Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

PARAMETRIC PUNPING - A THEORETICAL STUDY

BY

JOSE G. LOPEZ

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGRES

0 F
MASTER OF SCIENGE IN CHEMICAL ENGINEERING
AT
NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only: with due regard to the rights of the author. Bibliographical refer. ences may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey
1973

An equilibrium plug-flow model, for the batch isothermal separation of a binary gas mixture in a pressure changing parametric pump, was investigated for the system propane-argon on carbon, with the aid of a G. E. Pack 4020 computer. Separation factors comparablle to a temperature changing parametric pump are predicted by the model. A change in pressure of the gas mixture may bo carried out very rapidly, comparcduith a temperature change of similar magnitude. The effects of temperature, pressure, concentration, and penetration are discussed.

APEROYAT OE THESTS
SBFARATION OF GAS MTXTURES VIA BATOR
PARAUETRIC PUMPTHG - A THEORETICAL STUDY BY IOSD W. LOPER FOR

DEPARTMEMT OF CHEMICAY ENGIUEERIMG NEWARE COLIBGA OB EHGINBERING

$B Y$

FACUUTY COMDTMTE

APPROVED:

NENARE, MEN JPRSET
DECREBER, 1973

ACKNOWLBDGMENT

I wish to thank my thesis advisor, Dr. H. T. Chen, for his guidarce, advice, and encouragement in the preparation and presentation of this work; also, Dr. E. N. Bart and Dr. A. Perna for their heIp in reviewjes and correcting this thesis. I appreciate the final revision of this manuscript by the E. I. du Pont Parlin personnel.

TABLE OF CONTENTS

Page

Introduction 1.
Conclusions and Significance 7.
8.I3.
Mathematical Model 21.
Sample Calculations 37.
Results and Discussion 50.
Notation 61.
Appendix

1. Data Sheets 65.
2. Results Summary Sheets 72.
3. Computer Program 79.
References 96.

FIGURE CAPTIIONS

FIGURE I: Propane-Carbon Adsorption Equilibrium Isotherm. FIGURE 2: Schematic Diagram of Proposed Apparatus. FIGURE 3: Different Size Reservoir Apparatus vs. Model. FIGURE 4: Schematic Description of One Process Cycle. FIGURE 5: Reservoirs and Golumn Volume Relation.

FIGURE 6: Final Partial Pressure of Propane in the High Pressure Stage Ihrough the Adsorber.

FIGURE 7: Propane Separation vs. Number of Cycles.

FIGURE 8: Mole Fraction of Propane at Each Reservoir vs. Number of CycIes.

FIGURE 9: Partial Pressure of Propane in: the High Pressure Stage of the $30^{\text {th }}$ Cycle.

FIGURE 10: Separation vs. Penetration and Reservoir Ratio.
FIGURE II: Computer Calculation Precision vs. Propane Separation.

FIGURE 12: Mole concentration of Propane vs. the Number of Cycles.

> vi.

TABLE CAPTIOHS

TABLE I : Summary of Parametric Pumping Processes.

IIITRODUCTION

Since the original work of WiIhelm and Sweed (I) describjing the Paramotric Pumping Process utilizing the different adsorption characteristics of two miscible fluids at different temperatures, many other alternatives and models heve been studi.ed.

An equilibrium theory of the parametric pump was presented for a temperature cycling system by Pigford, Burke and Blum (2), and the characteristics of batch, semi-continuous and continuous equilibrium parametric pumps were studied by Chen and Hill (4).

All the above work was concerned with parametric pump systems using temperature as the changing parameter.

Pressure swinging adsorption systens have been used commercially for dryjng air (5) and for purifying hydrogen (3), a process developed by the Linde Division of Union Carbjide Corporation. Several hydrogen purifiers are in operation. They consist of two or several adsorbing columns, using pressure changes for bed regeneration (6). An excess amount of feed is necessary to purge out the system, and to provide the driving force to move the gas within the adsorbers. The continuous change in pressure, and direction of flow within the adsorber, produces the separation under isothermal conditions.

The separation of gaseous miztures by pulsed adsorption at constant volume, using temperature as the changing parameter, and the stop-go equilibrium model proposed by Wilhelm and Sweed, was studied by Jenczewski and Myers (7). Separa-
tion of gaseous mixtures were obtained experimentally for argon-propane and ethane-proparte mixtures. An equilibrium model, the parameters of which are measured independently, provides good agreement with the experimentall results.

Other types of parametric pumps reported are summarize in TabIe I.

A model for an isothermal parametric pump, using one adsorbing columr with two reservoirs, one for expansion only and one for compression only, is described in this paper. The system studied is Iimited to a binary gaseous mixture with only one component adsorbed to simplify the calculations, but it should work equally well for other mixtures with different equilibrium adsorption constants. The basic distinction of the proposed parametric pump is the use of one reservoir for compression and a different reservoir for expansion. This operating characteristic may be achieved in two ways, one, with the help of a programmed cam*, as described later; and the other, usinc two different size reservoirs directly opposed to one another in the ex-pansion-compression cycle.* The first method was used in the model for convenience in calculations.

The proposed system permits the separation of gases at a constant temperature using pressure changes.: A change in ... pressure has dynamic'advantages over a heat transfer operation. A: temperature cycling system is limited by the hi.gh energy Iosses encountered in heating and cooling the equipment itself. Pressure changes, on the other hand, can be made ouickly, and are limited only by the pressure drop through

* See Figure 2.
** See Figure 3.

TABLEI

Sumnary of Parametric Pumping Processes

Tyne of Process	Constiant Parameter	Changing Parameter	Type of Adsorber	Driving System	Type of Fluid	References
Batch Semicontinwous:	Volume Pressure	Temperature	Ofrec Column	Tho moving reservoi.rs	Liqui.d Mixture	1, 2, 4
Continuous						
Semicontixnous: Continuous	Temperature	Pressure Volume	Several Columns	Purging at Iow pressure.	Gas Mixture	3, 5, 6
Batch	Volume	Temperature	One Column	Two moving Reservoirs	Gas. Mixture	7
Batch	Temperature	Pressure Volume	One Column	Tho moving Reservoirs	Gas Mixture	This Paper

the adsorbent bed and the dynamics of the mass transfer operation.

This parametric pump may be a completely closed system. Maximum separation can be obtained by increasing the number of cycles at the expense of work.

Gases at low pressure may be separated without the need for prior compression, but the system can not take advantage of a feed that is already at high pressure.

The adsorption equilibrium isotherms of the system prom pane-carbon (7) used in the calculations of the mathematical model developed in this work are shown in Figure 1. They i.lIustrate the differences between the temperature changing parametric pump and the pressure changing parametric pump at constant temperature. The equilibrium propane pressure for a given concentration of propane in the adsorbent (carbon) at two different temperatures generate two curves. If point A in the upper curve is: taken as the initial conditions of a parametric pump, a change of the concentration of propane in the adsorbent may be obtained by changing the temperature T to point C at constant propane pressure. The separation of a propane-argon mixture on carbon has been reported in the Iiterature (7) using this kind of temperature cycling parametric pump. The pressure changing model produces the concentration change of the propane at constant temper ature by moving the pressure of the propene from point A, on the upper isothermal curve to point C. This change in the partial pressure of the gas is achieved by chenging the total pressure of the system during the parametric pumping process.
5.

The scope of this work is to develop a mathematical model that will describe an isothermal parametric pump using changes in pressure as the means for gaseous-mixture separation.

FIG. 1
PROPAGE CAREON ADSORPTION EQUILIBRIUM
ISOTHERM

CONCLUSIONS AND SIGNIFICANCE

Ans equilibrium model, for a closed isothermal pressure changing parametric pump, was studied for a binary gas-mixture on a solid adsorbent. A difference in adsorbate equi= Iibrium concentration of the two gases is necessary for the separatiom of the components. The gas mixture is pulsed through the adsorbent bed: upflow at high pressure and downflow at low pressure. The upflow reservoir, where expansion always occurs, is enriched by the component with the lower adsorbate equilibrium concentration. The downflow reservoir, where compression always occurs, is enriched by the other component of the gas-mixture. The length of a cycle is limited only by the mass transfer resistance from the gas to the adsorbent and by the pressure drop through the column packing when moving the gases. Since minimum heat transfer is required, it offers a significant advantage for separation of dilute gas-mixtures over the temperature changine parametric pump.

The model was investigated using the system propaneargon on carbon. Separation factors reported in the literature (7), for this system, using a constant volume temperature changing parametric pump, are slightly higher. However, a more rapid rate of separation is anticipated for the pressure changing parametric pump. The temperature, total pressure, propane concentration, the ratio of the reservoir volumes, and the maximum penetration in the column, control the rate and degree of separation.

This type of separation process in combination with the compression of a gasmixture, in a batch, continuous or semicontinuous apparatus, may be economjcally attractive.

PROCTSS DESCRIPTION

The batch, pressure-changing parametric pump is the object of this study. Its characteristics will be easier to understand if the equipment used to effectuate this process is first described and discussed. Two posibilities are considered here; a mathematical model will be discussed for the simplest approach.

The proposed apparatus is shown in Figure 2. The equipment consists of three cylindrical sections constructed of a rigid material. The adsorber is a jacketed cylinder of length Z and constant diameter D, filled with ar adsorbent materjal with a constant void fraction, \in. Heat transfer from the constant temperature jacket to the insjide of the adsorber is very important, since isothermal condi.tions are required to meet the mechanism of pressure oscillation along the equilibrjum isotherm (Figure I). The column jocket must be suppli.ed wi.th a constant temporature flujd; this provides a high heat transfer coefficient tand leaves the bulk of the heat transfer resistance to the gas phase inside the adsorber.

The two end reservoirs of variable volume can be constructed using leak tight flexible diaphragms, as used by Jenczewski and Myers (7) in their experiments. Tho pistons are used to describe the procoss for the sake of model simplicity. These two pistons must move the gas phase through the adsorber bed in the following fashion:

1. Constant pressure movement of high pressure π_{H} gases from reservoir A to reservoir B.
2. When reservoir A is empty, reservoir B expands to a lower pressure, π_{L}.
3. Constant pressure movement of low pressure π_{I} geses from reservoir B to reservoir A.
4. When reservoir B is empty, reservoir A compresses the gases to the initial high pressure, Π_{H}.
5. Repeat steps I through 4.

The lover diagram of Figure 2 shows a schematic diagram of a driving mechanism that will fulfill the model requirements. This mechanism consists of two pistons and two rotating càms driven by e common shaft. Each piston has a connecting rod that travels in the axial direction, following the motion induced by a cam follower that rides on the cam surface. Each quarter-cycle of the cam surface moves each piston through one of the steps previously described. The position of the cams and pistons in the diagram is the jinjtial position (step 1). As the shaft rotates a cuarter of a cycle the piston A will be moving the gas into the column; simultaneously, the piston B will be moving the gases from the adsorber into piston B without any net volume change of the system. The two valves shown in the diagram are required to charge the column with the gases.

A similer cycle can be generated by two different size reservoirs moving opposite to each other; that is, when one piston is moving the gases into the adsorber colum the other is taking the gases out of the columm. Figure 3 shows the pressure changes during a typical cycle, and the movement of the gases' center of mass inside the column. The upper curves

A. SCHEMATIC OF ADSORBER

B. DPIVIHG MECHANISM

FIG. 2
SCHEMATIC DIAGRAM OF PROPOSED APPAPATUS

FIG. 3
DIFFERENT SIZE RESERVOIR APPARATUS VS. MODEL
of Figure 3 illustrate the pressure variation of the two alternatives during one full cycle. It should be noted that the path of the two curves is similar. At the center of Figure 3 there are four pairs of pistons; each pair shows the relative positions of the large and small piston in the middle of a quarter-cycle. The two arrows show the simultaneous up and down movement of the two pistons, relative to the column. The lower two curves of Figure 3 describe the path of the gas center of mass in its axial movement relative to the column. It is obvious that there are some differences in gas movement within the adsorber, but in general the pressure and position in the two systems satisfy the requirements for the pressure changing parametric pump. The gases always expand in reservoir B and are always compressed in reservoir A. A mathematical model of the two different sized reservoirs is more involved because of the sinusoidal nature of the pressure change. For this reason the apparatus shown in Figure 2, which has a linear pressure change, is used to represent the pressure-changing parametric pump, and is the basis for the mathematical model.

THEORY:

At a given temperature and pressure, the amount of gas adsorbed when equilibrium is established depends on the nature of the adsorbent and adsorbate. The separation of a binary mixture of gases in a batch isothermal pressurechanging parametric pump depends on the differences of adsorption equilibrium constants of the components. When the total pressure of the system is changed, the partial pressure of the adsorbate is also changed, and a driving force is eatablished to reach the new equilibrium concentrations.

The oycle is carried along the isotherm line as shown in Figure 1 (A to B). In a temperature-changing parametric pump, theoretically the cycles are carried on the isobar direction (A to C).

If the gases in the adsorber always move from reservoir A to reservoir B while under high pressure, and from reservoir B to A while under Iow pressure; a change in concentration at each end will occur. The degree of separation in a batch process is a function of the number of cycles and the maximum penetration of the gases from the reservoir into the adsorber. The optimum time required for each step of the pumping cycle will depend on the dynamics of the adsorption process and the fluid flow limitations.

The Langmuir basic theory of adsorption can be used to approximate an equation from experimental data; this is necessary for the computer calculation of the material balance at equilibrium conditions and at any given time and position in the adsorber.

14.

The pure component isotherms for a gas can be fitted by an equation of the form,

$$
\begin{equation*}
Q_{1}=\frac{D \cdot P_{1}}{E+P_{1}} \tag{1}
\end{equation*}
$$

where Q_{1} is adsorbate density in moles of adsorbate per unit weight of adsorbent, P_{1} is the equilibrium pressure of the pure component, and D and E are temperature dependent constants for the particular adsorbate-adsorbent system. Jenczewski and Myers (7) gives values of the constants that fit Figure 1 curves for propane on carbon:

The total pressure of a binary mixture of gases is equal to the sum of the partial pressures of each gas,

$$
\begin{equation*}
\pi=P_{1}+P_{2} \tag{2}
\end{equation*}
$$

If only one of the gases is adsorbed by the adsorbent, the internal material balance of the column is simplified since the partial pressure of this gas will remain constant as long as the temperature is unchanged.

Assuming ideal gas behavior, the number of moles in the gas phase can be calculated by the equation,

$$
\begin{align*}
& \mathrm{n}_{\mathrm{T}}=\frac{\pi \cdot \nabla_{\mathrm{T}}}{\mathrm{R} \cdot \mathrm{~T}} \tag{3}\\
& \nabla_{\mathrm{T}}=V_{A}+\nabla_{B}+\nabla_{A D} \tag{4}\\
& \nabla_{A D}=\epsilon \cdot V_{C} \tag{5}
\end{align*}
$$

The concentration of any gas Y, can be calculated from the partial pressure and the total pressure at any time.

$$
\begin{equation*}
Y_{1}=\frac{P_{1}}{\pi} \tag{6}
\end{equation*}
$$

In a closed system, the initial number of moles of each component remains constant at any time. Therefore, the sum of the number of moles of a component in the gas phase and in the adsorbent is a constant for any given initial conditions, although the amount in one phase or the other will change with any change in temperature or pressure which will, displace the equilibrium of the two phases.

The number of moles in the reservoirs for any particular gas can be calculated using an equation similar to Equation 3, but using the partial pressure of the gas and the volume of the reservoir. The number of moles of the adsorbed gas in the column can be calculated adding the moles in the gas phase to the adsorbed moles in the adsorbent.

$$
\begin{equation*}
\text { Moles of } 1 \text { in column }=\frac{\epsilon \cdot P_{1} \cdot \nabla_{C}}{R \cdot T}+\rho \cdot(I-\epsilon) \cdot \nabla_{C} \cdot Q_{1} \tag{7}
\end{equation*}
$$

Adsorption and desorption is assumed to occur instantaneously. The diffusion of one gas through the other is assumed negligible.

The high pressure π_{H} is obtained when the total volume is minimum, and the low pressure π_{L} when the total volume is maximum.

To simplify initial conditions in the system, it is assumed that the adsorber is at equilibrium with the partial pressure of the gases at the initial conditions and at the high pressure, π_{H}. This assumption can be obtained in practice by purging gas at the initial concentration Y_{1} through the column until the concentration of the gases at the outlet is equal to the concentration of the gases at the inlet.

A schematic diagram of a closed, pressure pulsed adsorption system is shown in Figure 4 which illustrates the four quarters of an operating cycle. The gas and adsorbed phases have been separated for clarity. The gas phase i.s moved relative to the adsorbed phase, as indicated by positions b, c, d, and e. The fluid-adsorbate equilibrium relationship is oscillated by oscillating the system total pressure. An operating cycle, assuming only one component of the binary mixture is adsorbed, is described in order to emphasize the characteristics of the cyclic process and the driving force of the separating effect. The system is initially in position b, for which the pressure is uniform and equal to Π_{H}. The gas and adsorbed phases are of uniform concentration in the axial direction and in equilibrium. The gas phase is moved from reservoir A through the column into reservoir B (b). As expansion occurs in reservoir B (c), a portion of the active component is desorbed during this quarter-cycle. The gas is then moved, at low pressure π_{L}, relative to the adsorbent as indicated by position c. The gas volume in reservoir B is transfered through the column to reservoir A at π_{L}. When compression occurs in reservoir A, as represented by position d, a portion of the active component in the gas is adsorbed. After this fourth quarter-cycle is completed, a transfer back to position b initiates another cycle.

Assuming that diffusion, mixing, and convection in the axial direction are relatively slow compared to the cycle time, observation of the positions of the gas in the adsorption and desorption steps shows that the net result of one cycle is the transfer of some of the adsorbed component from the right-hand end to the lefthand end of the system. The continuation of the process through many cycles results in the establishment of a steady-state concentration gradient (7).

The possible volume relations of the column and the reservoirs are schematically represented in Figure 5. The ratio of the reservoir volume at low pressure, $V_{R L}$, to the column free volume $V_{A D}$, is defined as the maximum penetration of the gases into the column during one stroke. The abscissa of the diagram is the reservoir volume ratio, which is the ratio of the large low pressure volume of the reservoir to the small reservoir volume at the high pressure, $\mathrm{V}_{\mathrm{RI}} / \mathrm{V}_{\mathrm{RH}}$.

Two operating zones are possible, Zone I is for maximum penetration greater than 1 , and Zone II is for maximum penetration less than 1. The effect of the volume relations in the separation of the gases is included in the discussion of the results.

It is important to consider some of the effects extreme conditions will have on the equilibrium relation of pressure and adsorbate concentration. The form of Equation 1 that fits the curves of Figure 1 has two posible simplifications. As P_{1} approaches zero $Q_{1}=K_{1} \cdot P_{1}$, and as P_{1} approaches infinity $Q_{1}=K_{2}$; where K_{1} and K_{2} are temperature dependent constants.
18.

It is evident from these limits that a pressure cycling parametric pump is most effective at low pressure conditions. It becomes completely ineffectivecat higher pressurecoonditions because adsorbate concentration is constant, due to saturation of the adsorber. From Figure 1 it is also observed that the lower temperature will give a greater change of Q_{1} with respect to P_{1}.

c) EXPANSION

e) COMPRESSION

FIG. A
SCHEMATIC DESCRIPTION OF OAE PROCESS CYCLE
20.

RESERVOIRS AND COLUMN VOLUME RELATION. ©DATA INVESTIGATED

MATHEMATICAL MODEL

Using a model similar to Jenczewski and Myers (7) for a temperature cycling parametric pump, based on Sweed and Wilhelm stop-go model (9), an isothermal model with fluctuating pressure could be designed to approximate the batch axial expansion parametric pump previously described. An iteration process was used to solve this model with the help of a computer.

The model developed here considers an ideal binary mixture of gases that are selectively adsorbed by a solid adsфrbent, with changing equilibrium concentrations in the solid as the partial pressure of each component changes. For the sake of simplicity, the particular case in which only one of the components is adsorbed and the other remains always in the gaseous phase, as in argon-propane on carbon, will be discussed. A second acsumption will be made to simplify the volume changes calculation, that the concentration of the adsorbed gas is very small with relation to the inert gas.

Let us assume the adsorption chamber and reservoir A are subject to an almost perfect vacuum, less than $1 \mathrm{~mm} H g$. Then the binary mixture is purged through the system at the high pressure π_{H} and the adsorbent (oarbon) is allowed to reach equilibrium with the gases. When the composition of the out going gas is equal to the inlet composition the system is closed*.
*See Figures 2 and 4.

The concentration of gas 1 (propane) at any position and time will be $Y_{I}(I, J)$, where I defines position in the adsorber and J defines time. The pistons of A and B reservoirs are moved so that the total volume is displaced from reservoir A to filll an equivalent volume in reservoir B. The initial totel pressure in the apparatus is Π_{H}, and the gas concentration through-out it is Y_{1} and Y_{2}, for component 1 and 2 respectively. The adsorbate density in the adsorber at initial conditions can be calculated from the equilibrium relation, Equation 1 .

In order to solve the equilibrium and material balance equations for each quarter-cycle, the adsorber colump is divided in n equal sections (Figure 4a). The calculation of the instantaneous number of steps required at each quartercycle depends on the free volume of one small section and the volume of the reservoir at the particular quarter-cycle. The number of the sequential steps required for each guartercycle T is calculated as follows,

$$
\begin{align*}
& T_{H}=\frac{V_{R H}}{V \cdot \epsilon} \tag{8}\\
& T_{L}=\frac{\nabla_{R L}}{\nabla \cdot \epsilon} \tag{9}\\
& T_{C}=T_{E}=\frac{\nabla_{R L}-V_{R H}}{\nabla \cdot \epsilon} \tag{10}
\end{align*}
$$

where the subscripts H, L, C and E denote the high pressure quarter-cycle, the low pressure quarter, the compression quar-ter-cycle, and the expansion quarter-cycle, respectively. The free volume of one step segment is the product of the volume of the segment and the void fraction, ϵ. Low adsorbate concentration (Y_{1}) minimizes the hysteresis effects, and permits
the assumption that T_{C} and T_{E} are equal (Equation 10). The volume of one segment is the total volume of the column $V_{A D}$, divided by the number of segments, n.

The time required from $J=I$ to $J=T$ is the time any particular quarter-cycle will need to be completed.

The stop-go model (9) assumes that the axial displacementof length Z / n is instantaneous and that the time period t is allowed for mass transfer between phases. For the case of equilibrium between phases, the problem of calculating the concentrations in each volume element at each time inorement reduces to thet of solving simultaneous mass balances and equilibrium relationships for each component.

The assumptions and limitations of the proposed model for the batch pressure changing parametric pump previously described are summarized as follows:

- Closed system.
- Constant temperature.
- Ideal gas law.
- Instantaneous axial displacement.
- Pressure drop negligible.
- Instantaneous equilibrium.
- Axial diffusion negligible.
- Initial conditions in equilibrium at high pressure.
a. Binary gaseous mixture with only one component adsorbed.
- Very dilute concentration of acti.ve component.
- Volume fraction of active component negligible.

One complete process cycle is schematically represented in Figure 4, showing one instantaneous displacement of the ges phase for each quarter of a cycle. The adsorber column is axially divided in two layers; the upper portion represents the gas phase and the lower dotted portion, the solid adsorber. Each quarter-cycle has two sections of column; the upper section shows the relative position of the gas volume elements with respect to the adsorbent at time $J-1$, before the axial displacement. An arrow between the two diagrams represents the direction of the displacement, and lower diagram shows the new relative position of the volume segments after the axial displacement, at time J.t

The equilibrium and material balances for each step of a quarter-cycle may be easily understood with the diagrams in Figure 4. The four quarter-cycles are treated independent1 y ; but the last step of one quarter-cycle is always the beginning step of the next, as the end conditions of one cycle are the beginning of the other.

First guarter-cycle:

The first quarter-cycle consists to move the gases at high pressure π_{H} from reservoir A to B at constant pressure. Figure 4 b shows the relative position of typical volume elements before and after one step.

A material balance of component 1 is carried out for one volume element before and after a time step. The total number of moles of component 1 in the volume element, in both phases, is equal to the number of moles in the adsorber
before the time step, plus the moles moved from the adjacent volume element. It is assumed instantaneous equilibrium of both phases.

$$
\begin{align*}
& \frac{\epsilon \cdot V \cdot P_{1}(I, J)}{R \cdot T}-(I-\epsilon) \cdot V \cdot P \cdot Q_{1}(I, J)= \\
& \frac{\epsilon \cdot V \cdot P_{1}(I-I, J-1)}{R \cdot T}-(I-\epsilon) \cdot \nabla \cdot P \cdot Q_{1}(I, J-I) \tag{11}
\end{align*}
$$

The physical meaning of Equation 11 is described in the theory, in the discussion of Equation 7. The concentrations at time J - 1 are known, therefore the right side of the equation can be calculated as H_{1}, and the left side of the equation can be expressed in terms of $P_{1}(I, J)$ using the adsorption equilibrium relation, Equation 1.

$$
\begin{equation*}
H_{1}=\frac{\epsilon \cdot V \cdot P_{1}(I, J)}{R \cdot T}+(I-\epsilon) \cdot \nabla \cdot P \cdot \frac{D \cdot P_{1}(I, J)}{E+P_{1}(I, J)} \tag{12}
\end{equation*}
$$

Equation 12 can be solved as a quadratic equation for $P_{1}(I, J)$.

$$
\begin{equation*}
P_{I}(I, J)=\frac{-b+\sqrt{b^{2}-4 \cdot a \cdot c}}{2 \cdot a} \tag{13}
\end{equation*}
$$

where,

$$
\begin{align*}
-\mathrm{b} & =H_{1}-\frac{E_{\cdot} \cdot \cdot \cdot V}{R \cdot T}-D \cdot(1-\epsilon) \cdot V \cdot \rho \tag{14}\\
\mathrm{a} & =\frac{\cdot \cdot V}{\mathrm{H} \cdot \mathrm{~T}} \tag{15}\\
\mathrm{c} & =-H_{1} \cdot \mathrm{E} \tag{16}
\end{align*}
$$

The material balance in each reservoir B is calculated from the sum of each volume element that enters it.

$$
\begin{align*}
& R_{B H I}=\sum_{J=I}^{J=T_{H}} \frac{E_{\cdot} \nabla \cdot P_{I}(n, J)}{R \cdot T} \tag{17}\\
& \mathrm{R}_{\mathrm{BHT}}=\frac{\mathrm{V}_{\mathrm{RH}} \cdot \Pi_{\mathrm{H}}}{\mathrm{R} \cdot \mathrm{~T}} \tag{18}
\end{align*}
$$

The final composition of component 1 in the reservoir B can be calculated as

$$
\begin{equation*}
Y_{I}=\frac{R_{B H I}}{R_{B H T}} \tag{19}
\end{equation*}
$$

and the partial pressure of component 1 in reservpir B is

$$
\begin{equation*}
P_{1}\left(B, \tau_{H}\right)=Y_{1} \cdot \pi_{H} \tag{20}
\end{equation*}
$$

To simplify the calculations that follow in the next three quarter-cycle, two groups of constants are defined.

$$
\begin{align*}
& F=\frac{\epsilon \cdot V}{R \cdot T} \tag{2I}\\
& G=(I-E) \cdot V \cdot P \tag{22}
\end{align*}
$$

Second ouarter-cycle:

The expansion of gases in reservoir B (Figure 4c) illustrates the distribution of the volume segments throughout the adsorber column before and after one time step of expansion. In order to simplify the calculations for the expansion operation, it is assumed that the expansion occurs
in small instantaneous steps, and only a very small time lapse is necessary for the equilibrium of gas and solid phases. The total number of steps to complete the expansion to the low pressure π_{L} is calculated by Equation 10.

The initial conditions of each volume segment will be the same as the last conditions for the previous quartercycle. Therefore,

$$
\begin{align*}
& P_{I}(I, I)=P_{I}\left(I, \tau_{H}\right) \tag{23}\\
& Q_{I}(I, I)=Q_{I}\left(I, \tau_{H}\right) \tag{24}
\end{align*}
$$

The volume of the gases in the reservoir B at any time J is,

$$
\begin{equation*}
V_{\mathrm{REJ}}=\mathrm{V}_{\mathrm{RH}}+\epsilon \cdot \mathrm{V} \cdot \mathrm{~J} \tag{25}
\end{equation*}
$$

The total volume in reservoir B and the column, at any time step $J, V_{M J}$, is

$$
\begin{equation*}
V_{T J}=V_{A D}+V_{R E J} \tag{26}
\end{equation*}
$$

The fraction of volume increase any given time FRCT is defined as:

$$
\begin{equation*}
\mathrm{FRCT}=\frac{V_{\mathrm{TJ}}}{V_{\mathrm{TJ}}+V_{\cdot \epsilon}} \tag{27}
\end{equation*}
$$

The actual volume moved from the column to the adsorber at each time step is,

$$
\begin{equation*}
V^{\prime}=\nabla_{A D} \cdot(1-F R C T) \tag{28}
\end{equation*}
$$

The gas phase of each volume segment during the expansion step moves in such a way that a different amount of overlapping
occurs throughout the column. This effect can be seen in Figure 4c. Two new factors are defined in order to simplify the material balance of any segment. These factors give the relative amount of component 1 in the gas phase of the two volume elements used in the material balance of the volume element after the time step. These volume-pressure factors are defined as follows:

$$
\begin{align*}
& F_{1}=\frac{\left(E \cdot \nabla-V^{\prime} \cdot G_{11}\right) \cdot F R C T}{R \cdot T} \tag{29}\\
& F_{2}=\frac{V^{\prime} \cdot G_{11} \cdot F R C T}{R \cdot T} \tag{30}
\end{align*}
$$

where F_{1} and F_{2} are constant for one time step, that is, V^{\prime} must be calculated by Equations 26, 27 and 28 , every time J moves one integer. The factor G11 is the volume proportionality factor as the calculations are carried from position n to 1 , and is:

$$
\begin{equation*}
G_{11}=\frac{n-I}{n} \tag{3I}
\end{equation*}
$$

The material and equilibrium balance is started in reservoir B after each time step and sequentially computed for each volume segment through the column to segment 1. The material balance for this expansion process has an additional term to account for the fraction of volume of the two segments involved in the composition of the new segment. A technic similar to the previous quarter-cycle is used to solve this expansion quarter-cycle.

It is worthwhile to mention here that, for the sake of continuity in the mathematical expressions, the reservoir A will correspond to position 0 and reservoir B to position $n+1$. The general equation for the material balance of a volume element is:

$$
\begin{aligned}
& F \cdot P_{1}(n+1-I, J)+G \cdot Q_{1}(n+1-I, J)= \\
& G \cdot Q_{1}(n+I-I, J-I)+F_{1} \cdot P_{1}(n+I-I, J-I)+F_{2} \cdot P_{1}(n-I, J-I)
\end{aligned}
$$

The right hand of the equation can be calculated from the previous time step, and the Equation 32 is rewritten using a new constant for the $J-1$ terms, H_{2}.

$$
\begin{equation*}
H_{2}=F \cdot P_{1}(n+I-I, J)+G_{\cdot} Q_{1}(n+I-I, J) \tag{33}
\end{equation*}
$$

Solving Equation 33 with the equilibrium relation, Equation 1 , and rearranging the terms to fit the standard quadratic equation form,

$$
\begin{equation*}
a \cdot\left(P_{1}(n+1-I, J)\right)^{2}+B \cdot P_{1}(n+I-I, J)+c=0 \tag{34}
\end{equation*}
$$

where,

$$
\begin{align*}
\mathrm{a} & =\mathrm{F} \tag{35}\\
\mathrm{~b} & =\mathrm{E} \cdot \mathrm{~F}+\mathrm{G} \cdot \mathrm{D}-\mathrm{H}_{2} \tag{36}\\
\mathrm{c} & =-\mathrm{E} \cdot \mathrm{H}_{2} \tag{37}
\end{align*}
$$

After calculating $P_{1}(n+1-I, J)$ using the quadratic equation, the equilibrium adsorbate density can be calculated by Equation 1.

$$
\begin{equation*}
P_{I}(n-I-I, J)=\frac{-b+\sqrt{b^{2}-4 \cdot a \cdot c}}{2 \cdot a} \tag{38}
\end{equation*}
$$

The material balance in reservoir B is obtained by adding the moles coming from the column to the initial number of moles in the reservoir. The total material in resegvoir B is $\mathrm{R}_{\text {BHT }}$ with a component I concentration of $Y_{1}\left(B, T_{H}\right)$. The number of moles of component I is $R_{B H I}$, with a partial pressure of $P_{1}\left(B, T_{H}\right)$.
$R_{B E 1}=R_{B H 1}-\sum_{J=1}^{J=T_{E}} \frac{V^{\prime} \cdot \operatorname{FRCT} \cdot P_{1}(n, J)}{R \cdot T^{1}}$
The final composition of 1 in reservoir B is,

$$
\begin{equation*}
Y_{1}\left(B, T_{E}\right)=\frac{R_{B E 1}}{R_{B E T}} \tag{40}
\end{equation*}
$$

The total number of moles in reservair B after the expansion quarter-cycle is completed, $\mathrm{R}_{\text {BET }}$, is calculated from the ideal gas law, using the low pressure conditions.

$$
\begin{equation*}
R_{B E T}=\frac{\nabla_{R L} \cdot \pi_{L}}{R \cdot T} \tag{41}
\end{equation*}
$$

The partial pressure of component 1 reservoir B is,

$$
\begin{equation*}
P_{1}\left(B, T_{E}\right)=Y_{1}\left(B, \tau_{E}\right) \cdot \pi_{L} \tag{42}
\end{equation*}
$$

The initial conditions of the next quarter-cycle are the final conditions: of this quarter-cycle, and the totel pressure is the low pressure π_{L}.

Third quarter-cycle:

This quarter-cycle consists in moving the gas at constant low pressure, π_{L}, from reservoir B through the column to reservoir A.

The initial conditions are,

$$
\begin{align*}
& P_{I}(I, I)=P_{I}\left(I, T_{E}\right) \tag{43}\\
& Q_{I}(I, I)=Q_{I}\left(I, T_{E}\right) \tag{44}
\end{align*}
$$

The time step change is represented in Figure 4d, and it is the reverse operation of the first stage, but a large number of time steps are required because of the large volume involved in this quarter-cycle.

The material balance of one volume segment is,

$$
\begin{align*}
F \cdot P_{1}(n+I-I, J)+ & G \cdot Q_{1}(n+1-I, J)= \\
& F \cdot P_{I}(n+2-I, J-1)+G \cdot Q_{1}(n+1-I, J-1) \tag{45}
\end{align*}
$$

All the terms of the time step J - 1 are knowm and can be calculated as a constant H_{3}. Then the Equation 45 can be solved for $P_{1}(n+1-I, J)$ using the same approach as in the previous quarter-cycles. The quadratic equation constants are as follows:

$$
\begin{align*}
& \mathrm{a}=\mathrm{F} \tag{46}\\
& \mathrm{~b}=\mathrm{E} \cdot \mathrm{~F}+\mathrm{G} \cdot \mathrm{D}-\mathrm{H}_{3} \tag{47}\\
& \mathrm{c}=-\mathrm{E} \cdot \mathrm{H}_{3} \tag{48}
\end{align*}
$$

Substituting these constants in Equation $38, P_{1}(n+1-I, J)$
is calculated and the corresponding equilibrium adsorbate density is calculated with Equation 1.

The material balance in reservoir A is calculated by adding each segment volume that enters the reservoir. The number of moles of component 1 at the end of this quartercycle is,

$$
\begin{equation*}
R_{A L 1}=\sum_{J=1}^{J=T_{L}} F_{\cdot} P_{1}(1, J-1) \tag{49}
\end{equation*}
$$

and the total number of moles: is,

$$
\begin{equation*}
R_{A L T}=\sum_{J=1}^{J=T_{L}} F_{\cdot} \Pi_{L}=\frac{V_{R L} \cdot \Pi_{L}}{R \cdot T} \tag{50}
\end{equation*}
$$

The final composition of component 1 in reservoir A can be calculated from the mole ratio,

$$
\begin{equation*}
Y_{I}\left(A, T_{L}\right)=\frac{R_{A L I}}{R_{A L I}} \tag{51}
\end{equation*}
$$

and the partial pressure of component 1 in reservoir A is,

$$
\begin{equation*}
P_{I}\left(A, T_{L}\right)=Y_{I}\left(A, T_{L}\right), \pi_{L} \tag{52}
\end{equation*}
$$

Fourth guarter-cycle:

The final quarter-cycle of the cycle consists of compressing the gases in reservoir A and into the column. Figure 4 e represents one time step of this compression quartercycle. From this schematic representation the effect of the compression in the overlapping of volume segments from one time step to the other is clearly shown, as well as the sim-
ilarjity to the expansion process.
Using a procedure similar to the second quarter-cycle calculations, the material balance is solved taking into account the volume contraction that occurs in each time step. The piston of reservoir A moves to produce a volume change in the total system equal to a volume change in the total system equal to a volume segment, but: the penetration of the gases in the column is only a fraction of that volume due to the compression effect of the other n segment volumes in the column.

The volume of reservoir A at any time $J, V_{\text {RAJ }}$ is,

$$
\begin{equation*}
\nabla_{\mathrm{RAJ}}=\mathrm{V}_{\mathrm{RL}}-\mathrm{V}_{\cdot} \in \cdot \mathrm{J} \tag{53}
\end{equation*}
$$

and the total volume of the system at any time $J, \nabla_{T J}$ is the sum of the free volume of the column, $\nabla_{A D}$, and the volume of reservoir A at the particular time, J.

$$
\begin{equation*}
V_{\mathrm{TJ}}=\mathrm{V}_{\mathrm{AD}}+V_{\mathrm{RAJ}} \tag{54}
\end{equation*}
$$

The fraction of volume produced by the compression, FRCT, that;is, the fraction of the original volume of one segment volume after one time step, is calculated as follows:

$$
\begin{equation*}
\mathrm{FRCT}=\frac{\mathrm{V}_{\mathrm{TJ}}-\mathrm{V} \cdot \mathrm{E}}{\mathrm{~V}_{\mathrm{TJ}}} \tag{55}
\end{equation*}
$$

The volume displaced in the column by the gases entering from reservoir A, V is,

$$
\begin{equation*}
\nabla^{\prime}=V_{A D^{\cdot}}(1-F R C T) \tag{56}
\end{equation*}
$$

The partial pressure of component I in the reservoir
increases as the total pressure in the system increases; therefore this pressure must be recalculated after each time step.

The initial conditions of pressure and concentration for this quarter-cycle are the final conditions for the previous quarter-cycle, both in the column and reservoir.

$$
\begin{equation*}
P_{1}(A, J)=P_{1}(A, 1) \cdot \frac{\left(V_{R L}-\nabla_{A D}\right)}{V_{T J}} \tag{57}
\end{equation*}
$$

where $P_{I}(A, J)$ is the partial pressure of component 1 in the reservoir A at any time J.

For any given segment through the column, the volume of gas moved into it after one time step comes partially from the previous volume element; the balance of the free volume in the segment remains from the gas volume before the time step change. This fraction G_{4} is calculated for each position in the column.

$$
\begin{equation*}
G_{4}=\frac{(n-I)}{(n-1)} \tag{58}
\end{equation*}
$$

The calculations are started in segment volume 1 and are ended in segment volume n. This sequence of calculations is carried until the total high pressure is reached, that is T_{C} times.

The material balance is similar to the second auartercycle.

$$
\begin{aligned}
& F \cdot P_{1}(I, J)+G \cdot Q_{1}(I, J)= \\
& \quad F_{3} \cdot P_{1}(I, J-I)+F_{4} \cdot P_{1}(I-1, J-1)+G \cdot Q_{1}(I, J-1)
\end{aligned}
$$

The terms F_{3} and F_{4} define the fraction of that volume element that enters in the calculated volume element after one time step, and are defined as follows,

$$
\begin{align*}
& F_{3}=\frac{\left(\epsilon \cdot V-V^{\cdot} \cdot G_{4}\right)}{R \cdot T \cdot F R C T} \tag{60}\\
& F_{4}=\frac{\nabla^{\prime} \cdot G_{4}}{R \cdot T \cdot F R C T} \tag{6I}
\end{align*}
$$

These two terms are divided by the term FRCT, to take into account the increase in pressure during the step change.

The conditions prior to the change (the terms in J-I) are known; therefore the right hand side of the equation can be calculated as a new constant H_{4}. The partial pressure of component $I\left(P_{I}(I, J)\right)$ is calculated using the quadratic equation, as in all previous quarter-cycles, and the equilibrium relation, Equation 1. The terms for the quadratic equation are as follows,

$$
\begin{align*}
& a=F \tag{62}\\
& B=G \cdot D+E \cdot F-H_{4} \tag{63}\\
& C=-E \cdot H_{4} \tag{64}
\end{align*}
$$

The equilibrium adsorbate density $Q_{1}(I, J)$ is now calculated from Equation 1. The number of moles of component 1 in reservoir \AA at the end of the compression quarter-cycle is calculated from the value of $P_{1}(A, J)$, Equation 57 , at the end of the stage.

$$
\begin{equation*}
R_{A H I}=\frac{P_{1}\left(I, T_{\mathrm{C}}\right) \cdot V_{\mathrm{RH}}}{R \cdot T} \tag{65}
\end{equation*}
$$

36.

This final quarter-cycle leaves the pistons in the position to start the new cycle, which will start with the first quarter-cycle described, moving the gases again from reservoir A through the adsorber to reservoir B .

In order to correct for axial mixing, and to maintain a constant pressure for all cycles, the partial pressure of component 1 is proportionally adjusted to hold the total pressure constant through the equipment.

$$
\begin{equation*}
\text { PROP }=\frac{\mathrm{X}_{1} \cdot\left(V_{A D}+V_{\mathrm{BH}}\right) \cdot \pi_{H} / \mathrm{R} \cdot \mathrm{~T}}{\frac{V_{\mathrm{RH}} \cdot P_{1}\left(A, \tau_{E}\right)}{R \cdot T}+\sum_{I=1}^{I=n} F \cdot P_{I}\left(I, T_{E}\right)} \tag{66}
\end{equation*}
$$

This proportionality factor, PROP, is used to adjust all the pressure terms for the new cycle.

$$
\begin{equation*}
P_{I}(I, I)=\text { PROP. } P_{I}\left(I, r_{E}\right) \tag{67}
\end{equation*}
$$

A Fortran IV computer program* has been designed to solve this mathematical model.

* See Appendix 3.

SAMPLIP CALCULATIOMS

The system Propane-Argon will be used\%to illustrate the cal-. culations of the equations presented in the mathematical model. The constants for the equilibrium relation, Equation 1 , are taken from Jenczewski and Myers (7), for the system Propane-Argon on "Pi.ttsburg BPL" activated carbon, 4×6 mesh, as adsorbent.

It is impossible to give here all the calculations necessary for one complete stage or cycle, but for the purpose of illustration, and to give an idea of the number of significant figures required to obtain the separation effect of the model, the initial posjition and time stepare calculated, for eably stage, and the final condi.tions assumed to permit the calculations of the next stage.

The units are presented in the first stage calculations to show the dimensional balance of the equations, but they are omitted in the other three stages, because they hevesimỉar dimensiona.

The iteration process is always started from the reservoir that contains the gases and into the column, calculating each position step until the $\hat{6}$ last volume segment is moved at the opporite end of the column, and this sequence of calculations is carried for each time step until the stage is completed.

The data used for the sample calculation is typical, oand was used in the computer run number 8, so the complete results are summarized in the Results Summary Sheet 3 .

The sample calculations are presented in two sections: the basje data given to solve the problem, and the calculations of the methematical model as described in the previous chapter.
A.- Basic Data:
I.-Equilibrium Equation.

Constants D and E for Equation 1 .
$D=0.00934-0.00001376 . T$
$E=0.269 . T-67.55$

For $T=290$ פK
$D=0.0053496 \mathrm{gm}$ mole of I / gms of carbon
$\mathrm{E}=10.46 \mathrm{cmHg}$
II.- Equi.pment Dimensions.
$Z=$ Length of column $=78.5 \mathrm{~cm}$
$\mathrm{d}=$ Diameter of Column $=2.54 \mathrm{~cm}$
$V_{C}=$ IotaI Volume of Column $=398.0 \mathrm{cc}$
$\nabla_{\mathrm{RH}}=$ Volume of Reservoir at $\pi_{\mathrm{H}}=76.0 \mathrm{cc}$ $V_{R L}=$ Volume of Reservoir at $\pi_{L}=760.0 \mathrm{cc}$
III.- Adsorber Characteristics.
$\epsilon=$ Void Fraction $=0.762$
$\boldsymbol{p}=$ Adsorber Densj.ty $=2 . I \mathrm{gm} / \mathrm{cc}$
$V_{A D}=$ Free VoIume of the column, E. $V_{C}=304.0 \mathrm{cc}$
IV.- Volume Segment.
$\mathrm{n}=$ Ifumber of segments $=20$
$\mathrm{Z} / \mathrm{n}=$ Length of column segments $=3.925 \mathrm{~cm}$
$V=$ Volume of one segment, $\nabla_{0} / n=19.9 \mathrm{co}$
V.- Gas Phase Data.

$$
\begin{aligned}
& \text { Component } I=\text { Propane } \\
& \text { Component } 2=\text { Argon } \\
& R=\text { Ideal Gas Constiant }=6236.0 \quad \frac{\text { cc.cmig }}{\text { gm-mole. } 0 \mathrm{~K}} \\
& \pi_{H}=\text { Total Hi.gh Pressure }=1000.0 \mathrm{cmHg} \\
& \pi_{L}=\text { Total Low Pressure }=357 \mathrm{cmHg} \\
& P_{I}=\text { Initial Partial Pressure of Component } I=I 00 \mathrm{cmHg} \\
& Y_{1}=\text { Mole Fraction of Gas } I=0.1 \\
& Y_{2}=\text { Mole Fraction of Gas } 2=0.9
\end{aligned}
$$

VI.- Tnitial Adsorbate Density Throughout the Column.

$$
\begin{aligned}
& Q_{I}=\frac{D \cdot P_{I}}{E+P_{I}} \\
& Q_{I}=\frac{(0.0053496 \mathrm{gm}-\mathrm{moIe} / \mathrm{gm}) \cdot(100.0 \mathrm{cmHg})}{10.46 \mathrm{cmHg}+100 \cdot 0 \mathrm{cmHg}} \\
& Q_{1}=0.00484302 \mathrm{gm}-\mathrm{mole} \text { of } \mathrm{I} / \mathrm{gm} \text { of carbon }
\end{aligned}
$$

VII.- Time Constants.

$$
\begin{aligned}
& \tau_{\mathrm{H}}=\frac{\nabla_{\mathrm{RH}}}{\nabla_{. \epsilon}}=\frac{76.0 \mathrm{cc}}{(19.9 \mathrm{cc}) \cdot(0.762)}=5 \\
& T_{L}=\frac{V_{R L}}{\nabla_{. \epsilon}}=\frac{760.0 \mathrm{cc}}{(19.9 \mathrm{cc})(0.762)}=50 \\
& \tau_{C}=\tau_{\mathrm{E}}=\frac{\mathrm{V}_{\mathrm{RL}}-\mathrm{V}_{\mathrm{RH}}}{\mathrm{~V} . \epsilon}=\frac{(760.0-76.0) \mathrm{cc}}{(19.9 \mathrm{cc}) \cdot(0.762)}=45
\end{aligned}
$$

These time constants are calculated from Equations 8, 9 and 10.
VIII.- Equations 21 and 22 Constants.

$$
\begin{aligned}
& F=\frac{E \cdot V}{R \cdot T}=\frac{(0.762) \cdot(19.9 \mathrm{cc})}{\left(6236.0 \frac{c c \cdot c m H g}{g m-m o l e .0 \mathrm{~K}}\right) \cdot(290.0 \mathrm{OK})}=0.00000839 \frac{\mathrm{gm-mole}}{\mathrm{cmHg}} \\
& G=(1 .-\epsilon) \cdot V \cdot p=(1 .-0.762) \cdot(19.9 \mathrm{cc}) \cdot\left(2.1 \frac{\mathrm{gm} \mathrm{of} \mathrm{carbon})}{\mathrm{cc}}\right. \\
& G=9.94602 \mathrm{gm} \text { of carbon }
\end{aligned}
$$

40.

B.- Mathematical Model Calculations:

I.- First Stage.

For Position $I=I$
and Time $J=I$

From Equation 11,

$$
\begin{aligned}
& H_{I}=F \cdot P_{I}+G \cdot Q_{I} \\
& H_{I}=\left(0.00000839 \frac{\mathrm{gm}-\mathrm{mole} \mathrm{e}}{\mathrm{cmHg}}\right) \cdot(100.0 \mathrm{cmHg})+(9.94602 \mathrm{gm}) \cdot(0.004843 \mathrm{gm-mole}) \\
& H_{I}=0.04900777 \mathrm{gm}-\mathrm{mole}
\end{aligned}
$$

The constants for Equation 13 are calculated from Fquations 14, 15, and 16.

$$
\begin{aligned}
& a_{2}=F=0.00000839 \mathrm{gm}-\mathrm{mole} / \mathrm{cmHg} \\
& - \\
& -\mathrm{b}=\mathrm{H}_{\mathrm{I}}-\mathrm{F} \cdot \mathrm{E}-\mathrm{D} . \mathrm{G} \\
& \text { F.E }=(0.00000839 \mathrm{gm}-\mathrm{mole} / \mathrm{cmHg}) \cdot(10.46 \mathrm{cmHg})=0,000087759 \mathrm{gm}-\mathrm{mole} \\
& \text { D.G }=(0.0053496 \text { gm-mole } / \mathrm{gm}) \cdot(9.94602 \mathrm{gm})=0.05320723 \mathrm{gm}-\mathrm{mole} \\
& -\mathrm{b}=0.04900777-0.000087759-0.05320723 \\
& b=0.00419946 \text { gm-moIe } \\
& c=-\mathrm{H}_{\mathrm{I}} . \mathrm{E}=-(0.04900777 \mathrm{gm}-\mathrm{mole}) \cdot(10.46 \mathrm{cmHg}) \\
& c=-0.51262127 \mathrm{gm}-\mathrm{mole} . \mathrm{cmHg} \\
& P_{I}(I, I)=\frac{-b+\sqrt{b^{2}-4 \cdot a \cdot c}}{2 a} \\
& b^{2}=(0.00419946 \mathrm{gm}-\mathrm{mole})^{2}=0.00001764 \mathrm{gm}-\mathrm{mole} e^{2} \\
& \text { 4.a.c }=4 \cdot\left(0.00000839 \frac{\mathrm{gm}-\mathrm{mole}}{\mathrm{cmHg}}\right) \cdot(-0.51262127 \mathrm{gm-mole} \cdot \mathrm{cmHg}) \\
& \text { 4.a.c }=0.00001720 \mathrm{gm}-\mathrm{moIe} e^{2} \\
& b^{2}-4 . a . c=\left(0.00001764 g_{m-m o l e}{ }^{2}\right)+\left(0.00001720 \mathrm{gm}-m o l e^{2}\right) \\
& P_{I}(I, I)=\frac{-(0.00419946 \mathrm{gm-moIe})+\left(0.00003484 \pi \mathrm{gm}^{\mathrm{gmome}}\right)^{I / 2}}{2 \cdot\left(0.00000839 \frac{\mathrm{Em-mole}}{\mathrm{cmIg}}\right.} \\
& P_{I}(1, I)=101.4946364 \mathrm{cmHE}
\end{aligned}
$$

41.

From Equation I,

$$
\begin{aligned}
& Q_{I}(1, I)=\frac{D . P_{I}(1,1)}{E+P_{I}(1, I)} \\
& \text { D. } P_{I}(I, I)=(0.0053496 \mathrm{gm}-\mathrm{mole} / \mathrm{gm}) \cdot(101.4946364 \mathrm{cmHg}) \\
& =0.54350 \mathrm{gm}-\mathrm{mole} . \mathrm{cmHg} \\
& \mathrm{~g}^{\mathrm{m}} \\
& E-P_{I}(I, I)=10.46 \mathrm{cmHg}+101.4946364 \mathrm{cmHg} \\
& =111.9546364 \mathrm{cmHg} \\
& Q_{I}(I, I)=\frac{(0.54350 \mathrm{gm}-\mathrm{moIe} . \mathrm{cmHg} / \mathrm{gm})}{(111.9546364 \mathrm{cmHg})}=0.00485200 \mathrm{gm}-\mathrm{mole} / \mathrm{gm}
\end{aligned}
$$

For the initial cycle, the first stace, moving gases from reservoir \mathbb{A} to reservoir B does not change the initial composition or equilibrium concentration in the column. This is because the concentration is constant throughout the system, as set by the initial conditions.

After calculating $P_{I}(I, I)$ and $Q_{I}(I, I)$ for $I=I$ to $I=20$, the calculation is repeated for $J=2$, and $P_{1}(I, 2)$ and $Q_{1}(I, 2)$ are calculated in the same sequence, repeating this calculation cycle until $J=\tau_{H}=5$.

The number of moles in the neservoir E, when $J=T_{H}=5$, is calculated from Equatjons 17 and 18.

$$
\begin{aligned}
& R_{B H I}=\tau_{H} \cdot F_{\cdot} P_{I}(n, J) \\
& R_{B H I}=5 .\left(0.00000839 \mathrm{gm}-\mathrm{mole} / \mathrm{cmHg}_{\mathrm{g}}\right) \cdot(100.0 \mathrm{cmfg})=0.004195 \mathrm{gm}-\mathrm{mole} \\
& \left.R_{B H T}=\frac{V_{R H} \cdot \pi_{H}}{R . T}=\frac{(76.0 \mathrm{cc}) \cdot(1000.0 \mathrm{cmHr})}{\left(6236.0 \frac{\mathrm{cc} \cdot \mathrm{cmHg}}{\mathrm{gm} m \mathrm{~mole} .0 \mathrm{~K}}\right)}\right) \cdot(290 \varrho \mathrm{~K}) \\
& \mathrm{R}_{\mathrm{BHT}}=0.04202517 \mathrm{gm}-\mathrm{mole}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{1}=\frac{R_{B H I}}{R_{B H T}}=\frac{(0.004195 \mathrm{~mm}-\mathrm{moIe})}{(0.04202517 \mathrm{gm}-\mathrm{moIe})}=0.0999=0.1 \text { approx. } \\
& P_{I}\left(B, T_{H}\right)=(0.1) \cdot(1000.0 \mathrm{cmHg})=100.0 \mathrm{cmHg}
\end{aligned}
$$

II.-Second Stage.

From Equations 23 and 24 the initial conditions of this stage are defined.

$$
\begin{aligned}
& P_{I}(I, I)=P_{I}\left(I, T_{H}\right)=100.0 \mathrm{cmHg} \\
& Q_{I}(I, I)=Q_{I}\left(I, T_{H}\right)=0.00484302 \mathrm{gm}-\mathrm{moIe} / \mathrm{gm}
\end{aligned}
$$

To calculate the volume fraction, FRCT, Equations 25, 26, 27 and 28 are solved.

For $J=I$ and $I=I$

$$
\begin{aligned}
& \mathrm{V} \quad \mathrm{~V}_{\mathrm{REJ}}=\mathrm{V}_{\mathrm{RH}}+\epsilon . \mathrm{V} . J=76.0 \mathrm{cc}+(0.762) .(19.9 \mathrm{cc}) . I \\
& V_{\text {REJ }}=91.1638 \mathrm{cc} \\
& \mathrm{~V}_{\mathrm{TJ}}=\mathrm{V}_{\mathrm{AD}}+\mathrm{V}_{\mathrm{RBJ}}=304.0 \mathrm{co}+91.1638 \mathrm{cc}=395.1638 \mathrm{cc} \\
& \mathrm{FRCT}=\frac{\mathrm{V}_{\mathrm{TJ}}}{\mathrm{~V}_{\mathrm{TJ}}+\mathrm{V}_{\cdot} \cdot \mathrm{E}}=\frac{395.1638}{395.1638+(19.9) \cdot(0.762)} \\
& \text { FRCT }=0.96304465 \\
& V^{\prime}=V_{A D} \cdot(I-F R C T)=(304.0) \cdot(1.0-0.96304465) \\
& V^{\prime}=11.23442635 \mathrm{cc}
\end{aligned}
$$

The two volume constants F_{1} and F_{2} are calculated by Equations 29 and 30.

$$
G_{I I}=\frac{n-I}{n}=\frac{20-I}{20}=0.95
$$

$$
\begin{aligned}
& F_{1}=\frac{\left(G \cdot V-V^{v} \cdot G_{1 I}\right) \cdot F R C T}{R \cdot T} \\
& F_{I}=\frac{((0.762) \cdot(19 \cdot 2)-(11 \cdot 23442635) \cdot(0.95)) \cdot(0.96304465)}{(6236 \cdot 0) \cdot(290 \cdot 0)} \\
& F_{1}=\frac{(4 \cdot 49109497) \cdot(0.96304465)}{(1,808,440)}=0.00000239 \mathrm{gm}-\mathrm{mole} / \mathrm{cmHg} \\
& F_{2}=\frac{V^{t} \cdot G_{11} \cdot F R C T}{R \cdot T} \\
& F_{2}=\frac{(11.23442635) \cdot(0.95) \cdot(0.96304465)}{(6236 \cdot 0) \cdot(290 \cdot 0)} \\
& F_{2}=0.00000563 \mathrm{gm} \mathrm{\sim mole} / \mathrm{cmHg}
\end{aligned}
$$

From Equation 32,
$H_{2}=G \cdot Q_{I}(20,0)+F_{I} \cdot P_{I}(20,0)+F_{2} \cdot P_{I}(19,0)$
$G_{0} Q_{I}(20,0)=(9.94602) \cdot(0.00484302)=0.048 I 687738 \mathrm{gm}-m o l e$
$\mathrm{F}_{1} \cdot \mathrm{P}_{1}(20,0)=(0.00000239) \cdot(100.0)=0.000239 \mathrm{gm-mole}$
$\mathrm{F}_{2} \cdot \mathrm{P}_{\mathrm{I}}(19,0)=(0.00000568) \cdot(100.0)=0.000568 \mathrm{gm-mole}$
$\mathrm{H}_{2}=0.04897577$ gm-mole
To solve Equation 38, the constants are calculated from Equations 35,36 , and 37.
$a=F=0.00000839 \mathrm{gm}-\mathrm{mole} / \mathrm{cmHg}$
$\mathrm{b}=(\mathrm{E} . \mathrm{F} \cdot \mathrm{G} \cdot \mathrm{D})-\mathrm{H}_{2}$
$b=(0.000087759+0.05320723)-0.04897577=0.00423146$ gm-mole
$c=-\mathrm{E} \cdot \mathrm{H}_{2} \equiv-(10.46) \cdot(0.04897577)=-0.51228655 \mathrm{sm}-\mathrm{mole} \cdot \mathrm{cmHg}$

44:

$$
\begin{aligned}
& P_{I}(20, I)=\frac{-b+\left(b^{2}-4 \cdot a \cdot c\right)^{I / 2}}{2 \cdot a} \\
& \begin{aligned}
b^{2}=(0.00423 I 46)^{2}=0.00001790 \mathrm{gm}^{2}-\mathrm{mole} e^{2}
\end{aligned} \\
& 4 \cdot a \cdot c=4 \cdot(0.00000839) \cdot(-0.51228655)=-0.00001792 \mathrm{gm}^{2} \mathrm{~mole} \mathrm{e}^{2} \\
& \begin{aligned}
\left(b^{2}-4 \cdot a \cdot c\right)^{I / 2} & =(0.00001790+0.00001792)^{I / 2} \\
& =0.00592368 \mathrm{gm}-\mathrm{moIe}
\end{aligned} \\
& \begin{aligned}
P_{I}(20, I) & =\frac{-0.00423146+0.0059268}{2 \cdot(0.00000839)}=100.8475141 \mathrm{cmHg}
\end{aligned}
\end{aligned}
$$

From the equilibrium relation Equation 1 the adsorbate density is calculated.

$$
\begin{aligned}
& Q_{I}(20, I)=\frac{D_{1} P_{I}(20, I)}{E+P_{I}(20, I)} \\
& Q_{I}(20, I)=\frac{(0.0053496) \cdot(100.847514 I)}{I 0.46+100 \cdot 847514 I} \\
& Q_{I}(20, I)=0.0048485 \mathrm{gm}-\mathrm{mole} / \mathrm{gm}
\end{aligned}
$$

The material balance of reservoir B for component I is calculated every time step by Iquations 39 and 40.

$$
\begin{aligned}
& R_{B E I}=R_{B H I}+\frac{V \cdot F R C T \cdot P_{1}(n, J)}{R \cdot T} \\
& \begin{aligned}
& \begin{aligned}
V^{\prime} \cdot P R C T
\end{aligned} P_{I}(20, I) \\
& R \cdot T= \\
&=0.00059824 \text { gm-moIe } \\
& R_{B E I}=0.04195+0.00059824=0.04254824 \text { gm-mole }
\end{aligned}
\end{aligned}
$$

An approximation for $J=\tau_{\mathbb{E}}$ is made to continue the calculations.

$$
\begin{aligned}
& R_{B E I}=I_{I} \cdot R_{B L T}=Y_{I} \cdot \frac{V_{R L} \cdot \Pi_{L}}{R_{\cdot} \cdot T} \\
& R_{B E 1}=\frac{(0.1) \cdot(760 \cdot 0) \cdot(357 \cdot 0)}{(6236 \cdot 0) \cdot(290)}=0.01500299 \mathrm{Em-mole} \\
& R_{\text {BET }}=R_{\text {BLT }}=0.1500299 \mathrm{gm} \text {-mole } \\
& Y_{I}(B, 45)=\frac{R_{B E I}}{R_{B E T}}=\frac{0.01500299}{0.1500299}=0.1 \\
& P_{I}(B, 45)=Y_{1}(B, 45) \cdot \pi_{L}=(0.1) \cdot(357.0)=35.7 \mathrm{cmHg} \\
& a_{1}(1,45)=\frac{D \cdot P_{1}(1,45)}{E+P_{1}(20,45)} \\
& =\frac{(0.0053426) \cdot(35 \cdot 7)}{10.46+35.7}=0.00413736 \mathrm{em}-\mathrm{mole} / \mathrm{cm}
\end{aligned}
$$

III.- Third Stage.

The injitial condjitions of this stage are the final condi.tions of stage two. The numbers used for the sample calculation are similar in magnitude to the actual numbers but assume that no separation has occurred, to keep the calculations as simple as possible.

$$
\begin{aligned}
& P_{I}(I, I)=P_{I}\left(I, \tau_{E}\right) \\
& Q_{I}(I, I)=Q_{I}\left(I, \tau_{\mathbb{E}}\right)
\end{aligned}
$$

For $I=I$ and $J=I$

$$
\begin{aligned}
& P_{I}(I, I)=P_{I}(I, 45)=35.7 \mathrm{cmHF} \\
& Q_{1}(I, I)=Q_{I}(I, 45)=0.00413736 \mathrm{gm}-\mathrm{mole} / \mathrm{cm}
\end{aligned}
$$

From Equation $45, \mathrm{H}_{3}$ is calculated for $\mathrm{I}=\mathrm{I}$ and $\mathrm{J} \subseteq 1$.

$$
\begin{aligned}
H_{3} & =F \cdot P_{I}(2 I, 0)+G \cdot Q_{I}(20,0) \\
& =(0.00000839) \cdot(35 \cdot 7)+(9.94602) \cdot(0.00413736) \\
& =0.00029952+0.04115030=0.04144982 \mathrm{gm}-\mathrm{mole}
\end{aligned}
$$

To solve for $P_{I}(n+I-I ; J)$ the quadratiic equation constants are calculated.

$$
\begin{aligned}
& a=F=0.00000839 \quad \mathrm{Em}-\mathrm{mole} / \mathrm{cmHg} \\
& D=(E \cdot F+G \cdot D)-H_{3} \\
& b=0.05320723-0.041444982=0.01175741 \mathrm{gm}-\mathrm{mole} \\
& c=-\mathbb{E}_{0} \mathrm{H}_{3}=-(\mathrm{IO} 0.46) \cdot(0.04 \mathrm{I} 444982)=-0.433565 \mathrm{I} 2 \mathrm{gm}-\mathrm{mole} . \mathrm{cmH}_{\mathrm{E}} \\
& P_{I}(20, I)=\frac{-b+\left(b^{2}-4 \cdot 2 \cdot c\right)^{I / 2}}{2 \cdot a} \\
& b^{2}=(0.0117541)^{2}=0.00013824 \mathrm{~cm}-\mathrm{mole} \mathrm{e}^{2} \\
& 4 . a . c=-4 \cdot(0.00000839) \cdot(0.43356512)=-0.00001455 \mathrm{~g} \quad \mathrm{~m}-\mathrm{mol} \mathrm{e}^{2} \\
& \left(b^{2}-4 . a \cdot c\right)^{1 / 2}=(0.00013824+0.00001455)^{1 / 2} \\
& =0.01236069 \\
& P_{I}(20, I)=\frac{-0.01175741+0.01236062}{0.00001678}=35.95240285 \mathrm{cmHg}
\end{aligned}
$$

The adsorbate density can be calculated from Equation 1 again.

$$
\begin{aligned}
Q_{1}(20, I) & =\frac{D_{1} P_{1}(20, I)}{E+P_{I}(20, I)} \\
& =\frac{(0.0053426) \cdot(35.9524)}{10.46+35.9524}=0.00414396
\end{aligned}
$$

The total number of mbles of component 1 in reservoir A is calculated by Equations 49 and 50, but for the sake of jillustrating the problem, it is enough to make the following approximation.

$$
\begin{aligned}
& R_{A L I}=T_{L} \cdot F \cdot P_{1}(I, J-1)= \\
& R_{A L I}=(50) \cdot(0.00000839) \cdot(35 \cdot 7)=0.01497615 \text { gm-mole } \\
& \mathrm{R}_{\mathrm{ALT}}=\frac{\mathrm{V}_{\mathrm{RL}} \cdot \Pi_{L}}{\mathrm{R} \cdot \mathrm{~T}}=0.1500299 \mathrm{gm}-\mathrm{mole} \\
& Y_{I}(A, 50)=\frac{R_{A L I}}{R_{\text {ALT }}}=\frac{0.01500299}{0.1500299}=0.1 \\
& P_{I}(A, 50)=Y_{I}(A, 50) \cdot \pi_{L}=(0.1) \cdot(357 \cdot 0)=35 \cdot 7 \mathrm{cmig}
\end{aligned}
$$

It should be mentioned again that the figures presented in this sample calculation are only intended to give the relative size of the numbers, but do not represent the actual figures as calculated by the computer which takes into account every position and time step of the calculation.
IV.- Fourth Stage.

To calculate the volumes from each segment, Equations 53, 54, 55 , and 56 are solved.

For $I=I$ and $J=I$

$$
\begin{aligned}
& V_{R A J}=V_{R L}-V . \epsilon . J \\
& V_{R A J}=760.0-(19.9) \cdot(0.762) \cdot(I)=744.8362 \mathrm{cc} \\
& V_{T J}=V_{A D}+V_{R A J}=304.0+744.8362=1048.8362 \mathrm{cc} \\
& F R C T=\frac{V_{\mathrm{RJ}}-V_{.}}{V_{\mathrm{TJ}}}=\frac{1048.8362-(19.9) \cdot(0.762)}{1048.8362} \\
& \mathrm{FRCT}=0.98554217 \\
& \mathrm{~V}^{\mathrm{t}}=\mathrm{V}_{\mathrm{AD}} \cdot(1.0-\mathrm{FRCT})=(304.0) \cdot(0.01445783)=4.39518 \mathrm{cc} \mathrm{cc}
\end{aligned}
$$

The pressure of component I in reservoir A, as compression progress, is calculated as follows,

$$
P_{I}(A, J)=P_{I}(A, I) \cdot \frac{\left(V_{R L}+V_{A D}\right)}{V_{T J}}
$$

$$
\begin{aligned}
& P_{I}(A, J)=\frac{(35.7) \cdot(760.0+304.0)}{1048.8363}=36.21613783 \mathrm{cmHg} \\
& G_{4}=\frac{n-I}{n-I}=\frac{20-I}{20-I}=1.0
\end{aligned}
$$

From Equations 59, 60, and $6 I$ the factor H_{4} can be calculated.

$$
\begin{aligned}
& F_{3}=\frac{\left(\in \cdot V-V^{*} \cdot G_{\Lambda}\right)}{R \cdot T \cdot F R G T} \\
& =\frac{(0.762) \cdot(19 \cdot 9)-(4.39518121) \cdot(I \cdot 0)}{(6236.0) \cdot(290.0) \cdot(0.98554217)}=0.00000604 \frac{\mathrm{gm}-\mathrm{mole}}{\mathrm{cmHg}} \\
& F_{4}=\frac{\nabla^{\top} \cdot G_{4}}{R \cdot T \cdot F R C T} \\
& \mathrm{~F}_{4}=\frac{(4.3251812 \mathrm{I}) \cdot(1.0)}{(6236.0) \cdot(290 \cdot 0) \cdot(0.98554217)}=0.00000247 \frac{\mathrm{gm}-\mathrm{mole}}{\mathrm{cmH}} \\
& H_{4}=F_{3} \cdot P_{1}(I, J-I)+F_{4} \cdot P_{1}(I-I, J-I)+G \cdot Q_{1}(I, J-I) \\
& F_{3} \cdot P_{i}^{-}(I, 0)=(0.00000604) \cdot(35 \cdot 7)=0.00021563 \mathrm{gm-mole} \\
& \mathrm{~F}_{4} \cdot \mathrm{P}_{1}(0,0)=(0.00000247) \cdot(35 \cdot 7)=0.00008818 \mathrm{gm}-\mathrm{mole} \\
& G \cdot Q_{I}(I, O)=(9.94602) \cdot(0.00414396)=0.04121591 \text { gm-mole } \\
& \mathrm{H}_{4}=0.00021563+0.00008818+0.04121591=0.0415197287-\mathrm{mole}
\end{aligned}
$$

The constants from the quadratic equation are solved from Eruations 62,63 , and 64.
$a=F=0.00000839 \mathrm{~cm}-\mathrm{mole} / \mathrm{cmHg}$
$\mathrm{b}=\mathrm{G} \cdot \mathrm{D}+\mathrm{E} \cdot \mathrm{F}-\mathrm{H}_{4}$
$\mathrm{b}=0.05320723 \div 0.04151972=0.01168751 \mathrm{gm}-\mathrm{mole}$
$\mathrm{c}=-\mathrm{E}_{\mathrm{E}} \mathrm{H}_{4}=-(10.46) \cdot(0.04151972)=-0.43429627 \mathrm{gm}-\mathrm{mole} \cdot \mathrm{cmHg}$
$P_{I}(I, J)=\frac{-b+\left(b^{2}-4 \cdot a \cdot c\right)^{I / 2}}{2 \cdot a}$
$\left(b^{2}-4 \cdot a \cdot c\right)^{I / 2}=\left((0.01168751)^{2}-4 \cdot(0,00000839) \cdot(-0.43429627)\right)^{I / 2}$
$=0.01229532$
49.

$$
\begin{aligned}
& P_{I}(I, I)=\frac{-0.01168751+0.01229532}{0.00001678}=36.2225039 \mathrm{cmH} \\
& \begin{array}{rl}
Q_{I}(I, I) & = \\
& =\frac{D_{\cdot} P_{I}(I, I)}{E+P_{I}(1, I)} \\
& (0.0053496) \cdot(36.2225039) \\
I 0.46+36.2225039 & 0.00415093 \mathrm{gm}-\mathrm{mole} \\
R_{A H I}= & \frac{P_{I}\left(I, T_{U}\right) \cdot V_{R H}}{R \cdot T}
\end{array}
\end{aligned}
$$

Since it was assumed that the concentration of component 1 is very small, and the total pressure is not affected by the change in component 1 partial pressure, at the end of cach cycle a proportionallity factor is calculated and used to adjust the partial pressure of component I throughout the system before the next cycle starts.

$$
\text { PROP }=\frac{\text { Moles of component I that should be in the gas nhase }}{\text { Actual moles of component } 1 \text { in gas phase }}
$$

The equation to calculate this factor is Equation 66.

RESULTS AMD DISCUSSION

The mathematical model previously described for the batch isothermal pressure changing parametric pump was solved for eighteen different data combinations, with the help of a computer. The same column and packing parameters, simjlar to Jenczewski and Myers (7), were used for all sets of data. 70
The data for each computer run is listed in Appendix I, and a summary of the results are tabulated in Appendix 2. The computer calculation time was limited to 10 minutes per run, and each run was calculated for as many cycles as possible within this time limit. Single precision (24 bj.ts) numbers were used for all runs except 13 and 15 , where double precision (48 bits) was used. For the dilute gas mixtures, where very small differences are calculated in the material balance, the precision of the calculations is very important, but in the other hand the greater the precision, the less number of cycles the computer was able to calculate in the time available.

Figure II shows the importance of the computer precision for low partial pressures on the separation results obtained. Curves I and I.a are calculated from the same set of data, for a dilute concentration of propane, $Y_{I}=0.01$. The separation results, $P_{I A} / P_{I B}$, is the same up to the first cycle for both curves, but as the cycles progress; curve l continues an upward trend, while curve l.a becomes flat. The reason for this difference in behavior i.s that the curve 1 was calculated with double precision, while the curve I.a was calculated wi.th singIe precision. Due to this computer limjitation the separation results reported wi.th single precision calculations are reliable only for the first ten cycles. From the two double precision runs
i.t can be predicted that the separation curves will continue to go up as the number of cycles increases.

To illustrate the distribution of propane partial pressure throughout the column, Figure 6 shows a famjly of curves for cycles I to 5, at the high total pressure. From this fi.gure it is evident that the reservoir A, where the compression occurs, gains in propane as the reservoj.r B, where expansion occurs, is depleted from it. The same effect is show jningure 9 after 30 cycles, for the same initial conditions.

In Figure 7 the separation results of five different sets of data versus the number of cycles are plotted. Curves I and 3 at a lower temperature (310 © K) give a greater separation than curves 2 and 4 at a higher temperature (373 oK) , all other parameters equal. The lower initial partial pressure of propane gives a lower scparation factor, but the behavior of this curver: beyond ten cycles is difficult to predict due to the previou.cly explained computer limi.tations. Curve 6 was taken from reference (7), and it shows the predicted separation for the temperature changing parametric pump, for the same system Propane-Argon on carbon. Curve 5 has the same parameters as curve 2 except i.t has a lower penetration, $V_{R L} / V_{A D}$. The rate of separation is smaller for the Iower penetration factor.

Comparing the results of the batch temperature changing model (7) with the pressure changing model for a similar parametric pump, for the same fraction change of absolute temperature and pressure, the temperature changing model predicts three times more separation thar the pressure chançing model with similar propane partialopressure.

[^0]Figure 8 shows the concentration of propane, Y_{I}, at each reservoir against the number of cycles. The curves with positive slope represent the increase in concentration of propane in reservoir A, and the negative sloped curves the concentration in reservoir B.

The distance the plug flow front travels from the reservoir into the column issreferred as the penetration of the gas phase. The maximum penetration occurs when the low pressure (largest volume) reservoir is moved into the column. Figure 9 shows the parti.al pressure distribution of propane after 30 cycles of the computer run 5 , which has a maximum penetration, $V_{R I} / V_{R H}$, of 0.79. In this figure, a change in slope occurs at the position in the column, where the maximum penetration reaches.

The effect of the volume ratio of the reservoirs at the two different pressures, $V_{R L} / V_{R H}$, and the maximum penetration are shown in Figure 10. The deeper the penetration in the column, and the larger the ratio of $\mathrm{V}_{\mathrm{RL}} / \mathrm{V}_{\mathrm{RH}}$, the faster the separation, $P_{I A} / P_{I B}$, thet is obtained: The effect of the maximum penetration appears to be more significant than the relative size of the reservojrs on the rate of separation, but the effect of these parameters beyond ten cycles is difficult to predict.

The runs with lower partial pressure of propane appear to give better rate of separation then the higher ones. As may be seen in figure II, curve I shows an upward trend, which anticipates greater separation ratios than the curves in Figure 7 and 10. Run 15 and run 8 are identical except for the jnitial concentration of propane, Y_{1}, which is 10 times lower in run 15 , and

[^1]
FIGURE 6

FINAL PARTIAL PRESSURE OF PROPANE IN THE HIGH PRESSURE

StAGE THROUGH THE ADSOREER

54.

F1C. 7
PROPANE SEPARATIOR VS. NURBER OF CYCLES

FIG. 8
MOLE FRACTION OF PROPANE AT EACH RESERVOIR
VS. NUMBER OF CYCLES
56.

FIGURE 9^{*}

PARTIAL PRESSURE OF PROPANE IN THE HIGH PRESSURE STAGE OF THE $30^{\text {th }}$ CYCLE

Adsorber Position
57.

FIG. 10
SEPARATION VG. PENETPATION AND RESERVOIR RATIO
the fact that run 8 was calculated with single precision while run 15 was done with double precision. The effect of the dilution (lover partial pressure of propane) and the calculation precision are very significant in the slope of the separation curves.

Figure 12 shows the concentration of propane, Y_{1}, in both reservoirs for each cycle, for two reservoir size variations, with the low propane concentration. This figure shows similar curves as Figure 8. The rate of depletion of propane from reservoir B appears to increase as the number of cycles increases in Fisure 12, while in Fi.gure 8 the curves tend to reduce the rate concentration changes as the number of cycles increase.
59.

60.

FIG. 12

MOLE CONC. OF PROPANE VS. NUREER OF CYCLES.

A $\quad=$ Reservoir A.
a $=$ Quadratic equation constant.
B $\quad=$ Reservoir B.
b \quad Quadratic equation constant.
c = Quadràtic equàtion constant.
$D \quad=$ Adsorption equilibrium equation temperature dependent constant, $8 m-m o l e / \mathrm{sm}$.
$=$ Inside dijameter of column, cm.
= Adsorption equilibriun equation temperature dependent constant, cmH .
$\mathrm{F} \quad=$ Volume element mole-pressure factor, gm-mole/cmHg.
$F_{1}, F_{2}=$ Fraction of volume element mole-pressure factor used in the expansion stage, gm-mole/cmig.
$F_{3}, F_{4}=$ Fraction of volume element mole-pressure factor used in the expansion stage, हm-mole/cmHg.
FRCT = Fraction of volume change in any given time step, dimensionless. (see Equation 27).
G $\quad=$ Adsorber weight of volume element, gm.
$\sigma_{\text {II }}=$ Position distribution factor in the expansion stage, dimensiontess.
$\mathrm{H}_{\mathrm{I}}=$ Moles of component I in first stage material balance of a volume element, gm-mole.
$\mathrm{H}_{2} \quad=$ Moles of component I in the secondestagematerial balance of a volume element, gm-mole.
$H_{3}=$ Moles of component I in the third stage material balance of a volume element, gm-mole.
$\mathrm{H}_{4}=$ Moles of component I in the fourth stage material balance of a volume element, gm-mole.
I = Position element, dimensionless.
$\mathrm{J}=$ Time element, dimensionless.

K_{1}	$=\text { Adsorption equilibrium constant as } \mathrm{P}_{\mathrm{I}} \rightarrow 0, \frac{\mathrm{gm-mole}}{\mathrm{gm} \cdot \mathrm{cmfg}} \text {. }$
K_{2}	$=\text { Adsorption equilibrium constant as } P_{1} \rightarrow \infty, \frac{\text { gm-moIe }}{\varepsilon^{m}} .$
n	$=$ Number of column volume elements, dimensionless.
$\mathrm{n}_{\text {T }}$	$=$ Total number of moles, gm-mole.
PROP	= Correction factor, dimensionless.
P_{1}	$=$ Partial pressure of component $\mathrm{I}, \mathrm{cmitg}$.
P_{2}	$=$ Partial pressure of component 2, cmHg.
$P_{I}(I$	$)=$ Partijal pressure of component I at position I in the column and time $\mathrm{J}, \mathrm{cmHz}$.
	$=$ Adsorbate densj.ty of component 1 , sm-mole/gm.
$Q_{I}(I$	$)=$ Adsorbate density of component I at posi.tion I in the column and ti.me J , gm-mole/gm.
R	$=\text { Ideal gas constant, } 6236.0 \frac{\mathrm{cc} \cdot \mathrm{cmHg}}{\mathrm{gm-mole} \cdot \mathrm{GK}} .$
$\mathrm{R}_{\text {ACI }}$	$=$ Number of moles of component I in reservoir A during compression stase, zm-mole.
$\mathrm{R}_{\text {ACT }}$	$=$ Total number of moles in reservoir a during compression stage, sm-mole.
$\mathrm{R}_{\text {AFII }}$	$=$ Number of moles of component I in reservoir A during the high pressure stage, gm-mole.
$\mathrm{R}_{\text {AIFT }}$	$=$ Total number of moles in reservoir A during the high pressure stage, gm-mole.
$\mathrm{R}_{\text {ALI }}$	$=$ Number of moles of component I in reservoir A during the low pressure stage, gm-mole.
$\mathrm{R}_{\text {ALT }}$	$=$ Total number of moles in reservoir A during the low pressure stage, gm-mole.
$\mathrm{R}_{\mathrm{BEI}}$	$=$ Number of moles of component I in reservoir B during the expansion stage, gm-mole.
$\mathrm{R}_{\text {BET }}$	$=$ Total number of moles in reservojir B during the expension stage, gm-nole.
$\mathrm{R}_{\mathrm{BHI}}$	$=$ Munber of moles of component I in reservoir B during the hich pressure stage, gm-mole.

$\mathrm{R}_{\mathrm{BHT}}$	$=$ Total number of moles in reservoir B during the hiogh pressure stage, gm-mole.
$\mathrm{R}_{\text {BLI }}$	$=$ Number of moles of component I in reservoir B during the low pressure stage, gm-mole.
$\mathrm{R}_{\text {BLT }}$	$=$ Total number of moles in reservoir B during the low pressure stage, gm-mole.
T	$=$ Absolute temperature, oK.
\checkmark	$=$ Volume of one column element, cc.
V	$=$ Volume element adjusted for one step pressure change, co
V_{A}	$=$ Volume of reservoir A, cc.
V_{B}	$=$ Volume of reservoir B, cc.
V_{AD}	= Free volume of column, cc.
${ }^{\text {c }}$	$=$ Total volume of column, cc.
$V_{\text {REJ }}$	$=$ Volume of gases in reservoir B at any time J, cc.
$\mathrm{V}_{\text {RAJ }}$	$=$ Volume of çases in reservoir A at any time J, cc.
V_{RH}	$=$ Maximum volume of reservoirs at high pressure, cc.
V_{RL}	$=$ Maximum rolume of reservoirs at low pressure, cc.
∇_{T}	$=$ Total free volume of column plus reservoirs, cc.
V_{TJ}	$=$ Total free volume of the system at any time J, cc.
T_{I}	$=$ Molar concentration, of component I in the gas phase, dimensionless.
Y_{2}	$=$ Molar concentration of component 2 in the gas phase, dimensionless.

Greek Letters

ϵ	$=$ Void fraction in packing, dimensionless.
$\pi_{H}=$	Total high pressure, cmHg.
$\pi_{L}=$	Total low pressure, cmHg.
$\tau_{H}=$	Number of time steps for the high pressure stage,
	dimensjonless.
$\tau_{E}=$	Number of time steps for the expansion stage, dimen-
	sionless.
$\tau_{L}=$	Number of time steps for the low pressure stage, dimen-
	sionless.
$\tau_{C}=$	Number of time steps for the compression stage, dimen-
	sionless.
$=$	Specific densi.ty of the adsorber, gm/cc.

Subscripts
$\mathrm{AD} \quad=$ Adsorber column
C $\quad=$ Compression stage (except for V_{C}).
E = Expansiom stage.
H: = High pressure.
$\mathrm{L} \quad=$ Low pressure.
R $\quad=$ Reservoir.
T: = Total.
65.

APPENDIX I

DATA SHEETS

VariabIe	Unjit		Run	
		1	2	3
P_{HI}	$\mathrm{cmHg}^{\text {g }}$	1267.0	1267.0	1267.0
P_{L}	cmHg	761.0	761.0	761.0
T	or^{K}	310.5	310.5	373.0
V_{RH}	cc	154.0	154.0	2154.0
${ }^{\text {RL }}$	cc	462.0	462.0	462.0
$\mathrm{P}_{\mathrm{HIIII}}$	cmHg	363.35	126.75	-63.35
T_{I}	-	0.05	0.1	0.05
F_{2}	-	0.95	0.9	0.95
JTAUMF	-	11	11	$1]$
JTAUE	-	2 I	21	21
JTAUC	-	21	21	21
JTAUL	-	3 I	31	31
$\mathrm{V}_{\mathrm{RL}} / \mathrm{V}_{\mathrm{AD}}$	-	1.5	1.5	1.5
$\mathrm{V}_{\mathrm{RL}} / \mathrm{V}_{\mathrm{RH}}$	-	3.0	3.0	3.0

DATA SHIET 2

Variable	Unit	Com		
		4	5	6
P_{H}	$\mathrm{cmHF}^{\text {c }}$	1267.0	1267.0	1000.0
${ }^{P}$ L	cmHg	761.0	984.0	356.58
T	${ }^{\circ} \mathrm{K}$	373.0	373.0	290.0
V_{RH}	cc	I54.0	121.0	159.2
$\mathrm{V}_{\text {RL }}$	cc	462.0	243.2	995.0
$\mathrm{P}_{\text {Hill }}$	cmHg	126.7	126.7	100.0
Y_{I}	-	0.1	0.1	O.I
Y_{2}	-	0.0	0.9	0.9
JTAUH	-	11	9	9
JTAUE	-	21	9	43
JTTAUC	-	21	9	43
JTAUL	-	31	17	51
$\mathrm{V}_{\mathrm{RL}} / \mathrm{V}_{\mathrm{AD}}$	-	1.5	0.79	3.0
$\mathrm{V}_{\mathrm{RL}} / \mathrm{V}_{\mathrm{RH}}$	-	3.0	2.0	6.2

68 :

DATA SHBET 3

Variable	Unit		Run	
		7	8	9
$\mathrm{P}_{\text {H }}$	criIg	1000.0	1000.0	1000.0
P_{L}	cmHg	323.0	357.0	642.0
T	Q^{K}	290.0	290.0	290.0
V_{RH}	cc	30.4	76.0	380.0
V_{RL}	cc	760.0	760.0	760.0
$\mathrm{P}_{\text {HIII }}$	cmHg_{5}	I00.0	100.0	100.0
F_{1}	-	0.1	0.1	0.1
I_{2}	-	0.9	0.9	0.9
JTAUH	-	3	6	26
JTAUE	-	49	46	26
JTAUC	-	49	46	26
Jtaul	-	51	51	51
$\mathrm{V}_{\mathrm{RL}} / \mathrm{V}_{\mathrm{AD}}$	-	3.27	3.27	3.27
$\mathrm{V}_{\mathrm{RL}} / \mathrm{V}_{\mathrm{RH}}$	-	25.0	10.0	2.0

DATA SHEET 4

Varjable	Unit	Computer	Run	
		10	11	12
P_{H}	cmHg	1000.0	1000.0	1000.0
${ }^{\text {P }}$	cmHg	731.0	698.0	830.0
T	@K	290.0	290.0	290.0
V_{RH}	cc	30.4	15.4	76.0
$\nabla_{\text {RL }}$	cc	154.0	154.0	154.0
$\mathrm{P}_{\text {HIII }}$	cmHg	100.0	100.0	100.0
Y_{1}	-	0.1	0.1	0.1
I_{2}	-	0.9	0.9	0.9
JTAUE	-	3	2	6
JTAUE	-	9	10	6
JTAUC	-	9	10	6
JTAUL	-	11	11	II
$\mathrm{V}_{\mathrm{RL}} / \mathrm{V}_{\mathrm{AD}}$	-	0.5	0.5	0.5
$\mathrm{V}_{\mathrm{RL}} / \mathrm{V}_{\mathrm{RH}}$	-	5.0	10.0	2.0

70.

DATA SHEETP 5

Variable	Unit		Run	
		13	14	15
P_{H}	cmHg	1000.0	1000.0	1000.0
P_{L}	cmHg	731.0	357.0	357.0
T	${ }^{\circ} \mathrm{K}$	290.0	290.0	290.0
V_{RH}	cc	30.4	76.0	76.0
$\mathrm{V}_{\text {RL }}$	cc	154.0	760.0	760.0
$\mathrm{P}_{\mathrm{HIII}}$	cmHg	10.0	10.0	10.0
T_{1}	-	0.01	0.01	0.01
Y_{2}	-	0.99	0.99	0.99
JTAUH	-	3	6	6
JTAUE	-	9	46	46
JTAUC	-	9	46	46
JTAUL	-	11	51	51
$\mathrm{V}_{\mathrm{RI}} / \mathrm{V}_{\mathrm{AD}}$	-	0.5	3.27	3.27
$\mathrm{V}_{\mathrm{RL}} / \mathrm{V}_{\mathrm{RH}}$	-	5.0	10.0	10.0

Variable	Unit	Com	Run	
		16	17	18
P_{H}	cmHg	1000.0	1000.0	1000.0
P_{L}	cmHg	323.0	323.0	467.1
T	$\bigcirc^{\circ} \mathrm{K}$	350.0	400.0	290.0
V_{RH}	cc	30.4	30.4	760.0
$\nabla_{\text {RL }}$	cc	760.0	760.0	1520.0
P HIII	$\mathrm{cmHe}^{\text {c }}$	100.0	100.0	100.0
Y_{1}	-	0.1	0.1	0.1
Y_{2}	-	0.9	0.9	0.9
JTAUH:	-	3	3	51
JTAUE	-	49	49	51
JTAUC	-	49	49	51
JTAUL	-	51	51	101
$\mathrm{V}_{\mathrm{RI}} / V_{\mathrm{AD}}$	-	3.27	3.27	5.0
$\mathrm{V}_{\mathrm{RL}} / \mathrm{V}_{\mathrm{RH}}$	-	25.0	25.0	2.0

72. APPETDIX 2

RESULTS SUMMARY SHETS

T3.

RESULIS SUMMARY SHEET I

Computer Run

	1		2		3	
Reservoir	A	B	A	B	A	B
Tray maces	0.302	$\therefore 109$	0.10	0.101	$\because 5$.	9.0's
Cycle	Conce	tration	of Pro	ne in e	ach rese	voir, Y_{7}
0	0.05	0.05	0.10	0.10	0.05	0.05
21	0.0792	0.0376	0.150	0.0683	0.0795	0.0405
2	0.0967	0.0327	0.185	0.0545	0.095	0.037
3	0.1091	0.0287	0.213	0.0455	0.107	0.034
4	0.1200	0.0267	0.234	0.0386	0.115	0.033
5	0.1273	0.0257	0.247	0.0346	0.123	0.032
6	0.1338	0.0248	0.255	0.0317	0.130	0.031
T	0.1395	0.0238	0.257	0.0308	0.135	0.030
8	0.1442	0.0238	0.263	0.0288	0.139	0.0286
9	0.1510	0.0238	0.264	0.0279	0.143	0.0286
10	0.1530	0.0238	0.265	0.0299	0.148	0.0286

74.

RESULTS SUMMARY SHEBT 2

Computer Run

	4		5		6	
Reservojir	A	B	A	B	A	B
CycIe	Concen	tration	or. Prop	e in:	ch: rese	roir, Y_{1}
0	0.10	0.10	0.10	0.10	0.10	0.10
1	0.1545	0.0714	0.108	0.10	0.129	0.034
2	0.1920	0.0584	0.118	0.093	0.172	0.022
3	0.219	0.0487	0.125	0.088	0.194	0.017
4	0.242	0.0429	0.131	0.083	0.200	0.016
5	0.261	0.0383	0.137	0.077	0.201	0.015
6	0.275	0.0369	0.143	0.074	0.202	0.015
7	0.284	0.0358	0.148	0.070	\cdots	-
8	0.291	0.0358	0.152	0.068	-	-
9	0.294	0.0358	0.158	0.065	-	-
10	0.295	0.0345	0.164	0.063	-	-

75.

RESULTS SUMMARY SHETT 3

Computer Run

	7		8		9	
Reservoir	A	B	A	B	A	B
Cycle	Concentration		of Propane in		ch reservoir, Y_{I}	
0	0.100	0.100	0.100	0.100	0.100	0.100
I	0.258	0.049	0.232	0.051	0.142	0.071
2	0.303	0.031	0.287	0.033	0.187	0.055
3	0.327	0.023	0.31 .3	0.024	0.227	0.045
4	0.334	0.020	0.319	0.021	0.251	0.038
5	0.336	0.019	0.322	0.019	0.265	0.032
6	0.337	0.018	0.323	0.018	0.272	0.030
7	-	-	-	-	0.276	0.028
8	-	-	-	-	0.279	0.026

76.

RESULTS SUMMARY SHEET 4

Computer Run

Reservoir	10		II			12
	A	B	A	B	\bar{A}	B
Cycle	Concentration		of Propane in each reservoir, Y_{1}			
0	0.100	0.100	0.100	0.100	0.100	0.100
1	0.122	0.084	0.127	0.082	0.110	0.089
2	0.123	0.075	0.127	0.072	0.114	0.083
3	0.126	0.068	0.727	0.065	0.116	0.078
4	0.129	0.063	0.130	0.059	0.118	0.074
5	0.132	0.058	0.134	0.054	0.121	0.071
6	0.136	0.055	0.138	0.051	0.124	0.068
7	0.140	0.052	0.143	0.048	0.127	0.065
8	0.145	0.049	0.149	0.045	0.130	0.063
9	0.151	0.047	0.154	0.044	0.133	0.061
10	0.156	0.046	0.760	0.042	0.136	0.059
20	0.178	0.041	0.179	0.039	0.161	0.051
30	0.180	0.040	0.180	0.038	0.170	0.048

77.

RESULTS SUMMARY SHEET 5

Computer Run

Reservoir	13		14		15	
	A	B	A	B	A	B
Cycie	Concen	ration	of Propa	e in e	reser	oir, Y_{1}.
0	0.01	0.01	0.01	0.01	0.01	0.01
I	0.0128	0.0098	0.0255	0.0085	0.0266	0.0087
2	0.0129	0.0097	0.0255	0.0082	0.0306	0.0079
3	0.0130	0.0096	0.0261	0.0085	0.0344	0.0072
4	0.0131	0.0095	0.0249	0.0085	0.0380	0.0066
5	0.0132	0.0094	0.0239	0.0078	0.0415	0.0061
6	0.0133	0.0093	0.0240	0.0085	0.0447	0.0057
7	0.0134	0.0092	0.0240	0.0078	0.0476	0.0053
8	0.0135	0.0091	0.0248	0.0085	. .-.	-
9	0.0136	0.0090	0.0247	0.0095	-	-
10	0.0137	0.0089	0.0236	0.0087	-	-
20	0.0143	0.0082	-	-	-	-
30	0.0149	0.0076	-	-	-	-

RESULTS SUMMARY SHITPT 6

Computer Run

	16		17		18	
Reservoir	A	B	A	B	A	B
Cycle	Concentration		of Propane in each reservoir, Y_{1}			
0	0.10	0.10	0.10	0.10	0.10	0.10
1	0.275	0.053	0.279	0.054	0.155	0.063
2	0.333	0.035	0.340	0.035	0.216	0.047
3	0.364	0.026	0.375	0.026	0.252	0.034
4	0.390	0.021	-	-	0.271	0.027
5	0.403	0.019	-	-	0.282	0.026
6	0.409	0.017	-	-	0.284	0.025

79.

APPENDIX 3

COMPUTER PROGRAFI

COMPUTER PROGRAM

The solution of the equations for the pressure changing parametric pump, as described in the sample calculation, requires the use of small volume segments to approximate the actual behavior of the system, and very high precision in the calculations, so the small differences in the material balances that produce the separation, are not smaller than the size of numbers used.

The use of a computer to carry this task js ideal, since both high precision and large number of calculations are possjble, A.FFortran IV computer program was written, and used to calculate 18 different sets of data. A computer program flow sheet is included to facilitate the understanding of the calculation sequence.

The parameters fed into the computer and used for all calculations made, care: V, VT, RHO, EPSLON, N, M, R, CYTIME, and, VAD. The additional data used im the calculation of each computer run are: PH , PL, TT, IRIF, VP̣L, PHIII, II, Y2, JTAUH, JTAUC, JTAUE, and JTAUL;

The data used for each computer run are summarized in the data sheets, and typical printouts of the results are also included. A Iist of Fortran statements printed by the computer shows a simplified version of the computer statements shown in the flow sheet, to give enough core storage capacity for double precjsion calculation. The difference is that for the flow sheet there is a different pnessure and adsorbate density variable for each stage in the cycle, whereas in the Fortren statement list the same variable is used for all stages. This reduces the number of arrays necessary from eight to two, permitting larger arrays.

This program was run ina G. E.computer at I. I. duPont research facilities in Parlin, New Jersey.

*
*PROGRAM END. O FORTRAN ERRORS END

0 ASSEMBLY ERRORS. 013774 PROGRAM OCTAL SI ZE, 000542 EQL TABLE OCTALSIZE.

Computer Program Statenents - Forltan IV. IDN 000000

ISOTHERMAL PRESSURE PARAMETRIC PUMP LOPEZ-CHEN DIMENSION P1(22.52)
DIMENSION Q1 (22.52)
PRINT 802
12 EORMAT(1H1, \$ PROPANE-ARGON ISOTHERMAL PRESSURE DIFF. ADSORP. \$) 7 READ $700, P H, P L, T, V, V R H, V R L, V T, R H O, P H 111, \quad 7$ 1R, CYTIME,VAD,Y1, Y2, JTAUH, JTAUC, JTAUE, JTAUL 7
7
10 FQRMAT $1 H O$ I P HIGH P LOW TEMP VOL VRH VRL

PRINT $801, \mathrm{PH}, \mathrm{PL}, \mathrm{T}, \mathrm{V}, \mathrm{VRH}, \mathrm{VRL}, \mathrm{P} 1(1,1), \mathrm{EPSLON}, \mathrm{N}, \mathrm{M}$
FORMAT (1H,8F8.3,214)
$D=0.00934-0.00001376 * T \quad 7$
$E=0.269 * T-67.55 \quad 7$
$F=E P S L O N * V /(R * T) \quad 7$
$G=(1$ - EPSLON $) * V * R H 0 \quad 7$
$Q 1(1,1)=D * P 1(1,1) /(E+P 1(1,1)) \quad 7 \quad 20$
$P 1\left(N_{1}, 1\right)=P_{1}(1,1) \quad 7$

D0 $101 \mathrm{I}=2, \mathrm{~N} \quad 7$
$P 1(I, J T A U H)=P_{1}(1,1) \quad 7$
$01(1, J T A \cup H)=Q 1(1,1) \quad 7$
$\begin{array}{ll}P R O P=1 . & 7 \\ \text { RAH1 }=0.0 & 7\end{array}$
RAL1 $=0.0 \quad 7$
$\begin{array}{ll}\text { RAH2 }=0.0 & 7 \\ R A L 2=0.0 & 7\end{array}$
$\begin{array}{ll}\text { RAL2 }=0.0 & 7 \\ \text { RAHT }=0.0 & 7\end{array}$
$R R H 1=V R H * P 1(N, 1) /(R * T) \quad 7$
RRH2 $=V R H *(P H-P 1(N, 1)) /(R * T) \quad 7$
$R B H T=V R H * P H /(R * T) \quad 7$
$R B L T=V R L * P L /(R * T) \quad 7$
RALT $=$ RBLT 7
RAHT $=$ RBHT 7
PRINT 850 7 7
17

11 FORMAT (1H, 8F8.3,214) $\quad 7 \quad 7$| 7 | 15 |
| :--- | :--- |
| $D=0.00934-0.00001376 * T$ | 16 |

 \(F=E \dot{P} L O N * V /(R * T)\)
 $\frac{P 1(1,1)=P H 111}{}$

Do $500 \quad \mathrm{I}=2, \mathrm{~N}-1$	7	112
$H 1=F * P 1(I-1, J-1)+G * Q 1(I, J-1)$	7	113
	7	114
$00 \quad 01(I, J)=D * P 1(I, J) /(E+P 1(I, J))$	7	115
;01 RBH1 $=$ RBH1 +F* P1 $(N-1, J-1)$	7	116
1. RAH1 $=0.0$	7	117
P1(N,JTAUH) $=$ RBH1*R*T/VRH	7	11.8
G50 $=0$.	7	119
[0 $600 \mathrm{I}=2, \mathrm{~N}-1$	7	120
SOC G50 = G50 + EPSLON*V*P1(I,JTAUH)/(T*R)	7	121
G51 = VRH*P1(N,.JTAUH)/(R*T)	7	122
$652=[50+651$	7	123
G53 $=$ Y1* ${ }^{\text {a }}$ (VAD $\left.+V R H\right) * P H /(R * T)$	7	124
100 $\mathrm{PROP}=\mathrm{G} 53 / \mathrm{G}$? .	7	125
Stop	7	126
END	7	127
	1	128
PROGRAM END. O FORTRAN ERRORS	1	129
END	1	130

Computer Runs Results.

Run 9

PROPANE-ARGON ISOTHERMAL PRESSURE DIFF. ADSORP.			
-.-P HIGH P LOW TEMP	V.OL VRH	VRL	PRESS ${ }_{1}$
,1000.000 356.580290 .000	19.900 .159.	200995	100.000
-CYCLE PH1 1,1)PH1 (N,TAUH)). RATIO1AB	SEPARA	SEPARB
1100.0000 L ********	1.0000	1.00000	1. 00000
$2129.4864 \quad 34.10910$	3.7962	1.29486	0.40075
,-3 172.3944 22.85917	7.5416	1.72394	0.21952
$4 \quad 194.627417 .98514$	10.8216	1.94627	0.14483
5. 200.332016 .01974	12.5053	2. 00332	0.11801
- 6.201 .950615 .20781	13.2794	2.01951	0.10770
7202.666414 .83780	13.6588	2.02666	0.10323
TIME ABORT			

Run 7

Run' ${ }^{-8}$

Pum 12

Rhm 10

Run 11

192。

Runi $13{ }^{\circ}$

Run: 14

> Pun I5

9.4.

Run 16

Run 17

PROPANE-ARGON IS OTHERMAL PRESSURE DIFF, AD SORP.

795.

Run: 18

I. Wilhelm, R. F. and Sweed, N. H., Science, 159, 522 (1968).
2. Pigford, R. L., Baker, B. and BIum, D. E., Ind. Eng. Chem. Fundam. 8, 144 (1969).
3. Stewart, H. A. and Heck, J. L., Chem. Eng. Progress, 65, 78 (I969).
4. Chen, H. T. and Hill, F. B., Separation Scionce, 6(3), 411 (1971).
5. Skarstrom, C. W., Science, 8, 53 (1969).
6. Shendalman, C. W., presented at the Houston A. I. Ch. E. National Meeting, 197I.
7. Jenozewski, T. J. and Myers, A. L., Ind. Eng. Chem. Fundam. 9, 216 (1970).
8. Myers, A. L., Ind. Eng. Chem., 60, 45 (1968).
9. Sweed, N. H. and Wilhelm, R. H., Ind. Eng. Chem. Fundam., 8, 221,(1969).

IO. Chen, II. T., Reis, E. H., Stokes, J. D. and Hj.ll, F. B., AIChT Journal, 19 (1973).
11. Chen, H, T., Rak, J. L., Stokes, J. D., and Hill, F. B., AIChi Journel, 18, 356 (1972).

[^0]: *See Figure 7.

[^1]: * See Figure 5.

