Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48106

74-15,105

```
GÜLCUUR, Halil Özcan, 1946-
    DYNAMICS OF INTERCONNECTED SYSTEMS WITH
    PULSE FREQUENCY MODULATORS.
    Newark College of Engineering, D.Eng.Sc.,
    1973
    Engineering, electrical
```

University Microfilms, A XEROX Company , Ann Arbor, Michigan

DYNAMICS OF INTERCONNECTED SYSTEMS

 WITH PULSE FREQUENCY MODULATORS

 WITH PULSE FREQUENCY MODULATORS}

BY

HALİL ÖZCAN GÜĽqüR

A DISSERTATION
PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF ENGINEERING SCIENCE AT

NEWARK COLLEGE OF ENGINEERING

This dissertation is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey
1973

```
    APPROVAL OF DISSERTATION
    DYNAMICS OF INTERCONNECTED SYSTEMS
    WITH PULSE FREQUENCY MODULATORS
        BY
        HALİL ÖZCAN GU̇LÇU̇R
        FOR
DEPARTMENT OF ELECTRICAL ENGINEERING
    NEWARK COLLEGE OF ENGINEERING
                BY
            FACULTY COMMITTEE
    APPROVED:
```

\qquad

``` , Chairman
```

\qquad
\qquad
\qquad

```
NEWARK, NEW JERSEY OCTOBER, 1973
```


ACKNOWLEDGEMENTS

The author wishes to express his sincere debt of gratitude and thanks to Professor A. U. Meyer for his patient and critical guidance and encouragement during the research and the writing of the thesis. He also wishes to thank Professor W. Weissman of The College of Medicine and Dentistry of New Jersey, for his kind help in the part of this work concerning Neurophysiology and for his stimulating discussions.

The advice of Professor G. Peyser has been very fruitful, in particular, that concerning the material of Chapter 3, for which I owe especial thanks to him. The author would also like to thank the other members of the dissertation committee, Professors H. J. Perlis and M. H. Zambuto for their useful comments.

I additionally want to thank to Mrs. Meyer in appreciation of her encouragement, tolerance and hospitality while working in Professor Meyer's home with him, during our many ours of conversation and review of this dissertation.

The fellowship received from the Scientific and Technical Research Council of Turkey (TU̇BITAK) is greatfully acknowledged.

ABSTRACT

The objective of this dissertation is to study the dynamics of systems consisting of interconnections of an arbitrary number of completereset pulse frequency modulators (CRPFM's) and linear dynamical subsystems (in general, time-varying, lumped and/or distributed). CRPFM, which represents a generalization of several types of pulse frequency modulators (PFM's), consists of two basic components; a multi-input dynamic element, called the timing-filter (TF) and a threshold device (TD). Whenever the output of the TF reaches a given threshold value the $T D$ generates an impulse and, at the same time, resets all the states of the $T F$ to zero. This dissertation is devoted to two basic aspects of system motion, namely stability of the equilibrium and periodic operation.

Stability is defined in terms of finiteness of the number of pulses emitted by all modulators. This definition of "finite-pulse stability" (FPS) is related to $I_{1} \cap L_{p}$ output stability and implies finite energy expended. An improved Lyapunov-like approach is presented which, however, is difficult to employ for higher order systems. A direct criterion for $F P S$ is given which is not only easy to apply, but also provides bounds on the
number of pulses emitted by each modulator. A comparison is presented between these criteria and previous stability conditions available for special classes of CRPFM systems (e.g., systems with integral PFM or relaxation PFM). In representative examples, the direct $F P S$ criterion yields comparable (or better) stability regions (of parameters).

The second part is devoted to the study of the basic aspects of "periodic" behavior. For multi-modulator PFN systems, the usual concept of periodicity (or almost periodicty) is not meaningful. Therefore, a weaker concept, that of " $\epsilon e^{-n e a r ~ p e r i o d i c i t y " ~ i s ~ i n t r o d u c e d . ~ T h i s ~}$ notion involves an observation interval (which is usually finite) and a measure of "desired accuracy" or "observation accuracy". Certain necessary and sufficient conditions for the existence of ϵ_{e}-near periodic motion are presented. For an IPFM system with a time-invariant linear part, a matrix relationship is given, which relates the "period" and the net number of pulses emitted by each modulator over that period to the system parameters.

Periodic behavior is further investigated on a timediscretized approximation of the CRPFM system which reduces to a system containing ideal delays, summing junctions and threshold elements. However, it is still difficult to obtain analytical results from the resulting

```
(nonlinear) difference equations (except for very short periods of oscillation); nevertheless, these equations can be "linearized" by introduction of extra variables, using Fukunaga's method for nonlinear switching nets. Therefore, classical linear techniques (based on characteristic polynomials and eigenvectors) can be used to obtain information about periodic motion. This approach also applies to McCulloch Pitts type of neural nets and extends existing results on periodic behavior in such networks.
```


TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
ABSTRACT iii
TABLE OF CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xii
CHAPTER 1. INTRODUCYION 1
1.1 General Background, Motivation and Objectives
1.2 Pulse Frequency Modulation, Types, Definitions and Classification
1.2.1 Introductory remarks. 6
1.2.2 The modulator output relation. 14
1.2.3 Complete-reset pulse frequency modulation (CRPFM). 15
1.2.4 Classification of PFM. 21
1.3 The Neuron and Relation of CRPFM To Neural Modeling 28
1.4 Review of Previous Investigation on PFM 36
1.5 Interconnected System Consisting of CRPFM's and Linear Dynamical Elements: The System Considered in This Dissertation 50
CHAPTER 2. FINITE-PULSE STABILITY OF INTERCONNECTED SYSTEMS WITH COMPLETE-RESET PULSE FREQUENCY MODULATORS 54
2.1 Global Finite-Pulse Stability in PFM Systems 56
2.2 Lyapunov's Second Method 58
2.3 Direct Finite-Pulse StabiJity Criteria 64
2.3.1 Application to single-loop system with one PFM. 71
2.3.2 Application to systems with more than one PFM. 75
2.4 Prequency Domain Criteria 87
2.5 Conclusions 96
CHAPTER 3. ON NEARLY PEFIODIC MOTION IN INTER- CONNECTED SYSTBMS WITH PULSE FREQUENCY MODULATORS 99
3.1 Introduction 99
3.2 The Concept of $\epsilon e^{-N e a r ~ P e r i o d i c i t y ~}$ 101
3.3 Clues From System Stability 106
3.4 Nearly Periodic Fiotion in PFil Systems 112
3.5 Nearly Pericdic Motion in IPFM Systems: The ϵ_{e}-period 129
3.6 Conclusims 135
 DISCRLTIZED CHPFA SYSTBNS 139
4.1 Introduction
4.2 System Considerations 140
4.2.1 7 ime ixscretanetion of Etneral CRPFM system. 140
4 4.2.2 Interconnected siatem consisting of CRPFI's and jideal delays. 144
4.3 The Autonomous Case, Period of Solu- tions 151
4.4 Linearization of the Systen Nquations 156
4.5 Determination of Cycles and Periods of the Ijucarized Net 172
4.6 State Diagram and The Transition Matrix 184
4.7 Conclusions 189
CHAPTER 5. CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH 191
5.1 Summary of The Results 191
5.2 Suggestions For Future Research 193
APPENDIX A PROOF OF THEOREM 2.2 197
APPENDIX B PROOF OF THEOREM 3.3 199
APPENDIX C PROOF OF THEOREM 3.5 201
APPENDIX D COMPUTER PROGRAM FOR THE CALCULATION OF THE RESPONSE OF CRPFM SYJTEMS 205
APPENDIX E COMPUTER PROGRAM FOR LINEARIZING A NONLINEAR NET 222
REFERENCES 232
VITA 244

IIST OF FIGURES

Figure	Title	Page
1.1	Pulse frequency modulator, output pulse sequence and the definition of instantaneous pulse frequency.	7
1.2	A scheme for constructing static pulse frequency modulators. The threshold device (TD) emits a pulse whenever its input signal changes from negative to positive and, at the same time, resets the integrator.	8
1.3	Approximate realization of static PF modulators for slowly-varying inputs.	9
1.4	Integral pulse frequency modulator, (a) block diagram, (b) practical realization (single-signed).	10
1.5	Relaxation pulse frequency modulator (RPFM), (a) block diagram, (b) another practical realization.	12
1.6	Block diagram representation of the complete-reset pulse frequency modulator (CRPFM).	18
1.7	Discrete pulse frequency modulators: (a) Discrete RPFM (also called Discrete ZPFM) of Shortle and Alexandro (116). (b) Discrete RPFM employed by Monopoli and Wylie.	27
1.8	Diagram of a neuron.	29
1.9	Block diagram of an interconnected system consisting of CRPFM's and linear dynamical subsystems.	51
1.10	An example illustrating the definitions of $t_{i, j}$ and $K_{i}(t)$.	52
2.1	A simple interconnected PFM system consisting of two RPFM's and an integrator.	62

Comparison of stability criteria for the CRPFM system of Fig. 2.1. 62
2.3 (a) RPFM with a first order low-pass filter.(b) Equivalent KPFM system.(c) A CRPFM system in which the dynamics ofthe LP is much slower than that of theTF。
(d) Equivalent system obtained after trans- formations indicated in Fig. $2.3 a$ and Fig. 2.3.b. Application of Theorem 2.4 to this system yields less conservative results. 74
2.4 A PrM system consisting of the interconnec- tions of two CRPFM's and a time-invariant linear part. 77
2.5 Resions described by inequality (2.14).
(a) Example 2.3a, (b) Example 2.3b, and (c) Example 2.3c. 79
2. 6 Comparison of stability criterja for the IPFM system of Fig. 2.9. The region with sters is obtained by Theorem 2.5 (Example 2.5, Gelig (44)). Inside of the circular region is the stability region predicted by Theorem 2.4 (Example 2.3b, Gulcuir and Meyer (52)). 82
2.7 (a) RPPM with an integrator. (b) Equivalent IPFM system. (c) Equivalent IPFM system of Fig. 2.1. 85
2.8 (a) The KPFM system considered in Section 2.4 2.4. (b) Equivalent system (TAi is a device that emits a unit impulse whenever the absolute value of its input signal exceeds a threshold value, Si). 89
2.9 A PFM system consisting of the interconnec- tions of two IPFM's and a time-invariant linear part. 93
3.1 Block diagram of an interconnected system consisting of CRPFF's with linear TP's and linear dynamical subsystems. 101

Figure	Title	Page
3.2	Ilustration of Def. 3.1. The function $e(t)$ is eénearly periodic in the timeinterval $t \in(0,2 T)$ and eë-nearly periodic in the time-interval $t \in(0, \infty)$.	103
3.3	Examples of $\epsilon e-n e a r l y$ periodic motion in PFM systems: (a), (b) output waveform of the TF in an IPFM under sinusoidal input; (a) double signed IPFM, (b) single-signed IPFM (note that these waveforms are not periodic in the strict sense). (c) \bar{A} typical ee-nearly periodic motion in a PFM system with an almost periodic linear part. (d), (e) Typical ϵ_{e}-nearly periodic motion in simple CRPFM systems.	105
3.4	Illustration of functions used in Theorem 3.3. (a) Output variable $y(t)$ under $\epsilon_{e}-$ nearly periodic motion. (b) The functions $y o(t)$ and $y_{1}(t)$ as defined by (3.7a). Yo $)^{d}$ y (t) and $y_{1}(t+T)$ shown for comparison. (e) The function $y_{1}(t+T)-y_{0}(t)$.	114
3.5	Output waveforms of the system of Example 3.1 .	118
3.6	Desired pulse pattern of the pulse generator.	129
4.1	(a) A CRPFM system with time-invariant TF and LP. (b) Time-discretized approximation, using eqs. (4.1)-(4.5).	142
4.2	Block diagram of an interconnected system consisting of m CRPFM's and ideal delays.	143
4.3	State transition diagram of the system considered in Example 4.1.	154
4.4	Operation rules for the Galois field GF(2)	160
4.5	(a) Schematic representation of a neural network consisting of interconnections of two excitatory neurons (neuron 1 and neuron 3) and an inhibitory neuron (neuron 2). (b) Block diagram of a simplified model of the same neural network.	161

Figure Title Page
4.6 Truth tables of the system of Fig. 4.5b 162
4.7 Truth table for the system of Example 4.1 168
4.8 State transition diagram of an autonomous linear net with a primitive minimum poly- $\operatorname{nomial}\left[m(\lambda)=p(\lambda)=\lambda^{4}+\lambda+1\right]$. 177
4.9 State transition diagram of an autonomous linear net with an irreducible minimum polynomial $\left[m(\lambda)=\lambda^{4}+\lambda^{3}+\lambda^{2}+\lambda+1\right]$. 179
4.10 State transition diagram of an autonomous linear net with $\mathrm{m}(\lambda)=\mathrm{p}(\lambda)=(\lambda+1)^{2}$. 181
4.11 State diagram of the equivalent linear net of the PFM system of Example 4.1. Only the states $\underline{x}_{1}-\underline{x}_{4}$ correspond to the original system; \underline{x}_{0} and $\underline{x}_{5}-\underline{x}_{15}$ are axtificial 182 states.
187
4.12 Illustration of state transitions.
4.13 State transition diagram. 188

LIST OF TABLES

Table Title Page
2.1 Comparison of The Stability Results For Single-Loop, Single-IPFM (or RPFM) Feed- back System ($A \triangleq M A_{0} / S$). 72
2.2 Comparison of Stability Theorems For Multi-Modulator PFM Systems. 98
4.1 Prime Factors of $2^{n}-1$. 178

CHAPTER 1

INTRODUCTION

1.1 General Beckground, Motivation and Objectives

Modulation is the process of coding information into a carrier wave by varying some of its characteristics in accordance with a modulation law. In control systems, modulation is used for a variety of reasons; e.g., to adapt to a given mode of controlling power, to utilize given communication channels for some of the signals, to improve noise immunity and accuracy, etc. The carrier wave can be continuous or it can consist of a sequence of pulses. The first case is called continuous wave modulation (CWM) and the second case is called pulse modulation (PM).

Most common forms of CWM are amplitude modulation (AM) and frequency modulation (FM) with a sinusoidal carrier wave. Examples of CWM used in control systems are AC servo systems employing $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ or 400 Hz sinusoidal carrier AM (63).

With the advance in digital technology, during the early 1950 's, pulse modulation has become a subject of increasing interest. A pulse modulator is choracterized by the instances of pulse-emission, all in relation to the dynamics of the input signal; this characterization
constitutes the modulation law. Depending on the modulation law, $P M$ can be divided into various groups: pulseamplitude modulation (PAM), pulse-width modulation (PWM), pulse-position modulation (PPM) and pulse-frequency modulation (PFM) (56, 115). In certain applicetions it is advantegous to use combinations of the above basic types of PM, e.g. in pulse-code modulation (PCM) (21) and pulse-width-pulse-frequency modulation (PWPFM) (31, 32, 42, 66, 76, 78, 121).
Among the different pulse modulation schemes, PFM is of particular interest because it constitutes the means of information transmission used in the nervous system ($6,46,64,84$). A pulse frequency modulator is a device that codes information of its input signal into time-intervals and polarities of identical pulses emitted at its output. There i.s an infinite number of ways by which this coding can be achieved and, not surprisingly, during the relative short time of research activity in this field, many different types of PF modulators have been introduced; they will be reviewed in the next section.

Basically, PFM constitutes a form of relaxation oscillation; most $P F$ modulators can be realized easily by means of simple RC filters and a few relays or solid state threshold devices. There are certain control appli-
cations which favor PFM; for example, control systems employing stepper motors. Among the features of a PFM control system is the fact that it may be designed such that pulses are emitted when needed; this is especially jmportant in applications where control power must be conserved such as in certain spacecraft control systems employing controlling jets. Another feature of PFM is that it has a good degree of noise-immunity $(6,12,60,61,89)$ as compared to PAM or PWM.

Applications of PMM in control systems have been reported in the following fields.

1. telemetry (108-110),
2. adaptive flight control systems (96),
3. satellite attitude control systems (29, 38),
4. converting continuous signals into proportional pulse frequency for digital processing $(37,97)$, and
5. modelling of neural systems $(6,46,85,86,102,106)$.

The fact mentioned earlier that information transmission in the nervous system takes place in terms of PFM is a major motivation of research on PPM including the work of this dissertation. There are two equally-significant reasons for this motivation. 1) It is hoped that new understanding could be provided to neuro-physiological system behavior, and 2) since it is believed that biological control sys-
tems have evolved toward optimal states (6), it is anticipated that PFM control systems could provide certain technological advantages, e.g., noise immunity, adaptability, efficiency, etc. Certain aspects of these expectations have already been demonstrated by previous investigators (see Section 1.4).

The bulk of the previous research on PFM is devoted to the study of single-loop PFM feedback systems ; relatively little work has been done on multi-loop, multimodulator PFM systems. However, in order to fully examine the afore-mentioned expectations, a through understanding of systems containing several PF modulators is essential. Therefore, the objective of this dissertation is to study the dynamics of systems consisting of interconnections of an arbitrary number of PF modulators and dynamical subsystems.

The scope of this dissertation will be limited to systems containing complete-reset pulse frequency modulators (CRPFM) and linear dynamical subsystems. CRPFM is a generalization of many other known forms of PF modulators and consists of two distinct parts; a multi-input, singleoutput dynamic element, called the timing filter (TF) which defines the pulse emission instants, and a threshold device (TD) which generates an impulse whenever the output of the TF reaches a given threshold value. A formulation of the CRPFM and the system considered will be given in Sections 1.2 .3 and 1.5 , respectively.

One of the basic characteristics of a system is its stability. Chapter 2 will be devoted to this important topic; a Lyapunov-like method and a direct method for stability analysis will be presented. Comparison will be made between these methods, including the previously existing methods.

Knowledge of the "periodic" behavior of CRPFM systems can shed light into the manner information is manipulated in the nervous system. For example, revarbatory activity in neural circuits has been suggested as a possible mechanism for short-term memory (see Section 3.1). Thus, a chapter (Chapter 3) is devoted to the basic aspects of "peri odic" motion in CRPFM systems. It turns out that for multi-modulator PFM systems, the usual concept of periodicity does not have much meaning. Therefore, a weaker concept of periodicity, that of " $\epsilon_{e^{-n e a r l y}}$ periodicity", will be introduced (Section 3.1) and some basic rules for " $e_{e}-$ nearly periodic behavior" will be presented.

In order to obtain further insight, this problem will also be studied, in Chopter 4, for a more special system consisting of CRPFM's and ideal delay elements. This special system posseses all the essential properties of neural systems (see Sections 1.3 and 4.2).

1.2 Pulse Frequency Modulation, Types, Definitions and

Classification

1.2.1 Introductory remarks. Consider the pulse sequence shown in Fig. 1.1. Let t_{1}, t_{2}, \ldots denote the instants of pulse-occurences; the instantaneous frequency of the pulse sequence (64) is defined by

$$
\begin{equation*}
f_{k}=\frac{1}{t_{k}-t_{k-1}}=\frac{1}{T_{k}}, \quad t \in\left[t_{k}, t_{k+1}\right) \tag{1.1}
\end{equation*}
$$

From this definition, it follows that the instantaneous pulse frequency is a staircase function as shown in Fig. 1.1c.

In "memoriless" or static pulse frequency modulators (SPFM), the instantenous pulse frequency is a singlevalued function of the input signal magnitude at time t_{k-1} or t_{k}; in case of the latter:

$$
\begin{equation*}
f_{k}=\frac{1}{t_{k}-t_{k-1}}=p\left[e\left(t_{k}\right)\right] \tag{1.2}
\end{equation*}
$$

[^0]Eq. (1.2) also means that, after the emission of the $(k-1)$ th pulse, both $\left(t-t_{k-1}\right)$ and $1 / f[e(t)]$ are continuously compared with each other and as soon as both become equal, the next pulse is emitted at $t=t_{k}$.

(c)

Figure 1.1 Pulse frequency modulator, output pulse sequence and the definition of instantaneous pulse frequency.

In one of the early static pulse frequency moduletors the function $1 / f(e)$ was given simply by $K \cdot e(t)$, with K being a proportionality constant, Ross, 1949,(110). In that case, the instantaneous pulse frequency is inversely proportional to the input-signal level. Of greater pac-
tical significance; however, are situations where an instantaneous pulse frequency is required that is proportional to the input signal level. This can be accomplished, if the function $f(e)$ is in the form K•e. A static $P F$ modulator of this type will be called a linear pulse frequency modulator. (LPFM).

There exist a number of possibilities for realizing static pulse-frequeny modulators. One possibility is shown in Fig. 1.2. An integrator is used to generate a

Figure 1.2 A scheme for constructing static pulse frequency modulators. The threshold device (TD) emits a pulse whenever its input signal changes from negative to positive and, at the same time, resets the integrator.
signal proportional to $\left(t-t_{k-1}\right)$ and a (diode) function generator is used to generate a signal proportional to $1 / f[\epsilon(t)]$. The difference between these two signals is fed to a threshod device (TD) which emits a pulse as soon
as its input becomes positive and, at the same time, resets the output of the integrator to zero.

Now, assume that the input signal $e(t)$ has a very slow variation with respect to the pulse repetition rate. In that case, the modulator schematic of Fig. 1.2 can be approximated by that of Fig. 1.3, where the integrator

Figure 1.3 Approximate realization of static PF modulators for slowly-varying inputs.
is fed the signal $f[e(t)]$, instead of the constant input 1, and the threshod device (TD) is adjusted such that it emits a pulse whenever its input sinnal reaches a threshold value of 1. For the LPFM, since $f(e)=K \cdot e$, the function generator is not needed and the final circuit becomes very simple, as shown in Fig. 1.4.

The circuit of Fig. 1.3 approximates the static PFM of Fig. 1.2 for very slow variations of $e(t)$. In general,

(a)

(b)

Figure 1.4 Integral pulse frequency modulator, (a) block diagram, (b) practical realization (single-signed).
however, it represents a different type of modulator in its own right. The same is true for the modulator circuit of Fig. 1.4 in reference to LPFM.

The device shown in Fig. 1.4 integrates its input signal and emits a pulse as soon as it reaches a threshold value, resetting the integrator output to zero at the
same time ${ }^{2}$. This modulator was first defined by Meyer (93) and Li (89) and is called integral pulse frequency modulator (IPFM). For slowly-varying input signals, IPFM produces a pulse train having an instantaneous frequency directly proportional to its input (similar to LPFM) ${ }^{3}$, furthermore, its ability to smooth-out (through the integration process) any noise superimposed on the input signal, provides it an additional advantage.

A significant difference between the static PF modulators explained previously and IPFM is that, in the latter, the emission of pulses are decided by not only observing the instantaneous value of the input signal, but also its previous values. Therefore, a pulse frequency modulator of this type will be called a dynamic pulse frequency modulator (DPFM).

[^1]Another well known DPFM is the relaxation type pulse frequency modulator (RPFM) (90, 93), which is a degeneration of the IPF modulator with a leaky integrator, as shown in Fig. 1.5.

(a)

(b)

Figure 1.5 Relaxation pulse frequency modulator (RPFM), (a) block diagram, (b) another practical realization.

A more general DPFM s.cheme is to feed the input signal into a dynamical system with a single output (which will be called a timing filter, (TF) and emit a pulse as soon as the TF -output exceeds a threshold value, S . Immediately following the pulse emission, some or all of the internal states of the TF are reset to fixed values.

In the first case, the DPFM will be called a partialreset PRM (PRPFM) and in the second case a complete-reset PFM (CRPFM) (51, 52).

PFM is basically an asynchronous form of pulse modulation since the time-interval between successive pulses is used for information coding purposes. This may be an advantage in some applications since it eliminates the need for costly syncronization equipment; however, in other applications, e.g., in application where time multiplexing is an economic necessity, or in certain applications involving digital processing, it may be necessary to assign a clock signal to the output pulses. This form of modulation is called synchronous PM. Pulse amplitude modulation (PAM), pulse width modulation (PWM) and pulse code modulation (PCM) are examples of synchronous PM. However, it is also possible to introduce a clock signal to PFM; in that case the information coding may be performed by counting the number of pulses within each given period (of the clock signal). Such a form of pulse modulation $(116,128)$ may be called synchronous PFM or discrete PFM.

In this dissertation discussions will be centered mainly on the complete-reset PFM (CRPFM); this is done for the following reasons:
(a) CRPFM represents a generalization of PF modulators which have prooven to be useful for many control applications, namely, the IPFM and the RPFM.
(b) It resembles the process of impulse generation in the nervous system.
(c) It can easily be realized using a simple filter (RC, RLC, of active) plus a few discrete-type elements.

CRPFM will be discussed in more detail in sub-section 1.2.3.
1.2.2 The Modulator output relation. The output signal of any pulse frequency modulator, $u(t)$, is defined in terms of a sequence of impulses of equal strength, M and of impulse polarity $b_{k}= \pm 1$, emitted at time-instances $t_{k}(k=1,2, \ldots)$, i.e.,

$$
\begin{equation*}
u(t)=M \sum_{k=1}^{N} b_{k} \delta\left(t-t_{k}\right), \quad 0 \leq t<t_{N+1} \tag{1.3}
\end{equation*}
$$

where $\delta(t)$ is the unit impulse. Eq. (1.3) shall be called the modulator-output relation.

The pulse emission times, t_{k} and pulse-polarities, b_{k} follow some given functional relations in terms of the input signal, $e(t)$; i.e., both t_{k} and b_{k} are determined
by a modulator input relation for a given PF modulator type.

Note that the modulator-output is defined in terms of impulses rather than some defined waveform. This is done for the sake of generality. Any physical pulse-waveform, say $f(t)$, can be obtained by feeding the modulator output $u(t)$ through a linear filter of transfer function $F(s)=\mathcal{L}\{f(t)\}$. Since this linear filter can be combined with the subsystem following the modulator, the modulator output as given in (1.3) represents a convenient general form.

1.2.3. Complete-reset pulse frequency modulation

 (CRPFM). Before proceeding to the definition of CRPFM, two well known examples of CRPFM will be discussed, namely, integral pulse frequency modulation (IPFM) and relaxation pulse frequency modulation (RPFM). These two modulators have already been discussed in sub-section 1.2.1 (see Figs. 1.4 and 1.5) ${ }^{4}$.First, consider integral pulse frequency modulation (IPFM) (64, 90, 94), which is defined such that the input signal $e(t)$ is fed to an integrator whose output, $z(t)$, 4 Figs. 1.4 and 1.5 represent single-signed IPFM and
RPFM, respectively (output-pulses have one polarity only).
Here in sub-section 1.2 .3 , the general case of double-
signed PFM will be presented.
is fed to a threshold device (TD), which, whenever $|z(t)|$ reaches a threshold value, S, resets the integrator-output to zero and emits an impulse of strength M, whose polarity is equal to the sign of $z(t)$ just before the impulse-emission. Thus, the functional relations defining t_{k} and b_{k} are given by

$$
\begin{align*}
& z(t)=\int_{t_{k-1}}^{t} e(\tau) d \tau, \quad t_{k-1} \leq t<t_{k} \tag{1.4}\\
& t_{k}=\min \left\{t \mid t>t_{k-1} \text { and }|z(t)| \geq s\right\} \tag{1.5a}
\end{align*}
$$

and

$$
\begin{equation*}
b_{k}=\operatorname{sgn}\left[z\left(t_{k}^{-}\right)\right] . \tag{1.5b}
\end{equation*}
$$

IPFM is a simple form of PFM, whose definition was inspired by pulse modulation in the nervous system (Meyer, 1961), though, of course, the relation between IPFM and PFM in the nervous system is very approximate ${ }^{6}$. A process somewhat closer related to PFM in the nervous system, yet still representing a rather gross simplification of the latter, is given in terms of relaxation pulse frequency modulation ${ }^{7}$ (RPFM) (93), defined by

[^2]\[

$$
\begin{equation*}
z(t)=\int_{t_{k-1}}^{t} e^{-\frac{t-\tau}{T_{R}}} e(\tau) d \tau, t_{k-1}<t<t_{k} \tag{1.6}
\end{equation*}
$$

\]

Eqs. (1.3) and (1.5) remain the same for RPFM. Note that RPFM represents a generalization of IPFM, to which it reducess when $\mathrm{T}_{\mathrm{R}} \rightarrow \infty$.

Complete-reset pulse frequency modulation (CRPFM) represents a generalization of the above to the extend that the dynamic element of input $e(t)$ and response $z(t)$ can be of any order (not necessarily of order one as in (1.4) or (1.6)). CRPFM will be described next.

Fig. 1.6 shows the functional block diagram of the CRPFM. It consists of a resettable timing-filter (TF) and a threshold device (TD). The TD is activated by the output signal of the $T F, z(t)$, in such a way that an impulse is emitted whenever $|z(t)|$ exceeds a thresholdlevel, S; the polarity of that impulse is equal to the sign of $z(t)$. Furthermore, at the instant of impulseemission all state variables of the timing filter are reset to zero ${ }^{8}$.

[^3]IPFM and RPFM, discussed above, are special cases of CRPFM, where the timing-filter (TF) is of first order. In fact, the modulator output relation (1.3) and the the threshold relations (1.5) are valid for (general) CRPFM.

Eqs. (1.4) and (1.6) are the timing-filter equations for IPFM and RPFM, respectively. As illustrated in Fig. 1.6, the timing filter equation for general CRPFM is given by

$$
\begin{equation*}
z(t)=\int_{t_{k-1}}^{t} f[e(\tau), t, \tau] d \tau, t_{k-1}<t<t_{k} \tag{1.7}
\end{equation*}
$$

Figure 1.6 Block diagram representation of the complete reset pulse frequency modulator (CRPFM).
frequency modulator" of Jury and Blanchard (65), the "type II pulse modulator" of Skoog and Blankenship (121) and the "pulse frequency modulator of the second kind with complete clearing of the time-marking filter" of Kuntsevich and Chekhovoi (79).
where $e(t)$ represents the modulator-input signal. The function $f[e(\tau), t, \tau]$ is usually of the form

$$
\begin{equation*}
f[e(\tau), t, \tau]=g_{0}(t, \tau) e(\tau) \tag{1.8}
\end{equation*}
$$

where the kernel $g_{0}(t, \tau)$ is the impulse response of a (usually RC lowpass) single-input, single-output linear dynamic system ${ }^{9}$. For IPFM (see, eq. (1.4)), it is $g_{0}(t, \tau)=1(t>\tau)$ and for RPFM (see, eq. (1.6)), it is $g_{0}(t, \tau)=e^{-\frac{t-\tau}{T_{R}}} \quad(t>\tau)$.

In addition to the generalization of the $T F$ from that for IPFM (eq. (1.4)) and RPFM (eq. (1.6)) to that for CRPFM (eq. (1.7)), the threshold relation will be generalized from that given by (1.5) (for both IPFM
${ }^{9}$ Let the timing filter output $z(t)$ be described in terms of the state vector $\underline{x}(t)$ of the $T F$ and input signal $e(t)$ as 10

$$
z(t)=\underline{c}^{T}(t)\left[\underline{\left.\left(t, t_{k}\right) \underline{x}\left(t_{k}^{+}\right)+\int_{t_{k}}^{t} \emptyset(t, \tau) \underline{b}(\tau) e(\tau) d \tau\right]} \begin{array}{c}
t_{k}<t<t_{k+1}
\end{array}\right.
$$

where $\emptyset(t, \tau)$ is the state transition matrix, $\underline{b}(t)$ is a column vector and $\underline{c}^{T}(t)$ is a row vector. Since during impulse emission, at time t, the threshold device resets the state to zero, i.e., $x\left(t_{k}^{+}\right)=0$, the first term of the above equation vanishes. Comparison with eqs. (1.7) and (1.8) gives, therefore

$$
g_{0}(t, \tau)=\underline{c}^{T}(t) \emptyset(t, \tau) \underline{b}(\tau)
$$

${ }^{10}$ In this dissertation, underlined capital letters, underlined small-case letters, and the superscript, T, will be used to denote, matrices, column vectors and the transpose of a matrix, respectively.
and RPFM) to include a refractory period, T_{0}, which is a time interval during which the modulator cannot regenerate another impulse. A refractory period exists in physical PFM such as that in the nervous system (see Section 1.3). With this inclusion the threshold relation for CRPFM becomes:

$$
t_{k}=\min \left\{t \mid t>t_{k-1}+T_{0} \text { and }|z(t)| \geq s\right\} \begin{aligned}
& \text { for (double- } \\
& \begin{array}{l}
\text { signed } \\
\text { CRPFM }
\end{array}
\end{aligned}
$$

The pulse-intervals, as well as the pulse-polarities, are used as carriers of information. There, exists, however, physical PFM where only pulses with one polarity are emitted (e.g., in the nervous system); such case is referred to as single-signed PFM, in order to distinguish it from the more general case of double-signed PFM (above). For the sake of brevity, the prefix "double-signed" may not be used, i.e., the term "CRPFM" is defined to imply "double-signed CRPFM". However, for single-signed PFM the prefix:will be necessary. For single-signed CRPFM, the threshold relation is given by

$$
t_{k}=\min \left\{t \mid t>t_{k-1}+T_{0} \text { and } z(t) \geq S\right\} \begin{align*}
& \text { for single- } \tag{1.10}\\
& \text { signed } \\
& \text { CRPFM }
\end{align*}
$$

A variation of the CRPFM is the partial-reset PFM (PRPFM), in which only some of the internal states of the TF are reset. A particular case of such a scheme is the
output-reset PFM (ORPFM), where only the output of the TF is reset. Note that IPFM and RPFM also belong to this category, since they are of first-order.

If the TF of an ORPFM is linear and of a certain structure, it may be expressable in terms of another ORPFM and a linear subsystem. This would be useful in some analytic studies of dynamic systems containing ORPFM's. Examples of this point will be given in Sections 2.3 and 2.4.
1.2.4 Classification of PFM. The output relation for any pulse frequency modulator has been presented in Section 1.2.2 as eq. (1.3):

$$
\begin{equation*}
u(t)=M \sum_{k=1}^{N} b_{k} \delta\left(t-t_{k}\right), \quad 0 \leq t<t_{N+1} \tag{1.3}
\end{equation*}
$$

In this sub-section, a classification of PFM will be presented in terms of the dependency of the pulse-emission times, t_{k} and the pule-polarities, $b_{k}= \pm 1$, in terms of the input signal $e(t)$ over $-\infty \leq t<t_{k}$. In general, this relation may be expressed $0 . s$

$$
t_{k}=\mathcal{F}_{t}\left[t_{1}, t_{2}, \ldots, t_{k-1} ; e(t), t,-\infty \leq t<t_{k}\right] \quad(1.11 a)
$$

and

$$
\begin{equation*}
b_{k}=F_{b}\left[t_{1}, t_{2}, \ldots, t_{k-1} ; e(t), t,-\infty \leq t<t_{k}\right] \tag{1.11b}
\end{equation*}
$$

where \mathcal{F}_{t} and \mathcal{F}_{b} are functional operators (\mathcal{F}_{t} is a positive operator ${ }^{11}$). Depending on the type of these operators PFM may be subdivided into various classes:
(A) Finite-Memory PFM of Order N (FMPFM):

In this case the kth pulse-instant, t_{k} is a singlevalued function of both the previous N pulse-instants, $t_{k-1}, t_{k-2}, \ldots, t_{k-N-1}$ and the values of the input at these instants, i.e.,

$$
t_{k}=f_{t}\left[t_{k-1}, t_{k-2}, \ldots, t_{k-N-1} ; e\left(t_{k}\right), \ldots, e\left(t_{k-N}\right)\right](1.12 a)
$$

and

$$
b_{k}=f_{b}\left[t_{k-1}, t_{k-2}, \ldots, t_{k-N-1} ; e\left(t_{k}\right), \ldots, e\left(t_{k-N}\right)\right](1.12 b)
$$

(A.1) Special case: Static PFM (SPFM) ($N=0$):

$$
\begin{equation*}
t_{k}=t_{k-1}+f_{t}\left[e\left(t_{k}\right)\right] \tag{1.13a}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{k}=f_{b}\left[t_{k}, e\left(t_{k}\right)\right] \tag{1.13b}
\end{equation*}
$$

Examples of SPFM:

(A.1a) Ross' SPFM (Ross, 1949)
$t_{k}=t_{k-1}+K \cdot e\left(t_{k}\right) \quad \begin{gathered}\text { (defined for } \\ \text { nonnegative }\end{gathered}(1.44 a)$ nonnegative and continu-

$$
\begin{equation*}
b_{k}=1 \tag{1.14b}
\end{equation*}
$$

${ }^{11}$ See Willems (129), p. 26.
12 Note that $f_{t}\left[e\left(t_{k}\right)\right]=1 / f\left[e\left(t_{k}\right)\right]$, where $f\left[e\left(t_{k}\right)\right]$ is as defined by (1.2).
(A.1b) Linear PFM (LPFM)

$$
\begin{array}{ll}
t_{k}=t_{k-1}+\frac{1}{K e\left(t_{k}\right)} \quad \begin{array}{l}
\text { (defined (1.15a) } \\
\text { for } \\
\text { positive } \\
\text { inputs })
\end{array} \\
b_{k}=1 & \text { (1.15b) } \tag{1.15b}
\end{array}
$$

(A.2) Special case: Finite-memory PFM (FMPFM of order 1.

Examples of FMPFM of order 1:
(A.2a) PFM of the first type (Kuntsevich and Chekhovoi, 1967, (75))

$$
\begin{align*}
& t_{k}=t_{k-1}+f\left[e\left(t_{k-1}\right)\right] \\
& b_{k}=\left\{\begin{array}{rll}
1 & \text { for } & e\left(t_{k}\right)>s \\
0 & \text { for } & \left|e\left(t_{k}\right)\right|<s, \quad s>0 \\
-1 & \text { for } & e\left(t_{k}\right)>-S
\end{array}\right. \tag{1.16b}
\end{align*}
$$

(A.2b) Amplitude dependent PFM (Clark and Noges, 1966, (27))
t_{k} is given by eq. (1.16a) with

$$
f(e)= \begin{cases}T_{N}-\frac{e}{S}\left(T_{N}-T\right) & \text { for }|e|<S \tag{1.17a}\\ T & \text { for }|e|>S\end{cases}
$$

where T and T_{N} are positive constants and,

$$
\begin{equation*}
b_{k}=\operatorname{sgn} e\left(t_{k}\right) \tag{1.17b}
\end{equation*}
$$

$$
\begin{gather*}
\text { (A.2c) } \delta \text {-modulation }{ }^{13} \\
t_{k}=t_{k-1}+T \tag{1.18a}
\end{gather*}
$$

$$
\begin{equation*}
b_{k}=\operatorname{sgn} e\left(t_{k}\right)-e\left(t_{k-1}\right) \tag{1.18b}
\end{equation*}
$$

Note that here the pulse-output is periodic; the modulation affects only the pulse-polarities.
(B) Partial-Reset PFM (PRPFM) :

$$
\begin{align*}
& t_{k}=\min \left\{t \mid t>t_{k-1}+T_{0} \text { and }|z(t)| \geq s\right\} \tag{1.19a}\\
& b_{k}=\operatorname{sgn} z\left(t_{k}\right) \tag{1.19b}
\end{align*}
$$

where, for a PRPFM with a linear $T F, z(t)=\underline{c}(t)^{T} \underline{x}(t)$, where the state \underline{x} of the $T F$ consists of two componentvectors, \underline{x}_{1}, and \underline{x}_{2}, such that \underline{x}_{1} is reset to a vectorvalue $\underline{\alpha}$ during pulse emission, i.e.,

$$
\begin{align*}
\underline{x}(t)= & {\left[\begin{array}{l}
\underline{x}_{1}(t) \\
--- \\
\underline{x}_{2}(t)
\end{array}\right]=\emptyset\left(t, t_{k-1}\right)\left[\begin{array}{l}
\underline{\alpha} \\
\overline{x_{2}}\left(t_{k}\right)
\end{array}\right]+} \\
& +\int_{t_{k-1}}^{t} \emptyset(t, \tau) \underline{b}(\tau) \underline{e}(\tau) d \tau \tag{1.19c}
\end{align*}
$$

The other states of the TF represented by $\underline{\underline{X}}_{2}$, are not. reset.

[^4](B.1) Complete-reset PFM (CRPFM):

CRPFM was introduced in subsection 1.2.3. It may be considered as a special case of partial-reset PFM where $\underline{x}_{1}=\underline{x}, \underline{x}_{2}=0$ and $\underline{\alpha}=\underline{0}$ Therefore, the relations for t_{k} and b_{k} are given by (1.19a) and (1.19b), respectively. The expression for $z(t)$ becomes

$$
z(t)=\int_{t_{k-1}}^{t} \underset{c}{c}(t)^{T} \not \underline{(t, \tau) \underline{b}(\tau) \underline{e}(\tau) d \tau, \quad(1,20 a), \quad(\tau)}
$$

which, more generally, can be written as

$$
\begin{equation*}
z(t)=\int_{t_{k-1}}^{t} f[e(\tau), t, \tau] d \tau \tag{1.7}
\end{equation*}
$$

Examples of CRPFM:
(B.1a) Integral PFM (IPFM) (Jones, Meyer and Li, 1961, (64))

$$
\begin{equation*}
z(t)=\int_{t_{k-1}}^{t} e(\tau) d \tau \tag{1.4}
\end{equation*}
$$

(B.1b) Modified IPFM (Bomb and Ciscato, 1967, (11) $)^{14}$

In this case, eq. (1.19a), defining the impulseinstants is modified to

$$
\begin{equation*}
t_{k}=\min \left\{t \mid t>t_{k-1} \text { and } z(t)=f\left(t-t_{k-1}\right)\right\} \tag{1.21}
\end{equation*}
$$

i.e., the threshold level is dependent on $\left(t-t_{k-1}\right)$. The equations for the pulse polarities b_{k} and the output of the TF, $Z(t)$ are the same as those for IPFM.
(B.1c) Relaxation PFM (RPFM) (Meyer, 1961, (93))

$$
\begin{equation*}
z(t)=\int_{t_{k-1}}^{t} e^{-a(t-\tau)} e(\tau) d \tau \tag{1.6}
\end{equation*}
$$

where a is a constant.

$$
\begin{align*}
& \text { (B.1d) Sigma PFM (EPFM) }{ }^{15} \text { (Pavlidis and Jury, } \\
& \text { 1965, (101)) } \\
& z(t)=\int_{t_{k-1}}^{t}\{e(\tau)-g[z(\tau)] d \tau\} \quad \text { (1.22) } \tag{1.22}
\end{align*}
$$

(B.1e) Discrete RPFM ${ }^{16}$ (Shortle and Alexandro 1966, (116))

This is a discrete appoximation of RPFM (See Fig. 1.7a); output pulses of the modulator are allowed to
$14_{\text {Based }}$ on experimental evidence, Bombi and Ciscato claim that a feedback system employing the modified IPFM can have a better transient response without sacrificing noise immunity (11).
${ }^{15}$ Pavlidis later used the aame name (i.e., $\Sigma P F M$) for any process in which a dynamic system emits an impulse whenever any one of its variable (from a specified group) exceeds a threshold value (in general, time-varying) associated with that variable (103).

(a)

(b)

Figure 1.7 Discrete pulse frequency modulators:
(a) Discrete RPFM (also called Discrete EPFM) of Shortle and Alexandro (116).
(b) Discrete RPFM employed by Monopoli and Wylie (128).
occur only at discrete intervals of time.

$$
\begin{gather*}
t_{k}=t_{k-1}+T(T \text { is a fixed sampling interval) (1.23a) } \\
z\left(t_{k}\right)=e^{-a T} z\left(t_{k-1}\right)-b_{k-1} S+\int_{t_{k-1}}^{t_{k-1}+T} e^{-a\left(t_{k}+T-\tau\right)} e(\tau) d \tau \tag{1.23b}\\
b_{k}= \begin{cases}M \text { for } z\left(t_{k}^{-}\right)>S \\
0 \text { for }\left|z\left(t_{k}^{-}\right)\right|<S \\
-M \text { for } z\left(t_{k}^{-}\right)<-S\end{cases}
\end{gather*}
$$

Shortle and Alexandro call this modulation discrete EPFM. Note that the discrete RPFM is also a nonlinear pulse amplitude modulator. A slightly different version of the discrete RPFM has been studied by Wylie (128), in which the dead zone characteristic is modified and a saturation type nonlinearity is connected in series with the modulator (see Fig. 1.7b).

1. 3 The Neuron and Relation of CRPFM to Neural Modeling

In Section 1.1 it was mentioned that information transmission in the nervous system may be expressed in terms of PFM. For the benefit of uninitiated reader, it is appropriate to digress slightly and provide some brief explanation about the neuron and its properties.

The fundamental unit of the nervous system is the
neuron (nerve cell). It can be shown that the CRPFM exhibits many of its properties. The objective in this section is to discuss this point, without attempting to give details of a CRPFM model for the neuron.

The neuron, like the other cells has a body with cytoplasm, contains a nucleus and is surrounded by a polarizable membrane ${ }^{16}$. Its structure shows a remarkable adaptation to its special task, generally posessing several relatively short projections called dendrites (see Fig. 1.8) that carry impulses to the cell body and a longer projection called an axon ${ }^{17}$ that carries impulses to

Fig. 1.8 Diagram of a neuron.

[^5]other neurons or neurally activated structures, e.g., muscles and glands. Hundreds of nerve fibrils from other neurons terminate on presynaptic terminals which lie on the dendrites and the cell body (or, soma) at the "synapse".

During the "resting state" the permeability of the cell membrane to sodium ions is low, and the permeability to potassium ions is high; there is a greater concentration of sodium ions in the extracellular fluid and a greater concentration of potassium ions in the intracellular fluid. The equilibrium is maintained by a molecular "ionic pump". The ionic charge distribution is such that the inside of the cell is maintained at a potential of -70 mV with respect to the outside.

If there is a suitable external stimulation (electrical,mechanical or chemical), the permeability of the cell membrane to sodium ions temporarily increases. As a result sodium ions rush inside the cell, increasing the somatic potential (membrane potential) up to 30 mV with respect to the extracellular fluid. After the per-

[^6]turbation, the permeability of the cell membrane soon returns to its original state as the extra sodium ions are pumped out. This whole activity lasts about 15 msecs and.. is known as an action potential. Once it is started at any point on the mebrane of a normal fiber, the action potential will travel as a depolarizing wave over the entire fiber. The critical potential for this firing makes an "all or nothing" law for neural activity.

Except for sensory neurons, en action potential is usually triggered by stimulation of the presynaptic terminals. A neural impulse arriving at a presynaptic terminal causes automatic "emptying" of some chemical (excitatory transmitter substance) which locally increases the permeability of the cell membrane to sodium ions and sodium ions rush inside the cell, thereby effecting a temporary increase in the somatic potential. This produces the excitatory post synaptic potential, EPSP. If the resulting somatic potential is above a certain level, (the threshold for excitation of the neuron) which is about 10 mV above the resting potential) an action potential is initiated.

The EPSP caused by stimulation of a single synaptic terminal is not sufficient to trigger an action potential, unless the stimulation is continuous. However, the effect
of stimulation of several excitatory presynaptic terminals on the postsynaptic potential is additive and when a sufficient number of excitatory synaptic terminals are excited simultaneously, an action potential is activated. This property is called spatial summation.

The post synaptic potential can also be incressed above the threshold value necessary for starting an action potential if a single presynaptic terminal is made to discharge successively. This phenomenon is called temporal summation.

If the EPSP is below the threshold potential, its effect is slowly neutralized. Meanwhile, the excitation of the neuron becomes easier to effect; a neural impulse can be triggered by the addition of smaller number of excitatory discharges. This property is known as faciliとation.

Following an impulse emission, the neuron returns to its "resting state" in about 50-200 msecs. To initiate an action potential before this time, the post synaptic potential must be increased to a level much greater than the normal threshold value, i.e., the neuron is in the relative refractory state. Immediately following a new impulse emission for about 0.5 msecs a new impulse cannot be generated. This period is known as the absolute ref-
ractory period of the neuron.

Abstract

There are also some synaptic terminals that release inhibitory transmitters which probably cause an increase in the permeability of the cellular membrane to potassium (not to sodium) ions. As a result, potassium ions rush outside of the cell and the postsynaptic potential decreases. Thus, the effect of the inhibitory presynaptic terminals is to lower the somatic potential which in turn means activation of an action potential becomes more difficult.

Although the details of the molecular events taking place in the generation of an action potential in a neuron are still not well understood, specific models based on experimental studies have been developed which account for many observed phenomena (namely, changes in sodium and potassium conductances, all or nothing law, spatial and temporal summation, refractoriness, facilitation, etc.) Hodgkin and Huxley (59) ${ }^{18}$. These models are described by highly nonlinear differential equations and their use for the study of the behaivor of networks of

[^7]interconnected neurons appears to be too complicated to be feasible, except for simple networks containing one or two neurons. Therefore, in order to study effectively the behavior of neural networks containing several neurons one has to make resonable simplifying assumptions. An alternative is the use of simulation studies; this has been done in the past by many investigators but provides only limited insight (55).

The most important characteristic of a neuron is its all-or-nothing response. This has been the basis of "formal" (or binary) neurons first introduced by McCulloch and Pitts (92); specifically, it was assumed that (a) the spatial summation is linear, (b) excitation can be denoted by a positive weight and inhibition by a negative weight, (c) the refractory period is constant and (d) the threshold is time invariant. A neural network consisting of "formal" neurons then becomes essentially a network consisting of interconnections of unit delays and binary elements. Such systems have been studied in automata theory (see Section 4.1). In the model of McCulloch and Pitts, temporal summation, relative refractoriness, facilitation, synaptic and axonal delays have been neglected. A similar formulation has also been used by Caianiello and associates $(2,18,19,20,33)$.

A more complete neural model can be given in terms of the CRPFM described in the previous section. The CRPFM exhibits many of the properties of the neuron. Note that the CRPFM also has the properties of threshold to excitation and the all-or-nothing response. Spatial summation can easily be accounted for by having a multiinput TF. The output of the TF corresponds to the somatic potential; the TF must be chosen such that "excitatory" stimulation increases the "somatic potential" while "inhibitory" stimulation decreases it. Facilitation and temporal summation is inherent in CRPFM since the effect of any input will continue for some time due to dynamics of the TF'. To account for relative refractoriness, a negative feedback to the input of the TF can be used; this was suggested by Pavlidis (102) for his RPFM model for a neuron. By selecting a suitable TF it is also possible to account for accomodation ${ }^{19}$.

Some investigators believe that stochastic activity plays an important role in neural behavior and resort to stochastic models (4, 46,125). This is mainly because in experimental studies neural activity appears to be
${ }^{19}$ This means that the neuron is more difficult to excite by slowly varying signals than by relatively fast signals (50), p. 62.
very irregular ${ }^{20}$. However, a PFM system can also exhibit similar behavior without noise present or random changes in its parameters (102). Therefore, a deterministic neural model which employ a CRPFM is capable of simulating also the spontaneous activity of a neural circuit.

1.4 Review of Previous Investigation on PFM

After the Second World War the subject of nonlinear control has become a very active research area and many new techniques for the analysis of nonlinear systems have been developed. Especially, stability of single-loop nonlinear feedback systems has been studied extensively. PFM systems consisting of a single modulator and a linear plant in a single-loop feedback configuration benefited from these developments; after its introduction into control systems by Meyer and $\operatorname{Li}(90,93)$, most of the new techniques were applied to these systems.

Due to nonlinearity and memory characteristics, PFM control systems are difficult to study analytically. However, the total number of papers on PFM, presently exceeding ninety gives an indication of the activity in this

[^8]research orea. The literature on PFM can be divided into four main groups: (i) stability, (ii) periodic motion, (iii) optimal control, and (iv) statistical properties. In the following, each group will be reviewed in chronological order.
1.4.1 Stability. A majority of the research on PFM is devoted to the important area of stability. One of the basic approaches used in most of these works is Lyapunov's second method (22, 23, 25, 27, 38, 72, 75-80, 103, 104). This will be discussed first.

Farrenkopf, et. al. (38) were the first to use Lyapunov's second method in stability studies of PFM control systems. For a satellite attitude control system consisting of a plant with double integration and an IPFM, they applied a discrete version of a Lyapunov theorem given by LaSalle and Lefshetz (83) (based on Okamura and Yoshizawa's work) using a quadratic Lyapunov function, and showed that
(i) the system is asymptotically stable in the large to a set U_{0}, enclosing the equilibrium condition, and
(ii) all ultimate staties of the system must eventually be within a set V_{0}, enclosing the origin of the state-space (implying nonexistence of higher-order limit cycles).

Abstract

Clark and Noges (27) extended this work to include inner bounds to limit cycle motion and applied the result to obtain both inner and out.er bounds in a single-loop amplitude dependent PFM system (see Section 1.2.4), using a quadratic Iyapunov function.

Pavlidis (103, 104) extended Lyapunov's direct method for the investigation of stability of:a class of discontinuous dynamical systems -which he defined as a generalization of PFM systems- by selecting a positive definite function which was constant or decreasing along the trajectories of the system when no pulses are emitted (to check whether the emission of pulses will stop in finite time) and decreasing during pulse emission (to check whether the system will come to a prescribed region).

Jury and Blanchard (65) used a theorem similar to that of Farrenkopf et. al. (38) to study asymptotical stability in the Lagrange sense of IPFM control systems.

In the aforementioned publications, sufficient conditions for stability were stated in terms of conditions on the Lyapunov functions; some simple examples were included for demonstration of the theorems, but no method for constructing of a Lyapunov function, allowing direct estimation of stability regions in the parameter space of the system was presented ${ }^{21}$. Kuntsevich and Chekhovoi
(75), again using a discrete version of the Lyapunov theorem of LaSalle and Lefshetz, obtained such a method for a single-loop system containing a PFM of the first type (see Section 1.2.4) which they defined as a modulator in which the pulse frequency is a function of the discrete values of the error signal. However, their method required several complex manipulations, making it impossible to analyze the stability condition in a general form.

In a later paper, Kuntsevich and Chekhovoi (76) utilizing a system containing two modulators, demonstrated how the method of the previous paper could be extended to multi-modulator systems. This was followed by another paper by Chekhovoi (22) in which the stability conditions of (75) were presented in a more managable form.

King-Smith and Cumpston (72) used Lyapunov's second method with a quadratic Iyapunov function to determine boundedness of motion in a single-loop IPFM feedback system with a stationary linear element and showed that the boundedness of motion depended on the stability of the equivalent linear system ${ }^{22}$.
${ }^{21}$ Pavlidis (103) has presented certain results concerning stability of single-loop PFM systems; however, Kuntsevitch and Chekhovoi (79, 25), using an example, show that it is erronous.
${ }^{22}$ This was shown previously also by Meyer (93); he demonstrated that as the input to an IPFM becomes very

A similar result was later obtained by Chekhovoi (23) for a more general PFM system in which a hysterisis type nonlinearity was assumed to preceed a PF modulator such that the pulse frequency was bounded. For a PFM system with an asymptotically stable linear part, the motion was shown to be bounded. This result includes a previous frequency domain stability condition of Gelig (41) as a special case. The results of (22) were later extended to RPFM systems (79).

Varadarajan used the same theorem employed earlier by Kuntsevitch and Chekhovoi (75) to determine the conditions such that the state trajectory of a single-loop ORPFM feedback system with an asymptotically stable linear, time-invariant $T F$ and plant will enter into a region in which the modulator cannot fire. The condition obtained is the same given previously by Pavlidis (103) (see also footnote 21).

Kuntsevitch and Chekhovoi recently published extensions of their work on stability with certain improve-

[^9]ments; Kuntsevitch (80) for single-loop feedback systems with pulse-width modulation, or with "PFM of the first kind" (see Section 1.2.4), and Chekhovoi for single-loop CRPFM systems.

In general, Lyapunov methods are difficult to use, especially for higher order systems. An alternative is Popov's frequency domain method. Popov's theorem (or most of its generalizations) cannot be applied directly to PFM systems because of the fact that a PF modulator generates pulses having a variable sampling interval which is a function of the input signal. Dymkov (35) was first to apply Popov's theorem to a single-loop RPFM feedback system by representing the RPFM in the form of an equivalent relay system having a hysterisis type nonlinearity. Essentially the same result was independently obtained by Monopoli and Wylie (95) ${ }^{23}$

Gelig (41), following steps similar to that used in the derivation of Popov's theorem, gave a frequency domain stability criteria for a more general PFM system containing an hysterisis type nonlinearity in series with a PF modulator, such that the pulse frequency was bounded. In

[^10](41), he employed the same approach, for a system containing several "pulse elements" to derive frequency domain stability criteria. These "puise elements" were introduced for modelling pulse frequency modulators (type I or ORPFM, discussed in Section 1.2.4) or pulse-width modulators; however no consideration was given to the pulse emission law.

Popov's theorem was extended by Typskin for nonlinear sampled data systems. In order to apply this extension to PFM systems, Shortle and Alexandro (116) defined a discrete approximation to an RPFM (see Section 1.2.4) such that it had an equivalent representation in terms of a dead zone nonlinearity and a PAM (sampler). Later, Kan and Jury (68) made an attempt to apply Popov's theorem to RPFM systems, directly; however, as a result of a certain transformation used in the process, the modulator lost its resetting property ${ }^{24}$. Chekhovoi's attempt at the same problem was succesful; he used Yakubovitch's extension of Popov's theorem for systems with hysterisis type nonlinearities (24).

In this area, Gelig recently published three interes-
${ }^{24}$ This was pointed out by Kuntsevich in a private communication to the authors of (68).
ting papers; in the first (43), he presented frequencydomain stability criteria for a single-loop RPFM feedback system, in the second paper (44), the results of the first paper were generalized to multimodulator systems. In the third paper (45), systems with "PFM of the first type" were considered. The method used in these papers is essentially the same employed in his previous work $(41,42)^{25}$.

Some investigators have used a different approach and made direct use of the basic functional properties of the system equations to obtain stability conditions. Among them, Skoog and Blankenship (121), determined a simple and useful condition for BIBO stability of a single-loop CRPFM feedback system with a linear stationary plant, based on a theorem of Zames (130). The condition is of the form:

$$
\frac{M \tau}{S} \int_{0}^{\infty}|g(t)| d t<1
$$

where, $g(t)$ is the impulse response of the linear plant, S is the threshold of the modulator and M and τ represent the amplitude and the duration of the pulses, respectively.

[^11](the modulator was assumed to emit rectangular pulses). This result was also obtained independently by Meyer and generalized by Guy [(48), p. 47] to a feedback system containing two IPFM's in a single feedback loop.

Interestingly, another independent investigator, Kan (69), (for an IPFM feedback system) also obtained the same condition using a somewhat different approach.
1.4.2 Periodic motion in PFM systems. Due to the abundance of different possible modes of periodic motions peculiar to PFM systems ${ }^{26}$ this topic has even been given some consideration. For periodic motion in single-loop IPFM systems where the modulator emits equally spaced pulses of equal polarity, Meyer (93) obtained a closed form expression for the period and investigated its stability by linearizing the system about this motion. He also extended this work to cases where the pulse pattern was more complex and obtained certain necessary conditions for the existence of periodic motion. These conditions have been verified by King-Smith and Cumpston (71) using an independent approach. Some of those

[^12]```
results have also been reported by Varadarajan and Pai (127).
```

A practical method for studying periodic motion is the describing function method which is also useful for stability analysis. It has been applied to single-loop PFM systems by a number of investigators.

Li (90), by studying the periodicity of output pulse distribution under sinusoidal excitation, derived the deacribing function of the IPFM from the fundamental component of the Fourier series of the periodic pulse train and applied deacribing function methods for stability analysis. Pavlidis and Jury (101) instead of assuming a sinusoidal wave as an input to the modulator, assumed a square wave and determined a "quasi-describing function" from the ratio of the output fundamental sinusoid to the input fundamental component of the square wave.

Dymkov, in (36) compared the describing function method and the quasi-describing function method of Jury and Pavlidis and argued that for high order linear plants, the output would resemble a sinusoid rather than a square wave, and recommended the standard describing function technique.

Guy (48) calculated the second and third harmonic content of the single IPFM describing function and showed
that it contained high magnitudes at the lower numbered pulse-patterns; he warned against the use of this method when low numbered pulse-patterns are predicted, unless the linear plant provides exceptionally good low pass filtering. He also calculated the resultant compound describing function for an IPFM feedback system consisting of two modulators and two linear elements in a single loop.
1.4.3 Optimal control. Optimization of PFM systems was first considered by Pavlidis (105). For a singleloop feedback system with a PFM as an error modifier, he used some heuristic arguments and concluded that for the minimum time problem the control function $r(t)$ is of the form $\pm R$, and for the minimum fuel problem -although non-unique- is of the form $0, \pm R$, where $R$ is a constant and the admissible controls are such that $|r(t)|<R$.

Other investigators in this field considered only open-loop control problems. In this case, the objective is to find the (optimal) pulse-instants and pulse-polarities of aseries of PFM pulses (control input to the plant), such that a certain function of the final states of the plant (performance index) is optimized. In particular, Onyshko (92), assuming a linear system of the form $\dot{\underline{x}}=\underline{A} \underline{\underline{x}}+f(u)$ with a performance index $J=\underline{c}^{T} \underline{x}\left(t_{f}\right)$,
used a modified Maximum Principle and Dynamic Programming for the synthesis of optimal control, by restricting the pulse-instants to discrete times $k T(k=0,1,2, \ldots)$, where $t_{f}$ denotes the final time, $c$ is a constant column vector and $T$ is a sampling interval.

Stoep (122), following Onyshko, also restricted the control pulses to discrete times and,considered a performance index consisting the weighted sum of a quadratic terminal state error and fuel consumption. Using an enumerative technique, he determined the optimal performance index. For the ${ }^{\text {c same system, he also considered a more }}$ general mode of operation in which the control is only : magnitude-limited (to the pulse amplitude) and determined the optimal performance index for this mode. For special cases, he demonstrated that the difference between the two values of the performance index is very small.

Onyshko and Noges (99) gave a modified Maximum Principle applicable to open-loop PFM systems with linear plants operating over a finite time interval. For the same problem, Lermentov and Noges (87) presented a geometrical method for determining the regions of initial state (admissible regions) from which the system state could be carried to the origin within a specified time. Lermentov (88) also determined the gradient of a cost function of
the form $J=f\left(\underline{x}\left(t_{f}\right)\right)$ for PFM control inputs to be emploloyed in numerical optimization methods and using a numerical example demonstrated the result to be identical with that obtained by application of the modified Maximum Principle.
1.4.4 Statistical properties. Although it is the predicted high degree of noise immunity ${ }^{27}$ that aroused first interests in PFM, due to complexity arising from the inherent nonlinearity of these systems, it is difficult to obtain conclusive analytical results.

Li, in a chapter in his doctoral dissertation (90), discussed the immunity to channel noise for IPFM telemetry by considering an additive, discretized transmission channel noise consisting of independent and identically distributed pulses with zero-mean and Gaussian-amplitude distribution; the signal noise was measured at the receiving end in terms of the number of false pulses per unit time per unit frequency. Bombi and Ciscato (12), studied the problem of jitter in a relatively simple situation of constant input signal and additive Gaussian
${ }^{27}$ For example, an IPFM is capable of averaging out a high frequency noise of sufficiently small amplitude during each instantaneous pulse period.
noise (additive to the signal input to the PFM); they discussed the conditions under which the probability density of the jitter in IPFM output pulses is quasi-Gaussian and calculated the power spectrum of the output signal.

Hutchinson et. al. ( 60,61 ), calculated the autocorrelation function and the spectral density function of the output of an IPFM and an RPFM for a zero-mean, stationary and normally distributed magnitude unit-white noise input with constant spectral density.

In an interesting, physiologically-oriented paper, Bayly (6), using spectral analysis techniques, demonstrated simple low-pass filtering to be an effective means of demodulating PFM signals and a multichannel system consisting of IPFMs for demodulation and low-pass filters for demodulation to be capable of improving the signal-tonoise distortion ratio over that possible on any one of the channels alone and argued these to be the reasons of Nature's using PFM. Spectral analysis of IPFM was also developed independently by Lee $(84,85)$.

### 1.5 Interconnected System Consisting of CRPFM's and <br> Linear Dynamic Elements: The System Considered

## in This Dissertation

The system considered in this dissertation is shown in Fig. 1.9. The PFM block contains $m$ CRPFM's (m $=1$, 2, ....). The modulator output vector, $\underline{u}(t)$ is applied to a linear dynamical subsystem (IP) whose impulse response matrix is $G(t, \tau)$. A combination of the output vector of the linear part $I P, y(t)$ and an external input vector $\underline{r}(t)$ is fed to the modulator block. $X_{0}(t)$ is the initial condition response vector of the LP which could also include disturbances.

Let $t_{i, j}$ be the instant at which the $i$ th modulator emits its $j$ th pulse and let $K_{i}(t)$ denote the total number of pulses emitted by the ith modulator prior to time $t$ (see Fig. 1.10 for an illustration of these definitions). The operation of the system is given by the relation for the ith timing filter output signal (leading to the ith TD):

$$
\begin{gather*}
y_{i}(t)=y_{0 i}(t)+\sum_{j=1}^{m} M_{j} \sum_{k=1}^{K_{j}(t)} \operatorname{sgn}\left[z_{j}\left(t_{j, k}\right)\right] g_{i j}\left(t, t_{j, k}\right), \\
t_{i, K_{i}}(t)<t<t_{i, K_{i}}(t)+1 \tag{1.24a}
\end{gather*}
$$

and

Figure 1.9 Block diagram of an interconnected system consisting of CRPFM's and linesr dynamical subsystems.


Figure 1.10 An example illustrating the definitions of $t_{i, j}$ and $K_{i}(t)$.

$$
\begin{align*}
z_{i}(t)= & \int_{t_{i, K_{i}}(t)}^{t} f_{i}\left[r_{i}(\tau), y_{i}(\tau), t, \tau\right] \quad d \tau, \quad(i=1, \ldots, m) \\
& t_{i, K_{i}(t)}<t<t_{i}, K_{i}(t)+1 \tag{1.24b}
\end{align*}
$$

Consider some fixed time $t$, and let $t^{f}$ denote the firing time of the next impulse (after time $t$ ) that may be emitted by any one of the $m$ modulators; it is given by

$$
\begin{equation*}
t^{f}=\min _{i=1, \ldots, m}\left\{t \mid t>t_{i, K_{i}}(t)^{+T} 0, i \quad \text { and }\left|z_{i}(t)\right| \geq S_{i}\right\} \tag{1.24c}
\end{equation*}
$$

The identification number of the modulator that has fired at $t=t^{f}$ is then

$$
\begin{equation*}
\ell=\left\{i=1,2, \ldots, m \mid t^{f}>t_{i, K_{i}}(t)^{+T} 0, i \text { and }\left|z_{i}\left(t^{f}\right)\right| \geq s_{i}\right\} \tag{1.24d}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
{ }^{t} \ell, K_{\ell}(t)+1=t^{f} \tag{1.24e}
\end{equation*}
$$

Equations (1.24a)-(1.24e) are the basic equations governing the operation of the PFM system of Fig.1.9.
${ }^{28}$ Note that, for the $i$ th modulator $(i=1, \ldots, m)$, comparison of eq. ( 1.24 b ) with (1.7) yields

$$
f_{i}[e(t), t, \tau]=f_{i}\left[r_{i}(\tau), y_{i}(\tau), t, \tau\right] .
$$

CHAPTER 2

## FINITE-PULSE STABILITY OF INTERCONNECTED SYSTEMS

WITH COMPLETE-RESET PULSE FREQUENCY MODULATORS**

Stability in PFM systems have previously been discussed by several investigators using various approaches, namely, Lyapunov's second method (22, 23, 25, 27, 72, 75$80,103,104$ ), frequency domain method (Popov's method or its generalinations) ( $24,35,41-45,68,95,116$ ), functional analysis approaches (41-45, 69, 121) and linearization techniques (36, 48, 89, 90, 93, 101). Most of these works were, however, restricted to systems containing one or two modulators and only few results, have so far, been presented for multi-modulator systems.

The objective of this chapter is to present stability criteria for the CRPFM system discussed in Section 1.4 which contains an arbitrary (finite) number of CRPFM's. Stability is defined in terms of upper bounds on the number of pulses emitted by each modulator. This definition of finite-pulse stability has physical meaning in that the number of pulses emitted from a modulator is a measure of energy spent by that modulator during the

[^13]operation of the system. Not surprisingly, the concept of finite-pulse stability is related to $I_{1} \cap L_{p}$ output stability ${ }^{1}$.

For a special case of the CRPFM system considered in this work, for an RPFM system ${ }^{2}$ containing several relaxation type PF modulators Gelig (44) recently obtained frequency domain stability criteria. Apart from Gelig, Pavlidis (103) and Kuntsevitch and Chekhovoi (77) also considered stability in multi-modulator PFM systems, both using Lyapunov's second method; however, neither of these papers presented procedures that permit direct estimation of parameter-regions sufficient for stability.

In this chapter, first a Lyapunov method will be discussed. Then, an approach will be presented by which upper bounds are determined for the number of pulses emitted by each modulator. Finiteness of these bounds for all modulators constitutes finite-pulse stability. Sufficient conditions are established for finite-pulse stabi-

[^14]lity. Gelig's frequency domain method is also discussed and the results are compared with respect to effectiveness in terms of size of parameter-regions sufficient for stability, generality (in terms of classes of applicable systems) and ease of application.

## 2. 1 Global Finite-Pulise Stability in PFM Systems

The number of pulses emitted from a modulator is a measure of the energy spent by that modulator during the operation of the system. Therefore, the stability of a PFM system can be related to this variable, which leads to the following definition:

Definition 2.1: A PFM system is called globally finitepulse stable (GFPS) if for every set of initial conditions and for every input $\underline{r}(t) \in L_{1}[0, \infty)^{3}$ the number of pulses emitted by each modulator remain finite as $t \rightarrow \infty$.

Clearly, after all modulators have ceased firing, the plant will remain without input and its motion can be studied independently by standard methods. The following lemma relates the above definition to the concept of $L_{p}$ output stability ${ }^{3}$.

[^15]$$
\|x(t)\|_{p} \triangleq\left(\int_{0}^{\infty}|x(t)|^{p} d t\right)^{1 / p}
$$

Lemma 2.1: If the PFM system of Fig. 1.10 is GFPS and if the components $g_{i j}(t, \tau)$ of the impulse response matrix $\underline{G}(t, \tau)$ as well as the components $y_{0 i}(t)$ of the initial condition response vector $\mathbb{L}_{0}(t)$ for every set of initial conditions are all in $L_{p}[0, \infty)$, then each component $y_{i}(t)$ of the output vector $Z(t)$ is in $L_{p}[0, \infty)$. Proof: Consider the ith component of the output vector of the system

$$
\begin{array}{r}
y_{i}(t)=y_{0 i}(t)+\sum_{j=1}^{m} M_{j} \sum_{k=1}^{K_{j}(t)} \operatorname{sgn}\left[z_{j}\left(t_{j, k}^{-}\right)\right] \cdot g_{i j}\left(t, t_{j, k}\right) \\
\quad(i=1,2, \ldots, m) \tag{2.1}
\end{array}
$$

Applying Minkowski's inequelity (triangle inequality in $L_{p}$-spaces) to eq. (2.1) yields

$$
\begin{array}{r}
\left\|y_{i}(t)\right\|_{p} \leq\left\|y_{O i}(t)\right\|_{p}+\sum_{j=1}^{m} M_{j} \sum_{k=1}^{K_{j}(\infty)}\left\|_{i j}\left(t, t_{j, k}\right)\right\|_{p} \\
(i=1,2, \ldots, m) \tag{2.2}
\end{array}
$$

From this inequality it immediately follows that when $K_{j}(\infty)<\infty$ then $y_{0, i}, g_{i j} \in L_{p}[0, \infty)$ implies $y_{i} \in I_{p}[0, \infty)$.
$\|x(t)\|_{p}$ is known as the $\underline{L}_{p}$-norm of the function $x(t)$. The space $I_{\infty}[0, \infty)$ is defined as the collection of all measurable functions which are bounded on $[0, \infty)$. The integration is not necessarily restricted to the positive real line $[0, \infty)$ but can be any subset of the set of real numbers.

For a discussion of system stability in terms of Ipspaces see, for example, Willems (129).

### 2.2 Lyapunov's Second Method

Let the continuous part (plant) ${ }^{4}$ be of order $n_{p}$ and the timing filters of modulators $i$ be of order $n_{t i}$ ( $\mathrm{i}=1,2, \ldots, \mathrm{~m}$ ). Let

$$
\begin{equation*}
x_{p}(t)=\left[x_{p, 1}(t), x_{p, 2}(t), \ldots, x_{p, n_{p}}(t)\right]^{T} \tag{2.3a}
\end{equation*}
$$

be the state vector of the $L P$ and let

$$
\begin{array}{r}
\underline{x}_{t}^{i}(t)=\left[x_{t, 1}^{i}(t), x_{t, 2}^{i}(t), \ldots, x_{t, n_{t i}}^{i}(t)\right]^{T} \\
\\
(i=1,2, \ldots, m)(2.3 b)
\end{array}
$$

be the state vector of the TF of the lith modulator ( $i=1,2, \ldots, m$ ). Let the combined state vector of the total system be denoted by

$$
\underline{\underline{x}}(t)=\left[\begin{array}{c}
\underline{x}_{p}(t)  \tag{2.3c}\\
\cdots \frac{p}{1}(\cdots \\
\underline{x}_{t}(t) \\
\cdots \cdots \\
\underline{x}_{t}^{2}(t) \\
\cdots \cdots \\
\vdots \\
\underline{x}_{t}^{m}(t)
\end{array}\right]
$$

Let $\underline{w}_{j}^{0}$ be a possible state $\underline{x}$ occuring immediately after impulse emission of the $j$ th modulator. Let $w_{j}^{1}$ be the

[^16]state x reached immediately after modulator j fires the next time. These definitions imply that $w_{j}^{0}$ and $w_{j}^{1}$ both belong to the set
\[

$$
\begin{gather*}
\mathscr{U}_{j}=\left\{\underline{w} \mid \underline{x}_{p} \in E^{n_{p}} ; \quad \underline{x}_{t}^{i} \in\left\{\underline{x}_{t} \in E^{n_{t i}}| | z_{i}(t) \mid<s_{i},\right.\right. \\
\left.t_{j, k}<t<t_{j, k+1}, i \neq j\right\},(i=1, \ldots, m) ; \underline{x}_{t}^{j}=0, \\
\left.t=t_{j, k}, t_{j, k+1}, \cdots\right\} \tag{2.4}
\end{gather*}
$$
\]

The following theorem holds:
Theorem 2.1: If there exists a positive scalar function $\mathrm{V}(\underline{\mathrm{x}})$ and a constant $\mathrm{e}>0$ such that for all $\mathrm{j}=1, \ldots, \mathrm{~m}$ and for every $w_{j}^{0} \in w_{j}$ and every $w_{j} \in W_{j}$,

$$
\begin{equation*}
v\left(\underline{w}_{j}^{0}\right)-v\left(\underline{w}_{j}^{1}\right)>\epsilon \tag{2.5a}
\end{equation*}
$$

then the CRPFN system of Fig. 1. 9 is GFPS.
Proof: Consider the $j$ th modulator. Note that (2.5a)
implies

$$
v\left[\underline{\underline{x}}\left(t_{j, k}^{+}\right)\right]-v\left[\underline{\underline{x}}\left(t_{j, k+1}^{+}\right)\right]>\epsilon
$$

from which the following inequality is obtained

$$
v\left[\underline{\underline{x}}\left(t_{j, K_{j}}^{+}\right)\right]<v\left[\underline{\underline{x}}\left(t_{j, 0}^{+}\right)\right]-K_{j} \epsilon
$$

where $K_{j}$ represents the total number of impulses emitted by the $j$ th modulator as $t \rightarrow \infty$. Assume that $V\left[\underline{\underline{x}}\left(t_{j, 0}^{+}\right)\right]$ is finite. Then $K_{j}$ must also be finite, otherwise the
above inequälity yields $V\left[\underline{x}\left(t_{j, K_{j}}^{+}\right)\right]<-\infty$, which is a contradiction since $V$ is $a$ positive function.
(QED).
Condition (2.5a) of Theorem 1 can be replaced by stronger conditions, such as the following:

$$
\begin{equation*}
V\left(\underline{w}_{j}^{0}\right)-V\left(\underline{w}_{j}^{1}\right)>\epsilon \tag{2.5b}
\end{equation*}
$$

where $\underline{w}_{j}^{1}$ is the state immediately after emisaion of the next impulse following emission of modulator $j$ (Note that, after firing of modulator $j$, the next impulse may be emitted by any of the modulators, not necessarily by modulator $j$ ).

A still stronger condition is the following:

$$
\begin{align*}
& \frac{d}{d t} V[\underline{x}(t)] \leq 0 \text { for } t \in\left(t_{0}, t_{1}\right), \quad V \underline{x}\left(t_{0}\right) \in W_{j}^{-} \\
& V\left[\underline{x}\left(t_{1}^{-}\right)\right]-V\left[\underline{x}\left(t_{1}^{+}\right)\right]>\epsilon \tag{2.5c}
\end{align*}
$$

where $t_{0}$ represents an emission-time of modulator $j$ and $t_{1}$ is the time of emission of the next impulse (by any modulator) after time $t_{0}$. Theorem 1 with condition (2.5c) corresponds essentially to one presented by Pavlidis (103)?

[^17]Example 2.1: Consider the simple interconnected PFM system consisting of two RPFM's and an integrator, shown in Fig. 2.1. Note that $x_{t}^{1}(t)=z_{1}(t), x_{t}^{2}(t)=z_{2}(t)$, $\underline{x}=\left[x_{p}, x_{t}^{1}, x_{t}^{2}\right]^{T}$,

$$
w_{1}=\left\{\left[\begin{array}{lll}
x_{p}, & 0, & z_{2}
\end{array}\right]^{T}\left|-\infty<x_{p}<+\infty,\left|z_{2}\right|<S_{2}\right\}\right.
$$

and

$$
w_{2}=\left\{\left[x_{p}, z_{1}, 0\right]^{T}\left|-\infty<x_{p}<+\infty,\left|z_{q}\right|<s_{1}\right\}\right.
$$

Let $V(\underline{x})=x_{p}^{2}$. Consider the first modulator, let $\underline{\underline{x}}(0)=\underline{w}_{1}^{0}=\left[\begin{array}{lll}x_{p}^{1}, & 0, & z_{2}^{0}\end{array}\right]^{T}$. Assume that the next impulse of the system is emitted also by the first modulator. The output of its TF is

$$
z_{1}(t)=\frac{1-e^{-a_{1} t}}{a_{1}} x_{p}^{0}
$$

In this case, noting that $z_{1}(t)$ and $x_{p}^{0}$ have the same signs,

$$
x_{p}^{1}=x_{p}^{0}+M_{1} \operatorname{sgn} x_{p}^{0}
$$

Condition (2.5a) of Theorem 2.1 requires

$$
\left(x_{p}^{0}\right)^{2}-\left(x_{p}^{1}\right)^{2}>\epsilon
$$

or,

$$
M_{1}\left(2\left|X_{p}^{0}\right|+M_{q}\right)<-\epsilon
$$

For $M_{1}>0$, the above inequality becomes $2\left|x_{p}^{0}\right|+M_{1}<0$,


Figure 2.1. A simple interconnected PFM system consisting of two RPFM's and an integrator.


Figure 2.2 Comparison of stability criteria for the CRPFM system of Fig. 2.1.
which is not possible. However, for $M_{1}<0$, it yields $2\left|x_{p}^{O}\right|+M_{1}>0$. But, $\left|x_{p}^{0}\right|>a_{1} S_{1}$ (otherwise no pulse emission would have taken place). Therefore, $M_{1}$ must be selected such that

$$
\begin{equation*}
0>M_{1}>-2 a_{1} S_{1} . \tag{2.6a}
\end{equation*}
$$

Similarly, for the second modulator, the same argument gives

$$
\begin{equation*}
0>M_{2}>-2 a_{2} S_{2} \tag{2.6b}
\end{equation*}
$$

Now assume that successive impulses of the system are emitted by the second modulator, before the first modulator starts firing again. Let $t_{2, j}$ be the instant when the second modulator emits its jth impulse, after $t=0$. Then, for $0<t<t_{2, j}$,

$$
z_{2}(t)=\left(z_{2}^{0}-\frac{x_{p}^{0}}{a_{2}}\right) e^{-a_{2} t}+\frac{x_{p}^{0}}{a_{2}}
$$

Again the sign of the impulse emitted is the same as the sign of $x_{p}^{0}$. Thus, $x_{p}\left(t_{2,1}^{+}\right)=x_{p}^{0}+M_{2}$ sgn $x_{p}^{0}$; therefore since, by (2.6b), $M_{2}<0$, it is:

$$
\begin{equation*}
\left[x_{p}\left(t_{2,1}^{+}\right)\right]^{2}<\left(x_{p}^{0}\right)^{2} \tag{2.7}
\end{equation*}
$$

Generalizing (2.7) from $t_{2,0}^{+}$to $t_{2, j}^{+}$yields:

$$
\begin{equation*}
\left[x_{p}\left(t_{2, j+1}^{+}\right)\right]^{2}<\left[x_{p}\left(t_{2, j}^{+}\right)\right]^{2},(j=1,2, \ldots v-1) \tag{2.8}
\end{equation*}
$$

By a similar argument used in obtaining (2.7), if the next impulse of the system is emitted by the first modulator again, at $t=t_{1,1}$,

$$
\begin{equation*}
\left(x_{p}^{1}\right)^{2}=\left[x_{p}\left(t_{1,1}^{+}\right)\right]^{2}<\left[x_{p}\left(t_{2, v}^{+}\right)\right]^{2} \tag{2.9}
\end{equation*}
$$

Combining (2.7), (2.8) and (2.9),

$$
\begin{equation*}
\left(x_{p}^{1}\right)^{2}<\left(x_{p}^{0}\right)^{2} \tag{2.10}
\end{equation*}
$$

Clearly, the same argument is valid also for the second modulator. Thus, if $M_{1}$ and $M_{2}$ are selected in accordance with relations (2.6a) and (2.6b), respectively, all the conditions of Theorem 1 will be sotisfied and the system under consideration will be GFPS.

Note that, in this case, conditions (2.5b) and (2.5c) are also satisfied. The stability region, determined by inequalities (2.6a) and (2.6b) is shown in Fig. 2.2.

## 2. 3 Direct Finite-Pulse Stability Criteria

The number of impulses, $K_{i}(t)$ emitted by the ith modulator (prior to time $t$ ) in a PFM system ( $i=1, \ldots, m$ ) respresents a measure of the energy spent by the corresponding modulator in the interval $[0, t)$. Therefore, it is desirable to estimate this number directly, without solving the system equations. In the subsequent develop-
ments an upper bound for $K_{i}(t)$ will be determined for the CRPFM system of Fig. 1.9. Existence of these bounds for all modulators and for $t \rightarrow \infty$ implies GFPS.

In this section the following conditions are assumed to be satisfied:

Condition 1: $y_{0 i}(\cdot), r_{i}(\cdot) \in L_{1}[0, t)$, for $i=1, \ldots, m$, Condition 2: there exist functions $g_{i j}^{\prime}(\cdot) \in L_{1}[0, t)$ such that $V t_{1}, t_{2} \in[0, t)$ and $i, j=1, \ldots, m$, $\left|g_{i j}\left(t_{1}, t_{2}\right)\right| \leq\left|g_{i j}^{\prime}\left(t_{1}-t_{2}\right)\right|$, and
Condition 3: there exist finite nonnegative constants

$$
\begin{aligned}
& \alpha_{i} \text { and } \beta_{i} \text { such that } \forall t_{1}, t_{2} \in[0, t) \text { and } \\
& i=1, \ldots, m, \\
& \quad\left|f_{i}\left[r_{i}, y_{i}, t_{1}, t_{2}\right]\right| \leq \alpha_{i}\left|r_{i}\right|+\beta_{i}\left|y_{i}\right|
\end{aligned}
$$

Let $\underline{\underline{k}}(t)$ and $\underline{v}(t)$ be m-dimensional column vectors with elements $K_{i}(t)$ and

$$
\begin{array}{r}
v_{i}(t)=\frac{1}{s_{i}} \int_{0}^{t}\left[\alpha_{i}\left|r_{i}(\tau)\right|+\beta_{i}\left|y_{0 i}(\tau)\right|\right] d \tau  \tag{2.11}\\
(i=1, \ldots, m)
\end{array}
$$

respectively, and let $\underline{H}(t)$ and $\underline{H}^{\prime}(t)$ be mam matrices whose elements in the th row and fth column are

$$
\begin{equation*}
h_{i j}(t) \triangleq \int_{0}^{t}\left|g_{i j}^{\prime}(\tau)\right| d \tau, \quad(i, j=1, \ldots, m) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{i j}^{\prime}(t) \triangleq \beta_{i} \frac{M_{j}}{S_{i}} h_{i j}(t), \quad(i, j=1, \ldots, m) \tag{2.13}
\end{equation*}
$$

respectively. The following fundamental theorem is use-: ful for estimating the upper bounds for the number of pulses emitted by each modulator:

Theorem 2.2: If Conditions 1-3 are satisfied then the vector $k(t)$ of the number of pulses emitted by the modulatows prior to time $t$ satisfies the following matrix inequality

$$
\begin{equation*}
\left[\underline{I}-\underline{H}^{\prime}(t)\right] \underline{k}(t) \leq \underline{v}(t) \tag{2.14}
\end{equation*}
$$

The proof of Theorem 2.2 is given in Appendix A.

For GFPS it is only necessary to show that a sum containing the number of firings of all modulators with positive coefficients remains finite as $t-\infty$. Thus, Theorem 2.3: If Conditions 1-3 are satisfied as $t \rightarrow \infty$ and if the matrix $\underline{P}\left[\underline{I}-\underline{H}_{\infty}^{\prime}\right]$ has a row with all positive elements, where $\underline{P}$ is a nonnegative matrix ${ }^{6}$ and $H_{\infty}^{\prime}=\lim _{t \rightarrow \infty} H^{\prime}(t)$, then the CRPFM system of Fig. 1.10 is GFPS .

Proof: Let $\underline{P}\left[\underset{I}{I}-H_{\infty}^{\prime}\right]=\left[\gamma_{i j}\right]$. Premultiplying both sides of inequality (2.14) (as $t \rightarrow \infty)$ by P yields the inequality

[^18]\[

$$
\begin{align*}
\gamma_{i 1} K_{1}+\ldots+\gamma_{i m} K_{m} \leq p_{i 1} v_{1}+\ldots+p_{i m} v_{m} & <\infty  \tag{2.15}\\
& (i=1, \ldots, m)
\end{align*}
$$
\]

Since $p_{i j}>0$ and $\gamma_{i j}>0$ for some $i$ finiteness of the above inequality implies $K_{j}<\infty$ for $j=1,2, \ldots, m$.
(QED).
Inequality (2.14) restricts the vector $\underline{k}(t)$, which represents the number of impulses emitted by the modulators to a certain region. When the matrix $\left[\underline{I}-\underline{H}^{\prime}(t)\right]^{-1}$ exists and is nonnegative ${ }^{6}$, this region is finite. In this case inequality (2.14) can be transformed into

$$
\begin{equation*}
\underline{\underline{x}}(t) \leq \operatorname{In}\left\{\left[\underline{I}-\underline{H}^{\prime}(t)\right]^{-1} \underline{v}(t)\right\} \tag{2.16}
\end{equation*}
$$

where the notation $\operatorname{In}\{$.$\} stands for the integer part of$ the corresponding vector. Inequality (2.16) determines the upper bounds of the number of pulse emissions as $t \rightarrow \infty$. Let

$$
\begin{equation*}
\underline{\underline{k}}_{\infty} \triangleq \operatorname{In}\left\{\lim _{t \rightarrow \infty}\left[\underline{I}-\underline{H}^{\prime}(t)\right]^{-1} \underline{v}(t)\right\} \tag{2.17a}
\end{equation*}
$$

then $\underline{k}_{\infty}$ is the required upper bound, since

$$
\begin{equation*}
\underline{\underline{k}}(t) \leq \underline{\underline{k}}_{\infty}, \quad \forall t \in[0, \infty) \tag{2.17b}
\end{equation*}
$$

The above result may be stated in terms of the following theorem:

Theorem 2.4: If Conditions 1-3 are satisfied as $t-\infty$ and if the matrix $\left[I-H_{\infty}^{\prime}\right]^{-1}$ is nonnegative then the CRPFM system of Fig. 1. 9 is GFPS.

For large systems it may be cumbersome to invert the $\operatorname{matrix}\left[I-H^{\prime}{ }_{\infty}\right]$. The lemma to be stated next provides means to avoid this inversion.
Lemma_2.2: If the spectral radius ${ }^{7} \lambda(\underline{A})$ of a nonnegative matrix $A$ is smaller than unity, then the matrix $[I-A]^{-1}$ exists and is nonnegative.

The proof of this lemma follows from the identity:

$$
\begin{equation*}
[\underline{I}-\underline{A}]^{-1}=\underline{I}+\underline{A}+\underline{A}^{2}+\underline{A}^{3}+\ldots \tag{2.18}
\end{equation*}
$$

provided $\lambda(\underline{A})<1$ (see Barnett and Storey, p. 60).
Since the matrix $\underline{A}$ is nonnegative, so is $A^{2}, A^{3}, \ldots$ and their sum; hence the proof.

Lemma 2.2. and Theorem 2.3 yield the following corollary:

Corollary 2.1: If Conditions 1-3 are satisfied as $t \rightarrow \infty$ and if $\lambda\left(H_{\infty}^{\prime}\right)<1$, then the CRPFM system of Fig. 1. 9 is GFPS.

With the present computer technology, it is not a very difficult task to calculate the eigenvalues of a matrix ${ }^{8}$. However, the following lemma eliminates this

[^19]need, in most cases.
Lemma 2.3: If $A$ is an mam nonnegative matrix and if
$$
\sum_{j=1}^{m} a_{i j}<1, \quad i=1, \ldots, m
$$
then the matrix $[I-A]^{-1}$ is also nonnegative.

The proof of Lemma 2.3 follows from Gersgorin's therem ${ }^{9}$ and Lemma 2.2. Matrices satisfying conditions of Lemma 2.3 are known as Minkowski-Leontieff matrices ${ }^{10}$.

Corollary 2.1. Lemma 2.3 and Theorem 2.3 lead to the following corollary.

Corollary 2.2: If Conditions 1-3 are satisfied (for $t \rightarrow \infty$ ) and

$$
\sum_{j=1}^{m} h_{i j}^{\prime}(\infty)=\frac{\beta_{i}}{S_{i}} \sum_{j=1}^{m} \int_{0}^{\infty}\left|M_{j} g_{i j}^{\prime}(\tau)\right| d \tau<1
$$

for $i=1,2, \ldots, m$, then the CRPFM system described in Section 1.4 is GFPS.

For example, when applied to a single-loop, single

[^20]RPFM (or IPFM) system with a time-invariant linear element, then either Theorem 2.3 or Corollary 2.2 imposes the condition

$$
\begin{equation*}
\frac{M}{S}\left\|g_{1}\right\|<1 \tag{2.19}
\end{equation*}
$$

where, $\|g\|_{1}=\int_{0}^{\infty}|g(t)| d t$. If there are two RPFM's (or IPFM's) in a single-loop (i.e., $\left.g_{i j}(t)=0, i=1,2\right)$ then Theorem 2.3 yields

$$
\begin{equation*}
\frac{M_{1} M_{2}}{S_{1} S_{2}}\left\|g_{12}\right\|_{1} \cdot\left\|g_{21}\right\|_{1}<1 \tag{2.20}
\end{equation*}
$$

Inequality (2.19) was obtained independently and almost simultaneously by Skoog and Blankenship (121), Kan (69) and (2.20) by Guy (48).

It is important to note that, although Corollary 2.2 is easier to apply than Corollary 2.1, which is in turn easier to apply than Theorems 2.4 and 2.3, they are not equivalent. Therefore, it is recommended to use Corollary 2.2 first and, if it fails, to refer to Corollary 2.1 and then to Theorems 2.4 and 2.3.

In case the linear part is time-invariant and all the elements of its impulse response matrix $\underline{G}(t)$ do not change sign, the matrix $\underline{H}(t)$ becomes the step response matrix and the limit $\underset{t \rightarrow \infty}{\lim } \frac{H}{\infty}(t)$ can be evaluated easily from

$$
\begin{equation*}
\lim _{t \rightarrow \infty} H(t)=\left|\lim _{s \rightarrow 0} G(s)\right| \tag{2.21}
\end{equation*}
$$

where $\underset{f}{G}(s) \triangleq \int_{0}^{\infty} e^{-s t} \underline{G}(t) d t$. The bars $|\cdot|$ are used to infer that the absolute values of each element of the corresponding matrix is to be taken. If only some elements of the impulse response matrix do not change sign, it is still possible to use the same formula for those elements ${ }^{11}$.

It should be noted that all results of this section apply to systems containing single-signed modulators, as well as double-signed modulators. This is due to the absolute value operations used in the derivation of Theorem 2.2 (see Appendix A), which also cause invariance of the results with respect to the "sign" of the feedback. In fact, this is not very surprising since the sign of the feedback can be controlled by the signs of the modulator output pulses.

### 2.3.1 Application to single-loop system with one

 PFM. In order to provide the reader with a basis for comparison, Table 2.1 is presented which summarizes some of the previous stability results applied to simple configurations containing single IPFM or RPFM (24, 25, 43, 69, 72, 79, 12). The tests developed in the pre-${ }^{11}$ It is very easy to determine $h_{i j}(t)$, experimentally. All the necessary equipment is an integrator preceeded by an absolute value circuit. Exciting the system by a pulse with very short duration and measuring the output from the integrator gives $h_{i j}(t)$, directly.
TABLE 2.1

| $20 \cdot 0>1 \mathrm{y} \mid$ | [61] | $810 \cdot 0>8>68 \cdot 0-$ | [tr] $60.0>8>20 \cdot 0-$ | $\begin{array}{r} \left(5 \cdot 0=0_{8}\right) \\ \frac{(2 \cdot 0+6)(1 \cdot 0+8)}{C_{y}} \end{array}$ | (M공) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\ldots$ |  | $\frac{l_{\text {r }}}{C_{Y}}$. | 1 |
| $\begin{aligned} z_{B}<I_{B}<I^{\prime} q \mid \\ \frac{I_{q}}{Z_{B} I_{B}}>\|y\| \end{aligned}$ | [62] |  |  |  | $\begin{gathered} \text { (Ryet) } \\ \frac{6}{1} \end{gathered}$ |
| $20 \cdot 0>1 \mathrm{yi}$ | [22] | $510^{\circ} 0>8>0$ | [tz] 705 $\times 7$ dzo |  |  |
| $l_{\text {b }} \times 191$ | $\begin{gathered} {[621} \\ \cdot{ }^{[72]} \end{gathered}$ |  | $[f t]$ $\quad x>y>l_{r-}$ <br> $[+\tau]$ $0>\forall>l_{B-}$ | $\frac{t_{\mathrm{E}+\mathrm{s}}}{C_{Y}} \sqrt{(\mathrm{~s})_{0}}$ | ज्रपे |
| (69) (181) <br> (61.7) иотятpuos |  |  |  | $\text { (s) } 0$ | $(8)^{0_{5}}$ |

vious section (which coincide with (69) and (121), in the single-modulator case) are easier to apply and give better results in most cases, except when the time constant of the RPFM is appreciably smaller than that of the linear part.

In certain cases it may be possible to transform the CRPFM under consideration to obtain larger parameterregions (sufficient) for stability. An exemple, which is indicated by Table 2.1 and which is frequently encountered is the case where the TF's have time-constants significantly smaller than that of the LP. Clearly, the stability region obtained by direct application of condition (2.19) for the RPFM system considered at the bottom of Table 2.1 is rather conservative. By a simple transformation, however, the effectiveness of the same condition can be improved significantly; this will be demonstrated by the following example.

Example 2.2: Consider the single-loop RPFM feedback system of Fig. 2.3c, which was also used as an example system in Table 2.1 (last entry of the table). The transfer function of the plant and the TF are

$$
\begin{equation*}
G(s)=\frac{A_{0}}{(s+0.1)(s+0.2)} \tag{2.22a}
\end{equation*}
$$

and


Figure 2.3 (a) RPFM with a first order low-pass filter.
(b) Equivalent RPFM system. A CRPFM system in which the dynamics of the LP is much slower than that of the TF.
(d) Equivalent system obtained after transformations indicated in Fig. 2.30 and Fig. 2.3b. Application of Theorem 2.4 to this system yields less conservative results.

$$
\begin{equation*}
G_{0}(s)=\frac{1}{s+a_{0}}, \quad a_{0}>0 \tag{2.22b}
\end{equation*}
$$

respectively. For GFPS, direct application of condition (2.19) yielded

$$
\begin{equation*}
|\mathrm{A}|<0.02 \tag{2.23}
\end{equation*}
$$

By simple block diagram manipulations this system can be transformed into the equivalent form shown in Fig. 2.3d. The transfer functions of the plant and the TF of the equivalent system are

$$
\begin{equation*}
G^{\prime}(s)=\frac{A_{0}}{(s+0.2)(s+0.5)}+\frac{0.4}{s+0.5} \frac{S}{M} \tag{2.24a}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{0}^{\prime}(s)=\frac{1}{s+0.1} \tag{2.24b}
\end{equation*}
$$

respectively. Since the impulse response of the equivalent system does not also change sign, $\|g\|_{1}$ can be easily evaluated from eq. (2.21). Thus, (2.19) yields

$$
\left|10 A+\frac{4}{5}\right|<1
$$

or,

$$
\begin{equation*}
-0.18<A<0.02 \tag{2.25}
\end{equation*}
$$

where, $\quad A \triangleq A_{0} \frac{S}{M}$. Clearly, condition (2.25) is significantly less conservative than condition (2.23).
2.3.2 Application to systems with more than one

PFM. The objective of this section is to stress the
meaning of matrix inequality (2.14). Three examples will be presented to demonstrate the regions described by this inequality. As the first example, a PFM system containing an IPFM with a memoriless nonlinearity and an RPFM is selected with parameters such that this inequality does not provide any information. In the second example, by slighly modifying some of the parameters of the system (thresholds and pulse-strengths of the modulators, in this particular case), boundedness of the number of pulse-emissions are guaranteed. The third example will be presented to show that, even though the conditions of Theorem 2.3 are not satisfied, inequality (2.14) can still provide information relating boundedness of the number of firings of one modulator to that of the other.

For the purposes of Examples 2.3a-2.3c the system of Fig. 2.4, containing one IPFM preceeded by a nonlinearity and one RPFN is considered. It is not difficult to see that Conditions $1-3$ (as $t \rightarrow \infty$ ) are satisfied and that $\alpha_{i}=\beta_{i}=1(i=1,2)$. From eqs. (2.11)-(2.13), the matrix $H_{-\infty}^{\prime}$ is easily computed as

$$
H_{\infty}^{\prime}=\left[\begin{array}{ll}
3\left|M_{1} / S_{1}\right| & 5\left|M_{2} / S_{2}\right|  \tag{2.26}\\
2\left|M_{1} / S_{2}\right| & 4\left|M_{2} / S_{2}\right|
\end{array}\right]
$$

The eigenvalues of the matrix $H_{\infty}^{\prime}$ depend on the values

$M_{1}, S_{1}, M_{2}$ and $S_{2}$ (pulse strengths and thresholds of the modulators).

Example 2.3a (Case Where $\lambda\left(H_{\infty}^{\prime}\right)>1$ ): For $M_{1}=S_{1}=5$ and $M_{2}=S_{2}=1$ (2.22) gives

$$
H_{\infty}^{\prime}=\left[\begin{array}{ll}
3 & 1 \\
2 & 4
\end{array}\right]
$$

The eignevalues of this matrix are 2 and 5. Since 1 is not an eigenvalue, the matrix $\left[\underline{I}-H_{\infty}^{\prime}\right]^{-1}$ exists and is

$$
\left[I-H_{\infty}^{\prime}\right]^{-1}=\left[\begin{array}{rr}
-3 / 4 & 1 / 4 \\
1 / 2 & -1 / 2
\end{array}\right]
$$

However, it contains negative elements and therefore inequality (2.17b) is not applicable. Nevertheless, inequality (2.14) is still valid and is illustrated in Fig. 2.5a. Clearly, in this case it also does not provide any information.

Although the theory developed in this section cannot establish instability, the system of this example does not appear to be stable.

Example 2.3b (Case Where $\lambda\left(\mathcal{H}_{\infty}^{\prime}\right)<1$ ): By either increasing the thresholds or decreasing the pulse strengths, the eigenvalues of the matrix $H_{\infty}^{\prime}$ can be brought into the unit circle. For $S_{1}=S_{2}=1$ and $M_{1}=M_{2}=0.1$,


Figure 2.5 Regions described by inequality (2. 14).
(a) Example 2.3a,
(b) Example 2.3b, and
(c) Example 2.3c.

$$
H_{\infty}^{\prime}=\left[\begin{array}{ll}
0.3 & 0.5 \\
0.04 & 0.4
\end{array}\right] \text { and } v_{\infty}=\left[\begin{array}{l}
50 \\
8
\end{array}\right]
$$

The eigenvalues are inside the unit circle and

$$
\left[I-H_{\infty}^{\prime}\right]^{-1}=\left[\begin{array}{ll}
3 / 2 & 5 / 4 \\
1 / 10 & 7 / 4
\end{array}\right] .
$$

Since all the elements of this matrix are nonnegative, inequality (2.17b) is valid. Let

$$
r_{1}(t)= \begin{cases}10 & \text { for } 0<t<3  \tag{2.27a}\\ 0 & \text { elsewhere }\end{cases}
$$

and,

$$
r_{2}(t)= \begin{cases}1 & \text { for } 0.1<t<5.1  \tag{2.27b}\\ 0 & \text { elsewhere }\end{cases}
$$

and let

$$
y_{0}(t)=\left[\begin{array}{c}
10 e^{-t}+20 e^{-2 t}  \tag{2.27c}\\
6 e^{-3 t}+5 e^{-5 t}
\end{array}\right]
$$

From (2.11), for $t \rightarrow \infty$,

$$
\underline{v}_{\infty}=\left[\begin{array}{r}
50  \tag{2.28}\\
8
\end{array}\right]
$$

Thus, (2.17) yields

$$
\mathbf{k}_{\infty}=\left[\begin{array}{l}
85  \tag{2.29}\\
19
\end{array}\right]
$$

i.e., the first modulator stops after firing at most 85
emissions and the second modulator after at most 19 emissions. It is interesting to compare this bound with the actual numbers of total emissions obtained from a simulation of the system which, for the given conditions, yielded

$$
\underline{k}_{\infty \text { (Actual })}=\left[\begin{array}{l}
82  \tag{2.30}\\
17
\end{array}\right]
$$

Thus, for this example, the bounds on $\underline{k}_{\infty}$ obtained from (2.17a) are rather close to the actual values ${ }^{12}$.

The matrix $\left[\underline{I}-\underline{H}_{\infty}^{\prime}\right]^{-1}$ will be nonnegative if the following inequalities are satisfied:

$$
\begin{align*}
& 1-3\left|A_{1}\right|>0,  \tag{2.31a}\\
& 1-4\left|A_{2}\right|>0, \tag{2.31b}
\end{align*}
$$

and

$$
\begin{equation*}
1-3\left|A_{1}\right|-4\left|A_{2}\right|+10\left|A_{1} A_{2}\right|>0 \tag{2.31c}
\end{equation*}
$$

where $A_{1} \triangleq M_{1} / S_{1}$ and $A_{2} \triangleq M_{2} / S_{2}$. If $A_{1}$ and $A_{2}$ are chosen in accordence with the above relations, the system will be GFPS. This region is plotted in Fig. 2.6 (inside of the circular region).

Example 2.3c (Case Where $\lambda\left(\underline{H}_{\infty}^{\prime}\right)>1$ ): Let

[^21]

Figure 2.6 Comparison of stability criteria for the IPFM system of Fig. 2.9. The region with stars is obtained by Theorem 2.5 (ixample 2.5, Gelig (44)). Inside of the circular region is the stability resion predicted by f heorem 2.4 (Lxample 2.3b, Guicur and Meyer (52)).

$$
H_{\infty}^{\prime}=\left[\begin{array}{ll}
0.8 & 2.0 \\
4.0 & 0.6
\end{array}\right] \quad \text { and } \quad \underline{v}_{\infty}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The eigenvalues of this matrix are greater than 1 in magnitude and the matrix $\left[\underline{I}-\underline{H}_{\infty}^{\prime}\right]^{-1}$ contains negative terms. Thus, inequality (2.16) (as $t \rightarrow \infty$ ) is not applicable. However, inequality (2.14) gives

$$
\left[\begin{array}{cc}
0.2 & -2  \tag{2.32}\\
-4 & 0.4
\end{array}\right] \underline{k}_{\infty} \leq\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The region described by this inequality is shown in Fig. 2.5c. As in Example 2.3a, stability cannot be established for this case. The only information gained form Fig. 2.5c is that if $K_{1} \rightarrow \infty$ then $K_{2} \rightarrow \infty$ and vice-versa, which means that any system instability is associated with continued firing of both modulators.

Satisfaction of Conditions 1-3 (as $t \rightarrow \infty$ ) essentially requires the linear part of the system to be asymptotically stable and the input signals to be absolutely integrable.' In cases, where the linear part contains integration and/or the input signals contain constant parts, GFPS may still exist, provided the TF's provide sufficient filtering. In these cases, Theorem 2.2 and Theorem 2.3 cannot be applied direcly. However, it may be possible to transform the system under consideration in such a way that the conditions of these theorems will be satisfied.

A frequent occurence is an RPFM preceeded by an integrator (see Fig. 2.7a). It can be replaced by an IPFM subsystem as shown in Fig. 2.7b (see Meyer (93), for other possible transformations).

Example 2.4: Consider again the RPFM system of Fig. 2.1 which was treated in Example 2.1. In this case Theorem 2.3 and Theorem 2.4 cannot be applied directly because the LP contains an integrator. $\left(g(\cdot) \notin L_{1}[0, \infty)\right.$ ). However, this system can easily be transformed into the form shown in Fig. 2.7c. The equivalent IPFM system of Fig. 2.7c has the impulse response matrix

$$
\underline{G}(t)=\left[\begin{array}{cc}
\left(1+a_{1} \frac{S_{1}}{M_{1}}\right) e^{-a_{1} t} & e^{-a_{1} t}  \tag{2.33}\\
e^{-a_{2} t} & \left(1+a_{2} \frac{S_{2}}{M_{2}}\right) e^{-a_{2} t}
\end{array}\right]
$$

Thus, relation (2.14) of Theorem 2.2 yields

$$
\left[\begin{array}{rr}
1-\left|1+\frac{M_{1}}{a_{1} S_{1}}\right|\left(1-e^{-a_{1} t}\right) & -\left|\frac{M_{2}}{a_{2} S_{1}}\right|\left(1-e^{-a_{1} t}\right)  \tag{2.34}\\
-\left|\frac{M_{1}}{a_{2} S_{2}}\right|\left(1-e^{-a_{2} t}\right) & 1-\left|1+\frac{M_{2}}{a_{2} S_{2}}\right|\left(1-e^{-a_{2} t}\right)
\end{array}\right] \underline{k}(t) \leq \underline{v}(t)
$$

The matrix $\left[I-H^{\prime}(t)\right]^{-1}$ is nonnegative if

$$
-1<\frac{M_{1}}{a_{1} S_{1}}<0 \text { and }-1<\frac{M_{2}}{a_{2} S_{2}}<0
$$


(a)

(b)

(c)

Figure 2.7 (a) RPFM with an integrator,
(b) Equivalent IPFM system,
(c) Equivalent IPFM system for the RPFM system of Fig. 2.1.

In this case inequality (2.16) is applicable and, since $\underline{Y}(t)$ is finite $\underline{k}(t)$ is finite. This region is shown in Fig. 2.2.

To summarize, in this section upper bounds on the number of pulses emitted by each modulator during the operation of a CRPFM system were determined. Such number is indicative of the amount of energy spent by the corresponding modulator and thus the upper bound of the number of pulses emitted by all modulators represents a measure of stability. Sufficient conditions under which this number is finite were established and were shown to depend on nonnegativity of a certain matrix.

The features of the results of this section are the following.

1) Generality. The conditions apply to PFM systems containing distributed and/or lumped linear parts; the timing filters are allowed to include nonlinearities. The number of loops are not limited to one; the modulators are quite general (not restricted to IPFM or RPFM) and can be single-signed or double signed.
2) Simplicity. Once the $H_{\infty}^{\prime}$ matrix is known, it is relatively easy to apply the stability conditions.

Direct application of Theorems 2.3-2.4 or Corollaries 2.1-2.2 require all linear plants to be asymptotically
stable and all input signals to be absolutely integrable. In some cases where the linear plants contain integration and/or the input signals contain d-c parts, global finitepulse stability may still exist; stability conditions for these cases can be obtained by transforming the system using simple block diagram manipulations (see Example 2.4). Similar transformations cen also be used to obtain less conservative results (see Example 2.2).

Application of the results to a single-loop, singlemodulator system gave a condition which was previously obtained $(69,121)$ and examples yielded stability regions comparable (often better) to those obtained by other methods (such as described in ( $24,43,72,79$ ) ) The same was found to be true in comparison with a recent frequency domain stability criterion for interconnected systems (44). This will be discussed next.

### 2.4 Frequency Domain Criteria

Gelig (44), in a recent paper, obtained frequencydomain stability criteria for a PFM system consisting of m-relaxation type pulse frequency modulators (RPFM's) and a time-invariant linear part. To provide ground for comparison, in this section, a summary of his results is given. The results are also applied to the systems considered in the previous sections.

The system considered by Gelig is a special case of the general CRPFM system of Fig. 1.9 (see Fig. 2.8a); the function $f_{i}()$ is

$$
\begin{array}{r}
f_{i}\left[r_{i}(\tau), y_{i}(\tau), t, \tau\right]=e^{-a_{i}(t-\tau)}\left[r_{i}(\tau)+y_{i}(\tau)\right] \text { (2.35) } \\
(i=1, \ldots, m)
\end{array}
$$

where $a_{i}$ is a positive constant . Also since the LP is time-invariant,

$$
\begin{equation*}
g_{i j}(t, \tau)=g_{i j}(t-\tau),(i, j=1, \ldots, m) \tag{2.36}
\end{equation*}
$$

It is convenient to transform this system into the form shown in Fig. 2.8b. Let $g(s)$ be the Laplace transform of the impulse-response matrix of the linear part of the system, i.e., $\underset{G}{(s)} \triangleq \int_{0}^{\infty} e^{-s t} \underline{G}(t) d t$. Let $\underline{\mathcal{F}}(s)$ be an mxm matrix whose element in the ith row and the jth column is defined by

$$
\begin{equation*}
\sigma_{i j}(s)=\frac{1}{s+a_{i}}\left[S_{i} \delta_{i j}-M_{j} G_{i j}(s)\right] \tag{2.37}
\end{equation*}
$$

$$
(i, j=1, \ldots, m))
$$

where $\delta_{i j}$ is Kronecker's symbol $\left(\delta_{i j}=1\right.$ for $i=j, \delta_{i j}=0$ for $\left.i \neq j\right)$.
It is assumed that the matrix $\underline{\sigma}(s)$ can be represented
in the form

$$
\begin{equation*}
\underline{F}(s)=\underline{X}(s)+\frac{1}{s} \underline{R} \tag{2.38}
\end{equation*}
$$

where $\underline{X}(s)$ is analytic for $\operatorname{Re} s \geq 0$ (i.e., all singularities in the l.h.p.) and $R$ is a constant mxm matrix.


Figure 2.8 (a) The RPFM system considered in Section 2.4 .
(b) Equivalent system ( $\mathrm{TE}_{i}$ is a device that emits a unit impulse whenever the absolute value of its input signal exceeds a threshold value, $S_{i}$ )

Futhermore, it is assumed that $\underline{\underline{r}}^{\prime}(\mathrm{t})=\underline{\underline{r}}(\mathrm{t})+\mathrm{y}_{0}(\mathrm{t})$
(input + initial condition response) is bounded and that
 could contain a constant part, however, the transient part must venish as $t \rightarrow \infty$.

Let $\underline{R}^{\prime}$ be an mxm matrix with the element in the ith row and the $j$ th column defined by

$$
\begin{gather*}
r_{i j}^{\prime}= \begin{cases}r_{i j}, & \text { if } \underline{G}(s) \text { has a pole at } s=0, \\
\underset{s \rightarrow \infty}{ }\left(s G_{i j}(s) \cdot M_{j},\right. & \text { otherwise }\end{cases}  \tag{2.39}\\
\left.\underline{F}_{0}=\lim _{s \rightarrow \infty} s\right)(s) \tag{2.40}
\end{gather*}
$$

${ }^{13}$ The case where all the poles of the matrix $\mathcal{G}(s)$ have negative real parts is called the noncritical case in the Russian literature. If there is a simple pole at the origin but all the other poles are in the l.h.p., this case is called the simplest critical case. Gelig (44), considers also the case where the matrix $\mathcal{F}(s)$ contains simple poles on the imaginary axis and can be represented in the form

$$
\underline{E}(s)=\underline{x}(s)+\frac{1}{s} \underline{R}+\sum_{i=1}^{q} \frac{1}{s^{2}+w_{i}^{2}}\left[\underline{A}_{i}+\underline{B}_{i}\right]
$$

where $\underline{R}, A_{i}, \underline{B}_{i}$ are constant $m \times m$ matrices and $\underline{X}(s)$ is analytic $\overline{\mathrm{f}} \mathrm{r} \overline{\mathrm{Rec}} \mathrm{s} \geq 0$; If the matrix $\mathcal{G}(\mathrm{s})$ has poles at $s= \pm j \omega_{j}(i=1, \ldots, q)$, the term $\underline{\underline{r}}^{\prime}(t)_{i s}$ allowed to contain teims of the form $\underline{\alpha}_{i} \sin \omega_{i} t^{\underline{L}}+\mathcal{B}_{i} \cos \omega_{i} t$, where $\alpha_{i}$ and $\beta_{i}$ are constant vectors.

$$
\begin{equation*}
\underline{m}(s)=[\underline{T}+s \underline{\theta}] \underline{X}(s)-\underline{\theta} \underline{F}_{0} \tag{2.41}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{S}_{0}=\lim _{s \rightarrow \infty} s \underline{m}(s) \tag{2.42}
\end{equation*}
$$

where $\underline{\underline{T}}$ and $\underline{\theta}$ are mam diagonal matrices with elements $\tau_{i}$ and $\theta_{i}(i=1,2, \ldots, m)$, respectively.

The following theorem was grooved by Gelig (44).
Theorem 2.5 (Gelig, (44)): If there exist constants $\tau_{i}>0$ and $\theta_{i} \geq 0(i=1,2, \ldots, m)$ satisfying the conditions:
(1) $\tau_{1} s_{1}-\theta_{1}\left(r_{11}^{\prime}-S_{1} a_{1}\right)>0$,

$$
\tau_{i} S_{i}-\theta_{i}\left(r_{i j}^{\prime}-S_{i} a_{i}\right)-2 \theta_{i} \sum_{j=1}^{i-1}\left|r_{i j}^{\prime}\right|>0
$$

$$
(i=1, \ldots, m)
$$

(2) $\underline{S}_{0}=\underline{S}_{0}^{T}$,
(3) $\operatorname{Re}\left[\underline{m}(j \omega)+\underline{m}^{T}(j \omega)\right]$ is a positive semi-definite
matrix, and
(4) $\underline{T} \underline{R}=\underline{R}^{T} \underline{\underline{T}}$ is a positive definite matrix, then the RPFM system of Fig. 2.8 a is GFPS ${ }^{14}$.
 Theorem 2.5, the following conditions must be satisfied (see footnote no. 13)

$$
A_{i}^{-1} B_{i}=\underline{B}_{i} A_{i}^{-1} ; T A_{i}=A_{i}^{T} T \text { is a pod. matrix, }
$$

$\underline{T B}_{i}=\underline{B}_{i}^{T} \underline{T}$ is a p.s.d. matrix, and

$$
\underline{\theta}=\frac{1}{\omega 2} \underset{i}{T} \underline{A}_{i}^{-1} \underline{B}_{i} \quad(i=1,2, \ldots, q) .
$$

Example_2.5: Consider the PFM system shown in Fig. 2.9, containing two IPFM's and a LP with the following impulse transfer matrix:

$$
G(s)=\left[\begin{array}{cc}
\left(\frac{2}{s+1}+\frac{2}{s+2}\right) A_{1} & \frac{5}{s+1} A_{2} \\
\frac{2}{s+5} A_{1} & \left(\frac{6}{s+3}+\frac{10}{s+5}\right) A_{2}
\end{array}\right]
$$

where $A_{1}$ and $A_{2}$ are parameters to be determined such that GFPS is assured.

This system has the same structure as that of the system of Fig. 2.4 considered earlier in Example 2.3, with the exception of the modulators, which are IPFM's here. Gelig's theorem is not applicable to the system of Fig. 2.4. Note that stability conditions (2.31), which were obtained for the system of Fig. 2.4.by application of the results of Section 2.3, are also the same for the system considered in this example.

$$
\begin{align*}
& \text { From (2.37) and (2.38), } \\
& \underline{X}(s)=\left[\begin{array}{ccc}
\left(\frac{2}{s+1}\right. & \left.\frac{1}{s+2}\right) A_{1} & \frac{5}{s+1} A_{2} \\
\frac{2}{5(s+5)} A_{1} & \left(\frac{2}{s+3}+\frac{2}{s+5}\right) A_{2}
\end{array}\right] \tag{2.43}
\end{align*}
$$

and

$$
\underline{R}=\left[\begin{array}{cc}
\left(1-3 A_{1}\right) & -5 A_{2}  \tag{2.44}\\
-\frac{2}{5} A_{1} & \left(1-4 A_{2}\right)
\end{array}\right]
$$



Figure 2.9 A PFM system consisting of the interconnections of two IPFM's and a time-inveriant linear part.

From (2.41),

$$
\underline{m}(s)=\left[\begin{array}{cc}
\left(2 \frac{\tau_{1}-\theta_{1}}{s+1}+\frac{\tau_{1}-2 \theta_{1}}{s+2}\right) A_{1} & 5 \frac{\tau_{1}-\theta_{1}}{s+1} A_{1} \\
2 \frac{\tau_{2}-5 \theta_{2}}{s+5} A_{1} & 2\left(\frac{\tau_{2}-3 \theta_{2}}{s+3}+\frac{\tau_{2}-5 \theta_{2}}{s+5}\right) A_{2}
\end{array}\right]
$$

Condition (4) of Theorem 2.5 gives

$$
\begin{equation*}
\tau_{2}=\frac{25 \mathrm{~A}_{2}}{2 \mathrm{~A}_{1}} \tau_{1} \tag{2.46}
\end{equation*}
$$

and

$$
\begin{equation*}
1-4 A_{2}-3 A_{1}+10 A_{1} A_{2}>0 \tag{2.47}
\end{equation*}
$$

Since $\tau_{1}>0$ and $\tau_{2}>0$, (2.46) will not be satisfied if $A_{1} A_{2}<0$. Thus, Theorem 2.5 fails for $A_{1} A_{2}<0$. Condition (2) yields

$$
\begin{equation*}
\theta_{2}=\frac{5 A_{2}}{2 A_{1}} \theta_{1} \tag{2.48}
\end{equation*}
$$

Equations (2.46), (2.48) and condition (1) of Theorem 2.5 yield

$$
\begin{equation*}
\tau_{1}+4 \mathrm{~A}_{1} \theta_{1}>0, \tag{2.49a}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{1}+\left(3.2 \mathrm{~A}_{2}-0.8\left|\mathrm{~A}_{1}\right|\right) \theta_{1}>0 \tag{2.49b}
\end{equation*}
$$

An alternative to conditions (2.49a) and (2.49b) can be obtained by changing the numbering of the modulators. Thus,

$$
\begin{equation*}
\tau_{1}+3.2 \mathrm{~A}_{2} \theta_{1}>0 \tag{2.50a}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{1}+\left(4 A_{1}-10\left|A_{2}\right|\right) \theta_{1}>0 \tag{2.50b}
\end{equation*}
$$

Finally, the frequency condition (condition (3) of Theorem 2.5) yields

$$
\begin{equation*}
A_{1}\left(\frac{\tau_{1}-\theta_{1}}{1+\omega^{2}}+\frac{\tau_{1}-2 \theta_{1}}{4+\omega^{2}}\right)>0,-\infty<\omega<\infty \tag{2.51a}
\end{equation*}
$$

and

$$
\begin{align*}
& 2\left(\frac{\tau_{1}-\theta_{1}}{1+w^{2}}+\frac{\tau_{1}-2 \theta_{1}}{4+w^{2}}\right)\left(\frac{15 \tau_{1}-9 \theta_{1}}{9+w^{2}}+\frac{25 \tau_{1}-25 \theta_{1}}{25+w^{2}}\right) \\
& -5\left(\tau_{1}-\theta_{1}\right)^{2}\left(\frac{1}{1+w^{2}}+\frac{5}{25+w^{2}}\right)^{2} \geq 0  \tag{2.51b}\\
& -\infty<\omega<\infty
\end{align*}
$$

Now, the problem is reduced to that of selecting $\tau_{1}>0$ and $\theta_{1}>0$, such that relations (2.47), (2.49) or (2.50) (2.51a) and (2.51b) are satisfied. The stability region in the $A_{1}-A_{2}$ plane as defined by these relations is shown in Fig. 2.6 (region with stars) ${ }^{15}$.

Example 2.6: Now, consider the same system considered in Example 2.1. For $a_{1}=a_{2}=a \quad\left(0<a<\frac{1}{2}\right)$, Theorem 2.5 yields

[^22]$$
\frac{M_{2}}{S_{2}}+\frac{M_{1}}{S_{1}}+a \geq 0, \quad M_{1} \leq 0 \quad \text { and } M_{2} \leq 0
$$

For this case, the stability region determined from Theorem 2.5 is shown in Fig. 2.2 (region with horizontal shading).

## 2. 5 Conclusions

In this chapter global finite-pulse stability (GFPS) in PFM systems is considered. Two different approaches are presented. The first approach is based on Lyapunov's second me.thod and the second approach is a direct approach involving careful application of inequalities to the equations describing the system. A summary of a recent fre-quency-domain criterion of Gelig (44), applicable only to RPFM systems, is also included for comparison purposes.

The Lyapunov approach could provide effective stability criteria, but it is difficult to apply; especially for higher-order systems.

Gelig's frequency response criterion is restricted to relaxation pulse frequency modulation (RPFM) systems with a time-invariant linear parts. It can handle "critical cases" where the LP has simple poles on the imaginary axis or at the origin. However, in order to obtain a good parameter-region sufficient for stability, it requi-
res selection of two arbitrary parameters for each modulator of the system, subject to frequency-domain conditions and other inequality constraints.

The Direct GFPS criterion is the simplest to apply and at the same time, provides bounds on the number of pulses emitted by each modulator. It is also applicable to more general systems; the timing filters are allowed to include nonlinearities, the LP can be time-varying and the modulators are not restricted to IPFM or RPFM. It cannot handle the "critical cases" directly. However, it is usually possible to transform the system in such a way that the criteria will be applicable (see, e.g., Example 2.4). Comparative examples yielded greater stability regions of parameters from the direct GFPS criteria than from (an optimal application of) Gelig's frequencydomain criteria.

A summary of comparison of the three methods is given in Table 2.2.

TABLE 2.2
Comparison of Stability Theorems
For Multi-Modulator PFM Systems

| Theorem | 2.1 | 2.3 and 2.4 | 2.5 Gelig (44) |
| :---: | :---: | :---: | :---: |
| Type of modulator | CRPFM | CRPFM (the TF can be nonlinea | RPFM only |
| $\begin{aligned} & \text { Type of } \\ & \text { the IPP } \end{aligned}$ | linear, nonlinear time-var. | linear, lumped distributed, can be time-varying | linear, lumped or distributed, timeinvariant only |
| Restrictions on the LP | finite order. | the LP must be asymptotically stable. This can be relaxed (e.g., Example 2.4). | all the elements of the transfer matrix G(s) of the equivaIent system must be analytical for $\operatorname{Re} s>0$. $G(s)$ can contain simple poles at $s=0$ and on the imaginary axis. |
| Restrictions on the input signals | not explicit. | all input signals must be absolutely integrable. In some cases this condition can be relaxed (see Example 2.4). <br> or sinusoida $w_{i}$ ) but the $t$ vanish as t | all the input signals must be bounded and must go to zero as $t \rightarrow \infty$. If the transfer function matrix $G(s)$ of the IP has a pole at $s=0$ (and/or $\left.s=j w_{i}\right)$ they can contain constant parts (and/ 1 terms with frequency ransient parts must $-\infty$. |
| Effective ness of Theorem: (how con-servati-: ve?) | depends on choice of Lyapunov function | gives better results if the TF's have time constants that are small compared to those of the LP. | depends on choise of 2m auxiliary parameters, which can be determined by optimization process to provide max. parameter region. |
| Ease of application | most. difficult, especially for high order syst | easiest. <br> ems. | difficult if optimal stability region (of parameters) is desired. |

## CHAPTER 3

## ON NEARLY PERIODIC MOTION IN INTERCONNECTED SYSTEMS WITH PULSE FREQUENCY MODULATORS

### 3.1 Introduction

The motion of a PFM system can be classified into the following groups:

1. Finite-pulse stable motion (all the modulators of the system stop firing in finite time),
2. unstable motion (the input signals of the modulators become very large; pulse frequenctes increase until some part of the system is saturated or deformed),
3. nearly periodic motion (the input signals of the modulators repeat -within reasonable boundsperiodically), and
4. non-periodic motion (motion which is not nearly periodic).

Sufficient conditions for global finite-pulse stability were presented in the previous chapter. In this chapter, the objective is to study periodic motion in PFM systems. Owing to the abundance of different possible modes of periodic motion, peculiar to these systems, this topic has been discussed even in the earliest publications ( 89,93 ), and has been given a considerable amount of :
attention (29, 36, 48, 101, 103, 127). The abundance of periodic modes, in some way, is not unexpected; in fact reverbatory activity in neural circuits has long been suggested as a possible mechanism of instantaneous memory ${ }^{1}$.

Previous investigations of this subject have been restricted to single-loop systems ${ }^{2}$. Unlike single-loop, single-modulator systems, however, multi-modulator sys tems cannot, in practice, have pure periodic motion. This is true for most high order physical systems ${ }^{3}$ and is related to the fact that there are only a countable number of rational numbers.

Clearly, a weaker concept of periodicity is necessary; this will be given in the following section.

In this chapter, The CRPFM system of Fig. 3.1 is . considered, in which all the TF's are linear. This system is slightly less general than the system of Fig. 1.9.

[^23]

Figure 3.1 Block diagram of an interconnected system consisting of CRPFM's with linear fF's and linear dynamicel subsystems.

However, some of the results to be presented are directly extendable to the system of Fig. 1.9.

### 3.2 The Concept of $\epsilon$-Near Periodicity

One possibility of defining a "weak" period is to translate all the pulse-instants, $t_{i, k}$ by a number $T>0$, and to compere the translated points with the original points; if the translated points are in the vicinity of the original points, possibly with a small number of exceptions, the number 7 could be considered as a "weak" period of the system. Jhis definition would be difficult to employ; however, the following definition has the same implications and, at the same time, is easier to handle. Definition 3.1 Given $\epsilon_{e} \geq 0$ and $a>0$, the motion of a PFM system will be called $\epsilon_{e}-n e a r l y$ periodic $\left(\epsilon e^{-n . p .)}\right.$ in the interval $t \in(0, a], i f$
(1) impulse emission of at least one modulator continues during $0<t<\infty$ (i.e., does not stop),
and
(2) there exists a number $T \in(0, a]$, such that the input vector of the modulators $\underline{E}(t)$, satisfies the relation

$$
\|\underline{e}(t+T)-\underline{e}(t)\| \leq \epsilon_{e}, \quad \forall t \in(0, a] \quad(3.1)^{4}
$$

The interval $t \in(0, a]$ will be called the observation interval and the smallest number, $T$, satisfying (3.1) will be called the $\underline{E}_{e}$-period of the motion. This definition is illustrated in Fig. 3.2.

The above concept differs from that of almost periodicity, introduced by Bohr, about half a century ago. Let $X$ be a Banach space ${ }^{5}$ and let $\|x\|$ denote the correspon$\operatorname{din}{ }_{\mathcal{E}}$ norm of $x \in X$.

Definition 3.2a A subset 5 of the set of real numbers is called relatively dense if there exists a number $\ell>0$ (inclusion length), such that any interval of length $l$ contains at least one number of $s$ Besicovitch (8).

[^24]

Definition 3.2b A continuous vector function $\underline{f}(t) \in X$ is called almost periodic ${ }^{6}$ if to every $\epsilon>0$ there corresponds a relatively dense set $\{T\}_{\epsilon}$ such that

$$
\|\underline{f}(t+T)-\underline{\underline{f}}(t)\| \leq \in, \quad \forall T \in\{T\}_{\epsilon}
$$

The class of almost periodic functions contains all functions $f(t)$ constructed by summing a finite number of terms of the form $a_{i} \cos \left(\omega_{i} t+\theta_{i}\right)$, where $\omega_{i}$ and $\theta_{i}$ are constants and $\underline{a}_{i}$ is a constant vector. It can be shown that almost periodicity is invariant with respect to operations of addition, multiplication, (in most cases) division and differentiation, integration and other limiting processes and that to any almost periodic function corresponds a "Fourier series" type of general trigonometric series (3), (8).

Among the differences between $\epsilon_{e}$-near periodicity and almost periodicity are the facts that the latter concept requires continuity 7 and an infinite observation

[^25]

Figure 3.3 Examples of Eenearly periodic motion in PFM systems: (a), (b) output waveform of the TF in an IPFM under sinusoidal input; (a) doublesigned 1PFM, (b) single-signed IPFM (note that these waveforms are not perjodic in the strict sense). (c) A typical ee-nearly periodic motion in a PFM system with an almost periodic linear part. (d), (e) Jypical $\epsilon_{e^{-}}$ nearly periodic motion in simple CRPFM systems.
interval. In a PFM system the vector $e(t)$ may not be continuous. Moreover, it has been observed that motion which appears to be periodic over a reasonable time may change erratically after some time (see Section 3.5). However, in a practicel situation, observation of the system may not be continued indefinetely. Furthermore, the measuring equipment used in the observation has some accuracy limitations, which must also be taken into consideration (this, in a loose way, corresponds to $\epsilon_{e}$ of Def. 3.1). Therefore, under proper conditions, one might conclude that a motion satisfying Def. 3.1 is "periodic".

It should be clear that Def. 3.1 makes sense only for "small" values of $\epsilon_{e}$; this value must be selected properly for the system under consideration, according to the accuracy requirenents. For example, for certain cases the value $\epsilon_{e} \cong 0.01$ sup\|e(t)\| might be satisfactory. $0<t<\infty$

### 3.3 Clues From System Stability

Knowledge about stability of the equilibrium can provide valuable clues to the study of oscillatory behavior. Therefore, before proceeding to the main result of this chapter (to be presented in the next section), certain relevant stability conditions and their implications with respect to periodic motion will be discussed.

Under certain conditions, the pulse frequencies of
the modulators keep on increasing, This motion, defined by continued increase in pulse frequency of any modulator, will be called uncontajned motion. Conversely, the absence of uncontained motion will be called contained motion and the corresponding property, namely, that for every set of initial conditions the pulse frequencies will be bounded during $0<t<c o$ will be referred to as containment of the PFM system . In other words, containmeans that for any gjven interval of length $T$, the sumber of impulses emitted by each modulator is uniformly bounded.

The containment of a PFM system can easily be tested: It cen be shown that as the input signal to a CRPFM becomes very large, it can be repleced by a constant gain. Therefore, the test consists of replecing all the modulators with linear gains and determining whether the equivalent linear system is stable.

In order to proove the above assertion, consider the emission instant of the $(k+1)_{\text {st }}$ pulse, $t_{k+1}$. From eqs. (1.5a), (1.5b), (1.7) and (1.8), it follows that

$$
\begin{equation*}
\int_{t_{k}}^{t_{k+1}} g_{0}\left(t_{k+1}, \tau\right) e(\tau) d \tau=b_{k+1} S \tag{3.2}
\end{equation*}
$$

The mean value theorem of calculus gives

$$
\begin{equation*}
g_{0}\left(t_{k+1}, \xi_{k+1}\right) e\left(\xi_{k+1}\right)\left(t_{k+1}-t_{k}\right)=b_{k+1} s \tag{3.3}
\end{equation*}
$$

where $t_{k} \leq \xi_{k+1} \leq t_{k+1}$. Now, consider that the output of the CRPFM is connected to a linear element whose impulse response in $g(t, r)$; let $y(t)$ denote the output of the linear element. It is

$$
\begin{equation*}
\frac{y(t)}{e(t)}=\frac{M}{S} \sum_{k=1}^{\infty} g_{0}\left(t_{k}, \xi_{k}\right) g\left(t, t_{k}\right) \frac{e\left(\xi_{k}\right)}{e(t)}\left(t_{k}-t_{k-1}\right) \tag{3.4}
\end{equation*}
$$

Since the input signal $e\left(t_{t}\right)$ is assumed to be (uniformly) large, the ratio $e(\tau) / e(t)$ is (uniformly) bounded for all $\tau<t$. Therefore, application of Duhamel's theorem to (3.4) yields

$$
\begin{equation*}
\frac{y(t)}{e(t)} \sim \frac{M}{\operatorname{Se}(t)} \int_{0}^{\infty} g_{0}(\tau, \tau) g(t, \tau) e(\tau) d \tau \tag{3.5}
\end{equation*}
$$

i.e., if $g_{0}(\tau, \tau)=g_{0}(\text { constant })^{8}$, the effect of the CRPFM, for large inputs, is equivalent to a linear gain of $\mathrm{Mg}_{0} / \mathrm{S}^{9}$.

In a real system, the pulse frequencies will be bounded due to saturation and/or presence of refractory period. This corresponds to saturation of the equivalent gains $\mathrm{Mg}_{0} / \mathrm{S}$.

> OThis is always true if the TF is time-invariant.
> $9_{\text {For a single-signed CRPFM this approach gives a }}$ lienar gain of Ngo/S for nonnegative input signals. When the input is negetive, no pulse is emitted and the gain switches to zero.

The above result leads to the following theorem. Theorem 3.1 Consider the CRPFM system of Fig. 3.1; assume that the TF's are such that $g_{0 i}(t, t)=g_{0 i}$ (constant) $\forall t>0$ and $i=1,2, \ldots, m$. Then a necessary condition for the motion to be contained is that the equivalent system obtained by replacing all the modulators with linear gains of $M_{i} g_{0 i} / S_{i}(i=1, \ldots, m)$ be asymptotically stable.

The containment from the equivalent linear system can be investigated using any of the conventional stability methods. A special system of interest is the case in which the I.P is time-invariant and finite-dimensional; this case is treated in the following corollary.

Corollary 3.1 Consider the CRPFM system of Fig. 3.1; assume that all the TF's are time-invariant and that the IP is also time-invariant and is described by the equations

$$
\underline{\dot{x}}(t)=\underline{A} \underline{x}(t)+\underline{B} \underline{u}(t) \text { and } \underline{y}(t)=\underline{C} \underline{x}(t)
$$

Let $\underline{S}$ be the mxm diagonal matrix whose elements are

$$
s_{i i}=M_{i} s_{0 i}(0) / s_{i}, \quad(i=1, \ldots, m)
$$

Then, a necessary condition for the motion to be contained is that all the eigenvalues of the matrix $\underline{A}+\underline{B} \underline{S} \underline{C}$ have negative real parts.

The uncontained motion does not exclude the possible existence of nearly periodic motion. In a PFM system $\epsilon_{e}-n \cdot p$. motion might be present, even though the conditions of Theorem 3.1 (or Corollary 3.1) are not satisfied; however, large perturbations will render the motion to "run away", i.e., to be uncontained. Therefore, knowledge of containment is useful.

Clearly, "containment" of motion in a. PFM system represents a necessary condition for global finite-pulse stability (see Section 2.1, p. 56) which denotes the pro perty that every set of initial conditions results in motion where each modulator emits a finite number of impulses during $0<t<\infty$. If a PFM system is "contained" but not GFPS, then the motion will "keep on going"; this class of motion where at least one modulator does not stop firing as $t-\infty$ will be called continued impulse emission. The class of "continued impulse emission" includes periodic motion and non-periodic motion. Moreover, the n.p. motions (Def. 3.1) of the usual interest are of the class of continued impulse emission.

Sufficient conditions for global finite-pulse stability in CRPFM systems were presented in Chapter 2. These conditions, in their negated forms, are also necessary conditions for the existence of continued impulse emission
in CRPFM systems; they are summarized in Theorem 3.2 and Corollary 3.2.

Theorem 3.2 Consider the CRPFM system of Fig. 3.1. If the following conditions are satisfied
(1) $y_{\mathrm{Oi}_{i}}(t)$ and $r_{i}(t)$ are absolutely integrable in the interval $(0, \infty)(i=1,2, \ldots, m)$,
(2) there exist absolutely integrable functions $g_{i j}^{\prime}(t)$ such that $\left|g_{i j}(t, \tau)\right| \leq\left|g_{i j}^{\prime}(t-\tau)\right|$ ( $\mathrm{i}, \mathrm{j}=1, \ldots, \mathrm{~m}$ ), and
(3) $\left|g_{0 i}(t, \tau)\right| \leq \gamma_{i}$, where $\gamma_{i}$ are finite constants (i $=1, \ldots, m$ )
then, for the existence of continued impulse emission, it is necessary that the matrix

$$
\left[\delta_{i j}-\frac{M_{j}}{S_{i}} \gamma_{i} \int_{0}^{\infty}\left|g_{i j}^{\prime}(t)\right| d t\right]^{-1}
$$

contain at least one negative element ${ }^{10}$.

Corollary 3.2 If the conditions (1)-(3) of Theorem 3.2 are satisfied then, for the existence of continued impulse emission, for the CRPFM system of Fig. 3.1, it is necessary that
$\delta_{i j}^{10}$ is the Kronecker's delta; $\quad \delta_{i j}= \begin{cases}1 & \text { for } i=j, \\ 0 & \text { for } i \neq j .\end{cases}$
(1) at least one eigenvalue of the matrix

$$
\left[\begin{array}{lll}
\gamma_{i} & M_{j} \\
S_{i} & \int_{0}^{\infty}\left|g_{i j}^{\prime}(t)\right| & d t
\end{array}\right]
$$

be outside of the unit circle in the complex plane, and
(2) for at least one $i=1,2, \ldots, m$,

$$
\sum_{j=1}^{m} \gamma_{i} \frac{M_{j}}{S_{i}} \int_{0}^{\infty}\left|g_{i j}^{\prime}(t)\right| d t>1
$$

### 3.4 Nearly Periodic Motion in PFM Systems

In this section, two (upper) bounds will be presented for $\epsilon_{e}$, such that for a given period $T$ and a given observation interval $t \in(0, a]$, the motion is $\epsilon_{e^{-n}}$.p. (i.e., Def. 3.1 is satisfied). The first bound is applicable to more general cases; however, it can be difficult to obtain conservative values, since this usually requires numerical techniques. The second bound is especially useful if the impulse response on the LP is "almost periodic" (e.g., the LP hes poles only on the imaginary axis) or the LP:contains poles very close to the imaginary axis. Before presenting these results, certain relavent notation will be introduced.

Let $g_{j}(t, \tau)$ denote the $j t h$ column of the impulse
response matrix of the $L P, G(t, \tau) ; \ell_{k}$ denote the identification number of the modulator emitting the kth pulse of the system, $t_{k}$ denote the emission time of this kth pulse and $b_{k}$ denote its polarity. Then, the output vector, $y(t)$, is given by

$$
\begin{equation*}
y(t)=y_{0}(t)+\sum_{k=1}^{N} M_{\ell_{k}} b_{k}{\frac{g}{\ell_{k}}}\left(t, t_{k}\right), \quad 0<t<t_{N+1} \tag{3.6}
\end{equation*}
$$

This is an alternative to expression (1.24a).
Let $\bar{Y}_{n}(t)$ be the output vector of the PFM system obtained by disconnecting all the modulators for $t>n T$, and let

$$
y_{n}(t) \triangleq\left\{\begin{array}{ll}
y(t) & \text { for } t \leq n T  \tag{3.7a}\\
\bar{y}_{n}(t) & \text { for } t>n T
\end{array}, n=0,1,2, \ldots\right.
$$

Also, let

$$
\begin{equation*}
\zeta_{n}(t) \triangleq y_{n+1}(t)-y_{n}(t) \tag{3.7b}
\end{equation*}
$$

The vector function $\zeta_{n}(t)$, to be called the modified forced response, represents the zero-initial condition response of the continuous part of the system to an input that is applied only during $n T \leq t<(n+1) T$ and is equal to that generated by the modulators during this interval when the modulators are connected (see Fig. 3.4).


Figure 3.4 Illustration of functions used in Theorem 3.3.
(a) Output variable $y(t)$ under $\epsilon_{e}$-nearly periodic motion.
(b) The functions $y_{0}(t)$ and $y_{1}(t)$ as defined by (3.7a).
(c) The function $\zeta_{0}(t)$ as defined by ( 3.7 b ).
(d) $y_{0}(t)$ and $y_{1}(t+T)$ shown for comparison.
(e) The function $y_{1}(t+T)-y_{0}(t)$.

With the background presented above, the following theorem can now be stated.

Theorem 3.3 Consider the CRPFM system of Fig. 3.1. For $a$ given $T>0$ and $a$ given $a>0$, let

$$
\begin{equation*}
\epsilon_{r}=\sup _{0<t \leq a}\|\underline{r}(t+T)-\underline{r}(t)\| \tag{3.8a}
\end{equation*}
$$

and let

$$
\begin{equation*}
\epsilon_{0}=\sup _{0<t \leq T}\left\|y_{1}(t+T)-\underline{x}_{0}(t)\right\| . \tag{3.8b}
\end{equation*}
$$

If there exists a $\sigma \geq 0$ and an

$$
\begin{equation*}
\epsilon_{e} \geq e_{r}+e_{0}(1+\sigma)^{\left[\frac{a}{T}\right]+1} \tag{3.9a}
\end{equation*}
$$

such thet for every two initial condition responses, $y_{0}^{1}(t)$ and $y_{0}^{2}(t)$, satisfying

$$
\begin{equation*}
\rho=\sup _{0<t \leq T}\left\|y_{0}^{1}(t)-y_{0}^{2}(t)\right\| \leq \epsilon_{e} \tag{3.9b}
\end{equation*}
$$

the corresponding modified forced responses satisfy

$$
\begin{equation*}
\sup _{0<t \leq T}\left\|\zeta_{0}^{1}(t)-\zeta_{0}^{2}(t)\right\| \leq \rho \sigma \tag{3.9c}
\end{equation*}
$$

 $T$, in the given observation interval $t \in(0, a]$.

The proof of Theorem 3.3 is presented in Appendix B.
${ }^{1 T}$ The square brackets $[\cdot]$ denotes integer part.

The following corollary is a simple extension of Theorem 3.3.

Corollary 3.3 Consider the CRPFM system of Fig. 3.1. For a given $T>0$ and a given $a>0$, if there exists a $\sigma^{\prime} \geq 0$ and an

$$
\epsilon_{e} \geq \epsilon_{r}+\epsilon_{0}\left(\sigma^{\prime}\right)^{\left[\frac{a}{T}\right]+1}
$$

such that for every two initial condition responses, $y_{0}^{1}(t)$ and $x_{0}^{2}(t)$, setisfying $(3.9 b)$, the corresponding modified responses satisfy

$$
\sup _{0<t \leq \mathbb{T}}\left\|\underline{y}_{0}^{1}(t)+\underline{\Sigma}_{0}^{1}(t)-\underline{y}_{0}^{2}(t)-\underline{\Sigma}_{0}^{2}(t)\right\|_{\leq \rho} \sigma^{\prime}
$$

then the motion of the system is $\epsilon e^{-n . p}$. with the $\epsilon e^{\text {-period } T} T$, in the given observation interval $t \in(0, a]$, where $\epsilon_{r}$ and $\epsilon_{0}$ are given by (3.8a) and (3.8b), respectively.

The upper bound for $\epsilon_{\mathrm{e}}$ provided by Theorem 3.3 (or Corollary 3.3) might be large, depending on the value of $\sigma$ (or $\sigma^{\prime}$ ) which satisfies conditions (3.9a) - (3.9c) $\left[\right.$ or $\left(3.9 a^{\prime}\right),(3.9 b)$ and (3.9c')]. If the value of $\sigma$ (or $\sigma^{\prime}$ ) is not much greater than the minimum $\sigma$ ( $\sigma_{\min }$ ) satifying conditions (3.9), this might mean that the motion will ropidly degenerate and after a certain time will have a completely different pattern. However, if $\sigma \gg \sigma_{\min }$, Theorem 3.3 does not provide any useful infor-
mation, since the bound furnished by Theorem 3.3. is much larger than $\sup _{\|} \underline{e}(t+T)-\underline{e}(t) \|$. Therefore, $\sigma$ $0<t \leq a$ must be carefully determined. In general, without resort to numerical techniques, it may be difficult to obtain conservative values.

Under certain ideal conditions a PFM system might possess a pure periodic motion. However, in Section 1.5 it will be shown that even slightest parameter perturbations can change this motion drastically. Nevertheless, after small parameter changes, the motion may still look like the unperturbed motion, at least for a while, i.e., the motion may be $\epsilon e^{-n . p}$. In this case, Theorem 3.3 can be used to estimate, for example, tolerances of the system parameters to assure an $\epsilon e^{-n . p}$. motion of a given accuracy in some given interval.

Theorem 3.3 and the notation introduced in this section will be illustrated by an example. However, first the following useful concept is presented. Definition 3.3 Given $\epsilon_{0} \geq 0$ and $a>0$, an initial condition response, $y_{0}(t)$ of a PFM system will be called an $\underline{e}_{0}$-proper initial condition response ( $\epsilon_{0}-P I C R$ ) in the interval $t \in(0, a]$, if there exists a number, $T>0$ such that the relation

$$
\begin{equation*}
\left\|y_{1}(t+T)-y_{0}(t)\right\| \leq \epsilon_{0}, \quad \forall t \in(0, a] \tag{3.10}
\end{equation*}
$$

is satisfied.

Example 3.1 Consider a two modulator IPFM system with a time-invariant LP having the following impulse response matrix

$$
\underline{G}(t)=\left[\begin{array}{cc}
t & -t  \tag{3.11a}\\
t & -t
\end{array}\right], \quad t>0
$$

Let $\underline{r}(t)=\underline{0}, S_{1}=S_{2}=4$ and $M_{1}=M_{2}=4$. Also, let the initial condition response be

$$
y_{0}(t)=\left[\begin{array}{l}
2 t+1  \tag{3.11b}\\
2 t+1
\end{array}\right]
$$

With this initial condition response, the motion of the system is as shown in Fig. 3.5. Note that the motion is



Figure 3.5 Output waveforms of the system of Example 3.1.
periodic with a period $T=2$ secs and that $y_{0}(t)$ is a $0-P I C R\left(i . e ., \epsilon_{O}=0\right)$. For this systems, the modified forced response is given by

$$
\zeta_{0}(t)=\left[\begin{array}{l}
1  \tag{3.11c}\\
1
\end{array}\right] \zeta_{0}(t)
$$

where,

$$
\zeta_{0}(t) \triangleq\left\{\begin{array}{cl}
0 & \text { for } \quad t<0  \tag{3.11d}\\
-4 t+4 & \text { for } 1 \leq t \leq 2 \\
-4 & \text { for } t>2
\end{array}\right.
$$

Now, assume that the thresholds of the modulators $S_{1}$ and $S_{2}$ are perturbed by infinitesimal amounts $\delta S_{1}$ and $\delta S_{2}$, respectively. Let $\delta t_{11}$ and $\delta t_{21}$ be the corresponding infinitesimal changes in the pulse-emission instants. These quantities can be calculated by considering the threshold relations.

Let

$$
y_{0}(t)=\left(c_{0} t+c_{1}\right)\left[\begin{array}{l}
1  \tag{3.12}\\
1
\end{array}\right]
$$

The threshold relation for the first modulator is

$$
\begin{equation*}
\int_{0}^{t_{1}}\left(c_{0} t+c_{1}\right) d t-4 \int_{t_{21}}^{t_{1}}\left(t-t_{21}\right) d t=s_{1} \tag{3.13a}
\end{equation*}
$$

The threshold relation for thesecond modulator is

$$
\begin{equation*}
z_{2}(0)+\int_{0}^{t_{2} 1}\left(c_{0} t+c_{1}\right) d t=s_{2} \tag{3.13b}
\end{equation*}
$$

From (3.13a) one can obtain

$$
\begin{equation*}
2 \delta c_{0}+2 \delta c_{1}+\delta t_{11}+4 \delta t_{21}=\delta s_{1} \tag{3.14a}
\end{equation*}
$$

Similarly, (3.13b) yields

$$
\begin{equation*}
3 \delta t_{21}+\frac{1}{2} \delta c_{0}+\delta c_{1}=\delta S_{2} \tag{3.14b}
\end{equation*}
$$

Assuming $\delta c_{0}=\delta c_{1}=0$ (i.e., no perturbation in the initial condition response), (3.14a) and (3.14b) can be combined to obtain

$$
\begin{equation*}
\delta t_{11}=\delta S_{1}-\frac{4}{3} \delta S_{2} \tag{3.15a}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta t_{21}=\frac{1}{3} \delta S_{2} \tag{3.15b}
\end{equation*}
$$

Using (3.7b), (3.8b) and (3.11b)-(3.11d) and the norm $\left\|\left[\begin{array}{l}a \\ b\end{array}\right]\right\|=|a|+|b|$, one can now obtain

$$
\begin{align*}
\epsilon_{0}=\sup _{0<t \leq 2} \| \underline{y}_{1}(t+T) & -y_{0}(t) \|=8\left|\delta t_{21}-\delta t_{11}\right| \\
& =8\left|\frac{5}{3} \delta S_{2}-\delta S_{1}\right| \tag{3.16}
\end{align*}
$$

As an example, let $\delta S_{1}=\delta S_{2}=0.0001 ;(3.16)$ then yields

$$
\epsilon_{0}=5.3 \cdot 10^{-4}
$$

Now, consider two different initial condition response vectors $y_{0}^{1}(t)=\left(c_{0}^{1} t+c_{1}^{1}\right)\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $y_{0}^{2}(t)=\left(c_{0}^{2} t+c_{1}^{2}\right)\left[\begin{array}{l}1 \\ 1\end{array}\right]$ that are in the vicinitiy of the O-PICR given by (3.11b). Let $c_{0}^{1}-c_{0}^{2} \triangleq \delta c_{0}$ and $c_{1}^{1}-c_{1}^{2} \triangleq \delta c_{1}$, the resulting infinitesimal differences in the pulse emission instants can be obtained from (3.14a) and (3.14b). Since the threshold values are assumed to remain unchanged (i.e., $\delta \mathrm{S}_{1}=\delta \mathrm{S}_{2}$ ), (3.14b) yields

$$
\begin{equation*}
\delta t_{21}=-\left(\frac{1}{2} \delta c_{0}+\delta c_{1}\right) \tag{3.17a}
\end{equation*}
$$

Similarly, (3.14a) and (3.15a) yield

$$
\begin{equation*}
\delta t_{11}=-\frac{4}{3} \delta c_{0}-\frac{2}{3} \delta c_{1} \tag{3.17b}
\end{equation*}
$$

Using (3.9c), (3.11c)-(3.11d), (3.17a) and (3.17b), the following relation can be obtained

$$
\begin{align*}
& \sup _{0<t \leq 2}\left\|\underline{\zeta}_{0}^{1}(t)-\xi_{0}^{2}(t)\right\|=8\left\{\max \left|\delta t_{21}\right|,\left|\delta t_{11}-\delta t_{21}\right|\right\} \\
&=\frac{4}{3} \max \left\{17 \delta c_{0}+2 \delta c_{1}\left|,\left|\delta c_{0}+2 \delta c_{1}\right|\right\}\right. \tag{3.18a}
\end{align*}
$$

But, from (3.9b) and (3.12),

$$
\begin{equation*}
\rho=\sup _{0<t \leq 2}\left\|y_{0}^{1}(t)-y_{0}^{2}(t)\right\|=4\left|\delta c_{0}+\delta c_{1}\right| \tag{3.19}
\end{equation*}
$$

From (3.18) and (3.16), it is not difficult to see that condition (3.9c) of Theorem 3.3 will be satisfied for
$\sigma \geq \frac{7}{3}$. Therefore, for an observation interval of ten periods, (3.9a) yields

$$
\begin{equation*}
\epsilon_{e} \leq\left(1+\frac{7}{3}\right)^{10}=2.03 \times 10^{5} \epsilon_{0} \tag{3.20}
\end{equation*}
$$

Now, assume that an $\epsilon e^{-n . p}$. motion is required such that $\epsilon_{e} \leq 0.1$ for an observation interval of ten periods. From (3.20), it is seen that this requirement will be fulfilled if $\epsilon_{0} \leq 4.9 \times 10^{-5}$. From (3.16), it follows that if $\left|\delta S_{1}\right|<0.4 \times 10^{-4}$ and $\left|\delta S_{2}\right|<0.6 \times 10^{-4}$, then $\epsilon_{e} \leq 0.1$.

For comparison purposes the system considered was also studied by simulation. A digital simulation of the system yielded $\epsilon_{e}=0.16$ in an observation interval of 20 secs, after a small perturbation in the threshold values $\left(S_{1}\right.$ and $S_{2}$ both changed from 4.000 to 4.001). This result is much smoller than the bound given by (3.20). However, $(3.20)$ is applicable to a larger parameter region. For this particular case, one can calculate $\sigma^{\prime}=1.8$ and $\epsilon_{0}=4 \times 10^{-4}$. Therefore, (3.9a') yields $\epsilon_{e} \leq 0.22$. This bound has the same order of magnitude as the actual value.

For the special case of a CRPFM system with. a LP whose impulse response is almost periodic or contains terms of the form $f_{i}(t)=e^{-a_{i} f_{i}^{\prime}}(t)(i=1,2, \ldots, q)$, where $a_{i}$ 's are small positive constants and $f_{i}(t)$ 's are
periodic vector functions of $t$, it is possible to find another useful upper bound for $\epsilon_{e}$. Before determining this bound, first note that if

$$
\|\eta(t)\| \triangleq\left\|f_{i}^{\prime}(t+T)-\underline{f}_{i}^{\prime}(t)\right\| \leq \epsilon_{f_{i}}
$$

and $a_{i} T \ll 1$, then

$$
\begin{align*}
\left\|\underline{f}_{i}(t+T)-\underline{f}_{i}(t)\right\| & =\left\|e^{-a_{i}(t+T)} \underline{f}_{i}^{\prime}(t+T)-e^{-a_{i} t} \underline{f}_{i}^{\prime}(t)\right\| \\
& \leq\left\|\left(1-e^{-a_{i} T}\right) \underline{f}_{i}^{\prime}(t)+e^{-a_{i} T} q^{T}(t)\right\| \\
& <a_{i} T\left\|f_{i}^{\prime}(t)\right\|+\epsilon_{f_{i}} . \tag{3.21}
\end{align*}
$$

Now, consider the input vector to the modulator block; using (3.6) and applying the triangle inequality, the following inequality can be obtained:

$$
\|\underline{e}(t+T)-\underline{e}(t)\| \leq\|\underline{\underline{r}}(t+T)-\underline{r}(t)\|+\left\|\underline{y}_{0}(t+T)-\underline{X}_{0}(t)\right\|
$$

$$
\begin{equation*}
+\sum_{j=1}^{N} M_{\ell_{j}}\left\|g_{\ell_{j}}\left(t+T, t_{j}\right)-g_{\ell_{j}}\left(t, t_{j}\right)\right\| \tag{3.22}
\end{equation*}
$$

Let

$$
\begin{align*}
& \epsilon_{r}=\sup _{0<t \leq a}(t+T)-\underline{r}(t) \|  \tag{3.23a}\\
& \epsilon_{y_{0}}=\sup _{0<t \leq \varepsilon}(t+T)-y_{0}(t) \| \tag{3.23b}
\end{align*}
$$

and let

$$
\epsilon_{g}=\sup _{\substack{0<t<a \\ 0<\tau<a \\ i=1, \ldots, m}}\left\|M_{i} g_{i}(t+T, \tau)-g_{i}(t, \tau)\right\| \quad(3.23 c)
$$

From inequality (3.30), it follows that

$$
\begin{equation*}
\|\underline{e}(t+T)-\underline{e}(t)\| \leq \epsilon_{r}+\epsilon_{y_{0}}+N \epsilon_{g} \tag{3.24}
\end{equation*}
$$

i.e., for $e_{e}=\epsilon_{r}+\epsilon_{y_{0}}+N \epsilon_{g}$, the motion is $\epsilon_{e}-n . p$. in the interval $t \in(0, a]$. This result is stated as a lemmo. Lemma 3.1 Let $v$ be the average number of pulses emitted in an interval of length $T$, then the motion of the CRPFM system of Fig. 3.1 is $\epsilon_{e}^{-n . p}$. in the interval $t \in(0, a]$, where $\epsilon_{e} \geq e_{r}+\epsilon_{y_{0}}+v\left(\left[\frac{a}{T}\right]+1\right) \epsilon_{g}$ with $\epsilon_{r}, \epsilon_{y_{0}}$ and $\epsilon_{g}$ as defined in (3.23a) (3.23b) and (3.23c), respectively.

Lemma 3.1 is airectly applicable to PFM systems with olmost periodic LP's and inputs, where in a given , largeenough (finite) observation interval ( $0, \mathrm{a}$ ], it is possible to find a $T$ such that the values $\epsilon_{r}, \epsilon_{y_{0}}$ and $\epsilon_{g}$ are arbitrarily small ${ }^{12}$. This consideration yields the following Corollary.

Corollary 3.4 If both the input vector, $\underline{r}(t)$, and the impulse response metrix of the $L P, G(t, \tau)$ are almost periodic ${ }^{13}$, then for a large enough (finite) observation
${ }^{12}$ See Besicovitch, Theorem 11, p. 5.
interval ( 0,8 ] and for any $\varepsilon_{e}$, the motion of the CRPFM system of Fig. 3.1 is $\epsilon_{e}^{-n . p .}$

The following example illustrates the above corollary.

Example 3.2 Consider a two-modulator CRPFM system with $\theta$ constant input and e time-invariant LP, having the following impulse-response matrix

$$
\underline{G}(t)=\left[\begin{array}{cr}
\cos \omega t & -\frac{1}{\omega} \sin \omega t  \tag{3.25}\\
\sin \omega t & \cos \omega t
\end{array}\right]
$$

Let $M_{1}=M_{2}=1$. Note that, in this case, $e_{r}=0$ and $\underline{G}(t+T)=\underline{G}(t)$, where $T=2 \pi / \omega$. Clearly, if $\epsilon_{y_{0}}=0$, then the motion will be $\epsilon_{e^{-n}}$.p. for any $\epsilon_{e}>0$ with period $t=2 \pi / \omega$.

Example 3.3 In order to demonstrate the applicability of Lemma 3.1 to PFM systems where the impulse response of the LP contains lightly damped terms, consider again the system treated in Example 3.2. Assume, however, that the impulse response matrix is given by

$$
\underline{G}(t)=e^{-b t}\left[\begin{array}{lc}
\cos \omega t-\frac{b}{\omega} \sin \omega t & -\frac{1}{\omega} \sin \omega t  \tag{3.26}\\
\frac{\omega^{2}+b^{2}}{\omega} \sin \omega t & \cos \omega t+\frac{b}{\omega} \sin \omega t
\end{array}\right]
$$

[^26]where $b$ is a positive scalar such that $b \ll \omega / 2 \pi$. Note that for $b=0$, this impulse response matrix reduces to that of (3.25).

Eq. (3.26) yields
$g_{1}(t)=e^{-b t}\left[\begin{array}{l}\cos \omega t-\frac{b}{\omega} \sin \omega t \\ \frac{\omega^{2}+b^{2}}{\omega} \text { sin } \omega t\end{array}\right]$ and $\quad g_{2}(t)=e^{-b t}\left[\begin{array}{c}-\frac{1}{\omega} \sin \omega t \\ \cos \omega t+\frac{b}{\omega} \sin \omega t\end{array}\right]$
Therefore, using (3.21) and the norm $\left\|\left[x_{1}, x_{2}\right]^{T}\right\|=\left[x_{1}^{2}+x_{2}^{2}\right]^{\frac{1}{2}}$, one can easily obtain

$$
\left\|g_{1}(t+T)-g_{1}(t)\right\| \leq b T\left(1+\frac{b^{2}}{w^{2}}\right)^{\frac{1}{2}}+\frac{\omega^{2}+b^{2}}{\omega}
$$

and

$$
\left\|g_{2}(t+T)-g_{2}(t)\right\| \leq b T \frac{1}{w}+\left(1+\frac{b^{2}}{w^{2}}\right)^{\frac{1}{2}}
$$

Thus,

$$
\epsilon_{g} \leq b T \quad \frac{w^{2}+b^{2}}{w}+\left(1+\frac{b^{2}}{w^{2}}\right)^{\frac{1}{2}} \cong b(2 \pi+T)
$$

Application of Lemma 3.1 finally yields

$$
\epsilon_{e} \leq v\left(\left[\frac{a}{T}\right]+1\right) \epsilon_{g} \cong v_{0}(2 \pi+T)\left(\left[\frac{a}{T}\right]+1\right) .
$$

So far, conditions for the existence of $\epsilon_{e^{-n} . p . ~}^{\text {. }}$ motion were considered and upper bounds for $\epsilon_{e}$ were determined. It is also important to obtain an expression for the $\epsilon e^{\text {-period of the motion. However, this is analyti-: }}$ cally a very difficult task and will be carried out, in the next section, only for the IPFM system.

### 3.5 Nearly Periodic Motion in IPFM Systems: The <br> $E_{e}-$-Period

In this section a special CRPFM system, namely, an IPFM system is considered. The basic configuration of this system is as shown in Fig. 3.1; however, all the modulators are assumed to be integral type PFM's only. The following theorem gives a matrix relationship which relates the $\epsilon_{e}$-period and the net number of pulses emitted by each modulator over that period to the system parameters.

Theorem 3.4 Consider an IPFM system with a time-invariant linear part. Assume that the conditions of Theorem 3.3 are satisfied. Furthermore, assume also that there exist positive constants $B_{0}, B_{g}, a_{0}$ and $a_{g}$, such that

$$
\begin{equation*}
\left\|M_{i} g_{i}(t)\right\| \leq B_{g} e^{-a g}, \quad t>0, i=1, \ldots, m \tag{3.27a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|y_{0}(t)\right\| \leq B_{0} e^{-a_{0} t}, \quad t>0 \tag{3.27b}
\end{equation*}
$$

Then, the $\epsilon_{e}$-period of the motion satisfies the matrix relation

$$
\begin{equation*}
\underline{\underline{p}} \underline{q}=T \underline{r}_{0}+\underline{\varphi} \tag{3.28}
\end{equation*}
$$

where, $\underline{P}$ is an mxm matrix whose elements $p_{i j}$ are defined by

$$
\begin{align*}
& p_{i j}=h_{i j}(0)+\left\{\begin{array}{ll}
S_{i} & \text { for } i=j \\
0 & \text { for } i \neq j
\end{array},\right.  \tag{3.29a}\\
& h_{i j}(t)=\int M_{j} g_{i j}(t) \text { dt } \begin{array}{l}
\text { (indefinite } \\
\text { integral) }
\end{array} \tag{3.29b}
\end{align*}
$$

$\underline{r}_{0}$ and $q$ are m-dimensional column vectors, whose elements are defined by

$$
\begin{aligned}
q_{i}= & \text { (the number of positive pulses) } \\
- & \text { (the number of negative pulses) } \\
& \text { emitted by the ith modulator in } \\
& \text { the interval }(0, T] .
\end{aligned}
$$

and

$$
\begin{equation*}
r_{0 i}=\frac{1}{T} \int_{0}^{T} r_{i}(t) d t \tag{3.29d}
\end{equation*}
$$

$\underline{\underline{Q}}$ is an m-dimensional column vector which depends on the deviation of $\epsilon e^{-n . p}$. motion from pure periodic motion such that

$$
\begin{gather*}
\|\underline{\varphi}\| \leq\left[\epsilon_{0} \frac{(1+\sigma)^{N}}{\sigma}+N \epsilon_{r}\right] T+\frac{B_{0}}{a_{0}} e^{-a_{0} N T}+\frac{B_{g}}{a_{g}} e^{-a} g^{N T}  \tag{3.29e}\\
N=\left[\frac{a}{T}\right]+1 \tag{3.29f}
\end{gather*}
$$

and

$$
\begin{equation*}
\epsilon_{e} \leq \epsilon_{r}+\epsilon_{0}(1+\sigma)^{N} \tag{3.29g}
\end{equation*}
$$

14If the linear part of the system is described by the matrix equations $\dot{\underline{x}}=\underline{A} \underline{x}+\underline{B} \underline{\underline{u}}, \underline{y}=\underline{C} \underline{x}$, then

$$
\underline{H}(0)=\underline{\mathrm{C}} \underline{\mathrm{~A}}^{-1} \underline{\mathrm{~B}} .
$$

The proof of Theorem 3.4 is given in Appendix C.

For a single-loop, single-modulator IPFM system and for $\epsilon_{e} \rightarrow 0$, Theorem 3.4 yields the relation

$$
\begin{equation*}
T=\left|\frac{q}{r_{0}}[S+h(0)]\right| \quad\left(e_{e}=0\right) \tag{3.30}
\end{equation*}
$$

This result was previously obtained by Meyer (93) and has later been verified by King-Smith and Cumpston (71) and Varadarajan and Pai (127).

The following example illustrates utility of Theorem 3.3.

Example 3.4 A multiple output pulse generator is to be designed to provide the periodic waveforms shown in Fig. 3.6.



Figure 3.6 Desired pulse pattern of the pulse generator.

An IPFM system containing two IPFM's and a second
order time-invariant linear part with a constant input is a good candidate for the job. In order to facilitate the design, some of the parameters of the system can be chosen arbitrarily: Let $S_{1}=1, S_{2}=1, M_{1}=1$ and $M_{2}=1$, and let the LP be described by the equations

$$
\begin{aligned}
& \underline{\dot{x}}(t)=\underline{A} \underline{x}(t)+\underline{B} \underline{u}(t) \\
& \underline{y}(t)=\underline{C} \underline{x}(t)
\end{aligned}
$$

where,

$$
\underline{A}=\left[\begin{array}{cc}
-a_{1} & 0 \\
0 & -a_{2}
\end{array}\right], \underline{B}=\left[\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right] \text {, and } \underline{C}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

For containment of the system, the matrix $A+B S$ must possess no eigenvalues in the r.h.p. (Corollary 3.1). This condition is easily satisfied if $a_{1}>-1$ and $a_{2}>-1$.

From (3.29b) one can easily obtain (see footnote no. 14)

$$
\underline{H}(0)=\underline{C} \underline{A}^{-1} \underline{B}=\left[\begin{array}{cc}
1 / a_{1} & 0  \tag{3.31a}\\
b / a_{2} & 1 / a_{2}
\end{array}\right]
$$

Substitution of (3.31) into (3.29a) yields

$$
\underline{P}=\underline{I}+\underline{H}(0)=\left[\begin{array}{cc}
1 / a_{1}+1 & 0  \tag{3.31b}\\
b / a_{2} & 1 / a_{2}+1
\end{array}\right]
$$

From (3.29e), it follows that as $\epsilon_{e} \rightarrow 0, \underline{\varphi} \rightarrow 0$. There-
fore, for $\epsilon_{e}=0$, (3.28) and (3.31b) give

$$
q=\underline{P}^{-1} \underline{x}_{0} T=\left[\begin{array}{c}
\frac{a_{1} r_{01}}{a_{1}+1}  \tag{3.32}\\
\frac{1}{a_{2}+1}\left(\frac{-b r_{01} a_{1}}{a_{1}+1}+a_{2} r_{02}\right)
\end{array}\right] \mathbb{T}
$$

Since the period is $T=5$ secs, and $q=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, (3.32) yields

$$
\begin{equation*}
q_{1}=1=\frac{5 r_{01}}{a_{1}+1} a_{1} \tag{3.33a}
\end{equation*}
$$

and,

$$
\begin{equation*}
q_{2}=0=\frac{1}{a_{2}+1}\left(-b \frac{5 r_{01} a_{1}}{a_{1}+1}+5 a_{2} r_{02}\right) \tag{3.33b}
\end{equation*}
$$

(3.33a) and (3.33b) can be combined to obtain

$$
\begin{equation*}
\mathrm{b}=5 \mathrm{a}_{2} \mathrm{r}_{02} \tag{3.34}
\end{equation*}
$$

The initial condition response vector, $\underline{y}_{0}(t)$ is given by

$$
\underline{y}_{0}(t)=\underline{c} e^{\underline{A} t} \underline{x}(0)=\left[\begin{array}{l}
x_{01} e^{-a_{1} t}  \tag{3.35}\\
x_{02} e^{-a_{2} t}
\end{array}\right]
$$

The output vector is
$y_{1}(t)=y_{0}(t)+\left[\begin{array}{c}-e^{-a_{1}(t-5)} \\ \left.-e^{-a_{2}(t-1)}-e^{-a_{2}(t-4)}-b e^{-a_{2}(t-5)}\right]\end{array}\right.$

The proper initial condition of the system can be obtained from (3.10), for $\epsilon_{0}=0$, giving

$$
\begin{equation*}
x_{01} e^{-5 a_{1}}-1+x_{01}=0 \tag{3.37}
\end{equation*}
$$

and

$$
\begin{equation*}
-x_{02} e^{-5 a_{2}}+e^{-4 a_{2}}-e^{-a_{2}}-b+x_{02}=0 \tag{3.38}
\end{equation*}
$$

(3.37) yields

$$
\begin{equation*}
x_{01}=\frac{1}{1-e^{-5 a_{1}}} \tag{3.39}
\end{equation*}
$$

The threshold relation for the first modulator is

$$
\begin{equation*}
\int_{0}^{5}\left[r_{01}-x_{01} e^{-a_{1} t}\right] d t=1 \tag{3.40}
\end{equation*}
$$

Similarly, the threshold relations for the second modulator are

$$
\begin{equation*}
\int_{0}^{4}\left[r_{02}-x_{02} e^{-a_{2} t}+e^{-a_{2}(t-1)}\right] d t=1 \tag{3.41}
\end{equation*}
$$

and

$$
\begin{gather*}
\int_{0}^{6}\left[r_{02}-x_{02} e^{-a_{2} t}+e^{-a_{2}(t-1)}-e^{-a_{2}(t-4)}\right] d t \\
-b \int_{0}^{6} e^{-a_{2}(t-5)} d t=-1 \tag{3.42}
\end{gather*}
$$

Substitution of (3.39) into (3.40) yields

$$
5 r_{01}=1+\frac{1}{a_{1}}
$$

Thus, one can select $r_{01}=1$ and $a_{1}=\frac{1}{4}$.

$$
(3.34) \text { and }(3.38) \text { yield }
$$

$$
\begin{equation*}
x_{02}=\frac{5 a_{2} r_{02}+e^{-a_{2}}-e^{-4 a_{2}}}{1-e^{-5 a_{2}}} \tag{3.43}
\end{equation*}
$$

Elimination of $r_{02}$ from (3.41) and (3.42) and substitution of (3.34) and (3.43) into the resulting equation yields an equation containing only one unknown, $a_{2}$. This equation can be solved for $a_{2}$, yielding

$$
a_{2}=0.5748298
$$

Hence,

$$
r_{02}=-0.06405757
$$

From (3.34)

$$
b=-0.184108
$$

and from (3.43)

$$
x_{02}=0.2950206
$$

At $t=\mathrm{O}^{+}$the integrator of the first modulator is reset to zero. However, the output of the second integrator is

$$
z_{2}(0)=-1-\int_{0}^{1}\left(r_{02}-x_{02} e^{-a_{2} t}\right) d t=-0.71155822
$$

Now, assume that the matrix $\underline{P}^{-1}$ exists and let

$$
\begin{equation*}
\underline{p}=\underline{\underline{p}}^{-1} \underline{I}_{0} \tag{3.44}
\end{equation*}
$$

Furthermore, assume also that the components of the vector $p$ are rational numbers, i.e., $\left|p_{i}\right|=N_{i} / D_{i}$, where $N_{i}$ and $D_{i}$ are integers $(i=1, \ldots, m)$ and that the vector $q$ hes no zero component. Then, for $\epsilon_{e}-0$, the period $T$ is an integer multiple of the number

$$
\begin{equation*}
T_{0}=\frac{\operatorname{LCM}\left(D_{1}, D_{2}, \ldots, D_{m}\right)}{\operatorname{GCD}\left(N_{1}, N_{2}, \ldots, N_{m}\right)} \tag{3.45}
\end{equation*}
$$

The number $\mathbb{T}_{0}$ will be called the the elementary period. Unlike linear systems, the period of oscillations in PFM systems (or, nonlinear systems, in general) could also depend on the initial conditions. If $\underline{r}_{0} \neq \underline{0}$, it is seen that, for this special case the possible periods of oscillation (under different initial conditions) are quantized, such that they are multiples of the elementary period, $T_{0}$. If $\underline{x}_{0}=\underline{Q}$, then the number of positive pulses will be equal to the number of negative pulses emitted by each modulator.
${ }^{15} \mathrm{LCM}(.$, ., ..) and $\operatorname{GCD}(.$, ., ..) stand for least common multiple and greatest common divisor, respectively, e.g, $\operatorname{LCM}(3,6,15)=\operatorname{LCM}(3,2 \cdot 3,3 \cdot 5)=2 \cdot 3.5=30$, $\operatorname{GCD}(3,6,15)=3$.

From (3.45) it is not difficult to see that any slight perturbation in either the system parameters or the input will yield a completely different period of motion, provided $p_{i}(i=1, \ldots, m)$ remain rational after the perturbation. If any component of the vector $p$ becomes irrational, then $T \rightarrow \infty$. This point is illustrated in the following example.

Example 3.5 Consider again the system treated in Example 3.4. Assume that the parameters $a_{2}, b$ and the input $r_{2}(t)$ are perturbed slightly (from the values calculated in Example 3.4), such that $a_{2}=0.575, r_{2}(t)=-0.064$ and $b=-0.1841$. Substitution of these values into (3.45) gives $p_{1}=N_{1} / D_{1}=1 / 5$, and $p_{2}=N_{2} / D_{2}=\frac{1}{78750}$ Therefore, for $\epsilon_{e} \rightarrow 0$, (3.42) yields

$$
T_{0}=\frac{\operatorname{LCM}(5,78750)}{\operatorname{GCD}(1,-1)}=78750 .
$$

For very small perturbations, it is reasonable to assume that there will not be a noticeable change in the motion. What explanation can be given to this "discrepancy"?

The answer lies in $\epsilon_{e}$; it can be related to measurement error and has a small but nonzero value. The vector $\varphi$ in (3.28) is an arbitrary vector. It can be selected such that condition ( 3.29 e ) is satisfied. In this case, (3.28) yields a number $T_{0}$ (the elementary period)
such that the $\epsilon e^{\text {-period } T}$ is an integer multiple of $T_{0}$. For small perturbations, since $\underline{\varphi}$ is arbitrary, this elementary period will be independent of the parameters of the system or the inputs.

Note that the term $\underline{\varphi}$ in (3.28) must be such that it can neutralize the effect of parameter perturbations. In order to elucidate this consider again the system of Example 3.4.
Example 3.6 Let $\underline{\varphi}^{\prime}=\underline{P}^{-1} \underline{\varphi}$, then for the system of Example 3.4, (3.28) yields

$$
\underline{q}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\underline{p} T+\varphi^{\prime}=\left[\begin{array}{c}
1+\varphi_{2}^{\prime} \\
\frac{5}{78750}+\varphi_{2}^{\prime}
\end{array}\right]
$$

In order to cancel the effect of parameter perturbations, $\varphi^{\prime}$ must be selected as

$$
\underline{\varphi}^{\prime}=\underline{P}^{-1} \underline{\varphi}=\left[\begin{array}{c}
0 \\
\frac{-5}{78750}
\end{array}\right]
$$

Therefore,

$$
\underline{\varphi}=\underline{P} \varphi^{\prime}=\left[\begin{array}{c}
0  \tag{3.46}\\
\frac{23}{(315)^{2}}
\end{array}\right]
$$

From equations (3.29e), (3.29g) and (3.46), one can see that for $\epsilon_{e}>2 \times 10^{-4}$, the motion could be considered as $\epsilon e^{-n \cdot p}$.

### 3.6 Conclusions

This chapter was concerned with the basic aspects of periodic behavior in multi-modulator PFM systems. Since motion in a PFM system is not necessarily (purely) periodic or almost periodic, a weaker concept, that of $\epsilon_{\mathrm{e}}$-nearly periodic motion ( $\epsilon e^{-n . p . m .) ~ w a s ~ i n t r o d u c e d . ~ T h i s ~ n o t i o n ~}$ has been defined in terms of a given accuracy within which the motion could be considered "periodic" in a given observation interval.

For CRPFM systems sufficient conditions were given such that the motion would not be finj.te-pulse stable (i.e., the modulators will not stop firing in finite time) or uncontained (i.e., the pulse frequencies will not keep on increasing). The first set of conditions constitutes a basic necessary condition for the existence of $\epsilon e^{-n}$.p. motion, while violation of the latter, for large perturbations, means the motion will "run away".

Two upper bounds were presented for $\epsilon_{e}$, such that for a given period and a given observation interval, the motion will be $\epsilon e^{-n . p}$. The first bound is applicable to more general cases; however, in certain cases, it can be much larger than the actual value. The second bound is especially useful if the impulse response matrix of the LP is almost periodic (e.g., a finite-dimensional time-
invariant $L P$, having a transfer matrix with all its poles on the imaginary axis) or contains only lightly damped periodical terms.

For IPFM systems with . time invariant IP's a matrix relationship was presented, relating the period of motion and the net number of pulses emitted by each modulator over that period. This relation clearly demonstrates the difference between periodic behavior of single-modulator and multi-modulator systems: Pure periodic motion, in the latter, is possible only in the "ideal" case when all the components of a certain vector of system parameters are rational numbers. Practically, however, pure periodic motion or approximately periodic motion may look alike because of measurement inaccuracy. Therefore, both measurement (or observation) accuracy and the observation interval must be considered in investigations of periodic behavior.

For some sets of system parameters, it is also possible that the motion is not $\epsilon e^{-n . p ., ~ e x c e p t ~ f o r ~}$ unreasonably large values of $\epsilon_{e}$. In this case the motion will have a random appearance, such as has been observed in experimental studies of neural activity. Thus, the results of this work might offer clues in the research on "random" activity in the nervous system.

## CHAPTER 4

## OSCILLATIONS IN INTERCONNECTED TIME-DISCRETIZED CRPFM

## SYSTEMS

### 4.1 Introduction

In the previous chapter certain aspects of periodic behavior of CRPFM systems were considered. However, many interesting problems were left unsolved, such as the determination of the possible period(s) of motion and prediction of possible pulse patterns for given sets of system parameters. Only a partial answer to this question was given for the special case of an IPFM system.

To obtain further results, a different approach is used in this chapter; namely, time discretized approximation of the CRPFM system. Such approximations are in fact utilized in numerical computations of the sys tem response (see Appendix D).

It is, however, still difficult to obtain anolytical results from the resulting (nonlinear) difference equations (except for oscillations having very short periods). This difficulty can be reduced by "linearization" of these equations by introduction of extra variables, using Fukunaga's method (132) for nonlinear switching nets. In this case, classical linear techniques (based on characte-
ristic polynomials and eigenvectors) can be used to obtain information about periodic motion.

The analysis presented in this chapter is exact for an important class of CRPFM systems, namely that where the LP's consist of interconnections of unit delays and summing junctions. Since McCulloch-Pitts type of neural networks constitute a subclass of this class, the results are also applicable to such networks.

### 4.2 System Considerations

In this chapter, a time-discretization of the CRPFM system of Fig. 3.1 is considered. It is assumed that the $L P$ is time invariant.
4.2.1 Time discretization of general CRPFM system. The discretization interval should be carefully selected; a large value can result in serious errors, while a small value means the the dimensions of the approximate system might become very large (as in the case of a LP containing time-delay). In general, it should be selected smaller than the smallest pulse period (i,e., the minimum distance between two successive pulses) expected.

To illustrate the time discretization, consider the general system of Fig. 3.1, with m CRPFM's, a time-invariant $L P$ and time-invariant TF's. It can be represented as
shown in Fig. 4.1a. The time-discretization implies the assumption that pulses may occur only at time-instants kT ; $k=0,1,2, \ldots$. This applies to both input $\underline{r}(t)$ and modulator-output $\underline{u}(t) ;$ i.e.,

$$
\begin{equation*}
\underline{\underline{r}}(t)=\sum_{k=0}^{\infty} \underline{\underline{r}}^{*}(k) \delta(t-k T) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{u}(t)=\sum_{k=0}^{\infty} \underline{u}^{*}(k) \delta(t-k T) \tag{4.2}
\end{equation*}
$$

where, $\underline{\underline{r}}^{*}(k)$ and $\underline{u}^{*}(k)$ are the strengths of the impulses of $\underline{r}(t)$ and $\underline{u}(t)$ respectively, at $t=k T$. For convenience, let $\underline{x}_{t}(k)=\underline{x}_{t}(k T), x_{p}(k)=x_{p}(k T)$, etc. The equations governing the system of Fig. 4.1a for $k=k T$ are

Linear part (LP):

$$
\begin{align*}
& \underline{x}_{p}(k+1)=\varrho_{p}(T)\left[\underline{x}_{p}(k)+\underline{B}_{p} \underline{u}^{*}(k)\right]  \tag{4.3a}\\
& \underline{z}(k)=\underline{C}_{p} \underline{x}_{p}(k) \tag{4.3b}
\end{align*}
$$

Threshold element (TE):

$$
\left.\begin{array}{rl}
\text { If } \quad z_{i}(k) \leq-S_{i} \text { then } u_{i}^{*}(k)=-M_{i} ; x_{t i}^{+}(k)=0 \\
\text { If }\left|z_{i}(k)\right|<S_{i} \text { then } u_{i}^{*}(k)=0 ; x_{t i}^{+}(k)=x_{t i}(k) \\
\text { If } \quad z_{i}(k)>S_{i} \text { then } u_{i}^{*}(k)= & M_{i} ; x_{t i}^{+}(k)=0 \\
& (i=1, \ldots, m)
\end{array}\right\}(4.4)
$$

where $\mathrm{x}_{\mathrm{ti}}^{+}(k)$ represents the state of the TF of the $\mathrm{ith}^{\text {th }}$ modulator at $t=k T^{+}$.


Figure 4.1 (a) A CRPFM system with time-invariant $T F$ and LP.
(b) Time-discretized approximation, using eqs. (4.1)-(4.5).

Timing filter (TF):

$$
\begin{gather*}
\underline{x}_{t}(k+1)=\underline{\emptyset}_{t}(T)\left[\underline{\underline{x}}_{t}^{+}(k)+\left|\underline{B}_{t} \underline{\underline{r}}^{*}(k)+\underline{y}(k)\right|\right]  \tag{4.5a}\\
\underline{z}(k)=\underline{C}_{t} \underline{x}_{t}(k) \tag{4.5b}
\end{gather*}
$$

A case of special interest is the CRPFM system of Fig. 4.2, where the LP consists of ideal time-delays only. Such a system may be used as an approximation of a neural network. It is especially suited for timediscretization which can approach an exact representation of the system when the discretization-interval, $T$, is chosen as a certain sub-multiple of the time-delays, $T_{i}$ ( $\mathrm{i}=1, \ldots, \mathrm{~m}$ ) (provided that the input consists of impulses occuring at intervals kT ). This will be discussed next.


Figure 4.2 Block diagram of an interconnected system consisting of $m$ CRPFM's and ideal delays.

### 4.2.2 Interconnected system consisting of CRPFM's

 and ideal delays. In this subsection the system of Fig. 4.2 is considered. The block containing the delay elements is assumed to be described by the equations$$
\begin{array}{r}
y_{i}\left(t+T_{i}\right)=K_{i} u_{i}(t)+y_{0 i}\left(t+T_{i}\right)  \tag{4.6}\\
(i=1, \ldots, m)
\end{array}
$$

where, $T_{i} \therefore$ and $K_{i}$ are constants representing the delay times and gains, respectively ( $i=1, \ldots, m$ ). The input vector, $\underline{e}(t)$ to the modulator block is given by

$$
\begin{equation*}
\underline{e}(t)=B \underline{y}(t)+\underline{r}(t) \tag{4.7}
\end{equation*}
$$

where, $\underline{B}$ is an mxm matrix.

It is assumed that all motion is of the form of impulses; however, each modulator may emit impulses of different strenghts. Thus, the input to the ith modulator, $e_{i}(t)$ may be expressed in the form

$$
\begin{equation*}
e_{i}(t)=\sum_{j=1}^{\infty} c_{i j} \delta\left(t-\tau_{i j}\right) \tag{4.8}
\end{equation*}
$$

where $c_{i j}$ is the impulse strength of $e_{i}(t)$ at time $\tau_{i j}$.
It is further assumed that each modulator emits an impulse immediately after it receives an impulse; this implies that

$$
\left|c_{i j} g_{0 i}\left(\tau_{i j}, \tau_{i j}\right)\right| \geq S_{i}, \quad \begin{align*}
& (i=1, \ldots, m  \tag{4.9}\\
& j=1,2, \ldots)
\end{align*}
$$

A CRPFM system satisfying the above assumptions shall be said to be in pulse mode operation ${ }^{1}$.

With the above assumption, the output of the ith modulator is given by

$$
\begin{equation*}
u_{i}(t)=M_{i} \sum_{j=1}^{\infty} \operatorname{sgn}\left[c_{i j} g_{0 i}\left(\tau_{i j}, \tau_{i j}\right)\right] \delta\left(t-\tau_{i j}\right) \tag{4.10}
\end{equation*}
$$

where,

$$
\operatorname{sgn}(\zeta) \triangleq\left\{\begin{align*}
-1 & \text { for } \zeta<0  \tag{4.11}\\
0 & \text { for } \zeta=0 \\
1 & \text { for } \zeta>0
\end{align*}\right.
$$

Let it be further assumed that

$$
\begin{equation*}
g_{0 i}(t, t)>0 \quad \forall t \geq 0 \tag{4.12}
\end{equation*}
$$

This assumption implies little loss of generality since a. negative sign can be take up by $M_{i}$. Moreover, since for a timing filter of the form $\underline{\dot{x}}(t)=\underline{A}(t) \underline{x}(t)+\underline{b}(t) \underline{u}(t)$; $\underline{z}(t)=\underline{c}^{T}(t) \underline{b}(t)$, it is $g_{0 i}(t, t)=\underline{c}^{T}(t) \underline{b}(t)$, if $\underline{c}^{T}(t) \underline{b}(t)$ does not change sign, then (4.12) can be imposed. This, for example, is true for a time-invariant $T F$.

With essumption (4.12), (4.10) can be written as
${ }^{1}$ For the developments to follow, the modulator can actually be a different type of PF modulator. However, it has to satisfy the assumption that the strength of an incoming impulse is such that it regenerates another impulse.

$$
\begin{equation*}
u_{i}(t)=M_{i} \sum_{j=1}^{\infty} \operatorname{sgn}\left[c_{i j}\right] \delta\left(t-\tau_{i j}\right) \tag{4.13}
\end{equation*}
$$

For time-discretization, select a discretizationinterval, $T$, such that $T_{i}=m_{i} T$, where $m_{i}(i=1, \ldots, m)$ is a positive interval. This interval $T$ must be chosen small enough to ensure that the pulse-emission times $\tau_{i j}$ are also multiples of $T$. The time-discretization consists of consideration of the impulse-strengths of the signals at instants kT . It will also be assumed that the input, $\underline{\underline{r}}(t)=\sum_{k=0}^{\infty} \underline{\underline{r}}^{*}(k) \delta(t-k T)$, will consists of impulses of strengths $\underline{\underline{r}}^{*}(k)$ at instant kT . Moreover, the initial condition response, $X_{0}(t)$, is assumed to be given in terms of impulse-trains within the delay times, expressable as

$$
\begin{equation*}
y_{0 i}(t)=\sum_{\ell=0}^{m_{j}-1} X_{O i}^{*}(\ell) \delta(t-\ell T), \quad(i=1, \ldots, m) \tag{4.14}
\end{equation*}
$$

Further, let $\underline{u}^{*}(k)$ and $\underline{y}^{*}(k)$ be the impulse-strengths of $\underline{u}(t)$ and $y(t)$, respectively at $t=k T$. Then, for pulse mode operation [condition (4.9)], (4.13) becomes:

$$
\begin{equation*}
u_{i}^{*}(k)=M_{i} \operatorname{sgn}\left[e_{i}^{*}(k)\right] \tag{4.15}
\end{equation*}
$$

The initial-condition response given in (4.14) defines $y_{i}(t)$ from $0 \leq t<T_{i}$. For $t \geq T_{i}=m_{i} T, y_{i}(t)$ will be
given in terms of $\mathrm{y}_{1}^{*}\left(k+\mathrm{m}_{\mathrm{i}}\right) \quad(\mathrm{k}=0,1,2, \ldots)$. From (4.6), (4.15) and Fig. 4.2:

$$
\begin{equation*}
y_{i}^{*}\left(k+m_{i}\right)=K_{i} M_{i} \operatorname{sgn}\left[\underline{B} y^{*}(k)+\underline{r}^{*}(k)\right]_{i} \tag{4.16}
\end{equation*}
$$

The notation $[\underline{\underline{x}}]_{i}$ denotes the ith element of the vector x.

Since it is clear that only impulse-strenghts are considered, the superscripts (*) will be dropped for the rest of this chapter. Furthermore, for notational simplicity, certain previously used symbols will be redefined in this chapter to denote different variables. Dropping the asterisk, the above equation becomes:

$$
\begin{aligned}
& y_{i}\left(k+m_{i}\right)=K_{i} M_{i} \operatorname{sgn}[\underline{B} y(k)+\underline{r}(k)]_{i} \\
& (\text { for double-signed CRPFM's) } \quad(i=1, \ldots, m)
\end{aligned}
$$

A similar relation can be given for the system of Fig. 4.2 with single-signed CRPFM's; in this case it is

$$
\begin{aligned}
& y_{i}\left(k+m_{i}\right)=K_{i} M_{i} \mu[\underline{B} y(k)+\underline{r}(k)]_{i} \\
& \text { (for single-signed CRPFM's) } \quad(i=1, \ldots, m)
\end{aligned}
$$

where $\mu(x)$ denotes the unit step function, defined such that

$$
\mu(x)= \begin{cases}1 & \text { for } x>0  \tag{4.17c}\\ 0 & \text { for } x \leq 0\end{cases}
$$

Equations (4.17) may be unified as

$$
\begin{gathered}
y_{i}\left(k+m_{i}\right)=K_{i} M_{i} \rho\left[\underline{B} y(k)+\underset{\underline{r}(k)]_{i}}{(i=1, \ldots, m)}\right.
\end{gathered}
$$

where

$$
\rho(x)=\left\{\begin{array}{cl}
\operatorname{sgn}(x) & \text { for double-signed CRPFM's }  \tag{4.18b}\\
\mu(x) & \text { for single-signed CRPFM's }
\end{array}\right.
$$

Equations (4.18a) represent m scalar difference equations of orders $m_{1}, m_{2}, \ldots, m_{m}$, respectively. They can also be represented in terms of $\sum_{i=1}^{m} m_{i}$ first-order difference equations which form a vector-difference equation of order

$$
\begin{equation*}
n=\sum_{i=1}^{m} m_{i} \tag{4.19}
\end{equation*}
$$

Let

$$
x_{i j}(k) \triangleq \frac{1}{M_{i} K_{i}} y_{i}(k+j-1), \quad \begin{align*}
& i=1, \ldots, m,  \tag{4.20}\\
& j=1, \ldots, m_{i}
\end{align*}
$$

This implies that

$$
x_{i j}(k+1)=x_{i, j+1}(k), \begin{aligned}
& i=1, \ldots, m, \\
& j=1, \ldots, m_{i}-1
\end{aligned}(4.21 a)
$$

and, from (4.18a)

$$
x_{i, m_{i}}(k+1)=\rho\left[\sum_{j=1}^{\infty} b_{i j} M_{j} K_{j} x_{j 1}(k)+r_{i}(k)\right]
$$

$$
(i=1, \ldots, m)
$$

Let
$\underline{x}_{i}(k) \triangleq\left[\begin{array}{c}x_{i 1}(k) \\ x_{i 2}(k) \\ \vdots \\ x_{i m_{i}}(k)\end{array}\right]$ and $\quad \underline{r}_{i}(k) \triangleq\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ r_{i}(k)\end{array}\right]$
and

$$
\underline{x}(k) \triangleq\left[\begin{array}{c}
\underline{x}_{1}(k)  \tag{4.22b}\\
\underline{x}_{2}(k) \\
\vdots \\
0 \\
\underline{x}_{m}(k)
\end{array}\right] \quad \text { and } \quad \underline{r}^{\prime}(k) \triangleq\left[\begin{array}{c}
\underline{r}_{1}(k) \\
\underline{\underline{r}}_{2}(k) \\
\vdots \\
\vdots \\
\underline{\underline{r}}_{m}^{\prime}(k)
\end{array}\right]
$$

Eqs. (4.21) represent the new set of state differance equations in terms of the n-dimensional state ventor $\underset{\sim}{x}(k)$. Because of the definition of $p(\cdot)$ and its use in eqs. (4.21b), it follows that

$$
x_{i, j}(k)=\rho\left[x_{i j}(k)\right], \begin{align*}
& i=1, \ldots, m  \tag{4.23}\\
& j=1, \ldots, m_{i}
\end{align*}
$$

Therefore, eqs. (4.21) can be brought into matrix form as

$$
\begin{equation*}
\underline{x}(k+1)=\rho\left[\underline{D} \underline{x}(k)+\underline{r}^{\prime}(k)\right] \tag{4.24}
\end{equation*}
$$

where

$$
\begin{align*}
\rho \underline{x} & \triangleq\left[\rho\left(x_{1}\right), \rho\left(x_{2}\right), \ldots, \rho\left(x_{n}\right)\right]^{T},  \tag{4.25}\\
\underline{D} & \triangleq\left[\begin{array}{llll}
\underline{D}_{11} & \underline{D}_{12} & \ldots & \underline{D}_{1 m} \\
\ldots & \ldots & \ldots & \ldots \\
\underline{D}_{m 1} & \underline{D}_{m 2} & & \underline{D}_{m m}
\end{array}\right], \tag{4.26a}
\end{align*}
$$

and

$$
\left.\underset{\left(m_{i} X_{i}\right)}{D_{i}}=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0  \tag{4.26b}\\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
b_{i i} M_{i} K_{i} & 0 & 0 & \ldots & 0 & 0
\end{array}\right] \quad \begin{array}{l}
0
\end{array}\right] \quad(i=1, \ldots, m)
$$

and

In other words,

$$
\left[\underline{D}_{i j}\right]_{k, \ell}=\left\{\begin{array}{cl}
1 & \text { if } \ell=k+1 ; k=1,2, \ldots, m_{i}-1 ; j=i  \tag{4.26d}\\
b_{i j} K_{j} M_{j} & \text { if } k=m_{i}, \ell=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\left(k=1, \ldots, m_{i} ; l=1, \ldots, m_{j}\right)
$$

Equations similar to (4.24) have been used to describs McCulloch-Pitts type neural nets [Landahl and Rung ( 82 ), Caianiello et. al. ( $18,19,20$ )]. A special case treated by Caianiello et.al (19) for neural nets assumes $\underline{r}^{\prime}(k)$ to be constant such that

$$
\begin{equation*}
\underline{\underline{r}}^{\prime}(k)=-\frac{1}{2} \underline{D} 1, \quad 1 \triangleq[1,1, \ldots, 1]^{T} \tag{4.27a}
\end{equation*}
$$

In this case the transformation

$$
\begin{equation*}
\underline{\hat{x}}(k)=2 \underline{x}(k)-1 \tag{4.27b}
\end{equation*}
$$

reduces (4.24), for the single-signed system [ie., for $\rho(\cdot)=\mu(\cdot)]$, to the form

$$
\begin{align*}
& \text { (for single-signed } \\
& \underline{\underline{\hat{x}}}(k)=\overline{\operatorname{sgn}} \quad \underline{\underline{\hat{x}}(k)} \quad \begin{array}{l}
\text { CRPFM's and } \\
\left.\underline{\underline{r}}^{\prime}(k)=-\frac{1}{2} \underline{D} 1\right)
\end{array} \tag{4.27c}
\end{align*}
$$

where

$$
\overline{\operatorname{sgn}}(x)=\left\{\begin{align*}
1 & \text { for } x>0  \tag{4.27d}\\
-1 & \text { for } x \leq 0
\end{align*}\right.
$$

## 4. 3 The Autonomous Case, Period of Solutions

$$
\text { For the case } \underline{\underline{r}}^{\prime}(k)=\underline{0} \text { eq. (4.24) for the double- }
$$ signed system becomes

$$
\begin{equation*}
\underline{x}(k+1)=\operatorname{sgn} \underline{D}[\underline{x}(k)] \tag{4.28a}
\end{equation*}
$$

or,

$$
\begin{equation*}
\hat{\underline{y}}(k+1)=\underline{D} \operatorname{sgn} \hat{\underline{y}}(k), \text { where } \hat{z}(k) \triangleq \underline{D} \underline{x}(k) \tag{4.28b}
\end{equation*}
$$

In this section some properties of eqs. (4.28) will be presented.

Consider the vector-difference equation

$$
\begin{equation*}
\underline{x}(k+1)=\sigma[\underline{x}(k)] \tag{4.28c}
\end{equation*}
$$

where $\sigma(\cdot)$ denotes some operator [e.g, for (4.28a), it is $\sigma(\cdot)=\operatorname{sgn} \underline{D}(\cdot)]$. Let

$$
\theta^{k}(\cdot)=\underset{k \text { times }}{\theta(\theta(\sigma(\ldots)))}
$$

Then, the solution of (4.28c) is

$$
\underline{x}(k)=\sigma^{k}[\underline{x}(0)]
$$

A state x is called a cyclic state if there exists an integer $k$ such that $\underline{x}=\sigma^{k} \underline{x}$. If no such $k$ can be found, then the state is called a transient state. Let $k_{0}$ be the value of the smallest $k$ satisfying $\underline{x}=\sigma^{k} \underline{x}$; the sequence $\sigma \underline{x}, \sigma^{2} \underline{x}, \ldots, \sigma^{k} \underline{0}_{\underline{x}}=\underline{x}$ is called a cycle. The constant $k_{0}$ is called the period (or, sometimes the length) of the cycle. A cycle of period $=1$ is called a. simple cycle. A simple cycle formed by the zero state
$x=[0,0, \ldots, 0]^{T}$ is called a trivial cycle. If for every possible state $\underline{x}, \sigma(\underline{x}) \neq \underline{x}_{f}$, then $\underline{x}_{f}$ is called a first state. A sequence of transient states $\underline{\underline{x}}_{f},{ }^{\underline{x_{f}}}$, $\ldots, \theta^{k} \underline{x}_{f}$, generated by a first state $\underline{x}_{f}$ is called a transient chain (13).

In shift register designs short cycles are, generally, not desirable. However, short cycles might have biological significance (Kauffman (70) relates existence of short cycles to genetic stability). The following lemma is concerned with short cycles, namely, cycles consisting of one or two states.

Lemma 4.1 Let $\underline{x}^{\prime}$ and $\underline{x}^{\prime \prime}$ be the solutions of the equations $\underline{x}=\operatorname{sgn} \underline{D} \underline{x}$ and $\underline{x}=-s g n \underline{D} \underline{x}$, respectively. Then, the state $\underline{x}^{\prime}$ will form a simple cycle by itself, and the states $\underline{x}^{\prime \prime}$ and -x" will form a cycle of period 2.

Proof: Let $\underline{x}(0)=\underline{x}^{\prime}$, then from (4.28b), $\underline{x}(1)=\operatorname{sgn} \underline{D} \underline{x}^{\prime}$. But $\underline{x}^{\prime}=\operatorname{sgn} \underline{D} \underline{x}^{\prime}$, thus. $\underline{x}(1)=\underline{x}^{\prime} ; \underline{x}(2)=\underline{x}^{\prime}, \ldots$. Similarly, with $\underline{x}(0)=\underline{x}^{\prime \prime}, \underline{x}(1)=\operatorname{sgn} \underline{D} \underline{x} "=-\underline{x} ", \underline{x}(2)=\underline{x}^{\prime \prime}$, $\underline{x}(3)=-\underline{x} ", \ldots$ Therefore, $\underline{x}^{\prime}$ forms a cycle of period 1 and $\underline{x}^{\prime \prime}$ and $-\underline{x} "$ form a cycle of period 2.

The existence of the solution of the equation $\underline{\mathrm{x}}= \pm \mathrm{sgn} \underline{\mathrm{D}} \underline{\mathrm{x}}$ is not obvious. Consider the eigenvalues of $\underline{D}$. Let $\underline{x}^{+}$denote an eigenvector corresponding to a positive eigenvalue, $\lambda^{+}$, and let $\underline{x}^{-}$denote an eigenvector
corresponding to a negative eigenvalue, $\lambda^{-}$. Then, $\underline{D} \underline{x}^{+}=\lambda^{+} \underline{x}^{+}$, or $\operatorname{sgn} \underline{D} \underline{x}^{+}=\operatorname{sgn} \underline{x}^{+}$. Thus, if $\underline{x}^{+}=\operatorname{sgn} \underline{x}^{+}$, then $\underline{x}^{+}=\underline{x}^{\prime}$. Similarly, if $\underline{x}^{-}=\operatorname{sgn} \underline{x}^{-}$, then $\underline{x}^{-}=\underline{x}^{\prime \prime}$. This leads to the following corollary:

Corollary 4.1 If the matrix $\underline{D}$ has an eigenvector $\underline{x}^{+}$ corresponding to a positive eigenvalue, such that $\underline{x}^{+}=\operatorname{sgn} \underline{x}^{+}$, then $\underline{x}^{+}$will form a simple cycle. If $\underline{D}$ has an eigenvector $\underline{x}^{-}$corresponding to a negative eigenvalue, such that $\underline{x}^{-}=\operatorname{sgn} \underline{x}^{-}$, then $\underline{x}^{-}$and $-\underline{x}^{-}$will form a cycle of period 2.

Example 4.1 To illustrate Lemma 4.1, Corollary 4.1 and some of the related notations and definitions, consider the system

$$
\underline{x}(k+1)=\overline{\operatorname{sgn}}\left[\begin{array}{cc}
3 & 6 \\
1 & -2
\end{array}\right] \underline{x}(k)
$$

The eigenvector corresponding to the positive eigenvalue $\lambda=4$ is of the form $\underline{x}^{+}=\left[\begin{array}{l}6 \\ 1\end{array}\right] \alpha$, and the eigenvector corresponding to the negative eigenvalue $\lambda=-3$ is the form $\underline{x}^{-}=\left[\begin{array}{r}1 \\ -1\end{array}\right] \beta$, where $\alpha$ and $\beta$ are arbitrary scalars. In this case, $\underline{x}^{+} \neq \mathrm{sgn} \underline{\mathrm{x}}^{+}$, thus, there is no simple cycle. However, for $\beta=1$, $\operatorname{sgn} \underline{x}^{-}=\left[\begin{array}{r}1 \\ -1\end{array}\right]=\underline{x}^{-}$. Hence, $\underline{x}^{\prime \prime}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$. Note that

$$
\operatorname{sgn}\left[\begin{array}{rr}
3 & 6 \\
1 & -2
\end{array}\right]\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=-\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

This means that the states $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ will form a cycle of period 2. The remaining states are $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}-1 \\ -1\end{array}\right]$; they are transient states. From the first, the net goes to the state $\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and from the second to $\left[\begin{array}{r}-1 \\ 1\end{array}\right]$. This knowledge can conveniently be displayed using the diagram shown in Fig. 4.3. Such diagrams are called state transition diagrams.


Figure 4.3 State transition diagram of the system considered in Example 4.1.

From Corollary 4.1 and Example 4.1 one might intiutively reach the conclusion that somehow the rank of the matrix $\underline{D}$ and the cycle lengths are related; the smaller the rank, the shorter become the cycle lengths. This point was explored by Caianiello and Accardi. The following theorem is due to Caianiello $(19,20)$.

Theorem 4.1 [Caianiello (19)] If $\underline{D}$ is of rank 1 , then the system described by (4.28) can only have a period of
(1) 1 if $c_{2}>0$, or
(2) 2 if $c_{2}<0$,
where $c_{2}=\underline{b}^{T} \operatorname{sgn} \underline{a}$ and $\underline{D}=\underline{a} \underline{b}^{T}$; $\underline{a}$ and $\underline{b}$ are $n$-dimensional constant vectors.

Proof: Consider (4.28b). Since the matrix $\underline{D}$ is of rank 1 , it has the form $\underline{a} \underline{b}^{T}$, where $\underline{a}$ and $\underline{b}$ are n-dimensional column vectors. For $k=0,(4.28 b)$ gives

$$
\hat{y}(1)=\underline{a} \underline{b}^{T} \operatorname{sgn} \hat{y}(0)
$$

Let $\underline{b}^{T} \operatorname{sgn} \hat{y}(0)=c_{0}(a \operatorname{scalar})$, For $k=1$,

$$
\begin{aligned}
\hat{\mathbf{z}}(2) & =\underline{a} \underline{b}^{T} \operatorname{sgn} \hat{y}(1)=\underline{a} \underline{b}^{T} \operatorname{sgn}\left(c_{0} \underline{a}\right) \\
& =\underline{a} \underline{b}^{T}\left(\operatorname{sgn} c_{0}\right)(\operatorname{sgn} \underline{a})
\end{aligned}
$$

For $k=2$,

$$
\hat{y}(3)=\underline{a} \underline{b}^{T} \operatorname{sgn} \hat{y}(2)=\underline{a} \underline{b}^{T} \operatorname{sgn} \underline{a} \underline{b}^{T}\left(\operatorname{sgn} c_{0}\right) \operatorname{sgn} \underline{a}
$$

Let $\operatorname{sgn} c_{0}=c_{1}$ and $\underline{b}^{T} \operatorname{sgn} \underline{a}=c_{2}$ (a scalar), $\hat{y}(3)$ becomes

$$
\hat{y}(3)=\underline{a} \underline{b}^{T}(\operatorname{sgn} \underline{a})\left(\operatorname{sgn} c_{1}\right)\left(\operatorname{sgn} c_{2}\right)=\underline{a} c_{1} c_{2}
$$

For $k=4,(4.19 b)$ yields

$$
\hat{\hat{z}}(4)=\underline{a}^{\mathrm{b}} \operatorname{sgn} \hat{y}(3)=c_{1} c_{2} \underline{a}
$$

Thus, from an inductive reasoning, one can deduce that

$$
\hat{\mathbf{z}}(k)= \begin{cases}\underline{a} c_{1} c_{2} & \text { for } k=2,4, \ldots, \\ a c_{1} c_{2} & \text { for } k=3,5, \ldots\end{cases}
$$

For $c_{2}>0$, this means $y(k)=$ a $c_{1} c_{2}(k=2,3,4, \ldots)$, i.e., only a simple cycle is possible. However, for $c_{2}<0$, there will be a cycle of period 2.

The same conclusion also follows form Corollary 4.1.

Since $\underline{D}$ is of rank 1 , it is similar to a matrix which has a nonzero element in a diagonal position as its only entry. Thus, it has only one nonzero eigenvalue and any vector in $E^{n}$ is an eigenvector corresponding to this eigenvalue. This means that Corollary 4.1 will be satisfied for each possible n-vector whose elements are +1 or -1. If the nonzero eigenvalue is positive, there will be only simple cycles. If it is negative then there will be only cycles of period 2.

The following theorem, which considers the case when the coupling matrix $D$ has rank $K$ was prooved by Accardi (2).

Theorem 4.2 Accardi (2) If the matrix $D$ has rank $K$, then the number $N$ of the admissible states of the system described by (4.28) and the maximum possible cycle period is such that

$$
N \leq 2^{n}-2^{n-K+1}+2
$$

### 4.4 Iinearization of the System Equations

The approach used in Section 4.3 did not proove to be very successful mainly because the operator $\theta$ was nonlinear (i.e., in general, $\sigma\left(c_{1} \underline{x}_{1}+c_{2} x_{2}\right) \neq c_{1} \sigma \underline{x}_{1}+$ $c_{2} \sigma x_{2}$, where $c_{1}$ and $c_{2}$ are scalars and $\underline{x}_{1}$ and $\underline{x}_{2}$ are nvectors). Is it possible, then to find an equivalent
linear system of equations which will adequately describe the systems considered in Section 4.2?

$$
\begin{aligned}
& \text { To answer this question first consider eqs. (4.24): } \\
& \underline{x}(k+1)=\operatorname{sgn}\left[\underline{x}(k)+r^{\prime}(k)\right] \begin{array}{c}
\text { (double-signed } \\
\text { system }
\end{array}
\end{aligned}
$$

and

$$
\underline{x}(k+1)=\mu\left[\underline{D} \underline{x}(k)+\underline{r}^{\prime}(k)\right] \quad \begin{aligned}
& \text { (single-signed } \\
& \text { system) }
\end{aligned}
$$

describing the systems considered in this chapter. From the above equations, it is not difficult to see that for the double-signed system, the elements of the vector $\underline{x}(k)$ can only take on the values $+1,0$ or -1 and for the single-signed system 0 an 1 are the only possible values ${ }^{2}$, i.e., only a finite number of states are possible.

Since only a finite number of states are permissible, it is possible to find an equivalent linear system by introducing extra variables. For binary switching nets such a technique was described by Fukunaga (132), in a short technical note. Some of the consequences of this linearization was later worked out by da Fonseca and

[^27]McCulloch (131). In general, this technique can be extended to any autonomous net defined with respect to a finite field ${ }^{3}$.

A field is an algebraic system consisting of two operators and their inverses (e.g, addition and its inverse, subtraction; multiplication and its inverse, division). The field of real numbers and the field of complex numbers are examples of infinite fields which are used in the analysis of continuous systems. When the variables of the system under consideration is restricted

[^28]If the multiplicative operation does not satisfy axioms A.3-A.5, the system is called a ring; if one of the operations (say +) satisfies A.1-A.4, it is called a group. If in addition to A.1-A.4, A. 5 is also satisfied, the group is called and Abelian (or, commutative) group. Thus, a field is a commutative ring with a multiplicative inverse and a ring with respect to its additive operation is a commutative group (9).
to a finite number of values, it becomes advantageous to use fields that have only a finite number of elements.

In a finite field each function is equivalent to a polynomial. The number of elements cannot be selected arbitrarily; it must be of the form $p^{r}$, where $p$ is a prime number and $r$ is an integer, It can be shown that any two finite fields with the same number of elements are isomorphic (9), i.e., they have the same structure and differ only in the way the elements are named. Finite fields are called Galois fields (denoted by GF ( $p^{r}$ )), in honor of the French mathematician who first investigated their properties. Any function of $n$ variables over $G F\left(p^{r}\right)$ can be represented by $r$ functions in $n r$ variables over GF(p) (9).

In this chapter the field GF(2) (also called the binary field, or mod 2 field) will be used (This applies to single-signed system). However; for sake: of generality, some of the results will be given with respect to $G F\left(p^{r}\right)$.

The binary field $G F(2)$ has a very simple structure. It has two elements denoted by 0 and 1 and two binary operations denoted by (+) (called mod 2 addition) ${ }^{4}$ and

[^29](•) (called binary multiplication). Operation rules for GF(2) are given in Figure 4.4

| + | 0 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 1 | 1 | 0 |


| . | 0 | 1 |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 1 | 0 | 1 |

+ exclusive OR
$v \quad$ OR
- AND
$a^{\prime}$ NOT a
Basic conversion rules:
$a^{\prime}=1+a$
$a v b=a+b+a b$

Figure 4.4 Operation rules for the Galois field GF(2).

In logic designer's language mod 2 addition (+) is also known as EXCLUSIVE-OR and the binary multiplication (•) is known as AND (133). The INCLUSIVE-OR (or, simply OR) operation (v) is defined for two variables $a$ and $b$ such that $a v b=1$ if and only if either $a$ or $b$ (or both) is 1 . In logic design, it is more customary to use INCLUSIVE-OR, AND and NOT $\left(a^{\prime}=1\right.$ if $a=0 ; a^{\prime}=0$ if $a=1$ ) operations (This may not be so). It is not difficult to see that

$$
a^{\prime}=1+a
$$

and

$$
a v b=a+b+a b
$$

To illustrate how the aforementioned linearization can be performed, the following example is given. Example 4.2 Consider the neural network of Fig. 4.5a,


Figure 4.5 (a) Schematic representation of a neural network consisting of interconnections of two excitatory neurons (neuron 1 and neuron 3) and an inhibitory neuron (neuron 2).
(b) Block diagram of a simplified model of the same neural network.
consisting of two excitatory neurons and an inhibitory neuron. A simplified model of this net is shown in Fig. 4.5b. Assuming the pulse.repetition rate of the network to be sufficiently low, the effect of temporal summation can be neglected. Using the symbol 1 to denote the existence of a pulse and 0 to denote the absence of a pulse, the behavior of the net can be described by the equation

$$
\underline{x}(k+1)=\mu\left[\begin{array}{cccc}
0 & -1.2 & 1 & 1 \\
0.6 & 0 & 1 & 0.5 \\
1 & -0.7 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \underline{x}(k)
$$

The information contained in the above equation can also be displayed using the tables shown in Fig. 4.6.

| $x_{2}(k)$ | $x_{3}(k)$ | $x_{4}(k)$ | $x_{1}(k+1)$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |
|  |  |  |  |
| $x_{1}(k)$ | $x_{3}(k)$ | $x_{4}(k)$ | $x_{2}(k+1)$ |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |


| $x_{1}(k)$ | $x_{2}(k)$ | $x_{3}(k+1)$ |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

Figure 4.6 Truth tables of the system of Fig. 4.5b.

From these tables one can obtain:

$$
\begin{align*}
x_{1}(k+1)= & {\left[1+x_{2}(k)\right]\left[1+x_{3}(k)\right] x_{4}(k) v\left[1+x_{2}(k)\right]\left[1+x_{4}(k)\right] x_{2}(k) } \\
& v\left[1+x_{2}(k)\right] x_{3}(k) x_{4}(k) v x_{2}(k) x_{3}(k) x_{4}(k)  \tag{4.29a}\\
& \left.x_{2}(k+1)=x_{1}(k)+x_{3}(k) v x_{4}(k), 29 a\right) \tag{4.29b}
\end{align*}
$$

and

$$
\begin{equation*}
x_{3}(k+1)=x_{1}(k) \tag{4.2yc}
\end{equation*}
$$

Also,

$$
\begin{equation*}
x_{4}(k+1)=x_{3}(k) \tag{4.29d}
\end{equation*}
$$

Since $a v b=a+b+a b$, one can express the right hand side of equation (4.29) using only the operations ( + ) and (•). To simplify notation, the $k$ terms on the right hand side of the equations will be dropped. Hence, eq. (4.29a) becomes

$$
\begin{align*}
x_{1}(k+1)= & \left(1+x_{2}\right)\left\{\left[\left(1+x_{3}\right) x_{4} \vee\left(1+x_{4}\right) x_{3}\right] v x_{3} x_{4}\right\} v x_{2} x_{3} x_{4} \\
= & \left(1+x_{2}\right)\left[\left(x_{4}+x_{3} x_{4}+x_{3}+x_{3} x_{4}+x_{3} x_{4}+x_{3} x_{4}+x_{3} x_{4}+x_{3} x_{4}\right)\right. \\
& \left.v x_{3} x_{4}\right] v x_{2} x_{3} x_{4} \\
= & \left(1+x_{2}\right)\left[\left(x_{3}+x_{4}\right) \vee x_{3} x_{4}\right] v x_{2} x_{3} x_{4} \\
= & \left(1+x_{2}\right)\left(x_{3}+x_{4}+x_{3} x_{4}+x_{3} x_{4}+x_{3} x_{4}\right) v x_{2} x_{3} x_{4} \\
= & x_{3}+x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4} \tag{4.30a}
\end{align*}
$$

Similarly, eq. (4.29b) becomes

$$
\begin{align*}
x_{2}(k+1)= & \left(x_{1} \vee x_{3}\right) \vee x_{4}=\left(x_{1}+x_{3}+x_{1} x_{3}\right)+x_{4}+\left(x_{1} x_{4}+x_{3} x_{4}+x\right. \\
& \left.+x_{1} x_{3}+4\right)=x_{1}+x_{4}+x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}+x_{1} x_{3} x_{4} \tag{4.30b}
\end{align*}
$$

The net of this example is nonlinear because of the presence of the product terms of the form $x_{i} x_{j}$ and $x_{i} x_{j} x_{i}$ ( $i, j, l=1,2,, 3 ; i \neq j \neq l$ ). In order to avoid such terms, simply define the following new variables

$$
\begin{array}{ll}
x_{5}(k)=x_{1}(k) x_{2}(k) & (4.31 .1) \\
x_{6}(k)=x_{1}(k) x_{3}(k) & (4.31 .2) \\
x_{7}(k)=x_{1}(k) x_{4}(k) & (4.31 .3) \\
x_{8}(k)=x_{2}(k) x_{3}(k) & (4.31 .4) \\
x_{9}(k)=x_{2}(k) x_{4}(k) & (4.31 .5) \\
x_{10}(k)=x_{3}(k) x_{4}(k) & (4.31 .6) \\
x_{11}(k)=x_{1}(k) x_{2}(k) x_{3}(k) & (4.31 .7) \\
x_{12}(k)=x_{1}(k) x_{2}(k) x_{4}(k) & (4.31 .9) \\
x_{13}(k)=x_{1}(k) x_{3}(k) x_{4}(k) & (4.31 .10) \\
x_{14}(k)=x_{2}(k) x_{3}(k) x_{4}(k) & (4.31 .11) \\
x_{15}(k)=x_{1}(k) x_{2}(k) x_{3}(k) x_{4}(k) &
\end{array}
$$

Substitution of eqs. (4.31) into eqs. (4.30a) and (4.30b) yields

$$
x_{1}(k+1)=x_{3}(k)+x_{4}(k)+x_{8}(k)+x_{9}(k)+x_{10}(k)
$$

and

$$
\begin{align*}
x_{2}(k+1)= & x_{1}(k)+x_{3}(k)+x_{4}(k)+x_{6}(k)+x_{7}(k) \\
& +x_{10}(k)+x_{13}(k) \tag{4.32.2}
\end{align*}
$$

Also,

$$
x_{3}(k+1)=x_{1}(k) \quad(\text { eq. }(4.29 c), \text { repeated }) \quad(4 \cdot 32 \cdot 3)
$$

and

$$
\begin{equation*}
\left.x_{4}(k+1)=x_{3}(k) \quad \text { (eq. }(4.29 d), \text { repeated }\right) \tag{4.32.4}
\end{equation*}
$$

Since, from eq. (4.31.1), $x_{5}(k+1)=x_{1}(k+1) x_{2}(k+1)$, eqs. (4.32.1) and (4.32.2) give

$$
\begin{aligned}
x_{5}(k+1)= & x_{3}(k)+x_{4}(k)+x_{2}(k) x_{3}(k)+x_{2}(k) x_{4}(k) \\
& +x_{3}(k) x_{4}(k)
\end{aligned}
$$

But, from eqs. (4.31.4), (4.31.5) and (4.31.6),
$x_{2}(k) x_{3}(k)=x_{8}(k), x_{2}(k) x_{4}(k)=x_{9}(k)$ and $x_{3}(k) x_{4}(k)=x_{10}(k)$.
Thus, $x_{5}(k+1)$ can be written as

$$
x_{5}(k+1)=x_{3}(k)+x_{4}(k)+x_{8}(k)+x_{9}(k)+x_{10}(k)
$$

Similarly,

$$
\begin{aligned}
& x_{6}(k)=x_{6}(k)+x_{7}(k)+x_{11}(k)+x_{12}(k)+x_{13}(k) \\
& \\
& x_{7}(k \cdot 32 \cdot 6) \\
& x_{7}(4.32 .7)
\end{aligned}
$$

The rest of the equations can be obtained in the same manner; in matrix form they become

$$
\underline{x}(k+1)=\left[\begin{array}{lllllllllllllll}
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

As discussed in Example 4.2, it is possible to use the truth table of the functions to be linearized first to express the function in terms of the logical operations ( v , inclusive-OR), ( $\cdot, \mathrm{AND}$ ) and ( $\mathrm{a}^{\prime}, \mathrm{NOT} a$ ); then the function can be expressed in terms of the binary operations (+, mod 2 addition) and (•, mod 2 multiplication). This transition was made possible through the transformations $a^{\prime}=1+a$ and $a v b=a+b+a b$.

However, it is also possible to express any function in terms of mod 2 addition and multiplication of its variables, directly, without going to its description in terms of (v), (•) and ('). The procedure is straightforward and suitable for implementation for programming purposes. This is described next.

The function $f\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ can be expressed in the following form

$$
\begin{align*}
f\left(x_{1}, x_{2}, \ldots, x_{m}\right)= & f_{0}+\sum_{i=1}^{m} f_{i} x_{i}+\sum_{i=1}^{m} \sum_{j=i+1}^{m} f_{i+m} x_{i} x_{j} \\
& +\sum_{i=1}^{m} \sum_{j=i+1}^{m} \sum_{k=j+1}^{m} f_{i+m+\left(\frac{m}{2}\right)} x_{i} x_{j} x_{k} \\
& +\ldots+f_{2 m-1}^{m} x_{1} x_{2} \ldots x_{m} \tag{4.33}
\end{align*}
$$

where $f_{i}\left(i=0,1,2, \ldots, 2^{m}-1\right)$ are binary constants (or 1 ). In order to calculate $f_{0}$ set $x_{1}=x_{2}=\ldots=x_{m}=0$. Then, from eq. (4.33), obviously,

$$
f_{0}=f(0,0, \ldots, 0)
$$

Now set $x_{1}=1$ and $x_{2}=x_{3}=\ldots=x_{m}=0$, then eq. (4.33) gives

$$
f(1,0, \ldots, 0)=f_{0}+f_{1}
$$

Since $f_{0}$ is known $f_{1}$ can be calculated from

$$
f_{1}=f(1,0, \ldots, 0)+f_{0}
$$

This procedure can easily be applied to obtain $f_{2}, f_{3}, \ldots$ $f_{m}$. In order to calculate $f_{m+1}$, substitute $x_{1}=x_{2}=1$, $x_{3}=x_{4}=\ldots=x_{m}=0$, then (4.31) yields

$$
f_{m+1}=f(1,1,0,0, \ldots, 0)+f_{0}+f_{1}+f_{2}
$$

Generalizing this idea, it is seen that the coefficient of a term of the form $\prod_{i=1}^{V} x_{\ell(i)} \quad$ can be calculated from

$$
\begin{aligned}
& \left.f\left(x_{1}, \ldots, x_{m}\right)\right|_{\begin{array}{l}
x_{\ell(1)}=x_{\ell(2)}=\ldots=x_{\ell(v)}=1 \\
\text { (the renaining variables set to zero) }
\end{array}} \begin{array}{l}
+f_{0}+\sum_{i=1}^{v} f_{\ell(i)}+\sum \text { (coefficients of the terms }
\end{array}
\end{aligned}
$$

of the form $\left.x_{\ell(i)} x_{\ell(j)} ; i, j=1, \ldots, v ; i \neq j\right)+\sum$ coefficients of the terms of the form $x_{\ell(i)^{x}}{ }_{\ell(j)}{ }^{x} \ell(k) ; i, j, k=1, \ldots, v$ $i \neq j \neq k)+\ldots \ldots$

Example 4.3 In this example the system considered in Example 4.1 will be linearized. For this purpose, let the symbol 1 denote the presence of a positive pulse and let the symbol 0 denote the presence of a negative pulse (This choice is, of course, arbitrary; one could also choose 0 for a negative pulse and 1 for a negative pulse). Information concerning state transitions is shown in Fig. 4.7.

| $x_{1}(k)$ | $x_{2}(k)$ | $x_{1}(k+1)$ | $x_{2}(k+1)$ | $x_{3}(k+1)$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 |

Figure 4.7 Truth table for the system of Example 4.1

Let $x_{0}(k)=1$ and $x_{3}(k)=x_{1}(k) x_{2}(k)$. In this case, since there are only two variables, $x_{1}(k)$ and $x_{2}(k)$, any function $f\left[x_{1}(k), x_{2}(k)\right]$ can be written in the form:

$$
f\left[x_{1}(k), x_{2}(k)\right]=f_{0}+f_{1} x_{1}(k)+f_{2} x_{2}(k)+f_{3} x_{3}(k)
$$

where,

$$
\begin{aligned}
& f_{0}=f(0,0), \\
& f_{1}=f(0,0)+f(1,0), \\
& f_{2}=f(0,0)+f(0,1)
\end{aligned}
$$

and

$$
f_{3}=f(0,0)+f(1,0)+f(0,1)+f(1,1)
$$

Thus,

$$
\begin{aligned}
x_{1}(k+1) & =0+(0+0) x_{1}(k)+(0+1) x_{2}(k)+(0+0+1+1) x_{3}(k) \\
& =x_{2}(k) \\
x_{2}(k+1) & =1+(1+1) x_{1}(k)+(1+0) x_{2}(k)+(1+1+0+0) x_{3}(k) \\
& =1+x_{2}(k)
\end{aligned}
$$

and

$$
x_{3}(k+1)=0
$$

or in matrix form:

$$
\underline{x}(k+1)=\left[\begin{array}{llll}
1 & 0 & 0 & 0  \tag{4.35}\\
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \underline{x}(k)=\underline{A} \underline{x}(k)
$$

Consider the characteristic polynomial of the matrix A ,

$$
p(\lambda)=\left|\begin{array}{cccc}
\lambda+1 & 0 & 0 & 0  \tag{4.36}\\
0 & \lambda & 1 & 0 \\
1 & 0 & \lambda+1 & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right|=\lambda^{2}(\lambda+1)^{2} \quad(G F(2))
$$

In Example 4.1 it was shown that the system had a cycle of period 2 and two transient states. The characteristic polynomial also contains this information; the term $(\lambda+1)^{2}$ shows that there is a cycle of period 2 and the term $\lambda^{2}$ shows that there are two transient states. This point will be elaborated during the rest of the chapter (see Examples 4.6 and 4.7).

This procedure can easily be implemented using a digital computer. For this purpose, it is convenient to assign an m-dimensional vector $\hat{\underline{e}}_{j}$ to each veriable $x_{j}$ of the
 $\ldots ., l(i)$ th elements of $\hat{\underline{e}}_{j}$ are 1 while the rest of the elements are zero. Let index ( $\hat{e}_{j}$ ) denote the number of nonzero elements of $\hat{\underline{e}}_{j}$. It is not difficult to generate vectors $\underline{e}_{j}$ with increasing index. To determine the coefficient of the term $x_{j}$ in the expansion of a function $f(\underline{x})=f\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, simply sum (mod 2) all the coefficients corresponding to each $\hat{\underline{e}}_{i}$, where index $\left(\underline{\hat{e}}_{i}\right)<\operatorname{index}\left(\underline{\hat{e}}_{j}\right)$ and $\hat{e}_{i}$ has no nonzero element in positions corresponding to zeroes of $\underline{\hat{e}}_{j}$; and add $f\left(\hat{e}_{j}\right)$ (mod 2) to the result.

The listing of a Fortran program based on the above procedure is presented in Appendix E. A sample output of this program is given below.

$$
\begin{aligned}
& \underline{x}(k+1)=\mu\left[\begin{array}{rrrr}
4.76 & 2.03 & -1.29 & -2.75 \\
-6.32 & 2.45 & 6.94 & 2.69 \\
3.5 & 3.45 & 0.27 & 4.68 \\
2.25 & 1.14 & -2.16 & -6.91
\end{array}\right] \quad \underline{x}(k)
\end{aligned}
$$

TRAMSFOMATIDRS USEU

$$
\begin{aligned}
& y_{1}=1 \quad y_{9}=\ddot{x}_{1} x_{4} \\
& Y_{2}=x_{1} \quad Y_{10}=x_{2} x_{4} \\
& Y_{3}=x_{2} \quad Y_{11}=x_{3} x_{4} \\
& y_{4}=x_{2} \quad y_{i 2}=x_{1} x_{2} \quad 3
\end{aligned}
$$

$$
\begin{aligned}
& y_{\theta}=\begin{array}{ll}
x_{1} & x_{1} \\
1 & 2
\end{array} \quad y_{14}=x_{1} x_{3} \ddot{x}_{4} \\
& \begin{array}{lll}
Y & x & x_{2} \\
7 & y_{2}=x & x
\end{array}
\end{aligned}
$$

## LISEARTZE GMATTM

4.5 Determination of Cycles and Periods of the Linearized

Net
Although the linearized net can have $2^{2^{n}}$ states only $2^{n}$ of these correspond to the original nonlinear net. The states belonging to the original system will be called natural states and the remaining states will be called artificial states. Note that the Iinearized net is such that a natural state is mapped always into a natural state, though an artificial state could be mapped into either an artifical state or into a natural state. From this fact it follows that a cycle can contain only one type of state, i.e., there cannot be any cycle containing both natural and artificial states. This point will be illustrated in Example 4.6.

To elucidate the concept of natural states, consider a nonlinear net with two variables $x_{1}$ and $x_{2}$. Iinearization of this net requires introduction of the variables $x_{0}=1$ and $x_{3}=x_{1} x_{2}$. Thus, the nonlinear net can assume

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

as its possible states, corresponding to $x_{1}=x_{2}=0$, $x_{1}=1, x_{2}=0 ; x_{1}=0, x_{2}=1$ and $x_{1}=x_{2}=1$, respectively. In the 4-dimensional vector space over the binary field, the vector $\underline{x}=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)^{T} \quad$ can also assume
the values

$$
\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

These states are the artificial states since they have no correspondence to the states of the nonlinear net.

In this section a summary of the methods for determining cycles and periods of a linear net will be presented. No distinction will be made between natural states and artificial states; this will be delayed until the next section. For generality, the results will be given with respect to the field $G F\left(p^{r}\right)$.

The system considered in this section is assumed to be describable by the following matrix equation:

$$
\underline{\underline{x}}(k+1)=\underline{A} \underline{x}(k) \quad\left(G F\left(p^{r}\right)\right)
$$

where $\underline{x}(k)$ is an $n$-vector denoting the state of the system at time $t=k T$ and $A$ is an nxn matrix with elements from GF $\left(p^{r}\right)$. The operations in eq. (4.37) are performed with respect to the field $G F\left(p^{r}\right)$.

[^30]Let $X$ denote the $\left(p^{r}\right)^{n}-d i m e n s i o n a l$ vector space (with respect to the field $G F\left(p^{r}\right)$ ) and let $x_{i}$ be any point in $X$. $A X_{i}, A^{2} \underline{x}_{i}, \ldots, A^{k} \underline{x}_{i}$ also represent vectors from $X$. Since $X$ is finite dimensional, there exists $a k\left(p^{r}\right)^{n}$, such that the vector $\underline{A}^{k} \underline{X}_{i}$ is a linear combination of the previous terms, $\underline{x}_{i}, \underline{A x_{i}}, \ldots, A^{k-1} \underline{x}_{i}$; i.e., there exist scalar constants $c_{0}, c_{1}, \ldots, c_{k-1}$ such that

$$
\begin{equation*}
\underline{A}^{k} \underline{x}_{i}+c_{k-1} \underline{A}^{k-1} \underline{x}_{i}+\ldots+c_{i} \underline{A x}_{i}+c_{0} \underline{\underline{x}}_{i}=0 \tag{4.38}
\end{equation*}
$$

Defining by $f(\underline{A})$, the matrix polynomial

$$
\begin{equation*}
f(\underline{A})=\underline{A}^{k}+c_{k-1} A^{k-1}+\ldots+c_{1} \underline{A}+c_{0}, \tag{4.39}
\end{equation*}
$$

eq. (4.38) can be written in the following compact form:

$$
\begin{equation*}
f(\underline{A}) \underline{x}_{i}=\underline{0} \tag{4.40}
\end{equation*}
$$

There may be more than one polynomial of the form (4.39) satisfying eq. (4.40). The one with the lowest order is called the minimum polynomial of the vector $\mathrm{x}_{\mathrm{j}}$ (with respect to the matrix A). There are polynomials for which (4.40) is true independent of the vector ${\underset{x}{i}}$. The monic polynomial $m(\underline{A})$ of the lowest order satisfying $m(\underline{A})=0$ is said to be the minimum polynomial of $A$. There is a close relationsip between a matrix polynomial $f(A)$ and its regular polynomial. $f(\lambda)$, obtained by replacing the matrix $A$ with a scalar $\lambda$. The minimum polynomial of $A$, $m(\underline{A})$ is the least common multiple of all the minimum poly-
nomials of the vectors from $X$.

The Cayley-Hamilton theorem states that every square matrix satisfies its own characteristic equation, i.e., Let $p(\lambda)=|\lambda I-\underline{A}|$, then $p(\underline{A})=0$. Thus, the minimum polynomial of $A, m(\lambda)$ is a factor of the characteristic polynomial $p(\lambda)$.

A polynomial $f(\lambda)$ of degree $N$ is called irreducible if no polynomial of degree less than $N$ divides $f(\lambda)$ without a remainder ${ }^{6}$. The least positive integer $k$ such that $f(\lambda)$ divides $\lambda^{k}-1$ without remainder is called the exponent of $f(\lambda)$ [denoted by xpo $f(\lambda)$ ]. The exponent of the minimum polynomial of a matrix $A$ is called exponent of $A$. It can be shown that any polynomial $f(\lambda)$ of degree $N$ (over $G F\left(p^{x}\right)$ ) divides the polynomial $\lambda^{\left(p^{r}\right)^{N}-1}-1$ and that $f(\lambda)$ divides $\lambda^{k}-1$ if and only if $k$ is a factor of $\left(p^{r}\right)^{N}-1$. Therefore, xpo $f(\lambda) \leq\left(p^{r}\right)^{N}-1$ and xpo $f(\lambda)=$ factor of $\left(p^{r}\right)^{N}-1$. If xpo $f(\lambda)=\left(p^{r}\right)^{N}-1, f(\lambda)$ is called primitive.

Let $k_{i}(i=1,2, \ldots, \mu)$ be the distinct periods that a net can exhibit and let $v_{i}$ denote the number of cycles with period $k_{i}$. It is convenient to denote the cycle structure by

$$
\begin{equation*}
c_{k_{1}}^{v 1} c_{k_{2}}^{v 2} \ldots c_{k_{\mu}}^{v u} \tag{4.41}
\end{equation*}
$$

${ }^{6}$ See Peterson and Weldon (115, pp. 472-4.92) for a complete list of irreducible polynomial over $G F(2)$ of degree $\leq 36$.

In general, it is possible to partition the transition matrix A and determine the cycle structure from the cycle structure of the subsystems resulting fro in the partition. For this purpose, an understanding of some basic simpler structures is essential. In a linear net, the cycle structure is closely associated with the minimum polynomial of its transition ratrix. If, for example, the minimum polynomial is both irreducible, primitive and is equal to the characteristic polynomial; except for the zero state, all the states form a single cycle. Another important case is when the characteristic polynomial is of the form $(n(\lambda))^{l}$ where $n(\lambda)$ is an irreducible polynomial. These cases are discussed next.

Case 1: $m(\lambda)=p(\lambda)$ is ir reducible and primitive
In this case there will be exactly two cycles; one is the trivial cycle formed by the zero state $(0,0, \ldots, 0)^{\text {? }}$, which is present in every autonomous linear net. All the remaining statesform the other cycle. There are no transient states. The period of the nontrivial cycle is $k_{1}=\left(p^{r}\right)^{n}-1$. Thus, the cycle structure is $C_{1} C_{p}{ }^{r n}-1$. Example 4.4 Let $m(\lambda)=p(\lambda)=\lambda^{4}+\lambda+1$. This polynomial is primitive since it does not divide $\lambda^{k}-1$ for $k<2^{4}-1=15$; it corresponds to the matrix

$$
\underline{A}=\left[\begin{array}{llll}
0 & 1 & 0 & 0  \tag{4.42}\\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

This matrix is called the companion matrix of $m(\lambda)$. with $m(\lambda)=p(\lambda)=\lambda^{4}+\lambda+1$ has a trivial cycle formed by the zero state and a single nontrivial cycle formed by the remaining states, as shown in Fig. 4.8.



Figure 4.8 State transition diagram of an autonomous linear net with a primitive minimum polynomial $\left(m(\lambda)=p(\lambda)=\lambda^{n}+\lambda+1\right)$.

Cage 2: $m(\lambda)=p(\lambda)$ is irreducible
In this case, again there will not be any transient state ${ }^{7}$. Let $k_{1}$ be the smallest integer such that the minimum polynomial $m(\lambda)$ divides the polynomial $\lambda^{k}-1$ without a remainder, i.e., let $k_{1}=x p o m(\lambda)$. Then, for any nonzero state $x$,

$$
\left[\underline{A}^{\left(p^{r}\right)^{n}-1}-\underline{I}\right] \underline{x}=m(\underline{A})\left[\underline{A}^{k r} 1-I\right] \underline{x}=\underline{0}
$$

[^31]or,
$$
\underline{\mathrm{A}}^{\mathrm{k}_{1}} \underline{\underline{x}}=\underline{\mathrm{x}}
$$

Therefore, there will be $v_{1}=\frac{p^{r n}-1}{k_{1}}$ nontrivial cycles of period $k_{1}$. In symbolic form, the cycle structure is $C_{1} C_{k_{1}}^{\frac{p^{r n}-1}{k_{1}}}$. Note that the period $k_{1}$ must be a factor of the integer $p^{r n}-1$. This is important since it restricts the allowable values of the period (See Table 4.1. For example, for $n=10, k_{1}$ can only be 11 or 31 , but for $\mathrm{n}=13$, it is 8191).

TABLE 4.1
Prime Factors of $2^{n}-1$.

| $n$ | Prime Factors |  | $n$ |
| ---: | :---: | :---: | :---: |
| 3 | 7 |  | Prime Factors |
| 4 | $3 \times 5$ | 11 | $23 \times 89$ |
| 5 | 31 | 12 | $3 \times 3 \times 5 \times 7 \times 13$ |
| 6 | $3 \times 3 \times 7$ | 13 | 8191 |
| 7 | 127 | 14 | $3 \times 43 \times 127$ |
| 8 | $3 \times 5 \times 17$ | 15 | $7 \times 31 \times 127$ |
| 9 | $7 \times 73$ | 16 | $3 \times 5 \times 17 \times 257$ |
| 10 | $3 \times 11 \times 31$ | 17 | 131071 |
|  |  | 18 | $3 \times 3 \times 3 \times 7 \times 19 \times 73$ |

In order to find the cycles, one can start with any nonzero state $\underline{x}$, and determine the $k_{1}$ states $A \underline{x}, A^{2} \underline{x}$, $\underline{A}^{3} \underline{x}, \ldots, \underline{A}^{k} \underline{x}=\underline{x}$. Selecting a state $\underline{x}$ which does not belong to this cycle, another cycle can be obtained.

Repeating this process, all the cycles of the net can be determined.

Example 4.5 Let $m(\lambda)=p(\lambda)=\lambda^{4}+\lambda^{3}+\lambda^{2}+\lambda+1$. Note that $2^{4}-1=15=3 \times 5$. Therefore, this polynomial might divide $\lambda^{5}+1$. It is simple to see that it indeed divides $\lambda^{5}+1$. Thus, a net having this minimum polynomial will have $\frac{15}{5}=3$ nontrivial cycles of period 5, as shown in Fig. 4.9.


$$
\begin{aligned}
\text { Figure 4.9 } & \text { State transition diagram of an autonomous } \\
& \text { linear net with an irreducible minimum } \\
& \text { polynomial }\left[m(\lambda)=\lambda^{4}+\lambda^{3}+\lambda^{2}+\lambda+1\right] .
\end{aligned}
$$

Case 3: $m(\lambda)=p(\lambda)=[n(\lambda)]^{l}$, where $n(\lambda)$ is irreducible
Assume that the minimum polynomial is $m(\lambda)=p(\lambda)=$ $[n(\lambda)]^{\ell}$, where $n(\lambda)$ is an irreducible polynomial of degree $n_{0}$. In this case $p^{r n} 0-1$ states will have $n(\lambda)$ as their minimum polynomial, $p^{2 r n_{0}} p^{r n_{0}}$ states $[n(\lambda)]^{2}$, $\ldots$..., and the remaining $p^{\ell r n_{0}}{ }_{-p}^{(\ell-1) r n_{0}}$ states will be associated with the minimum polynomial $[n(\lambda)]^{\ell}$. The $p^{r n_{0}}{ }_{-1}$ states associated with the minimum polynomial $n(\lambda)$ will form $v_{1}=\frac{p^{r n o}-1}{k_{1}}$ cycles of period $k_{1}=\operatorname{xpo} n(\lambda)$, the
states corresponding to the minimum polynomial $[n(\lambda)]^{2}$ will form $\frac{p^{2 r n_{0}}-1}{k_{2}}$ cycles of period $k_{2}=\operatorname{xpo}[n(\lambda)]^{?}=p \cdot k_{1}$. In general, the states associated with the minimum polyno$\operatorname{mial}[n(\lambda)]^{i}(i=1, \ldots, l)$ will form $v_{i}=\frac{p^{i r n_{0}}(i-1) r n_{0}}{k_{i}}$ cycles of period $k_{i}=x p o[n(\lambda)]^{i}=\vartheta p \cdot k_{1}$, where $v$ is the smallest integer such that $\vartheta p \geq i$. Therefore, the cycle structure will be


Because of its usefulness in computation of the cycle structures of more complex nets, the above results are summarized by the following theorem.

Theorem 4.3 Let the minimum polynomial of $A, m(\lambda)$ be of the form $m(\lambda)=[n(\lambda)]^{\ell}$ (over $G F\left(p^{r}\right)$ ) where, $n(\lambda)$ is an irreducible polynomial of degree $n_{0}$. The cycle structure of the system described by eq. (4.35) will be given by (4.43), where $k_{i}=\operatorname{xpo}[n(\lambda)]^{i}(i=1, \ldots, \ell)$. Furthermore, $k_{i}=v p \cdot k_{1}$, where $v$ is the smallest integer, such that $v p \geq i$.

Example 4.6 Let $m(\lambda)=(\lambda+1)^{2}$. In this case $n_{0}=1$ and $\ell=2$. Therefore, the period of the first nontrivial cycle corresponding to the minimum polynomial $(\lambda+1)$ is $k_{1}=1$; there will be only one such cycle since $v_{1}=\frac{2-1}{1}=1$. corresponding the the minimum polynomial $(\lambda+1)^{2}$, there
will be cycles of period $k_{2}=2 k_{1}=2$. The number of cycles of period 2 is $v_{2}=\frac{2^{2}-2}{2}=1$. The state transi-. tion diagram is shown in Fig. 4.10.




Figure 4.10 State transition diagram of an autonomous linear net with $m(\lambda)=p(\lambda)=(\lambda+1)^{2}$.

Now, consider again the PFM system treated in Example 4.1. In Example 4.3 the characteristic polynomial of its equivalent linear net was found to be $p(\lambda)=\lambda^{2}(\lambda+1)^{2}$. The minimum polynomial is $\lambda(\lambda+1)^{2}$. The term $\lambda$ simply indicates that there are transient states but the length of any transient chain is $\leq 1$ (i.e., every transient state map into a cyclic state). The polynomial $(\lambda+1)^{2}$ was just shown to be associated with two nontrivial cycles of periods 1 and 2. There is also the trivial cycle formed by the zero state. In this particular case, the trivial cycle and the cycle with period 1 are formed by artificial states. Thus, one can easily predict a cycle of period 2. The state diagram of the linearized network is shown in Fig. 4.11.

Let

$$
\begin{equation*}
a=\prod_{i=1}^{\mu_{a}} v_{k_{a}}(i) \quad \text { and } \quad b=\prod_{j=1}^{\mu_{b}} v_{b} v_{b}(i) \tag{4.44}
\end{equation*}
$$

$$
\underline{x}_{0}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right], \quad \underline{x}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad \underline{x}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad \underline{x}_{3}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

$$
\underline{x}_{4}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \underline{x}_{5}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right], \quad \underline{x}_{6}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right], \quad \underline{x}_{7}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]
$$

$$
\underline{x}_{8}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], \quad \underline{x}_{9}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad \underline{x}_{10}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \quad \underline{x}_{11}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]
$$

$$
\underline{x}_{12}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right], \quad \underline{x}_{13}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right], \quad \underline{x}_{14}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right], \quad \underline{x}_{15}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]
$$



Figure 4.11 State diagram of the equivalent linear net of the PFM system of Example 4.1. Only the states $\underline{x}_{1}-\underline{x}_{4}$ correspond to the original system; $\underline{\underline{x}}_{0}$ and $\underline{x}_{5}-\underline{\underline{x}}_{15}$ are artificial states.
be two cycle structures and let arb denote the cycle structure

$$
\begin{equation*}
C=\prod_{i=1}^{\mu a} \prod_{j=1}^{\mu_{b} v_{a}(i) v_{b}(i) \operatorname{GCD}\left[k_{a}(i), k_{b}(i)\right]} \tag{4.45}
\end{equation*}
$$

The following theorem relates the cycle structure of an autonomous linear net with transition matrix $A$ of the form

$$
\underline{A}=\underline{A}_{1} \oplus \underline{A}_{2}=\left[\begin{array}{ll}
\underline{A}_{1} &  \tag{4.46}\\
& \underline{A}_{2}
\end{array}\right]
$$

to the cycle structure $a_{1}, a_{2}$ of its subnetworks with transition matrices $A_{1}$ and $A_{2}$, respectively.

Theorem 4.4 [Harrison (62)] The cycle structure of an autonomous linear net whose transition matrix $A$ is of the form $A=\underline{A}_{1} \oplus \underline{A}_{2}$ is $a=a_{1} a_{2}$, where $A_{1}$ and $\underline{A}_{2}$ are nonsingular matrices and $a_{1}$ and $a_{2}$ are the cycle structures of the subnetworks associated with the transition matrices $\underline{A}_{1}$ and $\underline{A}_{2}$, respectively.

Proof: Let $\underline{x}_{1}$ and $\underline{x}_{2}$ denote the states of the net corvesponding to the submatrices $\underline{A}_{1}$ and $\mathbb{A}_{2}$, respectively. The period $k$ of any cycle will be the smallest integer such that

$$
{\underline{A^{k}}}^{k} \underline{x}=\left[\begin{array}{ll}
\underline{A}_{1}^{k} & \\
& \\
& \underline{A}_{2}^{k}
\end{array}\right]\left[\begin{array}{c}
\underline{x}_{1} \\
\cdots \\
\underline{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
\underline{x}_{1} \\
\cdots \\
\underline{x}_{2}
\end{array}\right]
$$

Let $k_{1}$ and $k_{2}$ be the smallest integers satisfying $\underline{A}_{1}^{k_{1}} \underline{x}_{1}=\underline{x}_{1}$ and $\underline{A}_{2}^{k_{2}} \underline{x}_{2}=\underline{x}_{2}$, respectively; then it is $k=\operatorname{LCM}\left(k_{1}, k_{2}\right)$. If $A_{1}$ has $v_{1}$ cycles of period $k_{1}$ and $A_{2}$ has $v_{2}$ cycles of period $k_{2}$, then, there will be $v_{1} v_{2} \operatorname{GDC}\left(k_{1}, k_{2}\right)$ cycles of period $k_{2}$.

Theorem 4.4 is useful for computing the cycle structures of complex nets. Consider,.for example, a transition matrix $A$ of the form $A=A_{1} \oplus A_{2} \oplus \ldots A_{N}$. The cycle structure will be $a=a_{1} a_{2} \ldots a_{N}$, where $a_{1}, a_{2}$, $\ldots, a_{N}$ are the cycle structure corresponding to the subnetworks with transition matrices $\underline{A}_{1}, \underline{A}_{2}, \ldots, A_{N}$, respectively. Therefore, the cycle structure of any net can be determined from Theorem 4.3 and Theorem 4.4. For this purpose it is useful to transform the transition matrix A into its classical canonical form (13), in which case the polynomials $m_{1}(\lambda)=\left|\lambda I-\underline{A}_{1}\right|, \ldots, m_{N}(\lambda)=\left|\lambda I-A_{N}\right|$ are irreducible polynomials.

### 4.6 State Diagram and The Transition Matrix

As illustrated in Example 4.1 (Fig. 4.3), the cycle structure of a net can conveniently be represented using
a. directed graph in which the vertices represent the possible states of the net. A transition from state $x_{i}$ to state $\underline{x}_{j}$ is indicated by a directed edge connecting the corresponding vertices. These graphs are called state transition diagrams. If the dimension of the net is large, this graphical presentation loses its conveninience. In this case, the same information can be better presented in matrix form.

Corresponding to a state transition diagram, the transition matrix $\underline{Q}$ is defined by $q_{i j}=\left\{\begin{array}{l}1 \text { if there is a transition from state } \underline{x}_{j} \text { to } \underline{x}_{i} \\ 0, \text { otherwise }\end{array}\right.$

In network theory this matrix is known as the incidence matrix (79). Since there is only one transition from a state into another state, the transition matrix contains exactly one 1 in each column. Let at $t=k T$ the net be at state $\underline{x}_{i}$. Let $\underset{y}{ }(k)$ be a $2^{n}$-dimensional column vector containing, a 1 at its ith row as its only nonzero element. The behavior of the net can be described by

$$
\begin{equation*}
\underline{y}(k+1)=\underline{Q} y(k) \tag{4.48}
\end{equation*}
$$

Since a 1 in the ith column of $y(k)$ corresponds to the state $\underline{x}_{i}$, it is

$$
\begin{equation*}
\underline{x}(k)=\left[\underline{x}_{1}: \underline{x}_{2}: \cdots: \frac{x}{2} n\right] \underline{y}(k) \tag{4.49}
\end{equation*}
$$

Let

$$
\underline{P}=\left[\begin{array}{l:l:l:l}
\underline{x}_{1} & \underline{x}_{2} & \cdots & \underline{x}_{2} n \tag{4.50}
\end{array}\right]
$$

$\underline{P}^{-1}$ exists since there is a 1-1 relationship between each $X_{i}$ and $X_{i}$. Let

$$
\begin{equation*}
\underline{x}(k+1)=\underline{A} \underline{x}(k) \tag{4.51}
\end{equation*}
$$

be the linearized equations of the systems considered in Section 4.2. Then, from (4.51) and (4.49), it follows that

$$
\begin{equation*}
\underline{Q}=\underline{P}^{-1} \underline{A} \underline{P}, \text { or } \underline{A}=\underline{P} \underline{Q} \underline{P}^{-1} \tag{4.52}
\end{equation*}
$$

Consider the characteristic polynomial of the transition matrix $Q, p_{Q}(\lambda)=|\lambda I-Q|$. All the elements in any row of the matrix $|\lambda I-Q|$ corresponding to first states are zero, except for the diagonal element which is $\lambda$. Thus, the determinant $|\lambda \underline{I}-\underline{Q}|$ can be expanded in terms of the rows corresponding to the first states. Each of these rows will contribute a factor $\lambda$ to the characteristic polynomial. If a state can be reached only from the eliminated states, there will again be a $\lambda$ in the diagonal position of the row corresponding to that

[^32]state as the only element. Expanding with respect to these rows and repeating the procedure, it is seen that the characteristic polynomial will have $\lambda^{n_{t}}$ as a factor, where $n_{t}$ is the number of transient (natural) states.

Now, consider a first state $x$. Let $\ell_{t}$ be the number of transient states generated by $\underline{x}$ and let $k_{c}$ be the period of the cycle that $x$ enters after $\ell_{t}$ transitions (see Fig. 4.12). It follows that

Figure 4.12 Illustration of state transitions.

$$
\begin{equation*}
\underline{A}^{\ell}\left[\underline{A}^{k} c+\underline{I}\right] \underline{x}=\underline{0} \tag{4.53}
\end{equation*}
$$

Therefore, $\quad \lambda^{\ell_{t}}\left(\lambda^{k} c+1\right)$ is the minimum polynomial of $\underline{x}$. Since the minimum polynomial of the transition matrix $A$ is the least common multiple of the minimum polynomials of the vectors $\underline{x}$, it will be in the form

$$
\begin{equation*}
\lambda^{\ell_{t}}\left(\lambda^{k_{1}}+1\right)\left(\lambda^{k_{2}}+1\right) \ldots\left(\lambda^{k_{v}}+1\right) \tag{4.54}
\end{equation*}
$$

where $\ell_{t}$ is the length of the longest transient chain
and $k_{i}(i=1, \ldots, v)$ are distinct cycle lenghts. Expansion of the minimum polynomial into the form given by (4.54) is not always unique since, in general

$$
\begin{equation*}
(a+b)^{p^{r}}=a^{p^{r}}+b^{p^{r}} \tag{4.55}
\end{equation*}
$$

Example 4.8 Consider again the system treated in Example 4.1 (see also Example 4.6). Let

$$
\underline{x}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad \underline{x}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad \underline{x}_{3}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], \quad \underline{x}_{4}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Then, from (4.50)

$$
\underline{\underline{P}}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The state transition diagram is shown in Fig. 4.13.


Figure 4.13 State transition diagram.

From the state transition diagram, the transition matrix is easily obtained as

$$
y(k+1)=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] y(k)
$$

Note that

$$
\underline{x}(k+1)=\underline{P Q P}^{-1} \underline{x}(k)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \underline{x}(k) \quad(4.56)
$$

(4.56) is the same as (4.35). The characteristic polynomial is $p(\lambda)=\lambda^{2}\left(\lambda^{2}+1\right)$ and the minimum polynomial is $m(\lambda)=\lambda\left(\lambda^{2}+1\right)$. The factor $\lambda^{2}$ of the characteristic polynomial indicates two transient states. The factor $\lambda$ of the minimum polynomial shows that these transient states are first states and the factor $\left(\lambda^{2}+1\right)$ designates a cycle of period 2.

### 4.7 Conclusions

In this chapter, to gain further insight to periodic behavior of CRPFM systems, a time-discretized approximation was considered. This approximation reduced the system to one containing unit delays and thereshold elements. However, except for oscillations having very short periodsy. it was not possible to obtain analytical results directly from the resulting nonlinear equations.

Since the output of a modulator assumes only a finite number of states (e.g., at a given time, the output of a CRPFM either contains an impulse or not), it was found to be advantageous to consider the system equations with respect to a finite field [GF(2) or GF(3)]. By introdu-
cing extra variables, the system equations were "Inearized" (with respect to a finite field) using Fukunaga's method (133) for nonlinear switching nets.

After the linearization, the characteristic equation of the system can be used to obtain information about periodic behavior. For example, a factor $\lambda^{n} t$ in the characteristic polynomial means that there are $n_{t}$ transient states, a factor $\lambda^{\ell t}$ in the minimum polynomial means that the length of the longest transient chain is $\ell_{t}$ and factors of the form $\left(\lambda^{k_{i}}+1\right)$ in the minimum polynomial mean that there are cycles of $\operatorname{period}(s) k_{i}(i=1,2$, ...).

In this chapter the main concentration was given to a system consisting of interconnections of CRPFM's and ideal delays,for which the aforementioned analysis is particularly "suitable. For the double-signed system, it was assumed that there are no impulse cancellations. This condition can be relaxed by using the field GF(3).

## CHAPTER 5

## CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH

### 5.1 Summary of The Results

In this dissertation the dynamic behavior of comp-lete-reset pulse frequency modulation (CRPFM) systems are considered. In Chapter 1, a review of previous work on PFM systems is presented. Also, a brief discussion is given on the neuron and the relation of CRPFM to neural modeling. Chapters 2, 3 and 4 discuss the results of this work which encompasses two basic aspects, namely, stability and oscillatory behavior. The results are summarized at the end of these chapters.

In Chapter 2, two different approaches are presented for global finite-pulse stability (GFPS) (Def. 2.1, p. 56), the first is an improved Lyapunov-like method which is also applicable to more general type of PFM systems (e.g., a PFM system with a nonlinear continuous part); however, its difficulty of application increases with the order of the system. The second approach is a direct approach involving the application of inequalities to the system equations; it is easy to use and, at the same time, provides bounds on the number of pulses emitted by each modulator. Such number is not only indicative of
the energy spent by the corresponding modulator (e.g., in a spacecraft control system which employ controlling jets) but also represents a measure of the degree of stability. A comparison is presented between these stability criteria and previous stability conditions available for special classes of CRPFM systems (e.g., systems with integral PFM or relaxation PFM) ; in representative examples, the direct GFPS criterion yields comparable (or better) stability regions (of system parameters) with respect to the other criteria.

In Chapter 3, oscillatory motion is considered. A matrix relationship is presented for IPFM systems with time-invariant LP's, which relates the period of oscillation to the net number of pulses emitted by each modulator over that period. This relation shows that, though pure periodic motion is possible in single-modulator systems, in multi-modulator systems, it can exist only in the "ideal" case when all the components of a certain vector of system parameters are rational numbers. Practically, however, the observed motion may "look like" periodic motion, at least over some observation interval. Thus, it can be considered "periodic" within a certain (measurement and/or observation) accuracy. This consideration lead to the definition of the concept of " $\epsilon_{\mathrm{e}}$-nearly periodic motion" and to the development of
expressions for bounds on the deviation of the true motion from periodic motion.

Oscillatory behavior is further studied, in Chapter 4, on a time discretized approximation of the CRPFM system. This approximation reduces the system to one containing unit delays and threshold elements. However, it is still difficult to obtain analytical results directly from the resulting (nonlinear) equations, though information concerning short cycles have been obtained. Since the output of a modulator assumes only a finite number of states (e.g., at a given time, the output of a CRPFM either contains a pulse or not), it is advantageous to consider the system equations with respect to a finite field [GF( $\left.\left.p^{r}\right)\right]$. By introducing extra variables, the system equations are "linearized" (with respect to a finite field) using Fukunaga's method for nonlinear switching nets. After the linearization, the characteristic equation of the system is used to obtain information about periodic behavior in terms of possible frequencies of oscillation.

### 5.2 Suggestions For Future Research

Below, several problems arising from the present work are stated.

1) The applicability of the sufficient conditions for global finite-pulse stability (GFPS), developed in Section 2.3, can be extended and improved by tra nsforming the system. This has been illustrated in examples (Examples 2.2 and 2.4). However, there remains the development of general rules for this transformation as well as methods for optimization of such transformations to yield maximum parameter regions sufficient for stability.
2) The GFPS condition presented in Section 2.3 include Condition 3 on p . 65, which allows the TF to be nonlinear, but imposes certain restriction of the nonline arities. It would be desirable to relax these restrictions to allow the TF to contain such nonlinearities as dead-zones and/or hysterisis.
3) A Lyapunov-like theorem for GFPS is presented in Section 2.2, which requires less restrictive conditions than previous Lyapunov-like methods used for these systems. This theorem was applied to individual examples. However, the application of this approach to a CRPFM system in its general form could possibly yield new stability criteria directly in terms of system parameters.
4) The definition of near periodicity introduced in Section 3.2 may be modified by associating a linear functional with the modulator input vector e(t) (e.g.,
some integral). This is especially meaningful for cases where $\underline{e}(t)$ has discontinuities.
5) The problem considered in Section 3.4 can be reversed to that of the determination of the period for given accuracy $\epsilon_{e}$ and observation interval ( $\left.0, a\right]$ such that the motion is $\epsilon_{e^{-n} . p \text {. Iterative methods could }}$ be used to attack this difficult problem, which may not always have a solution (e.g., the motion may not be periodic, in which case the iteration will not converge).
6) In Section 4.4, the system equations describing a CRPFM system with ideal delays are linearized by introduction of extra variables. In certain cases it might be possible to minimize the number of variables necessary. This point needs further research. Another interesting problem is the determination of an optimal reverse transformation, with which a switching network can be transformed into a threshold type network, such that the number of thereshold devices are minimized.
7) Demodulation of a PFM signal is usually accomplished by passing the signal through a linear (lowpass) filter. It might be possible to obtain a better performance (in terms of signal-to-noise ratio) from a filter (of the same or smaller order) where certain states are reset upon arrival of a signal impulse. Determination
of the optimal or suboptimal demodulation filter is (at present) an unsolved problem of considerable practical importance.
8) Investigation of the dynamic behavior of randomly connected large-scale CRPFM systems from the macroscopic point of view might lead to certain physiological results. This investigation can be carried out by defining certain macroscopic variables (e.g., a sum formed by the TF outputs) and using the law of large numbers to find the mean values of these variables.
9) The scope of this work has been limited to comp-lete-reset PFM; it would be desired to consider Partial Reset PFM (see pp. 20-21) which has not been studied previously (except for the special case of output-reset PFM in which only a single state is reset).

## APPENDIX A

## PROOF OF THEOREM 2.2

In this appendix, matrix inequality (2.14), which provides bounds on the number of impulses emitted by each modulator, will be derived.

Using eq. (1.24b) in eq. (1.24a), applying Conditions 2 and 3 of Section 2.3 and (1.24c), the following inequality is obtained:

$$
\begin{aligned}
& S_{i} \leq \left\lvert\, z_{i}\left(t_{i}, K_{i}(t)|=| \int_{t_{i}, K_{i}(t)-1}^{t} \begin{array}{c}
f_{i}, K_{i}(t) \\
f_{i}\left[r_{i}(\tau), y_{i}(\tau), t_{i, K_{i}}(t), \tau\right] d \tau \mid
\end{array}\right.\right. \\
& \int_{t_{i}, K_{i}(t)-1}^{t}\left\{\alpha_{i}\left|K_{i}(t)\right| r_{i}\left[\left|y_{O i}(\tau)\right|+\sum_{j=1}^{m} \sum_{k=1}^{K_{j}(t)}\left|M_{j} g_{i j}^{\prime}\left(\tau-t_{j, k}\right)\right|\right]\right\} d \tau
\end{aligned}
$$

Summing the above inequalities for all intervals
$\left[t_{i, 0}, t_{i, 1}\right],\left[t_{i, 1}, t_{i, 2}\right], \ldots,\left[t_{i, K_{i}}(t)-1, t_{i, K_{i}}(t)\right]$
assuming $t_{i, 0}=0$ and using the inequality

$$
\left|\int\left[f_{1}(t)+f_{2}(t)\right] d t\right| \leq \int\left|f_{1}(t)\right| d t+\int\left|f_{2}(t)\right| d t
$$

yields

$$
\begin{equation*}
S_{i} K_{i}(t) \leq \int_{0}^{t_{i}, K_{i}(t)}\left[\alpha_{i}\left|r_{i}(\tau)\right|+\beta_{i}\left|y_{O i}(\tau)\right|+\beta_{i} \sum_{j=1}^{m} \sum_{k=1}^{K_{j}(t)}\left|M_{j} g_{i j}^{\prime}\left(\tau_{-t}, k\right)\right| d \tau\right. \tag{A.1}
\end{equation*}
$$

Recognizing that $t_{i, K_{i}}(t)<t<t_{i, K_{i}}(t)+1$, the upper limit of the integrals in inequality (A.1) can be extended from $t_{i, K_{i}}(t)$ to $t$. Considering also that

$$
\sum_{k=1}^{K_{j}(t)} \int_{0}^{t}\left|M_{j} g_{i j}^{\prime}\left(\tau-t{ }_{j, k}\right)\right| d \tau \leq K_{j}(t) \int_{0}^{t}\left|M_{j} g_{i j}^{\prime}(\tau)\right| d \tau
$$

and dividing both sides of inequality (A.1) by $S_{i}$ yields:

$$
\begin{equation*}
K_{i}(t) \leq v_{i}(t)+\sum_{i=1}^{m} K_{j}(t) h_{i j}^{\prime}(t) \tag{A.2}
\end{equation*}
$$

where $v_{i}(t)$ and $h_{i j}^{\prime}(t)$ are defined in eqs. (2.11) and (2.13), respectively. In vector form, inequality (A.2) becomes

$$
\underline{k}(t) \leq \underline{v}(t)+\underline{H}^{\prime}(t) \underline{k}(t)
$$

from which inequality (2.14) is obtained.

## APPENDIX B

## PROOF OF THEOREM 3.3

Consider the input vector $\underline{e}(t)$ to the modulator block in the interval $t \in([i-1] T$, $i T]$.

$$
\begin{equation*}
\|\underline{e}(t+T)-\underline{e}(t)\| \leq\|\underline{\underline{r}}(t+T)-\underline{r}(t)\|+\|\underline{y}(t+T)-\underline{y}(t)\| \tag{B.1}
\end{equation*}
$$

From (3.8a), it follows that $\|\underline{r}(t+\mathbb{T})-\underline{r}(t)\| \leq e_{r}$. Therefore,

$$
\begin{equation*}
\|\underline{e}(t+\mathbb{T})-\underline{e}(t)\| \leq \epsilon_{r}+\|y(t+\mathbb{T})-y(t)\| \tag{в.2}
\end{equation*}
$$

(3.8b) yields

$$
\begin{equation*}
\left\|y_{1}(t+T)-y_{0}(t)\right\| \leq \varepsilon_{0} \tag{B.3}
\end{equation*}
$$

From (3.9) and (B.3), it follows that

$$
\begin{equation*}
\left\|\underline{\xi}_{1}(t+\mathbb{T})-\underline{\xi}_{0}(t)\right\| \leq \epsilon_{0} \sigma \tag{B.4}
\end{equation*}
$$

Therefore, using (3.7b),

$$
\begin{align*}
\left\|\underline{y}_{2}(t+T)-\underline{y}_{1}(t)\right\| & =\left\|\underline{y}_{1}(t+T)+\underline{\xi}_{1}(t+T)-\underline{y}_{0}(t)-\underline{\underline{s}}_{0}(t)\right\| \\
& \leq\left\|\underline{y}_{1}(t+T)-\underline{y}_{0}(t)\right\|+\left\|\underline{\underline{s}}_{1}(t+T)-\underline{s}_{0}(t)\right\| \\
& \leq \epsilon_{0}(1+\sigma) \tag{B.5}
\end{align*}
$$

During the interval $t \in(0, T]$, it is $y_{2}(t+T)=y(t+T)$ and $y_{1}(t)=y(t)$. Therefore,

$$
\begin{equation*}
\|y(t+T)-y(t)\| \leq \epsilon_{0}(1+\sigma), \quad t \in(0, T] \tag{B.6}
\end{equation*}
$$

Because of (3.9), inequality (B.5) implies

$$
\begin{equation*}
\left\|\underline{\xi}_{2}(t+T)-\underline{s}_{1}(t)\right\| \leq \epsilon_{0}(1+\sigma) \sigma \tag{в.7}
\end{equation*}
$$

Repeating the stteps in (B.5) and using (B.5) and (B.7) yields:

$$
\begin{align*}
\left\|y_{3}(t+T)-y_{2}(t)\right\| & \leq\left\|y_{2}(t+T)-y_{1}(t)\right\|+\left\|\underline{\zeta}_{2}(t+T)-\underline{\zeta}_{1}(t)\right\| \\
& \leq e_{0}(1+\sigma)^{2} \tag{B.8}
\end{align*}
$$

Recognizing that during the interval $t \in(T, 2 T]$, $y_{3}(t+T)=y(t+T)$, and $y_{2}(t)=y(t)$, inequality (B.8) gives

$$
\begin{equation*}
\|y(t+T)-y(t)\| \leq(1+\sigma)^{2} \epsilon_{0}, \quad t \in(T, 2 T] \tag{B.9}
\end{equation*}
$$

Repeating the previous steps for each consecutive interval yields

$$
\begin{equation*}
\|y(t+T)-y(t)\| \leq(1+\sigma)^{n} e_{0}, \quad t \in([n-1] T, n T] \tag{B.10}
\end{equation*}
$$

Therefore, from (B.2) and (B.10),

$$
\begin{align*}
\|\underline{e}(t+T)-\underline{e}(t)\| \leq e_{r}+(1+\sigma)^{n} \epsilon_{0}, & t \in([n-1] T, n T] \quad(B .11)  \tag{B.11}\\
& (n=1,2, \ldots)
\end{align*}
$$

In the given observation interval $t \in(0, a]$, one can select an $\epsilon_{e}=\epsilon_{r}+K_{o}$, such that

$$
\|\underline{e}(t+T)-\underline{e}(t)\| \leq \epsilon^{\prime}, \quad t \in(0, a]
$$

where, $K=(1+\sigma)[a / T]+1$. Clearly, with this value of $\epsilon_{e}$ Def. 3.1 is satisfied. Therefore, the CRPFM system of Fig. 3.1 is $e^{-n . p}$ in the observation interval ( $\left.0, a\right]$.

## APPENDIX C

## PROOF OF THEOREM 3.4

Let $v_{j}$ denote the number of pulses emitted by the $j$ th modulator in the interval ( $0, T$ ], and let

$$
\begin{equation*}
v=\sum_{j=1}^{m} v_{j} \tag{c.1}
\end{equation*}
$$

Then, from (1.24a), (3.6) and (3.7b), it follows that

$$
\begin{equation*}
\zeta_{0}(t)=\sum_{j=1}^{m} M_{l_{j}} b_{j} g_{\ell_{j}}\left(t-t_{j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{i} M_{i} b_{i j} g_{i}\left(t-t_{i j}\right) \tag{C.2}
\end{equation*}
$$

The output vector is given by

$$
\begin{equation*}
y(t)=y_{0}(t)+\sum_{k=0}^{n-1} \zeta_{k}(t), \quad t \in(0, T] \tag{c.3}
\end{equation*}
$$

Consider the integral of the input vector of the moduletor block, $\underline{e}(t)$ over a period; it is

$$
\begin{equation*}
\int_{(n-1) T}^{n T} \underline{e}(t) d t=\underline{S} q \tag{C.4a}
\end{equation*}
$$

where, $\underline{\mathbf{S}}$ is the mam diagonal matrix

$$
\begin{equation*}
\underline{S}=\operatorname{diag}\left[S_{i}\right] \tag{C.4b}
\end{equation*}
$$

and $q$ is an m-dimensional column vector as defined by (3.35c).

Now, let

$$
\begin{equation*}
y^{\prime}(t) \triangleq \sum_{k=1}^{n-1} \underline{\underline{\xi}}_{k}(t)-\underline{\xi}_{0}(t-k T) \tag{c.5}
\end{equation*}
$$

and,

$$
\begin{equation*}
v_{n} \triangleq \int_{(n-1) T}^{n T} \underline{r}(t) d t-\int_{0}^{T} \underline{r}(t) d t \tag{c.6}
\end{equation*}
$$

Also, let

$$
\begin{equation*}
\underline{Z}(t) \triangleq \int \underline{\zeta}_{0}(t) d t, \tag{c.7}
\end{equation*}
$$

and,

$$
\underline{\varphi}_{n} \triangleq \int_{(n-1) T}^{n T}\left[y^{\prime}(t)+\underline{z}_{0}(t)\right] d t+\underline{Z}(n T)+\underline{v}_{n}
$$

Noting that $\underline{e}(t)=\underline{r}(t)+\underline{y}(t)$ and that

$$
\int_{(n-1) T}^{n T} \sum_{n=0}^{n-1} \xi_{0}(t-n T) d t=\underline{Z}(n T)-\underline{Z}(0),
$$

and using (C.5)-(c.8) in (c.3) yields

$$
\begin{equation*}
\underline{r}_{0} T-\underline{Z}(0)+\underline{\varphi}_{\mathrm{n}}=\underline{S} \underline{q} \tag{c.9}
\end{equation*}
$$

where,

$$
\underline{r}_{0} \triangleq \int_{0}^{T} \underline{r}(t) d t
$$

Now, consider the term $\underline{\varphi}_{n}$. In Appendix B it was shown that

$$
\left\|\xi_{n+1}(t+T)-\xi_{n}(t)\right\| \leq(1+\sigma)^{n}{ }_{\sigma \epsilon_{0}}[\text { generalization of (B.7)] }
$$

Therefore,

$$
\begin{align*}
\left\|\zeta_{n}(t)-\zeta_{0}(t-n T)\right\| & \leq\left\|\zeta_{n}(t)-\zeta_{n-1}(t-T)\right\|+\left\|\zeta_{n-1}(t-T)-\zeta_{n-2}(t-2 T)\right\| \\
& +\ldots+\left\|\zeta_{1}(t-(n-1) T)-\zeta_{0}(t-n T)\right\| \\
& =\epsilon_{0}(1+\sigma)^{n-1} \tag{0.10}
\end{align*}
$$

Hence, from (C.5) and (C.10), one obtains

$$
\begin{equation*}
\left\|y^{\prime}(t)\right\| \leq \epsilon_{0}\left[(1+\sigma)^{n} / \sigma-n\right], \quad t \in(0, T] \tag{C.11}
\end{equation*}
$$

Since, $\|\underline{\underline{r}}(t+T)-\underline{r}(t)\| \leq \epsilon_{r},(C .6)$ yields

$$
\begin{align*}
\left\|\underline{v}_{n}\right\|=\| & \int_{0}^{T}\{\underline{r}[t+(n-1) T]-\underline{r}(t)\} d t \| \leq \int_{0}^{T}\{\| \underline{r}[t+(n-1) T] \\
& -\underline{r}[t+(n-2) T]\|+\ldots+\| \underline{r}(t+T)-\underline{r}(t) \|\} d t \leq \frac{n-1}{T} e_{\underline{r}}^{(c} \tag{c.12}
\end{align*}
$$

Equations (C.1), (C.7) and the hypothesis of the theorem give

$$
\begin{equation*}
\|\underline{Z}(t)\|=\left\|\int\left[\sum_{i=1}^{m} \sum_{j=1}^{v_{j}} M_{i} g_{i}\left(t-t t_{i j}\right)\right] d t\right\| \leq \frac{B_{g}}{a_{g}} e^{-a} g(t-T) \tag{C.13}
\end{equation*}
$$

From the hypothesis of Theorem 3.4, it also follows that

$$
\begin{equation*}
\left\|\int_{(n-1) T}^{n T} \mathbb{L}_{0}(t) d t\right\| \leq \frac{B_{0}}{a_{0}}\left[e^{-a_{0}(n-1) T}-e^{-a_{0} n T}\right] \tag{c.14}
\end{equation*}
$$

Substitution of (C.10)-(C.14) into (C.8) yield

$$
\begin{equation*}
\left\|\underline{\varphi}_{n}\right\| \leq\left[\epsilon_{0} \frac{(1+\sigma)^{n}}{\sigma}+n \epsilon_{r}\right] T+\frac{B_{0}}{a_{0}} e^{-a_{0}(n-1) T}+\frac{B_{g}}{a_{g}} e^{-a_{g}(n-1) T} \tag{c.15}
\end{equation*}
$$

Let

$$
\underline{h}_{j}(t)=\int M_{j} \underline{g}_{j}(t) d t, \quad(j=1, \ldots, m)
$$

Then, (C.1) and (C.7) yield:

$$
\begin{equation*}
\underline{z}(0)=\sum_{j=1}^{m} \sum_{k=1}^{\tau_{j}} b_{j k} \underline{h}_{j}(0) \tag{c.16}
\end{equation*}
$$

Let

$$
q_{j}=\sum_{k=1}^{\tau_{j}} b_{j k}
$$

i.e., the number of positive pulses less the number of negative pulses, emitted by the ith modulator in the interval ( $0, T$ ]. With this substitution (C.16) becomes

$$
\begin{equation*}
\underline{z}(0)=\sum_{j=1}^{m} q_{j} \underline{h}_{j}(0) \tag{C.17}
\end{equation*}
$$

Substituting (C. 17) into (C.9), using (3.35a)-(.3.35d) and matrix notation, one finally obtains the relation

$$
\begin{equation*}
\underline{P} q=T \underline{r}_{0}+\underline{\varphi} \tag{C.18}
\end{equation*}
$$

APPTENDIX D

## COMPUTER PROGRAM FOR THE CALCULATION

## OF THE RESPONSE OF CRPTM SYSTEMS

## Method

This progrem calculetes the response of the CRPFM system of Fig. 3.1 with finite-dimensional, time-invariant LP and TF's. It is assumed that the combined equations of the TF's are given in the form

$$
\begin{align*}
& \underline{\underline{x}}_{1}(t)=\underline{A}_{1} \underline{x}_{1}(t)+\underline{B}_{1} \underline{e}(t),  \tag{D.1}\\
& \underline{\underline{z}}(t)=\underline{C}_{1} \quad \underline{x}_{1}(t) \tag{D.2}
\end{align*}
$$

Also, it is assumed that the LP is described by the equations

$$
\begin{align*}
& \dot{\underline{x}}_{2}(t)=\underline{A}_{2} \underline{x}_{2}(t)+\underline{B}_{2} \underline{u}(t)  \tag{0.3}\\
& \underline{x}(t)=\underline{C}_{2} \underline{x}_{2}(t)+\underline{D} \underline{u}(t) \tag{D.4}
\end{align*}
$$

Description of all the parameters used in the program are given in the listing (presented at the end of the Appendix).

Eqs. (D.1)-(D.4) can be rearranged into the following form:

$$
\begin{equation*}
\dot{\underline{x}}=\underline{A} \underline{x}+\underline{B} \underline{u}+\underline{F} \underline{r} \tag{D.5}
\end{equation*}
$$

where,

$$
\underline{x}=\left[\begin{array}{l}
\underline{x}_{1} \\
\underline{x}_{2}
\end{array}\right], \quad \underline{A}=\left[\begin{array}{cc}
\underline{A}_{1} & \underline{B}_{1} \underline{c}_{2} \\
\underline{0} & \underline{A}_{2}
\end{array}\right]
$$

(D.5b)

$$
\underline{B}=\left[\begin{array}{c}
\underline{B}_{1} \underline{D}_{2} \\
\underline{B}_{2}
\end{array}\right], \quad \text { and } \quad \underline{F}=\left[\begin{array}{c}
\underline{B}_{1} \\
0
\end{array}\right]
$$

The solution of (D.5) between the firing instances are

$$
\begin{equation*}
\underline{x}(t)=e^{A\left(t-t_{k}\right)} \underline{x}\left(t_{k}^{+}\right)+\int_{t_{k}^{+}}^{t} e^{\underline{A}(t-\tau) \underline{F} \underline{r}(\tau) d \tau} \tag{D.6}
\end{equation*}
$$

Let $t^{*}$ be an instant between the firing times $t_{k}$ and $t_{k+1}$. If $\underline{r}(t)$ is approximately constant from time $t^{*}$ up to time $t^{*}+\Delta t$, then (D.6) yields

$$
\begin{equation*}
\underline{x}\left(t^{*}+\Delta t\right)=e^{\underline{A} \Delta t} \underline{x}\left(t^{*}\right)+\underline{Q} \underline{r}\left(t^{*}\right) \tag{D.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{Q} \triangleq \int_{0}^{\Delta t} e^{\underline{A} \tau} E d \tau \tag{DB}
\end{equation*}
$$

If at $t=t_{k+1}$, the $\ell_{k+1}$ th modulator emits an impulse of polarity $b_{k+1}$ and strength $\mathbb{N}_{l_{k+1}}$, then the state at $t=t_{k+1}^{+}$is given by

$$
\begin{equation*}
\underline{x}\left(t_{k+1}^{+}\right)=\underline{x}\left(t_{k+1}^{-}\right)+b_{k+1} M_{\ell_{k+1}} \underline{B}_{k+1} \tag{D.9}
\end{equation*}
$$

Immediately upon emission of the impulse the state of the $\ell_{k+1}$ th $T F$ is also reset to zero.

The program is based on eqs. (D.7) and (D.9). The system output, $y(t)$ and the output vector of the TF's, $\underline{z}(t)$ are evaluated using eqs. (D.4) and (D.2) at time instances $\Delta t, 2 \Delta t, 3 \Delta t, \ldots$ Each time the outputs of the TF's are compared with their threshold values and impulse emissions are decided in accordance with eq. (1.24c). The details of the program are explained by comment cards in the listing.

## Input Data

| Cerd | Quantities | Format |
| :---: | :---: | :---: |
| 1 | M, N1, N2, NE, NSS, MLOT, T(1), TIMAX, D10 (See the program listing for a description of the parameters). | (6I3, 3E15.8) |
| 2 | Matrix $\underline{A}_{1}$ (row by row) | (8F10.4) |
|  | Matrix $\underline{B}_{1}$ | (8F10.4) |
|  | Matrix $\underline{C}_{1}$ | (8F10.4) |
|  | $S_{i}, M_{i}(i=1, \ldots, m)$ | (8F10.4) |
|  | Matrix $\mathrm{A}_{2}$ | (8F10.4) |
|  | Matrix $\underline{B}_{2}$ | (8F10.4) |
|  | Matrix $\underline{C}_{2}$ | (8F10.4) |
|  | Matrix D | (8F10.4) |
|  | $\underline{x}(0)$ (initial state) | (8F10.4) |

## Output

1. Input data: M, N1, N2, NE, NS, T(1), TIMAX, D10, Matrices $\underline{A}_{1}, \underline{B}_{1}, \underline{C}_{1}, \underline{A}_{2}, \underline{B}_{2}, \underline{C}_{2}, \underline{D} ; S_{i}, M_{i}(i=1$, 2, ...., m ) $\mathrm{x}(0)$ (initial state) ;
2. The augmented fundamental matrix $\mathbb{A}$, Associated states to be zeroed immediately after each firing, the matrix $B$, the matrices $e^{A T}$ and $Q(T)(T$ is the main discretization interval)
3. A plot of the first five states if MLOT $=0$.
4. $t_{k}, b_{k}, l_{k}$ (pulse emission instant, polarity of the pulse and the number of modulator firing)
5. $\underline{x}\left(t_{k}^{+}\right)$(the state immediately after an impulse emsssion).








## 

$\because N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N$




 $N N N N N N N N N N N N N N N N N N N N N N N W N N N N N N N N N N N$







## 103





















 CALL INPUT (NE,TIME,R) DD $603 \quad I=1, N 1$
DUMMY $(1,2)=0,0$
DO $603 \quad J=1, \mathrm{NE}$

 NNNNNNNNNMNMNNMMNNWNNNNNNNNNNNNNMNN


603
50
604


IF（AZ－SMINIIS（I））501，502，502
IF（AZ－SMIN－SPLUS（I）$) 504,504,503$
INDEX $=3$
CD TO 569

$\begin{array}{lll}n & m & n \\ m & m & n \\ n & n\end{array}$ co





 a



C

## 

TIME=TIME+TIMEI.
RETURN RELATED STATES TO ZERO.
DO $508 \quad I=1, K$
$I=1(I)$

$$
\begin{aligned}
& L I=L(1) \\
& I=I Z M A X
\end{aligned}
$$

$$
I M_{1}=I Z M A X(L T)
$$

$$
\begin{aligned}
& 1050 B \quad J=1, I M \\
& 1=I 2 E R G \times(1 T N J)
\end{aligned}
$$

$$
\begin{aligned}
& 11=12 E R G \times 1 \\
& X(T 1)=0.0
\end{aligned}
$$



IF $(K-1) 525,25, ? 6$

$$
\begin{aligned}
& \text { IF }(K-1) 529 \\
& \text { PRINT } 576
\end{aligned}
$$

$$
\begin{aligned}
& \text { PRINT } 526 \\
& \text { FORMAT } 1.4
\end{aligned}
$$

FORMDT(1H, $/ /, 10 X, 1 C H E C K ~ K ~ B E C O M E S ~ N E G A T I V E:, ~ / /) ~$
SOTO 13
$\begin{array}{ll}\infty & \text { un } \\ \text { in } \\ \text { N } \\ \text { N }\end{array}$
(2)

PRINT 121
 1, /7\%
DO

## $0027 \quad I=1 .:$

$\rightarrow$ in
> 1.TINE,L(T),EPS(I)
(OX, TS, $16 \times, E 15 . \Omega, 10 X, ~] 3.23 X, E 15.8)$

JUMPS IN THE STATES DUE TO IMPULSE EMISSIONS. DO $300 \quad I=2, N$ (1)
$L J=L(J$
$X(I)=X($
$x(I)=X(I)+R(I, L J) \leftarrow E P S(J)$
$J J=J I+K$

| $C$ |
| :--- |



 $N \mathbb{N} N \mathbb{N} N \mathbb{N} N \mathbb{N}$

 - 0










## APPENDIX E

## COMPUTER PROGRAM FOR IINEARIZING A NONLINEAR NET

This program linearizes eq. (4.24) (for the single-signed system) by increasing the number of variables ofthe system. The procedure is described in Section 4.4(pp. 166-168). A subroutine for calculation of thecoefficients of the characteristic polynomial of thelinearized system is also included.
Input data
Card Quantities ..... Format
$1 \quad+X b b+1 b b b 1 b b b 2 b b b 3 b b b 4 b b b 5 b b b 6 b b b 7 b b b 8$ ..... (20A4)
bbb9bb10bb11bb12bb13bb14bb15bb16bb17bb18
(b denotes blank space)
$2 N$ (order of the system)(I4)
$3 R(1), \ldots, R(n)$ (input vector),(8F10.5)
Connection matrix of the system $D$.
Output (see pp. 170-171)

1. Input data: The connection matrix D,
2. Fundamental matrix of the linearized system A.
3. Characteristic polynomial of A.








 шыши

$1=11$ $+12$
111.1)
8














 NNNNNNNNNNNNNGNNANGRNNNNNNNNNMNN


$36 ?$

$\operatorname{nin} 8$
$n$
$n$
-8






## REPERENGES

1. Abate, J.E., "Hinear and Adoptive Delta Fodulation," Ph.D. Dissertation, Newark College of Engineexing, Newark, N.J., 1967.
2. Accardi, 1., "Rank and Reverbrations in Neural Networks," Kybernetjk, vol 8, no. 4, 1971, pp. 123-127.
3. Anerio, J. and G. Prouse, Almost-Feriodic runctions and Functional Equations, Van Nostrand keinhoid Comp., 1971.
4. Anninos, P.A., B. Beek, T.J. Csermely, E.F. Farth and G. Pertile, "Dynamics of Neural Structures," J. Theoret. BLol., vol. 26, 1970, pp. 121-148.
5. Barnett, S. ard C. Storey, Hatrix Eetinods in Stebility rinory, hew York, Berness ana hoble, inc., 170.
6. Bayly, E.J., "Spectral tnelysjs of Pulse Frequency Hodulation in the licrvous Systems," IEEE ?rens. SO, vol. 15, October 1968, pp. 257-265.
7. Bellman, R., Introduction tomatrix Analdsis, New York, Hegraw-inil, 1960 .
8. Besicovitch, A. S., Almost Periodic Functions, Dover Publications, Ince, 1954.
9. Birkoff, G. and I. C. Bartee, Vodern Applied Algebra, New York, ic Gram-rill Book Co., Tyī.
10. Blanchaxa, J. G., "The Uptimization of lulse Frequency Control Bystem," Pn.D. Missertation, Univ. of Calif California, Berkeley, 1966 .
11. Bombi, F. and D. Ciscato, "A Modified IPFin in Control. Systeme," IEEE Trans. AC, vol. AC-12, no. 6, Decemider 1967, pp. 784-785.
12. Bombi, F. and L, Ciscato, "Hoise Effects in IFFM systems," IFAC Pulse Symposium, April 1968, Budapest, Hungary
13. Booth, T.L., Sequential rechines and Autometa Theory, New York, Johri iley and ions, Inc., 1567, pp. c57-3 321.
14. Brouehton, M. B., "The Transition Matrix Analysis of Linear Asynchronous Discrete/Continous Sjstems," IFAC Pulse Sumposium, April 1968 , Budapest, Hungary.
15. Broughton, M. B., "Parameter Identification in Plant Adaptive Pulse Frequency Modulated Control systems," Int. Wlectronic Confi, Toronto, October, $196 y$.
16. Broughton, M. B., "Plant Adaptive Pulse Frequency Modulated Feedback Cortrol Sysiems," Ph. D. Diseertation, Queen's Univ., Kingeton, Ontario, Canada, September 1971.
17. Broughton, 1. B., "Plant Adaptive Pulse Frequency Modulated Control Bystems, " proc. 5th Haneij Int. Coneremoe cn syster boicncea, fonolulu, bawail, $11-$ 13 Janutivy $1972, \mathrm{pp}$. $39 \mathrm{x}-394$.
18. Caianielio, i. R., "Outhine of a Theory of ThougntProcess and Thinkine hachines," J. Theor. Biol. vol. 1, 1961, pp. 204-235.
19. Cajaniello, E. R., A. De Luca and i. H. Kicciardi, "Reverbretions and Control of foural Networks," Eytgruetik, val. 4, no. 1, 1967, rp. 10-18.
20. Caiariello, E. R., A. De buca and L. R. Ricciarai, "Neural Networks: Reverbrations, Consterts of Motion, Gencral Rehavior," in Reunal Vetwoks, Ed. E. R. Caianiello, Suringer Verlag, 1365.
21. Cattermol, K. T., Principles of Pulse Codo Modulation, Illiffe Books Ltd., London, 1969.
22. Chethovoi, Yu. H., "Stabilj.ty on the Whole of Pulse Frequency Fodulated Control Systems," Avtomatiha i Telenerhenifa, no. 6, June 1968, pp. 79-87.
23. Chekhovoj, Yu. N., "Limiting Boundedness of SampledData Control Sustoms with Pulse rrequency Fodulation," Artomatika, ielemekharika, no. 9, September 1970, pp. 44-51.
24. Cheknovoi, Yu. N., "Btability in The Large of a Pulse Frequercy system of The wecond Kind in The Simplest Critical Case," Aytometika i Telembhanika, no. 4, April 1971, pp. 178-182.
25. Chekhovoi, Yu. V., "Pulse Frequency Systems of Second

Kind and lheir Stability," Avtometika i. Telemekhaniks, no. 11, November 1972, pp. 72-83.
26. Clark, J.P.C., "An Analysis of Pulse Frequency Modulation Systems," Ph. D. Dissertation, University of Washingtor, 1965.
27. Clark, J. P. C. and E. Noges, "Stability of a Class of Pulse Frequency Fodulation Closed joop Control Systems," 1966 İEEInt. Conv. Rec., vol. 14, p. 179.
28. Clark, K. H., "Analysis of Oscillations in Pulse Fodulated Satellite Attitude Control Systems," Hh. D. Dissertation, Stanford Univ., 1969.
29. Clark, $\mathrm{F} . \mathrm{N} . \operatorname{and} G . P$. Franklin, "iumit Cycle Operation in Pulse Fodulated Systems," 1y69 jaCC, Boulder, Colorado.
30. Clark, ï. N., "Limit Cycle Oscillation in a Satellite Attitude Control System," Automatioa, vol. 6, 1970, pp. 801-807.
31. Datta, $K$ B. "Btadility of Combined Integral Pulse Frequency and Pulac Wiatn Vodulated Byisters," Int. J. Control, vol. 13, no. 6, June 1971, pp. 11611169.
32. Datta, K. b., "Analysis of Combined Integral Pulse and pulse widtirodulated Control System," Int. u. Control, vol. 14, no. 5, Hovember 1y71, pp. 801809.
33. De Luca,A., "On Some Dynamical Properties of Linear and Affine letworks," Kybernetik, vol, 8, no, 4, 1971, pp. 123-127.
34. Derzhavin, O. M., "Block Diagrams for Pulse Tine Modulators of Type $1, "$ Automation and Remote Control, no. 4, April 1967, pp. 74-7У.
35. Lymkov, V. I., "Absolute Ftability of Pulse Prequency Systems, " Automation and Remote control, no. 10, October 1y67, pp. 109-114.
36. Dymkov, V. I., "Periodic States in lulse Frequency Systems," Automstion and kemote Control, no. 11, November 1967, pp. 101-108.
37. ELdden, C.M. and A.J. Ley, "A Difital Tronsfer Function Analyser Based on Pulse Rate Techniques," IFAC Pulse Symnosium, April 1968, Budapest, Huneary.
38. Farreniopf, K. L., A. E. Sabroff and L. U. Mneejex, "Integral Pulse Frequency On-Off Attitude Control," Guidance and control-1i, vol. 13 of Prorress in Astrondites and feroneutics, Lengford and Fundo Bditions, New York, N.Y., Acadomic Press, 1964.
39. Fink, A. K., "Almost jeriodic Functions Invented for Specific Eurposes," Bifw ReviEx. vol 14, no. 4,
 rices, New York, Interscjence heblishers, Inc., 1559 ,
41. Gelig, A. Kh., "Stabilization of Nonlinear systems with Pulse Frequency Hodulation, " Automation and Remote Control, no. ©., June 1567 , pe. 75-82.
42. Gelig, A. Kh.,""Absojute stability of Nonlinear Pulse Systems and width and Time :odulation, "Avtomatika i. Telemeknanka, voi 29,no. 7, July 1968, pp. 3j43.
43. Gelig, A. kh., "Stability of Bampleanoma systems with rulse Frequency iodulation of The 2nd type," Avtonatika i 'relemebberika, no. 11, November 1971 , pp. 5J-60.
44. Gelif, A. Kin., "Stability of Multidimensional Asymenronous Sampled-jata system with Frequency modulation of The jocond Kind, " Lvtomatika j Tederefhanika, no. 3, Warch 1972, 20. 5? 59.
45. Gelig, A. Kh., "Ulitimate Jouncodness and Stability of a Cless of puise-Frequency Syetems," Avtomatira j letomeknanjer, no. 2 , Aurusi, 1972, pr. $51-53$.
 Systems," Biophysicé doumél. vol. 11, January 1971, pp. 98-109.
47. Golomb, S. W., Snift Recister Bequences, San Fransissisco, Holden-lay, Inc., 1567.
48. Guy, W. J., "Oscillations in Pulse Irequency Modulated Control Systens," Ph. D. Dissertation, Newark College of Engineexing, Newark, N.J., 1970.
49. Guy, W. J. Jr, M. Kurland and $\Lambda$. U. Meyer, "Initial Condition Zones for IPFM Sysiem Stability," Proc. Eight Annuel Allerton Conference on Cirouit grad Sustem Theory, Montacelio, lı1., 7-9 October 1970 p. 164-165.
50. Guyton, A. C., Texthook of Medical Physiology, Philadelphia, W. J. Seunders Company, 971 (Fourth EOition).
51. Gulçur, H. O. and A. U. Meyer, "Finite Pulse StabiJity of Interconnected Systems with Complete-peset Pulse Frequency modulators," Ienth Annuel Allorton Conference on circuit and Sustem Theom, 4-6 october 1972, Monticeilo, llinois.
52. Gulcur, H. O. and A. U. Meyer, "Pinite Pulse StabiJity of Interconnected Systems with Complete-fieset Pulse Frequency lioulators," Ibef Trans. AC, vol. $\mathrm{AC}-18$, no. 4, August 1973, pp. 387-392.
53. Giilciur, H. Ö, and A. U. Neyer, "Comprison of StabiIfty Criterice for Interconnected Systems with Pulse Frequency hodulation," To be published.
54. Hahn, H. Stebility of hotion, Springer-verlag New York Inc., 1967, p. 304.
55. Harmon, L. D. ard E . R. Lewis, "Neural liodeling," Physiolorical Revjers, vol. 46, July 1966, pp. 513hyl.
56. Harmutin, $H \cdot H^{\prime}$ Trangmission of Information by Orthogonal Functions, Bpringer-Verlag, Beriin, 1970.
57. Harrison, F. A., bectures on Linear aequential Machines, Hew Yori, hcaucmic Fress, 1905.
58. Harterbrot. H., "Differential Equations for a fulse Frequency Modulator of the second Kind and Numerical Solution," Doviet Automatic Control, vol 14 , FarchApril, 1965.
59. Hodgkin, A. L. and A. F. Huxley, " A Quantitative Description of Eebrane Current and its Application to Conduction and sxcitation in Nerve," J. Physjol. vol. 117 , pp. 500-544.
60. Hutchinson, C. E. and Y. T. Chon, "The Effect of Pulse Froquency Nodulation on Noise," IEEE Trens. AC, vo. $\mathrm{AC}-12$, Uctober, 1967, p. 621.
61. Hutchinson, C. F., Y. J. Chon and R. A. Leuchs, "An Analysis of the Effect of Integral and Siema rulse Frequency $\operatorname{modulation~on~White~Noise,~"~Information~}$ and Control, vol. 13, September 1968, pp. 173-185.
62. Hynes, i . J.,"The finimum-Pire Regulator Problem for Pulse Frequency modulated Control Bystems," Ph. D. Lissertation, Üriv. of Washington, 1969.
63. Ivey, K. A., "A-C Carrier Control Bustems, New York, John Wiley and Sors, lne., 1 y64.
64. Jones, R. W., C.C. Li, A. U. Heyer and R. B. Pinter, "Pulse modulation in phesiological Systems, Phenomenological Aspects," Ine Tranc. Biomeoical blectronics, vol. BEE-8, no. 1, January 1961, po. 5y-67.
65. Jury, E. I. and J. Blanchard, "A Nonlinear Iiscrete System Equiavalence of Inteeral pulse Frequency irodi... lated wystemis" dotnt futovate control Contaronee,

66. Jury, i. I. and E. P. F. Kan, "Stabjlity of a Lual Hode (fulse fidth and Pulse Frequency) hodulated Feedback jystem," Keport, Dept. of $\dot{B}$. . . and Comp. Sciences, ilectronics Research Lab., Lniv. of California, Berkeley, 1963.
67. Jury, i. I. and Y. 2. Twypkin, "Theory of Liscrete Automatic Control Bystema (ieview), " Lutonation and Remote control, voL. 31, June 1970, pp. 915-936,
68. Lan, i. P. F. and E. I. Jury, "On Popov Criteria for ELFH Bystems;" Int. J. Control, vol. 13, no. 6, 1971.
69. Kan, P. F. E., " $\mathrm{L}_{\mathrm{l}}$ n $\mathrm{L}_{\mathrm{p}}$ Stability of an IPFM System," Int. J. Control, vol. 14, no. 1, 1971, pp. 27-31.
70. Kauffman, B. A., "tetabolic Stabjlity and Epigenesis in Rardomy Constructed Genetic Fets," I. Theor. Biol., rol. 22, 1969, pp. 437-467.
71. King-Smith, E. A. and J. R. Cumpston, "Yeriodic Cycles in lfrib Bystems," IFAC fulse Symposium, April 1968, Budapest, Hungary.

7¿. King-imitn, E. A. and J. K. Cumpston, "The Stability of idFi Eystems," Int. J. Control, vol. 7, no.4, 19 1968, pp. 301-316.
73. Koening, H. K., Y. Tokad, and H. K. Kesevan, Analysjs of Liscrete Physical Bustems, Lew York, HoGraw-ijil. Book Co., 1967.
74. Konavi, Z., Buitching and Pinite hutomata fheory, New York, Megrammili Look Co., 1970.
 ting Stability of Sampled Data Control systems wjen Pulse Fxequency Nodulation Using dyaounov's Direct Method," Autometion anc bemote Control, no. 2, February 196\%, Rp. 80-y2
76. Kuntsevich, V. K. and Yu. N. Chelhovoi, "Btability of Cortrol Bystems with Touble (Fulse Fregucricy and
 rol, ro. 7, July 1967, pr. 54-63.
 a hultavariale Control Byotem with rulse-Erequency modulation Using the lijpect Lyepunov hetnod," Avtometine j melemehanjes, vol 29 , no. 7, jeptember 1463, 190. 71-85.
'78. Kuntsevicn, V. F. and Yu. H. C'heknovoj, "Fundementals of Fonlinear Control aystems with Pulse Frequency and Pulse Width Noavation, " Automatica, (IFAC), vol. 7, January 1971, po. 73-81.
79. Kuntsevich, M. and Yu. K. Chekhovoi, "Asymptotic itability on the thole of One class of Pulse frequency Systems of The Sccond Pype," Artomatifa i Teleretna nike, no. 3, liarch, 1971, pp.170-iot.
30. Kuntsevich, ソ. M.,"xlobal Asymptotic Jtability of Two Classes of Control Systoms with Pulse Buration and Puls4 Frequercy Modulations," Automation and Remote Control, vol. 33, no. '7, pp. 114032, July 1972.
81. Lancaster, P., Theory of Natricos, New York, Acad. Press, 1960.
82. Lendahl, H. D. and $R$. Punge, "Outiine of a Matrix Calculus for Neural Nets," Bull. Math. Biophys., vo. 8, 1946, pp. 75-81,
83. La Salle, J. and S. Lefschetr, Stability by layanunov's Direct Method, New York, Ncad. Press, 1961.
84. Lee, H. C., "Integral Pulse Frequency Modulation with Technological and Biologionl Applications," Ph.D. Dissertation, Macill University, Fontreal, Quebec, July 1969.
85. Lee, H. C. and J. H. Filsum, "Statisticol Analysis of Pultiunit Wultipath Neural Communication," Methematicel miosciences, no. 11, pp. 181-202, 1971.
86. Leibovic, K. N., Nervous System Theory, New York, Acad. Press: 1972.
87. Lemmentov, M. and B . Noges, "Geometrical nspects of Admisible kerjons in fired Tjme Eulse Frequency Lodulated Contaci Jystems," lebe irane.fo, February 1972, pp. 135-137.
38. Lementov, Fi" "A Gradjemi retnod for Ontimination of
 18, no. 2, hpril 1973, pe. 177-178.
89. Li, U. C., "hutegral Pulse Frequency Hodulated Control Bystems," Ph. J. Dissertation, ilortinestern Unjv., , Evanston, Illinoi, June 1961.
90. Li, C. C. and R. W. Jones, "Integrel Pulse Frequency Modulation control syctems," proc. 1463. 1PAC cong ress, Easle, Switzerland, Septenter 190う.

Y1. Faeda, iI., "h New Stabjlity Criterion of Relay Systems and Its Application to Pulse Frequency Fodulatea Oystems," Lroc. Sra Eavai Int. Coni., Honolulu Hawaii, 14-16 Januare', 1970, pp. 1040-104j.

Y̌. MeCulloch, W. S. and W. H. Pitts, "A Logical Calculus of The Ideas Immanent in Nervous Activity," Bull: Matin. lijophys., vol. 5, 1943, pp. 115-133.
93. Meyer, A. U., "Pulse Frequency Modulation and Its Effects in Feedback Control Systems," Ph. D. Dissertation, Northwestern Univ., Evanston, Ill., August 1961.
94. Feyer, A. U., "Discussion of 'Analysis of a New Class of Pulse modulation Feedback Systems'," IEEE Trans.AC, vol. 10, April 1965, pp. 211-214.
95. Honopoli, $k$. V. and н. K. wylie, "A New model for Neural Lulse Frequency Rodulation," Third princeton Conjererce on frometion sciences and unateris, Haren lyoy, irinceton, li.J.
96. Hurphy, G. and K. L. West, "rne Use of Pulse irequen-
 18, Cotober 1962, pp. 271-277.
97. Nightjngale, J., R, and Ge A. Richerds, "frror Analysja in Binary iale Fodulation systems," fFAC fulse Bymposium, April iy63, suáapest, Hivgary.
98. Onyshko, S., "Ontimized pulse Fiequency Modulation," Hh. D. Dissertation, Univ. Washinéton, 1966.
99. Unyshtio, 3 . anu a. Nogee, "上use droquency madulation and bynamic Programing, " Lige pease. $i=$, vol. 14, Octover 1969, pp. 558-561.
100. rai, m . A. and A . 3 . Varabarajan, "Btebility of feedback zystems witn mulae iroouenoy nodulation," 13tin Micent ivmoonium or circuit jneory, bay 1970 .
101. Hevidias, T. and $x$. I. Jury, "Analysis of a Hew Class of rulse Frequency hodulation ieedback systems," IEbG Tyens. iC, vol. 10 , january 1965 , pi. 2543.
102. Pavlidis, T., "A kew Model for immle Neural Nets a and Its Application jn The Lesign of a ieural Oscillettor," BuI. latn. Bjophys., vol. 27, 1965, pp. 215-2"9.
103. Pavjidis, I., "itability of a Class of Discontinuous Dynamical Bystens," Informetionand Control, vol. Y, 1y66, pp. 298-うaz.
104. redvidis, T., "wtuidibj of systems Jescribed by Uifferential Equations containing lmpulses," Ijeme Trans. AC, vol. i2, Februery 1967, pp. 80-y2.
105. Pevliais, ?', "Optimal Control of Pulse Prequency Modulation Systems," Imei Trans. AC, vol. 11, October 1966, pp. 676-684.
106. Pavlidis, T., "lesign of Noural. Nets with Intermitten liesponse and Certain Other Relavnnt studies," Bul. Meth. Jiophys., March 1966, pp. 51-74.
107. Peterson, W. W. and B. J. Weldon, Jr., Error Correcting Codes, Second jidition, Cambridge, Massachusetts, Tine HIT Press, 1972.
108. Pshenichikov, A. Wi., "Choise of Frequency Range For Industrial Pulse Frequency Telemetry bystem Devices,"
109. Kochelle, K. w., "Pulse Frequency Fodulation, " Lite Trans. Space jlecs. and Telemetry, vol. Sill-8, ro. 2, June 1962, pp. 107-112.
110. Ross, A. H. "Theoreticej Study of Fulse Frequency $^{\text {F }}$ Modulation," IRE Proc., vol. 37, no. 11, November 1949, pp. 1277-12ス6.
111. Ruch, M. C., M. D. Patton, J. W. Woodbury and A. L. Towe, Neurophysiolory, Philedelphia, W. B. Saunders Co., 1965 (second iddtion).
112. Salikov, $\downarrow$, M. ana 4 . 5 . Solobev, "Designing Systems with Pulse Frequency rooulation," Automation and Kemote Control, no. 10, Uctober 1970, pp. 182-185.
113. Schaefer, K. A., "New Pulse Modulation Kethod," Electronics, vol. 35 , October 12, 1962 , pp. 50-53.
114. Schaefer, R. A., "Pulse Ratio Modulation for httitude Control," ipace feroneytics, May 1963, pp. Y093.
115. Schwartz, N., W . R. Bennett and 3 . stejn, Comunjcetion Systars and Technigues, McGraw-Hill Book Comp. 1966.
116. Shortle, G.E., Jr. ana F.J. Alexandro, Jr., "Stability of Class of Pulse Frequency Fodulated Control zystems," 1966 JACC, Boulder, Colo.
117. Bjegorskii, V. P., L.S.Sitkinov and L. L. Utyakov, "Maltistable Pulse Frequency ilements," Avtometika i Telemekhanika, vol 27, no. 2, pp. 76-81, February 1966.
118. Skoczowski, $3 .$, New Type of Discrete Control Systems with Pulse Frequency Modulation," Pomiary Automat kontrolat (Poland), vol. 13, no. 12, December 1967, pp. 537-540. (in Polish).
119. Skoczowski, i. and L. Trasiejski, "The Control Performance of Pulse Frequency rodulated leedback Systems and possibilities of lts lmprovement," Arc. Autom. © Telemech., (Poland), vol. 16, no. 3, 1971, pp. 327-3>8.
120. Skoczowski, S. and 1. Parasiejski, "Performance Comparjson of Pulse Frequency Fodulated Control Systems by Digital and Analogue Simulation, " Messen oteuexn Regeln (Germany), vol 15, no. 2, pp. 71-74, Feb. i 1972.
121. Skoog, R. A. and G. L. Blankenship, "Generalized Eulse Rodulated Feedbeck wystems; Norms, Gains,
 vol. 15, June 1970, pp. 300-315.
122. Stoep, ij. R. and F. J. Alexandro, "Bounds on the Optimal Performance of Pulse Controlled ininear Systems," 1967 JhCC, Phileaelpnia, pa., 1967.
123. Stoep, D. R., "Syntresis of Optimal Pulse Controlied Control Systems,""Pn. D. Dissertation, Univ. of Vashington,1967.
124. Taydor, R. G., "A Neural Hodel Using Posjuive Logic With Adjustable Jelay," Jesifn Project, liewark

125. Taylor, J. G., "Spontaneous Benaviour in Neural Retworks," J. Theor. Biol., vol. 36, 1972, pp. 513528.
126. Varadarajan, H. S., "Stability of Feedback Systems with rulse Frequency lodulation," Int. J. Control, vol. 13, no. 2, 1971, pp. 265-273.
127. Varacarajan, F. S. and Pai, "Yeriodic Oscillations in Ipril Feedback sjstems," Int. i. Control, vol. 14, no. 6, 1971, pp. 1175-1181.
128. Hylic, 3. K. and K. V. Fonopoli, "Stability Aralysis of Class of Pulse Frequency foduleted srror sampied Control Systems," Proc. of the 13 th Lidigest Syoposjum on Cipeut rieory, Hiay $7-5,1470$.
129. Willems, J. C., The Analyois of Feedback iystems, Cambridge, Nassachusetts, The hij Press, (Research Fonograph No. 62), 1971.
130. Zames, G., "On the Input-(iutput Stability of TimeVarying Honlinear Feedback Siysters, Parti 1: Conditions Derjved From the Concept of Loop-Gain, Conicity and vositivity" remp grans. AC, vol. AC-11, pp. 228-238. April 1966. (A1so. Part Il, vol. 11, pp. 465-476, July 1966).
131. DaFonseca, S. J. J. and V. B. RoCulloch, "gynthesis and Lincarization of Nonlimear Feedback Whift Fegisters," (kurt. Progr. licp. No. 86, Fiesearch Laboretory of Eisectronios, M.I.T., 1967, pp. 355366.
132. Fukunge, K.,"A Theory of Jonlinear Autonomous Soquentiel Nets Using $z$ Transforme," Idet rerens. ECC, vol. $13,1964, \mathrm{pp} .310-312$.
133. Pentman, J. B., The Tosim of Diaital Sustoms. New York, Eograw-hill Book Company, 1972.

## VITA

Halil Ö. Guilçur was born in on - He received the B.S. and M.S. degrees in Electrical Engineering from Middle. East Technical University, Ankara, Turkey, in 1968 and 1970, respectively. In 1968 he joined Middle East Technical University, Department of Electrical Engineering.

The work presented in this dissertation was started in September 1970 and completed in September 1973 ; it was supported by the Scientific and Technical Research Council of Turkey by a fellowship.


[^0]:    ${ }^{1}$ Here, unidirectional pulses are considered. Certain applications require positive pulses as well as negative pulses; in which case, the value given by eq. (1.1) does not correspond to the usual concept of frequency. Because of this, the quantity defined by eq. (1.1) is sometimes called (instantaneous) pulse-repetition rate. Also, the term pulse-repetition rate modulation is sometimes used as a more precise substitute for PFM.

[^1]:    ${ }^{2}$ In this introductory sub-section, only modulators that emit single-polarity pulses are considered (singlesigned PFM). Hence; it is assumed that the signals $f[e(t)]$ and $z(t)$ are nonnegative. When negative pulses are allowed as well as positive pulses, violation of this restriction will not cause in any loss of information if pulse emission instante are determined from $|f[e(t)]|$ or $|z(t)|$ and the sign in raration is reflected on the output pulses. This seconü case is called double-signed PFM. For communication applications and for control applications involving stepper motors and/or digital processors, usually single-signed modulators are used. For most control applications, however, double-signed PFM is preferred.
    $3_{\text {This }}$ fact may be used in designing voltage-tofrequency converters. The circuit of Fig. 1.4 b is a fundemental form for many voltage-to-frequency converters.

[^2]:    ${ }^{5}$ Note from (1.4) that $z\left(t_{k}^{+}\right)=0$ for all $k=1,2, \ldots$ ${ }^{6}$ It is possible, however, to represent some other types of PFM in terms of IPFM and dynamic elements (93). $7_{\text {The name relaxation pulse frequency modulation comes }}$ from its relation to relaxation oscillation (93). A generalization of RPFM where the first order relation (1.6)

[^3]:    between $e(t)$ and $z(t)$ is not linear as in (1.6) but nonlinear, has been defined by Pavlidis and Jury as EPFM (101). In the literature, RPFM has also been called "neural PFM" (NPFM) (101).
    ${ }^{8}$ CRPFM incorporates the features of the "nth order neural trigger" of Pavlidis (102), the "functional pulse

[^4]:    ${ }^{13}$ There are many different forms of $\delta$-modulation, which is becoming popular in communication; eqs. (1.18a) and (1.18b) describe one of the early forms (see (1) for more detail).

[^5]:    ${ }^{16}$ For more information on the neuron and the nervous system, the reader is referred to (115), (50) or standard textbooks on neurophysiology.

[^6]:    ${ }^{17}$ An axon is also referred to as a nerve fiber. It can be very long (in man about one meter) and carries impulses to the next neuron. The velocity of conduction increases with fiber diameter and varies from $0.5 \mathrm{~m} / \mathrm{sec}$ to $120 \mathrm{~m} / \mathrm{sec}$.

[^7]:    18 An excellent survey of neural models is presented in reference (55) which includes most of the important references on the subject up to 1966. Later references can be found in (125).

[^8]:    ${ }^{20}$ An explanation for this spontaneous neural activity is emission of many packets of transmitter substances at a presynaptic terminal upon activation by a neural impulse (125).

[^9]:    large, it can be replaced by an equivalent linear gain of $M / S$, where $M$ is the impulse strength and $S$ is the threshold of the modulator. Therefore, if the linear part of the system is asymptotically stable and if the equivalent linear system obtained by replacing the IPFM by its equivalent linear gain is also asymptotically stable, then the motion will be bounded.

[^10]:    ${ }^{23}$ In (95) the modulator is defined as a modified form of RPFM in such a way that the restrictions of Popor's theorem are satisfied.

[^11]:    ${ }^{25}$ A summary of Gelig's results is presented in Section 2.3.

[^12]:    ${ }^{26}$ For example, even a single loop system containing an IPFM and a plant with a single integration posseses infinite number of different limit cycle oscillations (38, 93).

[^13]:    * Part of this chapter was presented at the 1972 Allerton Conference on Circuit and System Theory, Monticello, Ill. and published in IEEE Transactions on Automatic Control, vol. AC-18, no. 4, August 1973, pp. 378392.

[^14]:    ${ }^{1}$ See Section 2.1.
    ${ }^{2}$ In this work the name RPFM system refers to the basic configuration of Fig. 1.9, in which all the modulators are of the relaxation type. Since an IPFM is a special case of an RPFM and since a system containing ORPFM's can be transformed into a system containing only RPFM's, the same name will sometimes refer also to an IPFM syatem or an ORPFM system.

[^15]:    $3_{\text {This }}$ is a convenient, standard mathematical notation which stands for the collection of all the measurable functions $x(t)$ which map the interval $[0, \infty)$ into the real line $(-\infty, \infty)$ such that the integral

[^16]:    ${ }^{4}$ Actually, linearity of the plant is not required for application of Lyapunov's method.

[^17]:    ${ }^{5}$ Pavlidis' thorem (103) includes elso the requirement that $V(\underline{x})=0$ for $\underline{x}$ within some region inside the region for which no impulse emission is possible.

[^18]:    ${ }^{6}$ A matrix is called nonnegative if and only if it has no negative elements. Nonnegative matrices play an important role in various fields like mathematical economics, theory of games, linear programming, etc., and have been extensively studied, Bellman (7), Gantmacher (40), Lancaster (81).

[^19]:    $7_{\text {Spectral }}$ radius of a matrix is defined es the magnitude of the largest eigenvalue, i.e., if $\lambda_{i}(i=1, \ldots, m)$ are the eigenvalues of the matrix $A$, then $\lambda(\underline{A})=\max \left|\lambda_{i}\right|$
    $8_{\text {If }}$ the coefficients of the characteristic polynomial $P(\lambda)=\left|\lambda I-H_{\infty}\right|$ are known, the condition $\lambda\left(\mathcal{H}_{\omega}\right)<1$ can be checked using the Routh-Hurwitz Criterion on $P[(r+1) /(r-1)]$. However, this method is not recommended for large systems.

[^20]:    $9_{\text {This }}$ is a very useful theorem for obtaining bounds on eigenvalues and states that every eigenvalue of a matfix A lies at least in one of the disks

    $$
    \left|z-a_{i j}\right| \leq \sum_{\substack{j=1 \\ j \neq i}}^{m} a_{i j}
    $$

    (Lancaster, p. 226).
    $10_{\text {Theorem }} 6$ of (Lancaster, p. 288) is very close to Lemma 2.3.

[^21]:    ${ }^{2}$ Most simulation studies of simple CRPFM systems yielded a good agreement with inequality (2.16).

[^22]:    ${ }^{15}$ The stability region was obtained by a computer program which used Sturm's test to check the frequency condition (2.51b).

[^23]:    ${ }^{1}$ Instantenous (short-term, temporary) memory "refers to one's ability to recall tremendous amounts of information from one second to the next or from minute to minute", Guyton (50), p. 722.
    ${ }^{2}$ In (103) Pavlidis describes a Lyapunov method which is applicable also to multi-loop systems.
    ${ }^{3}$ Consider, for example, a fourth order linear, timeinvariant, conservative system. It has a general solution of the form $a_{1} \cos \omega_{1} t+b_{1} \sin \omega_{1} t+a_{2} \cos \omega_{2} t+b_{2} \sin \omega_{2} t$, which is periodic, if and only if $\omega_{1}^{2}$ and $\omega_{2}$ are commensurable, i.e., $\omega_{1} / \omega_{2}$ is a rational number, Hahn (54).

[^24]:    ${ }^{4}$ In certain cases it may be advantageous to replace condition (3.1) by $\|\mathscr{H}[e(t+T)]-H[e(t)]\| \leq \epsilon_{e}, \quad t \in(0, a]$, where $\mathcal{H}$ is an appropriate linear functional.
    $5_{\text {This }}$ is a complete, normed vector space (129), egg., $\mathrm{L}_{\mathrm{p}}$-spaces (see footnote no. 3, p. 56).

[^25]:    $6_{\text {See Besicovitch (8), Amerio and Prouse (3) and (for }}$ a survery of other equivalent definitions), Fink (39).

    7 The conditions of Def. 3.2 b can be relaxed to a certain degree by associating a linear functional $H$ with the function $f(t)$ and requiring $H[\underline{f}(t)]$ to be almost periodic for all linear functionals of a dual space $X^{*}$ (this is known as weak almost periodicity) (3).

[^26]:    ${ }^{13}$ i.e., all the elements of the matrix $\underline{G}(t, \tau)$ are almost periodic.

[^27]:    2 The variable $y(k)$ corresponds to the pulse strengths.
    For the double-signed system, +1 represents a positive pulse and -1 represents a negative pulse. For a singlesigned system +1 represents the presence of a pulse and O represents its absence. In the double-signed case one can also use the symbol 0 to denote the absence of a pulse.

[^28]:    $\overline{3}_{\mathrm{A}}$ field is an algebraic system consisting of a set $F$ and two operations defined on $F$ which are single-valued functions of two variables, denoted by $a+b=c$ and $a \cdot b=c$, called addition and multiplication (not necessarily the addition and the multiplication of the arithmetic of ordinary numbers). The operations + and $\cdot$ satisfy axioms A.1-A.5 (with the dunmy operator o replaced first by + and then by - ) and A.6:
    A. 1 Closure $\quad \forall a, b \in F \rightarrow c=a o b \in F$,
    A. 2 Assocjative law $\quad V a, b, c \in F \rightarrow$ (aob)oc $=a o$ ( $b o c$ )
    A. 3 Identity element $\quad \forall a \in F \rightarrow$ ©i $\in \mathcal{F}$ ioa $=$ aoi $=a$
    A. 4 Inverse element $\quad V a \in F \rightarrow$ Uq $\in F \ni q o a=a o q=i$
    $A .5$ Commutative law $\quad \forall a, b \in F \rightarrow a o b=b o a$
    A. 6 Distributive law $\quad \mathrm{Va}, \mathrm{b}, \mathrm{c}, \in \mathrm{F} \rightarrow$

    $$
    \begin{aligned}
    & a \cdot(b+c)=a \cdot b+b \cdot c \\
    & (b+c) \cdot a=b \cdot a+c \cdot a
    \end{aligned}
    $$

[^29]:    4 The symbol + is also being used for addition in the usual sense. However, this will not cause any confusion because which field is used will be obvious.

[^30]:    ${ }^{5}$ The matrix A should not be confused with the notation used in the previous sections.

[^31]:    7. The number of transient states is related to the factor $\lambda^{n_{t}}$ of the characteristic polynomial. Thus, $n_{t}=0$ if and only if $|\underline{A}|=0$. This point will be discussed in Section 4.7.
[^32]:    $6_{\text {This }}$ transformation is called a similarity transformation. A very important property of this transformation is the invariance of the characteristic values. Note that

    $$
    \mathrm{p}_{A}(\lambda)=|\lambda I-\underline{A}|=\left|\lambda I-\underline{P Q P}^{-1}\right|=\left|\underline{P}(\lambda \underline{I}-\underline{Q}) \underline{P}^{-1}\right|=|\lambda I-\underline{Q}|=p_{Q}(\lambda)
    $$

