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ABSTRACT

The objective of this dissertation is to study the 
dynamics of systems consisting of interconnections of an 
arbitrary number of complete-reset pulse frequency modu
lators (CRPFM's) and linear dynamical subsystems (in 
general, time-varying, lumped and/or distributed).
CRPFM, which represents a generalization of several types 
of pulse frequency modulators (PFM's), consists of two 
basic components; a multi-input dynamic element, called 
the timing-filter (TF) and a threshold device (TD). 
Whenever the output of the TF reaches a given threshold 
value the TD generates an impulse and, at the same time, 
resets all the states of the TF to zero. This disserta
tion is devoted to two basic aspects of system motion, 
namely stability of the equilibrium and periodic opera
tion.

Stability is defined in terms of finiteness of the 
number of pulses emitted by all modulators. This defi
nition of "finite-pulse stability" (FPS) is related to 

IIL output stability and implies finite energy expen
ded. An improved Lyapunov-like approach is presented 
which, however, is difficult to employ for higher order 
systems. A direct criterion for FPS is given which is 
not only easy to apply, but also provides bounds on the
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number of pulses emitted by each modulator. A comparison 
is presented between these criteria and previous stability 
conditions available for special classes of CRPFM systems 
(e.g., systems with integral PFM or relaxation PFM). In 
representative examples, the direct FPS criterion yields 
comparable (or better) stability regions (of parameters).

The second part is devoted to the study of the basic 
aspects of "periodic" behavior. For multi-modulator PFM 
systems, the usual concept of periodicity (or almost 
periodicty) is not meaningful. Therefore, a weaker c o n 
cept, that of "ee -near periodicity" is introduced. This 
notion involves an observation interval (which is usually 
finite) and a measure of "desired accuracy" or "observa
tion accuracy". Certain necessary and sufficient condi
tions for the existence of ee~near periodic motion are 
presented. For an IPFM system with a time-invariant 
linear part, a matrix relationship is given, which rela
tes the "period" and the net number of pulses emitted by 
each modulator over that period to the system parameters.

Periodic behavior is further investigated on a time- 
discretized approximation of the CRPFM system which redu
ces to a system containing ideal delays, summing junc
tions and threshold elements. However, it is still diffi
cult to obtain analytical results from the resulting
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(nonlinear) difference equations (except for very short 
periods of oscillation); nevertheless, these equations 
can be "linearized" by introduction of extra variables, 
using Fukunaga's method for nonlinear switching nets. 
Therefore, classical linear techniques (based on characte
ristic polynomials and eigenvectors) can be used to 
obtain information about periodic motion. This approach 
also applies to McCulloch Pitts type of neural nets and 
extends existing results on periodic behavior in such 
networks.
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CHAPTER 1 
INTRODUCTION

1.1 General Background. Motivation and Objectives
Modulation is the process of coding information into 

a carrier wave by varying some of its characteristics in 
accordance with a modulation law. In control systems, 
modulation is used for a variety of reasons; e.g., to 
adapt to a given mode of controlling power, to utilize 
given communication channels for some of the signals, to 
improve noise immunity and accuracy, etc. The carrier 
wave can be continuous or it can consist of a sequence 
of pulses. The first case is called continuous wave modu
lation (CWM) and the second case is called pulse modula
tion (PM).

Most common forms of CWM are amplitude modulation 
(AM) and frequency modulation (FM) with a sinusoidal 
carrier wave. Examples of CWM used in control systems 
are AC servo systems employing 50 Hz, 60 Hz or 400 Hz 
sinusoidal carrier AM (63).

With the advance in digital technology, during the 
early 1950's, pulse modulation has become a subject of 
increasing interest. A pulse modulator is characterized 
by the instances of pulse-emission, all in relation to 
the dynamics of the input signal; this characterization
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constitutes the modulation law. Depending on the modula
tion law, PM can be divided into various groups: pulse-
amplitude modulation (PAM), pulse-width modulation (PWM), 
pulse-position modulation (PPM) and pulse-frequency modu
lation (PFM) (56, 115). In certain applications it is 
advantegous to use combinations of the above basic types 
of PM, e.g. in pulse-code modulation (PCM) (21) and pulse- 
width-pulse-frequency modulation (PWPFM) (31, 32, 42, 66, 
76, 78 , 121 ).

Among the different pulse modulation schemes, PFM 
is of particular interest because it constitutes the 
means of information transmission used in the nervous sys
tem (6, 4 6 , 64 , 84 )• A pulse frequency modulator is a 
device that codes information of its input signal into 
time-intervals and polarities of identical pulses emitted 
at its output. There is an infinite number of ways by 
which this coding can be achieved and, not surprisingly, 
during the relative short time of research activity in 
this field, many different types of PF modulators have 
been introduced; they will be reviewed in the next sec
tion.

Basically, PFM constitutes a form of relaxation 
oscillation; most PF modulators can be realized easily 
by means of simple RC filters and a few relays or solid 
state threshold devices. There are certain control appli-
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cations which favor PFM; for example, control systems emp
loying stepper motors. Among the features of a PFM cont
rol system is the fact that it may be designed such that 
pulses are emitted when needed; this is especially impor
tant in applications where control power must be conserved 
such as in certain spacecraft control systems employing 
controlling jets. Another feature of PFM is that it has 
a good degree of noise-immunity (6, 12, 60, 61, 89) as 
compared to PAM or PWM.

Applications of PFM in control systems have been 
reported in the following fields.

1 . telemetry (108-110),
2 . adaptive flight control systems (96),
3 . satellite attitude control systems (29, 38),
4 . converting continuous signals into proportional 

pulse frequency for digital processing (37,97),and
5 . modelling of neural systems (6,46,85,86,102, 106).

The fact mentioned earlier that information transmis
sion in the nervous system takes place in terms of PFM is 
a major motivation of research on PFM including the work of 
this dissertation. There are two equally-significant reasons 
for this motivation. 1) 'It is hoped that new understanding 
could be provided to neuro-physiological system behavior, 
and 2) since it is believed that biological control sys-
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terns have evolved toward optimal states (6), it is antici
pated that PFM control systems could provide certain tech
nological advantages, e.g., noise immunity, adaptability, 
efficiency, etc. Certain aspects of these expectations 
have already been demonstrated by previous investigators 
(see Section 1.4).

The bulk of the previous research on PFM is devoted 
to the study of single-loop PFM feedback systems ; rela
tively little work has been done on multi-loop, multi- 
modulator PFM systems. However, in order to fully examine 
the afore-mentioned expectations, a through understanding 
of systems containing several PF modulators is essential. 
Therefore, the objective of this dissertation is to study 
the dynamics of systems consisting of interconnections of 
an arbitrary number of PF modulators and dynamical subsystems.

The scope of this dissertation will be limited to 
systems containing complete-reset pulse frequency modula
tors (CRPFM) and linear dynamical subsystems. CRPFM is a 
generalization of many other known forms of PF modulators 
and consists of two distinct parts; a multi-input, single
output dynamic element, called the timing filter (TF) which 
defines the pulse emission instants, and a threshold device 
(TD) which generates an impulse whenever the output of the 
TF reaches a given threshold value. A formulation of the 
CRPFM and the system considered will be given in Sections
1.2.3 and 1.5, respectively.
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One of the basic characteristics of a system is its 
stability. Chapter 2 will be devoted to this important 
topic; a Lyapunov-like method and a direct method for 
stability analysis will be presented. Comparison will 
be made between these methods, including the previously 
existing methods.

Knowledge of the "periodic" behavior of CRPFM systems 
can shed light into the manner information is manipulated 
in the nervous system. For example, revarbatory activity 
in neural circuits has been suggested as a possible mecha
nism for short-term memory (see Section 3.1). Thus, a 
chapter (Chapter 3) is devoted to the basic aspects of 
"periodic?1 motion in CRPFM systems. It turns out that for 
multi-modulator PFM systems, the usual concept of perio
dicity does not have much meaning. Therefore, a weaker 
concept of periodicity, that of "ee-nearly periodicity", 
will be introduced (Section 3-1) and some basic rules for 
"ee-nearly periodic behavior" will be presented.

In order to obtain further insight, this problem 
will also be studied, in Chapter 4, for a more special 
system consisting of CRPFM1s and ideal delay elements.
This special system posseses all the essential properties 
of neural systems (see Sections 1.3 and 4.2).
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1.2 Pulse Frequency Modulation. Types. Definitions and
Claasification

1.2.1 Introductory remarks. Consider the pulse sequence 
shown in Fig. 1.1. Let t^, ••• denote the instants
of pulse-occurences; the instantaneous frequency of the 
pulse sequence (64) is defined by

<k’v b  =h t6[V Wk k-1 k

From this definition, it follows that the instanta
neous pulse frequency is a staircase function as shown in 
Fig. 1.1c.

In "memoriless" or static pulse frequency modulators 
(SPFM), the instantenous pulse frequency is a single
valued function of the input signal magnitude at time 
tk i or t^; in case of the latter:

fk = £ f[e(tk )] (1.2)
k” k-1

Here, unidirectional pulses are considered. Cer
tain applications require positive pulses as well as ne
gative pulses; in which case, the value given by eq. (1.1) 
does not correspond to the usual concept of frequency. 
Because of this, the quantity defined by eq. (1.1) is 
sometimes called (instantaneous) pulse-repetition rate. 
Also, the term pulse-repetition rate modulation is some
times used as a more precise substitute for PFM.
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Eq. (1.2) also means that, after the emission of the 
(k-1)th pulse, both (t-^  j) and 1/f [e(t)] are conti
nuously compared with each other and as soon as both 
become equal, the next pulse is emitted at t = t^.

u(t)

u(t)PFM
f(t)

(c)

Figure 1.1 Pulse frequency modulator, output pulse 
sequence and the definition of instanta
neous pulse frequency.

In one of the early static pulse frequency modula
tors the function 1/f(e) was given simply by K-e(t), with 
K being a proportionality constant, Ross, 1949,(110). In 
that case, the instantaneous pulse frequency is inversely 
proportional to the input-signal level. Of greater prac-
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tical significance; however, are situations where an ins
tantaneous pulse frequency is required that is propor
tional to the input signal level. This can be accomp
lished, if the function f(e) is in the form K*e. A sta
tic PF modulator of this type will be called a linear 
pulse frequency modulator. (LPFM).

There exist a number of possibilities for realizing 
static pulse-frequeny modulators. One possibility is 
shown in Fig. 1.2. An integrator is used to generate a

Threshold
Devicef[e(t)J

u( t)
TDFunction generator

Constant
input

ResetIntegrator

Figure 1.2 A scheme for constructing static pulse fre
quency modulators. The threshold device (TD) 
emits a pulse whenever its input signal chan
ges from negative to positive and, at the 
same time, resets the integrator.

signal proportional to -j) and a (diode) function
generator is used to generate a signal proportional to 
l/f[e(t)] . The difference between these two signals is 
fed to a threshod device (TD) which emits a pulse as soon
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as its input becomes positive and, at the same time, 
resets the output of the integrator to zero.

Now, assume that the input signal e(t) has a very- 
slow variation with respect to the pulse repetition rate. 
In that case, the modulator schematic of Fig. 1.2 can be 
approximated by that of Fig. 1.3, where the integrator

Reset

f(e)e
TD

Function Integrator Threshold 
Generator Device

Figure 1.3 Approximate realization of static PF modula
tors for slowly-varying inputs.

is fed the signal f[e(t)l , instead of the constant input 
1, and the threshod device (TD) is adjusted such that it 
emits a pulse whenever its input sinnal reaches a threshold 
value of 1. For the LPFM, since f(e) = K*e, the function 
generator is not needed and the final circuit becomes 
very simple, as shown in Fig. 1.4.

The circuit of Fig. 1 .3 approximates the static PFM 
of Fig. 1.2 for very slow variations of e(t). In general,
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Reset

u( t)e( t)
TD

4-layer diode

Differentiator

u( t)Operational R 
Amplifier

e

(b)
Figure 1.4 Integral pulse frequency modulator,

(a) block diagram, (b) practical realization 
(single-signed).

however, it represents a different type of modulator in 
its own right. The same is true for the modulator circuit 
of Fig. 1.4 in reference to LPFM.

The device shown in Fig. 1.4 integrates its input 
signal and emits a pulse as soon as it reaches a threshold 
value, resetting the integrator output to zero at the
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2same time . This modulator was first defined by Meyer 
(93) and Li (89) and is called integral pulse frequency 
modulator (IPFM). For slowly-varying input signals, IPFM 
produces a pulse train having an instantaneous frequency 
directly proportional to its input (similar to LPFM)^, 
furthermore, its ability to smooth-out (through the integ
ration process) any noise superimposed on the input sig^ 
nal, provides it an additional advantage.

A significant difference between the static PF modu
lators explained previously and IPFM is that, in the 
latter, the emission of pulses are decided by not only 
observing the instantaneous value of the input signal, 
but also its previous values. Therefore, a pulse frequency 
modulator of this type will be called a dynamic pulse 
frequency modulator (DPFM).

2In this introductory sub-section, only modulators 
that emit single-polarity pulses are considered (single- 
signed PFM). Hence,; it is assumed that the signals 
f [e(t)] and z(t) are nonnegative. When negative pulses 
are allowed as well as positive pulses, violation of this 
restriction will not cause in any loss of information if 
pulse emission instant? are determined from |f[e(t)]l or 
|z(t)| and the sign info .-’Station is reflected on the out
put pulses. This second case is called double-signed P F M . 
For communication applications and for control applications 
involving stepper motors and/or digital processors, usually 
single-signed modulators are used. For most control appli
cations, however, double-signed PFM is preferred.3This fact may be used in designing voltage-to- 
frequency converters. The circuit of Fig. 1.4b is a fun- 
demental form for many voltage-to-frequency converters.
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Another well known DPFM is the relaxation type pulse 
frequency modulator (RPFM) (90, 93), which is a degenera
tion of the IPF modulator with a leaky integrator, as 
shown in Fig. 1.5.

Reset

e(t)
u(t)TD

(a)

-AAA-

e(t) C.,T5R. u( t)

4-layer diode

(b)

Figure 1.5 Relaxation pulse frequency modulator (RPFM),
(a) hlock diagram, (b) another practical 
realization.

A more general DPFM scheme is to feed the input sig
nal into a dynamical system with a single output (which 
will be called a timing filter.(TF) and emit a pulse as 
soon as the TF-output exceeds a threshold value, S. 
Immediately following the pulse emission, some or all of 
the internal states of the TF are reset to fixed values .



13

In the first case, the DPFM will be called a partial- 
reset PFM (PRPFM) and in the second case a complete-reset 
PFM (CRPFM) (51, 52).

PFM is basically an asynchronous form of pulse modu
lation since the time-interval between successive pulses 
is used for information coding purposes. This may be an 
advantage in some applications since it eliminates the 
need for costly syncronization equipment; however, in 
other applications, e.g., in application where time mul
tiplexing is an economic necessity, or in certain applica
tions involving digital processing, it may be necessary 
to assign a clock signal to the output pulses. This form 
of modulation is called synchronous PM. Pulse amplitude 
modulation (PAM), pulse width modulation (PWM) and pulse 
code modulation (PCM) are examples of synchronous PM. 
However, it is also possible to introduce a clock signal 
to PFM; in that case the information coding may be perfor
med by counting the number of pulses within each given 
period (of the clock signal). Such a form of pulse modu
lation (116, 128) may be called synchronous PFM or discrete 
PFM.

In this dissertation discussions will be centered 
mainly on the complete-reset PFM (CRPFM); this is done 
for the following reasons:



(a) CRPFM represents a generalization of PF modula
tors which have prooven to be useful for many 
control applications, namely, the IPFM and the 
R P F M .

(b) It resembles the process of impulse generation 
in the nervous system.

(c) It can easily be realized using a simple filter 
(RC, RLC, of active) plus a few discrete-type 
elements.

CRPFM will be discussed in more detail in sub-section
1.2.3.

1.2.2 The Modulator output relation. The output 
signal of any pulse frequency modulator, u(t), is defined 
in terms of a sequence of impulses of equal strength, M 
and of impulse polarity b^ = + 1 , emitted at time-instan- 
ces t^ (k = 1,2,...), i.e.,

where S(t) is the unit impulse. Eq. (1.3) shall be called 
the modulator-output relation.

N
0<t<t

The pulse emission times, t^ and pulse-polarities, 
b^ follow some given functional relations in tenns of the 
input signal, e(t); i.e., both t^ and b^ are determined



15

by a modulator input relation for a given PF modulator 
type.

Note that the modulator-output is defined in terms 
of impulses rather than some defined waveform. This is 
done for the s.ake of generality. Any physical pulse-wave- 
form, say f(t), can be obtained by feeding the modulator 
output u(t) through a linear filter of transfer function 
F(s) =£{f(t)] . Since this linear filter can be combi-

' I

ned with the subsystem following the modulator, the modu
lator output as given in (1.3) represents a convenient 
general form.

1.2.~5. Complete - reset pulse frequency modulation 
(CRPFM) . Before proceeding to the definition of CRPFM, 
two well known examples of CRPFM will be discussed, 
namely, integral pulse frequency modulation (IPFM) and 
relaxation pulse frequency modulation (RPFM). These two 
modulators have already been discussed in sub-section
1.2.1 (see Figs. 1.4 and 1.5)^.

First, consider integral pulse frequency modulation 
(IPFM) (64, 90, 94), which is defined such that the input 
signal e(t) is fed to an integrator whose output, z(t),

^ F ig s .  1 .4  and 1 .5  re p re s e n t s in g le - s ig n e d  IPFM and 
RPFM, r e s p e c t iv e ly  ( o u tp u t-p u ls e s  have one p o la r i t y  o n ly ) .  
Here i n  s u b -s e c t io n  1 . 2 . 3 ,  th e  g e n e ra l case o f  d o u b le 
s ig n e d  PFM w i l l  be p re s e n te d .
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is fed to a threshold device (TD), which, whenever |z(t)l 
reaches a threshold value, S, resets the integrator-out- 
put to zero and emits an impulse of strength M, whose 
polarity is equal to the sign of z(t) just before the 
impulse-emission. Thus, the functional relations defining 
t^ and b^ are given by

z(t) = J e (Z) dT, (1*4)
V i

tfc = min { 11 and | z( t )I > S } (1.5a)
and

bk = sgn[z(t“)] . (1.5b)5

IPFM is a simple form of PFM, whose definition was 
inspired by pulse modulation in the nervous system 
(Meyer, 1961), though, of course, the relation between 
IPFM and PFM in the nervous system is very approximate^.
A process somewhat closer related to PFM in the nervous 
system, yet still representing a rather gross simplifica
tion of the latter, is given in terms of relaxation pulse

n
frequency modulation (RPFM) (93), defined by

5Note from (1.4) that z(t£) = 0 for all k = 1,2,...
^It is possible, however, to represent some other 

types of PFM in terms of IPFM and dynamic elements (93).7The name relaxation pulse frequency modulation comes 
from its relation to relaxation oscillation (93). A gene
ralization of RPFM where the first order relation (1.6)
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z(t) = J  e Tr e('T) dz, tk-1<t<tk (1.6)
tk-1

Eqs. (1.3) and (1.5) remain the same for RPFM. Note that 
RPFM represents a generalization of IPFM, to which it redu
ces when TR-*-oo .

Complete-reset pulse frequency modulation (CRPFM) 
represents a generalization of the above to the extend 
that the dynamic element of input e(t) and response z(t) 
can be of any order (not necessarily of order one as in 
(1.4) or (1.6)). CRPFM will be described next.

Fig. 1.6 shows the functional block diagram of the 
CRPFM. It consists of a resettable timing-filter (TF) 
and a threshold device (TD). The TD is activated by the 
output signal of the TF, z(t), in such a way that an 
impulse is emitted whenever |z(t)l exceeds a threshold- 
level, S; the polarity of that impulse is equal to the 
sign of z(t). Furthermore, at the instant of impulse- 
emission all state variables of the timing filter are 
reset to zero®.

between e(t) and z(t) is not linear as in (1.6) but non
linear, has been defined by Pavlidis and Jury as 2PFM 
(101). In the literature, RPFM has also been called 
"neural PFM" (NPFM) (101).Q

CRPFM incorporates the features of the "nth order 
neural trigger" of Pavlidis (102), the "functional pulse
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IPFM and RPFM, discussed above, are special cases 
of CRPFM, where the timing-filter (TF) is of first order. 
In fact, the modulator output relation (1.3) and the the 
threshold relations (1.5) are valid for (general) CRPFM.

Eqs. (1.4) and (1.6) are the timing-filter equations 
for IPFM and RPFM, respectively. As illustrated in Fig. 
1.6, the timing filter equation for general CRPFM is 
given by

t
z(t) = Jf[e(r), t,r] az, tk-1<t<tk (1 .7 )

V - l

Resetr
e(t) /  f[e(t), t,r] ex

z(t) TD u( t)

\ s, M

Timing Filter (TF) Threshold Device (TD)

Figure 1.6 Block diagram representation of the complete 
reset pulse frequency modulator (CRPFM).

frequency modulator" of Jury and Blanchard (65) » the "type 
II pulse modulator" of Skoog and Blankenship (121) and 
the "pulse frequency modulator of the second kind with 
complete clearing of the time-marking filter" of Kuntsevich 
and Chekhovoi (79).
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where e(t) represents the modulator-input signal. The 
function f[ e(t), t,£ ] is usually of the form

f[e(T),t,r] = g0 (t,*) e ( Z ) (1.8)

where the kernel g^t,^) is the impulse response of a 
(usually RC lowpass) single-input, single-output linear 
dynamic system^. For IPFM (see, eq. (1.4)), it is
gn (t,t) = 1 ( t > r ) and for RPFM (see, eq. (1.6)), it is

"t— z
gQ (t,t) = e“ Tr  (t> t ).

In addition to the generalization of the TF 
from that for IPFM (eq. (1.4)) and RPFM (eq. (1.6)) to 
that for CRPFM (eq. (1.7)), the threshold relation will 
be generalized from that given by (1.5) (for both IPFM

Let the timing filter output z(t) be described in 
terms of the state vector x(t) of the TF and input signal 
e(t) as 10 t

z(t) = cT (t) [gf(t,tk ) s(t^) + J ^(tj'C) b(r) e(r) dr]
tk

V ^ k - H
where is the state transition matrix, b(t) is a
column vector and cT (t) is a row vector. Since during 
impulse emission, at time t, the threshold device resets 
the state to zero, i.e., x(tj£) = 0., the first term of the 
above equation vanishes. Comparison with eqs. (1.7) and 
(1.8) gives, therefore

g0 (t,^) = cT (t) £(t,r) b(r).
^ I n  this dissertation, underlined capital letters, 

underlined small-case letters, and the superscript, T, 
will be used to denote, matrices, column vectors and the 
transpose of a matrix, respectively.
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and RPFM) to include a refractory period. Tq , which is a 
time interval during which the modulator cannot regenerate 
another impulse. A refractory period exists in physical 
PFM such as that in the nervous system (see Section 1.3). 
With this inclusion the threshold relation for CRPFM 
becomes:

, . for (double-
t = min t t>t 1 +T_ and lz(t)l>S} signed) (1.9)
* u CRPFM

The pulse-intervals, as well as the pulse-polarities, 
are used as carriers of information. There, exists,
however, physical PFM where only pulses with one polarity 
are emitted (e.g., in the nervous system); such case is 
referred to as single-signed PFM, in order to distinguish 
it from the more general case of double-signed PFM (above). 
For the sake of brevity, the prefix "double-signed" may 
not be used, i.e., the term "CRPFM" is defined to imply 
"double-signed CRPFM". However, for single-signed PFM 
the prefix will be necessary. For single-signed CRPFM, 
the threshold relation is given by

H . for single- 
t>t, 1 +Tn and z(t)>S] signed (1.10)

u  CRPFM

A variation of the CRPFM is the partial-reset PFM 
(PRPFM), in which only some of the internal states of the 
TF are reset. A particular case of such a scheme is the
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output-reset PFM (ORPFM), where only the output of the TF 
is reset. Note that IPFM and RPFM also belong to this 
category, since they are of first-order.

If the TF of an ORPFM is linear and of a certain 
structure, it may be expressable in terms of another 
ORPFM and a linear subsystem. This would be useful in 
some analytic studies of dynamic systems containing 
ORPFM's. Examples of this point will be given in S e c 
tions 2.3 and 2.4.

1.2.4 Classification of PFM. The output relation 
for any pulse frequency modulator has been presented in 
Section 1.2.2 as eq. (1.3)s

u ( t )  = »  \  o < t< tB+) ( 1 . 3 )
k= 1

In this sub-section, a classification of PFM will be pre
sented in terms of the dependency of the pulse-emission 
times, t^ and the pule-polarities, = +1 , in terms of 
the input signal e(t) over - o o < t < t k . In general, this 
relation may be expressed as

tk = S rt[t1, t2 , ..., tk _1 ;e(t) ,t, -oo<t<tk] (1.11a)
and

b k  =  ^ " b ^  1 * ^2 * * ’ * * 1 ’ ^ ^ ( 1 . 1 1 b )
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where and <5r are functional operators ( is a posi- X D X1 1tive operator ). Depending on the type of these opera
tors PPM may be subdivided into various classes:

(A) Pinite-Memory PPM of Order N (FMPFM):
In this case the kth pulse-instant, t^ is a single

valued function of both the previous N pulse-instants,

^k-1 * ^k-2’ ***'^k-N-1 and values of 'ttie i-nPut at 
these instants, i.e.,

and

and

tk ft^tk - r tk-2’ * *ftk-N-1 •**»e ^tk-N^ 0 * 1 2a)
I

bk = ^ ^ k - i  ,tk-2’* * ’ tk-N-1 ̂ ^ k ^  ’ * * * ̂ ^ k - N ^  (1 - 12b»)

(A . 1) Special case: Static PFM (SPFM) (N = 0):

tk = V i  + ft[e(tk )] (1.13a)12

bk = W  e(tk )]. (1*13b)

Examples of SPFM:

(A.1a) Ross' SPFM (Ross, 1949)
t, = t v .  + K-e(tk ) (defined for (1 .44a)

nonnegative 
and continu- 

bfc = 1 ous inputs) d  .U b )

11 
12

as defined

See Willems (129), p.26.
1 2Note that f+[e(tk)] = 1/f[e( t^)], where f[e(tk)] is 
fined by (1.2).
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(A.1b) Linear PFM (LPFM)

■tv = ^  1 + ---- “---- (defined (1.15a)
* ic~1 K e(t. ) for

K positive 
bk = 1 inputs) (1.15b)

(A.2) Special case: Finite-memory PFM (FMPFM 
of order 1.

Examples of FMPFM of order 1:
(A.2a) PFM of the first type (Kuntsevich and 

Chekhovoi, 1967, (75))

tfc = tk_ 1 + f[e(tk_.|)] (1.16a)

1 for e (‘tk ) > S 
bk = { 0 for le t t J K S ,  S>0 (1.16b)

-̂1 for e(tk ) >—S

(A.2b) Amplitude dependent PFM (Clark and 
Noges, 1966, (27))

tk is given by eq. (1.16a) with

f TH - I (V T) for |e|<s
f(e) = { (1.17a)

I T for lei >S

where T and are positive constants and,

bfc = sgn e(tfc) (1.17b)
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1 ̂(A.2c) 5-modulation ^

tk “ V - l  + T

bfc = sgn e(tk ) - e(tk-1)

(1.18a) 

(1,18b)

Note that here the pulse-output is periodic; the 
modulation affects only the pulse-polarities.

(B) Partial-Reset PPM (PRPPM):

tk = min{t| t>tk_1+ T q  and |z(t)Us} (1.19a)

bk = sgn z(tk ) (1.19b)

where, for a PRPFM with a linear TF, z(t) = c(t)^ x(t), 
where the state x of the TF consists of two component-
vectors, x ^ , and such that x^ is reset to a vector-
value a during pulse emission, i.e.,

x(t) =
(*)" ~  3

Sm

-X2(tkl
b

£<T) e(T) dt (1.19o)

k-1

The other states of the TF represented by x^, are not 
reset.

  ------
There are many different forms of 6-modulation, _ 

which is becoming popular in communication; eqs. (1.18a) 
and (1.18b) describe one of the early forms (see (1) for 
more detail).
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(B.1) Complete-reset PPM (CRPFM):
CRPFM was introduced in subsection 1.2.3. It may be

considered as a special case of partial-reset PFM where
x.j =x» * 2= 0 and St = 0. Therefore, the relations for t^
and b^ are given by (1.19a) and (1.19b), respectively.
The expression for z(t) becomes

t
z(t) = J c(t)T $(t,z) b(z) e ( t ) dZ, (1.20a)

^ - 1
which, more generally, can be written as

t
z(t) = J  f[e(-c), t,r] dt. (1 .7 )

^ - 1
Examples of CRPFM:

(B.1a) Integral PFM (IPFM) (Jones, Meyer 
and Li, 1961, (64)) 

t
z(t) = J  e(r) dr (1 .4)

^ - 1

(B.1b) Modified IPFM (Bombi and Ciscato,
1967, (11))1 4

In this case, eq. (1.19a), defining the impulse- 
instants is modified to

tfc = min|t| and z(t) = f( t-tk_1)) (1.21)
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i.e., the threshold level is dependent on -j) • The
equations for the pulse polarities and the output of 
the TF, z(t) are the same as those for IPFM.

(B.1c) Relaxation PFM (RPFM) (Meyer, 1961, 
(93))

t
z(t) = J e(r) at, (1.6)

tk-1
where a is a constant.

(B.1d) Sigma PFM (EPFM)^ (Pavlidis and Jury,
1965, (101)) 

t
z(t) = J  (e(r) - g[z(r)3 dz) (1.22)

^ - 1

(B.1e) Discrete R P F M ^  (Shortle and Alexandro
1966, (116))

This is a discrete appoximation of RPFM (See Fig. 
1.7a); output pulses of the modulator are allowed to

^Based on experimental evidence, Bombi and Ciscato 
claim that a feedback system employing the modified IPFM 
can have a better transient response without sacrificing 
noise immunity (11).

^Pavlidis later used the same name (i.e., SPFM) for 
any process in which a dynamic system emits an impulse 
whenever any one of its variable (from a specified group) 
exceeds a threshold value (in general, time-varying) asso
ciated with that variable (103).
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e(t)

e(t)

Figure

-S
M ‘

z( t)
z = az+e S

— -M

u(t)

(a)

z = a z  +e X u('t0

(b)

1.7 Discrete pulse frequency modulators:
(a) Discrete RPFM (also called Discrete 

SPFM) of Shortle and Alexandro (116)
(b) Discrete RPFM employed by Monopoli 

and Wylie (128).
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occur only at discrete intervals of time.

tfc = tk_.j + T (T is a fixed sampling interval) (1.23a)

Shortle and Alexandro call this modulation discrete 
2PFM. Note that the discrete RPFM is also a nonlinear pulse 
amplitude modulator. A slightly different version of the 
discrete RPFM has been studied by Wylie (128), in which 
the dead zone characteristic is modified and a saturation 
type nonlinearity is connected in series with the modula
tor (see Fig. 1.7b).

1.3 The Neuron and Relation of CRPFM to Neural Modeling

In Section 1.1 it was mentioned that information 
transmission in the nervous system may be expressed in 
terms of PFM. For the benefit of uninitiated reader, it 
is appropriate to digress slightly and provide some brief 
explanation about the neuron and its properties.

ik-i+T

(1.23b)

M for z(t~) >S k
bk = < 0 for |z(t“)| <S

. -M for z(i;̂ )
( 1 .23c)

The fundamental unit of the nervous system is the
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neuron (nerve cell). It can be shown that the CRPFM 
exhibits many of its properties. The objective in this 
section is to discuss this point, without attempting to 
give details of a CRPFM model for the neuron.

The neuron, like the other cells has a body with
cytoplasm, contains a nucleus and is surrounded by a

1 fipolarizable membrane . Its structure shows a remarkable 
adaptation to its special task, generally posessing seve
ral relatively short projections called dendrites (see
Fig. 1.8) that carry impulses to the cell body and a lon-

1 7ger projection called an axon that carries impulses to

iDendrites

Axon

\ Cell body (soma)
Fiber

Presynaptic terminals Endings

Fig. 1.8 Diagram of a neuron.

1 6For more information on the neuron and the nervous 
system, the reader is referred to (115), (50) or standard 
textbooks on neurophysiology.
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other neurons or neurally activated structures, e.g., 
muscles and glands. Hundreds of nerve fibrils from other 
neurons terminate on presynaptic terminals which lie on 
the dendrites and the cell body (or, soma) at the 
‘'synapse".

During the "resting state" the permeability of the 
cell membrane to sodium ions is low, and the permeability 
to potassium ions is high; there is a greater concentra
tion of sodium ions in the extracellular fluid and a 
greater concentration of potassium ions in the intracel
lular fluid.. The equilibrium is maintained by a molecu
lar "ionic pump". The ionic charge distribution is such 
that the inside of the cell is maintained at a potential 
of -70mV with respect to the outside.

If there is a suitable external stimulation (elect
rical, mechanical or chemical), the permeability of the 
cell membrane to sodium ions temporarily increases. As 
a result sodium ions rush inside the cell, increasing 
the somatic potential (membrane potential) up to 50 mV 
with respect to the extracellular fluid. After the per

17An axon is also referred to as a nerve fiber. It 
can be very long (in man about one meter) and carries im
pulses to the next neuron. The velocity of conduction 
increases with fiber diameter and varies from 0.5 m/sec 
to 120 m/sec.
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turbation, the permeability of the cell membrane soon 
returns to its original state as the extra sodium ions 
are pumped out. This whole activity lasts about 15 msecs 
and.', is known as an action potential. Once it is started 
at any point on the mebrane of a normal fiber, the action 
potential will travel as a depolarizing wave over the 
entire fiber. The critical potential for this firing 
makes an "all or nothing" law for neural activity.

Except for sensory neurons, an action potential is 
usually triggered by stimulation of the presynaptic ter
minals. A neural impulse arriving at a presynaptic termi
nal causes automatic "emptying" of some chemical (excita
tory transmitter substance) which locally increases the 
permeability of the cell membrane to sodium ions and 
sodium ions rush inside the cell, thereby effecting a 
temporary increase in the somatic potential. This produ
ces the excitatory post synaptic potential. EPSP. If the 
resulting somatic potential is above a certain level,
(the threshold for excitation of the neuron) which is 
about 10 mV above the resting potential) an action poten
tial is initiated.

The EPSP caused by stimulation of a single synaptic 
terminal is not sufficient to trigger an action potential, 
unless the stimulation is continuous. However, the effect
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of stimulation of several excitatory presynaptic termi
nals on the postsynaptic potential is additive and when 
a sufficient number of excitatory synaptic terminals are 
excited simultaneously, an action potential is activated. 
This property is called spatial mimmat.i o n .

The post synaptic potential can also be increased 
above the threshold value necessary for starting an action 
potential if a single presynaptic terminal is made to 
discharge successively. This phenomenon is called tempo
ral summation.

If the EPSP is below the threshold potential, its 
effect is slowly neutralized. Meanwhile, the excitation 
of the neuron becomes easier to effect; a neural impulse 
can be triggered by the addition of smaller number of 
excitatory discharges. This property is known as facili
tation.

Following an impulse emission, the neuron returns to 
its "resting state" in about 50-200 msecs. To initiate 
an action potential before this time, the post synaptic 
potential must be increased to a level much greater than 
the normal threshold value, i.e., the neuron is in the 
relative refractory state. Immediately following a new 
impulse emission for about 0.5 msecs a new impulse cannot 
be generated. This period is known as the absolute ref-
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ractory period of the neuron.

There are also some synaptic terminals that release 
inhibitory transmitters which probably cause an increase 
in the permeability of the cellular membrane to potassium 
(not to sodium) ions. As a result, potassium ions rush 
outside of the cell and the postsynaptic potential dec
reases. Thus, the effect of the inhibitory presynaptic 
terminals is to lower the somatic potential which in turn 
means activation of an action potential becomes more 
difficult.

Although the details of the molecular events taking 
place in the generation of an action potential in a neuron 
are still not well understood, specific models based on 
experimental studies have been developed which account 
for many observed phenomena (namely, changes in sodium 
and potassium conductances, all or nothing law, spatial 
and temporal summation, refractoriness, facilitation,

1 Oetc.) Hodgkin and Huxley (59) • These models are desc
ribed by highly nonlinear differential equations and 
their use for the study of the behaivor of networks of

i Q
An excellent survey of neural models is presented 

in reference (55) which includes most of the important 
references on the subject up to 1966. Later references 
can be found in (125).
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interconnected neurons appears to be too complicated to 
be feasible, except for simple networks containing one or 
two neurons. Therefore, in order to study effectively 
the behavior of neural networks containing several neurons 
one has to make resonable simplifying assumptions. An 
alternative is the use of simulation studies; this has 
been done in the past by many investigators but provides 
only limited insight (55).

The most important characteristic of a neuron is 
its all-or-nothing response. This has been the basis 
of "formal” (or binary) neurons first introduced by 
McCulloch and Pitts (92); specifically, it was assumed 
that (a) the spatial summation is linear, (b) excita
tion can be denoted by a positive weight and inhibition 
by a negative weight, (c) the refractory period is cons
tant and (d) the threshold is time invariant. A neural 
network consisting of "formal" neurons then becomes essen
tially a network consisting of interconnections of unit 
delays and binary elements. Such systems have been 
studied in automata theory (see Section 4.1). In the 
model of McCulloch and Pitts, temporal summation, relative 
refractoriness, facilitation, synaptic and axonal delays 
have been neglected. A similar formulation has also been 
used by Caianiello and associates (2, 18, 19, 20, 33).
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A more complete neural model can be given, in terms 
of the CRPFM described in the previous section. The 
CRPFM exhibits many of the properties of the neuron.
Note that the CRPFM also has the properties of threshold 
to excitation and the all-or-nothing response. Spatial 
summation can easily be aiccounted for by having a multi
input TF. The output of the TF corresponds to the soma
tic potential; the TF must be chosen such that "excita
tory" stimulation increases the "somatic potential" while 
"inhibitory" stimulation decreases it. Facilitation and 
temporal summation is inherent in CRPFM since the effect 
of any input will continue for some time due to dynamics 
of the TF. To account for relative refractoriness, a 
negative feedback to the input of the TF can be used; 
this was suggested by Pavlidis (102) for his RPFM model
for a neuron. By selecting a suitable TF it is also

1 9possible to account for accomodation .

Some investigators believe that stochastic activity 
plays an important role in neural behavior and resort to 
stochastic models (4, 46, 125). This is mainly because 
in experimental studies neural activity appears to be

—

^This means that the neuron xs more difficult to 
excite by slowly varying signals than by relatively fast 
signals (50), p. 62.
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20very irregular . However, a PFM system can also exhibit 
similar behavior without noise present or random changes 
in its parameters (102). Therefore, a deterministic neu
ral model which employ a CRPFM is capable of simulating 
also the spontaneous activity of a neural circuit.

1 .4 Review of Previous Investigation on PFM

After the Second World War the subject of nonlinear 
control has become a very active research area and many 
new techniques for the analysis of nonlinear systems have 
been developed. Especially, stability of single-loop 
nonlinear feedback systems has been studied extensively. 
PFM systems consisting of a single modulator and a linear 
plant in a single-loop feedback configuration benefited 
from these developments; after its introduction into 
control systems by Meyer and Li (90, 93), most of the new 
techniques were applied to these systems.

Due to nonlinearity and memory characteristics, P F M  
control systems are difficult to study analytically. Howe
ver, the total number of papers on PFM, presently exceeding 
ninety gives an indication of the activity in this

20An explanation for this spontaneous neural acti
vity is emission of many packets of transmitter substan
ces at a presynaptic terminal upon activation by a neural 
impulse (125).
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research area. The literature on PFM can be divided into 
four main groups: (i) stability, (ii) periodic motion,
(iii) optimal control, and (iv) statistical properties.
In the following, each group will be reviewed in chrono
logical order.

1 .4.1 Stability. A majority of the research on PFM 
is devoted to the important area of stability. One of 
the basic approaches used in most of these works is Lya
punov's second method (22, 23, 25» 27, 38, 72, 75-80, 103, 
104). This will be discussed first.

Farrenkopf, et. al. (38) were the first to use Lya
punov's second method in stability studies of PFM control 
systems. For a satellite attitude control system consis
ting of a plant with double integration and an IPFM, they 
applied a discrete version of a Lyapunov theorem given by 
LaSalle and Lefshetz (83) (based on Okamura and Yoshizawa's 
work) using a quadratic Lyapunov function, and showed 
that

(i) the system is asymptotically stable in the 
large to a set U Q , enclosing the equilibrium condition, 
and

(ii) all ultimate states of the system must even
tually be within a set VQ , enclosing the origin of the 
state-space (implying nonexistence of higher-order limit 
cycles).
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Clark and Noges (27) extended this work to include 
inner bounds to limit cycle motion and applied the result 
to obtain both inner and outer bounds in a single-loop 
amplitude dependent PFM system (see Section 1.2.4), using 
a quadratic Lyapunov function.

Pavlidis (103, 104) extended Lyapunov's direct 
method for the investigation of stability of;.a class of 
discontinuous dynamical systems -which he defined as a 
generalization of PFM systems- by selecting a positive 
definite function which was constant or decreasing along 
the trajectories of the system when no pulses are emitted 
(to check whether the emission of pulses will stop in 
finite time) and decreasing during pulse emission (to 
check whether the system will come to a prescribed region).

Jury and Blanchard (65) used a theorem similar to 
that of Farrenkopf et. al. (38) to study asymptotical 
stability in the Lagrange sense of IPFM control systems.

In the aforementioned publications, sufficient con
ditions for stability were stated in terms of conditions 
on the Lyapunov functions; some simple examples were inc
luded for demonstration of the theorems, but no method 
for constructing of a Lyapunov function, allowing direct
estimation of stability regions in the parameter space

21of the system was presented . Kuntsevich and Chekhovoi
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(?5)» again using a discrete version of the Lyapunov 
theorem of LaSalle and Lefshetz, obtained such a method 
for a single-loop system containing a PFM of the first 
type (see Section 1 .2.4) which they defined as a modulator 
in which the pulse frequency is a function of the discrete 
values of the error signal. However, their method requi
red several complex manipulations, making it impossible 
to analyze the stability condition in a general form.

In a later paper, Kuntsevich and Chekhovoi (76) 
utilizing a system containing two modulators, demonstra
ted how the method of the previous paper could be exten
ded to multi-modulator systems. This was followed by 
another paper by Chekhovoi (22) in which the stability 
conditions of (75) were presented in a more managable form.

King-Smith and Cumpston (72) used Lyapunov's second 
method with a quadratic Lyapunov function to determine 
boundedness of motion in a single-loop IPFM feedback sys
tem with a stationary linear element and showed that the
boundedness of motion depended on the stability of the

22equivalent linear system

__
Pavlidis (103) has presented certain results con

cerning stability of single-loop PFM systems; however, 
Kuntsevitch and Chekhovoi (79, 25), using an example, 
show that it is erronous.22This was shown previously also by Meyer (93); he 
demonstrated that as the input to an IPFM becomes very
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A similar result was later obtained by Chekhovoi 
(23) for a more general PPM system in which a hysterisis 
type nonlinearity was assumed to preceed a PF modulator 
such that the pulse frequency was bounded. For a PFM 
system with an asymptotically stable linear part, the 
motion was shown to be bounded. This result includes a 
previous frequency domain stability condition of Gelig 
(41) as a special case. The results of (22) were later 
extended to RPFM systems (79).

Varadarajan used the same theorem employed earlier 
by Kuntsevitch and Chekhovoi (75) to determine the condi
tions such that the state trajectory of a single-loop 
ORPFM feedback system with an asymptotically stable linear, 
time-invariant TF and plant will enter into a region in 
which the modulator cannot fire. The condition obtained 
is the same given previously by Pavlidis (103) (see also 
footnote 21).

Kuntsevitch and Chekhovoi recently published exten
sions of their work on stability with certain improve^

large, it can be replaced by an equivalent linear gain of 
M/S, where M is the impulse strength and S is the threshold 
of the modulator. Therefore, if the linear part of the 
system is asymptotically stable and if the equivalent 
linear system obtained by replacing the IPFM by its equi
valent linear gain is also asymptotically stable, then 
the motion will be bounded.
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ments; Kuntsevitch (80) for single-loop feedback systems 
with pulse-width modulation, or with "PFM of the first 
kind" (see Section 1.2.4)> and Chekhovoi for single-loop 
CRPFM systems.

In general, Lyapunov methods are difficult to use, 
especially for higher order systems. An alternative is 
POpov's frequency domain method. Popov's theorem (or 
most of its generalizations) cannot be applied directly 
to PFM systems because of the fact that a PF modulator 
generates pulses having a variable sampling interval which 
is a function of the input signal. Dymkov (35) was first 
to apply Popov's theorem to a single-loop RPFM feedback 
system by representing the RPFM in the form of an equi
valent relay system having a hysterisis type nonlinearity. 
Essentially the same result was independently obtained 
by Monopoli and Wylie ( 9 5 ) ^

Gelig (41)» following steps similar to that used in 
the derivation of Popov's theorem, gave a frequency domain 
stability criteria for a more general PFM system contai
ning an hysterisis type nonlinearity in series with a PF 
modulator, such that the pulse frequency was bounded. In

In (95) the modulator is defined as a modified form 
of RPFM in such a way that the restrictions of Popov's 
theorem are satisfied.
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(41), he employed the same approach, for a system contai
ning several "pulse elements" to derive frequency domain 
stability criteria. These "pulse elements" were introdu
ced for modelling pulse frequency modulators (type I or 
ORPFM, discussed in Section 1.2.4) or pulse-width modula
tors; however no consideration was given to the pulse 
emission law.

Popov's theorem was extended by Typskin for nonlinear 
sampled data systems. In order to apply this extension 
to PPM systems, Shortle and Alexandro (116) defined a 
discrete approximation to an RPFM (see Section 1.2.4) 
such that it had an equivalent representation in terms of 
a dead zone nonlinearity and a PAM (sampler), later,
Kan and Jury (68) made an attempt to apply Popov's theo
rem to RPFM systems, directly; however, as a result of a 
certain transformation used in the process, the modulator 
lost its resetting property2^. Chekhovoi's attempt at 
the same problem was succesful ; he used Yakubovitch's 
extension of Popov's theorem for systems with hysterisis 
type nonlinearities (24).

In this area, Gelig recently published three interes-

2^This was pointed out by Kuntsevich in a private 
communication to the authors of (68).
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ting papers; in the first (43), he presented frequency- 
domain stability criteria for a single-loop RPFM feedback 
system, in the second paper (44), the results of the 
first paper were generalized to multimodulator systems. 
In the third paper (45)> systems with "PFM of the first 
type" were considered. The method used in these papers 
is essentially the same employed in his previous work

Some investigators have used a different approach 
and made direct use of the basic functional properties 
of the system equations to obtain stability conditions.
Among them, Skoog and Blankenship (121), determined a 
simple and useful condition for BIBO stability of a 
single-loop CRPFM feedback system with a linear stationary 
plant, based on a theorem of Zames (130). The condition 
is of the form:

where, g(t) is the impulse response of the linear plant,
S is the threshold of the modulator and M and %  represent 
the amplitude and the duration of the pulses, respectively.

(41, 42)25 .

0

pc
3 A summary of Gelig's results is presented in Sec

tion 2.3*
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(the modulator was assumed to emit rectangular pulses). 
This result was also obtained independently by Meyer 
and generalized by Guy [ (48), p. 47] to a feedback sys
tem containing two IPFM'a in a single feedback loop.

Interestingly, another independent investigator,
Kan (69)>(for an IPFM feedback system) also obtained the 
same condition using a somewhat different approach.

1.4-.2 Periodic motion in PFM systems. Due to the
abundance of different possible modes of periodic motions

26peculiar to PFM systems this topic has even been given 
some consideration. For periodic motion in single-loop 
IPFM systems where the modulator emits equally spaced 
pulses of equal polarity, Meyer (93) obtained a closed 
form expression for the period and investigated its sta
bility by linearizing the system about this motion. He 
also extended this work to cases where the pulse pattern 
was more complex and obtained certain necessary conditions 
for the existence of periodic motion. These conditions 
have been verified by King-Smith and Cumpston (71) 
using an independent approach. Some of those

26For example, even a single loop system containing 
an IPFM and a plant with a  single integration posseses 
infinite number of different limit cycle oscillations 
(38, 93).
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results have also been reported by Varadarajan and Pa.i 
(127).

A practical method for studying periodic motion is 
the describing function method which is also useful for 
stability analysis . It has been applied to single-loop 
PPM systems by a number of investigators.

Li (90), by studying the periodicity of output pulse 
distribution under sinusoidal excitation, derived the 
describing function of the IPFM from the fundamental com
ponent of the Fourier series of the periodic pulse train 
and applied describing function methods for stability 
analysis. Pavlidis and Jury (101) instead of assuming 
a sinusoidal wave as an input to the modulator, assumed 
a square wave and determined a "quasi-describing function" 
from the ratio of the output fundamental sinusoid to the 
input fundamental component of the square wave.

Dymkov, in (36) compared the describing function 
method and the quasi-describing function method of Jury 
and Pavlidis and argued that for high order linear plants, 
the output would resemble a sinusoid rather them a square 
wave, and recommended the standard describing function 
technique.

Guy (48) calculated the second and third harmonic 
content of the single IPFM describing function and showed
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that it contained high magnitudes at the lower numbered 
pulse-patterns; he warned against the use of this method 
when low numbered pulse-patterns are predicted, unless 
the linear plant provides exceptionally good low pass 
filtering. He also calculated the resultant compound 
describing function for an IPFM feedback system consis
ting of two modulators and two linear elements in a single 
loop.

1.4.3 Optimal control. Optimization of PFM systems 
was first considered by Pavlidis (105). For a single
loop feedback system with a PFM as an error modifier, he 
used some heuristic arguments and concluded that for the 
minimum time problem the control function r(t) is of 
the form +R, and for the minimum fuel problem -although 
non-unique- is of the form 0, + R , where R is a constant 
and the admissible controls are such that. Ir( t)I R.

Other investigators in this field considered only 
open-loop control problems. In this case, the objective 
is to find the (optimal) pulse-instants and pulse-polari- 
ties of a series of PFM pulses (control input to the plant), 
such that a certain function of the final states of the 
plant (performance index) is optimized. In particular, 
Onyshko(92), assuming a linear system of the form 
x = A x + f(u) with a performance index J = cT x(t^),
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used a modified Maximum Principle and Dynamic Programming 
for the synthesis of optimal control, by restricting the 
pulse-instants to discrete times kT (k = 0, 1, 2, ...), 
where t^ denotes the final time, c is a constant column 
vector and T is a sampling interval.

Stoep (122), following Onyshko, also restricted the 
control pulses to discrete times and,considered a perfor
mance index consisting the weighted sum of a quadratic 
terminal state error and fuel consumption. Using an enu- 
merative technique, he determined the optimal performance 
index. For the* same system, he also considered a more ' 
general mode of operation in which the control is only :. 
magnitude-limited (to the pulse amplitude) and determined 
the optimal performance index for this mode. For special 
cases, he demonstrated that the difference between the 
two values of the performance index is very small.

Onyshko and Noges (99) gave a modified Maximum 
Principle applicable to open-loop PFM systems with linear 
plants operating over a finite time interval. For the 
same problem, Lermentov and Noges (8 7 ) presented a geomet
rical method for determining the regions of initial state 
(admissible regions) from which the system state could be 
carried to the origin within a specified time. Lermentov 
(88) also determined the gradient of a cost function of
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the form J = f(x(t^)) for PPM control inputs to be emplo- 
loyed in numerical optimization methods and using a nume
rical example demonstrated the result to be identical 
with that obtained by application of the modified Maximum 
Principle.

1.4.4 Statistical properties. Although it is the
27predicted high degree of noise immunity ' that aroused 

first interests in PFM, due to complexity arising from 
the inherent nonlinearity of these systems, it is diffi
cult to obtain conclusive analytical results.

Li, in a chapter in his doctoral dissertation (90), 
discussed the immunity to channel noise for IPFM tele
metry by considering an additive, discretized transmis
sion channel noise consisting of independent and identi
cally distributed pulses with zero-mean and Gaussian-amp- 
litude distribution; the signal noise was measured at the 
receiving end in terms of the number of false pulses per 
unit time per unit frequency. Bombi and Ciscato (12), 

studied the problem of jitter in a relatively simple 
situation of constant input signal and additive Gaussian

27For example, an IPFM is capable of averaging out a 
high frequency noise of sufficiently small amplitude . 
during each instantaneous pulse period.
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noise (additive to the signal input to the PFM); they 
discussed the conditions under which the probability den
sity of the jitter in IPFM output pulses is quasi-Gaussian 
and calculated the power spectrum of the output signal.

Hutchinson et. al. (60,61), calculated the autocorre
lation function and the spectral density function of the 
output of an IPFM and an RPFM for a zero-mean, stationary 
and normally distributed magnitude unit-white noise input 
with constant spectral density.

In an interesting, physiologically-oriented paper, 
Bayly (6), using spectral analysis techniques, demonstra
ted simple low-pass filtering to be an effective means of 
demodulating PFM signals and a multichannel system c o n 
sisting of IPFMs for demodulation and low-pass filters 
for demodulation to be capable of improving the signal-to- 
noise distortion ratio over that possible on any one of 
the channels alone and argued these to be the reasons of 
Nature's using PFM. Spectral analysis of IPFM was also 
developed independently by Lee (84, 85).
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1.5 Interconnected System Consisting of CRPFM's and 
Linear Dynamic Elements? The System Considered 
in This Dissertation

The system considered in this dissertation is shown 
in Fig. 1 . 9 .  The PFM block contains m CRPFM's (m = 1, 
2, ...). The modulator output vector, u(t) is applied 
to a line.ar dynamical subsystem (LP) whose impulse res
ponse matrix is G(t,t). A combination of the output vec
tor of the linear part LP, ^(t) and an external input 
vector r(t) is fed to the modulator block. is the
initial condition response vector of the LP which could 
also include disturbances.

Let t . . b e  the instant at which the ith modulator J —
emits its jth pulse and let K ^ t )  denote the total number 
of pulses emitted by the ith modulator prior to time t 
(see Fig. 1.10 for an illustration of these definitions). 
The operation of the system is given by the relation for 
the ith timing filter output signal (leading to the ith 
TD):

3=1 k=1

and
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Figure 1.10 An example illustrating the definitions
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z±(t) =J  f1Cpi(r)(y1(r)ft>r] dr, (i =

28
ti,Ki(t)<  13 < ti,Ki(t)+1 (1.24b)

fConsider some fixed time t, and let t denote the 
firing time of the next impulse (after time t) that may 
be emitted by any one of the m modulators; it is given 
by

tf = nin{t| t>t1;K.(t)+T0li —
1 (1 .24c)

The identification number of the modulator that has fired 
fat t = t is then

t = { i  = 1,2, .. ,m| tf > ti>K (t)+To,i —  lzi(tf)'^si }
(1.24d)

Thus,

tt,Ke(t)+1 = 1 *24e)

Equations (1 .24a.)-( 1 .24e) are the basic equations govern
ing the operation of the PFM system of Fig. 1.9.

pa
Note that, for the ith modulator (i = 1,...,m), 

comparison of eq. (1.24b) with (1.7) yields
fiC®(t),t,ir] = fi[ri(r),yi(r),t,r] .
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CHAPTER 2
FINITE-PULSE STABILITY OF INTERCONNECTED SYSTEMS 
WITH COMPLETE-RESET PULSE FREQUENCY MODULATORS *

Stability in PFM systems have previously been dis
cussed by several investigators using various approaches, 
namely, Lyapunov's second method (22, 23, 25, 27, 72, 75- 
80, 103, 104), frequency domain method (Popov's method 
or its generalisations) (24, 35, 41-45, 68, 95, 116), 
functional analysis approaches (41-45, 69, 121) and linea
risation techniques (36, 48, 89, 90, 93, 101). Most of 
these works were, however, restricted to systems contai
ning one or two modulators and only few results, have so 
far, been presented for multi-modulator systems.

The objective of this chapter is to present stability 
criteria for the CRPFM system discussed in Section 1.4 
which contains an arbitrary (finite) number of CRPFM's. 
Stability is defined in terms of upper bounds on the num
ber of pulses emitted by each modulator. This defini
tion of finite-nulse stability has physical meaning in 
that the number of pulses emitted from a modulator is 
a measure of energy spent by that modulator during the

Part of this chapter was presented at the 1972 
Allerton Conference on Circuit and System Theory, Monti- 
cello, 111. and published in IEEE Transactions:on Auto
matic Control, vol. AC-18, no. 4, August 1973, pp."375- 
392.
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operation of the system. Not surprisingly, the concept 
of finite-pulse stability is related to L. fl L output* r
stability^.

For a special case of the CRPFM system considered in
2this work, for an RPFM system containing several relaxa

tion type PF modulators Gelig (44) recently obtained fre
quency domain stability criteria. Apart from Gelig, Pav
lidis (103) and Kuntsevitch and Chekhovoi (77) also con
sidered stability in multi-modulator PFM systems, both 
using Lyapunov's second method; however, neither of these 
papers presented procedures that permit direct estimation 
of parameter-regions sufficient for stability.

In this chapter, first a Lyapunov method will be 
discussed. Then, an approach will be presented by which 
upper bounds are determined for the number of pulses 
emitted by each modulator. Finiteness of these bounds for 
all modulators constitutes finite-pulse stability. Suffi
cient conditions are established for finite-pulse stabi-

See Section 2.1.2In this work the name RPFM system refers to the 
basic configuration of Fig. 1. 9 , in which all the modu
lators are of the relaxation type. Since an IPFM is a 
special case of an RPFM and since a system containing 
ORPFM's can be transformed into a system containing only 
RPFM's, the same name will sometimes refer also to an IPFM 
system or an ORPFM system.
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lity. Gelig's frequency domain method is also discussed 
and the results are compared with respect to effective
ness in terms of size of parameter-regions sufficient for 
stability, generality (in terms of classes of applicable 
systems) and ease of application.

2.1 Global Finite-Pulse Stability in PFM Systems

The number of pulses emitted from a modulator is a 
measure of the energy spent by that modulator during the 
operation of the system. Therefore, the stability of a 
PFM system can be related to this variable, which leads 
to the following definition:
Definition 2.1: A PFM system is called globally finite-
pulse stable (GFPS) if for every set of initial conditions 
and for every input r(t)6 [0, co the number of pulses
emitted by each modulator remain finite as t-*- oo .

Clearly, after all modulators have ceased firing, the 
plant will remain without input and its motion can be 
studied independently by standard methods. The following 
lemma relates the above definition to the concept of LPxoutput stability .

—
This is a convenient, standard mathematical nota

tion which stands for the collection of all the measurable 
functions x(t) which map the interval [0, oo) into the real 
line (-0 0,0 0 ) such that the integral

l|x(t)ll * (Z00 |z(t)lp dt)1/p 
p 0

is finite.
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Lemma 2.1; If the PFM system of Fig. 1.10 is " GFPS : 
and if the components g. j(t> T )  of the impulse  -*■ «J
response matrix G^t,*?) as veil as the components y0i(t) 
of the initial condition response vector ^ ( t )  for every 
set of initial conditions/are all in 1 [0,co ), then eachXr
component y.(t) of the output vector y(t) is in L [0,oo). ^ P
Proof; Consider the ith component of the output vector 
of the system

» Kj (t)
y ^ t )  = y0i(t) + g id(t,t k )

j=1 k=1
(i = 1, 2, ..,m) (2.1)

Applying Minkowski’s inequality (triangle inequality in

K . (oo )
L -spaces) to eq. (2.1) yields
Xr

* > " P
j=1 k=1

(i = 1, 2,...,m) (2.2)

From this inequality it immediately follows that when 
K  ̂ (oo ) <  oo then y0>i, £  lp [0, oo) implies y± £ L p [0, od) .

||xU)||p is known as the Lp-norm of the function x(t). The 
space L^tO, oo) is defined as the collection of all measu
rable functions which are bounded on [0,ocr). The integra
tion is not necessarily restricted to the positive real 
line [0, oo) but can be any subset of the set of real num
bers.

For a discussion of system stability in terms of Lp- 
spaces see, for example, Willems (129).
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2.2 Lyapunov'a Second Method
Let the continuous part (plant)^ be of order n andJr

the timing filters of modulators i be of order n,.X X
(i = 1 , 2, ..., m ) . Let

i,n (t)]
T

(2.3a)
be the state vector of the LP and let

.i T

(i = 1, 2, ..,m) (2.3b)
be the state vector of the TF of the ith modulator 
(i = 1, 2, ..., m ) . Let the combined state vector of the 
total system be denoted by

S p W

x(t) =

x“(t)

(2.3c)

Let w ®  be a possible state x occuring immediately after 
impulse emission of the jth modulator. Let be the

^Actually, linearity of the plant is not required for 
application of Lyapunov's method.
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state x reached immediately after modulator j fires the
next time. These definitions imply that w? and w!J J
both belong to the set

W } ={w| s ^ P s  (st6 E  I

it =
t = ^j.k’ tj,k+1’"  ]

(2.4)
The following theorem holds:
Theorem 2.1: If there exists a positive scalar function
V(x) and a constant e > 0  such that for all j = 1,...,m
and for every w9 & W ' .  and every w \sUD'.,

3 3 J 3
V(w^) - V(wj) > e (2.5a)

then the CRPFM system of Fig. 1 . 9  is GFPS.

Proof: Consider the jth modulator. Note that (2.5a)
implies

- V[i(t+ k+1)] > e

from which the following inequality is obtained

V[x(t+ )] <  V[x(t+ )]- K.eJ

where represents the total number of impulses emitted 
by the jth modulator as t-*-oo. Assume that V[x(t* q )] 
is finite. Then Kj must also be finite, otherwise the
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above inequality yields V[x(t1" v  )]< -a>, which is a
3 >*-j

contradiction since V is a positive function.

(QED).

Condition (2.5a) of Theorem 1 can be replaced by 
stronger conditions, such as the following:

V(w°) - V(wJ) > e (2.5b)

where w*. is the state immediately after emission of the 
«}

next impulse following emission of modulator j (Note that, 
after firing of modulator j , the next impulse may be 
emitted by any of the modulators, not necessarily by 
modulator j).

A still stronger condition is the following: 

| ^ V [ x ( t ) ] <  0 for t € ( t Q ,t1), V £ ( t 0 ) 6 U ) ^

V[x(t”)] - V[x(t|)] > e I  (2.5c)

where t^ represents an emission-time of modulator j and 
t.j is the time of emission of the next impulse (by any 
modulator) after time tg. Theorem 1 with condition 
(2.5c) corresponds essentially to one presented by Pav- 
lidis (103)?

C
Pavlidis* thorem (103) includes also the requirement 

that V(x) = 0 for x within some region inside the region 
for which no impulse emission is possible.
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Example 2.1: Consider the simple interconnected PFM
system consisting of two RPFM's and an integrator, shown 
in Fig. 2.1. Note that xj(t) = z^(t), = z2(t),

S - [v  xt ’ *t] >

= ° ’ z 2^T I -oo<xp <+oo, |z?|<S2 }
and

T
1^2 = {[xp , 0] | -oo<xp< +oo, |z1l<S1 )

p
Let V(x) = x . Consider the first modulator, let 

*  P T
x(0) = w^ = Lxp» 0» z2 J * Assume that the next impulse 
of the system is emitted also by the first modulator.
The output of its TF is

-a. t
- (t) = 1 ^ - 2 ----  i°

a, »

In this case, noting that z ^ t )  and x® have the same
signs,

*p = *p + M i 8gn xp

Condition (2.5a) of Theorem 2.1 requires 

O 2 1 2<*°> - (*J> >6,
or.

M 1(2|x°| + M,,) < -e 

For > 0, the above inequality becomes 2|xp | + < 0,
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TD

TD

TF

TF

Figure 2.1. A simple interconnected PFM system consisting of 
two RPFM's and an integrator.

>2 i— i
i__i Theorem 2.1

l] | i Theorem 2.5 (Gelig (44) )

-2a. -a. f ! Theorem 2.4

M.

l______ ^ -a.

I________________ -2a,

Figure 2.2 Comparison of stability criteria for the CRPFM 
system of Fig. 2.1.
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which is not possible. However, for < 0, it yields 
2|x^| + M. > 0. But, fx®| > a.S. (otherwise no pulse

JJ 1 x * *
emission would have taken place). Therefore, must be 
selected such that

0 > M 1> ^ a ^ .  (2.6a)

Similarly, for the second modulator, the same argu
ment gives

0 > M 2 > - 2 a 2S2 (2.6b)

Now assume that successive impulses of the system
are emitted by the second modulator, before the first
modulator starts firing again. let t9 . be the instant
when the second modulator emits its jth impulse, after
t = 0. Then, for 0 < t < t0 .,J

z,,(t) =
0 . n

0 -£) e" 2 + -a
a. / a_

Again the sign of the impulse emitted is the same as the
sign of x®. Thus, x ( t * , ) = x2 + sgn x®; thereforeP P 2,1 p 2 ° p
since, by (2.6b), M 2 < 0, it is:

txp(t2 (1>]2 <  <xp>2 (2-7)

Generalizing (2.7) from t ^ Q to t£ .. yields:

2 2 
[xp^2,j+1^J ** f-Xp ^ 2 , j ^  * . .tf-l) (2.8)
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By a similar argument used in obtaining (2.7), if 
the next impulse of the system is emitted by the first 
modulator again, at t = t1 .,

Clearly, the same argument is valid also for the second 
modulator. Thus, if and are selected in accordance 
with relations (2.6a) and (2.6b), respectively, all the 
conditions of Theorem 1 will be satisfied and the system 
under consideration will be GFPS.

Note that, in this case, conditions (2.5b) and (2.5c) 
are also satisfied. The stability region, determined by 
inequalities (2.6a) and (2.6b) is shown in Fig. 2.2.

2.5 Direct Finite-Pulse Stability Criteria
The number of impulses, K^(t) emitted by the ith 

modulator (prior to time t) in a PFM system (i = 1, ..,m) 
respresents a measure of the energy spent by the corres
ponding modulator in the interval [0, t). Therefore, it 
is desirable to estimate this number directly, without 
solving the system equations. In the subsequent develop

Combining (2.7)» (2.8) and (2.9),

(2.10)
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ments an upper bound for K i(t) will be determined for the 
CRPFM system of Fig. 1 . 9  • Existence of these bounds 
for all modulators and for t-*- co implies GFPS.

In this section the following conditions are assumed 
to be satisfied:
Condition 1; yQi(*), ri (*)6 L^[0,t), for i = 1,..,m,
Condition 2 : there exist functions g ! .(•) € l [ 0,t ) suchx j i

that V t ^ t ^ f  [0,t) and i,j = 1,..,m,
I §ij C11 , tg)l < I S ^ ( t 1-t2)l , and

Condition 5 : there exist finite nonnegative constants
and such that V t^,t2 € [0,t) and

x — If...) Ql)

yi- *1' V I  ^ W  + Pi'yi1 •

Let k(t) and v(t) be m-dimensional column vectors
with elements K.(t) andx

t

V± (t) = £ /  [<*3.1 ri(r ) I + Pily0i(T)1] dr (2.11)
0 (i = 1,...,m)

respectively, and let H(t) and H'(t) be mxm matrices 
whose elements in the ith row and jth column are

t

hij(t) ~ I |gij(r)l d7f (i,;j = (2*12)
0

and
Mj

hio(t) - Pi hij(t)» (i,j = 1,..,m) (2.13)
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respectively. The following fundamental theorem is use-' 
fill for estimating the upper bounds for the number of 
pulses emitted by each modulator:
Theorem 2.2: If Conditions 1-3 are satisfied then the
vector k(t) of the number of pulses emitted by the modu
lators prior to time t satisfies the following matrix 
inequality

[i ~ H 1 (t )] k(t) < v(t) (2.14)

The proof of Theorem 2.2 is given in Appendix A.

For GFPS it is only necessary to show that a sum
containing the number of firings of all modulators with
positive coefficients remains finite as t—  oo . Thus,
Theorem 2.3: If Conditions 1-3 are satisfied as t-*- oo
and if the matrix P [i - H 1 ] has a row with all posi-
tive elements, where P is a nonnegative matrix and
H ' = lim H'(t), then the CRPFM system of Fig. 1.10 is 
00 t— oo 

GFPS.

Proof: Let P [ l  - • Premultiplying both
sides of inequality (2.14) (as t-̂ oo) by P yields the ine
quality

g
A matrix is called nonnegative if and only if it 

has no negative elements. Nonnegative matrices play an 
important role in various fields like mathematical econo- 

' mics, theory of games, linear programming, etc., and have 
been extensively studied , Bellman (7), Gantmacher (40), 
Lancaster (81).
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Si 1 V " - + ! , i m Kl» P i r 1 +  - " + P i mv m <  00 l 2 ' , 5 )

( i = 1 ,.., m)
Since p ^  > 0 and . > 0  for some i, finiteness of the
above inequality implies K < oo for j = 1, 2,..., m.j

(QED).
Inequality (2.14) restricts the vector k(t), which 

represents the number of impulses emitted by the modula
tors to a certain region. When the matrix [x - H'(t)]"^

g
exists and is nonnegative , this region is finite. In 
this case inequality (2.14) can be transformed into

k(t) < In|[l - H'(t)]-1y(t)} (2.16)

where the notation In{ • } stands for the integer part of 
the corresponding vector. Inequality (2.16) determines 
the upper bounds of the number of pulse emissions as 
t-*- oo . Let

k^ = In[lim [I - H '(t)] _1v( t) } (2.17a)
t— oo

then k is the required upper bound, since -~oo
k(t) < k ^  , V t€[ 0,oo) (2.17b)

The above result may be stated in terms of the follo
wing theorem:
Theorem 2.4: If Conditions 1-3 are satisfied as t-*- oo

r iand if the matrix [i - H^]"” is nonnegative then the 
CRPFM system of Fig. 1 . 9 is GFPS.
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For large systems it may be cumbersome to invert the 
matrix [i - H '^]• The lemma to be stated next provides 
means to avoid this inversion.

rj
Lemmn 2.2; If the spectral radius A(A) of a nonnegative 
matrix A is smaller than unity, then the matrix [I - A]_1 
exists and is nonnegative.

The proof of this lemma follows from the identity:

[I - A]"1 = I + A + A 2 + A5 + ... (2.18)

provided M A ) < 1 (see Barnett and Storey, p. 60).
2 3Since the matrix A is nonnegative, so is A , A , .... and 

their sum; hence the proof.

Lemma 2.2. and Theorem 2.3 yield the following 
corollary:
Corollary 2.1: If Conditions 1-3 are satisfied as t-*~ oo
and if M H ^ < 1  > then the CRPFM system of Fig. 1 . 9 is GFPS.

With the present computer technology, it is not a 
very difficult task to calculate the eigenvalues of a

O
matrix . However, the following lemma eliminates this 

-

'Spectral radius of a matrix is defined as the mag
nitude of the largest eigenvalue, i.e., if (i = 1,..,m) 
are the eigenvalues of the matrix A, then M a ) = m|x I ̂ i*

8If the coefficients of the characteristic polyno
mial P(?0 = l*I - H^l are known, the condition M H < y  < 1 
can be checked*""using the Routh-Hurwitz Criterion on 
P[(r+1)/(r-1)] . However, this method is not recommended
for large systems.
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need, in most cases.
Lemma 2.3: If A is an mxm nonnegative matrix and if

m
a.. <£. 1 , i — 1,...,m,

L
J = 1

then the matrix [I - A] is also nonnegative.

The proof of Lemma 2.3 follows from Gersgorin's theo-
oj 

10

qrem^ and Lemma 2.2. Matrices satisfying conditions of
Lemma 2.3 are known as Minkowski-Leontieff matrices

Corollary 2.1. Lemma 2.3 and Theorem 2.3 lead to the 
following corollary.
Corollary 2.2; If Conditions 1-3 are satisfied (for 
t-*- oo ) and

m q m oo£ hi3(oo> - f £  J ivio(r)ldr<1’
j=1 i j=1 0

for i = 1,2,...,m, then the CRPFM system described in 
Section 1.4 is GFPS.

For example, when applied to a single-loop, single

qThis is a very useful theorem for obtaining bounds 
on eigenvalues and states that every eigenvalue of a mat
rix A lies at least in one of the disks

mlz - aljl S E aij3= ’
(Lancaster, p. 226).

1 0Theorem 6 of (Lancaster, p. 288) is very close to 
Lemma 2.3*
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RPFM (or IPFM) system with a time-invariant linear ele
ment, then either Theorem 2.3 or Corollary 2.2 imposes 
the condition

| He ,11 <1 (2.19)
r

fco
where, ||g|L = J |g(t)[dt. If there are two RPFM's (or 

0
IPFM's) in a single-loop (i.e., g-j^t) = 0 ,  i = 1, 2) 
then Theorem 2.3 yields

sj S g  11^12^1* I!g 21 < 1  ( 2 . 2 0 )

Inequality (2.19) was obtained independently and 
almost simultaneously by Skoog and Blankenship (121),
Kan (69) and (2.20) by Guy (48).

It is important to note that, although Corollary 2.2 
is easier to apply than Corollary 2.1, which is in turn 
easier to apply than Theorems 2.4 and 2.3, they are not 
equivalent. Therefore, it is recommended to use Corollary
2.2 first and, if it fails, to refer to Corollary 2.1 and 
then to Theorems 2.4 and 2.3.

In case the linear part is time-invariant and all the
elements of its impulse response matrix G(t) do not change
sign, the matrix H(t) becomes the step response matrix and
the limit lim H(t) can be evaluated easily from 

t—  co
lim H(t) = I lim G(s)| (2.21)
t—**00 3 —**0
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r —q +where G(s) = J e” G(t) dt. The bars I -| are used to 
0

infer that the absolute values of each element of the corres
ponding matrix is to be taken. If only some elements of
the impulse response matrix do not change sign, it is

11still possible to use the same formula for those elements

It should be noted that all results of this section
apply to systems containing single-signed modulators, as 
well as double-signed modulators. This is due to the abso
lute value operations used in the derivation of Theorem
2.2 (see Appendix A), which also cause invariance of the 
results with respect to the "sign" of the feedback. In 
fact, this is ,not very surprising since the sign of the 
feedback can be controlled by the signs of the modulator 
output pulses.

2.5.1 Application to single-loop system with one 
P F M . In order to provide the reader with a basis for 
comparison, Table 2.1 is presented which summarizes some 
of the previous stability results applied to simple con
figurations containing single IPFM or RPFM (24, 25, 43,
69, 72, 79, 12). The tests developed in the pre-

It is very easy to determine h-n(t), experimentally. 
All the necessary equipment is an integrator proceeded by 
an absolute value circuit. Exciting the system by a pulse 
with very short duration and measuring the output from 
the integrator gives h. .(t), directly.
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vioua section (which coincide with (69) and (121), in the 
single-modulator case) are easier to apply and give 
better results in most cases, except when the time consr-' 
tant of the RPFM is appreciably smaller than that of the 
linear part.

In certain cases it may be possible to transform the 
CRPFM under consideration to obtain larger parameter- 
regions (sufficient) for stability. An example, which 
is indicated by Table 2.1 and which is frequently encoun
tered is the case where the TF's have time-constants 
significantly smaller than that of the LP. Clearly, 
the stability region obtained by direct application of 
condition (2.19) for the RPFM system considered at the 
bottom of Table 2.1 is rather conservative. By a simple 
transformation, however, the effectiveness of the same 
condition can be improved significantly; this will be 
demonstrated by the following example.

Example 2.2; Consider the single-loop RPFM feedback sys
tem of Fig. 2.3c, which was also used as an example sys
tem in Table 2.1 (last entry of the table). The transfer 
function of the plant and the TF are

G(s) = -------— -------- (2.22a)
(s+0.1)(s+0.2)

and
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Figure

1 ! 1 Reset

u' (t) 1
iii 1 z m TD

s+a1 il s+ao s, M
u(t.’

RPFM-j
.0

u'(t) 1
s+a0

♦ Resel
1 TD

s+a.1 s, M
u(t)

aO_a1 s
s+a^ M

r(t)
K > —

RPFM1 
S, M

A0 y(t)
(s+0.1)(s+.2)

_gQ (t)=» e-0.5t

-0.1t

s+0.1
s+0.5

RPFM,
S,M

S+.5 M

2.3 (a) RPFM with a first order low-pass filter.
(bj Equivalent RPFM system.
(c) A CRPFM system in which the dynamics of 

the LP is much slower than that of the TF.
(d) Equivalent system obtained after trans

formations indicated in Fig. 2.3a and 
Fig. 2.3b. Application of Theorem 2.4 
to this system yields less conservative 
results.
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Q t A a ) = — —  , ao>0 (2.22b)
s+a~ u

respectively. For GFPS, direct application of condition 
(2.19) yielded

fA| <0.02 (2.23)
By simple block diagram manipulations this system can 
be transformed into the equivalent form shown in Fig. 
2.3d. The transfer functions of the plant and the TF 
of the equivalent system are

0 .(.) . ------ t o  + - 2 ^ - |
(s+0.2)(s+0.5) s+0.5

and
G'(s) = — —  , (2.24b)
0 s+0.1

respectively. Since the impulse response of the equiva
lent system does not also change sign, ||g II  ̂ can be 
easily evaluated from eq. (2.21). Thus, (2.19) yields

|10 A + #  I <1 ,

or,
-0.18 < A < 0.02, (2.25)
o

where, A = Aq ^  . Clearly, condition (2.25) is signi
ficantly less conservative than condition (2.23).

2.3.2 Application to systems with more than one 
PFM. The objective of this section is to stress the
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meaning of matrix inequality (2.14). Three examples 
will be presented to demonstrate the regions described 
by this inequality. As the first example, a PFM system 
containing an IPFM with a memoriless nonlinearity and an 
RPFM is selected with parameters such that this inequa
lity does not provide any information. In the- second 
example, by slighly modifying some of the parameters 
of the system (thresholds and pulse-strengths of the 
modulators, in this particular case), boundedness of the 
number of pulse-emissions are guaranteed. The third 
example will be presented to show that, even though the 
conditions of Theorem 2.3 are not satisfied, inequality 
(2.14) can still provide information relating boundedness 
of the number of firings of one modulator to that of the 
other.

For the purposes of Examples 2.3a-2.3c the sys
tem of Fig. 2.4, containing one IPFM preceeded by a non- 
linearity and one RPFM is considered. It is not difficult 
to see that Conditions 1-5 (as t-*- oo ) are satisfied and 

that = = 1 (i = 1, 2). From eqs. (2.11)-(2.13),
the matrix is easily computed as

3[M1/S1l 5lM2/S2l

L2 |m1 /s2I 4|m2/s2I-
(2.26)

The eigenvalues of the matrix depend on the values
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M.| , S.j, and (pulse strengths and thresholds of the 
modulators).

Example 2.3a (Case Where A(H') >1): For M. = S. = 5 and00 1 1
M 2 = S2 = 1 (2 .2 2 ) gives

f3 11

The eignevalues of this matrix are 2 and 5* Since 1 is 
not an eigenvalue, the matrix [i - exists and is

However, it contains negative elements and therefore ine
quality (2.17b) is not applicable. Nevertheless, inequa
lity (2.14) is still valid and is illustrated in Fig. 2.5a. 
Clearly, in this case it also does not provide any infor
mation.

Although the theory developed in this section cannot 
establish instability, the system of this example does 
not appear to be stable.

Example 2.3b (Case Where ^(H^J)<1)s By either increasing 
the thresholds or decreasing the pulse strengths, the 
eigenvalues of the matrix can be brought into the 
unit circle. For = S2 = 1 and = M2 = 0.1,

'-3/4 1/4"
1 / 2  - 1 / 2
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(a) (b)

(c)

Figure 2 . 5  Regions described by inequality (2. 1 4 ).
(a) Example 2.3a,
(b) Example 2.3b, and
(c) Example 2.3c.
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"0.3 0.5" "50"
S'oo = _0.04 0.4_

and v = —00 _ 8 _

The eigenvalues are inside the unit circle and

'3/2 5/4'
-1

J / 1 0  7/4_

Since all the elements of this matrix are nonnegative, 
inequality (2.17b) is valid. Let

10 for 0 < t < 3
f

. 0 elsewhere 

• 1 for 0.1 < t < 5.1 

•0 elsewhere

and,

i*1 (t) =

r2(t) =

and let

*0 (t) =
'10e~t+20e~2t'1

£ -3t c -5t 6e +5e

From (2.11), for t-** oo ,

-oo
50
8

Thus, (2.17) yields

oo ■ r a

(2.27a)

(2.27b)

(2.27c)

(2.28)

(2.29)

i.e., the first modulator stops after firing at most 85
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emissions and the second modulator after at most 19 
emissions. It is interesting to compare this bound with 
the actual numbers of total emissions obtained from a si
mulation of the system which, for the given conditions, 
yielded

T 82"l (2.30)~oo (Actual)
82

17

Thus, for this example, the bounds on obtained from
1 2(2.17a) are rather close to the actual values

( -1
ôo-'

following inequalities are satisfied:
The matrix [i - H 1 J  ̂ will be nonnegative if the

and

1 - 3 U 1I > 0, (2.31a)

1 - 4lA2I > 0, (2.31b)

1 - 3|A.j| - 4|A2| + 10|A1A2I > 0  (2.31c)

where A^ = and A 2 = M2^S 2 ‘ A 1 and A2 are cil0sen
in accordence with the above relations, the system will 
be GFPS. This region is plotted in Fig. 2.6 (inside of 
the circular region).

Example 2.3c (Case Where >1): Let

1 2Most simulation studies of simple CRPFM systems 
yielded a good agreement with inequality (2.16).
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Figure 2.6 Comparison of stability criteria for the IPFM 
system of Fig. 2.9. The region with stars is 
obtained by Theorem 2.5 (Example 2.5, Gelig 
(44)). Inside of the circular region is the 
stability region predicted by Theorem 2.4 
(Example 2.3b, GulqUr and Meyer (52)).



The eigenvalues of this matrix are greater than 1 in

terms. Thus, inequality (2.16) (as t-*- oo ) is not appli
cable. However, inequality (2.14) gives

The region described by this inequality is shown in Pig. 
2.5c. As in Example 2.3a, stability cannot be established 
for this case. The only information gained form Fig. 2.5c 
is that if oo then 00 311(1 vice-versa, which
means that any system instability is associated with con
tinued firing of both modulators.

Satisfaction of Conditions 1-3 (as t-*- oo ) essen
tially requires the linear part of the system to be asymp
totically stable and the input signals to be absolutely 
integrable. In cases, where the linear part contains 
integration and/or the input signals contain constant parts, 
GFPS may still exist, provided the TF's provide -sufficient 
filtering. In these cases, Theorem 2.2 and Theorem 2.3 
cannot be applied direcly. However, it may be possible 
to transform the system under consideration in such a way 
that the conditions of these theorems will be satisfied.

magnitude contains negative

0.2 -2l M'
-4 0.4 -co-Li.

(2.32)



A frequent occurence is an RPFM preceeded by an integra
tor (see Fig. 2.7a). It can be replaced by an IPFM sub
system as shown in Fig. 2.7b (see Meyer (93), for other 
possible transformations).

Example 2.4; Consider again the RPFM system of Fig. 2.1 
which was treated in Example 2.1. In this case Theorem
2.3 and Theorem 2.4 cannot be applied directly because 
the LP contains an integrator.(g(•) £ L^[0,oo) ). However, 
this system can easily be transformed into the form shown 
in Fig. 2.7c. The equivalent IPFM system of Fig. 2.7c 
has the impulse response matrix

S 0 -a„t

e
-a. t

2
(2.33)

Thus, relation (2.14) of Theorem 2.2 yields

k(t) < v(t)

(2.34)- 1
is nonnegative if 

M„
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Figure 2.7

TE
s+a

(a)

i---------------------- »
IPFM

TE
s+a

aS/M
s+a

(b)

IPFM.

IPFM,

s+a

s+a

s+a

(c)

(a) RPFM with an integrator,
(b) Equivalent IPFM system,
(c) Equivalent IPFM system for the RPFM system 

of Fig. 2.1.
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In this case inequality (2.16) is applicable and, since 
3t(t) is finite k(t) is finite. This region is shown in 
Fig. 2.2.

To summarize, in this section upper bounds on the 
number of pulses emitted by each modulator during the 
operation of a CRPFM system were determined. Such number 
is indicative of the amount of energy spent by the corres
ponding modulator and thus the upper bound of the number 
of pulses emitted by all modulators represents a measure 
of stability. Sufficient conditions under which this num
ber is finite were established and were shown to depend 
on nonnegativity of a certain matrix.

The features of the results of this section are the 
following.

1) Generality. The conditions apply to PFM systems 
containing distributed and/or lumped linear parts; the 
timing filters are allowed to include nonlinearities.
The number of loops are not limited to one; the modulators 
are quite general (not restricted to IPFM or RPFM) and 
can be single-signed or double signed.

2) Simplicity. Once the matrix is known, it is 
relatively easy to apply the stability conditions.

Direct application of Theorems 2.3-2.4 or Corollaries 
2.1-2.2 require all linear plants to be asymptotically
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stable and all input signals to be absolutely integrable. 
In some cases where the linear plants contain integration 
and/or the input signals contain d-c parts, global finite- 
pulse stability may still exist; stability conditions for 
these cases can be obtained by transforming the system 
using simple block diagram manipulations (see Example 2.4)- 
Similar transformations can also be used to obtain less 
conservative results (see Example 2.2).

Application of the results to a single-loop, single
modulator system gave a condition which was previously 
obtained (69, 121) and examples yielded stability regions 
comparable (often better) to those obtained by other met
hods (such as described in (24, 43, 72, 79) ). The same
was found to be true in comparison with a recent frequency 
domain stability criterion for interconnected systems 
(44)* This will be discussed next.

2.4 Frequency Domain Criteria
Gelig (44), in a recent paper, obtained frequency- 

domain stability criteria for a PFM system consisting of 
m-relaxation type pulse frequency modulators (RPFM's) and 
a time-invariant linear part. To provide ground for com
parison, in this section, a summary of his results is 
given. The results are also applied to the systems consi
dered in the previous sections-
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The system considered by Gelig is a special case of 
the general CRPFM system of Fig. 1. 9 (see Fig. 2.8a); 
the function f^( ) is

-a.(t-T)
fi [ri (r),yi (r),t,r] = e 1 [ r ^ + y ^ Z ) ]  (2.35)

(i = !»•••» ®)
where a.̂  is a positive constant . Also since the LP is 
time-invariant,

gij(t,<C) = gij(t‘ r)’ (i,;j = (2.36)

It is convenient to transform this system into the 
form shown in Fig. 2.8b. Let <|(s) be the Laplace trans
form of the impulse-response matrix of the linear part of

joo _g ̂
the system, i.e., £(s) = J e dt> Let ff:(s ) be an

mxm matrix whose element in the ith row and the jth column 
is defined by

V a) = s+a^ LSi8ij - (2‘57>
(i,j = 1,...,m))

where 6.. is Kronecker's symbol ( 8. .= 1 for i= j , 6. .= 0 for iĵ j ). ij -Lj 1J

It is assumed that the matrix ^(s) can be represented 
in the form

S(s) = X(s) + “ R (2.38)13s

where X(s) is analytic for Re s> 0 (i.e., all singulari
ties in the l.h.p.) and R is a constant mxm matrix.
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RPFM

s+a

Linear Part (LP)
(a)

TE
s+a.

(b)
Figure 2.8 (a) The RPFM system considered in Section 2 .4 .

(b) Equivalent system (TEi is a device that emits 
a unit impulse whenever the absolute value of 
its input signal exceeds a threshold value, S.)



90

Futhermore, it is assumed that r'(t) = r(t) + y ^ t )  
(input + initial condition response) is bounded and that 
E'(t)-^ 0 as t-»- 00 . If t£(s) has a pole at s = 0, r'(t) 
could contain a constant part, however, the transient 
part must vanish as t-*- oo .

let R' be an mxm matrix with the element in the ith 
row and the jth column defined by

rT. if §;(s) has a pole at s = 0,
r! . = |

*-lim s ^  . (s) * M ., otherwise 
s—*-oo J J

(2.39)

Fq = lim s£(s ) (2.40)
s-»- oo

^The case where all the poles of the matrix ^(s) 
have negative real parts is called the noncritical case 
in the Russian literature. If there is a simple pole 
at the origin but all the other poles are in the l.h.p., 
this case is called the simplest critical case. Gelig 
(44) t considers also the case where the matrix <?(s) con
tains simple poles on the imaginary axis and can be rep
resented in the form

q
£(s) = X(s) + 1 R + Y  - 1 «■■■ [A + B ]

i S s +u>i
where R, A., B. are constant mxm matrices and X(s) is 
analytic fir R.i s > 0 .  If the matrix G(s) has poles at 
s = (i = 1,..,q), the term r'(t) is allowed to con-
tain”tei*ms of the form a. sin to. t + £^cos<o. t, where <*■. and 

are constant vectors. 1 1  1 1
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^l(s) = [T + s©] X(s) - 0 Fq (2.41)

and
= lim s OTl(s) (2.42)

s-*- oo

where T and 0 are mxm diagonal matrices with elements
and 0. ( i =  1,2,...,m), respectively.x

The following theorem was prooved by G-elig (44). 
Theorem 2.5 (Gelig. (44)): If there exist constants ^ > 0
and 0^ > 0  ( i =  1,2,...,m) satisfying the conditions:

(1) ,r1s 1 - O ^ r ^  - S ^ )  >0,

Z . S. - 0.(r !. - S.a.) -20. ^  |r'|X X  X XX X X  X 4_j

( i = 1 » * • • * ni)

> 010
0=1

^  “ ^ 0 ’
(3) Re[B(j«>) + m T ( ju))] is a positive semi-definite

matrix, and
m

(4) T E = E | is a positive definite matrix, 
then the RPFM system of Fig. 2.8a is GFPS^.

If the matrix $;(s) contains simple poles at s = + jto., 
(i = 1,..,q) then in addition to the conditions 1-4 of " 1
Theorem 2.5, the following conditions must be satisfied 
(see footnote no. 13)

— 1 -1 TA. B. = B.A. ; TA, = A.T is a p.d. matrix,-x — x -x-x — i — x—
TTB. = B^T is a p.s.d. matrix, and - -x -i“

0 = ^2 — — i (i = 1» 2,...,q).
i
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Example 2.5: Consider the PPM system shown in Fig. 2.9,
containing two IPFM's and a LP with the following impulse 
transfer matrix:

where and A2 are parameters to be determined such that 
GFPS is assured.

This system has the same structure as that of the 
system of Pig. 2.4 considered earlier in Example 2.3, 
with the exception of the modulators, which are IPFM's 
here. Gelig's theorem is not applicable to the system 
of Fig. 2.4. Note that stability conditions (2.31), 
which were obtained for the system of Fig. 2.4 .by appli
cation of the results of Section 2.3, are also the same 
for the system considered in this example.

|(s)
-2- As+5 1

From (2.37) and (2.38),

(2.43)

and

R
(1-3AJ) -5A2
- | A 1 (1-4A2) (2.44)
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r, (t)

+

Reset

1
TD 1

1
1
1i

s 02 II i! 1
1
1

IPFM 1

1 t d 2
W 1S

Re s e t

IPFM,

2A.j 2A2
1+1 + s+2 +

Linear Part (LP)

Figure 2.9 A PFM system consisting of the interconnections 
of two IPFM's and a time-invariant linear part.
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From (2.41),

Wl(s) =

( 2 r ^ i + I l ^ !l)
8+1 3+2 1

Z\ 15 —  L A
s+1 1

2 ~ --- * A
s+ 5 1 2(l 2 ^ ! 2  + S ^ ! 2 )a,

s+3 s+5 *
(2.45)

Condition (4 ) of Theorem 2.5 gives
25A,

*1
2k

(2.46)
1

and

1 - 4A2 - 3A1 + 10 A ^ 2 > 0 (2.47)

Since > 0 and T 2 > 0» (2.46) will not be satisfied if 
A^Ag < 0. Thus, Theorem 2.5 fails for A^Ag < 0. Condi
tion (2) yields

5 A n
02 = 0

2A 1 1 (2.48)

Equations (2.46), (2.48) and condition (1) of Theorem 2.5 
yield

and

r 1 + 4A1© 1 > 0,

T 1 + (3.2A2 - 0.8|A1I )01 > 0

(2.49a)

(2.49b)

An alternative to conditions(2.49a) and (2.49b) can be 
obtained by changing the numbering of the modulators. 
Thus,
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r 1 + 3.2A29 1 > 0 (2.50a)
and

r 1 + (4A 1 - 1 0 |a2I )e1 > 0 (2 .50b)

Finally, the frequency condition (condition (3) of Theorem 
2 .5) yields

Now, the problem is reduced to that of selecting Zy > 0 
and 0 .J > 0 , such that relations (2.47), (2.4 9) or (2.50)
(2. 51a) and (2.51b) are satisfied. The stability region 
in the A^j-Ag plane as defined by these relations is shown

Example 2.6: Now, consider the same system considered in
Example 2.1. For a^ = a2 = a ( 0 < a <■£■), Theorem 2.5 
yields 

fc
The stability region was obtained by a computer 

program which used Sturm's test to check the frequency 
condition (2.51b).

oo< ujcoo
1 +ur- 4+ ix>‘

and

in Fig. 2.6 (region with stars)
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M 0 M,
- A  + — L + a > o, M, < 0 and M < 0 (2.52)
S2 8,

For this case, the stability region determined from Theo
rem 2.5 is shown in Fig. 2.2 (region with horizontal 
shading).

2.5 Conclusions

In this chapter global finite-pulse stability (GFPS) 
in PFM systems is considered. Two different approaches 
are presented. The first approach is based on Lyapunov's 
second method and the second approach is a direct approach 
involving careful application of/inequalities to the equa
tions describing the system. A summary of a recent fre- 
quency-domain criterion of Gelig (44), applicable only to 
RPFM systems, is also included for comparison purposes.

The Lyapunov approach could provide effective stabi
lity criteria, but it is difficult to apply; especially 
for higher-order systems.

Gelig1s frequency response criterion is restricted 
to relaxation pulse frequency mod,ulation (RPFM) systems 
with a time-invariant linear parts. It can handle "criti
cal cases" where the LP has simple poles on the imaginary 
axis or at the origin. However, in order to obtain a 
good parameter-region sufficient for stability, it requi
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res selection of two arbitrary parameters for each modula
tor of the system ,subject to frequency-domain conditions 
and other inequality constraints.

The Direct GFPS criterion is the simplest to apply 
and at the same time, provides bounds on the number of 
pulses emitted by each modulator. It is also applicable 
to more general systems; the timing filters are allowed 
to include nonlinearities, the LP can be time-varying 
and the modulators are not restricted to IPFM or RPFM.
It cannot handle the "critical cases" directly. However, 
it is usually possible to transform the system in such a 
way that the criteria will be applicable (see, e.g., 
Example 2.4) • Comparative examples yielded greater star? 
bility regions of parameters from the direct GFPS criteria 
than from (an optimal application of) Gelig's frequency- 
domain criteria.

A summary of comparison of the three methods is 
given in Table 2.2.
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TABLE 2.2 
Comparison of Stability Theorems 
For Multi-Modulator PFM Systems

Theorem 2.1 2.3 and 2.4 2.5 Gelig (44)
Type of 
modulator

CRPFM ;CRPFM (the TF 
can be nonlinea RPFM only

Type of 
the LP

linear,
nonlinear
time-var.

linear, lumped 
distributed,can 
be time-varying

linear, lumped or 
d is tributed, t ime- 
invariant only

Restric
tions on 
the LP

finite
order.

the LP must be 
asymptotically 
stable. This 
can be relaxed 
(e.g., Example 
2.4) •

all the elements of 
the transfer matrix 
f(s) of the equiva
lent system must be 
analytical for 
Re s>0. 6i(s) can 
contain simple poles 
at s=0 and on the 
imaginary axis.

Restric
tions on 
the input 
signals

not
explicit.

all input sig
nals must be 
absolutely in- 
tegrable. In 
some cases this 
condition can 
be relaxed (see 
Example 2.4).

or sinusoida 
uji) but the t 
vanish as t-

all the input signals 
must be bounded and 
must go to zero as 
t-*-oo . If the trans
fer function matrix 
£(s) of the LP has a 
pole at s=0 (and/or 
s=juj()they can contain 
constant parts (and/

1 terms with frequency 
ransient parts must 
-00 .

Effective 
ness of 
Theorem: 
(how con- 
servati- 
ve?)

depends
on
choice
of
Lyapunov
function

gives better 
results if the 
TF's have time 
constants that 
are small com
pared to those 
of the LP.

depends on choise of 
2m auxiliary parame
ters, which can be 
determined by optimi
zation process to 
provide max. parame
ter region.

Ease of 
applica
tion

most.dif
ficult, . 
especially 
for high 
order sysl

easiest.
r

;ems.

difficult if optimal 
stability region Cof 
parameters) is desi
red .
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CHAPTER 3

ON NEARLY PERIODIC MOTION IN INTERCONNECTED 
SYSTEMS WITH PULSE FREQUENCY MODULATORS

3.1 Introduction

The motion of a PFM system can be classified into 
the following groups:

1. Finite-pulse stable motion (all the modulators 
of the system stop firing in finite time),

2. unstable motion (the input signals of the modu
lators become very large; pulse frequencies inc
rease until some part of the system is saturated 
or deformed),

3. nearly periodic motion (the input signals of the 
modulators repeat -within reasonable bounds- 
periodically), and

4. non-periodic motion (motion which is not nearly 
periodic).

Sufficient conditions for global finite-pulse sta
bility were presented in the previous chapter. In this 
chapter, the objective is to study periodic motion in PFM 
systems. Owing to the abundance of different possible 
modes of periodic motion, peculiar to these systems, this 
topic has been discussed even in the earliest publications 
(89, 93), and has been given a considerable amount of •
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attention (29, 36, 48, 101, 103, 127). The abundance
of periodic modes, in some way, is not unexpected; in
fact reverbatory activity in neural circuits has long
been suggested as a possible mechanism of instantaneous 

1memory .

Previous investigations of this subject have been
prestricted to single-loop systems . Unlike single-loop, 

single-modulator systems, however, multi-modulator sys
tems cannot, in practice, have pure periodic motion. 
This is true for most high order physical systems^ and 
is related to the fact that there are only a countable 
number of rational numbers.

Clearly, a weaker concept of periodicity is necessary; 
this will be given in the following section.

In this chapter, The CREFM system of Fig. 3.1 is 
considered, in which all the TF's are linear. This sys
tem is slightly less general than the system of Fig. 1 .9.

A
Instantenous (short-term, temporary) memory "refers 

to one's ability to recall tremendous amounts of informa
tion from one second to the next or from minute to minute", Guytcn(50), p. 722.

p
In (103) Pavlidis describes a Lyapunov method which 

is applicable also to multi-loop systems.
•3•'Consider, for example, a fourth order linear, time- 

invariant, conservative system. It has a general solution 
of the form a, cos u),t + LjSinu^t + azcos wzt + b2iSintozt, 
which'is periodic, if and only if to1 and are commensu
rable, i.e., uJ1/u)z is a rational number, Hahn (54).
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j£0<O
y (O

u(t)r(t) e(t) r_r-4/-S— c , U )
CkPFM

Une.tr r.irl (LP)BlockModulator

Figure 3.1 Block diagram of an interconnected system 
consisting of CRPFM's with linear TF's and 
linear dynamical subsystems.

However, some of the results to be presented are directly 
extendable to the system of Fig. 1.9.

3.2 The Concept of eg-Near Periodicity

One possibility of defining a "weak" period is to
translate all the pulse-instants, t. , by a number T >0,1, K
and to compare the translated points with the original 
points; if the translated points are in the vicinity of 
the original points, possibly with a small number of 
exceptions, the number T could be considered as a "weak" 
period of the system. This definition would be difficult 
to employ; however, the following definition has the same 
implications and, at the same time, is easier to handle.

Definition 3.1 Given e > 0 and a> 0, the motion of a PFM —  e

system will be called e.-nearly periodic (e^-n.p.) in the 
interval 16(0, a], if
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(1.) impulse emission of at least one modulator con
tinues during 0<t<oo (i.e., does not stop),

and
(2) there exists a number T£(0,a], such that the

input vector of the modulators e(t), satisfies 
the relation

4
||e(t+T) — e(t)ll < e , Vt6(o,a] (3*1)©

The interval t£(0,a] will be called the observation 
interval and the smallest number, T, satisfying (3.1) 
will be called the e^-period of the motion. This defini
tion is illustrated in Fig. 3-2.

The above concept differs from that of almost perio
dicity, introduced by Bohr, about half a century ago.
Let X be a. Banach s p a c e d  and let || x || denote the correspon
ding norm of x£X.

Definition 3.2a A subset -S' of the set of real numbers 
is called relatively dense if there exists a number £>0 
(inclusion length), such that any interval of length i 
contains at least one number of S Besicovitch (8) .

In certain cases it may be advantageous to replace 
condition (3 • 1) by

|| /f[e(t+T)] -#[e(t)] II < ee, t€(0,a],
where K is an appropriate linear functional.

'’This is a complete, normed vector space (129), 
e.g., Lp-spaces (see footnote no. 3f P» 56).
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Definition 3.2b A continuous vector function f(t)e X 
is called almost periodic^ if to every e > 0 there corres
ponds a relatively dense set such that

||f(t+T) - f(t)l! £ e, vT£[T}e .

The class of almost periodic functions contains all 
functions f(t) constructed "by summing a finite number of 
terms of the form a^cos (uit+9.^), where u> and are 
constants and a. is a constant vector. It can be shown 
that almost periodicity is invariant with respect to ope
rations of addition, multiplication, (in most cases) divi
sion and differentiation, integration and other limiting 
processes and that to any almost periodic function corres
ponds a "Fourier series" type of general trigonometric 
series (3), (8).

Among the differences between e -near periodicity 
and almost periodicity are the facts that the latter 
concept requires continuity 7 and an infinite observation

^See Besicovitch (8), Amerio and Prouse (3) and (for 
a survery of other equivalent definitions), Fink (39).

"^The conditions of Def. 3* 2b can be relaxed to a cer
tain degree by associating a linear functional H  with the 
function f(t) and requiring #[f(t)3 to be almost perio
dic for all linear functionals of a dual space X* (this is 
known as weak almost periodicity) (3).



Figure 3*3 Examples of ee-nearly periodic motion in PFM 
systems: (a), (b) output waveform of the TF
in nn IPFM under sinusoidal input; (a) double
signed IPFM, (b) single-signed IPFM (note 
that these waveforms are not periodic in the 
strict sense). (c) h. typical ee-nearly perio
dic motion in a PFM system with an almost 
periodic linear part. (d), (e) Typical ee- 
nearly periodic motion in simple CRPFM systems.
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interval. In a PFM system the vector e(t) may not be 
continuous. Moreover, it has been observed that motion 
which appears to be periodic over a reasonable time may 
change erratically after some time (see Section 3*5). 
However, in a practical situation, observation of the sys
tem may not be continued indefinetely. Furthermore, the 
measuring equipment used in the observation has some 
accuracy limitations, which must also be taken into con
sideration (this, in a loose way, corresponds to e ofe
Def. 3.1)• Therefore, under proper conditions, one might 
conclude that a motion satisfying Def. 3*1 is "periodic".

It should be clear that Def. 3.1 makes sense only for 
"small" values of eQ; this value must be selected pro
perly for the system under consideration, according to 
the accuracy requirements. For example, for certain cases
the value &e = 0.01 sup||e(t)ll might be satisfactory.

0 < t < oo

3.3 Clues From System Stability

Knowledge about stability of the equilibrium can pro
vide valuable clues to the study of oscillatory behavior. 
Therefore, before proceeding to the main result of this 
chapter (to be presented in the next section), certain 
relevant stability conditions and their implications with 
respect to periodic motion will be discussed.

Under certain conditions, the pulse frequencies of
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the modulators keep on increasing. This motion, defined 
by continued increase in pulse frequency of any modulator, 
will be called uncontained motion. Conversely, the 
absence of uncontained motion will be called contained 
motion and the corresponding property, namely, that for 
every set of initial conditions the pulse frequencies 
will be bounded during 0<t<oo will be referred to as 
containment of the PFM system . In other words, contain- 

means that for any given xmervax of length T, the uuiaoer 
of impulses emitted by each modulator is uniformly bounded,

The containment of a Pi'M system can easily be tested: 
It can be shown that as the input signal to a CRPFM 
becomes very large, it can be replaced by a constant gain. 
Therefore, the test consists of replacing all the modula
tors with linear gains and determining whether the equiva
lent linear system is stable.

In order to proove the above assertion, consider the 
emission instant of the (k+1)sjt pulse, t̂ _+  ̂. From eqs. 
(1.5a), (1.5b), (1.7) end (1.8), it follows that

^k+1J *o(Vi'T) e(r) dt = VIs (3-2)
*k

The mean value theorem of calculus gives

g0(w w  e(̂+iHVi-v - \+is (5-3)
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where }̂c-£]c+i ^ * Now, consider that the output of
the CRPFM is connected to a linear element whose impulse 
response in g(t,"c); let y(t) denote the output of the 
linear element. It is

( *t) 6 f £ )
~  = I J y c A - U  s(t,y — ( t r t i  (3-4)

Since the input signal e(t) is assumed to be (uniformly) 
large, the ratio e(?)/e(t) is (uniformly) bounded for all 
t<t. Therefore, application of Duhamel's theorem to (3.4) 
yields

y (t) M
e (t ) Se (t) •'O

oo
gQ( r , r )  g ( t , r )  e ( r )  a.z, ( 3*5)

i.e., if gQ(^,T) = (constant)®, the effect of the 
CRPFM, for large inputs, is equivalent to a linear gain 
of Mg0/39.

In a real system, the pulse frequencies will be boun
ded due to saturation and/or presence of refractory period. 
This corresponds to saturation of the equivalent gains 
Mg0 / S .

This is always true if tne TF is time-invariant, 
qFor a single-signed CRPFM this approach gives a 

lienar gain of Mgo/S for nonnegative input signals. When 
the input is negative, no pulse is emitted and the gain 
switches to zero.
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The above result leads to the following theorem.

Theorem 5.1 Consider the CRPFM system of Fig. 5.1 ; assume 
that the TF's are such that g0i(t,t) = &0i (cons'fcan'fc)
Vt>0 and i = 1, 2, ..., m. Then a necessary condition 
for the motion to be contained is that the equivalent 
system obtained by replacing all the modulators with 

linear gains of M igQi^Si ^  = 136 asymptotically
stable.

The containment from the equivalent linear system 
can be: investigated using any of the conventional stabi
lity methods. A special system of interest is the case 
in which the LP is time-invariant and finite-dimensional; 
this case is treated in the following corollary.

Corollary 5.1 Consider the CRPFM system of Fig. 5.1 ; 
assume that all the TF's are time-invariant and that the 
LP is also time-invariant and is described by the equa-. 
tions

x(t) = A x( t) + B u(t) and y(t) = C x(t)

Let S be the mxm diagonal matrix whose elements are

s i ±  =  M ^ g Q ^ ( O ) / ^ i  » ( i  = 1 > • • » »m )

Then, a necessary condition for the motion to be contai
ned is that all the eigenvalues of the matrix A + B S C 
have negative real parts.
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The uncontained motion does not exclude the possible 
existence of nearly periodic motion. In a PFM system 
e0-n.p. motion might be present, even though the condi- 
tions of Theorem 3*1 (or Corollary 3*1) are not satisfied; 
however, large perturbations will render the motion to 
"run away", i.e., to be uncontained. Therefore, knowledge 
of containment is useful.

Clearly, "containment" of motion in a PFM system rep
resents a necessary condition for global finite-pulse sta
bility (see Section 2.1, p. 56) which denotes the pro - 
perty that every set of initial conditions results in . 
motion where each modulator emits a finite number of 
impulses during 0<t<oo . If a PFM system is "contained" 
but not GFPS, then the motion will "keep on going"; this 
class of motion where at least one modulator does not 
stop firing as t-*- oo will be called continued impulse 
emission. The class of "continued impulse emission" inc
ludes periodic motion and non-periodic motion. Moreover, 
the n.p. motions (Def. 3*1) of the usual interest are of 
the class of continued impulse emission.

Sufficient conditions for global finite-pulse stabi
lity in CRPFM systems were presented in Chapter-2. These 
conditions, in their negated forms, are also necessary , 
conditions for the existence of continued impulse emission
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in CRPFM systems; they are summarized in Theorem 3.2 and 
Corollary 3.2.
Theorem 3.2 Consider the CRPFM system of Fig. 3.1. If 
the following conditions are satisfied

(1) yQi(t) and r^(t) are absolutely integrable in 
the interval (0,oo ) (i = 1, 2, ..., m ) ,

(2) there exist absolutely integrable functions 
g ^ ( t )  such that I (t , r) I < |g^(t-r)|
(i ,j = 1,..., m ) , and

(3) |g«.(t.7)| < 6., where 6. are finite constants' ' °0x x x
(i = 1».*.» nO t

then, for the existence of continued impulse emission, it 
is necessary that the matrix

M i r°° i 1 1 
" §7 8i / K d (t)l at

0
10contain at least one negatxve element

Corollary 3.2 If the conditions (1)—(3) of Theorem 3*2 
are satisfied then, for the existence of continued impulse 
emission, for the CRPFM system of Fig. 3.1» it is necessary 
that

10 f 1 for i = j ,
8. . is the Kronecker's delta; 4

- 10 for i ^ j .
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(1) at . leaat< one eigenvalue of the matrix

f
8i s T j  at

be outside of the unit circle in the complex 
plane, and

(2) for at least one i = 1, 2, ..., m, 
m oo

(t)l dt > 1 .j?i8i W leii
5.4 Nearly Periodic Motion in PFM Systems

In this section, two (upper) bounds will be presented 
for ee , such that for a given period T and a given obser
vation interval tt(0,a] , the motion is ee-n.p. (i.e.,
Def. 5.1 is satisfied). The first bound is applicable 
to more general cases; however, it can be difficult to 
obtain conservative values, since this usually requires 
numerical techniques. The second bound is especially 
useful if the impulse response on the LP is "almost 
periodic" (e.g., the LP has poles only on the imaginary 
axis) or the LP -contains poles very close to the imaginary 
axis. Before presenting these results, certain relavent 
notation will be introduced.

Let g.(t,£) denote the jth column of the impulset)
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response matrix of the LP, G(t,f); £ denote the identi-“  1C
fication number of the modulator emitting the kth pulse 
of the system, t denote the emission time of this kth1C
pulse and denote its polarity. Then, the output vec
tor, y(t), is given by

N
x(t) = ^ ( t )  + £  M, bk £  0<t<tN+1 (3.6)

k=1 K k

This is an alternative to expression (1.24a).

Let Le the output vector of the PFM system
obtained by disconnecting all the modulators for t > nT, 
and let

[ t ) for t < nT 
v (t) = <! , n = 0,1 , 2, . . (3.7a)

( X n ^ ^  for t > n T

Also, let

(3 .7b)

The vector function ?n (t), to be called the modified 
forced response. represents the zero-initial condition 
response of the continuous part of the system to an input 
that is applied only during n T < t  < (n+1)T and is equal to 
that generated by the modulators during this interval 
when the modulators are connected (see Fig. 3*4).
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Figure

y(t)

a)

2T
A  7i(t>

(b)

\\  2T t

(c)

S0 (t> = y-j ("t) - v 0 ^ )

(d).
\\ y 1 (t+ T) yQ (t)

y 1(t+T)-yQ (t)

(e)

3.4 Illustration of functions used in Theorem 3.3*
(a) Output variable y(t) under ee-nearly periodic 

motion.
(b) The functions yo(t) and yi(t) as defined by (3 .7a)
(c) The function £0 ^ )  as defined by (3*7b).
(d) yo(t) and y ^ t + T )  shown for comparison.
(e) The function y 1(t+T)-yQ (t).
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With the background presented above, the following 
theorem can now be stated.
Theorem 3.3 Consider the CRPFM system of Fig. 3.1. For 
s given T > 0 and a given a > 0, let

e = sup ||r(t+T) - r(t)ll (3.8a)
r Oct<a

and let
e = sup ||y, (t+T) - (t)II . (3.8b)
u 0<t<T 1 ^

If there exists a <J>0 and an

[ I ]  +1 1 1
ee > er + eQ (1+c)LiJ (3.9a)

such that for every two initial condition responses,
1 2 ^ ( t )  and ^ ( t ) ,  satisfying

p  = sup II yl(t ) - x?( t)ll < e (3.9b)
OCtCT 0 0 e

the corresponding modified forced responses satisfy

sup ||£l(t) - d(t)ll < p C  (3.9c)
0<t< T 0

then the motion of the system-is e -n.p. with the e -period6 6
T, in the given observation interval t€(0,a].

The proof of Theorem 3*3 is presented in Appendix B.

^The square brackets denotes integer part.
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The following corollary is a simple extension of 
Theorem 3.3.
Corollary 3.3 Consider the CRPFM system of Fig. 3*1 •
For a given T >  0 and a given a> 0, if there exists a 
6 '> 0 and an

P I  +1
ee > er + eQ (a *) T (3.9a' )

such that for every two initial condition responses,
1 2y^(t) and ^ ( t )  » satisfying (3.9b), the corresponding 

modified responses satisfy

sup ||yl(t)+£1(t) _ s?(t)-i?(t)||^p o' (3.9c')
0<t<T o ^  0 r

then the motion of the system is e -n.p. with the 
e -period T, in the given observation interval t€(o,a], 
where er and are given by (3.8a) and (3.8b), respec
tively.

The upper bound for e provided by Theorem 3*3 (or6
Corollary 3*3) might be large, depending on the value 
of o (or o') which satisfies conditions (3• 9a)-(3*9c)
[or (3.9a'), (3.9b) and (3.9c')]. If the value of 0 
(or o') is not much greater than the minimum 0 (dmin) 
satifying conditions (3-9), this might mean that the 
motion will rapidly degenerate and after a certain time 
will have a completely different pattern. However, if 
0 »  om ^n , Theorem 3*3 does not provide any useful infor-
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mation, since the bound furnished by Theorem 3.3* is
much larger than sup ||e(t+T) - e(t)|| . Therefore, a

0<t<a
must be carefully determined. In general, without 
resort to numerical techniques, it may be difficult to 
obtain conservative values.

Under certain ideal conditions a PPM system might 
possess a pure periodic motion. However, in Section 1.5 
it will be shown that even slightest parameter perturba
tions can change this motion drastically. nevertheless, 
after small parameter changes, the motion may still look 
like the unperturbed motion, at least for a while, i.e., 
the motion may be e -n.p. In this case, Theorem 3*3 can 
be used to estimate, for example, tolerances of the sys
tem parameters to assure an e^-n.p. motion of a given 
accuracy in some given interval.

Theorem 3*3 and the notation introduced in this sec
tion will be illustrated by an example. However, first 
the following useful concept is presented.
Definition 3.3 Given €q ^ 0 and a > 0 ,  an initial condition 
response, ^ ( t )  of a PFM system will be called an e^-proper 
initial condition response (6q -PICR) in the interval 
t£(0,a], if there exists a number, T >0 such that the 
relation

|| (t+T) - y0 (t)ll < eQ , V t€(0,a] (3.10)

is satisfied.
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Example 3.1 Consider a two modulator IPFM system with a 
time-invariant LP having the following impulse response 
matrix

G(t) =
t

t
- V
-t

t > 0 (3 .11a)

Let r(t) = 0, = Sg = 4 and M 1 = Mg = 4 . Also, let
the initial condition response be

2o(t)
2t+1

2t+1
(3 .11b)

Vith this initial condition response, the motion of the 
system is as shown in Fig. 3-5. Note that the motion is

Figure 3.5 Output waveforms of the system of Example 3.1
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periodic with a period T = 2 secs and that ^ ( t )  is a
O-PICR (i.e., €g = 0). For this systems, the modified 
forced response is given by

C o ( t )  = ?0 U )

where,

£ 0 (t) =<
0 for t < 0  

-4t+4 for 1 < t < 2 
-4 for t >2

(3.11c)

( 3 . 1 1 d )

Now, assume that the thresholds of the modulators
S. and S_ are perturbed by infinitesimal amounts 6S„ and 1 2  1
bSg* respectively. Let 6 t ^  and Stg^ be the corresponding 
infinitesimal changes in the pulse-emission instants.
These quantities can be calculated by considering the 
threshold relations.

Let

3Lq ( t ) = (cQt+c 1 ) (3.12)

The threshold relation for the first modulator is

*11 fSl
(cQt+c1) dt - 41 (t-t21) dt = S 1

0 *21

(3.13a)

The threshold relation for the second modulator is



120

f 21z2 (0 ) + J (cQt+c ) dt = S2 (3 .13b)
0 1

From (3.13a) one can obtain

2&c q + 2&c.j + + 48t21 = &S1 (3 .14a)

Similarly, (3.13b) yields

35t21 + iSc0 + SCl = &S2 (3 .14b)

Assuming 6cq = 6c^= 0 (i.e., no perturbation in the ini
tial condition response), (3 .14a) and (3 .14b) can be com
bined to obtain

6t11 = 5S1 “ 3 6S2 (3.15a)

and
&t2i = 3 &S2 (3.15b)

Using (3*7b), (3-8b) and (3-11b)—(3.11d) and the norm
a lII = la | + |b(, one can now obtain

LbJ

e° =0<t?2ll£,(t+T> " 3£° ( t ) " = 8|&1;21- ^ n 1
= 8 l| &S2 - 63^ (3.16)

As an example, let &S1 = 6S2 = 0.0001; (3*16) then yields

eo = 5 .3 -10“4



121

initial condition res-
1'

and 2^(t) = (cgt+cif)
Now, consider two differen

1 1 1  ponse vectors Z q ^ )  = (c0t+c.j)
that are in the vicinitiy of the O-PICR given by (3.11b).

1 P 1 PLet °o“co ~ k°o and C'i“ci ^ ^ci » ‘the resulting infinite
simal differences in the pulse emission instants can be 
obtained from (3.14a) and (3.14b). Since the threshold 
values are assumed to remain unchanged (i.e., 6S^ = 6 8 2 ), 
(3.14b) yields

&t21 = - (i6c0+6Cl) (3.17a)

Similarly, (3.14a) and (3.15a) yield

bt1j = - | 6cQ - | &Cl (3 .17b)

Using (3.9c), (3.11c)—(3.11d), (3.17a) and (3.17b), 
the following relation can be obtained

0!?<2ll£0 lt) ' £0 <t)l1 = 8 tmaX ‘

= i  max | |76Cq+26c^I , 16^ + 26^1 ] (3.18a)

But, from (3.9b) and (3.12),

p = sup [|yi(t) - y?(t)!l = 4 |&c0 + 6c I (3 .19)
0 <t<2 ^  1

•1.

From (3*18) and (3.16), it is not difficult to see that 
condition (3*9c) of Theorem 3.3 will be satisfied for
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7<5 >  ̂  . Therefore, for an observation interval of ten 
periods, (3*9a) yields

rj 1 0 5
ee ^  ^1+ y  = 2,05 x 10 eo (3-20)

Now, assume that an e -n.p. motion is required suche
that e <0.1 for an observation interval of ten periods, e —
Prom (3*20), it is seen that this requirement will be 
fulfilled if 6 q <  4. 9 x 10“^  From (3.16), it follows 
that if 163^ <0.4 x 10“^ and l&S2l< 0.6 x 10”^, then

ee < 0 . 1 .

For comparison purposes the system considered was 
also studied by simulation. A digital simulation of the 
system yielded eg = 0.16 in an observation interval of 
20 secs , after a small perturbation in the threshold 
values (S^ and both changed from 4.000 to
4.001). This result is much smaller than the bound given 
by (3*20). However, (3.20) is applicable to a larger 
parameter region. For this particular case, one can cal
culate o' = 1.8 and = 4 x 10“^. Therefore, (3.9a1) 
yields e <0.22. This bound has the same order of mag- 
nitude as the actual value.

For the special case of a CEPFM system with, a LP
whose impulse response is almost periodic or contains

- a . t
terms of the form fj^t) = e 1 f|(t) (i = 1, 2,..,q), 
where a^'s are small positive constants and f|(t)'s are
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periodic vector functions of t, it is possible to find 
another useful upper bound for e . Before determining 
this bound, first note that if

(I $(t)(l = l|f[(t+T) - f^(t)ll < e fi

and a/T«1, then
J *|j

||f. (t+T)-f, (t)ll= ||e 1 f (t+T) -e i f.'(t)f|

- a .T - a .T
< II (1 - e 1 ) f|(t) + e 1 r^(t) II

< a±T|| f^( t)ll + e . (3.21)

Now, consider the input vector to the modulator 
block; using (3.6) and applying the triangle inequality, 
the following inequality can be obtained:

II e(t+T)-e(t)ll < || r(t+T)-r( t)ll + || £q ( t+T)-£Q( t )ll

N
+ V  ||g. (t+T > t ) -g . (t,t,)ll (3.22) 

*3 3 J *3 J

Let
0<t <£.

er = sup||r(t+T) - r(t)|| , (3-23a)
r 0<t<a

e = sup||x (t+T) - Z n  
*0 0<t<a 0 ^

(t)ll (3.23b)

and let
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e _ = sup || m , g,(t+T,r) - fi,(tfr)ll (3.23c)
g 0 <t<a 1 1

0<‘zr<a
i— 1 f • • f ni

Prom inequality (3-30), it follows that

||e(t+T) - e(t )ll < er + €,r + Ne_ (3.24)
r  y0 &

i.e., for e = e + e + Ne , the motion is e -n.p. in ’ e r yQ g e
the interval t£(0,a]. This result is stated as a lemma,.

Lemma 3.1 Let if he the average number of pulses emitted
in an interval of length T, then the motion of the CRPFM
system of Fig. 3«1 is e -n.p. in the interval tfe(0,a],e
where e > e + e + ^ ( [ I ] + 1 ) e  with e , e and ee 1 y0 e g
as defined in (3.23a) (3.23b) and (3.23c), respectively.

Lemma 3.1 is directly applicable to PFM systems with 
almost periodic LP's and inputs, where in a given , large- 
enough (finite) observation interval (0,a], it is possible
to find a T such that the values e , e and e are arbit-

12 r  ^  *  rarily small . This consideration yields the following
Corollary.

Corollary 3.4 If both the input vector, r(t), and the
impulse response matrix of the LP, G(t,^) are almost 

1 3periodic , then for a large enough (finite) observation 

—

See Besicovitch, Theorem 11, p. 5.
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interval (0,a] and for any e » the motion of the CRPFMe
system of Fig. 3*1 is e -n.p.

The following example illustrates the above corol-.
lary.
Example 3.2 Consider a two-modulator CRPFM system with 
a constant input and a time-invariant LP, having the 
following impulse-response matrix

Let M. = M0 = 1. Note that, in this case, e = 0  and 1 d r
Gr(t+T) = G(t), where T = 2 7T . Clearly, if e = O',

y0
then the motion will be e -n.p. for any e > 0 with© 6
period t =

Example 3.3 In order to demonstrate the applicability of 
Lemma. 3.1 to PFM systems where the impulse response of 
the LP contains lightly damped terms, consider again the 
system treated in Example 3*2. Assume, however, that the 
impulse response matrix is given by

cos out sin u>t
G(t) (3.25)sin u)t cos uit

(3.26)
i.e., all the elements of the matrix G^t,^) are 

almost periodic.
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where b is a positive scalar such that b««J/27t. Note 
that for b = 0, this impulse response matrix reduces to 
that of (3.25).

Eq. (3-26) yields

g ,(t) = e-bt
cos<ot-^sinwt'

2^ 2 ip +b
^  CP si not

-bt
1 • ,4-* s in ojvt

cosMt+Tj sinwt.

2 2 ‘Therefore, using (3-21) and the norm||[x.j , x^] || = [x1 + x2 ] 
one can easily obtain

2 | 2 , 2  • 2 o> +b

and

Thus,

2.1
|£2 (t+T)-g2 (t)ll< bT 75 + (1+ .

e < bT 
g~

2 2 m  +b
U) +  { ] + £ - )  * b(27t+T)

Application of Lemma 3.1 finally yields

So far, conditions for the existence of e -n.p.e
motion were considered and upper bounds for e were deter-©
mined. It is also important to obtain an expression for 
the e -period of the motion. However, this is analytic.-', 
cally a very difficult task and will be carried out, in 
the next section, only for the IPFM system.
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5.5 Nearly Periodic Motion in IPFM Systems: The
e -Period — e--------
In this section a. special CRPFM system, namely, an 

IPFM system is considered. The basic configuration of 
this system is as shown in Fig. 3-1; however, all the 
mod.ulators are assumed to be integral type PFM's only. 
The following theorem gives a matrix relationship which 
relates the ee~period and the net number of pulses 
emitted by each modulator over that period to the system 
parameters.

Theorem 5.4 Consider an IPFM system with a time-invari
ant linear part. Assume that the conditions of Theorem
3.3 are satisfied. Furthermore, assume also that there 
exist positive constants B„, B , and a , such that0 g 0 g

-a t
||M,g.(t)ll < B  e S t t > 0, i = 1 , .. .,m (3.27a)-L J- g

and
IIIq U)!! < BQe 0 , t> 0. (3.27b)

Then, the e -period of the motion satisfies the matrix e
relation

£ a = T r Q + V (3.28)

where, P is an mxm matrix whose elements p. . are defined1 J
By
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p. . = h. .(0) + 10 10

for i = j 

0 for i 4 0
(3.29a) 14

h..(t) = f  M. g..(t) dt (indefinite (3*29b) 
J 0 ij integral)

r_ and q are m-dimensional column vectors, whose elements —0
are defined by

q. = (the number of positive pulses)
1 - (the number of negative pulses) ( ■%?<))

emitted by the ith modulator in 
the interval (0,T] .

and

Oi = f f ri(t) dt* 
0

(3-29d)

£ is an m-dimensional column vector which depends on the
deviation of e -n.p. motion from pure periodic motion 6
such that

II £11 < ( 1 + C ) N +
-a NT

e _■* ■ ■■ + Ne
O f f  r

Bo “° T + -^ e
a0

+ e “aeNT , (3.29e) 
as

N ■ [I] + 1 (3.29f)

and
e < e + e^O+c) e r 0

N
(3.29g)

 ̂̂ If the linear part of the system is described by 
the matrix equations x  =  A  x  +  13 u  , y = C x, then

H(0) = C A " 1B .
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The proof of Theorem 3.4 is given in Appendix C.

For a single-loop, single-modulator IPFM system 
and for e -*• 0, Theorem 3.4 yields the relation

T = | ? [s + h(0 )]| (e = 0 ) (3.30)
0 e

This result was previously obtained by Meyer (93) and 
has later been verified by King-Smith and Cumpston (71) 
and Varadarajan and Pai (127).

The following example illustrates utility of Theorem
3.3.
Example 3.4 A multiple output pulse generator is to be 
designed to provide the periodic waveforms shown in Fig. 
3.6.

i u (t)

 I I l _
5 10 1 5 t (secs)

U2 (t )

I I 9 I 14 t (secs)

Figure 3.6 Desired pulse pattern of the pulse generator. 

An IPFM system containing two IPFM's and a second
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order time-invariant linear part with a constant input 
is a good candidate for the job. In order to facilitate 
the design, some of the parameters of the system can be 
chosen arbitrarily: Let S^= 1, S2= 1, M^= 1 and M^= 1,
and let the LP be described by the equations

x(t) = A x(t) + B u(t)

2L(t) = C x(t)

where,

A =

a5 
O 

11 
1

0 “ "1 0" "-1 0“

ltd II

_b 1_
, and C=

_ 0 -1_

Por containment of the system, the matrix A+BSC 
must possess no eigenvalues in the r.h.p. (Corollary 3*1) 
This condition is easily satisfied if a^ >-1 and a-2 > -1 .

From (3.29b) one can easily obtain (see footnote 
n o . 14)

- 1 .H(0) = C A"'B =
'i/a., o ■

:b/a2 1^a2_

Substitution of (3*31) into (3.29a) yields

0
P = 1 + h (o ) =

Va.j + 1

_ b/a_ l/a0+1

C3.31a)

(3.31b)

From (3.29e), it follows that as e 0, P  0. There-e ~
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fore, for e = 0, (3*28) and (3.31b) give
V

cl = P 1r o T =

V1

a iroi
a., +1

“br01a 1 + a ra ^ 1  a2 02

T (3.32)

Since the period is T = 5 secs, and q = 
yields

5r

1

11J

= 1 = 01
a., + 1L1 l1

, (3.32)

(3.33a)

and,

a2 = 0 - 5roia i ”b— — ~  + 5a rv 1 (3.33b)

(3.33a) and (3.33b) can be combined to obtain

b = 5 a2rQ2 (3.34)

The initial condition response vector, ^ ( t )  is 
given by

^ ( t )  = C e^tx(0) =
-a, t' 

X01 1

«-a t 
1-x02 2 •

(5.35)

The output vector is

y, (t ) = 2Lq (t ) +
_e -a,(t-5)

_e-a2(t-1)_e-a2(t-4)_be-a2(t-5)
(3.36)
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The proper initial condition of the system can he 
obtained from (3.10), for eQ= 0, giving

xoie”5&1 " 1 + X01 = ° (5*37)
and

-x02e"5a2 + e”48-2 " e“a2 -b + xQ2 = 0 (3.38)

(3.37) yields

*01 ■ 7 ^ 5 a T  (5-39)

The threshold relation for the first modulator is 

f 5 -a.tJ £r0l"X01e 3 dt = 1 (3.40)
0

Similarly, the threshold relations for the second modula
tor are

/4 -a?t -a9( t—1) -•
[r02“X02e 6 J dt = 1 (3.41)

u
and

.6 -aDt -b.0 (t-1) -a_( t-4) _J [ r02-X02e + 6 - e ] dt
0

T 6 -a2(t-5)
- b l  e dt = -1 (3.42)

0

Substitution of (3*39) into (3*40) yields
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Thus, one can select = 1 and a1 = -J-.

(3.34) and (3.38) yield

Elimination of from (3.41) and (3*42) and substitution 
of (3*34) and (3*43) into the resulting equation yields 
an equation containing only one unknown, ag. This equa
tion can be solved for ag, yielding

Hence,
r02 = -°*06405757

From (3.34)
b = -0.184108

and from (3.43)

X02 = °*2950206

At t = 0+ the integrator of the first modulator is 
reset to zero. However, the output of the second integ
rator is

a2 = 0.5748298

0
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_ 1Now, assume that the matrix P exists and let

E = £ (3.44)

Furthermore, assume also that the components of the vec
tor p are rational numbers, i.e., jpj = N /Di , where 

and D_̂  are integers (i = 1,...,m) and that the vector 
£ has no zero component. Then, for -̂*-0, the period T is 
an integer multiple of the number

LCM(D D , ..., D ) 15
T =  1 £ (3.45)°
0 GCD(Nlt Ngf ..., Nm)

The number T^ will be called the the elementary 
period. Unlike linear systems, the period of oscilla
tions in PFM systems (or, nonlinear systems, in general) 
could also depend on the initial conditions. If r^ 4 0, 
it is seen that, for this special case the possible 
periods of oscillation (under different initial condi
tions) are quantized, such that they are multiples of the 
elementary period, Tq. If r^ = 0, then the number of 
positive pulses will be equal to the number of negative 
pulses emitted by each modulator.

^LCM(., ., ..) and GCD(., ., ..) stand for least 
common multiple and greatest common divisor, respectively,

LCM(3, 6, 15) = LCM(3, 2-3, 3*5) = 2-3-5 = 30,
GCD(31 6, 15) = 3.
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Prom (3.45) it is not difficult to see that any 
slight perturbation in either the system parameters or 
the input will yield a completely different period of 
motion, provided p^ (i = 1,...,m) remain rational after 
the perturbation. If any component of the vector p 
becomes irrational, then T-«- co . This point is illustra
ted in the following example.
Example 5.5 Consider again the system treated in Example
3 .4 . Assume that the parameters b and xhe input
^ ( t )  are perturbed slightly (from the values calculated
in Example 3-4)» such that a2 = 0.575, r2(t) = -0.064
and b = -0.1841. Substitution of these values- into
(3.45) gives p = N./D = 1/5, and p? = N_/D - — !--1 1 1  2 2 78750
Therefore, for e 0, (3«42) yields 

_ LCM(5. 78750)
To = oSdT T T T )  = 78750 '

For very small perturbations, it is reasonable to 
assume that there will not be a noticeable change in the 
motion. What explanation can be given to this "discre
pancy"?

The answer lies in e • it can be related to measu- 
rement error and has a small but nonzero value. The vec
tor JP in (3*28) is an arbitrary vector. It can be selec
ted such that condition (3.29e) is satisfied. In this 
case, (3*28) yields a number T^ (the elementary period)
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such that the e -period T is an integer multiple of T .© u
For small perturbations, since £ is arbitrary, this ele
mentary period will be independent of the parameters of 
the system or the inputs.

Note that the term 'P in (3*28) must be such that it 
can neutralize the effect of parameter perturbations. In 
order to elucidate this consider again the system of 

Example 3»4»
_ 1Example 3.6 Let = P 9, then for the system of Example

3.4, (3.28) yields
"1“ ■ 1 + r 2 “

a = = £ T + Y?1 = 5
_o_ — i + (A*

.78750 2_

In order to cancel the effect of parameter perturbations, 
V?1 must be selected as

(£' = P “V  =
0

-5
L78750J

Therefore,

£ = £ !£' =
0
23

(315)
(3.46)

From equations (3*29e), (3.29g) and (3*46), one can see 
that for e > 2 x 10""̂ , the motion could be considered as
e -n .p . e



137

3.6 Conclusions

This chapter was concerned with the basic aspects of 
periodic behavior in multi-modulator PFM systems. Since 
motion in a PFM system is not necessarily (purely) perio
dic or almost periodic, a weaker concept, that of e -nearly 
periodic motion (ee-n.p.m.) was introduced. This notion 
has been defined in terms of a given accuracy within 
which the motion could be considered "periodic" in a 
given observation interval.

For CRPFM systems sufficient conditions were given 

such that the motion would not be finite-pulse stable 
(i.e., the modulators will not stop firing in finite 
time) or uncontained (i.e., the pulse frequencies will 

not keep on increasing). The first set of conditions 
constitutes a basic necessary condition for the existence 

of ee-n.p. motion, while violation of the latter, for 
large perturbations, means the motion will "run away".

Two upper bounds were presented for ee , such that
for a given period and a given observation interval, the
motion will be e -n.p. The first bound is applicable to6
more general cases; however, in certain cases, it can be 
much larger than . the actual value. The second bound is 

especially useful if the impulse response matrix of the 
LP is almost periodic (e.g., a finite-dimensional time-
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invariant LP, having a transfer matrix with all its poles 
on the imaginary axis) or contains only lightly damped 
periodical terms.

For IPFM systems with . time invariant LP's a matrix 
relationship was presented, relating the period of motion 
and the net number of pulses emitted by each modulator 
over that period. This relation clearly demonstrates the 
difference between periodic behavior of single-modulator 
and multi-modulator systems: Pure periodic motion, in
the latter, is possible only in the "ideal" case when 
all the components of a certain vector of system parame
ters are rational numbers. Practically, however, pure 
periodic motion or approximately periodic motion may Ionic 
alike because of measurement inaccuracy. Therefore, both 
measurement (or observation) accuracy and the observation 
interval must be considered in investigations of periodic 
behavior.

For some sets of system parameters, it is also 
possible that the motion is not e -n.p., except forC
unreasonably large values of e . In this case the©
motion will have a random appearance, such as has been • 
observed in experimental studies of neural activity.
Thus, the results of this work might offer clues in the 
research on "random" activity in the nervous system.
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CHAPTER 4

OSCILLATIONS IN INTERCONNECTED TIME-DISCRETIZED CRPFM
SYSTEMS

4.1 Introduction

In the previous chapter certain aspects of periodic 
behavior of CRPFM systems were considered. However, many 
interesting problems were left unsolved, such as the 
determination of the possible period(s) of motion and. pre 
diction of possible pulse patterns for given sets of 
system parameters. Only a partial answer to this ques
tion was given for the special case of an IPFM system.

To obtain further results, a different approach is 
used in this chapter; namely, time discretized approxima
tion of the CRPFM system. Such approximations are in 
fact utilized in numerical computations of the system 
response (see Appendix D ) .

It is, however, still difficult to obtain analytical 
results from the resulting (nonlinear) difference equa
tions (except for oscillations having very short periods). 
This difficulty can be reduced by "linearization" of 
these equations by introduction of extra variables, using 
Fukunaga's method (J32 ) for nonlinear switching nets. In 
this case, classical linear techniques (based on characte-
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ristic polynomials and eigenvectors) can be used to 
obtain information about periodic motion.

The analysis presented in this chapter is exact for 
an important class of CRPFM systems, namely that where 
the L P ’s consist of interconnections of unit delays and 
summing junctions. Since McCulloch-Pitts type of neural 
networks constitute a subclass of this class, the results 
are also applicable to such networks.

4.2 System Considerations

In this chapter, a time-discretization of the CRPFM 
system of Fig. 3.1 is considered. It is assumed that 
the LP is time invariant.

4.2.1 Time discretization of general CRPFM system.
The discretization interval should be carefully selected; 
a large value can result in serious errors, while a small 
value means the the dimensions of the approximate system 
might become very large (as in the case of a LP contai
ning time-delay). In general, it should be selected 
smaller than the smallest pulse period (i,e., the minimum 
distance between two successive pulses) expected.

To illustrate the time discretization, consider the 
general system of Fig. 3.1, with m CRPFM's, a time-inva
riant LP and time-invariant TF's. It can be represented as
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shown in Fig. 4.1a. The time-discretization implies the 
assumption that pulses may occur only at time- instants kT; 
k = 0, 1, 2,... . This applies to both, input r(t) and
modulator-output u(t); i.e.,

oo
r(t) = ^Tr*(k) 8(t-kT) (4.1)

k=0
and

oo
u(t)= [ u * ( k )  6(t-kT) (4.2)

k=0
where, r*(k) and u*(k) are the strengths of the impulses 
of r(t) and u(t) respectively,, at t = kT. For conve
nience, let x^(k ) = i^(kT), Xp(k ) = 2p(k T )» etc. The 
equations governing the system of Fig. 4.1a for k = kT 
are

Linear part (LP):

Xp(k+1 ) = £p(T) [xp (k ) + Bp2i*(k)] (4.3a)

y.(k) = C x (k) (4.3b)p P
Threshold element (TE):

If z.(k)<-S. thenu^(k) = -M,; (k)= 0X X X  X c x
(4.4)If |z±(k)l< S± then u*(k) = 0 ; xj'i(k) = xfci(k)

If z.(k)> S. then u*(k) = M . ; x^-it^)25 O'i i  i l
(i = 1,...,m)

where xlj^k) represents the state of the TF of the ith
modulator at t = kT+ .
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Reset

z(t)

Timing Filters (TF)

£(t) u( t)

Devices
Threshold

dz

f tJ SL(t-z)B u(r) d z  + P P

(a)

TE: 
eq.(4.4)£t -t

x (k+1)
“P Vi v

“P “P

(b)

Figure 4.1 (a) A CRPFM system with time-invariant TF and
LP.

(b) Time-discretized approximation, using 
eqs. (4.1)-(4.5).
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Timing filter (TF):

X^.(k+1) = ^t(T) + (l-t £*(k) + 3L(k)]] (4.5a.)

z(k) = C txt(k) (4.5b)

A case of special interest is the CRPFM system of 
Fig. 4 . 2 >  where the LP consists of ideal time-delays 
only. Such a system may be used as an approximation of 
a neural network.. It is especially suited for time- 
discretization which can approach an exact representation 
of the system when the discretization-interval, T, is 
chosen as a certain sub-multiple of the time-delays, T^
(i = 1,...,m) (provided that the input consists of impul
ses occuring at intervals kT). This will be discussed 
n e x t .

y0(t)

u(t) u.u.r

Delay element

Figure 4.2 Block diagram of an interconnected system 
consisting of m CRPFM's and ideal delays.
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4.2.2 Interconnected ayatem consisting of CRPFM*3 
and ideal delays. In this subsection the system of Pig.
4.2 is considered. The block containing the delay ele^ 
ments is assumed to be described by the equations

y i(t+Ti ) = K ^ t )  + y0i(t+Ti) (4.6)
(1 ” 1 y • # * ̂ in)

where, T^ : and are. constants representing the delay 
times and gains, respectively (i = 1,...,m). The input 
vector, e(t) to the modulator block is given by

e(t) = B y.(t) + r(t) (4.7)

where, B is an mxm matrix.

It is assumed that all motion is of the form of 
impulses; however, each modulator may emit impulses of 
different strenghts. Thus,the input to the ith modula
tor, e^(t) may be expressed in the form

00
e J"'±(t) = £  c 6(t-r±j) (4 .8 )

j  =  1

where c.. is the impulse strength of e.(t) at time ^ ... xj ° x xj

It is further assumed that each modulator emits an 
impulse immediately after it receives an impulse; this 
implies that

|c. • gn,(r. .,r. .)| > S., (i = 1 ' (4.9)I ij B0x xj xj - x’ . _ < ? \J • — If C. f m % % )
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A CRPFM system satisfying the above assumptions shall be 
said to be in pulse mode operation .

With the above assumption, the output of the ith
modulator is given by

oo

U i(t) = Mi (4-10)
0=1

where,
’ -1 for % < 0

sgn(£) = « 0 for f =0 (4.11)
1 for ?>0

Let it be further assumed that

g0±(t,t ) > 0  Vt >0 (4.12)

This assumption implies little loss of generality since 
a negative sign can be take up by Moreover, since
for a timing filter of the form x(t)= A(t)x(t)+b(t)u(t); 
z(t) = cT (t)b(t), it is gQi(t,t) = cT (t)b(t), if cT (t)b(t) 
does not change sign, then (4.12) can be imposed. This, 
for example, is true for a time-invariant TF.

With assumption (4.12), (4 .10) can be written as

•1For the developments to follow. , the modulator can 
actually be a different type of PF modulator. However, 
it has to satisfy the assumption that the strength of an 
incoming impulse is such that it regenerates another :U 
impulse.
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oo
U ± (t) = JYL s g n t c ^ ]  S t t - T y )  (4-13X

j= 1

For time-discretization, select a discretization- 
interval, T, such that T. = m.T, where m. (i = 1,...,m)X 1 *

is a positive interval. This interval T must be chosen 
small enough to ensure that the pulse-emission times et. . 
are also multiples of T. The time-discretization con
sists of consideration of the impulse-strengths of the
signals at instants kT. It will also be assumed that the 

oo
input, r(t) =71 r*(k) S(t-kT), will consists of impulses

k=0
of strengths r*(k) at instant kT. Moreover, the initial 
condition response, y.Q (t), is assumed to be given in 
terms of impulse-trains within the delay times, express- 
able as

1
8(t-£T), (i=1,...,m) (4.14)

i =0

Further, let u*(k) and y.*(k) be the impulse-strengths 
of u(t) and y(t), respectively at t = k T . Then, for pulse 
mode operation [condition (4.9)], (4*13) becomes:

u*(k) = Mi s g n [ e*(k)] (4*15)

The initial- condition response given in (4.14) defi
nes yj_(t) from 0<t<T^. For t > T^ = m^T, y^(t) will be

*0i< (t) ■ I
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given in terms of y^(k+m^) (k = 0, 1, 2, ...)• Prom 
(4.6), (4.15) and Fig. 4.2:

y*(k+m.) = K M  sgn [ B y*(k) + r*(k)]. (4.16)

The notation [x]^ denotes the ith element of the vector 
x.

Since it is clear that only impulse-strenghts are 
considered, the superscripts (*) will be dropped for the 
rest of this chapter. Furthermore, for notational simpli
city, certain previously used symbols will be redefined 
in this chapter to denote different variables. Dropping 
the asterisk, the above equation becomes:

y . (k+m ) = K.M. sgn [B Z (k) + r(k)]. (4.17a)

(for double-signed CRPFM's) (i = 1,...,m)

A similar relation can be given for the system of 
Fig. 4.2 with single-signed CRPFM's; in this case it is

y i(k+mi ) = K iM± p [B y(k) + r(k)]± (4.17b)
(for single-signed CRPFM's) (i = 1,...,m)

where }i(x) denotes the unit step function, defined such 
that

f 1 for x > 0
pt*) = { n „ ' (4.17c)' 1 0 for x < 0
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Equations (4 .17) may be unified as

y i(k+mi) = K iM jL p[B y(k) + r t k ) ^  (4.18a)
(i = 1,...,m)

where

p(x) =
' sgn(x) for double-signed CRPFM's

]i(x) for single-signed CRPFM's
(4.18b)

Equations (4.18a) represent m scalar difference equations
of orders , m2 , ..., mm , respectively. They can also
be represented in terms of m. first-order difference

i=1 1
equations which form a vector-dafference equation of order

m-
(4.19)

i=1
Let

x. (k) 4 — y (k+j-1), * “
x %) TVTTT x J 1 > * • • > (4.20)

M iK i

This implies that

X id(k+ 1) = xliJ+,(k). J : (4 .21a)

and, from (4.18a)
oo

=  p  [ L b i j M / j x j i (k) +  r i ( k ) ] • u -21 b)
(i = 1,...,m)

Let
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X±(k) 4

'Xi1(k)"
xi2(k)

••
• and r^(k) =

10 0 
• 
•

1

(4.22a)
r ±(k)

( i=1 , . .. ,m)
and

x(k) =

"£l Wx2(k)
•
• and r'(k) =

'^(k)-
r 2(k)

•
•

1--
- IX s 
•

1

(4.22b)

Eqs. (4.21 ) represent the new set of state diffe
rence equations in terms of the n-dimensional state vec
tor x(k). Because of the definition of p(*) and its use 
in eqs. (4.21b), it follows that

x..(k) = p[»13(t)]. } : (4 .3 )

Therefore, eqs. (4.21 ) can be brought into matrix form as 

x(k+1) = p[D x(k) + r'(k)] (4*24)
where

and

P  £ A ^p(x1 ), p(x 2 )» • •* *p(:

-11 -12* • • D, " — 1 m
D A

--ml -m2 I)—mmJ
1

0 1 0 0 0 0"
0 0 1 0 0 0
0 0 0 0 0 0

-ii =
• •

0 0
•

0
•

0
•

1
•

0
i^a.) 0 0 0 0 0 1

-biiM iK i 0 0 . . .0 0 0_

(4.25)

(4.26a)

(4.26b) 
( i  =  1 , . . . , m )
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and

D . .=

0 0 0 . . 0 0 0“
0 0 0 . . .0 0 0
• • • • • • • • •
0 0 0 . . .0 0 0

.b. .K.K. 0 3
0 0 .
—  m

. .0 0 0_

m. (4.26 c)
(i» j — 1 , • • •, m j

I i ^ j )

In other words,
if I -  k +1; k = 1 , 2, . . . ,m.-1 ; j=i

M bi j V j  if k “ mi ’ * = 1
otherwise

( k  =  1 , . . ,  m i ; I =  1 , . . . ,  i i k  )

(4.26d)

Equations similar to (4.24) have been used to des
cribe McCulloch-Pitts type neural nets [Landahl and 
Runge (62), Caianiello et.al. (18,19 , 20)]. A special 
case treated by Caianiello et.al (19) for neural nets 
assumes r'(k) to be constant such that

r ’(lc) = 4  D 1- 1 = [1, 1, 1]

In this case the transformation 

x(k) = 2 x(k) - 1

T (4.27a)

(4.27b)

reduces (4.24), for the single-signed system [i.e., for
p ( •) = p ( •)], to the form

  (for single-signed
x(k) = sgn D  x(k) CRPFM's and for (4.27c)

r'(k) = -*D 1)
where

sgn (x) =
1 for x>0 

-1 for x<0
(4.27d)
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4.3 The Autonomous Case,_Period of Solutions
For the case r'(k) = 0 eq. (4.24) for the double

signed system becomes

x(k+1) = sgn D[x(k)J (4.28a)
or,

y(k+1 ) = D sgn y.(k), where y(k) = D x(k) (4.28b)

In this section some properties of eqs. (4.28) will be 
presented.

Consider the vector-difference equation

x(k+l) = 0[x(k)] (4.28c)

where &(•) denotes some operator [e.g, for (4.28a), it is
0( • ) = sgn D( • )] . Let

ffk (-) = er(8(«(...)))
k times

Then, the solution of (4.28c) is

x U )  = 3k [x(0)]

A state x is called a cyclic state if there exists 
an integer k such that x = O^x. jf no such k can be 
found, then the state is called a transient state. Let

IrkQ be the value of the smallest k satisfying x = O' x; the
2 knsequence Ox, Ox, • • • > 0 °x = x is called a cycle. The 

constant kQ is called the period (or, sometimes the 
length) of the cycle. A cycle of period = 1 is called a. 
simple cycle. A simple cycle formed by the zero state



r Tx = LO, 0, 0] is called a trivial cycle. If for
every possible state x> 0(x) 4 xf , then is called a 
first state. A sequence of transient states x^, Ox^,

0*x^, generated by a first state x^ is called a 
transient chain (13)*

In shift register designs short cycles are, gene
rally, not desirable. However, short cycles might have 
biological significance (Kauffman (70) relates existence 
of short cycles to genetic stability). The following 
lemma is concerned with short cycles, namely, cycles con
sisting of one or two states.

Lemma 4.1 Let x 1 and x" be the solutions of the equations 
x = sgn D x and x = -sgn D x, respectively. Then, the 
state x 1 will form a simple cycle by itself, and the 
states x" and -x" will form a cycle of period 2.

Proof: Let x(0) = x 1, then from (4.28b), x(1) = sgn D x 1.
But x 1 = sgn D x 1, thus. x(1) = x ' ; x(2) = x ',.... Simi
larly, with x(0) = x ”, x(f;1) = sgn D x" = -x", x(2) = x"» 
x(3) = -x",...• Therefore, x 1 forms a cycle of period 
1 and x" and -x" form a cycle of period 2.

The existence of the solution of the equation 
x = + sgn D x is not obvious. Consider the eigenvalues 
of D . Let x+ denote an eigenvector corresponding to a 
positive eigenvalue, A+ , and let x"" denote an eigenvector



corresponding to a negative eigenvalue, 7T. Then,
D x+ = A+x+ , or sgn D x+ = sgn x+ * Thus, if x+ = sgn x+ >

4- -  "then x = x 1. Similarly, if x = sgn x” , then x = x . 
This leads to the following corollary:

Corollary 4.1 If the matrix D has an eigenvector x+ 
corresponding to a positive eigenvalue, such that 
x+ = sgn x+ , then x+ will form a simple cycle. If D has 
an eigenvector x"* corresponding to a negative eigenvalue, 
such that x” = sgn then x~ and -x“ will form a cycle 
of period 2.

Example 4.1 To illustrate Lemma 4.1, Corollary 4.1 and 
some of the related notations and definitions, consider 
the system

x(k+1) = sgn
'3

1

6'

-2 x(k)

The eigenvector corresponding to the positive eigenvalue
r6lA = 4 is of the form x+ = ” a, and the eigenvector

corresponding to the negative eigenvalue % = -3 is 
the form x” =[_]] where o and p are arbitrary sca
lars. In this case, x+ ^ sgn x+ , thus, there is no simple 
cycle. However, for p = 1, sgn x” = [_]] = *” • Hence, 
x" = £ |j. Note that

sgn
"3  6 " ~  1 " '  1 ”

_1 - 2 _ _-1  _ _ - 1 _
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This means that the states [J-j] and £ j] will form a 
cycle of period 2. The remaining states are ^ j a n d  
[”]]> they are transient states. From the first, the 
net goes to the state J and from the second to j . 
This knowledge can conveniently be displayed using the 
diagram shown in Fig. 4.5* Such diagrams are called 
state transition diagrams.

11

Figure 4.3 State transition diagram of the system consi
dered in Example 4.1.

From Corollary 4.1 and Example 4.1 one might intiu- 
tively reach the conclusion that somehow the rank of the 
matrix D and the cycle lengths are related; the smaller 
the rank.-, the shorter become the cycle lengths. This 
point was explored by Caianiello and Accardi. The follo
wing theorem is due to Caianiello (19, 20).

Theorem 4.1 [Caianiello (19)1 I f D  is of rank 1, then 
the system described by (4.28) can only have a period of

(1) 1 if c2 >0, or
(2) 2 if c2 <0,

T Twhere c2 = b sgn a and D = a b ; a and b are n-dimensio-
nal constant vectors.
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Proof: Consider (4.28b). Since the matrix D is of rank
T1, it has the form a b , where a and b are n-dimensional 

column vectors. For k = 0, (4 .28b) gives

£( 1 ) = a kT sgn £(0)

Let bTsgn £(0) = cQ (a scalar), For k = 1,

£(2 ) = a bT sgn £( 1) = a bT sgn (cQ&)

= a bT (sgn cQ ) (sgn a)

For k = 2,

£(3) = a bT sgn £(2) = a bT sgn a bT (sgn cQ )sgn a. 

Let sgn Cq= c1 and bTsgn a = c2 (a scalar), £(3 ) becomes 

£(3)= a bT (sgn a)(sgn c1)(sgn c2) = a 0 ^ 2 *

For k = 4, (4.19b) yields

£(4) = a bT sgn £(3) =* CjCg a .

Thus, from an inductive reasoning, one can deduce that

£(k )  =
f a c1 c2 for k = 2, 4, ...

a c °2 for k = 3, 5, ...

For c2 >0, this means y;(k) = a c1 c2 (k = 2, 3, 4, ...),
i.e., only a simple cycle is possible. However, for 
c2 < 0, there will be a cycle of period 2.

(QED)
The same conclusion also follows form Corollary 4.1.
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Since D is of rank 1 , it is similar to a matrix which 
has a nonzero element in a diagonal position as its only 
entry. Thus, it has only one nonzero eigenvalue and any 
vector in E n is an eigenvector corresponding to this 
eigenvalue. This means that Corollary 4.1 will be satis
fied for each possible n-vector whose elements are +1 or 
-1. If the nonzero eigenvalue is positive, there will be 
only simple cycles. If it is negative then there will ■ 
be only cycles of period 2.

The following theorem, which considers the case when 
the coupling matrix D has rank K was prooved by Accardi 
(2).
Theorem 4.2 Accardi (2) If the matrix D has rank K, 
then the number N of the admissible states of the system 
described by (4.2 8) and the maximum possible cycle period 
is such that

N <  2 n - 2n”K+1 + 2.

4.4 Linearization of the System Equations

The approach used in Section 4.3 did not proove to
be very successful mainly because the operator Of was non
linear (i.e., in general, C(c^ x^ + 4 x^ +

c2® ^2’ where C1 and c2 are scalars and £•) and 2̂ 2 are n” 
vectors). Is it possible, then to find an equivalent
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linear system of equations which will adequately describe 
the systems considered in Section 4.2?

To answer this question first consider eqs. (4.24)s

x( k+1) = sgn [ D x(k)+r ' (k)] (d° " ^ siSnea

and
x(k+1) = p[fi £(k) + r'(k)] (| “ f ^ J slSned

describing the systems considered in this chapter. Prom 
the above equations, it is not difficult to see that for 
the double-signed system, the elements of the vector 
x ( k ) can only take on the values +1 , 0 or -1 and for the

2single-signed system 0 an 1 are the only possible values , 
i.e., only a finite number of states are possible.

Since only a finite number of states are permissible, 
it is possible to find an equivalent linear system by 
introducing extra variables. Por binary switching nets 
such a technique was described by Pukunaga (152 ) , in a 
short technical note. Some of the consequences of this 
linearization was later worked out by da Ponseca and

The variable y(k) corresponds to the pulse strengths. 
For the double-signed system, +1 represents a positive 
pulse and -1 represents a negative pulse. For a single
signed system +1 represents the presence of a pulse and 
0 represents its absence. In the double-signed case one 
can also use the symbol 0 to denote the absence of a 
pulse .
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McCulloch (131). In general, this technique
can be extended to any autonomous net defined with res-

3pect to a finite field .

A field is an algebraic system consisting of two 
operators and their inverses (e.g, addition and its 
inverse, subtraction; multiplication and its inverse, 
division). The field of real numbers and the field of 
complex numbers are examples of infinite fields which are 
used in the analysis of continuous systems. When the 
variables of the system under consideration is restricted

field is an algebraic system consisting of a set 
F and two operations defined on F which are single-valued 
functions of two variables, denoted by a + b = c and 
a*b = c, called addition and multiplication (not necessa
rily the addition and the rnultiplication of the arithmetL c 
of ordinary numbers). The operations + and • satisfy 
axioms A.1 - A .5 (with the dummy operator o replaced 
first by + and then by * ) and A.6:

A.1 Closure Va,beF-*- c = aobeF,
A.2 Associative law Va,b, ceF-*~ (aob)oc = ao(boc)
A.3 Identity element VaeF-»- HieF 3 ioa = aoi = a
A.4 Inverse element VaeF-*- tfqeF 9qoa = aoq = i
A.5 Commutative law Va,beF-*- aob = boa
A.6 Distributive law Va,b,c,eF-^

a-(b+c) = a-b + b *c, 
(b+c)'a = b •a + c* a.

If the multiplicative operation does not satisfy 
axioms A.3-A.5, the system is called a ring; if one of 
the operations (say +) satisfies A.1-A.4, it is called a 
group. If in addition to A.1-A.4> A.5 is also satisfied, 
the group is called and Abelian (or, commutative) group. 
Thus, a field is a commutative ring with a multiplicative 
inverse and a ring with respect to its additive operation 
is a commutative group (9).
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to a finite number of values, it becomes advantageous to 
use fields that have only a finite number of elements.

In a finite field each function is equivalent to a 
polynomial. The number of elements cannot be selected 
arbitrarily; it must be of the form p , where p is a 
prime number and r is an integer, It can be shown that 
any two finite fields with the same number of elements 
are isomorphic (9 ), i.e., they have the same structure 
and differ only in the way the elements are named. Fini
te fields are called Galois fields (denoted by-GF(pr)), 
in honor of the French mathematician who first investi
gated their properties. Any function of n variables over 
GF(pr ) can be represented by r functions in nr variables 
over G-F(p) (9)»

In this chapter the field GF(2) (also called the 
binary field, or mod 2 field) will be used (This applies 
to single-signed system). However* for sake^of generality, 
some of the results will be given with respect to GF(pr).

The binary field GF(2) has a very simple structure.
I t has two elements denoted by 0 and 1 and two binary 
operations denoted by (+) (called mod 2 addition)^ and

4 The symbol + is also being used for addition in the 
usual sense. However, this will not cause any confusion 
because which field is used will be obvious.
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(•) (called binary multiplication). Operation rules for 
GF(2) are given in Figure 4.4

+ exclusive OR 
v OR 

AND 
a ' NOT a
Basic conversion rules: 
a' = 1 + a 
a v b  = a + b + ab

Figure 4.4 Operation rules for the Galois field GF(2).

In logic designer's language mod 2 addition (+) is 
also known as EXCLUSIVE-OR and the binary multiplication 
(•) is known as AND (133). The INCLUSIVE-OR (or, simply 
OR) operation (v) is defined for two variables a and b 
such that a v b = 1 if and only if either a or b (or 
both) is 1. In logic design, it is more customary to 
use INCLUSIVE-OR, AND and NOT ( a 1 = 1 if a = 0; a' = 0 if 
a = 1) operations (This may not be so). It is not diffi
cult to see that

a' = 1 + a
and

a v b  = a +  b + a b

To illustrate how the aforementioned linearization 
can be performed, the following example is given.
Example 4.2 Consider the neural network of Fig. 4.5a,

+ 0 1
0 0 1
1 1 0

• 0 1
0 0 0
1 0 1
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1 .
PFMPFM

-0.7
PFM,

(b)
Figure 4.5 (a) Schematic representation of a neural net

work consisting of interconnections of 
two excitatory neurons (neuron 1 and neu
ron 3 ) and an inhibitory neuron (neuron 2 ).

(b) Block -diagram of a simplified model of 
the same neural network.
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consisting of two excitatory neurons and an inhibitory 
neuron. A simplified model of this net is shown in Fig. 
4.5b. Assuming the pulse.repetition rate of the network 
to be sufficiently low, the effect of temporal summation 
can be neglected. Using the symbol 1 to denote the exis
tence of a pulse and 0 to denote the absence of a pulse, 
the behavior of the net can be described by the equation

x(k+1 ) = p.
0 -1 .2 1 1

0.6 0 1 0.5
1 -0.7 0 0
0 0 1 0

x(k)

The information contained in the above equation can also 
be displayed using the tables shown in Fig. 4.6.

x2 (k) x^(k) x4 (k) x1 (k+1 )

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

x1 (k) x-jj(k) x4 (k) x2(k+1)

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

x1 (k) x2 (k) x^(k+1 )

0 0 0
0 1 0
1 0 1
1 1 1

x^(k) x4 (k+1)

0 0
1 1

Figure 4.6 Truth tables of the system of Fig. 4.5b.
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From these tables one can obtain:

x^k+1) = [1+x2 (k)] [1+Xj(k)] x^(k) v [1+x2(k)][1+x^(k)] x 2 (k)

v [ 1+x2 (k)] Xj(k) x^(k) v x 2 (k) x^(k) x^(k)
(4.29a)

x2 (k+1) = x^(k) + x^(k) v x^(k) (4 .29b)
and

x^(k+1) = x^(k) (4 .2yc)
Also,

x4 (k+1) = x3 (k) (4.29d)

Since a v b = a + b + a b ,  one can express the right hand 
side of equation (4.29) U 3ing only the operations (+) and 
(•)• To simplify notation, the k terms on the right hand 
side of the equations will be dropped. Hence, eq. (4.29a) 
becomes

Xj(k+1) = (1+x2) (C(1+x5 )x4 v (1+x4 )x3]v x ^ x j v  X2X 3X4

= (1 +x2) [(x4+x3x4+x5+x5x4+x5x4+x3x4+x5x4+x3x4 )

v x^x4 ] v x2x^x4 
= (1+x2) [(x5+x4 ) V x^x4 ] V x2x^x4

= (1+x2 )(x3+x4+^jx4+x3x 4+x3x4) v x2x^x4

= X,+X,+X0X,+X0X.+X7X, / a ~zr\ \3 4 2 3  2 4  3 4  (4.30a)
Similarly, eq. (4.29b) becomes

x2 (k+1 ) = (x1 v x3) v x4 = (x1+x3+x1x5 )+x4+(x1x4+x5x4+x

+ X iX 3+4) = x 1+ x 4+x 1x 5+x 1x 4+ x 3x 4+ x 1x 3x 4

(4.30b)
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The net of this example is nonlinear because of the
presence of the product terms of the form x.x. and x.x.x.i j x 3 t
(i,j,C = 1,2,,3; i^o^t). In order to avoid such terms, 
simply define the following new variables

x^(k) = x1 (k) x2 (k) (4.31.1 )
jc6 (k) = x1 (k) x^(k) (4.31-.2)
Xy(k) = x1 (k) x4 (lc) (4.31.3)
xQ (k) = x2 (k) x^(k) (4.31 .4)
x9(k) = x2 (k) x4 (k) (4.31.5)
x 10(k)

✓■"■s.ĉ\
MII x4 (k) (4.31 .6)

x t1(k) = X ] (k) x2 (k) X j ( k ) (4.31.7)
x 12(k) = x^(k) x2 (lc) x4 (k) (4.31.8 )
x 13(k) = Xj(k) x^(k) x4 (k) (4.21.9)
x u (k) = x2 (k) x^(k) x4 (k) (4 .3 1 .10)'

* 15(k) = x 1(k) x2 (k) x5 (k) x4 (k) (4.31.11)

Substitution of eqs. (4.51) into eqs. (4 .50a) and (4.30b) 
yields

x.j (k+1 ) = Xj(k) + x^(k) + x8 (k) + x^(k) + * 10U O
(4.32.1)

and
x2 (k+1 ) = x^ (k) + x^(k) + x^(lc) + x g(k) + x ?(k)

+ 2i10(k) + x ^ ( k )  (4 .3 2 .2 )
Also,

x^(k+1 ) = Xj(k) (eq.. (4.29c), repeated) (4.32.3)



and
x^(k+1) = x^(k) (eq. (4.29d), repeated) (4.32,4)

Since, from eq. (4.31 .1), x^(k+1) = x^(k+1) x2 (k+1), eqs.
(4 .3 2 .1) and (4 .3 2 .2 ) give

x 5(k+1 ) = x^(k) + x^(k) + x2 (k)x^(k) + x2 (k)x4 (k)
+ x^(k)x4 (k)

But, from eqs. (4.31.4 ), (4.31.5) and (4*31.6),
x2 (k)x^(k) = x 8 (k), x2 (k)x4 (k) = x^(k) and x5 (k)x^(k) = x 1Q (k)
Thus, x^(k+1) can be written as

x5(k+1 ) « x^(k) + *4 (k) + xQ (k) + x 9(k) + x 1Q (k)
(4.32.5)

Similarly,
x6 (k) x6 (k) + Xrj( k) + x u (k) + x 12(k) + x ^ ( k )

(4.32.6)

(4.32.7)x7 (lc+1) as X^(k) + xQ(k) + x 14(k)

The rest of the equations can be obtained in the same 
manner; in matrix form they become

x(k+1 ) =

” 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 “

1 0 1 1 0 1 1 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 1 1 1 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 1 1 1 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 1

x(k)
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As discussed, in Example 4.2, it is possible to use 
the truth table of the functions to be linearized first 
to express the function in terms of the logical operations 
(v, inclusive-OR), (*, AND) and ( a 1, NOT a); then the func
tion can be expressed in terms of the binary operations 
( + , mod 2 addition) and (*, mod 2 multiplication). This 
transition was made possible through the transformations 
a T = 1 + a and a v b  = a + b + ab.

However, it is also possible to express any function 
in terms of mod 2 addition and multiplication of its 
variables, directly, without going to its description in 
terms of (v), (•) and ('). The procedure is straightfor
ward and suitable for implementation for programming pur
poses. This is described next.

The function f (x^ , Xgi.-^x^.) can be expressed in the 
following form

m m m
x+m x j

i=1 i=1 j=i+1

m m m

i=1 j=i+1 k=j+1

+ 4* f m X. X q ... X0m  , 1 2 m 2 -1
(4.33)



167

where L  (i * 0,1 ,2,.. ,2-1) are binary constants (0 or 1). 
In order to calculate set x^ = x 2 ~  ••• ~  x m = 0* Then, 
from eq. (4.33), obviously,

f0 = f (0,0,...,0)

Now set Xj = 1 and x 2 = x^ = ... = xm = 0, then eq. (4*33) 
gives

f (1,0,...,0) = fQ + f 1 

Since f^ is known can be calculated from 

f 1 = f(1,0,...,0) + fQ

This procedure can easily be applied to obtain fg, f^,...
f . In order to calculate f , substitute x. = x0 = 1, m m+1 1 2 '
x^ = x^ = ... = xm = 0, then (4.31) yields

fm+l = fd»1»0,0,...,0) + fQ + f 1 + f 2

Generalizing this idea, it is seen that the coefficient
O'

of a term of the form I T  x p/.\ can be calculated from
i = 1 U ;

X£(1) “ xe(2) - • • • - x£(^) = 1
(the remaining variables set to zero)

+ + Z j ^t(i) + Z j ^coefficients of the terms
i=1

of the form x ^ j x ^ j j; i,j-1,..,^» i^j) + Z] coeffi

cients of the terms of the form x ^  ̂ )x {,(j )x t(k) ’ =1 »• •
i ^ j A )  + ...... (4.34)
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Example 4.3 In this example the system considered in 
Example 4.1 will be linearized. Eor this purpose, let 
the symbol 1 denote the presence of a positive pulse and 
let the symbol 0 denote the presence of a negative pulse 
(This choice is, of course, arbitrary; one could also 
choose 0 for a negative pulse and 1 for a negative pulse). 
Information concerning state transitions is shown in Fig. 
4.7.

x 1 (k) x2(k) x 1 (k+1 ) x2(k+1) x^(k+1)

0 0 0 1 0
0 1 1 0 0
1 0 0 1 0
1 1 1 0 0

Figure 4.7 Truth table for the system of Example 4.1

Let xQ (k) = 1 and x^(k) = x 1(k)x2(k). In this case, 
since there are only two variables, x,j(k) and x2(k), any 
function f [x^ (k),x2(k)] can be written in the form:

f[x1 (k) ,x2 (k)] = fQ+ f.jX.jtk) + f2x2(k) + f^x^(k)

where ,
f0 = f (0,0) ,
f1 = f (0,0) + f(1,0),

f2 = f (0,0) + -f.(0,-1)
and

f5 = f(0,0) + f(1,0) + f(0,1) + f(1 ,1)



Thus,
x.j (k+1) = 0 + (0+0)x^ (k) + (0+1)x2(k) + (0+0+1+1)xj(k) 

= x2(k),

X2 (k+1) as 1 + (1+1 )x.j (k) + (1+0)x2(k) + (1+1+0+0)x^(k) 
= 1+x2(k)

and
x^(k+1) = 0,

or in matrix form:

A ,

"1 0 0 0"
0 0 1 0

x(k+1) = 1 0 1 0 x(k) = A x(k)
_0 0 0 0_ (GF(2 ))

Consider the characteristic polynomial of the

A + 0 0 0

p(*) = 0 A 1 0 = A2 U + 1 ) 2 (GF(2))
1 0 A+1 0
0 0 0 7i

(4.35)

In Example 4*1 it was shown that the system had a cycle
of period 2 and two transient states. The characteristic
polynomial also contains this information; the term
(A+1) shows that there is a cycle of period 2 and the 

2term \ shows that there are two transient states . This 
point will be elaborated during the rest of the chapter 
(see Examples 4.6 and 4.7).
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This procedure can easily be implemented using a digi
tal computer. For this purpose, it is convenient to assign
an m-dimensional vector e . to each veriable x . of the"J 3
form Xj = )x ̂ (2 ) * " ^ ^ ( i ) ' sucil that the t(1)th> £ ( 2 ) ^
....,((i)th elements of e. are 1 while the rest of thet)
elements are zero. Let indexfe.) denote the number of“3
nonzero elements of §... It is not difficult to generate 
vectors e . with increasing index. To determine the coeffi- 
cient of the term x.. in the expansion of a function 
f(x) = f(xj,x2 ,...,xm ), simply sum (mod 2) all the coeffi
cients corresponding to each e. , where index(e.j) < index(e.)-x -x j
and has no nonzero element in positions corresponding
to zeroes of e .; and add f(e^) (mod 2) to the result.D J

The listing of a Fortran program based on the above 
procedure is presented in Appendix E. A sample output of 
this program is given below.

IoINAi. L' 'jUA T J ■

x(k+l) = Y

4.7i; 3 ,09 - 1 « 2 :> -2.95
0 . y'Z 2.45 S. 9 6 2.69
3 .9 x 3 . A 6 0.27 >+ ■ 6 ̂
2.25 1 . 1A r2 » 10> -0.91

x(k)
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T!U-JSF:D R M A '|-TON'S I.JSEI?
Y = 1
1

Y  = X
2 1

Y = >;
3 2

Y = X
4 2

Y = X
5 4

V a V X

6 i 2
U  _  w  w
I -  A X

7 1 3
V = X X

P 2 3

Y = X X
9 1 X

Y = X X   "
10 2 ^

Y = X X
11 3 4

Y "a X X X
12 1 2  2

Y = X~ X X
13 1 2 4

Y = X X X
14 1 3 4

Y X X X 
2 3 4

Y = X X X X. 
16 1 2  3 4

'IjUAT J! J i -i

2.U+1) =

1J, J 0 .J 11 V- 0 r 0 r p o 0 0
1 1 0  ̂1 1

. p ' ) 0 y 0 0 c 1. 1
r : 1 1 1

r< p; 1 r l 1 0 0 o 1 r,
J 1 1 1 1 . 1 I 1 I . 1 1 1 1 I 1 1

1 'J 'j I 0 1 r 0 (_) 1 o 1 p 1
1 r\./ 0 0 1 v./ 1 o 0 1 1 1 I 0

') 1 1 0 1 f\ o I' 0 0 0 ■J ‘J 1 1
f\ 1 1 1 A 1 < \ 1 1 0 r i r J. 0

1 1 ) 0 1 0 1 0 o 1 V 1 r, 1
, ; 0 1 n 0 6 i 1 .1. u 0 1 c W o

1 1 o 1 0 1 ( • 0 ). 0 1 (., 1
r; 0 1. o '• 1 0 1 0 1 1 1 1 0
ej 0 1 o 0 0 1 1 j. 0 !' 0 1 0 :.i Pi

1 1 'v V 1 p 1 c 0 () 1 0 1. p 1
o ]. 'J 0 1 i 1 0 0 0 1 0 0 0

1 . o 1 . .0 .0 v< \ 1 3. 0 0 u 1 0 0 0

2L(k)
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4.5 Determination of Cycles and Periods of the Linearized 
Net

>n
Although the linearized net can have 2 states only

2 of these correspond to the original nonlinear net.
The states belonging to the original system will be called 
natural states and the remaining states will be called 
artificial states. Note that the linearized net is such 
that a natural state is mapped a l w a y s  into a natural 
state, though an artificial state could be mapped into 
either an artifical state o r into a natural state. Prom 
this fact it follows that a cycle can contain only one type 
of state, i.e., there cannot be any cycle containing both 
natural and artificial states. This point will be illus

trated in Example 4.6.

To elucidate the concept of natural states,consider 
a nonlinear net with two variables and x2> lineariza
tion of this net requires introduction of the variables

Thus, the nonlinear net can assumeXq = 1 and x^ = XjX2 .

rr \ 11 rn0 1 00 9 0 t 1LO- Lo_ Lo-J
and

11
1

L.1J

as its possible states, corresponding to x^ = ^  - 0, 
x.j = 1 , x2 = 0; x.j = 0 ,  x2 =s 1 and x^ = x2 = 1 , respecti
vely. In the 4-dimensional vector space over the binary 
field, the vector x = (Xq, x^, x2 , x^)^ can also assume
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the values

[-01 -01 01
0 1 0
0 9 0 9 1

Lo- LoJ LoJ
and

O' 
0 
1

L 1

These states are the artificial states since they have no 
correspondence to the states of the nonlinear net.

In this section a summary of the methods for determi
ning cycles and periods of a linear net will be presented. 
No distinction will be made between natural states and 
artificial states; this will be delayed until the next 
section. For generality, the results will be given with 
respect to the field GF(pr ) ..

The system considered in this section is assumed to 
be describable bj> the following matrix equation:

x(k+1 ) = A x(k) (G-F(pr ) ) (4.37)'

where x(k) is an n-vector denoting the state of the system
at time t = kT and A is an nxn matrix with elements from 
GF(pr ). The operations in eq. (4 .57) are performed with 
respect to the field GF(pr).

^The matrix A should not be confused with the nota
tion used in the previous sections.
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let X denote the (pr )n-dimensional vector space
(with respect to the field GF(pr )) and let x^ he any point 

2 kin X. Ax^, A x^,..., A x^ also represent vectors from X.
Since X is finite dimensional, there exists a k < (pr )n ,

1csuch that the vector A x .  is a linear combination of the—  — i
k-1previous terms, x^, Ax^,..., A x^; i.e., there exist 

scalar constants Cq , c ^,...,c ^_^ such that

Akx. + c, 1 Ak”"̂  x. + ... + c.Ax. + cnx. = 0 (4.38)- —x k-1- -x 1— l 0—x
Defining by f(A), the matrix polynomial

f (A) = Ak + + ••• + CjA + cQ , (4.39)

eq.. (4.38) can be written in the following compa.ct form:

x ± = 0 (4.40)

There may be more than one polynomial of the form (4.39) 
satisfying eg.. (4.40). The one with the lowest order is 
called the minimum polynomial of the vector x^ (with res
pect to the matrix A). There are polynomials for which 
(4.40) is true independent of the vector x^. The monic 
polynomial m(A) of the lowest order satisfying m(A) = 0 
is said to be the minimum polynomial of A. There is a 
close relationsip between a matrix polynomial f(A) and 
its regular polynomiaD. f(/\), obtained by replacing the 
matrix A with a scalar K  . The minimum polynomial of A, 
m(A) is the least common multiple of all the minimum poly-
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nomials of the vectors from X.

The Cayley-Hamilton theorem states that every square 
matrix satisfies its own characteristic equation, i.e., 
let p(/\ ) = [AI - A| , then p(A) = 0. Thus, the minimum 
polynomial of A, m(A) is a factor of the characteristic 
polynomial p(A ).

A polynomial f (A ) of degree iJ is called irreducible 
if no polynomial of degree less than N divides f(A) with
out a remainder The least positive integer k such that 
f(A) divides A^-1 without remainder is called the exponent 
of f U ) [denoted by xpo f(A) ]. The exponent of the 
minimum polynomial of a matrix A is called exponent of A.
It can be shown that any polynomial f(/\) of degree N (over

/ r\W .

G- F(p )) divides the polynomial ” -1 and that f(A)
divides ;\k -1 if and only if k is a factor of (pr )N-1 . 
Therefore, xpo f(A) < (pr )^-1 and xpo f(A) = factor of 
(Pr )N -1 . If xpo f(A) = (pr )N -l, f(A) is called primitive.

Let k^ ( i=1,2,... ,p.) be the distinct pieriods that a 
net can exhibit and let denote the number of cycles 
with period k ^  It is convenient to denote the cycle 
structure by

°V °l2 ■■■ °ku <4-41>*2 K)1

^ See Peterson and Weldon (115, PP* 472-492) for a comp
lete list of irreducible polynomial over GF(2) of degree < 56.
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In general, it is possible to partition the transi
tion matrix A and determine the cycle structure from the 
cycle structure of the subsystems resulting from the par
tition . For this purpose, an understanding of some basic 
simpler structures is essential. In a linear net, the 
cycle structure is closely associated with the minimum 
polynomial of its transition matrix. If, for example, the 
minimum polynomial is both irreducible, primitive and is 
equal to the characteristic polynomial; except for the 
zero state, all the states form a single cycle. Another 
important case is when the characteristic polynomial is

I
of the form (n(A)) where n(A) is an irreducible polyno
mial. These cases are discussed next.

Case 1: m(A) = p(A)is irreducible and primitive
In this case there will be exactly two cycles; one 

is the trivial cycle formed by the zero state (0,0,...,0)T , 
which is present in every autonomous linear net. All the 
remaining states form the other cycle. There are no tran
sient states. The period of the nontrivial cycle is 
k.j = (pr )n-1 . Thus, the cycle structure is C rn

Example 4.4 Let m(A) = p(A) = + A + 1. This polynomial
k 4is primitive since it does not divide A -1 for k < 2  -1 = 15; 

it corresponds to the matrix
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"0 1 0 0“
0 0 1 0

rs 0 0 0 1
1 1 0 0

(4.42)

This matrix is called the companion matrix of m(A).
4

with m(A) = p(?\) = ? t + A +  1 has a trivial cycle formed 
by the zero state and a single nontrivial cycle formed by 
the remaining states, as shown in Pig. 4.8.

ox0
-x X-

X h
•X_-- 5»*X,-5 62 “3 4

1 A“° X 13 X 12** X 11'

Xr̂ — CO— Xg

’X 10"^“ X9

Figure 4.8 State transition diagram of an autonomous 
linear net with a primitive minimum polynomial
(m(/\) = p(A) = ** + a +1).

Case 2 : m(A) = p(/\) is irreducible
In this case, again there will not be any transient
7state . Let be the smallest integer such that the 

minimum polynomial m(A) divides the polynomial A -1 
without a remainder, i.e., let k^ = xpo m(A). Then, for 
any nonzero state x,

[A(p  ̂ “ 1 - I ] x = m( A) [Ak 1 - I,] x = 0

^'The number of transient states is related to the 
factor of the characteristic polynomial. Thus, nt = 0
if and only if IAI = 0 .  This point will be discussed in 
Section 4.7.
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or,
k 1A x = x

rn 1Therefore, there will be = P ̂  nontrivial, cycles 
of period k 1 . In symbolic form, the cycle structure is

prn -i 1
C|Ck ^kt . Note that the period must be a factor of 

mthe integer p -1. This is important since it restricts 
the allowable values of the period (See Table 4.1 • For 
example, for n = 10, k^ can only be 11 or 31, but for 
n = 1 3» it is 81 91) •

TABLE 4. 1 
Prime Factors of 2n-1 .

n Prime Factors n Prime Factors
3 7 11 23x89
4 3x5 12 3x3x5x7x1 3
5 31 13 8191
6 3x3x7 14 3x43x127
7 127 15 7x31x127
8 3x5x17 16 3x5x17x257
9 7x73 17 134071

10 3x11x31 18 3x3x3x7x19x73

In order to find the cycles, one can start with any 
nonzero state x, and determine the k. states A x ,  A x ,
3 k lA x,...,A x = x. Selecting a state x which does not 

belong to this cycle, another cycle can be obtained.



Repeating this process, all the cycles of the net can be 
determined.

Example 4.5 Let m(?0 = p( = ?fi+ 7?+ J\2+ ?\+ 1. Note
that 2^-1 = 15 = 3x5. Therefore, this polynomial might 

5divide ^ + 1. It is simple to see that it indeed divides
9î +1 . Thus, a net having this minimum polynomial will 

1 5have -jr*4 = 3 nontrivial cycles of period 5, as shown in 
Fig. 4.9.

Figure 4.9 State transition diagram of an autonomous 
linear net with an irreducible minimum 
polynomial [ m(ft) = A4+;\3 + A2+ a+1] .

I
Case 3: m( 7. ) = p(A) = [n(^)] t where n(^) is irreducible

Assume that the minimum polynomial is m(ft)=p(^) =
.g

[n(^)J , where n(A) is an irreducible polynomial of deg
ree n^. In this case prno-1 states will have n(5\) as 
their minimum polynomial, p2rn°- prn0 states [n(^)]2 ,
...., and the remaining p^ rn0 _ p ^  ”^ rn0 states will be

t rnn
associated with the minimum polynomial [n(/\)J . The p -1 
states associated with the minimum polynomial n ( w i l l

p r n 0  1
form cycles of period k^= xpo n(A), the
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states corresponding to the minimum polynomial [n(ft)]2
p2rn0-1 2will form £ ^ —  cycles of period kg= xpo[n(ft)] '= p-k^ .

In general, the states associated with the minimum polyno-
_ . \ -i t v -nirno _(i-l)rnnmial [n(M] (i = will form '0-.= £— Q.- P -------1 kj.

cycles of period k±= xpo [n(A)] rr'tfp-k.j, where is
the smallest integer such that & p >  i. Therefore, the
cycle structure will be

2rn rnn ^ rnrv ( ^ - O r n n
p - 1  p - p  0 p ° - p  0

V f c , * 1 0k2 *2 ....ok (4.43)

Because of its usefulness in computation of the cycle 
structures of more complex nets, the above results are 
summarized by the following theorem.

Theorem 4.3 Let the minimum polynomial of A , m(?0 be
I „of the form m(A) = [n(JV)] (over GF(p )) where, n(A) is

an irreducible polynomial of degree n^. The cycle struc
ture of the system described by eq. (4*35) will be given 
by (4*43), where k^ = xpo [n(?v)] ( i =1 , .. .,-0 . Further
more, k^= Tip k^ , where is the smallest integer,such 
that ^ p > i .

Example 4.6 Let m(A) = (A+1) . In this case n^= 1 and 
t = 2. Therefore, the period of the first nontrivial
cycle corresponding to the minimum polynomial (A+1) is

2-1k^= 1; there will be only one such cycle since Tj—  =1. 
corresponding the the minimum polynomial (A+1)^ ,there
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will be cycles of period k 2= 2k^= 2. The number of
2^-2cycles of period 2 is ^  =  ̂ state transit

tion diagram is shown in Fig. 4.10.

Figure 4.10 State transition diagram of an autonomous 
linear net with m(A) = p(a) = (J\+1 )2 .

Now, consider again the PFM system treated in Example
4.1. In Example 4.3 the characteristic polynomial of its

2 2equivalent linear net was found to be p(^) = A (^+1) .
The minimum polynomial is ^ (A+1) . The term A simply 
indicates that there are transient states but the length 
of any transient chain is <1 (i.e., every transient

a

state map into a cyclic state). The polynomial (^+1) 
was just shown to be associated with two nontrivial 
cycles of periods 1 and 2. There is also the trivial 
cycle formed by the zero state. In this particular case, 
the trivial cycle and the cycle with period 1 are formed 
by artificial states. Thus, one can easily predict a 
cycle of period 2. The state diagram of the linearized 
network is shown in Fig. 4.11.

/b
and b = TT (L /, \ (4*44)

j=1

Let
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x“0

"0” "1“ "1" “"1"
o 0 1 IItA

XI *0
0 ’ £ 1 = 0

IIC\i
XI* 0 1

0 _0_ 0 0

“4
r 1" "1" "1“ ”1“
1
1
1

0 1 0
’ -5 = 0

1
’ — 6 = 0

1
' “7 = 1

1

T "0“ “0“ "0“
1 1

0
0

0 1II00XI 1
0

<« IX KD II <* JX o II 1
0

’ -11“ 1
0

"o" ~0“ "0" ”0“
0 1 0 1

“ 12= 0 • "13= 0 ’ -14“ 1 ’ £ 15= 1
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0
S<
1
-12

^0 ~*~-13 -10 ~ ^ t-1 1 ̂ ~ - 1  5Qt
-14

x„ — *~x„--- x2-*~~4- 1 - 3t
8

“7

Figure 4.11 State diagram of the equivalent linear net 
of the PFM system of Example 4.1. Only the 
states x. -x. correspond to the. original 
system;""^ ind x^-x., R are artificial states■5 -15
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be two cycle structures and let aab denote the cycle 
structure

Aa rb ^  GCD[ka(i),kt(i)]
0 = IT, j j ^ L C M  [ka(i)fkb (j)] (4.45)

The following theorem relates the cycle structure of 
an autonomous linear net with transition matrix A of the 
form

A = A 1 « A2 =
“ 2-

U . 4 6 ) 7

to the cycle structure a .j>a 2 '^s subnetworks with
transition matrices and A 2 , respectively.

Theorem 4.4 [Harrison (62)] The cycle structure of an
autonomous linear net whose transition matrix A is of
the form A = A.® A. is a = a e aot where A. and A 0 are— — 1 —2 1 2 ’ “ 1 —2
nonsingular matrices and a^ and a ^ are the cycle structu
res of the subnetworks associated with the transition 
matrices A^ and A2 , respectively.

Proof: Let x^ an^ ^  denote the states of the net corres
ponding to the submatrices A^ and A^, respectively. The 
period k of any cycle will be the smallest integer such 
that

and A g .
7A^e A_2 is called the direct sum of the matrices A^
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Let k, and k be the smallest integers satisfying
k 1 k2 A 1 = x-i an(* A.2 -2 = — 2* resPectively; then it is

k = LCMCk^kg). If has t̂ j cycles of period k 1 and A2
has 1?2 cycles of period k2 , then, there will be
^  lfc>GDC(k1 ,k2) cycles of period k^.

(QED)
Theorem 4*4 is useful for computing the cycle 

structures of complex nets. Consider, ..for example, a 
transition matrix A of the form A = . ..b A^. The
cycle structure will be a = ...aa^, where a.̂ , a2 ,
. .., ajj are the cycle structure corresponding, to the sub
networks with transition matrices A ^ , A ^ t .. . f A^, respec
tively. Therefore, the cycle structure of any net can 
be determined from Theorem 4.3 and Theorem 4*4. For this 
purpose it is useful to transform the transition matrix 
A into its classical canonical form (13), in which case 
the polynomials m.j(A) = [AI - A | , ..., m^X^) = |AI - A^l 
are irreducible polynomials.

4.6 State Diagram and The Transition Matrix

As illustrated in Example 4.1 (Fig. 4.3), the cycle 
structure of a net can conveniently be represented using
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a. directed graph in which the vertices represent the
possible states of the net. A transition from state x^
to state x- is indicated by a directed edge connecting J
the corresponding vertices. These graphs are called 
state transition diagrams. If the dimension of the net 
is large, this graphical presentation loses its conveni- 
nience. In this case, the same information can be better 
presented in matrix form.

Corresponding to a state transition diagram, the
transition matrix  ̂Q is defined by

1 if there is a transition from state x. to x.“ J “ i
0, otherwise

(4.47)
In network theory this matrix is known as the incidence 
matrix (79). Since there is only one transition from a 
state into another state, the transition matrix 
contains exactly one 1 in each column. Let at t = kT the 
net be at state x^. Let y(k) be a 2n-dimensional column 
vector containing, a 1 at its ith row as its only nonzero 
element. The behavior of the net can be described by

Z.(k+1) = 2 z(k ) (4.48)

Since a. 1 in the ith column of y(k) corresponds to 
the state x^> ^  is

x(k) = : x2j • • • jx^n ] ^(k) (4.49)
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Let

—  1P exists since there is a 1-1 relationship between each 
x. and y .. Let— i

x(k+1) = A x(k) (4.51)

be the linearized equations of the systems considered in 
Section 4.2. Then, from (4.51) and (4.49), it follows 
that

any row of the matrix |AI - Qj corresponding to first 
states are zero, except for the diagonal element which 
is A. Thus, the determinant |AI - Ql can be expanded in 
terms of the rows corresponding to the first states.
Each of these rows will contribute a factor A to the cha.' 
racteristic polynomial. If a state can be reached only 
from the eliminated states, there will again be a A in 
the diagonal position of the row corresponding to that

CThis transformation is called a similarity transfor
mation. A very important property of this transformation 
is the invariance of the characteristic values. Note 
that

PA U )  = I AI-A | = IAI-PQP"1 [ = |P( AI-Q)P~11 = | A I-Ql = PQ U ) .

&  = P-1A P , or A = P Q P_1
6

(4.52)

Consider the characteristic polynomial of the tran 
sition matrix Pq (A) =|AI - Q|. All the elements in
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state as the only element. Expanding with respect to
these rows and repeating the procedure, it is seen that

ntthe characteristic polynomial will have a as a factor,
where n. is the number of transient (natural) states, t

Now, consider a first state x» Let & be the numberX
of transient states generated by x and let k be thec
period of the cycle that x enters after I transitionsX
(see Fig. 4.12). It follows that

*2 AA A x
AA *x

A X A^X . • • -*-A tx

\
A^k c“ 1 V * x  >

Figure 4.1 2 Illustration of state transitions.

Z+ k
Therefore, ft ( % + 1) is the minimum polynomial of x. 
Since the minimum polynomial of the transition matrix A 
is the least common multiple of the minimum polynomials 
of the vectors x> it will be in the form

^ t( a*1 + 1)(Ak2 + 1)...( * *  + 1) (4.54)

where I is the length of the longest transient chain
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and (i = 1,...,#) are distinct cycle lenghts. Expan
sion of the minimum polynomial into the form given by 
(4.54) is not always unique since, in general

(a+b)' = a + b (4.55)

Example 4.8 Consider again the system treated in Example
4.1 (see also Example 4-6). Let

- 1
"1 ' "1 " "1 " T
0 1 0 1

— 0 ~2 = 0 >» IK II 1 ’ -4 - 1
_0_ 0 0 1

Then, from (4-50)

P =
1 1 1 1  
0 1 0  1 
0 0 1 1  
0 0 0 1

The state transition diagram is shown in Fig. 4.13.

si-| —  £3 — — ^2

Figure 4.13 State transition diagram.

From the state transition diagram, the transition matrix 
is easily obtained as

y (k+1) =
'0 0 0 0 '

0 0 1 1
1 1 0  0 
0 0 0 0

y(k)
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Note that

x(k+1) = PQP-1x(k) =
1 0  0 0 
0 0 1 0  
1 0  1 0  0 0 0 0

x(k) (4.56)

(4 .56) is the same as (4*55). The characteristic polyno-
2 2mial is p(A) = A ( A +1) and the minimum polynomial is

2 2 m(A) = A(ft +1 )* The factor A of the characteristic
polynomial indicates two transient states. The factor A
of the minimum polynomial shows" that these transient

p
states are first states and the factor (A +1) designa
tes a cycle of period 2.

4.7 Conclusions

In this chapter, to gain further insight to periodic 
behavior of CRPFM systems, a time-discretized approxima
tion was considered. This approximation reduced the sys
tem to one containing unit delays and thereshold ele
ments. However, except for oscillations having very 
short pei*iodsty it was not possible to obtain analytical 
results directly from the resulting nonlinear equations.

Since the output of a modulator assumes only a fini
te number of states (e.g., at a given time, the output of 
a CRPFM either contains an impulse or not), it was found 
to be advantageous to consider the system equations with 
respect to a finite field [GF(2) or GF(3)]. By inthodu-
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cing extra variables, the system equations were "linea
rized" (with respect to a finite field) using Fukunaga's 
method (1 3 3 ) for nonlinear switching nets.

After the linearization, the characteristic equation
of the system can be used to obtain information about

ntperiodic behavior. For example, a factor h in the cha
racteristic polynomial means that there are n+ transient 
states, a factor A in the minimum polynomial means
that the length of the longest transient chain is I,

kiand factors of the form ( ^ +1) in the minimum polyno
mial mean that there are cycles of period(s) k^ (i = 1,2,
. ..).

In this chapter the main concentration was given to 
a system consisting of interconnections of CRPFM's and 
ideal delays,for which the aforementioned analysis is 
particularly, suitable. For the double-signed system, it 
was assumed that there are no impulse cancellations.
This condition can be relaxed by using the field GF(3).
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CHAPTER 5

CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH

9.1 Summary of The Results

In this dissertation the dynamic behavior of comp
lete-reset pulse frequency modulation (CRPFM) systems 
are considered. In Chapter 1, a review of previous work 
on PFM systems is presented. Also, a brief discussion 
is given on the neuron and the relation of CRPFM to neu
ral modeling. Chapters 2, 3 and 4 discuss the results 
of this work which encompasses two basic aspects, namely, 
stability and oscillatory behavior. The results are 
summarized at the end of these chapters.

In Chapter 2, two different approaches are presented 
for global finite-pulse stability (GFPS) (Def. 2.1, p. 
56), the first is an improved Lyapunov-like method which 
is also applicable to more general type of PFM systems 
(e.g., a PFM system with a nonlinear continuous part); 
however, its difficulty of application increases with 
the order of the system. The second approach is a direct 
approach involving the application of inequalities to 
the system equations; it is easy to use and, at the same 
time, provides bounds on the number of pulses emitted by 
each modulator. Such number is not only indicative of
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the energy spent by the corresponding modulator (e.g., 
in a spacecraft control system which employ controlling 
jets) but also represents a measure of the degree of sta
bility. A comparison is presented between these stabi
lity criteria and previous stability conditions available 
for special classes of CRPFM systems (e.g., systems with 
integral PFM or relaxation PFM); in representative examp
les, the direct GFPS criterion yields comparable (or 
better) stability regions (of system parameters) with 
respect to the other criteria.

In Chapter 5, oscillatory motion is considered. A 
matrix relationship is presented for IPFM systems with 
time-invariant LP's, which relates the period of oscilla
tion to the net number of pulses emitted by each modula
tor over that period. This relation shows that, though 
pure periodic motion is possible in single-modulator sys
tems, in multi-modulator systems, it can exist only in 
the "ideal" case when all the components of a certain 
vector of system parameters are rational numbers. Prac
tically, however, the observed motion may "look like" 
periodic motion, at least over some observation interval. 
Thus, it can be considered "periodic" within a certain 
(measurement and/or observation) accuracy. This consi
deration lead to the definition of the concept of
"e -nearly periodic motion" and to the development of 6
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expressions for bounds on the deviation of the true 
motion from periodic motion.

Oscillatory behavior is further studied, in Chapter 
4, on a time discretized approximation of the CRPFM sys
tem. This approximation reduces the system to one con
taining unit delays and threshold elements. However, 
it is still difficult to obtain analytical results 
directly from the resulting (nonlinear) equations, though 
information concerning short cycles have been obtained. 
Since the output of a modulator assumes only a finite 
number of states (e.g., at a given time, the output of a 
CRPFM either contains a pulse or not), it is advantageous 
to consider the system equations with respect to a finite 
field [GF(pr ) ] . By introducing extra variables, the 
system equations are "linearized" (with respect to a 
finite field) using Fukunaga's method for nonlinear 
switching nets. After the linearization, the characte
ristic equation of the system is used to obtain informa
tion about periodic behavior in terms of possible fre
quencies of oscillation.

5.2 Suggestions For Future Research

Below, several problems arising from the present 
work are stated.
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1) The applicability of the sufficient conditions 
for global finite-pulse stability (GFPS), developed in 
Section 2.3, can be extended and improved by transfor
ming the system. This has been illustrated in examples 
(Examples 2.2 and 2.4). However, there remains the deve
lopment of general rules for this transformation as well 
as methods for optimization of such transformations to 
yield maximum parameter regions sufficient for stability.

2) The GFPS condition presented in Section 2.3 i n c 
lude Condition 3 on p. 65, which allows the TF to be non
linear, but imposes certain restriction of the nonlinea
rities. It would be desirable to relax these restric
tions to allow the TF to contain such nonlinearities as 
dead-zones and/or hysterisis.

3) A Lyapunov-like theorem for GFPS is presented 
in Section 2.2, which requires less restrictive condi
tions than previous Lyapunov-like methods used for these 
systems. This-theorem was applied to individual examples. 
However, the application of this approach to a CRPFM sys
tem in its general form could possibly yield new stabi
lity criteria directly in terms of system parameters.

4) The definition of near periodicity introduced 
in Section 3.2 may be modified by associating a ljne.ar 
functional with the modulator input vector e(t) (e.g.,
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some integral). This is especially meaningful for cases 
where e(t) has discontinuities.

5) The problem considered in Section 5.4 can be 
reversed to that of the determination of the period 
for given accuracy e and observation interval (0,al

w

such that the motion is e -n.p. Iterative methods coulde
be used to attack this difficult problem, which may not 
always have a solution (e.g., the motion may not be 
periodic, in which case the iteration will not converge).

6) In Section 4.4, the system equations describing 
a CRPFM system with ideal delays are linearized by int
roduction of extra variables. In certain cases it might 
be possible to minimize the number of variables necessary. 
This point needs further research. Another interesting 
problem is the determination of an optimal reverse trans
formation, with which a switching network can be trans
formed into a threshold type network, such that the num
ber of thereshold devices are minimized.

7) Demodulation of a PFM signal is usually accomp
lished by passing the signal through a line^ar (lowpass) 
filter. It might be possible to obtain a better perfor
mance (in terms of signal-to-noise ratio) from a filter 
(of the same or smaller order) where certain states are 
reset upon arrival of a signal impulse. Determination
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of the optimal or suboptimal demodulation filter is (at 
present) an unsolved problem of considerable practical 
importance.

8) Investigation of the dynamic behavior of randomly 
connected large-scale CRPFM systems from the macroscopic 
point of view might lead to certain physiological results. 
This investigation can be carried out by defining certain 
macroscopic variables (e.g., a sum formed by the TF out
puts) and using the law of large numbers to find the 
mean values of these variables.

9) The; scope of this work has been limited to comp
lete-reset PFM; it would be desired to consider Partial 
Reset PFM (see pp. 20-21) which has not been studied 
previously (except for the special case of output-reset 
PFM in which only a single state is reset).



APPENDIX A

PROOF OF THEOREM 2.2

In this appendix, matrix inequality (2.14), which 
provides hounds on the number of impulses emitted by 
each modulator, will be derived.

Using e q . (1.24b) in eq. (1.24a), applying Conditions 
2 and 3 of Section 2.3 and (1.24c), the following inequa
lity is obtained:

rti,Ki( t)
Si ^  lzi(ti,K rt)>l = |J fi[>i(r )> y±( ^ .  * ± , z A t ) ’Z] d Z l 

1 i,K.(t)-1 1

fbi,Ki(t) m
p.[|y0i (r)| + V y |M g . (r_t ) | ] }«

ti,K.(t)-1 J=1k=1

Summing the above inequalities for all intervals

^ i , O ' ti, 1̂  ’ ^ i j ^ i , ^ ..... [ti,Ki(t)-1’ti,Ki(t)3
assuming t. n = 0 and using the inequality i , u

Jlf1 (t) + f2(t)] dt| < ^ | f 1 (t)| dt + J | f2(t)| dt
yields

i»K. (t) m K i M



198

Recognizing that ti ^(-t) < t < ti x ( t ) + 1 ’ tlie uPPer 
limit of the integrals in inequality (A.1) can be exten
ded from t^ g;.(t) to t. Considering also that

K-s(t) f t  f t£ J V 0 /k- * 1 0  0

and dividing both sides of inequality (A.1) by S. yields:

K ^(t) < v (t) + Y, K ,(t) h' (t) (A.2)
i=1 J

where v.(t) and h' (t) are defined in eqs. (2.11) and i i j
(2.13)» respectively. In vector form, inequality (A.2) 
becomes

k(t) < v(t) + H'(t) k(t) 

from which inequality (2.14) is obtained.
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APPENDIX B

PROOF OF THEOREM 3.3

Consider.the input vector e(t) to the modulator 
block in the interval tfc( [i-1] T, iT] .

||e(t+T)-e(t)|| < || r(t+T)-r(t)|| + H t + T ) - y (  t)ll (B.1)

From (3.8a), it follows that || r( t+T)-r( t)ll < e^. There
fore ,

|| e(t+T) - e(t)|| < er + Hy.(t+T) - x(t)ll (B.2)

(3*8b) yields

III, (t+T) - a^Ct) II < eQ (B.3)

From (3*9) and (B.3), it follows that

ll£,(t+T) - i^(t)ll £ e Q a  (B.4)

Therefore, using (3.7b),

Hi2 (t+T)-Jt1 (t)ll = || y 1 (t+T)+i, (t+T)-yQ (t)-i0 (t)ll

< ||2L1(t+T)-y0 (t)|| + || £ 1(t+T)-J^(t)ll

< eQ( 1+d) (B .5 )

During the interval te(0,T] , it is y.2(t+T) = y(t+T)
and (t) * y(t). Therefore,

||i(t+T) - i(t)ll < e0 (1+<j), te(0,T] (B.6)



200

Because of (3*9), inequality (B.5) implies

ll£2(t+T) -^(t)!! < eQ ( 1+<J)<5 (B.7)

Repeating the s^teps in (B.5) and using (B.5) and (B.7) 
yields:

|| y5 (t+T)-y2 (t)ll < || y ^ U + T ) - ^  (t)ll + H igtt+T)-^ (t) II

< e0 (1+d)2 (B.8)

Recognizing that during the interval t€(T,2T],
(t+T) = i(t+T), and y 2(t) = y(t), inequality (B.8) gives

lly(t+T) - y(t)ll < (1+d)2e0 , t€(T,2T] (B.9)

Repeating the previous steps for each consecutive interval
yields

||y(t+T) - y(t)ll < (1+<J)ne0 » t£([n-1] T,nT] (B.10)

Therefore, from (B.2) and (B.10),

II e(t+T) - e(t)ll < er+(1+o)ne0 * t6([ n-1] T,nT] (B.11)
(n = 1, 2,..)

In the given observation interval te(0,a], one can
select an e = e + Ke^, such that e r 0

|| e(t+T) - e(t)ll < e , te(0,a]

where, K = (1 +<?)ta/T3-*-1 ̂  clearly, with this value of ee 
Def. 3*1 is satisfied. Therefore, the CRPFM system of 
Fig. 3.1 is e -n.p in the observation interval (0,a].fcj
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APPENDIX C

PROOF OF THEOREM 5.4

let denote the number of pulses emitted by the 
.ith modulator in the interval. (0, T] , and let

* =  £  (C.1)
j= 1  3

Then, from (1.24a), (3*6) and (3.7b), it follows that

m m i
^ ( t )  = y . (t-t > = Y. Z  V n si(t-tii)
^  j=1 3 i=1 j=1 1 13 1 13

(C.2)
The output vector is given by

n-1
y(t) = y_(t) + £  £ J t ) f t6(0 ,t ] (C.3)

^  k=0 *

Consider the integral of the input vector. o f t h e  modula
tor block, e(t) over a period; it is

/nT
e(t) dt = S a (Cv4a)

(n-1)T

where, S is the mxm diagonal matrix

£L = diagLsJ (C ,4b)

and a. is an m-dimensional column vector as defined by 
(3.35c).
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Now, let
n-1

2L‘(t) = Z  £,(t) - i^(t-kT) (C.5)
k = 1  k  ^

and, nT T

Also, let

and,

- J r(t) dt - f r(t) dt (C.6)
(n-1)T 0

Z(t) = J dt, (C.7)

/nT
+ ^ ( t )] dt + Z(nT) + v

(C.8)
Noting that e(t) = r(t) + y(t) and that 

f nT n-1
J E  ^( t - n T )  dt = Z(nT) - Z(0) ,
(n-1 )T n=0

and using (C.5)-(C.8) in (C.3) yields

Eq T - Z(0) + ^  = S a (C.9)

where,
. rTZ q = J E(t) dt.
0

Now, consider the term 'P . In Appendix B it was—n
shown that

l| £ ^ 1  (t+T)-.^(t) II < (1+o)nde0 [generalization of (B.7)3

Therefore,
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ll£n (t)-i0 (t-nT)ll < ll£n (t)-j[n_1 (t-T)|| +

+ ...+ II £ 1 (t-(n-1 )T )-£q( t-nT) (I

= 60 (1+o)n-1 (C.10)

Hence, from (C.5) and (C.10), one obtains

111'(t) II < e Q [(1+o)n/o - n], te(0,T] . (C.11)

Since, || r(t+T)-r(t )II < e^, (C.6) yields 

T T
II Zn II = || f  {x[t+(n-1 )T]-r(t))dt|| < J [|| r [t+(n-1 )Tj 

0 0

-r [t+(n-2)T]ll +.. .+||r(t+T)-r( t)||} dt < e
(C.12)

Equations (C.1), (C.7) and the hypothesis of the theorem

give m ,
fr<r~' r-’P , Bg -a (t-T)

IIz(t)ll = llJlL L M.g,(t-t f e i u —  e 8 (c.13)
J Li=1 j=1 1 1  ^  J ag

From the hypothesis of Theorem 3*4, it also follows that

rnT Bn _ -a^(n-1)T -a_nT
(|J ^ ( t )  dtH < ~  [e 0 -e 0 ] (C.14)
(n-1)T

Substitution of (C.10)-(C.14) into (C.8) yield

iuyi <
„ (1+C) e i— — —  + ne 0 0 r

Bo -a (n-1)T B -a (n-1)T 
T + —  e °  + - & e g

a0 ag
(C.15)

2T)||



Then, (C.1) and (C -7) yield:
m

z(°) = y  y , b - i A (o) (c-i6)J=1 fel J* J 

Let jtj

^  £ l V
i.e., the number of positive pulses less the number of
negative pulses, emitted by the ith modulator in the
interval (0,t }. With this substitution (C.16) becomes

m
Z(0) = (C.17)

3 = 1

Substituting (C. 17) into (C.9), using ( 3*35a)-(-3.35d) 
and matrix notation, one finally obtains the relation
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APPENDIX D

COMPUTER PROGRAM FOR THE CALCULATION 
OF THE RESPONSE OF CRPFM SYSTEMS

Method
This program calculates the response of the CRPFM 

system of Fig. 5*1 with finite-dimensional, time-invari
ant LP and TF's. It is assumed that the combined equa
tions of the TF's are given in the form

x.j (t) = A 2^ (t) + B e( t) , (D.1)

£ (t) = C x1 (’fc). (E. 2)

Also, it is assumed that the LP is described by the 
equations

x2(t) = A_2 + B2 u(t) (D.5)

y(t) = C2x^t) + D u(t) (D. 4)

Description of all the parameters used in the program are 
given in the listing (presented at the end of the A.ppendix) .

Eqs. (D.1)-(D.4) can be rearranged into the follow
ing form:

x = A x + B u + F r  (D.5)

where,
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^1 5 1C2
X  = , A =

“ —2~ _o a 2 _

(D.5b)
rB D - r B  1-1“2 “ 1B = , and F =

iC\l
mli -Q. -

The solution of (D.5) between the firing instances are

*<t) = e ^ t - V  + r  ar (D-6)
" V

Let t* be an instant between the firing times t andK
t^-j • If r(t) is approximately constant from tame 
t* up to time t*+At, then (D.6) yields

(D.7)

where

Q. = e - Z  £ d?
0

(D.8)

If at t = ■fcjc+i » tbe £̂ .+1 —  modulator emits an 
impulse of polarity b ^ ^  and strength M-^+1 » then the 
state at t = t£+ .| is given by

2(tk+1> = + bk+1M <,k+1 k+1
(D.9)
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Immediately upon emission of the impulse the state of the 
th TF is also reset to zero.

The program is based on eqs. (D.7) and (D.9). The 
system output, y.(t) and the output vector of the TF's, 
z(t) are evaluated using eqs. (D.4 ) and (D.2) at time 
instances At, 2At, 3At,... Each time the outputs of the 
TF's are compared with their threshold values and impulse 
emissions are decided in accordance with eq. (1 .24c).
The details of the program are explained by comment cards 
in the listing.

Input Data

Card Quantities Format
1 M,N1, N2, NE, NSS, MLOT, (613, 3E15.8)

T(1), TIMAX, D10 (See the
program listing for a descrip
tion of the parameters).

2 Matrix (row by row) (8F10.4)

Matrix (8FIO.4 )
Matrix C1 (8F10.4)
S± , M ± (i = 1,.,,m) (8F10.4)
Matrix Ag (8F10.4)
Matrix Bg (8F10.4)
Matrix Cg (8F10.4)
Matrix D (8F10.4)
x(0 ) (initial state) (8F10.4)
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Output
1. Input data: M, N1 , N2, NE, NS, T(1), TIMAX, D10, 

Matrices , C^ , Ag, Bg, Cg, D; S^, (i = 1,
2, ...,m); x(0) (initial state); ...

2. The augmented fundamental matrix A, Associated states 
to- be zeroed immediately after each firing, the mat
rix B, the matrices e—^ and Q,(T) (T is the main 
discretization interval)

3. A plot of the first five states if M10T = 0.

4. t^, b^j-C^ (pulse emission instant, polarity of the 
pulse and the number of modulator firing)

5. (the state immediately after an impulse emss-
sion).
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APPENDIX E

COMPUTER PROGRAM EOR LINEARIZING A NONLINEAR NET

This program linearizes eq. (4 .24) (for the single
signed system) by increasing the number of variables of 
the system. The procedure is described in Section 4-4 
(pp. 166-168). A subroutine for calculation of the 
coefficients of the characteristic polynomial of the 
linearized system is also included.

Input data
Card Quantities Format
1 +Xbb+1bbb1bbb2bbb3bbb4bbb5bbb6bbb7bbb8 (20A4)

Connection matrix of the system D.

Output (see pp. 170-171)
1. Input data: The connection matrix D,
2. Fundamental matrix of the linearized system A.
3. Characteristic polynomial of A.

bbb9bb10bb1 1 bb12bb13bb1 4bb1 5bb1 6bb1 7bb1 8 
(b denotes blank space)

2 N (order of the system)
3 R(1),...,R(n) (input vector),

(14)
(8F10.5)
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