Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

MINIMUM REFLUX IN FRACTIONATING COLUMNS
A NEW AND IMPROVED SHORT-CUT METHOD
BY
ELIZABETH GARCIA

A THESIS
PRESENTED IN PARTIAL FULFILLMENT OF tHE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING
 AT

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey
1973

Abstract

A short-cut method is presented for calculating the minimum reflux rate for multicomponent systems. This new method is best suited for use on the computer and gives a very accurate estimate of this important factor in the design of fractionating columns. It does so without going to the tedious and time-consuming calculations of the rigorous methods.

The calculation approach is based on a simplification of the Thiele and Geddes method for fractionating columns under minimum reflux conditions.

The program is written in Fortran IV language and was used on an IBM 370 computer. Input specifications include the split of the light and heavy key components and feed conditions and composition. The liquid rate at the rectifying pinch zone, which represents the constant internal minimum reflux, is then calculated.

This method is an iterative procedure and the program assumes constant molal overflow between the rectifying and stripping pinch zones. The overall material balance for every trial is based on temperatures calculated from the composition of the previous trial. However, the liquid rate at the rectifying pinch zone temporarily remains constant until convergence is obtained on the distillate composition and pinch zone temperatures. The liquid rate is then changed in the direction of convergence on the key component specifications and the calculations are repeated until converged.

The true minimum reflux was calculated on a rigorous plate-toplate program by a parameter study of the actual required reflux for a series of column designs with increasing stages and with each design making the same separation for the key components. These values were asymtotically extrapolated to the case for infinite stages, and the minimum reflux value obtained was compared with the results given by the new procedure. The results demonstrated the reliability and usefulness of this new short-cut method.

APPROVAL OF THESIS
 MINIMUM REFLUX IN FRACTIONATING COLUMNS
 A NEW AND IMPROVED SHORT-CUT METHOD
 BY
 ELIZABETH GARCIA
 FOR
 DEPARTMENT OF CHEMICAL ENGINEERING
 NEWARK COLLEGE OF ENGINEERING

BY

FACULTY COMMITTEE

APPROVED:

NEWARK, NEW JERSEY
MAY, 1973

ACKNOWLEDGMENTS

The author wishes to acknowledge the valuable suggestions, guidance, and encouragement given by Dr. Ralph Cecchetti an adjunct professor at Newark College of Engineering. She also wishes to thank the personnel of the Technology Department of Esso Research and Engineering Company for their assistance with the development of the program and with the use of the computer facilities.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION. 1
II. A FRACTIONATING COLUMN. 3
III. BEHAVIOR OF A COLUMN AT MINIMUM REFLUX. 5
IV. LITERATURE SURVEY 14
V. THEORY AND DEVELOPMENT OF EQUATIONS 17
Material Balances for the Rectifying Section. 17
Material Balances for the Stripping Section 23
Feed Plate Match. 26
VI. METHOD OF CALCULATION 28
Type I in Both Column Sections. 31
Type II in Rectifying Section, Type I
in Stripping Section. 33
Type I in Rectifying Section, Type II
in Stripping Section. 34
Type II in Both Sections. 35
Material Balances Calculation Procedure 35
Enthalpy Balance. 39
VII. DISCUSSION OF ILLUSTRATIVE EXAMPLES 41
VIII. CONCLUSIONS 45
IX. RECOMMENDATIONS 47
APPENDIX A 48
APPENDIX B 64
REFERENCES 112

LIST OF FIGURES

Figure Page
2-1 A Fractionating Column Having One Feed 4
3-1 The Six Typical Sections of An Infinite Column.Both Pinch Zones Occur Away From the Feed Tray. 63-2 An Infinite Column With Five Distinct Sections.The Rectifying Pinch Occurs Away From the Feed Tray . . 6
3-3 An Infinite Column With Five Distinct Sections.The Stripping Pinch Occurs Away From the Feed Tray. . . 8
3-4 An Infinite Column With Four Distinct Sections.Typical Case of a Bynary Mixture. 8
3-5 Typical Stages-Reflux Curve 11
$3-6$
Class I 13
3-7
Class II-A 13
3-8 Class II-B 13
3-9
Class II-C. 13
5-1 Component Rates in the Rectifying Section of a Fractionating Column at Minimum Reflux Conditions 18
5-2 Component Rates in the Stripping Section of aFractionating Column at Minimum Reflux Conditions22
A-1 Typical Stages - Reflux Curve for Example 1 51
A-2 Temperature Profiles for Example 1. 52
A-3 Temperature Profile for Example 2 55
A-4 Temperature Profile for Example 3 58
A-5 Temperature Profile for Example 4 61

LIST OF TABLES

Table Page
1 Types of Column Sections at Minimum Reflux. 9
A-1 Specifications for Examples 1, 2, 3, and 4. 49
A-2 Molar Flow Rates and Conditions of
Products for Example 1. 50
A-3 Molar Flow Rates and Conditions at KeyColumn Locations for Example 1.53
A-4 Molar Flow Rates and Conditions of Products for Example 2. 54
A-5 Molar Flow Rates and Conditions at Key Column Locations for Example 2. 56
A-6 Molar Flow Rates and Conditions of
Products for Example 3 57
A-7 Molar Flow Rates and Conditions at Key Column Locations for Example 3 59
A-8 Molar Flow Rates and Conditions ofProducts for Example 4. 60
A-9 Molar Flow Rates and Conditions at KeyColumn Locations for Example 4. 62
A-10 Minimum Reflux Results for Examples 1, 2, 3, and 4. 63

LIST OF PROGRAMS

Program Page

1Main Executor.65
2
Bubble Point Calculations 67
Dew Point Calculations 70
Routine to Read A11 Input. 73
Evaluation of the Polynomial to Calculate K Values 91Evaluation of the Linear SeriesEquations (5-6), (5-14), (5-19), and (5-24). . . . 93
Minimum Reflux Calculations 98

NOMENCLATURE

A Component absorption factor for the specific stage or section of the column. $A_{R^{*}}=$ component absorption factor at the rectifying pinch.
$A_{A} \quad$ Average component absorption factor in the specific section.
b Component molar flow rate in the bottoms.
B Bottom molar flow rate.

C Total number of components; the least volatile component.
d Component molar flow rate in the distillate.
D Distillate molar flow rate.
f Feed stage.
f_{F} Total component molar flow rate in the feed.
F Total molar flow rate of feed.
$h \quad$ Enthalpy of one mole of the liquid leaving the specific stage or section of the column.

H Enthalpy of one mole of the vapor leaving the specific stage or section of the column.

HK Heavy key component.
IHS First component separated from the distillate.

ILS First component separated from the bottoms.

K Component vapor-1iquid equilibrium constant ($\mathrm{y}=\mathrm{Kx}$), in the specific stage or section of the column.
ℓ Component liquid molar flow rate leaving the specific stage.
ℓ_{f+1} Component 1 iquid molar flow rate onto stage f.
$\ell_{F} \quad$ Component molar flow rate in liquid feed.
L Total liquid molar flow rate in the specific section.
$\mathrm{L}_{\mathrm{F}} \quad$ Total liquid molar flow rate of feed.
L_{R} External reflux.
$L_{R m} \quad$ External minimum reflux.
$\mathrm{L}_{\mathrm{R} *} \quad$ Internal minimum reflux; $1 i q u i d$ rate at the rectifying pinch.
LK Light key component.
$M \quad$ Number of stages between the stripping pinch and stage f.
$N \quad$ Number of stages between the rectifying pinch and stage $f+1$.
$N_{m} \quad$ Minimum number of stages of a column.
$Q_{C} \quad$ Condenser duty.
$Q_{R} \quad$ Reboiler duty.
R* Rectifying pinch.
$S \quad$ Component stripping factor for the specific stage or section of the column. $\mathrm{S}_{\mathrm{S} *}=$ component stripping factor at the stripping pinch.
$S_{A} \quad$ Average component stripping factor in the specific section.
S* Stripping pinch.
T Temperature in ${ }^{\circ} \mathrm{F}$.
v Component vapor molar flow rate leaving the specific stage.
$\overline{\mathrm{v}}_{\mathrm{f}} \quad$ Component vapor molar flow rate as it enters stage $\mathrm{f}+1$.
Component molar flow rate in vapor feed.
V Total vapor molar flow rate in the specific section.
V_{1} Total molar flow rate of the vapor from the top stage of the column.
$\mathrm{V}_{\mathrm{F}} \quad$ Total vapor molar flow rate of feed.
$x \quad$ Component mole fraction in the liquid phase.
$y \quad$ Component mole fraction in the vapor phase.
$\alpha \quad$ Relative volatility.
θ Multiplier used to correct the (b/d) ratios.

Subscripts

A Average value.
c Total number of components.
F Feed.
$\mathrm{f}+1$ Stage above the feed stage.
f Feed stage.
HK Heavy key.
i Component number. Components are numbered in the order of decreasing volatility.

L Liquid part of a stream.
LK Light key.
R* Rectifying pinch.
S* Stripping pinch.
V Vapor part of a stream.

CHAPTER I

INTRODUCTION

The minimum reflux ratio is the lowest reflux which can give a specified separation for two key components from a fixed feed to a fractionating column. To obtain that separation, an infinite number of equilibrium stages is required in both the rectifying section and the stripping section of the column.

This imaginary operation, that cannot be duplicated in practice, is of interest as a limiting case since it provides an effective variable for the selection of an economic operating reflux in the real design of the fractionating column.

A small increase in the value of the reflux ratio at values.. near the minimum gives a marked reduction in the number of stages, but as the value of this reflux ratio increases further, the effect on the number of stages becomes much less.

A large reflux ratio increases the operating costs, since large quantities of liquid are recirculated to the column resulting in higher cooling and heating duties. A low reflux ratio requires a greater number of stages and the investment cost increases. The most economic reflux ratio usually lies between 1.2 and 1.5 times the minimum reflux ratio.

Many methods have been presented for calculating the minimum reflux value for multicomponent distillation separations.

The purpose of this work was to develop a method for calculating the minimum reflux ratio for multicomponent fractionating columns, which will give a more accurate estimate of the minimum reflux without going to the tedious and time-consuming rigorous methods. This new method consists of a simplification of the Thiele and Geddes (30) plate-to-plate procedure applied to the calculation for infinite stages and, therefore, minimum reflux.

To obtain the rigorous solution of the minimum reflux a parameter study was made by calculating the reflux required for a series of column designs with increasing stages and with each design making the same separation for the key components. These values were asymptotically extrapolated to the case for infinite stages and, then, the true minimum reflux value obtained was compared with the results , given by the new simplified procedure and with the traditional Underwood method.

The programs used have been written in Fortran IV language and are listed in the Appendix B. The calculations were carried out on an IBM 370 computer.

CHAPTER II

A FRACTIONATING COLUMN

The purpose of a fractionating column is the separation of two or more components which are present in a feed stream to give an overhead product (D) and a bottom product (B) meeting certain specifications. Figure 2-1 illustrates a fractionating column having one feed.

The components upon which the specifications are made are commonly referred to as the light and the heavy keys.

The split, light and heavy key components will appear in both, the distillate and the bottoms products and therefore, these are, by definition, distributed components. Components lighter than the light key which appear in the distillate and heavier than heavy key which appear in the bottoms are also, distributed components. Components which appear only in one product are called separated components.

The conventional procedure for the design of a fractionating column frequently involves the calculation of two limits. One is the minimum number of stages required for the separation if practically no product is withdrawn from the column. This condition is called total reflux. The other is the requirement of an infinite height column and this leads to the calculation of the minimum reflux. Therefore, a practical operation lies in between these two conditions.

FIGURE 2-1. A fractionating column having one feed.

BEHAVIOR OF A COLUMN AT MINIMUM REFLUX

A fractionating column in the state of minimum reflux presents a maximum of six distinct column sections. This type of infinite column is represented in Figure $3-1$ and corresponds to separations where some of the components of the feed are completely separated from the top product and some others are completely separated from the bottom product.

At minimum reflux no separation occurs at some point in the column. This point will originate what is called a "pinch" zone.

Sections II and V, where the "pinch" zones occur, are the uniform sections. The temperatures, stream compositions and molal overflow remain constant throughout these sections.

The points of infinitude or pinches of the type of column shown in Figure 3-1 occur away from the feed stage. Hence, two other sections are to be distinguished between the pinch zones in the rectifying and stripping sections and the feed stage: Section III, which is an intermediate section between the feed and the stripping pinch, and Section IV, which is an intermediate section between the feed and the rectifying pinch. Stream compositions, as well as temperatures and molal overflow may change considerably over the intermediate trays between the feed and the constant composition zones. The compositions of the liquid and vapor phases of the feed differ from the liquid and vapor stream compositions in the pinch zones for all feed conditions.

FIGURE 3-1. The six typical sections of an infinite column. Both pinch zones occur away from the feed tray.

FIGURE 3-2. An infinite column with five distinct sections. The rectifying pinch occurs away from the feed tray.

Stripping and absorption occur again near the reboiler (Section I) and near the condenser (Section VI) respectively.

If the bottom product contains all the light components of the feed but some of the heavy components are separated from the top product, the pinch zone in the rectifying section will still be at an intermediate point away from the feed stage, similar to that section of the column in Figure 3-1. However, the pinch zone in the stripping section terminates in the feed stage. This type of column is schematically represented in Figure 3-2.

A similar statement can be applied to the case where all the heavy components of the feed are present in the distillate but some of the light components are separated from the bottoms product. In this case, the pinch zone occurs away from the feed plate in the stripping section, while the rectifying section pinch zone terminates at the feed stage. This type of column is schematically represented in Figure 3-3.

The paragraphs above describe three different types of fractionating columns at minimum reflux in which at least one of the pinch zones occurs away from the feed stage. Separations of these types fall under the Class II category such that, with infinite stages, some of the components are separated completely from the top product, or completely from the bottom product, or from both products.

FIGURE 3-3. An infinite column with five distinct sections. The stripping pinch occurs away from the feed tray.

FIGURE 3-4. An infinite column with four distinct sections. Typical case of a bynary mixture.

If all the components in the feed are distributed to both the top and bottom products, both pinch zones terminate in the feed stage and only four sections are present in this column (Figure 3-4). This system is analogous to that of a bynary mixture and is classified under the Class I separations. The composition of the liquid and vapor phases of the feed are respectively identical with the liquid and vapor compositions in the constant composition zones except for superheated-vapor and subcooled-1iquid feeds.

Since three different types of fractionating columns at minimum reflux are classified under Class II separations, it is possible to subclassify them according to the pinch zone occurrence at the rectifying and stripping sections of the column, as shown in Table 1.

TABLE 1. TYPES OF COLUNN SECTIONS AT MINIMUM REFLUX

CLASS OF SEPARATION	COMPONENT DISTRIBUTION	TYPE OF COLUMN SECTION
I	A11 Distributed	Rectifying-Type I Stripping-Type I
II-A	Lightest Separated Others Distributed	Rectifying-Type I Stripping-Type II
II-B	Heaviest Separated Others Distributed	Rectifying-Type II Stripping-Type I
II-C	Lightest Separated Heaviest Separated Others Distributed	Rectifying-Type II Stripping-Type II

The compositions of the pinch zones at the rectifying section and the stripping section are given by the familiar relationships (5):

$$
\begin{align*}
& \left(\frac{\ell}{d}\right)_{R^{*}}=\frac{\left(\frac{L}{V K}\right)_{R^{*}}}{1-\left(\frac{L}{V K}\right)_{R^{*}}}=\frac{A_{R^{*}}}{1-A_{R^{*}}} \tag{3-1}\\
& \left(\frac{v}{b}\right)_{\underline{S}^{*}}=\frac{\left(\frac{V K}{L}\right)_{\underline{S^{*}}}}{1-\left(\frac{V K}{L}\right)_{\underline{S^{*}}}}=\frac{S_{\underline{S}^{*}}}{1-\underline{S}_{\underline{S}^{*}}} \tag{3-2}
\end{align*}
$$

where $\mathcal{\ell}=$ component liquid molar rate;
$\mathrm{v}=$ component vapor molar rate;
$\mathrm{d}=$ component molar rate in the distillate;
$\mathrm{b}=$ component molar rate in the bottoms;
$\mathrm{L}=1 \mathrm{iquid}$ molar rate in the specific section;
$\mathrm{V}=$ vapor molar rate in the specific section;
$K=$ component equilibrium constant in the specific section;
$R^{*}=$ bottom stage of the rectifying pinch zone;
$\underline{S}^{*}=$ top stage of the stripping pinch zone;
$A_{R *}=$ component absorption factor for the rectifying pinch zone;
$\mathrm{S}_{\mathrm{S}^{*}}=$ component stripping factor for the stripping pinch zone.

In these equations and the following ones, the subscript " i " is understood for all terms.

These equations easily explain the existence of four types of fractionating columns when minimum reflux ($N=\infty$) is approached: A component present in the feed stream is distributed to both the top and bottom products (or constant composition zones), only if the
factors $A_{R *}$ and $S_{S *}$ are both less than unity. A separated heavy component ($d_{i}=0$) is one for which $A_{R_{*}} \geq 1.0$. Similarly for a separated light component $\left(b_{i}=0\right)$, the factor $S_{S^{*}} \geq 1.0$. It is obvious that $A_{R_{*}}$ for the heavy key and $S_{S_{*}}$ for the light key must be less than 1.0 in order to meet the required specifications for these two components.

In binaries or narrow cut multicomponent systems, where all components are distributed, the absorption factor at the rectifying pinch, $A_{R *}$, and the stripping factor at the stripping pinch, $\mathrm{S}_{\underline{S} *}$, of the column for all components are less than unity. However, this is not true for wide boiling feeds and Class II minimum reflux situations result for such systems.

For rigorous calculations, the minimum reflux can be approximated as an asymptote of the stages-reflux curve which results of a parameter study of the actual reflux required for a series of column designs with increasing stages for the same given separation of the key components. Such a curve is shown in Figure 3-5.

FIGURE 3-5. Typical Stages-Reflux curve.

If a parameter study is made and the column design case which represents the minimum reflux is chosen, a plot of temperature vs stage number will explain the behavior of the four different types of fractionating columns discussed above. These temperature plots are shown in Figure 3-6 through Figure 3-9. Similar curves can be obtained from plots of stream compositions or total molal overflow vs stage number.

FIGURE 3-8. Class II-B

FIGURE 3-9. Class II-C

CHAPTER IV

LITERATURE SURVEY

There exist in the literature several methods for determining the minimum reflux ratio for a multicomponent system. Many of these methods are very complex. The estimation of the feed plate composition is essential in order to compute the minimum reflux required for the separation between distillate and feed plate, and between feed plate and bottoms.

Underwood (31) and Fenske (13) independently developed an equation for the minimum reflux required to attain a certain composition of the key components in the rectifying section. This equation is not accurate unless the compositions of the key components are known on the plate where the equation is applied. Underwood's equation (31) is applicable to binary mixtures or to completely distributed systems only, since it assumes that the composition on the stages immediately above and below the feed stage are approximately equal. This is true only if the liquid feed composition is the same as the liquid on the feed stage.

A false assumption that the ratio of the fractions of the key components in the liquid on the feed plate is the same as that of the same components in the liquid feed at minimum reflux has been presented in other methods $(5,12,15)$.

Many of the methods developed ($1,6,9,14,17,19$) involve tedious trial and error.

Later, Underwood (32) developed equations for the determination of the minimum reflux for a multicomponent system based on constant volatility and constant molal overflow. These assumptions used by some investigators $(14,22,32)$ are some of the most common ones made for short-cut techniques. These short-cut methods involve some loss of accuracy, but are used widely in preliminary design calculations.

Scheibel and Montross (27) have presented an empirical equation which eliminates the trial and error procedures. The procedure was modified by Bailey and Coates (3) to be applied to systems with varying volatility, but tedious trial and error is used.

Empirical correlations of the minimum and operating reflux ratios and equilibrium stages have been proposed as a short-cut design procedure by Brown and Martin (5), Gilliland (14), Erbar and Maddox (12), Maxwell (21), Colburn (6), and Gray (16).

Mayfield and May (23) assume a complete separation and no components lighter than the light key or heavier than the heavy key are present.

Many articles $(10,11,12,26,28,29)$ have dealt with minor modifications or rearrangements of a second Underwood's minimum reflux method (33). Much of the work is of little consequence in advancing the techniques used to find minimum reflux.

An exact calculation of the minimum reflux for the Class II separations for which the simplifying assumptions of constant volatility and constant molal overflow are not valid has been carried
out by Brown and Holcomb (4). Their method is an adaptation to minimum reflux of the Lewis and Matheson (20) plate-to-plate procedure for calculation of finite plates and reflux. The method assumes distribution of the key components only. If several components other than the key components are distributing, the operations are time consuming,

Shiras, Hanson and Gibson (28) presented methods which distinguish between systems with all components of the feed being distributed (Class I Separations) and systems on which some components have been separated (Class II Separations). This latter method is a rigorous plate-to-plate calculation.

Another plate-to-plate procedure which does not require preestimation of component distribution, but still is too time-consuming, is the method of Thiele and Geddes (30), adapted to the calculation of minimum reflux. Some authors $(1,2,28)$ have suggested the use of this method which is outlined by Holland (18) including convergence methods proposed by McDonough (24) and McDonough and Holland (25).

Edmister $(7,8)$ calculated the fractionation in each section of the column by short-cut equations based on a simplification of the rigorous Thiele and Geddes series solutions.

CHAPTER V

THEORY AND DEVELOPMENT OF EQUATIONS

The proposed method presented in this paper was guided by Dr. Ralph Cecchetti. In this work, his development of the simplified Thiele and Geddes procedure for the design of fractionating columns has been extended to the calculation of minimum reflux conditions. Some of the equations of the proposed new method have been presented by Edmister $(7,8)$ for the calculation of theoretical stages and component distribution for multi-component fractionation. Holland (18) uses the general plate-to-plate calculational procedure of Thiele and Geddes for the calculation of minimum reflux and applies the θ Method of Convergence $(24,25)$ to the specified working conditions of the column.

The following sections contain the derivation of the short-cut equations that relate the component rates at the pinches and the component rates at the feed stage with the distillate composition and the number of stages between these sections of the column. The procedure employed in this new method will also calculate the number of stages between the pinches for each section, i.e., rectifying and stripping, and the feed stage.

Material Balances for the Rectifying Section

Distributed and light separated components. As discussed in Chapter III, the Equation (3-1) relating the rectifying pinch zone composition for distributed and light separated components is given by:

$$
\left(\frac{\ell}{d}\right)_{R^{*}}=\frac{A_{R^{*}}}{1-A_{R^{*}}}
$$

FIGURE 5-1. Component rates in the rectifying section of a fractionating column at minimum reflux conditions.

For the stages, N, between the feed and the rectifying pinch zones, an equation can be developed for the composition on the bottom stage of the rectifying section, $f+1$, by material balances enclosing the top of the column, the bottom stage of the rectifying pinch, R^{*}, through to the bottom stage of the rectifying section.

By an inspection of Figure 5-1, the component liquid rate leaving stage R* of the top infinite section of the column is given by:

$$
\begin{equation*}
\ell_{R *}=v_{R *-1}-d \tag{5-1}
\end{equation*}
$$

Since $v_{R *-1}=\frac{\ell_{R_{*-1}}}{A_{R *-1}}$, Equation (5-1) may be expressed as follows:

$$
\begin{equation*}
\left(\frac{l}{d}\right)_{R_{*}-1}=A_{R *-1}\left[\left(\frac{l}{d}\right)_{R^{*}}+1\right] \tag{5-2}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\frac{\ell}{d}\right)_{R^{*}-1}=A_{R_{*} *-1}\left(\frac{\ell}{d}\right)_{R^{*}}+A_{R_{*}-1} \tag{5-3}
\end{equation*}
$$

Similarly, for the R^{*-2} stage:

$$
\left(\frac{l}{d}\right)_{R *-2}=A_{R *-2}\left[\left(\frac{l}{d}\right)_{R *-1}+1\right]
$$

Substituting for $(\mathbb{l} / \mathrm{d})_{\mathrm{R} *-1}$ with Equation (5-2) gives:

$$
\left(\frac{\ell}{d}\right)_{R *-2}=A_{R *-2}\left\{A_{R *-1}\left[\left(\frac{\ell}{d}\right)_{R *}+1\right]+1\right\}(5-4)
$$

or

$$
\begin{equation*}
\left(\frac{\ell}{d}\right)_{R *-2}=A_{R *-2} A_{R *-1}\left(\frac{\ell}{d}\right)_{R *}+A_{R *-2} A_{R *-1}+A_{R *-2} \tag{5-5}
\end{equation*}
$$

This procedure can continue until stage $f+1$ is reached, which gives the general expression:

$$
\begin{align*}
\left(\frac{\ell}{d}\right)_{f+1} & =A_{f+1} \ldots A_{R *-1}\left(\frac{\ell}{d}\right)_{R^{*}}+A_{f+1} \ldots A_{R *-1}+ \\
& A_{f+1} \ldots A_{R *-2}+\ldots+A_{f+1} \tag{5-6}
\end{align*}
$$

where $A=$ absorption factors subscripted for each stage.

This equation is completely rigorous and requires the component absorption factor, A, on each stage of that section of the column for its solution.

If an average component absorption factor can be determined, such that it gives the identical solution as the rigorous equation, Equation (5-6) simplifies as follows:

$$
\begin{equation*}
\left(\frac{l}{d}\right)_{f+1}=A_{A}^{N}\left(\frac{l}{d}\right)_{R^{*}}+A_{A}^{N}+A_{A}^{N-1}+\ldots+A_{A} \tag{5-7}
\end{equation*}
$$

where $N=$ number of stages between stage R^{*} of the top infinite section and stage $\mathrm{f}+1$;
$A_{A}=$ average absorption factor for the component in the N-stage section.

Simplifying further,

$$
\begin{equation*}
\left(\frac{\ell}{d}\right)_{f+1}=A_{A}^{N}\left(\frac{\ell}{d}\right)_{R^{*}}+\frac{A_{A}^{N+1}-A_{A}}{A_{A}-1} \tag{5-8}
\end{equation*}
$$

By utilizing Equation (3-1), ($\ell / d)_{R_{*}}$ is substituted in Equations $(5-6),(5-7)$ or $(5-8)$, and the value of $(\ell / d)_{f+1}$ can be
found. The use of, Equation (3-1) requires that the absorption factor at the rectifying pinch, $A_{R *}$, be less than 1 , which is true only for distributed components and light separated components. The liquid rates, $\ell_{R *}$, of the heavy separated components at the rectifying pinch can be determined by Equations (5-14) or (5-15). The derivation of these equations follows.

Heavy separated components. A material balance enclosing the

 bottom of the column and the feed stage, f, (Figure 5-2) gives:$$
\begin{equation*}
\mathrm{v}_{\mathrm{f}}+\mathrm{b}=\bar{\ell}_{\mathrm{f}+1}=\ell_{\mathrm{f}+1}+\ell_{\mathrm{F}} \tag{5-9}
\end{equation*}
$$

since

$$
\begin{equation*}
\frac{f}{F}=\ell_{F}+v_{F} \tag{5-10}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
v_{f}+b+v_{F}=l_{f+1}+f_{F} \tag{5-11}
\end{equation*}
$$

where $f_{F}=$ total component molar rate in feed;
$\boldsymbol{\ell}_{\mathrm{F}}=$ component molar rate in 1 iquid feed;
$\mathrm{v}_{\mathrm{F}}=$ component molar rate in vapor feed;
Since $b=f_{F}$ for a heavy separated component, Equation (5-11) becomes:

$$
\begin{equation*}
\ell_{\mathrm{f}+1}=\mathrm{v}_{\mathrm{f}}+\mathrm{v}_{\mathrm{F}} \tag{5-12}
\end{equation*}
$$

Equation (5-6) can be modified to give:

$$
\begin{gathered}
\ell_{f+1}=A_{f+1} \ldots A_{R *-1}\left(\ell_{R *}\right)+A_{f+1} \ldots A_{R *-1}(d)+ \\
A_{f+1} \ldots A_{R *-2}(d)+\ldots+A_{f+1}(d)
\end{gathered}
$$

Since $d=0$, the above expression becomes:

$$
\begin{equation*}
\ell_{f+1}=A_{f+1} \cdots A_{R *-1}\left(\ell_{R *}\right) \tag{5-13}
\end{equation*}
$$

Substitution of Equation (5-13) into Equation (5-12), gives:

FIGURE 5-2. Component rates in the stripping section of a fractionating column at minimum reflux conditions.

$$
\ell_{R *}=\frac{1}{A_{f+1}} \cdot \cdots \frac{1}{A_{R *-1}}\left(v_{f}+v_{F}\right)
$$

or

$$
\begin{equation*}
\ell_{\mathrm{R}^{*}}=\mathrm{s}_{\mathrm{f}+1} \ldots \mathrm{~s}_{\mathrm{R} *-1}\left(\mathrm{v}_{\mathrm{f}}+\mathrm{v}_{\mathrm{F}}\right) \tag{5-14}
\end{equation*}
$$

If an average stripping (or absorption) factor is used, Equation (5-14) may be written as:

$$
\begin{equation*}
\ell_{R^{*}}=S_{A}^{N}\left(v_{f}+v_{F}\right) \tag{5-15}
\end{equation*}
$$

These equations are applicable to a heavy separated component to give the liquid rate from the bottom stage of the rectifying section, ℓ_{f+1}, and the 1 iquid rate from the pinch of that section, $\ell_{R^{*}}$, provided the vapor rate of that component from the feed stage, v_{f}; is known.

The development of Equations $(5-19),(5-20)$ and $(5-21)$ to determine V_{f}, or $(v / b)_{f}$, similar to equations $(5-6),(5-7)$ and $(5-8)$ respectively, for distributed and heavy separated components will be given on the following section.

Material Balances for the Stripping Section

Distributed and heavy separated components. As discussed in Chapter III, the Equation (3-2) relating the stripping pinch zone composition for distributed and heavy separated components is given by:

$$
\left(\frac{v}{b}\right)_{\underline{S} *}=\frac{S_{\underline{S} *}}{1-S_{\underline{S}} *}
$$

In the event that M stages exist between the feed and the stripping pinch zones, an equation similar to Equation (5-6),
relating the component vapor rates in these two sections of the column, is necessary.

By a material balance around the bottom of the column and the top stage of the stripping pinch, $\underline{s} *$, through the feed stage, f, the component vapor rate leaving stage \underline{S}^{*} of the bottom infinite section of the column (Figure 5-2) is:

$$
\begin{equation*}
v_{\underline{S} *}=\ell_{\underline{S} *+1}-b \tag{5-16}
\end{equation*}
$$

Since $\ell_{\underline{S^{*}} *+1}=\frac{\mathrm{v}_{\underline{S} *+1}}{\underline{S}_{\underline{S} *+1}}$, Equation (5-16) becomes:

$$
\left(\frac{v}{b}\right)_{\underline{S_{*}} *+1}=\underline{S}_{\underline{S^{*}} *+1}\left[\left(\frac{v}{b}\right)_{\underline{S^{*}}}+1\right]
$$

or

$$
\begin{equation*}
\left(\frac{v}{b}\right)_{\underline{S_{*}}+1}=s_{\underline{S^{*}}}\left(\frac{v}{b}\right)_{\underline{S_{*}}}+s_{\underline{S_{*}} *+1} \tag{5-17}
\end{equation*}
$$

For the \underline{S}^{*+2} stage:

$$
\left(\frac{v}{b}\right)_{\underline{S} *+2}=S_{\underline{S} *+2}\left\{\underline{S}_{\underline{S} *+1}\left[\left(\frac{v}{b}\right)_{\underline{S} *}+1\right]+1\right\}
$$

or

$$
\begin{equation*}
\left(\frac{v}{b}\right)_{\underline{S} *+2}=S_{\underline{S} *+2} s_{\underline{S} *+1}\left(\frac{v}{b}\right)_{\underline{S_{*}} *}+\underline{s}_{\underline{S} *+2} s_{\underline{S} *+1}+\underline{S}_{\underline{S^{*}}} \tag{5-18}
\end{equation*}
$$

Similarly, for the successive stages up to stage f, the general expression is obtained:

$$
\begin{gather*}
\left(\frac{v}{b}\right)_{f}=S_{f} \ldots S_{\underline{S} *+1}\left(\frac{v}{b}\right)_{\underline{S} *}+s_{f} \ldots s_{\underline{S_{*}}+1}+s_{\underline{f}} \ldots s_{\underline{S} *+2}+ \\
\ldots+S_{f} \tag{5-19}
\end{gather*}
$$

where $S=$ stripping factors subscripted for each stage.

Component stripping factors, S, are required on each stage of that section of the column to solve the above rigorous equation. The following equation results when an average component stripping factor is used:

$$
\begin{equation*}
\left(\frac{v}{b}\right)_{f}=s_{A}^{M}\left(\frac{v}{b}\right)_{S^{*}}+s_{A}^{M}+s_{A}^{M-1}+\ldots+S_{A} \tag{5-20}
\end{equation*}
$$

where $M=$ number of stages between \underline{S}^{*} of the bottom infinite section and stage f ;
$S_{A}=$ average stripping factor for the component in the M-stage section.

Simplifying further,

$$
\begin{equation*}
\left(\frac{v}{b}\right)_{f}=s_{A}^{M}\left(\frac{v}{b}\right)_{\underline{S}^{*}}+\frac{s_{A}^{M+1}-S_{A}}{S_{A}-1} \tag{5-21}
\end{equation*}
$$

To solve these equations, $(v / b)_{S^{*}}$ must be determined by Equation (3-2), which applies for distributed components and heavy separated components. The derivation of the equations for the determination of v_{S} * for the light separated components follows.

Light separated components. Since $b=0$, Equation (5-9) gives:

$$
\begin{equation*}
v_{f}=\ell_{f+1}+\ell_{F} \tag{5-22}
\end{equation*}
$$

Equation (5-19 can be modified to give:

$$
\begin{gathered}
v_{f}=s_{f} \ldots s_{\underline{S} *+1}\left(v_{\underline{S} *}\right)+s_{f} \ldots \underline{s}_{\underline{S_{*+1}}}(b)+ \\
s_{f} \ldots s_{\underline{S^{*} * 2}}(b)+\ldots+s_{f}(b)
\end{gathered}
$$

Since $b=o$, the above expression becomes:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{f}}=\mathrm{s}_{\mathrm{f}} \ldots \underline{\mathrm{~S}}^{*+1}\left(\underline{\mathrm{v}}{ }^{*}\right) \tag{5-23}
\end{equation*}
$$

If Equation (5-23) is substituted into Equation (5-22), it yields:

$$
v_{\underline{S} *}=\frac{1}{S_{f}} \cdots \frac{1}{S_{f+1}}\left(\ell_{f+1}+\ell_{\mathrm{F}}\right)
$$

or

$$
\begin{equation*}
\mathbf{v}_{\underline{S}^{*}}=A_{\mathrm{f}} \ldots \mathrm{~A}_{\mathrm{f}+1}\left(\ell_{\mathrm{f}+1}+\ell_{\mathrm{F}}\right) \tag{5-24}
\end{equation*}
$$

If an average absorption (or stripping) factor is used, Equation (5-24) becomes:

$$
\begin{equation*}
v_{\underline{S}^{*}}=A_{A}^{M}\left(\ell_{f+1}+\ell_{F}\right) \tag{5-25}
\end{equation*}
$$

The liquid rate from the bottom stage of the rectifying section, ℓ_{f+1}, is determined by Equations (5-6), (5-7) or (5-8) for the light separated components.

Feed Plate Match

The feed plate match equation for the short-cut procedure is identical to that used in the rigorous Thiele and Geddes method.

This equation is obtained from Equation (5-9) which can be expressed as follows:

$$
\mathrm{v}_{\mathrm{f}}+\mathrm{b}=\ell_{\mathrm{f}+1}+\ell_{\mathrm{F}}\left(\frac{\mathrm{~b}+\mathrm{d}}{\mathrm{f}_{\mathrm{F}}}\right)
$$

and

$$
\begin{gathered}
v_{f}+b-\frac{\ell_{F} b}{f_{F}}=\ell_{f+1}+\frac{\ell_{F} d}{f_{F}} \\
b\left[\frac{v_{f}}{b}+1-\frac{\ell_{F}}{f_{F}}\right]=d\left[\frac{\ell_{f+1}}{d}+\frac{\ell_{F}}{f_{F}}\right]
\end{gathered}
$$

which can be solved for (b/d) to give:

$$
\begin{equation*}
\frac{b}{d}=\frac{\left(\frac{\ell}{d}\right)_{f+1}+\frac{\ell_{F}}{f_{F}}}{\left(\frac{v}{b}\right)_{f}+\frac{v}{f_{F}}} \tag{5-26}
\end{equation*}
$$

For all liquid feed $\left(l_{F} / f_{F}\right)=1$ and $\left(v_{F} / f_{F}\right)=0$, and Equation (5-26) becomes:

$$
\begin{equation*}
\frac{b}{d}=\frac{\left(\frac{\ell}{d}\right)_{f+1}+1}{\left(\frac{v}{b}\right)_{f}} \tag{5-27}
\end{equation*}
$$

For all vapor feed, $\left(v_{F} / f_{F}\right)=1$ and $\left(\ell_{F} / f_{F}\right)=0$, and Equation (5-26) gives:

$$
\begin{equation*}
\frac{\mathrm{b}}{\mathrm{~d}}=\frac{\left(\frac{\ell}{d}\right)_{\mathrm{f}}}{\left(\frac{\mathrm{v}}{\mathrm{~b}}\right)_{\mathrm{f}}+1} \tag{5-28}
\end{equation*}
$$

METHOD OF CALCULATION

This chapter describes the calculational procedure used to calculate the minimum reflux for the four different types of column that can occur as a result of component distributions.

The primary interest of this work is the determination of the liquid rate at the rectifying pinch zone, $L_{R *}$, which represents the constant internal minimum reflux of the column.

The external reflux, L_{R}, can then be obtained by overall heat balance calculations as will be seen later on this chapter.

The proposed method uses the rectifying pinch and the stripping pinch sections of the column to obtain the material balance which will give the component distribution.

This method is a trial and error procedure, and in order to initiate the calculations, values for the liquid rate at the rectifying pinch, $L_{R_{*}}$, and the total distillate rate, D, are assumed. The other internal loadings in the column are then determined by overall material balance and the assumption of constant molal overflow between the rectifying and stripping pinch stages:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{R}^{*}}=\mathrm{L}_{\mathrm{R}^{*}}+\mathrm{D} \tag{6-1}\\
& \mathrm{~L}_{\mathrm{S}_{*}}=\mathrm{L}_{\mathrm{R} *}+\mathrm{L}_{\mathrm{F}} \tag{6-2}\\
& \mathrm{~V}_{\underline{S}_{*}}=\mathrm{V}_{\mathrm{R}^{*}}-\mathrm{V}_{\mathrm{F}} \tag{6-3}
\end{align*}
$$

and the bottom rate is:

$$
\begin{equation*}
B=F-D \tag{6-4}
\end{equation*}
$$

where $I_{R *}=$ liquid molar rate at the rectifying pinch;
$V_{R^{*}}=$ vapor molar rate at the rectifying pinch;
$\mathrm{L}_{\underline{S}^{*}}=1$ iquid molar rate at the stripping pinch;
$\mathrm{V}_{\underline{S}}{ }^{*}=$ vapor molar rate at the stripping pinch;
$L_{F}=$ liquid molar flow rate of feed;
$V_{F}=$ vapor molar flow rate of feed.

In the next step, values are assumed for temperatures at the feed locations, T_{f} and T_{f+1}, and at the pinch locations, $T_{R *}$ and $T_{\underline{S}} *^{*}$ The K values at these temperatures combined with the respective L/V's give the component absorption factors or stripping factors at these points of the column.

The component distribution and the type of column section is then determined by inspection of the absorption factors at the rectifying pinch, $A_{R *}$, and the stripping factors at the stripping pinch, $\mathrm{S}_{\mathrm{S}_{*}}$: light separated components are those with values of $\mathrm{S}_{\mathrm{S}^{*}}$ greater than 1.0, while heavy separated components are those with values of $A_{R *}$ greater than 1.0. This is shown on the following diagram:

Therefore, the four different types of column occur under the following circumstances:

- If ILS $=0$ and IHS $=C+1$
- All components are distributed
- Rectifying and Stripping sections are Type I
- If ILS $=0$ and IHS $<\mathrm{C}+1$
- All light components are distributed
- Some heavy components are separated from the distillate
- Rectifying section is Type II and Stripping section is Type I
- If ILS >0 and IHS $=\mathrm{C}+1$
- Some light components are separated from the bottoms.
- All heavy components are distributed
- Rectifying section is Type I and Stripping section is Type II
- If ILS >0 and IHS < C + 1
- Some light components are separated from bottoms
- Some heavy components are separated from distillate
- Rectifying and Stripping sections are Type II

Type I in Both Column Sections

In systems with type I in both sections, the minimum reflux can be calculated directly by Underwood's Equations (31). If these equations are applied to the two key components whose specified distributions (b/d), define the separation, they give an exact solution for the minimum reflux for Class I separations.

These equations are presented here for convenient reference.

For a partially vaporized feed:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{R} *}=\frac{\mathrm{L}_{\mathrm{F}}\left[\left(\frac{\mathrm{~d}}{\ell_{\mathrm{F}}}\right)_{\mathrm{A}}-\left(\frac{\mathrm{d}}{\ell_{\mathrm{F}}}\right)_{\mathrm{B}}{ }^{\alpha_{A B}}\right]}{\alpha_{\mathrm{AB}}-1} \tag{6-5}
\end{equation*}
$$

where $A, B=$ specific components

$$
\begin{aligned}
\alpha_{A B}= & \text { relative volatility for the key components at the feed } \\
& \text { stage conditions. }
\end{aligned}
$$

For all liquid feed:

$$
\begin{equation*}
L_{R^{*}}=\frac{F\left[\left(\frac{d}{f_{F}}\right)_{A}-\left(\frac{d}{f_{F}}\right)_{B} \alpha_{A B}\right]}{\alpha_{A B}-1} \tag{6-6}
\end{equation*}
$$

since $L_{F}=F$ and $\ell_{F}=f_{F}$.
For all vapor feed:

$$
\begin{equation*}
L_{R^{*}}=\frac{F\left[{ }^{\alpha_{A B}}\left(\frac{d}{f_{F}}\right)_{A}-\left(\frac{d}{f_{F}}\right)_{B}\right]}{\alpha_{A B}}-1 \tag{6-7}
\end{equation*}
$$

The traditional approach has been to use the feed temperature for the values of K_{f} or $\alpha_{A B}$. However, the preferred solution is to calculate the component distributions (b/d), with the assumed temperatures at the feed location $\left(T_{f}=T_{f+1}\right)$ to give K values and solve by the following:

$$
\begin{equation*}
\frac{b}{d}=\frac{L_{R^{*}}\left(1-K_{f}\right)+F-D K_{f}}{L_{R^{*}}\left(K_{f}-1\right)+D K_{f}} \tag{6-8}
\end{equation*}
$$

for a liquid feed.
And for a vapor feed:

$$
\begin{equation*}
\frac{b}{d}=\frac{L_{R^{*}}\left(1-K_{f}\right)+F K_{f}-D K_{f}}{L_{R^{*}}\left(K_{f}-1\right)+D K_{f}} \tag{6-9}
\end{equation*}
$$

The values of (b / d) can then be used to determine the individual component distillate rate, d, by :

$$
\begin{equation*}
\mathrm{d}=\frac{\mathrm{f}_{\mathrm{F}}}{1+\left(\frac{\mathrm{b}}{\mathrm{~d}}\right)} \tag{6-10}
\end{equation*}
$$

Since the rectifying pinch occurs at the feed stage, $T_{f+1}=T_{R \times}$, and the liquid rate at the stage above the feed stage, $f+1$, can be calculated by Equation (3-1) which becomes:

$$
\begin{equation*}
\left(\frac{\ell}{d}\right)_{f+1}=\frac{A_{f+1}}{1-A_{f+1}} \tag{6-11}
\end{equation*}
$$

The values of ℓ_{f+1} are determined and nomalized to give reflux compositions at the feed stage. The bubble point is calculated and the resulting K values or α values used for the next trial to determine $L_{R *}$ Convergence results when $T_{R *}$ reaches a constant value.

Type II in Rectifying Section, Type I in Stripping Section

The objective for this type of system is to calculate the number of stages N, between the rectifying pinch, R^{*}, and the stage above the feed stage, $f+1$. This is done by applying Equation (5-6) or Equation (5-8) to the heavy key component.

If the calculations are done by hand, a good approximation results by using Equation (5-8). If a computer program is used, as the one presented in this paper, Equation (5-6) can be used for better results, assuming a linear profile of the absorption factors between the calculated values at the $\mathrm{f}+1$ and R^{*} locations.

The ratios $(l / d)_{R \nless H K}$, and $(v / b)_{\underline{S} \geqslant H K}$ are calculated by Equation (3-1) and Equation (3-2) respectively as discussed in Chapter V. Note that $(v / b)_{f}=(v / b)_{S^{*}}$ in this case.

The Feed Plate Match Equation (5-26) is then used to determine $\left.{ }^{(b / d}\right)_{H K}$ for the heavy key component.

Starting with $N=0$, the value of N is varied until the specified (b/d) $H K$ is calculated. Interpolation can be used between trials to find N.

Type I in Rectifying Section, Type II in Stripping Section
The objective in this case is to calculate the number of stages M, between the stripping pinch, \underline{S}^{*}, and the feed stage, f .

Equations (5-19) or (5-21) are applied to the light key component. Again, Equation (5-19) can be used for better results with a linear profile between the calculated stripping factors at the \underline{S}^{*} and f locations.

The ratios $(v / b)_{\underline{S} \leqslant L K}$, and $(\ell / d)_{R \leqslant L K}$ are calculated by Equation (3-2) and Equation (3-1) respectively as discussed in Chapter V. Note that $(\ell / d)_{f+1}=(\ell / d)_{R^{*}}$.

The Feed Plate Match Equation (5-26) is again used here, to determine (b/d) ${ }_{\text {LK }}$ for the light key component.

Starting with $M=0$, the value of M is varied until the specified (b/d) ${ }_{L K}$ is calculated. Interpolation can be used between trials to find M.

Type II in Both Sections

This case is actually the general one. The discussed previous cases are special situations where N, M or both were zero.

The objective is to calculate N and M. The calculation of $(l / d)_{R *}$ and $(v / b)_{S_{*}}$ is the same as discussed in the previous sections except that these values are determined for both the key components. The solution of N and M is the simultaneous solution of Equation (5-6) and Equation (5-19) for both key components.

This in effect, gives two (b/d) equations, one for the light key and one for the heavy key in the two unknowns N and M.

Material Balances Calculation Procedure

The following stepwise procedure is self-explanatory:

1. Evaluate Equation (3-1) to obtain $(2 / \mathrm{d})_{R^{*}}$ for the distributed and light separated components.
2. Calculate $(\ell / \mathrm{d})_{\mathrm{f}+1}$:
a. If $N=0$, the rectifying section is Type I and $I H S=C+1$ (see diagram on page 30). It results in this case that $(\ell / d)_{\mathrm{f}+1}=(\ell / \mathrm{d})_{\mathrm{R} *}$.
b. If $N>0$, IHS $<C+1$ and the rectifying section is Type II. In this case, $(\ell / d)_{f+1}$ is calculated by Equation (5-6).
3. Determine $(v / b)_{\underline{S} *}$ for the distributed and heavy separated components by Equation (3-2).
4. Calculate ($\mathrm{v} / \mathrm{b})_{\mathrm{f}}$:
a. If $M=0$, the stripping section is Type I and $I L S=0$ (see diagram on page 30). Therefore, $(\mathrm{v} / \mathrm{b})_{\mathrm{S}^{*}}=(\mathrm{v} / \mathrm{b})_{\mathrm{f}}$.
b. If $M>0$, ILS >0 and the stripping section is Type II. Here, $(v / b)_{f}$ is calculated by Equation (5-19).
5. Calculate (b/d) for the distributed components by Equation (5-26). Correct (b/d) LK and $(b / d)_{H K}$ to be consistent with the specifications. This is done by using the multiplier θ, such that,

$$
{ }^{(b / d)}{ }_{L K} \text {, spec. }=\theta_{L K}(b / d){ }_{L K} \text {, calc. }
$$

and

$$
{ }^{(\mathrm{b} / \mathrm{d})_{\mathrm{HK}}, \text { spec. }}=\theta_{\mathrm{HK}}{ }^{(\mathrm{b} / \mathrm{d})_{\mathrm{HK}}, \text { calc. }}
$$

6. Determine the distillate rate $D_{c a l c}=\sum_{c} d$. For the light separated components, $d=f_{F}$. For the separated heavies, $d=0$. The flow rates for all distributed components are evaluated by an overall material balance which yields,

$$
\mathrm{d}=\frac{\mathrm{f}_{\mathrm{F}}}{1+\left(\frac{\mathrm{b}}{\mathrm{~d}}\right)}
$$

The specified values of (b/d) are used for the light and heavy key components.
7. Calculate the liquid rate at the rectifying pinch zone, $\mathrm{L}_{\mathrm{R} *}$, calc. ${ }^{\text {. This is done as follows: }}$
a. For the distributed and light separated components, determine $\ell_{R *}$ by,

$$
\ell_{R^{*}}=\left(\frac{\ell}{\mathrm{d}}\right)_{\mathrm{R}^{*}} \mathrm{~d}
$$

b. For the heavy separated components, $\ell_{R^{*}}$ is determined by Equation (5-14).
c. Determine $L_{R *}$, calc. $=\sum_{c} \cdot \ell_{R^{*}}$

At this point, check for convergence on the specified value of $L_{R *}$:

- If $L_{R *}$, calc. $=L_{R *}$, spec., "converge" $=1$
- If $L_{R *}$, calc. $\neq L_{R *}$, spec., "converge" $=0$

8. Calculate liquid rates on $f+1$, and vapor rates on S_{f} and \underline{S}^{*} by the following procedure:
a. For the distributed and light separated components,

$$
\ell_{f+1}=\left(\frac{\ell}{d}\right)_{f+1}
$$

v_{f} is determined by Equation (5-22) and $\mathrm{v}_{\mathrm{S}}{ }^{*}$ by Equation (5-24).
b. For the separated heavies, ℓ_{f+1} is determined by Equation (5-12). Here also,

$$
v_{f}=\left(\frac{v}{b}\right)_{f} b
$$

and

$$
\mathrm{v}_{\underline{\mathrm{S}} *}=\left(\frac{\mathrm{v}}{\mathrm{~b}}\right)_{\underline{\mathrm{S}} *} \mathrm{~b}
$$

c. Then, the sum of the calculated component flow rates gives

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{f}+1}=\sum_{\mathrm{c}} \ell_{\mathrm{f}+1} \\
& \mathrm{~V}_{\mathrm{f}}=\sum_{\mathrm{c}} \mathrm{v}_{\mathrm{f}} \\
& \mathrm{~V}_{\underline{\mathrm{S}} *}=\sum_{\mathrm{c}} \mathrm{v}_{\underline{\mathrm{S}}} *
\end{aligned}
$$

9. Mole fraction compositions on stages $\mathrm{R}^{*}, \mathrm{f}+1$, f and \underline{S}^{*} are calculated by normalizing the component molar rates with the total molar rates calculated in step 8-c.
10. T_{f+1} and $T_{R *}$ are determined by bubble point calculations. T_{f} and $T_{S *}$ are found by dew point calculations.
11. Check convergence.

- If the calculated temperatures are different from the values used in the trial, the new values are used to calculate absorption and stripping factors, determine the type of column sections and then repeat the stepwise procedure just outlined. The value of $D_{\text {calc }}$. from this trial is used for the next trial, but $L_{R_{*}}$ must not be changed. New values of $\mathrm{V}_{\mathrm{R} *}, \mathrm{~L}_{\mathrm{S}_{*}}$ and B are also determined.
- If the calculated temperatures are the same as the values used in the trial, check "converge" (see step 7). The trial should be repeated if "converge" $=0$.
- If the calculated temperatures are the same and "converge" $=1$, this is a converged case for the specified value of $L_{R *}$.

12. When the calculations are converged for the value of $L_{R *}$, the value of θ_{LK} and θ_{HK} are a measure of the deviation from convergence to the specified (b/d) for the key components. For the second iteration on $L_{R *}$ an arbitrary change is made in the direction of convergence, i.e., bringing the θ values to 1.0. After the second iteration, interpolation on $\Delta \Theta$ and $\Delta L_{R_{*}}$ can be used to estimate the next iteration on $L_{R *}$. This procedure converges all systems with Type I in either or both sections of the column.

For Type II systems in both sections, the θ values become equal to 1.0 when the value of $L_{R *}$ is in the vicinity of the true minimum reflux. However, this is not necessarily the final answer. The number of stages N and M can adjust the key component compositions, so that the specified separation is made at a reflux higher than the minimum. Successively, lower values of $L_{R^{*}}$ are then assumed and this results in lower values of N and M. The total calculation is converged when the values of N and M reach a minimum, i.e., lower values of $L_{R *}$ give non-convergence on the specified key components split.

Enthalpy Balance

The external minimum reflux was calculated by use of the following enthalpy balance. Enclosing the rectifying pinch and the top plate of the column, it gives:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{R} *} \mathrm{H}_{\mathrm{R} *}+\mathrm{L}_{\mathrm{Rm}} \mathrm{~h}_{\mathrm{Rm}}=\mathrm{V}_{1} \mathrm{H}_{1}+\mathrm{L}_{\mathrm{R} *} \mathrm{~h}_{\mathrm{R} *} \tag{6-12}
\end{equation*}
$$

where $V_{1}=$ molar flow rate of the vapor from the top stage of the column;
H = enthalpy of one mole of the vapor leaving the specific stage or section of the column;
$h=e n t h a l p y$ of one mole of the liquid leaving the specific stage or section of the column.

Since:

$$
V_{1}=L_{R m}+D
$$

and

$$
V_{R_{*}}=L_{R_{*}}+D
$$

Equation (6-12) reduces to:

$$
\begin{equation*}
L_{R m}=\frac{L_{R_{*}}\left(\mathrm{H}_{\mathrm{R}^{*}}-\mathrm{h}_{\mathrm{R} *}\right)+\mathrm{D}\left(\mathrm{H}_{\mathrm{R}^{*}}-\mathrm{H}_{1}\right)}{\left(\mathrm{H}_{1}-\mathrm{h}_{\mathrm{Rm}}\right)} \tag{6-13}
\end{equation*}
$$

DISCUSSION OF ILLUSTRATIVE EXAMPLES

The minimum reflux was calculated for four hydrocarbons mixtures which at minimum reflux conditions fall into each possible combination of Class I or Class II separations.

The true minimum reflux was determined by a plot of the actual reflux required to make the specified separation of the key components vs the number of stages specified. Such a plot approaches the minimum reflux at a value of stages that is $10-20$ times the minimum number of stages required for the specified separation. An example of such a plot is shown in Figure $\mathrm{A}-1$.

The actual reflux required to make the separation for various stages from 8 to 100 was determined by a plate-to-plate procedure available to the author through Esso Research and Engineering Company. This program uses a Newton-Raphson algorithim. One option in the program allows the user to specify stages and key component split and the program then calculate the required reflux.

The internal minimum reflux was then calculated by the short-cut method outlined in this work, through a computer program as listed in Appendix B. The values obtained by this method were then compared with the rigorous plate-to-plate minimum reflux at the constant composition zone. These results are shown in Table A-10. The results obtained by the short-cut method are in agreement with those obtained by the plate-to-plate procedure. Only in the case for a Type II
situation in both sections of the column, the values are off by 7.6% as compared with the plate-to-plate values.

The external minimum reflux calculated by an enthalpy balance was also in agreement with the one obtained by the plate-to-plate procedure (see Table A-10). Enthalpies were calculated using a composition independent procedure available to the author through Esso Research and Engineering Company. This procedure is the same one used by the plate-to-plate program.

The short-cut method for minimum reflux that is most commonly used is the method of Underwood. This procedure gives the value of the reflux at the stage above the feed. However, the Underwood value is frequently taken as the external minimum reflux. This can lead to a significant error when the actual external reflux is specified as a ratio to the Underwood minimum reflux for the design of a fractionating column. Underwood's values for the four examples are also given in Table A-10.

Specifications for Examples 1, 2, 3, and 4 are presented in Table A-1. The key components split is the same for all four examples.

Example 1 is a typical case of Class II separations which presents a Type I rectifying section and a Type II stripping section. In this example, light components are separated in the distillate while the keys and heavier are distributed to both products. This is shown in Table A-2. Temperature profiles from the various plate-toplate cases are plotted in Figure A-2. These temperature profiles
illustrate the typical behavior of this type of column as minimum reflux conditions are approached.

Example 2 and 3 are also Class II separations, and although the rectifying section is Type II for both cases, the stripping section is Type I for Example 2 and Type II for Example 3. Tables A-4 and A-6 respectively, show the distribution of the components for these two cases. Example 2 is similar to Example 1 except that in this case, a heavy component is separated in the bottoms. In Example 3, only the key components are distributed.

Example 4 is the typical case of Class I separations, and therefore, both sections of the column are Type I. Table A-8 shows all components distributed in both products.

Temperature profiles for Examples 2, 3, and 4 are shown in Figures A-3, A-4, and A-5. These plots were obtained from plate-toplate cases with 100 stages each, since this number of stages was high enough to develop the plateaus and approximate the rigorous value of the minimum reflux. Cases with 200 stages were obtained and no change in the minimum reflux value was observed.

Tables A-3, A-5, A-7, and A-9 tabulate the flow rates and temperatures at the key locations of the column as they were obtained by the short-cut procedure and by the plate-to-plate program. By an inspection of these Tables, the values of the internal flow rate, obtained for Examples 1, 2, and 4 are in agreement with the values obtained by the plate-to-plate procedure. Small differences are due
to the pinches for the intermediate trials. The internal flow rates calculated for Type II systems in both column sections show some disagreement with the values obtained by the plate-to-plate procedure. (See Table A-7). Enthalpy balances to establish $\mathrm{L}_{\mathrm{f}+1}$ and $\mathrm{L}_{\mathrm{S} *}$ rather than using constant molal overflow would probably eliminate most if not all of this error. This case, with only two distributed components was the most difficult to converge.

The same vapor-1iquid equilibrium ratio (K) values were used for the rigorous plate-to-plate solution as for the short-cut procedures. Five values for each component at five different temperatures and the column pressure were taken from the plate-to-plate results and read in the input cards to the computer program used. A polynomial curvefit was used to obtain K values at other temperatures. This is done by a sub-routine program listed in Appendix B.

Other sub-routine programs were written for the calculation of bubble point, dew point and to solve the linear series Equations (5-6), (5-14), (5-19), and (5-24). All these programs are listed in Appendix B .

The new minimum reflux method presented in this paper is very accurate for computing the minimum reflux when the split of two components is specified. In the examples presented here these two components, the light key and the heavy key, are adjacent, but the method is not limited to this case.

The values from the plate-to-plate procedure were chosen as the correct minimum reflux because they are based on a rigorous solution of a column with a large number of stages. The Underwood minimum reflux is probably the most widely used method today. It is also presented here for the sake of comparison and the minimum reflux values are not as accurate as the proposed procedure.

The assumption made by some authors that all components lighter than the 1 ight key and heavier than the heavy key are separated from the products at minimum reflux conditions is not valid as it can be seen in Examples 1, 2, and 4. In these cases some lighter and heavier components are distributed along with the keys. Example 3, with only the two keys distributed was found to be the most difficult to converge. Class I separations are the easiest to converge with very good results as illustrated by Example 4, Tables A-8 and A-9. In this case the Underwood method is also very reliable.

The minor discrepancies found in some of the results are mainly due to the assumption of constant molal overflow between the pinch zones. The method does calculate the liquid rate from the stage above
the feed, and the vapor from the feed stage, as we11 as the liquid and vapor in the pinches by material balance. However, these values were not used in successive iterations since they were not restricted by enthalpy balance considerations. The material balances were only used to obtain normalized compositions and these were then used for temperature determination.

CHAPTER IX

RECOMMENDATIONS

The primary contribution of this work is the short-cut calculation of the minimum reflux for systems under the Class II separations category. Underwood's method gives good results for the Class I separations systems.

Improvements in the accuracy of the program would result from the addition of enthalpy balances to calculate the internal loadings in the column for the successive trials. It was expected that the calculation procedure would become very sensitive and the rate of convergence decrease if the internal loadings calculated by material balance in one trail were used in the next one.

More work should be done to demonstrate the accuracy of the method with feeds of more than five components, with totally and partially vaporized feeds and with non-ideal systems.

APPENDIX A

TABLE A-1. SPECIFICATIONS FOR EXAMPLES 1, 2, 3, AND 4

Component	Example 1		Example 2		Example 3		Example 4	
	Comp. No.	Feed Rate	Comp. No.	Feed Rate	Comp. No.	Feed Rate	Comp. No.	Feed Rate
$\begin{aligned} & \mathrm{C}_{3} \mathrm{H}_{8} \\ & \text { EX34 } \end{aligned}$		5	1	20	1	5	1	20
i- $\mathrm{C}_{4} \mathrm{H}_{10}$	2	15			2	15		
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ (LK)	3	25	2	25	3	25	2	25
$\mathrm{i}-\mathrm{C}_{5} \mathrm{H}_{12}$ (HK)	4	20	3	20	4	20	3	20
$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}$	5	35					4	35
EX23 (*)				35	5		- -	-
Temperature ${ }^{\circ} \mathrm{F}$		81.73		04.46		. 25		. 27

Total Feed Rate $=100$ Moles $/ \mathrm{Hr}$
Feed Condition $=$ Boiling Point Liquid
Column Pressure $=120 \mathrm{Lb} / \mathrm{Sq}$. In. Abs.
Distillate Condition = Boiling Point Liquid
LK Specification, (b/d) $=0.1933$
HK Specification, (b/d) $=5.7340$
(*) Hypothetical components with K values that give the desired type of separation.
table a-2. molar flow rates and conditions OF PRODUCTS FOR EXAMPLE 1

Component Number	Short-cut in This Work		Plate-to-Plate	
	Distillate	Bottoms	Pistillate	Bottoms
1	5.00	-	5.00	-
2	15.00	-	15.00	-
3 - LK	20.95	4.05	20.95	4.05
4-HK	2.97	17.03	2.97	17.03
5	0.98	34.02	0.97	34.03
Total	44.90	55.10	44.89	55.11
Temperature, ${ }^{\circ} \mathrm{F}$	141.27	226.50	141.26	226.47

FIGURE A-1. Typical stages - reflux curve for Example 1

FIGURE A-2. Temperature profiles for Example 1.

TABLE A-3. MOLAR FLOW RATES AND CONDITIONS AT KEY COLUMN LOCATIONS FOR EXAMPLE 1

Component Number	Short-cut in This Work				Plate-to-Plate			
	$L_{\text {R* }}$	L_{f+1}	V_{f}	$\mathrm{V}_{\underline{S}} *$	$L_{\text {R* }}$	$L_{\text {f+1 }}$	V_{f}	$\mathrm{V}_{\underline{S}}$ *
1	1.25	1.25	6.25	0.03	1.25	1.25	6.25	0.00
2	8.45	8.45	23.45	12.78	8.46	8.46	23.45	4.06
3 - LK	16.40	16.40	37.35	51.18	16.43	16.42	37.37	58.00
4-HK	12.12	12.12	15.09	18.19	12.18	12.16	15.12	18.32
5	21.12	21.12	22.10	26.48	21.11	21.14	22.11	26.60
Total	59.34	59.34	104.24	108.66	59.43	59.43	104.30	106.98
Temperature ${ }^{\circ} \mathrm{F}$	187.53	187.53	187.53	195.63	187.54	187.55	187.55	197.28

TABLE A-4. MOLAR FLOW RATES AND CONDITIONS OF PRODUCTS FOR EXAMPLE 2

Component Number	Short-cut in This Work		Plate-to-Plate	
	Distillate	Bottoms	Distillate	Bottoms
1	17.88	2.12	17.61	2.39
2	20.95	4.05	20.95	4.05
3	2.97	17.03	2.97	17.03
4	-	35.00	-	35.00
Total	41.80	58.20	41.53	58.47
Temperature ${ }^{\circ} \mathrm{F}$	161.79	248.81	161.82	248.23

FIGURE A-3. Temperature profile for Example 2.
table a-5. molar flow rates and conditions at key columi locations for example 2

Component Number	Short-cut in This Work				Plate-to-Plate			
	$L_{\text {R* }}$	${ }^{L}{ }_{\text {f+1 }}$	v_{f}	$\mathrm{v}_{\text {S }}{ }^{\text {(}}$	$\mathrm{L}_{\mathrm{R} *}$	${ }^{L} \mathrm{f}+1$	v_{f}	$\mathrm{V}_{\underline{\text { S }}}$ *
1	15.61	12.95	30.83	30.83	15.41	11.63	29.24	29.21
2	19.34	15.99	40.10	40.10	19.39	14.57	35.52	35.50
3	23.96	14.57	17.54	17.54	24.13	14.29	17.26	17.24
4	0.06	12.07	12.07	12.07	0.01	12.01	12.01	12.00
Total	58.97	55.57	100.54	100.54	58.94	52.50	94.03	93.95
Temperature ${ }^{\circ} \mathrm{F}$	180.58	193.58	199.51	199.51	180.68	195.59	201.37	201.38

TABLE A-6. MOLAR FLOW RATES AND CONDITIONS
OF PRODUCTS FOR EXAMPLE 3

Component Number	Short-cut in This Work		Plate-to-P1ate	
	Distillate	Bottoms	Distillate	Bottoms
1	5.00	-	5.00	-
2	15.00	-	15.00	-
3	20.95	4.05	20.95	4.05
4	2.97	7.03	2.97	17.03
5	-	5.00	-	35.00
Total	43.92	56.08	43.92	56.08
Temperature ${ }^{\circ} \mathrm{F}$	139.73	253.95	139.73	253.97

FIGURE A-4. Temperature profile for Example 3.
table a-7. MOLAR fLOW RATES AND CONDItIONS AT KEY COLUMN LOCATIONS FOR EXAMPLE 3

Component Number	Short-cut in This Work				Plate-to-Plate			
	L_{R} *	$\mathrm{L}_{\mathrm{f}+1}$	v_{f}	$\mathrm{V}_{\underline{\text { S }}}$ *	$\mathrm{L}_{\mathrm{R} *}$	$\mathrm{L}_{\mathrm{f}+1}$	v_{f}	$\mathrm{V}_{\underline{\text { S }}}$ *
1	1.25	1.12	6.11	0.35	1.30	1.06	6.06	0.00
2	8.74	7.44	22.45	17.03	9.12	6.98	21.98	0.43
3	17.52	14.44	35.39	40.80	18.38	13.49	34.44	59.24
4	17.85	12.75	15.72	17.77	21.46	12.16	15.13	19.08
5	1.06	10.90	10.90	12.30	0.00	10.60	10.60	13.00
Total	46.42	46.65	90.57	88.25	50.26	44.29	88.21	91.75
Temperature ${ }^{\circ} \mathrm{F}$	172.80	187.97	194.47	202.65	173.51	188.78	194.30	205.80

TABLE A-8. MOLAR FLOW RATES AND CONDITIONS OF PRODUCTS FOR EXAMPLE 4

Component Number	Short-cut in This Work		Plate-to-Plate	
	Distillate	Bottoms	Distillate	Bottoms
1	18.24	1.76	18.23	1.77
2	20.95	4.05	20.95	4.05
3	2.97	17.03	2.97	17.03
4	0.60	34.40	0.64	34.36
Total	42.76	57.24	42.79	57.21
Temperature ${ }^{\circ} \mathrm{F}$	161.39	223.75	161.45	223.73

FIGURE A-5. Temperature profile for Example 4.

TABLE A-9. MOLAR FLOW RATES AND CONDITIONS AT KEY COLUMN LOCATIONS FOR EXAMPLE 4

Component Number	Short-cut in This Work				Plate-to-Plate			
	$\mathrm{L}_{\mathrm{R} *}$	$\mathrm{L}_{\mathrm{f}+1}$	v_{f}	$\mathrm{V}_{\underline{\text { S }}}{ }^{\text {a }}$	$\mathrm{L}_{\mathrm{R} *}$	$\mathrm{L}_{\mathrm{f}+1}$	v_{f}	$\mathrm{V}_{\underline{\text { S }}}{ }^{\text {* }}$
1	14.02	14.02	32.25	32.25	14.01	14.01	32.24	32.24
2	17.53	17.53	38.33	38.33	17.53	17.53	38.48	38.50
3	13.93	13.93	17.03	17.03	14.09	14.06	17.03	17.04
4	24.54	24.54	25.13	25.13	24.41	24.45	25.10	25.10
Total	70.02	70.02	112.74	112.74	70.04	70.05	112.85	112.88
Temperature ${ }^{\circ} \mathrm{F}$	193.31	193.31	193.39	193.39	193.31	193.32	193.34	193.34

TABLE A-10. MINIMUM REFLUX RESULTS FOR EXAMPLES 1, 2, 3, AND 4

Case	Short-cut in This Work		Plate-to-Plate		Underwood
	$L_{\text {R* }}$	$L_{\text {Rm }}$	L_{R} *	$\mathrm{L}_{\text {Rm }}$	$\mathrm{L}_{\mathrm{R} *}$
Example 1	59.34	66.12	59.43	66.09	55.80
Example 2	58.97	63.50	58.94	63.32	55.30
Example 3	46.42	50.45	50.26	54.05	46.90
Example 4	70.02	79.35	70.04	79.28	70.00

APPENDIX B

PROGRAM 1. MAIN EXECUTOR

MAIN

```
*OPTIONS IN EFFECT* ID,EBCDIC,SOURCF,NOLIST,NODECK,LOAD,NOMAP
*OPTIDNS IN EFFECT* NAME = MAIN . LINECNT = 55
*STATISTICS* SOURCE STATEMENTS = 6.PROGRAM SILE = 33?
*STATISTICS* NO DIAGNOSTICS GENERATED
```


PROGRAM 2. BUBBLE POINT CALCULATIONS

$B \cup B$

```
C
    TBP = TBP - 1.0 / (1 DF/(F * RATE)|- (0.5 * DDF / DF |
    500 CONTINUE
        SOLUTION NOT CUNVERGING
        ER = 1
        CALL ERROR
C
    600 RETURN
C
        END
```

MNR 01660 MNR 01680 MNRO1700 MNR 01720 MiNR 01740 WVR 01760 MNR 01780 MNRO1800 MNR 01820 MNRO1840

```
FORTRAN IV G LEVEL 21 RUB
*OPTIONS IN EFFECT* ID,EBCDIC,SOURCE,NOLIST,NODECK,LOAD,NOMAP
*OPTIONS IN EFFECT* NAME = BUB , LINECNT = 55
*STATISTICS* SOURCF STATEMENTS = 27,PROGRAM SIZE = 756
*StatISTICS* no diagnostics generated
```


PROGRAM 3. DEW POINT CALCULATIONS


```
        DEW
C CALCULATF CORRECTEU TEMPERATURE USING RICHMUND METHOD
        TDW = TDW - 1.0 / (( DF / ( F * RATE )| - ( 0.5 * DDF / DF ))
        500 CONTINUF
c SOLUTION NOT CONVERGING
        ER = ?
        CALL ERROR
C
    GOO RETIJRN
C
        ENO
```

4 MR 02920
UNR 02940 MNR 02960 UNR 22980 MNR 03000 UNR 33020 UNR 03040
MNR 03060
YNR 03080
MNR 03100
MNR 0.3120

```
FORTRAN IV G LEVEL 21 DFW
    *OPTIONS IN EFFECT* ID,EBCDIC,SOURCE,NOLIST,NODECK,LOAD,NOMAP
    *OPTIONS IN EFFECT* NAME = DEW , LINECNT = 55
```



```
    *STATISTICS* NO DIAGNOSTICS GENERATED
```


PROGRAM 4. ROUTINE TO READ ALL INPUT

C

```
            SURROUTINE INPUT
\begin{tabular}{lll} 
COMMON / FNSKOP / IREF, & REFRCL, \\
1 REFRCH, & DEST, & \\
2 LRSTAR, & FNAME 31, & DUMDUM 1001
\end{tabular}
    CIIMMON / SHRTCT /
\begin{tabular}{|c|c|c|c|c|}
\hline & ON 1001 & & & \\
\hline A & AA(100), & \(A B(100)\), & AC(100). & AD(100), \\
\hline B & B( 50\()\). & BDI (50), & BFLOW, & BN(50), \\
\hline C & D(50), & DCALC. & DCON, & OELBAR(100), \\
\hline 0 & OELF(100). & DL, & DLS(5)], & DLST, \\
\hline E & ON( 50\()\), & DSPEC, & DV, & OVS, \\
\hline F & DVX( 50), & DVXT, & ENTH, & ER, \\
\hline G & FACT(100), & FEND \((50,6)\), & FFLOW, & FL(50). \\
\hline H & FLTOT, & FMAXA, & FMAXS, & FMINA, \\
\hline I & FMINS, & FP, & FRVAP, & FT, \\
\hline \(J\) & FTOT 501. & FV(50). & FVTOT, & ICON, \\
\hline K & ID. & IP, & ISEC, & MTRY, \\
\hline L & I StAGE, & KODE (10), & KSEC, & LFD(50), \\
\hline M & LFFX(50), & LV(6), & NABSR, & NCOMP, \\
\hline N & NFSTG, & NITER, & NS (5), & NSTRP, \\
\hline 0 & P(6). & R, & S2 (50). & S3(50), \\
\hline \(p\) & S4(50), & S5(50), & T(6). & THETA. \\
\hline 0 & VFB( 50\()\), & VFFX(50), & NTRY, IHK, & \\
\hline
\end{tabular}
```


COMMON /SYSTEM/ IREAD, IWRITE

```
COMMON /WHILE/ PERC,THTAI,THTAZ,TT1,TT2, CLV(5),DELPC,DELP
COMMON /ZALPHA/ KZ(160)
DIMENSION NAME (3,8), DATA(10)
DIMENSION PNAME 2,501 , RNAME 2,50 )
DIMENSION TCF(5), PCF(5), \(\operatorname{CFKV}(30,5)\)
\begin{tabular}{|c|c|}
\hline data name \(/\) & '\#360', '11 ', \\
\hline 1 仡 & * \#CMP', ' ', \\
\hline 2 & **KCO', 'EF ', \\
\hline 3 & '*KDA', 'TA ', \\
\hline 4 & '*FEE', 'D ', ' \\
\hline 5 & * \#BAS', 'ECA', 'SE \\
\hline 6 & '*COM', PPR ', ' \\
\hline 7 & 'mDES', 'IGN ', \\
\hline
\end{tabular}
DATA W/5*1./
REAL LFD,LV,LFFX,LRSTAR
```

पNR 03140
MNR 03160
MNR 03180
YNR 03200
MNR 03220
4NR 03240
MNR 03260
MNR 03280
4NR 03300
YNR 03320
MNR 03340
MNRO3360
MNR 03380
MNR 03400
UNR 03420
MNR03440
MNR 03460
MNRO3480
MNRO3500
MNR 03520
MNR 03540
MNR 03560
MNR 03580
MNR 03600
MNR 03620
WNR 03640
MNR 03660
MNRO3680
MNR 03700
YNR 03720
UNR 03740
MNRC3760
UNR 03780
MNR 03800
MNRD3820
UNR 03840
MNR03860
MNR 03880
MNR 03900
MNR 03920
MNR 03940
UNR C3960
MNR03980
YNR 04000
4NR 04020
MNR 04040
YVR 04060
WNR 04080
UNRO4100
MNRO4120
MNR 04140
MNRO4160
MVR 04180

INPUT

```
C
    INITIALIZE
    VAR IABLES
    ENTH=0.
    FFLOW = 0.
    FLTOT = 0.
    FVTOT = 0.
    FTF=0.0
    ID = 0
    IP = 0
    IREAD = 5
    IWRITE = 6
    NCOMP = 0
    INPUT CARD CHECKING COUNTERS
    ICOEF = 0
    IDATA = 0
    IFD=0
    IK = O
    IR=0
    KFRROR = 0
    KVC=0
    TTC = 0.
C
C
    DO 5 J=1,50
    D(J)=0.
    OLS(J)=0.
        OVX(J) = 0.0
        5 continue
    C
    10 CALL ZCAPD ( 2, &50)
    FRROR MSG - * CARD SEQUENCE ERROR
    PRINT 20
    KERROR = KERROR + 1
    STOP
    PACK FIRST 12 WORDS INTO 3
50 DUMMY = ZPACK ( KZ(1), KZ(81), 12 )
    CHECK FOR TYPE OF CARD FOUND
    00 100 I = 1,10
    IT = I
    IF ( KZ(81) - NAME(1,1))100. 150. 100
100 CONTINUE
```

VMR 04200
MNR 04220
MNRO4240
MNR 04260
MNRO429.0
पNRO4300
MNRO4320
MNRO4340
MNRO4360
:ANRO4380
YNRO4400
MNR 04420
MNR 04440
MVR 04460
MNRO4480
MNR 04500
MNR 04520
MVR 04540
MNR 04560
YVR 04580
MNRO4600
MNR 04620
MNR 04640
MNR 04660
YNRO4680
MNR 04700
MNRO4720
MNR 04740
MNR 04760
MNRO4780
MNR 04800
MNRO4320
MNR 04840
MNRO4860
HNR 04880
MNR 04900
MNR 04920
MNR 04942
MNR 04960
MNR 04990
MNR 05000
MNR 05020
MNR05040
WNR 05060
MNR 05090
MNR 05100
MNR 05120
MNR 05140
MNRO5160
YNR 05180
MNR 05200
MNR 05220
MNR05240

INPUT

```
C
C NO MATCH FOUND
    WRITE (IWRITE,120) (KZ(I), I=1,80)
    KERROR = KERROR + 1
    STOP
C MATCH FOUND - gU TO PROPER STATEMENT FOR PROCESSING
C
C
150 GO TO (200,250,300,350,400,450,500,550 1,IT
C
C *3601 TITLE CARD FOUND
C
    200 TTC = TTC + 1
    IF ( TTC .EQ. 1 ) GO TO 210
C
C
C
    210 WRITE (IWRITE,2010)(KZII), I=1,80)
C
C
C
C *CMP COMPINENT CARD FOUND
    250 PRINT 2020
    260 CALL ZCARO ( Z, &270)
    GO TO 280
C
C EITHER NO CO OR UNRECOGNIZABLE CD CARD FOUND - PRINT MESSAGE
C
C
C
C
C
    280 IFI TESTI 2, KZ(81),1, 1, 'CD , 1, 1).EQ.0.0 , GO TO 290
C
G0 TO 270
290 NCOMP = NCOMP + 1
    DUMMY = ZPACK (KZ(5), CMPNAM(1,NCOMP), 12)
```

MNR 05260
MNR 05280
MNR 05300
MNK05320
YNR 05340
MNR 05360
MNR 05380
YNR 05400
YNR 05420
MNR 05440
MNR 05450
MNR 05480
MNR05500
MNR 05520
MNR 05540
4VRO5560
MNR 05580
MNRC5600
MAR 05020
MNR 05640
MNRO5650
MVRC5680
MINR 05700
4NR 05770
MNR 05740
MNR05760
MNR05780
MNR 05800
MNR 05820
MNR 05840
MNR05850
MNR 05880
MNR 05900
MNR 05922
UNR 05940
4NR 05960
MNR 05980
MNR 06000
MNR 06020
MNR 06040
MNR 06060
MNR 06080
MNR 06100
MNROK120
MNRO6 140
UNROG16O
MNROS180
MNR 06200
MNRO6220
MNR 06240
4NRC6260
MNRO6?80
MNROS300

INPUT

```
C
        WRITE (IWRITE,2000)(KZ(I), I=1,80)
        CALL LCARD ( Z, &50 )
        GO TO 280
C
c
C
c
    300 IK = 1
    x = ZINTGR ( KZ(13), KSEC, 12 )
C
c DETERMINE WHICH SECTION bEING PROCESSED
C
C
C CHECK FOR KV CAROS
C
    310 CALL ZCARD ( Z, &320)
C
C EITHER NO KC OR UNRECOGNIZABLE KC CARD FOUND - PRINT MESSAGE
C.
    320 WRITE (IWRITE,2040)
C
C
C
C CHECK FOR KC CARDS
330 IFI TEST(2,KZ(81).1, 1, 'KC *,1,11.EQ.0.0, GO TO 340
C
C
    340 ICOEF = ICOEF + 1
            DO 342 K = 1,4
            X = ALFA ( DATA(K), KZ(7+(K-1)*18), 18, 1, 8 1
    342 CONTINUE
    ISLOT = (KSEC-1)*50 + ICOEF
    AA(ISLOT) = OATA(1)
    AB(ISLOT) = OATA(2)
    AC(ISLOT) = DATA(3)
    AD(ISLJT) = OATA(4)
C
    CALL ZCARD ( Z, &50 )
```

MNRO6320
UNRO6340
VVROK 360
MivROO 380
M.VR 06400

MNRO6420
WVROS440
MNR O6460
YNR 06480
M NR 06500
YNROS520
YNR 06540
MNR 06560
MNR06580
पNR 06600
MNR 26620
MNR 06640
4VR C6660
MNR OG680
MNR06700
UNR 06720
MNR 06740
MNR 06760
MNRO6780
MNR CABOC
nvp o6820
MNR C6849
MNR 06860
YNR OGB8O
WNR C6900
UNR 05920
MNR 06940
UNR OGO6O
WNRCK980
MNR 07000
YNR 07020
YNR 07040
MNR 07060
MNR07080
MNROT100
MNR 07120
YNR 07140
MNR 07160
MNR 07180
MNROT200
YNR 07220
YNR 07240
MNRO7260
MNRO7280
पNRO7300
MNR 07320
MNR 07340
MNR 07360

INPUT

```
C MNRO7380
    GO TO 330
C geverate data trpe identifier, Ik
C
    350 IK = 2
C
C CHECK FJR * CARD
    CALL LCARD (Z, &370)
C
    GO TO 372
C
    370 WRITE (IWRITE,2055)
C
C
    KERROR = KERROR + 1
    SOTO 50
C
C StIRE TEMPERATURE DATA, TCF
    372 DO 374 K = 1.5
    X= ZREAL ( KZ(13+(K-1)*12), TCF(K), IU, 12)
    374 CONTINUF
C
    CALL ZCARD ( Z, &370)
C
C STORE PRESSURE DATA, PCF
DO 376 K = 1.5
    X = ZREAL ( KZ(13+(K-1)*12), PCF(K), UI, 12 )
    376 CONTINUF
C
    CALL ZCARD (2, &370)
C
C CHECK FOR KV CARDS
C 380 IF\ TEST( 2, KZ(81),1,1, 'KV 1, 1, 1 J.EQ.0.0 1 GO T0 390
C
    GO TO 370
C
    390 IDATA = IDATA + 1
c
c STORE COMPONENT-TRAY K-VALUES
C
    DO 392 K = 1,5
    x = LREAL ( KZ(13+(K-1)*12),CFKVIIDATA,K),IU, 12)
    392 CONTINUE
C
    CALL ZCARD ( Z, &50)
C
    GO TO 380
```

MNR 07380
MNR 07400
MNR 07420
MNR 07440
MNR 07460
MNRO7480
4NR 07500
4NR 075?0
UNR 07540
MNR 07560
MNR 07580
YNR 07600
MNR 07620
YNR 07640
YNR 07660
MNR 07680
MNR C7700
MNR 07720
MNR 07740
4NR 07760
MNR 07780
MNRO7800
MNR 07820
MNR07840
UNR 07860
MNR 07880
MNR 07900
MNRO7920
MNR 07940
MNR 07960
MNR 07980
MNR 08000
MNR 08020
MNR 08040
MNR 08060
4NR 08980
MNR 08100
MNR 08:20
MNR O8 140
MNR OR160
MNR 08180
MNR 08200
MNR 08220
MNR OR240
YNR 08260
MNR 08280
MNR O8300
MNR O8320
UNR 08340
YNRO8360
YNR 08380
MNR 08400
MNR 08420

INPUT

```
C *FEED CARD FOUND
C
    400 DUMMY = ZPACK ( KZ(13), FNAME(1),12)
C
    DO 402 K = 1,4
    x = ZREAL ( KZ(25+(K-1)*12),DATA(K), IU, 12 )
    402 continue
C
    FFLDW = MATA(1I
    NFSTG = DATA(2)
    FT = DATA(3)
    FRVAP = DATA(4)
C
C
C.
    420 WRITE (IWRITE,2050)
C
C
C
    430 [FI TEST(2, KZ(81),1,1, 'COMP',1,1 1.EQ.0.0 1 60 T0 440
C
    GO TO 420
C
    440 IFD = IFO + 1
C
            00 442 K = 1,2
            X= ZREAL ( KZ(13+(K-1)*12),DATA(K), IU, 12)
    442 CONTINUE
C
        FTOT(IFD) = DATA(1)
        FV(IFD) = DATA(2)
        FL(IFD) = FTOT(IFD) - FV(IFD)
        FVTOT = FVTOT + FV(IFDI
        FLTUT = FLTOT + FL(IFD)
        FTF = FTF + FTOT(IFD)
C
    CALL ZCARD ( Z, &50)
C
        GO TO 430
c *COMPR CARD FOUND
C
C CHECK FOR * CARD
    500 CALL ZCARD( Z, 6520 )
C
    CO TO 530
C
    520 WRITE ( IWRITE, 2070 )
C
```

MNR 08440
MNR OR460 MNK OR 480 MNR 08500
Y VR 08520
YNR 08540
MNRO8560
YNR OY 580
MNR 08600
MNROR620
MNR 08640
MNR 08660
4NROB680
MNR 08700
MNR 08720
UNR 09740
MNR 08760
UNR 08780
INR 08800
4NP 08820
MNR 08840
MNR 08860
MNR 09880
MNR O8900
MNR 08920
MNR CR940
MNR 08960
MNRO8980
MNR 00000
MNRO9020
MNR OSO 40
MVR 09060
MNR 09080
MNR09100
MVROO120
MNR 09140
MNR09160
MNR 09180
MNROQ200
MNR 09220
MNRO9240
पNRO9260
4NP 09280
MNR 09300
पNRO93?0
MNRO9340
MNR 09360
MNR 09380
MNR 09400
MNR 09420
UNK09440
MNR 09460
UNR 09480

INPUT

```
        KERRDR = KERROR + 1 MNR09500
        GO TO 50
C
    530 IF( TESTI 2, KZ(81),1, 1, 'RATI', 1, 1 1.EQ.0.0 1 GO TO 540
        GO TO 520
C
    540 IR = IR + 1
        OO 542 K = 1.2
        x = ZREAL ( KZ(13+(K-1)*12), DATA(K), IU, 12 )
    5 4 2 ~ C O N T I N U E ~
    TRANSFER L(F+1)/D AND V(F)/B COMPQNENT RATIO INFORMATION
        LFD(IR) = DATA(1)
        VFB(IR) = DATA(2)
    CALL ZCARD ( Z, &50 1
        GO TO 530
        *BASE CASE CARD FOUND
        READ SPECIAL OPERATING CDDES
    450 00 452 K = 1,10
        X = ZINTGR ( KZ(13+(K-1)*4), KODE(K), 4 )
    452 CONTINUE
    CHECK FOR * CARD
    CALL ZCARD(Z, &470)
C
C
    470 WRITE ( IW2ITE, 2060)
        KERROR = KERROR + 1
        GO TO 50
C
    480 IFI TEST( 2, KZ(81),1, 1, B1 , 1, 1).EQ.0.0) GO TO 490
C
C
    490 DO 492 K = 1,5
    X = ZREAL ( KZ(9+(K-1)*12), DATA(K), IU, 12)
    492 CONTINUE
C
C TRANSFER GENERAL INFORMATION FROM BI CARD
C
    ISTAGE = DATA(1)
    ISEC = DATA(2)
    R = OATA(3)
```

MNROO
4NR OR520
MNR 03540
UNR 09560
MNR 09580
MNR 09600
MVR 09620
MNR 09640
UNR 09660
MNR 09680
YNR 09700
MNRO9720
4NR09740
YVR 09760
MNR 09780
UNR 09800
MNR 09820
MNR 09940
MNR 09860
MNR 09880
MAR 09900
MNR 09920
MNR 09940
4NR 09960
MNR 09980
MNR 10000
MNR 10020
WNR 10040
MNR 10060
UNR 10080
UNR 10100
MNR101<0
MNR 10140
MNR10160
MNR10180
UNR 10200
4NR 10270
4NR 10240
MNR 10260
MNR102RO
पNR 10300
YNR 10320
MNR10340
MNR10360
MNR 10380
MNR 10400
MNR10420
MNR 10440
MNR 10460
MNR 10480
MNR 10500
MNR 10520
MNR 10540

I NPUT

```
        P(5) = DATA(4) YNR10560
        DELP = DATA(5)
C
C CHECK FOR *CARD
C
C
C
    49300 494 K = 1.5
    X = ZREAL (KZ(9+(K-1)*12),.DATA(K), IU, 12)
    494 CONTINUE
C
C TRANSFER CONDENSER I NFORMATION FROM B2 CARD
    DSPEC = DATAIII
    DELPC = DATA(2)
    ICON = DATA(3)
    DL = DATA(4)
    DV = DATA(5)
C
C CHECK FOR * CARD
C
c
C
    IF( TEST( 2, KLI 81),1, 1, B3 1, 1, 1 1.EQ.0.0 I GO TO 495
    GO TO 470
C
c. REAO LIQUIJ/VAPOR MOLAR RATIOS FROM B3 CARD
C
    49500 496 K=1,5
    X = ZREAL ( KZ(q+(K-1)*12), LV(K), IU, 12 )
    4 9 6 ~ C O N T I N U E ~
C
c. CHECK FOR * CARD
C
    CALL ZCARD ( Z, &470)
C
    IFI TESTI 2, KZ(81),1, 1, 'B4 1, 1, 1, EQ.0.0 1 GOTO 497
C
    GO TO 470
C
C READ STAGE TEMPERATURES FROM B4 CARD
C
    497 D0 498 K = 1,6
            X = ZREAL ( KZ(9+(K-1)*12), T(K), IU, 12 )
    498 CONTINUE
C
    GO TO 600
C
C *DESIGN CARD FOUND
```

4NR 10560
MNR 10590
UNR 10600
MNR 10620
YNR 10640
YNR 10660
YNR 10680
MNR 10700
YNR 10720
YNR 10740
UNR 10760
4NR 10790
MNR 10800
4NR10820
MNR 10840
MNR10860
MNR 10880
UNR 10900
MNR 10920
MNR 10940
MNR109t0
MNR 10980
UNR 11000
MNR 11020
WNR11040
MNR 11060
MNR 11090
MNR11100
MNR 11120
MNR11140
MNR11160
MNR11190
MNR 11200
UNR 11220
MNR11240
YNR 11260
MNR 11280
UNR 11300
MNR 11320
MNR 11340
UNR 11360
UNR 11380
MNR 11400
UNR 11420
MNR 11440
MNR 11460
UNR 11480
HNR 11500
MNR 11520
MNR 11540
UNR 11560
UNR11580
MNR 11600

INPUT

```
C
    550 1D = 1
C
    00 552 K = 1,10
    X = ZINTGR ( KZ(13+(K-1)*4), KODE(K), 4 )
    552 CONTINUF
    CHECK FUR * CARD
    CALL ZCARD | Z, &570 1
C
C
    570 WRITE ( IWRITE, 2080)
C
    KERRDR = KERRDR + 1
    GO TO 50
C
    580 IFI TEST( 2, KZ(B1).1, 1, D1, ', 1, 1 1.EQ.0.0 1 %O TO 590
C
C
    590 D0 592 K = 1,6
    X= ZRFAL ( KZ(9+(K-1)*12), DATA(K), IU, 12)
    592 CONTINUE
    TRANSFER GENERAL INFORMATION FROM DI CARD
    ISTAGE = DATA(1)
    ISEC = DATA(2)
    R = DATA(3)
    P(5) = DATA(4)
    DELP = DATA(5)
    NTRY = DATA(0)
C CHECK FOR *CARD
C
C
C
C
    593 DO 594 K = 1,6
    X = ZREAL ( KL(9+(K-1)*12), DATA(K), IU, 12 )
    594 CONTINUF
C
C
    TRANSFER CONDENSER INFORMATION FROM D2 CARD
    DSPEC = DATA(1)
    DELPC = DATA(2)
    ICON = DATA(3)
    DL = DATA(4)
    DV = DATA(5)
```

4NR11620
MNR 11640
MNR 11660
UNR 11680
MNR11700
MNR 11720
MNR 11740
MNR 11760
YNR 11780
MNR 11300
4NR 11820
MNR11840
MNR1186O
MNR 11880
4NR11900
MNR 11920
MNR 11940
4NR 11960
MNR 11980
4NR 12000
MNR 12020
MNR12040
MNR 12060
MNR 12080
4NR 12100
MNR 12120
MNR 12140
MNR 12160
MNR 12180
YNR 12200
4NR 12220
.MNR 12240
पNR12260
4NR12280
MNR 12300
MNR 12320
MNR 12340
MNR 12360
MNR 12380
MNR 12400
MNR 12420
MNR 12440
MNR 12460
MNR 12490
HNR 12500
MNR 12520
MNR 12540
MNR 12560
MNR 12580
MNR 12600
MNR 12620
MNR 12640
MNR 12660

INPUT

```
    FACMAX = DATA(6)
C CHECK FOR *CARD
C READ LIQUID/VAPOR MOLAR RATIOS FROM D3 CARD
C
    595 D0 596 K=1,5
    X = ZRFAL ( KZ(9+(K-1)*12), LV(K), (U, 12)
    596 CONTINUF
    CHECK FDR *CARD
    CALL 2CARD (.2. &570)
    IFI TESTI 2, KZ(81),1,1, 1D4 1, 1, 1. 1.EQ.0.0 1 GOTO 597
C
C
c. READ STAGE TEMPERATURES FROM D4 CARD
C
    597 DO 598 K = 1,6
    x = ZRLAL ( KZ(9+(K-1)*12), T(K), IU, 12)
C
C CHECK FOR %CARD
C
C
C
        G0 10 570
C
C READ OPTIONAL DESIGN INFORMATION
C
    587 D0 588 K = 1.9
    X= 2REAL ( KZ(9+(K-1)*8), DATA(K), IU* 8)
    588 CONTINUE
C
    IREF = DATA(1)
    REFRCL= DATA(2)
    FNM = DATA(3)
    REFRCH = DATA(4)
    DEST = DATA(5)
    ILK = DATA(6)
    IHK = DATA(7)
    LRSTAR = DATA(8)
    MTRY = DATAI9)
C INPUT INFORMATION FORMATS
```

MVR 12680
MNR 12700
MNR 12720
YNR 12740 YNR 12760 MNR 12780 YNR 12800 MNR 12820 WNR12840 MVR 12860 4NR 12880 YNR 12900 पVR 12920 MNR 12940 MNR 12960 MNR 12980 MNR 13000 MVR 13020 MVR 13040 MNR 13060 MAR 13080 MINR 13100 YNR 13120 YVR 13140 WNR13160 MAR13180 MNR13200 MNR 13220 MNR 13240 MAR 13260 MNR13280 MNR 13300 VAR 13320 MNR 13340 MNR 13360 UNR 13380 VNR13400 YNR13420 MNR 13440 4NR 13460 MNR 13480
WNR13500
MNR 13520
MNR 13540
WNR 13560
MNR 13580
4NR 13600
UNR 13620
WNR 13640
MNR 13660
MNR 13680
UNR 13700
MNR 13720

INPUT

INPUT

```
    KERROR = KERROR + 1 YNR14ARO
C
    610 IF (10.EQ.1 ) GD TO 612
C
    IF (NCOMP.EQ.IR ) GO TO }61
    WRITE (IWRITE, 2135 ) IR, NCOMP
    612 IF ( KERROR.EQ.O ) GO TO 620
        PRINT 2140, KERROR
        STOP
C
C FORMATS FOR ERRORS IN NO. OF INPUT CARDS
    MNR14922
    YNR14440
    YNR14960
    MNR14880
    MNR14900
    MNR14920
    MVR14940
    MNR14960
    ANR1498O
    MNR15000
    2100 FORMAT ( ///5X, |*** ERROR MESSAGE *** PLEASE CHECK INPUT DEGK. THMVR15020
    IE NUMBER OF KC EQUILIBRIUM COEFFICIENT CAROS,', 13, ', DOES NOT MAYNR15040
        2TCH THE NUMBER OF COMPONENT CARDS,', [3,'.' '
    MNR15060
    2110 FORMAT (///5X, |*** ERROR MESSAGE *** PLEASE CHECK INPUT DEGK. THMVR1508O
        IE NUMBER DF KV EQUILIBRIUM CONSTANT CARDS,', 13, ', DOES NOT MATCHMNR15100
        2 THE NUMBER OF COMPONENT CAROS,', I3. '.' I
    MNR15120
    2120 FOKMAT (///5X, **** ERROR MESSAGE *** PLEASE CHECK INPUT DECK. YJUVR 15140
        IU HAVE FAILED TO SUBMIT OR ACCESS VAPOR/LIQUID EQUILIBRIUM DATA.'IMNRI5IDO
    2130 FORMAT ( ///5X, 0*** ERROR MESSAGE *** PLEASE CHECK INPUT DECK. THMNR15180
        IE NUMBER OF COMP FEED CARDS,', 13, ', DOES NOT MATCH THE NIMBER OFYNR15200
        2 COMPONENT CARUS,', 13, '.' 1
    MINR 15220
    2135 FORMAT / ///5X, **** ERROR MESSAGE *** PLEASE CHECK INPUT DECK. THYVR 15240
        IE NUMBER OF COMPUNENT RATID CARDS,', 13, ', DOES NOT MATCH THE N:JMMNR15260
        2BER OF COMPUNENT CARDS,', I3, '.'1
                                    MNR15280
    2140 FORMAT ///5X, INPUT PROCESSING COMPLETED - EXECUTION TERMINATED YNR153OD
        IDUE TO, ', [4,','INPUT ERROR(S).' I MNR15320
    2150 FORMAT I ///5X, '*** ERROR MESSAGE *** THE DISTILLATF LIQUID ANO/OMNR15340
        IR THE DISTILLATE VAPOR RATES WERE NOT SPECIFIED FOR A PARTIAL CONDYNR15360
        2ENSER.' /27X, 'PLEASE CORRECT INPUT CARDS AND RESUBMIT.' I
    2160 FORMAT (///5X, **** ERROR MESSAGE *** BOTH FEED TEMPFRATURE ',
    MNR15380
    MNR15400
        1 F7.2, 'AND FRACTION VAPORILED ', F7.4, 'WERE GIVEN.' YNR15420
        2 /27X, 'RESUBMIT CASE WITH ONLY ONE GIVEN ON THE %FEED CARD.' IMNR1544O
C
    620 CONTINUE
    ISEC = 2
C
    IF (IK.NE.I ) GO TO 634
C
    PRINT 910
C
C
C
    CHECK IF KVAL SECTION 2 FILLED IN
    IF (KVC.EQ. 2 ) GO TO 633
C
        DO 632 J=1,NCDMP
C
    AA(J+50)=AA(J)
    AB(J+50) = AB(J)
    AC(J+50) = AC(J)
    AD(J+50)=AD(J)
    YNR 15460
    MNR 15480
    MNR15500
    YNR 15520
    MNR15540
    MNK15560
    MVR15580
    MNR15600
    MNR15620
    MNR15640
    MNR15660
    MNR 15680
    MNR15700
    MVR15720
    MNR15740
    MNR15760
    UVR15780
    MNR15800
    MNR15820
    MNR15R40
```

C
632 CONTINUE
C
633 CONTINUF
C
C - PHYSICAL PROPERTIES
C PRINT SECTION HEADING
C
DO $950 \mathrm{I}=1, \mathrm{I}$ SEC PRINT 920, I
C
C PRINT K-VALUE COEFFICIENTS PER SECTIUN
C
DO $940 \mathrm{~J}=1$, NCOMP
ISLOT $=(I-1) * 50+J$
C
PRINT 930, J, AA(ISLOT), AB(ISLOT), AC(ISLOT), ACIISLOTI 940 CONTINUE
C
C
950 CONTINUE
C
634 IF (IK.NE. 2) GO TO 846
C
C CURVE-FIT K-DATA
C
C INITIALILE
c
TLOW $=\operatorname{TCF}(1)-(\operatorname{TCF}(1) * .1)$
THIGH $=\operatorname{TCF}(5)+(\operatorname{TCF}(5) * .1)$
C
C print heading
c
830 PRINT 831
C
PRINT 832, $P(5)$
C
DO $845 \quad \mathrm{I}=1$, NCOMP
DO $840 \quad J=1,5$
DUMY(J) $=1(\operatorname{CFKV}(1, J) * \operatorname{PCF}(J)) /(1 \operatorname{TCF}(J)+460 *) * \operatorname{P(5)}) 1$ 1 ** 1 1./3.) 840 CONTINUE
C
SE = FITITI TCF, DUMY, 5, 3, COEF, 1, 1,W
C
$A A(1)=\operatorname{COEF}(2)$
$A B(I)=\operatorname{COEF}(3)$
$A C(I)=\operatorname{COEF}(4)$
$A D(I)=\operatorname{COEF}(5)$
$A A(I+50)=A A(I)$
$A B(I+50)=A B(I)$
$A C(I+50)=A C(I)$
$A D(I+50)=A D(1)$

MNR15860
MNR 15880
MNR15900
YNR 15920
MNR 15940
YNR 15960
YNR 15980
YNR 16000
UNR 16020
UNR 16040
MNR 16060
YNR 16080
MNR 16100
MNR16120
MNR 16.140
YNR 16160
MNR 16180
MNR16200
MNR 16220
MNR $1 * 240$
MNR 16260
MNR16280
GNR 16300
UNR 16320
MNR16340
UNR 16360
MNR16380
MNR16400
MNR 16420
MNR 16440
MNR 16460
YNR 16480
MNR 16500
MNR 16520
MNR 16540
UNR 16560
YVR 16580
MNR 16600
MNR 16670
UNR 16640
MNR 16660
MNR 16680
UNR 16700
YNR 16720
MNR 16740
MNR 16760
MVR16780
YNR 16800
MNR 16820
UNR 16840
MNR 16860
MNR 16880
MNR 16900

INPUT

```
            XKLOW = (TLOW + 460. ) * (AAIII + TLOH * (AB\I) + TLOW * I MNR16920
        1 AC(I) + TLOW * AD\II |l) ** 3 MNR1K940
            XKHIGH=(THIGH + 460.) * (AAII) + THIGH* (ABII) + THIGH YNRIR96O
        1. * (AC(I) + THIGH*AD(I) |)| ** 3
            DO 843 LL = 1,5
            XK(LL)=1 TCF(LL) + 460.) * \ AA(I) + TCF(LL) * A ABII) +
        1. TCF(LL) * (ACII) * TCF(LL) * AD(I) |ll ** 3
    843 CONTINUE
        PRINT 842, I, AAIII, ABIII, ACIII, AOIII, SE, TLOH, XKLOW,
        1. (TCF(KK), XK(KK), KK = 1.5), THIGH, XKHIGH
C
    845 CONTINUE
        K SEC = 1
    846 CONTINUE
    640 CONTINUE
    Calculate stage pressures
    P(1) = P(5) + (ISTAGE-1 ) * DELP
    P(2)=P(5) + (ISTAGE-2 ) * DELP
    P(3)=P(5) + (ISTAGE-NFSTG) * DELP
    P(4)=P(5) + (ISTAGE- (NFSTG+1)) * DELP
    P(6) = P(5) - DELPC
    FP = P(3)
C DEFAULTS
C
    NITER = KODE(1)
    IF ( NITER.EQ.O I NITER = 10
    IF ( KODE(3).EQ.O 1 KODE(3)=20
C
C COVDENSER FLOWS AND DSPEC
    IF(ICON.EQ.O)ICON=1
C
    GO TOQ (650,670,660), ICON
C LIQUID DISTILLATE
    650 DL = DSPEC
    DV = 0.0
    GO TO 680
C VAPOR DISTILLATE
    660 DL = 0.0
    DV = DSPEC
    GO TO 680
C
C PARTIAL CONDENSER
```

C
C
C

C

C
C Calculate stage pressures
C
$P(1)=P(5)+1$ ISTAGE-1 $)$ * DELP
$P(2)=P(5)+(I S T A G E-2$) * DELP
$P(3)=P(5)+(I S T A G E-N F S T G)+$ OELP
$P(6)=P(5)-$ DELPC
$F P=P(3)$
DEFAULTS
NITER = KODE(1)
IF ($\operatorname{KODE(3).EQ.O)KODE(3)=20}$
C
C
C
GO TỌ (650,670,660), ICON
C LIQUID DISTILLATE
$650 \mathrm{DL}=\mathrm{DSPEC}$
GO TO 680
C

C
$660 \mathrm{DL}=0.0$
DV $=$ DSPEC
GO Tn 680
C
PARTIAL CONDENSER

UNR 16920
MNR 16940
UNR 16960
YNR 16980
HNR 17000
UNR 17020
UNR 17040
MNR 17060
MNR 17080
UNK 17.100
UNR 17120
MNR 17140
MNR 17160
YNR 17180
MNR 17200
MNR17220
MIVR 17240
MNR 17260
MNR 172 2 M
UNR 17300
MNR 17320
UNR 17340
YNR17360
MNR17380
VNR 17400
MNR17420
MNR17440
MNR 17460
MNR17480
MNR 17500
YNR 17520
MNR 17540
MNR 17560
MNR 17580
MNR17600
MNR 17620
MNR17640
MNR 17660 MNR 17680 MNR 17700
MNR 17720
YNR 17740
MNR 17760
UNR 17780
MNR 17800
MNR17820
HNR 17840
YNR 17860
UNR17880
HNR 17900
MNR 17920
MNR 17940 MNR 17960

I NPUT
670 IF 1 DL.NE.O.O.AND.OV.NE.O.O 1 GO TO 675
C
C INPUT ERROR
C
PRINT 2150
KERROR $=$ KERROR +1
GO TO 612
C
675 DVD $=$ DL $+D V$
$D L=D L$ * DSPEC / DVD
$D V=D V$ * DSPEC / DVD
C
680 CONTINUE
BFLOW = FFLOW - USPEC
DO 681 $1=1$, NCOMP
FTOT(I) $=($ FTOT(I)/FTF)*FFLOW
681 CONTINUE
686 FRVAP $=$ FVTOT / 1 FVTOT + FLTOT)
C
C
DO $687 \mathrm{I}=1$, NCOMP
C
IF \{ FVTOT .EQ. 0.0) GO TO 1380
FV(I) $=(F V(I) / F T F) * F F L O W$
1380 IF (FLTOT.EQ. 0.0) GO TO 687
$F L(I)=(F L(I) / F T F) * F F L O W$
LFFXII) $=$ FL(I)/FTOT(I)
$\operatorname{VFFX}(1)=F V(I) / F T O T(I)$
c
C
C
687 CONTINUE
C
GO TD 689
C CALL TJ FFLASH REPLACED by A CONTINUE. USE LATER IF NEEDED. 688 CONTINUE
C
C
699 IF I D.EQ. 1 1 GO TO 690
C
C PRINT SUMMARY OF INPUT
PRINT 1000
C
c
PRINT 1010, ISTAGE, ISEC, R
PRINT 1020, (FNAME(I), $I=1,3)$, NFSTG
C
PRINT 1030
C
$I S=1$
PRINT 1040, DSPEC, IS,BFLOW
C

YNR 17980
UNR 18000
UNR 18020
MNR 18040
MNR 18060
YNR 1 ROBO
MNR 18100
MNR 18120
MVR 18140
MNR18160
UNR18180
MVR19200
MNR18220
YNR 18240
MNR 18260
MNR 18280
HNR 18300
MNR 18320
MNR 18340
MNR 18360
MNR 18380
MNR18400
MNR18420
UNR18440
UNR 18460
MNR 18480
MNR 18500
UNR 18520
MNR18540
UNR 18560
MNR 18580
MNR 18600
MVR18620
MNR 18640
YNR 18660
UNR 18680
MNR 18700
YNR 18720
MNR 18740
YNR 18760
MNR 18780
MNR 18800
MNR 18820
UNR 18840
MNR 18860
MNR18880
MNR 18900
MNR 18920
MNR 18940
MNR 18960
MNR 18980
पNR 19000
4NR 19020

INPUT

```
    PRINT 1050, P(5), DELPG, DELP, DELP MNR19040
C
C
    PRINT 1070
C
        NS(1) = 1
        NS(2)=2
        NS(3) = NFSTG
        NS(4)=NFSTG +1
        NS(5)=ISTAGE
C
        00 1100 I= 1,5
        PRINT 1080, NS(I), TIII, P(I), LV(I)
    1100 CONTINUE
        PRINT 1105, T(6), P(6)
        PRINT 1120, ( K, VFB(KI, LFD(K), K = 1,NCOMP )
1120 FORMAT / //5x, COMPOSITION RATIOS -',//10X,'COMPONENT NO. SECYNR19360
    ITION ND.1 SECTION NO.2', 50(/12X, I4, 7X, 2(2X, E15.8))) YNR19390
C
C
C
C
    690 PRINT 1240
C
C PRINT STREAM DATA
C PRINT 1270, (FNAME(II, I=1,3), FFLOW, FP
C
C
    PRINT 1370
    PRINT 1310
    OO 1400 I=1,NCOMP
C
    PRINT 1330, I, (CMPNAM(J,I), J=1,3), FTOT(1), FV{I), FL(I)
C
    1400 CONTINUE
        CALL MINR
        STOP
C
    1500 RETURN
C
C BASE CASE INPUT FORMATS
C
831 FORMAT (1HI, 4X, 'PHYSICAL PROPERTIES', /, 5X, 19('-'),
    1. /, 5 5X, 'K-VALUE COEFFICIENTS (K/T)**1/3','=A + BT + ', YVR19960
    2 :CT**2 + DT**3', 11
    MNR19060
    4NR19080
    MNR19100
    YNR19120
    YNR19140
    MNR19160
    UNR19180
    UNR19200
    MNR19220
    MNR19240
    MNR19260
    UNR19280
    MNR 19300
    YNR19320
    UNR19340
PRINT SUMMARY OF FEED STREAMS
    MNR19420
    MNR19440
    UNR 19460
    MNR19480
    MNR19500
    YNR19520
    MNR19540
    UNR 19560
    MNR19580
    MNR19600
    MNR19620
    MNR19640
    MNR19660
    MNR19680
    MNR19700
    YNR19720
    UNR19740
    MNR19760
    MNR19780
    YNR19800
    MNR19820
    YNR19840
    UNR19860
    MNR19880
    YNR19900
    MNR19920
    MNR19940
    MNR19980
    832 FORMAT & 5X, CURVE-FIT K-DATA FOR BOTH SECTIONS AT TUP STAGE REFEYNR2OODO
    IRENCE PRESSURE DF ', FG.1, ' PSIA', /, MNR20020
    2 10X, 'ASSUME P*K = CONSTANT', //, MNR 20040
    3 10X, 'K-VALUES ARE TABULATED AT REFERENCE PRESSURE',/////IMNR 20060
842 FORMAT I ////10X, 'COMPONENT NO.', I3,//, YNR20380
```

INPUT

```
    15X, 'CURVE-FIT COEFFICIENTS', /, 20X, 'A = ', E15.8, /, MNR20100
        20x, 18=1,E15.8, /,20X, 'C= ', El5.8, /,20X, 'D=1,
        E15.8, 1,20X, STANDARD ERROG OF THE COEFFICIENTS = ",
        E10.4, //.15X, 'TEMP (DEG.F) K (CALC)', //. 30(17X,
        F7.2, 9x, F9.4, /) , ///// I
        MNR 20120
        MNR20140
        YVR20160
        4NR201RO
    910 FORMAT ( 1HI, 4X, 'PHYSICAL PROPERTIES', /5X, 19(1-'),//5X, YNR20200
        1 M-VALUE COEFFICIENTS (K/T)**1/3=A + BT + CT**2 + DT**3', / IMNR202?O
920 FORMAT ( /10X, 'SECTION = ', I4, //15X, 'COMPONENT NO.',10X,'A ', YNR 2O240
    1 18X, 'B ', 18X, 'C ', 18X, 'D ', / 1
930 FORMAT ( 17X, 14, 2X, 4(2X,E18.8) )
1000 FORMAT ( 1H1, 4X, 'SUMMAPY DF BASE CASE INPUT', /5X, 26(1-')), MNR20300
1010 FORMAT ( //5X, 'GENERAL -', //IOX, 'NUMBER OF STAGES = ', I5,MNR20320
    1 /lOX, 'NUMBER OF SECTIONS = ', I5,/10X, YNR20340
    2 TREFLUX RATIO = ', F10.5 , MNR20360
1020 FORMAT (//5X, 'FEEDS -', //13X, 'NAME', 9X, 'STAGE NIMMEP', UNR20380
    1/ /13X, 4('-'), 9X, 12('-'), //10X, 3A4, 6X, 15 1. YVR20400
1030 FURMAT (//5X, 'PRODUCTS -', //13X, 'NAME', \existsX, 'STAGE NUMBER', YNR 20420
    1 9X, 'RATE (MPH)', /13X, 4('-'), 9X, 12('-'), QX, 10('-'))MNR20440
1040 FORMATI /29X,'COND',13X,F10.5,/,29X,14,13X,F10.5) VNR20460
1050 FORMAT (//5X, 'PRESSURE DROPS -', //10X, MNR 20480
    1 PPRESSURE OF THF TOP STAGE = , F12.5, "PSIA', 110X, MNR20500
    2 PPRESSURE DROP ACROSS CONDENSER = *, F12.5, " PSI', /10X, MNR2O520
    3 PRESSURE DROP ACROSS EACH TRAY = ',F12.5, 'PSI', /10X,MNR20540
    4 'PRESSURE DROP ACROSS REBOILER = ', F12.5,' PSI' 1 MNR20560
1070 FURMAT (
    1 'PROFILES -', //10X, 'STAGE NUMBER TEMPERATURE', 7X,
    2 PPRESSURE L/V', / )
1080 FORMAT ( /12X, 14, 4X, 3(4X,F12.5)), YNR20640
MNR 20580
UNR20600
MNR20620
1105 FORMAT ( /12X, 'COND', 4X, 2(4X,F12.5) )
1240 FORMAT (1H1, 4X, 'SUMMARY OF FEED STREAMS', /5X, 23('-'UNR 20680
    l ), / )
1270 FORMAT ( 10X, 'STREAM NAME', 20X, 3A4, //10X, 'FLOW RATE', 20X,
    1 F12.4, //10X, 'PRESSURE (PSIA)', 14X, F12.4 )
1280 FORMAT (/10X, 'TEMPERATURE (DEG.F)', 10X, F12.4, //10X,
    1 'ENTHALPY (MBTU/MOL)', 10X, F12.4. //10X,
    2 FFRACTION VAPORIZEO', 11X, F12.4;
    1300 FORMATY //10X, UUNNORMALIZED COMPOSITIONS :' 
1310 FORMAT 1/10X, 'NO. NAME', 22X, 'TOTAL', 17X, 'VAPOR', 17X,
    1 'LIQUID', / I
1330 FORMAT ( 8X, I4, 4X, 3A4, 3X, 3(2X,F20.4) )
1370 FORMAT (//IOX, 'NCRMALIZEU COMPOSITIONS :', / )
UNR20700
MNR20720
MNR20740
MVR20760
MNR20780
MNR20800
C

INPUT
```

OPTIDNS IN EFFECT ID,EBCDIC,SOURCE,NOLIST,NODECK,LOAD,NOMAP
OPTIONS IN EFFECT NAME = INPUT , LINECNT = 55
STATISTICS SOURCE STATEMENTS = 440,PROGRAM SILE = 17463
STATISTICS NO DIAGNOSTICS GENERATED

```

PROGRAM 5. EVALUATION OF THE POLYNOMIAL TO CALCULATE K VALUES


KVAL
```

OPTIONS IN EFFECT ID,EBCOIC,SOURCE,NDLIST,NODECK,LUAD,NOMAP
OPTIONS IN EFFECT NAME = KVAL , LINECNT =
55
STATISTICS SOURCE STATEMENTS = 17,PROGRAM SIZE =
STATISTICS NO DIAGNOSTICS GENERATED

```

\section*{PROGRAM 6. EVALUATION OF THE LINEAR SERIES}

EQUATIONS (5-6), (5-14), (5-19) AND (5-24)
SUBRIJUTINE LINEAR ( XNM, LOCA, ICOMP )
MNR 21920
MNR 21940
ADAPTED FROM DELFC AND FDRCFT
KSEC \(=1\), STRIPPING SECTIUN S(AVG), XNM \(=\) STGM OR PSUEDO-STAGES KSEC \(=2\), RECTIFYING SECTION A(AVG), XNM \(=\) STGN OR PSUEDO-STAGES

MNR 21960
MNR 21980
MNR 22000
MNR 22020
MNR 22040
UNR 2.2060
YNR 22080
MNR 22100
MNR 22120
UNR 22140
MNR 22160
UNR 22180
4NR 22200
MNR 22220
MNR 22240
MNR22260
MNR 22280
UNR 22300
MNR 22320
MNR 22340
YNR 22360
MNR22380
UNR 22400
MNR 22420
MNR 22440
UNR 22450
MNR22480
MAR 22500
MNR 22520
MNR22540
MNR 22560
MNR 22580
MNR 22600
MNR 22620
MNR 22640
MNR 22660
MNR 22680
MNR 22700
MNR 22720
MNR 22740
4NR22760
UNR 22780
MNR 22800
4NR22320
MNR 22840
MNR 22860
MNR 22880
MNR 22900
YNR 22920
HNR 22940
MNR 22960

\section*{LINEAR}

C
GOTO (101, 102, 103, 104 1, LOCA
C
\(10111=1\) COMP
\(I 2=I\) COMP
GO T] 34
C
102 GO TO 101
C
\(10311=1\)
\(I 2=I C O M P\)
GO TO 34
C
104 I1 = ICOMP
\(12=\) NCDMP
GO TO 34
C
\(3211=1\)
\(12=\) NCOMP
C
\(3400100 \mathrm{I}=\mathrm{I} 1,12\)
initialize linear model
IFI( LOCA.EQ. 3 (.OR. (LOCA.EQ. 4\()\) ) GO TO 35
C
C. INITIALIZE FOR LOCA \(=1\) OR 2. THIS IS USED FOR THE DISTRIBUTED

C
C
C
COMPDNENTS AND GENERATES THE SERIES FROM THE COMPONENT FACTURS
\(A S A=\) FEND(I,LL)
\(D E L=(F E N D(I, L U)-A S A) / X N M\)
GO TO 36
C
\(c\)
\(c\)
\(c\)
c
C
\(35 \mathrm{ASA}=1 . / \operatorname{FEND}(\mathrm{I}, \mathrm{LL})\)
\(D E L=(1\) 1. \(/\) FEND(I,LU) ) - ASA) / XNM
C
C INITIALIZE FOR LOCA \(=1\) OR 2 OR 3 OR 4
c.
\(36 C S A=A S A\)
\(F L S A=A S A\)
\(I D O=I F I X(X N M)\)
C
C CALCULATE FACTORS, PRODUCTS, AND SUMS FOR TRUNCATED INTERGER
c
C NUMBER OF TRAYS

IF I IOO .LE. 0 I GO TO 42
C

4NR 22980
UNR 23000
YNR 23020
MNR23040
MNR 23060
MNR 23080
MNR 23100
UNR 23120
MNR23140
MNR 23160
MNR 23180
MNR 23200
MNR 23220
MNR 23240
YNR 23260
4NR 23280
UNR 23300
4NR23320
MNR 23340
MNR 23360
MNR 23390
MNR 23400
MNR 23420
UNR 23440
MNR23460
UNR 23480
MNR 23500
WNR23520
MNR 23540
MNR 23560
MNR 23580
UNR 23600
MNR 23620
MNR 23640
MVR 23660
MNR 23680
MNR 23700
MNR 23720
UNR 23740
MNR 23760
MNR 23780
MNR 23800
MNR238? 0
MNR 23840
MNR 23860
YNR 23880
MNR23900
MVR 23920
MNR 23940
MNR 23960
MNR 23980
- MNR 24000

MNR 24020

LINEAR
```

 FLSA = FLSA + DEL YNR24040
 ASA = ASA # FLSA MNR24060
 CSA = CSA + ASA MVR240RO
 40 CONTINUE
 C
C
C Calculated facturs, products, and sums for next interger
c. vumber of trays
C
42 FLSA = FLSA + DEL
ASAI = ASA * FLSA
CSA1=CSA + ASAI
C
44 continue
BRANCH PER LOCA
GOTO 1 1000, 2000, 3000, 4000 1, LOCA
C
C CALCULATE RATIOS ON FEES TRAY FROM RATIOS AT STRIPFING PINCH ZONE
C
1000 IF (100) 1010. 1010. 1020
C
1010 FN= SVFB(I)
G0 TO 1030
1020 FN = ASA * SVFB(I) + CSA
1030 F1 = ASA1 * SVFR(I) + CSA1
RIOD = IDO
VFB(I)=FN+(FI-FN)*(XNM - RIDO)
c
C
GO TT 100
C C CALCULATE RATIOS ON TRAY ABOVE FEED FROM RATIOS AT RECTIFYING
C DINCH TONE
C
2000 IF ([0]) 2010, 2010, 2020
2010 FN = SLFD(I)
S0 T0 2030
2020 FN = ASA * SLFD(II + CSA
2030 F1 = ASAI * SLFD(I) + CSAI
RIDO = IDO
LFD(I)=FN + (FI-FN) * (XNM - RIDO)
c
C
GO TO 100
C
C CALCULATE FLOW OF LIGHT SEPARATED COMPONENTS AT STRIPPING PINCH
C
3000 IF (100) 3010, 3010, 3020
C
3010 FN = S3(1)
MNR 24040
MNQ 24060
MVR 24090
40 continue
NR 24100
MNR 24120
YNR 24140
MNR24160
ANR 24190
YNR 24200
YNR 24220
MNR 24240
MNR 24260
C
44 Continue
MNR 24280
c.
c
C BRANCH PER LOCA
c.
GOTO $11000,2000,3000,40001, \operatorname{LOCA}$
MNR24300
YNR 24320
MNR 24340
MNR24350
MNR 24380
MNR 24430
CALCULATERATIOS ON FEES TRAY FROM RATIOS AT STRIPFING PINCH ZONE MNR24440
1000 IF (100) $1010,1010,1020$
MVR 24400
WNR 24490
MNR 24500
4NR24520
MNR 24540
MNR 245 to
पVR24580
MVR 24600
MVR24620
YNR 24640
MNR 24660
YNR 24680
YVR 24700
MNR 24720
MNR 24740
MNR24760
MNR 24780
MNR 24800
MNR 24920
MNR 24840
MNR24860
YNR 24980
MNR 24900
MNR 24920
MNR 24940
MNR 24960
MNR 24980
MNR 25000
MVR 250?0
MUR 25040
$3010 \mathrm{FN}=\mathrm{S} 3(1)$
MNR 25060
MVR2508)

```

LINEAR
```

 GO TO 3030 UNR25100
 3020 FN = ASA * S3(1)
3030 F1 = ASA1 * S3(I)
RIDO = IDO
S2(I)=FN+(FI-FN)* (XNM-RIDO)
C
C
g0 TO 100
C CALCILATE FLOW OF HEAVY SEPARATED COMPONENTS AT RECTIFYING PINCH
C
4000 IF (100 1 4010, 4010, 4020
C
4010 FN = S4(1)
GO TO 4030
4020 FN = ASA * S4(1)
4030 F1 = ASA1 * S4(I)
RIDO = 100
S5(1)=FN + (F1 - FN) * (XNM - RIDO)
C
C
100 continue
C
RETURN
C
C
END
UNR25120
MNR25140
MNR25160
MNR 25180
4NR25200
MNR25220
MNR25240
YNR25260
MNR25280
YNR25300
YNR25320
MNR25340
UNR25360
MNR 25380
MNR25400
MNR25420
MNR25440
MNR25460
UNR25480
MNR25500
MNR25520
MNR25540
MNR25560
MNR25580
YNR25600
MNR25620

```

\section*{LINEAR}
```

OPTIONS IN EFFECT ID,EBCDIC,SOURCE,NOLIST,NODECK,LOAD,NOMAP
OPTIONS IN EFFECT NAME = LINEAR , LINECNT = 55
STATISTICS SJURCE STATEMENTS = 80,PROGRAM SIZE = 1906
STATISTICS NO OIAGNOSTICS GENERATED

```

PROGRAM 7. MINTMUM REFLUX CALCULATIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{SUBROUTINE MINR} & MVR 25640 \\
\hline C & & & & & MNR25660 \\
\hline & \multirow[t]{2}{*}{COMMIJN / LINMIN /} & SLFD, SVFB & & & MNR 25680 \\
\hline 6 & & & & & YNR 25700 \\
\hline & COMMON / FNSKOP & IREF, & REFRCL, & FNM, & MNR25720 \\
\hline & 1 RFFRCH, & DEST, & & & YVR 25740 \\
\hline 2 & \multirow[t]{2}{*}{2 LRSTAR.} & FNAME (3), & \multicolumn{2}{|l|}{Dumbum(100)} & MNR 25760 \\
\hline C & & & & & MNR25780 \\
\hline & CuMmON /KVALUE/ AK & ( 50 ). & DK(50), & DDK(5) & MVR25800 \\
\hline C & & & & & MNR 25820 \\
\hline & \multicolumn{2}{|l|}{COMMON / SHRTCT /} & & & WVR25840 \\
\hline & A AA(100), & AB(100), & AC(100), & AD(1001, & MVR25860 \\
\hline & H R(50). & BDI(50). & BFLOW, & BN(50), & MNR 25880 \\
\hline & \(C\) D(50), & DCALC, & DCON, & DELHAF(100), & WIVR 25900 \\
\hline & D DELF(100), & DL, & DLS(50), & DLST, & MNR 25920 \\
\hline & F ON(50), & DSPEC, & DV. & OVS, & MNR25940 \\
\hline & F BVX(50), & DVXT, & ENTH, & ER, & पNR 25960 \\
\hline & G FACT(100). & FEND \((50,6)\), & FFLIW, & FL(50), & MNR 25980 \\
\hline & H FLTOT. & FMAXA, & FMAXS, & FMINA, & MNR 25000 \\
\hline & 1 FMINS, & FP, & FRVAP, & FT, & UNR 26020 \\
\hline & J FTOT(50). & FV(50), & FVTOT, & ICON, & MVR 26040 \\
\hline & \(k\) ID, & IP, & ISEC, & MTRY, & WVK 26050 \\
\hline & \(l\) istage, & KODE (10), & KSEC, & LFD(50), & YNR 26090 \\
\hline & \(M \quad \mathrm{LFFX} 501\). & LV(6), & NABSF, & NCOMP, & MNR2S100 \\
\hline & N NFSTG, & NITER, & NS (5). & NSTKP, & 4NR 26120 \\
\hline & - P \(\mathrm{O}_{6}\) ) & 2 , & S2 (50), & S3(50), & MNR 26140 \\
\hline & D S4(50), & S5150), & T(t). & THETA, & MVR 2t. 160 \\
\hline & \(Q \quad \mathrm{VFB}(50)\). & VFFX(50). & NTRY, IHK, & ILK & WNF 26180 \\
\hline \(c\) & & & & & MNRZS200 \\
\hline & \multicolumn{4}{|l|}{1)IMENSION LVRAT(6), TEMP(6), SLFD(50), SVFB(50), AAHK (50), SALK(50)} & MNR 26220 \\
\hline & \multicolumn{4}{|l|}{REAL LRSTAR, KRSTAR, LSSTAR,LVRAT, KSSTAR, KSTAR,LFD, LFFX, LV, MULT,} & MNR20240 \\
\hline & \multicolumn{4}{|l|}{1 LFCTRY,LRSTRI,LRSTR?} & MVR26260 \\
\hline \multicolumn{5}{|l|}{C} & UVR26P80 \\
\hline \multirow[t]{2}{*}{\(c^{7777}\)} & \multicolumn{4}{|l|}{COntinue} & MNR 26300 \\
\hline & & & & & MNR2ヵ32J \\
\hline \multicolumn{5}{|l|}{C} & MNR 25340 \\
\hline \multirow[t]{2}{*}{C} & \multicolumn{4}{|l|}{INITIALIZE TEMPERATURES} & MNR 26360 \\
\hline & \multicolumn{4}{|l|}{DO \(10 \mathrm{I}=1.6\)} & MVR 26390 \\
\hline \multirow[t]{2}{*}{C 10} & \multicolumn{3}{|l|}{TEMP(I) \(=\) T(I)} & & MNR 20:400 \\
\hline & & & & & MNR 26,420 \\
\hline \multirow[t]{5}{*}{C} & \multicolumn{2}{|l|}{Calculate frartion recoveries} & ANO B/D'S FOR & LIGHT AND HEAVY KEY & MNR 26440 \\
\hline & \multicolumn{4}{|l|}{FRCL \(=\) REFRCL \(/ 100\)} & YVR20460 \\
\hline & \multicolumn{4}{|l|}{FRCH \(=\) REFRCH / 100.} & MNR 26480 \\
\hline & \multicolumn{4}{|l|}{BDI (ILK) \(=11.0-\mathrm{FRCL}) / \mathrm{FRCL}\)} & MNR 26500 \\
\hline & \multicolumn{4}{|l|}{BDI (IHK) \(=\) FRCH \(/(1.0-\) FRCH )} & MNR 26.520 \\
\hline \multicolumn{5}{|l|}{C} & MNR 26.540 \\
\hline C & \multicolumn{4}{|l|}{SET COUNTERS FOR NUMBER OF ITERATIONS. ITRY IS FOR ITERATIONS AT} & MNR26560 \\
\hline \multirow[t]{5}{*}{c} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{CONSTANT VALUE OF LRSTAR. JLK OR JHK IS FOR ITERATIONS JN IRSTAR.}} & UVR 26580 \\
\hline & & & & & Mivk 26600 \\
\hline & \multicolumn{4}{|l|}{JTRY = 1} & MNR 26620 \\
\hline & \multicolumn{4}{|l|}{JLK \(=0\)} & MNR 26640 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{c \(\quad \mathrm{JHK}=0\)}} & MNR26650 \\
\hline & & & & & MNR 26680 \\
\hline
\end{tabular}

```

MINR
C EVALUATE POLYNOMIAL AND DERIVATIVES MNR27760
C. UNR27780
320 DO 330 I= I,50
MCN = AA(IK)
DFN = AB(IK) + TSTART * (2.*AC(IK) + TSTART * 3. * AD(IKI)
FFT = ((TSTART + 460.) * FCN **3) - KSTAR
DFFT = (FCN** 2)*(FCN + 3.0 * (TSTART + 460.) * DFN 1
IF (ABS (FFT) .LT. 1.0 E-04) GO) TO 340
TSTART = TSTART - (FFT / DFFT)
330 CONTINUE
PRINT }33
335 FORMAT ('0',5X,'**** NEWTON''S METHOD FAILED TO GENERATE A NEW TEMYNR28OOO
IPERATURE IN 50 ITERATIONS. ****' l YNR 28020
STOP
340 GO TD (350,360), KKEY UNR28060
350 TEMP(2) = TSTART MNR28080
TSTART = FT
KKEY = 2
KSTAR = KRSTAR
IK = IHK
GO TO 320
360 TEMP(5) = TSTART
C
C
C CALCULATE ABSORPTION AND STRIPPING FACTORS FOR ALL COMPONENTS AT YNR2826O
C
400 00 410 J=2.5 YNR28320
00 409 I=1,NCOMP
FCV = AA(I) + TEMP(J) * (ABII) + TEMP(J) * (AC(I) + AD(I) *
1 TEMP(J)))
A = (FCN ** 3) * (TEMP(J) + 460.)
IF(J.EQ.2.JR.J.EQ.3) FEND(I,J) = A / LVRAT(J)
IF(J.EQ.4.OR.J.EQ.5) FEND(I,J) = LVRAT(J) / A
C
C
4 0 9 ~ C O N T I N U E ~
410 CONTINUE
CALCULATE TYPE OF SEPARATION IN TOP AND BOTTOM SECTIONS
START WITH FIRST COMPONENT HEAVIER THAN HEAVY KEY AND CHECK IF MNON MN 28640
START WITH FIRST COMPONENT HEAVIER THAN HEAVY KEY AND CHECK IF MNR 28640
THROUGH HEAVY COMPONENTS. FIRST COMPONENT WITH ABSORPTION FACTOR MNR 2RG8O
GREATER THAN ONE SETS INDEX FOR HEAVY SEPARATED COMPONENTS AND YNR28700
SETS TOP SECTION AS TYPE TWO. IF ALL COMPONENTS HAVE ABSORPTION YNR 2872O
factors less than one the top is type one.
IDO = IHK + I
DO 440 I=IDO,NCOMP
IF (FEND(I,5) .LE. 1.0) GO TO 440
UNR27800
MNR27820
YNR27840
MNR27860
MNR278P0
MNR 27900
MNR27920
YNR27940
MNR 27960
MNR27980
YNR28040
MNR28100
MNR28120
HNR28140
YNR28160
MNR28180
MNR 28200
MNR2R220
MNR2R240
kEY locatIUNS
NR28260
MNR28280
MNR28300
MNR28340
YNR 28360
MNR28380
MNR 28400
HNR28420
MNR 28440
MNR 28460
MNR28480
MNR28500
MNR28520
MNR28540
MNR28560
MNR28580
MNR28500
MNR28620
START WITH FIRST COMPONENT HEAVIER THAN HEAVY KEY AND CHECK IF MN MN 28640
MNR28760
MNR28780
MNR28800

```
```

 MINR
 432 STGN = 5.0
 GO TO 450
 440 CONTINUE
 STGV = 0.0
 442 ITR = 1
 IHS = NCOMP + 1
 450 CONTINUE
 START WITH FIRST COMPONENT LIGHTER THAN LIGHT KEY AND CHECK IF
 C STRIPPIVG FACTOR AT ROTTOM PINCH IS GREATER THAN ONE. IF NOT
C CONTINUE UP THROUGH LIGHT COMPONENTS, FIRST COMPONENT WITH
STRIPPING FACTOR GREATER THAN ONE SETS INDEX FOR LIGHT SEPARATED
COMPONENTS AND SETS BOTTOM SECTION AS TYPE TNO. IF ALL COMPONENTS
HAVE STRIPPING FACTURS LESS THAN ONE THE BOTTOM IS TYPE ONE.
IDO = ILK - I
J = IDO
00 460 I = 1,100
J=J+1 - I
IF (FEND(J,2) .LE. 1.0) GO TO 460
ITS = 2
ILS = J
IF (STGM) 452, 452,464
452 STGM = 5.0
GO TO 464
460 cONTINUE
STGM = 0.0
462 ITS = 1
ILS = 0
464 CONTINUE
BRANCH FOR CALCULATION ON N AND M DEPENDING ON TYPE OF SYSTEM
IF (ITR .EQ. 1) GO TO 550
IF (ITS .EQ. 2) GO TO 580
CONTINUE FOR TYPE TWO TOP AND TYPE ONE BOTTOM.
CALCULATE NUMBER OF STAGES (N)
LOCA=2 IS FOR DISTRIBUTED COMPS IN THE RECTIFYING SECTION
KSEC=2 1S FOR THE RECTIFYING SECTION
LOCA = 2
KSEC = 2
C
504 SLFD(IHK) = FEND(IHK,5) / (1.0 - FEND(IHK,5))
VFB(IHK)= FEND(IHK,2)/(1.0 - FEND(IHK,2))
DIV = VFB(IHK) + VFFX(IHK)
C
C INITIALIZE FOR N= O. TRANSFER OUT IF B/D EQUALS OR EXCEEDS SPEC.
C
C
C
HOWEVER RECOGNIZE INCONSISTANCY OF N = O AND TYPE TWO TOP.
BDHK= (SLFD(IHK) + LFFX(IHK)) / DIV

```

MNR 28820
\(\begin{array}{ll}I T R=2 & \text { YNR } 28820 \\ I H S=1 & \text { YNR } 28940 \\ \text { MNR }\end{array}\)
IHS \(=1\)
MNR28860
MVR 28890
HNR 28900
MNR 28920
UNR 28940
MNR 28960
MNR29980
YNR 29000
MNR 29020
MNR 29040
MNR 29060
MNR 29080
MNR 29100
MNR 29120
MNR 29140
MVR 29160
MNR 29180
MNR 29200
4 NR 29220
MNR 29240
MNR 29260
YNR 29280
MNR 29300
MNR 29320
MNR 29340
पNR 29350
MNR29380
MNR 29400
MNR 29420
UNR 29440
MNR 29460
YNR29480
MNR 29500
MNR 29520
MNR 29540
MNR 29560
MNR 29580
MNR 29600
MNR 29620
MNR 29640
MNR 29660
MNR29680
UVR 29700
MNR 29720
MNR 29740
MNR 29760
MNR 29780
UNR 29800
MNR 29820
MNR 29840
MNR 29860

\section*{MINR}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{C} & \multirow[b]{3}{*}{} & MVR 29890 \\
\hline & & MNR 29900 \\
\hline & & MNR 29920 \\
\hline \multirow[t]{3}{*}{C} & & MNR 29940 \\
\hline & STGN \(=0.0\) M & MNR 29960 \\
\hline & GO TO 530 - & UNR 29980 \\
\hline C & & MNR 30000 \\
\hline 505 & CONTINUE - M & MNR 30020 \\
\hline \multirow[t]{4}{*}{C} & CONVERGE ON \(N\) BY LINEAR INTERPOLATION WITH B/D CALC. AND B/D SPEC. & YNR 30040 \\
\hline & STGN1 \(=0.0\), & MNR 30060 \\
\hline & STGN2 \(=\) STGN & MNR 30080 \\
\hline & & MNR 30100 \\
\hline \multirow{6}{*}{C} & \(00520 \mathrm{I}=1,25\) & MNR 30120 \\
\hline & CALL LINEAR I STGN, LOCA, IHK ) M & MNR 30140 \\
\hline & BOHK \(=\) (LFD(IHK) + LFFX(IHK) ) DIV & MNR 30160 \\
\hline & DELBO2 \(=\) BDI(IHK) - BDHK & MNR 30180 \\
\hline & IF ( ABS ( DELBO2 ) .LT. .00001) G0 TO 530 ( & MNR 30200 \\
\hline & STGN = 1 STGN1 * DELBD2 - STGN2 * DELBD1 ) / DELBD2 - DELBD1 ) & MNR 30220 \\
\hline c & & YNR 30240 \\
\hline \multirow[t]{2}{*}{C} & IF STGN HAS EXCEEDED 50, PROGRAM WILL USE 50. FOR THIS TRIAL & MNR 30260 \\
\hline & & MNR 30280 \\
\hline \multirow[t]{7}{*}{C} & & MNR 30300 \\
\hline & IF ( STGN.GT. 50.) GD T0 522 & MNR 30320 \\
\hline & IF ( STGN.LE. 0.0 ) GO TO 526 & UNR 30340 \\
\hline & STGN1 = STGN2 & UNR 30360 \\
\hline & STGN2 \(=\) STGN & MNR 30380 \\
\hline & DELBO1 = DELBD2 & MNR 30400 \\
\hline & DELBD1 = DELBD2 & MNR 30420 \\
\hline 520 & continue & MNR 30440 \\
\hline \multirow[t]{2}{*}{c} & & YNR 30460 \\
\hline & PRINT 525 & YNR 30490 \\
\hline \multirow[t]{3}{*}{525} & FORMAT ( \(0 \cdot 0.5 \mathrm{X}, \mathrm{*}\) \%** HEAVY KEY B/D SPEC AND B/D CALC HAVE NOT CONV & VMNR 30500 \\
\hline & IERGED IN 25 ITERATIONS. ****1 & MiNR 30520 \\
\hline & G0 TO 530 & MNR 30540 \\
\hline 522 & STGN \(=50\). & MNR 30560 \\
\hline & PRINT 523 & MNR 30580 \\
\hline 523 &  & MNR 30600 \\
\hline & 1 * THIS TRIAL. ***** & MNR 30620 \\
\hline c & & UNR 30640 \\
\hline & GO TO 530 & MNR 30660 \\
\hline 526 & STGN \(=0.0001\) & MNR 30680 \\
\hline c. & & MNR 30700 \\
\hline 530 & continue & MNR 30720 \\
\hline C & & MNR 30740 \\
\hline 550 & IF (ITS.EQ. 1 | G0 T0 600 & MNR 30760 \\
\hline C & & UNR 30780 \\
\hline C & CONTINUE FOR TYPE ONE TOP AND TYPE TWO BOTTOM. & YNR 30800 \\
\hline C & calculate number of stages (m) & MNR 30820 \\
\hline C & & MNR 30840 \\
\hline C & LOCA \(=1\) IS FOR DISTRIBUTED COMPS IN THE STRIPPING SECTION & YNR 30860 \\
\hline C & KSEC \(=1\) IS FOR THE STRIPPING SECTION & MVR 30880 \\
\hline & LOCA \(=1\) & YNR 30900 \\
\hline & \(\mathrm{KSEC}=1\) & MNR 30920 \\
\hline
\end{tabular}
```

MINR

```
```

 554 SVFB(IREF) = FEND(IREF,2) / (1.0 - FEND(IREF,2)) UNR 30940
    ```
    554 SVFB(IREF) = FEND(IREF,2) / (1.0 - FEND(IREF,2)) UNR 30940
        LFD(IREF) = FEND(IREF,5) / (1.0-FEND(IREF,5)) MNR30960
        LFD(IREF) = FEND(IREF,5) / (1.0-FEND(IREF,5)) MNR30960
        MULT = LFD(IREF) + LFFX(IREF) YNR 30980
        MULT = LFD(IREF) + LFFX(IREF) YNR 30980
C
C
C INITIALIZE FUR M = O. TRANSFER OUT IF B/D EQUALS OR EXCEEDS SPEC. YNR 310
C INITIALIZE FUR M = O. TRANSFER OUT IF B/D EQUALS OR EXCEEDS SPEC. YNR 310
C
C
    HOWEVER RECOGNIZE INCONSISTANCY OF M = O AND TYPE TWM BOTTOM. YNR 31040
    HOWEVER RECOGNIZE INCONSISTANCY OF M = O AND TYPE TWM BOTTOM. YNR 31040
    BDLK = MULT/ (SVFB(ILK) + VFFXIILK)) YNR 31060
    BDLK = MULT/ (SVFB(ILK) + VFFXIILK)) YNR 31060
    UELBDI = BDI(ILK) - BDLK
    UELBDI = BDI(ILK) - BDLK
    IF ( DELBDI .GT. 0.0 ) GO TO 565
    IF ( DELBDI .GT. 0.0 ) GO TO 565
C
C
        STGM = 0.0
        STGM = 0.0
    GO TO 574
    GO TO 574
    C
    C
    565 CONTINUE
```

 565 CONTINUE
    ```


```

 C CONVERGE ON M BY LINEAR INTERPOLATION WITH B/D CALC. AND B/D SPEC. YNR 31220
    ```
    C CONVERGE ON M BY LINEAR INTERPOLATION WITH B/D CALC. AND B/D SPEC. YNR 31220
    CONVERGE ON M BY LINEAR INTERPOLATION WITH B/D CALC. AND B/D SPEC.UNR 31220
    CONVERGE ON M BY LINEAR INTERPOLATION WITH B/D CALC. AND B/D SPEC.UNR 31220
    00 570 I = 1,25
    00 570 I = 1,25
    CALL LINEAR ( STGM, LDCA, ILK ) MNR 31300
    CALL LINEAR ( STGM, LDCA, ILK ) MNR 31300
    BDLK= MULT / (VFBIILK) +VFFX(ILK)) MNR 31320
    BDLK= MULT / (VFBIILK) +VFFX(ILK)) MNR 31320
    DELBD2 = BDI(ILK) - BDLK MNR 31340
    DELBD2 = BDI(ILK) - BDLK MNR 31340
    IF (ABSIDELBO2).LT. .00001 ) GO TO 578 YNR 31360
    IF (ABSIDELBO2).LT. .00001 ) GO TO 578 YNR 31360
    STGM = (STGM1*DELBD2 - STGM2*DELBD1) / ( DELBD2 - DELBDL ) YNR 31390
    STGM = (STGM1*DELBD2 - STGM2*DELBD1) / ( DELBD2 - DELBDL ) YNR 31390
    IF STGM HAS EXCEEDED 50, PROGRAM WILL USE 50. FOR THIS TRIAL
    IF STGM HAS EXCEEDED 50, PROGRAM WILL USE 50. FOR THIS TRIAL
    IF (STGM.GT. 50.) GO TO 572
    IF (STGM.GT. 50.) GO TO 572
C
C
    IF ( STGM LE. 0.0) GO TO 574
    IF ( STGM LE. 0.0) GO TO 574
    STGML = STGM2
    STGML = STGM2
        STGM2 = STGM
        STGM2 = STGM
        DELPD1 = DELBD2
        DELPD1 = DELBD2
    570 CONTINUE
    570 CONTINUE
    PRINT 575
    PRINT 575
    575 FORMAT ('0',5X,**** LIGHT KEY B/D SPEC AND B/D CALC HAVE NOT CONVMVR 31620
    575 FORMAT ('0',5X,**** LIGHT KEY B/D SPEC AND B/D CALC HAVE NOT CONVMVR 31620
        IERGED IN 25 ITERATIONS. *****), MNR 31640
        IERGED IN 25 ITERATIONS. *****), MNR 31640
        GO TO 574 MNR 31660
        GO TO 574 MNR 31660
    572 STGM = 50. MNR31680
    PRINT 573 MNR31700
    PRINT 573 MNR31700
    PRINT 573 MNR31700
    PRINT 573 MNR31700
    573 FORMAT ('0', 5X, '**** M EXCEEOS 50. PROGRAM WILL USE 50. FOR', YNR 31720
    573 FORMAT ('0', 5X, '**** M EXCEEOS 50. PROGRAM WILL USE 50. FOR', YNR 31720
        1 THIS TR[AL', MNR 31740
        1 THIS TR[AL', MNR 31740
        GO TO 578
        GO TO 578
    574 STGM = 0.0001
    574 STGM = 0.0001
    5 7 8 \text { CONTINUE}
    5 7 8 \text { CONTINUE}
        GO TO 600
        GO TO 600
    580 CONTINUE
    580 CONTINUE
C
C
        CALCULATE NUMBER OF STAGES FOR TYPE TWO BOTTOM AND TYPE TWD TOP
        CALCULATE NUMBER OF STAGES FOR TYPE TWO BOTTOM AND TYPE TWD TOP
    SVFB(ILK) = FEND(ILK,2) / (1.0 - FEND(ILK,2))
    SVFB(ILK) = FEND(ILK,2) / (1.0 - FEND(ILK,2))
        SLFD(ILK) = FEND(ILK,5) / (1.0 - FEND(ILK,5))
        SLFD(ILK) = FEND(ILK,5) / (1.0 - FEND(ILK,5))
                            UNR 31760
                            UNR 31760
C
C
    SVFB(IHK) = FEND(IHK,2) /(1.0-FEND(IHK,2)) UNR31980
    SVFB(IHK) = FEND(IHK,2) /(1.0-FEND(IHK,2)) UNR31980
    YNR31780
    YNR31780
C
C
C
C
    UNR 310RO
    UNR 310RO
    MNR31100
    MNR31100
    120
```

 120
    ```


```

 CONVERGE ON M BY LINEAR INTERPOLATION WITH B/D CALC. AND B/D SPEC. UNR 31220
    ```
    CONVERGE ON M BY LINEAR INTERPOLATION WITH B/D CALC. AND B/D SPEC. UNR 31220
    STGM2 = STGM MNR 31260
    STGM2 = STGM MNR 31260
    YNR 31280
    YNR 31280
    YNR 31400
    YNR 31400
    MNR31420
    MNR31420
    MVR31440
    MVR31440
    MNR }3146
    MNR }3146
    MNR 31480
    MNR 31480
    UNR31500
    UNR31500
    MNR 31520
    MNR 31520
    MNR31540
    MNR31540
    UNR31560
    UNR31560
    MNR31800
    MNR31800
    UNR31820
    UNR31820
    MNR 31840
    MNR 31840
    MNR31860
    MNR31860
    MNR31880
    MNR31880
    MNR31900
    MNR31900
    MNRR31920
```

 MNRR31920
    ```

MINR
\begin{tabular}{|c|c|c|}
\hline &  & MNR 37.000 \\
\hline C & INITIALILE FOR \(N\) AND \(M=0\) & YNK 32020 \\
\hline c & TRANSFER OUT IF B/D'S EQUAL OR EXCEED SPEC. HOWEVER RECOGNILE & MNP32340 \\
\hline c & INCONSISTANCY OF M=0 AND N=O FOR TYPE TWO TOO A, & \\
\hline & BDHK \(=(S L F D(I H K)+L F F X(I H K)) /(S V F B(I H K) ~+~ V F F X(I H K) ~) ~\) & WVR 3:089 \\
\hline &  & MNR 32100 \\
\hline & OBOHK 1 = BDI( IHK) - BDHK & MNR 32120 \\
\hline & OBDLKI \(=\) BDI(ILK) - BDLK & MNR 32140 \\
\hline & IF (1OBDHK1.LT. O.).OR. (DBDLK1.GT. 0.1\()\) G0 TO 582 & MNR 37160 \\
\hline & STGN \(=0.0\) & MNR 32180 \\
\hline & STGM \(=0.0\) & UNR 32200 \\
\hline & G0 TO 585 & MNR 32220 \\
\hline 582 & continue & 4NR 32240 \\
\hline c & COVVERGE DN \(N\) AND M BY LINEAR INTERPOLATICN WITH B/D CALC. & UNR 3? 260 \\
\hline c & ANO B/D SPFC. & UNR 32280 \\
\hline & STGN1 \(=0.0\) & YNR 32300 \\
\hline & STGM1 \(=0.0\) & MNR 32320 \\
\hline & STGN2 \(=\) STGN & UNR 32340 \\
\hline & STGMZ \(=\) STGM & MNR 32360 \\
\hline & DO \(584 \mathrm{I}=1,25\) & MNR32380 \\
\hline & LOCA \(=2\) & MNR 32400 \\
\hline & \(\mathrm{KSEC}=\) ? & MNR 32420 \\
\hline & CALL LINEAR (STGN, LOCA, IHK) & MNR 32440 \\
\hline & CALL linear (STGN, LOCA, ILK) & YNR 32460 \\
\hline & LOCA \(=1\) & MNR 32480 \\
\hline & \(K\) SEC \(=1\) & UNR 32500 \\
\hline & CALL LINEAR (STGM, LOCA, IHK) & YNR 32520 \\
\hline & CALL LINEAR (STGM, LDCA, ILK) & MNR 37540 \\
\hline C & & MNR 32560 \\
\hline &  & MNR 32590 \\
\hline & BDLK \(=\) (LFD(ILK) + LFFX(ILK) ) / (VFB(ILK) + VFFX(ILK) ) & MNR 3 ? 600 \\
\hline & DBDHK \(2=\) BDI (IHK) - BDHK & पNR 32620 \\
\hline & DBDLK2 \(=\) BOI(ILK) - BDLK & MNR 32640 \\
\hline &  & YNR 32660 \\
\hline & 1 GO TJ 590 & MNR 32680 \\
\hline & STGN = (STGNI*DBDHK2 - STGN2*DBDHK1) / (DBDHK2 - DBDHK1) & MNR 32700 \\
\hline & IF (STGN.LE.0.0) STGN \(=0.0001\) & MNR 32720 \\
\hline & IF ( STGN.GT. 50.) STGN \(=50\). & YNR 32740 \\
\hline & STGN1 = STGN2 & YNR 32760 \\
\hline & STGN2 \(=\) STGN & MNR 32780 \\
\hline & DBDHK \(1=\) DBDHK2 & MNR 32800 \\
\hline &  & MNR 32829 \\
\hline & IF ( STGM.GT. 50.) STGM \(=50\). & 4NR 37840 \\
\hline & IF (STGM.LE.0.0) STGM \(=0.0001\) & MNR 32860 \\
\hline & STGM1 = STGM2 & MNR 32880 \\
\hline & STGM2 = STGM & MNR 32900 \\
\hline & DRDLK1 \(=\) DBDLK2 & YNR 32920 \\
\hline & IFISTGM.EQ. 50..AND. STGN.EQ.50.1 G0 TO 585 & UNR 32940 \\
\hline & IF STGM.EQ.O.0001.AND.STGN.EQ.0.0001) G0 TO 590 & MNR 32960 \\
\hline 584 & continue & UNR 32980 \\
\hline & PRINT 525 & MNR 33000 \\
\hline & PRINT 575 & YNR 33020 \\
\hline & GO TO 590 & MNR 33040 \\
\hline
\end{tabular}

MINR
```

 585 PRINT 523
 PRINT }57
 5 9 0 ~ C O N T I N U E
 600 IF (ITR.EQ. 2) GO TO 620
 C
C
C
MATERIAL BALANCE FOR TYPE ONE RECTIFYING SECTION
DO 610 I = 1,NCOMP
LFO(I) = FEND(I,5) / (1.0-FEND(I,5))
609 SLFD(I) = LFD(I)
610 CONTINUE
C
C MATERIAL BALANCE FOR TYPE TWO RECTIFYING SECTION
C
520 100 = IHS - I
KSEC = 2
LOCA =2
C
00 625 I = 1,IDO
625 SLFO(I) = FEND(I,5) (1.0 - FEND(I,5))
IF (STGN) 628,628,630
628 00 629 I = 1,100
629 LFD(I) = SLFD(I)
GO TO 640
C
6 3 0 ~ C A L L ~ L I N E A R ~ S T G N , ~ L O C A , ~ 0 ~) ~
640 CONTINUE
C
IF (ITS.EQ.2) GO TO 660
C
C MATERIAL BALANCE FOR TYPE ONE STRIPPING SCTION
C
00 650 I = 1,NCOMP
VFB(I)= FEND(I,2) / (1.0-FEND(I,2))
649 SVFB(I) = VFB(I)
650 CONTINUE
C
GO TO 680
c
C MATERIAL BALANCE FOR TYPE TWO STRIPPING SECTION
C
660 100 = ILS + 1
C
KSEC=1
LOCA = 1
C
C
00 665 I = IOO,NCOMP
665 SVFB(1)= FEND(1,2) / (1.0-FEND{1,2))
C
IF (STGM) $668,668,670$

```

MNR 33060
MNR 33080
UNP 33100
MNR 33120
MNR 33140
MNR 33160
UNR 33180
MNR 33200
YNR 33220
MNR 33240
YNR 33260
MNR 33280
MNR 33300
YNR 33320
MNR 33340
MNR 33360
UNR 33380
MNR 33400
UNR 33420
UNR 33440
MNR 33460
YNR 33480
UNR 33500
MNR 33520
MNR 33540
MNR 33560
MNR 33580
YNR 33600
MNR 33620
YNR 33640
MNR 33660
MNR 33680
UNR 33700
MVR 33720
MNR 33740
YNR 33760
MNR 33780
MNR 33800
YNR 33870
MNR 33340 UNR 33860
UNR 33880
YNR 33900
YNR 33920
MNR 33940
MNR 33960
UNR 33980
MNR 34000
MNR 34020
YNR 34040
MNR 34060
UNR 34080
MNR 34100

MINR
```

 668 DO 669 I= IDO,NCOMP MNR 34120
 669VFB(I) = SVFBII) YNR 34140
 GO TO 6RO
 C
670 CALL LINEAR (STGM, LOCA, O)
680 CONTINUE
c 680 CONTINUE MATERIAL BALANCE aND DISTIllate rate
C
II = ILS + 1
I2 = IHS - 1
DTRIAL = 0.0
THETLK = 1.0
THETHK = 1.0
C
BOHK = (LFD(IHK) + LFFX(IHK)) / (VFB(IHK) + VFFX(IHK))
THETHK = BDI(IHK) / BDHK
c
BOLK = (LFO(ILK) + LFFX(ILK)) ((VFB(ILK) +VFFX(ILK))
THETLK = BDI(ILK) / BDLK
PRINT 6968, THETLK, THETHK
MNR 34160
MNR34180
MNR 34200
YNR 34220
MNR 34240
UVR }3426
MNR34280
UNR34300
MNR }3432
MNR34340
MNR34360.
MNR 34380
MNR 34400
MNR 34420
MNR34440
INR 34460
MNR 344RO
MNR34500
6868 FORMATI/5X, 'THETA LIGHT KEY =',F9.3./5X,'THETA HEAVY KEY =',F9.3/1MNR 34520
C IF (ITS.EQ. 1 , GO TO 684 MNR 34540
C IF (ITS.EQ. 1 'GO TO 684
C calculate distillate rate for light separated components
C
DO 682 I = 1,ILS
O(I) = FTOT(1)
B(I) = 0.0
682 DTRIAL = DTRIAL + D(I)
continue
C
c. Calculate distillate rate for distributed components
C
684 D0 698 I = I1,12
BDIII) = (LFD(I) + LFFX(I)) / (VFB(I) + VFFX(I))
IF I I .EQ. IHK I GO TO 68G
IF (I EEQ. ILK) GO TO 685
GO TO 688
IMNR34520
MNR34580
MNR34600
MNR34620
MNR }3464
MNR 34560
MNR34680
MNR 34700
MNR34720
MNR34740
UNR34760
MNR34780
4NR34800
YNR 34820
MNR34840
685 BDI(I) = THETLK * BDIII)
G0 T0 689
686 BDIIII = THETHK * BDIIII
688 D(I)=FTOT(I) / (1. + BDI(I))
697 B(I) = BDI(I) * D(I)
DTRIAL = DTRIAL + D(I)
6 9 8 ~ C O N T I N U E ~
700 IF (ITR.EQ.1 I GO TO 710
C
CALCULATE DISTIlLATE RATE FOR HEAVY SEPARATED COMPONENTS
C
DO 702 I = IHS,NCOMP
O(I) = 0.0
B(I) = FTOT(I)
702 CONTINUE
MNR34860
MNR34560
C
MNR34880
MNR34900
MNR34920
MNR34940
MNR34960
MNR34980
MNR35000
MNR 35020
MNR 35040
MNR35060
MVR35080
MNR35100
MNR 35120
YNR }3514
MNR35160

```

MINR
\begin{tabular}{|c|c|c|}
\hline 710 & \multirow[t]{2}{*}{CONTINUE} & MNR 35180 \\
\hline C & & YNR 35200 \\
\hline C & FIRST CONVERSION CHECK: Change in distillate rate & MNR 35220 \\
\hline \multirow[t]{4}{*}{C} & & MNR 35240 \\
\hline & IF ( ABS(DTRIAL - DEST).LF.(0.001*DEST) ) ICONV = 1 & MNR 35260 \\
\hline & DEST = DTRIAL & MNR 35280 \\
\hline & BEST \(=\) FFLOW - DEST & MNR 35300 \\
\hline C & & MNR35320 \\
\hline \multirow[t]{4}{*}{C} & CALC LR(STAR) FOR TRIAL. & MNR 35340 \\
\hline & TRYLFS \(=0.0\) & UNR 35360 \\
\hline & TRYLRS \(=0.0\) & MNR 35380 \\
\hline & IDO \(=\) IHS -1 & MivR 35400 \\
\hline \multirow[t]{6}{*}{C} & & MNR 35420 \\
\hline & 00 \(720 \mathrm{I}=1,100\) & MNR 35440 \\
\hline & S5(I) = SLFD(1)* D(I) & YNR 35460 \\
\hline & TRYLRS = TRYLRS + S511) & पNR 35480 \\
\hline & S4II) = LFOII) * D(I) & MNR 35500 \\
\hline & TRYLFS \(=\) TRYLFS + S4(I) & MNR 35520 \\
\hline 720 & continue & MNR 35540 \\
\hline C & & UNR 35560 \\
\hline & IF ( ITR.EQ. 1 ) GO TO 730 & MiNR 35580 \\
\hline \multirow[t]{4}{*}{C} & & MNR 35600 \\
\hline & DO \(722 \mathrm{I}=\mathrm{IHS}\), NCOMP & UNR 35620 \\
\hline & S4(I) = VFB(I)* B(I) + FV(I) & MNR 35640 \\
\hline & TRYLFS \(=\) TRYLFS + \$4(I) & UNR 35660 \\
\hline \multirow[t]{2}{*}{722} & CONTINUE & UNR 35680 \\
\hline & IF ( STGN ) 723, 723, 726 & MNR 35700 \\
\hline 723 & DO \(724 \mathrm{I}=\mathrm{IHS,NCOMP}\) & MNR 357?0 \\
\hline 724 & S5(I) \(=\) S4(I) & MNR 35740 \\
\hline & G0 TO 727 & YNR 35760 \\
\hline \multirow[t]{3}{*}{726} & \(\mathrm{KSEC}=2\) & UNR 35780 \\
\hline & \(\operatorname{LOC} A=4\) & UNR 35800 \\
\hline & CALL LINEAR ( STGN, LOCA, IHS) & MNR35820 \\
\hline 727 & DO \(728 \mathrm{I}=\) IHS, NCOMP & UNR 35840 \\
\hline 728 & TRYLRS \(=\) TRYLRS + S5(I) & MNR 35850 \\
\hline C & & UNR 35880 \\
\hline 730 & continue & MNR 35900 \\
\hline c & & YNR 35920 \\
\hline c & & YNR 35940 \\
\hline C & CALC VS(STAR) FOR TRIAL & MNR 35960 \\
\hline \multirow[t]{4}{*}{c} & & UNR 35980 \\
\hline & TRYVSS \(=0.0\) & MNR 36000 \\
\hline & TRYVFS \(=0.0\) & MNR 36020 \\
\hline & \(100=I L S+1\) & M.VR 36040 \\
\hline \multirow[t]{6}{*}{C} & & \\
\hline & OO \(740 \mathrm{I}=\mathrm{IDO}, \mathrm{NCOMP}\) & MNR 36080 \\
\hline & S3(I) \(=\mathrm{VFB}(\mathrm{I}) * \mathrm{BII})\) & MNR 36100 \\
\hline & S2(I) \(=\) SVFB(I) * B (I) & MNR 36120 \\
\hline & TRYVSS \(=\) TRYVSS + S2 (I) & YNR 36140 \\
\hline & TRYVFS \(=\) TRYVFS + S3(1) & UN2 36160 \\
\hline 740 & continue & MNR 36180 \\
\hline C & & MNR 36200 \\
\hline & IF I [TS.EQ. 1 ) GO TO 750 & MVR 36220 \\
\hline
\end{tabular}

\section*{MINR}
```

C
DO 742 I = 1,ILS
S3(I) = S4(I) + FL(I)
TRYVFS = TRYVFS + S3(I)
742 CONTINUE
C
IF (STGM) 743,743,746
743 DO 744 I = 1,ILS
744 S2(1)= 53(1)
GO TO 747
C
746 K SEC = 1
LOCA = 3
GALL LINEAR (STGM, LOCA,ILSI
747 DO 748 I = 1,ILS
748 TRYVSS = TRYVSS + S2(II)
C
750 KSEC = 2
C
C
C
C
C
C
LRSTAR = TRYLRS
759 CONTINUE
C TEMPFRATURE OF RECTIFYING PINCH ZONE. SECOND CONVERGENCE CHECK.
uSE AVERAGE TEmPERATURE FOR NEXT TRIAL IF OSCILLATION DEVELOPING. YNR 36800
MNR 36820
MNR36840
TEMPERATURE OF RECTIFYING PINCH ZONE MNRBGB6O
TEMP5 = TEMP(5)
CALL BUB (P(5), TEMP(5), S5)
C
DELT = ABS (TEMP5 - TEMP(5))
IF (DELT - 0.1, 760, 760, 762
760 ICONV = ICONV + 1
gO TO 767
762 UELTR1 = TEMP(5) - TEMP5
IF(ITRY - 1) 768, 768,764
764 IF (DELTR1 / DELTR2) 766, 766,768
766 TEMP(5) = (() TEMP(5) + TEM5) / 2.) +TEMP5) / 2.
767 DELTR1 = TEMP(5) - TEMP5
768 DELTR2 = DELTR1
TEM5 = TEMP5
C TEMPERATURE OF STAGE ABOVE FEED
C
769 CALL BUB (P(4), TEMP(4), \$4)
TEmperature of DISTILLATE (LIQUID)
MNR 36880
MNR 36900
THE FOLLOWING IS INTENDEO FOR TYPE ONE IN TOP AND BOTTOM SECTIUNS. YNR 36640
USES THE CALCULATED lRSTAR AS MINIMUM REFLUX ON THF NEXT TRIAL. MNR }3666
IF (1 ITR .EQ. 2).OR. (ITS .EQ. 2)) GOTO 759
MNR 36080
MNR 36700
MNR 36740
MNR36760
c
C
c
C
C
MNR 36240

```

```

 MNR 36260
 MNR 36?80
 MNR 36300
 MNR 36320
MNR 36360
YNR 36390
MNR36400
UNR 36400
YNR 364?0
MNR 36440
YNR 36460
YNR 36480
UNR 36500
MNR36520
MNR36540
MNR 36540
MNR36560
MNR 34580
4NR 36600
YNR 36620
MNR 36720
MNR 36920
MNR36940
MNR }3696
MNR 36980
YNR 37000
MNR37020
MNR37040
MNR37060
MNR37080
MNR37080
MNR37120
MNR }3714
MNR37160
MNR 371.80
YNR 37200
C
MNR37220
C
C
UNR37240
MNR 37260
MNR37280

```
    MINR


MINR
\begin{tabular}{|c|c|c|}
\hline C & FIRST CHECK TO SEE If JHK IS GREATER THAN ZERO. THIS WOULD MEAN & YNR 38360 \\
\hline C. & TYPE SYSTEM HAS CHANGED AND CALCULATION IS STDPPFD. & UNR 38380 \\
\hline 1020 & IF (JLK .GT. O) GO TO 1080 & UNR 38400 \\
\hline 1030 & IF (JHK .EQ. O) GO TO 1050 & YNR 38420 \\
\hline 1040 & PRINT 1045 & UNR 38440 \\
\hline 1045 &  & UNR 38460 \\
\hline & ITHETA HK TO THETA LK ****' ) & YNR 38480 \\
\hline & STTP & UNR 38500 \\
\hline 1050 & IF (DTHLI) 1060, 1200, 1070 & MVR 38520 \\
\hline 1060 & LRSTAR \(=\) LRSTAR*0.95 & ANR 38540 \\
\hline & go to 1090 & YNR 38560 \\
\hline 1070 & LRSTAR = LRSTAR * 1.05 & MNR 38580 \\
\hline & GO TO 1090 & YNR 38500 \\
\hline 1080 & LRSTAR \(=\) (LRSTR1*DTHL2 - LRSTR2*DTHLI) / (DTHL2 - DTHLI) & MNR 38620 \\
\hline 1090 & JLK \(=\) JLK + 1 & WNR 38640 \\
\hline & GO TO 1195 & MNR 38660 \\
\hline c & CHECK FOR TYPE TWO TOP AND BOTTOM. TEMPOARY STOP FOR THIS CASF. & UNR 39680 \\
\hline 1100 & IF (ITR.EQ. 2) GO TO 1200 & MNR38700 \\
\hline C. & CONTINUE FOR TYPE ONE TOP AND TYPE TWO BUTTOM AND CONVERGE ON & YNR3R720 \\
\hline c & deviation of theta hk from 1.0. If theta hk is within tolerance & MNR 38740 \\
\hline \(c\) & THE CALCULATION IS FINISHED. & MNR 3 P760 \\
\hline & ADTHHK = ARS(DTHH1 - 0.001\()\) & MNR 38780 \\
\hline & IF (ADTHHK) 1200, 1200, 1120 & MNR 38800 \\
\hline c & IF THIS IS SECOND TRIAL OR GREATER GO TO INTERPOLATION FOR LRSTAR. & WNR 38820 \\
\hline c & IF THIS IS FIRST TRIAL USE ARBITRARY FACTORS TO ADJUST LRSTAR BUT & UNR 38840 \\
\hline C & FIRST CHECK TO SEE IF JLK IS GREATER THAN ZERO, THIS WDULD MEAN & MNR 38860 \\
\hline C & TYPE SYSTEM HAS CHANGED AND Calculation is stoppeo. & MNR 38890 \\
\hline C & INITALIzE \(N\) and m at five. & MNR 38900 \\
\hline 1120 & IF (JHK .GT. 0) GO TO 1180 & YNR 38920 \\
\hline 1130 & IF (JLK .FQ. O) G0 TO 1150 & YNR 38940 \\
\hline 1140 & PRINT 1145 & MNR 38960 \\
\hline 1145 &  & UNR 38980 \\
\hline & 1 THETA LK TO THETA HK \#\#**') & MNR 39000 \\
\hline & STOP & MNR 39020 \\
\hline 1150 & IF (DTHH1) 1160, 1200, 1170 & MNR 39040 \\
\hline 1160 & LRSTAR \(=\) LRSTAR \(* 0.95\) & MNR 39080 \\
\hline & go to 1190 & MNR 39080 \\
\hline 1170 & LRSTAR = LRSTAR * 1.05 & MNR 39100 \\
\hline & go TO 1130 & YNR 39120 \\
\hline 1180 & (RSSTAR \(=\) (LRSTR1*DTHH2 - LRSTR2*DTHH1) / (OTHH2 - DTHH1) & MNR 39140 \\
\hline 1190 & \(J H K=J H K+1\) & MVR 39160 \\
\hline 1195 & LRSTR2 2 LRSTR1 & MiNR 39190 \\
\hline & DTHL2 \(=\) DTHL1 & MNR 39200 \\
\hline & DTHH2 \(=\) DTHH1 & MNR 39220 \\
\hline & ITRY \(=1\) & MVR 39240 \\
\hline 1196 & \(J T R Y=J T R Y+1\) & MNR 39260 \\
\hline & IF (MTRY - JTRY) 1200, 1200, 200 & YNR 39280 \\
\hline 1200 & STOP & MNR 39300 \\
\hline C & & MNR39320 \\
\hline
\end{tabular}
\({ }^{C}\)
C
END

MINR
```

OPTIONS IN EFFECT ID,FBCDIC,SOURCE,NOLIST,NODECK,LOAD,NOMAP
OPTIINS IN EFFECT NAMF = MINR , LINFCNT = 55
STATISTICS SIURCE STATEMENTS = 432,PROGRAM SIZE = 9836
STATISTICS NO DIAGNOSTICS GENERATED
STATISTICS NO DIAGNOISTICS THIS STEP 2

```

\section*{REFERENCES}
1. Anthony, R.G., M. S. Thesis, Agricultural and Mechanical College of Texas, May, 1962.
2. Bachelor, J. B., Petroleum Refiner, vol. 36, June, 1957, pp. 161-170.
3. Bailey, R. V. and J. Coates, Petroleum Refiner, vol. 27, January, 1948, pp. 98-102.
4. Brown, G. G. and D. E. Hol comb, Petroleum Engineer, vol. 11, September, 1940, pp. 27-30.
5. Brown, G. G. and H. Z. Martin, Transactions of the American Institute of Chemical Engineers, vol. 35, 1939, pp. 679-708.
6. Colburn, A. P., Transactions of the American Institute of Chemical Engineers, vol. 37, 1941, pp. 805-825.
7. Edmister, W. C., Transactions of the American Institute of Chemical Engineers, vol. 42, 1946, pp. 15-32.
8. Edmister, W. C., Chemical Engineering Progress, vo1. 44, August, 1948, pp. 615-618.
9. Erbar, R. C., M. S. Thesis, Oklahoma State University, May, 1960.
10. Erbar, R. C., R. S. Joyner and R. N. Maddox, Petro/Chem. Engineer, March, 1961, pp. 19-22.
11. Erbar, R. C. and R. N. Maddox, Petroleum Refiner, vol. 40, May, 1961, pp. 183-188.
12. Erbar, R. C. and R. N. Maddox, Canadian Journal of Chemical Engineering, February, 1962, pp. 25-30.
13. Fenske, M. R., Industrial Engineering Chemistry, vol. 24, May, 1932, pp. 482-485.
14. Gilliland, E. R., Industrial Engineering Chemistry, vo1. 32, August, 1940, pp. 1101-1106.
15. Gilliland, E. R., Industrial Engineering Chemistry, vo1. 32, September, 1940, pp. 1220-1223.
16. Gray, J. R., Thesis, Ok1ahoma State University, 1968.
17. Hogan, J. J., Industrial Engineering Chemistry, vol. 33, September, 1941, pp. 1132-1138.
18. Holland, C. D., Multicomponent Distillation, New York: Prentice Hall, Inc., 1963, pp. 247-289.
19. Jenny, F. J., Transactions of the Americal Institute of Chemical Engineers, vol. 35, 1939, pp. 635-677.
20. Lewis, W. L., and G. L. Matheson, Industrial Engineering Chemistry, vo1. 24, May, 1932, pp. 494-498.
21. Maxwe11, J. B., Data Book on Hydrocarbons, 1955, pp. 231-239.
22. May, J. A., Industrial Engineering Chemistry, vol. 41, December, 1949, pp. 2775-2782.
23. Mayfield, F. D. and J. A. May, Petroleum Refiner, vol. 25, Apri1, 1946, pp. 141-148.
24. McDonough, J. A., Ph.D. Dissertation, Agricultural and Mechanical College of Texas, January, 1962.
25. McDonough, J. A. and C. D. Holland, Petroleum Refiner, vol. 41, March, 1962, pp. 153-160.
26. Murdoch, P. G. and C. D. Holland, Chemical Engineering Progress, vol. 48, June, 1952, pp. 287-292.
27. Scheibe1, E. G. and C. F. Montross, Industrial Engineering Chemistry, vo1. 38, March, 1946, pp. 268-272
28. Shiras, R. N., D. N. Hanson and C. H. Gibson, Industrial Engineering Chemistry, vol. 42, May, 1950.
29. Short, T. E. and J. H. Erbar, Petro/Chem. Engineer, vol. 35, November, 1963, pp. 30-33.
30. Thiele, E. W. and R. L. Geddes, Industrial Engineering Chemistry, vol. 25, March, 1933, pp. 289-295.
31. Underwood, A. J. V., Transactions of the Institute of Chemical Engineers (London), vol. 10, 1932, pp. 112-158.
32. Underwood, A. J. V., Journal of the Institute of Petroleum, vol. 32 , 1946, pp. 614-626.
33. Underwood, A. J. V., Chemical Engineering Progress, vol. 44, August, 1948, pp. 603-614.```

