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ABSTRACT

The effect of ultrasonic vibrations on the vapor 
phase decomposition of cumene to benzene and propylene 
was investigated employing silica-aluminum cracking cata­
lyst.

The catalytic reactor consisted of a 1 cm. diameter 
stainless steel tube containing a 20 in. long preheater 
and a ^ in. long catalyst chamber. The catalyst bed was 
irradiated from above by means of an ultrasonic horn which 
transmitted acoustical energy directly into the vapor.

The reactor was run at temperatures of 650°F. and 
1050°F., frequencies of 26,000 cps and 39,000 cps, feed
rates of 20 to 600 gms./hr., power outputs of 0.5 to 1.3

2watts/cm. , and catalyst loadings of approximately 1 to 
6 grams.

At temperatures and flow rates where external bulk 
diffusion controlled the rate of reaction, the application 
of ultrasound resulted in increases in the mass transfer 
coefficient up to k0%. In the area where surface reaction 
and internal pore diffusion controlled, the combined cata­
lyst effectiveness factor - surface reaction rate constant 
was increased by up to 160%.

Confidence intervals were calculated for the coeffi­
cients of the equations expressing log k^ as a function of 
T and log £ L k 2 as a function of The analysis of

-i-
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variance indicated that the increases in mass transfer co­
efficients and combined catalyst effectiveness factor - sur­
face reaction rate constants were significant at ultra­
sonic frequencies of 39,000 cps. The increases obtained 
between frequencies of 26,000 cps and no ultrasound were 
of lesser significance.

It is postulated that ultrasound causes acoustic 
streaming within the reactor tube and catalyst pores, re­
sulting in higher transport rates caused by the combined 
effect of diffusion and forced convection as compared to 
the effect of diffusion alone in the absence of ultrasound. 
In addition, acoustic energy may cause localized heating 
within the catalyst bed, thereby increasing the rate of 
surface reaction.

-ii-
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CHAPTER I

INTRODUCTION

Purpose and Scope of Investigation
Considerable information is available in the litera­

ture concerning the use of ultrasonic vibrations as an 
analytical tool and as a source of energy. Although most 
earlier references describe the passive applications of 
ultrasound, whereby the propagation characteristics of 
the sound wave are employed, the field has recently ex­
panded into active applications of acoustical energy. 
These active applications now include the effect of 
ultrasonic vibrations on chemical reactions. Although 
considerable information is available concerning sono- 
chemical reactions, much of the data and results are 
contradictory and almost all the experimentation deals 
with uncatalyzed liquid phase reactions.

It therefore appeared to this author that because 
of the paucity of quantitative data a most interesting 
and challenging research would be the study of the effect 
of ultrasonic vibrations on heterogeneous catalysis, or 
more specifically, the effect of ultrasound on the cata­
lytic cracking of cumene.

Selection of system. The cumene system was selected 
for this study because of the following reasons:
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1. Thermal cracking of cumene is negligible at the 
temperatures employed (650°-1050°F.).

2. The reaction is essentially clean with a mini­
mum production of side products.

223. The reaction mechanism was determined by Garver 
in 1955 published in his Doctoral Thesis, 
thus providing an experimental base.

97One literature reference published by Zhorov 
in 1967 indicates that ultrasound effects the rate 
of this reaction, thereby providing this author 
with some indication of success.

Investigation plan. The plan of the investigation was 
to repeat some of Garver's work to obtain a firm basis for 
the reaction mechanism in the absence of ultrasound, and 
then to apply acoustical energy to the reaction and attempt 
to determine the following effects:

1. The effect of ultrasound on the rate of reaction.
2. The effect of ultrasound on the kinetic rate con­

stant and the external diffusion coefficient.

Literature Survey
Early references. Literature references to ultra­

sonic vibrations, or more accurately acoustical energy, oc-
92cur as early as 1927. At that time, Woody developed a 

piezoelectric oscillator of quartz which produced frequencies 
up to 300,000 cps. It is now possible to produce frequencies
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10of over 9 x 10 cps. Frequency ranges between 20,000
9and 10' cps are referred to as ultrasonic and ranges 

gabove 10 cps are referred to as hypersonic. This in­
vestigation deals with the ultrasonic range between
20,000 and 50 ,000 cps.

Classification of acoustical energy. Acoustical 
energy is generally classified according to its appli­
cation. Passive applications include those by which the 
propagation characteristics of the sound wave are em­
ployed and active applications are those by which the

p
sound is used as a source of energy. Greguss has 
classified several applications of acoustical energy 
according to the frequency employed. This classifica­
tion is shown in Table 1. It is interesting to note 
that when Greguss prepared this summary in 1963, sono- 
chemical effects were limited to liquid phase investiga­
tions only.

In addition to frequency, the second important vari­
able in the study of acoustical energy is sound intens­
ity . ^ 1 The intensity of audible sound lies between lO-1^

/ 2and 10 watts/cm. , with the latter value being the 
threshold of pain. Sound intensities of 120,000 watts/cm. 
at a frequency of 500,000 cps have been produced in liquids 
at the Moscow Acoustical Institute. However, the intens­
ities most frequently applied in sonochemical research are 
those between 1 and 10 watts/cm. Peak intensities of up
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TABLE 1

APPLICATIONS OP ACOUSTICAL ENERGY

Passive Applications
Physical State 

of Matter
Frequency

cps

1. Theoretical solid state research Solid 109- Q11

2. Computers Solid 107- 09

3. Non-destructive testing Solid 103- o8
4. Medical diagnostics Solid and Liquid 103- 07

5. Viscoelastic research Solid up to o6
6 . Seismic research Solid up to 0^
7. Measurements, remote control Liquid and Gas 105- o9
8 . Flow measurements Liquid 103- o3
9. Viscosity measurements Liquid 103- o3

10. Level determinations Liquid 105- o7
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TABLE 1 (continued)

APPLICATIONS OF ACOUSTICAL ENERGY

Active Applications
Physical State 

of Matter
Frequency

cps
1. Effect on alloys Solid and Liquid up to 10-3
2. Fatigue research Solid up to 10-3
3. Colloid chemistry Solidj Liquid and Gas up to 10^

Therapeutical applications Solid and Liquid 105-107
5. Boiler scale prevention Liquid A <

10 -io-3
6. Effect on combustion processes Gas up to 10
7. Biochemical effects Liquid 105-107
8. Sonochemical effects Liquid up to 10^

V_n.
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2to 1.3 watts/cm. were studied in this investigation be­
cause this was the limitation of the equipment employed.

Liquid phase reactions. Many investigations have 
been reported in the literature describing the effect of 
ultrasound on liquid phase chemical reactions, but, un­
fortunately, much of this work has led to erroneous con-

7 3elusions and contradictory results. For example, Shaw'^ 
reported in 1967 that ultrasound caused scissions of the 
polymer chain in polysiloxane solutions. He further 
found that doubling the acoustic intensity at 20,000 cps 
doubled the degradation rate. Porter^® confirmed this 
observation that same year when he reported that the 
average molecular weight of polyisobutylene dissolved in 
trichlorobenzene was decreased from 4-66,000 to 20,600 
by irradiation with ultrasound. Peacocke-' explained 
this phenomenum in 1968 as a result of his studies of the 
effect of ultrasound on such linear macromolecules as 
DNA by stating that the degradation is caused by stresses 
resulting from the relative movement of the macromolecule 
and the solvent molecule.

40In contradiction to these observations, Makeeva
reported in 1967 that polyvinyl chloride prepared by
the bulk polymerization of vinyl chloride and exposed
to ultrasound had a higher molecular weight and fewer

28branches. Heymach appeared to add to the confusion
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when he reported that cavitation resulting from the 
application of intense acoustical energy selectively 
degraded polymers by fracturing longer chains at a 
faster rate than shorter chains. He concluded that 
ultrasonic irradiation may be a means of sharpening 
molecular weight distributions.

Effect on reaction rates. In addition to experi­
mentation in the area of polymers and polymerization, 
many investigators were interested in the effect of 
ultrasound on reaction rates. Since it was early in the 
study of this new form of energy, most investigators
made no attempt to explain the individual effects of in-

. Ll Lltensity and frequency. For example, in 1965 Mario re­
ported that the reaction kinetics of the hydrolysis of 
aspirin are pseudo first order with or without ultrasound. 
He found that the reaction rate was increased with the
application of ultrasound.

. . h. ?In 1966, Manu reported that ultrasound at
21,000,000 cps and k to 12 watts/cm. increased the re­

action rate of the oxidation of the aldehyde group in
7 7glucose. In 1968, Stolyarov noted that ultrasound at 

frequencies of 20,000 to 100,000 cps increased the oxi­
dation rate of aluminum in water at 90°F. During that

filsame year, Prakash showed that the rate of production 
of iodine from cesium iodide increased with the appli-
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cation of ultrasound at frequencies of 1,000,000 cps and
2 3̂4*intensities of 1.^ to 2.4- watts/cm. In 1969, Kowalska^

noted that ultrasonic irradiation increased the oxidation 
rate of divalent iron to trivalent iron by 300$.

Acoustic intensity and frequency effect. As more 
information became available describing the effect of 
ultrasound on reaction kinetics, investigators became 
more concerned with the specific effects of intensity and 
frequency. Most available data indicate that increasing 
intensity increases the reaction rate, but the data con­
cerning the effect of frequency on reaction rate is highly 
contradictory. During his study of complex ethers in 
1966, Zilberg found that ultrasonic intensity increased
the reaction rate but frequency variations between
300,000 and 1,000,000 cps had no effect. Prakash^0 ob­
served that increasing the intensity increased the sono-
chemical decomposition of CgHgBr^. Rice^, Sergeeva^2,

7 8 22Suess' and Geissler J all independently confirmed the
observation that increasing ultrasonic intensity increases

10the reaction rate. In 1967, Chen reported that the re­
action rate of the hydrolysis of methyl acetate with HG1 
catalyst increased with increasing ultrasonic intensity,
but that variations in frequency had no effect, thus con-

68firming Zilberg1s work. However, in 1968, Saracco com­
pleted his study of the hydrogenation of olive oil in
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cyclohexane with Raney nickel catalyst and ultrasound.
He discovered that the reaction rate reached a maximum 
with increasing intensity and then decreased at any 
frequency. He further observed that maximum reaction 
rates were obtained at frequencies of 500 ,000 cps.
Finally, Paryjczak-^ reported that the zero order rate 
constant for the sono-oxidation of FeClg decreased with 
increasing frequency.

Theory developments. In spite of these contradic­
tory conclusions, many investigators attempted to develop
theories to explain the sonochemical effect. In 1950,

g 1Weissler' proposed that the chemical reaction rate under 
the influence of ultrasound is a function of the sound 
intensity, duration of exposure, pressure, temperature 
and volume. In 1965, Nosov^ added the proposal that 
intramolecular rearrangements and cavitation are the 
effects of the application of ultrasound to chemical re­
actions. He further stated that electrical discharges 
occur within the cavitation bubbles which ionize the sol­
vent and solutes, producing highly reactive free radicals. 

19Fogler ' agreed with the theory that cavitation increases
reaction rates as a result of his experimentation with the

13liquid phase hydrolysis of methyl acetate. Currell J pro­
duced acetylene by the ultrasonic cleavage of cyclohexanol. 
His results were also consistent with the theory that the
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sonochemical reaction takes place within the cavitation
22bubbles. Kessler^ was able to promote the chemical de­

composition of tetralin and methyl naphthalene by ultra-
27sonic irradiation at frequencies of 80,000 cps. Griffing ' 

finally proposed that ultrasound causes cavitation and 
luminescence simultaneously. Luminescence may be caused 
by electrical charges within the cavitation bubble or by 
extremely high temperatures within the bubble. The cavi­
tation bubbles then act as hot spots which may promote
or enhance chemical reactions.

60Prakash found that the sonochemical decomposition 
of C2H2Br^ increases with increasing ultrasonic intensity.
He theorized that ultrasonic energy caused the formation

86of free radicals within the cavitation bubble. Tuchel 
concurred with the free radical theory as a result of his 
experimentation with potassium iodide solution oxidations 
irradiated with ultrasound at frequencies of 870,000 cps.

kq h.i 37In 1968, Margulis Maltsev and Tuxzynski independently 
arrived at the conclusion that reaction rate enhancement 
is due to the formation of free radicals within the cavi­
tation holes.

In addition to the hot spot and free radical theories 
associated with the cavitation phenomenon, some investi­
gators proposed other theories to explain the effect of 
ultrasound on the rate of chemical reactions. For example,
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Vladar^ continuously produced CaCOH)^ from pure CaCO^
and GOg in a tubular reactor and found that ultrasound
increased the rate of carbonation. He theorized that the
ultrasonic energy reduced the particle size of the solids

oilresulting in a higher reaction rate. Gindis studied
the effect of ultrasound on the electrochemical oxidation
of KgMnO^ to KMnO^ at frequencies of 20,000 cps and 25 to
30 watts/liter. He found that the degree of oxidation at
the anode was increased by 10% to 65% and concluded that
ultrasound increased the current efficiency of the elec-

48trolyte by that amount. Needham applied ultrasound to 
aspirin in ethanol-water solution and found that although 
the same reaction order was maintained, the rate of degra­
dation increased. Needham theorized that ultrasound 
lowered the activation energy, increased the rate of 
molecular collisions, and increased the rate of movement 
of the products away from each other.

Diffusion theory. In 1968, Belov^ proposed that 
ultrasound causes higher reaction rates by acceleration 
of diffusional processes. In 1969, Kowalska^, as a re­
sult of his studies of the application of ultrasonic

++ +++fields to the oxidation of Pe to Pe , also concluded 
that ultrasound decreases the thickness of the diffusion 
layer. This work, in addition to other confirming evidence, 
led this author to believe that ultrasound would effect the
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rate of diffusion controlled solid-catalyzed gaseous re­
actions .

Catalyst activity. During the time when many inves­
tigators were studying the effect of ultrasound on un­
catalyzed liquid phase reactions, some scientists experi­
mented with the effect of ultrasound on catalysts. For

U- oexample, Berger regenerated some catalysts at 900 to
1000°C. in the presence of ultrasound at 20 to 100
watts/cm. and found that the catalytic activity was

7 5enhanced. Slaczka irradiated nickel and cobalt cata­
lysts with ultrasound during their preparation by the 
reduction of oxylates and found that their catalytic 
activity were increased. He concluded that the ultra­
sonic energy at frequencies of 25,000 cps and 0.3

nwatts/cm. caused an increase in the number of crystal
30defects, thus enhancing the activity. In I960, JonesJ 

fastened one end of a bundle of catalytically coated wires 
to an ultrasonic driver while the other end was suspended 
in a reactor. He noted that the catalytic activity was 
enhanced for the preparation of ammonia from nitrogen and 
hydrogen when ultrasonic energy at frequencies of 500 to
300,000 cps was applied.

9 7Gas phase reactions. In 1967, Zhorov studied the 
effect of ultrasound on the catalytic cracking of cumene. 
Zhorov proposed that the rate of reaction was controlled
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by the diffusion rate of the reactants and products to 
and from the catalyst surface. He discovered that the 
diffusion rate, and hence the rate of reaction, could be 
increased by the application of ultrasonic vibrations.

Zhorov's equipment consisted of a continuous re­
actor in which he placed 7.9 gms. of aluminum-silicate 
catalyst. Gumene was fed into the reactor at a feed 
rate of 3.0 g"h™°les (W/Fa 0 = 9,468 ) and
cracked at 878°P. The reactor was operated without 
ultrasound for the first half hour and then ultrasonic 
energy was applied for the second half hour at a fre­
quency of 20,000 cps and an amplitude of 5 to 6 microns.

Analysis of the liquid product (a mixture of cumene 
and benzene) indicated that the concentration of benzene 
increased by 20^ as a result of the application of ultra­
sound. This result serves as the basis for this author's 
research.

Reaction mechanism. Before any attempt is made to iso­
late the effect of ultrasound on the catalytic cracking of 
cumene, it is necessary to first determine the reaction 
mechanism of this system in the absence of ultrasonic energy.
Considerable work was completed in this area from 19^9 through

2*5 82 831967 by such investigators as Greensfelder , Topchieva * -J,
12 6^ 22 50 55Corrigan , Rase , Garver , Panchenkov-^ , Perrin^ ,

Zhorov^,-^,9^, Pansing^* and Spozhakina"^. One of the
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most complete investigations was published by Garver in 
his Doctoral Dissertation of 1955. Garver determined that 
the reaction mechanism for the cracking of cumene on 
silica-alumina catalyst at 850°F., 950°F. and 1050°F. 
was single site with surface reaction controlling and 
propylene not adsorbed. His experimentation also lead 
to the determination of the reaction rate constants.

This author's plan was to extend the work of Zhorov 
into a more detailed quantitative study of the effect of 
ultrasound on the solid catalyzed cumene reaction em­
ploying Garver's work as the basic starting point. This 
detailed investigation had never been studied previously 
as witnessed by the absence of published information con­
cerning the effect of ultrasound on solid-catalyzed 
gaseous reactions.

Discussion
Ultrasound may increase the rate of a heterogeneous 

solid catalyzed gas reaction by one or more of the follow­
ing methods.

1. Increase the number of active sites on the cata­
lyst surface.

2. Increase the rate of diffusional processes:
A. External bulk diffusion
B. Internal pore diffusion

3. Decrease the reaction activation energy.
4. Increase the surface reaction rate.
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5. Increase the pressure at the mouth of the cata­
lyst pore by the application of acoustic energy.

6. Develop localized thermal effects by the appli­
cation of ultrasonic energy.

Internal pore diffusion, the surface reaction rate 
and bhe number of active sites are described in a single 
constant, ^Lk^, the reaction rate constant. If ultra­
sonic energy affects any of these three parameters and 
the data fit the reaction rate model at high flow rates, 
then can be calculated.

External bulk diffusion is proportional to the mass 
transfer coefficient, k . At low flow rates, mass transfero
controls the rate of reaction, and therefore the effect of 
ultrasound on k can be measured at low flow rates.

Acoustic pressure can be calculated and, in fact, the 
variations in pressure at the mouth of the catalyst pore 
as a result of the application of ultrasonic energy will 
be shown to be negligible for the power employed in this 
investigation.

Localized hot spots on the surface of the catalyst will 
result in increased surface reaction rate constants and re­
action rates. Quantitative measurements of this phenomenon 
are not possible in this investigation, but these thermal 
effects will also manifest themselves in CLk^, a measurable 
quantity.
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CHAPTER II 

THEORY

Continuous Reaction Model

In solid-catalyzed gas-phase reactions, reaction 
occurs at the gas-solid interfaces. These interfaces 
lie on the external surface of the catalyst particle 
and also on the internal surfaces within the catalyst 
pore. The overall rate of reaction depends upon the 
availability of these surfaces to the reactants.

For the continuous reaction model, it is assumed 
that the reaction mechanism consists of seven distinct 
processes with the rate of reaction controlled by the 
slowest process.

These processes are described in detail in Appen­
dices III through VII and briefly outlined below.

1. Gas film diffusion of reactants.
2. Pore diffusion of reactants.
3. Adsorption of reactants.
4. Surface reaction
5. Desorption of products.
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6 . Pore diffusion of products.
7. Gas film diffusion of products.
Gas film diffusion. Gas film diffusion of reactants 

and products is handled mathematically as a single simple 
diffusion process. The equation describing this process 
is as follows:

1+YA s (1)

r^ = gm moles cumene diffusing toward catalyst sur-
£rm molesface per second per gm. catalyst, gm~~sec"

Piji = total pressure, atm.
cm.k = mass transfer coefficient, „ , g * sec.

d a b • '
■  s i

Da b = diffusivity of cumene in cumene, benzene and
cm ^propylene,

<Sf = thickness of stagnant gas film between main gas
stream and external surface of catalyst, cm.

cma = superficial surface area of catalyst, — —
o ' gm.

H = 82.06 gm mole-°K.
T = °K.

^Ab = mole fraction cumene in main gas stream,
dimensionless 

Ya = mole fraction cumene on catalyst surface,b
dimensionless
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Surface phenomena. The adsorption of cumene onto 
the catalyst surface, the reaction of cumene on the sur­
face and the desorption of benzene from the catalyst sur­
face are also handled together mathematically. Garver 
has shown that the following rate equation is consistent 
with a single site mechanism whereby propylene is not 
adsorbed and surface reaction is rate controlling.

PA “ Pr pS
K

(2)
A1 1 + KAPA +

(rA1) = reaction rate, ^ .A1 * gm cat-sec.
CT = concentration of total active sites on cata-
L 2

lyst surface,0 * gm cat.
= forward reaction rate constant for surface

reaction, S.mcm. -sec.
= equilibrium adsorption constant for cumene,

_1__
atm.

PA = partial pressure of cumene, atm.
PR = Partial pressure of benzene, atm.
Ps = partial pressure of propylene, atm.
Kr = equilibrium adsorption constant for benzene,

1
atm.

K = equilibrium constant for overall reaction, atm, 

Effectiveness factor. The effect of pore diffusion
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of reactants and products on the rate of reaction is ex­
pressed by applying a correction factor to the rate 
equation. This correction factor is known as £ , the 
effectiveness factor. The rate equation now reduces to 
the following expression:

' Pa " Pr Ps
£Lk9K.

(-r,U = 2 A
K

A1 1 + KAPA + KRPR (3)

In the case of irreversible reaction, K approaches 
infinity and the rate equation then becomes:

_  eLk2KApA _ _ _

1 1 + k a Pa  + kr Ph
The initial rate of reaction occurs when the partial 

pressure of cumene is equal to the total pressure and the 
partial pressures of benzene and propylene are zero.

eLk2KA7r
ro “ 1 + K J f  (5)

rA1 = reaction rate, g”

r0 = initial reaction rate,

£ = effectiveness factor, dimensionless
cm ^L = total concentration of active sites,-- --'-rr~1 gm cat.

k2 = forward reaction rate constant for surface
reaction, S»=j»2las cm.^-sec.
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K. = equilibrium adsorption constant for cumene
1

atm.
Kr = equilibrium adsorption constant for benzene,

_1__
atm.

K = equilibrium constant for overall reaction, atm.
p^ = partial pressure of cumene, atm.
Pg = partial pressure of benzene, atm.
Ps = partial pressure of propylene, atm.
77" = total pressure, atm.

The effectiveness factor is defined as the ratio of 
the actual rate of reaction with pore diffusion present 
to the rate of reaction if the resistance caused by pore 
diffusion were absent. It is expressed by the following 
relationship wherein hg is the Thiele Modulus:

tanh h
1 _1

h (6)
s s

hs (7)

effectiveness factor, dimensionless
h = Thiele Modulus, dimensionless s *
rp = radius of catalyst particle, cm.
k = forward intrinsic rate constant for surface s

reaction,
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cmS = total surface of porous catalyst, —v cm.J2
D = effective pore diffusivity, cm-‘—

6  S  3  C  •

Reaction Design Equation
The reaction design equation is obtained by sub­

stituting the rate equation into the plug flow reactor 
design equation.

W '
( - r An) (8)Fa0 / ' A1

W = wt. catalyst, gms.
Fa = feed rate of cumene, ^ - rr)0-e— -"o ’ sec.
Xa q = initial conversion of cumene, dimensionless
XAf = final conversion of cumene, dimensionless

(-rA1) = reaction rate, Sm moles A Al' * gm cat-sec.

Reaction design equation with external diffusion 
controlling. For bulk diffusion of cumene from the main 
gas stream to the surface of the catalyst, the integrated 
reactor design equation yields the following relationship 
for the mass transfer coefficient:

XA, RT
k = ------ ^ - (9)
® (W/FA„)pTaln 1+lAfc

1 + * A s J
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After substituting the constants and employing the log 
mean mole fraction for the surface concentration of 
cumene, the equation reduces to the following:

6.26 XAf T
kg = (w /fAo ) m  (1+YAlm) (10)

where,
cmk = mass transfer coefficient, g , ’ sec.

XAf = final conversion of cumene, dimensionless
T = temperature, °K.
W = wt. catalyst, gms.

= initial cumene feed rate,^o * sec.
= log mean mole fraction of cumene in the 

bulk stream, dimensionless 
R = gas constant, 82.06

Pm =- total pressure, atm.
2cma = superficial surface area of catalyst, ĝ ~" 

^A^ = mole fraction cumene in bulk stream,
dimensionless 

YAs = mole fraction cumene at catalyst surface, 
dimensionless

Reaction design equation with surface reaction 
controlling. For reversible reaction, the reaction de­
sign equation is as follows:
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PA Jro
1_
2S In (1+XA*) , XA 

(1-X*S) I?

+ /?

where,

p  = 

<§ =

i 1ri (1+XAS) _ 1 nyi (i-<S2xa 2) 
2^3 d-XA5) 2 p

1 , 1 
^Lk2kA7T 6 Lk,

Kr
£ Lk2KA7T £Lk2KA

1 + 7T‘
K

<52
(11)

(12)

(13)

(1*0

For irreversible reaction, K approaches infinity,

<S becomes unity and the design equation reduces to the 

following expression:

W
pAr = ^ XA +/S»[-ln(l-XA ) - XA] (15)

W = wt. catalyst, gms.

'a = feed rate of cumene, Sm..,Mol§.s A1 sec.
X^ = conversion of cumene, dimensionless

e
L

= effectiveness factor, dimensionless
total concentration of active sites, — —  *■,* gm catgm
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kg = forward reaction rate constant for surface
reaction, SS-foles cm.^-sec.

k a

k r

K
TT

equilibrium adsorption constant for cumene,
_1__
atm.
equilibrium adsorption constant for benzene,
_1__
atm.
equilibrium constant for overall reaction, atm, 
total pressure, atm.

Ultrasonic Engineering
Fundamental equations. As a sound wave travels 

through a gas, small volume elements of the gas contain­
ing millions of molecules alternately compress and expand 
in the direction of the propagation of the sound wave.
The sine wave representations of the displacement, trans­
verse velocity, and transverse acceleration are as follows

y = Y cos 2TT(x-Vt) 
~7T = Y cos 2TTf(t-f)

v

a

= ZJtf Y sin 27Tf(t-£); vV ' ' 'max
47T2f2Y cos 27Tf(t-f)

y = displacement, cm. 
Y = amplitude, cm.
*  = wavelength,

max

= 27f fY 

= 4TT2f2Y

(16)

(17)

(18)
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T
V

VT = y
. , sec.P ^ i o d ,  cycle

velocity of propagation of wave form,
cm. 
sec.

f = frequency,
_ I“ T

cycles
sec.

distance traversed Py wave form, cm. 
time, sec.

x 
t
v = transverse velocity, 
a = transverse acceleration,

cm.
sec.

>m.
sec.

Velocity of propagation. The velocity of propaga­
tion of a sound wave in a gas is a function on only the 
physical properties of the gas and not of the character­
istics of the sound wave. This is illustrated in the 
following equations:

12 JL2 2

V 1 1 ^RT
/°o*- / 0 M (19)

v =

/ ’o =
k =

P =

y  =

velocity of propagation of wave form, 
original gas density, cm.

cm. 
sec.

cm.2 cm.-sec.^compressibility, ^

pressure,  -cm.^ cm-sec.^
Gr>trS dimensionless uv

(dyne = gmrcm,) 
sec. ̂
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0^ = heat capacity of gas at constant pressure, 
cal

gm-°C,
leat
cal

Cv = heat capacity of gas at constant volume,

R =
gm-°C.
B-31 x 10? ■ 8.31 x 10?

2
(erg = dyne-cm. = )S6C •

T = temperature of gas, °K.
M = molecular wt. of gas,

Acoustic pressure. The acoustic pressure exerted by 
the sound wave as it traverses a gas is dependent 
upon the velocity of propagation and the intensity of the 
sound. The amplitude of the sound wave is a function of 
the acoustic pressure.

i
Pmax ‘ [ V o ™ ]  3 <20>

Y = Pmax
27T f/°

= maximum pressure caused by sound wave, max ^ * cm.^
/O - original gas density, ^m-sh ■10 cm.J

I = sound intensity, — .cm.^-sec. cm.^-sec.
(i q -7 watt-sec.^
' erg

cmV = velocity of propagation, — —sec.
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f = frequency,

Y = amplitude, cm.

Conversion factor: 1 ■ — -dyne-sec.

Typical values of wave characteristics. Values for 
the velocity of propagation, wavelength, acoustic pressure, 
amplitude, transverse velocity and acceleration were cal­
culated for cumene at various frequencies and temperatures 
at the maximum power output and half power output of the 
equipment. A summary of these calculations is shown in 
Table 2.

As seen by the table, acoustic pressure as imposed 
by the sound wave should have little effect on the reaction 
rate because the pressure fluctuations above and below 
atmospheric are only a maximum of 1.62 psi at 650°F. and 
1.50 at 1050°F. Furthermore, the acoustic pressure is 
lower at the higher frequency as a result of the mechani­
cal characteristics of the equipment.

This research will, in fact, show that the depen­
dency of reaction rate on power input alone for the range 
studied is negligible and that frequency alone and fre­
quency together with power input are the important factors. 
Molecular acceleration, which is a function of both fre­
quency and power, is very high in the ranges studied, as
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indicated in the table. This molecular motion results 
in higher reaction rates by virtue of increased gas 
diffusion rates. It will be shown that the increased 
diffusion rate occurs both in the external diffusion 
zone and within the catalyst pores.

Detailed derivations of the ultrasonic relation­
ships described in this chapter may be found in 
Appendix X.
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CHAPTER III 

EXPERIMENTAL EQUIPMENT

Flow Chart
Figure 1 is a schematic flow chart of the apparatus 

employed in this study. Valves and by-pass piping have 
been omitted from the drawing for the purpose of main­
taining simplicity and clarity. Detailed specifications 
of all the equipment employed are described in Table 3 .

The system consists of two feed tanks to which the 
cumene is charged, a feed rotameter for metering the feed 
to the reactor, the reactor and a heat exchanger to con­
dense the cumene and benzene effluent. The small amount of 
propylene gas formed is vented to the atmosphere.

The apparatus is also equipped with a nitrogen source 
for pressurizing the feed tanks and blowing down the re­
actor prior to regeneration. A second rotameter is pro­
vided for metering regeneration air to the reactor.

Attached to the top of the reactor is the ultrasonic 
horn by which the catalyst bed is irradiated with ultra­
sonic energy.

Feed System
Cumene is charged to the feed tanks whereupon they
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are pressured up to 10 psig with nitrogen. The nitrogen 
pressure is maintained constant by means of a gas pres­
sure regulator so as to maintain a constant pressure 
drop across the feed rotameter needle valve. The feed 
rotameter is employed manually to control the cumene 
feed rate to the reactor; however, for measurement pur­
poses, the difference in liquid level of the feed tanks 
for the duration of the run is employed for the average 
feed rate calculation.

Regeneration System
After each run, regeneration air is fed to the re­

actor through the air rotameter at a rate of approxi­
mately 0.1 scfm for a period of 2^ hours to regenerate 
the catalyst by burning off the carbon deposits (see 
Appendix XIII).

Reactor
The reactor design is illustrated in Figures 2 and 

3. It consists of a * in. schedule 80 type 316 stainless 
steel pipe, 20^ in. long, welded to a 2 in. O.D. stainless 
steel rod drilled to an I.D. of in. The i in. pipe
is encased in a 2 in. O.D. rod drilled to snugly fit the 
pipe. The casing provides the reactor with mass so as to 
stabilize the operating temperatures. The reactor is 
flanged at both ends and is equipped with a \ in. spud
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near the top for catalyst addition and product removal. 
Inserted within the spud is a ^/8 in. thermocouple well.

The \ in. x 20-| in. long pipe serves as the pre­
heater section, and the upper 2V 6 4  in. I,D. x 6 3 A- in. 
long cylinder is the catalyst chamber. The end of the 
thermocouple well inserted within the spud extends down 
into the catalyst chamber and is immersed in the catalyst 
bed. The catalyst is supported within the chamber by 
means of a fine mesh stainless steel screen.

The location of all seven thermocouples and five 
heating elements are illustrated in Figure 3. Six of 
the thermocouples, TI-1 through TI-6, are affixed to the 
outside of the reactor wall and connected to a tempera­
ture recorded. The seventh thermocouple, TG-1, is in­
serted in the thermowell and connected to a temperature 
controller.

The reactor is heated by five Nichrome V beaded 
wire heaters located as indicated in Figure 3. The power 
input to each heater is manually controlled by adjustment 
of five powerstats. The powerstats controlling the power 
input to heating zones 3 and k are automatically con­
trolled by the temperature controller which continuously 
monitors the temperature at TC-1. Constant voltage is 
maintained to the control circuit by use of a constant
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voltage transformer.

The entire reactor is insulated with approximately 
^ in. of refractory rope and 2 in. of magnesia covered 
with an aluminum sheath.

Condenser
The reaction products, cumene, benzene and propyl­

ene, enter the condenser from the reactor at approxi­
mately 650-1050°P. whereupon they are cooled to approxi­
mately 75°P. The cumene and benzene are condensed and 
collected and the propylene, which remains in the vapor 
phase at this temperature, is vented to the atmosphere.

Ultrasonic Horn
The ultrasonic horn is 3 in. in diameter and is 

mounted directly atop the reactor by means of a specially 
fabricated 3 in. by 1 in. adapter flange. The horn is 
driven by a variable frequency ultrasonic generator with 
a variable output frequency of 10 ,000 to 50,000 cps.

The maximum operating temperature of the piezo­
electric transducer which drives the horn is 300°C.
(572°F.) and the minimum allowable operating temperature 
of the horn to prevent condensation of the highest boiler, 
cumene, is 153°C. (308°F.). Therefore, it is necessary 
to maintain the temperature of the ultrasonic horn at 
approximately 175°G. This is accomplished by recirculating
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heated, oil through the cooling chamber of the ultrasonic 
horn as illustrated in Figure 4.

The oil is recirculated, through a water cooled, heat 
exchanger to the ultrasonic horn cooling chamber and 
thence to an electrically heated surge pot by means of a 
1 gpm centrifugal pump. By proper adjustment of the power- 
stat controlled electric heater and oil flow to the cooler, 
it is possible to maintain the recirculating oil at approxi­
mately 175°C.

Piping
All piping consists of \ in. stainless steel threaded 

pipe and fittings and \ in. copper tubing with compression 
type fittings. Teflon tape is employed on all threaded 
connections.

Analytical Instrumentation
The quality of the effluent product is analyzed by 

use of a gas-liquid chromatograph in conjunction with a 
single pen strip chart recorder. The chromatograph response 
was standardized daily by injecting and analyzing a known 
sample. The analytical system is designed to handle either 
gas samples taken from the reactor effluent prior to conden­
sation or liquid samples from the condenser effluent. The 
analysis of the liquid samples proved to be almost identical 
to that of the gaseous sample. Comparative analyses and con­
version calculations are shown in Appendix IX.
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TABLE 3

EQUIPMENT SPECIFICATIONS

Feed Tank No. 1
Manufacturer
Material of construction 
Length
Working pressure
Diameter
Calibration

Corning Glass Co. 
Pyrex conical pipe 
36 in.
50 psig, max.
1 in.
10.79 gms. cumene/in

Feed Tank No. 2
Manufacturer
Material of construction 
Length
Working pressure
Diameter
Calibration

Feed Rotameter
Manufacturer 
Model No.
Meter size 
Type
Serial no.
Tube no.
Scale
Wetted parts
Packing
O-rings
Valve needle taper no. 
Orifice type 
Connections 
Float material 
Maximum flow rate

Float Material
Glass 
Sapphire 
Stainless steel 
Carboloy 
Tantalum

Corning Glass Co. 
Pyrex conical pipe 
36 in.
50 psig, max.
1§ in.
2^.66 gms. cumene/in

Brooks Instrument Co 
1357-8506 
2
1357-01F1BAA 
7010-^8800 
R-2-25-D 
250 mm.
Stainless steel
Teflon
Kel-F
3Small
4 in. NPT 
Sapphire

Gm./Hr. Cumene
355 6^0 

1,267 
2,130  
2,300

Calibration (Sapphire float): Figure 5
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TABLE 3 (continued) 

EQUIPMENT SPECIFICATIONS

Air Rotameter
Manufacturer 
Tube no.
Type no.
Serial no.
Scale (direct calibration)

Fischer & Porter Co. 
02-F-1/8-12-5/70 
TII-1077/1-2 
TII-1077/1
0 -6 scfm hydrogen at 
| psig and 75 P.

Reactor
Material of construction 
Overall length 
Outside diameter 
Preheater

Material of
Construction
Length
Outside diameter 
Inside diameter 

Catalyst Chamber 
Material of 
construction 
Length
Outside diameter 
Inside diameter

Type 316 stainless steel 
27i in.
2 .0 0 0  in.

Type 316 stainless steel 
20lr in.
2 .000  in.
0 .302 in.

Type 316 stainless steel 
4 in.
2.000 in.
0.391 in.

Temperature Recorder
Manufacturer
Type
Range
No. of points 
Model no.
Serial no.

Temperature Controller

Westronics Inc. 
Strip chart 
0-1200 F.
12
MIIB/J/DV.5M
MIIB336

Manufacturer
Type
Volts/cycles 
Catalog no. 
Serial no.

Leeds & Northrup Co. 
Speedomax H 
120/60
200-901-010-0023-6-024-0
65-35480-1-1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

TABLE 3 (continued)

EQUIPMENT SPECIFICATIONS

Temperature Controller (continued)
Range 
Chart no.
Chart speed 
Response time 
Controller series

0-2000 F .
620023
1 revolution/24 hrs.
5.0 seconds, full travel 
60

Heaters
Manufacturer
Type
Catalog no. 
Length, each 
Power, each 
Temperature

Cole-Parmer Instrument Co, 
Beaded Nichrome V wire 
3116-1 
12 ft.
400 watts 
2000°F., max.

Powerstats
Manufacturer
Type
Phase
Input
Output
Amps, max.
Kva, max.

Constant Voltage Transformer
Manufacturer 
Catalog no.
Type no.
Primary
Secondary

Superior Electric Co. 
116
Single
120 volts, 50 /60 cps 
0-140 volts 
9
1.3

Sola Electric Co. 
20-13-150 D476 
CUN-1
95-130 volts, 60 cps, 

single phase 
118 volts, 4.24 amps

Refractory Rope
Manufacturer 
Style no. 
Temperature

Johns-Manvilie 
Thermo-Pac 2300 
2300°F., max.
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TABLE 3 (continued.)

EQUIPMENT SPECIFICATIONS

Condenser
Material of construction
Type
Length
Shell side
Tube side
Connections
Coolant (shell side)
Surface area

Ultrasonic Horn

Type 316 stainless steel 
Tube and shell 
36 in.
1 in. sched. ^0 pipe
1 -5 in. sched. -̂0 pipe 
i in. NPT 
Water 
0.^23 ft . 2

Manufacturer Macrosonics International
Material of construction Type 316 stainless steel
Model no.
Type
Frequency range 
Acoustic energy 
Input
Sound level
Nominal impedence
Efficiency
Length
Diameter
Weight
Operating temperature 
Serial no.

Ultrasonic Generator
Manufacturer 
Model no.
Volts /cycles 
Amps/phase 
Frequency range
Power output 
Output impedence 
Weight 
Serial no.

FH-15-0 
Oil cooled
10,000 cps to 100,000 cps
25 watts
100 watts
Above 166 db
^-00 ohms
25%
18 in.
3 in.
11 lb.
300°C. max.
70-12

Macrosonics International
150 LF
120/50-60
^/single
1 0,000-50 .000 cps 
(Figure 6)
20-80 watts 
200-^-00 ohms 
38 lb.
00^05
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TABLE 3 (continued)

EQUIPMENT SPECIFICATIONS

Heat Transfer Oil
Manufacturer
Type
Operating temperature

Thermometer. TI-7
Manufacturer
Type
Range

Recirculation Pump
Manufacturer
Material of construction
Model
Type
Horsepower
Rpm
Capacity

Oil Cooler
Shell Side

Material of construction 
Diameter 
Length 

Tube Side
Material of construction
Diameter
Length

Heated Surge Pot
Material of construction
Diameter
Length

Gas-Liquid Chromatograph
Manufacturer
Model

Monsanto Chemical Co. 
Therminol FR-1 
700°F., max.

Weston 
Stem and dial 
0-300OC.

Eastern Engineering Co. 
Carbon steel 
Dll 
100 
1/8 
3,^50
1 gpm

Type 316 stainless steel 
2 in. Sched. ^0 pipe 
36 in.
Copper 
£ in.
70 turns, 1 in. diameter

Type 316 stainless steel 
2 in. sched. ^0 pipe 
12 in.

Varian Aerograph Co. 
A-90-P
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TABLE 3 (continued)

EQUIPMENT SPECIFICATIONS

Gas-Liquid Chromatograph
Type
Part no.
Serial no.
Column

Strip Chart Recorder 
Manufacturer 
Type
Model no.
Range 
Chart no. 
Volts/cycles 
Serial no.

Nitrogen
Manufacturer
Grade

Air
Manufacturer
Grade
Hydrocarbons

Helium
Manufacturer
Grade
Hydrocarbons

(continued)
Manual temperature 

programmer 
90P3 
3^3-026
10$ Carbowax, 20 mesh, 

on chrome-W

Minneapoli s-Honeywell 
Regulator Co.

Single pen strip chart 
recorder 

15307856 - 01 - 05 - 0 - 000 -  

030-07136
-0 .05 to + 1 .05 mv 
9283-NR 
120/60 
02003303008

Matheson Gas Products 
Extra dry

Matheson Gas Products 
Ultra zero 
0.1 ppm max.

Matheson Gas Products 
Zero
2 ppm max.
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CHAPTER IV

EXPERIMENTAL PROCEDURE

Operating Conditions
The operating conditions studied in this investiga­

tion were temperatures of 650°F. to 1050°F., feed rates 
of 20 to 600 gms./hr., catalyst loadings of 0.958 to 
5.748 gms., ultrasonic frequencies of 26,000 cps and
39,000 cps, and power outputs of 0 .05 to 1.3 ~ ^ ,s.
The general procedure followed was to obtain the desired 
reactor temperature and then feed the cumene at a pre­
determined rate and catalyst loading. Each run was oper­
ated at two different ultrasonic frequencies and in the 
absence of ultrasound.

General Procedure
The reactor was purged with air at reaction tempera­

ture after each run for a period of approximately 24 hours 
to burn off any carbon deposit and regenerate the cata­
lyst. Calculations indicate (Appendix XIII) that 10 minutes 
should be sufficient to burn off the carbon and visual in­
spection of the reactor after regeneration for 30 minutes 
indicated it to be free from carbon. Comparison of conver­
sions in the absence of ultrasound between runs employing 
the same catalyst after many regenerations and nearly the 
same operating conditions also indicated complete reactiva­
tion. For example, comparing Run No. 14.83 with Run No.
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22.135 shows conversions of 4.5$ and. 4.2$ at feed rates 

of 593 gms./hr. and 622 gms./hr., respectively, all other 
conditions being identical. Similar checks are observed 

in many other runs, for example Run No. 33*23 and 36.53*
The reactor was also purged with nitrogen after each run and 

after each air purge in order to avoid the safety hazard of 

hot cumene in the presence of air.

Each time the sonic frequency was changed during a 

run, the product collected during the first ten minutes was 

discarded and the product produced during the second ten 

minutes was blended and sampled as representative of those 

operating conditions. Previous work has shown that any de­

crease in catalyst activity during a run of this length of 

time could be neglected.

Temperature control. The temperature of the reactor 

was controlled by manually adjusting two voltage regulators 

which monitored the power input to the heating elements 

along the preheater section. The catalyst chamber tempera­

ture was controlled automatically by an on-off temperature 
controller connected in series with two additional voltage 

regulators which monitored the power input to the heating 

elements along the catalyst chamber. The temperature for 

this control point was sensed by a thermocouple located in 

the catalyst chamber itself (see Appendix XV). A fifth manu­

ally operated voltage regulator was employed to control a 

heating element located on the product discharge piping.
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The heaters were never turned off so that the re­
actor was always at temperature equilibrium. When the 
reactor temperature was changed, approximately 24 hours 
was allowed for the catalyst bed to again reach tempera­
ture equilibrium.

Feed rate control. The cumene feed rate was con­
trolled by pressurizing the feed tank to 10 psig with 
nitrogen and recording the tank level and time at the 
start and end of each run. The flow rate was controlled 
by the feed flow rotameter, but the rate used in any sub­
sequent calculations was the rate obtained by difference 
of the calibrated feed tank level.

Application of ultrasound. Each run was operated 
first in the absence of ultrasound and then the ultra­
sonic generator was activated and frequencies of 26,000 cps 
and 39,000 cps were irradiated upon the catalyst bed. The 
order in which the higher and lower frequencies were em­
ployed was reversed many times throughout this study.
Each run was operated in the absence of ultrasound after 
each of the frequency activated samples had been taken as a 
check for decrease in catalyst activity from the start to 
the end of the run. The analyses of the first and last 
sample, i.e., the samples taken in the absence of ultrasound 
were always essentially the same.

Sample analyses. In many instances, the gas stream 
was fed directly to the gas chromatograph for analysis as
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a check against the liquid sample analysis. In all cases, 
both methods of analysis yielded essentially the same 
conversion calculation. The analysis of liquid samples 
was preferred, because the same sample was injected a mini­
mum of three times into the gas chromatograph as a check 
of the analytical technique. The vapor sample, of course, 
could be injected only once.

The size of the gaseous sample was controlled by 
filling a small tubing coil with the reaction products 
and flushing’ the entire coil contents into the chromato­
graph with helium. Sample size of the liquid was con­
trolled by use of a 10 microliter hyperdermic needle cali­
brated in 0.2 microliters. The analyses of known liquid 
samples were duplicated within 1%, indicating sample size 
control to be adequate.

Detailed Procedure
The details of the experimental procedure for a typi­

cal run are as follows:
1. Set the reactor air purge rate at 6.0 scfh 

employing the air flow rotameter.
2. Adjust the heater controls to obtain the desired 

reactor temperature.
3. Adjust the automatic temperature controller set 

point to the desired reactor temperature.
4. Allow approximately 24 hours for the reactor to 

equilibrate at the desired temperature.
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5. Turn on the hot oil recirculation pump and adjust 
the heater control to maintain the oil at 155-l60°C.

6. Turn off the air purge and purge the reactor with 
nitrogen for 20 minutes.

7. Shut down the nitrogen purge and pressurize the 
cumene feed tank to 10 psig with nitrogen.

8. Peed cumene to the reactor at the desired rate em­
ploying the feed flow rotameter to monitor that rate.

9. Record the feed tank level and time.
10. The first product will appear in 5 to 10 minutes. 

Discard the product obtained during the first 10 
minutes and collect, blend and sample the product 
obtained during the second 10 minutes.

11. While maintaining all other operating conditions 
constant, activate the ultrasonic generator and 
adjust it to the desired frequency.

12. Discard the product obtained during the first 10 
minutes and collect, blend and sample the product 
obtained during the second 10 minutes.

13. While maintaining all other operating conditions 
constant, readjust the ultrasonic generator to 
another frequency.

1^. Discard the product obtained during the first 10 
minutes and collect, blend and sample the product 
collected during the second 10 minutes.

15. While maintaining all other operating conditions 
constant, shut down the ultrasonic generator.
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16. Discard the product obtained during the first 10 
minutes and collect, blend and sample the product
collected during the second 10 minutes.

17. Record the feed tank level and time.
18. Shut off the feed and purge the reactor with 

nitrogen for 20 minutes.
19. Shut down the power to the hot oil heater and

shut down the recirculation pump.
20. Shut down the nitrogen purge and set the air purge

rate at 6.0 scfh employing the air flow rotameter.
21. Air purge the reactor for 24 hours at the reaction 

temperature prior to starting the next run.
22. Thoroughly blend each of the four samples obtained

in steps 10, 12, 14 and 16 to insure uniformity 
within each sample. Inject a portion of each of the 
samples three times into the gas chromatograph and 
calculate the conversion. If the calculated con­
version of the samples obtained from steps 10 and
16 do not agree within discard the run.
(This was never necessary.)

The data sheet employed for this study is shown in 
Figure 7. Copies of several actual completed data sheets 
are included in Appendix XIV.
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FIGURE 7 
DATA SHEET

nun n o . Reactor Diameter, cm.
Date Frequency, cos
Catalyst, gms. Power, watts
Bed Height, cm. Feed Tank Diameter, in.
Time
Tank Height, in.
Rotameter, mm.
Rota. Feeri Rata, grns/hr*.
Tank Feed Rate,'gms/'hr.
Heater No. 1
Heater No, ?
Heater No. R
Heater No. 4
Hot Oil HeaterTI-1r op.
TI-2. °F.
TI-3. °F.
Tl-k. op.

h3 H 1 1 o ►

TI-6; op.
TI-7. op. (Hot Oil)
TC-1t of.
Ultrasound
W/F. erm cat-sec/em mole
Cumene T %
Benzene. %
Proovlene r %Conversion, X
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CHAPTER V

EXPERIMENTAL RESULTS

Presentation of All Data
All the data collected (Appendix XIV) are presented 

herein as plots of conversion versus reciprocal space 
velocity. The best curve fit of the data was calculated 
for each temperature and frequency employed by the 
quadratic regression equation:

x = a + b (W/F) + C (W/F)2 (21)

Since the external mass transfer rate is dependent upon 
feed rate, the equations of these curves are later em­
ployed to determine conversion at specific reciprocal 
space velocities for the calculation of mass transfer co­
efficients .

The three constants obtained for each condition are 
shown in Table k. The plot of the curves showing all the 
data points are in Appendix XVI and the plots for each 
family of three curves for each frequency are shown for 
all the temperatures studied in Figures 8 through 16.
The data points are omitted for clarity. It is noted that 
although several of the curves cross at low reciprocal space 
velocity, the actual data indicate higher conversions at 
higher frequencies in every case. This is because the 
shape of the quadratic curves near the origin often does 
not precisely fit the data points.
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t a b l e Bi­

q u a d r a t i c EQUATION CONSTANTS

Temp.
°F.

cps 
x 10“3 Power a b x 106 C x 101'

650 39 full -0.000959 1.74- -0.91
650 26 full -0.00605 1.76 -1 .06
650 - off -0 .0066^ 1.75 -1 .10
700 39 full 0.0309 1.4-5 0.590
700 26 full 0.0253, 0.923 0.790
700 - off 0.0205 0.958 0 .650

750 39 full 0.0231 7.55 -3.74-
750 26 full 0.0051 6.66 -3.17
750 - off -0.0054- 7.00 -3.70
800 39 full 0.04-53 5.97 -2.32
800 26 full 0.0308 5.32 -1.93
800 - off 0.0226 5.4-1 -2.09
850 39 full 0.0282 9.92 -5.87
850 26 full 0.0252 9.04- -5.76
850 — off 0.0258 8.4-0 -5 .6 0
850 39 half 0.0989 5.01 -2.00
850 26 half 0.0974- 4-. 79 -2 .03
850 - off 0.0258 8.4-0 -5 .6 0

900 39 full 0.0877 5.33 -1.86
900 26 full 0.0789 4.16 -1.13
900 - off 0.0655 6 .26 -3.15
950 39 full 0.0359 7.5 2 -1.75
950 26 full 0.0256 8.76 -4-. 30
950 - off 0.0255 8.12 -4-. 4-2
1000 39 full 0.215 20.3 -39.5
1000 26 full -0.0224- 29.4- -75.2
1000 - off -0.0213 2 9 .8 -81.5

Full power = 25 watts
Half power = 12.5 watts
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Conversions obtained at temperatures above 850°P. de­
creased slightly at higher temperatures at some feed rates 
indidicating partial coking of the reactor. Although some 
date were collected at 1050°F., coking of the reactor and 
catalyst at this temperature caused considerable mechanical 
difficulty with the apparatus. Therefore, attempts to 
study the effect of ultrasound at 1050°F. were abandoned.

The quadratic curves presented herein are employed 
for future calculation purposes only and should not be 
construed to represent a theoretical model of the reaction 
mechanism.

It will be shown that on the upper portion of the 
quadratic curves, at low feed rates, external bulk diffusion 
is the controlling factor for the reaction rate. On the 
lower portion of the curves, at high feed rates, the com­
bined effect of surface reaction and internal pore diffusion 
control the rate of reaction.

Although the quadratic curves show a decrease in con­
version at lower acoustical power inputs at low flow rates, 
it will be shown later that there is, in fact, negligible
effect on either the mass transfer coefficient, k , or the

’ g*
kinetic rate constant, (fLkg.
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External Diffusion Controlling
When external bulk diffusion controls the rate of re­

action, the mass transfer coefficient, k , is the con­
trolling factor. The mass transfer coefficient is calcu­
lated from the following equation derived in Chapter II 
and Appendix IV:

6.26 XAf T
kS = ( W/FAq) ln( 1 + Ya lm) (2?J

The mass transfer coefficient was calculated at three dif­
ferent feed rates corresponding to reciprocal space velo­
cities of 20,000, 50,000 and 80,000 'Ca^"S-— ---. The re-7 , 7  7 gm mole
suits of these calculations are shown in Table 5*

Temperature effect. As is shown in the AppendixVI, 
the mass transfer coefficient is an exponential function 
of temperature. Therefore, a plot of the logarithm of the 
mass transfer coefficient versus temperature should yield 
a straight line. This, in fact, is the case as illustrated 
in Figures 17 through 22. The equations of the straight 
lines as obtained by the method of least squares are shown 
in Table 6. The calculation of the confidence intervals 
shown in Table 6 is demonstrated in Appendix XXII.

As shown in the graphs, the mass transfer coefficients 
calculated at 650°F. (6l6°K.) and 700°F. (6*l40K.) fall well 
below the theoretical curve. The reason for this phenomenon 
is because external bulk diffusion no longer controls the
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TABLE 5
MASS TRANSFER COEFFICIENT

Temp.
°F.

f
cps

x 10"3 Power

W/
20,000

'fa0 =
gm cat-sec.

W/
50,000

'FA0 = 
gm cat-sec.

W/
80,000

'PA0 = 
gm cat-sec

pm mole gm mole gm mole
xAf k , cm* g ’ sec. *Af k cm* g ’ sec. xAf k , ^ ELi-  g* sec.

650 39 Full 0.030 0.0085 O.O63 0.0073 0.080 0.0059
650 26 Full 0.025 0.0071 0.056 0.0065 0.067 0.004-9
650 - Off 0.024- 0.0068 0.053 0.0061 0.063 0.004-6
700 39 Full 0.062 0.0180 0.118 0.014-9 0.185 0.0154-
700 26 Full 0.0^7 0.014-1 0.091 0.0113 0.150 0.0122
700 - Off 0.04-2 0.0126 0.085 0.0105 0.139 0.0112
750 39 Full 0.159 0.054-1 0.307 0.04-66 0.388 0.0392
75 0 26 Full 0.126 0.04-19 0.259 0.0379 0.335 0.0325750 - Off 0.120 0.0397 0.252 0.0367 0.318 0.0304-
800 39 Full 0.155 0.054-8 0.286 0.04-4-5 0.374- 0.0389800 26 Full 0.129 0.04-4-8 0.24-9 0.0377 0.333 0.0336800 - Off 0.122 0.04-21 0.24-1 0.0363 0.322 0.0322
850 39 Full 0.203 0.0772 0.378 O.O656 0 .4-4-6 0.0511
850 26 Full 0.183 0.0686 0.333 0.0588 0.380 0.04-13
850 - Off 0.171 0.0635 0.306 0.0502 '0.339 0.0357
850 39 Half 0.191 0.0720 0.299 0.04-89 0.372 0.04-02
850 26 Half 0.185 0.0694- 0.286 0.04-62 0.351 0.0373
850 - Off 0.171 0.0635 0.269 0.0^30 0.339 0.0357
900 39 Full 0.187 0.0730 O.3O8 0.0526 0.395 0.04-51
900 26 Full 0.158 0.0604- 0.259 0.04-26 0.339 0.0370900 - Off 0.178 0.0690 0.300 0.0509 0.365 0.04-07950 39 Full 0.179 0.0720 O .368 0.0683 0.526 O.O696
950 26 Full 0.184- 0.07^3 0.356 0.0654- 0.4-51 0.0559950 - Off 0.170 0.0680 0.321 0.0574- 0.392 0.0^63 ,1000 39 Full 0.270 0.1203 - — -

1000 26 Full 0.265 0.2277 — — — —

1000 - Off 0.24-9 0.1092 - - - -

Note: Full power = 25 watts, half power = 12.5 watts
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TABLE 6
CONSTANTS OF THE EQUATION OF MASS TRANSFER COEFFICIENTS 

AS A FUNCTION OF TEMPERATURE
General Equation: log k = bT + a

w/Fa0

Km cat-sec 
gm mole

f X
10~3
CPS a b

99/o Confidence 
Interval

95$ Confidence 
Interval

90$ Confidence 
Interval

Approximat
Confidence

a b a b a b a b
80,000 — -2.66 0.00169 0.05 0.00007 0 .03 0.0000*4- 0.02 0.00003
80,000 26 -2.75 0.00185 0.28 0.00038 0.15 0.00021 0.11 0.00015 75$ 90$
80,000 39 -2.80 0.00203 0.31 0.000*4-2 0.17 0.00023 0.12 0.00017 90$ 97$
50,000 - -2.7*4- 0.00193 0.19 0.00026 0 .10 0.0001*4- 0.08 0.00011 - -
50,000 2o -2.71 0.00190 0.39 0.0005*4- 0.21 0.00029 0.16 0.00022 30$ 25$
50,000 39 -2.32 0.001*4-6 0.28 0.000*4-3 0.15 0.00023 0.11 0.00017 97$ 9 Wo
20,000 - -3.39 0.0029*4- 0.05 0.00008 0.03 0.00005 0.02 0.0000*4- - -
20,000 26 -3.36 0.00293 0.20 0.0002*4- 0 .12 0.00015 0.09 0.00011 52$ 15$
20,000 39 -2.99 0.00253 0.31 0.00013 0.19 0.00008 0.1*4- 0.00006 99$ 99$

ONCD
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rate of reaction at these low temperatures. In fact, 
even at these low flow rates, surface reaction is so slow 
at 650°P. and 700°F. that it becomes the controlling fac­
tor in the overall reaction rate. At above 850°F. (727°K.) 
surface reaction rate is very rapid and external bulk diffu­
sion controls the rate of reaction.

Ultrasonic effect. The family of three curves show­
ing each frequency is plotted at the three feed rates in 
Figures 23, 23A and 2k. In all cases, the mass transfer 
coefficient and hence the reaction rate is increased with 
the application of ultrasound. The mass transfer rate 
also increases at the higher frequencies. For example, 
at a reciprocal space velocity of 80,000 ^g ^ 'moTe'8'0 ‘ an(i 
a frequency of 39,000 cps, the mass transfer coefficient 
is increased by 377̂  at 1000°F. The increase of mass trans­
fer rates at other conditions are shown in Table 7.

Since in this range of feed rate and temperature re­
action rate is directly proportional to the mass transfer 
coefficient, the results illustrated in Table 7 also apply 
to reaction rate.

At high feed rates and low temperatures where surface 
reaction begins to control the rate of reaction, high fre­
quency sound waves appear to have a much greater effect on 
the reaction rate than at higher temperatures where mass 
transport controls. This phenomenon is indicated in the
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FIGURE 24

NASS TRANSFER COEFFICIENT vs. TEMPERATURE
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TABLE 7

INCREASE IN MASS TRANSFER COEFFICIENT AT SEVERAL FEED 
RATES, TEMPERATURES AND ULTRASONIC FREQUENCIES

W/F
Temp., ft %Increase 

%gm mole F . cps Power of :

80,000 650 26,000 Full 2 .0
80,000 850 26,000 Full 6 .2
80,000 850 26,000 Half 9.780,000 1000 26,000 Full 9.6
80,000 650 39,000 Full 2 .2
80,000 850 39,000 Full 20.580,000 850 39,000 Half 18.2
80,000 1000 39,000 Full 36.7
50,000 650 26 ,000 Full 2.7
50,000 850 26,000 Full 1.9
50,000 850 26,000 Half 0.7
50,000 1000 26 ,000 Full 1.3
50,000 650 39 ,000 Full 35.0
50,000 850 39,000 Full 19.7
50,000 850 39,000 Half 13.7
50,000 1000 39,000 Full 9.5
20,000 650 26,000 Full 5.7
20,000 850 26,000 Full 5.4
20,000 850 26,000 Half 3.720,000 1000 26,000 Full 5.2
20,000 650 39,000 Full 40.4
20,000 850 39,000 Full 26.4
20,000 850 39,000 Half 28.8
20,000 1000 39,000 Full 16.8

Full power = 25 watts
Half power = 12. 5 watts
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data of Table 7 at reciprocal space velocities of 20,000

indicate that ultrasound has a greater influence upon pore 
diffusion and surface reaction rate than upon external 
mass transport.

The data points on the graphs represented by triangles 
are those obtained with the ultrasonic generator operating 
at half power. Since these points fall on the theoretical 
curve developed for full power within the 90% confidence 
interval, it is concluded that power input has no effect 
on the external mass transfer rate for the range of power 
input studied in this research.

Surface Reaction and Pore Diffusion Controlling

Reaction rate model. The reaction design equation 
for surface reaction controlling and propylene not ad­
sorbed as derived in Chapter II is as follows:

gm cat-sec. 
gm mole and frequencies of 39,000 cps. These data

(1+XA6) XA 
(l -xA5) 6 2 (23)

+/6> 263 ln (1-Xa S) " 262
l ( i+x a 6) i— o ln  -----—  - — o In

(1-62XA2) XA

where

f L k 2

1
( 2 4 )
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The literature values of K, and are substituted into 
the surface reaction rate equation and the values of ^Lkg 
are calculated at each temperature as described in Appendix 
VIII. All the theoretical curves and the associated data 
points are also shov/n in Appendix VIII, and the data do, 
in fact, fit the theoretical model very well.

Ultrasonic effect. When surface reaction controls 
the rate of reaction, the application of ultrasound in­
creased that rate by increasing the kinetic rate constant, 
CLk^, which is directly proportional to the overall rate 
of reaction. The evaluation of the effectiveness factor 
based upon physical characteristics of the catalyst is shown 
in Appendix VI.

The graphs of conversion as a function of reciprocal 
space velocity as calculated by the reaction rate model 
are as illustrated in Figures 25 through 33. As illustrated 
by the graphs, the conversion is increased in the presence 
of ultrasound at every temperature studied. At temperatures 
above 900°F., the decrease in conversion at some flow rates 
again indicates possible coking of the reactor.

Table 8 shows the increase in the factor ^ k g  
at several ultrasonic frequencies and temperatures.
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T A B L E  8

INCREASE OF KINETIC RATE CONSTANT AT SEVERAL 
TEMPERATURES AND ULTRASONIC FREQUENCIES

9 4

T.. °F.
650
750
850
900

% Increase of (f L 2̂

26,000 cps
36%
20%

9%
4^

39,000 cps 
162$

39%

22%

TABLE 8A
CONSTANTS OF THE EQUATIONS OF KINETIC RATE CONSTANTS 

AS A FUNCTION OF TEMPERATURE

General Equation: log £Lk0 = b T + a

Frequency, cps
No

Ultrasound 26.000
a -1.141 -1.6371.04299% confidence interval 1.062
95% confidence .interval 0.677 0.664
90$ confidence interval 0.531 0.521b -4812 -4115
99% confidence interval 1343 1318
95$ confidence interval 8 57 840
90$ confidence interval 671 659
Approximate confidence — 65$

39,000
-2.53^

0 .860
0.549
0.430

-2801
1088
694544
91%
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For example, at 650°F. an ultrasonic frequency input of 
39,000 cps increases the catalyst effectiveness factor 
by 162#.

Activation Energy

Arrhenius model. The activation energy, E, is 
calculated from the Arrhenius Law, employing the com­
bined parameter, Llc2 , as rea°kion ^ate constant.

JL£Lk2 = kQe“RT (27)

Figures 3^ through 37 show the logarithm of the 
parameter £ L k 2 plotted against reciprocal temperature. 
These plots yield a straight line, the equations for 
which, calculated by the method of least squares, are as 
follows and as shown in Table 8A.

No ultrasound: log £Lk0 = -4812 —^—  -1.141 (28)2 t or>

26.000 cps: log £ L k 0 = -in 15 — -1.637 (29)
d T R .

39.000 cps: log £ Lk? = -2801 -pj—  -2 .53^ (3 0)
c T R .
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These calculations, which are described fully in 
Appendix XVII, yield the values for the observed apparent 
activation energy as shown in Table 9*

The data in Table 9 indicate that both the observed 
apparent activation energy and the observed apparent 
frequency factor decrease as the ultrasonic frequency 
rises. However, an analysis based on the Thiele modulus 
would indicate that if ultrasound improves the effective­
ness factor, then the apparent activation energy should 
rise and approach the real activation energy based on 
kg since € becomes closer to one.

To determine the real effect of ultrasound on 
and kg, it is suggested that further studies with small 
particle sizes be made (£~1) to separate these effects.
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T A B L E  9

ACTIVATION ENERGY AND CHARACTERIZATION FACTOR

Frequency
f

Activation 
Energy, E 

kcal
Character. 
Factor, kQ 
gm moles

cps gm mole p;m cat-sec. Investigator
No Ultrasound 11 .0 - Eberly 101

No Ultrasound 34.0 - Bezre^
No Ultrasound 27 .0 -

0 /:
Spozhakina

No Ultrasound 18.0 - TORomanovskn
No Ultrasound 3.0 - Panchenkov"^
No Ultrasound 13-2 0.0021 64Rase
No Ultrasound 5.4 0.0700 22Garver
No Ultrasound 12.1 0.0723 Lintner
26,000 1 0. 4 0.0231 Lintner
39,000 7.1 0.0029 Lintner

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



102

Table 9 also illustrates the values of activation 
energy and characterization factor obtained by several 
other investigators. Considering the wide range of 
values obtained by other observers, the value calculated 
by these data appear to be reasonable. It is interesting 
to note that the total ultrasonic power input to the re­
actor ranged between ^ .3 and 103.^ which bracketedgm mole
the activation energy.

Ultrasonic effect. As shown in Figure 37, the value 
of the effectiveness factor parameter, (fLkg, increases 
with increasing frequency. At low values of reciprocal 
temperature or high values of temperature, the values of 

become equal at all frequencies because surface re­
action rate no longer controls. At high temperatures, 
surface reaction rate is very rapid and bulk diffusion 
from the main gas stream to the surface of the catalyst 
controls the overall rate of reaction.

The values of 6 Lk^ obtained at half the power output 
of the equipment are plotted as triangles on the graphs 
for frequencies of 26,000 cps and 39,000 cps. The plots 
indicate that this decrease in power input has negligible 
effect on the value of

Summary of Results
In general, all the data lead to identical conclusions. 

Ultrasound increases the rate of reaction ahd the reaction
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rate increases with increasing frequency. Power input 
has negligible effect on the rate of reaction for the 
range studied.

Throughout the range of feed rates and temperatures 
studied, external bulk diffusion controls at low feed 
rates and high temperatures and conversely, surface reac­
tion controls or pore diffusion at high feed rates and low 
temperatures. These phenomena are illustrated in Figure 38.

It should be noted that when the dimensions of € Lkg 
are transposed from t0 > as shown ln
Appendix XVIII, it can be plotted as a function of tem­
perature as illustrated in Figure 38. In this figure,
CLkg is described as the intrinsic reaction rate con­
stant, k . The scale of the abscissa has been altered to ’ s
correspond to k̂ ,, the mass transfer coefficient scale.
This alteration is necessary because the 6 Lk2 term is 
not a function of k^, the forward rate constant, alone, 
but also of 6 and L, the catalyst effectiveness factor and 
the concentration of active sites on the catalyst surface.

Acoustic Streaming
This research shows for the first time that the ap­

plication of ultrasonic vibrations to a solid catalyzed 
gas reaction results in an increased reaction rate with in­
creasing frequency as a result of increased diffusion rates. 
The diffusion rate is increased both externally from the
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FIGURE 38

RATE CONSTANTS vs. TEMPERATURE
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bulk gas stream to the catalyst surface and internally 
within the catalyst pore.

20Fogler and Lund have independently offered a 
mathematical explanation for this phenomena which they 
have identified as acoustic streaming. Their mathemati­
cal model states that within a duct, through which there 
is a concentration gradient, mass transfer occurs by 
molecular diffusion alone. However, when ultrasound is 
applied to the duct, small vortex cells are set up in which 
the gas moves circularly similar to eddy currents. This 
forced convection within each cell coupled with diffu­
sion between cells results in a faster transport rate 
within the duct than with diffusion alone.

If one assumes the duct to be a tubular reactor shell 
or the pore of a catalyst, this model explains the results 
and conclusions of this research.

Thermal Effects
The application of acoustic energy to a catalyst bed 

may cause "hot spots" within the bed and thereby result 
in localized accelerated reaction rates. This thermal ef­
fect alone or together with increased diffusion rates may 
explain the increase in reaction rate observed in this re­
search.
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CHAPTER VI 

CONCLUSIONS

The effect of ultrasonic vibrations on hetero­
geneous catalysis may be summarized as follows:

1. All the data collected at all temperatures and 
frequencies yield quadratic curves when plotted 
as conversion versus reciprocal space velocity.

2. In the area where external bulk diffusion con­
trols the rate of reaction, the logarithm of the 
mass transfer coefficient is a linear function 
of temperature at all ultrasonic frequencies.
The mass transfer coefficient and, therefore, the 
rate of reaction increases with increasing ultra­
sonic frequency.

3. In the area where surface reaction and internal 
pore diffusion control the rate of reaction, the 
data fit the reaction rate model previously de­
rived by Garver at all frequencies and temperatures, 
The kinetic rate constant, CLkg, increases with 
increasing frequency.

5. The activation energy calculated from these data 
decrease with increasing frequency.

6. Power input appears to affect the rate of reaction 
in the plots of conversion versus reciprocal space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

velocity at low feed rates. However, in the logarith­
mic plots of mass transfer coefficient and kinetic 
rate constant versus temperature, the effect of power 
is not statistically significant for the range studied.

7. The increases of mass transfer coefficients and kinetic 
rate constants obtained at a frequency of 39,000 cps 
are statistically significant within confidence in­
tervals of 90^. The results obtained at 26,000 cps 
lie within confidence limits of 50 to 60%, but the 
raw data lead this author to believe that the lower 
frequency also increases the rate of reaction.
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CHAPTER VII

RECOMMENDATIONS

This research demonstrates for the first time the 
quantitative effect of ultrasonic vibrations on the rate 
of a solid catalyzed gas reaction. It further demon­
strates that this reaction rate is increased in the reac­
tant feed flow range where external bulk diffusion con­
trols and in the range where internal pore diffusion is 
the controlling factor. Increasing ultrasonic frequency 
results in faster reaction rates, and power input in the 
range studied has negligible effect. These phenomena 
have never previously been quantitatively demonstrated.

It is this author's hope that this research will in­
fluence other investigators to continue studies of the 
effect of ultrasonic vibrations on heterogeneous catalyzed 
reactions. The areas recommended for further study are 
as follows:

1. Employ the use of powdered catalyst (Appendix XII) 
to obtain an absolute value for the forward reac­
tion rate constant, kg. The absolute values of 
the effectiveness factor, €, could then be calcu­
lated at various operating conditions employing 
standard catalyst. It would then be possible to 
determine the effect of ultrasound on each parameter 
alone.
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112. Study frequencies up to 10 cps and power inputs
to 120 •- to expand the range of this study,cm.
It is now possible to obtain these conditions 
with modern ultrasonic equipment, but this equip­
ment is, of course, considerably more expensive.

3. Study the effect of ultrasonic vibrations on 
systems other than the cumene cracking reaction 
and silica-alumina catalyst.

k . Investigate the possible thermal effects on the 
datalyst due to the application of ultrasonic 
energy.
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PHYSICAL PROPERTIES OF CUMENE. BENZENE AND PROPYLENE

The overall chemical reaction and some of the physi­
cal properties of the reactants and products, both pub­
lished and calculated, are as follows:

Reaction
c 6h5-ch-(c h 3)2

A
Cumene

C6H6 + CH3-CH=CH2

R + S 
Benzene and Propylene

Physical Properties

M  gms__* gm mole
SpG
MP, °C.
BP, °C.
° P  a t  65 0 ° F . , i i S § § 7  

Cp at 1050°F., g S S L  
Cv at 650°P.  , 

ov at io5o°p.,
Tc> o k .
v — cm2___b* gm mole
Pn , atm.
0 3

V _________ ...C* gm mole
o

S T , A

Cumene Benzene Propylene
120.19 78.11 42.08

0.862 0.879 -

-96.9 5.4 -185
152.5 80.1 -48

0 .588 0.541 0.624
0.736 0 .682 0.756
0.571 0.515 0.576
0.719 0 . 65 6 0 .7 0 8

636 .0 5 6 2 .6 365 .0

162.6 9 6 . 0 66 .6

32.2 48.6 4 5.5
357 260 181

6.43 5.27 4.678
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1 1 2

Cumene Benzene Propylene
£a/K, °K. 490 ^40 298 .9

^ C »  o Z l e o .  315 X 1 0 -6 312X 10 -6 233 x 1 ( T 6

^AR’ ̂ AS *  ̂ ~ 5.85 5.55̂
^ a r / k ’ ^a s / k » ° k * - ^  383

KT650/̂ AR» KT650//fAS, K ‘ “ 1.328 1.608
KT

-^AR

1050/̂ AE * KT1050^AS» K * " 1 .808 2 .190

6 5 0* \p-as] 650 “ 1.262 1.165

'̂ 3-ArJ 1050^-^As] 1050 “ 1 .11^ 1.04-3

[d ab] 6 5 0» [d ar] 6 5 0»

[d as] 650» fiSr °*11M °*°956 °-1/u6
dab] 1050’ [d ar] 10 50»

1 05 0* °-20^  ° * 1?22 0 .2513d as

Calculation of Critical Temperature of Cumene by the 
Method of Ed.ul.jee 58

100T
TC “ <3U

= normal boiling point = 152.5°C. = 4-25.5°K. 
Edujlee's contributions:

£At = 9̂ tc + + 3A tc=q + A THing
+ A TP
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Arp = Eduljee atomic contribution by carbon 
= -55.32
= Eduljee atomic contribution by hydrogen 
= +28.52

^  TC=C = Eduljee structural contribution by carbon- 
carbon double bond

= + 56.61

^TRing = Edujlee structural contribution by benzene 
ring 

= +53.52
A r p p  = Eduljee position contribution by two branches 

on the second carbon atom 
= -1.42

E A t = 9(-55.32) + 12(2 8.5 2) + 3(5 6.6 1) + 53 .52 - 1.42 
= 66.29

Tc = = 642°K -

Calculation of Critical Temperature of Gumene by the
56Method of Nokay

log Tc = 1.2806 + 0.2985 log S + 0.62164 log Tb (32) 

S = specific gravity of liquid = 0.862 cm. j
Tb = normal boiling point = 152.5°C. = 76 6.9°R.
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log Tc = 1.2806 + 0.2985 log(0.862) + 0.62164 log(766.9) 
= 1.2806 + 0.2985(-0.06449) + 0.62164(2.88474)
= 1.2806 - 0.01925 + 1.79327 = 3.05462 

Tc = H 3 4 °r . = 674°F. = 357°G. = 630°K.

Calculation of the Molar Volume of Cumene at the Normal 
Boiling Temperature by the Method of Kopps

Vb = ?VbC + 12VbH + VbBing (33)

= Kopps1 additive atomic volume for carbon 

= 14.8
V.u = Kopps' additive atomic volume for hydrogenOn

= 3.7
V.r,. = Kopps1 additive atomic volume for benzenebRmg

= -15.0

Vb = 9(14.8) + 12(3.7) -15.0

= 162.6 °rc-- —gm-mole

Calculation of the Critical Pressure of Cumene by the 

Method of Edul.iee

r 104 M 

M = molecular weight = 120.19 g ^ m ole
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Eduljee's contributions:

E A p  9A PC + 1 2 A ph + A  Pfiing + A p p

A p Q  = Eduljee atomic contribution by carbon 

= -9 .3 5

A p£j = Eduljee atomic contribution by hydrogen 
= + 16.20

^  PRing = Eduljee structural contribution by 

benzene ring 

= + 84 .5

A pp = Eduljee position contribution by one 
branch on second carbon atom 

=  - 1.6
E  A P = 9 ( -935) + 12 (16 .20)  + 84.5 -  1 .6  = 193.15

p = 1.20,.If?—21 IQ— _ op 2 atm
C ( 193. 1 5 )2

Calculation of the Critical Volume of Cumene by the 
Method of Herzog

21.75 Tc
Vc -  - p f - S  (35)

Pq = 32.2 atm.
Tc = 636 . 0°K.

\T - 21.75(636.0) _ cm. ̂
C " 32.2 ~ gm-mole
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Calculation of the Critical Volume of Cumene by the 
Method of Benson

= Vb(0.^22 log PG + 1.981)

V. = 162.6 • £W*-?-= b gm-mole
Pn = 32 .2 atm.

(36)

VQ = 162.6 0.422 log (3 2.2 ) + 1.981
= 162.6 ( 2 . 1 9 5 )

= 3^7 ^gm-mole

Calculation of Lennard-Jones Parameters for Cumene

A

l A
K

l.l8Vb = 1.18(162.6)//3 
6.43 A
_£C_ = 6 3 M  = oK 
1.30 1.30 y

(1.18)(5.45)
(37)

30 1.30

Calculation of the Molar Volume of Benzene at the Normal
Boiling Temperature by the Method of Kopps 

v b = 6V

vbc 

VbH

bC + 6v. „bH + Vbliing
= Kopps' additive atomic volume for
= 14.8
= Kopps1 additive atomic volume for
= 3 . 7
= Kopps1 additive atomic volume for
= -15.0

(38)
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™  3
Vb = 6( 1^.8) + 6(3.7) - 15.0 = 96.0 gm-mole

Calculation of the Molar Volume of Propylene at the 
Normal Boiling Temperature by the Method of Kopps

vb = 3Vb 0 +6tfbH (3?)
Vb£ = Kopps1 additive atomic volume for carbon 

■/bH = Kopps1 additive atomic volume for hydrogen

= 3.7
V, = 3(1^.8) + 6(3.7) = 66.6 cm.3
b J  * ’ * gm-mole

Calculation of the Critical Viscosity of Cumene by the 

Method of Uyehara and Watson

^  = (*0)
vc

M = 120-1* igSoI?
Tc = 636.0°K.
VP = 357

°\. 
cm. 3

C gm-mole

n  -  .{ .61.•.(?.).(.12Q • 19 . 1  (.6.3 6 . _ 238 micropoise 
(357) ̂

= 338 x 10"6 " ̂ !L■—  cm-sec.
or, alternatively

), Vi
11 _ 7.70 M^Pc*

-----

= 32.2 atm.
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( 7. 70) (120.19 )̂ ( 32.2
(636.0

292 micropoise 

‘-6  g!L= 292 x 10 cm-sec,

Calculation of the Combined Lennard-Jones Parameters for 
Cumene, Benzene and Propylene

+VR _ 6.43 + 5.27 _ r
Aii = 5.85 A

^A ± S . 8.A3 6.7,8 _ a
AS

(41)

(42)

-AR
K

= [(H-90)(WO)] 4 = 646ok _

eAS
K

KTi
^AR

kt2 = 
£ a r

KTi _

( \ 
£k

L\ K

€AS

KT2 -

£sV K 7J
6l6°K.
464°K.

839°K.
464°K.

6l6°K.
383°K.

839°K.

(490)(298.9)
x2
= 383°K.

£As 383°K,

= 1.328;

= 1.808;

= 1.608;

2 . 190;

ft

9

9

AH

AR

AS

AS

650 = 1.262

1050 = 1.114

650 = 1.165

1050 = 1.043

(43)

(44)
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Calculate the Diffusivity of Cumene in Benzene at 650°F.

DAR 0.0018583
t3(jL , JL 

\m a + mr/J
PT V* ar ft AR

0.0018583 .(6l6)31120.19 78.ll/J
(1.0)(5 -85) (1.262)

(45)

DAR 650 = °*°936 ffj;

Calculate the Diffusivity of Cumene In Benzene at 1050 F.

t 3 -1- +
n _ 0.001858 
AR - 2 QPT V aR ^ A R

Ma Mr I (4 5)

0.0018583 (839)  ̂ 120.19 + 78.1:

DAR

(1.0) (5.85)2( 1.114)
2

1050 = 0 - l 722

Calculate the Diffusivity of Cumene in Propylene at 650°F

DAS
T 3 —  + -1 -)'

12
0.0018583 ma m s /_

^ A S  

(616)3
0.0018583

1 , 1 
120.19 42.08

(l.0 )(5 .554)2(l.165)

Td aJ = 0.1416 ^ 4 -̂ L ASJ 650 sec.

(4 6)
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Calculate the Diffusivity of Cumene in Propylene at 1050 F,

D 0.0018583
AS

pt ^~a s 2^ as

0.0018583 (839) 1 + 1120.19 ^2.08/J
(1.0) (5.55^-)2( 1.0^3) 

2
das] 1050 0.2513

( W

Calculate the Diffusivity of Cumene in Benzene and 
Propylene

(1 - Ya )DAB
DYH * YSnr
AR °AS

W )

XA 4" XR
y r = YS

XA 4" 2YR
Y  = 1 ” Y A. = Y _*R — ---  S

1 - IADa b - l - r r ~  i -y a  “1 ; r’T -------  r r   * r2E>ar 2Das Das

At 650°F.
r 1
dabJ 650 = 1 , 1 = 1 1 1

dAH 650 dAH 650 ^

= O.Uiti
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A t  1 0 5 0 ° F .

dab] 1050 +dar 1050 das 1050 0.1722 0.2513

2
= 0.2044 -^7—  s 0 c *

Calculation of the Heat Capacity of Cumene by the Method 
of Hougan. Watson and Ragatz2^

U.O.P. characterization factor.

K = (48)G

Tg = boiling point at 1 atm. = 767°R.
G = specific gravity at 60°F. = 0.862

K - W " ’ 10'62
Empirical equation.
Cp = (0.0450K-0.233) + (0.440 + 0.0177K) x 10"3t

-0 .1530 x 10"6t2 (49)

At t = 650°F.

Cp = (0.0450)(10.62)-0.233

+ 0.440+(0.0177)(10.62) (650 x 10"3)

- (0.1530)(650)2 x 10“6

°i> - ° ' 5 8 8  -0T.
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At t = 1050°F.

Gp = (0.0450)(10.62)-0.233

+ 0.^+0+(0.0177)(10.62) (1050 x 10"3)

- (01530)(1050)2 x 10"6

CP - °-736

C3.1
Gv = Gp - 2<0 gm mole-°G. = 0.719 7 ^ C .  (50)

1 20 1 Q  £HI§--12U*iy gm-mole

Calculation of the Heat Capacity of Benzene by the Method
29of Hougan. Watson and Ragatz

U.O.P. characterization factor.

K = ■(_B).... (i+8)G
Tg = boiling point at 1 atm. = 636°R.

G = specific gravity at 60°P. = 0.879

tt _ (636) _ q 00
K ~ 0.879 ~
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Empirical equation.

Cp = (0.04-50K-0.233) + (0.440+0.0177K) x 10“3t

- 0.1530 x 10‘6t2 (4-9) 

At t = 65Q°F.

Cp = ( 0.04-50) (9 . 78) -0.233

+ 0 .4-4-0+( 0.0177) (9 . 78) (650 x 10“3)

- (0 .1530M 6 5 0 ) 2 x 10"6

°p - o-;*1 i c t t

2 . 0 cal
r - r —  gm-mole-QcT _ n * _c.al_,. /cn\°V _ °P " 70 u  — JSM  " U*313 gm-°C.gm-mole

At t = 1050°F.

Cp = (0.0^50)(9.78)-0.233

+ 0 .4-4-0+(0 .0177) (9 .78) (1050 x 10"3)

- (0 .1530)(1 0 5 0 ) 2 x 10"6 

Cp = 0.682 g^ o Ct

Cv = Gp - 2 *°gm mole-uC. = O .656 -ggoG (50)
78 11 _£SL§---
' ’ gm-mole
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Calculation of the Heat Capacity of Propylene by the 

Method of Hougan. Watson and Ragatz2^

Empirical equation.

cp = 1 .97 + (27.69 x io"3)t - (5.25 x 10"6 )T2 (

At T = 650°F. = 1110°R.

Cp = 1.97 + (27.69 x 10_3)(1110)

- (5 . 2 5 x 10"6)(1110)2

*2 0'\r7 c&l
r pcm mole-uC. _ n _cal__
°p - —  ° - 6 2 4gm-mole

Cell
C - C 2,0 gm mole-°C. = Q _ c a ± ,
°V ” °P L±2 08 ___ gm-°C. ^gm-mole

At T = 1050°F. = 1510°R.

Cp = 1.97 + (27.69 x 10”3 )(1510)

- (5 . 2 5 x 10“6 )(1 5 1 0 ) 2

Cp 3 1 , 8 1 1  = 0 .756 ^
4 2 .0 8  — - =— ggm-mole

calp  Udi
°V = CP - ' K"1 = 0.708 - f L -  (.

^ • 08 iSrSHIi 6 '
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PHYSICAL PROPERTIES OF SILICA-ALUMINA CATALYST
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PHYSICAL PROPERTIES OF SILICA-ALUMINA CATALYST

The catalyst employed in this study was TCC 
(Thermofor Catalytic Cracking) Silica-Alumina Cracking 
Catalyst, supplied by the Mobil Chemical Company, 
Paulsboro Catalyst Plant, Paulsboro, New Jersey. The 
catalyst is designated as "Durabead 1" by Mobil.

The physical properties and Tyler screen data for 
the catalyst are as follows:

Loose bulk density 0.7^ cm. J
Packed bulk density = 0.82 cm. j
Particle density ^  P = 1.28 cm. j
True solid density = 2 . 3 2 cm. j
Average diameter dP = 0.358 cm.
Surface area Sg = 250 x 10^ ■

Average pore diameter d = 72 x 10“ 8

Effective pore diffusivity De = 0 .015 sec.
Pore volume Vg = 0.35 £ 2 ^^  gm
Internal void fraction e = 0.448
External void fraction E = 0 . 3 2

Superficial surface area a s= 1 ̂  . cm . 2
gm

Equivalent pore radius re = 2 . 8 x 10-7
Tortuosity factor 7'" = 5.6

gm
cm.

cm.
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Radius of catalyst pellet
Total surface of porous 

catalyst
Tyier Screen Analysis 

On 4 mesh 
On 5 mesh 
On 6 mesh 
On 7 mesh 
On 8 mesh 
On 10 mesh 
Through 10 mesh

rp = 0.179 cm,

Sy = 320 x 10
Wt. %
2.5 

27.0 
^3 A  

22.2
3.9 
0.6 
.0,3

k cm.2
cm. 3

99.9

Calculation of Superficial Area of Catalyst Surface, a

(53)Catalyst Area/Pellet = 47Tr2p pf’loit

Catalyst Wt./Pellet =

a
cm.1(4JTrP2 pellet''

(3^ pK  Pitltd

^rrv 3 —qguj-3 ;i P Pellet
gms. Pellet 

' P cm.3 Pellet

^jTr 3^ .,gms..
371 P/°P Pellet

3 cm.2 catalyst 
rP/̂ P catalyst

(5*0

(55)

a =

rp = 0.179 cm.
/> = 1.28 £ ^ 0  
' * cm.3

(0.179 cm.) (1.28 gjĵ -j)
= 13 .10 cm.2 catalyst 

gm. catalyst
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CONTINUOUS REACTION MODEL

In solid-catalyzed gas-phase reactions, it is 
assumed that the reaction takes place at the gas-solid 
interface. The interface lies on the external surface 
of the catalyst and on the internal surfaces within the 
catalyst pore. The overall rate of reaction depends upon 
the availability of these surfaces.

For the continuous reaction model, it is assumed 
that the reaction mechanism consists of seven distinct 
processes. That process, or combination of processes, 
which are significantly slower than the others, control 
the rate of reaction. The seven processes involved in 
the catalytic cracking of cumene are described below 
and illustrated in Figure 39.

Gas Film Diffusion of Reactants
Reactant cumene (A) diffuses from the main gas stream 

to the external surface of the catalyst.

Pore Diffusion of Reactants
Reactant cumene (A) diffuses from the external sur­

face of the catalyst (mouth of the catalyst pore) into 
the catalyst pore).

Adsorption of Reactants
Reactant cumene (A) is adsorbed onto the surface of
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the catalyst.

Surface Reaction
Adsorbed cumene (A) reacts to form adsorbed benzene 

(R) and propylene (S) which is not adsorbed. This single 
site reaction mechanism was shown in previous work by 
Garver to be the actual mechanism occurring.

In the dual site reaction mechanism, both products 
are adsorbed.

Desorption of Products
Adsorbed product benzene (R) is desorbed from the 

catalyst surface.

Pore Diffusion of Products
Products benzene (R) and propylene (S) diffuse from 

the catalyst pore to the external surface of the catalyst 
(mouth of the catalyst pore).

Gas Film Diffusion of Products
Products benzene (R) and propylene (S) diffuse 

from the external surface of the catalyst into the main 
gas stream.
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FIGURE 39 

CONTINUOUS REACTION MODEL

Main
Gas

Stream
Gas Film Catalyst Pore

For reaction occurring on interior surface of catalyst
Gas FilmMain

Gas
Stream

For reaction occurring on exterior surface of catalyst
ICA Main

Gas
Stream

Gas Film

Catalyst Pore
Distance
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GAS FILM DIFFUSION

The gas film diffusion of cumene (A), benzene (R) 
and propylene (S), which is process one and seven of the 
reaction mechanism, can be handled mathematically as a 
simple diffusion process. Reactant A (cumene) diffuses 
from the main gas stream to the catalyst surface and 
products R and S (benzene and propylene) diffuse from 
the catalyst surface into the main gas stream. These 
phenomena are illustrated in Figure 4̂-0.

The diffusion rate is calculated as follows: 

Material Balance on A

Input - Output + Generation = Accumulation
Input =

Output =

Generation =

rate of mass transfer of A into differential 
element across rectangular surface at z

o.. gm-moles . gm-moles(A cm2) (NA„ ) - LWNa J "I”---lz cm2-sec. sec. (56)

rate of mass transfer of A out of differ­
ential element across rectangular surface 
at z + dz

(Azcm2) N A . d , „ s g m - m o l e s  + T̂ r( Na„ ) dz -.z dzv cm^Tsec.

LW dNAz
NAz + - d T dz

gm-moles 
sec. (57)

rate of formation of A within differ­
ential element between z and z + dz
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Main Gas 
Stream of 
R , and S

FIGURE 40 

GAS FILM DIFFUSION OF A, R, AND S

Stagnant 
Gas Film Catalyst

dz

R+S

YA

0z
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= nil (reaction takes place at catalyst 
surface only, not within differential 
element) (58)

Accumulation = rate of accumulation of A within
differential element between z and z+dz 

= nil (steady state) (59)
Substituting,

dNAzLWNAz - LWNAz - dz = 0
dNAz 

" LW" d F ^ z = 0
- gjfAz = o (60)

dz

Define Fick's Law for System
\ a

“AZ = =I>AB—  + Ya (NAz + NBz) (61)

From the stoichiometry of the reaction, A — R + S,
one mole of A yields one mole of R plus one mole of S;
therefore, A diffuses at half the combined rate of R + S, 
and

Na z = -£n b z 
Nb z = -2NAz

^ y a
NAz - -cDABT i "  + YA (NAz - 2NAz}

^y a
= -CDA B " ^ i  - YANAZ
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Naz(1 + w  = -cdab~ ^ t
cDab ^y a 

N a z =  "  ( 1 + Y A ) T ~ z

cDAB dYA 
A z _ ” (1+IA ) dz

dNAz d cDab dYA 
dz “ dz ( 1+YA ) dz

cDAB ^ A  _
(1+Ya ) dz " C1

Since cDAB is constant at constant pressure and 
temperature,

cDABln(l+YA ) = ciz + C2

Boundary Conditions
At z = 0, YA = YAb

At z = & , YA = YAs

Substituting,

d cDAb dYA (62)dz (1+YA ) dz

Integrating
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c.DABln( l+YAb ) = C2 

cDABln(l+YAs) = ci6 + C2

= ci5 + cDABln(l+YAb) 
_ cDABln(1+Yas) _ cPABln(1+YAb)Cl

cDab
h

In (1+YAs )
(1+^Ab)

cDabcDABln(l+YA) = In (1+YAs)
(l+*Ab)

z + cDAgln(1+YAb)

n (1+YA) _ z n (1+YAs )
ln (l+lAb) S ln <l+YAb)

U + X a ) = ( 1 ^ A S)|
( l + Y Ab) ( l + Y Ab>«

(1+YAh) v z
(1+Ya) ■ (1+ YAP ?

( 1+YA ) = ( 1+YA c) ‘  <l+YAb)
1-f (63)

Calculate Molar Flow Through Film

(dMA gm-moles) = ( om2)(N = constant (64)
(dt sec.) z z cm -sec.

= oDae_  IX a
Az (1+YA ) ds
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dNA _ -Az cDa b 8.Ya
dt

Integrating, 

dNA

(1+Ya ) dz

*AC

dt
$
dz -Az cDa b dYA

(1+x a )
xAb

dNA (S) = -AzcDABln (l+YAq)
(1+*AJ

1 dNA cDab In
Az dt

1+YA«
1+YAb

Let A = , external surface area ofZ CjA  '
catalyst, cm2 .

Let = kg, mass transfer coefficient,

Let c = PT
RT

Let a = superficial area of catalyst surface, cmgm,

a dNA
r A = S = 4 F  =  0 k Ka l nEX

1+YAb
l+YAf

prpkga
RT In 1+YAb

l+YAf (65)

Where rA = gm moles A diffusing toward the catalyst 
surface per second per gm. catalyst.
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SURFACE PHENOMENA

The adsorption of cumene (A) onto the catalyst sur­
face, the reaction of cumene on the catalyst surface, and 
the desorption of benzene (R) from the catalyst surface, 
which are processes three, four and five of the reaction 
mechanism, are handled together mathematically. The 
following reaction mechanisms are possible:

Single Site Mechanism (Propylene Not Adsorbed)

1. Reactant molecule A (cumene) is adsorbed onto 
the catalyst surface.

A + 1 A • 1
2. Adsorbed reactant A (cumene) reacts to form 

adsorbed product R (benzene) and unadsorbed 
product S (propylene).

A>1 _« r «1 + s

3. Adsorbed product R (benzene) is desorbed from 
the catalyst surface.

R • 3. = =  R + 1

Single Site Mechanism (Benzene Not Adsorbed)

1. Reactant molecule A (cumene) is adsorbed onto 
the catalyst surface.

A + 1 —  A* 1
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2. Adsorbed reactant A (cumene) reacts to form 
adsorbed product S (propylene) and unadsorbed 
product R (benzene).

A • 1  R + S-l
3. Adsorbed product S (propylene) is desorbed from 

the catalyst surface.
S-l s + 1

Dual Site Mechanism (Both Benzene and Propylene Are 
Adsorbed)

1. Reactant molecule A (cumene) is adsorbed onto 
the catalyst surface.

A + 1   -  A-l
2. Adsorbed reactant A (cumene) reacts to form

adsorbed product R (benzene) and adsorbed
product S (propylene).

A-i + 1 =g ■■,..!= r . ]_ + s • 1
3. Adsorbed product R (benzene) is desorbed from

the catalyst surface.
R • i — ..— " : R + 1

Adsorbed product S (propylene) is desorbed from 
the catalyst surface.

S • 1 ■ - S + 1

Garver has shown that at the conditions of his study 
(1.0 atm., 850-1050°F.) the actual reaction mechanism is
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the single site mechanism with propylene not adsorbed 
and with the surface reaction controlling. The reaction 
rate expression for this mechanism is derived as follows:

Reactions
kl

1. A + 1 — — — —  A*1 (adsorption of A)
1

k22. A'l —— r-j—  R • 1 + S (surface reaction;
2 S not adsorbed)

3. R*1 — r-j—  R + 1 (desorption of R)k 3

k
4. A — —-—  R + S (overall reaction)

Rate equations are now written for each of the re­
action steps. Since surface reaction controls and is 
therefore the slowest step, it is assumed that the ad­
sorption and desorption steps reach equilibrium.

Rate Equations

1. (-**A ) = k1PAC1 - k '1GA1 (66)
(adsorption of A; at equilibrium)

2 ‘ ^"rAl^ = k2CAl " k '2PSCR1
(surface reaction and S not adsorbed; 

controlling)
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3. (“rRi) ~ k3CRl " k'3pRGl

(desorption of R; at equilibrium)

1 k3 PR Cl 
3 ” Kr " k<3 " CR1

14-3

(68)

k .  (-r*A ) = P̂fl - k'PpPc, (overall reaction)A-M3 (69)

K = k 1
PR PS 
PA

Calculation of (-r^i) in Terms of Cq

(-rA1) - k2CA1 - k'2PsCRl (70)

CA1

Cri

Ka p a Ci
Kr p r Oi

i - k2 k2KA
2 K2 KKr

KAK2 CA1 . PSCR1 . PrG1 PRPS
T R PAGi Gal cri PA = K

KK
K2 = -K

fl
A

("rAl^ = k2KAPAGl “
k2KAPSKRPRG:

KKR

= k2KAC]_ PRPS 
PA" “K
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Definition of Gi

G1 CL " CA1 " CR1 _ GS1

CA1 KAPAG1

CR1 = kRPRCl

GS1 = G not a(isorbed)

Gl = gl " kapAG1 “ KRpRG1
G =  Gl________
1 1 + k a Pa + k r Pr

(71)

Substitute Gl into Rate Equation

PRPS
X GLk2KALPA " ’~K~ 

~rAl " 1 + KApA + Kr Pr (72)

For irreversible reaction, k is very large and k 1 
is very small and K approaches infinity. The above then 
reduces to the following expression:

(-rAl>
CLk2KAPA

1 + k a Pa + kr Pr (73)

The initial rate of reaction, r , occurs when the7 o'
partial pressure of A is equal to the total pressure,7T, 
and the partial pressures of R and S are equal to zero.

PRPS.']
(_r ) . W a p a - k

A1 1 + KApA + Kr Pr
(74)
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(-rAl) = ro

pa =TT 

pfi = ps = 0
CLk2KA7T 

ro - 1 + K.JT
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PORE DIFFUSION

The effect of pore diffusion (processes two and six 
of the reaction mechanism) on the rate of reaction is 
expressed by applying a correction factor to the rate 
equation. The term C^, total concentration of available 
active sites, is replaced by the product of the terms L, 
the total concentration of active sites, and £, the ratio 
of the actual reaction rate to the theoretical reaction 
rate if the resistance to pore diffusion were absent, 
f is known as the catalyst effectiveness factor.

The effectiveness factor of spherical catalysts 
with arbitrarily shaped pores is derived as follows:

Rate Equation
Pr PspA " - R ~C LkpKA

A ' 1 + Ka pa + Kr ph = kPA ~ i! pfiPS

= ksSgCA - >‘,SSBCBCS (75)

Elow Chart
A cross section of the catalyst particle is shown in 

Figure ^1. The concentration of cumene on the surface of 
the particle is CAS and the radius of the particle is rp.
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FIGURE 4l

CROSS SECTION OF CATALYST PARTICLE 
SHOWING DIFFERENTIAL ELEMENT

dr
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Material Balance on Differential Element, dr.

Input - Output + Generation = Accumulation

Input

(ii-7rr2om2) (Deff^7>

= _47Tr2D ^e dr sec.

moles 
d-̂ A cm3 
dr cm

Output

(47T(r+dr) 2 cm2) (Dq~ ~ )cm"
e sec:

dCA _ _d. 
dr dr

moles 
dCAIdr cm3

-4 IT (r 2+ 2rdr+dr2) D, dCA d Ga dr 
9 dr dr^

dr )

gm moles 
sec.

cm

Generation

<rA 6Smoa?-Ho;H ^ c g™s oat.) S°l6SA C sec.

gm moles .,, ^  ^ ^  gm cat.s( — £2—  ------- (477r^drcm^ (/> p-— 1----)A gm cat-sec. ' P cm!

- (rA ) ( ^ A r2d r ) ® iffl2ies

Accumulation = 0 (steady state)
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Material Balance

-^7Tr2D ^  + ^Ttr2D + 47Tr2D § dr e dr e dr e dr^

+ 8lTrdrD — ^  + 87TrdrD ■ - 4 dre dr e dr2

+(rA )(^7^°pr2dr) = 0

lK r2De " 2 0.r + 87TrdrDe— + (r̂  ) (^J7/°pr2dr) = 0

d2CA ^ 2 dCA ^ /°_P (rA ) = 0
5e

+ ± + L I 'rA/ = u (80)
dr^ r dr D,

Calculation of Rate Equation

(-rA) = ksSg0A - klsSgGRGs
Assume irreversible reaction

ks k 's
(-rA> = kSSg°A

Substitute Hate Equation Into Material Balance

d-2CA + 2 dCA _ /^ksSgCA _ Q (g2)
dr^ r dr De

Integrate
Change of Variable 

Let x = CAr
dx = CAdr + rdCA r(iCA = dx - CAdr
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cLCa _ 1 dx - Ca _ 1 dx _ x  
dr r dr r r dr r‘

d2CA =
dr

dx
dr

_1
r2

+ 1 d2x + x(2) 1 dx
r dr2 r3 r2 dr

1. d x 2 dx | 2x
r dr2 r2 dr r"3

Substitute

1 d2x 2 dx + 2x +
2 r2 dr r3 r»2r dr

2 dx 
r^ dr

2x _ /°pksSFx 
r3 “ = 0

d2x
dr2

ks/^pS£
D,

0

General Solution

m =
-b* o± Jo +^ks /fpgs'ue

2a
kS/°PSK

DP

'A r Mlemr + M2e-mr (83)

Boundary Conditions

At r = 0,
dCA
dr = 0

At r = rp , CA = 0.
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cLCa
dr

1 mM1emr - mM2e"mr -  1 _  

r2

r2 dCA = r mM1emr - mM2e~mr 
dr L

Mxemr + M2e-mr

Mierar + M2e-mr

0

Mi = -M2

0

c a .
_i_
rp

M1emrp + M2e~mrp

H1 - M2

CAsrp = Mie"11*15 - M1e~mrp

CAsrP 
M1 = emrp - e_IT,rp

Mo = -cAarP
2 ~ emrP _ g-mrp 

Back Substitute

CA =
C r^emr

>mrp _ mrp
G rDe-mrs P_______
,mrp _ e-mrp

CAsrP „mr ^-mr e - e CAsrP sinh mr
r e-mrp _ e-mrp r sinh mrp

Oa
° Asr P sinh mr 

sinh mri

m =
is kS SV

D e De
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Calculation of Actual Reaction Rate

Actual reaction rate = Rate of diffusion into
catalyst pellet

cm"-Rp = (^TTVp om2)(De seo )
gm moles 

d-̂ A cm3 
dr cm (85)

r = r.

= -'i-TTr2 De
dCA
dr r = rp

gm moles 
sec.

dCA d CAsrp sinh mr °AsrP d sinh mr
dr dr r sinh mrp sinh mrp dr r

— _

CAg p
sinh mrp

CA«rPsinh mrp

rm cosh mr - sinh mr   -----------

m cosh mr sinh mr
Y>*~

R,

~dc 2 CAsrP m cosh mrp sinh mrp
dr r=rp sinh mrp r — rp

p p

ca. „s 
rp

mrp
tanh mrp -  1

CAf
P e

mrp
rp

= ^ r 2 DeOAsmrp 

= U-TTr2 DeCA£.

tanh mrp 

1

-1

tanh mrp mrp

kSsV it.'d 1 1
De tanh (kSsV )2rp L De

(ks^v ̂ i
De ' rPj
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Let hg = mrp = rp ksSy
D,

Bp = ^hsrr rpDeCA3 tanh hg
_1_
hS

(Thiele Modulus)

(86)

Calculation of Maximum Reaction Rate

,L~. t r> Pm v ™  &m molesR = (? 7 T r i W ) ( k c ~ - ) ( S W— o )(Camax 3 R S sec Vcm3 s c m 3 )

bTTripkgSyCAg gm moles 
3 sec. (87)

Definition of Effectiveness Factor

€  = effectiveness factor
_ actual rate of reaction with pore diffusion present

rate of reaction if resistance of pore 
diffusion were absent

R,
Rmax

^hSTTrpDeCA c
i7Tr3k0S;rCAV

3hsDe
rPkSSV

s
1

tanh he

tanh hg hg

i i3rpks2Sv2De
De§rp2kgSv

he

tanh he
_1_
hc
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rpkss'Sys- 1---Dp2
tanh hg

_1_

hS

e= tanh hg hg (88)

Calculation of Effective Diffusivity, De

Definition of Effective Diffusivity
_ pse

D_ 7- (89)

De = effective diffusivity, cm"
sec.

&  = fraction voids in catalyst particle 
'T' = tortuosity factor
Ds = combined diffusivity,

1 + 1

cm"
sec.

d a b  d k

Dab = diffusivity of A in A + R + S, cm"
sec.

D^ = Knudsen diffusivity, cm
sec.

Molecular Diffusivity of A in A + fi + S

As previously calculated, the molecular diffusivity 
of A in A + R + S, D^g, are as follows:

cm2[D
[D
AB 650°P. 0.1141 sec^

AB
cm

1050°F. 0.2044 sec>
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7 0Satterfield has shown that in the temperature 
range of 200°K. to 5000°K., DAB is well represented by 
a power function of temperature, that exponent being 
1.82. The relationship between molecular diffusivity and 
temperature then becomes as follows:

°AB = -°*oo633 + 0.1008 + i o“5t 1.82

Where T is in °K. the values for at several tem­
peratures are as follows:

cm.2
T, F . T, K . Dab, sec.

650 616 0.1141
700 644 0.124-2
750 672 0.134-7
800 700 0.14-56
850 728 0.1568
900 756 0.1684-
950 783 0.1799
1000 811 0.1922
1050 839 0.2044

Calculation of Knudsen Diffusivity 

4r (90)
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cm3-atm lb.__ gms cm
H = (82.06 gm mole °K)(l4.7 in2atm)(454 lb*)(980sec2)
g (2.54 f“ ) (2.54 f^)

y gm-cm^______
8.32 x 10 mole-0K-sec2

M = 120 10----- ---11 1^u -±y gm mole
2Vp- ■p =  —Ll

e sg

= pore volume/gm. catalyst, pjj-j-

= 250 x 10/+ g gm
r = ( 2) (0.350 g ^ )  = 2.80 x 10-? cm.
e (250 x 10^ M ? )gm

r ____ gm-cm^____
n - (*0(280 x 10~7cm) 2(8.32 x 10 gm mole-°K-sec?)
K  ̂ „ gms \

12 - , 2  1
2

(120.19 — &ms, ) gm mole
(T°K)

p

Dk = 2.478 x 10"^ Ciri-:sec

The values for D„ at several temperatures are asK
follows:1 •

■ °p
9 1 • T, °K. (T°K)^

2cm 
D^, sec

650 6l6 24.82 0.00615
700 644 25.38 0.00629
750 672 25.92 0.00647
800 700 26.46 O.OO656

850 728 26.98 0.00669
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2cm^
T, °F. T, °K. (T°K.)2 D^, sec

900 756 27.50 0.00681
950 783 27.98 0.00693

1000 811 28.48 0.00706
1050 839 28.97 0.00718

Calculation of Combined Diffusivity

1 1
Ds ~ dab +

1
dk

DS

DS

1 1 j
650 ” oTvUn + 0.00615 " 1 7 1 A

2
650 = °*00^

Similarly, 2
cm

T,°F. Ds, sec
650 0.00584-
700 0.00599
750 0.00613
800 0.00628
850 0.0064-2
900 0.00655
950 0.00667

1000 0.00681
1050 0.00694-
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Calculation of Effective Diffusivity

Ds a  Ds(0.448)
De = r 7- = — —  = °-080 D<

OT, F. Dq, sec.

650 0.00046?
700 0.000479
750 0.000490
800 0.000502

850 0.000514
900 0.000524
950 0.00053^

1000 0.000545

1050 0.000555

Calculation of Thiele Modulus, hg 

Definition of Thiele Modulus

kSsVhg rp D(

rp = radius of catalyst particle = 0.179 cm 
Sv = total surface area of porous catalyst

= 320 x 10^ ^  cm2
kg = forward intrinsic rate constant for

cmsurface reaction, sec.
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Calculation of kg

Initial Rate of Reaction

ro =
6Lk?KA 7T
T i ^ f r

(94)

Pseudo First Order Reaction (Appendix XI)

r0 = kSSgCAo (95)

Calculate ks

6Lk2K A 7T
ks (i + KA7T)sgcAo (96)

kA =

TT =

s =g

equilibrium adsorption constant 
for cumene,

1 atm.
,4 cm^250 x 10 gm

CA, = m i tial cumene concentration, gm m-94.e_§.cm-
log CLkg = -4-812 ^0^ -1.14-1 (no ultrasound)

Calculation of hs

h0 = rpsv s De (0 .179) (320 x 104 )'̂ K
D~ej

= 320
JL2
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Calculation of Effectiveness Factor. €

jl [ _ i   . j lhg |^tanh hg hg 

Summary of Calculations (No Ultrasound)

T 
°F.

(flkg x 10^
gm moles 

gm cat-sec.

kg x 1 0 '
cm.

sec. hS e

650 0.334 0.499 3.31 0 .63
700 0.514 0.789 4.11 0.55
750 0 .762 1 .200 5.01 0.48
800 1.099 1.778 5.01 0.48
850 1.534 2.541 7 .12 O .36
900 2 .126 3.605 8.39 0 .3 2
950 2.794 4.849 9.64 0.28

1000 3.657 6.486 11.04 0.25
1050 4.702 8 .526 12.54 0.22

At frequency inputs of 26,000 cps and 39,000 cps the 
rate constant ^lkg increases as shown previously because 
the effectiveness factor, £ , or surface reaction rate con­
stant, k2, increases. When the effectiveness factor in­
creases, the Thiele Modulus, hg, must decrease, requiring 
the effective diffusivity, D0 , to increase. The effect of 
ultrasound, therefore, may be to increase the diffusion 
rate of cumene in the catalyst pores.
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REACTION DESIGN EQUATION

The reaction design equation is derived by sub­
stituting the rate equation for the single site mechan­
ism, S (propylene) not adsorbed, with surface reaction 
controlling into the plug flow reactor design equation. 
The derivation is as follows:

Derivation of Design Equation for Plug Flow Reactor 
Flow Chart (Figure k-2)

Material Balance

Input - Output + Generation = Accumulation

Input
w gm moles A 
A sec.

Output
gm moles A 

sec.
Generation

(+r gm moles A 
A gm cat-sec.

gm moles A 
sec.

Accumulation = 0 (steady state)

Material Balance

-dPA = (-rA )dW
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F = F - X F A A0 A1 Ao
dF„ = -PA dXA A0 A

^ A  = <-rA )dW

dW dXA
PA0 " (-rA)

Integrate
W XA,

dW
fa o <'rA>

XA,
w

FA,
* A  
(-rA ) (97)

Xa o

Calculation of Reaction Design Equation, Surface Reactions 
Controlling

Rate Equation for Single Site Mechanism, S (Propylene) 
Not Adsorbed, and Surface Reaction Controlling

(-rA ) € Lk2KA
PR PS PA - —

(98)
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Substitute Rate Equation Into Plug Flow Reactor 
Design Equation

Xa -p

W
PA,

dXA

^ Lk2KA PA
Pr PS
K

1 + k a Pa + kr Pr
Xa o

Solve for Partial Pressures in Terms of Conversion 
and Total Pressure

Material Balance

Inlet Reactor Outlet
A na 0=n a0 Na=Na o-Xa Na o NAf=NA0-XAfNA0
R NR0=Nr o nr=nr 0+x a na 0 NR=NRo+XAfNAo

S MS0=NS0 Ns=Ns o+Xa NA0 NS=NS0+XAfNAQ
Total nA0+nR0+nS0 nA0+nR0+nS0+xanA0 NA0+NRo+Nso+XAfNA0

NaTT (NA0-XANAo)7r
PA =

%  =

Nip (na0+hRo+Hso+xana0 1

Nr IT (nRo+xanAo)7T
nt (nA0+nH0+ i’,S0+XANA0 )

Ns7T (Ns0+XA“A0)7r
N,T (f,Ao+NHo+NSo+XAWAo)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 6 7

A

PB =

Pc; =

However, % = % 0 = 0

NAod  - xa )TT (l - x a )7T
nA o (i + XA ) (1 + xA )

x a na 0 1T x a V

«A0 (1 + XA ) (1 + XA )

xAi!A07T x a 7T
“Ac '-A • (1 + xA)

Substitute for Partial Pressures in Hate Equation

(“rA> =

r prps
6Lk2KA PA " ."K.

1 + k a pa + k r Pr

CLk2KA
(i -x a )7T x a 27T2
(i+xA ) " (i+x a )2k

k a (i-Xa )7T k a x a TTi + ,. >---- +(i+xA ) (i+xA)

k A (i -x A )jr k a x a tr
+ (1+XA ) + (1+XA )

( ~rA > 6 Lk2KA (i-x a )77 x a ^tT 2
(i+xA) (i+xa )2k

(i + k a 7T )
(-rA) £‘Lk2KA7T[i - ( i + ^ x  2

(2 + KR7T)XA 
6'Lk2KA 7T[i - d+?-)xA2]
(l - k a 7T + kr JT)x 2 

6Lk2KA7r[l - (I+^JXa2

+

+
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(1 + KA J T )  

£ ' L k 2K A T r [ l  -  ( l + | f ) X A 2 ]

H* Pn > =3 __ 
1

i
e L k 2KArr 1 __1 - ( l + ^ ) X A 2

- y y
1 - ^ X a2

y  = i , _i
6* Lk2KATT ^Lk2

1 + I tK

(2 + k h 7T)x a
^Lk2KATT 1 _ ( 1 + 2 L ) X  2K

KrTT
6Lk2KATT CLk2KA 7T

*A
1 - U + ^ U a 2

i -
/9 XA 

1 -

^  2 kR
= e L k 2KA r r + 6 L k 2KA

f L . TTl a - i K j
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(l - k a 7T + kr7T)x.a 2 
CLk2KArr[i - d + ^ ) x A2]

]
t-* > h S* X

J

* a 2
_€Lk2KA7T 6Lk2KA7T ' CLk2KATT \l~ <l+f  )XA*|

1 1 _ Kr XA2 ]
6Lk2KA7T 6Lk2 6Lk2KA 1 ” ^1+^ XA2

/ ? -  X
xA2 (/? )xA2

l - S2x a2 i - 62x a2

6'Lk2KA7T + £Lk2KA " €Lk2KATT ~ €Lk2
K r

1 K r4*6 Lk2KA7T £ Lk2 £ Lkt KA

1 + JT'
K

(-rA^ 1 - <5 Xzrr-? +A
/3 XA (̂ ? - )XA2

1 - <s V  +  T - i V
Substitute Rate Equation into Plup; Flow Reactor Design 
Equation and Integrate

X_Af XAf xAf

W
FAo

^dXA
<-2 2 1 - d XA

+ /?XAdXA
c2 2 1 - h XA

+ (/6 - ¥ ) X A dXA
,2 2 1 - £ XA

XAo XA0 XAo
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dXA

- & XA +1 2 5 In '1+Xa S
Li-xa5.

y , 1+xa <5In
o 2 5 1 -XA 5

XA0=°

XAf XA

XAdXA
-<S2xa+1

X?
-252 In 2 2 

•5 xA + i = Yjf? ln (-52XA2+i)

XA =o

xAf=xA ¥

XAZ dXA2 
-g'XA2+l

(X?-^)XA (x?-^ )
- S 2 ’ T ^ "

XA0=0

dXA
- S V + l

(X?-^) XA . (X?-*)
V-i *T

1 in (1+XA5)
25 (1 -XA<5 )

w
*7o 25 ln (1+XA§) 

(i-Xa 5) A

{jq- y )
+ 5T2” 25

( i+ x a5) 
ln(i-xA5)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



171

VJ
f a

-y
o

1 1 j ln (1+XAS) XA
i2 S " ^  (1-XA(1-XAS)+ 5^

+/? 1 ln (1+Xa5)
/ l n ( l - S 2 X  2 )

2 &  (1-XAS) 25̂
*A
5 *

(99)

Y  =

/S =

6  =

T L k 2KATT + £Lk2

K
£ Lk2KA7T ^ kk2kA

R

1 + HK

Calculation of Reaction Design Equation, External 

Diffusion Controlling

Rate Equation for External Diffusion Controlling

rA -
Pt V  ln 1+YAb

RT i+y A(
(100)

Substitute Rate Equation into Plup; Flow Reactor 
Equation

«Af

W
FA,

dXA
PTk p;a ln 1+YAb 
RT 1+Ya s

XA 0

XAfHT

Pjkga ln 1+YAb
1+*A<
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Calculate Mass Transfer Coefficient, k,r
■—.. - , , .     , — - —     __ I t

XAfRT
kg "  ̂ 1+YA> (101)(W/FA0 )PTaln — ^i+YA as

YAs = 0 (mole fraction cumene at catalyst surface)

R = 82.03 ‘gm mole-°K.
T = °K.

™ gm moles cumene feed
A o =

W = gms. catalyst 
p,p = 1.0 atm.

cm^
g m. 

cm.
a = 13.1 -p-

kg sec.
XA;p = conversion
Ŷ., = YÂ  - YAn ^ Ya lm (mole fraction cumene in 

YA j_ bulk gas stream)In
?fA0

YA  ̂ = 1.0 (mole fraction cumene at reactor

Y a =  ̂ ~ ^Af (mole fraction cumene at 
1 + X a reactor outlet)

inlet)

1 + XAf

6.261832 XAfT 
kg = (W/PAo)ln(l+YA M )
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EVALUATION OF REACTION RATE CONSTANTS

As previously derived, the reaction design equation 
for the catalytic cracking of cumene in a continuous plug 
flow reactor is as follows:

W
pa

= y
o L\2 S 2 5

In (1+XAS) Xa 
(1-Xa5) +

1 ln ( 1+Xa <§) 1 ln(l-fxAZ )-XA

Where,

2£3 (1-XA«S) 25

1 , 1 
CLk2KA7T  6 Lk2

S2 (99)

€ Lk2KA7T  + 6 Lk2KA
Kr

22Garver experimentally determined the reaction rate 
constants at atmospheric pressure to be as follows:

K, atm.
<fLk _sm..m°les

KA j atm.

K — -—R ’ atm.

2 ’ gm cat-sec. 
1

V gm cat-sec, 
^ * gm mole

cc o o 950°F. 1050°F.
2.05 6.22 15.96

1.777 x io“5 2.165 x 10"5 2 .917 x 10

2.2*1 2.13 1.90

2 A 5 1.86 1 A 7

81,300 67,800 52,250
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/? gm cat-sec.
* gm mole

<5, dimensionless

850°F. 950°F. 1050°F.
111,500 83,600 62,500

1.224 1.070 1.031

The above constants were obtained as follows:

Equilibrium Constant, K
Garver calculated the thermodynamic equilibrium 

constant for the dealkylation of cumene from the logarithms 
of the equilibrium constants of formation for cumene, 
benzene and propylene. The values for the equilibrium 
constants of formation were obtained from Circular C^6l 
of the National Bureau of Standards.

The equation expressing the equilibrium constant as 
a function of temperature is as follows:

where K is in atmospheres and T is in Rankine.

Adsorption Constant for Cumene, Ka, and Combined Effective­
ness Factor and Forward Reaction Rate Constant for Surface 
Reaction, (fLk2

Plot W/Fa vs. X. at varying Fa and total pressure,77*, o *»> o
and constant temperature, T, as shown in Figure ^3 .

log K = -8,927 - Y  + 7.126
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FIGURE 4̂-3

W 
PLOT OF XA VS. FAq AT 
CONSTANT TEMPERATURE

W gm cat-sec. 
FAq * Sm mole
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Rearrange the plug flow reactor design equation.

and extrapolate back to = 0 to find initial rate, rQ , 
as shown in Figure

Rearrange the initial rate equation.

= gLk2KATT 
0 i+ka7T

l~0 = gLk2KA
Tf i+k aTT

TT _ _ j  ^ _ J T _
r0 fLk2KA + 6Lk2
TfPlot —  vs. ff as shown in Figure ^5*

Calculate £ Lk2 and from the slope and intercept. 

Repeat at 850°F., 950°F. and 1050°F.

a lPA0) = <-rA)
w 1 _ dXA

Plot slope, dXA/d^p^— )

o
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FIGURE 44

PLOT OF REACTION RATE VS. CONVERSION AT 
CONSTANT TEMPERATURE

X
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FIGURE ^5

PLOT OF VS. Tf

JL
rn

£Lk2KA

slope = T L k i

T f
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Adsorption Constant for Benzene, Kg

Assume Irreversible Reaction

Reaction Design Equation

W
FAo

ln
253

(1+XA<5) XA 
(l-xA<f) ^ 2

4* 1 ln (1+XA5) 1 ln(l-^2X2 )-XA
263 (1-Xa6) 2«TJ £2 (99)

For irreversible reaction

K = £  = »  1

7T 12 r „ 1
-1 +  i r -

= [l + 0

Back substitute

W
FAo

lnti+xA ) XA 
(1-XA ) + 1

+ 1 ln(1+XA) 1 ln(l-XA2)2 TT^T " Z ^A
1

<^XA +/?

1 In U + XA)
2 (1-XA )(1-XA *) “ Aa

1 ln 1
2 (1-XA )

Ji!_ = yxA [-ln( 1-XA ) - XA] 
Aq

( 1 0 2 )
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Rearrange the irreversible rate equation:

V/ . =/s[-ln(l-XA ) - XA]

Calculate X  at 850°P., 950°F. and 1050°F., and Tf 1,

7T2> and Tf y

y 1 + 16 Lk2KATT Ehkr

Plot W
FA, - XA vs. -ln( 1-XA ) - XA1 at 850°F.,

950 F . and 1050 F., and at Tf »̂ Tf2 and TT ̂ as shown in 
Figure k£>.

Calculate from slope of straight line.

Reaction Design Equation Constants Y  .ft. and <£

Since K, £*Lk2 , and Kh are now known, If , ̂ 3 
and cS can be calculated at 850°F. , 950°F. and. 1050°F., 
and Tf lt Tf 2 and Tf ̂  •

Summary of Results

Carver's investigation led to the following values 
for K, Ka and :

1log K = -8927 T°R + 7.126 (103)
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FIGURE 1+6

PLOT OF V/
FA, yxA

_W FA,
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log Ka = 700| - 0.179
A  rpOrjT°R ( 1 0 4 )

log K = 2195 -5- - 1.28611 mUpT R (105)

Evaluation of Reaction Rate Constants

For this research, Tf= 1 atm. and CLkR is handled
as a single constant. The rate equation then contains 
four parameters; €Lk2, Ka , Kr and K. The values of the 
parameters K, Ka and Kr obtained by Garver and extrapolated

computer calculated by curve fitting the data by use of 
Marquardfs non-linear square fit program.

Table 10 shows the literature values of K, Ka and 
K r  for each of the temperatures studied along with the 
calculated values of ^LkR at 26,000 cps, 39»000 cps 
and in the absence of ultrasound.

The graphs of conversion as a function of reciprocal 
space velocity illustrating all the data points and the 
calculated theoretical curves are illustrated in Figures 
48 through 73- Considerable scattering of the data is apparent 
at 650°F. because of the low conversions obtained at that tem­
perature and the accompanying analytical errors.

to 650°F. are shown in Figure 47.

These literature values of three of the four
parameters were substituted into the surface reaction 
rate equation, and the fourth parameter, ^Lk?, was
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oûo
o
o
o

UN,
CM

O
o o o

o0 co ,1
+3
ctf
o
Sw

CMO CMO rH
o

o
o

o
o

X ‘N0ISH3AN00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 8 8

ovo
wa}
OMB-i

&H

Ult>
33OM
cn
03W
O
o

o

CM

o
o

t>-

o
o
o
o

CM

o
ooo

X
&H

CM
o

CM
o o

o
o
o

o
o

o
o

X ‘N0ISH3M00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10
-2 

gm
.c

at
.-

se
c.

’ 
gm
. 

mo
le



1 8 9

\

w>
s
oMmcdw
oo

o
o

o

o
oo- -p

o
ooo ooovnC\1 o

CM
VA O
»H t-H

• •
o o

X ‘N0ISH3AM0D

O O
o

■?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gm
.c

at
.-
se

c 
gm
. 

mo
le



1 9 0

CMvn

oI—I

“5-
w>
Is;
oM
co
PdW
O
o

o
o

oUAo
oDh o3 O

o
O  MD
r -  cm

10,CM

OOO oooo

0
Q)
W
1
•

-P
cti
o
•
6hC
ehD

X
fe\
3

VT\CM OCM VA O O OO

X ‘N0ISH3AN0D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



191

(Ava
W3h
oM
Oh

Oh

W>
oM
COVCw
oo

tH

o
o

o
o
o

o
oA- ON

c a

'A
CM

o
o
o
CM

O
o
o

o
o

0
<dw1
•

-p
05
o
GhC
EhJj

X
Oh

X * NOISH3ANOO

Reproc5ucec5 with permission of the copyright owner. Further reproduction prohibited without permission.



1 9 2

-d-VA
ard
OM&H

va

*ACM

OO

W>
SOM
COKW

oVAOO

Oooo
o*Ao

oooVA tH

o

*
N .3

O

X ‘N0ISH3AN00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gm
.c

at
.-

se
 

gm
. 

mo
le



1 9 3

X ‘NOISHHANOO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iq
-2 

gm
.c

at
.-

se
c.

 
’ 

gm
. 

mo
le



FI
GU
RE
 

56
 

CO
NV
ER
SI
ON
 

vs
. 

W/
F

194

o

o

o
oooo

r-

o
0 O O 0 0 0

O vn 0 0
CM CM t—1 rH 0 0• • * • • •
O O 0 0 0 0

X * N0ISH3AN0D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w/f
 

x 
io"

2, ’ 
gm
. 

mo
le



1 9 5

£>-vn
W
oMDh

(Xh\

C/3>
oM
C/5«W
oo

o

i-ACM

OO

OOoo -p

o

CMI
o

fc\

o o o o oo ia> o VT\CM CM T-C 1—I o« • . . •O o o o o

o
o
o

X ‘N0ISH3M0D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gm
.c

at
.-

se
c.

 
gm
. 

mo
le



196

oo
VO

OHpv,

W>
s
o
I—I CO cc w
%
oo

ovo

voCM
t-i

O
oH

vo[>-

- O — oVO
o
o

o
oCO

o
o o o o oo

0 0 w1
-p
ctf
o

CMI
otH
X
PV(

VO
CM

oCM VO
r-l VO

o
o
o

X ‘N0ISH3AN00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m
o
le



1 97

X ‘NOISH3ANOO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gm
. 

mo
le



1 9 8

ovO
W03:=>oi—i fo

Ix,\3:
w>
S3OMCO03W>3;OO

ou~\oo rH

Oo
T—I

v r \o-

CM

OO OO O OO

0 0) w1•-pcdo
•Eu

CMIo
X
Oh

CM OCM u~\ u - \o oo

X ‘N0ISH3M00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gm.
 
mo

le



199

VO
w
r=>oM

\3
w>
oM
CO«w
o
o

■■■If '

\
w
p.

\

CV
o

o
Ph o 

o o 
o

v o
CO CM 

II II 
Eh Hh

o\
NO

o \
\

\  0NO
\

ovrs

vr»
CM

o
o o
tH <D

wa)
11—1
• o

•p E
ctf
o •
•e

h i

O - CM

OvOi
CM

OO
CM

Ovn o
o

o
o

o
o
o

x
&h

oto

v r \
CM

O
x ‘NOisaaMoo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 0 0

C\)vO
aa|Z)OMa

a

w>
23OM0003W
oo

ovr>tH

o
o

ovr\
oo

ON

o
o

o
oo o o o o

0
<DW i
1
•-P

cti
o
•ew
eW)

CMIO
X
a
\

CM OCM o
o
o
o

X 1N0ISH3AN00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 0 1

o

vO
W

O h

CO>
3OMco
03W
§
o

'ACM
• o

o
0 O  tnO i—^
^  vo d
CO CM 3

o
o

1AO-

V-TVCM

OO OO OOO

0 CD 
CO
1
•

■Pcti
o
•

e
hi

CM
IO
X
Bh

CM
OCM O O

O

X ‘N0ISH3M00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gm.
 
mo

le



2 0 2

vO
w
oM

w>
IS
oMCO
caw
o
o

CM

O
O

OO

OOO O o oo

0
(DW i1
•

-PCd
o
E
h i

CMIOH
K

CM
O
CM O O

O

X ‘NOISaaANOD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 0 3

X NOISH3AMOO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gm
.c

at
.-

se
 

gm
. 
mo

le



2 0 ^

o

X N0ISHHM0D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 0  5

O-
VO
WCdHaOMDh

wt>
oMCOWW
£
oo

CM

OO

O
O
O

OO
ON

OvC'-'i

O O O O o o

X
Ph

in
CM

OCM Vs O O
O

O O

X *N0ISH3AM00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10
-2 

gm
.c

at
.-
se
c.
 

* 
gm.

 
mo

le



206

00VO
M
BCOI—ife

&H

w>
s0MCO01 01
oo

o>A

CM

o
o

o>A

o
o
o
o

o*A
o

o
o

o
oCM

O»A

0d)K>1 
•

-Pn)o
•&

h i

X
Oh

x ‘ NoisaaMOo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gm
. 

mo
le



2 0 7

ovo
w«tooMpH

\

CO>
aoM
C/5ffjw
Ssoo

1

y c)

COPi

<

o

d\

°  \
—  — - e> 

oP4 O O Oovo \o ov CM
ii II
E-c <+h

1Ây
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SAMPLE ANALYSIS

Samples of the reactor effluent were obtained by 
the following methods:

Gas Sample

The high temperature (650-1050°F.) gaseous effluent 
is introduced directly into the gas chromatograph via a 
gas sampling valve. This method proved to be no more 
accurate than the liquid sample method, even though the 
sample represents the entire effluent stream.

Liquid Sample

The reactor effluent is partially condensed and sub­
cooled to 70°F. The propylene remains in the gas phase 
at this temperature and is vented from the system. The 
remaining liquid phase is injected into the gas chromato­
graph. Little accuracy is sacrificed by this technique 
because of the unaccounted for losses of cumene and 
benzene in the gaseous propylene stream.

The following calculations compare the two sampling 
techniques, assuming a total cumene feed to the reactor 
of 100 gm moles and a conversion of 20$.
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214

Gas Sample Analysis (No Losses)

Material Balance

% Nf M
sms.

gm-moles gm-moles mole % Km-mole Kms.

A 100.0 80.0 66.66 120.19 9,615,20
R 20.0 16.67 78.11 1,562.20
S 20.0 16.67 42.08 841.60

Total 100.0 120.0 100.0 12,019.00

Conversion

v — . . 120.19(wt.$R)
120.19 (wt ,%R) + 78.11 (wt.%A)

120. 19(13.00)
120.19(13 .00) + 78.11(80.00)
1562.2 1562.2 .20001562.2 + 6248.8 " 7811.0 ~ w

Liquid Sample Analysis (All S Lost, No Other Lot

Material Balance
No Nf M

Kms.
£m-moles gm-moles mole % gm-mole gms.

A 100.0 80.0 80.0 120.19 9,615.20
R 20.0 20.0 78.11 1,562.20
S - - 42.08 -

Total 100.0 100.0 100.0 11,177.40

Wt J o  

80.00 
13.00  

7.00

(103)

V i t . %

86.02
13.98
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Conversion

Y _________ 120.19( wt./oR)______ __
A 120.19(wt.JgR) + 78.11(wt.^A)

= ______ 120,19(13.98)
120.19(13.98) + 78.11(86.02)

= 1 ,680.2562  1 ,680.2562 _
1,680.2562 + 6,719.0222 ~ 8,399.2784 " u.-'uuu

Liquid Sample Analysis (Actual Losses)

Vapor Pressure at 70°F. (20°C.)

lop- p = 6 92926 - — 12.06.350 - g 09926 - — 350xug o.ycy^D t+2 0 7 .2 0 2 ~ 20+207.202

= 3.32 mm. Hg 

log p , j =  6  89745 -  ■ 1 3 P .6  . 35.0. £  89745 -  • 35.P .xog rR 0 .0 9 ^ 9  t+2 2 0 . 2 3 7 20+22 0 .2 37

Pp = 75.15 mm. Hg

P^ = 9.9 atm. = 7,524 mm. Hg 

Condenser Flow Chart (Figure 74)

Overall Material Balance

F = L + V (104)
120 = L + V
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FIGURE 74 

CONDENSER FLOW CHART

V
T = 70°F.
yA
yRys

F 120
T 1000°F.
yfA = 0.6666
yfR = 0.1667
y*s 0.1667

L
T = 70°F.
XAXRXS
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Component Material Balance

yfAF = yAV + xAL; 80,0 = yAV + x AL (105)

yfRF = yRV + xr L; 20.0 = yRV + xRL (106)

yfsF = ysV + xsL; 20.0 = ygV + xgL (107)

Daltons and Raoult * s Laws
X P

Pa = yA7T = XAPA» yA = TT (108)A A* * A A ’ ^A ~ 7f 

PR = yRTT = XRPR; yR = U' (109)

xspsps ys^r xrps» ys ~ ff (no)
Combine Material Balances and Dalton's and Raoult's Laws

x = 80.0 = 80 0______
A L + ^  (120-L) L + 120-L)

80.0
0.52446 + 0.995632L

= 20.0______________20.0_______
R L + ^ (  120-L) L + 120-L)

 20.0_______
11.8656 + 0.90112L

 20.0 20.0_______
S L + 120-L) L + ^||^( 120-L)

20.0______
" 1,188 - 8.90L
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Trial and Error Solution 

Let L = 100.0

80.0
XA 0.524-16 + 99.5632 100.08736 ~

XR
20..0 20.0

11.8656 + 90 .112 101.9776 "

XS
20.0 20.0

1,188 -- 890 298

Let L _ 111 .0

XA
80.0 80.0

0.524-16 + 110.51515 111.03931

20.0 20.0
XR 11.8656 + 100.024-3 111.88992

20.0 20.0
XS 1,188 - 987.9 200.1

Corrected Mole Fractions

XA
0.7206
0.9992 = 0.7211

y _ 0.1787 _ n 1 R 0.9992 “

x = 0.1000 Q ^QQI 
S 0.9992 • UU1

1.0000

.7993 

.1961

.0671

.0625

0.7205

0 .1787

0.1000
0.9992
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Material Balance

N0 %  "gm.
gm-moles gm-moles mole % gm moles gms.

A 100.0 80.0*4-21 72.11 120.19 9,620.3^
R - 19.8*4-68 17.88 78.11 1,550.23
S - 11.1111 10.01 *!2.08 *1-67.56

Total 100.0 111.0000 100.00 11,638.13

Conversion

_______ 120.19(wt.#R)
A 120.19(wt.%R) + 78.11(wt.^A)

 _______  120.19(13.32)
(120.19)(13-32) + 78.11(82.66

1 .600.9308 
1,600.9308 +6,456.5726

6 0 0 ..9.308 Q 1QQ n
8 ,0 5 7 .5 0 3 * !

Error

c/0 e r r o r  _ .(.0,.2,00,0 -  0,.1987) (100 ) /0 error " 0.2000

0 .0 0 1 3 (1 0 0 )  _ n s . ?  0.2000 " 0.65/o

wt.% 

0.8266 
0.1332 
0. 0*4-02 
1.0000
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Sample Calculation from Actual Data 

Run No. 11.53

Analysis (Wt. %)

Liquid Sample_________ Gas
Test 1 Test 2 Test 3 Average Sample

Cumene 90.62 91.35 91.30 91.09 89.11
Benzene 7 .62 7.18 7.18 7.32 7.08
Propylene 1.76 1.47 1. 52 1.59 3.81

1 0 0 .0 0 1 0 0 .0 0 1 0 0 .0 0 1 0 0 .0 0 1 0 0 .0 0  

Liquid Sample Conversion

X = _______  120.19(7.32) _ ,, MA 120.191 7.32) + 78.11(91.09) ■“ •'•M'

Gas Sample Conversion

x =  _______(120.19.} (7-08)  v _ 10 ,A (120.19)(7.08) + 78.11(89.11) "
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ULTRASONIC ENGINEERING

Fundamental Equations

Figure 76 illustrates a schematic representation of 
the instantaneous position of the gas particles through 
which a sound wave is travelling. The gas particles are 
each volume elements of gas containing millions of mole­
cules. The drawing shows the alternate compression and 
expansion of the gas in the direction of the propagation 
of the sound wave.

Figure 76 illustrates the sine wave representation 
of the sound wave.

Sound Wave Equation

y = Ycos (x-Vt) = Ycos 27Tf(t-^) (111)

cyuie aei; ayo-Le ^yyuxes
sec

f 1
T

Transverse Velocity

v = ft = ^  Ycos27Tf( t-v ) _ _Ysin2TTf(t-^) [27ff]

v = _2 7TfYsin27Tf( t-^) ( 1 1 2 )
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FIGURE 75

SCHEMATIC DIAGRAM OF SOUND WAVE

0 0 m

Direction 
of particle 

motion
Direction of 

wave propagation

FIGURE 76

SINE WAVE REPRESENTATION OF SOUND WAVE

+y

0 rr

Transverse
direction

Longitudinal-y direction
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Transverse Acceleration

dv _ d_ 
a dt dt

-2 ?T fYsin27Tf(t--)

= -2 7TfYcos2lTf( t-^) [2TTf] 

a = -4TT2f2Ycos2'jTf (t-^) (113)

Velocity of Propagation of Sound Waves in a Gas

Figure 77 illustrates an element of gas in a tube in 
which there is a longitudinal sound wave. Both the equilib­
rium and displaced positions are shown.

Newton’s Second Law

F = ma (114 )

PNET = (Po+ P (A cm2) - (p0+ P + A p d,yn| -) (A cm2)u cm^ cm^

= ~ A p a dynes

= (/̂ o cm2) ( A x  cm) =//30a A  x gms.m cm-
o = dAz cm 

dt2 sec2

-ApA =/0 aA x
1 ° dt2 

d2y = - A p A  _
dt2 /3oaA x > o A ; 
d2y = _ JL_ dp 
dt2 /^o
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FIGURE 77

ELEMENT OF GAS IN A TUBE IN WHICH THERE 
IS A LONGITUDINAL SOUND WAVE

Equilibrium position

x -----------1_  A  x —

Displaced position

H  y+
x  -----------   y   H
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Calculate p

Definition of Compressibility

1 change in volume
original volume change in pressure

_ 1_ dv 
v dp

Original volume = (Acm2) ( A x cm) = aA x  cm 
Change in volume

= (A x+y+Ay-y cm) (A cm2)-(Ax cm) (A cm 
= (Ax+Ay)A -AxA 
= A yA cm3

Change in pressure
-  (Po+P) + ( pM-th- A p )

2 " po
2p0+2p+A P 

=  §  -  P°

= Po+F^-^-P q

„ dynes
' P cm2

1 A y A  cm3 _ A y  cm2
a A x cm3 dynes P O 

L c m ^  J
p A x py^e

Rearrange to Obtain p

rj = “_i— A l  = - 1 ^ 1  
k A x k dx

pp _ -JL p£y 
Px k dx2

(115)

)
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Substitute into Equation for Newton1s Second Law

d2y _ 
dt2

1 dp
/°o dx 

1 ^

/ ’o
1_ dfy
k dx

dt̂  /°0 k dx
Change Variables

Let y = f(x ± Vt) = f(u) = f

^y _ d f _ d f # du
d x dx d u dx

du _ d(x - Vt) _ dx 
dx d x d x = 1

_izc) X
d f
du 1 -  1 =  \-d u

d2y d x2 - ,d /. d y _ d / d f \ _ d u
" T x l dx' - d x ^ '  - d X

= = j £ r

d u <d / d f \ 
d ^  * T u (T u )

U cl u ru
Ax = As = As .
d t d t d u

u

cdu d (x - Vt) +„
T t  - ~ T f —  = - v

dy _ df (tv) _ ±v d f 
d t du d u
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Jjr
d t2

^ ,-y Jf. = _Ju
d U c) t

V2 <i2f

J _ ( ±VJ £ ,
^ u d u

Substitution

V 2 <j>2f 
d u2

1 J 2 f  
/0Qk <J u2

/°o k

V = /00k (116)

Adiabatic Compression

Definition

pv = c (117)
Cp
CV

Differentiate

* dp + p Y v ̂  “^dv 
ir

= 0

dv
dp

v
V "̂""1 p  <3 V  X

Substitute into Compressibility Equation

k = . = + l V
v dp (118)
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Substitution

V = 1 2 "P ̂
./°°-

pv = nRT 
nRTP = v

-0 dynes ,R _ergs^ Cm2 —  )(i dyne-cm\ (mOK \gm mole-°K' erg ''
r> g m s

' 0 cm3 / JVJ gms--- )gm mole

V <y RT 
M

RT
M

(119)

Pressure Variations in a Sound Wave 

Pressure Equation

1 dy 
k dx

Sound Wave Equation 

y = Ycos 2T f  (x - V t )
7 ~

Differentiate and Combine Equations

dydx

(120)

(121)

Ysin 27T(x-Vt) [" 2 7T1 2?TYsin 27T(x-vt)
X ~ . X “  ~  A J

2TTy sin 
p = ~ k T

2TT(x-Vt)
7 T
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_ i
V =

. A k
V2 = — ~  /°ok

/°oV‘

P =

P =

2lT/OnV2Y sin 27T(x-Vt)
d

pmaxsin 27E(x-Vt) 
A

max

max

277/0 0V2Y 27T/0 o ̂ RTY _ ^

= 2 7 7 > 0cPRTY
H A Cy

pmax ' 27r«/>o
CpRT'
cvM

Intensity of a Sound Wave

Work Done on System 
P

w = - pdv 
o

k = . 1 ^ 1  
vQ dp

dv = kv0dp 
P

w = +1 kvQpdp = kvQ El2
P

kvQp2

(122)

(123)
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Energy per Unit Volume

wmax
Vn ■§kp̂*max

Intensity

Definition

I = (energy)

I =

(unit area)(unit time)

<JkpL r ^ r !S)u cm)(Vdt cm)
(A cm^)(dt sec)

ikp2 v dyne-cm 
max cm -sec

V =

k

cpHT
v T
/O0V'

cyM

/°ocPRT

I =

kv =

^max
2/"o

CyM ~CpRT~ 12 CyM

I o o _ cvI\ CpHT
I 1

/°o

cvM
CpRT
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FIGURE 78

INTENSITY FLOW CHART

cm
sec

cm

cm
(V sec.) (dt sec.)
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Definition of a Decibel

/ 9  = 10 log ^
o

(127)

/3 - sound intensity level, decibels

Io
16 watts

P,max 0.002 at Io
„n-16 watts .10  T—  1in aircm

Standing Waves

Definition

Standing waves are caused as a result of the reflec­
tion of sound waves back from the end of a tube. The total 
displacement is the sum of the displacements of the original 
wave and the reflected wave. Whereas, in a travelling wave 
the amplitude remains constant as the wave form progresses, 
in a standing wave, the amplitude fluctuates and the wave 
form remains fixed.

Derivation of Standing Wave Equation 

Displacement of Original Wave

yx = Ycos . § p x“vt) (128)

Displacement of Reflected Wave

( 1 2 9 )
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Total Displacement

y = y1 + y2 = Ycos

Ycos

= Ycos

2jT_( x-'/ t)

27T(x-vt)  
L A-

27T(x-vt)
A.

Ycos

- Ycos

- cos

2?T ( - x - V t ) 
A-

2TT(x+vt)
A

27T(x+Vt) 
A.

y = Y<2sin

cos (c< - ) - cos ( +/<3 ) = 2sine^sin/<?

27Tx
A s m 2TTvt_ _ _

1 = 7T
V = fA.

y = 2Ysin 27Tx s m 27Tf A t
A = 2Ysin 2TT:

A sin [2TT ft]

y = 2Ysin(27Tft)
-1 2IT xsin A

Figure 79 defines the various terms associated with 
a standing wave.

Fundamental Frequency

f  = 
° aU  

A o  =

V cpRT'
. ~ V f.
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FIGURE 79

SCHEMATIC DRAWING OF A STANDING WAVE

A

y " ^max
p = 0

Displacement antinode 
Pressure node

y = 0
P = Pmax

Displacement node 
Pressure antinode
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v_ CpRT 
, CVM-

12

"Tuned11 Wavelengths and Frequencies

4L 
3
i

5
i|L
n

CpRT' 2 _1_ CpRT' 2 3 CpRT 2 _5_ CpRT
. CyM- 4L . CVM. - cvM. 4l - cvMj

n

n = 1,3,5,7,9,etc.

Summary of Ultrasonic Engineering Equations 

Sound Wave Equation

y = Ycos

y = Y J max

2ir u-vt) 
7 T “ = Ycos 27Tf(t-*)

V
f

Transverse Velocity

v = -2 7TfYsin27Tf(t-^)

vmQV = 27TfYITISIX

Transverse Acceleration

=-47r2f2Ycos2TTf(t-^)

(130)

(111)

(112) 

(13D

( 1 1 3 )
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amax = 47r2f2Y (132)

Velocity of Propagation

V =
1 1

1 1 s " V r t] 2
. /OoK M J (119)

Acoustic Pressure

P =

max

s m 27T(x-Vt) 
A

27T/0 0V 2Y 27T>o o ̂  RTY 2 Tf/P0cpRTY
7 ̂  " M X  “ M A c,"V

(133)

cpRT
- [ W ]

CpRT
cVM_ (122)

Intensity
2

j _ pmax c £
2/00LoPBT (126)

/? =  10 log = 10 log —
cm2

(127)

Amplitude 

Y = pmax
2 7 T f ^ 0

' v
.CpRT.

1s

(13*0
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Standing Wave Equation

2 7T xy = [2Ysin(2 7fft)] sin-̂ A (135)

"Tuned11 Wavelength and Frequencies

A = 5

f =

Min
12cpRT" 2 1 "cpRT 2 3 cpRT 2 5 cpRT

L °vMJ 4L* I CVMJ L 4L» .CVM J
n
4L

n = 1,3,5,7,9,etc.

Typical Values of Wave Characteristics

The following values are calculated at the extreme 
temperatures employed in this research, 650°F. and 1050°F., 
and at the two frequencies studied, 2 6 ,000 cps and 39,000 
cps. Additionally, the calculations are made at the 
maximum power output of the equipment at each frequency 
and at one-half that power output.

Power Output

/3 = io log ±- io
(127)

/G = power output, decibels 
= 161 db at 26,000 cps 
= 150 db at 39,000 cps 

.-16 wattsI0 = constant, 10 cm4

I = intensity, watts
cm^
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At 26,000 cps,

l0s t; = = T r  = 16-1

= 1 .259 x 10160

1 = (1 .259 X 10l6)(10"16) = 1 .259 -— -Iscm^
At 39j000 cps,

lop- —  = = 1 5 0I0 10 10 i:?,u

15JL = 10 
Io
I = (1015) (10“l6) = 0.100 W & t scm^

The following calculations are for a temperature of
650°P., a frequency of 26,000 cps and an acoustical
intensity of 1 .259 ^at|s.cm^

Acoustic Pressure

'cpRT 
CVM^max = [2/V] (122)

. PM (1.0 atm)(120.19 P ^ m o T e ) n
/O - -- =  rf— i----= 0.00238 ---- --

RT (82.06 — uy) ( 6i 6°k7  cm3gm mole UK

I = (1 .25 9 i s a ^ x i o 7  ^ .sa=sm ) = 1 .25 9 x 107cm^ watt-sec cm-sec
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Cp
CV

°-S88 ^
0.571 gm-uC

1.030

R = 8 .31 x 107 — ga=9s-----sec^-gm mole- K

T = 6l6°K. 

M = 120.19 — g — ,' ■■ gm-mole

max
(2 )(0.00238 gnis ̂ / 8 ^ 3 ) (1 .259x10° dynes 

cm-sec .
gm-cm

X
'2

1 dyne-sec^
n wt>t(1.030)(8.31x10' R f i n 2 - g m  mnle.oK )(6l6°K)

gm-cm

120 IQ — snui--U* y gm mole
Q M.<t 4(5 9.928x10^  -̂s-ec) 2{k.3868xl08 ^-p)r*m2 - *sec

= ( 7.7^1xl02) (1 .^7xl02) dyn|scm

i .i z o x i o5 cm2

_ (1.120xl05 d4 !!y)(2.2^81xl0‘~6 ~
max cm ■) _

(0.155 cm^

dyne = 1. 6i

Velocity of Propagation

V = 'cpRT

7 gm-cm'_______
(1. 030) ( 8. 3lxlO sec2_gm inole_oK ) (6l6 K)

(120.19 — SHls ) gm mole
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V  =  2 0 , 9 4 5  H j -

Amplitude
pY = max CyM

STTf^p LCpRTj 27ff/0
pmax

oV ( W

(1.120x105 iei£)(1 Kg--°m )cm2  avne-sec2 /
(2TT)(26,000 5^X0.00238 f®§)(20,945 ffj)

Y = 0 ,0138 cm.

Transverse Velocity

v = 2 77fY (13 1)max
= 2Tf( 26 ,000 ^ 5 X 0 .0138 cm)

=2,254 cm.
max 7 sec. 

Transverse Acceleration

a•max = W 2f 2l = 2^ fvmax (132)
_ 2-71(26,000 ^r>(2.254 ^

(980 cn/sec2)
g

amax = 375,734 g

The results of similar calculations for temperatures 
of 650°P. and 1050°P., frequencies of 26,000 cps and 
39*000 cps, and power outputs of full power and one-half 
power are shown on the following Table 11.
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TABLE 11

SUMMARY OF TYPICAL WAVE CHARACTERISTICS

T, temperature, F. 650 650 650 650

f, frequency, 26,000 26,000 39,000 39,000

Power output full half full half
t . . .. watts I, intensity, -cm. 1.259 O .630 0 .100 0 .050

crm q
p  , gas density,
' ° cm-' 0.00238 0.00238 0.00238 0.00238

cp//°v 1.030 I .030 1.030 I .030

cmV, velocity of propagation, ——b v O 20,9*15 20,9*15 20,9*15 20,9*15

A  , wavelength, cm. 0.806 0.806 0.537 0.537
p , acoustic pressure, max 2.Y1Z 1 .62 ' 1.15 0 .Ifo 0 .32

Y, amplitude, cm. 0.0138 0.0098 0.0026 0.0018
cmvmax> transverse velocity se0 2,25*1 1,601 637 Zi4l

amax, transverse acceleration, g. 375,73*1 266,881 159,279 110,270

Z\
\Z
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TABLE 11 (continued)

SUMMARY OP TYPICAL WAVE CHARACTERISTICS

T, temperature, P. 1050 1050 1050 1050

f, frequency, s*c 2 6 ,0 0 0 2 6 ,00 0 39,000 39,000
Power output full half full half
I, intensity, cm^ 1 .2 5 9 0 .6 3 0 0.100 0 .0 5 0

*3 , gas density,
' O cm_5 0 .0 0 1 75 0.00175 0.00175 0.00175

cp//cv 1.024 1.024 1.024 1.024
p mV, velocity of propagation, ---sec 24,298 24,298 24,298 24,298

^  , wavelength, cm. 0.935 0.935 0.623 0.620
p , acoustic pressure, — -msx j_n 2 1.50 1.06 0.42 0 .3 0

Y, amplitude, cm. 0.0149 0.0105 0.0028 0.0020
cmvmax» transverse velocity, sec 2,434 1.715 686 490

a , transverse acceleration, g.lilctX 405,740 285,885 171,531 1 2 2 ,5 2 2 -P-
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Summary of Ultrasonic Engineering Nomenclature

cmV = velocity of propagation of wave form, -— 7ssc
Y = amplitude, cm.

A = wave length, " -gf-  

t = time, sec.
x = distance traversed by wave form, cm. 
y = displacement, cm.

f = frequency, s^ ~ g~

T = Perlod.
cmv = transverse velocity,

a = transverse acceleration,
sec

cm
sec2

g = conversion factor, 980 ^^ne-s tac * gm.
p  - original gas density, ~
' 0 emu

2 2 1 cm-sec
dyne’ gm *-«—  sec

cP

k = compressibility, SHi=§M.c. (dyne = M )

CV
CeilCp = heat capacity of gas at constant pressure,

Cellc^ = heat capacity of gas at constant volume, — - -g-g

R - 8 Si x 107 = 8 01 x 107 dyne-cm ,“ x 1U mole-°K a *J>1 x 10 gm mole-°K

(erg = dyne - cm = SHl=cjp£)sec^
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T = temperature of gas, °K.

M = molecular weight of gas, — Sm s —^ * gm-mole

p = pressure, f--cm^

Pmriv = maximum pressure caused by sound wave, max cm2

I = intensity, — F ^ _ ,  ^ e ^ c m  (10-7 watt-se0)
cm -sec cm -sec er£

/S - sound intensity level, decibels 
-16 wattsI0 = 10 cm^

L = reactor length, cm. 
n = 1,3,5,7,9,etc.
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DESIGN EQUATION FOR PSEUDO FIRST ORDER REACTION 

Plup; Flow Heactor Design Equation

XAf
W dX■A

^ F T T  (136)PAo j ' A 
XA0

VJ = wt. catalyst, gms.

PA = feed rate of A, moles AAo * sec.
XA q = initial conversion of A 

XAj, = final conversion of A

( —rA) = reaction rate,A * gm cat-sec

Reaction

c 6h 5- ch-(c h 3)2  c 6h 6 + c h 3- ch= c h 2

Gumene Benzene Propylene

kA  - R + S
k*

Rate Equation

(-rA ) = kpA - k'pRps (137)

nART 
PA = = GART

nHRT
P r  - \j ~ G r R T  

ruRT
PS = —  = CSRT
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(~rA ) = kHTCA - k'(BT)2CRCs

(-r.) = reaction rate, gi71 moles A A gm cat-sec

PA , Pr» P5 = partial pressure, atm.

k = forward reaction rate constant for overall
reaction, ----’ gm cat-atm-sec

k' = reverse reaction rate constant for overall
reaction,  £BU!l°ie| -

gm cat-atm^-sec

R = 82.06 ~ 3=f,tm0vgm mole-°K

T = °K.
CA , CR , Cs = concentration, finL_mol.es

Substitute Rate Equation into Plug Flow Reactor Design 
Equation

XAf
W _ f  ^LXa 0

' j kHTCA - k'tRD^CjjOg (138)

XAo

Assume Pseudo First Order Reversible Reaction 

Reaction
kp

A  -----  - R
k 1 p
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Rate Equation

(-rA ) kpCA - k'pCR (139)

kp cRe
k'p " CA " CAe

Material Balance

A

R

Total

Inlet
NAo=NA .

% o = % 0

Reactor Outlet
Na =--Na 0-Xa Na 0

% = N r o-x a nAo

nA0+NRo NAq+nR0

NAf=NA0“XAfNA0

NRf=NR 0+xAfNA0

nA0+nR0

%  _ MA0-XANAn = NAoii^A), = cAo(l-XA) = GA0"GAoXA 
CA = V v V

Nr NRo+Xa NAo _ + 5AoXA =  Cr^ + CAriXA
CR = T  = ~  v v

Substitution

(-rA ) = kp(CAo-0AoXA ) - k'p (CHo + 0AoXA )

= kp0Ao(l-XA ) - k'pcAo < +XA
At Equilibrium

CRo
k =

CR0 + Ga 0Xa GA0 XAe
k». CArt - Ca A  1 - XA,
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^ 2 + x a  = (l-XAe) Ca „ A® k'
0h o kp <l-XAe ) - XAe
°A0 k 'p

Substitution

(-rA ) = kpCAn(l-XA ) - k'pCAP Ao F Ao
[E_ (i-xAfi) - xAe + xAk'

= kp0Ao-kpcAoxA-kpcAo+kpcAoxAe+k'pCA0XAe"k'pcAQXA

= kp(oAoxAe-cAoxA ) + k'p(cAoxAe-cAoxA )
(-rA ) = (kpPk'p)CAri(XA<s-XA )P p' Ao Ae (14-0)

Substitute Rate Equation into Plug Flow Reactor Design 
Equation

w dXA
Fao j  <kp+k,p)CAo(XAe-XA>

Initial rate (XA = 0)

ro = (kp+ k 'p)GA0(XAe-XA) = (kp+k'p )CA0XAe
r

(kp+k'p)CA0 - Xa°
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XAf

W _ XAe I dXA
PAo ro (X e~XA> 

XAo
Integrate

W
FA, -ln(XAe-XA )

XAf X XA(

XAq=0
o

,  ,XAe-XA%

XA, -ln(1 - XA 
XA,

W XAe In
Fa _ r Ao ro

-Xa (3Al)
XAe J

Calculate XAf

'Ra
K = CA„ + Xa

1 - xAo

K =

Gr o = 0 

XAe
1 - XAc

:A r = k - kxa

XAf K
K + 1
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Tabulate Results

T. °F • K , atm. XA"e
850 2.01 0 .6 2 6
950 6.21 0.861

1050 15.96 0.9^2

r 1
w xA

Plot ^A0 vs> in 1 “ *AeJ as Shown in Figure 80 to
Determine ro

This plot can now be employed to calculate the 
initial reaction rate, r , as a check against the values 
determined by extrapolation of the reaction rate vs. con­
version curves.
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W gm cat-sec 
FAq» gm mole

FIGURE 80

PSEUDO FIRST ORDER PLOT OF DATA

950 F. 
0.861

Slope =

1
In
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RATIO OP EFFECTIVENESS FACTOR FOR 

DIFFERENT SIZE CATALYST PARTICLES
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RATIO OP EFFECTIVENESS FACTOR FOR

DIFFERENT SIZE CATALYST PARTICLES

Reaction Design Equation

W
pA, = X

in(1+XA5 ) Xa
( 1-XA 5 ) 5 2

■ f i

i in( i+xa <5 )
2 s, 3 (1-XA 5 ) 2 S 2

1 ln(l-^2XA2) Xa
£ 2

(99)

eLk2KA7T Lk2
2 Kr

&  " eLk2KA7T + 6" Lk2KA

1 + 21K

At constant conversion, pressure and temperature, &  

and X^ are constant and the reaction design equation re­
duces to the following:

W
pA, «fLk2KA7t <SLk2

_1_
6
_i_
€

Lk2K a7T Lk2

Ci +

'1 +

+ Kr
CLk2KaTT ^Lk KA

Lk2KA7T + Lk2KA
kb.

c3 G1 + C2

ce 5 (1^2)
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Ratio of Reciprocal Space Velocity

W
PAoJ
W

PAo

1 = 

2

£ 2

^2
e.

(1^3)

Plot W/PAq v s . XA for Various Size Catalyst Particles as 

Shown in Figure 81

Plot W/Pa0 v s . dp at Constant and Extrapolate to dp = 0 

as Shown in Figure 82

Calculate Effectiveness Factor Employing; Example Data

Catalyst
No.

^P
cm,

r W 1
_FaoJ0W p;m cat-sec w

PA » Sm mole PAo

0 0 l.i o ii t-. 
w* 

• 
• [—1

1 o.o^5 1.3 f 1.1
l ~ 1.3

2 0.33 5.7 ^ l.l 
2 " 5.7

3 0 A 3 7.6 l.l

0.53 10.0 fT 1.1 
^ 10.1

=  1.00 

= 0.85 

= 0.19 

= 0.15

r = 0.11
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FIGURE 81

RECIPROCAL SPACE VELOCITY VS. CONVERSION

0.28

7.61.3 5.7 10.0
w
PA0
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FIGURE 82

RECIPROCAL SPACE VELOCITY VS. CATALYST PARTICLE 
DIAMETER AT CONSTANT CONVERSION 

(XA = 0.28)

1

dP
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Relationship Between Effectiveness Factor and Catalyst 
Particle Diameter

Reaction Design Equation

W
PAoj

= -p- f(X^) at constant temperature (14^)
and pressure

If only the outside surface of the catalyst is 
effective, then £ = C^a, where

= a constant

a = outside surface area of catalyst cm^
unit mass » gm

= (4 TTrp2 7^ )

(3 ^ rP3/°P pellet ̂

2d
i j f  (~Z~)

6dp^
d p ^ p

dp/^p

6C6
dp/^p

dp = Gy _1_

£
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XA plot of dp vs. £ should yield a straight line if 
this assumption is true as shown in Figure 8 3.

J X  = _X_ f(xA ) = f(xA )
PAo ^1 c7

W = x  f(xA ) = G8f(xA ) (145)
PA0dP C7

Data for all size catalysts should fall on the
curve of V/ vs. XA .

pA0dp
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FIGURE 83

RECIPROCAL EFFECTIVENESS FACTOR VS. 
CATALYST PARTICLE DIAMETER

d p , cm.
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FIGURE RE­

CONVERSION VS. W
L % dPD

XA
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THE CARBON-OXYGEN REACTION
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THE CARBON-OXYGEN REACTION

During several of the initial runs in this study, a 
problem was encountered with carbonization of the cumene 
at reaction temperatures of 1000°F. and subsequent plugging 
of the reactor and fouling of the catalyst. Carbonization 
was sometimes so severe that it was often very difficult 
to remove the preheater from the reactor to clean it.

This problem was solved by purging the reactor with 
air at reaction temperature for hours after each run 
to burn off the carbon.

The Carbon-Oxygen Reaction Rate Equation

For the reaction

0 + 02  ►  002

B(S) + A(g) -------- —  gaseous product,
37Parker and Hottell^' have shown that the rate equation for 

surface reaction controlling is as follows:

4.32 x lO1^  -*<4.000 _r =  g.----- k e rt (1*1-6)B  rn g

- gm.moles carbon reacted 
sec-cnk

T = °K.
CA™ = concentration of oxygen, -moles S cm-3

« ■  1 -98 r f k s g
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Calculation of Rate Constant, ks

4.32 x lO1^ e~— - k = —^ — 1-----  e rtS rjnvj

cmk = rate constant, ---s * sec

= (850°P.)^ = (7270K)‘̂ = 27°K^

44,000 — p-a^r- * p;m mole,14 -, . 4.32 x 10 e m  oft---- Pff.l ---- ) ( 797°K)s " 27 U , V  gm mole-°K

0 .15 9 8 x lO1^ e" 3 0 * 6

(0 .1 5 9 8 x lO1^)(5.137 x lO"1^) = 0.821 cmsec

Calculation of Oxygen Concentration, CAg

c = ___________ (1 .0 atm. ) (0 .2 1)_________
Ag (0.0821 |jrf ^ t ^ ><727°K ><1000 Xlter1

= 3.52 X 1 0 - 6 g m -m °^-es
citP

Calculation of Reaction Rate

■r B  =  k s CA g  =  < 0 - 8 2 1  ^ 5 ) ( 3 - 5 2  x  I Q ' 6

= 2 .8 9 x 1 0 - 6 P r o l e s  cm^-sec
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Calculation of Maximum Weight of Carbon

Assume 5% carbonization at a feed rate of 600 gms./hr. 
cumene for 30 min.

(600 SffiS) (o,o5 ) (o .5 hrs) (12.011
gms. carbon =

(120 12 — — ) tizu.iz gm mole;

= 1 .5 gms. carbon

Calculation of Available Surface Area 

Reactor

S _ — (0.767 in)(20.5 in) _ 3i26 om2
H (2 .5^ f®)2

Preheater

(0 .7 6 7 in.) ,(2 0 5 m )  = 7 i6 6 on]2

12.5* f®>2

Catalyst
2

S = (13.1 ~ 5.7^8 gms) = 7 5 .3 0 cm2o gm

Total area = 86.22 cm2 

Required Reaction Time
(1.5 gms)t —<12-011 iifsk̂ 2-8̂ 10'6̂ ^ ' 60̂ ^ 86-22 om2>

= 8.^ min.
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On several occasions, after two 20 minute runs, the 
reactor was purged at 850°P. for 30 minutes with air. The 
reactor was subsequently disassembled and found to be 
essentially free from carbon.
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DATA

The following Table 12 lists all the data collected in 
this research. The digits before the decimal point in the 
Run No. signify a series of runs made at the same tempera­
ture. The first or first and second digits after the decimal 
point signify runs made at the same temperature and feed rate. 
The last digit after the decimal point signifies the following:

1 - 39,000 cps
2 - 26,000 cps
3 - no ultrasound

A coding system was necessary to avoid confusion since 
a total of ^79 runs were made, involving some 64-0 samples 
and 1,920 gas chromatograph analyses.

In every case, a run in the absence of ultrasound was 
made before and after the application of ultrasound. The 
analyses reported are the average of six samples, three 
samples being taken before and three samples after.

The order in which the 39,000 cps and 26,000 cps ultra­
sonic frequencies were applied were randomly reversed 
throughout the entire investigation.

Conversions were calculated from liquid samples, but 
were checked often against gas samples taken directly from 
the reactor.

Figure 85 illustrates an actual data sheet.
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FIGURE 85 
DATA SHEET

Run No.
Date
Catalyst, gms.
Bed Height, cm.
Time
Tank Height, in. 
Rotameter, mm.
Rota. Feed Rate, gms/hr, 
Tank Feed Rate, gms/hr. 
Heater No. 1 
Heater No. 2 
Heater No. 3 
Heater No. 4 and No. 5 
Hot Oil Heater 
TI-1,°F.
TI-2,°F. 
t i -3,o f .
TI-4,°F.
TI-5,°F.
TI-6,°F.
TI-7,°F. (Hot Oil)
TC-1,°F.
Ultrasound
W/F,gm cat-sec/gm mole 
Cumene, %
Benzene, %
Propylene, %
Conversion, X 
Nitrogen Purge 
Air Purge

16.1
5-1-72
5.7^8

Reactor Diameter, cm. 
Frequency, cps 
Power, watts

0.992 
39,26 
2510. 158 Feed Tank Diameter, in. 1

1225 124-5 1330 1350 14-10 14-30 1450 1510
32.85 32.85 31.05 30.4-0 29.70 29.00 28.20 —

- 26 26 26 26 26 26 _

— 25 25 25 25 25 2524-
40

-

40 4-0 40 4-0 4-0 40 4-0
4-0 4-0 40 4-0 4-0 4-0 4-0 4-0
40 40 40 4-0 40 4-0 4-0 40
40 40 4-0 4-0 4-0 4-0 4-0 40
110 110 110 110 110 110 110 110
70 70 70 70 70 70 70 70

710 710 710 710 710 710 710 710
750 750 750 750 750 750 750 75 0
750 750 750 750 750 750 750 750
750 750 750 750 750 750 750 750
750 750 750 750 750 750 750 750
350 34-8 34-6 34-8 350 352 354- 352
750 750 750 750 75 0 750 750 750
off off off off 26 39 off —

- - — — — - 102,900 —

- - - 82.66 77.98 76.15 8 3.16 —

- - - 15.69 20.4-0 22.23 15.24-
- - — 1.65 1.62 1 .62 1.60 —

- - - 22.6 28.7 31.0 22.0
on off off off off off on off

off off off off off off off on
ro
-<io
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Run Catalyst 
No. gms.

3.11 5.7
3 .1 2 5.7
3.21 5.7
3.22 5.7
3.31 5.7
3.32 5.7
3.41 5.73.42 5.7
3.51 5.7
3.52 5.73.61 5.73.62 5.7
3.71 5.7
3.72 5.73.81 5.73.82 5.7
3.91 5.7
3.92 5.7
5.11 0.958
5.12 0.958
5.13 0.958
5.21 0.958
5.22 0.958
5.23 0.958

Bed Ht. Bed Dia. 
cm. cm.

10.2 0.992
10.2 0.992
10.2 0.992
10.2 0.992
10.2 0.992
10.2 0.992
10.2 0.992
10.2 0.992
10.2 0.992
10.2 0.992
10.2 0.992
10.2 0.992
10.2 0.992
10.2 0.992
10.2 0.992
10.2 0.992
10.2 0.992
10.2 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992

TABLE 12

TABULATION OP DATA

Ultrasound Feed Rate 
gms/hr

W/F 
gm cat-sec Temp.

°F.

X
Convers

Pcps watts gm mole
mm 194 12,730 850 29.1
- - 102 24,200 850 30.9
- - 293 8,430 850 15.8
- - 387 6,380 850 9.1
- - 500 4,930 850 9.8
- - 589 4,200 850 3.2
- - 99 25,000 950 39.7
- - 198 12,480 950 2 6.5
- - 304 8,125 950 19.0
- - 387 6,380 950 6.6
- - 496 4,980 950 13.5
- - 589 4,190 950 4.2
- - 97 25,500 1050 51.3
- - 194 12,750 1050 32.3
- - 302 8,170 1050 23.4
- - 407 6,075 1050 17.9
- - 5 H 4,830 1050 14.8
- - 600 4,120 1050 9.139,000 25 99 4,180 850 7.86

26,000 25 99 4,180 850 6 .67
- - 99 4,180 850 6.2039,000 25 193 2,150 850 3.73

26,000 25 193 2,150 850 3.01
- - 193 2,150 850 2.87
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Run Catalyst Bed Ht. Bed Di;
No. sms. cm. cm.

5*31 0.958 1.693 0.992
5.32 0.958 1.693 0.992
5.33 0.958 1.693 0.992
5.41 0.958 1.693 0.992
5 A 2 0.958 1.693 0.992
5.43 0.958 1.693 0.992
5.51 0 .958 1.693 0.992
5.52 0.958 1.693 0.992
5.53 0.958 1.693 0.992
5 .61 0.958 1.693 0.992
5 .6 2 0.958 1.693 0.992
5.63 0.958 1.693 0.992
6.11 0.958 1.693 0.992
6 .12 0.958 1.693 0.992
6 .13 0.958 1.693 0.992
6.21 0.958 1.693 0.992
6 .2 2 0.958 1.693 0.992
6.23 0.958 1.693 0.992
6 .31 0.958 1.693 0.992
6 .3 2 0.958 1.693 0.992
6.33 0.958 1.693 0.9926.41 0.958 1.693 O .992
6.42 0.958 1.693 0.992
6.43 0.958 1.693 0.992

TABLE 12 (continued)

TABULATION OF DATA

Ultrasound Feed Rate 
gms/hr

W/F 
gm cat-sec Temp.

op.
X

Convers
%CPS watts gm mole

39,000 25 296 1,400 850 2.35
26,000 25 296 1,400 850 2.15

- - 296 1,400 850 1.6539,000 25 392 1,158 850 1.32
26,000 25 392 1,158 850 1.15

- - 392 1 ,158 850 0.76339,000 25 501 327 850 0.429
26,000 25 501 827 850 0.275

- - 501 827 850 0 .238
39,000 25 586 707 850 0 .816
26,000 25 586 707 850 0.669

- - 586 707 850 0.505
39,000 25 99 4,180 950 7 .02
26,000 25 99 4,180 950 5.69

- - 99 4,180 950 5.30
39,000 25 192 2,150 950 3.06
26,000 25 192 2,150 950 3.01

- - 192 2,150 950 3 .26
39,000 25 285 1,453 950 2.03
26,000 25 285 1,453 950 1.80

- - 285 M 5 3 950 1 .62
39,000 25 382 1,083 950 0.734
26,000 25 382 1,083 950 0 .6l6

- - 382 1,083 950 0.671 Zi
Z
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Run Catalyst Bed Ht. Bed Dia 
No. gms. cm. cm.

6.51 0.958
6 .5 2 0.958
6.53 0.958
6 .61 0.958
6 .6 2 0.958
6 .6 3 0.958
7 . U 0.958
7.12 0.958
7.13 0.958
7.21 0.958
7.22 0.958
7.23 0.958
8.11 0.958
8.12 0.958
8.13 0.958
8.21 0.958
8.22 0.958
8.23 0.958
8.31 0.958
8 .32 0.958
8.33 0.958
9.11 1.916
9.12 1.916
9.13 1.916

1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
1.693 0.992
3.386 0.992
3.386 0.992
3.386 0.992

TABLE 12 (continued)

TABULATION OF DATA

W/F X
Ultrasound Feed Rate gm cat-sec Temp. Conversion 
cps watts gms/hr gm mole QF. %_____

39,000 25 4-91 84-3 950 0.69126,000 25 491 84-3 950 0 >92
- - 4-91 84-3 950 0.326

39,000 25 593 698 950 0.277
26 ,000 25 593 698 950 0.24-9

- - 593 698 950 0.258
39,000 25 98 4-, 225 1050 5.39
26 ,000 25 98 4-, 225 1050 4-. 01

- - 98 4-, 225 1050 3.98
39,000 25 211 1,963 1050 2.50
26,000 25 211 1,963 1050 2.70

- - 211 1,963 1050 3.9539,000 25 98 4-,230 1050 5.9726,000 25 98 4-,230 1050 5.35
- - 98 4-,230 1050 5.1739,000 25 205 2,020 1050 2.76

26,000 25 205 2,020 1050 2.21
- - 205 2,020 1050 2 .32

39,000 25 304- 1,363 1050 1.5926y000 25 304- 1,363 1050 1.53
- - 304- 1,363 1050 2.06

39,000 25 92 8,980 950 16 .62
26,000 25 92 8,980 950 13.56

- - 92 8,980 950 12.26
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TABLE 12 (continued)

TABULATION OF DATA

Run
No.

Catalyst 
ffms.

Bed Ht. 
cm.

Bed Dia. 
cm.

Ultrasound 
cps watts

Feed Rate 
gms/hr

W/F 
gm cat-sec 
gm mole

Temp. 
F .

X
Conver

%

9.21 1.916 3.386 0.992 39,000 25 202 4,090 950 6.33
9 .2 2 1.916 3.386 0.992 26,000 25 202 4,090 950 6.539.23 1.916 3.386 0.992 — — 202 4,090 950 7.00
9.31 1.916 3.386 0.992 39,000 25 306 2,980 950 5.179.32 1.916 3.386 0.992 26,000 25 306 2,980 950 4.97
9.33 1.916 3.386 0.992 — — 306 2,980 950 4.979.41 1.916 3.386 0.992 39,000 25 l}-22 1,965 950 3.089.42 1.916 3.386 0.992 26,000 25 422 1.965 950 2.599.43 1.916 3.386 0.992 — 422 1,965 950 2 .38
9.51 1.916 3.386 0.992 39,000 25 495 1,673 950 1.549.52 1.916 3.386 0.992 26,000 25 497 1,673 950 1.52
9.53 1.916 3.386 0.992 — — 495 1,673 950 1.41
9 .61 1.916 3-386 0.992 39,000 25 606 1,368 950 1.88
9 .6 2 1.916 3.386 0.992 26,000 25 606 1,368 950 1.699.63 1.916 3.386 0.992 — — 606 1,368 950 1.4610.11 1.916 3.386 0.992 39,000 25 112 7,390 850 6 .0910.12 1.916 3.386 0.992 26,000 25 112 7,390 850 4.79

1 0 .13 1.916 3-386 0.992 — — 112 7,390 850 5.1210.21 1.916 3-386 0.992 39,000 25 203 4,080 850 4.3010.22 1.916 3.386 0.992 26,000 25 203 4,080 850 3.8510.23 1.916 3.386 0.992 — — 203 4,080 850 3-5710.31 1.916 3.386 0.992 39,000 25 310 2,670 850 2.14
10 .32 1.916 3.386 0.992 26,000 25 310 2,670 850 2.34
10.33 1.916 3.386 0.992 - - 310 2,670 850 2.00



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Run Catalyst Bed Ht. Bed Dia.
No. gms.

10.41 1.916
10.4-2 1.916
10.4-3 1.916
10.51 1.916
10 .52 1.916
10.53 1.916
10.61 1.916
10.62 1.916
10.63 1.916
11.11 5.74-8
11.12 5.74-8
11.13 5.74-8
11.21 5.74-8
11.22 5.74-8
11.23 5.74-8
11.31 5.74-8
11.32 5.74-8
11.33 5.74-8
11.4-1 5.74-8
11.4-2 5.74-8
11.4-3 5.74-8
11.51 5*74-8
11.52 5.74-8
11.53 5.74-8

cm._____ cm.

3. 386 0 .992
3. 386 0 .992
3. 386 0 .992
3. 386 0 .992
3.386 0 .992
3.386 0 .992
3. 386 0 .992
3. 386 0.992
3. 386 0 .992

10. 158 0 .992
10. 158 0 .992
10. 158 0 .992
10. 158 0 .992
10. 158 0 .992
10. 158 0 .992
10. 158 0 .992
10. 158 0 .992
10. 158 0 .992
10. 158 0 .992
10. 158 0 .992
10. 158 0 .992
10. 158 0 .992
10. 158 0.992
10. 158 0 .992

TABLE 12 (continued)

TABULATION OF DATA

W/F X
Ultrasound Feed Rate gm cat-sec Temp. Convers:
cos watts gms/hr gm mole °F . %

39,000 25 393 2,110 850 1.97
26,000 25 393 2,110 850 1.67

- — 393 2,110 850 1.5339,000 25 4-84- 1,73A 850 1.2926,000 25 4-84- 1,714- 850 1.09
- - 4-84- 1,71^ 850 0.84-0

39,000 25 609 1,370 850 0.63726,000 25 609 1,370 850 0.4-15
- - 609 1,370 850 0.4-98

39,000 25 108 23,100 1000 29.326,000 25 108 23,100 1000 26 .3
- - 108 23,100 1000 24-.2

39,000 25 208 11,950 1000 21.2
26,000 25 208 11,950 1000 24-.1

- - 208 11,950 1000 23 .6
39,000 25 302 8,250 1000 17.726,000 25 302 8,250 1000 16 .8

- - 302 8,250 1000 16 .8
39,000 25 4-26 5,84-0 1000 13.0
26,000 25 4-26 5,84-0 1000 12.5

- — 4-26 5,84-0
5,150

1000 13.6
39,000 25 4-84- 1000 12.1
26,000 25 8̂4- 5,150 1000 10.6

- - 4-84- 5,150 1000 11.0
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Run Catalyst Bed Ht. Bed Dia.
No. gms.

11.61 5.748
11 .62 5.748
1 1 .63 5.748
12.11 5.478
12.12 5.748
12.13 5.748
12.21 5.748
12.22 5.748
12 .23 5.748
12.31 5.748
12.32 5.748
12.33 5.748
12.41 5.748
12.42 5.748
12.43 5.748
12.51 5.748
12.52 5.748
12.53 5.748
12.61 5.748
12.62 5.748
12 .63 5.748
13.11 5.748
13.12 5.748
13.13 5.748
13.21 5.748

cm._______cm.

10,.158 0 .992
1 0,.158 0 .992
10..158 0 .992
10,.158 0 .992
10,.158 0.992
10,.158 0 .992
10,.158 0 .992
1 0,.158 0 .992
10,. 158 0 .992
10,.158 0 .992
10,.158 0 .992
10,.158 0 .992
10., 158 0 .992
10,.158 0 .992
10,.158 0 .992
10,.158 0 .992
10,.158 0 .992
1 0,.158 0.992
1 0..158 0 .992
1 0..158 0 .992
1 0,.158 0 .992
1 0,.158 0 .992
1 0 ,,158 0 .992
1 0,.158 0.992
10..158 0 .992

TABLE 12 (continued)

TABULATION OF DATA
W/F X

Ultrasound Feed Rate gm cat-sec Temp. Conversion 
cps watts gms/hr gm mole °F. %______

39,000 25 593 4,200 1000 8.49
26,000 25 593 4,200 1000 8.39

- - 593 4,200 1000 7.94
39,000 25 101 24,600 950 27.2
26,000 25 101 24,600 950 22 .9

— — 101 24,600 950 22.0
39,000 25 201 13,400 950 16.1
26,000 25 201 13,400 950 16.0

— — 201 12,400 950 16.0
39,000 25 321 7,750 950 14.4
26,000 25 321 7,750 950 12.4

- - 321 7,750 950 11.939,-000 25 41? 5,975 950 10.6
26,000 25 417 5,975 950 10.1

- - 417 5,975 950 9.9339,000 25 483 5,150 950 9.32
26 ,000 25 483 5,150 950 9.67

- - 483 5,150 950 8.9739,000 25 589 4,230 950 8.08
26,000 25 589 4,230 950 8.13

- - 589 4,230 950 7.62
39,000 25 102 24,400 900 13.126,000 25 102 24,400 900 11.8

- - 102 24,400 900 12.0
39,000 25 212 11,730 900 11.6
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TABLE 12 (continued)

TABULATION OF DATA

W/F X
Run Catalyst Bed Ht. Bed Dia. Ultrasound Feed Rate gm cat-sec Temp. Conversion 
Ho. gms. cm. cm. cps watts gms/hr gm mole °F. % ______

13 .22 5.748 10.158 0.992 26,000
13.23 5.748 10.158 0.992 —

13.31 5.748 10.158 0.992 39,000
13 .32 5.748 10.158 0.992 26,000
13 .33 5.748 10.158 0.992 —
13.41 5.748 10.158 0.992 39,000
13 .42 5.748 10.158 0.992 26,000
13 .43 5.748 10.158 0.992 —

13.51 5.748 10.158 0.992 39,000
13 .52 5.748 10.158 0.992 26,000
13 .53 5.748 10.158 0.992 —
13.61 5.748 10.158 0.992 39,000
13 .62 5.748 10.158 0.992 26,000
13 .63 5.748 10.158 0.992 —
14.11 5.748 10.158 0.992 39,000
14.12 5-748 10.158 0.992 26,000
14.13 5,748 10.158 0.992 —
14.21 5.748 10.158 0.992 39,000
14.22 5.748 10.158 0.992 26,000
14.23 5.748 10.158 0.992 —
14.31 5.748 10.158 0.992 39,000
14.32 5.748 10.158 0.992 26,000
14.33 5.748 10.158 0.992
14.41 5.748 10.158 0.992 39,000
14.42 5.748 10.158 0.992 26,000

25 212 11,730 900 10.6
- 212 11,730 900 9.88
25 331 7,520 900 10.5
25 331 7,520 900 9.71
- 331 7,520 900 9.78
25 425 5,870 900 7.98
25 425 5,870 900 8.37
- 425 5,870 900 8.18
25 510 4,880 900 6.73
25 510 4,880 900 6. o4
- 510 4,880 900 6.64
25 639 3,900 900 7.04
25 639 3,900 900 5.92
- 639 3,900 900 5.63
25 38 65,500 850 30.4
25 38 65,500 850 21.3
- 38 65,500 850 20.5
25 87 28,600 850 26.7
25 87 28,600 850 26.1
- 87 28,600 850 26.5
25 103 24,200 850 24.0
25 103 24,200 850 21.4
- 103 24,200 850 20.3
25 220 11,320 850 15.0
25 220 11,320 850 13.9

2 77
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TABLE 12 (continued)

TABULATION OF DATA

Run
No.

Catalyst 
. £ms .

Bed Ht. 
cm.

Bed Dia. 
cm.

Ultrasound 
cos watts

Feed Rate 
gms/hr

W/F
gm cat-sec Temp, 
gm mole °F.

X
Conver

%

14.43 5.748 10.158 0.992 220 11 320 850 12.414.51 5.748 10 .158 0.992 39,000 25 293 8 480 850 10.314.52 5.748 10.158 0.992 26,000 25 293 8 480 850 9.0814.53 5.748 10.158 0.992 — — 293 8 480 850 9.2014.6l 5.748 10.158 0.992 39,000 25 388 6 409 850 8 .5214.62 5.748 10.158 0.992 26,000 25 388 6 409 850 6.9314.63 5.748 10.158 0.992 — — 388 6 409 850 6.22
14.71 5.748 10.158 0.992 39,000 25 526 u 730 850 5.7 814.72 5.748 10.158 0.992 26,000 25 526 4 730 850 5.5814.73 5.748 10.158 0.992 — — 526 4 730 850 5 • 6114.81 5.748 10.158 0.992 39,000 25 593 4 200 850 7.4714.82 5.748 10.158 0.992 26,000 25 593 4 200 850 5.9214.83 5.748 10.158 0.992 — _ 593 4 200 850 4 .51
13.71 5-748 10.158 0.992 39,000 25 25 99 500 900 26.113.72 5.748 10.158 0.992 26,000 25 25 99 500 900 22.313.73 5.748 10.158 0.992 - - 25 99 500 900 23.913.81 5.748 10.158 0.992 39,000 25 45 54 800 900 28.113.82 5.748 10.158 0.992 26,000 25 45 54 800 900 23.6
13.83 5.748 10.158 0.992 — 45 54 800 900 21,512.71 5.748 10.158 0.992 39,000 25 28 90 500 950 63.312.72 5.748 10.158 0.992 26,000 25 28 90 500 950 51.2
12.73 5.748 10.158 0.992 — — 28 90 500 950 43.212.81 5.748 10.158 0.992 39,000 25 32 77 100 950 52 .612.82 5.748 10.158 0.992 26,000 25 32 77 100 950 44.112.83 5.748 10.158 0.992 - - 32 77 100 950 36.1

ho-S3CO
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Run Catalyst Bed Ht. Bed Dia, 
No. gms. cm. cm.

15 .11 5..748
15 .12 5..748
15 .13 5..748
15 .21 5..748
15 .22 5.,748
15 .23 5-.748
15 .31 5-.748
15 .32 5.,748
15 .33 5.,748
15 .41 5.,748
15 .42 5..748
15 A 3 5.,748
15 .51 5..748
15 .52 5-.748
15 .53 5.,748
15 . 6l 5.,748
15 .62 5.,748
15 .63 5.,748
15 .71 5.,748
15 .72 5.,748
15 .73 5.,748
15 .81 5..748
15 .82 5.,748
15 .83 5.,748

10,.158 0 .992
10,.158 0 .992
10,.158 0 .992
10,.158 0 .992
10..158 0 .992
10,.158 0 .992
1 0,.158 0 .992
10,.158 0 .992
1 0..158 0 .992
10,.158 0 .992
10..158 0 .992
10..158 0 .992
10,.158 0 .992
10,.158 0 .992
10..158 0 .992
10..158 0 .992
1 0..158 0 .992
10.,158 0 .992
1 0.,158 0 .992
1 0..158 0 .992
10..158 0 .992
1 0 ,.158 0 .992
10.,158 0 .992
10..158 0.992

TABLE 12 (continued)

TABULATION OF DATA
W/F X

. Ultrasound Feed Rate gm cat-sec Temp. Conversion 
cps watts gms/hr gm mole °F. % ______

39,000 25 23 111,000 800 57.2
26,000 25 23 111,000 800 49.3

— - 23 111 ,000 800 48.939,000 25 34 73,300 800 33-9
26,000 25 34 73,300 800 30 .2

- - 34 73,300 800 28.939,000 25 103 24,100 800 34.5
26,000 25 103 24,100 800 27.9

- - 103 24,100 800 26 .339,000 25 187 13,350 800 20.926,000 25 187 13,350 800 18.2
- - 187 13.350 800 15.739,000 25 291 8,570 800 12.0

26,000 25 291 8,570 800 9.80
- - 291 8,570 800 9.3439,000 25 391 6,375 800 8.68

26,000 25 391 6,375 800 7.18
- - 391 6,375 800 5.6839,000 25 499 5 ,000 800 7.3926,000 25 499 5 ,000 800 5.66
- - 499 5 ,000 800 4.3239,000 25 618 4 ,030 800 5.56

26,000 25 618 4 ,030 800 4.93
- - 618 4 ,0 30 800 4.07

279
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i'iun
No.

25.21
25.22
25.23
25.31
25.32
25.33
25.51
25.52
25.53
25.51
25.52
25.53 
22.11 
22.12 
22.13
22.15
22.15 
22.21 
22.22
22.23
22.25
22.25
22.31
22.32
22.33

dalyst Bed Ht. Bed Di;
rrms. cm. cn.

5.758 10.158 0.992
5.758 10.158 0.992
5-758 10.158 0.992
5. 758 10.158 0.992
5.758 10.15S 0.992
5.758 10.158 0.992
5.758 10.158 0.992
5.758 10.158 0.992
5.758 10.158 0.992
5-758 10.158 0.992
5.7 53 10.158 0.992
5.758 10.158 0.992
5.758 10.156 0.992
8.758 10.158 0.992
5. 758 10.158 0.992
5.753 10.158 0.992
5.758 10.158 0 Q9?W % y y ̂

5.758 10.156 0.992
5.758 10.158 0.992
5.758 10.153 0.992
5.758 10.158 0.992
5.75c! 10.156 0.992
5.78-8 10.158 0.992
5.7d8 10.158 0.992
5.78 8 10.153 0 99e  ̂* ✓ /  —

tABLE 12 (continued)

rABULATio:: of data

V.'/F X
Ultrasound Feed Bate urn cat-sec Temn. Conversion
cos____ v:at ts uns/hr ,.-m mole °P. /&

39,000 25 76 32,725 700 3.7526,000 25 76 32,725 700 6.35
- - 76 32,725 700 5.60

39,000 25 229 10,361 700 ’■ 62
26,000 25 229 10,861 700 } o0

- - 229 10,861 700 3.00
39,000 26 261 9,529 700 5.50
26,000 25 261 9,529 700 3.59

- 261 9,529 700 2.85
39,000 25 352 7,066 700 5.01
26,000 25 352 7,066 700 3.05

- 352 7,066 700 2.65
39,000 25 25 99,500 850 57.7
39,000 12.5 25 99,500 850 51 .5
26,000 25 25 99,500 850 50.2
26,000 12.5 25 99,500 850 39.5

- 25 99,500 850 36 .6
39,000 25 33 75,500 850 39.7
39,000 12.5 33 75,500 850 35.6
26,000 25 33 75,500 850 32.2
26,000 12.5 33 75,500 850 30.0

- 33 75,500 850 28.0
39,000 25 9-7 52,800 850 35.5
39,000 12.5 6? 52,800 850 23.0
26,000 25 6? 52,800 850 29.2
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Hun Catalyst Bed Ht. Bed Dia 
No. gms. cm. cm.

3 2.13 5,.79-8
3 3.11 5,.7E8
33. 12 5..7E8
33. 13 t,.7E8
33. 21 5 '.• 7E8
33. 22 5..7-8
33. 23 5..79-8
3^. 11 5,.7E8
34. 12 5..7^6
34. 13 5..7E6
3^. 21 5 .. 7^8
3^. 22 5 ■,7^8
3^. 23 5..7E8
35. 11 5.,7E8
35. 12 5.,7E8
35. 13 5..7E8
35. 21 5..7^3
35. 22 5.,7E8
35. 23 5..?E8
36. 13 5 .,7E8
36. 23 5.,7^8
36. 33 5., 7E8
36.^3 5..798
36. 53 5.,7E8

10,.158 0,.992
1 0,.188 0,.992
10,.158 0,.992
10,.158 0,.992
10,.158 0,.992
1 0,.153 0,.992
10,.159 0,.992
10,.158 0,.992
10,.158 0,.992
10,.158 0, QQ9 » / ; c.
10,.158 0,.992
10,,158 0,.992
10,.158 0,.992
10..158 0,.992
10,.158 0 ,.992
1 0..158 0,.992
10,.153 0 ,.992
10.,158 0 ,.992
10,.150 0 ,.992
10.,15S 0..992
10..158 0,.992
10,.158 0 ,.992
1 0.. 158 0 ..992
10.. 158 0,.992

TABLE 12 (continued)

TABULATION OF DATA
w/F

Ultrasound Feed Hate r;m cat-sec 
cps watts nms/hr nm mole

- - 31 81 ,000
39 ,00 0 25 33 76 ,200
2 6 ,00 0 25 33 76 ,200

- - 33 76 ,200
39 ,00 0 25 25 9 8 ,100
2 6 ,00 0 25 25 9 3 ,10 0

- - 25 93 ,10 0
3 9 ,00 0 25 60 E l ,200
26 ,000 2F 60 E l  .200

— — 60 E l  .200
39 ,000 25 E2 5 8 ,80 0
26 ,000 25 9-2 58 ,800

- — 9-2 58 ,80 0
39 ,000 25 25 101 ,000
26 ,00 0 25 25 101 ,000

— — 25 1 01 ,000
39 ,000 25 20 12E , 300
26 ,000 25 20 12E ,300

- - 20 12E ,300
- - 125 19 ,900
- - 82 30 ,10 0
- - 62 3 9 ,80 0
— - E l 6 0 ,20 0
- - 31 79 ,900

X
Temp. ConversionOo j

850 33-5
900 EE. 9
900 37.2
900 33.9-
900 E9 .9
900 EE . 5
900 E2.1
650 5.70
650 5.11
650 E . 82
650 5.88
650 5.91
650 5.E2
800 39.9
800 37.1
800 39-.9
800 93.9
800 39.6
800 38.1
900 19.1
900 27.6
900 39-. 3
900 El .6
900 El .2 290
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2 9 2

THERMOCOUPLE CORRECTION

The reaction temperature of all runs was controlled 
by a Leeds & Northrup Speedomax Temperature Controller. 
The controller maintained the desired temperature by 
enerpjizlnp; and de-enerpizinpr the reactor heaters. The 
control temperature was sensed by a thermocouple which 
was inserted in a thermocouple well. The tip of the 
thermocouple well was located inside the reactor and 
into the catalyst bed.

Because of the heat conduction from the tip of the 
thermocouple well to the cooler external end of the well, 
the temperature at the thermocouple junction will be less 
than the actual r,as temperature passing by the tip.
Bird^ has shown this error to conform to the following 
equation:

'IT = temperature indicated by thermocouple, 
950°F.

T = temperature of cool end of thermocouple 
well, 570°F.

T = actual p:as temperature, °ii’.3. '
h = heat transfer coefficient, 120 Op

L = length of well, 0.708 ft.

T1 a (1^7)
w a
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B tuk = thermal conductivity of metal, 60 t y, u g~"* hr-ft^- F,
B = thickness of well, 0.00692 ft.

=   - 1  -  . =  - -  1 -  =  0.00000612570 - Ta cosh 12.04 163,376

Ta = 950°F.

Therefore, the error is i.nsiynif icant and the thermo­
couple does sense the actual ̂ a3 temperature.
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QUADRATIC REGRESSION EQUATION

All the data collected at each temperature and fre­
quency are presented herein as plots of conversion versus 
reciprocal space velocity. The curves best fitting the 
data were calculated by the quadratic regression method to 
fit the following equation:

n - number of data points.

The resulting three constants for each operating 
condition are shown in Table 13 end the data and calculated 
curves are shown in Figures 86 through 111.

The quadratic regression curves were employed only to 
evaluate conversion at the specific reciprocal space velocities

significance of the mass transfer coefficient as a function of 
temperature as calculated from the conversion versus reciprocal 
space velocity information obtained from the regression lines 
was then determined.

(21)

and ,

( 1 4 8 )

(1 5 0 )

(1 49 )

where,

of 20,000, 50,000 and 80,000 . The statisticalgm mole
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TABLE 13 

QUADRATIC EQUATION CONSTANTS
f

Temp.
°F.

cps q 
x 10"J Power a b x 106 c x 10^

650 39 full -0.000959 1 .74 -0.91
650 26 full -0.00605 1 .76 -1.06
650 — off -0.00664 1.75 -1 .10
700 39 full 0.0309 1.45 0.590
700 26 full 0.0253 0.923 0.790
700 — off 0.0205 0.958 0.650
75 0 39 full 0.0231 7.55 -3.74
750 26 full 0.0051 6 .66 -3.17
750 — off -0.0054 7.00 -3.70
800 39 full 0.0453 5.97 -2 .32
800 26 full 0.0308 5.32 -1.93800 — off 0.0226 5.41 -2.09
850 39 full 0.0282 9.92 -5.87
850 26 full 0 .0252 9.04 -5.76
850 — off 0.0258 8.40 -5.60
850 39 half 0.0989 5.01 -2.00
850 26 half 0.0974 4.79 -2.03
850 — off 0.0258 8.40 -5 .60
900 39 full 0.0877 5.33 -1.86
900 26 full 0.0789 4.16 -1.13
900 off 0.0655 6.26 -3.15
950 39 full 0.0359 7.52 -1.75
950 26 full 0.0256 8.76 -4 .3 0
950 — off 0.0255 8.12 -4.42

1000 39 full 0.0215 20.3 -39.5
1000 26 full -0.0224 29.4 -75.2
1000 — off -0.0213 29.8 -81.5
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Û
CM

OOO O OO O

•
o
<D (1)
CO rH
1o
• E

4-5
n5 •
o E

• b£
E
bf.

ON,

*
Ph

o
UN,

o-3- oĉ o
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EVALUATION OF REACTION ACTIVATION ENERGY

Arrhenius' Law

Arrhenius' Lav;, which describes the reaction rate 
constant as a function of the reaction activation energy 
and temperature is a follows:

k = k e RT (151)

where,

k = reaction rate constant, ^ " cat'-fec

kn - frequency factor, — o * -r j cat-sec
, . . . cal

a  = activation energy ----- =—’ ym mole
T = temperature,°K

calH = conversion factor, 1.98 mole oK _

For solid catalyzed, reactions, the surface reaction 
rate corrected for pore diffusion, £ Lk^, is substituted 
for k, the reaction rate constant. After this substitution 
is made, the natural logarithm of the equation is taken in 
order to obtain a linear function of reciprocal temperature.

JL
£ b k 2  =  kQe“ RT (152)

/- EIncLkp = In k0- In e

■  ln ko- iff
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In € L k ^  = | Ur + In kQ (153)

Calculation of Activation Energy
KIn the above equation, - — is the slope of the straight 

line obtained when In is plotted against reciprocal
temperature.

As shown in Chapter V, the equations for the curves
at the frequencies studied are as follows:

1
no ultrasound: log^Lk^ = -4812 -1.l4l (154)

In CLk£ = -6 1 5 7  -2.628

26.000 cps: log €  Lk2 = -4115 -1.637 ( 155)

In €Lk2 = -5265 ̂  -3.770

39.000 cps: log£Lk2 = -2801 —  -2.53^ (156)
1In 6Lk2 = -3584 ^  -5.836

The calculation of activation energy, E, from the 
constants associated with reciprocal temperature obtained 
from the above equations yield the following results:

no ultrasound: - ^ = -6.57; E = (6157)(1.98)
= 1 2 . 1  koalgm mole

26,000 cps,: - § = -5265; e  = (5265)(1 .9 8)
:= 10 4  ■ k c a lgm mole
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39,000 cps: - § = 3584; E = (3584)(1.98)
n  i kcal 

gm mole

Calculation of the Characterization Factor

No ultrasound: In kn = -2.628

o 
( 

ii 0.0723 gm moles 
gm cat-sec.

26,000 cps: In ko ■ -3.770

IIoX

0 . 0 2 3 1 gm moles 
gm cat-sec.

39,000 cps: In k = o 5.836

FT O II 0.00293 gm moles 
gm cat-sec
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EVALUATION OF INTRINSIC HATE CONSTANT

In order to plot CLk^ as a function of Kelvin tem­
perature on the same paraph as the mass transfer coeffi­
cient, kfr, the equations for € Lk^ as a function of

of 6"Lk0 in these equations are -■̂ rn which must be2 1 km cat-sec

Hankine temperature must be transformed. The dimensions
-ILL 
km c mtransposed to   to correspond to the dimensions of k .sec k

This is accomplished by the following calculations:

No Ultrasound

lor 6 Lk0 = -4812 -1.141 (154)2 Toi{

I p i ), km moles wap rw cm —a,tm \ / rnOi/ \
( 2 km cat-secJ(c32- ^  mole-0K )(1 K)

(1 atm) (13.1 — — r) krn cat

T°H = 1.8°K 

lor k„ = lo,k CLk„ + lop; T°K + lor -8?!0?
S ±  j  • -L

lok k = -4812 — — -1.141 + lor T°K + lop 6.26183203 1. 8'i K

lok ks = 26-̂ 3 . 8a + lor T°K - 0.3443293 (157)

Frequency = 26.000 cps

lor 6 L k  =  -4115 -5-; -1.637 (155) ̂ 1. h .

lor kg = -22M̂ ,,3&6.6. + lor t°k - 0.8399895 (158)
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Frequency = 39.000 cps

loft CLk2 = -2801 ;4- -2.53^ (156)
X -Li

lop = -!XliJ1288 + 1q rjloK _ 1#73681?1 U 5 9 )

s T K

The values of lop kc, calculated at each temperature 

and frequency are shown in Table id. Some of the values 

of the mass transfer coefficient, k , are also indicated 

in the table.
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CALCULATION OF MAXIMUM PROBABLE FLUOR 

Reciprocal Space Velocity, ^ ’’Aq

d(W/t,'An) Faoc1W - WdI'An chJ WdFA
= i v  = pAo ■ P a n

ri(tJ/l?Ao) L  F l o
W/1’A0 ' W - PA0

The maximum probable error is the sum of the individual 
errors. Therefore,

d t ^ A p )  dVi < ̂ 'Aq
H / V A o  ' l'J + l''A0

For example,
Vi = 5. yi-t-B rms. - 0.001 Am.

FAn = 200 t 0 . 8  ^Lo J hr. " h r .

Vi/F 
PA0

A error = 0 Jv? j/0

d t ; £ o) = § f $ r |  + f u j  "  0 .0 00 1 73 9  + O.oodo = O.OOH-17

••/l'A0 = ,9-39 -  53

Conversion, Xa

120.19U_______
AA 120.19H + 78.HA

= (120.19R+78.11A)(120.19)dR-120.19H(120.19dU+78.lldA)
A (120.192 + 78.11A)2

_ 120 .19dii   (120.19)2Kdr _ (120.19) ( 78.11)HdA
120.19H+78.11A ~ (120.192+78.1 1 A ) 2 " (120.19H+78.lldA)2
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&Xa d!i 120.19 dR 
*A ^ (120.19IM-78.11A)

For example,

R = 7.32%  - 0.12% 

A = 91.09% t  0.53%

dXA = 0.12 + 120.19(0.12) 
XA 7.32 120.19(7.32)

% error = 2.3^%

XA = 11.0% ± 0.2%

■ 7 8 .1 1  d.A 
( 1 2 0 . 1 9 2 + 7 8 . 11A)

+ 78.11(0.57) 
78.11(91.09)
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CALCULATION OF POWER INPUT

The maximum total power output of the ultrasonic 
horn employed in this research was 25 watts according 
to the manufacturers specifications. The power input 
per mole of reactor feed at the lowest and highest feed 
rates studied is as follows:

Power Input at Feed Rate of 25 gms./hr.

P
Joule(25 watts)(1 watt-sec

J oules

kcal
gm-mole

><25 g ^ K i o o o  j#r)
) ( 3600 gj5 ) (120.19 1hr gm mole

cal
kcal

Power Input at Feed Rate of 600 gms/hr.

p (25 wat Joule
watt-sec
Joules

kcal
gm-mole
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SAMPLE CALCULATION OF THE MASS TRANSFER COEFFICIENT

The mass transfer coefficient is calculated from the 
following equation derived in Chapter II and Appendix IV: 

6.26 XAf T
S (W/FA n ) m ( l  + YALM)

(22)

Some actual values for the parameters are as follows:

W/Fa = 20,000 gn?-gat.rsec. ao ’ gm mole
T = 850°P. = 72?°K.

x A f  = 0 .1 7 1

_ ̂ A f  _ 1-0.171 . 0.829 .
° 1+xAf 1+0.171 1.171

1 - X a o 1 - 0 . 7 0 8  0 .2 9 2

L« = H g T x r /  - ° - W 5

Substitution of the above values into Equation (22) yields 
the following:

(6.26)(0.171)(727) . cm
g (20,000) In (0.84-5) sec
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ANALYSIS OF VARIANCE

The confidence intervals for the coefficients of the 
linear equations expressing log k as a function of T ando

■ilog 6 Lk2 as a function of ^ are calculated as illustrated 
in the following example.

Linear Equation at ^ F  = 80,000 cat-sec ultrasound________ ________________o_____ ’_____ gm mole_____

log k = 0.00169T - 2.66
t J

Let y = log k£
x
a
b

- 2.66 
0.00169

Calculate Sy and Sy

x
n x x2 - ( z x)2 

n( n - 1)
n = 5 (number of data points) 

x2 = 2,653,227 
( 2 l x ) 2 = ( 3637) 2 = 13,227,769

S = x
(5)(2,653,227)-13,227,769 = ^3.798

s = 
y

n r y 2 - (r y)2 
n( n - 1)

n = 5
y = 10.3368^5 

( 2: y )2 = (-7.181^3)2 = 51.572936
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s = 
y

5(1 0.336845)-51.572936
jCifj = 0.074595

Calculate r

bS
r = = .(0.,Q,0l69) (lJ-3 .798) _ 0002729Sy 0.074-595 ” 992^^9

Calculate Sy.x

S = S 
y x  y

(n-l)(1-r )
(n-2) 

=  0.0010689 

Calculation of Sa and Ŝ ,

= 0.074595 4(0.01539115)
3

S = S . a y *x

;2 -

-2
1 + x
n ( n - D S * 2

1

r x 2
n 5

= 529,100.76

So = (0.0010689)cl
I + 529.ioo.76
5 4(43.798)2 = 0.0088889

S
sn = y-x

b ( n - l ) t f c  ( 4 ) 4 ( ^ 3 . 7 9 8 )
(0.0010689) „3— ----<-!—  = 0.0000122

Calculate 99% Confidence Interval

fcn-2, t3,99 5.841

a = -2.66 - t- QQSo = -2.66-(5.841)(0.0088889) = -2.66^0.05
j , 7 7 u

b = 0.00l69-t^ 99Sfe = 0.00l69-(5.84l)(0.0000122)

= 0.00169^0.00007
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Calculate 95% Confidence Interval

tn-2, " t3,95 " 3.182

a = —2.66—(3*182)(0.0088889) = -2 .66^0 .03  

b = 0,00169-13.182)(0.0000122) = 0.00169-0.0000*4-

Calculate 90$ Confidence Interval

tn-2, = fc3 ,90 = 2 *338
a = —2.66—(2.358)(0.0088889) = -2.66±0.02 
b = 0.00l69-(2.358)(0.0000122) = 0.00169-0.00003

The confidence intervals are similarly calculated for the 
remaining relationships.
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NOMENCLATURE

A = reference to curnene
9A = area, cm”

?piD *a = superficial surface area of catalyst, gm 
cma = transverse acceleration, ---5-sec^

C = total concentration of A + H + S, cm 3
C. = concentration of cumene, ltm—m.Qj-.e A cm 3

C* = eciuilibrium concentration of benzene,e cm 3
2

CAt = concentration of active sites occuoied by A, — -— 7- 1 J ’ gm-cat

CAo = concentration of cumene on catalyst surface,s cm3
CT = total concentration of available active sites, cn?-”■■■■■■ E ’ gm cat
C-i = concentration of unoccupied active sites, — — — r 1 gm cat

cal
gm-°C.

2

q  1Gp = heat capacity of gas at constant pressure, ■ ■ Op

G,. = concentration of benzene, -9.3es u cm3
Cw = equilibrium concentration of benzene, ---9---cm-5

2Cgp = concentration of active sites occupied by H, 01,1

Cn = concentration of propylene,
0 cm-5

gm cac

pcm^Ggn = concentration of active sites occupied by S. —^ — r’ gm cat
C,, = heat capacity of gas at constant volume, ■ 

v * gm -°G .
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2cmD. . - diffusivity of cumono in benzene, — —
ri 11 ot»G

2cmD.r, = diffusivity of cumene in propylene, — —A o  o O u
2r*mD = effective pore diffusivity, ——— e sec

2
Dv = Knudsen diffusivity,I\ o o  O

2pmD - combined diffusivity, — — s ’ sec
d = average diameter of catalyst pore, cm.

dp = diameter of catalyst particle, cm.
ym calv. = activation enerpy, 'rm_mole

F = feed rate,

F = force, dynes
i._ ym-moles . ym-molesFa = initial cumene teed rate, ---- or 1 Gec-

(see text) 
f = frequency, c^ ^ 5-

G = superficial mass velocity of yas normal to 
catalyst bed, ---cnr -sec 

dyne:= conversion factor, 980
’ k„sv -khg = Thiele modulus = mrp = rp —  , dimensionles

...........  erg; dyne-cm. „ „-7 watt-seci1 = intensity, om2_seo, c^-sec U 0  — —  )
16 watts1 — 1U qo cm^

K - equilibrium constant for overall reaction, atm 
K2 = equilibrium constant for surface reaction, atm
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= equilibrium desorption constant for H, atm.
iKa = equilibrium adsorption constant for A, —r —h q, yj m •
1K,j = equilibrium adsorption constant for R, -t—* * ct urn •

k = forward. reaction rate constant for overall reaction,
pm moles 

pm cat-atm-sec

k = comoressibility, -— 411 crn~rec..' (dyne = ^
7 ’ dyne* pm sec2

k 1 = reverse reaction rate constant for overall reaction,
pm rnoles____

pm cat-atm^-sec
k ~ constant,0 * sec

. _ , . _ pm molesk. = rate constant for adsorption of A, p 71 - ’ cm^-atm-sec

k' = rate constant for desorption of A, mole^
1 cm -sec

kp = forward reaction rate constant for surface reaction,
pm moles 
cm2-sec

k'p = reverse reaction rate constant for surface reaction,
pm moles 
cnr--atm-sec

k^ = equilibrium desorption constant for R, atm.
rrm molesk' = rate constant for adsorption of H. — H— f-----3 cm^-atm-sec

k = mass transfer coefficient,
£ sec

kp = oseudo first order forward reaction rate constant,
3 citk

pm cat-sec
k'p = pseudo first order reverse reaction rate constant,

cm3
pm cat-sec
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ko = forward intrinsic rate constant for surface reaction,
o

cm
sec

1„ = reverse intrinsic rate constant for surface reaction, /+cm______
p;m mole-sec

L = reactor length, cm.
2

L = total concentration of active sites, — — — r-’ gm cat

1 = unoccupied active catalyst site, dimensionless

M molecular weight, — tULe—’ gm mol
m = mass, gms
' = number of moles of A, Km moles“A

KrA0 = initial number of moles of A, Km moles
wA f  = final number of moles of A, g m  moles
-Ia „ = nate of mass transfer of A in z direction, lesrtz ’ cm^-sec

= nate of mass transfer of H + 3 in z direction, m°l.g.v ^z ’ cmz.-sec
M,p = total number of moles, gm-moles
n = 1,3,5,7,9, etc.
P = vapor pressure, mm. Hk
p = partial pressure, atm.

dyne sp = pressure, — T ~cm^
Pq = critical pressure, atm.

dvne sp = maximum pressure caused by sound wave, —1*-r—  max cm2
p,p = total pressure, atm.

3
P = ideal Kas constant, 82.06 ■- - ■* gm mole- K.
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ft - reference to benzene
ft = ideal p;as constant, 1.987 —’ rm mole- K
r _ p, q-i y 1 n 7  erf<;s dyne-cm.

p;m mole-OR’ ym mole-°K
( e r r ,  = dyne-cm = )sec^

ft = fteynold's number, dimensionless
2ft = ideal yas constant, 8.3 x 10^  4m.~cln -----'■ v,m mole-K-sec^

4 = maximum reaction rate, 4rn molesmax ’ sec.
ftp = rate of diffusion into catalyst pellet,

r = initial rate of reaction,
sec.

ym moles
o ' * r . m  cat-sec

r^ = ym moles A diffusing7; toward catalyst surface por
second per pm catalyst, 4Hl~-mo.4ef.

’ ;>;m.sec.
(-rA ) = reaction rate, A-A]_ ’ pm cat-sec

re = equivalent radius of pore, cm.
rp = radius of catalyst particle, cm.
S = reference to propylene

SEX ~ external surface area of catalyst, cm2 
Sp. = total surface area of porous catalyst, cm2

cm23,, - total surface of porous catalyst = P pS , -k~- 7 ' ^ K cmo
T = temperature, °K. 
m • j  sec
1 = Period-
t = time, sec. 

t = temperature, °G.

= critical temperature, °C,
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\r cmvelocity of propagation of wave form, ec
V, = molar volume at the normal boil.iny point, — c —b 1 1 ’ ym mole

cm3= critical molar volumeG '   - - s ym-mole
3cmcore volume, —1 fi-nym

cmtransverse velocity, --ec
3v = volume, cm-

■:! = v;oiy;ht catalyst, r:ms.
VJ = work done on A .system dyne-cm, erys.

':l -  wciyht of catalyst, yms.c
X = distance traversed by wave form, cm. 

= conversion of A, dimensionless

xAf 

ô
Y = mole fraction in yas phase
Y = amplitude, cm. 

mole fraction of A, dimensionless

;<Ap = equilibrium conversion of cumene, dimensionles: 
final conversion of A 

X = initial conversion of A

V"A
YA, = mole fraction of A in bulk stream, dimensionless•b

mean m°le fraction of cumene in the bulk stream 
dimensionless

Y^r, = mole fraction of A at catalyst surface, dimensionless

y = displacement, cm. 
z = distance in z direction, cm.
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/ 3  -  sound, intensity level, decibels

p(jv
= thickness of stagnant yas film between main yas 

stream and external surface of catalyst, cm.
£  = void fraction in packed catalyst bed, dimensionles:
6 - catalyst effectiveness factor, dimensionless

"̂/K = Lennard-Jones parameter, °K.
O  = catalyst internal void fraction, dimensionless
A = wave length, ■ ■cm,-1*.’ cycle
7T = total pressure, atm.
/b = fluid density,' cmb

/°jj = bulk density of catalyst bed, emu
rrjn  ^/°n = initial .yas density, £j—r- 

' emu
ynu 
cm.

true density of solid material in porous catalyst,

/b = catalyst oar tide density, of particle volume/ 1 “ cm3

d
o

= Lennard-Jones parameter, A 
T" = tortuosity factor, dimensionless

= critical viscosity, 

^7^ = collision integral
cm-sec

yms
cm3
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