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ABSTRACT

The objective of this dissertation is to study the
dynamics of systems consisting of interconnections of an
arbitrary number of complete-reset pulse frequency modu-
lators (CRPFM's) and linear dynamical subsystems (in
general, time-varying, lumped snd/or distributed).
CRPFM, which represents a generalizstion of several types
of pulse frequency modulators (PFM's), consists of two
basic components; a multi-input dynamic element, called
the timing-filter (TF) and a threshold device (TD).
Whenever the output of the TF reaches a given threshold
value the TD generates an impulse and, at the same time,
resets all the states of the TF to zero. This disserta-
tion is devoted to two basic aspects of system motion,
namely stability of the equilibrium and periodic opera-

tion.

Stability is defined in terms of finiteness of the
number of pulses emitted by all modulators. This defi-
nition of "finite-pulse stability" (FPS) is related to
L1I1Lp output stability and implies finite energy expen-
ded. An improved Lyapunov-like approach is presented
which, however, is difficult to employ for higher order

systems. A direct criterion for FPS is given which is

not only easy to apply, but 2lso provides bounds on the
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number of pulses emitted by each modulator. A comparison
is presented between these criteria and previous stability
conditions available for special classes of CRPFM sgystems
(e.g., systems with integral PFM or relaxation PFM). In
representative examples, the direct FPS criterion yields

comparable (or better) stability regions (of parameters).

The second part is devoted to the study of the basic
aspects of "periodic" behavior. For multi-modulator PFM
systems, the usual concept of periodicity (or almost
periodicty) is not meaningful. Therefore, a weaker con -
cept, that of "ee—near periodicity" is introduced. This
notion involves an observation interval (which is usually
finite) and a measure of "desired accuracy" or "observa-
tion accuracy". Certain necessary and sufficient condi-
tions for the existence of € -near periodic motion are
presented. For an IPFM system with a time-invariant
linear part, a matrix relationship is given, which rela-
tes the "period" and the net number of pulses emitted by

each modulator over that period to the system parameters.

Periodic behavior is further investigated on a time-
discretized approximation of the CRPFM system which redu-
ces to a system containing ideal delays, summing junc-
tions and threshold elements. However, it is still diffi-

cult to obtain analytical results from the resulting



(nonlinear) difference equations (except for very short
periods of oscillation); nevertheless, these equations

can be "linearized" by introduction of extra wvariables,
using Fukunaga's method for nonlinear switching nets.
Therefore, classical linear techniques (based on characte-
ristic polynomials and eigenvectors) can be used to

obtain information about periodic motion. This approach
also applies to McCulloch Pitts type of neural nets and

extends existing results on periodic behavior in such

networks.
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CHAPTER 1
INTRODUCTION

1.1 __General Background, Motivetion and Objectives

Modulation is the process of coding informetion into
a carrier wave by varying some of its characteristics in
accordance with a modulation law. In control systems,
modulation is used for a variety of reasons; e.g., to
adapt to a given mode of controlling power, to utilize
given communication chennels for some of the signals, to
improve noise immunity and accuracy, etc. The carrier
wave can be continuous or it can consist of a sequence
of pulses. The first case is celled continuous wave modu-

lation (CWM) and the second case is called pulse modula-

tion (PM).

Most common forms of CWM are amplitude modulation
(AM) and frequency modulation (FM) with a sinusoidal
carrier wave. Examples of CWM used in control systems
are AC servo systems employing 50 Hz, 60 Hz or 400 Hz

sinusoidal carrier AM (63).

With the advance in digital technology, during the
early 1950's, pulse moduletion has become a subject of
increasing interest. A pulse moduletor is cheracterized
by the instances of pulse-emission, all in relation'to

the dynamics of the input signal; this characterizetion



constitutes the moduletion law. Depending on the modula-
tion law, PM can be divided into various groups: pulse-
amplitude modulation (PAM), pulse-width modulation (PWM),
pulse-position modulation (PPM) and pulse-frequency modu-
lation (PFM) (56, 115). In certain applicetions it is
advantegous to use combinations of the above basic types
of PM, e.g. in pulse~-code modulation (PCM) (21) and pulse-
width-pulse-frequency modulation (PWPFM) (31, 32, 42, 66,

76’ 78, 121 )o

Among the different pulse moduletion schemes, PFM
is of particular interest because it constitutes the
means of information transmission used in the nervous sys-
tem (6, 46, 64 , 84 ). A pulse frequency modulator is a
device that codes information of its input signal into
time-intervals and polsrities of identical pulses emitted
at its output. There is an infinite number of ways by
which this coding can be achieved and, not surprisingly,
during the relative short time of research activity in
this field, many different types of PF modulators have

been introduced; they will be reviewed in the next sec-

tion.

Basically, PFM constitutes a form of relaxation
oscillation; most PF modulators can be realized easily
by means of simple RC filters and a few relays or solid

state threshold devices. There are certain control appli-



cations which favor PFM; for example, conirol systems emp-
loying stepper motors. Among the features of a PFM cont-
rol system is the fact that it may be designed such that
pulses are emitted when needed; this is especially impor-
tent in applications where control power must be conserved
such as in certain spacecraft control systems employing
controlling jets. Another feature of PFM is that it has

a good degree of noise-immunity (6, 12, 60, 61, 83) as
compared to PAM or PWM.

Applications of PrM in control systems have been
reported in the following fields.
1. telemetry (108-110),
adaptive flight control systems (96),

satellite attitude control systems (29, 38),

AW

. converting continuous signals into proportional
pulse frequency for digital processing (37,97),and
5. modelling of neural systems (6,46,85,86,102, 106).

The fact mentioned earlier that information transmis-
sion in the nervous system takes place in terms of PFM is
a major motivation of resesrch on PFM including the work of
this dissertation. There are two equally-significant reasons
for this motivation. 1) "It is hoped that new understanding
could be provided to neuro-physiological system behavior,

and 2) since it is believed that biological control sSys-



tems have evolved toward optimal states (6), it is antici-
pated that PFM control systems could provide certain tech-
nological advantages, e.g., noise immunity, adaptability,
efficiency, etc. Certain aspects of these expectations
have already been demonstrated by previous investigators
(see Section 1.4).

The bulk of the previous research on PFM is devoted
to the study of single-loop PFM feedback systems ; rela-
tively little work has been done on multi-loop, multi-
modulator PFM systems. However, in order to fully examine
the afore-mentioned expectations, a through understanding
of systems containing several PF moduletors is essential.
Therefore, the objective of this dissertation is to study
the dynamics of systems consisting of interconnections of

an arbitrary number of PF modulators and dynamical subsystems.

The scope of this dissertation will be limited to
systems containing complete-reset pulse frequency modula-
tors (CRPFM) and linear dynamical subsystems. CRPFM is a
generalization of many other known forms of PF modulastors
and consists of two distinct parts; a multi-input, single-
output dynamic element, called the timing filter (TF) which
defines the pulse emission instants, and a threshold device
(TD) which generates an impulse whenever +the output of the
TF reaches a given threshold value. A formulation of the
CRPFM and the system considered will be given in Sections

1.2.% and 1.5, respectively.



One of the basic characteristics of a system is its
stability. Chapter 2 will be devoted to this important
topic; a Lyapunov-like method and a direct method for
stability snalysis will be presented. Comparison will

be made between these methods, including the previously

existing methods.

Knowledge of the "periodic" behavior of CRPFM gystems
can shed light into the manner information is manipulated
in the nervous system. For example, revarbatory activity
in neurel circuits has been suggested as a possible mecha-
nism for short-term memory (see Section 3.1). Thus, a
chapter (Chapter 3) is devoted to the basic aspects of
"peri odic' motion in CRPFM gystems. It turns out that for
multi-modulator PFM systems, the usual concept of perio-
dicity does not have much meaning. Therefore, a weaker
concept of periodicity, that of "ee—nearly periodicity",
will be introduced (Section 3.1) and some basic rules for

"ee-nearly periodic behavior" will be presented.

In order to obtain further insight, this problem
will 21so be studied, in Chapter 4, for a more special
system consisting of CRPFM's and ideal delay elements.

This special system posseses all the essential properties

of neural systems (see Sections 1.3 and 4.2).



1.2 Pulse Frequency Modulation, Types, Definitions and

Clagsification

1.2.1 Introductory remarks. Consider the pulse sequence

shown in Fig. 1.1. Let Ty t,, ... denote the instants

of pulse-occurences; the instantaneous frequency of the

pulse sequence (64) is defined by

1 1 1
£ = — =, tEEt , b ) (1.1)
k=Tt T T, K Vel

From this definiticn, it follows that the instanta-

neous pulse frequency is a staircase function as shown in

Fig. 1.1c.

In "memoriless" or static pulse frequency modulators

(SPFM), the instantenous pulse frequency is a single-
valued function of the input signal magnitude at time

ty_y Or t,i in case of the latter:
fie = T = Ple(t,)] (1.2)
k k-1

1Here, unidirectional pulses are considered. Cer-
tain applications require positive pulses as well as ne-
gative pulses; in which case, the value given by eq. (1.1)
does not correspond to the usual concept of frequency.
Because of this, the quantity defined by eq. (1.1) is
sometimes called (instantaneous) pulse-repetition rate.
Also, the term pulse-repetition rate modulation is some-
times used as a more precise substitute for PFM.




Eq. (1.2) also means that, after the emission of the
(k-1)th pulse, both (t-t,_,) and 1/f[e(t)] are conti-
nuously compared with each other and as soon as both

become equal, the next pulse is emitted at t::tk.

b u(t)
I
o (4 ) by b, by t, to ceeeety b
—= PFM [—= (b)
| £(t)
(a) 1L __I—

t
-

(e)

Figure 1.1 Pulse frequency modulator, output pulse
sequence and the definition of instanta-
neous pulse frequency.

In one of the early static pulse frequency modula-
tors the function 1/f(e) was given simply by K-e(t), with
K being a proportionality constant, Ross, 1949,(110). 1In
that case, the instantaneocus pulse frequency is inversely

proportional to the input-signal level. Of greater prac-



tical significance; however, are situations where an ins-
tantaneous pulse frequency is required that is propor-
tional to the input signal level. This can be accomp-
lished, if the function f(e) is in the form K-e. A sta-
tic PF modulator of this type will be called a linear

pulse frequency modulator. (LPFM).

There exist a number of possibilities for realizing
static pulse-frequeny modulators. One possibility is

shown in Fig. 1.2. An integrator is used to generate a

1 Threshold

e(t) I\\\ fle(t)] Device

Function generator+

u(t)

Constant 1
input

Integrator Reset

Figure 1.2 A scheme for constructing static pulse fre-
quency modulators. The threshold device (TD)
emits a pulse whenever its input signal chan-
ges from negative to positive and, at the
same time, resets the integrator.

signal proportional to (t-tk_1) and a (diode) function

generator is used to generate a signal proportional to

1/ fle(t)] . The difference between these two signals is

fed to a threshod device (TD) which emits a pulse as soon



as its input becomes posgitive and, at the same time,

resets the output of the integrator to zero.

Now, assume that the input signal e(t) has a very
slow variation with respect to the pulse repetition rate.
In that caese, the modulator schematic of Fig. 1.2 can be

approximated by that of Fig. 1.3, where the integrator

Reset
_T_____ﬁ
£ (4=
e(t) t(e) 2l )l (t-8) y(y)
TD -
Function Integrator Threshold
Generator Device

Figure 1.3 Approximate realization of static PF modula-
tors for slowly-varying inputs.

is fed the signal f[e(t)] , instead of the constant input

1, and the threshod device (TD) is adjusted such that it

emits a pulse whenever its input sinnal reaches a threshold

value of 1. For the LPFM, since f(e) = K'e, the function

generator is not needed and the final circuit becomes

very simple, as shown in Fig. 1.4.

The circuit of Fig. 1.3 approximates the static PFM

of Fig. 1.2 for very slow variations of e(t). In general,
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Reset

e(t) u(t)
TD

(a)

4-layer diode

wd
It Differentiator
R c C
— AR @ e B
e(t) Operational R2 u(t)

Amplifier

(b)

Figure 1.4 1Integral pulse frequency modulator,
(2) block diagram, (b) practical realization
(single-signed).

however, it represents a different type of modulator in
its own right. The same is true for the modulator circuit

of Fig. 1.4 in reference to LPFM.

The device shown in Fig. 1.4 integrates its input
signal and emits a pulse as soocn as it reaches a threshold

value, resetting the integrator output to zero at the
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same timez. This modulator was firgst defined by Meyer
(93) and Li (89) and is called integral pulse frequency
modulator (IPFM). For slowly-varying input signals, IPFM
produces a pulse train having an instantaneous frequency
directly proportional to its input (similar to LPFM)>,
furthermore, its ability to smooth-out (through the integ-
ration process) any noise superimposed on the input sig-

nal, provides it an additional advantage.

A significant difference between the static PF modu-
lators explained previously and IPFM is that, in the
latter, the emission of pulses are decided by not only
observing the instantaneous value of the input signal,
but also its previous values. Therefore, a pulse frequency
modulator of this type will be called a dynamic pulse

frequency modulator (DPFM).

2In this introductory sub-section, only modulators
that emit single-polarity pulses are considered (single-
gigned PFM). Hence, it is assumed that the signals
f [e(t)] and z(t) are nonnegative. When negative pulses
are allowed as well as positive pulses, violation of this
restriction will not cause in any loss of information if
pulse emission instants are determined from |[f[e(t)]] or
|z(t)| and the sign ini: mation is reflected on the out-
put pulses. This seconi case is called double-signed PFM.
For communication applications and for control applications
involving stepper motors and/or digital processors, usually
gsingle-signed modulators are used. For most control appli-
cations, however, double-signed PFM is preferred.

3This fact may be used in designing voltage-to-~
frequency converters. The circuit of Fig. 1.4b is a fun-~
demental form for many voltage-to-frequency converters.



Another well known DPFM is the relgxation type pulse
fregquency modulator (RPFM) (90, 93), which is a degenera-
tion of the IPF modulator with a lesky integrator, as

shown in Fig. 1.5.

Reset
e(t)
. P £-52)
@
(a)
- w
e(t) c, TF u(t)

4-layer diode
(b)

Figure 1.5 Relaxation pulse frequency modulator (RPFM),
(a) block diagram, (b) another practical
realization.

A more general DPFM s.cheme is to feed the input sig-
nal into a dynamical system with a single output (which
will be called a timing filter, (TF) and emit a pulse as
soon as the TF-output exceeds a threshold wvalue, S.

Immediately following the pulse emission, some or all of

the internal states of the TF are reset to fixed values .
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In the first case, the DPFM will be called a partiasl-
reset PFM (PRPFM) and in the second case a complete-reset
PFM (CRPFM) (51, 52).

PFM is basically an asynchronous form of pulse modu-
lation since the time-~interval between successive pulses
is used for informestion coding purposes. This may be an
advantage in some applications since it eliminates the
need for costly syncronization equipment; however, in
other applications, e.g., in application where time mul-
tiplexing is an economic necessity, or in certain applica-
tions involving digital processing, it may be necessary
to assign a clock signal to the output pulses. This form
of modulation is called gsynchronous PM. Pulse amplitude
modulation (PAM), pulse width modulation (PWM) and pulse
code modulation (PCM) are examples of synchronous PM,
However, it is also possible to introduce a clock signal
to PFM; in that case the information coding may be perfor-
med by counting the number of pulses within each given
period (of the clock signal). Such a form of pulse modu-
lation (116, 128) may be called synchronous PFM or discrete

PFM.

In this dissertation discussions.yill be centered
mainly on the complete-reset PFM (CRPFM); this is done

for the following reasons:
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(a) CRPFM represents a generalization of PF modula-
tors which have prooven to be useful for many
control applications, namely, the IPFM and the
RPFM.

(b) It resembles the process of impulse generation
in the nervous system.

(c) It can easily be realized using a simple filter
(RC, RLC, of active) plus a few discrete-type

elements.

CRPFM will be discussed in more detail in sub-section

1.2.3.

1.2.2 The Modulator output relation. The output

signal of any pulse frequency modulator, u(t), is defined

in terms of a sequence of impulses of equal strength, M

and of impulse polarity bk = + 1, emitted at time-instan-
ces t, (k = 1,2,...), i.e.,
N
u(t) = M ;1bk o(t-t,),  Ost<ty, (1.3)

where 8(t) is the unit impulse. Eg. (1.3) shall be called
the modulgtor-output relation.

The pulse emission times, tk and pulse-polarities,

bk follow some given functional relations in terms of the
input signal, e(t); i.e., both t, and b, are determined
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by a modulator input relation for a given PF modulator

type.

Note that the modulator-output is defined in terms
of impulses rather than some defined waveform. This is
done for the sake of generality. Any physical pulse-wave-
form, say f(t), can be obtained by feeding the modulator
output u(t) through a linear filter of transfer function
F(s) =(L{f(t)] . Since this linear filter can be combi-
ned with the suﬁs&stem.following the modulator, the modu-
lator output as given in (1.3) represents a convenient

general form.

1.2.3. Complete~ reset pulse frequency modulation
(CRPF ) . Before proceeding to the definition of CRPFUN,

two well known examples of CRPFM will be discussed,
namely, integral pulse frequency modulation (IPFM) and
relaxation pulse frequency modulation (RPFM). These two
modulators have already been discussed in sub-section

1.2.1 (see Figs. 1.4 and 1.5)4.

First, consider integral pulse frequency modulation
(IPFM) (64, 90, 94), which is defined such that the input
signal e(t) is fed to an integrator whose output, z(t),

4Figs. 1.4 and 1.5 represent single-signed IPFM and
RPFM, respectively (output-pulses have one polarity only).
Here in sub-section 1.2.3, the general case of double-

signed PFM will be presented.
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ig fed to a threshold device (TD), which, whenever |z(t)|
reaches a threshold value, S, resets the integrator-out-
put to zero and emits an impulse of strength M, whose
polarity is equal to the sign of z(t) just before the
impulse~emission. Thus, the functional relations defining

t, and b, are given by

k k
t
z(t) =I e(7) art, b1 S<t, (1.4)
bt
by = min.{tl t>%, _, end |z(t)I25 )} (1.5a)
and
= - 5
b, = sgnlz(t)] . . (1.5D)

IPFM is a simple form of PFM, whose definition was
inspired by pulse modulation in the nervous system
(Meyer, 1961), though, of course, the relation between
IPFM and PFM in the nervous system is very approximateG.
A process somewhat closer related to PFM in the nervous
sysatem, yet still representing a rather gross simplifica-

tion of the latter, is given in terms of relaxation pulse

frequency modulation’ (RPFM) (93), defined by

s

Note from (1.4) that z(tf) = 0 for all k = 1,2,...

61t is possible, however, to represent some other
types of PFM in terms of IPFM and dynamic elements (93).

Tnne name relaxation pulse frequency modulation comes
from its relation to relaxation oscillation (93). A gene-
ralization of RPFM where the first order relation (1.6)
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b st
R .
z(t) =f e e(?) az, t,_,<t<t,  (1.6)
b1

Egs. (1.3) and (1.5) remain the same for RPFM, Note that
RPFM represents a generalization of IPFM, to which it redu-

ces when TR—-oo .

Complete-reget pulse frequency modulation (CRPFM)
represents a generalization of thé above to the extend
that the dynamic element of input e(t) and response z(t)
can be of any order (not necessarily of order one as in

(1.4) or (1.6)). CRPFM will be described. next.

Fig. 1.6 shows the functional block diagram of the
CRPFM. I+t consists of a resettable timing-filter (TF)

and a threshold device (TD). The TD is activated by the
output signal of the TF, z(%t), in such a way that an
impulse is emitted whenever |z(t)| exceeds a threshold-
level, S; the polarity of that impulse is equal to the
sign of z(t). Furthermore, at the instant of impulse-
emission all state variables-of the timing filter are

8
reset to zero .

between e(t) and z(+t) is not linear as in (1.6) but non-
linear, has been defined by Pavlidis and Jury as IPFM
(101). In the literature, RPFM has also been called = _

"neural PFM" (NPFM) (101).

8CRPFM incorporates the features of the "nth order
neural trigger" of Pavlidis (102), the "functional pulse
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IPFM and RPFM, discussed above, are special cases
of CRPFM, where the timing-filter (TF) is of first order.

In fact, the modulator output relation (1.3) and the the

threshold relations (1.5) are valid for (general) CRPFM.

Egs. (1.4) and (1.6) are the timing-filter equations
for IPFM and RPFM, respectively. As illustrated in Fig.
1.6, the timing filter equation for general CRPFM is

given by
t
Z(t) = ff[e(’f), t,'l'] a7, tk-1<t<tk (107)
Byt
Reset
* (¢)| TP (+)
zZ\t ult
e S, M

Timing Filter (TF) Threshold Device (TD)

Figure 1.6 Block diagram representation of the complete
reset pulse frequency modulator (CRPFM).

frequency modulator" of Jury and Blanchard (65)., the "type
II pulse modulator" of Skoog and Blankenship (121) and

the "pulse frequency modulator of the second kind with
complete clearing of the time-marking filter" of Kuntsevich

and Chekhovoi (79). :
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where e(%) represents the modulator-input signal. The
function f£[ e(7), t,7] is usually of the form

f[e(r),t,'(] = go(t,z) e(z) (1-8)

where the kernel go(t,T) is the impulse response of a
(usually RC lowpass) single-input, single-output linear
dynamic systemg. For IPFM (see, eq. (1.4)), it is

go(t,t) = 1 it;t’) and for RPFM (see, eq. (1.6)), it is

g (t,?) = e T (t>7).

In addition to the generalization of the TF
from that for IPFM (eq. (1.4)) and RPFM (eq. (1.6)) to
that for CRPFM (eq. (1.7)), the threshold relation will

be generalized from that given by (1.5) (for both IPFM

ILet the timing filter output z(t) be described. in
t?r?s ofothe state vector x(t) of the TF and input signal
el(t) as

t
2(t) = T (t) [Q(t,tk) z(tz) + ] g(t,T) blz) e(7) a7 ]
Ty
B Tt
where @(t,7) is the_state transition matrix, b(t) is a
column vector and g?(t) is a row vector. Since during
impulse emission, at time t, the threshold device resets
the state to zero, i.e., x(tﬁ) = 0, the first term of the
above equation vanishes. Comparison with egs. (1.7) and
(1.8) gives, therefore

go(t,7) = ¢ (1) B(¢,7) b(v).

107 tnis dissertation, underlined capital letters,
underlined smgll-case letters, and the superscript, T,
will be used to denote, . matrices, column vectors and the
transpose of a matrix, respectively.
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and RPFM) to include a refractory period, TO, which is a
time interval during which the modulator cannot regenerate
another impulse. A refractory period exists in physical
PFM such as that in the nervous system (see Section 1.3).

With this inclusion the threshold relation for CRPFM

becomes:
t [ttt a lz(t) 28} saned) " (1.9)
= min > +T . and |z(t)l2 signed 1.9
k k-1""0 CRPFM

The pulse-intervals, as well as the pulse-polarities,
are used as carriers of informstion. There, exists,
however, physical PFM where only pulses with one polarity
are emitted (e.g., in the nervous system); such case is

referred to as gingle-gsigned PFM, in order to distinguish

it from the more general case of double-signed PFM (above).

For the sake of brevity, the prefix "double-signed" may
not be used, i.e., the term "CRPFM" is defined to imply
"double-gsigned CRPFM", However, for single-signed PFM
the prefix-will be necessary. For single-signed CRPFM,

the threshold relation is given by

for single~

= min{t| t>t, _,+T, and =z(t)25} signed (1.10)

t
k LY CRPFM

A variation of the CRPFM is the partial-reset PFM

(PRPFM), in which only some of the internal states of the

TF are reset. A particular case of such a scheme is the
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output-reset PFM (ORPFM), where only the output of the TF

is reset. Note that IPFM and RPFM also belong to this

category, since they are of first-order.

If the TF of an ORPFM is linear and of a certain
structure, it may be expressable in terms of snother
ORPFM and a linear subsystem. This would be useful in
gsome analytic studies of dynamic systems containing
ORPFM's. Examples of this point will be given in Sec -
tions 2.3 and 2.4.

1.2.4 Clgssification of PFM. The output relation

for any pulse frequency modulator has been presented in

Section 1.2.2 as eq. (1.3):

N
u(t) = M kz1bk 6(t-tk), 0<t<ty, (1.3)

In this sub~section, a classification of PFM will be pre-
sented in terms of the dependency of the pulse-emission

tinmes, tk and the pule-polarities, bk = +1, in terms of

the input signal e(t) over -005t<:tk. In general, this

relation may be expressed as

by 2

and

by =(§b[t1, tor eeesty_qie(t),t, o<t <t ]l (1.11D)
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where G% and G% are functional operators ( G% is a posi-

tive operator11). Depending on the type of these opera-

tors PFM may be subdivided into various classes:

(4) Finite-Memory PFM of Order N (FMPFM):
In this case the kth pulse-instant, tk is a single-
valued function of both the previous N pulse-instants,

t ceayt and the values of the input at

k=1’ Pr_2’ Kk=N-1
these instants, i.e.,

tk = ft[tk_1,tk_2,..,tk_N_1;e(tk),...,e(tk_N)] (1.122)

and

by = E Lt oty oreenty o gielty), .o, e(t, )] (1.12D)

(A.1) Special case: Static PFM (SPFM) (N = 0):

b = Ty

+ £, le(t,)] (1.13a) 12
and

b = £[t, e(t)] (1.13b)

Exgmples of SPFM:
(A.1a) Ross' SPFM (Ross, 1949)

t, = ty_q + K-e(t,) (defined for (1.44a)
: nonnegative
and and continu-
b, = 1 ous inputs) (1.14p)

11See Willems (129), p.26.

'2y0te that file(tx)] = 1/fle(tk)], where fle(tx)] is
as defined by (1.2?.
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(A.1b) Linear PFM (LPFM)
=% , 4+ ————  (defined (1.15a)

t
k k-1 K e(tk) for
positive

(A.2) Special case: Finite-memory PFM (FMPFM

of order 1.

Examples of FMPFM of order 1:
(A.2a) PFM of the first type (Kuntsevich and

Chekhovoi, 1967, (75))

e = by + fle(s, )] (1.16a)
1 for e(tk)> S
b ={ 0 for le(t,)I<s, 570 (1.160)

-1 for e(tk) >=S

(A.2b) Amplitude dependent PFM (Clark and
Noges, 1966, (27))

4, is given by eq. (1.16a) with

k

e
Ty = § (TN-T) for lel<S

f(e) = { (1.17a)
T for |e|>8

where T and TN are positive constants and,

b, = sgn e(tk) (1.17p)
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(A.2¢) 6-modulation13

e =ty + T (1.18a)

Dy

sgn e(tk) - e(t (1.18Db)

k—1)
Note that here the pulse-output is periodic; the
modulation affects only the pulse-polarities.

(B) Partial-Reset PFM (PRPFM):

by

min{t|t>tk_ + T, and [z(t)|28) (1.19a)

1 0

b, = sgn z(tk) (1.19p)

where, for a PRPFM with a linear TF, z(t) = e¢(+)T x(t),
where the state x of the TF consists of two component-
vectors, Xy and X5 such that X, is reset to a vector-

1
value a during pulse emission, i.e.,

£(4) = | mmmm |= B8, ) [—moms
. [Kz(t)} 2 k-1 [;2(th} *
%
¥ fg(t"c) b(7) elT) at (1.19¢)
tk-1

The other states of the TF represented by X, are not .

reset.

13There are many different forms of d-modulation, .
which is becoming populsr in communication; egs. (1.18a)
and (1.18b) describe one of the early forms (see (1) for
more detail).
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(B.1) Complete-reset PFM (CRPFM):
CRPFM was introduced in subsection 1.2.3. It may be
considered as a special case of partial-reset PFM where

X=X, X,= 0 and d = 0 Therefore, the relations for t,

and b, are given by (1.19a) and (1.19b), respectively.
The expression for z(+) becomes
t
z(t) = fg(t)T g(t,7) b(T) el(2) az, (1.202)
Tyt |

which, more generally, can be written as

t
z(t) =_jf[e('c), t,7] at. . (1.7)
T

Examples _of CRPFM:

(B.1a) 1Integral PFM (IPFM) (Jones, Meyer

and Li, 1961, (64))

%
2(+) =fe<'c> az (1.4)

Tt
(B.1b) Modified IPFM (Bombi and Ciscato,
1967, (11))'4
In this case, eq. (1.19a), defining the impulse-

instants is modified to

t, = min{t] $>%,_, and 2(t) = £(s-t,_ )] (1.21)
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i.e., the threshold level is dependent on (t-tk_1). The
equations for the pulse polarities bk and the output of
the TF, z(t) are the same as those for IPFM.

(B.1c) Relaxation PFM (RPFM) (Meyer, 1961,

(93))
t
z(t) =fe-a(t-’?-’) e(7) 4z, (1.6)
b

where a is a constant.

(B.1a) Sigma PFM (EPFM)'° (Pavlidis and Jury,
1965, (101))

t .
z(t) =f(e(’c) - glz(T) az} (1.22)
T

(B.1e) Discrete RPFM16 (Shorﬁle and Alexandro
1966, (116))

This is a discrete appoximation of RPFM (See Fig.
1.72); output pulses of the modulator are allowed to

14Based on experimental evidence, Bombi and Ciscato
claim that a feedback system employing the modified IPFM
can have a better transient response without sacrificing
noise immunity (11).

'5paviidis later used the same name (i.e., =PFM) for
any process in which a dynamic system emits an impulse
whenever any one of its variable (from a specified group)
exceeds a threshold value éin eneral, time-varying? asso-
ciated with that variable (103).



e(t) e'| z(t) | -8 Tx__u(t)
_——CP—" %= az+e' - —J 3 —T

=
|
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T
e(t) _At/— e z=az+e'z I,l/l/ __X_u('t)

=l

(b)

Figure 1.7 Discrete pulse frequency modulators:
(a) Discrete RPFM (also called Discrete
£PFM) of Shortle and Alexandro (116).
(b) Discrete RPFM employed by Monopoli
and Wylie (128).

27
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occur only at discrete interveals of time.

t=%,_4 + T (T is a fixed sampling interval) (1.23a)
T tkq”(? ?)
= e™@ - -a(ty+T-
Z(tk_), = e z(tk__1) bk_1S +I e e(?) at
b1 (1.23b)

M for z(ti) >8
b =§ O for |z(t )l <s (1.23¢)
-M for z(t;) <-8

Shortle and Alexandro call this modulation discrete
ZPFM. Note that the discrete RPFM is also a nonlinear pulse
amplifude modulator. A slightly different version of the
discrete RPFM has been studied by Wylie (128), in which
the dead zone characteristic is modified and a saturation

type nonlinearity is connected in series with the modula-

tor (see Fig. 1.7b).

1.3 The Neuron and Relation of CRPFM to Neural Modeling

In Section 1.1 it was mentioned that information
transmission in the nervous system may be expressed in
terms of PFM. For the benef;‘Lt of uninitiated reader, it
is appropriate +to digress slightly and provide some brief

explanation about the néuron and its properties.

The fundamental unit of the nervous system is the
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neuron (nerve cell). It can be shown that the CRPFM
exhibits many of its properties. The objective in this
gsection is to discuss this point, without attempting to

give details of a CRPFM model for the neuron.

The neuron, like the other cells has a body with

cytoplasm, contains a nucleus and is surrounded by a

polarizable membrane16. Its structure shows a remarkable

adaptation to its special task, generally posessing seve-
ral relatively short projections called dendrites (see
Fig. 1.8) that carry impulses to the cell body and a lon-

17

ger projection called an axon that carries impulses to

Fiber

'”ﬂ'\£§%£;i\bqu (soma)

AN \ ‘-

Presynaptic terminals Endings

Fig. 1.8 Diagram of a neuron.

16For more information on the neuron and the nervous
system, the reader is referred to (115), (50) or standard
textbooks on neurophysiclogy.
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other neurons or neurally activated structures, e.g.,
muscles and glands. Hundreds of nerve fibrils from other
neurons terminate on presynaptic terminals which lie on
the dendrites and the cell body (or, soma) at the

"synapse".

During the "resting state" the permeability of the
cell membrane to sodium ions is low, and the permeability
to potassium ions is high; there is a greater concentra-
tion of sodium ions in the extracellular fluid and a
greater concentration of potassium ions in the intracel-
lular fluid. The equilibrium is maintained by a molecu-
lar "ionic pump". The ionic charge distribution is such
that the inside of the cell is maintained at a potential

of -70mV with respect to the outside.

If there is a suitable external stimulation (elect-~
rical,mechanical or chemical), the permeability of the
cell membrane to sodium ions temporarily increases. As
a result sodium ions rush inside the cell, increasing
the somatic potential (membrane potential) up.to 30 mV .

with respect to the extracellular fluid. After the per-

17An axon is also referred to as a nerve fiber. It
can be very long (in man about one meter) and carries im-
pulses to the next neuron. The velocity of conduction
increases with fiber diameter and varies from 0.5 m/sec
to 120 m/sec.
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turbation, the permeability of the cell menirane soon
returns to its original state as the extré sodium ions
are pumped out. This whole activity lasts about 15 msecs
end. is known as an gction potentigl. Once it is started
at any point on the mebrane of a normal fiber, the action
potential will travel as a depolarizing wave over the
entire fiber. The critical potential for this firing

makes an "all or nothing" law for neural activity.

Except for sensory neurons, an action potential is
usually triggered by stimulation of the presynaptic ter-
minals. A neural impulse arriving at a presynaptic termi-
nal causes automatic "emptying" of some chemical (excita-
tory transmitter substance) which locally increases the
permeability of the cell membrane to sodium ions and
sodium ions rush inside the cell, thereby effecting a
temporary increase in the somatic potential. This produ-
ces the excitatory post synaptic potentisal, EPSP. If the
resulting somatic potential is above a certain level,

(the threshold for excitation of the neuron) which is

about 10 mV above the resting potential) an action poten-
tial is initiated.

The EPSP caused by stimulation of a single synaptic

terminal is not sufficient to trigger an action potentiel,

unless the stimulation is continuous. However, the effect
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of stimulation of several excitatory presyneptic termi-
nals on the postsynaptic potential is additive and when
a sufficient number of excitatory synaptic terminals are

excited simultaneously, an action potential is activated.

This property is called spatial summatjon.

The post synaptic potential can also be increassed
above the threshold value necessary for starting an action
potential if a single presynasptic terminal is made to
discharge successively. This phenomenon is called tempo-

ral summation.

If the EPSP is below the threshold potential, its
effect is slowly neutralized. Meanwhile, the excitation
of the neuron becomes easier to effect; a neural impulse
can be triggered by the addition of smaller number of
excitatory discharges. This property is known as facili-

tation.

Following an impulse emission, the neuron returns to
its "resting state" in about 50-200 msecs. To initiate
an action potential before this time, the post synaptic
potential must be increased to a level much greater than
the normal threshold value, i.e., the neuron is in the
relative refractory gstate. Immediately following a new
impulse emission for about 0.5 msecs a new impulse cannot

be generated. This period is known as the gbsolute ref-
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ractory period‘ of the neuron.

There are also some synaptic terminals that release
inhibitory irgnsmitters which probably cause an increase
in the permeability of the cellular membrane to potassium
(not to spdium) ions. As a result, potassium ions rush
outside of the cell and the postsynaptic potential dec-~
reases. Thus, the effect of the inhibitory presynaptic
terminalg is to lower the somatic potential which in turn
means activation of an action potential becomes more

difficult.

Although the details of the molecular events taking
place in the generation of an action potential in a neuron
are still not well understood, specific models based on
experimental studies have been developed which account
for many observed phenomena (namely, changes in sodium
and potassium conductances, all or nothing law, spatial
and temporal summation, refractoriness, facilitation,
etc.) Hodgkin and Huxley (59)18. These models are desc-—
ribed by highly nonlinear differential equations and

their use for the study of the behaivor of networks of

18An excellent survey of neural models is presented
in reference (55) which includes most of the important
references on the subject up to 1966. Later references
can be found in (125).
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interconnected neurons appears to be too complicated to

be feasible, except for simple networks containing one or
two neurons. Therefore, in order to study effectively

the behavior of neural nefworks containing several neurons
one has to make resonable simplifying assumptions. An
alternative is the use of simulation studies; this has
been done in the past by many investigators but provides

only limited insight (55).

Thelmost important characteristic of a neuron is
its all-dr-nothing response. This has been the basis
of "formal" (or binary) neurons first introduced by
McCulloch and Pitts (92); specifically, it was assumed
that (a) +the spatial summation is linear, (b) excita-
fion can be denoted by a positive weight and inhibition
by a negative weight, (c¢) the refractory period is cons-
tant and (d) +the threshold is time invariant. A neural
network consisting of "formal" neurons then becomes essen-
tially a network consisting of interconnections of unit
delays and binary elements. Such systems have been
studied in automata theory (see Section 4.1). In the
model of McCulloch and Pitts, temporal summation, relative
refractoriness, facilitation, synaptic and axonal delays
have been neglected. A similar formulation has also been

used by Caianiello and associates (2, 18, 19, 20, 33).
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A more complete neural model can be given in terms
of the CRPFM described in the previous section. The
CRPFM exhibits many of the properties of the neuron.
Note that the CRPFM also has the properties of threshold
to excitation and the all-or;nothing_response. Spatial
summation can easily be sgccounted for by having a.multi-
input TF. The output of the TF corresponds to the soma-
tic potential; the TF must be chosen such that "excita-
tory" stimulation increases the "somatic potential" while
"inhibitory" stimulation decreases it. Facilitation and
temporal summation is inherent in CRPFM since the effect
of any input will continue for some time due to dynamics
of the TF. To account for relative refractoriness, a
negative feedback to the input of the TF can be used;
this was suggested by Pavlidis (102) for his RPFM model
for a meuron. By selecting a suitable TF it is also‘

19

possible to account for accomodation -,

Some investigators believe that stochastic activity
plays an important role in neural behavior and resort to
stochastic models (4, 46, 125). This is mainly because

in experimental studies neural activity appears to be

'9rhis means that the neuron is more difficult to
excite by slowly varying signals than by relatively fast
signals (50), p. 62.
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very irregularzo. However, a PFM system can salso exhibit

similar behavior without noise present or random changes
in its parameters (102). Therefore, a deterministic neu-
ral model which employ a CRPFM is capable of simulating

also the spontaneous activity of a neural circuit.

1.4 Review of Previous Investigation on PFM

After the Second World War the subject of nonlinear
control has become a very active research area and many
new techniques for the analysis of nonlinear systems have
been developed. Especially, stability of single-loop
nonlinear feedback systems has been studied extensively.
PFM systems consisting of a single modulator and a linear
plant in a single-loop feedback configuration benefited
from these developments; after its introduction into
control systemsvby Meyer and Li (90, 93), most of the new

techniques were applied to these systems.

Due to nonlinearity and memory characteristics, PFM
control gystems are difficult to study analytically. Howe-
ver, the total number of papers on PFM, presently exceeding

ninety gives an indication of the activity in this

2oAn explanation for this spontaneous neural acti-
vity is emission of many packets of transmitter substan-
ces at a presynaptic terminal upon activation by a neural
impulse (125). '
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research srea. The literature on PFM can be divided into
four main groups: (i) stability, (ii) periodic motion,
(iii) optimal control, zmnd (iv) statistical properties.

In the following, each group will be reviewed in chrono-

logical order.

1.4.1 Stability. A majority of the research on PFM

is devoted to the important area of stability. One of
the basic approaches used in most of these works is Lya-
punov's second method (22, 23, 25, 27, 38, 72, 75-80, 103,
104). This will be discussed first.

Farrenkopf, et. al. (38) were the first to use Lya-
punov's second method in stability studies of PFM control
gystems. For a satellite attitude control system consis-
ting of a plant with double integration and an IPFM, they
applied a discrete version of a Lyapunov theorem given by
LaSalle and Lefshetz (83) (based on Okamura and Yoshizawa's
work) using a quadratic Lyapunov function, and showed
that

(i) the system is asymptotically stable in the
large to a set UO, enclosing the equilibrium condition,
and

(1i) 211 ultimate states of the system must even—
tually be within a set VO’ enclosing the origin of the
state-space (implying nonexistence of higher-order limit

cycles).
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- Clark and Noges (27) extended this work to include
inner bounds to limit cfcle motion and applied the result
to obtain both inner and outer bounds in a single-loop
amplitude dependent PFM system (see Section 1.2.4), using

a quadratic Lyapunov function.

Pavliidis (103, 104) extended Lyapunov's direct
method for the investigation of stability of::a class of
discontinuous dynamicel systems -which he defined as a
generalization of PFM systems- by selecting a positive
definite function which was constant or decreasing along
the trajectories of the system when no pulses are emitted
" (to check whether the emission of pulses will stop in
finite time) and decreasing during pulse emission (to

check whether the system will come to a prescribed region).

Jury and Blanchard (65) used a theorem gimilar to
that of Farrenkopf et. al. (38) to study asymptotical

stability in the Lagrenge sense of IPFM control systems.

In the aforementioned publications, sufficient con-
ditions for stability were stated in terms of conditions
on the Lyapunov functions; some simple examples were inc~
luded for demonstration of the theorems, but no method
for constructing of a Lyspunov function, allowing direct
estimation of stability regions in the parameter space

of the system was presented21. Kuntsevich and Chekhovoi
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(75), again using a discrete version of the Lyapunov
theorem of LaSalle and Lefshetz, obtained such a method
for a single-loop system containing a PFM of the first
type (see Section 1.2.4) which they defined as a modulator
in which the pulse frequency ié a function of the discrete
values of the error signal. However, their method requi-
red several complex manipulations, making it impossible

to analyze the stability condition in a general form.

In a later paper, Kuntsevich and Chekhovoi (76)
utilizing a system containing two modulators, demonstra-
ted how the method of the previous paper could be exten-—
ded to multi-modulator systems. This was followed by
another paper by Chekhdvoi (22) in which the stability

conditions of (75)were presented in a more managable form.

King-Smith and Cumpston (72) used Lyapunov's second
method with a quadratic Lyapunov function to determine
boundedness of motion in a single-loop IPFM feedback sys-
tem with a stationary linear element and showed that the
boundedness of motion depended on the stability of the

equivalent linear systemzz.

21 paviidis (103) has presented certain results con-
cerning stability of single-loop PFM systems; however,
Kuntsevitch and Chekhovoi (79, 25), using an example,
show that it is erronous.

22This was shown previously also by Meyer (93); he
demonstrated that as the input to an IPFM becomes very
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A gsimilar result was later obtained by Chekhovoi
(23) for a more general PFM system in which a hysterisis
type nonlinearity was assumed to preceed a PF modulator
such that the pulse frequency was bounded. For a PFM
system with an asymptotically stable linear part, the
motion was shown to be bounded. This. result includes a
previous frequency domain stability condition of Gelig

{41) a8 a special case. The results of (22) were “later

extended to RPFM systems (79).-

Varadarajan used the same theorem employed earlier
by Kuntsevitch and Chekhovoi (75) to détermine the condi-
tions such that the state trajectory of a single-loop
ORPFM feedback system with an asymptotically stable linear,
time-invariant TF and plant will enter into a region in
which the modulator cannot fire. The condition obtained
is the same given previously by Pavlidis (103) (see also
footnote 21).

Kuntsevitch and Chekhovoi recently published exten-

sions of their work on stability with certain improve-

large, it can be replaced by an equivalent linear gain of
M/S, where M is the impulse strength and S is the threshold -
of the modulator. Therefore, if the linear part of the
system is asymptotically stable and if the equivalent .
linear system obtained by replacing the IPFM by its equi-
valent linear gain is also asymptotically stable, then
the motion will be bounded.
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ments; Kuntsevitch (80) for single-loop feedback systems
with pulse-width modulation, or with "PFM of the first
kind" (see Section 1.2.4), and Chekhovoi for single-loop

CRPFM gystenms.

In general, Lyapunov methods are difficult to use,
especially for higher order systems. An alternative is
Popov's frequency domain method. Popov's theorem (or
most of its generalizations) cannot be applied directly
to PFM systems because of the fact that a PF modulator
generates pulses having a variable sampling interval which
is a function of the input signal. Dymkov (35) was first
to apply Popov's theorem to a single-loop RPFM feedback
gystem by representing the RPFM in the form of an equi-
valent relay system having a hysterisis type nonlinearity.
Egsentially the same result was independently obtained

by Monopoli and Wylie (95)%7

Gelig (41), following steps similar to that used in
the derivation of Popov's theorem, gave a frequency domain
stability criteria for a more general PFM system contai-
ning an hysterisis type nonlinearity in series with a PF

modulator, such that the pulse frequency was bounded. In

25In (95) the modulator is defined as a modified form
of RPFM in such a way that the restrictions of Popov's
theorem are satisfied.
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(41), he employed the same approach, for a system contai-
ning several "pulse elements" to derive frequency domain
stability criteria. These "pulse elements" were introdu-
ced for modelling pulse frequency modulators (type I or

ORPFM, discussed in Section 1.2.4) or pulse-width modulae-

tors; however no consideration was given to the .pulse

emissgion law. -

Popov's theorem was extended by Typskin for nonlinear
sampled data systems. In order to apply this extension
to PFM systems, Shortle and Alexandro (116) defined a
discrete approximation to an RPFM (see Section 1.2.4)
such that it had an equivalent representation in terms of
a dead zone nonlinearity and a PAM (sampler). Later,

Kan and Jury (68) made an attempt to apply Popov's theo-
rem to RPFM systems, directly; however, as a result of =a
certain transformation used in the process, the modulator
lost its resetting property24. Chekhovoi's attempt at
the same problem was succesful; he used Yakubovitch's

extension of Popov's theorem for systems with hysterisis

type nonlinearities (24).

In this area, Gelig recently published three interes-

24This was pointed out by Kuntsevich in a private -
communication to the authors of (68).
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ting papers; in the first (43), he presented frequency-
domain stability criteria for a single-loop RFFM feedback
system, in-the second paper (44), the results of.the
first paper were generalized to multimodulator systems.
In the third paper (45), systems with "PFM of the first
type" were considefed. The method used in these papers

is essentially the same employed in his previous work

(41, 42)2°,

Some investigators have used a different approach
and made direct use of the basic functional properties
of the system equations to obtain stability conditions.
Among them, Skoog and Blankenship (121), determined a
simple and useful condition for BIBO stability of a
single-loop CRPFM feedback system with a linear stationary
plant, based on a theorem of Zames (130). The condition
is of the form:

®
%g | g(t)] at <1
0

where, g(t) is the impulse response of the linear plant,
S is the threshold of the modulator and M and 7 represent

the amplitude and the duration of the pulses, respectively.

25 summary of Gelig's results is presented in Sec-
tion 2.3.
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(the modulator was assumed to_emit rectangular pulses).
This result was also obtained independently by Meyer
and generalized by Guy [ (48), p. 47] to a feedback sys-

tem containing two IPFM's in a single feedback loop.

Interestingly, another independent investigator,
Kan (69), (for an IPFM feedback system) also obtained the

same condition using a somewhat different approach.

1.4.2 Periodic motion in PFM gystems. Due to the

abundance of different possible modes of periodic motions
peculiar to PFM system526 this topic has even been given
gsome consideration. For periodic motion in single~loop
IPFM systems where the modulator emits equally spaced
pulses of equal polarity, Meyer (93%) obtained a closed
form expression for the period and investigated its sta-
bility by linearizing the system about this motion. He
alsq extended this work to cases where the pulse pattern
was more complex and obtained certain necessary conditions
for the existence of periodic motion. These conditions

have been verified by King-Smith and Cumpston (71)

using an 1independent approach.. Some of those

26For example, even a single loop system containing
an IPFM and a plant with a single integration posseses
infinite number of different limit cycle oscillations

(38, 93).
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results have also been reported by Varsdesrajan and Pai
(127).

A practical method for studying periodic motion is
the describing function method which is also useful for
stability analysis. It has been applied to single-~loop

PFM systems by a number of investigators.

Li (90), by studying the periodicity of output pulse
distribution under sinusoidal excitation, derived the
describing function of the IPFM from the fundamental com-
ponent of the Fourier series of the periodic pulse train
and applied describing function methods for stability
analysis. Pavlidis and Jury (101) instead of assuming
a sinusoidal wave as an input to the modulator, assumed
a square wave and determined a "quasi-describing function"
from the ratio of the output fundamental sinusoid to the

input fundamental component of the square wave.

Dymkov, in (36) compared the describing function
method and the quasi-describing function method of Jury
and Pavlidis and argued that for high order linear plants,
the output would resemble a sinusoid rather ‘than a square

wave, and recommended the standard describing function

technique.

Guy (48) calculated the second and third harmonic
content of the single IPFM describing function and showed
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that it contained high magnitudes at the lower numbered
pulse-patterns; he warned against the use of this method
when low numbered puise-patterns are predicted, unless
the linear plant provides exceptionally good low pass
filtering. He also calculated the resultant compound
describing function for an IPFM feedback system consis-

ting of two modulators and two linear elements in a single

loop.

1.4.3 Optimpl control. Optimization of PFM systems

was first considered by Pavlidis (105). For a single-
loop feedback system with a PFM as én error modifier, he
used some heuristic arguments and concluded that for the
minimum time problem the control function r(%t) is of
the form +R, and for the minimum fuel problem -although
non-unigue~ is of the form O, iR" where R is a constant

and the admissible contrels are .such that. |r(t)|< R.

Other investigators in this field considered only
open-loop control problems. In thichasé, the objective
is to find the (optimal) pulée-instants and pulse-polari-
ties ofa'series of PFM pulses (control input to the plant),
such that a certain function of the final states of the
plant (performance index) is optimized. In particular,
Onyshko (92), assuming a linear system of the form

X = A x + £f(u) with a performance index J = g? g(tf),
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used 2 modified Maximum Principle and Dynamic Programming
for the synthesis of optimal control, by restricting the
pulse-instants to discrete times kT (k =0, 1, 2, ...),

where t_, denotes the final time, ¢ is a constant column

f
vector and T is a sampling interval.

Stoep (122), following Onyshko, also restricted the
control pulses to discrete times and,considered a perfor-
mance index consisting the weighted sum of a quadratic
terminal state error and fuel consumption. Using an enu-
merative technique, he determined the optimal performance
index. For.the  same system, he also considered a more -
general mode of operation in which the control is only -.
magnitude-limited (to the pulse amplitude) and determined
the optimal performance index for this mode. For special

cases, he demonstrated that the difference between the

two values of the performance index is very small.

Onyshko and Noges (99) gave a modified Maximum
Principle applicable to open-loop PFM systems with linear
plants operating over a finite time interval. TFor the
same problem, Lermentov and Noges (87) presented a geomet-
rical method for determining the regions of initial state
(admissible regions) from which the system state could be
carried to the origin within a specified time. Lermentov

(88) also determined the gradient of a cost function of
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the form J = f(;(tf)) for PFM control inputs to be emplo-
loyed in numerical optimization methods and using a nume-
rical example demonstrated the result to be identical -

with that obtained by application of the modified Maximum

Principle.

1.4.4 Statistical properties. Aithough it is the

predicted high degree of noise immunity27 that aroused
first interests in PFM, due to complexity arising from
the inherent nonlinearity of these systems, it is diffi-

cult to obtain conclusive analytical results.

Li, in a chapter in his doctoral dissertation (90),
discussed the immunity to channel noise for IPFM tele-
metry by considering an additive, discretized transmis-
sion channel noise consisting of independent and identi-
cally distributed pulses with zero-mean and Gaussian-amp-
litude distribution; the signal noise was measured at the
receiving end in terms of the number of false pulses per
unit time per unit frequency. Bombi and Ciscato (12),
studied the problem of jitter in a relatively simple

situation of constant input signal and additive Gaussian

27For example, an IPFM is capable of averaging out a
high frequency noise of sufficiently small amplitude .
during each instantaneous pulse period.
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noise (additive to the signal input to the PFM); they
discussed the conditions under which the probability den-
sity of the jitter in IPFM output pulses is quasi-Gaussian
and calculated the power spectrum of the output signal.

Hutchinson et. al. (60,61), calculated the autocorre-
lation function and the spectral density function of the
output of an IPFM and an RPFM for a zero-mean, stationary
and normally distributed magnitude unit-white noise input

with constant spectral density.

In an interesting, physiologically-oriented paper,
Bayly (6), using spectral analysis techniques, demonstra-
ted simple low-pass filtering to be an effective means of
demodulating PFM signals and a multichannel system con.-
sisting of IPFMs for demodulation and low-pass filters
for demodulation to be capable of improving the signal-to-
noise distortion ratio over that possible on any one of
the channels alone and argued these to be the reasons of
Nature's using PFM. Spectral analysis of IPFM was also
developed independently by Lee (84, 85).
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1.5 Interconnected System Consisting of CRPFM's and
Lineay Dynemic Elements: The System Considered

in This Dissertation

The system considered in this dissertation is shown
in Fig. 1.9.. The PFM block contains m CRPFM's (m = 1,
2, «+.)« The modulator output vector, u(t) is applied
to a linear dynamical subsystem (LP) whose impulse res-
ponse matrix is G(t,7). A combination of the output vec-
tor of the linear part LP, x(t) and an external input
vector r(t) is fed to the modulator block. xo(t) is the
initisl condition response vector of the LP which could

also include disturbances.

Let ti,' be the instant at which the ith modulator
emits its jth pulse and let Ki(t) denote the total number
of pulses emitted by the ith modulator prior to time %

(see Fig. 1.10 for an illustration of these definitions).
The operation of the system is given by the relation for

the ith timing filter output signal (leading to the ith

T™D):
n Kj(t)
yi(t) = ¥qoy(t) + ZM:] z sgn[zj(taf’k)] gij(t,tj,k).
i=1" k=1

b1k, (5) <E< ti,Ki(t)-H' (1.24a)

and
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t
Zi(t) = j’fi[ri(f),yi(f),tyf] dz, (i = 1’°',m)
b1,k ()
28
1K, (6) <P PR (6) 4+ (1.241)
Consider some fixed time t, and let tf denote the
firing time of the next impulse (after time t) that may
be emitted by any one of the m modulators; it is given
by
tf = min{tl t>% +T and |z (t)l2s }
o i,K,($)770,1 == 190 HEy
1—- ’.o,m (1.240)
The identification number of the modulator that has fired

at t = tf is then

. £ R
t={i=1,2,..,0] ¢ >,k (9)*To,1 and |z, (tHi2s, ]
(1.24d)

Thus,

f
t&,Kg(t)+1 = % (1-246)

Equations (1.24a)-(1.24e) are the basic equations govern -

ing the operation of the PFM system of Fig.1.9.

28yote that, for the ith modulator (i = 1,...,m),
comparison of eq. (1.24b) with (1.7) yields

fi[e(t),t,f] = fi[ri(r),yi(r),t,r] .
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CHAPTER 2
FINITE-PULSE STABILITY OF INTERCONNECTED SYSTEMS

WITH _COMPLETE-RESET PULSE FREQUENCY MODULATORS

Stability in PFM systems have previously been dis-
cugssed by several investigators using various approaches,
namely, Lyapunov's second method (22, 23, 25, 27, 72, 75-
80, 103, 104), frequency domain mefhod (Popov's method
or its generalizations) (24, 35, 41-45, 68, 95, 116),
functional analysis approaches (41-45, 69, 121) and linea-
rization techniques (36, 48, 89, 90, 93, 101). Most of
these works were, however, regtricted to systems contai-
ning one or two'modulators and only few results, have so

far, been presented for multi-modulator systems.

The objective of this chapter is to present stability
criteria for the CRPFM system discussed in Section 1.4
which contains an arbitrary (finite) number of CRPFM's.
Stability is defined in terms of upper bounds on the num-
ber of pulses emitted by each modulator. This defini-
tion of finite~pulse gstability has physicel meaning in
that the number of pulses emitted from a modulator is

a measure of energy spent by that modulator during the

5 .
Part of this chapter was presented at the 1972
Allerton Conference on Circuit and System Theory, Monti-
cello, Ill. and published in IEEE Transactions:on Auto-
matic Control, vol. AC-18, no. 4, August 1973, pPpP. 3/6-

392.
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operation of the system. Not surprisingly, the concept
of finite-pulse stability is related to L1IILP output

stability1.

For a special case of the CRPFM system considered in

2

this work, for an RPFM gystem containing severel relaxa-

tion type PF modulgtors Gelig (44) recently obtained fre-
quency domain stability criteria. Apart from Gelig, Pav-
lidis (103) and Kuntsevitch and Chekhovoi (77) also con-
sidered stability in multi-modulator PFM systems, both
using Lyapunov's second method; however, neither of these
papers presented procedures that permit direct estimation

of parameter-regions sufficient for stability.

In this chapter, first a Lyapunov method will be
discussed. Then, an approach will be presented by which
upper bounds are determined for the number of pulses
emitted by ééch modulator. Finiteness of these bounds for
all modulators constitutes finite-pulse stability. Suffi-

cient conditions are established for finite-pulse stabi-

'See Section 2.1.

2In this work the name RPFM gystem refers to the
bagsic configuration of Fig. 1. 9, in which all the modu-
lators are of the relaxation type. Since an IPFM is a
special case of an RPFM and since a system containing
ORPFM's can be transformed into a system containing only
RPFM's, the same name will sometimes refer also to an IPFM
system or an ORPFM gystem.
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lity. Gelig's frequency domain method is also discussed
and the results are compared with respect to effective-
ness in terms of size of parameter-regions sufficient for
stability, generality (in terms of classes of applicable

systems) and ease of application.

2.1 @Global Finite-Pulse Stability in PFM Systems

The number of pulses emitted from a modulator is a
measure of the energy spent by that modulator during the
operation of the system. Therefore, the stability of a
PFM system can be related to this variable, which leads

to the following definition:

Definition 2.1: A PFM system is called globally finite-
pulse stable (GFPS) if for every set of initial conditions
and for every input z(t)EiL1[0,OD)3 the number of pulses

emitted by each modulator remain finite as t-» .

Clearly, after all modulators have ceased firing, the
plant will remain without input and its motion can be
studied independently by standard methods. The following
lemma relates the above definition to the concept of Lp

output stability>.

3This is a convenient, standard mathematical nota-
tion which stands for the collection of all the measurable
functions x(+) which map the interval [0, @) into the real
line (-00,00°) such that the integral

a ([® P 4,41/D
Hx(t)“p = (g 1x(£)1P at)

is finite.
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Lemmg 2.1: If the PFM system of Fig. 1.10 ~is "GFPS.>
and 1f;”£5éf1¢9?P9§??t5 gij(t;‘f)uwof'¥ﬁev impulse
response matrix G(t,7) as well as the components in(t)
of the initisl condition response vector xo(t) for every
set of initial conditions. are.all-in LP[O,a>), then each
component yi(t) of the .output vector y(t) is in Lp[O,oo).
Proof: Consider the ith component of the output vector
of the system

m Kj(t)

yi(t) = in(t) + ;{;MjEE;Sgn[zj(ts,k)]‘gij(t’tj,k)
(i=1, 2,..,m) (2.1)

Applying Minkowski's inequelity (triangle inequality in
Lp-spaces) to eq. (2.1) yields

n K (c0)
I|yi(t)||p < llin(t)llp + iji\-gij(t’tj,k)"p
=1 k=1
(i=1, 2,¢..,m) (2.2)

From this inequality it immediately follows that when
Kj(oo-)<oo, then ¥o,i’ gijE'Lp[O,oo) implies yi€Lp[O, ®).

|x{t)|ly- is known as the Lp-norm of the function x(t). The
space Lw[O,cn) is defined as the collection of all measu-
rable functions which are bounded on [0,05). The integra-
tion is not necessarily restricted to the positive real
%ine [0, @) but cean be any subset of the set of real num-
ers.

For a discussion of system stability in terms of Lp-

spaces see, for example, Willems (129).
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2.2 Lyspunov's Second Method

Let the continuous part (plant)4 be of order np and

the timing filters of modulators i be of order n, .

(1 =1, 2, ..., m). Let

T
x;00) =[x ,(0), =, ()00, x, 0 (4)]
(2.32a)
be the state vector of the LP and let

. . T
x;(1) = [xg (8, 3 p(8)seeey g (8)]

(i = 1, 2, c-,m) (2.3b)
be the state vector of the TF of the ith modulator
(i=1, 2, ..., m). Let the combined state vector of the

total system be denoted by

t
%Y
x(t)

e o @0 00

x(t) = |z5(1) (2.3¢)

g%(t)_

Let yp be a possible state X occuring immediately after

J
impulse emission of the jth modulator. Let g; be the

4Actually, linearity of the plant is not required for
application of Lyapunov's method.
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state X reached immediately after modulator j fires the

next time. These definitions imply that E? and E;

both belong to the set
. n,.
= Ny, i ti
o, '—{'gl x €E"P; xpe{x,e® Y|z (t)<s,,

’ i?éj},(i =1,..,m); _JS% = 0,

tj,k+1"' }

<t<t,

¥y i k+t

Jrk
t =1

J, K’
(2.4)

The following theorem holds:

Theorem 2.1: If there exists & positive scalar function

V(g) end a constant e >0 such that for 11 j = 1,...,m

and for every !?€1£§ and every E;EU%,
v(y_g’) - V(E;) > e (2.58)

then the CRPFM system of Fig. 1. 9 is GFPS.

Proof: Consider the jth modulator. Note that (2.5a)
implies

V[z(t;,k)] - V[z;(t;,kﬂ)] > e

from which the following inequality is obtained

V[z(t;,K N < v[s(tg’o)]- K 6

J

where Kj represents the total number of impulses emitted

by the jth modulator s t-=oc0. Assume that V[;(t; o)
?

is finite. Then K, must also be finite, otherwise the

J
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above inequality yields V[g(t; K-)]< - ®, which is a
. VK
contradiction since V is s positive function.

(QED).

Condition (2.5a) of Theorem 1 can be replaced by

stronger conditions, such as the following:
0 1
V(gj) -v(gj) > 6 (2.5b)

1

where w, is the state immediately after emission of the
next impulse following emission of modulator j (Note that,
efter firing of modulator j, the next impulse may be
emitted by sny of the modulstors, not necessarily by

modulator j).

A still stronger condition is the following:

S VIE(D] < 0 for te(t,t)), Valty)eW)

viz(+)] - v[z(+D] > e (2.5¢)

where to represents an emission-time of modulator j and
t1 is the time of emission of the next impulse (by any
modulator) after time ty- Theorem 1 with condition

(2.5¢) corresponds essentially to one presented by Pav-

1idis (103)?

5Pavlidis' thorem (103) includes also the requirement
that V(x) = O for x within some region inside the region
for which no impulse emission is possible.
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Example 2.1: Consider the simple interconnected PFM

system consisting of two RPFM'as snd sn integrator, shown
in Fig. 2.1. Note that xl(t) < 2, (t), xi(t) = 2,(t),

T
_ 1 2
X = [xpv xt’ xt] ’

w U}p,o,zﬂT, -m<xp<+m, MQ<S2}

1
and

T

Let V(x) = x°. Consider the first modulator, let

2(0) = ¥, = [x],

of the system is emitted also by the first modulator.

T
o, zg] . Assume that the next impulse

The output of its TF is

1
z,(t) = l-e 0
84

In this case, noting that z1(t) end xg have the same
signs,

1 0 0
xp = xp + M1 sgn xp

Condition (2.5a) of Theorem 2.1 requires
-2 2
0 1
(2" - (x) e,
or,

0
M1(2|xpl +M,) < -e

For M17’0, the above inequality becomes 2|xgl + M1 <0,
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Reset
TF, 2, D, u,
Zy="842q+X, 84,4, \
RPFM, .
Reset 1 b Rl 2
P
TF, 2 D, /
z1=-a2+xp SZ!MZ u2

Figure 2.1. A simple interconnected PFM system con81sting of
two RPFM's and an integrator.

=
N

Theorem 2.1

gl

L.Jd

:....-
.
. N
4

Théorem 2.5 (Gelig (44))

r—«
-2a1 -a, L*} Theorem 2.4

l——n-.-——.—‘ -'8.2

L. - -2a2

Figure 2.2 Comparison of stability criteria for the CRPFM
.g8ystem of Fig. 2.1.
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which is not possible. However, for M1< 0, it yields
2|xgl + M, > 0. But, ]xg|> a1S1 (otherwise no pulse
emisgion would have taken place)., Therefore, M, must be

selected such that

Similarly, for the second modulator, the same argu-

ment gives

D -
0>M, 2a282 (2.6Db)

Now assume that successive impulses of the system
are emitted by the second modulator, before the first
modulator starts firing again. Let t2,j be the instant
when the second modulator emits its jth impulse, after

t = 0. Then, for 0<t< t ’
’ 2,

0 0

x -a,.t X
np(®) = (g -] 2

a2 a,2

Again the sign of the impulse emitted is the same as the

sign of xg. Thus, xp(t2j1) = 20 4 M, sgn xg; therefore

. P
since, by (2.6Db), M2<10, it is:

2 2
(265 D] < () (2.7)

Generalizing (2.7) from t} to tF . yields:
. i 2,0 2,J

L2 2
(o023, 5000] <[085 D], (a=ti2,.0-1)  (2.8)
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By a similar argument used in obtaining (2.7), if
the next impulse of the system is emitted by the first

modulator again, at t = t1 19
14

2
2 2 +
(X::)) - [Xp(t+1,1)] < [Xp(tz’v)] (2-9)

Combining (2.7), (2.8) and (2.9),

2 2
(x3) < (x]) | (2.10)

Clearly, the same argument is velid also for the second
modulator. Thus, if M1 and M2 are selected in accordance
with relations (2.6a) and (2.6b), respectively, all the
conditions of Theorem 1 will be satisfied and the system

under congideration will be GFPS,

Note that, in this case, conditions (2.5b) and (2.5¢)
are also satisfied. The stability region, determined by

inequalities (2.6a) and (2.6b) is shown in Fig. 2.2.

2.3 Direct Finite—Pulse Stability Criteria

The number of impulses, Ki(t) emitted by the ith
modulator (prior to time t) in a PFM gystem (i = 1, ..,m)
respresents a measure of the energy spent by the corres-
ponding modulator in the intervel [0, t). fTherefore, it
is desirable to estimate this number directly, without

solving the system equations. In- the subsequent &évélop-
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ments an upper bound for Ki(t) will be determined for the
CRPFM system of Fig. 1. 9 . Existence of these bounds
for all modulators and for t-- oo implies GFPS.

In this section the following conditions are assumed
to be satisfied:

Condition 1: yq;(°), ri(-)€L1[O,t), for i = 1,..,n,

Condition 2: there exist functions gij(-) GIH[O,t) such
that Vt,,t,¢€ (0,t) and i,j = 1,..,m,
lgij(t1,t2)| < |gij(t1—t2)| , and
Condition 3: there exist finite nonnegative constants
@, and B, such that V t,,t,€[0,t) and

i=1,..o’m,

Let k(t) and v(t) be m-~dimensional column vectors

with elements Ki(t) and
t

i@ =4 [lalm @ s plrg@ler (e
0 (i=1,...,m)

respectively, and let H(t) and H'(t) be mxm matrices
whose elements in the ith row and jih column are
t
hij(t) éj|gij(f)l aT, (i,j = 1,..,m) (2.12)
0

and

>

M
By st b0, (L= tam (2.19)

1]
hij(t) ij
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respectively. The following fundamental theorem is use-
ful for estimating the upper bounds for the number of
pulses emitted by each modulator:

Theorem 2.2: If Conditions 1-3 are satisfied then the
vector k(t) of the number of pulses emitted by the modu-
lators prior to time t satisfies the following matrix

inequality
[Z-E"($)] k(t) < w(t) (2.14)

The proof of Theorem 2.2 is given in Appendix A.

For GFPS it is only necessary to show that a sum
containing the number of firings of all modulators with
positive coefficients remains finite as t-= oo. Thus,

Theorem 2.3: If Conditions 1-3 are satisfied as t-=— o

and if the matrix P [I - H' ] has a row with all posi-

tive elements, where P is a nonnegative matrix6 and

H) = lim H'(t), then the CRPFM system of Fig. 1.10 is

t-=00
GFPS.

Proof: Let gl:; - E&D] = [Kij]. Premultiplying both

sides of inequality (2.14) (as tem) by P yields the ine-

quality

6A matrix is called nonnegative if and only if it
has no negative elements. Nonnegative matrices play an
important role in various fields like mathematical econo-
mics, theory of games, linear programming, etc., and have
been extensively studied , Bellman (7), Gantmacher (40),

Lancaster (81).
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Ki1K1+...+h'ime- < PyqVyte.otp; v, < 00 (2.15)
(i=1,..,m)
Since Pi 4 > 0 and Xij >0 for gome i, finiteness of the
above inequality implies Kj< ® for j =1, 2,¢.., m.
| -(QED).
Inequality (2.14) restricts the vector k(t), which
represents the number bf impulses emitted by the modula-~
tors to a certain region. When the matrix [l - I_I'(t)]"1

exists and is nonnegative6, this region is finite. 1In

this case inequality (2.14) can be transformed into

k() ¢ In{(1 - B'($)] (b)) (2.16)

where the notation In{ -} stands for the integer part of
the corresponding vector. Inequality (2.16) determines
the upper bounds of the number of pulse emissions as

t— . Let

2 In{lim (1 - ﬂ'(t)]_1x(t)] (2.17a)

k
T® £ ——0

then ga)is the required upper bound, since

k(t) < k V t€[0,00) (2.17b)

_m’
The above result may be stated in terms of the follo-

wing theorem:

Theorem 2.4: If Conditions 1-3 are satisfied as t-= o

1

and if the matrix [l - E&Jf is nonnegative then the

CRPFM system of Fig. 1. 9 is GFPS.
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For large systems it may be cumbersome to invert the
matrix [I - H'o]- The lemma to be stated next provides
means to avoid this inversion.

Lemmp 2.2: If the spectral radius’ A(4) of a nonnegative
matrix A is smaller than unity, then the matrix [I - A]™

exists and is nonnegative.

The proof of this lemma follows from the identity:

(1 - A]'1 =1+ A+ 52 + A3 + .. (2.18)

provided A(A) < 1 (see Barnett and Storey, p. 60).

2,3

Since the matrix A is nonnegative, so is A™, A7, .... and

their sum; hence the proof.

Lemma 2.2. and Theorem 2.3 yield the following

corollary:

Corollary 2.1: If Conditions 1-3 are satisfied as t-» ®

end if A(H))<1 , then the CRPFM system of Fig. 1. 9 is GFPS.

With the present computer technology, it is not a
very difficult task to calculate the eigenvalues of a

matrixa. However, the following lemma eliminates this

7Spectral radius of a matrix is defined as the mag-
nitude of the largest eigenvalue, i.e., if Aj (i = 1,..,m)
are the eigenvalues of the matrix A,then A(A) = max I A4l

8If the coefficients of the characteristic polyno-
mial P(A) = |21 - HY%! are known, the condition A(HYP < 1
can be checked using the Routh-Hurwitz Criterion on
P[(r+1)/(r-1)] . However, this method is not recommended
for large systems.
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need, in most cases.

Lemmg 2.5: If A is an mxm nonnegative matrix and if

m
Zaij<1, i=1,--.,m,
5=

then the matrix [I - A]-1 is also nonnegative.

The proof of Lemma 2.3 follows from Gersgorin's theo-
'remg and Lemma 2.2. Matrices satisfying cond itions of

Lemma 2.3 are known as Mlnkowskl-Leontieff matrlces1o

Corollary 2.1. Lemma 2.3 and Theorem 2.3 lead to the

following corollary.

Corollary 2.2: If Conditions 1-3 are satisfied (for

t—== 00 ) and
m ifm
n! (o) = Py | M, 84 (T)|d’C<1
J; + 5; j=1%

for i =1,2,...,m, then the CRPFM system described in

Section 1.4 is GFPS.

For example, when applied to a single-loop, single

9Th18 is a very useful theorem for obtaining bounds
on eigenvalues and stateg that every eigenvalue of a mat-
rix A lies at least in one of the disks

lz - a; I< Y 24

j=t
. 1
(Lancester, p. 226).
10Theorem 6 of (Lancaster, p. 288) is very close to
Lemma 2.3.
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RPFM (or IPFM) system with a time-invarisnt linear ele-
ment, then either Theorem 2.3 or Corollary 2.2 imposes

the condition

g e i <1 (2.19)

@
where, Hg“1 = f [g(t)ldt. If there are two RPFM's (or
0
IPFM's) in a single-loop (i.e., gii(t) =0, i=1, 2)
then Theorem 2.3 yields

M, ¥
5,75, lgyolly-liggy Il <1 (2.20)

Inequality (2.19) was obtained independently and
almost simultaneously by Skoog and Blankenship (121),
Kan (69) and (2.20) by Guy (48).

It is important to note that, although Corollary 2.2
is easier to apply than Corollary 2.1, which is in turn
easier to apply than Theorems 2.4 and 2.3, they are not
equivalent. Therefore, it is recommended to use Corollary

2.2 first and, if it fails, to refer to Corollary 2.1 and

then to Theorems 2.4 and 2.3.

In case the linear part is time-invariant and all the
elements of its impulse response matrix G(t) do not change
sign, the matrix H(t) becomes the step response matrix and

the 1limit 1im H(t) can be evaluated easily from
t——

lim H(t) = |lim  g(s)| (2.21)
t =00 8-=0
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00
where G(s) & [ e™3%(t) dt. The bars || are used to
infer that thg absolute values of each element of the corres-
pronding matrix is to be taken. If only some elements of
the impulse response matrix do not change sign, it is

still possible to use the same formula for those elements11.

It should be noted that all results of this section
apply to systems containing single~signed modulators, as
well as double-signed modulators. This is due to the abso-
lute value operations used in the derivation of Theorem
2.2 (see Appendix A), which also cause invariance of the
results with respect to the "sign" of the feedback. In
fact, this is.not very surprising since the sign of the

feedback can be controlled by the signs of the modulator

output pulses.

2.3.1 Application to gingle-loop system with one

PFM. In order to provide the reader with a basis for
comparison, Table 2.1 is presented which summarizes some
of the previous stability results applied to simple con-
figurations containing single IPFM or RPFM (24, 25, 43,
69, 72, 79, 12). The tests developed in the pre-

M1t ig very easy to determine hi;(+%), experimentally.
All the necessary equipment is an integrator preceeded by
an absolute value circuit. Exciting the system by a pulse
with very short duration and measuring the output from
the integrator gives hij(t),'directly.
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vious section (which coincide with (69) and (121), in the
single-modulator case) are eassier to apply and give
better results in most cases, except when the time cons<

tant of the RPFM is appreciably smaller than that of the

linear part.

In certain cases it may be possible to transform the
CRPFM under consideration to obtain larger parameter-
regions (sufficient) for stability. An exemple, which
is indicated by Table 2.1 and which is frequently encoun-
tered is the case where the TF's have time-constants
significantly smaller than that of the LP, Clearly,
the stability region obtained by direct application of
condition (2.19) for the RPFM system considered at the
bottom of Table 2.1 is rather conservative. By a simple
transformation, however, the effectiveness of the same
condition can be improved significantly; this will be

demonstrated by the following example.

Example 2.2: Consider the single-loop RPFM feedback sys-

tem of Fig. 2.35c, which was glso used as an example sys-
tem in Table 2.1 (last entry of the table). The transfer
function of the plant and the TF are

Ao
G(s) = (2.22a)
(8+0.1)(8+0.2)

and
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o TS T
* I Reset :
'
t TD !
u' (t) - { 1 z u(t)
s+a, : s+a g, M :
iy — -
RPFM4
o)
i i Reset
=u-(t) 1 + 1 TD u(t)
s+a, A s+a., g, M
s+a1 M
r(t) RPFM, A9 y(t)
+ + s, M (s+0.1)(8+.2).
= ~"™18+0.5 ‘
+ 2T S,M (s+.2)(s+.5)
0. §. ' = -'0-11;
—-48+.5 = go(t) e
Figure 2.3 (a) RPFM with a first order low-pass filter.

b
c

(a)

Equivalent RPFM systemn.
A CRPFM system in which the dynamics of

the LP is much slower than that of the TF.

Equivalent system obtained sfter trans-

formations indicated in Fig. 2.3%a and
Fig. 2.3b. Application of Theorem 2.4
to this system yields less conservative
results.
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Go(s) U ay>0 (2.22p)
s+a
0
respectively. For GFPS, direct application of condition

(2.19) yielded
[A] <0.02 (2.23)

By simple block diagrsm manipulations this system can
be transformed into the equivalent form shown in Fig.
2.3d. The transfer functions of the plant and the TF

of the equivalent system are

&' (s) = o , 0.4 5 (2.242)
(8+0.2)(s+0.5) s+0.5
and
6y(s) = 1 (2.24D)
s+0.1

respectively. Since the impulse response of the equiva-
lent system does not also change sign, ||gll; can be

easily evaluated from eq. (2.21). Thus, (2.19) yields
10 A + % | <1,
or,

-0.18 < A £ 0.02, (2.25)

vhere, A £ A S . Clearly, condition (2.25) is signi-

ficantly less conservative than condition (2.23).

2.53.2 Application to systems with more than one

PFM. The objective of this section is to stress the
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meaning of matrix inequality (2.14). Three examples
will be presented to demonstrate the regions described
by this inequality. As the first example, a PFM system
containing an IPFM with a memoriless nonlinearity and an
RPFM is selected with parameters such that this inequa-
lity does not provide any information. In the second
example, by slighly modifying some of tﬁe parameters

of the system (thresholds and pulse-strengths of the
modulators, in this particular case), boundedness of the
number of pulse-emissions are guaranteed. The third
example will be presented to show that, even though the
conditions of Theorem 2.3 are not satisfied, inequality
(2.14) can still provide information relating boundedness

of the number of firings of one modulator to that of the

other.

For the purposes of Examples 2.3a-2.3c¢c the sys-
tem of Fig. 2.4, containing one IPFM preceeded by a non-
linearity and one RPFM is considered. It is not difficult
to see that Conditions 1-3 (as t— o) are satisfied and
that o, =B, =1 (i =1, 2). Fromegs. (2.11)~(2.13),

the matrix géo is easily computed as
{3IM1/S1I 5IM2/szj

2m, /s, 4M,/8,

H' = (2.26)

The eigenvalues of the matrix E&)depend on the values
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M1, S1, M2 end~82 (pulse strengths snd thresholds of the
modulators).

Example 2.35 (Case Where A(H&) >1): For M, =8, =5 and
M, =8, =1 (2.22) gives

2 2
3 1
H' =
® l2 4

The eignevalues of this matrix are 2 and 5. Since 1 is

not an eigenvalue, the matrix [L - g&J“ exists and is

' ~3/4 1/4
-g' 1
2 - g [ 1/2 -1/2:'

However, it contains negative elements and therefore ine-
quality (2.17b) is not applicable. Nevertheless, inequa-
lity (2.14) is still valid and is illustrated in Fig. 2.5a.

Clearly, in this case it also does not provide any infor-

mation.

Although the theory developed in this section cannot
establish instability, the system of this example does

not appear to be stable.

Example 2.3b (Case Where A(gé)<1): By either increasing
the thresholds or decreasing the pulse strengths, the

eigenvalues of the matrix géo can be brought into the

-unit cirqle. For S1 = 82 =1 and M1 = M2 = 0.1,
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-3‘00 -5 O\% K1
. =100

(a) (p)

llnul.l[fllll“[

'n.u-nunu.uun.n\J»u’uJJ

~0.25
> 0.5 5 Ky

(c)

Figure 2.5 Regions described by inequality (2. 14).
(a) Bxample 2.3a,
(b) Example 2.3b, and

(¢) kExample 2.3%c.
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0.3 0.5 50

oo 0.04 0.4 —@ 8

The eigenvalues are inside the unit circle and

3/2 5/4

[z -8,]" - :
1/10 17/4

Since all the elements of this matrix are nonnegative,

inequality (2.17b) is valid. Let

10 for 0<«t<K3
r1(t) _ { . (2.272a)
0O elsewhere
and, 1 for 0.1<% <5.1
rz(t) ___{ (2.27Dp)
0 elsewhere
and let
10e-t+20e-2t
(t) = (2.27¢)
0 -3t _ -5%
6e +5e

From (2.11), for t-» oo,

|i50 ( )
= 2.28
- }

Thus, (2.17) yields

85
ko= [19] (2.29)

i.e., the first modulator stops after firing at most 85
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emissions and the second modulator after at most 19
emissions. It is interesting to compare this bound with
the actual numbers of total emissions obtained from a si-
mulation of the system which, for the given conditions,

yielded
82

Thus, for this example, the bounds on ga>obtained from

(2.17a) are rather close to the actual values12.

The matrix [l - ﬂ&;]-1 will be nonnegative if the

following inequalities are satisfied:

1 - 3la,l >0, | | (2.31a)

1 - 4la,l >0, (2.311)
and

1 - 3|A” - 4|A2| + 10[A1A2|> 0 (2.31¢)

where A1 = M1/S1 and A2 M2/S2. If A, and A, are chosen

2 1
in accordence with the above relations, the system will
be GFPS. This region is plotted in Fig. 2.6 (inside of

the circular region).

Example 2.%c (Case Where A(H)) >1): Let

12)ost simulation studies of simple CRPFM systems
yielded a good agreement with inequality (2.16).
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(Bxample 2.3b, Giilcilr and Meyer (52)).



83

' 0.8 2.0 1
H = and v_=]| .| .
® 14.0 0.6 @ 1y

The eigenvalues of this matrix are greater than 1 in
magnitude and the matrix [l - 3&31-1 contains negative
terms. Thus, inequality (2.16) (as t-»= ® ) is not appli-

cable. However, inequality (2.14) gives

0.2 =2 1
-4 0.4} LA [1] (2.52)

The region described by this inequality is shown in Fig.
2.5¢c. As in Example 2.3a, stability cannot be esgtablished
for this case. The only information gained form Fig. 2.5c
is that if K1 - 00 then Kz-— ® and vice-versa, which
means that any system instability is associated with con-

tinued firing of both modulators.

Satisfaction of Conditions 1-3 (as t—- o ) essen-
tially requires the”linear part of the system to be asymp-
tofically stable and the input signals to be absolutely
integrable. In cases, where the linear part contains
inte gration and/or the input signals contain constant parts,
GFPS may still exist, provided the TF'g provide .sufficient
filtering. In these cases, Theorem 2.2 and Theorem 2.3
cannot be applied direcly. However, it may be possible
to transform the system under consideration in such a way

that the conditions of these theorems will be satisfied.
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A frequent occurence is an RPFM preceeded by an integra-
tor (see Fig. 2.7a). It can be replaced by an IPFM sub-
system as shown in Fig. 2.7b (see Meyer (93), for other

possible transformations).

Example_2.4: Consider again the RPFM system of Fig. 2.1
which was treated in Example 2.1. In this case Theorem
2.3 and Theorem 2.4 cannot be gpplied directly because

the LP contains an integrator.(g(-) ¢ L1[O,oo) Y. However,
this system can easily be transformed into the form shown
in Fig. 2.7c. The equivalent IPFM system of Fig. 2.7c

has the impulse response matrix

S -a,t
1y -a,t 1
(1+a1M1) e 1 e
&(t) = ~a,t S, -a,t
e (1+azi=) e
2
o (2.33)
Thus, relation (2.14) of Theorem 2.2 yields
i M -a,t M ~-a,t ]
2 1
1= 14— (1-e 1) -“‘““l (1-e )
| a1S1I lazs1
k(t) < w(t)
M -a,.t M -a,.t - = -
ekl (=72 i ] (o2
L - ax¥o -
(2.34)

-1
The matrix [l»— H'(t)] is nonnegative if

1< - 0 and -1 "2 0
-1¢< < an ] & —— < .
2,5, a8,
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In this case inequality (2.16) is applicable and, since
y(t) is finite k(%) is finite. This region is shown in

Fig. 2.2.

To summarize, ;n this section upper bounds on the
number of pulsesvemitted by each modulator during the
operation of a CRPFM system were determined. Such number
is indicative of the amount 6f energy sSpent by the corres-
ponding modulator and thus the upper bound of the number
of pulses emitted by all modulators represents a measure
of stability. Sufficient conﬁkas under which this num-
ber is finite were established and were shown to depengd

on nonnegativity of a certain matrix.

The features of the results of this section are the
following.

1) Generality. The conditions apply to PFM systems
containing distributed and/or lumped linear parts; the
timing filters are allowed to include nonlinearities.

The number of loops are not limited to one; the modulators
are quite general (not restricted to IPFM or RPFM) and

can be single-signed or double signed.

2) Simplicity. Once the E&) matrix is known, it is

relatively easy to apply the stability conditions.

Direct application of Theorems 2.3-2.4 or Corollaries

2.1-2.2 require all linear plants to be asymptotically
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stable and all input signals to be absolutely integrable.
In some cases where the linear plants contain integration
and/or the input signals contain d-c parts, global finite-
pulse stability may still exist; stability conditions for
these cases can be obtained by transforming the system
using simple block diagram manipulations (see Example 2.4).
Similar transformations can also be used to obtain less

conservative results (see Example 2.2).

Application of the results to a single-~loop, single-
modulator system gave a condition which was previously
obtained (69, 121) and examples yielded stability regions
comparable (often better) to thoée obtained by other met-
hods (such as described in (24, 43, 72, 79) ). The same
was found to be true in comparison with a recent frequency
domain stability criterion for interconnected systems

(44). This will be discussed next.

2.4 Frequency Domain Criteria

Gelig (44), in a fecent paper, obtained frequency-
domain stability criteria for a PFM system consisting of
m-relaxation type pulse frequency modulators (RPFM's) and
a time-invariant linear part. To provide ground for com-
parisbn, in this section, a summary of his results is
given. The results are also applied to the systems consi-

dered in the previous sections.
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The system considered by Gelig is a special case of
the general CRPFM system of Fig. 1.9 (see Fig. 2.8a);
the function fi( ) is

—ai(t-T)
[ri(7)+yi(z)] (2.35)

(i=1,...,m)

fi[ri(f),yi(’?:).t,’f] = e

where 8y is a positive constant . Also since the LP is

time~invariant,

glJ(t,T) = gij(t-lz)v (1’3 = 1,---,111) (2-36)

It is convenient to transform this system into the
form shown in Fig. 2.8b. Let g(s) be the Laplace trans-
form of the impulse-response matrix of the linear part of

(o)
. a —S‘b
the system, i.e., §(s) £ é € g(t) at. Let C(s) be an
mxp matrix whogse element in the ith row and the jih column

is defined by

1
Gij(s) o [si'éi:j - Mj%ij(s)] (2.37)

(193 = 17-'°1m))

where 6ij is Kronecker's symbol (81j=1 for i=j, aiJ.:o for i#£j).

I+t is assumed that the matrix ®(s) can be represented

in the form

&(s) = X(s) + + R (2.38)13

11]

where X(s) is analytic for Re s> 0 (i.e., all singulari-

ties in the l.h.p.) and R is a constant mxm matrix.
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s+a; -
£(s)
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Figure 2.8 (a) The RPFM system considered in Section 2.4.
(b) Equivalent system (TEi is a device that emits
a unit impulse whenever the absolute value of
its input signal exceeds a threshold value, Si)
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Futhermore, it is assumed thet r'(t) = r(t) + gy, (t)
(input + initial condition response) is bounded and that
r'(t)-» 0 as t—- @ . If&(s) has a pole at s = 0, r'(t)
could contain a constant part, however, the transient

part must vanish as t-— o0.

Let R' be an mxm matrix with the element in the ith

row and the jth column defined by

[
r!. =
1J lim sgij(s)~Mj, otherwise

8 =00

if &(s) has a pole at s = 0,

(2.39)

= 1lim sX(s) (2.40)

F
0 s

13mpe case where all the poles of the matrix &(s)

have negative real parts is called the nonecritical case
in the Russian literature. If there is a simple pole
at the origin but all the other poles are in the l.h.p.,
this case is called the gimplegt critical case. Gelig
(44), considers also the case where the matrix &(s) con-
tains simple poles on the imaginary axis and can be rep-
resented in the form

a

1 1
E(S) = :.x'..(s) + .B. + Z 2 2 [Al + El]
i=18 +¥;

[o/]

where R, A., B. are constant mxm matrices and X(s) is
analytic Tor R& s > 0. If the matrix G(s) has poles at
s = +jw, (i=1,..,9), the term r'(t)%is allowed to con-
tain~tetms of the form g .sinw t + B cosw,t, where g, and
Ei are constant vectors.- + 1 1
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S—-= 00

where T and © are mxm diagonal matrices with elements Ti

and ei (i= 1,2,...,m), respectively.

The following theorem was prooved by Gelig (44).
Theorem 2. Geli ¢ If there exist constants Zi>0
and 8, 20 (i=1,2,...,m) satisfying the conditions:

(1) 7,8,

=1
- - - ',
T;8; - 0,(r}, - 8.a,) 20, 3: |r13|> 0
j=1

-— ' -
0,(rjy - 8,a,)>0,

(i=1,...,m)

_ T
(2) 8§, = 85,

(3) Re[ﬂnju» + @F(ju»] is a positive semi-definite
matrix, and

(4) TR =R'T is a positive definite matrix,

then the RPFM system of Fig. 2.8a is GFPS'4,

'41¢ the matrix &(s) contains simple poles at 8 = + jw.,
(i=1,..,9) then in addition to the conditions 1-4 of ~ ~ %
Theorem 2.5, the following conditions must be satisfied
(see footnote no. 13)

-1 - -1, _ aTh .
Ai Bi = gigi ; -Ai = Aig is a p.d. matrix,

ggi = QEE is a p.s.d. matrix, and
1 -1

Q=-¢;)—2—I'Ai§i (i= 1y 2,'°'rq)'
i
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Example 2.5: Consider the PFM gystem shown in Fig. 2.9,
containing two IPFM's and a LP with the following impulse

transfer matrix:

2 ., 2 -
(s+1 + s+2)A1 o Y

g(s) =

s+3 8+5 2

2
s+5 A1

where A1 and A2 are parameters to be determined such that

GFPS is assured.

This system has the same structure as that of the
system of Fig. 2.4 considered earlier in Example 2.3,
with the exception of the modulators, whiéh are IPFM's
here. Gelig's theorem is not applicable to the system
of Fig. 2.4. Note that stability conditions (2.31),
which were obtained for the system of Fig. 2.4.by appli-
cation of the results of Section 2.3, are also the same

for the system considered in this example.

From (2.37) and (2.38),

2 1

(3577 s A 527 A2 (2.4

I 2.43
Kle) = 2 A (=22 + —2)a
5(s+5) "1 s+3 = 8+5°72

and
(1-3A1) -5A2
R = 2 (2.44)
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consisting of the interconnections
of two 1PFM's and a time-invariant linear part.
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From (2.41),
7179

(2 + 1y a 5 L a
(o) 8+t g2 | g+l |
W(s) = -50 T~=39 7~,=56
2?_2_____2. A1 o( 2 2 2 ,2)A2
g+ 5 8+3 s+5
(2.45)
Condition (4) of Theorem 2.5 gives
25A
T, = —&- T (2.46)
2A1
and
1= 44, - 3A1 + 10 A1A2 >0 (2.47)

Since (P 0 and 'r2> 0, (2.46) will not be satisfied if

A, < O. Condi-

A,A, < 0. Thus, Theorem 2.5 fails for A1 5

172
tion (2) yields

_ 2
0, = ) (2.48)

Equations (2.46), (2.48) and condition (1) of Theorem 2.5
yield

T, + 44,0, >0, (2.49a)

1 1

and

T, + (3.2, - 0.8|A1|)61 >0 (2.49p)

2

An alternative to conditions(2.49a) and (2.49b) can be
obtained by changing the numbering of the modulators.
Thus,
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71 + 3.2A291 >0 (2.50a)

and

T, + (4A1 - 10[A2|)e1 >0 (2.50Dp)

1

Finally, the frequency condition (condition (3) of Theorem
2.5) yields

7,0,  7y-20

A1( 5 + 21,) >0, =00<w<m (2.51a)
1+W 4+ W
and
719 74-20, 157,-96 257, -250
2( 1 %"_ 1 21)( 1 1. 1 > 1
14w 4+ w 9-0--.»2 25+w
2, ! 5 2
-5(7,=8,)(———=— + 5 )" 20  (2.51b)
1+w 25+
-0 <w <
Now, the problem is reduced to that of selecting Z}i>0
and ©, >0, such that relations(2.47), (2.49)or (2.50)

1
(2.51a) and (2.51b) are satisfied. The stability region

in the A1-A2 plane as defined by these relations is shown
in Fig. 2.6 (region with stars)15,

Example 2.6: Now, consider the same system considered in
Example 2.1. For a, = a, = & ( 0<a<%), Theorem 2.5
yields

15'l‘he stability region was obtained by a computer
program which used Sturm's test to check the frequency
condition (2.51Db).
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10 5 < Ov (2.52)

M M
2 4+1 4220, M,<0 and M
82 S

For this case, the stability region determined from Theo-

rem 2.5 is shown in Pig. 2.2 (region with horizontal

shading).

2.5 Conclusions

In this chaptgr‘globgl finite-pulse stability (GFPS)
in PFM systems is considered; Two different approaches
are presented. The first approach is based on Lyapunov's
second method and the second approach is a direct approach
involving careful application of:inequalities to the equa-
tions describing the system. A summary of a recent fre-
quency-domain criterion of Gelig (44), applicable only to

RPFM systems, is also included for comparison purposes.

The Lyapunov approach could provide effective stabi-
lity criteria, but it is difficult to apply; especially

for higher-order systems.

Gelig's frequency response criterion is restricted
to relsxastion pulse frequency modulation (RPFM) systems
with a time-invariant linear parts. It can handle "criti-
cal cases" where the LP has simple poles on:the imaginary
axis or at the origin. However, in order to obtain a

good parameter-region sufficient for stability, it requi-
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res selection of two arbitrary parameters for each modula-
tor of the system ,subject to frequency-domain conditions

and other inequality constraints.

The Direct GFPS criterion is the simplest to apply
and at the same time, provides bounds on the number of
pulses emitted by each modulator. It is also applicable
to more general systems; the timing filters are allowed
to include nonlinearities, the LP can be time-varying
and the modulators are not restricted to IPFM or RPFM.

It cannot handle the "critical cases" directly. However,
it is usually possible to transform the system in such a
way that the criteria will be applicable (see, e.g.,
Example 2.4). Comparative examples yielded greater sta-
bility regions of parameters from the direct GFPS criteria
than from (an optimal application of) Gelig's frequency-

domain criteria.

A summary of comparison of the three methods is

given in Table 2.2.
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Comparison of Stability Theorems

For Multi-Modulator PFM Systems

Theorem 2.1 2.3 and 2.4 2.5 Gelig (44)
Type of CRPFM :CRPFM (the TF
modulgtor can- be nonlinear) RPFM only
Type of [linear, linear, lumped | linear, lumped or
the LP nonlinear|distributed,can| distributed, time-~
time-var.|be time-varying invariant only
all the elements of
the transfer matrix
Restric- . the LP must be &(s) of the equiva-
1 finite asymptotically | 5
ions on der stable This 1entlsystem must be
the LP oraer. . analytical for
can be relsxed Re 85>0. &(s) can
(S'ES’ Bxample contain simple poles
cres at 8=0 and on the
imaginary axis.
all input sig- | all the input signals
Restric- nals must be must be bounded and
tions on (not absolutely in- | must go to zero as
the inputfexplicit.|tegrable. In t-=00. If the trans-
signals some cases this| fer function matrix
condition can g(s) of the LP has a
be relaxed (see|l pole at s=0 (and/or
Example 2.4). s=jwy) they can contain
constant parts (and/
or sinusoidal terms with frequency
w) but the transient parts must
vanish as t-=00.
Effectivel ives better depends on choise of
ness of depends Cesults if the im auxli;aﬁy par%me-
Theorem: on  |TF's have time ers, whilch can be
. determined by optimi-
(how con~| choice constants that -

: zation process to
servati-.| of are small com- rovide max. parame-
ve?) Lyapunov|pared to those Eer resion - para

function|of the LP. g *

o most_ dif- . difficult if-optimal
Ease of |ficult, |®2siest. Stability region (of
applica- |especially parameters) is desi-
tion for high . red.

order sys;

ems.
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CHAPTER 3

ON NEARLY PERIODIC MOTION IN INTERCONNECTED

SYSTEMS -WITH PULSE FREQUENCY MODULATORS

3.1 Introduction

The motion of a PFM system can be classified into

the following groups:

1. Finite-pulse stable motion (2ll the modulators
of the system stop firing in finite time),

2. unstable motion (the input signals of the modu-
lators become very large; pulse frequencies inc-
rease until some part of the system is saturated
or deformed),

3. nearly periodic motion (the input sigmals of the
modulators repeat -within reasonable bounds-
periodically), and

4. non-periodic motion (motion which is not nearly

periodic).

Sufficient conditions for global finite-pulse sta=
bility were presented in the previous chapter. In this
chapter, the objective is to study periodic motion in PFM
systems. Owing to the abundance of different possible
modes of periodic motion, peculiar to these systems, this
topic has been discussed even in the earliest publications

(89, 93), and has been given a considerable amount of -
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attention (29, 36, 48, 101, 103, 127). The abundance
of periodic modes, in some way, is not unexpected; in
fact reverbatory activity in neural circuits has long
been suggested as a possible mechanism of instantaneous

memory1.

Previous investigations of this subject have been
restricted to single-loop systemsz. Unlike single-loop,
single-modulator systems, however, multi-modulator sys-
tems cannot, in practice, have pure periodic motion.
This is true for most high order physical systems3 and -
is related to the fact that there are only a countable

number of rational numbers.

Clearly, a weaker concept of periodicity is necessary;

this will be given in the following section.

In this chapter, The CRPFM system of Fig. 3.1 is
considered, in which all the TF's are linear. This sys-

tem is slightly less general than the system of Fig. 1.9.

, 'Instantenous (short-term, temporary) memory "refers
t6 one's ability to recall tremendous amounts of informa-
tion from one second to the next or from minute to minute",
Guyton (50), p. 722.

2In (103) Pavlidis describes a Lyapunov method which
is applicable also to multi-loop systems.

3Consider,.for example, a fourth order linear, time-
invariant, conservative system. It has a general solution
of the form a,coswt + bysinwt + a,cos wt + bysinwyt,
which is periodic, if and only if wq and wj; are commensu-
rable, i.e., wy/w, is a rational number, Hahn (54).
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r{t)  e(v) wey |,
EA S e (e} ug(t) L~ £ gler) ulo) dr
0

= CRI'FM S et

Modulator Block Linear Part (LP)

Figure 3.1 Block diagram of an interconnected system
consisting of CRPFM's with linear TF's and
linear dynamicel subsystems.

However, some of the results to be presented ere directly

exiendsble to the system of Fig. 1.9.

5.2 The Concept of ee=Near Periodicity

One possibility of defining a "weak" period is to
translate all the pulse-instants, ti,k by a number T >0,
and to compare the translated points with the original
points; if the translated points are in the vicinity of
the original points, possibly with a small number of
exceptions, the number T could be considered zs a "weak"
period of the system. This definition would be difficult

to employ; however, the following definition has the same

implications and, at the same time, is easier +to handle.

Definition 3.1 Given eez O and a> 0, the motion of a PFM

system will be called g, -nearly periodic (ee—n.p.) in the

interval te(0,a),if
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(1) impulse emission of at least one modulator con-
tinues during 0<t <o (i.e., does not stop),

and

(2) +there exists a number Te(0,2], such that the
input vector of the modulators g(t), satisfies

the relation

. 4
fe(t+7) - e($)ll < e s Vt€(0,8] (3.1)

The interval t6(0,a] will be called the observation

intervel and the smallest number, T, satisfying (3.1)
will be called the ge—periog of the motion. This defini-

tion is illustrated in Fig. 3.2.

The above concept differs from that of almost perio-
dicity, introduced by Bohr, about half a century ago.
Let ¥ be a Banach space5 and let || x|l denote the correspon-

ding norm of x €X.

Definition %.2a2 A subset & of the set of real numbers

is called relatively dense if there exists a number €>0

(inclusion length), such that any interval of length £

contains at least one number of § Besicovitech (8) .

41n certain cases it may be advantageous to replace
condition (3%.1) by

| #le(t+0)] -Hle(t)] I} <e., te(0,2l,
wvhere # is an appropriate linear functional.

SPhis is s complete, normed vector space (129),
€., Lp—spaces (see footnote no. 3%, p. 56).
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Definition 3.2b A continuous vector function £(t)€ X

is called almost periodic® if to every e >0 there corres-
ronds a relatively dense set i'l‘}e such that

1£(t+1) - £(8)} < e,  wre{r}]_.

The class of almost periodic functions contains all
functions £(t) constructed by summing a finite number of
terms of the form a,cos (uﬁt+ei)’ where wi and ei are
constants and 2 is a constant vector. It can be shown
that almost periodicity is invariant with respect to ope-
rations of addition, multiplication, (in most cases) divi-
sion and differentiation, integration and other limiting
processes and that to any almost periodic function corres-

ponds a "Fourier series" type of general trigonometric

series (3), (8).

Among the differences between ee-near periodicity
and almost periodicity are the facts that the latter

concept requires continuity7 and an infinite observation

6see Besicovitch (8), Amerio and Prouse (3) and (for
a survery of other equivalent definitions), Fink (39).

TThe conditions of Def. 3.2b can be relaxed to a cer-
tain degree by associating a linear functional # with the
function £(t) and requiring. #[£(t)] to be almost perio-
dic for all linear functionals of a dual space X* (this is
known as weak almost periodicity) (3).
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Figure 3.3 Examples of ee-nearly pericdic motion in PFN
systems: (a), (b) output waveform of the TF
in an 1PFM under sinusoidnl input; (a) double-
signed 1PFM, (b) single-signed IPTM (note
that these waveforms are not periodic in the
strict sense). (c) A typical €e-nearly perio-
dic motion in & PFM system with an almost
periodic linear part. (d), (e) Typical eg-
nearly periodic motion in simple CRPFM systems.
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interval. In a PFM system the vector g(t) may not be
continuous. Moreover, it has been observed that motion
which appears to be periodic over a reasonable time may
change erratically after some time (see Section 3.5).
However, in a practiczl situation, observalion of the sys-
tem may not be continued indefinetely. Turthermore, the
measuring equipment used in the observation has some
accuracy Jlimitstions, which must also be taken into con-
sideration (this, in a loose way, corresponds to Ee of
Def. 3.1). Therefore, under proper conditions, one might

conclude that s motion satisfying Def. 3.1 is "periodic".

It should be clesr that Def. 3.1 makes sense only for

"small" values of ¢ this wvalue must be selected pro-

e’
perly for the system under consideration, according to
the a2ccuracy requirements. Tor example, for certain cases

the value ee £ 0.01 suplle(t)ll might be satisfactory.
0<t<oo

3.3 Clues.From Syvstem Stability

Knowledge nabout stability of the equilibrium can pro-
‘vide valuable clues to the study of oscillatory behavior,
Therefore, before proceeding to the msin result of this
chepter (to be presented in the next section), certain
relevant stability conditions end their implications with

respect to periodic motion will be discussed.

Under certain conditions, the pulse frequencies of
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the modulators keep on incressing. This motion, defined
by continued increase in pulse frequency of any modulator,

will be called uncontained motion. Conversely, the

absence of uncontsined motion will be c2lled contained

motion and the corresponding property, namely, that for
every set of initial conditions the pulse frequencies
will be bounded during O0<t<co will be referred to as

containment of the PFM system . 1In other words, contain-

means that for any given interval of length T, the uumver

of impulses emitted by each modulator is uniformly bounded.

The containment of a PFM system can easily be tested:
It céh be shown that as the input signal to a CRPFM
becomes very large, it con be replaced by a constant gain.
Therefore, the test consists of replacing all the moduvla-
tors with linear gains and determining whether the equiva-

lent linear system is stable.

In order to proove the above sssertion, consider the
emission instant of the (k+1)§§ pulse, tk+1' From egs.
(1.5a), (1.5b), (1.7) and (1.8), it follows that

tk+1
f 8olty ) T) e(®) aT =D 8 (3.2)

bk

The mean value theorem of calculus gives

8o by v biery) Clhy ) Uy ~h) = By S (3.3)
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where tké'%bﬂ étk+1. Now, consider that the output of
the CRPFM is connected to 2 lineer element whose impulse
response in g(t,%); let y(t) denote the output of the
linear element. It is

e(g,)

(tk‘tk_1) (3.4)
elt

AR “i (b, %) &lt,t. )
= & g ’ g t,

e(t) 5=y O KK k

Since the input signal e(t) is assumed to be (uniformly)

large, the ratio e(7)/e(t) is (uniformly) bounded for all

T<t. Therefore, application of Duhzmel's theorem to (3.4)

yields

v(t) M ©
~ go(f,t) g(t,7) e(?) az, (%.5)

e(t) Se(t) “o

i.e., if g (7,7) = (constant)a, the effect of the
0 o

CRPFM, for large inputs, is equivalent to a linesar gain
of Mgo/Sg.
In a rezl system, the pulse frequencies will be boun-

ded due to saturation and/or presence of refractory period.

This corresponds to saturation of the equivalent gains

Mgy/s.

®rhis is always true if the TF is time-invariant.

9For » single-signed CRPFM this approach gives a
lienar gain of Mgp/$ for nonnegative input signals. ihen
the input is negative, no pulse is emitted and the galn

switches to zero.
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The above result leads to the following theorem.

Theorem 3.1 Consider the CRPFM system of Fig. 3.1; assume

that the TF's are such that gy;(%,%) = g5; (constant)

Vt+>0 and i =1, 2, ...y M« Then a necessary condition
for the motion to be contained is that the equivalent
system obtained by replacing all the modulators with
linear gains of MigOi/si (i =1,...,m) be asymptotically

stable.

The containment from the equivalent linear system -
can bé investigated using any of the conventional stabi-
lity methods. A special system of interest is the case

in which the LP is time-~-invariant and finite-dimensional;

this case is treated in the following corollary.

Corollary 3.1 Consider the CRPFM system of Fig. 3.1;

assume that all the TF's are time-invariant and that the
LP is also time-invariant and is described by the equa-.

tions

x(t) = A x(t) + B u(t) and y(t) = ¢ x(+t)
Let S be the mxm diagonal matrix whose elements are

sli=MigOi(O)/Sl ’ (i=1,ooo,m)

Then, @ necessary condition for the motion to be contai=
ned is that all the eigenvalues of the matrix A + B S C

have negative real parts.
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The uncontained motion does not exclude the possible
existence of nearly periodic motion. In a PFM system
€g~NeP. motion might be present, even though the condi-
tions of Theorem 3.1 (or Corollary 3.1) are not satisfied;
however, large perturbations will render the motion to

"run away", i.e., to be uncontained. Therefore, knowledge

of containment is useful.

Clearly, "containment" of motion in a PFM system rep-
resents a necessary condition for global finite-pulse sta-
bility (see Section 2.1, p. 56) which denotes the pro -
perty that every set of initial conditions results in
motion where each modulator emits a finite number of
impulses during 0<t<oco . If a PFM system is "contained"
but not GFPS, then the motion will "keep on going"; this

class of motion where at least one modulator does not

stop firing as t-- o will be called continued impulsge
emission. The cless of "continued impulse emission" inc-

ludes periodic motion and non-periodic motion. Moreover,

the n.p. motions (Def. 3.1) of the usual interest are of

the class of continued impulse emission.

Sufficient conditions for global finite-pulse stabi-
lity in CRPFM systems were presented in Chapter-2.. . These
conditions, in their negated forms, are also necessary .

conditions for the existence of continued impulse emission
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in CRPFM systems; they are summarized in Theorem 3.2 and

Corollary 3.2.
Theorem 3.2 Consider the CRPFM system of Fig. 3.1. If

the following conditions are satisfied
(1) in(t) and ri(t) are absolutely integrable in
the interval (O,w) (i=1, 2, ..., m),
(2) there exist absolutely integrable functions
gj;(t) such that |gij(t,z)| < Igij(t-z)l
(i,j =1,...,m), and
(3) [gOi(t,T)l < 61, where 61 are finite constants
(i=1,...,m),
then, for the existence of continued impulse emission, it

is necessary that the matrix

M. 00
- d '
{Bij 5] . Ilgij(t)l dt]
0

contain at least one negative element10.

-1

Corollary 3.2 If the conditions (1)-(3) of Theorem 3.2

are satisfied then, for the existence of continued impulse

emission, for the CRPFM system of Fig. 3.1, it is necessary

that

10 {1 fOI‘i:j,

5.. is the Kronecker's delta: o.., =
1J ’ 1ij 0 for i# j.
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(1) ‘at. least one eigenvalue of the matrix

M ®
-] o) dt
8 5, ) V&
1°
be outside of the unit circle in the complex
plane, and

(2) for at least one i =1, 2, ..., m,

m

8 0]
ZZS. giflg.' (t)l at >1 .
j:'ll io ij

3.4 Nearly Periodic Motion_in PFM Systems

In this section, two (upper) bounds will be presented
for e€g, such that for a given period T and a given obser-
vation interval té(0,a] , the motion is eg-n.p. (i.e.,
Def. 3.1 is satisfied). The first bound is applicable
to more general cases; however, it cen be difficult to
obtain conservative values, since this usually requires
numerical techniques. The second bound is especielly
useful if the impulse response on the LP is "almost
periodic" (e.g., the LP has poles only on the imaginary
axis) or the LP:contains poles very close to the imaginary
axis. Before presenting these results, certain relavent

notation will be introduced.

Let gj(t,t) denote the jth column of the impulse
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response matrix of the LP, G(t,7); ﬂk denote the identi-
fication number of the modulator emitting the kih pulse
of the system, t _ denote the emission time of this kth

k

pulse and b, denote its polarity. Then, the output vec-

k
tor, y(t), is given by

N
y(t) = Mo(t) + Z1Mekbk gek(t,tk), 0<t<ty (3.6)
k=

This is an alternstive to expression (1.24a).

Let in(t) be the output vector of the PFM system

obtained by disconnecting all the modulators for t> nT,

and let

y(t) for t<nT

(t) 2 - y N = 0711 27-0 (5-73)
“n ¥,(t) for t>nl '

Also, let

T (6) 2y (8) =y (%) (3.70)

The vector function En(t), to be called the modified

forced response, represents the zero-~initial condition

response of the continuous part of the system to an input
that is applied only during nT<+t < (n+1)T and is equal to
that generated by the modulators during this interval

when the modulators are connected (see Fig. 3.4).
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b y(t)
(a) /
0 . 21 5 ot
! /“\.y1(t)
( b) / . \.\‘\//’_. - \\' 5;0( " )

VT N
TN\

5 '/".—'—'\
" 4 4 aPLa— e
N \._/ e t
T 2T ]

. -

— -

go(t) = y1(t) - yo(t)

(c)

)

NS Y (t+ 1) yAa(t)
(d) //\\/1 9‘ A

N

¥4 ($4T) =y, (t)

(e) ////\\\‘T-~ o %

N———— ' e ——w——— t o

Figure 3.4 1Illustration of functions used in Theorem 3.3.
(a) Output variable y(t) under e,-nearly periodic
motion.
(b) The functions yo(t) and y,(t) as defined by (3.7a).
(¢) The function fglt) as defined by (3.7b).
(a) yo(t) and y,(t+T) shown for comparison.
Tge function y1(t+T)-yO(t).
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With the background presented above, the following

theorem can now be stated.
Theorem 5.3 Consider the CRPFM system of Fig. 3.1. For

a given T >0 and a given a> 0, let

€. = sup lz(t+T) = 2(t)l (3.82)
O<t<a
and let
€y =0322q9x1(t+T) - xb(t)“ . (3.8b)

If there exists s 620 and an

27 44 11
e, 2 €, + €, (1+<5)[T:I (3.9a)

such that for every two initial condition responses,

xé(t) and xg(t), satisfying

P =o§1tl§Tn x:)(t) - xg(t)u < e, (3.9b)

the corresponding modified forced responses satisfy

1 2
sup [ Z.(t) - £5(t)l € po (3.9¢)
0<tg T %0 %0 P
then the motion of the systém-is‘ee-n.p. with the ee-period

T, in the given observation interval té(O,a].

The proof of Theorem 3.3 is presented in Appendix B.

11’l‘he square brackets [~] denotes integer part.
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The following corollary is a simple extension of

Theorem 3.3.
Corollary 3.3 Consider the CRPFM system of Fig. 3.1.

For a given T> 0 and a given a> 0, if there exists a

6'>0 and an

3]+
€2 € + eo(o') (3.9a')
such that for every two initial condition responses,

xé(t) and xg(t) , satisfying (3.9b), the corresponding

modified responses satisfy
1 1 2 2
t (t - t - t ! . !
OgggTon( )+_£_o ) - xo(t)=E5(t)llcp o (3.9¢")

then the motion of the system is €,"n.D. with the

€ -period T, in the given observation interval te(0,a],

where e, and €y are given by (3.8a) and (3.8b), respec -

tively.

The upper bound for €, provided by Theorem 3.3 (or
Corollary 3.3) might be large, depending on the value
of ¢ (or ¢') which satisfies conditions (3.9a) -(3.9¢c)
[or (3.92'), (3.9b) and (3.9¢')]. If the value of ©
(or 6') is not much greater +than the minimum ¢ (Gmin)
satifying conditions (3.9), this might mean that the
mpotion will repidly degenerate and after a certain time
will have a completely different pattern. However, if

o> o Theorem 3.3 does not provide any useful infor-

min’
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mation, since the bound furnished by Theorem 3.3%. is

much larger than sup || e(t+7) - e(t)ll. Therefore, ©
0<t<a

must be carefully determined. In general, without

resort to numerical techniques, it may be difficult to

obtain conservative values.

Under certain ideal conditions a PFM system might
possess a pure periodic motion. However, in Section 1.5
it will be shown that even slightest parameter perturba-
tions can change this motion drastically. Nevertheless,
after small parameter changes, the motion may still look
like the unperturbed motion, at least for a while, i.e.,
the motion may be €g~n.P. In this case, Theorem 3.3 can
be used to estimate, for example, tolerances of the sys-~
tem parameters to assure an €, ~n.p. notion of a given

accuracy in some given interval.

Theorem 5.3 and the notation introduced in this sec-
tion will be illustrated by an example. However, first
the following useful concept is presented.

Definition 3.3 Given € 20 and 2>0, an initial condition

0
response, yo(t) of a PFM gystem will be called an g,=Proper

initial condition response (eO—PICR) in the interval

t€(0,a], if there exists a number, T >0 such that the

relation

g, (t+7) - yo(0)l < e, vee(0,a]  (3.10)

is satisfied.
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Example 3.1 Consider a two modulator IPFM system with a

time-invariant LP having the following impulse response

matrix

t -t
a(t) I: :\, t >0 (3.11a)

t -t

Let r(t) = Q, S1 = S2‘= 4 and M1 = M2 = 4. Also, let

the initial condition response be

2t+1

(t) = .11b
*o 2¢+1 (3 )

With this initial condition response, the motion of the

system is as shown in Fig. 3.5. Note that the motion is

| ¥ (t) = y,(%)
3//\/\/\/\
1
\.\.\ t’
N Cy(8) = £y,(%)
-4 AT SR
R
ty 4
N
54 2 4 6 t

Figure 3.5 Output waveforms of the system of Example 3.1.
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periodic with a period T = 2 secs and that xO(t) is a
0-~PICR (i.e., €y = 0). For this systems, the modified

forced response is given by

1

Ey(t) = L}Eo(t) (3.11¢)

where,

0 for t <0
Tolt) &< ~4t+4 for 1<t<2 . (3.11d)
-4 for t >2

Now, assume that the thresholds of the modulators
S1 and 82 are perturbed by infinitesimal amounts 681 and
682, respectively. Let 6t11 and 6t21 be the corresponding
infinitesimal changes in the pulse-emission instants.
These quantities can be calculated by considering the

threshold relations.

Let

1
¥olt) = (cot+c1) (3.12)

1

The threshold relation for the first modulator is
14 14 150)
] (cot+c1) at - 4] (t-%,,) dt = 8, (3.13a
0 t21

The threshold relation for the second modulator is
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t

21
22(0) + j (cot+c1) at = 32 (%.13Db)
0

From (3.13%a) one can obtain

2dc, + 2bcy + Ot,, + 48t,, = bS, (3.14a)

Similarly, (3.13b) yields
38t,, + %Sco + Sc1 = 8s2 (3.14b)

Assuming 6co = 801==O (i.e., no perturbation in the ini-
tial condition response), (3.14a) and (3.14b) can be com-

bined to obtain

8t,, = 65 - %8s, (3.152)

and

=1

Using (3.7b), (3.8b) and (3.11b)~-(3.114) and the norm

a
“[b]u= la| + |b[, one can now obtain
= t+T) - y (t) I = 8]6t,, -
0 To2up,lur(+1) - xo(t) 18854 8%y,
_ 5 _
=8 [3 6S2 681‘ (3.16)

As an example, let 53, = 682 = 0.0001; (3.16) then yields

eo = 5.3’10-4
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Now, consider two different initisl condition res-

1
1 R 2,0y _ (2,2
ponse vectors xo(t) = (cot+c1) ' and zo(t) = (cot+c1)[;]
that are in the vicinitiy of the O-~PICR given by (3.11b).

Let cé o2 80 and c:-cf 2 601, the resulting infinite-

simal dlfferences in the pulse emission instants can be
obtained from (3.14a) and (3.14b). Since the threshold

values are assumed to remain unchange& (i.e., 6S1==6SZ),'
(3.14b) yields

6t21 = - (%6c0+6c1) (3.17a)

Similarly, (3.14a) and (3.15a) yield

- .4 2
6t11 = 3 600 -3 601 (3.17p)

Using (3.9¢), (3.11e)=-(3.11d), (3.17a) and (3.17b),

the following relation can be obtained

(2 1 50(+) = g3l = 8fmax Ibs,, |, It - bt,,1}

=% max{|7600+2601| , léco+26c1l} (3.18a)
But, from (3.9b) and (3.12),
1 2
= t) - y5(8)l = 4 |be, + Be,l (3.19)
P =22 luol®) ~ B8N = 4 beg + ey

From (3.18) and (3.16), it is not difficult to see that

condition (3.9c) of Theorem 3.3 will be satisfied for
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Gz « Therefore, for an observation interval of ten

W3

periods, (3.9a) yields

7,10 5
e, & (1+ 3) = 2.03 x 10 ¢, (%.20)

Now, assume that an ee—n.p. motion is required such
that 68530.1 for an observation interval of ten periods.
From (3.20), it is seen that this requirement will be
0534-9 x 1072, TFrom (3.16), it follows
that if 185,1<0.4 x 10™* ana 169,/<0.6 x 1074, then

fulfilled if e

£
€c= 0.1,

For comparigon purposes the system considered was
also studied by simulation. A digital simulation of the
system yielded €, = 0.16 in an observation interval of
20 secs, after a small perturbation in the threshold
values (S1 and 8, both changed from 4.000 to
4.001). This result is much smsller than the bound given
by (3.20). However, (3.20) is applicable to a larger
parameter region. For this particular case, one can cal-
culate o' = 1.8 and €g = 4 x 104, Therefore, (3.9a')

yields eeg().22. This bound has the same order of mag-

nitude as the actual value.

For the special case of a CRPFM system with. a LP

whose impulse response is almost periodic or contains
-a.t

terms of the form ii(t) =e <+ ii(t) (i =1, 2,..,9),

where ai's are small positive constants and ii(t)'s are
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periodic vector functions of t, it is possible to find
another useful upper bound for €g® Before determining

this bound, first note that if

I g()l = £ (++7) - 21 ()l <eg,

and éiT<<1, then

-ai(t+T) ' -ait '
ll_j_:‘_i(t-f-T)-ii(t)": e ii(t+'1‘)-e _f_i(t)ﬂ
—aiT ' —aiT
< ll(1-e ) £1(t) + e g‘(t)“
< aiTHii(t)" + efi' (3.21)

Now, consider the input vector to the modulator
block; using (3.6) and applying the triangle inequality,

the following inequality can be obtained:

le(t+m)=e () < Nx(++T)=x()l + [ xo(t+T)=yq(+)I

N
+ ZMC lg, (t+7,%)-g, (+,%) (3.22)

= j : J j J

04t ¢a

Let
e, = suplz(++1) - (), (3.23a)
0<t<a

eyo=oi1€-p;[z|3‘xo(t'+'l‘) - xo(t)" (3.23D)

and let
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€ = sup IIMi gi(t+T,T) - gi(t,f)" (3.2%c)
0<t<a
0<7<a
i=1,..,m

From inequality (3.30), it follows that

le(t+T) - e($)l < e + eyo + Ne, (3.24)

i.e., for e = €¢_ + € + Ne , the motion is e -n.p. in
e r Yo e
the interval t€(0,a]. This result is stated as a lemma.
Lemma 3.1 Let v be the average number of pulses emitted
in an interval of length T, then the motion of the CRPFM
system of Fig. 3.1 is e _-n.p. in the intervel te(0,al,

T

a ‘ , .
where € 2'.6 + eyo +w}([T]-+1)eg with € ey and eg
as defined in (3.23%a) (3.23b) and (3.23c), respectively.

Lemma 3.1 is directly applicable to PFM systems with
almost periodic LP's and inputs, where in a given , large-
enough (finite) observation interval (0,al, it is possible
to find a T such that the values €. eyo and eg are arbit-
rarily small12. This consideration yields the following

Corollary.

Corollary 3.4 1If both the input vector, r(t), and the

impulse response metrix of the LP, G(t,T) are almost

periodic13, then for a large enough (finite) observation

12See Besicovitch, Theorem 11, p. 5.
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interval (0,a] and for any €,» the motion of the CRPFM
system of Fig. 3.1 is €, ~n.P.
The following example illustrates the above corol-

lary.
Example 3.2 Consider a two-modulator CRPFM system with

s constant input and s time-invariant LP, having the

following impulse-response matrix

cos wt --3;, sin wt

G(t) (3.25)

sin wt cos wt

Let M1 = M2 = 1. Note that, in this case, er = 0 and
G(t+T) = G(t), where T = 20 /w . Clearly, if e, = o,
then the motion will be €,"N:P. for any ee> O with

period t = 27/w.

Example 3.3 In order to demonstrate the applicability of

Lemma 3.1 to PFM systems where the impulse response of
the LP contains lightly damped terms, consider again the
system treated in Example 3.2. Assume, however, that the

impulse response matrix isfgiven by

. cos wt- % sinwt - %,sin wt

-b

.G (t)=e 2 .2 b
ﬁiﬁfL— sin wt cos wt + 5 gin wt

(3.26)

13i.e., all the elements of the matrix G(t,%) are
almost periodic.
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where b is a positive scalar such that b<<w/27. Note

that for b = 0, this impulse response matrix reduces to

that of (3.25).

Eq. (3.26) yields

1 .
COSwt—gﬁina¢ ot - w sinuwt
gl(t) = ¢ 0t 5 2 and Ea(t) = e b
3%59 sinwt coswt+y sinwt

T
2
Therefore, using (3.21) and the normH[x1, x2] H:[xf + x2] )

one can easily obtain

2 5 2
b W +b
Hg1(t+T)-g1(tﬂ|$ bT (1+;§) +-—;——

and >}

gy (++T) =g, (IS BT 5+ (14 iE) :

Thus, o 2 2
e <br 2B (14 By 2 pon+T)
g w w2

Application of Lemma 3.1 finally yields

€ g-v([%]+1)eg gﬂb(2n+T)(i§i+1).

So far, conditions for the existence of ee-n.p.
motion were considered and upper bounds for €e were deter-
mined. It is also important to obtain an expression for
the ee—period of the motion. However, this is snalyti= .
cally a very difficult task and will be carried out, in

the next section, only for the IPFM system.
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3.5 Nearly Periodic Motion in IPFM Systems: The

ge-Period

In this section a special CRPFM system, namely, an
IPFM system is considered. The basic configuration of
this system is as shown in Fig. 3.1; however, all the
modulators are assumed to be integral type PFM's only.
The following theorem gives a matrix relationship which
relates the ee-period and the net number of pulses
emitted by each modulator over that period to the system

parameters.

Theorem 5.4 Consider an IPFM system with a time-invari-
ant linear part. Assume that the conditions of Theorem
3.3 are satisfied. Furthermore, sssume also that there
exist positive constants Bo, Bg’ ao and ag, such that

-2 t
H%ﬁﬁtm SB; € t>0,i=1,...,m (3.272a)

and N
-a
on(t)ﬂ < Bye 0 , t>o0. (3.27Dp)

Then, the ee-period of the motion satisfies the matrix
relation

Pg=Tr. +¥% (3.28)
where, P is an mxm matrix whose elements pij are defined

by
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S, for i=j

i 14
p.. = h,  (0) + , (3.292)
1J 1J 0 for i # j

h, . (%) = IM g..(t) dt (indefinite (3.29b)
1J J "1 integral

I, and g are m-dimensional column vectors, whose elements

are defined by
Q. = (the number of positive pulses)
1 _ (the number of negative pulses) (3.29¢)

emitted by the ith modulator in
the interval (0,T}.

and T

ro; = %.Jf r,(t) dt. (3.294)

0]

¢ is an m~dimensional column vector which depends on the

deviation of €o—n.P. motion from pure periodic motion

such that
N B. 2N B _a N7
lell < |e Sligl— + Ne |17+ Qe + B e & (3.2%)
=7 = 0 6 r ao
g
N = [%] + 1 (3.29f)
and ‘ N
€e £ €p * eoll1+0) (3.29%)

14If the linear part of the system is described by
the matrix equations X = A x+ Bu, ¥y =C x, then

H(0) = ¢ 7' .
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The proof of Theorem 3.4 is given in Appendix C.

For a single-loop, gingle-modulator IPFM system

and for €™ O, Theorem 3.4 yields the relation

T = |-§,1O[S + h(O)]l (e, = 0) (3.30)

This result was previously obtained by Meyer (93) and
has later been verified by King-Smith and Cumpston (71)

and Varadarajan and Pai (127).

The following example illustrates utility of Theorem

%e3.
Example 3.4 A multiple output pulse generator is to be

designed to provide the periodic waveforms shown in Fig.

5.6

I 5 10 15  t (secs)

I 11 | -

I 14 t Z;ecs)

> —

N
0

Figure 3.6 Desired pulse pattern of the pulse generator.

An IPFM system containing two IPFM's and a second
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order time-invariant linear part with a constant input
is a good candidate for the job. In order to facilitate
the design, some of the parameters of the system can be
chosen arbitrarily: Let S1= 1, S2= 1, M1= 1 and M2= 1,

and let the LP be described by the equations

%(t) = & x(t) + B u(+)

y(t) = C x(%)

For containment of the system, the matrix A+BSC
must possess no eigenvalues in the r.h.p. (Corollary 3.1).

This condition is easily satisfied if a1>'-1 and a,> -1,

From (3.29b) one can easily obtain (see footnote

no. 14)

1_/a1 0
H(O) =C A B =" (3.31a)
b/a, /2,

Substitution of (3.31) into (3.29a) yields
1/a1+1 0]

P = l E_(O) = .
P=1+ e, 1/ap (5.31D)

From (3.29e), it follows that as €.~ 0, ¥ - 0. There-~
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fore, for e = 0, (3.28) and (3.31b) give

i 21T01 il
-1 a1+1
a=2"ry T =| |, by T (3.32)
- a
0171 + 8a,.r
a2+1 a1+1 2702
L .

1
Since the period is T = 5 secs, and g =[ ], (3.32)
1

yields
5r
q =1 = o1 , (3.33a)
a1+1
and,
5r,.8
q2 =0 = __1__ _b__gl_l + 5a2r02 (3-33b)
a2 +1 B.1+ 1

(3.33%a) and (3.33b) can be combined to obtain

b =5 a,ry, (3.34)

The initial condition response vector, xo(t) is

given by

(3.35)

Io(t) =¢ e&%x(0)

The output vector is

_e-a1(t-5)
(t) = y5(t .36
R (t_sﬁ (3.36)
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The proper initial condition of the system can be

obtained from (3.10), for €5= 0, giving
-58 - -
Xg1€ 2% =1+ x,, =0 (3.37)
and
—x..e"082 4 ™42 _ e™®2 b+ x.,=0 (3.38)
02 02 *

(3.37) yields
Xny = 1. (3.39)
()| e-5a1 *
The threshold relation for the first modulator is
5 -t
J; [I‘01-Xo1e lat =1 (3.40)

Similarly, the threshold relations for the second modula-

tor are
f [r02_X02e + e at = 1 (3.41)
0
and
f6_ eyt e, (4-1)  -a,(t-4)
[roz'x02e + e - e ] at
0
~-b e dt = =1 (3.42)

0

Substitution of (3.39) into (3%.40) yields
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1
5 Toy = 1+ a4

Thus, one can select Toq = 1 and 8, = 5.
(3.34) and (3.38) yield
Sa.r. . +e 22_g 422

x), = 2702 (3.43)
1 - e"58.2

Elimination of r., from (3.41) and (3%:42) and substitution
of (3.34) and (3.43) into the resulting equation yields
an equation containing only one unknown, as. This equa-

tion can be solved for 8y, yielding

0.5748298

2,

Hence,
-0.06405757

H
]

From (3.34)
b = ~0.184108

and from (3.43)

Xyp = 0.2950206

At t = 07 the integrator of the first modulator is

reset to zero. However, the output of the second integ-

rator is
1 _azt
22(0) = -1 —I (r02-xo2e ) dt = - 0.71155822.
0
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Now, assume that the matrix 2_1 exists and let

b= 2-120 ‘ (3-44)

Furthermore, assume also that the components of the vec -
tor p are rational numbers, i.e., Ipi[ = Ni/Di , where

Ni and Di are integers (i = 1,...,m) and that the vector
g hes no zero component. Then, for e¢~0, the period T is

an integer multiple of the number

LOM(D,, Dpy «eey D)

CRCIN Y Nm)

1 (3.45) 17

0 GCD(N, , N,

T

The number TO will be called the the elementary

period. Unlike linear systems, the period of oscilla-
tions in PFM systems (or, nonlinear systems, in general)
could also depend on the initisl conditions. If r, # 0,
it is seen that, for this special case the possible
periods of oscillation (under different initial condi-
tions) are quantized, such that they are multiples of the
elementary period, TO. If EO = 0, then the number of

positive pulses will be equal to the number of negative

pulses emitted by each modulator.

15p0m(., ., ..) and GCD(., ., ..) stand for least
common multiple and greatest common divisor, respectively,

€. LCcM(3, 6, 15) = LCM(3, 2-3, 3-5) = 2-3-5 = 30,
GCD(3, 6, 15) = 3. ‘

i



135

From (3.45) it is not difficult to see that any
slight perturbation in either the system parsmeters or
the input will yield a completely different period of
motion, provided P; (i =1,...,m) remain rational after
the perturbation. If any component of the vector p
becomes irrational, then T— @ . This point is illustra-

ted in the following example.

Example 3.5 Consider again the system treated in Example

%3.4. Assume that the parameters 32’ b and the input
rz(t) are perturbed slightly (from the values calculated
in Example 3.4), such that a, = 0.575, r2(t) = -0.064

and b = -0.1841. Substitution of these values into
i

2 T 78750

(3.45) gives p, = N,/D, = 1/5, and p, = N2/D
Therefore, for e -= 0, (3.42) yields

LCM(5, 78750)

0 = gcn(1, 1) = 18750 .

T

For very small perturbations, it is reasonable to
assume that there will not be a noticeable change in the

motion. What explanation can be given to this "discre-

pancy"?

The answer lies in €_; it can be related to measu-
rement error and has a small but nonzero value. The vec-
tor ¥ in (3.28) is an arbitrary vector. It can be selec-
ted such that condition (3.29e) is satisfied. In this

case, (3.28) yields a number TO (the elementary period)
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such that the ¢_-period T is an integer multiple of T,.
For small perturbations, since ¥ is arbitrary, this ele-
mentary period will be independent of the parameters of

the system or the inputs.

Note that the term ¥ in (3.28) must be such that it
can neutralize the effect of parameter perturbations. In

order to elucidate this consider again the system of

Example 3.4.

Example 3.6 Let ¢y = p~1

¥, then for the system of Example

3.4, (3.28) yields

1 1 +¢é

qa = =R T+ Y =
5 L,y
0 78750 " "2

In order to cancel the effect of parameter perturbations,

Y' must be selected as

0
p' =2l =| -5
78750
Therefore,
0
_!g = _:E _(2’ = 25——_ (3046)
(315)2

From equations (3.29e), (3.29g) and (3%.46), one can see
that for €57 2 X 10—4, the motion could be considered as

€ ~N. .
e Y
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3.6 Conclusions

This chapter was concerned with the basic aspects of
periodic behavior in multi-modulator PFM systems. Since
motion in a PFM system is not necessarily (purely) perio-
dic or almost periodic, a weaker concept, that of ee-nearly
periodic motion (ee—n.p.m.) was introduced. This notion
has been defined in terms of a given accuracy within
which the motion could be congsidered "periodic" in a

given observation interval.

For CRPFM systems sufficient conditions were given
such that the motion would not be finite-pulse stable
(i.e., the modulators will not stop firing in finite
time) or uncontained (i.e., the pulse freguencies will
not keep on increasing). The first set of conditious
cpnstitutes a basic necessary condition for the existence

of €,-n.p. motion, while violation of the latter, for

1"

large perturbations, means the motion will "run away".

Two upper bounds were presented for € such that
for a given period and a given observation interval, the
motion will be ee-n.p. The first bound is applicable to
more general cases; however, in certain cases, it can be
much larger than . the actual value. The second bound is
especially useful if the impulse response matrix of the

LP is almost periodic (e.g., a finite-dimensional time-
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invariant LP, having a transfer matrix with all its poles

on the imaginary axis) or contains only lightly damped

periodical terms.

For IPFM systems with . time invariant LP's a matrix
relationship was presented, relating the period of motion
and the net number of pulses emitted by each modulator
over that period. This relation clearly demonstrates the
difference between periodic behavior of single-modulator
and multi-modulator systems: Pure periodic motion, in
the latter, is possible only in the "ideal" case when
all the components of a certain vector of system parame-
ters are rational numbers. Practically, however, pure
periodic motion or approximately periodic motion may look-
glike because of measurement inaccuracy. Therefore, both
measurement (or observation) accuracy and the observation

interval must be considered in investigations of periodic

behavior.

For some sets of system parameters, it is also -
possible that the motion is not €g~Nn.P., except for
unreasonably large values of €.° In this case the
motion will have a random appearance, such as has been
observed in experimental studies of neural activity.

Thus, the results of this work might offer clues in the

research on "random" activity in the nervous system.
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CHAPTER 4

OSCILLATIONS IN INTERCONNECTED TIME-DISCRETIZED CRPFM

SYSTEMS

4.1 Introduction

In the previous chapter certain aspects of periodic
behavior of CRPFM systems were considered. However, many
interesting problems were left unsolved, such as the
determination of the possible period(s) of motion and. pre-
diction of possible pulse patterns for given sets of
system parameters. Only a partial answer to this ques-

tion was given for the special case of an IPFM system.

To obtain further results, a different approach is
used in this chabter; namely, time discretized approxima-
tion of the CRPFM system. Such approximations are in
fact utilized in numerical computations of the sys tem

response (see Appendix D).

It is, however, still difficult to obtain anaslytical
results from the resulting (nonlinear) difference equa-
tions (except for oscillations having very short periods).
This difficulty can be reduced by "linearization" of
these equations by introduction of extra variables, using
Fukunaga's method (32) for nonlinear switching nets. In

this case, classical linear techniques (based on characte-
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ristic polynomials and eigenvectors) can be used to

obtain information about periodic motion.

The analysis presented in this chapter is exact for
an important class of CRPFM systems, namely that where
the LP's consist of interconnections of unit delays and
summing junctions. Since McCulloch-Pitts type of neural
networks constitute a subclass of this class, the results

are also applicable to such networks.

4.2 System Considerations

In this chapter, a time-~discretization of the CRPFM

system of Fig. 3.1 is considered. 1t is assumed that

the LP is time invariant.

4.2.1 Time discretizstion of general CRPIM system.

The discretization interval should be carefully selected;
a large value can result in serious errors, while a small
value means the the dimensions of the approximate system
might become very large (as in the case of a LP contai-
ning time-delay). In general, it should be selected
smaller than the smallest pulse period (i,e., the minimum

distance between two successive pulses) expected.

To illustrate the time discretization, consider the
general system of Fig. 3.1, with m CRPFM's, a time-inva-

riant LP and time-invariant TF's. It can be represented as
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shown in Fig. 4.1a. The time-discretization implies the
assumption that pulses may occur only at time- instants kT;
k=0, 1, 2,..... This applies to both input r(t) and

modulator-output u(t); i.e.,

@
2(t) = ) r*(k) B(t-kT) (4.1)
k=0 .
and
@®
u(t)= ZE*(k) &(t-kT) (4.2)
k=0

where, r*(k) and u*(k) are the strengths of the impulses
of r(t) and u(t) respectively, at t = kT. For conve-
nience, let gt(k) = gt(kT), gp(k) = gp(kT), etc. The
equations governing the system of Fig. 4.1a for k = kT
are

Linear part (LP):

x (k+1) = (D) [x(k) + B w*(x)] (4.3a)
(k) = gpgp(k) (4.3b)

Threshold element (TE):

il
[
=

If zi(k)S-Si then'ui(k)

If [2,(k)<8; then wi(k) = 0 ;5 x';(K)=x,, (k)p(4.4)
1f zi(k)> Si then ug(k) = Ml; g:i(k)= 0 j

(i=1,...,m)

where ggi(k) represents the state of the TF of the ith

modulator at t = kT+.
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&77 Resget
r(t) e(t) Et(t) = Qt(t-to)zt(to) 2 () Threshold
T t | Devices
+ +_~! Qt(t-'c);ﬂt_e_('c) dt

z2(t) = Ctx4(t)

Timing Filters (TF)
y(t) Ep(t): B, (1-t5)x,(%0) o)
+f g (t-7)B u(z) 4T |~
t P P

0

Figure 4.1

(a) A CRPFM system with time-invariant TF and
LP.

(b) Time-discretized approximation, using
eqs. (4.1)-(4.5).
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Timing filter (TF):

2y (k+1) = B(0) [£}(R) +[B, £(k) + x(k)) ] (4.58)

A case of special interest is the CRPFM system of
FPig. 4.2, where the LP consists of ideal time-delays
only. Such a system may be used as an approximation of
a neural network.. It is especially suited for +time-
discretization which can approach an exact representation
of the system when the discretization-interval, T, is
chosen as a certain sub-multiple of the time-delays, Ti
(i =1,...,m) (provided that the input consists of impul-

ses occuring at intervals kT). This will be discussed

next.
Yolt)
r_}) e(t) e, uy u(t) u, ¥y + y(t)
und S |— :> e
* + Del 1 "
CRPTFTM elay elienen

Figure 4.2 Block diagram of an interconnected system
consisting of m CRPFM's and ideal delays.



144

4.2.2 Interconnected system consigting of CRPFM'sg

and_ideal delays. In this subsection the system of Fig.

4.2 is considered. The block -containing the delay ele=-

ments is assumed to be described by the equations

yi(t+T,) = Kiu, (8) + yo;(4+7,) (4.6)

(i= 1,‘.-,11])
where, Ti = and Ki are constants representing the delay
times and gains, respectively (i=1,...,m). The input

vector, e(t) to the modulator block is given by
e(t) = B g(t) + z(t) (4.7)

where, B is an mxm matrix.

It is assumed that a2ll motion is of the form of
impulses; however, each modulator may emit impulses of
different strenghts. Thﬁs,thé input to the ith moduia—
tor, ei(t) may be expressed in the form

QO
e5(8) = ) ey B(t-Ty) (4.8)
j=1

where c;; is the impulse strength of ei(t) at time Tij‘

It is further assumed that each modulator emits an
impulse immediately after it receives an impulse; this
implies that

(i = 1,...,111,
sy 804(%sy0Cs3) 285 2T 7 (4.9)
J=1, 2y..4)
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A CRPFM system satisfying the above assumptions shall be

said to be in pulse mode operation1.

With the above assumption, the output of the ith

modulator is given by

oo}
J:
where,
-1 for £§<0
sgn(G) 2¢ 0 for £ =0 (4.11)
1 for &>0

Let it be further assumed that

gOi(t,t ) >0 ¥t >0 (4.12)

This assumption implies little loss of generality since

a negative sign can be take up by Mi' Moreover, since
for a timing filter of the form x(t)= A(t)x(t)+b(t)u(t);
2(t) = ¢ (£)n(t), it is g (t,1) = eT(£)b(t), ir ¢T()b(+)
does not change sign, then (4.12) can be imposed. This,

for example, is true for a time-invariant TF.

wWith assumption (4.12), (4.10) can be written as

1For the developments to follow~ , the modulator can

actually be a different type of PF modulator. However,
it has to satisfy the assumption that the strength of an
incoming impulse is such that it regenerates another .

impulse.
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@®
ug () = M, 3}:1 senlo; ;) 8(t-7;) (4.13)

For time-discretization, select a discretization-
interval, T, such that Ti = m;T, where m, (i=1,...,m)
is a positive interval. This interval T must be chosen
small enough to ensure that the pulse-emission times Tij
are also multiples of T. The time-discretization con-
sists of consideration of the impulse-strengths of the
signals at instants kT, It will also be assumed that the
input, ;(t):=§% r*(k) d(t-kT), will consists of impulses
of strengths giai)at instant kT. Moreover, the initial
condition response, xo(t), is assumed to be given in

terms of impulse-trains within the delay times, express-

able as

m: -1
Yo () = 3 gy (8) Ble-tm), (4=1,..im)  (4.10)
£=0 i

Further, let u*(k) and y*(k) be the impulse-strengths
of u(t) and y(t), respectively at t = kT. Then, for pulse

mode operation [condition (4.9)], (4.13) becomes:

ut (k) = M, sgn[ e*(k)l (4.15)

The initial- condition response given in (4.14) defi-

nes y;(t) from O0<t<T,. For t>T, = m,T, yi(t) will be
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given in terms of y%(k+mi) (k=0, 1, 2, «..). From

(4.6), (4.15) and Fig. 4.2:
y%(k+my) = K. M.sgn[ B y*(k) + r*(k)], (4.16)

The notation [x], demotes the ith element of the vector

Xe

Since it is clear that only impulse-strenghts are

considered, the superscripts (*) will be dropped for the
rest of this chapter. Furthermore, for notational simpli-
city, certain previously used symbols will be redefined

in this chapter to denote different variables. Dropping

the asterisk, the above equation becomes:

y;(k+m,) = KM, sgn [B y(k) + z(k)], (4.17a)
(for double-signed CRPFM's) (i =1,...,m)

A similar relation can be given for the system of

Fig. 4.2 with single-signed CRPFM's; in this case it is

yi(k+mi) = KM, p [3 y(k) + ;(k)]i (4.17p)
(for single-signed CRPFM's) (i =1,...,m)

where p(x) denotes the unit step function, defined such

{1 for x > 0
= .1
n(x) 0 for x <0 (4.17c)

that
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Equations (4.17) may be unified as

yi(k"'mi) = K.M,; p[B (k) + ;(k)]i (4.18a)

(i = 1,...,m)

where
sgn(x) for double-signed CRPFM's
P(X) = .
p(x)  for single-signed CRPFM's
(4.18b)

Equations (4.18a) represent m scalar difference €quations
of orders My, Moy, eee, W, rigpectively. They can also
be represented in terms of 2:

i=1
equations which form a vector-difference equation of order

m, first-~order difference

m
n=) m (4.19)
i=1
Let
a 1 . l=1,oo¢,m, X
le(k) = yl(k+']_1)’ J — 1""’mi (4020)

iti
This implies that

1,...,m, (4.21&)

i
le(k+1) = X. 1(k), . 1’;..,mi_1

i, j+

<
I

and, from (4.18a)

®
xi,mi(k+1) =p [;;;biijKjxj1(k) + ri(k)] ) (4.21p)
(i=1,...,m)

Let



149

%34 (k)7 [ 0 ]
x35(k) 0
gi(k) S S and gi(k) 4 : ‘ (4.222)
xim(k) ri(k)
- - B -(i=1,...,m)
and
-.}_{.1(k)— -21 (k)7
5_2(1{) -
x(k) &2 : and r'(k) 2 z?(k) (4.22D)
2, () | |z, (k) |

Eqs. (4.21) represent the new set of state diffe-
rence equations in terms of the n~dimensional state vec-
tor x(k). Because of the definition of p(.) and its use

in eqs. (4.21b), it follows that

x;5(k) = plag (0], 3 2 };;;;;g; (4.23)

Therefore, eqs. (4.21) can be brought into matrix form as

x(k+1) = p[D x(k) + z'(x)] (4.24)
where
s | T
px 2 Lp(x1), p(x2),...,p(xn)] , (4.25)
2 Ryl 2y
D2 |ieiennnnnnnennl, (4.262)
Qm1 2m2 I—)-mm
and -0 10 0007
0 01 000
0 00 000 (426
D - 3 . 'Y . . . 4.2 b)
11 0 00 010
(m,xm, ) 0 00 001 (i =1,...,m)
| by MK, 00 ...0 0 0] -
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and
0] 00 ... 000
0 00 ....000
_ . e oeees oo | mg (4.26¢)
=ij 0 00 ....000[ ;. _y n:
by K ¥, 00 ....0 00 trd = el
3 o vV i# )
J
In other words,
1 if £= k+1; k = 1,2,...,mi-1; j=1
[Qij] = byKgM if ko= omy, 4=t
k,?
0 otherwise ( )
4.264

(k = 1,..,mi;£:=1,...,mj)

Equations similar to (4.24) have been used to des-
cribe McCulloch-Pitts type neural nets [Landahl and
Runge (&2), Caianiello et.al. (18,19, 20)]. A special
case treated by Caianiello et.al (19) for neural nets

assumes r'(k) to be constant such that
r'(k) = -+D 1, 121, 1, .., 117 (4.27a)
In this case the transformation

%(x) = 2 x(k) - 1 (4.27b)

reduces (4.24), for the single-signed system[i.e., for

p(+) = p(-)], to the form

A — R (for single-signed
x(k) = sgn D x(k) CRPFM's and for (4.27c)
r'(k) = -3 1)

where
1 for x>0

sgn (x) = { (4.274)
-1 for x0
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4.% The putonomous Case, Period of Solutions

For the case r'(k) = 0 eq. (4.24) for the double-
signed system becomes
x(k+1) = sgn D[x(k)] (4.283)

or,

y(k+1) = D sgn i(k), where y(k) 2 D x(k) (4.28Db)

In this section some properties of egs. (4.28) will be

presented.
Consider the vector-~difference equation
x(k+1) = O[x(k)] (4.28¢c)
where ¢(-) denotes some operator [e.g, for (4.28a), it is
o(-) = sgn D(+)]. TLet

oF(-) = o(a(0(...)))

k times

Then, the solution of (4.28c¢c) is

x(k) = 9%[x(0)]

A state X is called a cyclic state if there exists
an integer k such that x = sz. If no such k can be

found, then the state is called s transient state. Let

ko be the value of the smallest k satisfying x = Okg; the

2
sequence 0x, 0 X, ..., Okog = X is called a cycle. The

constant ko is called the period (or, sometimes the
length) of the cycle. A cycle of period = 1 is called a,

gsimple cycle. A simple cycle formed by the zero state
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x=0[0,0, ..., 01T ig called a trivial cycle. If for
every possible state x, 0(x) # X, then X, is called a
first state. A sequence of transient states Lo Ggf,
ceey szf, generated by a first state Xo is called a

transient chain (13).

In shift register designs short cycles are, gene-
rally, not desirable. However, short cycles might have
biological significance (Kauffman (70) relates existence
of short cycles to genetic stability). The following

lemma is concerned with short cycles, namely, cycles con-

sisting of one or two states.

Lemma 4.1 Let x' and x" be the solutions of the equations
X =s8gn)D X and X = ~sgn D x, respectively. Then, the

state x' will form a simple cycle by itself, and the

states x" and -x" will form a cycle of period 2.

Proof: Let x(0) = x', then from (4.28b), x(1) = sgn D x'.
But x' = sgn D x', thus. x(1) = x'; x(2) = x',.... Simi-~
larly, with x(0) = x", x(1) = sgn D x" = -x", x(2) = x",
x(3) = -=x",.... Therefore, x' forms a cycle of period

1 and x" and -x" form a cycle of period 2.

The existence of +the solution of the equation
X =+ 8gn D x is not obvious. Consider the eigenvalues

of D. Let x* denote an eigenvector corresponding to a

positive eigenvalue, A+, and let 5— denote an eigenvector
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corresponding to a negative eigenvalue, A . Then,

D _}5_"' = 7\+£+, or sgn D §+ = sgn 3{_+. Thus, if.g(_"' = 8gn L"',

1" -
then x¥ = x'. Similarly, if X~ = sgn x~, then x = x .

This leads to the following corollary:

Corollary 4.1 If the matrix D has an :eigenvector gf

corresponding to a positive eigenvalue, such that

zf = sgn zf, then gf will form a simple cycle. If D has
an eigenvectorlz- corresponding to a negative eigenvalue,
such that x~ = sgn x~, then x~ and -x~ will form a cycle

of period 2.

Example 4.1 To illustrate Lemma 4.1, Corollary 4.1 and

some of the related notations and definitions, consider

the system
3 6

x(k+1) = 8gn x(k)
1 -2

The eigenvector corresponding to the positive eigenvalue

A= 4 is of the form §+ [?] d, and the eigenvector
corresponding to the negative eigenvalue A= -3 is

the form x~ =[_}} B, where o and P are arbitrary sca-
lars. In this case, xt £ sgn zf, thus, there is no simple
cycle. However, for B =1, sgn x~ =[_1] = x . Hence,

x" =[_}]. Note that

NN
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This means that the states | ] ena [!] will form a
cycle of period 2. The remaining states are [1]and
[:}]; they are transient states. From the first, the
net goes to the state [_}] and from the second to [’}] .
This knowledge can conveniently be displayed using the

diagram shown in Fig. 4.3. Such diagrams are called

state transition diagrams.

1 1 r-1 -1
1 1] L -1

Figure 4.3 State transition diagram of the system consi-
dered in Example 4.1.

From Corollary 4.1 and Example 4.1 one might intiu-
tively reach the conclusion that somehow the rank of the
matrix D and the cycle lengths are related; the smaller
the rank-, the shorter become the cycle lengths. This
point was explored by Caianiello and Accardi. The follo-

wing theorem is due to Caianiello (19, 20).

Theorem 4.1 [Caianiello (19)] IfD is of rank 1, then

the system described by (4.28) can only have a period of

(1) 1 if 02>0, or

(2) 2 if c2<0,
T

where c, = g?sgn g and D=2a b ; a and b are n-dimensio-

nal constant vectors.



Proof: Consider (4.28b). Since the matrix D is of rank

1, it has the form g Q?, where a and b are n-dimensional

column vectors. For k = O, (4.28b) gives

§(1) = a o’ sgn ¥(0)

Let Q?sgn 3(0) = ¢y (2 scalar), For k =1,

$(2) = a b sgn §(1) = 2 h? sgn (coa)

= 2 b (sgn c,) (sgn 2)

$(3) = a bt san §(2) = & bT

sgn a QT(sgn co)sgn a.
Let sgn o ¢, and b'sgn & = c, (a scalar), $(3) becomes
$(3)=2a b?(sgn-&)(sgn c1)(sgn 02) = 2 ¢yCye

For k = 4, (4.19b) yields

§(4) = a b’

1Y

sgn y(3) = 4y

Thus, froman inductive reasoning, one can deduce that
c, ¢ for k = 2, 4, ...,

. () 2% "2
1 - &01 02 fork=3, 5, e o e

For ¢, >0, this means y(k) = a c, cp (k =2, 3, 4, ...),
i.e., only a simple cycle is possible. However, for
cy< 0, there will be a cycle of period 2.

(QED)

The same conclusion also follows form Corollary 4.1.
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Since D is of rank 1, it is similar to a matrix which
has a nonzero element in a diagonal position as its only
entry. Thus, it has only one nonzero eigenvalue and any
vector in E? is an eigenvector corresponding to this
eigenvalue. This meahs that Corollary 4.1 will be satis-
fied for each possible n-~vector whose elements are +1 or
-1. If the nonzero eigenvalue is positive, there will be

only simple cycles. If it is negative then there will

be only cycles of period 2.

The following theorem, which considers the case when
the coupling matrix D has rank K was prooved by Accardi

(2).
Theorem 4.2 Accardi (2) If the matrix D has rank K,

then the number N of the admissible states of the systenm
described by (4.28) and the maximum possible cycle period

is such that

N < 2% - on-Kt o,

4.4 Linearization of the System Equations

The approach used in Section 4.3 did not proove to
be very successful mainly because the operator O was non-
linear (i.e., in general, G(c1 X, +c, ;2) # c, 0 x, +
czd %,, where c, and c, are scalars and b and X, are n-

vectors). Is it possible, then to find an equivalent
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linear system of equations which will adequately describe

the systems congidered in Section 4.27

To answer this question first consider egs. (4.24):

] (double-signed

sgn [ D x(K)+r' ()] (Joubles

x(k+1)

and
B V(% (single-signed

x(k+1) = P[Q x(k) + r' (k)] system)
describing the systems considered in this chapter. From
the sbove equations, it is not difficult to see that for
the double-signed system, the elements of the vector
x(k) can only take on the values +1, O or -1 and for the
single-signed system O an 1 are the only possible valuesz,

i.e., only a finite number of states are possible.

Since only a finite number of states are permissible,
it is possible to find an equivalent linear system by
introducing extra variables. For binary swifching nets
such a technique was described by Fukunaga (132 ), in a
short technical note. Some of the consequences of this

linearization was later worked out by da Fonseca and

2The variable y(k) corresponds to the pulse strengths.
For the double~signed system, +1 represents a positive
pulse and -1 represents a negative pulse. For a single-
signed system +1 represents the presence of a pulse and
O represents its absence. 1n the double-signed case one
can also use the symbol 0 to denote the absence of a

pulse .



McCulloch (131). In general, this technique
can be extended to any autonomous net defined with res-~

pect to a finite field3.

A field is an algebraic system consisting of two
operators and their inverses (e.g, addition and its
inverse, subtraction; multiplication and its inverse,
division). The field of real numbers and the field of
complex numbers are examples of infinite fields which are
used in the analysis of continuous systems. When the

variables of the system under consideration is restricted

3p field is an algebraic system consisting of a set
F and two operations defined on F which are single-valued
functicns of two variables, denoted by a + b = ¢ and
ab = ¢, called addition and multiplication (not necessa-
rily the addition and the multiplication of the arithmetic
of ordinary numbers). The operations + and -+ segtisfy
axioms A.1 - A.5 (with the dummy operator o replaced
first by + and then by - ) and A.6:

A.1 Closure Va,beFP— ¢ = aobeF,
A.2 Associative law Va,b,ceF—+ (aob)oc = ao(boc)
A.3 Identity element VaeF-= TieF Jica = aol = a
A.4 Inverse elenment VaeF— Uqel 2qoa = aog = 1
A.5 Commutstive law Va,beF— aob = boa
A.6 Distributive law Va,b,c,eTF—
a-(b+c) = a-b + b-c,
(b+c)-a = b-a + c-a.

If the multiplicative operation does not satisfy
axioms A.3~A.5, the system is called a ring; if one of
the operations (say +) satisfies A.1-A.4, it is called a
group. If in addition to A.1-A.4, A.5 is also satisfied,
the group is called and Abelien (or, commutative) group.
Thus, a field is a commutative ring with a multiplicative
inverse and a ring with respect to its additive operation

is a commutative group (9).
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to a finite number of values, it becomes advantageous to

use fields that have only a finite number of elements.

In a2 finite field each function is equivalent to a
polynomigl. The number of elements cannot be selected
arbitrarily; it must be of the form pr, where p is a
prime number and r is an integer, It can be shown that
any two finite fields with the same number of elements
are isomorphic (9), i.e., they have the same structure
and differ only in the way the elements are named. Fini-
te fields are called Galois fields (denoted by GF(p¥)),
in honor of the French mathematician who first invegti-
gated their properties. Any function of n variables over

GF(pY) can be represented by r functions in nr variables

over GF(p) (9).

In this chapter the field GF(2) (also called the
binary field, or mod 2 field) will be used (This applies
to single-signed system). Howevery for sake:of generality,

some of the results will be given with respect to GF(p%¥).

The binary field GF(2) has a very simple structure.
It has two elements denoted by O and 1 and two binary

operations denoted by (+) (called mod 2 addition) 4 and

41he symbol + is also being used for addition in the
usual sense. However, this will not cause any confusion
because which field is used will be obvious.
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() (called binary multiplication). Operation rules for

GF(2) are given in Figure 4.4

+ exclusive OR

A4 OR
+]0 |1 .l o1 . AND
]
olo |1 olo|o]| @ NOTa
Basic conversion rules:
t11]o 1101 a'=1+ a

avb=a+b+ ab
Figure 4.4 Operation rules for the Galois field GF(2).

In logic designer's language mod 2 addition (+) is
also known as EXCLUSIVE-OR and the binary multiplication
() is known as AND (133). The INCLUSIVE-OR (or, simply
OR) operation (v) is defined for two variables a and b
such that a v b = 1 if and only if either a or b (or
both) is 1. In logic design, it is more customary to
use INCLUSIVE-OR, AND and NOT (a' =1 if a = 0; a' = 0 if

a = 1) operations (This may not be so). It is not diffi-

cult to see that

and

aVvb=a+b+ahb

To illustrate how the aforementioned linearization

can be performed, the following example is given.

Example 4.2 Consider the neural network of Fig. 4.5a,




161

-1.2 316 b
. u +0. u 2
1 N 2 :
K PFM, ——ﬂ% }] ‘5rﬁ- PFM,,
' +0.5
/
%
X 0.7
PFM

(b)

Figure 4.5 (a) Schematic representation of a neural net-
work consisting of interconnections of
two excitatory neurons (neuron 1 and neu-
ron 3) and an inhibitory neuron (neuron 2).

(b) Block:diagram of a simplified model of
the same neural network.
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consisting of two excitatory neurons and an inhibitory
neuron. A simplified model of this net is shown in Fig.
4.5p. Assuming the pulse repetition rate of the network
to be sufficiently low, the effect of temporal summation
can be neglected. Using the symbol 1 to denote the exis-
tence of a pulse and O to denote the absence of a pulse,

the behavior of the net can be described by the equation

xest) = p |06 0 b 055 x(i)
o) 0 1 0

The information contained in the above equation can also

be displayed using the tables shown in Fig. 4.6.

xz(k) x3(k) x4(k) x1(k+1) x1(k) x2(k) x3(k+1)
0 0 0 0
0o o 1 i ° 9 o
0 1 0 1 1 0 1
0 1 1 1 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
x1(k) x3(k) x4(k) x2(k+1) x3(k) l x4(k+1)

0 0
1 1

— b ad b b e (O

Figure 4.6 Truth tables of the system of Fig. 4.5b.
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From +these tables one can obtain:
x1(k+1) = E1+x2(k)][1+x3(k)jx4(k) v [1+x2(kﬂ[1+x4(k)]x2(k)

v[1+x2(kX]x3(k) x4(k) v xz(k) x3(k) x4(k)

(4.29a)
x2(k+1) = x1(k) + x3(k) v x4(k) (4.29D)
and
x3(k+1) = x, (k) | (4.29c¢c)
Also,
Xy (k+1) = x5(k) (4.298)

Since a v b=28a + b + ab, one can express the right.hand
gide of equation (4.29) using only the operations (+) and
(). To simplify notation, the k terms on the right hand
gide of the equations will be dropped. Hence, eq. (4.29a)
becomes

x1(k+1) (1+x2){[(1+x3)x4 v (1+x4)x3]v x3x4}v XoX3X,

(1+x2) [(x4+x3x4+13+x3x4+x3x4+x3x4+x3x4+x3x4)

V XzX, 1 v Xp%3X,

(14x,) [(x3+x4) v x3x4] V XpXzX,
= (1+x2)(x3+x4+33xq+x3x4+x3x4) V XpXgX,
= KghEytXo Xk X X, +XaX, (4.302)

Similarly, eq. (4.29b) becomes
xz(k+1) = (x1 v x3) VX, = (x1+x3+x1x3)+x4+(x1x4+x3x4+x
+x1x3+4) = KRR Kb X H A X F Ry Xz X,
(4.%0b)
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The net of this example is nonlinear because of the
presence of the product terms of the form xixj and xixjxc
(i,3,¢ = 1,2,,3; i#j#t). In order to avoid such ternms,

simply define the following new variables

xs(k) = x,(k) x,(k) (4.31.1)
xg(k) = x (k) x25(k) (4.31.2)
X, (k) = x (k) x,(k) (4.31.3)
xg(k) = x,(k) xs(k) ' (4.31.4)
xg(k) = x,(k) x,(k) (4.31.5)
x,0lk) = x5(k) x,(k) (4.31.6)
x11(k) = x; (k) x,(k) x3(k) (4.31.7)
x12(k) = x1(k) xz(k) x4(k) (4.31.8)
Xy 5(k) = x, (k) 25(k) x,(k) (4.31.9)
X4 4(k) = xp(k) x5(k) x,(k) (4.31.10)

x15(k) = x1(k) x2(k) x3(k) x4(k) (4.31..11)

Substitution of egs. (4.31) into eqs. (4.30a) and (4.30Db)

yields
xi(k+1) = x3(k) + x4(k) + x8(k) + xg(k) + x10(k)
| (4.32.1)
and
x2(k+1) = x1(k) + x3(k) + x4(k) + x6(k) + x7(k)
+ x1o(k) + x13(k) (4.32.2)
Also,
x3(k+1) = x1(k) (eq. (4.29c), repeated) (4.32.3)
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and
x4(k+1) = x3(k) (eq. (4.294), repeated) (4.32.4)

Since, from eq. (4.31.1), xs(k+1) = x1(k+1) xz(k+1), eqs.
(4.32.1) and (4.32.2) give
x5(k+1) = x3(k) + x4(k) + xz(k)x3(k) + xz(k)x4(k)
+ x3(k)x4(k)

But, from eqs. (4.31.4), (4.31.5) and (4.31.6),
x2(k)x3(k) = xa(k), xz(k)x4(k) = xg(k) and x3(k)x4(k) = x1o(k).

Thus, xS(k+1) can be written as

x5(k+1) = xj(k) + x4(k) + xa(k) + x9(k) + x1o(k)

(4.32.5)

Similarly,
xﬁ(k) = x6(k) + x7(k) + x11(k) + x12(k) + x13(k)
(4.32.6)
x7(k+1) = x3(k) + x8(k) + x14(k) (4.32.7)

The rest of the equations can be obtained in the same

manner; in matrix form they become

o

1

x(k+1) = x(k)

—~0-=0=0000=00000
OCC00O—-000O0—~000QCO
CO00O—=0000—=000 =0
CO0O—=0C000C—000Q0O0
—~0—-000000000000

olofoYoloNotoR YoloToo X

oYoNoYoYoloYoYoXoRoYoYoXoXo o)
COO—0O=0=0O==O -
COCO0OOUVWOC OO0 ——
oloJoloJoYoNoYeXoXoYoYoRoloTo)
S, e O= 000 —~000—0
eloloYo R doYoolo N Ve Yo RV e!
COO0=0QO0O0—0—~000~—
eJololoJoYoReoYoleFoRYoXoNo T
(oJoJoYoloYoReoToXoXo RN o o RRnpu
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As discussed in Example 4.2, it is possible to use
the truth table of the functions to be linearized first
to express the function in terms of the logical operations
(v, inclusive-OR), (-, AND) and (a', NOT a); then the func-
tion can be expressed in terms of the binary operations
(+, mod 2 addition) and (-, mod 2 multiplication). This
transition was made possible through the transformations

a'=1+aand avb=2a+b+ ab.

However, it is also possible to express any function
in terms of mod 2 addition and multiplication of its
variables, directly, without going to its description in
terms of (v), (-) and ('). The procedure is straightfor-
ward and suitable for implementation for programming pur-

poses. This is described next.

The function f(x1, xz,...,xh) can be expressed in the

following form

m m m

f(x1,x2,...,xm) f + E: flxl + }: }: fim xix.
=1

i=1 j=i+1

2m_;c1x2...x (4.33)
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where f, (i =0,1,2,..,2™1) are binary constants (0 or 1).
In order to calculate fo set Xy = Xy = e0e = X = O. Then,

from eq. (4.33), obviously,

f o= f(o,o,...,O)

0
Now set x, =1 and X, = Xyg = e = X = 0, then eq. (4.33)
gives

f(1,0,-..,0) =fo+f1

Since fo is known f1 can be calculated from

f1 = £(1,0,...,0) + fo

This procedure can easily be applied to obtain f2, f3,...

f . In order to calculate £ 17 subgtitute Xy = X5 = 1,

m -+
Xeg = Xy = 00w =X 0= 0, then (4.31) yields
fm+1 = f(1,1,0,o,...,0) + fo + f1 '{' fz

Generalizing this idea, it is seen that the coefficient

J
of a term of the form WT-xg(i) can be calculated from
. L

f(xi,...,x )
B x€(1)=x€(2)="' =X€(,\).)=1

(the remaining variables set to zero)

J
+ £y + E: fe(i) + }: (coefficients of the terms
i=1
of the form xe(i)xﬁ(j); i,3=1,..,V; i#j) +§: coeffi-~
cients of the terms of the form xc(i)x%(j)xe(k); ijk =1,..,V
I£JAK) + eeenen | (4.34)
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Example 4.3 In this example the system considered in

Example 4.1 will be linearized. TFor this purpose, let
the symbol 1 denote the presence of a positive pulse and
let the symbol O denote the presence of a negative pulse
(This choice is, of course, arbitrary; one could also
choose O for a negative pulse and 1 for a negative pulse),.
Information concerning state transitions is shown in Fig.

4.7.

x1(k) x2(k) x1(k+1) x2(k+1) x3(k+1)
0 0 0 1 0
0 1 1 0 0
1 0 0 1 0
1 1 1 0 0

Figure 4.7 Truth table for the system of Example 4.1

Let xo(k) = 1 and x3(k) = x1(k)x2(k). In this case,
since there are only two variables, x1(k) and x2(k), any

function f[x1(k),x2(k)] can be written in the form:

£lx, (k),x,(k)] = fo+ F1xq(k) + £,x,(k) + f3x3(k)

where,
fo = £(0,0) ,
f1 = £(0,0) + £(1,0),
f2 = £(0,0) + £(0,1)
and
f £(0,0) + £(1,0) + £(0,1) + £(1,1)

W
U
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Thus,
x1(k+1) =0 + (O+0)x1(k) + (O+1)x2(x) + (0+O+1+1)x3(k)
xz(k)r

x2(k+1) =1 + (1+1)x1(k) + (1+O)x2(k) -+ (1+1+O+O)x3(k)

= 1+X2(1£)
and
X3(k+1) = 0,
or in matrix form:
1 0 0 O
O 0 1 O
0O 0 0 O (GF(2))

Consider the characteristic polynomial of the matrix

A,
2+1 0 0 O
p(ry = | O A T 0 22204102 (6F(2))  (4.36)
1 0 A+1 O
0 0 0 A

In Example 4.1 it was shown that the system had a cycle
of period 2 and two transient states. The characteristic
polynomial also contains this information; the term
(A+1)2 shows that there is a cycle of period 2 and the
term AZ shows that there are two transient states, Thié
point will be elaborated during the rest of the chapter

(see Examples 4.6 and 4.7).
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This procedure can easgsily be implemented using a digi-
tal computer. For this purpose, it is convenient to assign
an m~dimensional vector éj to each veriable xj of the
form Xg 0= Xpq)Xgp) e Xg(1) such that the {(1)th, {(2)u
eeeep, {(i)th elements of éj are 1 while the rest of the
elements are zero. Let index(éj) denote the number of
nonzero elements of éj‘ It is not difficult to generate
vectors éj with increasing index. To determine the coeffi-
cient of the term x. in the expansion of a function
f(x) = f(x1,x2,...,xm), simply sum (mod 2) all the coeffi-
cients corresponding to each § , where index(g;) < index(éj)
~and &, has no nonzero element in positions corresponding

i
to zeroes of &.; and add f(ﬁj) (mod 2) to the result.

;]7
The listing of a Fortran program hased on the above

procedure is presented in Appendix E. A sample output of

this program is given below.

COORIDINAL EuguaT]o
4‘7{_" 3,(»,‘ ...1’253 __2‘;")5
-, 20 2.45 554 267

x(k+1) = p| 2.9 Bahss N 27 aatb8 1 x(k)

2.25 Lals 2413 =~ e
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4,5 Determination of Cycles and Periods of the Linearized

Net

n
Although the linearized net can have 22 states only

2™ of these correspond to the original nonlinear net.
The states belonging to the original system will be called

natural states and the remaining states will be called

artificial states. Note that the linearized net is such

that a natural state is mapped always into a natural
state, though an artificial state could be mapped into
either an artifical state or into & natural state. From
this fact it follows that a cycle can contain only one type
of state, i.e., there cannot be any cycle containing both

natural and artificial states. This point will be illus-

trated in Example 4.6.

To elucidate the concept of natural states, congsider
a nonlinear net with two variables Xy and Xoe Lineariza-
tion of this net requires introduction of the variables

X, = 1 and x3 = XyX,e Thus, the nonlinear net can assume

-

as its possible states, corresponding to Xy = X = o,
Xy = 1, Xy = 03 Xy = o, Xy = 1 and Xy = X, = 1, respecti-
vely. In the 4-dimensional vector space over the binary

field, the vector x = (xo, Xiy Ko, x3)T can also assume
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the wvalues

HRHRHEH

These states are the artificial states since they have no

corregspondence to the states of the nonlinear net.

In this section a gsummary of the methods for determi-
ning cycles and periods of a linear net will be presented.
No distinction will be made between natural states and
artificial states; this will be delayed until +the next
section. For generality, the results will be given with

respect to the field GF(p%).

The system considered in this section is assumed %o

be describable by the following matrix equation:
x(lr1) = & x(k) (6F(p)) (4.37)°

where §(k) is an n-vector denoting the state of the system
at time t = kT and A is an nxn matrix with elements from
GF(p®¥). The operations in eq. (4.37) are performed with

respect to the field GF(p~).

PThe matrix A should not be confused with the nota-
tion used in the previous sections.
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Let X denote the (p¥)P-dimensional vector space

(with respect to the field GF(pT)) and let-xi be any point

kgi algo represent vectors from X.

in X. Ax;, A%z ..., A
r)n
?

Since X is finite dimensional, there exists a k < (p
such that the vector gkgi is a linear combination of the
previous terms, X Agi,..., gk“1§i; i.e., there exist

gcalar constants oo CrypeeerCp g such that

ATx. + °k~1ék-1§i + oo + CLAX. 4+ Cpx, =0 (4.38)

Defining by f(A), the matrix polynomial

K K-
£(8) = A 4+ o ATV 4 L4 oA+ o, (4.39)

eq. (4.38) can be written in the following compact form:
£(A) 2, =0 (4.40)

There may be more than one polynomial of the form (4.39)
satisfying eq. (4.40). The one with the lowest order is

called the minimum polynomial of the vector x, (with res-

pect to the matrix A). There are polynomials for which

(4.40) is true independent of the vector x,. The monic

polynomial m(A) of the lowest order satisfying m(4) = 0

is said tobe the minimum polynomial of A. There is a

close relationsip between a matrix polynomial £(4) and
its regular polynomial. f£(A), obtained by replacing the
matrix A with a scalar A . The minimum polynomial of A,

m(A) is the least common multiple of all the minimum poly-~
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nomials of the vectors from X.

The Cayley-Hamilton theorem states that every square
matrix satisfies its own characteristic equation, i.e.,
let p(2) =[AI -~ 4|, then p(4) = O. Thus, the minimum
polynomial of 4, m(A) is a factor of the characteristic

polynomial p(A).

A polynomial f(A) of degree N is called irreducible
if no polynomial of degree less than N divides f(A) with-
out a remainder Q The least positive integer k such that
£(72) divides A%-1 without remainder is called the exponent
of £f(A) [denoted by xpo £(A) 1. The exponent of the
minimum polynomial of a matrix A is called exponent of A.
It can be shown that any polynomial f(A) of degree N (over
¢ F(pF)) divides the polynomial A(Pr)N"1—1 and that £())
divides Xk-1 if and only if k is a factor of (pr)N—1.
Therefore, xpo f(A) < (pr)N-i and xpo £f(A) = factor of

(YN . 1£ xpo £(a) = (pT)N_1, £(1) is called primitive.

Let k; (i=1,2,...,p) be the distinct periods that a
net can exhibit and let vi denote the number of cycles

with period ki. It is convenient to denote the cycle

structure by

ci‘ dzz e ci“ (4.41)
1 2 R

6 See Peterson and Weldon (115, pp. 472-492) for a comp-
lete list of irreducible polynomial over GF(2) of degree < 36.
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In general, it is possible to partition the transi-
tion matrix A and determine the cycle structure from the
cycle structure of the subsystems regulting from the par-
tition . For this purpose, an understanding of some basic
gsimpler structures is egsential. 1In a linear net, the
cycle structure is closely associated with the minimum
polynomial of its transition matrix. If, for example, the
minimun polynomial is both irreducible, primitive and is
equal to the characteristic polynomial; except for the
zero state, all the states form a single cycle. Another
important case is when the characteristic polynomial is
of the form (n(>\))e where n(%4) is an irreducible polyno-

mial. These cases are discussed hext.

Case 1: m(2) = p(A)is irreducible and primitive

In this case there will be exactly two cycles; one
is the trivial cycle formed by the zero state (O,O,...,O)T,
which is present in every autonomous linear net. All the
remaining states form tne other cycle. There are no tran-
gsient states. The period of the nontrivial cycle is

k, = (pF)-1. Thus, the cycle structure is C; C ., .
p -1

Example 4.4 Let m(2) = p()) = A% 4 A+ 1. This polynomial

is primitive since it does not divide Ak—1 for k<:24-1 = 15;

it corresponds to the matrix
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(4.42)

000
—_O O -
CO-—=0
O—-00

This matrix is called the companion matrix of m(QA).

4
with m(A) = p(A) =2+ A+ 1 has a trivial cycle formed
by the zero state and a single nontrivial cycle formed by

the remaining states, as shown in Fig. 4.8.

'§> x:—>x2—w~ Xy i x4-«-x5——¢»x6»-@»x7—¢»-x?
0 §
5T ¥R 3T R TR T R0 Ry
FPigure 4.8 State transition diagram of an autonomous

linear net with a primitive minimum polynomial
(m(A) = p(A) = A% +2a+1).

: m(A) = p()) is irreducible

2

In this case, again there will not be any transient
state7. Let k1 be the smallest integer such that the
minimum polynomial m(A) divides the polynomial Ak—1
without a remainder, i.e., let k, = xpo m(A). Then, for

any nonzero state X,

TPhe number of transient states is related to the
factor 2™ of the characteristic polynomial. Thus, nt = O
if and only if [A|l = 0. This point will be discussed in
Section 4.7.
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or,
ky
A 'x =X
rn
Therefore, there will be 1?1 = P}('1: nont#ivial cycles
1.
of pefiod k1. In symbolic form, the cycle structure is
PN 4

Cf k1k' . Note that the period k1 must be a factor of
the integer prn-1. This is important since it restricts
the allowable values of the period (See Table 4.1. For
example, for n = 10, k1 can only be 11 or 31, but for

n =13, it is 8191).

TABLE 4.1

Prime Factors of 2n-1.

n Prime Factors n_ Prime Factors
3 7 11 23x89

4 3x5 12 3x3x5x7Tx13

5 31 13 8191

6 3x3x7 14 3x43x127

7 127 15 Tx31x127

8 3x5x17 16 2x5x17x257

9 TxT3 17 134071
10 3x11x31 18 3x3x3xT7x19x73

In order to find the cycles, one can start with any
nonzero staté x, and determine the k, states A x, Azg,
k
A3§,...,A 15 = X. Selecting a state x which does not

belong to this cycle, another cycle can be obtained.
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Repeating this process, all the cycles of the net can be

determined.

Example 4.5 Let m(2) = p(A) = A4 24 224 2+ 1. Note
that 24-1 = 15 = 3x5. Therefore, this polynomial might
divide 25+ 1. It is simple to see that it indeed divides
041, Thus, a net having this minimum polynomial will

have %5 = 3 nontrivial cycles of period 5, as shown in

Fig. 4.9.
X—»X Xy —==X X —X
0 T~ 6. 1

Figure 4.9 State transition diagram of an autonomous
linear net with an irr;ducible minimum
polynomial [ m(A) = A% & + 2%+ a+1] .

Cagse 3: m(2) = p(A) = [n(k)f, where n(2) is irreducible

Assume that the minimum polynomial is m(A)= p(A) =
£
[(n(A)]", where n(A) is an irreducible polynomial of deg-

ree n,. In this case p*Pp-1 states will have n(A) as

2
their minimum polynomial, p 70~ p™0 gtates [n(ﬂ)]z,

«es., and the remaining ?erno_p(€-1)rno states will be
rn
o_

£
associated with the minimum polynomial [n(A)]. The p 1

states associated with the minimum polynomial n(A) will
rng
-1

form ¥, = E—ET—— cycles of period k,= Xpo n(A), the
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states coxres%?nding to the minimum polynomial [n(ﬁ)]z

rno_
will form E_sz_l cycles of period k2= xpo[n(ﬂ)]2= p-ky.
In general, the states associated with the minimum polyno-
pirng_(i-1)rng
. ki
cycles of period ki= xpo [n(a)]? ='0p-k1, where VvV is

mial [n(?\)]i (i=1,...,4) will form W=

the smallest integer such that ¥p> i. Therefore, the

cycle structure will be

rng 2rn  rn Lrn. (£-1)rn
p -1 p - 0 p O9-p ©
k k k
1 A
c1ck1 ck2 2 een 0y (4.43)

Because of its usefulness in computation of the cycle
structures of more complex nets, the above results are

summarized by the following theorem.

Theorem 4.3 Let the minimum polynomial of A , m(2A) be

of the form m(A) = [n(ﬁ)]e (over GF(p¥)) where, n(A) is
an irreducible polynomial of degree Ny The cycle struc-
ture of the system described by eq. (4.35) will be given
by (4.43), where k, = xpo [n(7\)]1 (i=1,...,%). Further-

more, ki= Vp'k1, where vV is the smallest integer,such

that vp>i.

Example 4.6 Let m(A) = (A+1)2. In this case n,= 1 and

{= 2. Therefore, the period of the first nontrivial

cycle corresponding tc the minimum polynomial (A+1) is
2= _,

k1= 1; there will be only one such cycle since U}: 7

corresponding the the minimum polynomial (?\+1)2 y there
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will be cycles of period k2= 2k1= 2. The number of -
2
cycles of period 2 is vé = 2—52 = 1. The state transi-.

tion diagram is shown in Fig. 4.10.

o O N\

0 =1 T2 =3

Figure 4.10 State transition diagram of an autonomous
linear net with m(A) = p(A) = (A+1)*.

Now, consider again the PFM system treated in Example
4.1. In Example 4.3 the characteristic polynomial of its
equivalent linear net was found to be p(A) = %2(A+1)2.
The minimum polynomial is A (2+1)2. The term A simply
indicates that there are transient states but the length
of any transient chain is ‘<1 (i.e., every transient
state map into a cyclic state). The polynomial (A+1)2
was just shown to be associated with two nontrivial -
cycles of periods 1 and 2. There is also the trivial
cycle formed by the zero state. In this particular case,
the trivial cycle and the cycle with period 1 are formed
by artificial states. Thus, one can easily predict a

cycle of period 2. The state diagram of the linearized

network is shown in Fig. 4.11.

Let re g, (1) 4o V(1)

a = jEcka(i) and b = Eck (i) (4.44)
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il

O—-00
©C==0

X
(o))

i
00 = —
I

-J
]
- () -

x
5
7N\
% “’3"-3—72 —%
X4 o—"Q -5 %6 };8
X 4 §7

State diagram of the equivalent linear net
of the PFM system of Example 4.1. Only the
states §1-§é correspond to the original

n

system; X5 d 55-§15 are artificial states.
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be two cycle structures and let amb denote the cycle

structure
re o u(3) % (1) 60Dk (1),k (1)]
° - iE JECLCM[ka(i).kb(j)] (4.45)

The following theorem relates the cycle structure of

an autonomous linear net with transition matrix A of the

form

o A = (4.46)7

1,a2 of its subnetworks with

transition matrices A1 and A2, respectively.

to the cycle structure a

Theorem 4.4 [Harrison (62)] The cycle structure of an

autonomous linear net whose transition matrix A is of

the form A = A1® gz is a = a,8 a,, where A1 and Az are

nonsingular matrices and a1 and a, are the cycle structu-
res of the subnetworks associated with the transition

matrices A1 and Az, regspectively.

Proof: Let x, and X, denote the states of the net corres-
ponding to the submatrices A1 and A2’ respectively . The

period k of any cycle will be the smallest integer such

that

7A ® A, is called the direct sum of the matrices A,
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[
!
|
=
e
]

Let k1 and k2 be the smallest integers satisfying
k k
1. = 2. _ . ) -
A1 X = X and AQ Xy = Xy respectively; then it is
k = LCM(k1,k2). If A1 has ¥y cycles of period k, and A,

has %, cycles of period k2, then, there will be

2
0‘t5gpc(k1,k2) cycles of period k,.

1
(QED)
Theorem 4.4 is useful for computing the cycle

structures of complex nets. Consider, . for example, a
transition matrix A of the form A = A1QA20 ...NAN. The
cycle structure will be a = a1ma2m .- «Bay, where 845 85,

.8y are the cycle structure corresponding. to the sub-
networks with transition matrices A1, AZ""’ AN’ respec-
tively. Therefore, the cycle structure of any net can
be determined from Theorem 4.5 and Theorem4.4. For this
purpose it is useful to transform the transition matrix
A into its classical canonical form (13), in which case
the polynomials my(A) =[2L - A1|, ooy my(A) =21 - ANI

are irreducible polynomials.

4.6 State Diagram and The Transition Matrix

As illustrated in Example 4.1 (Fig. 4.3), the ecycle

structure of a-net can conveniently be represented using
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a directed graph in which the vertices represent the
possible states of the net. A transition from state X,
to state Ej is indicated by a directed edge connecting
the corresponding vertices. vThese graphs are called
state transition diagrams. If the dimension of the net
is large, this graphical presentation loses its conveni-
nience. In this case, the same information can be better

presented in matrix form.

Corresponding to a state transition diagram, the

transition matrix Q@ is defined by

1 if there is a transition from state X to X

ij 0, otherwise
(4.47)

In network theory this matrix is known as the incidence
matrix (79). Since there is only one transition from a
state into another state, the transition matrix

contains exactly one 1 in each column. Let at t = kT the
net be at state x;. Let y(k) be a 2”-dimensional column
vector containing ., a 1 at its ith row as its only nonzero

element. The behavior of the net can be described by
1(k+1) = Q y(k) (4.48)

Since a 1 in the ith column of y(k) corresponds to
the state x,, it is

x(k) = [_1515525---5£2n] y(k) (4.49)



186

Let
(4.50)

2-1 exists since there is a 1-1 relationship between each
X, and y,. Let
x(k+1) = A x(k) (4.51)
be the linearized equations of the systems considered in
Section 4.2. Then, from (4.51) and (4.49), it follows
that
-1 -1 6
Q =P P, or A=2Q0P (4.52)

Consider the characteristic polynomial of the tran-~
sition matrix Q, pQ(%) =|2I - Q|. All the elements in
any row of the matrix AL - Q| corresponding to first
states are zero, except for the diagonal element which
is A. Thus, the determinant [AL - Q| can be expanded in
terms of the rows corresponding to the first states.

Each of these rows will contribute a factor 2 to the cha-
racteristic polynomial. If a state can be reached only
from the eliminated states, there will again be a A in

the diagonal position of the row corresponding to that

6This transformation is called a similarity transfor-
mation. A very important property of this transformation
is the invariance of the characteristic values. Note
that

p,(2) =IAL-A| =1A1-RQR™"[ =[R(A1-Q)2" "I = [a1-Ql= pg(A).
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state as the only element. Expanding with respect to

these rows and repeating the procedure, it is seen that
n

the characteristic polynomial will have 2 k as a factor,

where nt is the number of transient (natural) states.

Now, consider a first state x. Let £t be the number
of transient states generated by x and let kc be the
period of the cycle that x enters after £t transitions

(see Fig. 4.12). 1t follows that

- )
21D pey

Figure 4.12 Illustration of state transitions.

z‘b kc
A [A + I] x=0 (4.53)
e‘t kc . .. : .
Therefore, A ( A%+ 1) is the minimum polynomial of x.
Since the minimum polynomial of the transition matrix A
is the least common multiple of the minimum polynomials

of the vectors x, it will be in the form

k k k
AT 4 1) (A2 4 1) (AT e 1) (4.54)

where £t is the length of the longest transient chain
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and k; (i=1,...,7) are distinct cycle lenghts. Expan-
sion of the minimum polynomial into the form given by

(4.54) is not always unique since, in general

T T T
(a+b)Y = a¥ + oF (4.55)

Example 4.8 Consider again the system treated in Example

4.1 (see also Example 4.6). Let

A

]
O O—

el

N

I
OO ——

I

W
=0

Then, from (4.50)

g
!
O—~0-—=

1
1
0
0

QOO —

The state transition diagram is shown in Fig. 4.173.

R

Xy—— X3 ——X; =X,
Figure 4.13 State transition diagram.

From the state transition diagram, the transition matrix

is easily obtained as

y(k+1) = (k)

o —-00
O-=00
CO-—-+0
oNoR Y&
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Note that
1000 ;
x(k+1) = 2Q2"x(0) = |9 67 0 z(k)  (4.56)
' 0000

(4.56) is the same as (4.35). The characteristic polyno-
mial is p(A) = 22(A2+1) and the minimum polynomial is
m(A) = ﬁ(ﬁ2+1)- The factor A° of the characteristic
polynomial indicates two transient states. The factor A
of the minimum polynomial shows that these transient

states are first states and the factor (A%+1) designa-~

tes a cycle of period 2.

4.7 Conclusions

In this chapter, to gain further insight to periodic
behavior of CRPFM systems, a time-discretized approxima-
tion was considered. This approximation reduced the sys-
tem to one containing unit delays and thereshold ele-
ments. However, except for oscillations having very
short periods) it was not possible to obtain analytical

results directly from the resulting nonlinear equations.

Since the output of a modulator assumes only a fini-
te number of states (e.g., at a given time, the output of
a CRPFM either contains an impulse or not), it was found
to be advantageous to consider the system equations with

respect to a finite field [GF(2) or GF(3)]. By introdu-
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cing extra variables, the system equations were "Linea= -

rized" (with respect to a finite field) using Fukunaga's

method (133) for nonlinear switching nets.

After the linearization, the characteristic equation

of the system can be used to obtain information about

t

n
periodic behavior. For example, a factor A in the cha-

rédtéfiéfib'poiyﬂémiél means that there are n, transient
states, a factor ;t in the minimum polynomial "means
that the lengthr of the longest transient chain is Qt
and factors of the form ( ﬁki+1) in the minimum polyno-

mial mean that there are cycles of period(s) k, (i =1,2,
coo)'

In this chapter the main concentration was given to
a system consisting of interconnections of CRPFM's and
ideal delays,for which the aforementioned analysis is
particularly suitable. For the double-~signed system, it
was agsumed that there'are no impulse cancellations.

This condition can be relaxed by using the field GF(3).
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CHAPTER 5

CONCLUSIONS AND TOPICS FOR FUTURE_RESEARCH

5.1  Summary of The Results

In this dissertation the dynamic behavior of comp-
lete-reset pulse frequency modulation (CRPFM) systems
are considered. In Chepter 1, a review of previous work
on PFM systems is presented. Also, a brief discussion
is given on the neuron and the relation of CRPFM to neu-
ral modeling. Chapters 2, 3 and 4 discuss the results
of this work which ercompasses two basic aspects, namely,
stability and oscillatory behavior. The results are

summarized at the end of these chapters.

In Chapter 2, two different approaches are presented
for global finite-pulse stability (GFPS) (Def. 2.1, p.
56), the first is an improved Lyapunov-like method which
is also applicable to more general type of PFM systems
(e.g., a PFM system with a nonlinear continuous part);
however, its difficulty of application increases with
the order of the system. The second approach is a direct
approach involving the application of inequalities to
the system equations; it is easy to use and, at the same
time, provides bounds on the number of pulses emitted by

each modulator. Such number is not only indicative of
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the energy spent by the corresponding modulator (e.g.,

in a spacecraft control system which employ controlling
jets) but also represents a measure of the degree of sta-
bility. A comparison is presented between these stabi-
1lity criteria and previous stability conditions available
for special classes of CRPFM systems (e.g., systems with
integral PFM or relaxation PFM); in representative examp-
les, the direct GFPS criterion yields comparable (or
better) stability regions (of system parameters) with

respect to the other criteria.

In Chapter 3, oscillatory motion is considered. A
matrix relationship is presented for IPFM systems with
time-invariant LP's, which relates the period of oscilla-
tion to the net number of pulses emitted by each modula-
tor over that period. This relation shows that, though
pure periodic motion is possible in single-modulator sys-
tems, in multi-modulator systems, it can exist only in
the "ideal" case when all the components of 2 certain
vector of system parameters are rational numbers. Prac-
tically, however, the observed motion may "look like"
periodic motion, at least over some observation interval.
Thus, it can be considered "periodic" within a certain
(measurement and/or observation) accuracy. This consi-
deration lead to the definition of the concept of

"ee-nearly periodic motion" and to the development of
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expressions for bounds on the deviation of the true

motion from periodic motion.

Oscillatory behavior is further studied, in Chapter
4, on a time discretized approximation of the CRPFM sys-
tem. This approximation reduces the system to one con-
taining unit delays and threshold elements. However,
it is still difficult to obtain analytical results
directly from the resulting (nonlinear) equations, though
information concerning short cycles have been obtained.
Since the output of a modulator assumes only a finite
number of states (e.g., at a given time, the output of a
CRPFM either contains a pulse or not), it is advantageous
to consider the system equations with respect to a finite
field [GF(pr)] . By introducing extra variables, the
system equations are "linearized" (with respect to a
finite field) using Fukunaga's method for nonlinear
switching nets. After the linearization, the characte-
ristic equation of the system is used to obtain informa-
tion about periodic behavior in terms of possible fre-

quencies of oscillation.

5.2  Suggestions For Future Research

Below, several problems arising from the present

work are stated.
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1) The applicability of the sufficient conditions
for global finite-pulse stability (GFPS), developed in
Section 2.3, can be extended and improved by tra nsfor-
ming the system. This has been illustrated in examples
(Examples 2.2 and 2.4). However, there remains the deve-
lopment of general rules for this transformation as well
as methods for optimization of such transformetions to

yield maximum parameter regions sufficient for stability.

2) The GFPS condition presented in Section 2.3 inc -
lude Condition 3 on p. 65, which allows the TF to be non-
linear, but imposes certain restriction of the nonlinea--
rities. It would be desirable to relax these restric-
tions to allow the TF to contain such nonlinearities as

dead-zones and/or hysterisis.

3) A Lyapunov-like theorem for GFPS is presented
in Section 2.2, which requires less restrictive condi-
tions than previous Lyapunov-like methods used for these
systems. This theorem was applied to individual examples.
However, the application of this approach to a CRPFM sys-
tem in its general form could possibly yield new stabi-

lity criteria directly in terms of system parameters.

4) The definition of near periodicity introduced
in Section 3.2 may be modified by associating a linear

functional with the modulator input vector e(t) (e.g.,
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some integral). This is especially meaningful for cases

where e(t) has discontinuities.

5) The problem considered in Section 3.4 can be
reversed to that of the determination of the period
for given accuracy € and observation interval (0,a]
such that the motion is €g~NeD. Iterative methods could
be used to attack this difficult problem, which may not
always have a solution (e.g., the motion may not be

periodic, in which case the iteration will not converge).

6) In Section 4.4, the system equations describing
a CRPFM system with ideal delays are linearized by int-
roduction of extra variables. In certain cases it might
be possible to0 minimize the number of variables necessary.
This point needs further research. Another interesting
problem is the determination of an optimal reverse trans-
formetion, with which a switching network can be trans-
formed into a threéhold type network, such that the num-

ber of thereshold devices are minimized.

7) Demodulation of a PFM signal is usually accomp-
lished by passing the signal through a linear (lowpass)
filter. It might be possible to obtain a better perfor-
mance (in terms of signal-to-noise ratio) from a filter
(of the same or smaller order) where certain states are

reset upon arrival of a signal impulse. Determination
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of the optimal or suboptimal demodulation filter is (at

present) an unsolved problem of conéiderable practical

importance.

8) Investigation of the dynamic behavior of randomly
connected large-scale CRPFM systems from the macroscopic
point of view might lead to certain physiological results.
This investigation can be carried out by defining certain
macroscopic variables (e.g., a sum formed by the TF out-
puts) and using the law of large numbers to find the

mean values of these variables.

9) The scope of this work has been limited to comp-
lete~reset PFM; it would be desired to consider Partial
Reset PFM (see pp. 20-21) which has not been studied
previously (except for the special case of output-reset

PFM in which only a single state is reset).
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APPENDIX A
PROOF_OF_ THEOREM 2.2

In this appendix, matrix inequality (2.14), which
provides bounds on the number of>impulses emitted by

each modulator, will be derived.

Using eq. (1.24b) in eq. (1.24a), applying Conditions
2 and 3 of Section 2.3 and (1.24c), the following inequa-
lity is obtained:

l,Ki(t)
8;< 2,085 k (t))l = |I £3[ri(7), y,(2), ti’K_(t),’C] d'cl
%K, 1 (8)-1 1
51,%; (1) m Kj(t)
f{ai|ri(’f)l + B, [1yy, (N + Z Z e, )\]}
b1,k (4)-1

Summing the above inequalities for all intervals
[ty ooty 10 Ity gty olaeeen [ty K, (£)-1"%4,K, ()]

assuning ti o= O and using the inequality
’

|f[f1(t) + f2(t)] at| gf|f1(t)|dt +f|f2(t)| at

yields

5K, (t)<][d Iz, (O + B 17y, (DN + B,y z“;lM g, (T- -t ljac

(A.1)
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i £
Recognizing that ti,Ki(t)'<t ti,Ki(t)+1’ the gpper
limit of the integrals in inequality (A.1) can be exten-

ded from ti,Ki(t) to t. Considering also that

e rms, lar< k(o) [wer (ol

M.g;.(T-t, a7 < K. (% M.g. . az
) ,I M85 5005090 S Ky j’| 381 ’
k=1 “0 0

and dividing both sides of inequality (A.1) by S, yields:

m

Ki(t) < vi(t) + E:

&, Kj(t) hij(t) (a.2)

where vi(t) and hij(t) are defined in eqgs. (2.11) and
(2.13), respectively. In vector form, inequality (A.2)

becomes
k(t) < w(t) + H'(t) k(t)

from which inequality (2.14) is obtained.
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APPENDIX B

PROOF_OF THEOREM 3.3

Consider.the input vector e(t) to the modulator

block in the interval te( [i-1]T, iT].
le(t+T)=e(t)l < [z(t+T)-2(£)| + [x(t+T)=y ()l (B.1)

From (3.82), it follows that [ r(t+T)-r(t)li¢ e . There-

fore,
le(t+T) - e(t)l < e+ Jx(t+T) - () (B.2)

(3.8b) yields

H11(t+T) - xo(t)" < e, (B.3)

From (3.9) and (B.3), it follows that
g, (t+7) - go(t)ﬂ < ey0 (B.4)
Therefore, using (3.7b),

| zo(t+D) =gy (8)[ = [z, (1), (4+7) =y (£)=E (£)]
< gy (4T =go (D + [ £, (£47) =55 ()]
< egli+o) (B.5)

During the intervel te(0,T]}, it is T, (t+T) = y(4+T)

and 11(t) = y(t). Therefore,

lz(t+1) = x(8)ll ¢ e (1+0), te(0,r] (B.6)
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Because of (3.9), inequality (B.5) implies

ng(t+T) - 51(t)H < eo(1+a)o (B.7)

Repeating the sfeps in (B.5) and using (B.5) and (B.7)

yields:
I y_3(t+T)-x2(t)H < Ny () =g, () + L, (t+1)=Z, (1) |l

< eo(1+6)2 (B.8)

Recognizing that during the interval té(T,2T],
13(t+T) = y(t+T), and 12(t) = y(+), inequality (B.8) gives

lg(t+1) - (DI < (1+0)%,,  te(r,21] (B.9)
Repeating the previous steps for each consecutive interval

yields
lg(t+1) - (8 < (1+0)%, te(ln-11T,n]  (B.10)
Therefore, from (B.2) and (B.10),
fe(t+1) = e(t)ll < erf(1+c)neo. te({ n-117,nT] (B.11)
(n=1, 2,..)

In the given observation interval te¢(0,al, one can

select an € =¢€¢ + Ke _, such that
e r 0

le(t+1) - e(s)l < e, te(0,e]
where, X = (1+6)[a/T]+1. Clearly, with this value of eg
Def. 3.1 is satisfied. Therefore, the CRPFM system of

Fig. 3.1 is e, -n.p in the observation interval (0,al.
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APPENDIX C

PROOF OF THEOREM 3.4

Let 1§ denote the number of pulses emitted by the

jth modulator in the interval (0, T], and let

Fe v (C.1)
= B Co
;;1 J

Then, from (1.24a), (3.6) and (3.7b), it follows that

m m i
50(t) = Z1M€jbjgej(t-tj) = i; J};Mibijgi(t-tij)
(c.2)

The output vector is given by
n-1
¥(t) = x.(¢) + Z (%), t€(0,7] (C.3)
¥o 1{20 X

" Consider the integral of the input vector of-thé moduls-
tor block, e(t) over a period; it is

nT
et) dt =8 g (Ci4a)
(n-1)T
where, S is the mxm diagonal matrix

g = disgls ] (C.4b)

and ¢ is an m-dimensional column vector as defined by

(3.35¢).
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Now, let
n-1
2'(®) 2 ) £ (8 - gy(4-km) (c.5)
and
’ nT T
vy & r(t) dt -] x(t) at (c.6)
o '{;-1)T lg
Also, let
26 2 [,00) at, (c.7)
and, oT
2 éj [x'(%) + xp(t)lat + z(nT) + ¥,
(n-1)T (c.8)

Noting that e(t) = r(t) + y(t) and that

nT n-1
f Z £,(t-nT) @t = z(nT) - 2(0) ,
(n-1)T n=0

and using-(C.5)-(C.8) in (C.3) yields
_z;OT-é(O)+£n=§__q (c.9)

where,

T
&
I, -f r(t) at.
0

Now, consider the term fn. In Appendix B it was
shown that

I\£n+1(t+T)-£n(t)” < (1+6)n660 [ generalization of (B.7)]

Therefore,
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12, (8)-g(t-nD < g ($)=g _, (=TI + Il _, (£-1)-g ,(s-2D)I

+ooot 12, (5=(n=1)1)-Z ($-nT)|
= €, (1+0) =1 (c.10)

Hence, from (C.5) and (C.10), one obtains

lz' (D < e [(146)%/6 - n], te(0,1]. (C.11)

Since, ||z(t+T)-x(t)l < € . (C.6) yields

T

T
1ol =1 [ {elortn-nrl-zo)asn< [ {1zies(a-t)n]
0 0

r

-g[t+(n-2)'l‘]||+...+||;(t+T)-;(t)||} at < 9%—1- e
- (c.12)

Equations (C.1), (C.7) and the hypothesis of the theorem

give m

V5 B
g -a (t-T)
Nz(£)l = llf[:;1 J;Migi(t-tij)]dtnsg; e &

(C.13)

From the hypothesis of Theorem 3.4, it also follows that

nT B
u] r,(t) atll < 32 [e

(n=-1)T 0

- -1)Tr -
ao(n Y aonmj (C.14)

Substitution of (C.10)-(C.14) into (C.8) yield

n Bop =-a.(n-1)? B_ -a (n-1)T
Ll%gl— + ner]T + 2 O + Be 8

150 < e - :

(c.15)
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Let
gj(t) = ]Mjgj(t) at, (j=1,..,m).

Then, (C.1) and (C.7) yield:

m Vvj
z(0) = & k;bjkgj(o) (c.16)
Let 35
%G = Ly Pk

i.e., the number of positive pulses less the number of
negative pulses, emitted by the ith modulator in the

interval (0,T]. With this substitution (C.16) becomes
m

z(0) = qugj(O). (c.17)

j=1

Substituting (C. 17) into (C.9), using ( 3.35a)-(3.354)

and matrix notstion, one finally obtains the relation

Paq=Tzx + ¥ (c.18)



APPENDIX D

COMPUTER PROGRAM T'OR THE CALCULATION
OF _CRPFM SYSTIEMS

RESPONSE

OF _THE

Method
This progrem calculates the response of the CRPFM

system of Fig. 3.1 with finite-dimensional, time-invari-
combined equa-

It is assumed that the

ant LP and TF's.
tions of the TF's are given in the form
,06) = & x,(t) + B, elt), (D.1)
(D.2)

= C 51(1:)‘

Also, it is assumed that the LP is described Dby the
(D.3)

equations
A, x,(%) + By u(t)
(D.4)

x(t) = ¢ x((+) + D u(t)

Description of all the parasmeters used in the program are

given in the listing (presented at the end of the Appendix).

Egqs. (D.1)~(D.4) can be rearranged into the follow-

ing form:
(D.5)

=

P
I

where,
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(D.5D)

{los]
]
lee]
td —h
|
N
5
Qs
=
]
——
© I
| A

The solution of (D.5) between the firing instances are

%
£(8) = Al¥0) (ghy o f A(4-D) E £(r) ar  (D.6)
ti*

Let t* be an instant between the firing times tk and
tyid If r(t) is approximately constant from time
t* up to time t*+at, then (D.6) yields

x(t*+at) = A L(4%) + Q r(t*) (D.7)

where
At
g & f 2T F az (D.8)
0
1f at t = %, 4, the £, ,th- modulator emits an
impulse of polarity bk+1 and strength M4k+1’ then the

+ . .
state at t = tk+1 is given by

x(tF ) = x(t..4) + by .M B (D.9)
k+1 k+1 k+1 £k+1 et 1
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Immediately upon emission of the impulse the state of the

{,,1th TF is also reset to zero.

The program is based on egs. (D.7) and (D.9). The
system output, y(t) and the output vector of the TF's,
z(t) are evaluated using eqs. (D.4) and (D.2) at time
instances At, 24t, 3At,... Each time the outputs of the
TF's are compared with their threshold values and impulse
emissions are decided in accordance with eq. (1.24c).

The details of the program are explained by comment cards

in the listing.

Input Data
Card Quantities Format
1 M,N1, N2, NE, NSS, MLOT, (613, 3E15.8)

T(1), TIMAX, D10 (See the
program listing for a descrip-
tion of the parameters).

2 Matrix A, (row by row) (8F10.4)
Matrix B, (8F10.4)
Matrix C, (8F10.4)
S;v My (i=1,..,m) (8F10.4)
Matrix A, (8F10.4)
Matrix B, (8F10.4)
Matrix C, (8F10.4)
Matrix D (8F10.4)

x(0) (initial state) (8F10.4)
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Qutput
1. Input data: M, N1, N2, NE, NS, T(t), TIMAX, D10,

2, +..,m); x(0) (initial state);

2. The augmented fundamental matrix A, Associated states
to be zeroed immediately after each firing, the mat-
rix B, the matrices AT ang Q(T) (T is the main

discretization interval)

3. A plot of the first five states if MLOT = O.

4. ty, by,ty (pulse emission instant, polarity of the
pulse and the number of modulator firing)

5. g(tﬁ (the state immediately after an impulse emss-

sion).



209

GE
VAS
€e
2¢
1t
o¢g
6¢
8
le
92
e
&4
g¢
¢
T¢

MO INND 00O
[ e g T e Y

-NEOITNOPROO0O
[y

Zidd
ZWd4d
2Wddg
Z2kdd
Zhdd
2idd
2ndd
Zhidd
Zyidd
2Wdd
2ildd
ZWdd

JIVIS QIINIWONY Il F¥ILVT ¢Salvds IVILINI 40 ¥0LD3A
2Lavd EVSHIT FHL SU XI¥ivW anITdn0d LiieMI

*ldVd dVINIT FHL &40 XIdlvd 9NT14N00 3ives

(24

ANV 20%Tg SNIVANUD) XIylvw ONIN4NDY LNENI gILNIWUNY
CoHLINNIABLS FSTINGWI IHL SNIMIVANGD Yul)l2Aa

*SANTYA AT0NHSIYIHL 40 ¥UlU3A

M09 BULVIAAQUW 2L 44U XI¥Lv anildn0s 3Llvis

YOO8 MOLYINGCW 3HL d4U XTulvW ani14003 LAdil
*CATIALILI3dS3Y “LlYVd UVINIT 3HL GNV »NIC18 ¥0LVINUGHW
*{A13ATLH3dS3s ¢Lavd

¥VINIT IHL QNV SYLLVINCUW FHE 40 2V Gnv TV ¢S301Ylvy

ZHAdTVINIRVONNA IHL SNIVANDD) XIWiYwe IVWLANEWVANND G3LNIWUNY

2ridd
2iidd
Zihdd
Zidd
Zindd
2yidd
Zkidd
Z2wdd
Ziidd
W4d
ZdiHdd
Z2hid
ZHA4d
2iidd
ZW-d
ZHdd
ZWdd
W d
Zhdd
Z2Wdd
Zhidd
ZWdd

*39viM30¥Ed ADVunddv u3izgls3d

CIYAMILNT NUTLNI0S

CAIVAYIINT KOILVZYILIYDSICO NIVW

¥SILVLS 3HE 40 1074 V SILVYINGD 0STV wVUOUNd
JHL 0437 04 L3S HIHM - HJTHY ¥313aWvyvd LhdnD NV
SUWPSSNTQITI9I L~ 3TuNUd Juy SuULVINIGY

ONINIVWIY “UINDIS=ITONISC 33UV SSN=T SUOLVINGUN)
*WILSAS IHL NI SEOLYINAON CINSIS~3T191S 40 HIgnNy
PEANGNI 40 ¥M3g9wNn

*LUYd ¥YANIT 34l 40 NOISNIWIg

I8 WOLAVINGLY 3HL 40 NOISN3WIQ
*SUNLVINGOH .30 H3dany

Sy3alakvyvd 40

- X

NO1

2d
48]

Wv

S
13
14

v
01a
vnil
1

LUK

SSH
N
2N
inN
W
L1OdN1
1d1¥253G

PSHILSASENS INVIUVANI“IAAIL
WYINIT ONV SEDLVINGOW AINIADIYLI-3STING 40 SKDILIINNUINILNI
40 ONILSISNDOD W3ILSAS V 30 3S0ds3¥ 3Ihi 3iVINIIVI 0L

2hidd

3S0dend
WY HOLYd



210

oL
69
89
L9
99
G9
%9
€9
29
19
09
65
8s
LS
9¢
&S
V2
£y
26
1¢
0¢
6%
8%
LY
oY
(4
by
18]
2y
1
oY
6t
1533
LE
9¢

ZHdd CAIVINIQY AWOLIVESTILYS 13U UL AYVUSS3IDdN

Zidd "UOL23IN

Zlhidd JuV INFWIYINT NIVW dHL A0 SNOLILD3SIg Aﬁxmczuv_z<mk IvulN (T
edd 41 SILYNIWYIL 3¥NdIIu¥d =HHL
2udd SHEVWIY
cWdd

Z¥dd ¢ g31veInNgd ST 1ud

ZH4dTI0T SIHOVIY Ll0TdaM NIHM *C3Li0d 3y Gl SINIOE 40 ¥iadann = L107dY%
2udd *{ &>N J1 S3LVLIS N AIND “0=1(1M 41 0311074 3dv S3Lvles

2W4d G 1S¥MId) G31107d 39 0L S3IUSVIYYA 3194S 40 ¥3IQaNN = 1074
2Wdd *GIASN SNOTLDISTIE 40 ¥IFWNN AINIUuND =EX3ANI
2kdd *AVARILNI

2iidd NIVW 3HL 40 SnR1L23sTg 30 ¥30WNN WNRIXVRW LN3IYyny =2X3aMNI
2iWdd ‘UImMGTY

2Wdd TVAYIAINT NIV 3HL A0 SMOILDISIO 40 ¥IEHAN WAWIXVW=TXIANI
2Hdd *3ISTMYIHLD €2 UL GuY SNTJdS $G3I3IX3T ANdLING 3Ng 41 € 0L
ZHIAdESANIWS NYHL d3NIVKS 3¥Y U301 9NIWIL Ml 40 SINndind

Zidd JHL 77V JdI T 0Ll 13S SI HOIHM d3IL3KVUVd TYNMILNT NV ~ X3IUNI
.Zidd . n0IS1230
Zitdd

ZWdd *0311070¢ 39 01 viv0 3I301S 0L GISN XIYLVW = 77
Zhdd *SUILITS SNIWIL ¥WOLVINQuW 3HL du wWOLI3A AndiNy = Z
2idddeTl=1 0L U=l wOsud “19%(i21V)IadX3 XIMIVE dHE 40 TvHS3iNG - 19
2Wdd ‘1=1 0L O=1 |W0Yd “19=(1#TV)dX3 XIYivw 3HL 40 vdo3inNg - 0
ZHAdWIL IWVS IHL LV oinIdld S2ulvindol WL Ad 03a¥0 ¥OLJd3A - 1
Zridd o *Q3LilKT S3STINGWI 40 ¥IBuNN - re
2Wdd *NUISSINWI 35INnduy

2idd HOVI ¥3IL4V (30¥32 39 0L SILVLS Ipl OSNIALIINIGY ¥UL)3AN ~XC¥iZl
2wdd *{U3INDIST SHIONIFULS 3STINdWI 40 ¥OLO3A = Sdd
ZiNdd POTwy/Lerer /L ¢2/14F
CHAdLI=3WTL LV A3LVvINTIVAS XTHlvW NOTLISNVYL JIVLS QIININSNV - iv3a
Zhidd CXIdlvW 39v¥0LS AVITIXNY Ny = AWwNd
Z2iidd TYNYIANT
ZH4d

Zhidd ¥O0Ld3A LNGNI - b



211

601
H01
€01
201
10T
001
66
86
L6
96
S6
96
E6
26
16

68
B8
L8
98
&8
Ve
€8
8
18
08
6L
8L
LL
9L
sl
YL
€L
L
1L

Zhdd INNIINGD TET
Zridd (e1¢1= SYOLVINQOW O2NIIS<3TONIS 40 y3aunMic1TLe// ¢ HT)Lviuld %ET
Zhidd SSwevel iNjud €l
ZiWdd CETTeT“TEeT(SSNY 4]
2yidd CN+THN=N
Ziidd (76214=03M017V VI
ZWddAYILINT NIVW 3IHL J4U SNOILO3SIO 40 wIEWON WAWIXVWI“TTLe//¢ H1)AvhYy0og €21
Zhdd IX30nl f€2l LNIYd
Zidd (8°GT3¢1=39VINIIUId AQVuNIIV AIYIS30e¢T6Le8°CTI i=1TWIT IKE

ZWAGIL “TGLe8°GTI3 1= 1VA4TUNT NOTLVZILIYDSIOa “TTL9// €1 1=LNVTd uVINIT 2
SwddIHL 40 ¥3CUUL CITLS/ /el €i=SaligNl 40 P38uWNN 16171 i=INVId SHILVINT
2W3da0W IHL 20 ¥3AY0CTSL9ET €=, € Su0LYING0K 40 ¥3CGuWNNMI “YTLC HTYLIVWYO0d 201

Zidd OTQeXYRILA(TIL 2N INTTHN 20T LNIYd
ZHdd (g°413€4€19)lviddtd 101
2iWdd OTU XVHILA(T)IL LD TN SON ANSINFINUWSTOT Qv3y
ZH4d 4 O%=1X30NI
Z2hdd *CUILINVEVd LNdNI 3HL INIdd ORVY dv3d
ZiWdd :

2N o ek s e ko sl e kol o oo e e ol s s R R ook g X ot ot ke ok ok e e ki ok o o kol ok ok ok ek ok ek
2idd

Z2W4da (8¢Q)AUWNQL(HeHeRY)D(Q¢0c0HILIVI(HeHITC(RGIVAANTINSN NOWWDD
ZWdd (c?

ZiNddv )L e{y)SdIc(H) ey )XVRIICIy ey IXOUIZTIC(HISANIUS C{H)ISNTdS{Y)IZ(8)X*1
Zedd(BeE)BY(T0T Q) ZZe(9IU ANVl H)S(He5)20¢(949)20¢(HcH)TI NOISNIAKWIA
2iWdad
Zwdd
21 = s st ool o e s ke ofe el e s oo s ot e s ok i o ks o s ook o ok ol s ot sk o ok it o s s sl ol o e sk s o sl sk st skl sk e ok sk ok ok
Zitdd

Z2Wdd

2ildd

Z2iWdd ‘ CAEVSSINAN ST wVRACHLAINS NUITLINNG v cinVISNDOD
2idd 10N SI AdOLI3IA L1NGNT 3HL A1 *10%d GNV LVdX3 S$3aNILNOYuNns
Z2ndd SU3yind3Y SAMTLNOUENS NOIL1 OKAZY Gy S3NILNDYENS
Z2Wdd

2Wdd *030330X3 ST IVALILNI NOILInTUS (2

QCOLUO



212

o%1
6l
gel
Lel
9¢e1
el
vel
eel
2el
1€l
o€l
621
8l
Lel
EXA
g2t
%21
€t
et
121
0¢1
611
811
L1t
911
§i1
1T
g1t
21t
111
0tl
601
801
L01
901

Zindd
Zhidd
Zridd
2idd
cWdd
Zndd
Zhdd
2idd
ZWdd
Zhdd
Ziidd
2Wdd
ZWdd
Zhidd
Zvidd
2idd
ZWdd
¢dd
ZWdd
2idd
Zndd
Zuldd
Zidd
ZWdd
ZHdd

2Wdd

Zviad
chidd
Zidd
Zwdd
2kdd
ZiWddd
2hdd
Zidd
2Wdd

(INCT=1¢0 SNCT=P(T¢I)T]))4002¢ LNIMd
(T8 XTdlvhe€0Ele/ /€ HY)LvWd0d

‘ G0T LINIdYd
(XY 8 ¢TIIZ4X0T))LviaUS
(TrieI=If(INCT=LA(r¥TIIV)) 0028 LNIY¥d

(/7¢€1S¥0LVINA0OK FHL 40 Tv XIuivi TVANIRYANNSL F0EL ¢/ /¢ HT)LVWYOS

%01 LNIdd

(40148 LvWu0d

(MNeT=1“(I}R)“€0T QV3y

(INFI=T (W= (I)IZ20))“E0T Av3d
(aNeT=Te(2NT=rf({¥1)222)%€0T Qv3y
(NCTIN=sT O (AT=re(fc1)a))¢c0T Qv3y

(MFTIN=TC(NCTIN=T (T eT)V})IC0T QV3IY
‘2v Qvay

T+IN=[IN

(NeT=19(1IWVelI)S) FE0T Qv
(WeT=T0INCT=P“{re0)T1D))€0T Qvay
(INCT=T¢(aN“T=P{pP€1)T19))“c0T Qvidy
(INCT=IC(INCT=L(PIIVI) 0T Qvad
Ty XIWiviW 344 av3ad

FiIINTLINGD

N=1D01d1

02TIT#0ZTTfT2TT(C-N)d!

6=1071d1

(S>N d1 S3LVLS N AING) O0=107W 41 03110794 3yV S3LVLIS § LSuld

Geowl{T=111=(1)1L
1X20nI¢2=1 01 OU

CTXIONT®E=1 (1)1 SIVAYMILNIEANS 3HL 3LVINIIVI

c01
u0Z2¢
%01

€01

TAR)
1211

CH1

OO

e o

[ I W W



213

GLY
2L
gL
¢Ll
141
0L1
691
891
1971
991
€91
491
£91
291
191
091
661
ag1
lel
961
<SGl
yc1
g6l
FAN
1461
061
691
81
L1
991
G¢H1
wh1
€41
FA A
vl

¢idd

(((Xb¥g*gl

ZW4dTI3IveX0T) e/ cav XTULVH TIVAINIWVAONNL QILININONY SHLe90€L¢/ /¢ HT)LlvHdOd €11
2h4d (NTI=T¢(N“T=P{P IIV)I‘ETT ANIYd
ZWdd 0*0=(ICINM)V 1
2nWdd g=CINDL) Y
ZWdd (PEA)ZIR(AFTIITA+U=U 2
Zhdd 4NTI=% 2 O
Zh3d 0°*0=0
2Wdd IN#D=INE
Zhdd ENCI=P 1 O
2idd iNei=1 1 0g
2Hdd XI8lViw v 3ML LINULISnOD

2 bl 2 s s dte sie sde sie st ofe ol s sl 3 ik oz otk she ol g e e e s o ool ofe e sl st e syl sk ol ol ok il s sk s e sl sl sk sk kol e ok okl R kR e e kg
2wdd

ZWdd ((8°CTIFXGETIFX0TIF/4 1 (0)X FLVLS TVILINL9XGT¢//¢ HI)luHdDd 211
2udd (NCT=14CY)Xe 1211 INIdYd
2wdd {(8*cT13rXs*s1
WA GIIOXGEIOXG) €/ ¢ HLONTNLS 3SINL1 e X6 3T0HS3YHL s ¥ X1/ /9 R LvHula 111
2Wdd . (WeT=3 (DMWY (IS L) F11T LNIY¥d
2Hdd (INCT=TE(UT=r (1 “1)20))“002¢ LNIYUd
Z2W4d (120 XIulvW FHL1CCELC//C HUILvHUO4 OTT
2Wdd 011 INIYd
2hidd {gNeT=1c(eneT=rs{1)Z2))Y°T02¢ 1NIdd
2Hdd (122 XIylvW 3HLsf0ELS/ /¢ RHTILVWUOL 601
ZWdd 601 IMIYd
2hdd (NCTIN=IS{IWeTI=PF(T¢3)0)) 002E LNIVNd
ZWdd {129 XIWLVW 3HLi40g) ¢/7/¢ HI)LlvWuyDd 8OT
2Add 201 ANIYd
Zhdd (((X&8°6T3)9¢x0T1))LyWula 102¢
2udd (INYTIN=T#{NCTIN=DA(M¢T)IVYIFT02¢ LMNIYd
2hidd (/1 ANVId ¥VINIT FHL 40 XIdlvW TVANIWYGNAS FHLC0EL¢//¢ HT)LlvWubd 20T
2idd LOT AINIYd
Z2hidd (WeT=Ta(INCT=P(M71)T2)) 002 ANIYd
2Wdd (/76312 XIulvWi90gLe// ¢ HT)LvWa0d 901
2W4d 901 ANIYd

[ S N



214

01?¢
60¢
802
L0Z2
%02
602
%02
€02
202
102
002
661
861
L6l
961
cel
61
€61
¢61
161
061
681
881
L81
981
g8l
81
ggl
(AR
181
081
6L1
8.1
L1
9.1

Z2Wdd (T€1L)1vdX3 11V)
ZWdd ) (T)l=11L
2Wdd

2 W 3 0 skt st o ool e i s s bk o ko e skt s sl oo st ok e oo sk ok ok ok sk o s skokok e s s Rtk dop e sl ok e doieokok
ZWad .

2ildd (0TA=-"Tyx(1)3=(1)SNNINS
2uWdd (OTG+*Tix(138=(1)SNTdS
2kdd Wel=1 & 04
2u4dd (({XYe3°cTI)ZXOTY /@ XTdlvwW 3IHLI€0ELS//¢ HTILVWH0CAS
Wdd (NCT=1 L WeT2P{ P IYL)ICGTT LNIYd
Zda : a=(f¢I)d
ZWdd NSRS PRAEIS LS B R K LI EL!
Z2ndd ! INfI=3 102 DU
2undd 0°0=d
Zyidd Wet=r 002 0OC
2iHdd IN‘TI=] 002 0OU
2i4d 6 X1¥LVy 34L LONYiSnNCD
2idd :

2idd (10T XCZsel¢x0l HT)LyWuOd
2wdd (7€19N1YL4 HOVE Y3L4V ATI3LVIAIWHIT
Z2iWdd Q30¥3Z 39 Ol SILVLS GILVIJOSSV fCEL e dMULVINOGW I f0TL/ /¢ K1) Lviy0d
chdd INMNILNDD
2r4dd LI={1)XUKZI
2idd (TI1¢T=0e(reIIXONIZY)“1€¢%T1T LINIYd
SWdd INNIINDD
Sidd f=(1I¢1)XDY321
2rdd +11=11
Zridd Leos (eI NY41
2idd INFI=P @ Q¢
cindd : 0=11
2idd Wel=1 6 0d

Chdd (1) 40 SENIWITI OYIZNON IHL WOYIS3dId4 vOLVINQON HL dHL yILdv
ZddN ATILVICINWI 030¥3Z 38 0L S37gviyva 3LviS 40 ¥3sWNN 3IHL 3LvINIIVD
Zilidd

ehidd T911 IN1¥d

S11

002
10e

511

%11
]

O C O

J
J

Qe G



215

gwe
Y42
€92
rAX4
152
0%e
6el
ged
Led
9ce
ged
ved
g€ee
2ee
1€
oee
622
e¢e
Le2
9ce
gee
%ée
gée
¢z
1c¢2
ez
4
gie
Liz
91¢
61e
%12
12 ¥4
2z
112

ZiWdd
Zindd
SWdd
Ziidd
Zindd
ZWdd
2idd
endd
Zigdd
2udd
Ihdd
2hWdd
ehdd
Zidd
Zhdd
cwdd
2W3d
idd
Zindd
Zidd
Zindd
Zvidd
ZuWdd
Zidd

INTTel €09 ad
0*0=Lc4l)ANKWNU
IN‘I=1 €09 Od

(¥ 3ILleaN) Lndgn] 1Vv)

(PIXx( P eI eeXAONINLYIH{TCIIAGUNA={T9]) ANKNG
N¥I=0 209 DU

0*0=(1¢1)AHKNG

NfT=1 209 0Od

SNNIANDD

€1e21¢2T{XVnIL=gHEL) AT

1+10%dn=101dA

(13L43HIL=3RIL

1=€X3UN1

T=2X30N1

: 0*0=13klIl
.mwmommmzoukquknmIHZHQmmwamkmrkwmkczwoﬂwfuk

0=4107dA

0°0=3WIlL

t=fp

(777777181 )Lviend

(/75 HI9RIULS 3SINd s XOT 1 oNL¥I4 JOLVINAUW T

ZWdd4D *ONIXTTSe3NILI¥X654030L1IWa $35INd 40 *OnNs#X69/// /77 1KT) Lviuod

Zrdd
Zudd
Zrdd
2hdd

W o o sk skl ik

2kidd
Z2ildd
Zikdd
Zidd
Zhdd

goGT LNIY¥d4
INTIANDD
*SITAVIMVA FZITVILINI

s e o oo o ok ok e sk ok e okl ol sk Rk kOB S R Rk R R R Ak R R ok R ok ok

(Ol eTarXe Y2 /e (LYD e X02e/7 ¢ HT)LVvHuOd
(TNS =19 0aARST=L (P I91D)) “200€ LNIYWd

(L8P ET13eXe)w) /o (LxV)dXI 1 €X0¢e/ /¢ HT)lviu0d
(NCT=Te(NT=0¢{P I*T)LVI))F0C0C LNIYUd

209

21

I1

o1

43¢
£641

09

<00g

000¢g



216

082
6L¢
gL
LLe
9LZ
€L2
YL
ELe
L2
112
0Le
€92
89¢
L9
99%¢
69?2
y9e
€ge
292
192
097
&s?
gs?
Ls¢
9a¢
gad
Hhe?
€62
[4°%-
182
0s2
6%¢
evZ
L9z
942

ZWdd
Wdd
2Wdd
ZiWdd
Zidd
ZHAd
ZWdd
2Wdd
Zrdd
Zildd
Z2wdd
Z2W4dd
ZKdd
endd
Zindd
Zidd
Tidd
Z2iWdd
Zewdd
guidd
ZWdd
Zriddd
ZwWdd
cdd
Ziidd
Zuldd

glg€eigeize{(l) )41

I=(x)1

T+x=H

£=X30N|

69¢ 1yl 09

e=X3UNI

ECE H0GeHh0c{(I)SNIES~ZV )4l
2062061060 (T ISIINIWS=-2V)d]

INMIANGD
((1)Z2)Sdgv=2y

veq ul 09

(13Z2=2V
CEGF2ECF2LG(SSH=T )41

CSUDLVINGUW Q3NSIS—~3TINIS ¥O4 UDIIHD

i+i=1

0=1

0=A

CAFTL FWVS FHL Llv ONIYIZ4 SEOLVINGOW 40 ¥agufin JHL 3d0LS

0l 03sn SI W ¥3%3LnD AwWNG FHL ‘WVe20¥d 3HL 40 INIId SlHL mu»mm
I=X3uN

*S3INIVA GIOHS3¥HL FHL MLITX SINdLNG ¥3ILTId ONIXIL dHL 3¥vdkOd

7 i 21 b e o s ool s e o s sk e s sl e o o gl e sk o ot o sk ot s e ool e o o i e i okt R kol s ok e e sk o SR kR

Zivdd
ZWdd
Zindd
Z2hidd
Zhdd
Zidd
Zikdd
Zhdd

(TP YAHNNGR( T INTI+(T)7=(1) 2

IN¢1=f #09 0O

0*0=(1)2Z

Wet=1 %09 04

(21 YARBNG+ (TSI YANNNG=( T LY AURKRNQ

InNeI=]1 0§ 0Od

(P U (P eI fEXIUNIYOH{ 2T )AnKUNG=(2¥ L) AWKNG

els
%04

£€0g
[4e}

VAR
£es

2es

0es

008

%09

s

£09

[ N

| S )

LU OO



217

¢le
yle
gle
21l€
11¢
01l¢
&60¢
BOE
LO€
90¢
¢0¢g
%0¢
€0¢g
c0¢
10¢
0o¢
8§5¢
8672
Léz
9672
66¢
A4
1 XY
26d
162
062
é87¢
882
L8Z
982
x4
98¢
£8¢
282
182

2Wdd it Gl 09
ZiWdd €661 INIdYd
2hidd (ToY #4041 722Y10%d 1VD
Zhidd ((XG¢8°61Y9¢ =X ¥XO1e//// /17777 THT) Lvkid0s
Zyidd (Nel=1¢(1)X)“€L61 LNLYd
2wdd 26581 INIVg
Zhdd 0=1L07dA
2uidd 11 ol 09
Zhidd (1)X=(L0NdNel )22
2idd I0drei=1 2111 @Q
Z¥idd . FZETITTCTTIT({ul=d030dM)dl
Zkdd *LNdlaD 3Imd 107d
Zwdd 110884110 4L
Zidd X3anie(ecegesie) gl 09
2rdd "A3¥18$30 SI 107d 41 €LG7d INILA0¥ENS IRL diUd VAV IONVUEY

21 o o sk o o s ok s ok ook s o oo it o e st sk o oot o e st e et st ot ok o e o e ok o o s o ot sk ok ok o e e ek sl skl

244d

Zndd : €1 0L 09
Z2idd (13ATLIVOIN $3L023G EXIAANT “u0uYI “¥0T¢ HT)LlvWuld
2rdd Gls INIYd
ZWdd ELEF1L g e (T~-eX3aNT) 3L
ZWdd (T3)ARKWNO={1)X
2r4d N‘1=1 L06 04
2wdd SONOSTUVAHUD 01DHSHYHL J40 ON3

ZWd diosgek sk otk R Rk dok ok kol dokobok ok ok ok ok kR ok Rk ok R R ok ok R
ZWdd

Zhidd INNTLANGD
Zhdd T€691ege0es{N-T)d1
Ziid INNILNOD
ZWdd (IYWV=(A)Sd3
chdd €1 Ol 09
Zindd (4GHSY¥HL NI ¥0e¥34¢X0Y¥ HI)LvHIO3
ZWdd %26 LN1dd
Zrdd 10¢ 0l 09

ZWdd (1)Wy==(n)sd3

elol

X4

AR A
1111
083

12
1.5

sLg
ZLs
696
L0g

1€9

108
¢Zzs

&4
i

1dg

QL O

[ S W



218

0s¢e
eve
8veE
LYE
SYvE
SYE
Yye
€ve
4’22
ivg
ove
&CE
gee
LEE
9¢eg
GEe
hee
€ee
2¢te
1ce
0ce
YA
gZ¢
IRA
ge¢
GCE
$2¢
gec
22¢
1¢¢
0c¢
6i¢
gle
Ll¢g
91¢

2W4dd *ANNTINGD
2 i ek sk s e sk e o s sk s st ok ok e ek okt sk ol s sk s skt sk ok ok 30k gk Ak ol o R Rk ok ok R X
2indd
eidd POy
chdd (PISHIF{MTIYu+{IIX=(1)X
Zridd R RELE!
Z2iWd4d He1r 00¢€ Gu
CH3d NeTl=1 00¢€ 0U
2K4d *SNOISSIWI 3STINgI DL 3ING S34VLS 3L NI Sdwnr
2ikdd
Z2idd ({XZsg°g13)9c1=X ¢ HMT)LuWNOS
Zrdd (MeT=1¢{1)IX)¥G6Ly ANIYG
Zildd (B°GTIXC2EIFXQT G *GTIFXOTEI“X0T¢ HT)LviADA
ZW3d (1)Sg3f{1Y1sauiletiorge] INIYd
4d I=1+00=11
Zwdd ¥el=1 L2 9@
chdd (/74,4
ZWdd3IWIL 3WVS IHL LV ONIWId YOLYINGOW AnD NVHL 3YDW eX0T1<//¢ HT)LlvWwuod
éindd 121 IN1¥d
2hdd €1 ¢l 09
FATE R (/7/7¢i3ATLYO3N S$3w0235 M MITHI 1 TXO1€/ /% wlyiovivld
2Hdd 9¢s LINIdd
ZWdd QZegzegZs(i~N)dl
2hsd 0°0=(T])X
eh4d (el xouazi=1l
cWdd wi4t=f 606 0OC
eWddg {LIIXVWRZI=N]
Zhdd (1)1=11
2wdd #éT1=1 80§ 0Q
Zhdd °"DHEIZ oL S3ILVLIS Q3Lv138 MuNL3u
2idd
dindd T3t l+akil=3LT4
ZWdd *NOISSIWS mszafﬁ ¥ S 3¥3AHL
2 sk skt ook ol ok kol skololo sk dokatol okl sskokoluiokokodok e kok okl ok ok Rk Rk ok kR R R R R
SWdd

1

033

G6&L9
Z6LS
¢el
L2

¥4

1¢1
9¢

G26
524G

90§

[4Y]
o

CUO

LS ]

[ 3 &

LB S )



219

hie
gLe
eLe
1L¢
0L¢
69¢€
89¢
L9¢
96¢
69¢
$o¢g
€9¢
423
i6¢e
09¢
6&¢
&g
Leg
9s¢
§6¢
hee
gce
24a¢e
1se

2H4d
2W4d
2kidd
chddd
ZiWdd
Zndd
Zihdd
ZHdd
244
Zhdd
ZHdd
Zrdd
2H-dd

aMy

4ulLs

INNTLNDD

¢c¢ gl 09
(XN L1 3kIL=TINIL
X3ar1(1g¢2Z¢0€) ul 09
21 0L 09
(EXAANT )L+ I3V L=TINIL
(EX3AN1CLL) Lvdx3d T1AV)
(EX30nIYL=Ll

SNNTLNGD

el 0l 09

(e*Snpltvyaty 1X3at

el

{8
£LS

189

€8s

ZH4dONT ¥3LdY Q3AIIHOV 39 LONNVD ADVYNIDVY AuDLIV4SILVS:“X0T¢ pl)iviuld ¥86

Ziidd
Zyidd
ZHdd
Zidd
2ih4d
ZWdd
4 EE!
Z2ihdd
ZW4d
2idd

%8s INiY¥d

E8GFEEG 6 S(CXIUNLI-TXEONT) ]

142X a0NT=2X30NT

TEc I s0EalEXIONI-ZXIONI)I]

T+CX2GNI=EXIAN]

(T)L=-3wii= 3Iull

11 103S1¢ FIVAYILNI wNOILVITLIMY3OSIC

NIV 3HL HIIM Q3A31K0¢ 29 LONNVD AJVENIOV Ac01DVd4SILYS

01 0l 09

434
oes

e
174

Lo O



220

cg
A
13
[42
ie
O¢e
6¢
4

~Sal O M~>o

lyd (6480 NOISN3WIQ
194

1v4

&V st s stesie s oo oo o o e et ik ofe e ok of ol s oo e sl ol sl o Ao oo e e e ol sle s o sk sk ok A aksk e e s ek Aok Aok R R
iv3

LV AOVUNISV Y3Lv3ago ¥ud (002+-01) S3INTVA ¥a9yyT gl 13S 3d NvD

LV377 ¥ILIWVEVd 3HL “¥3IAIMOH  *O30G1AGYa LON ST MI3HD ADVENIIV

ivs fe{relIvVISay KNSIUYL/Z

iva NVHL ¥3711VWS 38 4SnYW 1 €IVAYILINT NOILVZILIWISIO 3IHL

LV¥3 SHUVWId

Lvs

Y3 (1)L 0L O WOud “U8%{LxiVIidXad XI¥LVEH 4HL 40 TYH9IING = 10

v 1 0L 0 WO¥d fT(LlsV)dxT XIMAIVW 3HL 40 Ivdo3LNI - 0

Lv4 C{1%y)idX3 XIylvi NUTLISHVYL Flvis = iv3

v SSUBLVINGDY FHL 40 XIglvw ONITANOD LNdHI - 16

1V EXTHLAVRH TVLNIWIANNS G3LNIRINY - v

v *WILSAS Wdd HHL L1 SingNI 40 ¥3quny - 3N

lvd . CSNUOLYINUDH

lv4 ML 40 f1v Xtulvi! AvINIGYONNAS 3nd 20 nGiSiEnla = IN

1v43 XT1ulVid IVLIWYANAY 03in2uonY 3HL 40 NOISNINIg = N

1v3 (YL N1 O WEYd Tax(ixTv)dX3

AV

LV3 40 IVNOIUINIs(TITO GRY (1) 4% a¥a=()LvE S30INLVY

iv4d AHL SHLVY3INID LvdX3 TIVD KAV LV cWvYEo08d NIy

1¥3 JHL A8 3377VD 5! LlvdxX3 INILNGYENS S3KRIL 40 #H30wNy =~ g

iv3 *IVAMIINT NUTAVZILIYISIO - i

iv4 SYALIWYYYd 40 wOIldIuds3d
1v3

iv3 SIVYOILNT SLT ONV XIWLAVW NOILISKNVYL JLVLS 3HL 31AeWB) 0L

ivd 350ddnd
lvd

iv4d Lvdx3 INILNDYENS
LV 3 st s s sie ook oeai ofe sk e s o s o s sfe sk sk o o b ek ol s sl e g ke ke e o sl sk el s e sk ook s ok ek g ok ke R K k&
ivd

Lv3



221

69
g9
LS
99
€9
%9
€9
2%
i9
0%
6<S
8¢
LS
9¢
13
v
€g
[49
is
0s
6%
8%
Ly
g%
g%
A
€y
b
1y
0%
6t
g€
LE
9t

LV
vy
1V3
1v3
I
LV
1v3
4va
iv3
1y
1v3a
RE
1v34
LYy
1v3
1Y3
1v3
1Y3
1¥3
1v3
1v3
LV3
1v3
RE
LV3
LV
iV3
1v3
1v3
LV
1V
INE
NE
1¥3

GNI
Mu¥NLIY
Q=(P1¢1) 10
(PeAYIa=(Nel)0+0=0
IN‘I=% 8 OU

0to=U

ANFI=P L 04

IN¢T=1 L DU

*L 0L 0 HOuwd “T0%{Lix=TV)dXT XIYLVn

dHL 40 TVHOIUNT=0 SILAHED INILNCUENS 3IML 40 LyVd ONINGII04 3HL

(Fe1)Bxl={r1)0
NeT= ¢ (3Q

O*T+{I1 IeY)Lly3=(1¥¢i¥7)1y2a
MfT=1 § 00

INNTIINGD

(PO IACTILVR(PeIeTILVI=( PN} LV
N T=% 9 GG
0*0={r“I*1)LV3

M€Y= 9 0U

Hel=1 9 0OU
0°T1+(1¢1)0=(I91}0
IV/({PeYe)Lva=(r“1)D
N¥T={ % DU

NEYI=T € 0O
2H1I=-11=1vy

F1¢e2=11 2 0¢

gl=11
{rel)Ly=(1re1¢1)Lvd
Ix(reiyvs(r<lyly
N¥I=P T 0d

NeT=1 T OU

(8gILVE(H ey a0h)TOC(B IOy LY (HeH)TEC (B B)V INCINN NOWWOD

o I~

O oo

QU O



222

APPENDIX E

COMPUTER_ PROGRAM FOR LINEARIZING A NONLINEAR NET

This program linearizes eq. (4.24) (for the single-
signed system) by increasing the number of variables of
the system. The procedure is described in Section 4.4
(pp. 166-168). A subroutine for calculation of the
coefficients of the characteristic polynomial of the

linearized system is also included.

Input dsta
Card Quantities Format
1 +Xbb+1bbb1bbb2bbb3bbb4dbbb5bbb6bbb7bbb8 (20n4)

bbb9bb10bb11bbi12bb13bb14bb15bb16bb17bb18
(b denotes blank space)

2 N (order of the system) (14)
3 R(1),...,R(n) (input vector), (8F10.5)

Connection matrix of the system D.

Qutput (see pp. 170-171)
1. Input data: The connection matrix D,
2. Fundamental matrix of the linearized system A.

3. Characteristic polynomial of A.
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