an

approximation of the type
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L
xf - 2,t + 1 	 (4.26)Lxf t + 1 

= 	 L
xf - 1,t + 1

is used, where x
f is the downstream boundary of the grid.

For the two-dimensional estuary considered, it is assumed

that no transfer of pollutants occurs across the surface or the

bottom of the system. This is a common assumption in the analysis

of water-quality systems, although the gradient of dissolved oxygen

concentration at the bottom has been equated with benthaldemand

in some cases [ 1 	 1. The extrapolation approximation (4.26)

is applied in this case where benthal deposit is negligible,

to determine the solution values at the surface and boundary

grid points based on the generated values at the internal points.

This chapter has presented a review of solution techniques

applicable to many water-quality systems. In addition, the finite-

difference and real time solutions of some specific models to be

treated in later chapters have been developed.
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CHAPTER V 

MULTIPLE MEASUREMENTS AND ESTIMATION THEORY 

IN WAFER QUALITY MODELS 

Multidisciplinary approaches have been applied in recent years to

the problems of modeling, analysis and control of polluted rivers

and estuaries. In addition, improvements in instrumentation design

have advanced efforts towards the automation of waste water treatment

plants and on-line control of polluted water systems.

As part of the contributions of this study, estimation theory

developed and normally used in communication and control systems

is extended in this and subsequent chapters to water quality

systems. Multiple measurements techniques are developed and

applied to obtain Kalman type filters for optimum state estimation

in a class of distributed systems.

The overall objective is to derive optimum on-line estimates

of biochemical oxygen demand (BOD) and dissolved oxygen (DO) con-

centration profiles in polluted streams and estuaries. The

special techniques developed emphasize those features such as

model structure, measurement procedure and cost functions which

may be unique to water quality systems.

There are several motivations for applying filtering theory

to problems in water quality systems. Because of the turbulence

in a natural water body, mass transport and distribution of
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dissolved pollutants are inherently stochastic processes. Although

deterministic models are often used in water pollution analysis,

stochastic models have been developed and applied in some cases

121 , 	 29 , 	 131 , 144 1. As the stochastic modeling of

these systems expands, so will the importance of stochastic

estimation and control 	 theory in water quality application

problems.

Random instrument noise is another factor suggesting the

application of filtering theory in water quality analysis. For

model verification, important parameters such as the dispersion

and reaction rates coefficients cannot be measured directly. In-

stead they are derived analytically from measured distribution of

such variables as BOD, DO and salinity (Chapter III). An in-

strument subject to strong winds, currents and other adverse

environmental conditions or an analytical laboratory measurement

procedure subject to human qualitative judgments may produce

random results. Without a proper estimation approach, this may

produce serious errors in subsequent computations and analysis

based on the noisy measurements.

There are two types of water quality standards namely stream

standards and effluent standards 
[ 

38 	 1. Stream standards

establish 	 the allowable threshold values of such variables as

dissolved oxygen based on the intended uses of that segment of
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the water system. It is desirable to apply a filtering technique

in monitoring these variables to ascertain that established standards

are not violated. This is particularly important because of the

stochastic nature and the sensitivity of the pollutant distribu-

tion to density and temperature changes.

In urban areas, several municipal and industrial complexes

use the same river or estuary as receiving water for their wastes.

The establishment of an equitable policy for the allocation of

loads and degree of effluent treatment among users requires the

knowledge of the on-line response of the river to the various

loads.

In addition, considerable research has been conducted by

Perlis and associates [ 108 , 	 109 1, Tarassov et al [ 134 I

and Thomann et al [ 141 I on optimum control of polluted water

systems. An on-line adaptive control scheme obviously requires

on-line optimum estimates of the state profiles as inputs.

Although the foregoings are sound arguments for applying

filtering theory to water quality analysis, these systems present

some unique problems. The dynamics of DO and BOD are coupled

in one of the state equations, however, the variables are not

measurable at the same rate. Instrumentation is available for



measuring DO concentration in a matter of minutes, hence DO

monitoring may be considered an on-line process. On the other

hand, the measurement of BOD requires a laboratory process of

seeding and incubation of water samples which may take between

five to twenty days. This delay in BOD monitoring obviously

creates a handicap to conventional on-line estimation or

control techniques. In addition, water samples for BOD measure-

ments are usually taken at several hours intervals in practice.

Other forms of oxygen demand such as chemical oxygen demand

(COD) and total organic carbon (TOC) have been established to be

functions of BOD concentrations for specific streams and under

certain conditions. Whenever available measurements of such

variables provide addition information on BOD distribution with a

particular advantage that they can be measured relatively fast.

TOC which for a particular water body under fairly steady load

is known to be approximately a linear function of BOD can be

measured in a matter of minutes F 40 , 114 ] and may also be

considered as an on-line process [ 49 I.

One aspect of the multiple measurements theory developed in

this study concerns the optimization of the various weights

(filters) to be associated with both the noisy on-line DO and TOC

measurements and the off-line BOD measurements to obtain an on-

line estimation of BOD and DO state profiles. This subject is
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covered in Chapters VIII and IX for stream and estuary models.

Water quality variables are generally distributed both tempor-

ally and spatially. However, instrumentation capable of making

distributed measurements are not available. This leads to the

question of spatial location of measuring instruments. Another

contribution of the study is the development of a comprehensive

theory for determining the optimum monitoring stations in a class

of distributed parameter systems. This theory based on statistical

experimental design techniques is applied to examples of estuary systems

in Chapter VI.

A special method is required for the combination of various

types of measurements available at different sampling rates. In

the third section of this chapter, a unique method is presented by

which off-line BOD measurements may be projected to the time of on-

line estimation for specific stream and estuary systems.

The cost function to be optimized in the estimation develop-

ments is presented in the fourth section. The function is formulated

to represent realistic engineering cost considerations in water

quality analysis. It includes the variance of the estimate errors

which represents the costs of uncertainties in estimates and an

additional term representing the costs of making observations

(instrument cost, labor and so on). However; before these considera-

tions, a brief review of pertinent prior work on estimation theory

in lumped and distributed systems and earlier applications of the

multiple measurements concept are presented in the next two

sections.
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Estimation Theory In Lumped Parameter Systems 

Steady state lum ped systems.

Wiener [ 153 ] pioneered the procedure of designing an

optimum, physically realizable filter to extract and predict a

signal from a continuous stationary noise-contaminated measure-

ment. The predicting process is summarized in figure V.1 where

s(t) is the true signal which is contaminated by a random noise

n(t) in the measurement y(t). The desired output signal s*(t)

is a known function of s(t) where H(p) and h(t) are the frequency

and impulsive responses of the ideal predictor.

Owing to the random noise and in some cases physical unrealiz-

ability of the ideal predictor the actual output signal estimate

ŝ(t) contains an estimate error ε(t). K(p) and k(t) are the
frequency and impulsive responses of the actual filter.

Wiener's development based on the minimization of the

ensemble variance of the estimate error ε(t) yielded a linear

filter of infinite memory. Later investigations by Zadeh and

Ragazzini [ 157 	 produced a more practical finite-memory

optimum filter. Franklin F45 	 ] and Lees [ 79 1 similarly

developed infinite memory and finite-memory filters for noisy

discrete measurement processes. Among the other early applications

of Wiener's theory were the processing of an analog signal from

noisy digital measurements r 89 ] and the use of spectial
factorization to develop Wiener-type linear filters for multi-

varible systems 	 67 	 -I.



K(p), k(t)
Actual Output

Signal ŝ(t)

Measurements

y(t)

Random Noise

n(t)

Actual Predictor

Estimate Error

€(t) = s*(t) - /:(t)

Desired Output

H(p), h(p)
Signal s*(t)

Ideal Predictor

FIGURE V-1. Prediction Process in Wiener's Theory
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The definition of multiple measurements technique in this

study is the use of noisy independent measurements of related forms

of a signal for the optimum estimation of the signal. From this

point of view one of the earliest estimation problems involving

multiple measurements was by Bendat 	 8	 ] wherein the author

extended Wiener's procedure to obtain linear time-invariant

filters for the optimum filtering of two related signals.

Bendat's problem is summarized in Figure V.2 where y
1
(t),

y 2 (t) are independent noisy measurements of signals s
1
 (t),

s
2
(0 which are related through the response function F(p).

The figure shows the process for the optimum filtering of signal

s 2
(t) using the Wiener-type optimum filtered estimate ŝ1(t).

Chang [ 	 19 ] solved a similar problem using the method of

spectral factorization. The above multiple measurement techniques

have found application in missile guidance systems [ 130 ]

where simultaneous measurements of position and acceleration were

used to Minimize the position deviation of a load of primary

inertia.

Hung [ 61 	 , 	 60 	 ] derived equivalent filters for discrete

noisy measurements having different sampling rates and from a

combination of continuous and discrete noisy monitorings of the

same signal. His results are useful in trajectory tracking where

it may be necessary to reduce the load capacity of a processing

digital computer by taking analog and digital measurements in

parallel.
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B(P)K(P)F-¹(p)

K(p)F-¹(P)

FIGURE V-2. Summary of Bendat's Multiple Filtering Process



Dynamic  Lumped Systems.

Often, the form of a signal is known only through a model of

the differential equation describing its dynamics. State estima-

tion in lumped dynamic systems was initiated by Kalman [ 65 ] in

deriving finite-time optimal filter for linear systems with noise

stationary noises. Kalman and Bucy [ 66 ] extended a similar pro-

cedure to discrete-time linear systems with Gaussian white noises.

These two pioneering works utilized a Bayesian approach of estima-

tion and have set a framework for numerous later investigations.

Extensive literature is available on recent developments in

estimation theory; one comprehensive reference textbook is by

Sage and Melsa [ 118 ]. A detailed review of estimation theory is

not the interest of this study, suffice to say that various classes

of problems have been studied including

(i) linear systems [ 65, 66, 26]

(ii) non-linear systems [32, 132 ]

(iii) time delay systems [ 15 ]

and (iv) stochastic systems [ 58, ¹55 ]

with various types of system and measurement noises among which are

(i) Non-Gaussian noises [46 ]

and (ii) State-correlated noises [¹7].
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For non-linear systems an optimal filter is generally infinite-

dimensional. Some investigators have achieved more practical

finite-dimensional filters by utilizing some of the following

approximations

(i) Taylor series expansion C 5 	 ]

(ii) Stochastic linearization [ 57 1 [ 119 ]

	

and(iii) quasi-linearization [ 132 ] 	 21 I.

The existing approaches to estimation problems in dynamic

systems include

(i) minimization of the mean square error [ 124 ]

(ii) minimization of integral weighted square error 	 32 ]

(iii) minimum variance method [ 20 	 [ 4 ]

(iv) Bayesian approacy [ 65, 66, 58]

(v): optimal control theory [ 4, 77 ]

(vi) characteristic function approach [ 143

(vii) orthogonal-projection lemma [ ¹42 ]

and (vii) Fokker-Plank equation approach [ 144 ]

-62-



The procedures of solving the derived filtered equation may

include

(i) analytical solution [ 8

(ii) numerical analysis method [ 86 ]

and (iii) dynamic programming [ 26 ]

Most of the preceding publications have developed estimation

schemes based on noisy measurements of only one form of the state

vector. From the point of view of this study, multivariate measure-

ment vectors and discretized measurements of the same form of the

state vector are considered special cases of single measurements

techniques.

Very few researchers have actually applied the techniques of

multiple measurements or provided precedures adaptable to multiple

measurements concepts. With a shaping filter a system having state-

correlated noises (colored noise) may be reduced to an augumented

system in which all measurements either contain additive white

noise or are noise-free. Bryson and Johansen 	 17 	 using a

matrix partitioning method have estimated state vector from such

a mixture of measurements.

Chang [ 20 	 1 developed an algorithm for state vector

estimation based on noisy discretized measurements. At zero

limit of the time interval, the algorithm reduces to a filter

for continuous measurements. A combination of both results

yielded a state filtering algorithm based on multiple discrete and
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continuous measurements of the state vector. This particular

paper represents a good application of the multiple measurements

techniques and sets a basis for the theory developed in this study

for distributed parameter systems.

The theory of multiple measurements has been applied in some

cases of real engineering problems. For a class of linear augmented

system representable by a steerable antenna control system Perlis

[ 106 ] used the spectral factorization method to develop sub-

optimal filters based on continuous and discrete noisy measurements

of the same signals. Also, Mehra [ 86 	 ] has applied a similar

multiple measurements approach to parameter identification in an

aircraft using noisy measurements of the state vector and its

derivatives.

Estimation Theory In Distributed Parameter Systems 

Tzafestas and Nightingale have contributed significantly to

the literature on estimation in distributed systems. In [ 142 ],

optimum state estimate in a class of distributed system was

derived from noisy distributed (spatially and temporally)

measurements. The estimate, formulated as a linear transformation

of the measurements, was obtained by utilizing an orthogonal-

projection lemma technique. A characteristic function approach

was applied in [ 143 1 to a similar problem to obtain results
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for state-correlated noises. Another publication [ 144 ] by the same

authors considered a Bayesian maximum likelihood approach to the

filtering problem in non-linear distributed systems. Differential

dynamic programming was applied to solve the filtered equations.

An important limitation of the preceding studies is the

assumption of distributed form of measurements. In practice, as

in the case of water quality systems, distributed measurements are

not available. Meditch [ 85 1 coped with this difficulty partially

by considering a scanner-type measurement which is only distributed

in time. Thau [ 136 ] has considered a more practical scheme

where measurements are taken at a point in the spatial domain. The

results of the work have been further developed in this study to

include cases of multivariate systems with several monitoring

stations. In addition, the problem of the optimum number and the

optimum spatial locations of monitoring stations considered by

Pell [ 103 	 ], Se infield F 125 1 and Perlis [ 107 ] is studied

with a comprehensive approach and presented in detail in Chapter VI.

The preceding sections have presented a review of the status

of estimation theory and multiple measurements application in prior

works. In the next two sections, the measurements projection

schemes and the cost functions to be employed in the development

of the multiple measurements techniques in this study are pre-

sented.
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Off-line Measurements Projection In Water Quality Systems

Application to a stream model.

A special scheme is required to properly utilize off-line

measurements in an optimum on-line estimation or control problem.

In the following, measurements projection techniques developed to

project an off-line BOD measurement to the point of on-line

estimation in a specific stream model, is presented.

Figure V-3 shows the definition of the time variables employed

in the development. For a specific stream or estuary system, the

approximate linear function relating TOC and BOD concentrations is

represented by

TOC (x,t) = TG * BOD (x,t) + TIN 	 (5.¹)

where TO is the slope and TIN is the intercept. Numerical values

for TG and TIN depend on the characteristics of the pollutional

load to -'hick the stream or estuary is subjected and, therefore,

may vary for different streams or over different reaches of the same

stream. These constants may be evaluated from the readings of the

values of TOC and BOD in a particular segment and under steady

state and steady load conditions. Typical values for TO range

between 1.55 and 2.55 [ 44 	 , 40 	 , ¹14 ].

The set of TOC and DO readings taken on-line at point

(xm. i T
) is then represented in terms of the state vector as



FIGURE v-3, 	 Definition of Time Variables for Delayed Measurement Projection



(5.2)

where T is the on-line sampling period which usually has a range from

a few minutes to a few hours. The first component of Y is the re-

sult of substracting TIN from the TOC readings. The measurements

noise vector 	 ( i T) is represented as a zero mean white noise with

a variance term

(i. T), the noise associated with the TOC measurements repre-

sents the lumped effects of both the linear approximation and the

instrument errors.

In practice, water samples for BOD measurements are taken at

several hours interval. This rate is shown as T 1 in Figure V.3

where fôr convenience T1 is considered to be an integral multiple

of T. In addition, there is a fixed time delay, T D before the

values of BOD readings are obtained. For an on-line estimation or

control analysis it is desired to write the delayed measurements

taken at (x
D j T 1 - TD ) in terms of the state vector values

at the on-line estimation point (xm , j T 1 ).

The delayed measurements in terms of the state sector value

at (x D , j T 1 - T D ) is represented by
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(5.3)

where vector T includes off-line BOD and DO (added for symmetry of

vector representation) readings. Again, the noise element is con-

sidered zero-mean white type with variance

The expected value of the state vector from (5.3) becomes

(5.4)

By substituting in Chapter IV

U

from (4.8)into (4.7), it follows that for a stream with negligible

dispersion, the current state profile V (x ,t ) may be written in

terms of its previous values at xD as

(5.4)

At (x
m , j T 1 ) equation (5.4) yields
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(5.5)

If xD is chosen such that

, then (5.5) becomes

(5.6)

Similarly, the expected state vector V (x D, j T
l 

- T
D
) from the

delayed measurements in (5.3) may be projected to (xm , 	 T i) using

(5.6) as follows

(5.7)

Substituting (5.3) and then (5.6) into (5.7)

The above is rewritten as

(5.8)

Where for the above assumptions M (j T
1 ) = I (unitary matrix)
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The noise is still zero-mean

(5.9)

with a variance

(5.10)

where

(5.11)

Thus, the delayed measurements represented by (5.3) may now be

represented on-line as formulated in (5.8). At i T * j Tl, only

one set of measurements is available to the on-line estimation

scheme as represented by (5.2). However, at i T = j T
1 

both sets

of measurements (5.2) and (5.8) are available and may both be used

as on-line measurements.

Application to estuary models.

It n',37 be observed by comparing (5.3) and (5.8) in the pre-

ceding development that the projection scheme results in the modi-

fication of the noise component through an operation of the

impulsive response 	 (j T 1 , j T
1 

- T
D
). The contributions at

(xm , j T
1
) of the errors in the delayed measurements have the same

effects as instantaneous initial conditions imposed on the system

at (xD , j T I - T D ). This result is very useful in that it may

then be extended to the estuary models in which the impulsive

responses are known.



In the following, only the projection of off-line BOD

measurements are considered because of the complexity of the DO

impulsive response. BOD distribution responses to slug inputs

have been derived for various cases of estuary conditions in (4.10),

(4.12) and (4.14). Equation (4.10) may be rewritten as r 55 ]

(5.11)

where Lo is a reference initial concentration

A is the cross-sectional area of the estuary and 0 is a transi-

tion function

(5.12)

If the delayed BOD measurement, taking at a point (x D , j T 1 - TD ),

is represented as

(5.13)

it follows from equation (5.8) and (5.13) that the corresponding

on-line representation at (x
m , j T1¹

) becomes

(5.14.)
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where the modified noise component is

(5.1 5 )

with a variance

(5.16)

The expressions for the on-line representation of off-line BOD

measurements in Other cases of estuary conditions are similar to

equations (5. 1 4), (5.15) and (5,16) with the following modifications

(1) for the tidal river with oscillatory flow ,,,,equations

(4.10), (4.11), the term U in (5,15) is replaced by u.
r ,

the velocity of fresh-water flow.

Also, the transition function 0 becomes the coefficient

of W in equation (4.12) evaluated at x=xm, x0 = x
m 	 o 	 D'

t 	 j T1, and t o = j T 1 - TD ,

(ii) for the two-dimensional estuary example in equations

(4.13) and (4.14) the term u in (5,15) is replaced by

uF and the transition function (1) is the coefficient of

W in equation (4.14) evaluated as above.
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This concludes the development of the off-line measurements

projection to the time of on-line estimation. Although only

delayed DOD measurements are considered in the estuary cases, other

laboratory methods of measuring DO may include a fixed time delay.

In that case ; a similar projection scheme May be developed based on

the DO transient response, when available Nit- an estuary model.

Without loss of generality, another set of on-line 00 measur e _

ments are assumed in later chanters to enable the use of measure-

ment vectors such as in equation (5.8).

Optimization Criterion

Th e general formulation of the optimization criterion to be

employed for the on-line estimation problems treated in later

chapters is now presented. The formulation aims at a realistic

representation of the cost considerations in water pollution

problems.

The cost function used in this study is written as

(5.17)
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The variance term represents the costs of possible damage

to such benefits as recreational facilities, aquatic life and so

on, due to uncertainties in estimates. This may be regarded

as the economics of irreplaceable assets [ 59 	 , 	 70 	 1 •

The remaining terms represent costs of observation which may

include instrument. and operational costs

More detailed definitions and th e methods by which the various

cost factors (,(5 and a), may be evaluated rite dis c uss ed in

Chapter X. The development of the estimator indicator e (x
m
, i T)

whose optimum values dictate measurements strategy (such as the

optimum number and temporal intervals between measurements) is

also presented in that chapter. The estimation problems presented

prior to Chapter X employ only the variance part of the cost

function.

This chapter has presented the background literature on

which the estimation techniques developed in this study are based.

In addition, the role of this study in the general state-of-the-art

of water pollution analysis has been discussed. Also, a projection

technique for the optimum utilization of off-line measurements

for on-line estimation and control in water quality systems has

been presented as part of the contributions of this investigation.

Subsequent chapters include other important aspects of the multiple

measurement techniques developed in this study namely
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(i) optimum measurement strategy (Chapter VI and X)

(ii) optimum parameter estimation (Chapter VI and VII)

(iii) optimum Kalman-type filtering in distributed systems

(Chapter VIII and IX).

Numerical results obtained from the application of the

measurements techniques developed here, to state and par ameter

estimation in some specific stream arid estuary examples are also

presented.
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CHAPTER VI 

OPTIMUM SPATIAL MONITORING STATIONS 

IN DISTRIBUTED PARAMETER SYSTEMS 

An important engineering problem in modeling and control is

that of estimating the state and parameters of a dynamic system

From field data which !-18 often corrupted with noise, Consequently,

the numerical accuracy of any estimated .va r iable depends both on

the quality of the data used arid the strategy by which the data

are acquired.

For estimation in a lumped parameter system with continuous

monitoring, the problem of measurement strategy is that of

determining the optimum length of time over which measurements may

be taken. In the case of discrete monitoring, the problem be-

comes determining the optimum number and sampling intervals of

measurements on which an estimation scheme is based. One approach

to this problem is presented in Chapter VI of [ 118 1 for a non-

dynamic , system with colored noise.

The question of measurement strategy is even more critical in

dynamic distributed systems because instruments capable of tempor-

ally and spatially continuous monitoring are rare in practice.

The scanner-type of measurements suggested in [ 	 85 1 is applicable

only to special cases of distributed systems with large time constants such

as heat transfer systems or to a steady-stream having a known

mean velocity. It may be inadequate for a two-dimensional dynamic

estuary.
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While extensive literature is available on state and para-

meter estimation in systems of various types, very few contain

a systematic approach to determining where and when measurements

may be taken. Field engineers tend to rely on experience with

emphasis on the constraints imposed. on measurements by the physical

nature of the system being considered, Theoretical papers often

assume either continuously distributed measurements or an

arbitrary number of samples taken at equal intervals.

Among the merits of these approaches 1.8 the ease of analysis,

However, when an important factor such L18. cost of making measure-

ments is considered, neither of these approaches is optimum. This

point is well illustrated in the publications by Berthouex and

Hunter 	 lo 	 1, [ 11 	 where an analytical approach is pre-

sented for planning BOO experiments in a steady-state scalar BOO

equation. Nahi [ 88 ], Cooper [ 24 ], Cooper and Nahi [ 9 5 ],

Aoki and Li [ 	 6 ] have obtained the optimum number of observa-

tions for estimation and control of various examples of lumped-

parameter stochastic systems. Senfield and Chen [ 125 ] and

Thau [ 	 are among authors who have considered the problem of

optimum spatial monitoring location in specific examples of dis-

tributed systems.

In this chapter, statistical experimental design techniques

[ 11 ] are applied to develop a general method to determine the

optimum spatial monitoring locations for sequential filtering and

parameter estimation in a non-linear, dynamic multivariate distributed
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system. The filtering and parameter estimation schemes are pre-

sented in later chapters. The results of the development in this

chapter are formalized by two theorems given for the optimum number

and the locations of spatial stations for simultaneous monitoring

of each component of the state vector.

Recognizing that close-form solutions may not exist For the

partial differential equations representing many water quality

and other distributed systems of interest, the development in

the sequel is based on an explicit finite difference representation

(Chapter IV). Deterministic models with constant or time-varying

but spatially uniform parameters are treated. A model of this

type may represent a segment of a stream or estuary with constant

dispersion and decay rates coefficients. Such segments may be

combined by matching appropriate boundary conditions for a treat-

ment of a more general system [ 96 I wherein parameters vary

spatially.

Both types of instantaneous and delayed measurements in Chapter V are

(7,
considered. In each case, additive guassian white measurement

noise is assumed. The basic concepts of the measurement strategy

theory is first developed using an example of the scalar equation

representing the dynamics of biochemical oxygen demand in a

simple one-dimensional estuary. The theory is then extended to a
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multivariate system distributed in one spatial dimension. It

is further extended to a multivariate system distributed in a

multi-dimensional space. For the last two cases, the development

is illustrated through specific systems used in numerical

examples in later chapters.

Scalar One-Dimensional Distributed System

Consider a deterministic system

(6,1)

which represents the dynamics of biochemical oxygen demand con-

centration L (x,t) in a simple estuary or a tidal river with

constant coefficients. An explicit finite-difference representa-

tion of the state profile at any time t based on the profile at

a prior time t - 1 is

(6.2)

This may be written in compact form as

(6.3)
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and Ax and At are the spatial and temporal incrementation x 	 (x-1),

(t-1), respectively.

It is desired to obtain the optimum number and interval of

spatial locations at which BOD(Lx, ) may be monitored for an on-

line filtering or parameter estimation at any time, t. As

discussed in Chapter V, a linearly related variable, TOC can be

monitored on-line, and this will he used here

Initially, an arbitrary number M of guassian white noise

corrupted instantaneous measurements taken simultaneously at

spatial locations x i
7 x2,  are assumed. The measure-•

xM may be expressed as

(6.4)
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where the variance of the measurement noise

is assumed to be given, and h is a constant of measurement.

Since a deterministic model is assumed, a Bayesian estima-

tion cannot be obtained as discussed Chapter VI of [ 118 ]

Instead, a maximum likelihood estimate of L
x,t 

is considered.

For this, the conditional density function p 	 is needed.
Pyxm t/Lx,t

m,

From Equation (6.4) expressions for the following mean and variance

terms may be derived,

(6.5)

(6,6)

Because guassian white noise is being considered, the conditional

density function may be written as

( 6.7)



In addition, because the measurement are considered statistically

independent, the joint density function for all M measurements

taken at time t becomes

Maximum likelihood estimate is defined as the estimate ofLx,t

that maximized the density function P
m=1,2 -- M/Lx,t Pyxm

Only the expression in the exponent needs to be optimized, since

onlythisexpressiondependson Lx the density function. If
x,t

it can be assumed that the profile L 	 is known exactly, then it
x,t-1

follows from equation (5.2) that only the estimates of the para-

meters E, U and K r are required for optimization. Usually, only

A
estimates L 	. of L	 are known with an associated variance

x, t-1 	 x,

of estimate error. This is the subject of later chapters. With-

out loss of generality it is assumed here that L 	 _ is known
x, t-1

exactly.

For the density function to be maximum with respect to the

parameters, it is sufficient that each element in the summation

sign be zero. That is
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This condition may be expanded using equation (6.3) as

(6.9)

where CT is an M x N matrix

T 
=

ii is a M x M matrix

and F are M x 1 vectors

and N is the dimension of the parameter vector.
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It follows from matrix theory [ 100 I that the M x N matrix

G must have a minimum rank of N for a complete solution of the

A
N x 1 parameter vector P. It follows then that the minimum number of

spatial independent measurements is N. This is equivalent to a

single replicate of Box-Lucas design C 14 1. In practice,

it is desirable to have as much data as possible subject only to

the cost of acquiring and procesing additional data, so as to

increase the confidence of estimates. Where additional measure-

ments are possible, they may be taken at spatial points that

satisfy the criterion of replication of Box-Lucas optimum design

[ 149 1, [ 45 1 [ 	 79 1.

The estimate of the parameter vector. P is unbaised because

and it has a variance

(6.10)

where
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Having established the minimum number of spatial measure-

ment stations as N, the optimum values of x 1 , x
2 

--- x
N 

are

desired. These are determined to minimize a measure of the

variance matrix. It is chosen, for computational convenience

to maximize the trace of the inverse of the variance matrix.

Other measures such as the determinant of the matrix may be

used [ 11 I. The trace term may be written as

(6.11)

(6.12)

is the j 	com p onent:
th

where g 	 i 	 componen of the g 	 vector. The traceIx 1,t 	 i ,
1,

term is maximum at the spatial points x.
j, j = 1 --- N where the

th
absolute value of the j 	 element at the sensitivity vector g is

maximum in the spatial domain,

For the specific numerical example used in the section, the

optimum number spatial monitor .0 paint: at time L is 3 and the

measurements points are

(6.13)

(6.14)
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(6.15)

where h
xt 

and σ²x,t are considered constants.
, 

In case of multiple measurements, additional data taken at

time (t T) may be available at time t (Chapter V). This data

may be represented as

A similar analysis shows that the optimum monitoring locations at
9

t - T maximize the terms [g 	 , In addition, the optimum
J , L, 	 i' - 1

monitoring stations at time t remain the same. However, the optimum

parameter vector estimate using both sets of measurements y 	 z
X 	 X
M 	 m

and following the analysis in the next section becomes

where 0 and B 
-1
 contain the measurement constants and variances and

Z represents the measurement vector at time L - T.
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Multivariate One-Dimensional Distributed System

The measurement theory developed in the previous section

is now extended to a two-dimensional state system distributed in

one spatial dimension. An example of such system is the coupled

dynamics of dissolved oxygen (DO) and biochemical oxygen demand

(SOD) in a one-dimensional estuary. The partial differential

equations are (Chapter II).

(6.16)

(6.17)

Various considerations necessary for the representation of

tidal velocity U(x,t) and photosynthesis P(x,t) have been discussed
(x,t)

in Chapter III. For the purpose of this section, it suffices to

represent them as

(6.18)

(6.19)

where U
F is the velocity of freshwater flow, U is the maximumT

tidal velocity and P is the maximum rate of dissolved oxygen

contribution due to photosynthesis ωT and ωD are tidal angular

frequency and diurnal angular frequency respectively. IL is also

assumed that K
d
 = K

r
.
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The explicit finite-difference representation of L 	 is x, t

given by equation (6,2) and Cx,t may be written as

(6 .2 Q)

Equations (6.2) and (6.20) may be written in compact forms as

(6.21)
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The dimensions of the preceding vectors vary with the parameters

that need to be updated in the estimation scheme. In general,

the parameter vector may be written as

(1)
, P 	 are rwhere P 	

(2) 	
(1) x 1 and r

(2) 
x 1 vectors that include

(11)
the parameters in each of equations (6.16) and (6.17). P

(22) 
are r(¹¹) x 1 and 

r(22) 
x 1 vectors containing the para-

meters unique to each equation and 
P(12) 

is a 
r(12) 

x 1 vector

containing those parameters contained in both equations. The

motivation for this matrix partitioning scheme will become obvious

in the sequel.

By an analogy to the scalar system of the previous section,

an arbitrary number M of on-line measurements of each state variable

v
(1)

, v
(2)

are available at time t as

(6.22)

(i) 2
with measurement error variance σm (i)² 	 , i = 1,2.
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The equivalent optimization criterion for a maximum likelihood

estimation may be written as

Beyond the assumption in the previous section, the above formu-

lation further assumes that the measurement errors of each vari-

able are statistically independent. In practice, this assumption

may be hard to justify. Box et al [ 15 ] and Hunter [ 62

have considered some problems associated with measurements

correlation in multivariate systems. The latter discusses con-

ditions under which the optimization criterion may be formulated

as done above and also proposes a more realistic criterion that

depends on measured expected errors.

The sufficient condition that maximizes the joint density

function in this case yields

L
(i) T 	 (i) = H(i)-¹ Y

(i)
- F (i)

(1)
The matrixes R (i) (i)  and vectors Y (i) F are similar to

those in the previous section for each state equation. In addition,

the M x r (i) and M x r
(2)

matrixes L
(1)T

L
(2)T

contain all non-

,(1)T 	 (2)T
zero elements of matrixes C 	 and G(²) For example
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A complete solution of P(i) requires that the N x r (i)

matrix L
(i)T

have a minimum rank of r (i) . It follows that the

minimum number of spatially independent measurement of variable

(i)
vx

for optimum filtering and parameter estimation at time t he
t

r (i) , the number of unknown independent parameters in the i th

state equation. Thus this can he formalized by the following

theorem.

Theorem I: For on-line filtering and parameter estimation in a

multivariate distributed system, the optimum number of spatially

independent measurement of a variable at time t is the same as

the number of independent parameters unknown in the state equation

of that variable at time t.
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The resulting variance terms are

(6.25)

These results reduce to those obtained in the last section for

i = 1. Similarly, the trace of the variance term

(6.26)

is maximum at spatial points x
(i) where the sensitivity coefficient

(0
[g. 	 ]² is maximum for j = 1, 	 r(ii)j,x

For the coupling parameter P(¹²) , equation (6.23) yields

(6.27)

The trace of inverse of the variance of the coupling parameter

vector P(¹²) after some matrix manipulation becomes

(6.28)

where
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the sensitivity coefficients is maximum in the

Similarly, this trace term is maximum at the spatial points where

spatial domain. The preceding results also may be formalized by

the following theorem.

Theorem II: For optimum filtering and parameter estimation in a

th ith
multivariate system in which the 	 state variable is written as

(i) 	 P (i) 	the optimum monitoring locations of each variable

(i)V 	 are such that the sensitivity coefficients

(i) 	 th
maximum for each i and j, where P. 	 is the j 	 element of the

parameter vector P (i)

Although this was generated in a very general way, the results

of the theorem resemble the results obtained in the crude work of

McCormack and Perlis [ 	 ]•

For the example used in this section, the monitoring loca-

tions for the variable V
(1) at time t are

are
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(6.29)

(6.30)

Multivariate System Distributed In A Multi-dimensional Space.

The optimum monitoring theory developed in previous sections

is now extended to the distribution of pollutants in a salinity

intrusion region of a two-dimensional estuary with a one-dimensional

flow represented by
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(6.31)

(6.32)

In a study of velocity profiles and dispersion in estuarine flow,

Segall and Gidlund [ 123 ] concluded that for an estuary wherein

the period of vertical mixing may be much greater than the tidal

period, the vertical variation in velocity may be represented as

X is a function of eddy diffinity and tidal frequency G. In

addition, Ippen and Harleman [ 52 ] have shown that time-

averaged tidal velocity has a logarithmic vertical profile in

saline estuary. These two effects are combined in the following

approximate representation of tidal velocity to be used in

equation (6.31) and (6.32).

where zo is the estuary depth and xo is the length.

As illustrated in the last section, the system equation

(6.31) and (6.32) may be written in explicit finite difference

forms as
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(6.35)

where subscript s represents the coordinates of a general spatial

point (x,y,z), which in this case is (x,z), and P is a vector

containing unknown parameters of the system.

With this formulation, the development of the optimum

measurement stations is identical to the one given in the last

section and the given theorems apply. For a parameter vector,

E
x

z

U

U
T

K
r

K
a

and similar types of measurements given in the last section. The

optimum measurements stations at time t for this system becomes,

(1)

2

for V
s,t
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(6.36)

(6.37)
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This chapter has presented a general method for determining

the optimum spatial monitoring stations in a class of distributed

parameter systems. The method is based on statistical experimental

design techniques. In the development, the explicit finite

difference representations of the systems are used; the extension

of the results to systems with known analytical closed-form

solutions is straight-forward. The results are formalized by

theorems given for the optimum number and locations of monitoring

stations. The implementation of the results for specific estuary

models has also been presented.



CHAPTER VII 

STREAM PARAMETER ESTIMATION EMPLOYING

STOCHASTIC APPROXIMATION AND MULTIPLE 

MEASUREMENT TECHNIQUES 

It is often of interest in water quality modeling, after the

pertinent hydrodynamic and biochemical processes are formalized

by mathematical equations, to determine the numerical values of

the various parameters in the equations. This is an important

part of modeling because management and control policies are often

based on predictions from such models.

As discussed earlier, only a few variables in a water quality

model can be measured directly and even fewer are measurable on-

line. The present methods of evaluating such parameters as the

BOD removing coefficient, reaeration and photosynthetic rates are

off-line techniques based on empirical curve-fitting of SOD, DO

and temperature readings 	 [ 82, 30 1. In addition, that type of

analysis usually provides parameter values which represent steady

state and steady load conditions. However, very few water systems

remain under steady conditions for an appreciable length of time.

In this chapter, stochastic adjustment techniques are used

to derive numerical values for the optimum estimates of the state

and parameter profiles of a polluted stream reach. Estimation is

based on a special class of multiple measurements treated in



Chapter V. These measurements include noisy on-line TOC and DO

and the off-line analytical five-day noisy BOD measurements. For

the purpose of this study, the relating function between TOC and

BOD is assumed to be linear and the deviation from such approxima-

tion is considered a noise at the instant of measurement. The

TOC measurement error thus consists of the calibration error and

the instrument noise, and consequently, it is considered much higher

than the noise in the corresponding BOD measurement.

The cost function to be optimized consists of the square of

the instantaneous difference between measured concentrations and the

concentrations predicted from the mathematical model. The optimum

parameter minimizes the average of the cost function in the mean

square scense.

Over restricted intervals of distance and time, the stream

rate coefficients can be treated as constants.For this special

case, the Robbins-Munro stochastic approximation technique [ ¹¹7 ]

is employed. A similar problem was studied in [ 71 ] in which

only the on-line DO data was used because of the five-day delay

associated with BOD measurements. The multiple measurements

techniques developed in this study copes well with this problem,

and the results in this chapter show an improvement over the

estimates and the rates of convergence that may be obtained from

a single set of measurements.
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In a real stream, the coefficients are not constant and sources

and sinks for photosynthesis (P) and respiration (R) vary from their

daily-averaged values. This chapter also considers the more realis-

tic diurnal variations in temperature which, in turn, cause the

rate coefficients and the P - R terms to vary with time. In this

more general case, a stochastic tracking technique [ 191 is used.

The sequential algorithms derived in both cases yield optimum

parameter estimates that converge to their true values asymptoti-

cally and with probability one.

Two methods are used in this and subsequent chapters to in-

clude the additive measurement noise. One method considers a

fixed error variance for each variable while the other considers a

variance term that is a fixed proportion of the expected measured

value of the variable. The latter represents more realistically

the characteristic of measuring instruments as discussed in Chapter

III.

The rate of convergence of the algorithms decreases with the

level of the system disturbance and measurement noises. It also

varies with the measurement locations. The results presented in

this chapter include the studies of the choice of fixed measure-

ment stations for both the daily-averaged case and the diurnal

variations case with respect to various measurement noise levels.
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A numerical example is given for each of the two cases dis-

cussed. In both examples improved estimates and faster rates of

convergence are shown to result from using a multiple measurements

technique.

Problem Formulation

Stream Dynamics.

A stream model of the type presented in equations (2.13) and

(2.14) in which the dispersion coefficient (E) and the urban

runoff term (La) are negligible is considered.

(7.1)

(7.2)

= BOD concentration mg/1

= DO cencentration mg/1

= stream velocity miles/d

= BOD-removing coefficient 1/day

= deoxygenation coefficient 1/day

= reaeration coefficient 1/day

= DO saturation level mg/I-day

= daily-averaged photosynthetic, respiration and

benthal deposit demand mg/1-day.
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The stream is assumed to be subjected to a steady daily-averaged

BOD loading (L
o
) at the upstream boundary, and also has a constant

DO boundary condition.

For the daily-averaged stream condition mentioned above,

the parameters in (7.1) and (7.2) are considered as constants.

For the case of the more realistic stream condition where the

parameters vary with temperature changes, the following empirical

expressions used by [ 134 ] are employed

(7.3)

(7.4)

(7.5)

(7.5a)

where in this treatment

and the diurnal variation of temperature e with time is represented

as

(7.6)

e is in degrees Kelvin and a T is the amplitude of the sinusodial

component.
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Measurement Scheme.

Two fixed measurement stations are considered in this develop-

ment; one station is located at the upstream boundary and the other

at an internal point in the stream to be determined in an optimum

fashion shortly. Off-line analytical noisy measurements of BOD

and DO with a sampling period T1 and a fixed-time delay TD 
are

assumed to be taken at the upstream boundary,

(7.7)

(7.8)

The measurement errors are treated as zero mean gaussian white type

with variances

The measured values (7.7) and (7.8) are used as initial conditions

along with current estimates of the parameters in (7.1) and (7.2) to

predict the concentrations LP (xM,nT), C, (xM,nT) at any measure-

ment point xM in the stream.

In addition, a multiple set of on-line TOC and DO noisy

measurements and off-line DOD and DO measurements are assumed to be

taken at xM. These latter readings are then compared with the
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predicted concentrations, and a measure of the instantaneous

differences is optimized to update the parameter estimates. The

off-line BOD and DO noisy measurements at xM are written as

(7.9)

(7.10)

Similarly, the on-line TOC and DO noisy measurements with a different

sampling period T, taken at xM are represented as

(7.11)

(7.12)

By comparing (7.11) and (5.1), it is evident that y
T 

represents

an adjusted TOC reading after the intercept constant TIN has been

subtracted and h represents the slope of the linear function be-

tween BOD and TOC values. Again the measurement errors are con-

sidered zero-mean gaussian white type with variances

The neasurement error ξT contains both the error of linear approxi-

mation and the instrument noise, thus it is considered to have a

higher variance than QL·
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The objective here is to obtain estimates of the parameters

Lo ,  K
r
, K

a and P - R that optimize a specified cost function to

be formulated in the next section, based on both sets of off-line

measurements (7.7), (7.8), (7.9), (7.10) and the on-line measure-

ments (7.11) and (7.12). For the sake of brevity, the P - R term

is represented as K in the sequel.

Cost Function.

Optimization implies the existence of a criterion. In this

chapter, the cost function considered is the weighted sum of the

square of the instantaneous difference between the noisy measured

concentrations and the predicted concentrations at the estimation

station xM. The function is formulated for each variable as

(7.13)

(7.14)

where W 	 W
2'
 W3, W4 

are specified weight factors, the kroneker

delta
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and T
1 /T is considered an integer R. It is evident in (7.13) and

(7.14) that in addition to the on-line measurements, the cost

formulations incorporate the off-line delayed measurements taken

at mT
1 
and available at nT = mT

1 
+ T

D . The vector K contains the

parameters K
o
, Kr, K

a 
and Kp and represents their estimated values

Kp

at time nT. It is also noted that the predicted concentrations

are functions of the parameter estimates.

Sequential algorithms are desired for the parameter estimates

that minimize the sum of the cost functions.

(7.15)

asymptotically and in the mean square sense.

Stochastic Approximation and Stochastic Tracking Algorithms 

The derivation of the sequential algorithms is illustrated by

considering the terms in the J 1 component of the cost function. In

general, the solution of the system equations (7.1) and (7.2) at point

xM and after a time nT > xM/u depends only on the values of the
u

boundary conditions and may be written as

(7.16)
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(7.17)

where L (xM, nT), C (xM, nT) represent the BOD and DO steady state

solutions at specific points in the diurnal cycle. For the case of

the daily-averaged conditions where the parameters are treated as

constants, equation (7.17) reduces to

(7.18)

Similarly, the predicted BOD value based on the measurements (7.7)

at the upstream boundary and the current estimates of the para-

meters, may be written as

(7.19)

By substituting (7.11), (7.18) and (7.19) into (7.13), the J 1

component of the cost function becomes
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(7.20)

For a deterministic problem where p i, and
T 

are zero at all

times, it can be readily shown by setting

to zero that the estimate Kn r converges to its true value Kr at the

minimum of the cost function. In the case of the noisy system

treated ::ere, it is necessary, if the sequential algorithms are to

yield unbiased parameter estimates, that the statistical average

of the instantaneous gradient G (K n r) be zero as Knr converges to

K 	 18 I. That is
r

(7,21)

However, by taking the derivative of J
1
 with respect to K

r 
and then

n

taki ng the ensemble average at Knr=Kr ,

K r , it is evident that
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(7.22)

which is not necessarily zero. This inherent bias results from

using the noisy measurements at the upstream boundary (7.7) for

the concentration prediction; the bias may be removed by considering

a modified instantaneous gradient

(7.23)

which satisfies the condition in (7.21).

The Robbins-Munro approximation algorithm [ 117

(7.24)

may then be employed to obtain the zero-crossing of the term

E E {G (K n 	 n
r
) J. For the convergence of the parameter estimate K n r ,

A
n 

must satisfy the following conditions [117, 19 ]:

In addition, for the parameter to converge to its true value
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where

(7.25)

(7.26)

Detailed proof of these conditions are contained in [ 117 ] and the

algorithm formulated as above has been shown F 12 1 to converge in

the mean square sense

and with probability one

A sequence that satisfies these conditions, A
n 

= 1.1- is used in this

study.

The preceding development involves the estimation of a single

parameter K
r 

in a constant parameter daily-averaged stream model.

For the simultaneous estimation of all the parameters, the generalized

algorithm follows from a similar procedure and may be written as

and K n j represents the current estimate of each of the parameters

L, K and K .
o, r 	 a
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For the case of the diurnally varying system, the development

differs to the extent that the instantaneous cost function J (n)

is actually a function of a function. Its value depends not only

on the instantaneous values of the parameters at nT but also on

their values at previous times. That is

(7.27)

A change in J (n) could result both from the measurement error at

nT and the change in the parameters due to temperature variation.

If it may be assumed that the tracking process to be developed

would yield parameter estimates Kn which are close to their true

trajectory K (nT), then K (nT) - K n is small and the first order

Taylor approximation Of (7.27) becomes

(7.28)

where 	 J (K 1 ) represents the gradient vector of the cost function

K
i

with respect to the parameter estimates at any time iT 5 nT.

By analogy to (7.23) and (7.26), the bias resulting from using

measured concentration values instead of the unknown true values to

predict the concentration level at the estimation point (xM, nT)

must be subtracted from the gradient terms in (7.28)
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(7.29)

element
for the j

th 
e lement of the parameter vector. The resulting

stochastic tracking algorithm may then be written in form of (7.25)

as

(7.30)

where Ci, j, i= 1, 2 	 n are the weighting factors associated with

the all present and past measurements. The analysis for the optimum

values of C
. 
for various examples of stochastic adaptive control

problems is contained in [ 19 I.

This concludes the derivation of the stochastic approximation

algorithms and the stochastic tracking algorithms for the constant

parameter and diurnally varying stream systems treated here. Imple-

mentations of these algorithms are given in the following numerical

examples.

Numerical Examples.

Judicious choice of A n , C. 	 determine the rate of convergence.

The experience in the preparation of this work shows that

provides optimum estimation in term of the accuracy of the final

estimate, in equation (7,30), where N is the number of parameters
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provides optimum estimation in terms of rate of convergence in

both (7.25) and (7.30). The weight factors W
1 ,
 W2, W3, W

4 
chosen

as the inverse of the corresponding measurement error variances in

(7.13) and (7.14) are found to produce the least value of the

mean square function [ 118 ]. For both numerical examples, the

following stream parameters are assumed constant

stream reach = 5 miles

stream velocity = 0.75 miles/day

true upstream BOD load L o = 30 mg/liter

true upstream DO boundary condition C o = 6 mg/liter.

The on-line DO and TOC measurements are taken hourly and the

off-line BOD and DO are taken every 12 hrs. with a 5-day delay. For

the case of the constant parameter daily-averaged stream, the follow-

ing true stream parameter were used in the simulation:

the daily-averaged temperature e = 290° K and the variation

a
T 
= O. This results in true stream coefficients



In one set of computer runs, the measurement errors simulated are

assumed to have constant variances for each variable

2
σ²T = (5)2

2

• 

= (0.5)
2

G2

• 

= (1.0)
2

Algorithms (7.25) are employed to simultaneously estimate the para-

meters Lo , K
r, 

K
a 

and K
P .
 Figure VII-1, illustrates the profiles

of the K parameter estimates based on various combinations of
r

measurements. It may be observed that both the convergence rate and

the final accuracy (after 7 days of iteration) of the estimate

based on the multiple measurements show considerable improvement

over those of the estimates based on either set of single measure-

ments.

In another example of the same system, measurement errors

with standard deviations which are fixed proportions of the expected

measured values are considered

σT = 207 expected TOC measurement

L

•

 = 1% expected BOD measurement

c

•

 = 10% expected DO measurement.

Figure VII-2 again shows the improvement both in the rates of con-

vergence and in the final accuracy for the estimate of parameter

L based on multiple measurements.
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Time (Hours)

FIGURE VII-1. Parameter Estimation Using Stochastic Approximation
with Constant Observation Error Variances.

a) True value of K
r

,

b) Estimate of K
r from single (BOD-DO) measurements.

c) Estimate of K
r from single (TOC-DO) measurements.

d) Estimate of K
r from multiple (TOC-DO, BOD-DO)

measurements.
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Time (Hours)

FIGURE VII-2, 	 Parameter Estimation Using Stochastic Approximation
with Constant Observation Error Variance-to-Signal Ratio,

a) True value of L

b) Estimate of L o from single (BOD-DO) measurements,

c) Estimate of L
o 

from single (TOC-DO) measurements,

d) Estimate of L from multiple (TOC-DO, BCD-DO)
measurements,

o
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For the more realistic diurnally varying stream example,

temperature variation in (7.6) is employed to simulated the true

parameter trajectories in (7.3), (7.4), (7.5) and (7.5a) A peak

value of the sinusodial component a, = 10 ° K and the period

Figure VII-3 shows the resultant Kr 
estimate profile for the same

constant variance values of the measurement errors used above.

Figure VII-4 shows the K
a 

profile for the diurnal varying system

and measurement error with fixed standard deviation-to-expected

measurement ratio. Again, in both examples improved estimates

are obtained by using the multiple sets of measurements,

Optimum Measurement Station 

In a previous chapter, an analysis of the optimum measurement

stations was presented. However, in these examples an arbitrary

number (2) of measurement stations is assumed. This may represent

the situation in practice where a fixed number of stations already

exists on a river system. The optimum location of the interior

station xM for these examples is obtained by comparing the results

for various values of xM in the stream spatial domain. Figure

VII-5 shows a trade-off among the accuracies obtained for each

parameter. The significance of each parameter based on the

judgment of the engineer and the intended use of the stream

determine the location to be used for minitoring.



Time (Hours)

FIGURE VII-3. Parameter Estimat ion Using Stochastic Tracking Method
with Constant Observation Error Variances

a) True value of the daily --averaged K
a .

b) Estimate of the daily  — averaged Ka using single (BOD-DO)
measurements - (off sca le)

c) Estimate of the daily — averaged Ka using single (TOC-DO)
measurements.

d) Estimate of the daily averaged K using multiple (
TOC-DO, BOD-DO) measurements,



60 	 120 	 180 	 240

Time (Hours)

FIGURE VII-4 	 Parameter Estimation Using St ocha st ic Tracking Method
with Constant Observation Error Variance- 0-Signal Ratio

a) True valve of the iv-avera daily-averaged K

b) Estimate of daily-averaged K r 	 using s 	 (BOD-DO)
measurements,

c) Estimate of daily-averaged K r usi 	 (TOC-DO)
measurements

d) Estimate of daily-averaged ra ged K 	 us using ng 	 ltmultiple (TOC-DO,
DOD-DO) measurements, 	

r 	 •

- l22-



0.5 1.0 1.5 2.0

0

0

0

Miles

FIGURE VII-5. Optimum Measurement Stations for Parameter Estimation
Using Stochastic Approximation and Constant Observation
Error Variances
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In this chapter stochastic adjustment methods have been success-

fully used to estimate stream parameters. By employing a multiple

measurements technique developed in this study, the results show

considerable improvement in estimated values and rates of convergence

over single sets of measurements. The methods developed and the

results obtained may be valuable in an on-line control of a polluted

river in which it may be necessary to track the time variations of

the critical parameters. The algorithms yield optimum estimates in

a sequential fashion. This may not be desirable in practice in

view of cost of making measurements. A more realistic cost function

that includes instruments and operation costs is studied in a later

chapter.



CRAFTER VIII

MULTIPLE KALMAN FILTERING IN A ONE-

DIMENSIONAL STREAM SYSTEM

In this chapter, Kalman-type filters are derived for the

optimum estimation of DOD and DO profiles in a one-dimensional

polluted stream with negligible longitudinal dispersion— Modified

forms of equations (2.11) and (2.12) which represent a stream

model developed by O'Connor [ 97 j are considered.

In a natural stream, parameters such as the velocity of flow,

the decay rates and other sources and sinks are distributed

temporally and spatially and may not be known a priori. Such

cases are treated in other chapters of this study. For the

purpose of this chapter, these parameters are treated as known

constants and the effects of errors in modeling are lumped into

driving. functions which are represented as zero-mean Gaussian

white noises.

Estimation is based on two sets of noisy independent

measurement vectors. One set represents on-line readings Of

TOG and DO concentrations taken at short intervals of time.

The other measurement vector represents off-line readings of SOD

and DO concentrations taken at a different sampling ra ce and

available after a fixed-time delay, T
D
	"F. The scheme or corn-' 

bining both set s of measurements employs the projection of the

doff-line measurements to the time of on-line est 	 presentimrion as

in Chapter V.



The optimum estimates of the BOD and DO profiles are derived

in two stages, namely propagation and measurements and correction

[ 20 , 136 1. The change in the estimate at sampling in-

stant is formulated as a linear function of all expected errors

of measurements.

The cost function considered is a subset of the general

formulation presented in Chapter V. Here, algorithms are derived

for multiple distributed Kalman-type filters which minimize

weighted variances of the estimate errors. The problem of the

optimum number of observations and their temporal spacing is

treated later in Chapter X.

Optimization of measurement stations are obtained to satisfy

a form of observability under steady-state conditions and the mini-

mization of the cost function. The improvements in estimation

obtained from using multiple measurements techniques are illustrated

both in the development and in the results of some numerical

examples studied. The effects of the levels of both system and

measurement noises are also studied.

Problem Formulation

Stream Dynamics.

The stream model is described by the following system of

partial differential equations
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ayx,t) + Uayx,t) =-K V 1 (x,t) +f (x,t) col (t)

at 	 ?,x 	 (8.1)

(8.2)

where

V 1 (x , t) = biochemical oxygen demand concentration mg/I

V
2
(x,t) = dissolved oxygen concentration mg/I

= stream mean velocity miles/day

K
r 	

= BOD removing rate coefficient I/day

K
d 	

= deoxygenation rate coefficient I/day

K
a 	

= reaeration rate coefficient 1/day

P,R,R 	 = daily averaged photosynthetic, respiration and benthal

deposits demand rates respectively (mg/1 - day)

f
1
 (x " f 2 (x,t) = functions representing the distribution of

the lumped effects of errors in modeling

w."(t), (L.)
2
 (t) = zero-mean Gaussian white noises.

Equations (8.1) and (8.2) are written in a vector formaction as

(8,3)
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where V 1 (x , t)

V
2
 (x t)

K
r 	

0

K 	 K
d 	 a

0

K
a 

C
s 
+ T -

(t)

w (t) is a zero mean Gaussian white noise vector with a covar-

iance matrix

(8.4)

The initial state profile is specified as

(8.5)

and the upstream boundary condition as

(8.6)

In practice, only estimates of the initial and boundary conditions,

usually established through measurements or prior analysis, are

known. The estimates of the state profile at any time t is

-128-



Λ
represented here by V(x,t) and the effects of initial estimate

errors are included in the analysis.

Following the development in [ 71 ], the solution of the

system's differential equation (8.3) using the method of character-

istics [ 33 ] becomes

(8.7)

(8.8)

For the example of the constant parameter stream model considered

here, the K matrix is time-invariant, and hence, the transition

matrix 	 (t, to) becomes

Measurement Scheme.

Following the presentation in Chapter V, the on-line measure-

ment of TOC and DO monitored at a station x
m 

and having a sampling

period T may be represented as
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v (xi 	 = H ( i. T) V (x 	 i T) + 	 (i T) 	 (8.10)m, 	 m,

The set of delayed measurements consisting of off-line discrete

BOD and DO readings, taken at another station x and available

after a fixed-time delay T D
, are projected to an on-line estimation

point (xm, j T
1
) and represented as

(8.11)

It is computationally convenient for this stream example with

negligible dispersion to choose x D 
such that

(8.12)

The optimum location of the station x m 
is treated later in the

chapter.

Both measurement noises are considered zero-mean and statis-

tically independent with respective variance matrixes written as
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For simplicity, the sampling period ratio T 1 /T is chosen as a

fixed integer N such that

( 8. 13)

Cost function.

Let the error between the true state profile V (x,t) and the

A
estimated profile V (x,t) be represented by

(8.14)

The cost function to be optimized consists of the variance of any

linear function of the estimate errors and is formulated as

(8.15)

where X (..) is specified vector cost factor and iT and iT repre-

sent instances of time immediately before and after measurements

are taken at time iT.

The objective is to obtain the optimum estimates of the state

profile V (x,t) based on all available measurements by deriving

algorithms for sequential filters which minimize the specified

cost-function.

0
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Derivation of Filter Algorithms 

A
The optimum estimated state profile V (x,t) based on the

multiple measurements (8.10), (8.11) are desired.

By analogy to the approach in [ 20 ] two important assumptions

A
are made. Firstly, for V (x,t) to be an unbaised estimate of

V (x,t), it is evident from taking the ensemble average of (8.3)

that the filtered estimate propagates between sampling as

(8.16)

Applying the solutions in (8.7) and (8.8) to (8.3) and (8.16),

the true and estimated profiles between sampling then become

(8.17)

(8.18)

where the condition

0 < u [t - (i-l)T] 	 x-x
o

holds for both equations.
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Subtracting (8.18) from (8.17) yields

(8.19)

The covariance matrixes of the estimate error are defined as

(8.20)

(8.21)

Applying these definitions to equations (8.19) an noting that

ω(t) is a zero mean white noise vector, the dynamics of the

covariance matrixes between sampling becomes

1) T]

(8.22)

and
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(8.23)

(i-l)T < t < iT

Equations (8.16), (8.21) and (8.22) provide the algorithms for

the dynamics of the filtered estimate and its covariances between

sampling.

The second assumption made in this development concerns the

formulation of the filtered estimate at sampling. The change in

the filtered estimate at sampling is assumed to be a linear

operator of all expected errors in measurements. This may be

written as

(8.24)

It is apparent from (8.24) that both sets of measurements are

included in the sequential estimation scheme at those time instances

when iT = jNT,K., X 	 are (2x2) matrixes which represent Kalman-
—1 	 j— 

type distributed filters. The algorithms for the filters are to

be obtained by minimizing the specific cost function given in

(8.15).
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(8.25)

it follows that the optimum filters may be obtained directly by

minimizing the covariance matrix .g (x, iT
+

)

Adding and subtracting V (x,iT) from the left hand side of (8.24)

substituting (8.11) and (8.13) and then collecting terms yields

(8.26)

where
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It is noted that i is a 2x2 matrix which is either a zero matrix

when only one set of measurements is available (jNT 	 iT) or a

unitary matrix I, when both sets of measurements are available

(jNT = iT).

Applying the definition in (8.21) to equation (8.26), the

change in the covariance of the filtered estimate may be expressed

as

(8.27)

where

Employing differential calculus, by substituting 	 + K

and X
1
. + Xi into (8.27) and collecting terms, it can be shown

that the necessary and sufficient conditions for 0 (x, iT
+
) to

be minimum are satisfied if the following expressions

Hi Q (xm, iT) HT + R.
—1

and

are at least non-negative definite for all i [ 20 I. R., L 1

and 2 (x 	 o) represent measurement and initial errors which are
m '

considered non-trivial. I exact initial profile and noiseless

measurements are available, there will be no need for filtering.
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It follows then that the above expressions are satisfied.

The optimum filters result from equating the coefficient of

X. to zero in the above development. The filter expressions

become

-1

(8.28)

and

(8.29)

where for brevity the following substitutions are made

(8.30)

(8.31)

Equations (8.28) and (8.29) apply at any time iT when both set of

measurements are available ∆i = I)_ —

For time iT, when only one set measurement is available [A. = o]
—

the optimum filter expressions become

(8.32)
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and

Substituting these expression back into (8.27) yields the change

in the covariance 2 (x, iT ) at sampling

(8.34)

Similarly, by putting the filter expressions into (8.24) and

employing the definitions in (8.20) and (8.21) yields

(8.35)

The developed multiple measurements filter algorithms are

now summarized as follows: Equations (8.16), (8.22) and (8.23)

give the dynamics of filtered state estimate at its covariances

between sampling [that is, (i-1) T < t < iT 1. They provide the

data required in the equations (8.28) (8.29) or (8.32) and (8.33).

The optimum filters thus obtained are used in (8.24), (8.34) and

(8.35) to compute the changes in the values of the filtered

estimates and its covariances at sampling.

It is noteworthy to observe some of the properties of the

multiple Kalman filters developed in the precedings. Firstly,

it is evident that equations for the multiple filters in (8.28)

and (8.29) reduce to (8.32) and (8.33) for the single filter

associated with one set of on-line measurements. It may be

inferred then that although the single Kalman filter (8.32) is
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optimum for a single set of on-line measurements, it is sub-

optimal when additional forms of measurements are available. This

is in fact the case and the proof is given in the following

development.

For simplicity, a scalar system is considered and the lower

case notations are the scalar reductions from their matrix

equivalences in the multivariate case treated above. For a

scalar system,the filter equations (8.28), (8.29), (8.32),

(8.33) reduce to

(8.36)

(8.7)

for the multiple sets of measurements

and

(8.38)

(8.39)

for single set of measurements.
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It is noted that whenever both sets of measurements are

available, the values of the filters are inversely proportional

to the level of the measurement noises.

The estimate error covariance (8.34) reduce to

(8.40)

for single measurements and

for multiple measurements. The relative improvement in estimation

measured by the reduction in estimate error variance for each case

is written from (8.40) and (8.41) as

It is evident that I multiple is a monotonic function of L with

values
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for 1 = 00

and I multiple > I single for 0 < 1 <

It follows that whenever any other set of measurements with

finite measurement error variances (1 t 00) are available, multiple

Kalman-type filters of the type developed above provide improved

state estimates.

Another property of the filters, used later in Chapter IX is

further presented here. If only one component (y
1
) of the on-

line measurement vector in (8.10) is available, the measurement

may be represented as

y
l 

(x
m
, iT) = h

l1 
(iT) V

l 
(x
m
, iT) + 	 (iT) 	 (8.42)

Following the same analysis used in the foregoing development

and considering for the sake of illustration only on-line estimation

time iT 	 jNT, the expression for the optimum filter associated

with the scalar on-line measurement is readily derived as

(8.43)
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where K. here is a 2xl vector and the (2x1) covariance vector

0 (x, xm , iT ) is defined as

(8.45)

Also, expressions similar to (8.34), (8.35) are obtained for the

changes in the covariance matrix .g (x, iT) at sampling with

vectors K., 	 replacing matrixes Ki and Q (x, x
m
, iT).

— 	 —

It may be observed that identical results are obtained by

directly substituting an infinite value for the measurement error

variance associated with the unknown measurement component

[r22 (iT)
 = c°]' in equations (8.32), (8.34) and (8.35).

It follows then that when only one component of a measurement

vector is available, a vector formulation such as in (8.10) may

still be used, with the measurement error variance of the unknown

vector set to infinity. This property enables the consideration

of a specific number M, of monitoring stations for both components

of the state vector even though the results in Chapter VI show

that optimum monitoring stations may vary for each state variable.

Optimum  Measurements Stations 

The relative monitoring locations, for the on-line and off-

line measurements have already been established in equation (8.12).

The choice of the on-line estimation station x
m 

is made to satisfy

the observability condition in a deterministic steady state stream.

The steady state solution of the noise-free system (8.l) and (8.2)

may be written as
-142-



(8.46)

(8.47)

Following the assumption in this chapter that the stream parameters

are known, the only unknowns are the boundary conditions L (o),

C (o). Observability of equation (8.46) and (8.47) are satisfied

if L (o) and C (o) are derivable from measurements of L (x) and

C (x) at any point x in the spatial domain. Following the develop-

ment in Chapter VI, for the simple stream model considered here,

an analytical solution of the optimum measurement locations is

possible. The sensitivity coefficient

2

is maximum at x =  1 	In ka and this point is chosen as the
ka-kr 	 kr

measurement stationx , For values of u, kr and ka typical of

streams as in the case of the numerical example in the next

- UT D ) where the delayed measure-section, the point xD, (xD = xm

ments are taken may fall upstream of the boundary. In that case,

the measurements may be taken at the upstream boundary where the

sensitivity coefficient
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is maximum.
L(o)

The theory of multiple measurements for optimum state

estimation in a class of distributed parameter systems representable

by a stream model has been presented in the preceding sections.

The implementation of the algorithms are shown in the following

numerical examples.

Numerical Examples

In the two numerical examples, time-invariant systems with

the following parameter values are considered.

K
r 
= 0.164 , Kd = 0.164, 

K
a 

= 0.658
, 

C
s 	

9 , 062

0 = 0.75, P - R = 0.921, 13 = 0,0

= 1.0, f 2 = 1.0 W
1

= 0.25
, 
W
2 
= 0.25

Tl/T = N = 24

H 1 = 2.5, H2 = 1.0 for all iT- 

X = 1 . 0
, 

X 2 
= 5.0 for all x.

The stream is initially at a steady-state condition long

enough to enable DO and BOD measurements of initial values. Sub-

sequent transient condition is caused by an additional dumping ofBOD (

V 1 (o,t) = 30 ng/l)at the upstream boundary at t = o. For

the following examples , measurements are simulated by adding a
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generated random number to an expected measurement value as

in equation (8.10)

Constant measurement error variances and zero observation costs. 

For this example

R
1 
= 25, R

2 
= 1.0

N
1 
= 1.0, N

2 
= 1.0 for all iT

YD = 0.0, 	 = 1.5 miles

Based on the noisy measurements taking, figure VIII-1 shows the

improvement in estimation at the critical DO sag point due to

multiple measurements, and also the parts of the variances of the

estimate errors.

Measurement error variances which are fixed ratios of the 

expected values.

This approach is characteristic of measuring instruments

with specified accuracies. Again, zero observation costs are

considered, along with the following

Standard deviation of TOC measurement = 10% of expected value

Standard deviation of DO measurement = 5% of expected value

Standard deviation of SOD measurement = 5% of expected value

XD = 0.0 and Xm 
= 1.5 miles.

Figure VIII-2 again shows the improvement in estimation at the

DO sag point due to multiple measurements and also the new steady-

state profiles.
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FIGURE VIII-l. Filtering with Constant
Observation Error Variances and No
Observation Costs.
Temporal Profiles of Estimates of DO and
BOD (0 and Spatial Profiles of Estimate
Error Variances (ii) Based on;

a) True values
b) Noisy measurements of TOC and DO
c) Noisy multiple measurements of TOC,

BOD and DO.



FIGURE VIII-2. Filtering with Constant
Observation Error Variance-to-Signal
Ratio and No Observation Costs.
Estimates of Temporal (i) and spacial (ii)
profiles of DO and BOD based on

a) True values.
b) Noisy Measurements of TOC and DO.
c) Noisy Multiple Measurements of TOC,

BOD and DO.
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Algorithms have been derived in this chapter for multiple

distributed Kalman filters for estimation of stream water quality

state profiles, based on measurements at different stations and

with different sampling rates. The results of Chapter V have been

applied to optimally utilize the off-line measurements in the on-

line estimation. Also, the results of Chapter VI have been applied

to establish the optimum measurement station where estimation may

be done sequential. Estimates based on typical stream parameters

and measured values have been presented in the numerical examples.

Figures VIII-1 and VIII-2 are typical of other results accumulated

for various other conditions of the stream model studied in this

chapter. The results demonstrate the consistent superiority of

the multiple measurements technique and encourage the use of

on-line TOC measurement in water monitoring and control. Cost

considerations have been omitted in the preceding developments,

and reserved for treatment in Chapter X.



CHAPTER IX

MULTIPLE KALMAN FILTERING IN ESTUARIES 

WITH UNKNOWN PARAMETERS 

The theory . of Multiple Kalman-type filtering developed for

a stream system in Chapter VIII is now extended for optimum

estimation of BOD and DO profiles in polluted estuaries. Specific

examples of estuary conditions considered include

(i) a one-dimensional tidal river with steady flow

(ii) a one-dimensional non-saline estuary with tidal oscilla-

tory flow

(iii) a two-dimensional saline estuary with spatially varying

tidal velocity.

In the cases treated, dispersion terms, reaction decay rates

and the amplitudes of tidal velocities are assumed to be constants

but unknown a priori. The stochastic approximation techniques

discussed in Chapter VII are utilized for on-line identification

of these parameters.

Estimation is based on multiple sets of on-line and off-

line noisy measurements taken at various stations. The optimum

locations of monitoring stations within the spatial domain of a

specific estuary system have already been studied in Chapter VI.

A similar method of projecting delayed measurements to the points

of on-line estimation employed earlier for the stream system is
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used. However, the projection equations based on the impulsive

responses of the estuary systems are more complex as evidenced by

comparing equations (4.12) and (4.14) with (4.10).

Because analytical solutions of the differential equations

describing estuary conditions are complicated and in several

cases unavailable, the developments in the sequel are based on

explicit finite difference approximations. The multiple filters

derived in these examples are suboptimal to the extent that the

above and other necessary approximations are made to simplify

the analysis and to obtain numerical results pertinent to the

scope of this study. When there is no limitation to the computer

time and size available to the researcher, procedures for obtaining

optimal filters for these specific estuary cases are discussed.

Again, a cost function consisting of only the variance matrix

of the estimate errors is optimized. The more general cost func-

tion that includes observation cost is treated in the next chapter.

Some of the numerical results obtained for the cases studied

here also are presented.

One-Dimensional Tidal River With Steady Flow 

Problem formulation.

The mathematical model for a one-dimensional estuary has

been presented in equations (2.11) and (2.12). Under uniform
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aL(x,t = E a²L - U 6L - K rL 	 L

')x

(9.l)
a

cross section, constant parameter and steady flow conditions,

these equations reduce to

( 9 .2)

Definitions of the variables and parameters are analogons to those

in Chapter VIII with additional terms E donating longitudinal

dispersion coefficient (sq mi/day) and L
a
, the rate of BUD in-

crease resulting from urban runoff (mg/1 - day).

For brevity, (9.l) and (9.2) are written in a vector form as

(9.3)

Usually, only estimates of the parameters E, U, K and S determined

from previous measurements or analysis are known a priori. The

stochastic approximation techniques applied to a water quality

stream model in Chapter VII may be employed in a sequential

fashion to update the numerical values of the parameter estimates

from available measurements. If parameter estimate errors may be

assumed small and E, for instance, is written as
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the equation (9.3) may be written in terms of current values of the

parameter estimates as

where the effects of the estimate errors have been lumped into a

driving function noise vector ω(t), and F(x,t) is the distribution

matrix. In general, the dynamic error thus formulated may be

zero-mean but state-correlated because the parameter estimates are

based on past estimates of the state profile. In that case

filtering methods such as in [ 17 I may be used. Without loss of

generality, the dynamic error in the development is represented as

a zero-mean gaussian white noise vector having a variance term

typified by equation (8.4).

The measurement representations to be used in the sequel differ

from those in Chapter VIII only to the extent that an arbitrary num-

ber M of on-line measurement stations are assumed here. Following

the development in Chapter VI, the optimum number and locations of

the monitoring stations vary with the number of parameters to be

updated on-line. In addition, although both components of the

state vector may not be monitored at a specific station, the

scalar measurement may still be formulated in a vector form and

the measurement error variance associated with the unknown component

is then represented by an infinite value as shown in Chapter VIII.
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With the preceding in perspective, the multiple measurements

are represented as

(9.5)

and

(9.6)

The second component of z (xm,jT1) is actually an on-line DO

reading included for a symmetric vector representation. Following

the development in equations (5.14), (5.15) and (5.16)

p1 (jTl) = U 0 Q11 (XD, jTl - TD)

where using (5.12)

(9.7)

and N
1
 is the variance of the delayed off-line BOD reading taken

at (x 	 jT 1 
- T

D
).

By analogy to equation (8.25), the objective here is to

obtain the optimum estimate of (x,t) based on measurements

(9.5) and (9.6) by deriving algorithms for sequential filters

which minimize the variance matrix of the estimate error
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(9.7)

Derivation of filter algorithms.

A
Again for V (x,t) to be an unbaised estimate of V (x,t), it

follows from (9.4) that the filtered state estimate propagates

between sampling as

(9.8)

By subtracting (9.8) from (9.4), the dynamics of the state

estimate error between sampling becomes

(9.9)

The analytical solution of (9.9) for general initial and boundary

conditions is unavailable. Instead, the explicit finite difference

solution between sampling is written as

(9.10)
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Collecting terms in (9.10) results in

A	 4 ~
V iT 	 = ax+1 Vx+1
	

b V
V-x, iT 	 —x

A

c 	 V 	 + tF 	 ω i-1
x-1 —x-1 	 x,(i-1)T

+ 
_(i-1)T

+ (9.11)

where

(9.12)

(9.13)

(9.14)

The spatial increment is

A x = 	 x

The dynamics of the error covariance matrix for any two spatial

points (x,y) between sampling is obtained by postmultiplying (9.11)

by its own transpose and taking the ensemble average. This results

in
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9
+ t² Fx 	 W F

T
(9.15)

Subscripts (i-1)T+-
	 A
in (9.11) and (i-1)T and 	 in (9.15) have been

dropped for clearity.

Explicit finite difference solutions of (9.8) and equation

(9.15) then represent the propagation of the filtered estimate and

its covariance between sampling time (i-l)T
+ 

and iT. They are

analogous to (8.16) and 8.23).

To complete the development, it is now desired to derive the

optimum filters from the available measurements at sampling. By

analogy to equation (8.24), the change in the filtered estimate

at sampling is formulated as

(9.16)

where

are the multiple Kalman-type filters to be derived by minimizing

the covariance matrix (9.7).
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Following a similar procedure as in (8.26) and (8.27) the

covariance matrix becomes

(x,iT
+
) = 2 (x) - 7 	 Nm 2 (x

m
,x) - 7 2 (x,x 

m
 ) NT
—m

m=1 	 m=1

(9.17)

and

Nm = Km H + Xm M A 	 (9.18)

where all expressions on the right hand side of (9.17) and (9.18)

are evaluated at iT.

Using differential calculus to minimize 2_ (x,iT+) by sub-

stituting (Km + AKm) and (Xm + AXm) into (9.17) and collecting

terms for the coefficients of AK
T 

and AX
T 

yields necessary

and sufficient conditions of optimization [ 20 1

+ X 	 A L 	 = 0 	 (9.20)—m _ —m

for

m = l, 2 --- M.
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The true optimum multiple Kalman filter are the solutions of the

simultaneous equations of matrixes (9.19) and (9.20). Although,

very complicated, a solution does exist. For example, for 	 = 0_ —

(single set of measurements) and with two on-line monitoring

stations (M=2), it can be readily shown that

-1
K = 	 (x,x2 ) H

T 
- K

l
 H 2 (x

1
 ,x ) H

T 	
111 	 (x2)
	
+ R

 2 	 21j
-9

(9.21)

and

(9.22)

where

Even for this simplified case, the matrix manipulation is

enormous. For a two-dimensional estuary where up to six. monitoring

stations are considered as in a later example, the matrix manipu-

lation becomes excessive. This motivates the derivation of a

simpler but suboptimal filter.

The suboptimal filters developed in the following derivations

are based on an assumption that there is little correlation

between estimate errors at any two independent measurement stations.



(9.23)

This assumption is valid in the limit as the measurement error

goes to zero. Substituting (9.23) into (9.19) and (9i-120) yields

(9.24)

(9.25)

for

The solutions of (9.24) and (9.25) yield the suboptimal multiple

filters K (x,x
m
,iT), X (x,x

m
,iT), i = 1,2 --- N with expressions

identical with equations (8.28) and (8.29) for time iT = jNT when

both sets of measurements are available. At iT 	 jNT, when

only one set of measurements is available the solutions of

(9.24) and (9.25) reduce to (8.32) and (8.33).

Substituting the filter algorithms back into (9.17) results

in the algorithm for the change in covariance matrixes Q (x,t),

Q (x,xm
,t) at sampling

(9.26)
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and

(9.27)

In summary, algorithms (9.8), (9.15) are used to compute the values

of the filtered state profile and its covariances between sampling.

They provide the data at iT to compute the filters from (9.24) and

(9.26). The resulting filter expressions are then used in (9.16),

(9.26) and (9.27) to obtain the corrections to be applied to the

filtered state estimate and its covariances at sampling. In

addition, stochastic approximation method developed in Chapter VII

are applied to update the parameters based on the available

measurements at sampling.

One-Dimensional Tidal River With Oscillatory Flow

The filtering problem here differs from the preceding only

to the extent that the tidal velocity term in (9.1) and (9.2) is

not a constant but represented as

U (x,t) = O
F 

+ U
T 

Sin w t

In addition, the corresponding projected off-line DOD measurements

error becomes

and from (4.12)
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With these modifications, the algorithms derived for optimum

filtering in the preceding section apply to this example of a

one-dimensional estuary with oscillatory flow.

Two-Dimensional Estuary With Salinity Intrusion 

The development here follows very closely to that of the one-

dimensional estuary; the major difference is the increased number

of terms resulting from the additional spatial dimension. Figure

IX-1 shows the comparison between the number of elements of the

profiles from the previous time-step required for the computation

of the current profile for both one-dimensional and two-dimensional

cases.

Problem Formulation.

The 'system considered here is represented as

(9.28)

(9.29)
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v(x,t)

( i ) One Dimensional Estuary

V(x-1, z-1, t-1)

(ii) Two Dimensional Estuary

FIGURE IX-l. Profile Computation in Estuary Systems

by Explicit Finite Difference Method
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A one-dimensional advective flow in the horizontal direction

is assumed and the additional term Ez represents eddy diffusion

in the vertical direction. The time-averaged component of the

tidal velocity is formulated as

(9.30)

to approximate the logarithmic vertical profile that has been

observed to result from salinity intrusion in an estuary [ 52 ].

In addition, a linear approximation of the results in [ 123

is employed in formulating the time-varying component

The tidal velocity term used in the following example is then

written as

(9.32)

The preceding approximations are made to incorporate realistic

estuary conditions and yet maintain computational simplicity in

the development.

Estimation is based on multiple sets of measurements
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The projected off-line BUD measurement error is again represented

as

where by using equation (4.14)

Again, a variance matrix cost function

is to be optimized.

Derivation of filter algorithms.

By analogy to (9i-18), the filtered estimate propagates between

sampling as
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(9.33)

Following earlier developments, the estimate error dynamics

between sampling becomes

(9.34)

The resulting dynamics of the covariance matrix between sampling

is straight forward from equation (9.15)i-1 It contains 25 combinations

of covariance terms of the type

-165-



which is the propagation of the error

dynamics. The term 2 (x+1, z; y,s; iT+) is the covariance between

the estimate errors at any two spatial points (x+1,z) and (y, ․ ). The

algorithms for the filters in (9.24), (9.25), (9.26) and (9.27)

are modified only by the additional dimension for this two-

dimensional estuary case.

The implementation of these equations on a digital computer

is straight-forward. Because, the estimation is done sequentially,

memory storage is needed only for the current values of the state

estimate profile and its covariances. However, for a large grid

size, storage may become a critical problem. Unfortunately,

the grid size cannot be reduced arbitrarily because this might

violate the stability conditions.

Numericali-1 Example 

For the following numerical example, a two-dimensional saline-

estuary condition of the type treated in the preceding section is

considered. Numerical values for the estuary parameters are as

follows

(i) physical parameters

estuary length ss = 5 miles

estuary depth zz = 30 ft.
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(ii) hydrodynamic parameters

2
longitudinal dispersion in x - direction E

x 
=.12 mi²/d

vertical eddy diffusion Ez = 5 X 10 	 ft /sec

fresh water flow at upstream boundary UF
 
= .25 mild

maximum tidal velocity U = 0.1 mild.

A non-linear distributed tidal velocity of the form

is used

where the tidal period TT = 2 7 = 12.4 hrs.

(iii) biochemical parameters

(iv) the system is assumed to be at steady state initially

with up-stream boundary conditions

V
l 

(o,z,0 ) = 20 mg/1

V 2 (0,z,0) = 6.5 mg/1
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(v) transient conditions are generated by an additional BOD

dumping at the upstream boundary

Multiple measurements of the type discussed in the text are used

in the simulation. On-line measurements of DO and TOC are taken

every two hours

and the off-line BOD measurements are taken every six hours with a

five-day delay

The standard deviation associated with the measurements are

standard deviation for TOC measurements VT = 5.0 mg/1

standard deviation for DO measurements VC = 1.0 mg/1

standard deviation for BOD measurements VL = l.0 mg/1

A linear function assumed for TOC and BOD values is

TOC = TG x BOD + TIN

where
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The parameters updated on-line in the simulation are E x ,

E
z
, U 	 U 	 K and K . The values of the initial parameter

F 	 T 	 r 	 a

estimates used are

For initial conditions of the state profile estimate, values

consisting of the true state profile and additive simulated

noise are used with variances

Initially, five BOD and TOC measurement stations and six DO

measurement stations located at equal interval along the center

line of the estuary are assumed. The subsequent locations of
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the measurement stations are obtained using the algorithms developed

in Chapter VI for optimum monitoring locations.

A spatial grid increment Dx = 0.2 miles and a temporal grid

increment DT = 1 hour were found to provide marginal stable solu-

tions. The results obtained by applying the distributed multiple

Kalman filtering algorithms developed in the text, to this specific

numerical example are shown in Tables IX-l and IX-2.

Table IX-1 shows the true BOD state profile and the estimated state

profile, with the corresponding estimate error variance after eight

days of estimation.

Similarly, Table IX-2 shows the true DO state profile and the

corresponding state estimate and error variance after eight days

of iteration. In addition, the optimum monitoring locations

compared with the uniform intervals originally assumed are

optimum DO monitoring stations
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optimum BUD and TOC monitoring stations

(x1 
z
l
) = (4.8 mile, 30 ft)

(x2, z ) = (4.8 mile, 30 ft)

(x3,
z 3 ) = 	 (3.2 mile, 18 ft)

(x4, z
4
) = (2.4 mile, 18 ft)

(x5, z5 ) = (4.8 mile, 30 ft)

A multiple measurements technique for optimum state estima-

tion in a class of non-linear dynamic distributed parameter systems

has been presented in this chapter. Algorithms for Kalman type

filters for both off-line and on-line measurements have been

developed. The development is based on the finite difference

representation of the state differential equations. The off-

line measurement projection method and the theory of optimum

spatial monitoring stations developed in earlier chapters have

been applied along with the filter algorithms in this chapter to

a realistic saline estuary model with non-linear tidal velocity

distribution. The results show improvement in estimate based on

multiple measurements. In addition, as it may be observed from

the BOD monitoring stations, the optimum locations are not

necessarily spaced at equal intervals.
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CHAPTER X 

COST CONSIDERATIONS AND THE OPTIMUM

ESTIMATOR INDICATOR

Optimization may be defined, in a broad sense, as a procedure

by which a specified goal is realized with the minimum amount

of effort possible. Thus, an optimization criterion, to be realistic,

should include both the penalty associated with any deviation from

the desired goal and the costs of the efforts expended. This

approach has found wide application in control theory -where often,

the problem is to obtain the optimum strategy for the control

effort.

As part of the contribution of this study, a realistic cost

function is applied to the problem of optimum estimation in water

quality systems. The various factors that may contribute to the

uncertainty of the estimated value of a water quality variable,

have already been presented in the previous chapters. These factors

include modeling approximation errors, instrument noises and other

errors that may result from the various empirical procedures by

which some water quality parameters are evaluated. The cost of

uncertainties in estimates, thus constitutes one part of the cost

function treated in this chapter. It represents the possible

damage to the water resource, that may result from management

and control policies based on uncertain informationi-1
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Furthermore, as it is the case in practical engineering problems,

significant costs may be associated with the acquisition of data on

shich the analysis of a system is based. Observation costs, which

for water quality systems, often include the costs of laboratory

apparatus, instruments and operational costs, constitute the other

part of the cost function considered in this study.

The formulation of the cost function as described above

implies a knowledge of the explicit significance of each cost

component. The determination of the observation costs can readily

be based, among other factors, on the wages of the laboratory

personnel, the price quotations and life expectancy of the instru-

ments [ 8, 48, 63 1.

However, the determination of the cost of uncertainties in

estimates presumes an explicit knowledge of the complete asset of

the water resource. The latter is a formidable problem that has

received considerable political, social and economic attention in

recent years, particularly because of the multipurpose use of water

resources. Extensive studies have been made on cost benefit

analysis [ 59, 16 1, to evaluate the asset of natural water systems

to assimilate wastes, and the detrimental effect of water pollution

on such benefits as drinking water supply, aquatic life and contact

recreation.



Alternatively, the cost of uncertainties in estimates may be

evaluated from the viewpoint of enforcement where a penalty is

imposed whenever a plant's effluent exceeds an allowable BOD

load limit. In addition, the costs of the improvement in treat-

ment facilities, artificial aeration and so on, which may be necessary

to maintain acceptable water quality conditions may be considered

[ 152 ].

The scope of this study is limited to an assumption that the

various pertinent cost factors discussed inthe precedings, are

available. The contribution here is the application of these factors

to obtain an optimum observation strategy for monitoring water

quality systems. An algorithm is derived for an estimation indicator

whose optimum values dictate the optimum number of observations

and their temporal spacing. This, along with the development in

Chapter VI for the optimum spatial measurement stations, thus pro-

vide a comprehensive monitoring policy for the analysis and control

of water quality systems.

The implementation of the estimator indicator algorithm is

given in a numerical example and the results demonstrate that

improved estimation based on fewer samples may be obtained.

Cost Function

The definition of the various terms included in the general cost

formulation given in equation (5.17) are now presented. The cost
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function includes the spatial integral of the mean square of a

linear function of the state estimate errors and the costs of all

observations.

(10. l)

The variance term represents the cost of uncertainties in

estimates, and the second term on the right hand side of (10.1)

includes all costs of the on-line and off-line observations.

C (x
m
) is the average observation cost vector for the on-line

TOC and DO measurements monitored at station xm, while -CD 
(x

D
)

represents the observation cost vector of the off-line delayed

BOD and DO at x
D .
 Numerical values for C (x

m
) and C-D (xD ) may

be established from wages and instrument prices. As done in

previous chapters, the kronecker delta 8. (iT-jT
1
) is included to

incorporate the costs of the delayed measurements at times

(iT-jT 1 ) when they become available.

The estimator indicator e (x , iT), whose optimum values
m

indicates whether an observation should or should not be taken

is discussed further in the next section. ),(x), a , and ß are
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specified cost factors which establish the relative significance

of each cost component. Because these parameters are relative

weights the following discussion is limited only to X (x), with

an understanding that numerical values of a and ß can be readily

based on λ (x).

Evaluation of cost factor.

In the preceding chapter, the estimation problems have been

based only on the minimization of the estimate error covariance.

The results have provided a state estimate profile V (x,iT)
Λ

which is unbiased (E .07 (x,iT)} = V (x,iT) and has an associated

measure of uncertainty in the form of a covariance Q (x,iT).

To properly illustrate the significance of these results in the

following development, an example of the scalar components are

employed. Hence, V 2 (x,iT) may represent the true DO profile at

time iT, V
2 

(x,iT) represents the estimated profile and Q
22 

(x,iT)

is the variance of the estimate errori-1

Because Gaussian white noise type are being considered, the

density distribution of the unknown true value V (x,iT), given

A
an estimate V (x,iT), is shown as a normal distribution in

Figure X-1. A threshold minimum value V2S is assumed to be the

standard quality criterion imposed on the stream. Methods of

establishing water quality standards are contained in many studies

I 115 1.
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FIGURE X-1, Evaluation of the Cost Factor
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(
The fact that an estimate V^2 (x,iT) is greater that V

2S,

does not imply conclusively that the true value V 2 (x,iT) is

also greater that V2S' In fact, the shaded area A in the figure

represents the probability that the true value V 9 (x,iT) indeed

violates the stream standard. This probability value is written

as

(10.2)

where

(10.3)

Prob
D 

represents the condition under which the stream is actually

being degraded, but no correction policy is initiated because of

the incertainty in the estimate. It may also be viewed as the

cost associated with aeration that may later be necessary to re-

store the stream to A standard level. (I 152 1i-1

Similar 	 if ly, if an estimate 	 2 ( 	 29' 	 is not con-

elusive that V (x,iT) 	 than V2S. The expression2q

represents the probability that the stream condition might already

have met the standard. Any costs of the correction measures based
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A
on the apparent deficiency (V

2S 
- V^2) may be considered as un-

warranted. Prob is shown as the shaded area B on Figure X-l.

The preceding arguments are tendered only to give an insight

into the application of the results here; the basis for the argu-

ments are subject to debate based on the interest of the user.

(ei-1g. a treatment plant manager who seeks to minimize his plant

upgrading cost versus an environmentalist whose goal is to restore

the stream to its natural form at all cost).

However, it is assumed here that the total cost to be minimized

is a judicious weighted sum of Prob
e 

and ProbU, from which the cost

factor X (x) may be established, The actual determination of λ (x)

is beyond the scope of this dissertation.

It is now desired to develop an observation strategy to

optimize the sampling rates of observations with respect to the

observation cost.

Estimation Indicator 

The problem of observation cost  hill been studied for some

control systems r 88, 25, 4. 	 fn which dynamic programming was
used. 	 Because a sequential filtering algorithm is developed here,

a different and simpler approach is used.



The resulting change in the variance matrix 2 (x,iT) is

repeated here from equation (9.34)

substituting (10.4) into (8.25) yields

The expected decrease (improvement) in the total cost function if

measurements are taken at iT is

This improvement must be weighed against the additional cost of

making measurements. If the expected improvement in estimates

outweighs the addition observation cast then, en observation is

taken. [e (x
m
,iT) = Conversely, if the expected improvement is

marginal or significantly 1F., than the cost, 	 observation,

then no measurements are taken re (x ,iT) 	 01. The algorithms for

the estimator indicator e 	 IT) 01 (5,17) becomes
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The results in the following presentation are applied to the

following numerical example.

Numerical Example 

The algorithm for the estimator indicator was incorporated

into the numerical example for the stream system in Chapter VIII.

The same parameters are used in addition to the cost factors

The assumption here is that the cost for one analytical BUe test is

about ten times the cost per on--line TUC reading.

Figure X-2, (ii) and (iii) show the improvement in the state

estimate profiles based on the multiple measurements. However,

a particularly interesting result is that these improved estimates are

based on fewer samples than the single measurments.

Because the algorithm of  the estimator indicator is based on

the variances of the measurement errors and not the measured

values themselves, the observation strategy may be developed

off-line. That is the number and temporal spacing of observations

may be planned before the measurements are taken. In some

practical cases, however, wh e re the noise variances are not known

a priori, approximate expressions of the type presented in

r_ 15 1 based on measured values, may be used.
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FIGURE X-2. Filtering with Constant Obser-
vation Error Variance-to-Signal Ratio and
Observation Costs. Typical Observation
Strategies for Noisy (i) TOC, (ii) TOC,
BOD and DO Measurements (iii) Estimates
of Temporal DO and BOD Profiles.

a) True values
b) Noisy measurements of TOC and DO
c) Noisy multiple Measurements of TOC

BOD and DO
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The observation strategy developed in this chapter along with

the optimum spatial measurement stations in Chapter VI, thus

represents a comprehensive optimum monitoring policy for estimation

and control of distributed parameter systems. The results have

demonstrated that fewer samples of multiple measurements when taken

and applied properly may produce better estimates of the state and

parameter in the class of distributed parameter systems treated in

this study.
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CHAPTER XI

CONCLUSIONS 

The overall objective of this study which was to develop a

comprehensive multiple measurements theory for the on-line optimum

state and parameter estimation in distributed systems has been

accomplished. The spec ific contributions have been:

(a) The development of a measurement projection method to

optimally utilize off-line delayed measurements for

on-line estimation and control.

(b) The development of a comprehensive measurement policy

that includes the optimum spatial monitoring stations and

an observation strategy for the optimu m number and

temporal intervals of measurements .

(c) The development of Kalman type distribut ed filters

for optimum state estimation based on 'all available

types of o ff—line and on-line measureme nt s

(d) The success ful application of the tec hniqu e s developed

to numerical examples which typify realistic engineering

problems.

(e) The presentation of the multiple measurementsrements algorithms

which demons trated cons iderable improve ment  over existing

monitoring methods forestimation and 	 the c lass of

problems treated 
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The organization of the text was made to underscore the

sequence of the problems in monitoring, estimation and control of

a class distributed systems. The development of the class of

water quality models to be studied was presented and the features

and significance of each variable were discussed. The state-of-

the-art methods of measurements and evaluation of the critical

parameters with particular emphasis on their limitations were

presented. The relationship among the multiple forms of oxygen

demands were explored.

Recognizing that closed-form solutions are often not available

for practical dynamic distributed models, the explicit finite

difference techniques applicable to the specific systems under

consideration were presented. The associated criteria for stability

and boundary conditions 	 which are necessary for the useful

application of the solution techniques on a digital computer program

were given.

A unique method of projecting off-line measurements for

optimal utilization in an on-line process was developed. The

development was based on the implusive responses which are readily

obtained by analytical or experimental methods for many distributed

models.

An optimal measurement strategy for spatial monitoring stations

based on statistical experimental design techniques was developed,

Two theorems were given for the optimum number of spatial locations

of monitoring stations,
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The applicability of the multiple measurements techniques

for parameter identification in constant parameter systems was

demonstrated. The rates of convergence and the final accuracy

of the estimates obtained for multiple measurements were found to

be consistently superior to those obtained from single sets of

measurements. In addition, the multiple measurements techniques were applied

to track time-varying parameters, and again improved results

were obtained.

The results obtained from the application of the multiple

measurement techniques to state profile estimation also demonstrated

the superiority over Kalman type filters based on single sets of

measurements. The possible applications of the results from this

study in real engineering problems were also discussed.
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CHAPTER XII

RECOMMENDATIONS 

The applicability of the multiple measurements techniques

developed in this study has been demonstrated for practical

simulated numerical examples. It is of interest in future work

to incorporate these techniques into real engineering problems of

monitoring and control of water quality systems, The extension

of the results of this study to other classes of distributed systems

is relatively straight forward. A representative mathematical

model and a realistic understanding of the measurement methods

available are required,

Care needs to be exercised in the representation of initial and

boundary conditions as these greatly affect the stability and

reliability of solutions,

The sequential development of the algorithms facilitates a

minimum requirement of computer time and memory. As larger and

more complex systems are considered, the computer cost may become

very significant.

The techniques developed here can readily be integrated along

with the necessary hardware, for 	 useful applications in the

monitoring and control of distributed parameter systems.
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