# **Copyright Warning & Restrictions**

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen



The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

### **INFORMATION TO USERS**

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

- The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
- 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
- 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again beginning below the first row and continuing on until complete.
- 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
- 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

**Xerox University Microfilms** 

300 North Zeeb Road Ann Arbor, Michigan 48106

### 73-27,028

LINTNER, Jr., William, 1931-THE EFFECT OF ULTRASONIC VIBRATIONS ON HETEROGENEOUS CATALYSIS.

i i

> Newark College of Engineering, D.Eng.Sc., 1973 Engineering, chemical

University Microfilms, A XEROX Company, Ann Arbor, Michigan

### THE EFFECT OF ULTRASONIC VIBRATIONS

ON HETEROGENEOUS CATALYSIS

ΒY

WILLIAM LINTNER, JR.

### A DISSERTATION

### PRESENTED IN PARTIAL FULFILLMENT OF

### THE REQUIREMENTS FOR THE DEGREE

OF

### DOCTOR OF ENGINEERING SCIENCE

 $\mathbf{AT}$ 

### NEWARK COLLEGE OF ENGINEERING

This dissertation is to be used only with due regard to the rights of the author. Bibliographic references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

> Newark, New Jersey 1973

#### ABSTRACT

The effect of ultrasonic vibrations on the vapor phase decomposition of cumene to benzene and propylene was investigated employing silica-aluminum cracking catalyst.

The catalytic reactor consisted of a 1 cm. diameter stainless steel tube containing a 20 in. long preheater and a 4 in. long catalyst chamber. The catalyst bed was irradiated from above by means of an ultrasonic horn which transmitted acoustical energy directly into the vapor.

The reactor was run at temperatures of  $650^{\circ}$ F. and  $1050^{\circ}$ F., frequencies of 26,000 cps and 39,000 cps, feed rates of 20 to 600 gms./hr., power outputs of 0.5 to 1.3 watts/cm.<sup>2</sup>, and catalyst loadings of approximately 1 to 6 grams.

At temperatures and flow rates where external bulk diffusion controlled the rate of reaction, the application of ultrasound resulted in increases in the mass transfer coefficient up to 40%. In the area where surface reaction and internal pore diffusion controlled, the combined catalyst effectiveness factor - surface reaction rate constant was increased by up to 160%.

Confidence intervals were calculated for the coefficients of the equations expressing log  $k_g$  as a function of T and log  $\boldsymbol{\mathcal{E}}Lk_2$  as a function of  $\frac{1}{T}$ . The analysis of

-i-

variance indicated that the increases in mass transfer coefficients and combined catalyst effectiveness factor - surface reaction rate constants were significant at ultrasonic frequencies of 39,000 cps. The increases obtained between frequencies of 26,000 cps and no ultrasound were of lesser significance.

It is postulated that ultrasound causes acoustic streaming within the reactor tube and catalyst pores, resulting in higher transport rates caused by the combined effect of diffusion and forced convection as compared to the effect of diffusion alone in the absence of ultrasound. In addition, acoustic energy may cause localized heating within the catalyst bed, thereby increasing the rate of surface reaction.

### APPROVAL OF DISSERTATION

### THE EFFECT OF ULTRASONIC VIBRATIONS

ON HETEROGENEOUS CATALYSIS

ΒY

WILLIAM LINTNER, JR.

FOR

DEPARTMENT OF CHEMICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

BY

APPROVED:\_\_\_\_\_CHAIRMAN

NEWARK, NEW JERSEY

JUNE, 1973

-iii-

### ACKNOWLEDGMENTS

Many people have given assistance and guidance to the author during almost four years of investigation and it is almost impossible to acknowledge them all. However, the author thanks particularly his advisor, Dr. Deran Hanesian, for his most valuable help from inception to completion of this work.

The author also expresses his sincere appreciation to Mr. Arnold Stewart, Mr. Gerard Gilkie and Mr. James Nickolson of Macrosonis International, and Dr. Carl Bertsch, formerly of Newark College of Engineering, for their advice in designing the experimental equipment.

He also acknowledges the aid of Mr. Donald Friedeman in constructing the equipment, and the generosity of Dr. Dimitrios Tassios for lending his gas chromatograph for the analytical work. He further acknowledges the generous assistance of Mr. Richard Robertson for helping him employ the computer program for correlation of data.

The author is deeply grateful to his wife, Doris, for typing this dissertation and to his son, William, who inked most of the data curves.

Finally, the author especially thanks his company, L & L Chemical Construction & Engineering Co., for granting him a leave of absence in order to fulfill his residency requirement, and du Pont for their fellowship which helped immensely with the financial burden.

-iv-

### TABLE OF CONTENTS

|         |     |                                    | Page |
|---------|-----|------------------------------------|------|
| Chapter | I   | INTRODUCTION                       | 1    |
|         |     | Purpose and Scope of Investigation | 1    |
|         |     | Literature Survey                  | 2    |
| Chapter | II  | THEORY                             | 16   |
|         |     | Continuous Reaction Model          | 16   |
|         |     | Reaction Design Equation           | 21   |
|         |     | Ultrasonic Engineering             | 24   |
| Chapter | III | EXPERIMENTAL EQUIPMENT             | 30   |
|         |     | Flow Chart                         | 30   |
|         |     | Feed System                        | 30   |
|         |     | Regeneration System                | 32   |
|         |     | Reactor                            | 32   |
|         |     | Condenser                          | 36   |
|         |     | Ultrasonic Horn                    | 36   |
|         |     | Piping                             | 38   |
|         |     | Analytical Instrumentation         | 38   |
|         |     | Equipment Specifications           | 39   |
| Chapter | VI  | EXPERIMENTAL PROCEDURE             | 47   |
|         |     | Operating Conditions               | 47   |
|         |     | General Procedure                  | 47   |
|         |     | Detailed Procedure                 | 50   |

-v-

### TABLE OF CONTENTS (continued)

|               |                                                         | Page |
|---------------|---------------------------------------------------------|------|
| Chapter V     | EXPERIMENTAL RESULTS                                    | 54   |
|               | Presentation of All Data                                | 54   |
|               | External Diffusion Controlling                          | 66   |
|               | Surface Reaction and Pore<br>Diffusion Controlling      | 83   |
|               | Activation Energy                                       | 95   |
|               | Summary of Results                                      | 102  |
|               | Acoustic Streaming                                      | 103  |
|               | Thermal Effects                                         | 105  |
| Chapter VI    | CONCLUSIONS                                             | 106  |
| Chapter VII   | RECOMMENDATIONS                                         | 108  |
| Appendix I    | PHYSICAL PROPERTIES OF CUMENE,<br>BENZENE AND PROPYLENE | 110  |
| Appendix II   | PHYSICAL PROPERTIES OF SILICA-<br>ALUMINA CATALYST      | 125  |
| Appendix III  | CONTINUOUS REACTION MODEL                               | 128  |
| Appendix IV   | GAS FILM DIFFUSION                                      | 132  |
| Appendix V    | SURFACE PHENOMENA                                       | 139  |
| Appendix VI   | PORE DIFFUSION                                          | 146  |
| Appendix VII  | REACTION DESIGN EQUATION                                | 162  |
| Appendix VIII | EVALUATION OF REACTION RATE CONSTANTS                   | 173  |
| Appendix IX   | SAMPLE ANALYSIS                                         | 212  |

ı

### TABLE OF CONTENTS (continued)

|           |         |                                                                        | Page |
|-----------|---------|------------------------------------------------------------------------|------|
| Appendix  | Х       | ULTRASONIC ENGINEERING                                                 | 221  |
| Appendix  | XI      | DESIGN EQUATION FOR PSEUDO FIRST<br>ORDER REACTION                     | 246  |
| Appendix  | XII     | RATIO OF EFFECTIVENESS FACTOR FOR<br>DIFFERENT SIZE CATALYST PARTICLES | 254  |
| Appendix  | XIII    | THE CARBON-OXYGEN REACTION                                             | 263  |
| Appendix  | VIX     | DATA                                                                   | 268  |
| Appendix  | XV      | THERMOCOUPLE CORRECTION                                                | 291  |
| Appendix  | XVI     | QUADRATIC REGRESSION EQUATION                                          | 294  |
| Appendix  | XVII    | EVALUATION OF REACTION ACTIVATION ENERGY                               | 323  |
| Appendix  | XVIII   | EVALUATION OF INTRINSIC RATE CONSTANT                                  | 327  |
| Appendix  | XIX     | CALCULATION OF MAXIMUM PROBABLE<br>ERROR                               | 331  |
| Appendix  | XX      | CALCULATION OF POWER INPUT                                             | 334  |
| Appendix  | XXI     | SAMPLE CALCULATION OF THE MASS<br>TRANSFER COEFFICIENT                 | 336  |
| Appendix  | XXII    | ANALYSIS OF VARIANCE                                                   | 338  |
| Nomencalt | cure    |                                                                        | 342  |
| Literatur | e Refer | rences                                                                 | 349  |
| Vita      |         |                                                                        | 356  |
|           |         |                                                                        |      |

-vii-

### LIST OF FIGURES

| Figure 1     | Flow Chart for Experimental Reactor                                     | · 31           |
|--------------|-------------------------------------------------------------------------|----------------|
| Figure 2     | Reactor                                                                 | 33             |
| Figure 3     | Reactor Thermocouple Location<br>and Heating Zones                      | 34             |
| Figure 4     | Ultrasonic Horn                                                         | 37             |
| Figure 5     | Feed Rotameter Calibration                                              | 45             |
| Figure 6     | Ultrasonic Generator Frequency<br>Calibration                           | 46             |
| Figure 7     | Data Sheet                                                              | 53             |
| Figure 8-16  | Conversion vs. W/F                                                      | 56 <b>-</b> 64 |
| Figure 17-22 | Mass Transfer Coefficient vs.<br>Temperature                            | 69-77          |
| Figure 23-24 | Mass Transfer Coefficient vs.<br>Temperature                            | 79-81          |
| Figure 25-33 | Conversion vs. W/F                                                      | 85 <b>-</b> 93 |
| Figure 34-37 | Effectiveness Factor vs.<br>Temperature                                 | 7-100          |
| Figure 38    | Rate Constants vs. Temperature                                          | 104            |
| Figure 39    | Continuous Reaction Model                                               | 131            |
| Figure 40    | Gas Film Diffusion of A,R and S                                         | 134            |
| Figure 41    | Cross Section of Catalyst Particle<br>Showing Differential Element      | 148            |
| Figure 42    | Cross Section of Plug Flow Reactor<br>Showing Differential Element      | 164            |
| Figure 43    | Plot of X <sub>A</sub> vs. W/F <sub>AO</sub> at Constant<br>Temperature | 176            |
| Figure 44    | Plot of Reaction Rate vs.<br>Conversion at Constant Temperature         | 178            |

### -viii-

LIST OF FIGURES (continued)

Page

| Figure 4 | 45  | Plot          | of  | $\pi/r_{o}$ | vs.M | 179 |
|----------|-----|---------------|-----|-------------|------|-----|
| 13:      | 1.7 | <b>D1</b> - 4 | - 0 | 1/1         | Vv   |     |

| Figure | 46     | $\begin{bmatrix} \operatorname{Plot} & \operatorname{of} & [W/F_{A_O} - \mathcal{Y}X_A] \\ [-\ln(1-X_A) - X_A] \end{bmatrix} \text{ vs.}$ | 182         |
|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Figure | 47     | Reaction Constants vs.<br>Temperature                                                                                                     | 184         |
| Figure | 48-73  | Conversion vs. W/F                                                                                                                        | 186-211     |
| Figure | 74     | Condenser Flow Chart                                                                                                                      | 216         |
| Figure | 75     | Schematic Diagram of Sound Wave                                                                                                           | 223         |
| Figure | 76     | Sine Wave Representation of<br>Sound Wave                                                                                                 | 223         |
| Figure | 77     | Element of Gas in a Tube in Which<br>There is a Longitudinal Sound Way                                                                    | n<br>re 225 |
| Figure | 78     | Intensity Flow Chart                                                                                                                      | 232         |
| Figure | 79     | Schematic Drawing of a Standing<br>Wave                                                                                                   | 235         |
| Figure | 80     | Pseudo First Order Plot of Data                                                                                                           | 253         |
| Figure | 81     | Reciprocal Space Velocity vs.<br>Conversion                                                                                               | 257         |
| Figure | 82     | Reciprocal Space Velocity vs.<br>Catalyst Particle Diameter at<br>Constant Conversion                                                     | 258         |
| Figure | 83     | Reciprocal Effectiveness Factor<br>vs. Catalyst Particle Diameter                                                                         | 261         |
| Figure | 84     | Conversion vs. $\frac{W}{F_{A_0}d_P}$                                                                                                     | 262         |
| Figure | 85     | Data Sheet                                                                                                                                | 270         |
| Figure | 86-111 | Conversion vs. W/F                                                                                                                        | 297-322     |

-ix-

# LIST OF TABLES

| Table 1  | Application of Acoustical Energy                                                                         | 4-5            |
|----------|----------------------------------------------------------------------------------------------------------|----------------|
| Table 2  | Summary of Typical Wave<br>Characteristics                                                               | 28             |
| Table 3  | Equipment Specifications                                                                                 | 39 <b>-</b> 44 |
| Table 4  | Quadratic Equation Constants                                                                             | 55             |
| Table 5  | Mass Transfer Coeffieicnt                                                                                | 67             |
| Table 6  | Constants for the Equations of Mass<br>Transfer Coefficients as a Function<br>of Temperature             | 68             |
| Table 7  | Increase in Mass Transfer Coefficie<br>at Several Feed Rates, Temperatures<br>and Ultrasonic Frequencies | nt<br>' 82     |
| Table 8  | Increase of Kinetic Rate Constant<br>at Several Temperatures and Ultra-<br>sonic Frequencies             | 94             |
| Table 8A | Constants of the Equations of Kinet<br>Rate Constants as a Function of<br>Temperature                    | ic<br>94       |
| Table 9  | Activation Energy and Characterizat<br>Factor                                                            | ion<br>101     |
| Table 10 | Summary of Values of Reaction Rate<br>Constants                                                          | 185            |
| Table 11 | Summary of Typical Wave<br>Characteristics                                                               | 242-243        |
| Table 12 | Tabulation of Data                                                                                       | 271-290        |
| Table 13 | Quadratic Equation Constants                                                                             | 296            |
| Table 14 | Intrinsic Rate Constant and Mass<br>Transfer Coefficient                                                 | 330            |

#### CHAPTER I

#### INTRODUCTION

### Purpose and Scope of Investigation

Considerable information is available in the literature concerning the use of ultrasonic vibrations as an analytical tool and as a source of energy. Although most earlier references describe the passive applications of ultrasound, whereby the propagation characteristics of the sound wave are employed, the field has recently expanded into active applications of acoustical energy. These active applications now include the effect of ultrasonic vibrations on chemical reactions. Although considerable information is available concerning sonochemical reactions, much of the data and results are contradictory and almost all the experimentation deals with uncatalyzed liquid phase reactions.

It therefore appeared to this author that because of the paucity of quantitative data a most interesting and challenging research would be the study of the effect of ultrasonic vibrations on heterogeneous catalysis, or more specifically, the effect of ultrasound on the catalytic cracking of cumene.

<u>Selection of system</u>. The cumene system was selected for this study because of the following reasons:

- 1. Thermal cracking of cumene is negligible at the temperatures employed  $(650^{\circ}-1050^{\circ}F.)$ .
- 2. The reaction is essentially clean with a minimum production of side products.
- 3. The reaction mechanism was determined by Garver<sup>22</sup> in 1955 and published in his Doctoral Thesis, thus providing an experimental base.
- 4. One literature reference published by Zhorov<sup>97</sup> in 1967 indicates that ultrasound effects the rate of this reaction, thereby providing this author with some indication of success.

<u>Investigation plan</u>. The plan of the investigation was to repeat some of Garver's work to obtain a firm basis for the reaction mechanism in the absence of ultrasound, and then to apply acoustical energy to the reaction and attempt to determine the following effects:

- 1. The effect of ultrasound on the rate of reaction.
- 2. The effect of ultrasound on the kinetic rate con-

stant and the external diffusion coefficient.

### Literature Survey

Early references. Literature references to ultrasonic vibrations, or more accurately acoustical energy, occur as early as 1927. At that time, Wood<sup>92</sup> developed a piezoelectric oscillator of quartz which produced frequencies up to 300,000 cps. It is now possible to produce frequencies of over 9 x  $10^{10}$  cps. Frequency ranges between 20,000 and  $10^9$  cps are referred to as ultrasonic and ranges above  $10^9$  cps are referred to as hypersonic. This investigation deals with the ultrasonic range between 20,000 and 50,000 cps.

<u>Classification of acoustical energy</u>. Acoustical energy is generally classified according to its application. Passive applications include those by which the propagation characteristics of the sound wave are employed and active applications are those by which the sound is used as a source of energy. Greguss<sup>26</sup> has classified several applications of acoustical energy according to the frequency employed. This classification is shown in Table 1. It is interesting to note that when Greguss prepared this summary in 1963, sonochemical effects were limited to liquid phase investigations only.

In addition to frequency, the second important variable in the study of acoustical energy is sound intensity.<sup>71</sup> The intensity of audible sound lies between  $10^{-16}$ and  $10^{-4}$  watts/cm.<sup>2</sup>, with the latter value being the threshold of pain. Sound intensities of 120,000 watts/cm.<sup>2</sup> at a frequency of 500,000 cps have been produced in liquids at the Moscow Acoustical Institute. However, the intensities most frequently applied in sonochemical research are those between 1 and 10 watts/cm.<sup>2</sup> Peak intensities of up

### TABLE 1

### APPLICATIONS OF ACOUSTICAL ENERGY

| Pa  | ssive Applications               | Physical State<br>of Matter | Frequency<br>cps                 |
|-----|----------------------------------|-----------------------------|----------------------------------|
| 1.  | Theoretical solid state research | Solid                       | 109-10 <sup>11</sup>             |
| 2.  | Computers                        | Solid                       | 10 <sup>7</sup> -10 <sup>9</sup> |
| 3.  | Non-destructive testing          | Solid                       | 10 <sup>5</sup> -10 <sup>8</sup> |
| 4.  | Medical diagnostics              | Solid and Liquid            | 10 <sup>5</sup> -10 <sup>7</sup> |
| 5.  | Viscoelastic research            | Solid                       | up to 10 <sup>6</sup>            |
| 6.  | Seismic research                 | Solid                       | up to $10^4$                     |
| 7.  | Measurements, remote control     | Liquid and Gas              | 10 <sup>5</sup> -10 <sup>9</sup> |
| 8.  | Flow measurements                | Liquid                      | 10 <sup>3</sup> -10 <sup>5</sup> |
| 9.  | Viscosity measurements           | Liquid                      | 10 <sup>3</sup> -10 <sup>5</sup> |
| 10. | Level determinations             | Liquid                      | 10 <sup>5</sup> -10 <sup>7</sup> |

# TABLE 1 (continued)

# APPLICATIONS OF ACOUSTICAL ENERGY

| Act | ive Applications               | Physical State<br>of Matter | Frequency<br>cps                 |
|-----|--------------------------------|-----------------------------|----------------------------------|
| 1.  | Effect on alloys               | Solid and Liquid            | up to $10^5$                     |
| 2.  | Fatigue research               | Solid                       | up to $10^5$                     |
| 3.  | Colloid chemistry              | Solid, Liquid and Gas       | up to $10^6$                     |
| 4.  | Therapeutical applications     | Solid and Liquid            | 10 <sup>5</sup> -10 <sup>7</sup> |
| 5.  | Boiler scale prevention        | Liquid                      | 10 <sup>4</sup> -10 <sup>5</sup> |
| 6.  | Effect on combustion processes | Gas                         | up to $10^4$                     |
| 7.  | Biochemical effects            | Liquid                      | 10 <sup>5</sup> -10 <sup>7</sup> |
| 8.  | Sonochemical effects           | Liquid                      | up to $10^8$                     |

to 1.3 watts/cm.<sup>2</sup> were studied in this investigation because this was the limitation of the equipment employed.

Liquid phase reactions. Many investigations have been reported in the literature describing the effect of ultrasound on liquid phase chemical reactions, but, unfortunately, much of this work has led to erroneous conclusions and contradictory results. For example, Shaw<sup>73</sup> reported in 1967 that ultrasound caused scissions of the polymer chain in polysiloxane solutions. He further found that doubling the acoustic intensity at 20,000 cps doubled the degradation rate. Porter<sup>58</sup> confirmed this observation that same year when he reported that the average molecular weight of polyisobutylene dissolved in trichlorobenzene was decreased from 466,000 to 20,600 by irradiation with ultrasound. Peacocke<sup>54</sup> explained this phenomenum in 1968 as a result of his studies of the effect of ultrasound on such linear macromolecules as DNA by stating that the degradation is caused by stresses resulting from the relative movement of the macromolecule and the solvent molecule.

In contradiction to these observations, Makeeva<sup>40</sup> reported in 1967 that polyvinyl chloride prepared by the bulk polymerization of vinyl chloride and exposed to ultrasound had a higher molecular weight and fewer branches. Heymach<sup>28</sup> appeared to add to the confusion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

when he reported that cavitation resulting from the application of intense acoustical energy selectively degraded polymers by fracturing longer chains at a faster rate than shorter chains. He concluded that ultrasonic irradiation may be a means of sharpening molecular weight distributions.

Effect on reaction rates. In addition to experimentation in the area of polymers and polymerization, many investigators were interested in the effect of ultrasound on reaction rates. Since it was early in the study of this new form of energy, most investigators made no attempt to explain the individual effects of intensity and frequency. For example, in 1965 Mario<sup>44</sup> reported that the reaction kinetics of the hydrolysis of aspirin are pseudo first order with or without ultrasound. He found that the reaction rate was increased with the application of ultrasound.

In 1966,  $Manu^{42}$  reported that ultrasound at 1,000,000 cps and 4 to 12 watts/cm.<sup>2</sup> increased the reaction rate of the oxidation of the aldehyde group in glucose. In 1968, Stolyarov<sup>77</sup> noted that ultrasound at frequencies of 20,000 to 100,000 cps increased the oxidation rate of aluminum in water at 90°F. During that same year, Prakash<sup>61</sup> showed that the rate of production of iodine from cesium iodide increased with the appli-

cation of ultrasound at frequencies of 1,000,000 cps and intensities of 1.4 to 2.4 watts/cm.<sup>2</sup> In 1969, Kowalska<sup>34</sup> noted that ultrasonic irradiation increased the oxidation rate of divalent iron to trivalent iron by 300%.

Acoustic intensity and frequency effect. As more information became available describing the effect of ultrasound on reaction kinetics, investigators became more concerned with the specific effects of intensity and frequency. Most available data indicate that increasing intensity increases the reaction rate, but the data concerning the effect of frequency on reaction rate is highly contradictory. During his study of complex ethers in 1966, Zilberg <sup>98</sup> found that ultrasonic intensity increased the reaction rate but frequency variations between 300,000 and 1,000,000 cps had no effect. Prakash<sup>60</sup> observed that increasing the intensity increased the sonochemical decomposition of  $C_2H_2Br_4$ . Rice<sup>66</sup>, Sergeeva<sup>72</sup>, Suess<sup>78</sup> and Geissler<sup>23</sup> all independently confirmed the observation that increasing ultrasonic intensity increases the reaction rate. In 1967, Chen<sup>10</sup> reported that the reaction rate of the hydrolysis of methyl acetate with HCl catalyst increased with increasing ultrasonic intensity, but that variations in frequency had no effect, thus confirming Zilberg's work. However, in 1968, Saracco<sup>68</sup> completed his study of the hydrogenation of olive oil in

cyclohexane with Raney nickel catalyst and ultrasound. He discovered that the reaction rate reached a maximum with increasing intensity and then decreased at any frequency. He further observed that maximum reaction rates were obtained at frequencies of 500,000 cps. Finally, Paryjczak<sup>53</sup> reported that the zero order rate constant for the sono-oxidation of FeCl<sub>2</sub> decreased with increasing frequency.

Theory developments. In spite of these contradictory conclusions, many investigators attempted to develop theories to explain the sonochemical effect. In 1950, Weissler<sup>91</sup> proposed that the chemical reaction rate under the influence of ultrasound is a function of the sound intensity, duration of exposure, pressure, temperature and volume. In 1965, Nosov<sup>49</sup> added the proposal that intramolecular rearrangements and cavitation are the effects of the application of ultrasound to chemical reactions. He further stated that electrical discharges occur within the cavitation bubbles which ionize the solvent and solutes, producing highly reactive free radicals. Fogler<sup>19</sup> agreed with the theory that cavitation increases reaction rates as a result of his experimentation with the liquid phase hydrolysis of methyl acetate. Currell<sup>13</sup> produced acetylene by the ultrasonic cleavage of cyclohexanol. His results were also consistent with the theory that the

sonochemical reaction takes place within the cavitation bubbles. Kessler<sup>32</sup> was able to promote the chemical decomposition of tetralin and methyl naphthalene by ultrasonic irradiation at frequencies of 80,000 cps. Griffing<sup>27</sup> finally proposed that ultrasound causes cavitation and luminescence simultaneously. Luminescence may be caused by electrical charges within the cavitation bubble or by extremely high temperatures within the bubble. The cavitation bubbles then act as hot spots which may promote or enhance chemical reactions.

Prakash<sup>60</sup> found that the sonochemical decomposition of  $C_2H_2Br_4$  increases with increasing ultrasonic intensity. He theorized that ultrasonic energy caused the formation of free radicals within the cavitation bubble. Tuchel<sup>86</sup> concurred with the free radical theory as a result of his experimentation with potassium iodide solution oxidations irradiated with ultrasound at frequencies of 870,000 cps. In 1968, Margulis<sup>43</sup>, Maltsev<sup>41</sup> and Tuxzynski<sup>87</sup> independently arrived at the conclusion that reaction rate enhancement is due to the formation of free radicals within the cavitation holes.

In addition to the hot spot and free radical theories associated with the cavitation phenomenon, some investigators proposed other theories to explain the effect of ultrasound on the rate of chemical reactions. For example,

Vladar<sup>89</sup> continuously produced Ca(OH)<sub>2</sub> from pure CaCO<sub>3</sub> and CO<sub>2</sub> in a tubular reactor and found that ultrasound increased the rate of carbonation. He theorized that the ultrasonic energy reduced the particle size of the solids resulting in a higher reaction rate. Gindis<sup>24</sup> studied the effect of ultrasound on the electrochemical oxidation of  $K_{0}MnO_{4}$  to  $KMnO_{4}$  at frequencies of 20,000 cps and 25 to 30 watts/liter. He found that the degree of oxidation at the anode was increased by 10% to 65% and concluded that ultrasound increased the current efficiency of the electrolyte by that amount. Needham<sup>48</sup> applied ultrasound to aspirin in ethanol-water solution and found that although the same reaction order was maintained, the rate of degradation increased. Needham theorized that ultrasound lowered the activation energy, increased the rate of molecular collisions, and increased the rate of movement of the products away from each other.

Diffusion theory. In 1968, Belov<sup>3</sup> proposed that ultrasound causes higher reaction rates by acceleration of diffusional processes. In 1969, Kowalska<sup>34</sup>, as a result of his studies of the application of ultrasonic fields to the oxidation of  $Fe^{++}$  to  $Fe^{+++}$ , also concluded that ultrasound decreases the thickness of the diffusion layer. This work, in addition to other confirming evidence, led this author to believe that ultrasound would effect the

rate of diffusion controlled solid-catalyzed gaseous reactions.

Catalyst activity. During the time when many investigators were studying the effect of ultrasound on uncatalyzed liquid phase reactions, some scientists experimented with the effect of ultrasound on catalysts. For example. Berger<sup>4</sup> regenerated some catalysts at 900<sup>°</sup> to  $1000^{\circ}$ C. in the presence of ultrasound at 20 to 100 watts/cm.<sup>2</sup> and found that the catalytic activity was enhanced. Slaczka<sup>75</sup> irradiated nickel and cobalt catalysts with ultrasound during their preparation by the reduction of oxylates and found that their catalytic activity were increased. He concluded that the ultrasonic energy at frequencies of 25,000 cps and 0.3 watts/cm.<sup>2</sup> caused an increase in the number of crystal defects, thus enhancing the activity. In 1960, Jones $^{30}$ fastened one end of a bundle of catalytically coated wires to an ultrasonic driver while the other end was suspended in a reactor. He noted that the catalytic activity was enhanced for the preparation of ammonia from nitrogen and hydrogen when ultrasonic energy at frequencies of 500 to 300,000 cps was applied.

<u>Gas phase reactions.</u> In 1967, Zhorov<sup>97</sup> studied the effect of ultrasound on the catalytic cracking of cumene. Zhorov proposed that the rate of reaction was controlled

by the diffusion rate of the reactants and products to and from the catalyst surface. He discovered that the diffusion rate, and hence the rate of reaction, could be increased by the application of ultrasonic vibrations.

Zhorov's equipment consisted of a continuous reactor in which he placed 7.9 gms. of aluminum-silicate catalyst. Cumene was fed into the reactor at a feed rate of 3.0  $\frac{\text{gm moles}}{\text{hr.}}$  ( $^{\text{W/FA}_{O}} = 9,468 \frac{\text{gm cat-sec.}}{\text{gm mole}}$ ) and cracked at 878°F. The reactor was operated without ultrasound for the first half hour and then ultrasonic energy was applied for the second half hour at a frequency of 20,000 cps and an amplitude of 5 to 6 microns.

Analysis of the liquid product (a mixture of cumene and benzene) indicated that the concentration of benzene increased by 20% as a result of the application of ultrasound. This result serves as the basis for this author's research.

Reaction mechanism. Before any attempt is made to isolate the effect of ultrasound on the catalytic cracking of cumene, it is necessary to first determine the reaction mechanism of this system in the absence of ultrasonic energy. Considerable work was completed in this area from 1949 through 1967 by such investigators as Greensfelder<sup>25</sup>, Topchieva<sup>82,83</sup>, Corrigan<sup>12</sup>, Rase<sup>64</sup>, Garver<sup>22</sup>, Panchenkov<sup>50</sup>, Perrin<sup>55</sup>, Zhorov<sup>95,96,97</sup>, Pansing<sup>51</sup> and Spozhakina<sup>76</sup>. One of the

most complete investigations was published by Garver in his Doctoral Dissertation of 1955. Garver determined that the reaction mechanism for the cracking of cumene on silica-alumina catalyst at  $850^{\circ}$ F.,  $950^{\circ}$ F. and  $1050^{\circ}$ F. was single site with surface reaction controlling and propylene not adsorbed. His experimentation also lead to the determination of the reaction rate constants.

This author's plan was to extend the work of Zhorov into a more detailed quantitative study of the effect of ultrasound on the solid catalyzed cumene reaction employing Garver's work as the basic starting point. This detailed investigation had never been studied previously as witnessed by the absence of published information concerning the effect of ultrasound on solid-catalyzed gaseous reactions.

### Discussion

Ultrasound may increase the rate of a heterogeneous solid catalyzed gas reaction by one or more of the follow-ing methods.

- 1. Increase the number of active sites on the catalyst surface.
- 2. Increase the rate of diffusional processes:
  - A. External bulk diffusion
  - B. Internal pore diffusion
- 3. Decrease the reaction activation energy.
- 4. Increase the surface reaction rate.

- 5. Increase the pressure at the mouth of the catalyst pore by the application of acoustic energy.
- 6. Develop localized thermal effects by the application of ultrasonic energy.

Internal pore diffusion, the surface reaction rate and the number of active sites are described in a single constant,  $\in Lk_2$ , the reaction rate constant. If ultrasonic energy affects any of these three parameters and the data fit the reaction rate model at high flow rates, then  $\in Lk_2$  can be calculated.

External bulk diffusion is proportional to the mass transfer coefficient,  $k_g$ . At low flow rates, mass transfer controls the rate of reaction, and therefore the effect of ultrasound on  $k_g$  can be measured at low flow rates.

Acoustic pressure can be calculated and, in fact, the variations in pressure at the mouth of the catalyst pore as a result of the application of ultrasonic energy will be shown to be negligible for the power employed in this investigation.

Localized hot spots on the surface of the catalyst will result in increased surface reaction rate constants and reaction rates. Quantitative measurements of this phenomenon are not possible in this investigation, but these thermal effects will also manifest themselves in  $\mathcal{E}Lk_2$ , a measurable quantity.

#### CHAPTER II

#### THEORY

### Continuous Reaction Model

In solid-catalyzed gas-phase reactions, reaction occurs at the gas-solid interfaces. These interfaces lie on the external surface of the catalyst particle and also on the internal surfaces within the catalyst pore. The overall rate of reaction depends upon the availability of these surfaces to the reactants.

For the continuous reaction model, it is assumed that the reaction mechanism consists of seven distinct processes with the rate of reaction controlled by the slowest process.

These processes are described in detail in Appendices III through VII and briefly outlined below.

- 1. Gas film diffusion of reactants.
- 2. Pore diffusion of reactants.
- 3. Adsorption of reactants.
- 4. Surface reaction
- 5. Desorption of products.

6. Pore diffusion of products.

7. Gas film diffusion of products.

<u>Gas film diffusion.</u> Gas film diffusion of reactants and products is handled mathematically as a single simple diffusion process. The equation describing this process is as follows:

$$\mathbf{r}_{A} = \frac{\mathbf{p}_{T}\mathbf{k}_{g}\mathbf{a}}{\mathbf{R}T} \ln \left[\frac{1+\mathbf{Y}_{A}}{1+\mathbf{Y}_{A}}\right]$$
(1)

 $r_{A} = gm \text{ moles cumene diffusing toward catalyst sur$  $face per second per gm. catalyst, <math>\frac{gm \text{ moles}}{gm-sec.}$  $p_{T} = \text{ total pressure, atm.}$  $k_{g} = mass \text{ transfer coefficient, } \frac{cm.}{sec.}$  $= \frac{D_{AB}}{\delta_{f}}$ 

 $D_{AB}$  = diffusivity of cumene in cumene, benzene and propylene,  $\frac{cm.^2}{sec.}$ 

$$\delta_{f}$$
 = thickness of stagnant gas film between main gas  
stream and external surface of catalyst, cm.

a = superficial surface area of catalyst, 
$$\frac{\text{cm.}^{2}}{\text{gm.}}$$
  
R = 82.06  $\frac{\text{cm.}^{3}-\text{atm.}}{\text{gm mole}-^{0}\text{K}}$ .  
T =  $^{0}\text{K}$ .

 $Y_{A_b}$  = mole fraction cumene in main gas stream, dimensionless

 $Y_{A_S}$  = mole fraction cumene on catalyst surface, dimensionless Surface phenomena. The adsorption of cumene onto the catalyst surface, the reaction of cumene on the surface and the desorption of benzene from the catalyst surface are also handled together mathematically. Garver has shown that the following rate equation is consistent with a single site mechanism whereby propylene is not adsorbed and surface reaction is rate controlling.

$$(-r_{Al}) = \frac{C_{L}k_{2}K_{A}}{1 + K_{A}p_{A} + K_{R}p_{R}}$$
(2)

$$(r_{Al}) = reaction rate, \frac{gm moles A}{gm cat-sec}$$
  
 $C_L = concentration of total active sites on cata-
lyst surface,  $\frac{cm^2}{gm cat}$ .$ 

$$k_2$$
 = forward reaction rate constant for surface  
reaction,  $\frac{gm \text{ moles}}{cm.^2-sec.}$ 

 $K_{A}$  = equilibrium adsorption constant for cumene,  $\frac{1}{atm}$ .

 $p_{A}$  = partial pressure of cumene, atm.

$$p_R$$
 = partial pressure of benzene, atm.

$$p_{s}$$
 = partial pressure of propylene, atm.

 $K_{\rm R}$  = equilibrium adsorption constant for benzene,  $\frac{1}{atm}$ .

K = equilibrium constant for overall reaction, atm.

Effectiveness factor. The effect of pore diffusion

of reactants and products on the rate of reaction is expressed by applying a correction factor to the rate equation. This correction factor is known as  $\epsilon$ , the effectiveness factor. The rate equation now reduces to the following expression:

$$(-r_{A1}) = \frac{\mathcal{E}_{Lk_2}K_A}{1 + K_A p_A + K_R p_R}$$
(3)

In the case of irreversible reaction, K approaches infinity and the rate equation then becomes:

$$(-r_{Al}) = \frac{\epsilon Lk_2 K_A P_A}{1 + K_A P_A + K_R P_R}$$
(4)

The initial rate of reaction occurs when the partial pressure of cumene is equal to the total pressure and the partial pressures of benzene and propylene are zero.

$$r_{o} = \frac{\xi \operatorname{Lk}_{2} \operatorname{K}_{A} \pi}{1 + \operatorname{K}_{A} \pi}$$
(5)  

$$r_{A1} = \text{reaction rate, } \frac{gm \text{ moles } A}{gm \text{ cat-sec.}}$$

$$r_{o} = \text{ initial reaction rate, } \frac{gm \text{ moles } A}{gm \text{ cat-sec.}}$$

$$\xi = \text{ effectiveness factor, dimensionless}$$

$$L = \text{ total concentration of active sites, } \frac{\operatorname{cm.}^{2}}{gm \text{ cat.}}$$

$$k_{2} = \text{ forward reaction rate constant for surface}$$

$$\text{reaction, } \frac{gm \text{-moles}}{\operatorname{cm.}^{2} \text{-sec.}}$$

$$K_A = equilibrium adsorption constant for cumene,
 $\frac{1}{atm}$$$

$$K_{\rm R}$$
 = equilibrium adsorption constant for benzene,  
 $\frac{1}{atm}$ .

The effectiveness factor is defined as the ratio of the actual rate of reaction with pore diffusion present to the rate of reaction if the resistance caused by pore diffusion were absent. It is expressed by the following relationship wherein  $h_s$  is the Thiele Modulus:

$$\epsilon = \frac{3}{h_s} \left[ \frac{1}{\tanh h_s} - \frac{1}{h_s} \right]$$
(6)

$$h_{s} = r_{p} \left[ \frac{k_{s} S_{v}}{D_{e}} \right]^{\frac{1}{2}}$$
(7)

$$S_v = \text{total surface of porous catalyst, } \frac{\text{cm.}^2}{\text{cm.}^3}$$
  
 $D_e = \text{effective pore diffusivity, } \frac{\text{cm.}^2}{\text{sec.}}$ 

#### Reaction Design Equation

The reaction design equation is obtained by substituting the rate equation into the plug flow reactor design equation.

$$\frac{W}{F_{A_{O}}} = \int_{X_{A_{O}}}^{X_{A_{f}}} \frac{dX_{A}}{(-r_{A1})}$$
(8)

W = wt. catalyst, gms.  $F_{A_{O}} = feed rate of cumene, \frac{gm moles A}{sec.}$   $X_{A_{O}} = initial conversion of cumene, dimensionless$   $X_{A_{f}} = final conversion of cumene, dimensionless$   $(-r_{A1}) = reaction rate, \frac{gm moles A}{gm cat-sec.}$ 

<u>Reaction design equation with external diffusion</u> <u>controlling.</u> For bulk diffusion of cumene from the main gas stream to the surface of the catalyst, the integrated reactor design equation yields the following relationship for the mass transfer coefficient:

$$k_{g} = \frac{X_{A_{b}} RT}{(W/FA_{o}) p_{T} aln \left[\frac{1+Y_{A_{b}}}{1+Y_{A_{s}}}\right]}$$
(9)
After substituting the constants and employing the log mean mole fraction for the surface concentration of cumene, the equation reduces to the following:

$$k_{g} = \frac{6.26 X_{Af} T}{(W/F_{A_{O}}) \ln (1+Y_{ALM})}$$
 (10)

where,

dimensionless

# Reaction design equation with surface reaction

<u>controlling</u>. For reversible reaction, the reaction design equation is as follows:

$$\frac{W}{F_{A_{O}}} = \delta \left[ \left[ \frac{1}{2\delta} - \frac{1}{2\delta^{3}} \right] \ln \left[ \frac{(1+X_{A}\delta)}{(1-X_{A}\delta)} + \frac{X_{A}}{\delta^{2}} \right] + \delta \left[ \frac{1}{2\delta^{3}} \ln \left[ \frac{(1+X_{A}\delta)}{(1-X_{A}\delta)} - \frac{1}{2\delta^{2}} \ln \left[ (1-\delta^{2}X_{A}^{2}) - \frac{X_{A}}{\delta^{2}} \right] \right]$$
(11)

where,

$$\mathcal{Y} = \frac{1}{\epsilon L k_2 k_A \mathcal{T}} + \frac{1}{\epsilon L k_2}$$
(12)

$$\beta = \frac{2}{\epsilon L k_2 K_A T} + \frac{K_R}{\epsilon L k_2 K_A}$$
(13)

$$S = \left[1 + \frac{\mathcal{T}}{K}\right]^{\frac{1}{2}} \tag{14}$$

For irreversible reaction, K approaches infinity,  $\delta$  becomes unity and the design equation reduces to the following expression:

$$\frac{W}{F_{A_0}} = \chi X_A + \Im \left[ -\ln(1 - X_A) - X_A \right]$$
(15)

W = wt. catalyst, gms.  

$$F_{A_0}$$
 = feed rate of cumene,  $\frac{gm \text{ moles } A}{\text{sec.}}$   
 $X_A$  = conversion of cumene, dimensionless  
 $\epsilon$  = effectiveness factor, dimensionless  
L = total concentration of active sites,  $\frac{cm.^2}{gm \text{ cat.}}$ 

$$k_2$$
 = forward reaction rate constant for surface  
reaction,  $\frac{gm \text{ moles}}{cm.2-sec}$ .

$$K_A = equilibrium adsorption constant for cumene, 
$$\frac{1}{atm}$$$$

 $K_{\rm R}$  = equilibrium adsorption constant for benzene,  $\frac{1}{\rm atm.}$ 

K = equilibrium constant for overall reaction, atm.  $\mathcal{T}$  = total pressure, atm.

## Ultrasonic Engineering

<u>Fundamental equations.</u> As a sound wave travels through a gas, small volume elements of the gas containing millions of molecules alternately compress and expand in the direction of the propagation of the sound wave. The sine wave representations of the displacement, transverse velocity, and transverse acceleration are as follows:

$$y = Y \cos \left[ \frac{2\pi}{\lambda} (x - Vt) \right] = Y \cos \left[ 2\pi f(t - \frac{x}{V}) \right];$$
$$y_{max} = Y \qquad (16)$$

$$v = 2 \pi f Y \sin 2 \pi f (t - \frac{x}{V}); v_{max} = 2 \pi f Y$$
 (17)

$$a = 4\pi^2 f^2 Y \cos 2\pi f(t - \frac{x}{V}); a_{max} = 4\pi^2 f^2 Y$$
 (18)

$$\mathcal{K}$$
 = wavelength,  $\frac{\text{cm.}}{\text{cycle}}$ 

$$= VT = \frac{V}{f}$$

$$T = \text{period}, \frac{\text{sec.}}{\text{cycle}}$$

$$V = \text{velocity of propagation of wave form,}$$

$$\frac{\text{cm.}}{\text{sec.}}$$

$$f = \text{frequency, } \frac{\text{cycles}}{\text{sec.}}$$

$$= \frac{1}{T}$$

$$x = \text{distance traversed by wave form, cm.}$$

$$t = \text{time, sec.}$$

$$v = \text{transverse velocity, } \frac{\text{cm.}}{\text{sec.}}$$

$$a = \text{transverse acceleration, } \frac{\text{cm.}}{\text{sec.}}2$$

<u>Velocity of propagation.</u> The velocity of propagation of a sound wave in a gas is a function on only the physical properties of the gas and not of the characteristics of the sound wave. This is illustrated in the following equations:

$$v = \left[\frac{1}{\rho_{0}k}\right]^{\frac{1}{2}} = \left[\frac{p\delta}{\rho_{0}}\right]^{\frac{1}{2}} = \left[\frac{\delta'RT}{M}\right]^{\frac{1}{2}}$$
(19)

 $V = \text{velocity of propagation of wave form, } \frac{\text{cm.}}{\text{sec.}}$   $\mathcal{P}_{0} = \text{ original gas density, } \frac{\text{gms}}{\text{cm.}^{2}}$   $k = \text{ compressibility, } \frac{\text{cm.}^{2}}{\text{dyne}} \frac{\text{cm.-sec.}^{2}}{\text{gm.}} (\text{dyne} = \frac{\text{gm-cm.}}{\text{sec.}^{2}})$   $p = \text{ pressure, } \frac{\text{dynes}}{\text{cm.}^{2}}, \frac{\text{gm.}}{\text{cm-sec.}^{2}}$   $\mathcal{V} = \frac{\text{Cp}}{\text{Cy}}, \text{ dimensionless}$ 

$$C_{p} = \text{heat capacity of gas at constant pressure,} \\ \frac{cal}{gm-^{O}C.}$$

$$C_{v} = \text{heat capacity of gas at constant volume,} \\ \frac{cal}{gm-^{O}C.}$$

$$R = 8.31 \times 10^{7} \frac{\text{ergs}}{\text{mole}-^{O}K.} = 8.31 \times 10^{7} \frac{\text{dyne-cm.}}{\text{gm mole}-^{O}K.}$$

$$(\text{erg = dyne-cm.} = \frac{gm-\text{cm.}^{2}}{\sec.^{2}})$$

$$T = \text{temperature of gas,} ^{O}K.$$

$$M = \text{molecular wt. of gas,} \frac{gms.}{gm-\text{mole}}$$

<u>Acoustic pressure.</u> The acoustic pressure exerted by the sound wave as it traverses a gas is dependent upon the velocity of propagation and the intensity of the sound. The amplitude of the sound wave is a function of the acoustic pressure.

$$p_{max} = \left[2\rho_{0}IV\right]^{\frac{1}{2}}$$
(20)  
$$Y = \frac{p_{max}}{2\pi f \rho_{0}V}$$

 $P_{max} = maximum \text{ pressure caused by sound wave, } \frac{dynes}{cm.2}$   $\rho_{o} = \text{ original gas density, } \frac{gms.}{cm.3}$   $I = \text{ sound intensity, } \frac{erg}{cm.2-sec.}, \frac{dyne-cm.}{cm.2-sec.}$   $(10^{-7} \frac{watt-sec.}{erg})$   $V = \text{ velocity of propagation, } \frac{cm.}{sec.}$ 

f = frequency,  $\frac{1}{\sec}$ . Y = amplitude, cm. Conversion factor:  $1 \frac{gm-cm}{dyne-sec}$ .

<u>Typical values of wave characteristics</u>. Values for the velocity of propagation, wavelength, acoustic pressure, amplitude, transverse velocity and acceleration were calculated for cumene at various frequencies and temperatures at the maximum power output and half power output of the equipment. A summary of these calculations is shown in Table 2.

As seen by the table, acoustic pressure as imposed by the sound wave should have little effect on the reaction rate because the pressure fluctuations above and below atmospheric are only a maximum of 1.62 psi at  $650^{\circ}$ F. and 1.50 at  $1050^{\circ}$ F. Furthermore, the acoustic pressure is lower at the higher frequency as a result of the mechanical characteristics of the equipment.

This research will, in fact, show that the dependency of reaction rate on power input alone for the range studied is negligible and that frequency alone and frequency together with power input are the important factors. Molecular acceleration, which is a function of both frequency and power, is very high in the ranges studied, as

TABLE 2

SUMMARY OF TYPICAL WAVE CHARACTERISTICS

| • • •                         | 000     | nC0             | 000     | 060     | NCN T   | nCnT    | NCNT    | NGNT    |
|-------------------------------|---------|-----------------|---------|---------|---------|---------|---------|---------|
| f, <u>1</u><br>sec.           | 26,000  | 26 <b>,</b> 000 | 39,000  | 39,000  | 26,000  | 26,000  | 39,000  | 39,000  |
| I, watts<br>cm.2              | 1.259   | 0.630           | 0.100   | 0,050   | 1.259   | 0.630   | 0.100   | 0.050   |
| λ, cm.                        | 0.806   | 0.806           | 0.537   | 0.537   | 0.935   | 0.935   | 0.623   | 0.623   |
| V, cm.                        | 20,945  | 20,945          | 20,945  | 20,945  | 24,298  | 24,298  | 24,298  | 24,298  |
| Y, cm.                        | 0.0138  | 0.0098          | 0.0026  | 0.0018  | 0.0149  | 0.0105  | 0.0028  | 0.0020  |
| v <sub>max</sub> , cm.        | 2,254   | 1,601           | 637     | 144     | 2,434   | 1,715   | 686     | 06†     |
| a <sub>max</sub> , g          | 375,734 | 266,881         | 159,279 | 110,270 | 402,740 | 285,885 | 171,531 | 122,522 |
| p <sub>max</sub> , <u>lb.</u> | 1.62    | 1.15            | 0.46    | 0.32    | 1.50    | 1.06    | 0.42    | 0.30    |

indicated in the table. This molecular motion results in higher reaction rates by virtue of increased gas diffusion rates. It will be shown that the increased diffusion rate occurs both in the external diffusion zone and within the catalyst pores.

Detailed derivations of the ultrasonic relationships described in this chapter may be found in Appendix X.

#### CHAPTER III

#### EXPERIMENTAL EQUIPMENT

#### Flow Chart

Figure 1 is a schematic flow chart of the apparatus employed in this study. Valves and by-pass piping have been omitted from the drawing for the purpose of maintaining simplicity and clarity. Detailed specifications of all the equipment employed are described in Table 3.

The system consists of two feed tanks to which the cumene is charged, a feed rotameter for metering the feed to the reactor, the reactor and a heat exchanger to condense the cumene and benzene effluent. The small amount of propylene gas formed is vented to the atmosphere.

The apparatus is also equipped with a nitrogen source for pressurizing the feed tanks and blowing down the reactor prior to regeneration. A second rotameter is provided for metering regeneration air to the reactor.

Attached to the top of the reactor is the ultrasonic horn by which the catalyst bed is irradiated with ultrasonic energy.

#### Feed System

Cumene is charged to the feed tanks whereupon they



 $\mathfrak{P}_{\mathbf{1}}$ 

are pressured up to 10 psig with nitrogen. The nitrogen pressure is maintained constant by means of a gas pressure regulator so as to maintain a constant pressure drop across the feed rotameter needle valve. The feed rotameter is employed manually to control the cumene feed rate to the reactor; however, for measurement purposes, the difference in liquid level of the feed tanks for the duration of the run is employed for the average feed rate calculation.

#### Regeneration System

After each run, regeneration air is fed to the reactor through the air rotameter at a rate of approximately 0.1 scfm for a period of 24 hours to regenerate the catalyst by burning off the carbon deposits (see Appendix XIII).

#### Reactor

The reactor design is illustrated in Figures 2 and 3. It consists of a  $\frac{1}{4}$  in. schedule 80 type 316 stainless steel pipe,  $20\frac{1}{2}$  in. long, welded to a 2 in. 0.D. stainless steel rod drilled to an I.D. of  $\frac{25}{64}$  in. The  $\frac{1}{4}$  in. pipe is encased in a 2 in. 0.D. rod drilled to snugly fit the pipe. The casing provides the reactor with mass so as to stabilize the operating temperatures. The reactor is flanged at both ends and is equipped with a  $\frac{1}{4}$  in. spud





# FIGURE 3

REACTOR THERMOCOUPLE LOCATION AND HEATING ZONES



near the top for catalyst addition and product removal. Inserted within the spud is a 1/8 in. thermocouple well.

The  $\frac{1}{4}$  in. x  $20\frac{1}{2}$  in. long pipe serves as the preheater section, and the upper  $\frac{25}{64}$  in. I.D. x  $\frac{63}{4}$  in. long cylinder is the catalyst chamber. The end of the thermocouple well inserted within the spud extends down into the catalyst chamber and is immersed in the catalyst bed. The catalyst is supported within the chamber by means of a fine mesh stainless steel screen.

The location of all seven thermocouples and five heating elements are illustrated in Figure 3. Six of the thermocouples, TI-1 through TI-6, are affixed to the outside of the reactor wall and connected to a temperature recorded. The seventh thermocouple, TC-1, is inserted in the thermowell and connected to a temperature controller.

The reactor is heated by five Nichrome V beaded wire heaters located as indicated in Figure 3. The power input to each heater is manually controlled by adjustment of five powerstats. The powerstats controlling the power input to heating zones 3 and 4 are automatically controlled by the temperature controller which continuously monitors the temperature at TC-1. Constant voltage is maintained to the control circuit by use of a constant

voltage transformer.

The entire reactor is insulated with approximately 4 in. of refractory rope and 2 in. of magnesia covered with an aluminum sheath.

#### Condenser

The reaction products, cumene, benzene and propylene, enter the condenser from the reactor at approximately  $650-1050^{\circ}F$ . whereupon they are cooled to approximately  $75^{\circ}F$ . The cumene and benzene are condensed and collected and the propylene, which remains in the vapor phase at this temperature, is vented to the atmosphere.

#### Ultrasonic Horn

The ultrasonic horn is 3 in. in diameter and is mounted directly atop the reactor by means of a specially fabricated 3 in. by 1 in. adapter flange. The horn is driven by a variable frequency ultrasonic generator with a variable output frequency of 10,000 to 50,000 cps.

The maximum operating temperature of the piezoelectric transducer which drives the horn is  $300^{\circ}$ C.  $(572^{\circ}$ F.) and the minimum allowable operating temperature of the horn to prevent condensation of the highest boiler, cumene, is  $153^{\circ}$ C.  $(308^{\circ}$ F.). Therefore, it is necessary to maintain the temperature of the ultrasonic horn at approximately  $175^{\circ}$ C. This is accomplished by recirculating



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

heated oil through the cooling chamber of the ultrasonic horn as illustrated in Figure 4.

The oil is recirculated through a water cooled heat exchanger to the ultrasonic horn cooling chamber and thence to an electrically heated surge pot by means of a 1 gpm centrifugal pump. By proper adjustment of the powerstat controlled electric heater and oil flow to the cooler, it is possible to maintain the recirculating oil at approximately 175°C.

#### Piping

All piping consists of  $\frac{1}{4}$  in. stainless steel threaded pipe and fittings and  $\frac{1}{4}$  in. copper tubing with compression type fittings. Teflon tape is employed on all threaded connections.

## Analytical Instrumentation

The quality of the effluent product is analyzed by use of a gas-liquid chromatograph in conjunction with a single pen strip chart recorder. The chromatograph response was standardized daily by injecting and analyzing a known sample. The analytical system is designed to handle either gas samples taken from the reactor effluent prior to condensation or liquid samples from the condenser effluent. The analysis of the liquid samples proved to be almost identical to that of the gaseous sample. Comparative analyses and conversion calculations are shown in Appendix IX.

#### TABLE 3

. . .

#### EQUIPMENT SPECIFICATIONS

Feed Tank No. 1

Manufacturer Corning Glass Co. Material of construction Pyrex conical pipe 36 in. Length 50 psig, max. Working pressure 1 in. Diameter 10.79 gms. cumene/in. Calibration

Feed Tank No. 2

| Manufacturer             | Corning Glass Co.                 |
|--------------------------|-----------------------------------|
| Material of construction | Pyrex conical pipe                |
| Length                   | 36 in.                            |
| Working pressure         | 50 psig, max.                     |
| Diameter                 | 1 <sup>1</sup> / <sub>2</sub> in. |
| Calibration              | 24.66 gms. cumene/in.             |

Feed Rotameter

Glass

Manufacturer Model No. Meter size Type Serial no. Tube no. Scale Wetted parts Packing 0-rings Valve needle taper no. Orifice type Connections Float material Maximum flow rate

Brooks Instrument Co. 1357-8506 2 1357-01F1BAA 7010-48800 R-2-25-D 250 mm. Stainless steel Teflon Kel-F 3 Small 🛓 in. NPT Sapphire

Gm./Hr. Cumene Float Material 355 640 Sapphire 1,267 Stainless steel Carboloy 2,130 2,300 Tantalum Calibration (Sapphire float): Figure 5

#### EQUIPMENT SPECIFICATIONS

#### Air Rotameter

| Manufacturer              | Fischer & Porter Co.                       |
|---------------------------|--------------------------------------------|
| Tube no.                  | 02-F-1/8-12-5/70                           |
| Type no.                  | TII-1077/1-2                               |
| Serial no.                | TII-1077/1                                 |
| Scale (direct calibration | a) 0-6 scfm hydrogen at                    |
|                           | $\frac{1}{2}$ psig and 75 $\overline{F}$ . |

#### Reactor

| Material of construction | Type 316 stainless steel |
|--------------------------|--------------------------|
| Outside diameter         | 2.000 in.                |
| Preheater                |                          |
| Material of              |                          |
| Construction             | Type 316 stainless steel |
| Length                   | 20½ in.                  |
| Outside diameter         | 2.000 in.                |
| Inside diameter          | 0.302 in.                |
| Catalyst Chamber         | -                        |
| Material of              |                          |
| construction             | Type 316 stainless steel |
| Length                   | 4 in.                    |
| Outside diameter         | 2.000 in.                |
| Inside diameter          | 0.391 in.                |

#### Temperature Recorder

| Westronics Inc.        |
|------------------------|
| Strip ghart            |
| 0-1200 <sup>°</sup> F. |
| 12                     |
| MIIB/J/DV.5M           |
| MIIB336                |
|                        |

#### Temperature Controller

Manufacturer Type Volts/cycles Catalog no. Serial no. Leeds & Northrup Co. Speedomax H 120/60 200-901-010-0023-6-024-0 65-35480-1-1

TABLE 3 (continued)

## EQUIPMENT SPECIFICATIONS

## Temperature Controller (continued)

Range Chart no. Chart speed Response time Controller series

#### Heaters

ManufacturerCole-Parmer Instrument Co.TypeBeaded Nichrome V wireCatalog no.3116-1Length, each12 ft.Power, each400 wattsTemperature2000°F., max.

0-2000<sup>°</sup>F.

1 revolution/24 hrs.

5.0 seconds, full travel

620023

60

#### Powerstats

Manufacturer Type Phase Input Output Amps, max. Kva, max. Superior Electric Co. 116 Single 120 volts, 50/60 cps 0-140 volts 9 1.3

Constant Voltage Transformer

Manufacturer<br/>Catalog no.Sola Electric Co.<br/>20-13-150 D476<br/>CUN-1<br/>95-130 volts, 60 cps,<br/>single phase<br/>118 volts, 4.24 ampsRefractory Rope

Manufacturer Style no. Temperature Johns-Manville Thermo-Pac 2300 2300°F., max.

## TABLE 3 (continued)

## EQUIPMENT SPECIFICATIONS

#### Condenser

Material of construction Type 316 stainless steel Tube and shell Type Length 36 in. Shell side 1 in. sched. 40 pipe Tube side 🛓 in. NPT Connections Coolant (shell side) Water 0.423 ft.<sup>2</sup> Surface area

## Ultrasonic Horn

Manufacturer Material of construction Model no. Type Frequency range Acoustic energy Input Sound level Nominal impedence Efficiency Length Diameter Weight Operating temperature Serial no.

 $1-\frac{1}{4}$  in. sched. 40 pipe

Macrosonics International Type 316 stainless steel FH-15-0 Oil cooled 10,000 cps to 100,000 cps 25 watts 100 watts Above 166 db 400 ohms 25% 18 in. 3 in. 11 lb. 300°C. max. 70-12

Ultrasonic Generator

Manufacturer Model no. Volts/cycles Amps/phase Frequency range

Power output Output impedence Weight Serial no.

Macrosonics International 150 LF 120/50-60 4/single 10,000-50,000 cps (Figure 6) 20-80 watts 200 - 400 ohms 38 lb. 00405

# EQUIPMENT SPECIFICATIONS

## Heat Transfer Oil

Manufacturer Type Operating temperature Monsanto Chemical Co. Therminol FR-1 700°F., max.

Thermometer, TI-7

| Manufacturer | Weston        |  |  |  |
|--------------|---------------|--|--|--|
| Туре         | Stem and dial |  |  |  |
| Range        | 0-300°C.      |  |  |  |

## Recirculation Pump

| Manufacturer             | Eastern Engineering Co. |
|--------------------------|-------------------------|
| Material of construction | Carbon steel            |
| Model                    | D11                     |
| Туре                     | 100                     |
| Horsepower               | 1/8                     |
| Rpm                      | 3,450                   |
| Capacity                 | 1 g pm                  |

## <u>Oil Cooler</u>

| Shell Side<br>Material<br>Diameter<br>Length<br>Tube Side | of | construction | Type 316 stainless steel<br>2 in. Sched. 40 pipe<br>36 in. |
|-----------------------------------------------------------|----|--------------|------------------------------------------------------------|
| Material<br>Diameter<br>Length                            | of | construction | Copper<br>¼ in.<br>70 turns, 1 in. diameter                |

#### Heated Surge Pot

| Material of construction | Type 316 stainless steel |
|--------------------------|--------------------------|
| Diameter                 | 2 in. sched. 40 pipe     |
| Length                   | 12 in.                   |

Gas-Liquid Chromatograph

Manufacturer Model Varian Aerograph Co. A-90-P 43,

## EQUIPMENT SPECIFICATIONS

## Gas-Liquid Chromatograph (continued)

Type

Part no. Serial no. Column

Manual temperature programmer 90P3 343-026 10% Carbowax, 20 mesh, on chrome-W

## Strip Chart Recorder

Manufacturer

Type

Model no.

Range Chart no. Volts/cycles Serial no.

#### Nitrogen

Manufacturer Grade

## Air

| Manufacturer | Matheson Gas Products |
|--------------|-----------------------|
| Grade        | Ultra zero            |
| Hydrocarbons | 0.1 ppm max.          |

#### Helium

Manufacturer Grade Hydrocarbons Minneapolis-Honeywell Regulator Co. Single pen strip chart recorder 15307856-01-05-0-000-030-07136 -0.05 to +1.05 mv 9283-NR 120/60 02003303008

Matheson Gas Products Extra dry

Matheson Gas Products Zero 2 ppm max.









#### CHAPTER IV

#### EXPERIMENTAL PROCEDURE

#### Operating Conditions

The operating conditions studied in this investigation were temperatures of  $650^{\circ}$ F. to  $1050^{\circ}$ F., feed rates of 20 to 600 gms./hr., catalyst loadings of 0.958 to 5.748 gms., ultrasonic frequencies of 26,000 cps and 39,000 cps, and power outputs of 0.05 to 1.3  $\frac{\text{watts}}{\text{cm.2}}$ . The general procedure followed was to obtain the desired reactor temperature and then feed the cumene at a predetermined rate and catalyst loading. Each run was operated at two different ultrasonic frequencies and in the absence of ultrasound.

## General Procedure

The reactor was purged with air at reaction temperature after each run for a period of approximately 24 hours to burn off any carbon deposit and regenerate the catalyst. Calculations indicate (Appendix XIII) that 10 minutes should be sufficient to burn off the carbon and visual inspection of the reactor after regeneration for 30 minutes indicated it to be free from carbon. Comparison of conversions in the absence of ultrasound between runs employing the same catalyst after many regenerations and nearly the same operating conditions also indicated complete reactivation. For example, comparing Run No. 14.83 with Run No. 22.135 shows conversions of 4.5% and 4.2% at feed rates of 593 gms./hr. and 622 gms./hr., respectively, all other conditions being identical. Similar checks are observed in many other runs, for example Run No. 33.23 and 36.53. The reactor was also purged with nitrogen after each run and after each air purge in order to avoid the safety hazard of hot cumene in the presence of air.

Each time the sonic frequency was changed during a run, the product collected during the first ten minutes was discarded and the product produced during the second ten minutes was blended and sampled as representative of those operating conditions. Previous work has shown that any decrease in catalyst activity during a run of this length of time could be neglected.

<u>Temperature control.</u> The temperature of the reactor was controlled by manually adjusting two voltage regulators which monitored the power input to the heating elements along the preheater section. The catalyst chamber temperature was controlled automatically by an on-off temperature controller connected in series with two additional voltage regulators which monitored the power input to the heating elements along the catalyst chamber. The temperature for this control point was sensed by a thermocouple located in the catalyst chamber itself (see Appendix XV). A fifth manually operated voltage regulator was employed to control a heating element located on the product discharge piping.

The heaters were never turned off so that the reactor was always at temperature equilibrium. When the reactor temperature was changed, approximately 24 hours was allowed for the catalyst bed to again reach temperature equilibrium.

Feed rate control. The cumene feed rate was controlled by pressurizing the feed tank to 10 psig with nitrogen and recording the tank level and time at the start and end of each run. The flow rate was controlled by the feed flow rotameter, but the rate used in any subsequent calculations was the rate obtained by difference of the calibrated feed tank level.

Application of ultrasound. Each run was operated first in the absence of ultrasound and then the ultrasonic generator was activated and frequencies of 26,000 cps and 39,000 cps were irradiated upon the catalyst bed. The order in which the higher and lower frequencies were employed was reversed many times throughout this study. Each run was operated in the absence of ultrasound after each of the frequency activated samples had been taken as a check for decrease in catalyst activity from the start to the end of the run. The analyses of the first and last sample, i.e., the samples taken in the absence of ultrasound were always essentially the same.

<u>Sample analyses</u>. In many instances, the gas stream was fed directly to the gas chromatograph for analysis as

a check against the liquid sample analysis. In all cases, both methods of analysis yielded essentially the same conversion calculation. The analysis of liquid samples was preferred, because the same sample was injected a minimum of three times into the gas chromatograph as a check of the analytical technique. The vapor sample, of course, could be injected only once.

The size of the gaseous sample was controlled by filling a small tubing coil with the reaction products and flushing the entire coil contents into the chromatograph with helium. Sample size of the liquid was controlled by use of a 10 microliter hyperdermic needle calibrated in 0.2 microliters. The analyses of known liquid samples were duplicated within 1%, indicating sample size control to be adequate.

# Detailed Procedure

The details of the experimental procedure for a typical run are as follows:

- Set the reactor air purge rate at 6.0 scfh employing the air flow rotameter.
- 2. Adjust the heater controls to obtain the desired reactor temperature.
- 3. Adjust the automatic temperature controller set point to the desired reactor temperature.
- 4. Allow approximately 24 hours for the reactor to equilibrate at the desired temperature.

- 5. Turn on the hot oil recirculation pump and adjust the heater control to maintain the oil at  $155-160^{\circ}C$ .
- 6. Turn off the air purge and purge the reactor with nitrogen for 20 minutes.
- 7. Shut down the nitrogen purge and pressurize the cumene feed tank to 10 psig with nitrogen.
- 8. Feed cumene to the reactor at the desired rate employing the feed flow rotameter to monitor that rate.
- 9. Record the feed tank level and time.
- 10. The first product will appear in 5 to 10 minutes. Discard the product obtained during the first 10 minutes and collect, blend and sample the product obtained during the second 10 minutes.
- 11. While maintaining all other operating conditions constant, activate the ultrasonic generator and adjust it to the desired frequency.
- 12. Discard the product obtained during the first 10 minutes and collect, blend and sample the product obtained during the second 10 minutes.
- 13. While maintaining all other operating conditions constant, readjust the ultrasonic generator to another frequency.
- 14. Discard the product obtained during the first 10 minutes and collect, blend and sample the product collected during the second 10 minutes.
- 15. While maintaining all other operating conditions constant, shut down the ultrasonic generator.

- 16. Discard the product obtained during the first 10 minutes and collect, blend and sample the product collected during the second 10 minutes.
- 17. Record the feed tank level and time.
- 18. Shut off the feed and purge the reactor with nitrogen for 20 minutes.
- 19. Shut down the power to the hot oil heater and shut down the recirculation pump.
- 20. Shut down the nitrogen purge and set the air purge rate at 6.0 scfh employing the air flow rotameter.
- 21. Air purge the reactor for 24 hours at the reaction temperature prior to starting the next run.
- 22. Thoroughly blend each of the four samples obtained in steps 10, 12, 14 and 16 to insure uniformity within each sample. Inject a portion of each of the samples three times into the gas chromatograph and calculate the conversion. If the calculated conversion of the samples obtained from steps 10 and 16 do not agree within 3%, discard the run. (This was never necessary.)

The data sheet employed for this study is shown in Figure 7. Copies of several actual completed data sheets are included in Appendix XIV.

# FIGURE 7

# DATA SHEET

| Run No.                               |          |   | Re | actor    | Diam     | eter. | cm.   | ····· |          |          |   |
|---------------------------------------|----------|---|----|----------|----------|-------|-------|-------|----------|----------|---|
| Date                                  |          |   | Fr | equen    | cy. c    | ps    |       |       |          |          |   |
| Catalyst. gms.                        |          |   | Po | wer.     | watts    |       |       |       |          |          |   |
| Bed Height, cm.                       |          |   | Fe | ed Ta    | nk Di    | amete | r. in | •     |          |          |   |
| Time                                  |          |   |    |          |          |       |       |       |          |          |   |
| Tank Height, in.                      |          |   |    |          |          |       |       |       |          |          |   |
| Rotameter, mm.                        |          |   |    |          |          |       |       |       |          |          |   |
| Rota, Feed Rate, gms/hr.              |          |   |    |          |          |       |       |       |          |          |   |
| Tank Feed Rate gms/hr.                |          |   |    |          |          |       |       |       |          |          |   |
| Heater No. 1                          |          |   |    |          |          |       |       |       | ļ        | L        |   |
| Heater No. 2                          |          |   |    |          |          |       |       |       |          |          |   |
| Heater No. 3                          |          |   |    |          |          |       |       |       | <u> </u> |          |   |
| Heater No. 4                          |          |   |    |          |          |       |       |       |          |          |   |
| Hot Oil Heater                        | ļ        |   |    | ļ        |          |       |       |       | ļ        | <b>]</b> |   |
| <u>TI-1. OF</u>                       | ļ        |   |    |          |          |       |       |       |          | <b> </b> |   |
| <u>TI-2, OF.</u>                      |          |   |    |          | <u> </u> |       |       |       |          |          |   |
| <u>TI-3, OF.</u>                      |          |   |    |          |          |       |       |       |          |          |   |
| <u>TI-4, OF</u> .                     | L        |   |    |          | L        | L     |       |       | L        | ļ        |   |
| <u>TI-5, OF</u> .                     | <u> </u> | ļ |    | ļ        |          |       |       |       |          |          |   |
| <u>TI-6, OF</u>                       |          |   |    |          |          |       |       |       |          |          |   |
| <u>TI-7, <sup>o</sup>F. (Hot Oil)</u> |          |   |    |          |          |       |       |       |          |          |   |
| <u>TC-1, OF</u> .                     |          |   |    |          |          |       |       |       | L        |          |   |
| Ultrasound                            |          |   |    |          |          |       |       |       |          |          |   |
| W/F. gm cat-sec/gm mole               |          |   |    |          | 1        |       |       | l     |          |          |   |
| Cumene, %                             |          |   |    |          |          |       |       |       |          |          |   |
| Benzene, %                            |          |   |    |          |          |       |       |       |          |          |   |
| Propylene, %                          |          |   |    |          |          |       |       |       |          |          |   |
| Conversion, X                         |          |   |    |          |          |       | ļ     |       |          |          |   |
|                                       |          |   |    |          |          |       |       |       |          | <u> </u> |   |
|                                       |          |   |    | <u> </u> | <u> </u> | ļ     |       |       |          | L        |   |
|                                       | <u> </u> | ļ |    |          | ļ        |       |       | ļ     | ļ        | ļ        | I |
|                                       |          | 1 |    |          |          |       |       |       | 1        |          |   |

5 З

#### CHAPTER V

#### EXPERIMENTAL RESULTS

#### Presentation of All Data

All the data collected (Appendix XIV) are presented herein as plots of conversion versus reciprocal space velocity. The best curve fit of the data was calculated for each temperature and frequency employed by the quadratic regression equation:

$$x = a + b (W/F) + C (W/F)^2$$
 (21)

~

Since the external mass transfer rate is dependent upon feed rate, the equations of these curves are later employed to determine conversion at specific reciprocal space velocities for the calculation of mass transfer coefficients.

The three constants obtained for each condition are shown in Table 4. The plot of the curves showing all the data points are in Appendix XVI and the plots for each family of three curves for each frequency are shown for all the temperatures studied in Figures 8 through 16. The data points are omitted for clarity. It is noted that although several of the curves cross at low reciprocal space velocity, the actual data indicate higher conversions at higher frequencies in every case. This is because the shape of the quadratic curves near the origin often does not precisely fit the data points.

# TABLE 4

| Temp.<br>OF.                           | cps<br><u>x 10-3</u> | Power                                      | a                                                        | <u>b x 10<sup>6</sup></u>                    | $C \times 10^{11}$                                 |
|----------------------------------------|----------------------|--------------------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------------------------------------|
| 650<br>650<br>650                      | 39<br>26             | full<br>full<br>off                        | -0.000959<br>-0.00605<br>-0.00664                        | 1.74<br>1.76<br>1.75                         | -0.91<br>-1.06<br>-1.10                            |
| 700<br>700<br>700                      | 39<br>26<br>-        | full<br>full<br>off                        | 0.0309<br>0.0253<br>0.0205                               | 1.45<br>0.923<br>0.958                       | 0.590<br>0.790<br>0.650                            |
| 750<br>750<br>750                      | 39<br>26<br>-        | full<br>full<br>off                        | 0.0231<br>0.0051<br>-0.0054                              | 7.55<br>6.66<br>7.00                         | -3.74<br>-3.17<br>-3.70                            |
| 800<br>800<br>800                      | 39<br>26<br>-        | full<br>full<br>off                        | 0.0453<br>0.0308<br>0.0226                               | 5.97<br>5.32<br>5.41                         | -2.32<br>-1.93<br>-2.09                            |
| 850<br>850<br>850<br>850<br>850<br>850 | 39<br>26<br>39<br>26 | full<br>full<br>off<br>half<br>half<br>off | 0.0282<br>0.0252<br>0.0258<br>0.0989<br>0.0974<br>0.0258 | 9.92<br>9.04<br>8.40<br>5.01<br>4.79<br>8.40 | -5.87<br>-5.76<br>-5.60<br>-2.00<br>-2.03<br>-5.60 |
| 900<br>900<br>900                      | 39<br>26             | full<br>full<br>off                        | 0.0877<br>0.0789<br>0.0655                               | 5.33<br>4.16<br>6.26                         | -1.86<br>-1.13<br>-3.15                            |
| 950<br>950<br>950                      | 39<br>26             | full<br>full<br>off                        | 0.0359<br>0.0256<br>0.0255                               | 7.52<br>8.76<br>8.12                         | -1.75<br>-4.30<br>-4.42                            |
| 1000<br>1000<br>1000                   | 39<br>26<br>-        | full<br>full<br>off                        | 0.215<br>-0.0224<br>-0.0213                              | 20.3<br>29.4<br>29.8                         | -39.5<br>-75.2<br>-81.5                            |

# QUADRATIC EQUATION CONSTANTS

Full power = 25 watts Half power = 12.5 watts



,

FIGURE 8










Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F/W .sv NUSHEINNOO





Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.





Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ś

W/F x 10<sup>-3</sup>, <u>gm.cat.-sec.</u>

Conversions obtained at temperatures above  $850^{\circ}F$ . decreased slightly at higher temperatures at some feed rates indidicating partial coking of the reactor. Although some date were collected at  $1050^{\circ}F$ ., coking of the reactor and catalyst at this temperature caused considerable mechanical difficulty with the apparatus. Therefore, attempts to study the effect of ultrasound at  $1050^{\circ}F$ . were abandoned.

The quadratic curves presented herein are employed for future calculation purposes only and should not be construed to represent a theoretical model of the reaction mechanism.

It will be shown that on the upper portion of the quadratic curves, at low feed rates, external bulk diffusion is the controlling factor for the reaction rate. On the lower portion of the curves, at high feed rates, the combined effect of surface reaction and internal pore diffusion control the rate of reaction.

Although the quadratic curves show a decrease in conversion at lower acoustical power inputs at low flow rates, it will be shown later that there is, in fact, negligible effect on either the mass transfer coefficient,  $k_g$ , or the kinetic rate constant,  $\mathcal{E}Lk_2$ .

#### External Diffusion Controlling

When external bulk diffusion controls the rate of reaction, the mass transfer coefficient,  $k_g$ , is the controlling factor. The mass transfer coefficient is calculated from the following equation derived in Chapter II and Appendix IV:

$$k_{g} = \frac{6.26 X_{Af} T}{(W/F_{A_{O}}) \ln(1 + Y_{A_{I,M}})}$$
(22)

The mass transfer coefficient was calculated at three different feed rates corresponding to reciprocal space velocities of 20,000, 50,000 and 80,000  $\frac{\text{gm cat-sec.}}{\text{gm mole}}$ . The results of these calculations are shown in Table 5.

Temperature effect. As is shown in the Appendix VI, the mass transfer coefficient is an exponential function of temperature. Therefore, a plot of the logarithm of the mass transfer coefficient versus temperature should yield a straight line. This, in fact, is the case as illustrated in Figures 17 through 22. The equations of the straight lines as obtained by the method of least squares are shown in Table 6. The calculation of the confidence intervals shown in Table 6 is demonstrated in Appendix XXII.

As shown in the graphs, the mass transfer coefficients calculated at  $650^{\circ}$ F. ( $616^{\circ}$ K.) and  $700^{\circ}$ F. ( $644^{\circ}$ K.) fall well below the theoretical curve. The reason for this phenomenon is because external bulk diffusion no longer controls the

## TABLE 5

#### MASS TRANSFER COEFFICIENT

|                |             |              | W/1    | $W/FA_{O} =$                        |        | $W/FA_{O} =$                        |                 | $W/FA_{o} =$                        |  |  |
|----------------|-------------|--------------|--------|-------------------------------------|--------|-------------------------------------|-----------------|-------------------------------------|--|--|
| Фетр           | f           |              | 20,000 | gm cat-sec.<br>gm mole              | 50,000 | gm cat-sec.<br>gm mole              | 80,000          | gm cat-sec.<br>gm mole              |  |  |
| ° <sub>F</sub> | $x 10^{-3}$ | Power        | XAf    | k <sub>g</sub> , <u>cm.</u><br>sec. | XAf    | k <sub>g</sub> , <u>cm.</u><br>sec. | x <sub>Af</sub> | k <sub>g</sub> , <u>cm.</u><br>sec. |  |  |
| 650<br>650     | 39<br>26    | Full<br>Full | 0.030  | 0.0085                              | 0.063  | 0.0073                              | 0.080           | 0.0059                              |  |  |
| 650            | -           | Off          | 0.024  | 0.0068                              | 0.053  | 0.0061                              | 0.063           | 0.0049                              |  |  |
| 700            | 39          | Full         | 0.062  | 0.0180                              | 0.118  | 0.0149                              | 0.185           | 0.0154                              |  |  |
| 700            | 26          | Full         | 0.047  | 0.0141                              | 0.091  | 0.0113                              | 0.150           | 0.0122                              |  |  |
| 700            | -           | Off          | 0.042  | 0.0126                              | 0.085  | 0.0105                              | 0.139           | 0.0112                              |  |  |
| 750            | 39          | Full         | 0.159  | 0.0541                              | 0.307  | 0.0466                              | 0.388           | 0.0392                              |  |  |
| 750            | 26          | Full         | 0.126  | 0.0419                              | 0.259  | 0.0379                              | 0.335           | 0.0325                              |  |  |
| 750            | -           | Off          | 0.120  | 0.0397                              | 0.252  | 0.0367                              | 0.318           | 0.0304                              |  |  |
| 800            | 39          | Full         | 0.155  | 0.0548                              | 0.286  | 0.0445                              | 0.374           | 0.0389                              |  |  |
| 800            | 20          | FULL         | 0.129  | 0.0448                              | 0.249  | 0.0377                              | 0.333           | 0.0336                              |  |  |
| 850            | -           | UII<br>Euro  | 0.122  | 0.0421                              | 0.241  | 0.0303                              | 0.322           | 0.0322                              |  |  |
| 850            | )7<br>26    | rull<br>Full | 0.205  | 0.0772                              | 0.370  | 0.0000                              | 0.440           | 0.0511                              |  |  |
| 850            | 20          | L UTT<br>Off | 0.105  | 0.0000                              | 0.306  | 0.0500                              | 0.330           | 0.0413                              |  |  |
| 850            | 30          | Half         | 0.191  | 0.0720                              | 0.200  | 0.0902                              | 0.372           | 0.0557                              |  |  |
| 850            | 26          | Half         | 0.185  | 0.0694                              | 0.286  | 0.0462                              | 0.351           | 0 0373                              |  |  |
| 850            | -           | Off          | 0.171  | 0.0635                              | 0.269  | 0.0430                              | 0,339           | 0.0357                              |  |  |
| 900            | 39          | Full         | 0.187  | 0.0730                              | 0.308  | 0.0526                              | 0.395           | 0.0451                              |  |  |
| 900            | 26          | Full         | 0.158  | 0.0604                              | 0.259  | 0.0426                              | 0.339           | 0.0370                              |  |  |
| 900            | -           | Off          | 0.178  | 0.0690                              | 0.300  | 0.0509                              | 0.365           | 0.0407                              |  |  |
| 950            | 39          | Full         | 0.179  | 0.0720                              | 0.368  | 0.0683                              | 0.526           | 0.0696                              |  |  |
| 950            | 26          | Full         | 0.184  | 0.0743                              | 0.356  | 0.0654                              | 0.451           | 0.0559                              |  |  |
| 950            | -           | Off          | 0.170  | 0.0680                              | 0.321  | 0.0574                              | 0.392           | 0.0463 o                            |  |  |
| 1000           | 39          | Full         | 0.270  | 0.1203                              | -      | -                                   | -               | - ~                                 |  |  |
| 1000           | 26          | FULL         | 0.265  | 0.2277                              | -      | ~                                   |                 | -                                   |  |  |
| T000           | -           | UI'I'        | 0.249  | 0.1092                              |        | -                                   |                 | -                                   |  |  |

Note: Full power = 25 watts, half power = 12.5 watts

# TABLE 6

#### CONSTANTS OF THE EQUATION OF MASS TRANSFER COEFFICIENTS

#### AS A FUNCTION OF TEMPERATURE

General Equation:  $\log k_g = bT + a$ 

|                       |                                           |               |         |                            |          | C,                         |         |                            |          |                           |          |
|-----------------------|-------------------------------------------|---------------|---------|----------------------------|----------|----------------------------|---------|----------------------------|----------|---------------------------|----------|
| W/FAO                 | f x<br>10 <sup>-3</sup><br><u>cps a b</u> |               |         | 99% Confidence<br>Interval |          | 95% Confidence<br>Interval |         | 90% Confidence<br>Interval |          | Approximate<br>Confidence |          |
| gm cat-sec<br>gm mole |                                           |               |         | a                          | <u> </u> | a                          | b       | a_                         | <u>b</u> | <u>_a</u>                 | <u>b</u> |
| 80,000                | -                                         | -2.66         | 0.00169 | 0.05                       | 0.00007  | 0.03                       | 0.00004 | 0.02                       | 0.00003  | -                         | -        |
| 80,000                | 26                                        | -2.75         | 0.00185 | 0.28                       | 0.00038  | 0.15                       | 0.00021 | 0.11                       | 0.00015  | 75%                       | 90%      |
| 80,000                | 39                                        | -2.80         | 0.00203 | 0.31                       | 0.00042  | 0.17                       | 0.00023 | 0.12                       | 0.00017  | 90%                       | 97%      |
| 50,000                | -                                         | -2.74         | 0.00193 | 0.19                       | 0.00026  | 0.10                       | 0.00014 | 0.08                       | 0.00011  | -                         | -        |
| 50,000                | 26                                        | -2.71         | 0.00190 | 0.39                       | 0.00054  | 0.21                       | 0.00029 | 0.16                       | 0.00022  | 30%                       | 25%      |
| 50,000                | 39                                        | -2.32         | 0.00146 | 0.28                       | 0.00043  | 0.15                       | 0.00023 | 0.11                       | 0.00017  | 97%                       | 94%      |
| 20,000                | -                                         | -3.39         | 0.00294 | 0.05                       | 0.00008  | 0.03                       | 0.00005 | 0.02                       | 0.00004  | -                         |          |
| 20,000                | 26                                        | <b>-3.3</b> 6 | 0.00293 | 0.20                       | 0.00024  | 0.12                       | 0.00015 | 0.09                       | 0.00011  | 52%                       | 15%      |
| 20,000                | 39                                        | -2.99         | 0.00253 | 0.31                       | 0.00013  | 0.19                       | 0.00008 | 0.14                       | 0.00006  | 99%                       | 99%      |
| -                     |                                           |               |         | -                          | •        |                            |         |                            |          | -                         |          |



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FIGURE 19 Log kg, sec.



<sup>72</sup> 



73

FIGURE 19B

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

FIGURE 19C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.







Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rate of reaction at these low temperatures. In fact, even at these low flow rates, surface reaction is so slow at  $650^{\circ}F$ . and  $700^{\circ}F$ . that it becomes the controlling factor in the overall reaction rate. At above  $850^{\circ}F$ . (727°K.) surface reaction rate is very rapid and external bulk diffusion controls the rate of reaction.

<u>Ultrasonic effect</u>. The family of three curves showing each frequency is plotted at the three feed rates in Figures 23, 23A and 24. In all cases, the mass transfer coefficient and hence the reaction rate is increased with the application of ultrasound. The mass transfer rate also increases at the higher frequencies. For example, at a reciprocal space velocity of 80,000  $\frac{\text{gm cat-sec.}}{\text{gm mole}}$  and a frequency of 39,000 cps, the mass transfer coefficient is increased by 37% at 1000°F. The increase of mass transfer rates at other conditions are shown in Table 7.

Since in this range of feed rate and temperature reaction rate is directly proportional to the mass transfer coefficient, the results illustrated in Table 7 also apply to reaction rate.

At high feed rates and low temperatures where surface reaction begins to control the rate of reaction, high frequency sound waves appear to have a much greater effect on the reaction rate than at higher temperatures where mass transport controls. This phenomenon is indicated in the



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIGURE 23A







## TABLE 7

# INCREASE IN MASS TRANSFER COEFFICIENT AT SEVERAL FEED RATES, TEMPERATURES AND ULTRASONIC FREQUENCIES

W/F

| W/F<br>gm_cat_sec.<br>gm_mole                                                                                                                                                                        | Temp.,<br><sup>o</sup> F.                                                                                                                                                                             | f,<br>cps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Power                                                        | %<br>Increase<br>of k <sub>g</sub>                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 80,000<br>80,000<br>80,000<br>80,000<br>80,000<br>80,000<br>80,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>50,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000 | $\begin{array}{c} 650\\ 850\\ 850\\ 1000\\ 650\\ 850\\ 1000\\ 650\\ 850\\ 1000\\ 650\\ 850\\ 1000\\ 650\\ 850\\ 1000\\ 650\\ 850\\ 1000\\ 650\\ 850\\ 850\\ 1000\\ 650\\ 850\\ 850\\ 1000\end{array}$ | 26,000<br>26,000<br>26,000<br>39,000<br>39,000<br>39,000<br>26,000<br>26,000<br>26,000<br>26,000<br>39,000<br>39,000<br>39,000<br>26,000<br>26,000<br>26,000<br>26,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,000<br>39,0 | Full<br>Full<br>Full<br>Full<br>Full<br>Full<br>Full<br>Full | $\begin{array}{c} 2.0\\ 6.2\\ 9.7\\ 9.6\\ 20.5\\ 18.7\\ 2.5\\ 1.3\\ 36.7\\ 1.3\\ 35.7\\ 1.3\\ 5.7\\ 40.4\\ 28.8\\ 16.8\end{array}$ |
|                                                                                                                                                                                                      | Full po<br>Half po                                                                                                                                                                                    | ower = $25$ wa<br>ower = $12.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tts<br>watts                                                 |                                                                                                                                    |

data of Table 7 at reciprocal space velocities of 20,000 <u>gm cat-sec.</u> and frequencies of 39,000 cps. These data indicate that ultrasound has a greater influence upon pore diffusion and surface reaction rate than upon external mass transport.

The data points on the graphs represented by triangles are those obtained with the ultrasonic generator operating at half power. Since these points fall on the theoretical curve developed for full power within the 90% confidence interval, it is concluded that power input has no effect on the external mass transfer rate for the range of power input studied in this research.

#### Surface Reaction and Pore Diffusion Controlling

<u>Reaction rate model.</u> The reaction design equation for surface reaction controlling and propylene not adsorbed as derived in Chapter II is as follows:

$$\frac{W}{F_{A_{0}}} = \delta \left[ \left( \frac{1}{2\delta} - \frac{1}{2\delta^{3}} \right) \ln \frac{(1 + X_{A}\delta)}{(1 - X_{A}\delta)} + \frac{X_{A}}{\delta^{2}} \right]$$
(23)  
+  $\beta \left[ \frac{1}{2\delta^{3}} \ln \frac{(1 + X_{A}\delta)}{(1 - X_{A}\delta)} - \frac{1}{2\delta^{2}} \ln \frac{(1 - \delta^{2}X_{A}^{2})}{-\frac{X_{A}}{\delta^{2}}} - \frac{X_{A}}{\delta^{2}} \right]$ 

where,

$$\chi = \frac{1}{\epsilon \operatorname{Lk}_{2} \operatorname{K}_{A} \pi} + \frac{1}{\epsilon \operatorname{Lk}_{2}}$$
(24)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

$$\beta = \frac{2}{\epsilon \operatorname{Lk}_{2} \operatorname{K}_{A} \pi} + \frac{\operatorname{K}_{R}}{\epsilon \operatorname{Lk}_{2} \operatorname{K}_{A}}$$
(25)

$$S = \left[1 + \frac{\mathcal{T}}{K}\right]^{\frac{1}{2}}$$
(26)

The literature values of K,  $K_A$  and  $K_R$  are substituted into the surface reaction rate equation and the values of  $\mathcal{E}Lk_2$ are calculated at each temperature as described in Appendix VIII. All the theoretical curves and the associated data points are also shown in Appendix VIII, and the data do, in fact, fit the theoretical model very well.

<u>Ultrasonic effect</u>. When surface reaction controls the rate of reaction, the application of ultrasound increased that rate by increasing the kinetic rate constant,  $\mathcal{E}_{Lk_2}$ , which is directly proportional to the overall rate of reaction. The evaluation of the effectiveness factor based upon physical characteristics of the catalyst is shown in Appendix VI.

The graphs of conversion as a function of reciprocal space velocity as calculated by the reaction rate model are as illustrated in Figures 25 through 33. As illustrated by the graphs, the conversion is increased in the presence of ultrasound at every temperature studied. At temperatures above  $900^{\circ}F$ , the decrease in conversion at some flow rates again indicates possible coking of the reactor.

Table 8 shows the increase in the factor  $\mathcal{E}Lk_2$ at several ultrasonic frequencies and temperatures.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86





Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 $\bigcirc$ = 39,000 cps ultrasound 20 = 26,000 cps --**с**–1 **с**,\_\_, 100 $W/F \times 10^{-2}$ , <u>gm.cat.-sec.</u> <u>gm. mole</u> CONVERSION vs. W/F 25 watts 5.0 70 11 Full power  $T = 850^{0} F$ . 52 0.000 0.250 0.200 0.150 0.100 0.050 CONVERSION, Х







Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
#### TABLE 8

# INCREASE OF KINETIC RATE CONSTANT AT SEVERAL TEMPERATURES AND ULTRASONIC FREQUENCIES

|                     | % Increase | % Increase of EL k <sub>2</sub> |  |  |
|---------------------|------------|---------------------------------|--|--|
| r., <sup>o</sup> F. | 26,000 cps | 39,000 cps                      |  |  |
| 650                 | 36%        | 162%                            |  |  |
| 750                 | 20%        | 86%                             |  |  |
| 850                 | 9%         | 39%                             |  |  |
| 900                 | 4%         | 22%                             |  |  |

## TABLE 8A

# CONSTANTS OF THE EQUATIONS OF KINETIC RATE CONSTANTS AS A FUNCTION OF TEMPERATURE

| General Equation: $\log \boldsymbol{\varepsilon} Lk_2 = b \left[\frac{1}{T}\right] + a$ |                                            |                                            |                                            |
|-----------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| Frequency ons II                                                                        | No                                         | 26 000                                     | 30 000                                     |
| riequency, ops <u>u</u>                                                                 | LUIASUUIU                                  | 20,000                                     | <u>J</u> <del>9</del> ,000                 |
| a<br>99% confidence interval<br>95% confidence interval<br>90% confidence interval<br>b | -1.141<br>1.062<br>0.677<br>0.531<br>-4812 | -1.637<br>1.042<br>0.664<br>0.521<br>-4115 | -2.534<br>0.860<br>0.549<br>0.430<br>-2801 |
| 99% confidence interval<br>95% confidence interval<br>90% confidence interval           | 1343<br>857<br>671                         | 1318<br>840<br>659                         | 1088<br>694<br>544                         |
| Approximate confidence                                                                  | -                                          | 65%                                        | 97%                                        |

For example, at  $650^{\circ}$ F. an ultrasonic frequency input of 39,000 cps increases the catalyst effectiveness factor by 162%.

#### Activation Energy

<u>Arrhenius model</u>. The activation energy, E, is calculated from the Arrhenius Law, employing the combined parameter, Lk<sub>2</sub>, as the reaction rate constant.

$$\mathcal{E}Lk_2 = k_0 e \frac{E}{RT}$$
 (27)

Figures 34 through 37 show the logarithm of the parameter  $\mathcal{E}Lk_2$  plotted against reciprocal temperature. These plots yield a straight line, the equations for which, calculated by the method of least squares, are as follows and as shown in Table 8A.

No ultrasound: 
$$\log \ ELk_2 = -4812 \ \frac{1}{T^{O_R}} - 1.141$$
 (28)

26,000 cps: 
$$\log \ \mathcal{E}Lk_2 = -4115 \ \frac{1}{T^0R} - 1.637$$
 (29)

39,000 cps: 
$$\log \ \epsilon Lk_2 = -2801 \ \frac{1}{T^0 R} - 2.534$$
 (30)

These calculations, which are described fully in Appendix XVII, yield the values for the observed apparent activation energy as shown in Table 9.

The data in Table 9 indicate that both the observed apparent activation energy and the observed apparent frequency factor decrease as the ultrasonic frequency rises. However, an analysis based on the Thiele modulus would indicate that if ultrasound improves the effectiveness factor, then the apparent activation energy should rise and approach the real activation energy based on  $k_2$  since  $\mathcal{E}$  becomes closer to one.

To determine the real effect of ultrasound on and  $k_2$ , it is suggested that further studies with small particle sizes be made ( $\mathcal{E} \sim 1$ ) to separate these effects.



-





99



## TABLE 9

# ACTIVATION ENERGY AND CHARACTERIZATION FACTOR

| Fı  | requency<br>f<br>cps | Activation<br>Energy, E<br><u>kcal</u><br>gm mole | Character.<br>Factor, k <sub>o</sub><br>gm moles | Investigator               |
|-----|----------------------|---------------------------------------------------|--------------------------------------------------|----------------------------|
|     |                      | <u>Bm_m010</u>                                    | Em Octo-Boo.                                     | 101                        |
| No  | Ultrasound           | 11.0                                              | -                                                | Eberly <sup>101</sup>      |
| No  | Ultrasound           | 34.0                                              | -                                                | Bezre <sup>5</sup>         |
| No  | Ultrasound           | 27.0                                              | -                                                | Spozhakina <sup>76</sup>   |
| No  | Ultrasound           | 18.0                                              | -                                                | Romanovskii <sup>102</sup> |
| No  | Ultrasound           | 3.0                                               | -                                                | Panchenkov <sup>50</sup>   |
| No  | Ultrasound           | 13.2                                              | 0.0021                                           | Rase <sup>64</sup>         |
| No  | Ultrasound           | 5.4                                               | 0.0700                                           | Garver <sup>22</sup>       |
| No  | Ultrasound           | 12.1                                              | 0.0723                                           | Lintner                    |
| 26, | ,000                 | 10.4                                              | 0.0231                                           | Lintner                    |
| 39, | ,000                 | 7.1                                               | 0.0029                                           | Lintner                    |

Table 9 also illustrates the values of activation energy and characterization factor obtained by several other investigators. Considering the wide range of values obtained by other observers, the value calculated by these data appear to be reasonable. It is interesting to note that the total ultrasonic power input to the reactor ranged between 4.3 and 103.4  $\frac{\text{kcal}}{\text{gm mole}}$  which bracketed the activation energy.

<u>Ultrasonic effect.</u> As shown in Figure 37, the value of the effectiveness factor parameter,  $\mathcal{E}_{Lk_2}$ , increases with increasing frequency. At low values of reciprocal temperature or high values of temperature, the values of  $\mathcal{E}_{Lk_2}$  become equal at all frequencies because surface reaction rate no longer controls. At high temperatures, surface reaction rate is very rapid and bulk diffusion from the main gas stream to the surface of the catalyst controls the overall rate of reaction.

The values of  $\mathcal{E}_{Lk_2}$  obtained at half the power output of the equipment are plotted as triangles on the graphs for frequencies of 26,000 cps and 39,000 cps. The plots indicate that this decrease in power input has negligible effect on the value of  $\mathcal{E}_{Lk_2}$ .

#### Summary of Results

In general, all the data lead to identical conclusions. Ultrasound increases the rate of reaction and the reaction rate increases with increasing frequency. Power input has negligible effect on the rate of reaction for the range studied.

Throughout the range of feed rates and temperatures studied, external bulk diffusion controls at low feed rates and high temperatures and conversely, surface reaction controls or pore diffusion at high feed rates and low temperatures. These phenomena are illustrated in Figure 38.

It should be noted that when the dimensions of  $\pounds Lk_2$ are transposed from  $\frac{gm \ moles}{gm \ cat-sec.}$  to  $\frac{cm.}{sec.}$ , as shown in Appendix XVIII, it can be plotted as a function of temperature as illustrated in Figure 38. In this figure,  $\pounds Lk_2$  is described as the intrinsic reaction rate constant,  $k_s$ . The scale of the abscissa has been altered to correspond to  $k_g$ , the mass transfer coefficient scale. This alteration is necessary because the  $\pounds Lk_2$  term is not a function of  $k_2$ , the forward rate constant, alone, but also of  $\pounds$  and L, the catalyst effectiveness factor and the concentration of active sites on the catalyst surface.

#### Acoustic Streaming

This research shows for the first time that the application of ultrasonic vibrations to a solid catalyzed gas reaction results in an increased reaction rate with increasing frequency as a result of increased diffusion rates. The diffusion rate is increased both externally from the

103





RATE CONSTANTS vs. TEMPERATURE

bulk gas stream to the catalyst surface and internally within the catalyst pore.

Fogler and Lund<sup>20</sup> have independently offered a mathematical explanation for this phenomena which they have identified as acoustic streaming. Their mathematical model states that within a duct, through which there is a concentration gradient, mass transfer occurs by molecular diffusion alone. However, when ultrasound is applied to the duct, small vortex cells are set up in which the gas moves circularly similar to eddy currents. This forced convection within each cell coupled with diffusion between cells results in a faster transport rate within the duct than with diffusion alone.

If one assumes the duct to be a tubular reactor shell or the pore of a catalyst, this model explains the results and conclusions of this research.

#### Thermal Effects

The application of acoustic energy to a catalyst bed may cause "hot spots" within the bed and thereby result in localized accelerated reaction rates. This thermal effect alone or together with increased diffusion rates may explain the increase in reaction rate observed in this research.

#### CHAPTER VI

#### CONCLUSIONS

The effect of ultrasonic vibrations on heterogeneous catalysis may be summarized as follows:

- All the data collected at all temperatures and frequencies yield quadratic curves when plotted as conversion versus reciprocal space velocity.
- 2. In the area where external bulk diffusion controls the rate of reaction, the logarithm of the mass transfer coefficient is a linear function of temperature at all ultrasonic frequencies. The mass transfer coefficient and, therefore, the rate of reaction increases with increasing ultrasonic frequency.
- 3. In the area where surface reaction and internal pore diffusion control the rate of reaction, the data fit the reaction rate model previously derived by Garver at all frequencies and temperatures.
- 4. The kinetic rate constant,  $\in Lk_2$ , increases with increasing frequency.
- 5. The activation energy calculated from these data decrease with increasing frequency.
- 6. Power input appears to affect the rate of reaction in the plots of conversion versus reciprocal space

velocity at low feed rates. However, in the logarithmic plots of mass transfer coefficient and kinetic rate constant versus temperature, the effect of power is not statistically significant for the range studied.

7. The increases of mass transfer coefficients and kinetic rate constants obtained at a frequency of 39,000 cps are statistically significant within confidence intervals of 90%. The results obtained at 26,000 cps lie within confidence limits of 50 to 60%, but the raw data lead this author to believe that the lower frequency also increases the rate of reaction.

#### CHAPTER VII

#### RECOMMENDATIONS

This research demonstrates for the first time the quantitative effect of ultrasonic vibrations on the rate of a solid catalyzed gas reaction. It further demonstrates that this reaction rate is increased in the reactant feed flow range where external bulk diffusion controls and in the range where internal pore diffusion is the controlling factor. Increasing ultrasonic frequency results in faster reaction rates, and power input in the range studied has negligible effect. These phenomena have never previously been quantitatively demonstrated.

It is this author's hope that this research will influence other investigators to continue studies of the effect of ultrasonic vibrations on heterogeneous catalyzed reactions. The areas recommended for further study are as follows:

1. Employ the use of powdered catalyst (Appendix XII) to obtain an absolute value for the forward reaction rate constant,  $k_2$ . The absolute values of the effectiveness factor,  $\mathcal{E}$ , could then be calculated at various operating conditions employing standard catalyst. It would then be possible to determine the effect of ultrasound on each parameter alone.

- 2. Study frequencies up to  $10^{11}$  cps and power inputs to 120  $\frac{watts}{cm.}$  to expand the range of this study. It is now possible to obtain these conditions with modern ultrasonic equipment, but this equipment is, of course, considerably more expensive.
- 3. Study the effect of ultrasonic vibrations on systems other than the cumene cracking reaction and silica-alumina catalyst.
- 4. Investigate the possible thermal effects on the datalyst due to the application of ultrasonic energy.

# APPENDIX I

PHYSICAL PROPERTIES OF CUMENE, BENZENE AND PROPYLENE

The overall chemical reaction and some of the physical properties of the reactants and products, both published and calculated, are as follows:

Reaction

| с <sub>6</sub> н <sub>5</sub> -сн-(сн <sub>3</sub> ) <sub>2</sub> |         | $C_6H_6 + CH_3 - CH = CH_2$ |
|-------------------------------------------------------------------|---------|-----------------------------|
| А                                                                 | <b></b> | R + S                       |
| Cumene                                                            |         | Benzene and Propylene       |

Physical Properties

|                                                         | Cumene | Benzene | Propylene    |
|---------------------------------------------------------|--------|---------|--------------|
| M, gms<br>gm mole                                       | 120.19 | 78.11   | 42.08        |
| SpG                                                     | 0.862  | 0.879   | -            |
| MP, <sup>o</sup> C.                                     | -96.9  | 5.4     | <b>-</b> 185 |
| BP, <sup>o</sup> C.                                     | 152.5  | 80.1    | -48          |
| $C_{\rm P}$ at 650°F., $\frac{\rm cal}{\rm gm-^{o}C}$ . | 0.588  | 0.541   | 0.624        |
| $C_{\rm p}$ at 1050°F., $\frac{\rm cal}{\rm gm-°C}$ .   | 0.736  | 0.682   | 0.756        |
| $C_V$ at 650°F., $\frac{cal}{gm-°C}$ .                  | 0.571  | 0.515   | 0.576        |
| $C_V$ at 1050°F., $\frac{cal}{gm-°C}$ .                 | 0.719  | 0.656   | 0.708        |
| <sup>т</sup> с, ок.                                     | 636.0  | 562.6   | 365.0        |
| $v_{\rm b}, \frac{\rm cm^3}{\rm gm mole}$               | 162.6  | 96.0    | 66.6         |
| P <sub>C</sub> , atm.                                   | 32.2   | 48.6    | 45.5         |
| $v_{\rm C}, \frac{{\rm cm}^3}{{\rm gm mole}}$           | 357    | 260     | 181          |
| √,Å                                                     | 6.43   | 5.27    | 4.678        |

|                                                                                             | Cumene                 | <u>Benzene</u>         | Propylene              |
|---------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|
| <i>ε</i> <sub>A</sub> /κ, <sup>ο</sup> κ.                                                   | 490                    | 440                    | 298.9                  |
| $\mathcal{M}_{c}, \frac{gms}{cm-sec.}$                                                      | 315 x 10 <sup>-6</sup> | 312 x 10 <sup>-6</sup> | 233 x 10 <sup>-6</sup> |
| V <sub>AR</sub> , V <sub>AS</sub> , Å                                                       | -                      | 5.85                   | 5.554                  |
| $\mathcal{E}_{AR}/K$ , $\mathcal{E}_{AS}/K$ , $^{O}K$ .                                     | -                      | 464                    | 383                    |
| <sup>КТ</sup> 650/Е <sub>АН</sub> , <sup>КТ</sup> 650/Е <sub>АS</sub> , <sup>О</sup> К.     | -                      | 1.328                  | 1.608                  |
| KT <sub>1050</sub> /ε <sub>AE</sub> , KT <sub>1050</sub> /ε <sub>AS</sub> , <sup>o</sup> K  | . –                    | 1.808                  | 2.190                  |
| $\left[\mathcal{A}_{AR}\right]_{650}$ , $\left[\mathcal{A}_{AS}\right]_{650}$               | -                      | 1.262                  | 1.165                  |
| [-1] 1050 · [1 AS] 1050                                                                     | -                      | 1.114                  | 1.043                  |
| $\begin{bmatrix} D \\ AB \end{bmatrix}$ 650, $\begin{bmatrix} D \\ AR \end{bmatrix}$ 650,   |                        |                        |                        |
| $\begin{bmatrix} D \\ AS \end{bmatrix}$ 650, $\frac{\text{cm.}^2}{\text{sec.}}$             | 0.1141                 | 0.0956                 | 0.1416                 |
| $\begin{bmatrix} D \\ AB \end{bmatrix}$ 1050, $\begin{bmatrix} D \\ AR \end{bmatrix}$ 1050, |                        |                        |                        |
| $\begin{bmatrix} D_{AS} \end{bmatrix}$ 1050, $\frac{\text{cm.}^2}{\text{sec.}}$             | 0.2044                 | 0.1722                 | 0.2513                 |
|                                                                                             |                        |                        |                        |

Calculation of Critical Temperature of Cumene by the Method of Eduljee <sup>56</sup>

$$T_{\rm C} = \frac{100T_{\rm b}}{\sum \Delta T}$$
(31)

 $T_{b} = \text{normal boiling point} = 152.5^{\circ}\text{C.} = 425.5^{\circ}\text{K.}$ Edujlee's contributions:  $\sum \Delta_{T} = 9 \Delta_{TC} + 12 \Delta_{TH} + 3 \Delta_{TC=C} + \Delta_{TRing} + \Delta_{TP}$ 

$$\triangle_{\rm T}$$
 = Eduljee atomic contribution by carbon  
= -55.32

$$\triangle T_{\text{TH}}$$
 = Eduljee atomic contribution by hydrogen  
= +28.52

$$\triangle_{\text{TC=C}}$$
 = Eduljee structural contribution by carbon-  
carbon double bond

.

$$\Delta_{\text{TRing}}$$
 = Edujlee structural contribution by benzene ring

$$\triangle_{\rm TP}$$
 = Eduljee position contribution by two branches on the second carbon atom

$$\sum \Delta_{\rm T} = 9(-55.32) + 12(28.52) + 3(56.61) + 53.52 - 1.42$$
  
= 66.29

$$T_{\rm C} = \frac{100(525.5)}{66.29} = 642^{\circ} {\rm K}.$$

# Calculation of Critical Temperature of Cumene by the Method of Nokay <sup>56</sup>

$$\log T_{C} = 1.2806 + 0.2985 \log S + 0.62164 \log T_{b}$$
 (32)

S = specific gravity of liquid = 
$$0.862 \frac{\text{gms}}{\text{cm.3}}$$
  
T<sub>b</sub> = normal boiling point =  $152.5^{\circ}\text{C}$ . =  $766.9^{\circ}\text{R}$ .

$$\log T_{C} = 1.2806 + 0.2985 \log(0.862) + 0.62164 \log(766.9)$$
$$= 1.2806 + 0.2985(-0.06449) + 0.62164(2.88474)$$
$$= 1.2806 - 0.01925 + 1.79327 = 3.05462$$
$$T_{C} = 1134^{\circ}R. = 674^{\circ}F. = 357^{\circ}C. = 630^{\circ}K.$$

Calculation of the Molar Volume of Cumene at the Normal Boiling Temperature by the Method of Kopps<sup>56</sup>

$$V_{b} = 9V_{bC} + 12V_{bH} + V_{bRing}$$
(33)

$$V_{bC}$$
 = Kopps' additive atomic volume for carbon  
= 14.8  
 $V_{bH}$  = Kopps' additive atomic volume for hydrogen  
= 3.7  
 $V_{bRing}$  = Kopps' additive atomic volume for benzene  
= -15.0  
 $V_{b}$  = 9(14.8) + 12(3.7) -15.0  
= 162.6  $\frac{cm.3}{gm-mole}$ 

$$P_{C} = (\frac{10^{4} M}{\sum \Delta_{P})^{2}}$$
 (34)

M = molecular weight = 120.19 
$$\frac{\text{gms}}{\text{gm-mole}}$$

Eduljee's contributions:

$$\begin{split} \sum \Delta_{\rm P} &= 9 \Delta_{\rm PC} + 12 \Delta_{\rm PH} + \Delta_{\rm PRing} + \Delta_{\rm PP} \\ \Delta_{\rm PC} &= {\rm Eduljee \ atomic \ contribution \ by \ carbon} \\ &= -9.35 \\ \Delta_{\rm PH} &= {\rm Eduljee \ atomic \ contribution \ by \ hydrogen} \\ &= +16.20 \\ \Delta_{\rm PRing} &= {\rm Eduljee \ structural \ contribution \ by} \\ &= +84.5 \\ \Delta_{\rm PP} &= {\rm Eduljee \ position \ contribution \ by \ one} \\ &= -1.6 \\ \sum \Delta_{\rm P} &= 9(-935) + 12(16.20) + 84.5 - 1.6 = 193.15 \\ P_{\rm C} &= \frac{120.19 \times 10^4}{(193.15)^2} = 32.2 \ {\rm atm.} \end{split}$$

Calculation of the Critical Volume of Cumene by the Method of Herzog

$$V_{C} = \frac{21.75 \text{ T}_{C}}{P_{C}}$$
(35)  

$$P_{C} = 32.2 \text{ atm.}$$
  

$$T_{C} = 636.0^{\circ} \text{K.}$$
  

$$V_{C} = \frac{21.75(636.0)}{32.2} = 430 \frac{\text{cm.}^{3}}{\text{gm-mole}}$$

## Method of Benson

$$V_{C} = V_{b}(0.422 \log P_{C} + 1.981)$$
(36)  

$$V_{b} = 162.6 \frac{cm.^{3}}{gm-mole}$$

$$P_{C} = 32.2 \text{ atm.}$$

$$V_{C} = 162.6 [0.422 \log (32.2) + 1.981]$$

$$= 162.6 (2.195)$$

$$= 357 \frac{cm.^{3}}{gm-mole}$$

Calculation of Lennard-Jones Parameters for Cumene

$$\nabla_{A} = 1.18V_{b}^{\prime 3} = 1.18(162.6)^{\prime 3} = (1.18)(5.45)$$
  
= 6.43 Å (37)  
$$\frac{\mathcal{E}_{A}}{K} = \frac{T_{C}}{1.30} = \frac{636.0}{1.30} = 490^{\circ}K$$

Calculation of the Molar Volume of Benzene at the Normal Boiling Temperature by the Method of Kopps

$$V_{b} = 6(14.8) + 6(3.7) - 15.0 = 96.0 \frac{\text{cm}.^{3}}{\text{gm-mole}}$$

Calculation of the Molar Volume of Propylene at the Normal Boiling Temperature by the Method of Kopps

$$V_{b} = 3V_{bC} + 6V_{bH}$$
(39)  

$$V_{bC} = Kopps' \text{ additive atomic volume for carbon}$$

$$V_{bH} = Kopps' \text{ additive atomic volume for hydrogen}$$

$$= 3.7$$

$$V_{b} = 3(14.8) + 6(3.7) = 66.6 \frac{\text{cm.}^{3}}{\text{gm-mole}}$$

Calculation of the Critical Viscosity of Cumene by the Method of Uyehara and Watson

$$\mu_{\rm C} = \frac{61.6 \text{ M}^{4}\text{T}\text{C}^{4}}{\text{V}\text{C}^{24}}$$
(40)

 M = 120.19 gm-mole

 T\_{\rm C} = 636.0°K.

 V\_{\rm C} = 357 cm.3

 W\_{\rm C} = 357 (636.0)^{4} = 338 \text{ micropoise}

 = 338 x 10<sup>-6</sup> gm
 = 338 x 10<sup>-6</sup> gm
 cm-sec.

 or, alternatively

  $\mu_{\rm C} = \frac{7.70 \text{ M}^{4}\text{P}\text{C}^{4}}{\text{T}\text{C}^{4}}$ 

$$P_{C} = 32.2 \text{ atm.}$$

$$\mu_{\rm C} = \frac{(7.70)(120.19)^{\prime\prime}(32.2)^{\prime\prime}}{(636.0)^{\prime\prime}} = 292 \text{ micropoise}$$
$$= 292 \text{ x } 10^{-6} \frac{\text{gm}}{\text{cm-sec.}}$$

Calculation of the Combined Lennard-Jones Parameters for Cumene, Benzene and Propylene

$$\nabla_{AR} = \frac{\nabla_A + \nabla_R}{2} = \frac{6.43 + 5.27}{2} = 5.85 \text{ Å}$$
 (41)

$$\nabla_{AS} = \frac{\nabla_{A} + \nabla_{S}}{2} = \frac{6.43 + 4.678}{2} = 5.554 \text{ Å}$$
 (42)

$$\frac{\mathcal{E}_{AR}}{K} = \left[ \left( \frac{\mathcal{E}_A}{K} \right) \left( \frac{\mathcal{E}_R}{K} \right) \right]^{\frac{1}{2}} = \left[ (490)(440) \right]^{\frac{1}{2}} = 646^{\circ} K.$$
(43)

$$\frac{\mathcal{E}_{AS}}{K} = \left[ \left( \frac{\mathcal{E}_{A}}{K} \right) \left( \frac{\mathcal{E}_{S}}{K} \right) \right]^{\frac{1}{2}} = \left[ (490) (298.9) \right]^{\frac{1}{2}} = 383^{\circ} K.$$
(44)

$$\frac{KT_1}{\mathcal{E}_{AR}} = \frac{616^{\circ}K}{464^{\circ}K} = 1.328; \left[\Omega_{AR}\right]_{650} = 1.262$$

$$\frac{KT_2}{\mathcal{E}_{AR}} = \frac{839^{\circ}K}{464^{\circ}K} = 1.808; \left[\Omega_{AR}\right]_{1050} = 1.114$$

$$\frac{KT_1}{\mathcal{E}_{AS}} = \frac{616^{\circ}K}{383^{\circ}K} = 1.608; \left[\Omega_{AS}\right] 650 = 1.165$$

$$\frac{KT_2}{\mathcal{E}_{AS}} = \frac{839^{\circ}K}{383^{\circ}K} = 2.190; \left[\Omega_{AS}\right]_{1050} = 1.043$$

Calculate the Diffusivity of Cumene in Benzene at 650°F.

$$D_{AR} = \frac{0.0018583 \left[ T^{3} \left( \frac{1}{M_{A}} + \frac{1}{M_{R}} \right) \right]^{\frac{1}{2}}}{p_{T} \nabla^{2}_{AR} \Omega_{AR}}$$

$$= \frac{0.0018583 \left[ (616)^{3} \left( \frac{1}{120.19} + \frac{1}{78.11} \right) \right]^{\frac{1}{2}}}{(1.0)(5.85)^{2}(1.262)}$$

$$\left[ D_{AR} \right]_{650} = 0.0956 \frac{cm.^{2}}{sec.}$$

$$(45)$$

Calculate the Diffusivity of Cumene in Benzene at  $1050^{\circ}F$ .

$$D_{AR} = \frac{0.0018583}{p_{T} \nabla^{2}_{AR} \Omega_{AR}} \begin{bmatrix} T^{3} \left( \frac{1}{M_{A}} + \frac{1}{M_{R}} \right) \end{bmatrix}^{\frac{1}{2}}$$

$$= \frac{0.0018583}{0.0018583} \begin{bmatrix} (839)^{3} \left( \frac{1}{120.19} + \frac{1}{78.11} \right) \end{bmatrix}^{\frac{1}{2}}$$

$$= \frac{0.0018583}{(1.0)(5.85)^{2}(1.114)} \begin{bmatrix} D_{AR} \end{bmatrix} 1050 = 0.1722 \frac{\text{cm.}^{2}}{\text{sec.}}$$

$$(45)$$

Calculate the Diffusivity of Cumene in Propylene at  $650^{\circ}$ F.

$$D_{AS} = \frac{0.0018583}{p_{T} \sqrt{AS}^{2} \Omega_{AS}} \frac{\left[T^{3} \left(\frac{1}{M_{A}} + \frac{1}{M_{S}}\right)\right]^{\frac{1}{2}}}{p_{T} \sqrt{AS}^{2} \Omega_{AS}}$$

$$= \frac{0.0018583}{(1.0)(5.554)^{2}(1.165)} \frac{\left[(616)^{3} \left(\frac{1}{120.19} + \frac{1}{42.08}\right)\right]^{\frac{1}{2}}}{(1.0)(5.554)^{2}(1.165)}$$

$$\begin{bmatrix} D_{AS} \end{bmatrix}_{650} = 0.1416 \frac{\text{cm}.^{2}}{\text{sec}}.$$

$$(46)$$

Calculate the Diffusivity of Cumene in Propylene at  $1050^{\circ}F$ .

$$D_{AS} = \frac{0.0018583 \left[ T^{3} \left( \frac{1}{M_{A}} + \frac{1}{M_{S}} \right) \right]^{\frac{1}{2}}}{p_{T} \nabla_{AS}^{2} \Omega_{AS}}$$
(46)  
$$= \frac{0.0018583 \left[ (839)^{3} \left( \frac{1}{120.19} + \frac{1}{42.08} \right) \right]^{\frac{1}{2}}}{(1.0)(5.554)^{2}(1.043)}$$
$$\left[ D_{AS} \right]_{1050} = 0.2513 \frac{\text{cm.}^{2}}{\text{sec.}}$$

# Calculate the Diffusivity of Cumene in Benzene and

Propylene

.

$$D_{AB} = \frac{(1 - Y_A)}{\frac{Y_B}{D_{AR}} + \frac{Y_S}{D_{AS}}}$$
(47)  

$$Y_A + Y_R + Y_S = 1$$

$$Y_R = Y_S$$

$$Y_A + 2Y_R = 1$$

$$Y_R = \frac{1 - Y_A}{2} = Y_S$$

$$D_{AB} = \frac{1 - Y_A}{\frac{1 - Y_A}{2D_{AR}} + \frac{1 - Y_A}{2D_{AS}}} = \frac{2}{\frac{1}{D_{AR}} + \frac{1}{D_{AS}}}$$

$$\frac{At \ 650^{\circ}F}{D_{AB}} = \frac{2}{\frac{1}{D_{AR} \ 650} + \frac{1}{D_{AR} \ 650}} = \frac{2}{\frac{1}{0.0956} + \frac{1}{0.1416}}$$

$$= 0.1141 \ \frac{cm.^2}{sec.}$$

$$\begin{bmatrix} D_{AB} \end{bmatrix}_{1050} = \frac{2}{\frac{1}{D_{AR} \ 1050} + \frac{1}{D_{AS} \ 1050}} = \frac{2}{\frac{1}{0.1722} + \frac{2}{0.2513}}$$
$$= 0.2044 \frac{\text{cm.}^2}{\text{sec.}}$$

Calculation of the Heat Capacity of Cumene by the Method of Hougan, Watson and Ragatz<sup>29</sup>

$$\frac{U.0.P. \text{ characterization factor.}}{K = \frac{(T_B)^{4}}{G}}$$

$$K = \frac{(T_B)^{4}}{G}$$

$$T_B = \text{boiling point at 1 atm.} = 767^{\circ}R.$$

$$G = \text{specific gravity at } 60^{\circ}F. = 0.862$$

$$K = \frac{(767)}{0.862} = 10.62$$

$$Empirical equation.$$

$$C_P = (0.0450K-0.233) + (0.440 + 0.0177K) \times 10^{-3}t$$

$$-0.1530 \times 10^{-6}t^2$$
(49)
At t = 650^{\circ}F.

$$C_{\rm P} = (0.0450)(10.62) - 0.233$$
  
+ 0.440+(0.0177)(10.62) (650 x 10<sup>-3</sup>)  
- (0.1530)(650)<sup>2</sup> x 10<sup>-6</sup>  
$$C_{\rm P} = 0.588 \frac{\text{cal}}{\text{gm}^{-0}\text{C}}.$$

$$C_{V} = C_{P} - \frac{2.0 \frac{cal}{gm mole^{-0}C.}}{120.19 \frac{gms}{gm-mole}} = 0.571 \frac{cal}{gm^{-0}C.}$$
 (50)

$$At t = 1050^{\circ}F.$$

$$C_{p} = (0.0450)(10.62) - 0.233$$
  
+ 0.440+(0.0177)(10.62) (1050 x 10<sup>-3</sup>)  
- (01530)(1050)<sup>2</sup> x 10<sup>-6</sup>

$$C_{\rm P} = 0.736 \ \frac{\rm cal}{\rm gm-^{o}C_{\bullet}}$$

$$C_{V} = C_{P} - \frac{2.0 \frac{cal}{gm mole - °C.}}{120.19 \frac{gms}{gm - mole}} = 0.719 \frac{cal}{gm - °C.}$$
 (50)

Calculation of the Heat Capacity of Benzene by the Method of Hougan, Watson and Ragatz<sup>29</sup>

U.O.P. characterization factor.

$$K = \frac{(T_B)}{G}$$
(48)  

$$T_B = \text{boiling point at 1 atm.} = 636^{\circ}R.$$

$$G = \text{specific gravity at } 60^{\circ}F. = 0.879$$

$$K = \frac{(636)}{0.879} = 9.78$$

Empirical equation.

$$C_{\rm P} = (0.0450K - 0.233) + (0.440 + 0.0177K) \times 10^{-3}t$$
  
- 0.1530 x 10<sup>-6</sup>t<sup>2</sup> (49)

At  $t = 650^{\circ} F$ .

$$C_{\rm P} = (0.0450)(9.78) - 0.233$$
  
+ 0.440+(0.0177)(9.78) (650 x 10<sup>-3</sup>)  
- (0.1530)(650)<sup>2</sup> x 10<sup>-6</sup>  
$$C_{\rm P} = 0.541 \frac{\text{cal}}{\text{gm}^{-6}\text{C}}.$$

$$C_{V} = C_{P} - \frac{2.0 \frac{cal}{gm-mole_{-}o_{C_{-}}}}{78.11 \frac{gms}{gm-mole}} = 0.515 \frac{cal}{gm_{-}o_{C_{-}}}$$
 (50)

$$At t = 1050^{\circ}F.$$

$$C_{\rm P} = (0.0450)(9.78) - 0.233$$

$$+ 0.440 + (0.0177)(9.78) (1050 \times 10^{-3})$$

$$- (0.1530)(1050)^{2} \times 10^{-6}$$

$$C_{\rm P} = 0.682 \frac{\rm cal}{\rm gm-oC}.$$

$$C_{V} = C_{P} - \frac{2.0 \frac{\text{cal}}{\text{gm mole} - \text{°C.}}}{78.11 \frac{\text{gms}}{\text{gm-mole}}} = 0.656 \frac{\text{cal}}{\text{gm} - \text{°C.}}$$
(50)

Calculation of the Heat Capacity of Propylene by the Method of Hougan, Watson and Ragatz<sup>29</sup>

Empirical equation.

,

 $C_{\rm P} = 1.97 + (27.69 \times 10^{-3})T - (5.25 \times 10^{-6})T^2$  (51) At T = 650°F. = 1110°R.

$$C_p = 1.97 + (27.69 \times 10^{-3})(1110)$$
  
-  $(5.25 \times 10^{-6})(1110)^2$ 

$$C_{\rm P} = \frac{26.237 \frac{\text{cal}}{\text{gm mole}-\text{°C.}}}{42.08 \frac{\text{gms}}{\text{gm-mole}}} = 0.624 \frac{\text{cal}}{\text{gm-°C.}}$$

$$C_{V} = C_{P} - \frac{2.0 \frac{\text{cal}}{\text{gm mole} - \text{C}}}{42.08 \frac{\text{gms}}{\text{gm-mole}}} = 0.576 \frac{\text{cal}}{\text{gm-OC}}$$
(52)

$$\frac{\text{At T} = 1050^{\circ}\text{F.} = 1510^{\circ}\text{R.}}{C_{\text{P}} = 1.97 + (27.69 \times 10^{-3})(1510)} - (5.25 \times 10^{-6})(1510)^{2}$$

$$C_{\text{P}} = \frac{31.811}{42.08} \frac{\text{cal}}{\text{gm-mole}} = 0.756 \frac{\text{cal}}{\text{gm-}^{\circ}\text{C.}}$$

$$C_{\text{V}} = C_{\text{P}} - \frac{2.0}{42.08} \frac{\text{cal}}{\text{gm-mole}} = 0.708 \frac{\text{cal}}{\text{gm-}^{\circ}\text{C.}}$$
(52)

APPENDIX II

# PHYSICAL PROPERTIES OF SILICA-ALUMINA CATALYST

#### PHYSICAL PROPERTIES OF SILICA-ALUMINA CATALYST

The catalyst employed in this study was TCC (Thermofor Catalytic Cracking) Silica-Alumina Cracking Catalyst, supplied by the Mobil Chemical Company, Paulsboro Catalyst Plant, Paulsboro, New Jersey. The catalyst is designated as "Durabead 1" by Mobil.

The physical properties and Tyler screen data for the catalyst are as follows:

0.74 gms cm.3 Loose bulk density  $\mathcal{P}_{B} = 0.82 \frac{gms}{cm}$ Packed bulk density  $P_{\rm P} = 1.28 \frac{\rm gms}{\rm cm.3}$ Particle density  $P_{t} = 2.32 \frac{gms}{cm^{-3}}$ True solid density  $d_{p} = 0.358$  cm. Average diameter  $S_{g} = 250 \times 10^{4} \frac{\text{cm.}^{2}}{\text{gm}}$ Surface area  $d = 72 \times 10^{-8} \text{ cm}$ . Average pore diameter  $D_{e} = 0.015 \frac{cm.2}{sec.}$ Effective pore diffusivity  $V_g = 0.35 \frac{\text{cm.3}}{\text{gm}}$ Pore volume  $\Theta = 0.448$ Internal void fraction  $\mathcal{E} = 0.32$ External void fraction  $a = 13.1 \frac{cm.^2}{gm}$ Superficial surface area  $r_{o} = 2.8 \times 10^{-7} \text{ cm}.$ Equivalent pore radius  $\tau = 5.6$ Tortuosity factor

| Radius of catalyst pellet        | $r_{\rm P} = 0.179 {\rm cm}$ .                            |
|----------------------------------|-----------------------------------------------------------|
| Total surface of porous catalyst | $S_V = 320 \times 10^4 \frac{\text{cm.}^2}{\text{cm.}^3}$ |
| <u>Tyier Screen Analysis</u>     | <u>Wt. %</u>                                              |
| On 4 mesh                        | 2.5                                                       |
| On 5 mesh                        | 27.0                                                      |
| On 6 mesh                        | 43.4                                                      |
| On 7 mesh                        | 22.2                                                      |
| On 8 mesh                        | 3.9                                                       |
| On 10 mesh                       | 0.6                                                       |
| Through 10 mesh                  | <u>0.3</u><br>99.9                                        |

Calculation of Superficial Area of Catalyst Surface, a

Catalyst Area/Pellet = 
$$4\pi r_P^2 \frac{\text{cm.}^2}{\text{Pellet}}$$
 (53)  
Catalyst Wt./Pellet =  $\left[\frac{4}{3}\pi r_P^3 \frac{\text{cm.}^3}{\text{Pellet}}\right]$  (54)  
 $\left[\rho_P \frac{\text{gms. Pellet}}{\text{cm.}^3 \text{ Pellet}}\right]$  (54)

$$= \frac{1}{3} / r_{\rm P} \rho_{\rm P} \frac{5 m B}{\rm Pellet}$$

$$a = \frac{(4\pi r_P^2 \frac{\text{cm.}^2}{\text{Pellet}})}{(\frac{4}{3}\pi r_P^3 \rho_P \frac{\text{gms}}{\text{Pellet}})} = \frac{3}{r_P \rho_P} \frac{\text{cm.}^2 \text{ catalyst}}{\text{gm. catalyst}}$$
(55)

$$r_{\rm P} = 0.179 \text{ cm.}$$

$$\rho_{\rm P} = 1.28 \frac{\text{gms}}{\text{cm.3}}$$

$$a = \frac{3}{(0.179 \text{ cm.})(1.28 \frac{\text{gms}}{\text{cm.3}})} = 13.10 \frac{\text{cm.}^2 \text{ catalyst}}{\text{gm. catalyst}}$$

APPENDIX III

CONTINUOUS REACTION MODEL

#### CONTINUOUS REACTION MODEL

In solid-catalyzed gas-phase reactions, it is assumed that the reaction takes place at the gas-solid interface. The interface lies on the external surface of the catalyst and on the internal surfaces within the catalyst pore. The overall rate of reaction depends upon the availability of these surfaces.

For the continuous reaction model, it is assumed that the reaction mechanism consists of seven distinct processes. That process, or combination of processes, which are significantly slower than the others, control the rate of reaction. The seven processes involved in the catalytic cracking of cumene are described below and illustrated in Figure 39.

### Gas Film Diffusion of Reactants

Reactant cumene (A) diffuses from the main gas stream to the external surface of the catalyst.

#### Pore Diffusion of Reactants

Reactant cumene (A) diffuses from the external surface of the catalyst (mouth of the catalyst pore) into the catalyst pore).

#### Adsorption of Reactants

Reactant cumene (A) is adsorbed onto the surface of
the catalyst.

## Surface Reaction

Adsorbed cumene (A) reacts to form adsorbed benzene (R) and propylene (S) which is not adsorbed. This single site reaction mechanism was shown in previous work by Garver to be the actual mechanism occurring.

In the dual site reaction mechanism, both products are adsorbed.

#### Desorption of Products

Adsorbed product benzene (R) is desorbed from the catalyst surface.

## Pore Diffusion of Products

Products benzene (R) and propylene (S) diffuse from the catalyst pore to the external surface of the catalyst (mouth of the catalyst pore).

## Gas Film Diffusion of Products

Products benzene (R) and propylene (S) diffuse from the external surface of the catalyst into the main gas stream.

## FIGURE 39

## CONTINUOUS REACTION MODEL



131

APPENDIX IV

•

GAS FILM DIFFUSION

#### GAS FILM DIFFUSION

The gas film diffusion of cumene (A), benzene (R) and propylene (S), which is process one and seven of the reaction mechanism, can be handled mathematically as a simple diffusion process. Reactant A (cumene) diffuses from the main gas stream to the catalyst surface and products R and S (benzene and propylene) diffuse from the catalyst surface into the main gas stream. These phenomena are illustrated in Figure 40.

The diffusion rate is calculated as follows:

### Material Balance on A

Input - Output + Generation = Accumulation Input = rate of mass transfer of A into differential element across rectangular surface at z =  $(A_z cm^2)(NA_z \frac{gm-moles}{cm^2-sec.}) = LWNA_z \frac{gm-moles}{sec.}$  (56) Output = rate of mass transfer of A out of differential element across rectangular surface at z + dz =  $(A_z cm^2) \left[ NA_z + \frac{d}{dz} (NA_z) dz \frac{gm-moles}{cm^2-sec.} \right]$ =  $LW \left[ NA_z + \frac{dNA_z}{dz} dz \right] \frac{gm-moles}{sec.}$  (57) Generation = rate of formation of A within differential element between z and z + dz

GAS FILM DIFFUSION OF A, R, AND S



Substituting,

•

$$LWN_{A_{z}} - LWN_{A_{z}} - LW\frac{dN_{A_{z}}}{dz} dz = 0$$
  
- 
$$LW\frac{dN_{A_{z}}}{dz} dz = 0$$
  
- 
$$\frac{dN_{A_{z}}}{dz} = 0$$
 (60)

# Define Fick's Law for System

$$N_{A_{z}} = cD_{AB} \frac{\partial x_{A}}{\partial z} + Y_{A}(N_{A_{z}} + N_{B_{z}})$$
(61)

From the stoichiometry of the reaction,  $A \longrightarrow R + S$ , one mole of A yields one mole of R plus one mole of S; therefore, A diffuses at half the combined rate of R + S, and

$$N_{A_{Z}} = -\frac{1}{2}N_{B_{Z}}$$

$$N_{B_{Z}} = -2N_{A_{Z}}$$

$$N_{A_{Z}} = -cD_{AB}\frac{\partial Y_{A}}{\partial z} + Y_{A}(N_{A_{Z}} - 2N_{A_{Z}})$$

$$= -cD_{AB}\frac{\partial Y_{A}}{\partial z} - Y_{A}N_{A_{Z}}$$

135

$$N_{A_{Z}}(1 + Y_{A}) = -cD_{AB}\frac{\partial Y_{A}}{\partial z}$$
$$N_{A_{Z}} = -\frac{cD_{AB}}{(1+Y_{A})}\frac{\partial Y_{A}}{\partial z}$$
$$N_{A_{Z}} = -\frac{cD_{AB}}{(1+Y_{A})}\frac{dY_{A}}{dz}$$

Substituting,

$$-\frac{dNA_{Z}}{dz} = -\frac{d}{dz} \left[ -\frac{cD_{AB}}{(1+Y_{A})} \frac{dY_{A}}{dz} \right] = 0$$

$$\frac{d}{dz} \left[ \frac{cD_{AB}}{(1+Y_{A})} \frac{dY_{A}}{dz} \right] = 0$$
(62)

Integrating,

$$\int \frac{d}{dz} \left[ \frac{cD_{AB}}{(1+Y_A)} \frac{dY_A}{dz} \right] = c_1$$
$$\frac{cD_{AB}}{(1+Y_A)} \frac{dY_A}{dz} = c_1$$

Since  $cD_{\mbox{\scriptsize AB}}$  is constant at constant pressure and temperature,

$$cD_{AB} \int \frac{dY_A}{(1+Y_A)} = c_1 \int dz$$
$$cD_{AB} ln(1+Y_A) = c_1 z + c_2$$

Boundary Conditions

At 
$$z = 0$$
,  $Y_A = Y_{A_b}$   
At  $z = \delta$ ,  $Y_A = Y_{A_s}$ 

$$cD_{AB}ln(1+Y_{A_{b}}) = c_{2}$$

$$cD_{AB}ln(1+Y_{A_{s}}) = c_{1}\delta + c_{2}$$

$$= c_{1}\delta + cD_{AB}ln(1+Y_{A_{b}})$$

$$c_{1} = \frac{cD_{AB}ln(1+Y_{A_{s}})}{\delta} - \frac{cD_{AB}ln(1+Y_{A_{b}})}{\delta}$$

$$= \frac{cD_{AB}}{\delta} ln \left[ \frac{(1+Y_{A_{s}})}{(1+Y_{A_{b}})} \right]$$

$$cD_{AB}ln(1+Y_{A}) = \frac{cD_{AB}}{\delta} ln \left[ \frac{(1+Y_{A_{s}})}{(1+Y_{A_{b}})} \right] z + cD_{AB}ln(1+Y_{A_{b}})$$

$$ln \frac{(1+Y_{A})}{(1+Y_{A_{b}})} = \frac{z}{\delta} ln \frac{(1+Y_{A_{s}})}{(1+Y_{A_{b}})}$$

$$\frac{(1+Y_{A})}{(1+Y_{A_{b}})} = \frac{(1+Y_{A_{s}})\frac{z}{\delta}}{\delta}$$

$$(1+Y_{A}) = \frac{(1+Y_{A_{s}})\frac{z}{\delta}}{(1+Y_{A_{b}})\frac{z}{\delta}} (1+Y_{A_{s}})^{\frac{z}{\delta}}$$

$$(1+Y_{A}) = (1+Y_{A_{s}})^{\frac{z}{\delta}} (1+Y_{A_{b}})^{1-\frac{z}{\delta}}$$

$$(63)$$

Calculate Molar Flow Through Film

$$\frac{(dN_A \text{ gm-moles})}{(dt \text{ sec.})} = (A_z \text{ cm}^2)(N_A_z \frac{\text{gm-moles}}{\text{cm}^2 - \text{sec.}}) = \text{constant (64)}$$
$$N_A_z = \frac{-cD_{AB}}{(1+Y_A)} \frac{dY_A}{dz}$$

$$\frac{\mathrm{dN}_{\mathrm{A}}}{\mathrm{dt}} = \frac{-\mathrm{A}_{\mathrm{Z}}\mathrm{cD}_{\mathrm{A}\mathrm{B}}}{(1+\mathrm{Y}_{\mathrm{A}})} \quad \frac{\mathrm{dY}_{\mathrm{A}}}{\mathrm{dz}}$$

Integrating,

$$\frac{dNA}{dt} \int_{0}^{\delta} dz = -A_z cD_{AB} \int_{0}^{xA_s} \frac{dY_A}{(1+x_A)}$$

$$dN_{A} (S) = -A_{z}cD_{AB}ln\left[\frac{(1+Y_{A_{S}})}{(1+Y_{A_{b}})}\right]$$

$$\frac{1}{A_{z}} \frac{dN_{A}}{dt} = \frac{cD_{AB}}{S} \ln \left[ \frac{1+YA_{S}}{1+Y_{Ab}} \right]$$

Let  $A_z = S_{EX}$ , external surface area of catalyst,  $cm^2$ .

Let  $\frac{D_{AB}}{\delta} = k_g$ , mass transfer coefficient,  $\frac{cm}{sec.}$ Let  $c = \frac{p_T}{RT}$ 

Let a = superficial area of catalyst surface,  $\frac{cm^2}{gm}$ .

$$\mathbf{r}_{A} = \frac{a}{S_{EX}} \frac{dN_{A}}{dt} = ck_{g}aln \left[ \frac{1+Y_{Ab}}{1+Y_{As}} \right] = \frac{p_{T}kga}{RT} ln \left[ \frac{1+Y_{Ab}}{1+Y_{As}} \right]$$
(65)

Where  $r_A = gm$  moles A diffusing toward the catalyst surface per second per gm. catalyst. APPENDIX V

SURFACE PHENOMENA

## SURFACE PHENOMENA

The adsorption of cumene (A) onto the catalyst surface, the reaction of cumene on the catalyst surface, and the desorption of benzene (R) from the catalyst surface, which are processes three, four and five of the reaction mechanism, are handled together mathematically. The following reaction mechanisms are possible:

## Single Site Mechanism (Propylene Not Adsorbed)

1. Reactant molecule A (cumene) is adsorbed onto the catalyst surface.

A + 1 - A·1

 Adsorbed reactant A (cumene) reacts to form adsorbed product R (benzene) and unadsorbed product S (propylene).

A.1 - R.1 + S

3. Adsorbed product R (benzene) is desorbed from the catalyst surface.

R•1 - R + 1

Single Site Mechanism (Benzene Not Adsorbed)

1. Reactant molecule A (cumene) is adsorbed onto the catalyst surface.

A + 1 - A·1

2. Adsorbed reactant A (cumene) reacts to form adsorbed product S (propylene) and unadsorbed product R (benzene).

A·1 - R + S·1

3. Adsorbed product S (propylene) is desorbed from the catalyst surface.

S•1 - S + 1

Dual Site Mechanism (Both Benzene and Propylene Are Adsorbed)

1. Reactant molecule A (cumene) is adsorbed onto the catalyst surface.

A + 1 - A·1

2. Adsorbed reactant A (cumene) reacts to form adsorbed product R (benzene) and adsorbed product S (propylene).

A·1 + 1 → R·1 + S·1

3. Adsorbed product R (benzene) is desorbed from the catalyst surface.

R•1 - R + 1

4. Adsorbed product S (propylene) is desorbed from the catalyst surface.

S•1 ----- S + 1

Garver has shown that at the conditions of his study (1.0 atm.,  $850-1050^{\circ}$ F.) the actual reaction mechanism is

.

the single site mechanism with propylene not adsorbed and with the surface reaction controlling. The reaction rate expression for this mechanism is derived as follows:

#### Reactions

1.  $A + 1 \frac{k_1}{k'_1} A \cdot 1$  (adsorption of A) 2.  $A \cdot 1 \frac{k_2}{k'_2} R \cdot 1 + S$  (surface reaction; 3.  $R \cdot 1 \frac{k_3}{k'_3} R + 1$  (desorption of R) 4.  $A \frac{k}{k'_1} R + S$  (overall reaction)

Rate equations are now written for each of the reaction steps. Since surface reaction controls and is therefore the slowest step, it is assumed that the adsorption and desorption steps reach equilibrium.

#### Rate Equations

1.  $(-r_A) = k_1 p_A C_1 - k'_1 C_{A1}$  (66) (adsorption of A; at equilibrium)

2. 
$$(-r_{Al}) = k_2 C_{Al} - k'_2 p_S C_{Rl}$$
 (67)  
(surface reaction and S not adsorbed;  
controlling)

3. 
$$(-r_{\rm R1}) = k_3 c_{\rm R1} - k_3 p_{\rm R} c_1$$
 (68)

(desorption of R; at equilibrium)

$$K_{3} = \frac{1}{K_{R}} = \frac{k_{3}}{k'_{3}} = \frac{p_{R}C_{1}}{C_{R1}}$$

4.  $(-r_A) = kp_A - k^{\dagger}p_R p_S$  (overall reaction) (69)  $K = \frac{k}{k^{\dagger}} = \frac{p_R p_S}{p_A}$ 

Calculation of  $(-r_{A1})$  in Terms of  $C_1$ 

 $(-r_{A1}) = k_{2}C_{A1} - k'_{2}p_{S}C_{R1}$ (70)  $C_{A1} = K_{A}p_{A}C_{1}$   $C_{R1} = K_{R}p_{R}C_{1}$   $k'_{2} = \frac{k_{2}}{K_{2}} = \frac{k_{2}K_{A}}{KK_{R}}$   $\frac{K_{A}K_{2}}{K_{R}} = \frac{C_{A1}}{p_{A}C_{1}} \cdot \frac{p_{S}C_{R1}}{C_{a1}} \cdot \frac{p_{R}C_{1}}{C_{R1}} = \frac{p_{R}p_{S}}{p_{A}} = K$   $K_{2} = \frac{KK_{R}}{K_{A}}$   $(-r_{A1}) = k_{2}K_{A}p_{A}C_{1} - \frac{k_{2}K_{A}p_{S}K_{R}p_{R}C_{1}}{KK_{R}}$   $= k_{2}K_{A}C_{1} \left[ p_{A} - \frac{p_{R}p_{S}}{K} \right]$ 

# Definition of Cl

$$C_{1} = C_{L} - C_{A1} - C_{R1} - C_{S1}$$

$$C_{A1} = K_{A} p_{A} C_{1}$$

$$C_{R1} = k_{R} p_{R} C_{1}$$

$$C_{S1} = 0 (S \text{ not adsorbed})$$

$$C_{1} = C_{L} - K_{A} p_{A} C_{1} - K_{R} p_{R} C_{1}$$

$$C_{1} = \frac{C_{L}}{1 + K_{A} p_{A} + K_{R} p_{R}}$$

$$(71)$$

Substitute C1 into Rate Equation

$$(-r_{Al}) = \frac{C_{L}k_{2}K_{A}\left[p_{A} - \frac{p_{R}p_{S}}{K}\right]}{1 + K_{A}p_{A} + K_{R}p_{R}}$$
(72)

For irreversible reaction, k is very large and k' is very small and K approaches infinity. The above then reduces to the following expression:

$$(-r_{A1}) = \frac{C_{L}k_{2}K_{A}p_{A}}{1 + K_{A}p_{A} + K_{R}p_{R}}$$
 (73)

The initial rate of reaction,  $r_0$ , occurs when the partial pressure of A is equal to the total pressure, $\mathcal{T}$ , and the partial pressures of R and S are equal to zero.

$$(-r_{Al}) = \frac{C_L k_2 K_A \left[ p_A - \frac{p_R p_S}{K} \right]}{1 + K_A p_A + K_R p_R}$$
(74)

$$(-r_{Al}) = r_{o}$$

$$p_{A} = \mathcal{T}$$

$$p_{R} = p_{S} = 0$$

$$r_{o} = \frac{C_{L}k_{2}K_{A}\mathcal{T}}{1 + K_{A}\mathcal{T}}$$
(74)

145

APPENDIX VI

PORE DIFFUSION

#### PORE DIFFUSION

The effect of pore diffusion (processes two and six of the reaction mechanism) on the rate of reaction is expressed by applying a correction factor to the rate equation. The term  $C_L$ , total concentration of available active sites, is replaced by the product of the terms L, the total concentration of active sites, and  $\mathcal{E}$ , the ratio of the actual reaction rate to the theoretical reaction rate if the resistance to pore diffusion were absent.  $\mathcal{E}$  is known as the catalyst effectiveness factor.

The effectiveness factor of spherical catalysts with arbitrarily shaped pores is derived as follows:

Rate Equation

$$-(\mathbf{r}_{A}) = \frac{\epsilon_{Lk_{2}K_{A}}\left[\mathbf{p}_{A} - \frac{\mathbf{p}_{R}\mathbf{p}_{S}}{K}\right]}{1 + K_{A}\mathbf{p}_{A} + K_{R}\mathbf{p}_{R}} = k\mathbf{p}_{A} - k'\mathbf{p}_{R}\mathbf{p}_{S}$$
$$= k_{S}S_{g}C_{A} - k'_{S}S_{g}C_{R}C_{S}$$
(75)

#### Flow Chart

A cross section of the catalyst particle is shown in Figure 41. The concentration of cumene on the surface of the particle is  $CA_s$  and the radius of the particle is  $r_p$ . FIGURE 41

CROSS SECTION OF CATALYST PARTICLE SHOWING DIFFERENTIAL ELEMENT



Material Balance on Differential Element, dr.

Input - Output + Generation = Accumulation

## Input

$$(4\pi r^{2} \text{cm}^{2}) \left( D_{e} \frac{\text{cm}^{2}}{\text{sec.}} \right) \left[ -\frac{dC_{A}}{dr} \frac{\frac{\text{moles}}{\text{cm}^{3}}}{\frac{\text{cm}^{3}}{\text{cm}}} \right]$$
$$= -4\pi r^{2} D_{e} \frac{dC_{A}}{dr} \frac{\text{gm moles}}{\text{sec.}}$$
(76)

.

$$(4)\overline{T}(r+dr)^{2}cm^{2})(D_{e}\frac{cm^{2}}{sec})\left[-\frac{dC_{A}}{dr}-\frac{d}{dr}\left(\frac{dC_{A}}{dr}\right)dr\frac{moles}{cm^{3}}\right]$$
$$= -4\Pi(r^{2}+2rdr+dr^{2})D_{e}\left[\frac{dC_{A}}{dr}+\frac{d^{2}C_{A}}{dr^{2}}dr\right]\frac{gm\ moles}{sec.}$$
(77)

## Generation

$$(r_A \frac{gm \text{ moles}}{gm \text{ cat-sec.}})(dW_C gms \text{ cat.}) = r_A dW_C \frac{gm \text{ moles}}{sec.}$$
 (78)

= 
$$(r_A \frac{gm \text{ moles}}{gm \text{ cat-sec.}})(4\pi r^2 drcm^3)(\rho \frac{gm \text{ cat.}}{p \text{ cm}^3})$$

= 
$$(r_A)(4\pi\rho_P r^2 dr) \frac{gm moles}{sec.}$$

$$\underline{Accumulation} = 0 \text{ (steady state)} \tag{79}$$

.

## Material Balance

$$-4\pi r^{2} D_{e} \frac{dC_{A}}{dr} + 4\pi r^{2} D_{e} \frac{dC_{A}}{dr} + 4\pi r^{2} D_{e} \frac{d^{2}C_{A}}{dr^{2}} dr$$

$$+8\pi r dr D_{e} \frac{dC_{A}}{dr} + 8\pi r dr D_{e} \frac{d^{2}C_{A}}{dr^{2}} dr$$

$$+(r_{A})(4\pi \rho_{p}r^{2} dr) = 0$$

$$4\pi r^{2} D_{e} \frac{d^{2}C_{A}}{dr^{2}} dr + 8\pi r dr D_{e} \frac{dC_{A}}{dr} + (r_{A})(4\pi \rho_{p}r^{2} dr) = 0$$

$$\frac{\mathrm{d}^2 \mathrm{C}_{\mathrm{A}}}{\mathrm{d}r^2} + \frac{2}{r} \frac{\mathrm{d}\mathrm{C}_{\mathrm{A}}}{\mathrm{d}r} + \frac{\mathcal{P}_{\mathrm{P}}}{\mathrm{D}_{\mathrm{e}}} (r_{\mathrm{A}}) = 0 \tag{80}$$

Calculation of Rate Equation

$$(-r_{A}) = k_{S}S_{g}C_{A} - k'_{S}S_{g}C_{R}C_{S}$$
(81)  
Assume irreversible reaction  

$$k_{S} \gg k'_{S}$$

$$(-r_{A}) = k_{S}S_{g}C_{A}$$

## Substitute Rate Equation Into Material Balance

$$\frac{d^2 C_A}{dr^2} + \frac{2}{r} \frac{d C_A}{dr} - \frac{\rho_{kSS_gCA}}{D_e} = 0$$
 (82)

Integrate

.

$$\frac{\text{Change of Variable}}{\text{Let } x = C_{A}r}$$
$$dx = C_{A}dr + rdC_{A} \qquad rdC_{A} = dx - C_{A}dr$$

$$\frac{dC_A}{dr} = \frac{1}{r} \frac{dx}{dr} - \frac{C_A}{r} = \frac{1}{r} \frac{dx}{dr} - \frac{x}{r^2}$$

$$\frac{d^2C_A}{dr} = \left[\frac{dx}{dr}\right] \left[-\frac{1}{r^2}\right] + \frac{1}{r} \frac{d^2x}{dr^2} + \frac{x(2)}{r^3} - \frac{1}{r^2} \frac{dx}{dr}$$

$$= \frac{1}{r} \frac{dx}{dr^2} - \frac{2}{r^2} \frac{dx}{dr} + \frac{2x}{r^3}$$

# Substitute

$$\frac{1}{r} \frac{d^2 x}{dr^2} - \frac{2}{r^2} \frac{dx}{dr} + \frac{2x}{r^3} + \frac{2}{r^2} \frac{dx}{dr} - \frac{2x}{r^3} - \frac{\rho_{\rm pk_SS_gx}}{D_e r} = 0$$
$$\frac{d^2 x}{dr^2} - \left[\frac{k_S \rho_{\rm pS_g}}{D_e}\right] x = 0$$

# General Solution

$$x = M_{1}e^{mr} + M_{2}e^{-mr} = C_{A}r$$

$$m = \frac{-b^{\pm}\sqrt{b^{2}-4ac}}{2a} = \frac{0^{\pm}\sqrt{0} + \frac{4k_{S}\rho_{P}S_{g}}{D_{e}}}{2} = \left[\frac{k_{S}\rho_{P}S_{g}}{D_{e}}\right]^{\frac{1}{2}}$$

$$C_{A} = \frac{1}{r}\left[M_{1}e^{mr} + M_{2}e^{-mr}\right]$$
(83)

Boundary Conditions

At 
$$r = 0$$
,  $\frac{dC_A}{dr} = 0$ 

At 
$$r = r_P, C_A = C_{A_S}$$

$$\frac{dC_A}{dr} = \left[\frac{1}{r} \ ^mM_1 e^{mr} - mM_2 e^{-mr}\right] - \frac{1}{r^2} \left[M_1 e^{mr} + M_2 e^{-mr}\right]$$

$$r^2 \frac{dC_A}{dr} = \left[r \ ^mM_1 e^{mr} - mM_2 e^{-mr}\right] - \left[M_1 e^{mr} + M_2 e^{-mr}\right]$$

$$0 = 0 - M_1 - M_2$$

$$M_1 = -M_2$$

$$C_{A_S} = \frac{1}{r_P} \left[M_1 e^{mr_P} + M_2 e^{-mr_P}\right]$$

$$C_{A_S} r_P = M_1 e^{mr_P} - M_1 e^{-mr_P}$$

$$M_1 = \frac{CA_S r_P}{e^{mr_P} - e^{-mr_P}}$$

$$M_2 = \frac{-CA_S r_P}{e^{mr_P} - e^{-mr_P}}$$

Back Substitute

$$C_{A} = \frac{1}{r} \left[ \frac{C_{S} r_{P} e^{mr}}{e^{mrP} - e^{mrP}} - \frac{C_{S} r_{P} e^{-mr}}{e^{mrP} - e^{-mrP}} \right]$$

$$= \frac{C_{A} r_{P}}{r} \left[ \frac{e^{mr} - e^{-mr}}{e^{-mrP} - e^{-mrP}} \right] = \frac{C_{A} r_{P}}{r} \left[ \frac{\sinh mr}{\sinh mrP} \right]$$

$$C_{A} = \frac{C_{A} r_{P}}{r} \left[ \frac{\sinh mr}{\sinh mrP} \right]$$

$$m = \left[ \frac{k_{S} \rho_{P} r_{P}}{D_{e}} \right]^{\frac{1}{2}} = \left[ \frac{k_{S} r_{V}}{D_{e}} \right]^{\frac{1}{2}}$$
(84)

Actual reaction rate = Rate of diffusion into catalyst pellet

 $-R_{\rm P} = (4\pi r_{\rm P}^2 \, {\rm cm}^2) \left( D_{\rm e} \, \frac{{\rm cm}^2}{{\rm sec}} \right) \left[ - \frac{{\rm d}C_{\rm A}}{{\rm d}r} \, \frac{{\rm gm \ moles}}{{\rm cm}^3} \right]_{\rm r} = r_{\rm P}$ (85)  $= -4\pi r_{\rm P}^2 D_{\rm e} \left( \frac{dC_{\rm A}}{dr} \right)_{\rm R} = n_{\rm R} \frac{gm \text{ moles}}{sec.}$  $\frac{dC_A}{dr} = \frac{d}{dr} \left| \frac{CA_s r_P \sinh mr}{r \sinh mr_P} \right| = \frac{CA_s r_P}{\sinh mr_P} \frac{d}{dr} \left| \frac{\sinh mr}{r} \right|$  $= \frac{CA_{s}r_{P}}{\sinh mr_{P}} \left[ \frac{rm \cosh mr - \sinh mr}{r^{2}} \right]$  $= \frac{CA_{s}r_{p}}{\sinh mr_{p}} \left| \frac{m \cosh mr}{r} - \frac{\sinh mr}{r^{2}} \right|$  $\left|\frac{dC_{A}}{dr}\right|_{r=r_{D}} = \frac{C_{A_{S}}r_{P}}{\sinh mr_{P}} \left|\frac{m \cosh mr_{P}}{r_{P}} - \frac{\sinh mr_{P}}{r^{2}}\right|$  $= \frac{CA_{s}}{r_{P}} \left| \frac{mr_{P}}{tanh mr_{P}} - 1 \right|$  $R_{\rm P} = 4\pi r_{\rm P}^2 D_{\rm e} \frac{C_{\rm A_{\rm S}}}{r_{\rm P}} \left| \frac{mr_{\rm P}}{tanh mr_{\rm P}} -1 \right|$  $= 4\pi r_{\rm P}^2 D_{\rm e} C_{\rm A_s} m r_{\rm P} \left| \frac{1}{\tanh m r_{\rm P}} - \frac{1}{m r_{\rm P}} \right|$  $= 4\pi r_{\rm P}^2 D_{\rm e} C_{\rm A_{\rm S}} \left| \frac{k_{\rm S} S_{\rm V}}{D_{\rm e}} \right|^{\frac{1}{2}} \left[ \frac{1}{\tanh \left(\frac{k_{\rm S} S_{\rm V}}{D}\right)^{\frac{1}{2}} r_{\rm P}} - \frac{1}{\left(\frac{k_{\rm S} S_{\rm V}}{D}\right)^{\frac{1}{2}} r_{\rm P}} \right]$ 

Let 
$$h_{\rm S} = mr_{\rm P} = r_{\rm P} \left[ \frac{k_{\rm S} S_{\rm V}}{D_{\rm e}} \right]^{\frac{1}{2}}$$
 (Thiele Modulus)  
 $R_{\rm P} = 4h_{\rm S} \pi r_{\rm P} D_{\rm e} C_{\rm A} S_{\rm S} \left[ \frac{1}{\tanh h_{\rm S}} - \frac{1}{h_{\rm S}} \right]$  (86)

Calculation of Maximum Reaction Rate

..

$$R_{\max} = \left(\frac{4}{3}\pi r_{P}^{3} \text{cm}^{3}\right)\left(k_{S} \frac{\text{cm}}{\text{sec}}\right)\left(S_{V} \frac{\text{cm}^{2}}{\text{cm}^{3}}\right)\left(C_{A_{S}} \frac{\text{gm moles}}{\text{cm}^{3}}\right)$$
$$= \frac{4\pi r_{P}^{3} k_{S} S_{V} C_{A_{S}}}{3} \frac{\text{gm moles}}{\text{sec.}}$$
(87)

# Definition of Effectiveness Factor

 $\mathcal{E}$  = effectiveness factor

<u>actual rate of reaction with pore diffusion present</u> rate of reaction if resistance of pore diffusion were absent

$$= \frac{\frac{R_{p}}{H_{max}}}{\frac{4h_{S}\pi r_{p}D_{e}C_{A_{S}}}{\frac{4}{3}\pi r_{p}^{3}k_{S}S_{V}CA_{S}} \left[ \frac{1}{\tanh h_{S}} - \frac{1}{h_{S}} \right]$$
$$= \frac{3h_{S}D_{e}}{r_{p}^{2}k_{S}S_{V}} \left[ \frac{1}{\tanh h_{S}} - \frac{1}{h_{S}} \right]$$
$$= \frac{3r_{p}k_{S}^{\frac{1}{2}}S_{V}^{\frac{1}{2}}D_{e}}{D_{e}^{\frac{1}{2}}r_{p}^{2}k_{S}S_{V}} \left[ \frac{1}{\tanh h_{S}} - \frac{1}{h_{S}} \right]$$

$$= \frac{3}{\frac{r \, p \, k_{\rm S} \, \bar{z} \, S \, V^{\bar{z}}}{D_{\rm e}^{\frac{1}{\bar{z}}}}} \left[ \frac{1}{\tanh h_{\rm S}} - \frac{1}{h_{\rm S}} \right]$$

$$\mathcal{E} = \frac{3}{h_{\rm S}} \left[ \frac{1}{\tanh h_{\rm S}} - \frac{1}{h_{\rm S}} \right]$$
(88)

# Calculation of Effective Diffusivity, $\mathsf{D}_{\mathsf{e}}$

$$\frac{\text{Definition of Effective Diffusivity}}{D_{e}} = \frac{D_{s} \Theta}{T}$$

$$D_{e} = \text{effective diffusivity, } \frac{\text{cm}^{2}}{\text{sec.}}$$

$$\Theta = \text{fraction voids in catalyst particle}$$

$$T = \text{tortuosity factor}$$

$$D_{s} = \text{combined diffusivity, } \frac{\text{cm}^{2}}{\text{sec.}}$$

$$= \frac{1}{D_{AB}} + \frac{1}{D_{K}}$$

$$D_{AB} = \text{diffusivity of A in A + B + S, } \frac{\text{cm}^{2}}{\text{sec.}}$$

$$D_{K} = \text{Knudsen diffusivity, } \frac{\text{cm}^{2}}{\text{sec.}}$$

Molecular Diffusivity of A in A + R + S

As previously calculated, the molecular diffusivity of A in A + R + S,  $D_{AB}$ , are as follows:

$$\begin{bmatrix} D_{AB} \end{bmatrix}_{650} \circ_{F} = 0.1141 \frac{cm^2}{sec.}$$
  
 $\begin{bmatrix} D_{AB} \end{bmatrix}_{1050} \circ_{F} = 0.2044 \frac{cm^2}{sec.}$ 

Satterfield<sup>70</sup> has shown that in the temperature range of  $200^{\circ}$ K. to  $5000^{\circ}$ K.,  $D_{AB}$  is well represented by a power function of temperature, that exponent being 1.82. The relationship between molecular diffusivity and temperature then becomes as follows:

 $D_{AB} = -0.00633 + 0.1008 + 10^{-5} T^{1.82}$ 

Where T is in  ${}^{\rm O}K.$  the values for  ${\rm D}_{\rm AB}$  at several temperatures are as follows:

| <u>т, <sup>о</sup>ғ.</u> | <u>т, <sup>о</sup>к.</u> | $D_{AB}, \frac{cm.^2}{sec.}$ |
|--------------------------|--------------------------|------------------------------|
| 650                      | 616                      | 0.1141                       |
| 700                      | 644                      | 0.1242                       |
| 750                      | 672                      | 0.1347                       |
| 800                      | 700                      | 0.1456                       |
| 850                      | 728                      | 0.1568                       |
| 900                      | 756                      | 0.1684                       |
| 950                      | 783                      | 0.1799                       |
| 1000                     | 811                      | 0.1922                       |
| 1050                     | 839                      | 0.2044                       |

Calculation of Knudsen Diffusivity

$$D_{K} = \frac{4r_{e}}{3} \left[ \frac{2R_{g}T}{M} \right]^{\frac{1}{2}}$$
(90)

$$H_{g} = \frac{(82.06 \text{ gm mole}^{0}\text{Gm mole}^{0}\text{K})(14.7 \frac{1\text{b.}}{\ln^{2}\text{atm}})(454 \frac{\text{gms}}{1\text{b.}})(980\text{sec}^{2})}{(2.54 \frac{\text{cm}}{1n})(2.54 \frac{\text{cm}}{1n})}$$

$$= 8.32 \times 10^{7} \frac{\text{gm-cm}^{2}}{\text{gm mole}^{-0}\text{K-sec}^{2}}$$

$$M = 120.19 \frac{\text{gms}}{\text{gm mole}}$$

$$r_{e} = \frac{2V_{g}}{S_{g}}$$

$$V_{g} = \text{pore volume/gm. catalyst, } \frac{\text{cm}^{3}}{\text{gm}}$$

$$s_{g} = 250 \times 10^{4} \frac{\text{cm}^{2}}{\text{gm}}$$

$$r_{e} = \frac{(2)(0.350 \frac{\text{cm}^{3}}{\text{gm}})}{(250 \times 10^{4} \frac{\text{cm}^{2}}{\text{gm}})} = 2.80 \times 10^{-7} \text{ cm.}$$

$$D_{K} = \frac{(4)(280 \times 10^{-7}\text{cm})}{3} \left[ \frac{2(8.32 \times 10^{7} \frac{\text{gm-cm}^{2}}{\text{gm mole}})}{(120.19 \frac{\text{gms}}{\text{gm mole}})} \right]^{\frac{1}{2}} (\text{T}^{0}\text{K})^{\frac{1}{2}}$$

The values for  ${\rm D}_{K}^{}$  at several temperatures are as follows:

| т, <sup>о</sup> ғ. | т, <sup>о</sup> к. | <u>(</u> Т <sup>0</sup> К) <sup>1/2</sup> | $D_{\rm K}, \frac{{\rm cm}^2}{{\rm sec}}.$ |
|--------------------|--------------------|-------------------------------------------|--------------------------------------------|
| 650                | 616                | 24.82                                     | 0.00615                                    |
| 700                | 644                | 25.38                                     | 0.00629                                    |
| 750                | 672                | 25.92                                     | 0.00647                                    |
| 800                | 700                | 26.46                                     | 0.00656                                    |
| 850                | 728                | 26.98                                     | 0.00669                                    |

| <u>т, <sup>о</sup>ғ.</u> | <u>т, <sup>о</sup>к.</u> | ('T <sup>O</sup> K.) <sup>1/2</sup> | $D_K$ , $\frac{cm^2}{sec.}$ |
|--------------------------|--------------------------|-------------------------------------|-----------------------------|
| 900                      | 756                      | 27.50                               | 0.00681                     |
| 950                      | 783                      | 27.98                               | 0.00693                     |
| 1000                     | 811                      | 28.48                               | 0.00706                     |
| 1050                     | 839                      | 28.97                               | 0.00718                     |

# Calculation of Combined Diffusivity

| $\frac{1}{D_{\rm S}} = \frac{1}{D_{\rm AB}} + \frac{1}{D_{\rm K}}$                      | (91) |
|-----------------------------------------------------------------------------------------|------|
| $\left[\frac{1}{D_{\rm S}}\right]_{650} = \frac{1}{0.1141} + \frac{1}{0.00615} = 171.4$ |      |
| $\begin{bmatrix} D_{S} \end{bmatrix}_{650} = 0.00584 \frac{cm^{2}}{sec}.$               |      |

Similarly,

|       | $cm^2$         |
|-------|----------------|
| T, F. | $D_{S}$ , sec. |
| 650   | 0.00584        |
| 700   | 0.00599        |
| 750   | 0.00613        |
| 800   | 0.00628        |
| 850   | 0.00642        |
| 900   | 0.00655        |
| 950   | 0.00667        |
| 1000  | 0.00681        |
| 1050  | 0.00694        |

.

# Calculation of Effective Diffusivity

| $D_e = \frac{D_s \Theta}{\mathcal{T}} = \frac{D_s (0.448)}{5.6}$ | = 0.080 D <sub>s</sub>   | (92) |
|------------------------------------------------------------------|--------------------------|------|
| <u>т, <sup>о</sup>ғ.</u>                                         | $D_s, \frac{cm^2}{sec.}$ |      |
| 650                                                              | 0.000467                 |      |
| 700                                                              | 0.000479                 |      |
| 750                                                              | 0.000490                 |      |
| 800                                                              | 0.000502                 |      |
| 850                                                              | 0.000514                 |      |
| 900                                                              | 0.000524                 |      |
| 950                                                              | 0.000534                 |      |
| 1000                                                             | 0.000545                 |      |
| 1050                                                             | 0.000555                 |      |

Calculation of Thiele Modulus,  $h_{\rm S}$ 

Definition of Thiele Modulus

$$h_{\rm S} = r_{\rm P} \left[ \frac{k_{\rm S} S_{\rm V}}{D_{\rm e}} \right]^{\frac{1}{2}}$$
(93)  

$$r_{\rm P} = \text{radius of catalyst particle} = 0.179 \text{ cm.}$$

$$S_{\rm V} = \text{total surface area of porous catalyst}$$

$$= 320 \text{ x } 10^{\frac{4}{2}} \frac{\text{cm}^2}{\text{cm}^3}$$

$$k_{\rm S} = \text{forward intrinsic rate constant for}$$

$$\text{surface reaction, } \frac{\text{cm.}}{\text{sec.}}$$

# Calculation of ${\bf k}_{\rm S}$

.--- -

Initial Rate of Reaction

$$\mathbf{r}_{0} = \frac{\mathcal{E} \mathbf{L} \mathbf{k}_{2} \mathbf{K}_{A} \mathcal{T}}{1 + \mathbf{K}_{A} \mathcal{T}}$$
(94)

Pseudo First Order Reaction (Appendix XI)

$$\mathbf{r}_{o} = \mathbf{k}_{S} \mathbf{S}_{g} \mathbf{C}_{A_{O}} \tag{95}$$

Calculate ks

$$k_{\rm S} = \frac{\epsilon_{\rm Lk_2K_A}\pi}{(1 + K_A\pi) S_{\rm g}C_{\rm A_0}}$$
(96)

 $k_{A} = equilibrium adsorption constant$  $for cumene, <math>\frac{1}{atm}$ .  $\mathcal{M} = 1 \text{ atm.}$  $S_{g} = 250 \text{ x } 10^{4} \frac{\text{cm}^{2}}{\text{gm}}$  $c_{A_{O}} = \text{initial cumene concentration, } \frac{\text{gm moles}}{\text{cm}^{3}}$  $\log \text{ELk}_{2} = -4812 \frac{1}{\text{T}^{O}\text{R}} -1.141 \text{ (no ultrasound)}$ 

Calculation of  $h_S$ 

$$h_{\rm S} = r_{\rm P} S_{\rm V}^{\frac{1}{2}} \left[ \frac{k_{\rm S}}{D_{\rm e}} \right]^{\frac{1}{2}} = (0.179)(320 \times 10^4)^{\frac{1}{2}} \left[ \frac{k_{\rm S}}{D_{\rm e}} \right]^{\frac{1}{2}}$$
$$= 320 \left[ \frac{k_{\rm S}}{D_{\rm e}} \right]^{\frac{1}{2}}$$

# Calculation of Effectiveness Factor, $\epsilon$

 $\epsilon = \frac{3}{h_{\rm S}} \left[ \frac{1}{\tanh h_{\rm S}} - \frac{1}{h_{\rm S}} \right]$ 

## Summary of Calculations (No Ultrasound)

| $\mathbf{T}$     | $\epsilon$ lk <sub>2</sub> x 10 <sup>5</sup> | $k_{S} \times 10^{7}$ |                |      |
|------------------|----------------------------------------------|-----------------------|----------------|------|
| o <sub>F</sub> . | gm moles<br>gm cat-sec.                      | <u> </u>              | h <sub>S</sub> | E    |
| 650              | 0.334                                        | 0.499                 | 3.31           | 0.63 |
| 700              | 0.514                                        | 0.789                 | 4.11           | 0.55 |
| 750              | 0.762                                        | 1.200                 | 5.01           | 0.48 |
| 800              | 1.099                                        | 1.778                 | 5.01           | 0.48 |
| 850              | 1.534                                        | 2.541                 | 7.12           | 0.36 |
| 900              | 2.126                                        | 3.605                 | 8.39           | 0.32 |
| 950              | 2.794                                        | 4.849                 | 9.64           | 0.28 |
| 1000             | 3.657                                        | 6.486                 | 11.04          | 0.25 |
| 1050             | 4.702                                        | 8.526                 | 12.54          | 0.22 |

At frequency inputs of 26,000 cps and 39,000 cps the rate constant  $\mathcal{E}lk_2$  increases as shown previously because the effectiveness factor,  $\mathcal{E}$ , or surface reaction rate constant,  $k_2$ , increases. When the effectiveness factor increases, the Thiele Modulus,  $h_S$ , must decrease, requiring the effective diffusivity,  $D_e$ , to increase. The effect of ultrasound, therefore, may be to increase the diffusion rate of cumene in the catalyst pores.

# APPENDIX VII

REACTION DESIGN EQUATION

#### REACTION DESIGN EQUATION

The reaction design equation is derived by substituting the rate equation for the single site mechanism, S (propylene) not adsorbed, with surface reaction controlling into the plug flow reactor design equation. The derivation is as follows:

# Derivation of Design Equation for Plug Flow Reactor Flow Chart (Figure 42)

Material Balance

<u>Input - Output + Generation = Accumulation</u>

Input

Output

$$(F_A + dF_A) \frac{gm \text{ moles } A}{sec.}$$

Generation

 $(+r_A \frac{gm \text{ moles } A}{gm \text{ cat-sec.}})(dW gm \text{ cat.}) = (+r_A)dW \frac{gm \text{ moles } A}{sec.}$ 

<u>Accumulation</u> = 0 (steady state)

Material Balance

$$F_A - F_A - dF_A = r_A dW = 0$$
  
 $-dF_A = (-r_A)dW$ 



FIGURE 42

CROSS SECTION OF PLUG FLOW REACTOR SHOWING DIFFERENTIAL ELEMENT

$$F_{A} = F_{A_{O}} - X_{A}F_{A_{O}}$$
$$dF_{A} = -F_{A_{O}}dX_{A}$$
$$F_{A_{O}}dX_{A} = (-r_{A})dW$$
$$\frac{dW}{F_{A_{O}}} = \frac{dX_{A}}{(-r_{A})}$$

$$\int_{O}^{W} \frac{dW}{F_{A_{O}}} = \int_{O}^{X_{A_{f}}} \frac{dX_{A}}{(-r_{A})}$$

$$\frac{W}{FA_{O}} = \int_{XA_{O}}^{XA_{f}} \frac{dX_{A}}{(-r_{A})}$$
(97)

Calculation of Reaction Design Equation, Surface Reactions Controlling

Rate Equation for Single Site Mechanism, S (Propylene)  
Not Adsorbed, and Surface Reaction Controlling  

$$(-r_{A}) = \frac{\varepsilon_{Lk_{2}K_{A}} \left[ p_{A} - \frac{p_{R}p_{S}}{K} \right]}{1 + K_{A}p_{A} + K_{R}p_{R}}$$
(98)
$$\frac{W}{F_{A_{O}}} = \int_{X_{A_{f}}} \frac{dX_{A}}{\frac{\epsilon_{Lk_{2}K_{A}}\left[p_{A} - \frac{p_{R}p_{S}}{K}\right]}{1 + K_{A}p_{A} + K_{R}p_{R}}}$$

## Solve for Partial Pressures in Terms of Conversion and Total Pressure

Material Balance

|       | _Inlet_                 | Reactor              | Outlet                                                          |
|-------|-------------------------|----------------------|-----------------------------------------------------------------|
| А     | NAO=NAO                 | NA=NAO-XANAO         | NAf <sup>=NA</sup> o <sup>-XA</sup> f <sup>NA</sup> o           |
| R     | $N_{R_o} = N_{R_o}$     | $N_{R}=N_{R}O+XANAO$ | $N_R = N_R o^+ X_A f^N A_o$                                     |
| S     | NSo=NSo                 | NS=NSo+XANAo         | NS=NSo+XAfNAo                                                   |
| Total | NAO <sup>+NRO+NSO</sup> | NAO+NRO+NSO+XANAO    | NAO <sup>+NRO<sup>+N</sup>SO<sup>+X</sup>Af<sup>N</sup>AO</sup> |

$$p_{A} = \frac{N_{A} \mathcal{T}}{N_{T}} = \frac{(N_{A_{O}} - X_{A} N_{A_{O}}) \mathcal{T}}{(N_{A_{O}} + N_{R_{O}} + N_{S_{O}} + X_{A} N_{A_{O}})}$$
$$p_{R} = \frac{N_{R} \mathcal{T}}{N_{T}} = \frac{(N_{R_{O}} + X_{A} N_{A_{O}}) \mathcal{T}}{(N_{A_{O}} + N_{R_{O}} + N_{S_{O}} + X_{A} N_{A_{O}})}$$

$$p_{\rm S} = \frac{N_{\rm S}/7}{N_{\rm T}} = \frac{(N_{\rm S}_{\rm O} + X_{\rm A} N_{\rm A}_{\rm O})}{(N_{\rm A}_{\rm O} + N_{\rm R}_{\rm O} + N_{\rm S}_{\rm O} + X_{\rm A} N_{\rm A}_{\rm O})}$$

However,  $N_{R_O} = N_{S_O} = 0$ 

$$p_{A} = \frac{N_{A_{O}}(1 - X_{A})\mathcal{T}}{N_{A_{O}}(1 + X_{A})} = \frac{(1 - X_{A})\mathcal{T}}{(1 + X_{A})}$$
$$p_{R} = \frac{X_{A}N_{A_{O}}\mathcal{T}}{N_{A_{O}}(1 + X_{A})} = \frac{X_{A}\mathcal{T}}{(1 + X_{A})}$$
$$p_{S} = \frac{X_{A}N_{A_{O}}\mathcal{T}}{N_{A_{O}}(1 + X_{A})} = \frac{X_{A}\mathcal{T}}{(1 + X_{A})}$$

Substitute for Partial Pressures in Rate Equation

$$(-r_{A}) = \frac{\epsilon_{Lk_{2}K_{A}}\left[p_{A} - \frac{p_{R}p_{S}}{K}\right]}{1 + K_{A}p_{A} + K_{R}p_{R}}$$

$$= \frac{\epsilon_{Lk_{2}K_{A}}\left[\frac{(1-X_{A})\pi}{(1+X_{A})} - \frac{X_{A}^{2}\pi^{2}}{(1+X_{A})^{2}K}\right]}{1 + \frac{K_{A}(1-X_{A})\pi}{(1+X_{A})} + \frac{K_{A}X_{A}\pi}{(1+X_{A})}}$$

$$\frac{1}{(-r_{A})} = \frac{1 + \frac{K_{A}(1-X_{A})\pi}{(1+X_{A})} + \frac{K_{R}X_{A}\pi}{(1+X_{A})}}{\epsilon_{Lk_{2}K_{A}}\left[\frac{(1-X_{A})\pi}{(1+X_{A})} - \frac{X_{A}^{2}\pi^{2}}{(1+X_{A})^{2}K}\right]}$$

$$\frac{1}{(-r_{A})} = \frac{(1 + K_{A}\pi)}{\epsilon_{Lk_{2}K_{A}}\pi\left[1 - (1+\frac{\pi}{K})x^{2}\right]}$$

$$+ \frac{(2 + K_{R}\pi)X_{A}}{\epsilon_{Lk_{2}K_{A}}\pi\left[1 - (1+\frac{\pi}{K})X_{A}^{2}\right]}$$

+  $\frac{(1 - K_A \mathcal{T} + K_R \mathcal{T}) \times 2}{\epsilon L k_2 K_A \mathcal{T} \left[1 - (1 + \frac{\mathcal{T}}{K}) \times A^2\right]}$ 

$$\frac{(1 + K_{A}T)}{CLk_{2}K_{A}T\left[1 - (1 + \frac{T}{K})X_{A}^{2}\right]}$$

$$= \left[\frac{1}{CLk_{2}K_{A}T} + \frac{K_{A}T}{CLk_{2}K_{A}T}\right] \left[\frac{1}{1 - (1 + \frac{T}{K})X_{A}^{2}}\right]$$

$$= \left\{\left[\frac{1}{1 - \delta^{2}X_{A}^{2}}\right] = \frac{\delta}{1 - \delta^{2}X_{A}^{2}}$$

$$\delta = \left[1 + \frac{T}{K}\right]^{\frac{1}{2}}$$

$$\frac{(2 + K_{R}T)X_{A}}{CLk_{2}K_{A}T}\left[1 - (1 + \frac{T}{K})X^{2}\right]$$

$$= \left[\frac{2}{CLk_{2}K_{A}T} + \frac{K_{R}T}{CLk_{2}K_{A}T}\right] \left[\frac{X_{A}}{1 - (1 + \frac{T}{K})X_{A}^{2}}\right]$$

$$= \left[\frac{2}{CLk_{2}K_{A}T} + \frac{K_{R}T}{CLk_{2}K_{A}T}\right] \left[\frac{X_{A}}{1 - (1 + \frac{T}{K})X_{A}^{2}}\right]$$

$$\beta = \left[\frac{X_{A}}{1 - \delta^{2}X_{A}^{2}}\right] = \frac{\beta X_{A}}{1 - \delta^{2}X_{A}^{2}}$$

$$\beta = \left[\frac{2}{CLk_{2}K_{A}T} + \frac{K_{R}}{CLk_{2}K_{A}T}\right]$$

.

$$\frac{(1 - K_A T + K_B T) X_A^2}{C_{LK_2 K_A} T \left[1 - (1 + \frac{T}{K}) X_A^2\right]}$$

$$= \left[\frac{1}{C_{LK_2 K_A} T - \frac{K_A T}{C_{LK_2 K_A} T + \frac{K_B T}{C_{LK_2 K_A} T}}\right] \left[\frac{X_A^2}{1 - (1 + \frac{T}{K}) X_A^2}\right]$$

$$= \left[\frac{1}{C_{LK_2 K_A} T - \frac{1}{C_{LK_2}} + \frac{K_B}{C_{LK_2 K_A}}\right] \left[\frac{X_A^2}{1 - (1 + \frac{T}{K}) X_A^2}\right]$$

$$= \left[\mathcal{S} - \delta'\right] \left[\frac{X_A^2}{1 - \delta^2 X_A^2}\right] = \left[\frac{(\mathcal{S} - \delta') X_A^2}{1 - \delta^2 X_A^2}\right]$$

$$\mathcal{S} - \delta' = -\frac{2}{C_{LK_2 K_A} T + \frac{K_B}{C_{LK_2 K_A}} - \frac{1}{C_{LK_2 K_A} T - \frac{1}{C_{LK_2 K_A}}}$$

$$= -\frac{1}{C_{LK_2 K_A} T - \frac{1}{C_{LK_2}} + \frac{K_B}{C_{LK_2 K_A}} - \frac{1}{C_{LK_2 K_A} T - \frac{1}{C_{LK_2 K_A}}$$

$$\delta = \left[1 + \frac{T}{K}\right]^{\frac{1}{2}}$$

$$\frac{1}{(-r_A)} = \frac{\delta'}{1 - \delta^2 X_A^2} + \frac{\mathcal{S} X_A}{1 - \delta^2 X_A^2} + \frac{(\mathcal{O} - \delta') X_A^2}{1 - \delta^2 X_A^2}$$

Substitute Rate Equation into Plug Flow Reactor Design Equation and Integrate

$$\frac{W}{F_{A_{O}}} = \int_{X_{A_{O}}}^{X_{A_{f}}} \frac{\chi_{A_{f}}}{\chi_{A_{O}}} + \int_{X_{A_{O}}}^{X_{A_{O}}} \frac{\chi_{A_{O}}}{\chi_{A_{O}}} + \int_{X_{A_{O}}}^{X_{A_{O}}} \frac{\chi_{A_{O}}}{\chi_{A_{O}}}$$

$$\begin{aligned}
& \bigvee_{X_{A_{f}}=X_{A}}^{X_{A_{f}}=X_{A}} \\
& \frac{dX_{A}}{-S^{*}X_{A}^{2}+1} = \frac{s}{2S} \ln\left[\frac{1+X_{A}S}{1-X_{A}S}\right]_{O}^{X_{A}} = \frac{s}{2S} \ln\frac{1+X_{A}S}{1-X_{A}S}
\end{aligned}$$

$$\int_{X_{A_0}=0}^{X_{A_f}=X_A} \int_{X_A dX_A} \frac{X_A dX_A}{-S^2 X_A + 1} = \frac{3}{-2S^2} \ln \left[ -S^2 X_A^2 + 1 \right]_0^{X_A} = \frac{-3}{2S^2} \ln \left( -S^2 X_A^2 + 1 \right)$$

$$(\beta - \delta) \int_{X_{A_{0}}=0}^{X_{A_{1}}=X_{A}} \frac{(\beta - \delta)X_{A}}{-\delta^{2}X_{A}^{2}+1} = \frac{(\beta - \delta)X_{A}}{-\delta^{2}} - \frac{(\beta - \delta)}{-\delta^{2}} \int_{0}^{X_{A}} \frac{dX_{A}}{-\delta^{2}X_{A}^{2}+1}$$

$$=\frac{-(\beta - \delta) \chi_{A}}{\delta^{2}} + \frac{(\beta - \delta)}{\delta^{2}} \left[\frac{1}{2\delta} \ln \frac{(1 + \chi_{A} \delta)}{(1 - \chi_{A} \delta)}\right]$$

$$\frac{W}{F_{A_0}} = \frac{\delta}{2\delta} \ln \frac{(1+X_A\delta)}{(1-X_A\delta)} - \frac{\delta}{2\delta^2} \ln (-\delta^2 X_A^2 + 1) - \frac{(\delta - \delta)}{\delta^2} X_A + \frac{(\delta - \delta)}{\delta^2} \left[ \frac{1}{2\delta} \ln \frac{(1+X_A\delta)}{(1-X_A\delta)} \right]$$

$$\frac{W}{F_{A_{O}}} = \delta \left[ \left( \frac{1}{2\delta} - \frac{1}{2\delta^{3}} \right)^{-\ln \left( \frac{1+X_{A}\delta}{(1-X_{A}\delta)} + \frac{X_{A}}{\delta^{2}} \right) \right] + \beta \left[ \frac{1}{2\delta^{3}} \ln \left( \frac{1+X_{A}\delta}{(1-X_{A}\delta)} - \frac{1}{2\delta^{2}} \ln(1-\delta^{2}X^{-2}) - \frac{X_{A}}{\delta^{2}} \right]$$
(99)  
$$\delta = \frac{1}{\epsilon Lk_{2}K_{A}T} + \frac{1}{\epsilon Lk_{2}}$$
$$\beta = \frac{2}{\epsilon Lk_{2}K_{A}T} + \frac{K_{R}}{\epsilon Lk_{2}K_{A}}$$
$$\delta = \left[ 1 + \frac{T}{K} \right]^{\frac{1}{2}}$$

Calculation of Reaction Design Equation, External Diffusion Controlling

Rate Equation for External Diffusion Controlling

$$r_{A} = \frac{p_{T}k_{g}a}{RT} \frac{\ln \frac{1+Y_{A}b}{1+Y_{A}s}}{(100)}$$

Substitute Rate Equation into Plug Flow Reactor Equation

$$\frac{W}{FA_{o}} = \int_{XA_{f}}^{XA_{f}} \frac{dX_{A}}{\frac{p_{T}k_{g}a}{RT} \ln \frac{1+YA_{b}}{1+YA_{s}}}}{X_{A_{o}}}$$

$$= \frac{X_{A_{f}}^{RT}}{p_{T}k_{g}a \ln \frac{1+Y_{A_{b}}}{1+Y_{A_{s}}}}$$

171

$$k_{g} = \frac{X_{A_{f}}RT}{(W/F_{A_{O}})p_{T}aln \frac{1+Y_{A_{b}}}{1+Y_{A_{s}}}}$$
(101)

$$\begin{split} &Y_{A_S} = 0 \; (\text{mole fraction cumene at catalyst surface}) \\ &R = 82.03 \; \frac{\text{cm}^3\text{-atm.}}{\text{gm mole-}^{0}\text{K.}} \\ &T = {}^{0}\text{K.} \\ &T = {}^{0}\text{K.} \\ &F_{A_O} = \; \frac{\text{gm moles cumene feed}}{\text{sec.}} \\ &W = \text{gms. catalyst} \\ &p_T = 1.0 \; \text{atm.} \\ &a = 13.1 \; \frac{\text{cm}^2}{\text{gm.}} \\ &k_g = \; \frac{\text{cm.}}{\text{sec.}} \\ &X_{A_f} = \; \text{conversion} \\ &Y_{A_b} = \; \frac{Y_{A_1} - Y_{A_O}}{\ln \frac{Y_{A_1}}{Y_{A_O}}} = \; Y_{A_{LM}} \; (\text{mole fraction cumene in} \\ &bulk \; \text{gas stream}) \\ &Y_{A_i} = 1.0 \; (\text{mole fraction cumene at reactor} \\ &Y_{A_O} = \; \frac{1 - X_{A_f}}{1 + X_{A_f}} \; (\text{mole fraction cumene at reactor} \\ &Y_{A_O} = \; \frac{6.261832 \; X_{A_f} T}{(W/F_{A_O})\ln(1+Y_{A_{LM}})} \end{split}$$

APPENDIX VIII

EVALUATION OF REACTION RATE CONSTANTS

#### EVALUATION OF REACTION RATE CONSTANTS

As previously derived, the reaction design equation for the catalytic cracking of cumene in a continuous plug flow reactor is as follows:

$$\frac{W}{F_{A_{0}}} = \Im \left[ \left( \frac{1}{2\delta} - \frac{1}{2\delta^{3}} \right)^{\ln} \frac{(1 + X_{A}\delta)}{(1 - X_{A}\delta)} + \frac{X_{A}}{\delta^{2}} \right] + \Im \left[ \frac{1}{2\delta^{3}} \frac{\ln}{(1 - X_{A}\delta)} - \frac{1}{2\delta^{2}} \frac{\ln(1 - \delta^{2}X_{A}^{2}) - \frac{X_{A}}{\delta^{2}}}{\delta^{2}} \right]$$
(99)

Where,

$$\delta = \frac{1}{\epsilon L k_2 K_A \pi} + \frac{1}{\epsilon L k_2}$$

$$\beta = \frac{2}{\epsilon L k_2 K_A \pi} + \frac{K_R}{\epsilon L k_2 K_A}$$

$$\delta = \left[1 + \frac{\pi}{K}\right]^{\frac{1}{2}}$$

Garver <sup>22</sup> experimentally determined the reaction rate constants at atmospheric pressure to be as follows:

 $850^{\circ}F.$  $950^{\circ}F.$  $1050^{\circ}F.$ K, atm.2.056.2215.96 $\mathcal{E} Lk_2$ ,  $\frac{gm \text{ moles}}{gm \text{ cat-sec.}}$  $1.777 \times 10^{-5} 2.165 \times 10^{-5} 2.917 \times 10^{-5}$  $K_A$ ,  $\frac{1}{atm.}$ 2.242.13 $K_R$ ,  $\frac{1}{atm.}$ 2.451.86 $K_R$ ,  $\frac{1}{atm.}$ 2.451.86 $\chi$ ,  $\frac{gm \text{ cat-sec.}}{gm \text{ mole}}$ 81,30067,80052,250

|    |                        | 850°F.  | 950°F. | 1050 <sup>0</sup> F. |
|----|------------------------|---------|--------|----------------------|
| β, | gm cat-sec.<br>gm mole | 111,500 | 83,600 | 62,500               |
| δ, | dimensionless          | 1.224   | 1.070  | 1.031                |

The above constants were obtained as follows:

### Equilibrium Constant, K

Garver calculated the thermodynamic equilibrium constant for the dealkylation of cumene from the logarithms of the equilibrium constants of formation for cumene, benzene and propylene. The values for the equilibrium constants of formation were obtained from Circular C461 of the National Bureau of Standards.

The equation expressing the equilibrium constant as a function of temperature is as follows:

$$\log K = -8,927 \left[ \frac{1}{T} \right] + 7.126,$$

where K is in atmospheres and T is in Rankine.

Adsorption Constant for Cumene, KA, and Combined Effectiveness Factor and Forward Reaction Rate Constant for Surface Reaction, ELk<sub>2</sub>

Plot W/FA<sub>O</sub> vs.  $X_A$  at varying FA<sub>O</sub> and total pressure, $\mathcal{T}$ , and constant temperature, T, as shown in Figure 43.







Rearrange the plug flow reactor design equation.

$$\frac{W}{F_{A_{O}}} = \int_{X_{A_{O}}}^{X_{A_{f}}} \frac{dX_{A}}{(-r_{A})}$$
$$d\left(\frac{W}{F_{A_{O}}}\right) = \frac{dX_{A}}{(-r_{A})}$$
$$(-r_{A}) = \frac{dX_{A}}{d\left(\frac{W}{F_{A_{O}}}\right)}$$

Plot the slope,  $dX_A/d(\frac{W}{FA_0})$  vs.  $X_A$  at  $\mathcal{T}_1, \mathcal{T}_2$  and  $\mathcal{T}_3$ . and extrapolate back to  $X_A = 0$  to find initial rate,  $r_0$ , as shown in Figure 44.

Rearrange the initial rate equation.

$$r_{0} = \frac{\mathcal{E} \operatorname{Lk}_{2} \operatorname{K}_{A} \mathcal{T}}{1 + \operatorname{K}_{A} \mathcal{T}}$$

$$\frac{r_{0}}{\mathcal{T}} = \frac{\mathcal{E} \operatorname{Lk}_{2} \operatorname{K}_{A}}{1 + \operatorname{K}_{A} \mathcal{T}}$$

$$\frac{\mathcal{T}}{r_{0}} = \frac{1}{-\mathcal{E} \operatorname{Lk}_{2} \operatorname{K}_{A}} + \frac{\mathcal{T}}{\mathcal{E} \operatorname{Lk}_{2}}$$
Plot  $\frac{\mathcal{T}}{r_{0}}$  vs.  $\mathcal{T}$  as shown in Figure 45.  
Calculate  $\mathcal{E} \operatorname{Lk}_{2}$  and  $\operatorname{K}_{A}$  from the slope and intercept.  
Repeat at 850°F., 950°F. and 1050°F.

# PLOT OF REACTION RATE VS. CONVERSION AT CONSTANT TEMPERATURE





PLOT OF  $\frac{\mathcal{T}}{r_0}$  VS.  $\mathcal{T}$ 



Assume Irreversible Reaction

Reaction Design Equation

$$\frac{W}{FA_{O}} = \sqrt[3]{\left[\left(\frac{1}{2\delta} - \frac{1}{2\delta^{3}}\right) \ln \frac{(1+X_{A}\delta)}{(1-X_{A}\delta)} + \frac{X_{A}}{\delta^{2}}\right]} + \sqrt[3]{\left[\frac{1}{2\delta^{3}} \ln \frac{(1+X_{A}\delta)}{(1-X_{A}\delta)} - \frac{1}{2\delta^{2}} \ln(1-\delta^{2}X^{2}) - \frac{X_{A}}{\delta^{2}}\right]} \quad (99)$$

For irreversible reaction

$$K = \frac{k}{k!} = \gg 1$$
$$= \left[1 + \frac{\pi}{K}\right]^{\frac{1}{2}} = \left[1 + 0\right]^{\frac{1}{2}} = 1$$

Back substitute

$$\frac{W}{F_{A_{O}}} = \delta \left[ \left( \frac{1}{1} - \frac{1}{1} \right) \frac{\ln(1 + X_{A})}{(1 - X_{A})} + \frac{X_{A}}{1} \right] + \beta \left[ \frac{1}{2} \frac{\ln(1 + X_{A})}{(1 - X_{A})} - \frac{1}{2} \ln(1 - X_{A}^{2}) - \frac{X_{A}}{1} \right] \\ = \delta X_{A} + \beta \left[ \frac{1}{2} \ln \frac{(1 + X_{A})}{(1 - X_{A})(1 - X_{A}^{2})} - X_{A} \right] \\ = \delta X_{A} + \beta \left[ \frac{1}{2} \ln \frac{(1 + X_{A})}{(1 - X_{A})(1 - X_{A}^{2})} - X_{A} \right] \\ = \delta X_{A} + \beta \left[ \frac{1}{2} \ln \frac{1}{(1 - X_{A})^{2}} - X_{A} \right]$$

$$\frac{W}{F_{A_{O}}} = \delta X_{A} + \beta \left[ -\ln(1 - X_{A}) - X_{A} \right]$$
(102)

Rearrange the irreversible rate equation:

$$\frac{W}{FA_{O}} = \mathcal{Y}X_{A} = \mathcal{S}\left[-\ln(1-X_{A}) - X_{A}\right]$$

Calculate § at 850°F., 950°F. and 1050°F., and  $\mathcal{T}$  1,  $\mathcal{T}_2,$  and  $\mathcal{T}_3.$ 

$$\mathcal{X} = \frac{1}{\mathcal{E} L k_2 K_A \pi} + \frac{1}{\mathcal{E} L k_2}$$

Plot  $\left[\frac{W}{FA_0} - X_A\right]$  vs.  $\left[-\ln(1-X_A) - X_A\right]$  at 850°F., 950°F. and 1050°F., and at  $\mathcal{T}_1$ ,  $\mathcal{T}_2$  and  $\mathcal{T}_3$  as shown in Figure 46.

Calculate  $K_{R}$  from slope of straight line.

## Reaction Design Equation Constants $\mathcal{X}$ , $\mathcal{B}$ , and $\mathcal{S}$

Since K,  $\in Lk_2$ , K<sub>A</sub> and K<sub>R</sub> are now known,  $\mathcal{F}$ ,  $\mathcal{F}$ and  $\mathcal{S}$  can be calculated at 850°F., 950°F. and 1050°F., and  $\pi_1, \pi_2$  and  $\pi_3$ .

## Summary of Results

Garver's investigation led to the following values for K,  $K_{\rm A}$  and  $K_{\rm R}$ :

$$\log K = -8927 \left[ \frac{1}{T^{O_R}} \right] + 7.126$$
 (103)



PLOT OF  $\left[\frac{W}{FA_{O}} - \mathcal{Y}X_{A}\right]$  VS.  $\left[-\ln(1-X_{A}) - X_{A}\right]$  $\left[\frac{W}{FA_{O}} - \delta X_{A}\right]$ slope =  $\mathcal{S} = \frac{2}{\boldsymbol{\varepsilon} \operatorname{Lk}_2 \operatorname{K}_A} + \frac{\operatorname{K}_R}{\boldsymbol{\varepsilon} \operatorname{Lk}_2 \operatorname{K}_A}$  $\left[-\ln(1-X_A)-X_A\right]$ 

$$\log K_{A} = 700 \left[ \frac{1}{T^{O_{R}}} \right] - 0.179$$
 (104)

$$\log K_{\rm R} = 2195 \left[ \frac{1}{T^{0} R} \right] - 1.286$$
 (105)

### Evaluation of Reaction Rate Constants

For this research,  $\mathcal{T}=1$  atm. and  $\mathcal{E}Lk_2$  is handled as a single constant. The rate equation then contains four parameters;  $\mathcal{E}Lk_2$ , KA, KR and K. The values of the parameters K, KA and KR obtained by Garver and extrapolated to 650°F. are shown in Figure 47.

These literature values of three of the four parameters were substituted into the surface reaction rate equation, and the fourth parameter,  $\mathcal{E}_{Lk_2}$ , was computer calculated by curve fitting the data by use of Marquardt's non-linear square fit program.

Table 10 shows the literature values of K, KA and  $K_{\rm R}$  for each of the temperatures studied along with the calculated values of  $\mathcal{E}_{\rm Lk_2}$  at 26,000 cps, 39,000 cps and in the absence of ultrasound.

The graphs of conversion as a function of reciprocal space velocity illustrating all the data points and the calculated theoretical curves are illustrated in Figures 48 through 73. Considerable scattering of the data is apparent at 650°F. because of the low conversions obtained at that temperature and the accompanying analytical errors.



TABLE 10

SUMMARY OF VALUES OF REACTION RATE CONSTANTS

gm moles

|             |       |             |         |                | E LK2      | x $10^5$ , $\frac{gm}{gm}$ cat | - Sec.     |
|-------------|-------|-------------|---------|----------------|------------|--------------------------------|------------|
| Ħ           |       | К           | KA<br>1 | K <sub>R</sub> | ON         |                                |            |
| •<br>占<br>0 | Power | <u>Atm.</u> | Atm.    | Atm.           | Ultrasound | 26,000 cps                     | 39,000 cps |
| 650         | full  | 0.121       | 2.830   | 4.908          | 0.317      | 0.479                          | 0.813      |
| 200         | full  | 0.270       | 2.657   | 4.032          | 644.0      | 0.523                          | 1.082      |
| 750         | full  | 0.561       | 2.510   | 3.368          | 0.875      | 1.009                          | 1.591      |
| 800         | full  | 1.100       | 2.381   | 2.854          | 1.219      | 1.385                          | 1.794      |
| 850         | full  | 2.050       | 1.267   | 2.448          | 2.489      | 2.830                          | 2.904      |
| 850         | half  | 2.050       | 2.267   | 2.448          | 2.489      | 2.509                          | 2.704      |
| 006         | full  | 3.654       | 2.167   | 2.124          | 2.499      | 2.470                          | 3.054      |
| 950         | full  | 6.235       | 2.078   | 1.863          | 2.341      | 2.403                          | 2.614      |
| 1000        | full  | 10.27       | 1.998   | 1.647          | 3.470      | 3.470                          | 3.360      |

CONVERSION vs. W/F













Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FIGURE 54





Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.





CONVERSION vs. W/F

195



FIGURE 58














FIGURE 64

202







FIGURE 67





FIGURE 69

207



FIGURE 70





FIGURE 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

210



FIGURE 73

APPENDIX IX

SAMPLE ANALYSIS

#### SAMPLE ANALYSIS

Samples of the reactor effluent were obtained by the following methods:

#### Gas Sample

The high temperature  $(650-1050^{\circ}F.)$  gaseous effluent is introduced directly into the gas chromatograph via a gas sampling valve. This method proved to be no more accurate than the liquid sample method, even though the sample represents the entire effluent stream.

#### Liquid Sample

The reactor effluent is partially condensed and subcooled to  $70^{\circ}F$ . The propylene remains in the gas phase at this temperature and is vented from the system. The remaining liquid phase is injected into the gas chromatograph. Little accuracy is sacrificed by this technique because of the unaccounted for losses of cumene and benzene in the gaseous propylene stream.

The following calculations compare the two sampling techniques, assuming a total cumene feed to the reactor of 100 gm moles and a conversion of 20%.

## Gas Sample Analysis (No Losses)

#### Material Balance

| g     | N <sub>o</sub><br>m-moles | N <sub>f</sub><br>gm-moles | mole % | M<br>gms.<br>gm-mole | gms.      | Wt.%   |
|-------|---------------------------|----------------------------|--------|----------------------|-----------|--------|
| А     | 100.0                     | 80.0                       | 66.66  | 120.19               | 9,615,20  | 80.00  |
| R     | -                         | 20.0                       | 16.67  | 78.11                | 1,562.20  | 13.00  |
| S     | -                         | 20.0                       | 16.67  | 42.08                | 841.60    | 7.00   |
| Total | 100.0                     | 120.0                      | 100.0  | <u></u>              | 12,019.00 | 100.00 |

## Conversion

$$X_{A} = \frac{120.19(wt.\%R)}{120.19(wt.\%R) + 78.11(wt.\%A)}$$
$$= \frac{120.19(13.00)}{120.19(13.00) + 78.11(80.00)}$$
$$= \frac{1562.2}{1562.2 + 6248.8} = \frac{1562.2}{7811.0} = 0.2000$$
(103)

## Liquid Sample Analysis (All S Lost, No Other Losses)

| <u>Ma</u> | terial I | <u> Balance</u> |        |           |           |        |
|-----------|----------|-----------------|--------|-----------|-----------|--------|
|           | No       | $^{\sf N}{f f}$ |        | M<br>ems. |           |        |
| g         | m-moles  | gm-moles        | mole % | gm-mole   | gms.      | Wt.%   |
| А         | 100.0    | 80.0            | 80.0   | 120.19    | 9,615.20  | 86.02  |
| R         | -        | 20.0            | 20.0   | 78.11     | 1,562.20  | 13.98  |
| S         | _        | -               | -      | 42.08     | -         | -      |
| Total     | 100.0    | 100.0           | 100.0  | <u></u>   | 11,177.40 | 100.00 |

<u>Conversion</u>

$$X_{A} = \frac{120.19(\text{wt.}\%\text{R})}{120.19(\text{wt.}\%\text{R}) + 78.11(\text{wt.}\%\text{A})}$$

$$= \frac{120.19(13.98)}{120.19(13.98) + 78.11(86.02)}$$

$$= \frac{1,680.2562}{1,680.2562 + 6,719.0222} = \frac{1,680.2562}{8,399.2784} = 0.2000$$
Liquid Sample Analysis (Actual Losses)  
Vapor Pressure at 70°F. (20°C.)  
log P<sub>A</sub> = 6.92926 -  $\frac{1206.350}{t+207.202} = 6.92926 - \frac{1206.350}{20+207.202}$   
P<sub>A</sub> = 3.32 mm. Hg  
log P<sub>R</sub> = 6.89745 -  $\frac{1206.350}{t+220.237} = 6.89745 - \frac{1206.350}{20+220.237}$   
P<sub>R</sub> = 75.15 mm. Hg  
P<sub>S</sub> = 9.9 atm. = 7,524 mm. Hg  
Condenser Flow Chart (Figure 74)  
Overall Material Balance  
F = L + V (104)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120 = L + V



#### CONDENSER FLOW CHART



$$y_{f_A}F = y_AV + x_AL; 80.0 = y_AV + x_AL$$
 (105)

$$y_{f_R}F = y_RV + x_RL; 20.0 = y_RV + x_RL$$
 (106)

$$y_{fS}F = y_SV + x_SL; 20.0 = y_SV + x_SL$$
 (107)

Dalton's and Raoult's Laws

$$p_A = y_A \mathcal{T} = x_A P_A; y_A = \frac{x_A P_A}{\mathcal{T}}$$
 (108)

$$\mathbf{p}_{\mathrm{R}} = \mathbf{y}_{\mathrm{R}} \mathcal{T} = \mathbf{x}_{\mathrm{R}}^{\mathrm{P}} \mathbf{p}_{\mathrm{R}}; \quad \mathbf{y}_{\mathrm{R}} = \frac{\mathbf{x}_{\mathrm{R}}^{\mathrm{P}} \mathbf{p}_{\mathrm{R}}}{\mathcal{T}}$$
(109)

$$p_{S} = y_{S} \mathcal{T} = x_{R}^{P} p_{S}; y_{S} = \frac{x_{S}^{P} p_{S}}{\mathcal{T}}$$
(110)

Combine Material Balances and Dalton's and Raoult's Laws

$$\begin{aligned} x_{A} &= \frac{80.0}{L + \frac{P_{A}}{\pi} (120-L)} = \frac{80.0}{L + \frac{3.32}{760} (120-L)} \\ &= \frac{80.0}{L + \frac{90.0}{\pi} (120-L)} = \frac{20.0}{L + \frac{75.15}{760} (120-L)} \\ x_{R} &= \frac{20.0}{L + \frac{P_{R}}{\pi} (120-L)} = \frac{20.0}{L + \frac{75.15}{760} (120-L)} \\ &= \frac{20.0}{11.8656 + 0.90112L} \\ x_{S} &= \frac{20.0}{L + \frac{P_{S}}{\pi} (120-L)} = \frac{20.0}{L + \frac{7.524}{760} (120-L)} \\ &= \frac{20.0}{L + \frac{90.0}{\pi} (120-L)} = \frac{20.0}{L + \frac{7.524}{760} (120-L)} \end{aligned}$$

 $\frac{\text{Let L} = 100.0}{x_{\text{A}}} = \frac{80.0}{0.52416 + 99.5632} = \frac{80.0}{100.08736} = 0.7993$   $x_{\text{R}} = \frac{20.0}{11.8656 + 90.112} = \frac{20.0}{101.9776} = 0.1961$   $x_{\text{S}} = \frac{20.0}{1,188 - 890} = \frac{20.0}{298} = 0.0671$   $\frac{1000}{1.0625}$   $\frac{1000}{1.000} = \frac{20.0}{111.88992} = 0.1787$   $x_{\text{R}} = \frac{20.0}{1.188 - 987.9} = \frac{20.0}{200.1} = \frac{0.1000}{0.9992}$ 

Corrected Mole Fractions

$$x_{A} = \frac{0.7205}{0.9992} = 0.7211$$
$$x_{R} = \frac{0.1787}{0.9992} = 0.1788$$

$$x_{\rm S} = \frac{0.1000}{0.9992} = \frac{0.1001}{1.0000}$$

## Material Balance

|       | No      | $^{N}f$  |        | M        |           |        |   |
|-------|---------|----------|--------|----------|-----------|--------|---|
| g     | m-moles | gm-moles | mole % | gm moles | gms.      | wt.%   | , |
| А     | 100.0   | 80.0421  | 72.11  | 120.19   | 9,620.34  | 0.8266 |   |
| R     | -       | 19.8468  | 17.88  | 78.11    | 1,550.23  | 0.1332 |   |
| S     | -       | 11.1111  | 10.01  | 42.08    | 467.56    | 0.0402 |   |
| Total | 100.0   | 111.0000 | 100.00 |          | 11,638.13 | 1.0000 |   |

· >--

## Conversion

$$x_{A} = \frac{120.19(wt.\%R)}{120.19(wt.\%R) + 78.11(wt.\%A)}$$

$$= \frac{120.19(13.32)}{(120.19)(13.32) + 78.11(82.66)}$$

$$= \frac{1,600.9308}{1,600.9308 + 6,456.5726}$$

 $= \frac{1.600.9308}{8.057.5034} = 0.1987$ 

#### <u>Error</u>

% error = 
$$\frac{(0.2000 - 0.1987)(100)}{0.2000}$$

$$= \frac{0.0013(100)}{0.2000} = 0.65\%$$

## Sample Calculation from Actual Data

### Run No. 11.53

Analysis (Wt. %)

|           | Liquid Sample          |                       |                        |                        | Gas                   |
|-----------|------------------------|-----------------------|------------------------|------------------------|-----------------------|
|           | <u>Test 1</u>          | Test 2                | <u>Test 3</u>          | Average                | Sample                |
| Cumene    | 90.62                  | 91.35                 | 91.30                  | 91.09                  | 89.11                 |
| Benzene   | 7.62                   | 7.18                  | 7.18                   | 7.32                   | 7.08                  |
| Propylene | $\tfrac{1.76}{100.00}$ | $\frac{1.47}{100.00}$ | $\tfrac{1.52}{100.00}$ | $\tfrac{1.59}{100.00}$ | $\frac{3.81}{100.00}$ |

Liquid Sample Conversion

$$\mathbf{x}_{A} = \frac{120.19(7.32)}{120.19(7.32) + 78.11(91.09)} = 11.0\%$$

Gas Sample Conversion

$$x_{A} = \frac{(120.19)(7.08)}{(120.19)(7.08) + 78.11(89.11)} = 10.9\%$$

APPENDIX X

ULTRASONIC ENGINEERING

#### ULTRASONIC ENGINEERING

#### Fundamental Equations

Figure 76 illustrates a schematic representation of the instantaneous position of the gas particles through which a sound wave is travelling. The gas particles are each volume elements of gas containing millions of molecules. The drawing shows the alternate compression and expansion of the gas in the direction of the propagation of the sound wave.

Figure 76 illustrates the sine wave representation of the sound wave.

Sound Wave Equation

$$y = Y \cos\left[\frac{2\pi}{\lambda} (x-Vt)\right] = Y \cos\left[2\pi f(t-\frac{x}{V})\right]$$
(111)  
$$\lambda \frac{cm}{cycle} = (V\frac{cm}{sec})(T\frac{sec}{cycle}) = \frac{V\frac{cm}{sec}}{f\frac{cycles}{sec}}$$
  
$$f = \frac{1}{T}$$

Transverse Velocity

$$v = \frac{dy}{dt} = \frac{d}{dt} \left[ \frac{Y\cos 2\pi f(t - \frac{x}{V})}{Y} \right] = -Y\sin 2\pi f(t - \frac{x}{V}) \left[ 2\pi f \right]$$
$$v = -2\pi f Y\sin 2\pi f(t - \frac{x}{V}) \qquad (112)$$





#### SCHEMATIC DIAGRAM OF SOUND WAVE



SINE WAVE REPRESENTATION OF SOUND WAVE



Transverse Acceleration

$$a = \frac{dv}{dt} = \frac{d}{dt} \left[ -2\pi fY \sin 2\pi f(t - \frac{x}{V}) \right]$$
$$= -2\pi fY \cos 2\pi f(t - \frac{x}{V}) \left[ 2\pi f \right]$$
$$a = -4\pi^2 f^2 F^2 \cos 2\pi f(t - \frac{x}{V}) \qquad (113)$$

## Velocity of Propagation of Sound Waves in a Gas

Figure 77 illustrates an element of gas in a tube in which there is a longitudinal sound wave. Both the equilibrium and displaced positions are shown.

## Newton's Second Law

$$F = ma$$
(114)  

$$F_{\text{NET}} = (p_0 + p \frac{dynes}{cm^2})(A \ cm^2) - (p_0 + p + \bigtriangleup p \frac{dynes}{cm^2})(A \ cm^2)$$
  

$$= -\bigtriangleup pA \ dynes$$
  

$$m = (\swarrow_0 \frac{gms}{cm^3})(A \ cm^2)(\bigtriangleup x \ cm) = \varUpsilon_0 A \bigtriangleup x \ gms.$$
  

$$a = \frac{d^2y}{dt^2} \frac{cm}{sec^2}$$
  

$$-\bigtriangleup pA = \varUpsilon_0 A \bigtriangleup x \frac{d^2y}{dt^2}$$
  

$$\frac{d^2y}{dt^2} = \frac{-\bigtriangleup pA}{\varUpsilon_0 A \bigtriangleup x} = -\frac{1}{\curvearrowleft_0} \frac{p}{\bigtriangleup x}$$
  

$$\frac{d^2y}{dt^2} = -\frac{1}{\curvearrowleft_0} \frac{dp}{dx}$$

## FIGURE 77

## ELEMENT OF GAS IN A TUBE IN WHICH THERE IS A LONGITUDINAL SOUND WAVE

Equilibrium position

μ------ X -----μ--- ΔX -----μ



Displaced position



## Calculate p

$$\frac{\text{Definition of Compressibility}}{k = -\left[\frac{1}{\text{original volume}}\right] \left[\frac{\text{change in volume}}{\text{change in pressure}}\right]$$
$$= -\frac{1}{v} \frac{dv}{dp}$$
(115)

Original volume =  $(Acm^2)(\Delta x cm) = A\Delta x cm^3$ Change in volume

$$= (\triangle x+y+\triangle y-y \text{ cm})(A \text{ cm}^2) - (\triangle x \text{ cm})(A \text{ cm}^2)$$
$$= (\triangle x+\triangle y)A - \triangle xA$$
$$= \triangle yA \text{ cm}^3$$

Change in pressure

$$= \frac{(p_0 + p) + (p_0 + p + \Delta p)}{2} - p_0$$

$$= \frac{2p_0 + 2p + \Delta p}{2} - p_0$$

$$= p_0 + p + \frac{\Delta p}{2} - p_0$$

$$= p \frac{dynes}{cm^2}$$

$$k = \left[ -\frac{1}{A \Delta x \ cm^3} \right] \left[ \frac{\Delta yA \ cm^3}{p \ \frac{dynes}{cm^2}} \right] = -\frac{\Delta y}{p \Delta x} \ \frac{cm^2}{dyne}$$
Rearrange to Obtain p

$$p = \frac{-1}{k} \frac{\Delta y}{\Delta x} = \frac{-1}{k} \frac{dy}{dx}$$

$$\frac{\mathrm{d}p}{\mathrm{d}x} = -\frac{1}{\mathrm{k}} \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$$

$$\frac{d^2 y}{dt^2} = -\frac{1}{\rho_0} \frac{dp}{dx} = -\frac{1}{\rho_0} \left[ -\frac{1}{k} \frac{d^2 y}{dx^2} \right]$$
$$\frac{\partial^2 y}{\partial t^2} = \frac{1}{\rho_0 k} \frac{\partial^2 y}{\partial x^2}$$

Change Variables

Let  $y = f(x \stackrel{+}{=} Vt) = f(u) = f$ 

$$\frac{\partial y}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}$$

$$\frac{\partial u}{\partial x} = \frac{\partial (x \pm vt)}{\partial x} = \frac{\partial x}{\partial x} = 1$$

$$\frac{\partial y}{\partial x} = \frac{\partial f}{\partial u} \cdot 1 = \frac{\partial f}{\partial u}$$

$$\frac{\partial^2 y}{\partial x^2} = \frac{\partial}{\partial x} (\frac{\partial y}{\partial x}) = \frac{\partial}{\partial x} (\frac{\partial f}{\partial u}) = \frac{\partial u}{\partial x} \cdot \frac{\partial}{\partial u} (\frac{\partial f}{\partial u})$$

$$= \frac{(1)}{\partial u} (\frac{\partial f}{\partial u}) = \frac{\partial^2 f}{\partial u^2}$$

$$\frac{\partial y}{\partial t} = \frac{\partial f}{\partial t} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial t}$$

$$\frac{\partial u}{\partial t} = \frac{\partial (x \pm vt)}{\partial t} = \pm v$$

$$\frac{\partial y}{\partial t} = \frac{\partial f}{\partial u} (\frac{d f}{d u}) = \frac{d f}{d u}$$

$$\frac{\partial^2 y}{\partial t^2} = \frac{\partial}{\partial t} \left( \frac{\partial y}{\partial t} \right) = \frac{\partial}{\partial t} \left( \frac{^{\pm}V}{\partial u} \right) = \frac{\partial u}{\partial t} \cdot \frac{\partial}{\partial u} \left( \frac{^{\pm}V}{\partial u} \right)$$
$$= \frac{^{\pm}V}{^{\pm}V} \cdot \frac{\partial}{\partial u} \left( \frac{^{\pm}V}{^{\pm}V} \frac{\partial f}{\partial u} \right) = \frac{V^2}{^{\pm}V^2}$$

#### Substitution

$$V^{2} \frac{\partial^{2} f}{\partial u^{2}} = \frac{1}{\rho_{0} k} \frac{\partial^{2} f}{\partial u^{2}}$$

$$V^{2} = \frac{1}{\rho_{0} k}$$

$$V = \left[\frac{1}{\rho_{0} k}\right]^{\frac{1}{2}}$$
(116)

Adiabatic Compression

 $\frac{\text{Definition}}{\text{pv}^{\delta}} = c \qquad (117)$   $\frac{\partial}{\partial t} = \frac{c_p}{c_V}$   $\frac{\text{Differentiate}}{\frac{dv}{dp} + p \, \delta \, v^{\, \delta' - 1} \, dv} = 0$   $\frac{dv}{dp} = -\frac{v^{\, \delta}}{p \, \delta \, v^{\, \delta' - 1}} = -\frac{v}{p \, \delta}$   $\frac{\text{Substitute into Compressibility Equation}}{k = -\frac{1}{v} \frac{dv}{dp}} = +\frac{1}{v} \cdot \frac{v}{p \, \delta'} = \frac{1}{p \, \delta} \qquad (118)$ 

Substitution

$$V = \left[\frac{1}{\rho_{0}k}\right]^{\frac{1}{2}} = \left[\frac{p \ \forall}{\rho_{0}}\right]^{\frac{1}{2}}$$

$$pv = nRT$$

$$p = \frac{nRT}{v}$$

$$\frac{p \ \frac{dynes}{cm^{2}}}{\rho_{0} \ \frac{gms}{cm^{3}}} = \frac{\left(R \ \frac{ergs}{gm \ mole - 0K}\right)\left(1 \ \frac{dyne - cm}{erg}\right)\left(T^{0}K\right)}{\left(M \ \frac{gms}{gm \ mole}\right)} = \frac{RT}{M}$$

$$V = \left[\frac{\forall RT}{M}\right]^{\frac{1}{2}}$$
(119)

## Pressure Variations in a Sound Wave

Pressure Equation

$$p = -\frac{1}{k} \frac{dy}{dx}$$
(120)

Sound Wave Equation

$$y = Y \cos\left[\frac{2\pi}{\lambda} (x - Vt)\right]$$
(121)

Differentiate and Combine Equations

$$\frac{dy}{dx} = -Y \sin\left[\frac{2\pi}{\lambda}(x-Vt)\right] \left[\frac{2\pi}{\lambda}\right] = -\frac{2\pi Y \sin\left[\frac{2\pi}{\lambda}(x-Vt)\right]}{\lambda}$$
$$p = \frac{2\pi Y}{k\lambda} \sin\left[\frac{2\pi}{\lambda}(x-Vt)\right]$$

$$V = \left[\frac{1}{\rho_{0}k}\right]^{\frac{1}{2}}$$

$$V^{2} = \frac{1}{\rho_{0}k}$$

$$k = \frac{1}{\rho_{0}V^{2}}$$

$$p = \frac{2\pi\rho_{0}V^{2}Y}{\lambda} \sin\left[\frac{2\pi}{\lambda}(x-Vt)\right]$$

$$p = p_{max}\sin\left[\frac{2\pi}{\lambda}(x-Vt)\right]$$

$$p_{max} = \frac{2\pi\rho_{0}V^{2}Y}{\lambda} = \frac{2\pi\rho_{0}V^{2}Y}{M\lambda}$$

$$p_{max} = \frac{2\pi\rho_{0}c_{p}RTY}{M\lambda c_{V}}$$

$$p_{max} = 2\pi fY \rho_{0} \left[\frac{c_{p}RT}{c_{V}M}\right]^{\frac{1}{2}}$$
(122)

## Intensity of a Sound Wave

Work Done on System

$$w = -\int_{0}^{p} p dv \qquad (123)$$

$$k = -\frac{1}{v_{0}} \frac{dv}{dp}$$

$$dv = kv_{0}dp$$

$$w = +\int_{0}^{p} kv_{0}p dp = kv_{0} \left[\frac{p^{2}}{2}\right]_{0}^{p} = \frac{1}{2} kv_{0}p^{2}$$

Energy per Unit Volume

$$\frac{w_{\text{max}}}{v_0} = \frac{1}{2} k p_{\text{max}}^2$$
(124)

Intensity

Definition

$$I = \frac{(energy)}{(unit area)(unit time)}$$
(125)

$$I = \frac{\left(\frac{1}{2}kp_{max}^{2} \frac{dyne-cm}{cm^{3}}\right)(A cm)(Vdt cm)}{(A cm^{2})(dt sec)}$$

$$= \frac{1}{2} k p_{max}^2 \vee \frac{dyne-cm}{cm^2-sec}$$

$$V = \left[\frac{\mathbf{c}_{\mathrm{P}}\mathrm{RT}}{\mathbf{c}_{\mathrm{V}}\mathrm{M}}\right]^{\frac{1}{2}}$$

$$k = \frac{1}{\rho_0 v^2} = \frac{cvM}{\rho_0 c_P RT}$$

$$k_{V} = \left[\frac{c_{V}M}{\rho_{o}c_{P}RT}\right] \left[\frac{c_{P}RT}{c_{V}M}\right]^{\frac{1}{2}} = \left[\frac{c_{V}M}{c_{P}RT}\right]^{\frac{1}{2}} \frac{1}{\rho_{o}}$$

$$I = \frac{p_{max}^{2}}{2\rho_{o}} \left[\frac{c_{V}M}{c_{P}RT}\right]^{\frac{1}{2}}$$
(126)



## FIGURE 78

INTENSITY FLOW CHART

#### Definition of a Decibel

$$\beta = 10 \log \frac{I}{I_0}$$
(127)  

$$\beta = \text{ sound intensity level, decidels}$$

$$I_0 = 10^{-16} \frac{\text{watts}}{\text{cm}^2}$$

$$p_{\text{max}} = 0.002 \frac{\text{dynes}}{\text{cm}^2} \text{ at } I_0 = 10^{-16} \frac{\text{watts}}{\text{cm}^2} \text{ in air}$$

#### Standing Waves

#### Definition

Standing waves are caused as a result of the reflection of sound waves back from the end of a tube. The total displacement is the sum of the displacements of the original wave and the reflected wave. Whereas, in a travelling wave the amplitude remains constant as the wave form progresses, in a standing wave, the amplitude fluctuates and the wave form remains fixed.

#### Derivation of Standing Wave Equation

Displacement of Original Wave

$$y_{1} = Y \cos \left[ \frac{2\pi}{\lambda} (x - Vt) \right]$$
(128)

Displacement of Reflected Wave

$$y_{2} = -Y\cos\left[\frac{2\pi}{\lambda}(-x-Vt)\right]$$
(129)

$$y = y_{1} + y_{2} = Y\cos\left[\frac{2\Pi}{\lambda}(x-Vt)\right] - Y\cos\left[\frac{2\Pi}{\lambda}(-x-Vt)\right]$$
$$= Y\cos\left[\frac{2\Pi}{\lambda}(x-Vt)\right] - Y\cos\left[\frac{2\Pi}{\lambda}(x+Vt)\right]$$
$$= Y\cos\left[\frac{2\Pi}{\lambda}(x-Vt)\right] - \cos\left[\frac{2\Pi}{\lambda}(x+Vt)\right]$$

• • •

 $\cos(\alpha - \beta) - \cos(\alpha + \beta) = 2\sin\alpha \sin\beta$ 

$$y = Y \left\{ 2 \sin\left[\frac{2\pi x}{\lambda}\right] \sin\left[\frac{2\pi vt}{\lambda}\right] \right\}$$
$$f = \frac{v}{\lambda}$$
$$v = f\lambda$$
$$y = 2Y \sin\left[\frac{2\pi x}{\lambda}\right] \sin\left[\frac{2\pi t}{\lambda}\right] = 2Y \sin\left[\frac{2\pi x}{\lambda}\right] \sin\left[2\pi t\right]$$

$$y = \left[2Y\sin(2\pi ft)\right]\sin\left[\frac{2\pi x}{\lambda}\right]$$

Figure 79 defines the various terms associated with a standing wave.

## Fundamental Frequency

$$f_{o} = \frac{V}{\lambda o}$$
$$\lambda_{o} = 4L$$
$$V = \left[\frac{c_{PRT}}{c_{V}M}\right]^{\frac{1}{2}}$$



$$f_{O} = \frac{V}{4L} = \left[\frac{c_{P}RT}{c_{V}M}\right]^{\frac{1}{2}} \frac{1}{4L}$$
(130)

"Tuned" Wavelengths and Frequencies

$$4L \qquad \frac{4L}{3} \qquad \frac{4L}{5} \qquad \frac{4L}{n}$$
$$f \qquad \left[\frac{c_{pRT}}{c_{V}M}\right]^{\frac{1}{2}} \qquad \frac{1}{4L} \qquad \left[\frac{c_{pRT}}{c_{V}M}\right]^{\frac{1}{2}} \qquad \frac{3}{4L} \qquad \left[\frac{c_{pRT}}{c_{V}M}\right]^{\frac{1}{2}} \qquad \frac{5}{4L} \qquad \left[\frac{c_{pRT}}{c_{V}M}\right]^{\frac{1}{2}} \qquad \frac{n}{4L}$$

n = 1, 3, 5, 7, 9, etc.

## Summary of Ultrasonic Engineering Equations

Sound Wave Equation

$$y = Y \cos\left[\frac{2\pi (x - Vt)}{\lambda}\right] = Y \cos\left[2\pi f(t - \frac{x}{V})\right]$$
(111)

y<sub>max</sub> = Y

$$\lambda = VT = \frac{V}{f}$$
$$f = \frac{1}{T}$$

Transverse Velocity

$$v = -2\pi fY \sin 2\pi f(t - \frac{x}{V})$$
(112)

$$v_{max} = 2\pi fY$$
(131)

# $\frac{\text{Transverse Acceleration}}{a = -4\pi^2 f^2 Y \cos 2\pi f(t - \frac{x}{V})}$ (113)

$$a_{\text{max}} = 4\pi^2 f^2 Y \tag{132}$$

Velocity of Propagation

$$V = \left[\frac{1}{\rho_{0}k}\right]^{\frac{1}{2}} = \left[\frac{\gamma_{RT}}{M}\right]^{\frac{1}{2}}$$
(119)

Acoustic Pressure

$$p = \left[\frac{2\pi\rho_{0}V^{2}Y}{\lambda}\right] \sin\left[\frac{2\pi}{\lambda}(x-Vt)\right]$$
(133)

$$p_{max} = \frac{2\pi \rho_0 V^2 Y}{\lambda} = \frac{2\pi \rho_0 \delta RTY}{M\lambda} = \frac{2\pi \rho_0 c_{PRTY}}{M\lambda c_V}$$
$$= 2\pi f Y \rho_0 \left[\frac{c_{PRT}}{c_V M}\right]^{\frac{1}{2}} = \left[2\rho_0 I\right]^{\frac{1}{2}} \left[\frac{c_{PRT}}{c_V M}\right]^{\frac{1}{4}}$$
(122)

<u>Intensity</u>

$$I = \frac{p_{\text{max}}^2}{2\rho_0} \left[ \frac{c_V M}{c_P RT} \right]^{\frac{1}{2}}$$
(126)

$$\beta = 10 \log \frac{I}{I_0} = 10 \log \frac{I}{10^{-16} \frac{\text{watts}}{\text{cm}^2}}$$
(127)

Amplitude

$$Y = \frac{p_{\text{max}}}{2\pi f \rho_0} \left[ \frac{c_V M}{c_P RT} \right]^{\frac{1}{2}}$$
(134)
Standing Wave Equation

$$y = \left[2Y\sin(2\pi ft)\right]\sin\frac{2\pi x}{\lambda}$$
(135)

"Tuned" Wavelength and Frequencies

$$\lambda = 4L , \frac{4L}{3} , \frac{4L}{5} , \frac{4L}{n}$$
$$f = \left[\frac{c_{PRT}}{c_{V}M}\right]^{\frac{1}{2}} \frac{1}{4L}, \left[\frac{c_{PRT}}{c_{V}M}\right]^{\frac{1}{2}} \frac{3}{4L}, \left[\frac{c_{PRT}}{c_{V}M}\right]^{\frac{1}{2}} \frac{5}{4L}, \left[\frac{c_{PRT}}{c_{V}M}\right]^{\frac{1}{2}} \frac{n}{4L}$$

n = 1,3,5,7,9,etc.

#### Typical Values of Wave Characteristics

The following values are calculated at the extreme temperatures employed in this research,  $650^{\circ}F$ . and  $1050^{\circ}F$ ., and at the two frequencies studied, 26,000 cps and 39,000 cps. Additionally, the calculations are made at the maximum power output of the equipment at each frequency and at one-half that power output.

Power Output

$$\beta = 10 \log \frac{I}{I_0}$$
(127)

$$\beta = \text{power output, decibels}$$

$$= 161 \text{ db at } 26,000 \text{ cps}$$

$$= 150 \text{ db at } 39,000 \text{ cps}$$

$$I_0 = \text{constant, } 10^{-16} \frac{\text{watts}}{\text{cm}^2}$$

$$I = \text{intensity, } \frac{\text{watts}}{\text{cm}^2}$$

At 26,000 cps,

$$\log \frac{I}{I_0} = \frac{3}{10} = \frac{161}{10} = 16.1$$
$$\frac{I}{I_0} = 1.259 \times 10^{16}$$
$$I = (1.259 \times 10^{16})(10^{-16}) = 1.259 \frac{\text{watts}}{\text{cm}^2}$$

At 39,000 cps,

$$\log \frac{I}{I_0} = \frac{13}{10} = \frac{150}{10} = 15.0$$
$$\frac{I}{I_0} = 10^{15}$$
$$I = (10^{15})(10^{-16}) = 0.100 \frac{\text{watts}}{\text{cm}^2}$$

The following calculations are for a temperature of  $650^{\circ}$ F., a frequency of 26,000 cps and an acoustical intensity of 1.259  $\frac{\text{watts}}{\text{cm}^2}$ .

Acoustic Pressure

$$p_{max} = \left[2 \rho_0 I\right]^{\frac{1}{2}} \left[\frac{c_{pRT}}{c_{VM}}\right]^{\frac{1}{4}}$$
(122)  
$$\rho_0 = \frac{PM}{RT} = \frac{(1.0 \text{ atm})(120.19 \text{ gmm} \text{mole})}{(82.06 \text{ gmm} \text{mole})(616^{\circ}\text{K})} = 0.00238 \text{ gms} \text{cm}^3$$

$$I = (1.259 \frac{watts}{cm^2})(10^7 \frac{dyne-cm}{watt-sec}) = 1.259 \times 10^7 \frac{dynes}{cm-sec}$$

$$\frac{c_{p}}{c_{V}} = \frac{0.588 \frac{cal}{gm_{-}O_{C}}}{0.571 \frac{cal}{gm_{-}O_{C}}} = 1.030$$

$$R = 8.31 \times 10^{7} \frac{gm_{-}cm^{2}}{sec^{2}-gm \text{ mole}^{-}O_{K}}$$

$$T = 616^{O}K.$$

$$M = 120.19 \frac{gms}{gm_{-}mole}$$

$$P_{max} = \frac{\left[(2)(0.00238 \frac{gms}{cm})(1.259 \times 10^{8} \frac{dynes}{cm_{-}sec})\right]^{\frac{1}{2}}}{\left[1 \frac{gm-cm}{dyne_{-}sec^{2}}\right]^{\frac{1}{2}}}$$

$$\left[\frac{(1.030)(8.31 \times 10^{7} \frac{gm-cm^{2}}{sec^{2}-gm \text{ mole}^{-}O_{K}})(616^{O}K)}{120.19 \frac{gms}{gm \text{ mole}}}\right]^{\frac{1}{4}}$$

$$= (59.928 \times 10^{4} \frac{dyne^{2}-sec}{cm^{5}})^{\frac{1}{2}}(4.3868 \times 10^{8} \frac{cm^{2}}{sec^{2}})^{\frac{1}{4}}$$

$$= (7.741 \times 10^{2})(1.447 \times 10^{2}) \frac{dynes}{cm^{2}}$$

$$= 1.120 \times 10^{5} \frac{dynes}{cm^{2}}$$

$$P_{max} = \frac{(1.120 \times 10^{5} \frac{dynes}{cm^{2}})(2.2481 \times 10^{-6} \frac{1b}{dyne})}{(0.155 \frac{in^{2}}{cm^{2}})} = 1.62 \frac{1b}{in^{2}}$$

Velocity of Propagation

$$V = \left[\frac{c_{PRT}}{c_{V}M}\right]^{\frac{1}{2}}$$
(119)  
= 
$$\left[\frac{(1.030)(8.31 \times 10^{7} \frac{gm-cm^{2}}{sec^{2}-gm mole^{-0}K})(616^{0}K)}{(120.19 \frac{gms}{gm mole})}\right]^{\frac{1}{2}}$$

$$V = 20,945 \frac{cm.}{sec.}$$

Amplitude

$$Y = \frac{p_{\text{max}}}{2\pi f \rho_0} \left[ \frac{c_V M}{c_P RT} \right]^{\frac{1}{2}} = \frac{p_{\text{max}}}{2\pi f \rho_0 V}$$
(134)

$$= \frac{(1.120 \times 10^5 \frac{\text{dynes}}{\text{cm}^2})(1 \frac{\text{gm-cm}}{\text{dyne-sec}^2})}{(2\pi)(26,000 \frac{1}{\text{sec}})(0.00238 \frac{\text{gms}}{\text{cm}^3})(20,945 \frac{\text{cm}}{\text{sec}})}$$

$$Y = 0,0138$$
 cm.

Transverse Velocity

$$v_{max} = 2\pi fY$$
 (131)  
=  $2\pi (26,000 \frac{1}{sec})(0.0138 \text{ cm})$   
 $v_{max} = 2,254 \frac{cm.}{sec.}$ 

Transverse Acceleration

$$a_{max} = 4\pi^{2} f^{2} Y = 2\pi f v_{max}$$
(132)  
$$= \frac{2\pi (26,000 \ \frac{1}{sec})(2.254 \ \frac{cm}{sec})}{(980 \ \frac{cm/sec^{2}}{g})}$$
$$a_{max} = 375,734 \ g$$

The results of similar calculations for temperatures of  $650^{\circ}$ F. and  $1050^{\circ}$ F., frequencies of 26,000 cps and 39,000 cps, and power outputs of full power and one-half power are shown on the following Table 11.

### TABLE 11

# SUMMARY OF TYPICAL WAVE CHARACTERISTICS

| T, temperature, <sup>O</sup> F.                  | 650              | 650     | 650              | 650     |
|--------------------------------------------------|------------------|---------|------------------|---------|
| f, frequency, $\frac{1}{\sec}$                   | 26,000           | 26,000  | 39,000           | 39,000  |
| Power output                                     | full             | half    | full             | half    |
| I, intensity, $\frac{watts}{cm^2}$               | 1.259            | 0.630   | 0.100            | 0.050   |
| $\rho_0$ , gas density, $\frac{gms}{cm^3}$       | 0.00238          | 0.00238 | 0.00238          | 0.00238 |
| $c_{\rm P}/c_{\rm V}$                            | 1.030            | 1.030   | 1.030            | 1.030   |
| V, velocity of propagation, $\frac{cm}{sec}$     | 20,945           | 20,945  | 20,945           | 20,945  |
| $\lambda$ , wavelength, cm.                      | 0.806            | 0.806   | 0.537            | 0.537   |
| $p_{max}$ , acoustic pressure, $\frac{1b}{in^2}$ | 1.62             | · 1.15  | 0.46             | 0.32    |
| Y, amplitude, cm.                                | 0.0138           | 0.0098  | 0.0026           | 0.0018  |
| $v_{max}$ , transverse velocity $\frac{cm}{sec}$ | 2,254            | 1,601   | 637              | 441     |
| a <sub>max</sub> , transverse acceleration, g.   | 375 <b>,</b> 734 | 266,881 | 159 <b>,</b> 279 | 110,270 |

# TABLE 11 (continued)

### SUMMARY OF TYPICAL WAVE CHARACTERISTICS

| T, temperature, <sup>O</sup> F.                   | 1050    | 1050    | 1050    | 1050    |
|---------------------------------------------------|---------|---------|---------|---------|
| f, frequency, $\frac{1}{\sec}$                    | 26,000  | 26,000  | 39,000  | 39,000  |
| Power output                                      | full    | half    | full    | half    |
| I, intensity, $\frac{watts}{cm^2}$                | 1.259   | 0.630   | 0.100   | 0.050   |
| $\rho_0$ , gas density, $\frac{gms}{cm^3}$        | 0.00175 | 0.00175 | 0.00175 | 0.00175 |
| $c_{\rm P}/c_{\rm V}$                             | 1.024   | 1.024   | 1.024   | 1.024   |
| V, velocity of propagation, $\frac{cm}{sec}$      | 24,298  | 24,298  | 24,298  | 24,298  |
| $\lambda$ , wavelength, cm.                       | 0.935   | 0.935   | 0.623   | 0.620   |
| $p_{max}$ , acoustic pressure, $\frac{1b}{in^2}$  | 1.50    | 1.06    | 0.42    | 0.30    |
| Y, amplitude, cm.                                 | 0.0149  | 0.0105  | 0.0028  | 0.0020  |
| $v_{max}$ , transverse velocity, $\frac{cm}{sec}$ | 2,434   | 1.715   | 686     | 490     |
| a <sub>max</sub> , transverse acceleration, g.    | 405,740 | 285,885 | 171,531 | 122,522 |

V = velocity of propagation of wave form,  $\frac{cm}{sec}$ Y = amplitude, cm. $\lambda$  = wave length,  $\frac{cm}{cycle}$ t = time, sec.x = distance traversed by wave form, cm.y = displacement, cm. $f = frequency, \frac{cycles}{sec}$  $T = period, \frac{sec}{cvcle}$  $v = transverse velocity, \frac{cm}{sec}$ a = transverse acceleration,  $\frac{cm}{sec^2}$  $g_c = conversion factor, 980 \frac{dynes}{gm}$ .  $\rho_0$  = original gas density,  $\frac{gms}{cm^3}$ k = compressibility,  $\frac{cm^2}{dvne}$ ,  $\frac{cm-sec^2}{rm}$  (dyne =  $\frac{gm-cm}{sec^2}$ )  $\chi = \frac{c_{\rm P}}{c_{\rm V}}$  $c_{\rm P}$  = heat capacity of gas at constant pressure,  $\frac{cal}{gm-OC}$  $c_V$  = heat capacity of gas at constant volume,  $\frac{cal}{gm_{-}o_C}$  $R = 8.31 \times 10^7 \frac{\text{ergs}}{\text{mole}-\text{oK}} = 8.31 \times 10^7 \frac{\text{dyne}-\text{cm}}{\text{gm mole}-\text{oK}}$  $(erg = dyne - cm = \frac{gm - cm^2}{sec^2})$ 

T = temperature of gas, <sup>o</sup>K.  
M = molecular weight of gas, 
$$\frac{gms}{gm-mole}$$
  
p = pressure,  $\frac{dynes}{cm^2}$   
P<sub>max</sub> = maximum pressure caused by sound wave,  $\frac{dynes}{cm^2}$   
I = intensity,  $\frac{erg}{cm^2-sec}$ ,  $\frac{dyne-cm}{cm^2-sec}$  (10<sup>-7</sup>  $\frac{watt-sec}{erg}$ )  
 $\beta$  = sound intensity level, decibels  
I<sub>o</sub> = 10<sup>-16</sup>  $\frac{watts}{cm^2}$   
L = reactor length, cm.  
n = 1,3,5,7,9,etc.

APPENDIX XI

DESIGN EQUATION FOR

PSEUDO FIRST ORDER REACTION

#### DESIGN EQUATION FOR PSEUDO FIRST ORDER REACTION

#### Plug Flow Reactor Design Equation

$$\frac{W}{FA_{O}} = \int_{X_{A_{O}}}^{X_{A_{f}}} \frac{dX_{A}}{(-r_{A})}$$
(136)

W = wt. catalyst, gms.  

$$FA_0$$
 = feed rate of A,  $\frac{gm \text{ moles } A}{sec.}$   
 $X_{A_0}$  = initial conversion of A  
 $X_{A_f}$  = final conversion of A  
 $(-r_A)$  = reaction rate,  $\frac{gm \text{ moles } A}{gm \text{ cat-sec}}$ 

### Reaction

$$C_{6}H_{5}-CH-(CH_{3})_{2} \longrightarrow C_{6}H_{6} + CH_{3}-CH=CH_{2}$$
  
Cumene Benzene Propylene  
$$A \xrightarrow{k}_{k'} R + S$$

Rate Equation

 $(-r_{A}) = kp_{A} - k'p_{R}p_{S} \qquad (137)$   $p_{A} = \frac{n_{A}RT}{V} = C_{A}RT$   $p_{R} = \frac{n_{R}RT}{V} = C_{R}RT$   $p_{S} = \frac{n_{S}RT}{V} = C_{S}RT$ 

$$(-r_{A}) = kRTC_{A} - k'(RT)^{2}C_{R}C_{S}$$

$$(-r_{A}) = reaction rate, \frac{gm moles A}{gm cat-sec}$$

$$p_{A}, p_{R}, p_{S} = partial pressure, atm.$$

$$k = forward reaction rate constant for overall reaction, \frac{gm moles}{gm cat-atm-sec}$$

$$k' = reverse reaction rate constant for overall reaction, \frac{gm moles}{gm cat-atm-sec}$$

$$R = 82.06 \frac{cm^{3}-atm}{gm mole-OK}$$

$$T = ^{O}K.$$

$$C_{A}, C_{R}, C_{S} = concentration, \frac{gm moles}{cm^{3}}$$

Substitute Rate Equation into Plug Flow Reactor Design Equation

$$\frac{W}{FA_{O}} = \int \frac{dX_{A}}{kRTC_{A} - k'(RT)^{2}C_{R}C_{S}}$$
(138)  
$$X_{A_{O}}$$

Assume Pseudo First Order Reversible Reaction

Reaction

$$A \xrightarrow{k_{P}} R$$

#### Rate Equation

$$(-\mathbf{r}_{A}) = \mathbf{k}_{P}C_{A} - \mathbf{k}_{P}C_{R}$$

$$K_{P} = \frac{\mathbf{k}_{P}}{\mathbf{k}_{P}} = \frac{C_{R}}{C_{A}} = \frac{C_{Re}}{C_{Ae}}$$
(139)

#### Material Balance

|       | <u>Inlet</u>         | Reactor             | Outlet                                                              |
|-------|----------------------|---------------------|---------------------------------------------------------------------|
| А     | NAO=NAJ              | NA=NAO-XANAO        | $N_{A_{f}} = N_{A_{o}} - X_{A_{f}} N_{A_{o}}$                       |
| R     | NRo <sup>=NR</sup> o | NR=NRo-XANAo        | $\frac{N_{\rm R}f^{=N_{\rm R}}o^{+X_{\rm A}}f^{\rm N_{\rm A}}o}{1}$ |
| Total | NA0+NR0              | NAO <sup>+NRO</sup> | NAO <sup>+NR</sup> O                                                |

$$C_{A} = \frac{N_{A}}{V} = \frac{N_{A_{O}} - X_{A}N_{A_{O}}}{V} = \frac{N_{A_{O}}(1 - X_{A})}{V} = C_{A_{O}}(1 - X_{A}) = C_{A_{O}} - C_{A_{O}}X_{A}$$
$$C_{R} = \frac{N_{R}}{V} = \frac{N_{R_{O}} + X_{A}N_{A_{O}}}{V} = \frac{N_{R_{O}}}{V} + \frac{N_{A_{O}}}{V} = C_{R_{O}} + C_{A_{O}}X_{A}$$

---

#### <u>Substitution</u>

$$(-r_A) = k_P(C_{A_O} - C_{A_O} X_A) - k_P(C_{B_O} + C_{A_O} X_A)$$
$$= k_P C_{A_O}(1 - X_A) - k_P C_{A_O} \left[ \frac{C_{B_O}}{C_{A_O}} + X_A \right]$$

At Equilibrium

$$k = \frac{k_{\rm P}}{k_{\rm P}} = \frac{C_{\rm R_o} + C_{\rm A_o}X_{\rm A}}{C_{\rm A_o} - C_{\rm A_o}X_{\rm A}} = \frac{\frac{C_{\rm R_o}}{C_{\rm A_o}} + X_{\rm A_e}}{1 - X_{\rm A_e}}$$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

$$\frac{C_{R_{O}}}{C_{A_{O}}} + X_{A_{e}} = \frac{k_{P}}{k'_{P}} (1 - X_{A_{e}})$$
$$\frac{C_{R_{O}}}{C_{A_{O}}} = \frac{k_{P}}{k'_{P}} (1 - X_{A_{e}}) - X_{A_{e}}$$

Substitution

$$(-r_{A}) = k_{P}C_{A_{O}}(1-X_{A}) - k_{P}C_{A_{O}}\left[\frac{k_{P}}{k_{P}}(1-X_{A_{e}}) - X_{A_{e}} + X_{A}\right]$$
$$= k_{P}C_{A_{O}}-k_{P}C_{A_{O}}X_{A}-k_{P}C_{A_{O}}+k_{P}C_{A_{O}}X_{A_{e}}+k_{P}C_{A_{O}}X_{A_{e}}-k_{P}C_{A_{O}}X_{A}$$
$$= k_{P}(C_{A_{O}}X_{A_{e}}-C_{A_{O}}X_{A}) + k_{P}(C_{A_{O}}X_{A_{e}}-C_{A_{O}}X_{A})$$
$$(-r_{A}) = (k_{P}+k_{P})C_{A_{O}}(X_{A_{e}}-X_{A}) \qquad (140)$$

# Substitute Rate Equation into Plug Flow Reactor Design Equation

$$\frac{W}{F_{A_{O}}} = \int_{X_{A_{f}}} \frac{dX_{A}}{(k_{P}+k_{P})C_{A_{O}}(X_{A_{e}}-X_{A})}$$

Initial rate  $(X_A = 0)$ 

$$\mathbf{r}_{o} = (\mathbf{k}_{P} + \mathbf{k}_{P}) C_{A_{o}} (\mathbf{X}_{A_{e}} - \mathbf{X}_{A}) = (\mathbf{k}_{P} + \mathbf{k}_{P}) C_{A_{o}} \mathbf{X}_{A_{e}}$$
$$(\mathbf{k}_{P} + \mathbf{k}_{P}) C_{A_{o}} = \frac{\mathbf{r}_{o}}{\mathbf{X}_{A_{e}}}$$

$$\frac{W}{FA_{O}} = \frac{X_{A_{e}}}{r_{O}} \int_{X_{A_{O}}}^{X_{A_{f}}} \frac{dX_{A}}{(X_{e} - X_{A})}$$

.

Integrate

$$\frac{W}{FA_{O}} = \frac{X_{A_{e}}}{r_{O}} \left[ -\ln(X_{A_{e}} - X_{A}) \right]_{XA_{O}}^{XA_{f} = X} = \frac{X_{A_{e}}}{r_{O}} \left[ -\ln(\frac{X_{A_{e}} - X_{A}}{X_{A_{e}}}) \right]$$
$$= \frac{X_{A_{e}}}{r_{O}} \left[ -\ln(1 - \frac{X_{A}}{X_{A_{e}}}) \right]$$

$$\frac{W}{FA_{O}} = \frac{X_{A_{e}}}{r_{O}} \ln \left[ \frac{1}{1 - \frac{X_{A}}{X_{A_{e}}}} \right]$$
(141)

$$K = \frac{\frac{C_{R_{O}}}{C_{A_{O}}} + X_{A_{e}}}{1 - X_{A_{e}}}$$

$$C_{R_{O}} = 0$$

$$K = \frac{X_{A_{e}}}{1 - X_{A_{e}}}$$

$$X_{A_{e}} = K - KX_{A_{e}}$$

$$X_{A_{e}} = \frac{K}{K + 1}$$

Tabulate Results

| <u>T</u> , <sup>O</sup> F. | K, atm. | X <sub>Ae</sub> |
|----------------------------|---------|-----------------|
| 850                        | 2.01    | 0.626           |
| 950                        | 6.21    | 0.861           |
| 1050                       | 15.96   | 0.942           |

$$\frac{W}{F_{A_{O}} \text{ vs. } \ln \left[ \frac{1}{1 - \frac{X_{A}}{X_{Ae}}} \right]_{\text{as Shown in Figure 80 to}}$$
Determine  $r_{O}$ 

This plot can now be employed to calculate the initial reaction rate,  $r_0$ , as a check against the values determined by extrapolation of the reaction rate vs. conversion curves.

FIGURE 80

PSEUDO FIRST ORDER PLOT OF DATA



APPENDIX XII

RATIO OF EFFECTIVENESS FACTOR FOR

DIFFERENT SIZE CATALYST PARTICLES

#### RATIO OF EFFECTIVENESS FACTOR FOR

#### DIFFERENT SIZE CATALYST PARTICLES

Reaction Design Equation

$$\frac{W}{F_{A_{O}}} = \delta \left[ \left( \frac{1}{2 \delta} - \frac{1}{2 \delta^{3}} \right)^{\frac{1}{n} \left( \frac{1 + X_{A} \delta}{1 - X_{A} \delta} \right)} + \frac{X_{A}}{\delta^{2}} \right] + \beta \left[ \frac{1}{2 \delta^{3}} \frac{\ln(1 + X_{A} \delta)}{(1 - X_{A} \delta)} - \frac{1}{2 \delta^{2}} \ln(1 - \delta^{2} X_{A}^{2}) - \frac{X_{A}}{\delta^{2}} \right]$$
(99)  
$$\delta = \frac{1}{C L k_{2} K_{A} T} + \frac{1}{L k_{2}}$$
$$\beta = \frac{2}{C L k_{2} K_{A} T} + \frac{K_{R}}{C L k_{2} K_{A}}$$
$$\delta = \left[ 1 + \frac{T}{K} \right]^{\frac{1}{2}}$$

At constant conversion, pressure and temperature,  $\delta$  and  $X_A$  are constant and the reaction design equation reduces to the following:

$$\frac{W}{FA_{0}} = \left[\frac{1}{\epsilon Lk_{2}K_{A}\pi} + \frac{1}{\epsilon Lk_{2}}\right]^{C_{1}} + \left[\frac{2}{\epsilon Lk_{2}K_{A}\pi} + \frac{K_{R}}{\epsilon Lk_{A}}\right]^{C_{2}}$$

$$= \frac{1}{\epsilon} \left\{ \left[\frac{1}{Lk_{2}K_{A}\pi} + \frac{1}{Lk_{2}}\right]^{C_{1}} + \left[\frac{2}{Lk_{2}K_{A}\pi} + \frac{K_{R}}{Lk_{2}K_{A}}\right]^{C_{2}} \right\}$$

$$= \frac{1}{\epsilon} \left[^{C_{3}}C_{1} + C_{4}C_{2}\right]$$

$$= \frac{1}{\epsilon} C_{5} \qquad (142)$$

Ratio of Reciprocal Space Velocity

$$\begin{bmatrix} \frac{W}{FA_{o}} \\ \frac{W}{FA_{o}} \end{bmatrix}_{2} = \frac{\frac{C_{5}}{\varepsilon_{1}}}{\frac{C_{5}}{\varepsilon_{2}}} = \frac{\varepsilon_{2}}{\varepsilon_{1}}$$
(143)

Plot W/FA<sub>O</sub> vs. <sup>X</sup>A for Various Size Catalyst Particles as <u>Shown in Figure 81</u>

Plot W/FA<sub>0</sub> vs.  $d_p$  at Constant X<sub>A</sub> and Extrapolate to  $d_p = 0$ as Shown in Figure 82

### Calculate Effectiveness Factor Employing Example Data

| Catalyst<br>No | d <sub>P</sub><br>cm | W gm cat-sec<br>FAO, gm mole | $= \frac{\begin{bmatrix} W \\ FA_O \end{bmatrix}}{\begin{bmatrix} W \\ FA_O \end{bmatrix}} 0$ |
|----------------|----------------------|------------------------------|-----------------------------------------------------------------------------------------------|
| 0              | 0                    | 1.1                          | $\mathcal{E}_{0} = \frac{1.1}{1.1} = 1.00$                                                    |
| 1              | 0.045                | 1.3                          | $\mathcal{E}_1 = \frac{1.1}{1.3} = 0.85$                                                      |
| 2              | 0.33                 | 5.7                          | $\varepsilon_2 = \frac{1.1}{5.7} = 0.19$                                                      |
| 3              | 0.43                 | 7.6                          | $\epsilon_3 = \frac{1.1}{7.6} = 0.15$                                                         |
| 4              | 0.53                 | 10.0                         | $\epsilon_4 = \frac{1.1}{10.0} = 0.11$                                                        |



يبدأ تحدران

-•

RECIPROCAL SPACE VELOCITY VS. CONVERSION



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FIGURE 82



Reaction Design Equation

$$\begin{bmatrix} \frac{W}{F_{A_{O}}} \end{bmatrix}_{1} = \frac{1}{\epsilon_{1}} f(X_{A}) \text{ at constant temperature} \quad (144)$$
  
and pressure

If only the outside surface of the catalyst is effective, then  $\mathcal{E} = C_6 a$ , where

$$C_6 = a \text{ constant}$$

a =  $\frac{\text{outside surface area of catalyst}}{\text{unit mass}}$ ,  $\frac{\text{cm}^2}{\text{gm}}$ 

$$= \frac{(4\pi r_{\rm P}^2 - \frac{cm^2}{pellet})}{(\frac{4}{3}\pi r_{\rm P}^3 \rho_{\rm P} - \frac{gms}{pellet})}$$

$$= \frac{4\pi (\frac{d_{\rm P}}{2})^2}{\frac{4}{3}\pi (\frac{d_{\rm P}}{2})^3 \rho_{\rm P}}$$

$$= \frac{6d_{\rm P}^2}{d_{\rm P}^3 \rho_{\rm P}}$$

$$= \frac{6}{d_{\rm P}} \frac{6}{\rho} \frac{6}{\rho}$$

$$= \frac{6c_6}{d_{\rm P}} \frac{c_7}{d_{\rm P}}$$

$$d_{\rm P} = c_7 \left[\frac{1}{c}\right]$$

A plot of  $d_p$  vs.  $\frac{1}{\epsilon}$  should yield a straight line if this assumption is true as shown in Figure 83.

$$\frac{W}{FA_0} = \frac{1}{\mathcal{E}_1} f(X_A) = \frac{d_{P_1}}{C_7} f(X_A)$$

$$\frac{W}{FA_0 d_P} = \frac{1}{C_7} f(X_A) = C_8 f(X_A) \qquad (145)$$

Data for all size catalysts should fall on the curve of  $\frac{W}{FA_0 d_P}$  vs. XA.

### FIGURE 83

RECIPROCAL EFFECTIVENESS FACTOR VS. CATALYST PARTICLE DIAMETER



dp, cm.





### APPENDIX XIII

.

### THE CARBON-OXYGEN REACTION

#### THE CARBON-OXYGEN REACTION

During several of the initial runs in this study, a problem was encountered with carbonization of the cumene at reaction temperatures of  $1000^{\circ}$ F. and subsequent plugging of the reactor and fouling of the catalyst. Carbonization was sometimes so severe that it was often very difficult to remove the preheater from the reactor to clean it.

This problem was solved by purging the reactor with air at reaction temperature for 24 hours after each run to burn off the carbon.

#### The Carbon-Oxygen Reaction Rate Equation

For the reaction

 $C + O_2 - CO_2$ 

B(S) + A(g) gaseous product, Parker and Hottell<sup>37</sup> have shown that the rate equation for surface reaction controlling is as follows:

$$-r_{\rm B} = \frac{4.32 \times 10^{14} C_{\rm Ag}}{T^{\frac{1}{2}}} e^{-\frac{44.000}{\rm RT}}$$
(146)  

$$r_{\rm B} = \frac{gm.moles \ carbon \ reacted}{\rm sec-cm^2}$$

$$T = {}^{\rm O}K.$$

$$C_{\rm Ag} = \text{concentration of oxygen, } \frac{gm-moles}{\rm cm^3}$$

$$R = 1.98 \ \frac{cal}{gm \ mole-{}^{\rm O}K}$$

Calculation of Rate Constant,  ${\tt k}_{\tt S}$ 

$$k_{s} = \frac{4.32 \times 10^{14}}{T^{\frac{1}{2}}} e^{-\frac{44,000}{RT}}$$

$$k_{s} = \text{rate constant}, \frac{\text{cm}}{\text{sec}}$$

$$T^{\frac{1}{2}} = (850^{\circ}\text{F.})^{\frac{1}{2}} = (727^{\circ}\text{K})^{\frac{1}{2}} = 27^{\circ}\text{K}^{\frac{1}{2}}$$

$$k_{s} = \frac{4.32 \times 10^{14}}{27} e^{-\frac{44,000 \text{ cal}}{(1.98 \frac{\text{cal}}{\text{gm mole}})(727^{\circ}\text{K})}}$$

$$= 0.1598 \times 10^{14} e^{-30.6}$$

$$= (0.1598 \times 10^{14})(5.137 \times 10^{-14}) = 0.821 \frac{\text{cm}}{\text{sec}}$$

Calculation of Oxygen Concentration,  ${}^{C}\!A_{\rm fS}$ 

$$C_{Ag} = \frac{(1.0 \text{ atm.}) (0.21)}{(0.0821 \frac{\text{liter-atm.}}{\text{gm mole-}^{\text{K}}})(727^{\circ}\text{K})(1000 \frac{\text{cm}^{3}}{\text{liter}})}$$
  
= 3.52 x 10<sup>-6</sup> gm-moles  
cm<sup>3</sup>

Calculation of Reaction Rate

$$-r_{\rm B} = k_{\rm s} C_{\rm Ag} = (0.821 \ \frac{\rm cm}{\rm sec})(3.52 \ {\rm x} \ 10^{-6} \ \frac{\rm gm-moles}{\rm cm^3})$$
$$= 2.89 \ {\rm x} \ 10^{-6} \ \frac{\rm gm-moles}{\rm cm^2-sec}$$

Assume 5% carbonization at a feed rate of 600 gms./hr. cumene for 30 min.

gms. carbon = 
$$\frac{(600 \text{ gms})(0.05)(0.5 \text{ hrs})(12.011 \text{ gms})}{(120.12 \text{ gms})}$$

= 1.5 gms. carbon

Calculation of Available Surface Area

Reactor

$$S_{R} = \frac{(0.767 \text{ in})(20.5 \text{ in})}{(2.54 \frac{\text{cm}}{\text{in}})^{2}} = 3.26 \text{ cm}^{2}$$

Preheater

$$S_{\rm P} = \frac{(0.767 \text{ in})(20.5 \text{ in})}{(2.54 \frac{\text{cm}}{\text{in}})^2} = 7.66 \text{ cm}^2$$

Catalyst

$$S_{C} = (13.1 \frac{cm^2}{gm} (5.748 gms) = 75.30 cm^2$$

Total area =  $86.22 \text{ cm}^2$ 

Required Reaction Time

$$t = \frac{(1.5 \text{ gms})}{(12.011 \text{ gms})(2.89 \text{x}10^{-6} \text{gmmoles})(60 \text{sec})(86.22 \text{ cm}^2)}$$
  
= 8.4 min.

On several occasions, after two 20 minute runs, the reactor was purged at  $850^{\circ}$ F. for 30 minutes with air. The reactor was subsequently disassembled and found to be essentially free from carbon.

### APPENDIX XIV

DATA

#### <u>DATA</u>

The following Table 12 lists all the data collected in this research. The digits before the decimal point in the Run No. signify a series of runs made at the same temperature. The first or first and second digits after the decimal point signify runs made at the same temperature and feed rate. The last digit after the decimal point signifies the following:

1 - 39,000 cps

2 - 26,000 cps

3 - no ultrasound

A coding system was necessary to avoid confusion since a total of 479 runs were made, involving some 640 samples and 1,920 gas chromatograph analyses.

In every case, a run in the absence of ultrasound was made before and after the application of ultrasound. The analyses reported are the average of six samples, three samples being taken before and three samples after.

The order in which the 39,000 cps and 26,000 cps ultrasonic frequencies were applied were randomly reversed throughout the entire investigation.

Conversions were calculated from liquid samples, but were checked often against gas samples taken directly from the reactor.

Figure 85 illustrates an actual data sheet.

# FIGURE 85

# DATA SHEET

| Run No.<br>Date<br>Catalyst, gms.<br>Bed Height, cm. | 16.1Reactor Diameter, cm.5-1-72Frequency, cps5.748Power, watts10.158Feed Tank Diameter, in. |       |       |       |       |       |        | 0.992<br>39,26<br>25<br>1 |
|------------------------------------------------------|---------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|--------|---------------------------|
| Time                                                 | 1225                                                                                        | 1245  | 1330  | 1350  | 1410  | 1430  | 1450   | 1510                      |
| Tank Height, in.                                     | 32.85                                                                                       | 32.85 | 31.05 | 30.40 | 29.70 | 29.00 | 28.20  | -                         |
| Rotameter, mm.                                       | -                                                                                           | 26    | 26    | 26    | 26    | 26    | 26     |                           |
| Rota. Feed Rate, gms/hr.                             | -                                                                                           | 25    | 25    | 25    | 25    | 25    | 25     |                           |
| Tank Feed Rate, gms/hr.                              | -                                                                                           | _     | -     | -     | -     | _     | 24     | -                         |
| Heater No. 1                                         | 40                                                                                          | 40    | 40    | 40    | 40    | 40    | 40     | 40                        |
| Heater No. 2                                         | 40                                                                                          | 40    | 40    | 40    | 40    | 40    | 40     | 40                        |
| Heater No. 3                                         | 40                                                                                          | 40    | 40    | 40    | 40    | 40    | 40     | 40                        |
| Heater No. 4 and No. 5                               | 40                                                                                          | 40    | 40    | 40    | 40    | 40    | 40     | 40                        |
| Hot Oil Heater                                       | 110                                                                                         | 110   | 110   | 110   | 110   | 110   | 110    | 110                       |
| TI-1, <sup>O</sup> F.                                | 70                                                                                          | 70    | 70    | 70    | 70    | 70    | 70     | 70                        |
| TI-2, OF.                                            | 710                                                                                         | 710   | 710   | 710   | 710   | 710   | 710    | 710                       |
| TI-3, °F.                                            | 750                                                                                         | 750   | 750   | 750   | 750   | 750   | 750    | 750                       |
| $TI - 4$ , $^{O}F$ .                                 | 750                                                                                         | 750   | 750   | 750   | 750   | 250   | 750    | 750                       |
| TI-5, °F.                                            | 750                                                                                         | 750   | 750   | 750   | 750   | 250   | 750    | 750                       |
| TI-6,°F.                                             | 750                                                                                         | 750   | 750   | 750   | 750   | 750   | 750    | 750                       |
| TI-7.ºF. (Hot Oil)                                   | 350                                                                                         | 348   | 346   | 348   | 350   | 352   | 354    | 352                       |
| $TC-1$ , $^{O}F$ .                                   | 750                                                                                         | 750   | 750   | 750   | 750   | 250   | 750    | 750                       |
| Ultrasound                                           | off                                                                                         | off   | off   | off   | 26    | 39    | off    | -                         |
| W/F.gm cat-sec/gm mole                               | _                                                                                           |       | -     | _     | _     | - 1   | 02,900 |                           |
| Cumene. %                                            | _                                                                                           | -     | _     | 82.66 | 77.98 | 76.15 | 83.16  |                           |
| Benzene, %                                           | -                                                                                           | _     | _     | 15.69 | 20.40 | 22.23 | 15.24  |                           |
| Propylene. %                                         | -                                                                                           | _     | _     | 1.65  | 1.62  | 1.62  | 1.60   |                           |
| Conversion, X                                        | -                                                                                           |       | -     | 22.6  | 28.7  | 31.0  | 22.0   | -                         |
| Nitrogen Purge                                       | on                                                                                          | off   | off   | off   | off   | off   | on     | off                       |
| Air Purge                                            | off                                                                                         | off   | off   | off   | off   | off   | off    | on                        |

270

+

### TABLE 12

### TABULATION OF DATA

|              |             |         |          |        |       |           | W/F             |                  | Х          |
|--------------|-------------|---------|----------|--------|-------|-----------|-----------------|------------------|------------|
| Run          | Catalyst    | Bed Ht. | Bed Dia. | Ultra  | sound | Feed Rate | gm cat-sec      | Temp.            | Conversion |
| No.          | gms.        | cm.     | cm.      | cps    | watts | gms/hr    | gm mole         | ° <sub>F</sub> . | 0/0        |
|              |             |         |          |        |       |           |                 |                  |            |
| 3.11         | 5.7         | 10.2    | 0.992    |        |       | 194       | 12,730          | 850              | 29.1       |
| 3.12         | 5.7         | 10.2    | 0.992    | -      |       | 102       | 24,200          | 850              | 30.9       |
| 3.21         | 5.7         | 10.2    | 0.992    | -      | -     | 293       | 8,430           | 850              | 15.8       |
| 3.22         | 5.7         | 10.2    | 0.992    | _      | -     | 387       | 6,380           | 850              | 9.1        |
| 3.31         | 5.7         | 10.2    | 0.992    | _      | -     | 500       | 4,930           | 850              | 9.8        |
| 3.32         | 5.7         | 10.2    | 0.992    |        |       | 589       | 4,200           | 850              | 3.2        |
| 3.41         | 5.7         | 10.2    | 0.992    | -      | -     | 99        | 25,000          | 950              | 39.7       |
| 3.42         | 5.7         | 10.2    | 0.992    | -      | -     | 198       | 12,480          | 950              | 26.5       |
| 3.51         | 5.7         | 10.2    | 0.992    |        | -     | 304       | 8,125           | 950              | 19.0       |
| 3.52         | 5.7         | 10.2    | 0.992    | -      |       | 387       | 6,380           | 950              | 6.6        |
| 3.61         | 5.7         | 10.2    | 0.992    |        |       | 496       | 4,980           | 950              | 13.5       |
| 3.62         | 5.7         | 10.2    | 0.992    | -      | -     | 589       | 4,190           | 950              | 4.2        |
| 3.71         | 5.7         | 10.2    | 0.992    |        | -     | 97        | 25 <b>,</b> 500 | 1050             | 51.3       |
| 3.72         | 5.7         | 10.2    | 0.992    | -      | -     | 194       | 12,750          | 1050             | 32.3       |
| 3.81         | 5.7         | 10.2    | 0.992    | -      | -     | 302       | 8,170           | 1050             | 23.4       |
| 3.82         | 5.7         | 10.2    | 0.992    | -      |       | 407       | 6,075           | 1050             | 17.9       |
| 3.91         | 2.7         | 10.2    | 0.992    | -      |       | 511       | 4,830           | 1050             | 14.8       |
| J.92<br>5 11 | $2 \cdot 1$ | 10.2    | 0.992    | -      | -     | 600       | 4,120           | 1050             | 9.1        |
| J.11<br>5 19 | 0.950       | 1.693   | 0.992    | 39,000 | 25    | 99        | 4,180           | 850              | 7.86       |
| J.12<br>5 12 | 0.950       | 1.693   | 0.992    | 26,000 | 25    | 99        | 4,180           | 850              | 6.67       |
| フ・⊥)<br>5 21 | 0.950       | 1.693   | 0.992    | -      |       | 99        | 4,180           | 850              | 6.20       |
| 5 22         | 0.930       | 1 602   | 0.992    | 39,000 | 25    | 193       | 2,150           | 850              | 3.73       |
| 5 23         | 0.970       | 1 602   | 0.992    | 20,000 | 25    | 193       | 2,150           | 850              | 3.01       |
| 1.25         | 0.720       | 1.073   | 0.992    |        | -     | 193       | 2,150           | 850              | 2.87       |

# TABLE 12 (continued)

### TABULATION OF DATA

| 5.310.9581.6930.99239,000252961,4008502.355.320.9581.6930.99226,000252961,4008502.155.330.9581.6930.9922961,4008501.655.410.9581.6930.9922961,4008501.655.420.9581.6930.99226,000253921,1588501.325.430.9581.6930.9923921,1588501.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Run<br>No.                                 | Catalyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bed Ht.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bed Dia.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ultr<br>cps                                                                                                                              | rasound<br>watts                                     | Feed Rate<br>_gms/hr                                                                                                                                   | W/F<br>gm_cat_sec<br>gm_mole                                                                                                                                               | Temp.<br>                                                          | X<br>Conversior<br>%                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.51 $0.958$ $1.693$ $0.992$ $39,000$ $25$ $501$ $827$ $850$ $0.429$ $5.52$ $0.958$ $1.693$ $0.992$ $26,000$ $25$ $501$ $827$ $850$ $0.275$ $5.53$ $0.958$ $1.693$ $0.992$ $  501$ $827$ $850$ $0.238$ $5.61$ $0.958$ $1.693$ $0.992$ $  501$ $827$ $850$ $0.238$ $5.61$ $0.958$ $1.693$ $0.992$ $39,000$ $25$ $586$ $707$ $850$ $0.816$ $5.62$ $0.958$ $1.693$ $0.992$ $26,000$ $25$ $586$ $707$ $850$ $0.669$ $5.63$ $0.958$ $1.693$ $0.992$ $39,000$ $25$ $99$ $4,180$ $950$ $7.02$ $6.12$ $0.958$ $1.693$ $0.992$ $26,000$ $25$ $99$ $4,180$ $950$ $5.69$ $6.13$ $0.958$ $1.693$ $0.992$ $  99$ $4,180$ $950$ $5.30$ $6.21$ $0.958$ $1.693$ $0.992$ $  192$ $2,150$ $950$ $3.06$ $6.22$ $0.958$ $1.693$ $0.992$ $  192$ $2,150$ $950$ $3.06$ $6.32$ $0.958$ $1.693$ $0.992$ $  192$ $2,150$ $950$ $3.26$ $6.33$ $0.958$ $1.693$ $0.992$ $  285$ $1,453$ $950$ $1.62$ | 5.3312312312312312312312312312312312312312 | 0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.9588<br>0.9588<br>0.9588<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.9558<br>0.95588<br>0.9558<br>0.9558<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.95588<br>0.955888<br>0.955888<br>0.95588888888888888888888888888888888888 | 1.693<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6933<br>1.6 | 0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992 $0.9920.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ $0.992$ | 39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 296<br>296<br>292<br>392<br>392<br>501<br>501<br>586<br>5886<br>999<br>992<br>192<br>285<br>285<br>285<br>285<br>285<br>285<br>285<br>285<br>285<br>28 | 1,400<br>1,400<br>1,400<br>1,158<br>1,158<br>1,158<br>1,158<br>1,158<br>827<br>707<br>707<br>4,180<br>4,180<br>4,180<br>2,150<br>2,150<br>1,453<br>1,453<br>1,453<br>1,083 | 850<br>850<br>850<br>850<br>850<br>850<br>850<br>850<br>850<br>850 | $\begin{array}{c} 2.35\\ 2.15\\ 1.65\\ 1.32\\ 1.15\\ 0.763\\ 0.429\\ 0.275\\ 0.238\\ 0.816\\ 0.669\\ 0.505\\ 7.02\\ 5.69\\ 5.30\\ 3.06\\ 3.01\\ 3.26\\ 2.03\\ 1.80\\ 1.62\\ 0.734\\ 0.616\end{array}$ |

### TABLE 12 (continued)

#### TABULATION OF DATA

| Run<br><u>No.</u>                                                                                         | Catalyst                                                                                                                                                                                                                                                 | Bed Ht.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bed Dia.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>Ultrasc</u> _cps                                                                                                                                          | ound<br>watts                                                                                                               | Feed Rate<br>_gms/hr                                                                                          | W/F<br>gm_cat-sec<br>gm_mole                                                                                                | Temp.<br>                                                                                                                                               | X<br>Conversion                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.51<br>6.52<br>6.623<br>7.12<br>7.12<br>7.22<br>8.12<br>8.12<br>8.223<br>8.231<br>8.321<br>8.331<br>9.12 | 0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958 | 1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>1.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.693<br>3.986 | 0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0 | 39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000 | 25<br>22 - 25<br>22 - 25<br>22 - 25<br>22 - 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 491<br>491<br>593<br>593<br>98<br>91<br>211<br>211<br>98<br>98<br>205<br>205<br>205<br>304<br>304<br>92<br>92 | 843<br>843<br>698<br>698<br>4,225<br>1,963<br>1,963<br>4,230<br>4,230<br>4,230<br>2,020<br>1,363<br>1,363<br>8,980<br>8,980 | $\begin{array}{c} 950\\ 950\\ 950\\ 950\\ 10050\\ 10050\\ 10050\\ 10050\\ 10050\\ 10050\\ 10050\\ 10050\\ 10050\\ 10050\\ 10050\\ 950\\ 950\end{array}$ | 0.691<br>0.492<br>0.226<br>0.277<br>0.249<br>0.258<br>5.39<br>4.01<br>3.98<br>2.50<br>2.70<br>3.955<br>5.17<br>2.21<br>2.32<br>1.53<br>2.06<br>16.62<br>13.56 |
| 9.13                                                                                                      | 1.916                                                                                                                                                                                                                                                    | 3.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                            | -                                                                                                                           | 92                                                                                                            | 8,980                                                                                                                       | 950                                                                                                                                                     | 12.26                                                                                                                                                         |
ŧ

#### TABULATION OF DATA

| Run<br>No                                                                                                                                                                                  | Catalyst<br>gms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bed Ht.<br>                                                                                                                                                                                                 | Bed Dia.<br>                                                                                                                                                                                       | Ultra:<br>cps                                                                                                                                      | sound<br>watts                                                                  | Feed Rate<br>_gms/hr                                                                                  | W/F<br>gm_cat_sec<br>gm_mole                                                                                                                                   | Temp.<br>F.                                                     | X<br>Conversion<br><u>%</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} 9.21 \\ 9.22 \\ 9.23 \\ 9.31 \\ 9.32 \\ 9.33 \\ 9.42 \\ 9.42 \\ 9.43 \\ 9.55 \\ 9.55 \\ 9.561 \\ 9.55 \\ 9.662 \\ 10.11 \\ 10.12 \\ 10.12 \\ 10.22 \\ 10.23 \end{array}$ | 1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916 $1.9161.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.916$ $1.91$ | 3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386 | 0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992 | 39,000<br>26,000<br>26,000<br>26,000<br>26,000<br>26,000<br>26,000<br>26,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000 | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 202<br>202<br>306<br>306<br>306<br>422<br>422<br>497<br>495<br>606<br>606<br>112<br>112<br>203<br>203 | 4,090<br>4,090<br>2,980<br>2,980<br>2,980<br>1,965<br>1,965<br>1,965<br>1,673<br>1,673<br>1,673<br>1,368<br>1,368<br>1,368<br>1,368<br>1,368<br>1,368<br>1,368 | 950<br>950<br>950<br>950<br>9550<br>9550<br>9550<br>9550<br>955 | 6.33<br>6.500<br>7.17<br>4.908<br>2.384<br>1.488<br>1.489<br>1.489<br>1.489<br>1.489<br>1.489<br>1.489<br>1.489<br>1.489<br>1.489<br>1.499<br>1.489<br>1.499<br>1.489<br>1.499<br>1.489<br>1.499<br>1.489<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499<br>1.499 |
| 10.31<br>10.32<br>10.33                                                                                                                                                                    | 1.916<br>1.916<br>1.916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.386<br>3.386<br>3.386                                                                                                                                                                                     | 0.992<br>0.992<br>0.992                                                                                                                                                                            | 39,000<br>26,000                                                                                                                                   | 25<br>25<br>-                                                                   | 310<br>310<br>310                                                                                     | 2,670<br>2,670<br>2,670                                                                                                                                        | 850<br>850<br>850                                               | 2.14<br>2.34<br>2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### TABULATION OF DATA

| Run<br>No.                                                                                                        | Catalyst                                                                                                 | Bed Ht.<br>                                                                                                           | Bed Dia.<br>                                                                                                      | Ultra<br>_cps                                                                          | sound<br>watts                                                                          | Feed Rate<br>gms/hr                                                                     | W/F<br>gm_cat_sec<br>gm_mole                                                                                          | Temp.<br>OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X<br>Conversion<br><u>%</u>                                                          |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 10.41<br>10.42<br>10.43<br>10.51<br>10.52<br>10.53<br>10.61<br>10.62<br>10.63<br>11.11<br>11.12<br>11.13<br>11.21 | 1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>1.916<br>5.748<br>5.748<br>5.748 | 3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>3.386<br>10.158<br>10.158<br>10.158<br>10.158 | 0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992 | 39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000 | 25<br>25<br>-<br>25<br>25<br>-<br>25<br>25<br>-<br>25<br>25<br>-<br>25<br>25<br>-<br>25 | 393<br>393<br>393<br>484<br>484<br>484<br>609<br>609<br>609<br>108<br>108<br>108<br>208 | 2,110<br>2,110<br>2,110<br>1,714<br>1,714<br>1,714<br>1,370<br>1,370<br>1,370<br>23,100<br>23,100<br>23,100<br>11,950 | 850<br>850<br>850<br>850<br>850<br>850<br>850<br>1000<br>1000<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.97 1.67 1.53 1.29 1.09 0.840 0.637 0.415 0.498 29.3 26.3 24.2 21.2                 |
| 11.22<br>11.23<br>11.31<br>11.32<br>11.33<br>11.41<br>11.42<br>11.42<br>11.43<br>11.51<br>11.52<br>11.53          | 5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748 | 10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158            | 0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992                   | 26,000<br>39,000<br>26,000<br>26,000<br>26,000<br>39,000<br>26,000                     | 25<br>                                                                                  | 208<br>208<br>302<br>302<br>302<br>426<br>426<br>426<br>484<br>484<br>484               | 11,950<br>11,950<br>8,250<br>8,250<br>5,840<br>5,840<br>5,840<br>5,150<br>5,150<br>5,150<br>5,150                     | $     \begin{array}{r}       1000\\       1000\\       1000\\       1000\\       1000\\       1000\\       1000\\       1000\\       1000\\       1000\\       1000\\       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000        1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       10000       10000       10000       10000       10000       10000       10000       10000       10000       10000       10000       100$ | 24.1<br>23.6<br>17.7<br>16.8<br>16.8<br>13.0<br>12.5<br>13.6<br>12.1<br>10.6<br>11.0 |

### TABULATION OF DATA

| Run<br>No.                                                                                                                                            | Catalyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bed Ht.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bed Dia.<br>Cm                                                                                                                                                                                                                         | Ultras<br>_cps                                                                                                                                               | ound<br>watts                                                                   | Feed Rate<br>_gms/hr                                                                                                                                                                 | W/F<br>gm cat-sec<br>gm mole                                                                                                                                                                                                                                                                                                     | Temp.<br>OF.                                                                | X<br>Conversion<br><u>%</u>                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11.61<br>11.62<br>11.63<br>12.11<br>12.12<br>12.13<br>12.23<br>12.23<br>12.31<br>12.33<br>12.33<br>12.41<br>12.52<br>12.53<br>12.63<br>12.63<br>13.12 | 5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.7488<br>5.74888<br>5.74888<br>5.74888<br>5.74888<br>5.74888<br>5.74888<br>5.748888<br>5.748888<br>5.7488888<br>5.74888888888888888888888888888888888888 | 10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158 | 0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992 | 39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000 | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | $593 \\ 593 \\ 593 \\ 101 \\ 101 \\ 201 \\ 201 \\ 201 \\ 321 \\ 321 \\ 321 \\ 321 \\ 417 \\ 417 \\ 417 \\ 483 \\ 483 \\ 483 \\ 483 \\ 589 \\ 589 \\ 589 \\ 589 \\ 589 \\ 589 \\ 102$ | 4,200<br>4,200<br>24,600<br>24,600<br>24,600<br>13,400<br>13,400<br>13,400<br>13,400<br>12,400<br>7,750<br>7,750<br>7,750<br>7,750<br>7,750<br>7,750<br>7,750<br>7,750<br>7,750<br>7,750<br>7,750<br>5,975<br>5,975<br>5,975<br>5,975<br>5,975<br>5,975<br>5,975<br>5,150<br>5,150<br>5,150<br>4,230<br>4,230<br>4,230<br>24,400 | 1000<br>1000<br>950<br>950<br>950<br>950<br>950<br>950<br>950<br>950<br>950 | 8.49<br>8.39<br>7.94<br>27.2<br>22.9<br>22.0<br>16.1<br>16.0<br>16.0<br>16.0<br>14.4<br>12.4<br>11.9<br>10.6<br>10.1<br>9.93<br>9.32<br>9.67<br>8.97<br>8.08<br>8.13<br>7.62<br>13.1 |
| 13.13<br>13.21                                                                                                                                        | 5.748<br>5.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.992<br>0.992<br>0.992                                                                                                                                                                                                                | 20,000<br>-<br>39,000                                                                                                                                        | 25<br>-<br>25                                                                   | 102<br>102<br>212                                                                                                                                                                    | 24,400<br>24,400<br>11,730                                                                                                                                                                                                                                                                                                       | 900<br>900<br>900                                                           | 11.8<br>12.0<br>11.6                                                                                                                                                                 |

### TABULATION OF DATA

| _          |          |         |          |                 |       |           | W/F               |       | Х          |
|------------|----------|---------|----------|-----------------|-------|-----------|-------------------|-------|------------|
| Run        | Catalyst | Bed Ht. | Bed Dia. | Ultras          | ound  | Feed Rate | <u>gm cat-sec</u> | Temp. | Conversion |
| <u>NO.</u> | gms.     | Cm.     | Cm.      | _cps            | watts | _gms/hr   | <u>gm mole</u>    | F     | 0          |
|            |          |         |          |                 |       |           |                   |       |            |
| 13.22      | 5.748    | 10.158  | 0.992    | 26.000          | 25    | 212       | 11.730            | 900   | 10.6       |
| 13.23      | 5.748    | 10.158  | 0.992    | -               | -     | 212       | 11,730            | 900   | 9.88       |
| 13.31      | 5.748    | 10.158  | 0.992    | 39,000          | 25    | 331       | 7.520             | 900   | 10.5       |
| 13.32      | 5.748    | 10.158  | 0.992    | 26,000          | 25    | 331       | 7.520             | 900   | 9.71       |
| 13.33      | 5.748    | 10.158  | 0.992    | _               | -     | 331       | 7,520             | 900   | 9.78       |
| 13.41      | 5.748    | 10.158  | 0.992    | 39,000          | 25    | 425       | 5,870             | 900   | 7.98       |
| 13.42      | 5.748    | 10.158  | 0.992    | 26,000          | 25    | 425       | 5,870             | 900   | 8.37       |
| 13.43      | 5.748    | 10.158  | 0.992    | -               | -     | 425       | 5,870             | 900   | 8.18       |
| 13.51      | 5.748    | 10.158  | 0.992    | 39 <b>,</b> 000 | 25    | 510       | 4,880             | 900   | 6.73       |
| 13.52      | 5.748    | 10.158  | 0.992    | 26,000          | 25    | 510       | 4,880             | 900   | 6.04       |
| 13.53      | 5.748    | 10.158  | 0.992    | -               | -     | 510       | 4,880             | 900   | 6.64       |
| 13.61      | 5.748    | 10.158  | 0.992    | 39,000          | 25    | 639       | 3,900             | 900   | 7.04       |
| 13.62      | 5.748    | 10.158  | 0.992    | 26,000          | 25    | 639       | 3,900             | 900   | 5.92       |
| 13.63      | 5.748    | 10.158  | 0.992    | -               | -     | 639       | 3,900             | 900   | 5.63       |
| 14.11      | 5.748    | 10.158  | 0.992    | 39 <b>,</b> 000 | 25    | 38        | 65,500            | 850   | 30.4       |
| 14.12      | 5.748    | 10.158  | 0.992    | 26,000          | 25    | 38        | 65,500            | 850   | 21.3       |
| 14.13      | 5.748    | 10.158  | 0.992    | -               | -     | 38        | 65,500            | 850   | 20.5       |
| 14.21      | 5.748    | 10.158  | 0.992    | 39,000          | 25    | 87        | 28,600            | 850   | 26.7       |
| 14.22      | 5.748    | 10.158  | 0.992    | 26,000          | 25    | 87        | 28,600            | 850   | 26.1       |
| 14.23      | 5.748    | 10.158  | 0.992    | -               |       | 87        | 28,600            | 850   | 26.5       |
| 14.31      | 5.748    | 10.158  | 0.992    | 39,000          | 25    | 103       | 24,200            | 850   | 24.0       |
| 14.32      | 5.748    | 10.158  | 0.992    | 26,000          | 25    | 103       | 24,200            | 850   | 21.4       |
| 14.33      | 5.748    | 10.158  | 0.992    | -               |       | 103       | 24,200            | 850   | 20.3       |
| 14.41      | 5.748    | 10.158  | 0.992    | 39,000          | 25    | 220       | 11,320            | 850   | 15.0       |
| 14.42      | 5.748    | 10.158  | 0.992    | 26,000          | 25    | 220       | 11,320            | 850   | 13.9       |

#### TABULATION OF DATA

.

| Run<br>No.                                                                                                                          | Catalyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bed Ht.<br>                                                                                                                                                                      | Bed Dia.<br>                                                                                                                                          | <u>Ultra</u><br>_cps                                                                             | sound<br>watts                                                  | Feed Rate<br>gms/hr                                                                         | W/F<br>gm cat-sec<br>gm mole                                                                                                                              | Temp.<br><sup>O</sup> F                                            | X<br>Conversion<br><u>%</u>                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 14.43<br>14.51<br>14.52<br>14.62<br>14.62<br>14.62<br>14.63<br>14.72<br>14.72<br>14.73<br>14.82<br>14.83<br>14.83<br>13.72<br>13.72 | 5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748<br>5.7748 | 10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158 | 0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992 | 39,000<br>26,000<br>26,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000 | - 55<br>25<br>- 25<br>- 25<br>- 25<br>- 25<br>- 25<br>- 25<br>- | 220<br>293<br>293<br>388<br>388<br>388<br>526<br>526<br>593<br>593<br>593<br>25<br>25<br>25 | 11,320<br>8,480<br>8,480<br>8,480<br>6,409<br>6,409<br>6,409<br>4,730<br>4,730<br>4,730<br>4,730<br>4,200<br>4,200<br>4,200<br>99,500<br>99,500<br>99,500 | 850<br>850<br>850<br>850<br>850<br>850<br>850<br>850<br>850<br>850 | 12.4 10.3 9.08 9.20 8.52 6.93 6.22 5.78 5.58 5.61 7.47 5.92 4.51 26.1 22.3 23.9 |
| 13.81<br>13.82<br>13.83<br>12.71<br>12.72<br>12.73<br>12.81<br>12.82<br>12.83                                                       | 5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748<br>5.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $10.158 \\ 10.158 \\ 10.158 \\ 10.158 \\ 10.158 \\ 10.158 \\ 10.158 \\ 10.158 \\ 10.158 \\ 10.158 \\ 10.158 \\ 10.158 $                                                          | 0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992                                                                         | 39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000                                         | 25<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-<br>25<br>-       | 45<br>45<br>28<br>28<br>32<br>32<br>32                                                      | 54,800<br>54,800<br>90,500<br>90,500<br>90,500<br>77,100<br>77,100<br>77,100                                                                              | 900<br>900<br>950<br>950<br>950<br>950<br>950<br>950               | 28.1<br>23.6<br>21,5<br>63.3<br>51.2<br>43.2<br>52.6<br>44.1<br>36.1            |

### TABULATION OF DATA

| Run<br><u>No.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Catalyst<br>gms                                                                                    | Bed Ht.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bed Dia.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ultra<br>                                                                                                                                | asound<br>watts                                                                 | Feed Rate<br>gms/hr                                                                                                                          | W/F<br><u>gm cat-sec</u><br><u>gm mole</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Temp.<br>OF                                                        | X<br>Conversion<br><u>%</u>                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} 15.11\\ 15.12\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15.22\\ 15$ | 5.748<br>5.7488<br>5.744885<br>5.7448855<br>5.74488555<br>5.74488555555555555555555555555555555555 | 10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158 | 0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92<br>0.92 | 39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000 | 25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>2 | 23<br>23<br>34<br>303<br>103<br>103<br>187<br>187<br>187<br>291<br>291<br>291<br>391<br>291<br>391<br>399<br>499<br>499<br>499<br>618<br>618 | $111,000\\111,000\\111,000\\73,300\\73,300\\73,300\\24,100\\24,100\\24,100\\13,350\\13,350\\13,350\\13,350\\13,350\\13,350\\13,350\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,375\\6,3$ | 300<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800 | 57.2<br>49.9<br>48.9<br>30.2<br>328.5<br>220.2<br>18.7<br>0<br>9.38<br>84<br>8<br>7.6<br>36<br>20<br>8<br>4<br>8<br>7.6<br>36<br>26<br>37<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>7<br>5<br>4<br>5<br>7<br>5<br>4<br>5<br>7<br>5<br>4<br>5<br>7<br>5<br>4<br>5<br>7<br>5<br>4<br>5<br>7<br>5<br>7 |

| $\sim$     |
|------------|
| continued) |
| $\sim$     |
| 12         |
|            |

•

TABULATION OF DATA

| 31.0                                                                                             | 22.9                                                                                                             | 31.7                                                 | 20.5                                                                                                                                                                                                                                                                                                                                            | 26.5                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.4                                                 | 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6°•0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.80                                                  | 3.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 750                                                                                              | 750                                                                                                              | 750                                                  | 750                                                                                                                                                                                                                                                                                                                                             | 750                                                                                                                                                                                                                                                                                                                                                                                                                   | 750                                                  | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 750                                                   | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 102,900                                                                                          | 102,900                                                                                                          | 59,300                                               | 59,300                                                                                                                                                                                                                                                                                                                                          | 59,300                                                                                                                                                                                                                                                                                                                                                                                                                | 24,000                                               | 24,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8, 830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S, 830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><li>\$</li><l< td=""><td>5,630</td><td>5,630</td><td>5,680</td><td>4, 570</td><td>4,570</td><td>4,150</td><td>4,150</td><td>4,150</td><td>113,300</td><td>113,300</td></l<></ul> | 5,630                                                 | 5,630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4, 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 113,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 113,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| されて                                                                                              | 51                                                                                                               | N<br>1                                               | ে।<br>নি                                                                                                                                                                                                                                                                                                                                        | 42                                                                                                                                                                                                                                                                                                                                                                                                                    | 101                                                  | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | さいた                                                   | 39.77<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ₽€ <del>1</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 31                                                                                                               | лг,<br>01                                            | ちょう                                                                                                                                                                                                                                                                                                                                             | I                                                                                                                                                                                                                                                                                                                                                                                                                     | ц<br>С1<br>С1                                        | 01<br>70'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | นา<br>(ป                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | т.<br>С1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ч<br>Сл                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ул<br>С4                                              | 10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 39,000                                                                                           | •<br>•<br>•<br>•                                                                                                 | 39,000                                               | 20,000                                                                                                                                                                                                                                                                                                                                          | I                                                                                                                                                                                                                                                                                                                                                                                                                     | 39 <b>,0</b> 00                                      | 26,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26 <b>,</b> 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26 <b>,</b> 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39 <b>,</b> 600                                       | 20,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39 <b>,0</b> 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39 <b>,000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.992<br>0.992                                                                                   | 0.00°2                                                                                                           | 0.992                                                | 0.992                                                                                                                                                                                                                                                                                                                                           | 0.992                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.992                                                | 0,992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 266.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 266.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 299.0                                                 | 266.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 266.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10.150<br>10.150<br>1750                                                                         |                                                                                                                  | 10.150                                               | 10.158                                                                                                                                                                                                                                                                                                                                          | 10.150                                                                                                                                                                                                                                                                                                                                                                                                                | 10.158                                               | 10.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.150                                                | 10.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.745<br>745                                                                                     | し、してい                                                                                                            | 5.748                                                | 5.748                                                                                                                                                                                                                                                                                                                                           | 5.745                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.740                                                | 5.740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N. 743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.743                                                 | 5.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 16.11                                                                                            | 10.13<br>10.13                                                                                                   | 16.21                                                | 16.22                                                                                                                                                                                                                                                                                                                                           | 16.23                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.31                                                | 16.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.01                                                 | 16.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                  | 16.11 5.748 10.158 0.992 39,000 25 24 102,900 750 31.0<br>16.12 5.748 10.158 0.092 26.000 25 24 102,900 750 28.7 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 16.11 $5.745$ 10.155 $0.992$ $39,000$ $25$ $24$ $102,900$ $750$ $31.0$ 16.12 $5.743$ 10.158 $0.992$ $26,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.13 $5.746$ 10.158 $0.992$ $   24$ $102,900$ $750$ $28.7$ 16.13 $5.746$ $10.156$ $0.992$ $   24$ $102,900$ $750$ $22.3$ 16.21 $5.746$ $10.156$ $0.992$ $39,000$ $25$ $42$ $59,300$ $750$ $31.7$ | 16.11 $5.745$ 10.155 $0.992$ $39,000$ $25$ $24$ $102,900$ $750$ $31.0$ 16.12 $5.743$ 10.158 $0.992$ $26,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.13 $5.746$ 10.158 $0.992$ $   24$ $102,900$ $750$ $22.3$ 16.13 $5.746$ 10.158 $0.992$ $   24$ $102,900$ $750$ $22.3$ 16.21 $5.746$ $10.158$ $0.992$ $29,000$ $25$ $42$ $59,300$ $750$ $22.3$ 16.22 $5.746$ $10.158$ $0.992$ $22,000$ $25$ $42$ $59,300$ $750$ $20.5$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 16.11 $5.745$ 10.155 $0.992$ $39,000$ $25$ $24$ $102,900$ $750$ $31.0$ 16.12 $5.745$ $10.156$ $0.992$ $26,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.13 $5.745$ $10.156$ $0.992$ $29,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.13 $5.746$ $10.156$ $0.992$ $39,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.21 $5.746$ $10.156$ $0.992$ $39,000$ $25$ $42$ $59,300$ $750$ $26.5$ 16.22 $5.746$ $10.156$ $0.992$ $2000$ $25$ $42$ $59,300$ $750$ $26.5$ 16.23 $5.746$ $10.156$ $0.992$ $29,000$ $25$ $42$ $59,300$ $750$ $26.5$ 16.23 $5.746$ $10.156$ $0.992$ $29,000$ $25$ $42$ $750$ $26.5$ 16.23 $5.746$ $10.156$ $0.992$ $29,000$ $25$ $42$ $79,300$ $750$ $26.5$ 16.23 $5.746$ $10.156$ $0.992$ $29,000$ $25$ $42$ $79,300$ $750$ $26.5$ 16.21 $5.746$ $10.156$ $0.992$ $29,000$ $25$ $42$ $750$ $26.5$ 16.23 $5.746$ $10.156$ $0.992$ $29,000$ $25$ $101$ $26.5$ | 16.11 $5.745$ 10.155 $0.992$ $39,000$ $25$ $24$ $102,900$ $750$ $31.0$ 16.12 $5.743$ $10.156$ $0.992$ $29,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.13 $5.746$ $10.156$ $0.992$ $29,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.13 $5.746$ $10.156$ $0.992$ $39,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.21 $5.746$ $10.156$ $0.992$ $39,000$ $25$ $442$ $102,900$ $750$ $26.5$ 16.22 $5.746$ $10.156$ $0.992$ $39,000$ $25$ $442$ $59,300$ $750$ $26.5$ 16.23 $5.746$ $10.156$ $0.992$ $39,000$ $25$ $442$ $59,300$ $750$ $26.5$ 16.23 $5.746$ $10.156$ $0.992$ $39,000$ $25$ $101$ $24,600$ $750$ $26.5$ 16.31 $5.746$ $10.156$ $0.992$ $29,000$ $25$ $101$ $24,600$ $750$ $26.5$ 16.32 $5.746$ $10.156$ $0.992$ $29,000$ $25$ $101$ $24,600$ $750$ $26.5$ 16.32 $5.746$ $10.156$ $0.992$ $29,000$ $25$ $101$ $224,500$ 16.32 $5.746$ $10.156$ $0.992$ $29,000$ $25$ $101$ $224,500$ 16.32 $5.746$ $10.156$ $0.992$ $29,000$ $25$ $101$ $274,500$ | 16.11 $5.745$ 10.155 $0.992$ $39,000$ $25$ $24$ $102,900$ $750$ $31.0$ 16.12 $5.745$ $10.156$ $0.992$ $29,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.13 $5.745$ $10.156$ $0.9922$ $26,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.13 $5.745$ $10.156$ $0.9922$ $39,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.21 $5.745$ $10.156$ $0.9922$ $39,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.22 $5.745$ $10.156$ $0.9922$ $29,000$ $25$ $442$ $59,300$ $750$ $26.5$ 16.23 $5.745$ $10.156$ $0.9922$ $29,000$ $25$ $100$ $750$ $26.5$ 16.23 $5.745$ $10.156$ $0.9922$ $29,000$ $25$ $100$ $750$ $26.5$ 16.33 $5.745$ $10.156$ $0.9922$ $29,000$ $750$ $26.5$ $100$ 16.33 $5.745$ $10.156$ $0.9922$ $200$ $25$ $100$ $750$ $26.5$ 16.33 $5.745$ $10.156$ $0.9922$ $200$ $25$ $100$ $750$ $26.5$ 16.33 $5.745$ $10.156$ $0.9922$ $29,000$ $750$ $27,000$ $750$ 16.33 $5.745$ $10.156$ $0.9922$ $29,000$ $750$ $27,000$ $750$ 16.33 $5.745$ $10.156$ $0.9922$ $29,000$ </td <td>16.11 5.745 10.155 0.992 39,000 25 24 102,900 750 31.0<br/>16.12 5.746 10.156 0.992 26,000 25 24 102,900 750 28.7<br/>16.13 5.746 10.158 0.992 26,000 25 24 102,900 750 28.7<br/>16.21 5.746 10.158 0.992 26,000 25 24 102,900 750 22.3<br/>16.23 5.746 10.158 0.992 26,000 25 42 42 59,300 750 22.5<br/>16.23 5.746 10.158 0.992 26,000 25 42 69,300 750 26.5<br/>16.33 5.746 10.158 0.992 26,000 25 42 70 750 26.5<br/>16.33 5.746 10.158 0.992 26,000 25 42 70 750 26.5<br/>16.33 5.746 10.158 0.992 26,000 25 101 24,600 750 26.5<br/>16.33 5.746 10.158 0.992 26,000 25 101 24,600 750 19.4<br/>16.33 5.746 10.158 0.992 39,000 25 101 24,600 750 19.4</td> <td>16.11 5.748 10.156 0.992 39,000 25 24 102,900 750 31.0<br/>16.12 5.748 10.156 0.992 26,000 25 24 102,900 750 28.7<br/>16.13 5.748 10.158 0.992 25,000 25 24 102,900 750 28.7<br/>16.21 5.748 10.158 0.992 29,000 25 24 102,900 750 28.7<br/>16.21 5.748 10.158 0.992 29,000 25 42 759 300 750 28.7<br/>16.23 5.748 10.158 0.992 29,000 25 42 759 300 750 28.7<br/>16.23 5.748 10.158 0.992 29,000 25 42 750 28.7<br/>16.33 5.748 10.158 0.992 29,000 25 42 750 750 750 750 19.4<br/>16.31 5.748 10.158 0.992 39,000 25 101 24,000 750 119.4<br/>16.32 5.748 10.158 0.992 39,000 25 100 750 1101 24,000 750 119.4<br/>16.42 7.748 10.158 0.992 26,000 25 100 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 100 1101 100 100 100 100 100 100</td> <td>16.11<math>5.748</math><math>10.156</math><math>0.992</math><math>39,000</math><math>25</math><math>24</math><math>10.2,900</math><math>750</math><math>31.0</math>16.12<math>5.748</math><math>10.156</math><math>0.9922</math><math>26,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>31.0</math>16.13<math>5.748</math><math>10.156</math><math>0.9922</math><math>25,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.21<math>5.748</math><math>10.156</math><math>0.9922</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.22<math>5.748</math><math>10.156</math><math>0.9922</math><math>39,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.23<math>5.748</math><math>10.156</math><math>0.9922</math><math>39,000</math><math>25</math><math>442</math><math>59,300</math><math>750</math><math>28.7</math>16.23<math>5.748</math><math>10.156</math><math>0.9922</math><math>39,000</math><math>25</math><math>142</math><math>750</math><math>26,50</math>16.23<math>5.748</math><math>10.156</math><math>0.9922</math><math>39,000</math><math>25</math><math>1101</math><math>24,600</math><math>750</math>16.41<math>5.748</math><math>10.156</math><math>0.9922</math><math>39,000</math><math>25</math><math>1101</math><math>24,600</math><math>750</math>16.42<math>5.748</math><math>10.156</math><math>0.9922</math><math>26,000</math><math>25</math><math>1101</math><math>24,600</math><math>750</math>16.42<math>5.748</math><math>10.156</math><math>0.9922</math><math>26,000</math><math>25</math><math>1101</math><math>24,600</math>16.42<math>5.748</math><math>10.156</math><math>0.9922</math><math>26,000</math><math>256</math><math>112,700</math>16.42<math>5.748</math><math>10.156</math><math>0.9922</math><math>26,500</math><math>750</math><math>136,700</math>16.42<math>5.748</math><math>10.156</math><math>0.9922</math><math>26,500</math>&lt;</td> <td>16.11<math>5.748</math>10.156<math>0.992</math><math>39,000</math><math>25</math><math>24</math><math>10.156</math><math>0.992</math><math>39,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>31.0</math>16.12<math>5.748</math><math>10.156</math><math>0.992</math><math>25,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.21<math>5.746</math><math>10.156</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.22<math>5.746</math><math>10.156</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.23<math>5.746</math><math>10.156</math><math>0.992</math><math>29,000</math><math>25</math><math>42</math><math>42</math><math>59,300</math><math>750</math><math>21.7</math>16.31<math>5.746</math><math>10.156</math><math>0.992</math><math>39,000</math><math>25</math><math>42</math><math>42</math><math>59,300</math><math>750</math><math>26.5</math>16.33<math>5.746</math><math>10.156</math><math>0.992</math><math>39,000</math><math>25</math><math>1001</math><math>24,500</math><math>750</math><math>26.5</math>16.41<math>5.746</math><math>10.156</math><math>0.992</math><math>26,000</math><math>25</math><math>1001</math><math>24,500</math><math>750</math><math>26.5</math>16.42<math>5.746</math><math>10.156</math><math>0.992</math><math>26,000</math><math>25</math><math>196</math><math>12,700</math><math>760</math><math>760</math>16.42<math>5.746</math><math>10.156</math><math>0.992</math><math>26,000</math><math>25</math><math>196</math><math>12,700</math><math>760</math>16.42<math>5.746</math><math>10.156</math><math>0.992</math><math>26,000</math><math>25</math><math>196</math><math>12,700</math><math>760</math>16.42<math>5.746</math><math>10.156</math><math>0.992</math><math>26,000</math><math>750</math><math>760</math><math>760</math>16.42<math>10.156</math><math>0.992</math></td> <td><math display="block"> \begin{array}{cccccccccccccccccccccccccccccccccccc</math></td> <td><math display="block"> \begin{array}{cccccccccccccccccccccccccccccccccccc</math></td> <td>16.11<math>5.745</math>10.155<math>0.992</math><math>39,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>31.0</math>16.12<math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.13<math>5.748</math><math>10.156</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.23<math>5.748</math><math>10.156</math><math>0.992</math><math>39,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.23<math>5.748</math><math>10.156</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.23<math>5.748</math><math>10.156</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.23<math>5.748</math><math>10.156</math><math>0.992</math><math>29,000</math><math>25</math><math>142</math><math>59,300</math><math>750</math><math>28.7</math>16.33<math>5.748</math><math>10.156</math><math>0.992</math><math>26,000</math><math>25</math><math>112,700</math><math>750</math><math>26.5</math>16.43<math>5.748</math><math>10.156</math><math>0.992</math><math>26,000</math><math>25</math><math>122,700</math><math>750</math><math>760</math>16.43<math>5.748</math><math>10.156</math><math>0.992</math><math>26,000</math><math>25</math><math>28.7</math><math>28.7</math>16.53<math>5.748</math><math>10.156</math><math>0.992</math><math>26,000</math><math>25</math><math>28.7</math>16.53<math>5.748</math><math>10.156</math><math>0.992</math><math>26,000</math><math>25</math><math>28.7</math>16.53<math>5.748</math><math>10.156</math><math>0.992</math><math>26,000</math><math>25</math><math>28.7</math>16.53<math>5.748</math><math>10.156</math><math>0.992</math><math>26,000</math><math>25</math><math>28.830</math><t< td=""><td>16.11<math>5.748</math>10.156<math>0.992</math><math>39,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>31.0</math>16.12<math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>31.0</math>16.23<math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>32.3</math>16.23<math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>32.3</math>16.23<math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>22.3</math>16.33<math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>442</math><math>750</math><math>770</math><math>7748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>1101</math><math>24,900</math><math>750</math><math>22.3</math><math>7,748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>1101</math><math>24,900</math><math>750</math><math>21.7</math><math>16.57</math><math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>1121</math><math>24,900</math><math>750</math><math>7,748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>122.7</math><math>22.23</math><math>22.5</math><math>16.57</math><math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>24,900</math><math>750</math><math>7,77</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>22.23</math><math>22.23</math><math>16.57</math><math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>28,900</math><math>16.57</math><math>5.748</math><math>10.156</math><math>0.992</math><math>26,000</math><math>25</math><math>28,900</math><td< td=""><td>16.11<math>5.748</math>10.158<math>0.992</math><math>39,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>31.0</math>16.12<math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>28.7</math>16.22<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>28.7</math>16.22<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>28.7</math>16.23<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>28.7</math>16.23<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>28.7</math>16.33<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>442</math><math>59,300</math><math>750</math><math>28.7</math>16.43<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>442</math><math>29,300</math><math>750</math><math>28.7</math>16.43<math>5.748</math><math>10.158</math><math>0.992</math><math>28,000</math><math>25</math><math>442</math><math>29,300</math><math>750</math><math>28.7</math>16.43<math>5.748</math><math>10.158</math><math>0.992</math><math>28,000</math><math>25</math><math>190</math><math>122,700</math><math>760</math><math>760</math>16.44<math>5.748</math><math>10.156</math><math>0.992</math><math>28,000</math><math>25</math><math>28,700</math><math>760</math><math>760</math>16.45<math>5.748</math><math>10.156</math><math>0.992</math><math>28,000</math><math>25</math><math>28,700</math><math>760</math>16.45<math>5.748</math><math>10.156</math><math>0.992</math><math>28,000</math><math>750</math><math>760</math>16.55</td><td>16.11<math>5.748</math>10.158<math>0.992</math><math>39,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>31.0</math>16.12<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.13<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.22<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.23<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.33<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>442</math><math>59,300</math><math>750</math><math>28.7</math>16.33<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>1101</math><math>24,600</math><math>750</math><math>28.7</math>16.41<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>1101</math><math>24,600</math><math>750</math><math>28.7</math>16.43<math>5.748</math><math>10.156</math><math>0.9922</math><math>29,000</math><math>25</math><math>1121</math><math>24,600</math><math>750</math><math>26.5</math>16.43<math>5.748</math><math>10.156</math><math>0.9922</math><math>29,000</math><math>25</math><math>122,700</math><math>750</math><math>750</math><math>26.5</math>16.43<math>5.748</math><math>10.156</math><math>0.9922</math><math>29,000</math><math>25</math><math>222.2</math><math>572.8</math><math>26.50</math><math>750</math><math>750</math>16.63<math>5.748</math><math>10.156</math><math>0.9922</math><math>29,000</math><math>25</math><math>222.2</math><math>572.8</math><math>26.50</math><math>750</math><math>750</math>16.63<math>5.748</math><math>10.156</math></td></td<></td></t<><td>16.115.74810.1580.99239,0002524102,90075031.016.125.74810.1580.99229,0002524102,90075031.016.125.74810.1580.99239,0002524102,90075031.016.235.74810.1580.99239,0002524102,90075031.016.315.74810.1580.99239,0002524102,90075031.016.325.74810.1580.99239,0002524102,90075031.716.325.74810.1580.99239,0002544226,5930075031.716.415.74810.1580.992239,0002544224,60075031.716.425.74810.1580.992239,0002544226,5930075016.615.74810.1580.992239,0002544226,5930075016.615.74810.1580.992239,0002524,90075075075016.615.74810.1580.992239,0002524,90075075016.635.77810.1580.992239,0002524,90075075016.655.77810.1550.992229,0002524,80075075016.655.74810.155</td><td>16.11       5.743       10.155       <math>0.992</math>       39,000       25       24       102,900       750       31.0         16.12       5.744       10.158       <math>0.992</math>       29,000       25       24       102,900       750       28.7         16.21       5.744       10.158       <math>0.992</math>       29,000       25       24       102,900       750       28.7         16.22       5.744       10.158       <math>0.9922</math>       29,000       25       24       102,900       750       28.7         16.23       5.7445       10.158       <math>0.9922</math>       29,000       25       24       102,900       750       28.7         16.31       5.7445       10.158       <math>0.9922</math>       29,000       25       442       790       750       28.7       760       750       26.5       77       26.5       77       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       2</td><td>16:11       <math>5.748</math>       10.158       <math>0.992</math> <math>26,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math> <math>31.0</math>         16:12       <math>5.748</math>       10.158       <math>0.9922</math> <math>26,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math> <math>31.0</math>         16:23       <math>5.748</math>       10.158       <math>0.9922</math> <math>26,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math> <math>750</math></td><td>16:11       <math>5.748</math>       10:158       <math>0.992</math> <math>29,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math>         16:23       <math>5.748</math>       10:158       <math>0.992</math> <math>29,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math>         16:23       <math>5.748</math>       10:158       <math>0.992</math> <math>29,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math>         16:23       <math>5.748</math>       10:158       <math>0.992</math> <math>29,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math>         16:33       <math>5.748</math>       10:158       <math>0.992</math> <math>29,000</math> <math>25</math> <math>442</math> <math>5700</math> <math>750</math> <math>28,2900</math> <math>750</math> <math>7500</math> <math>7500</math></td><td>16:11       <math>5.748</math>       10.158       <math>0.992</math> <math>39,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math> <math>212,300</math>         16:12       <math>5.748</math>       10.158       <math>0.9922</math> <math>29,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math> <math>22,300</math> <math>750</math></td></td> | 16.11 5.745 10.155 0.992 39,000 25 24 102,900 750 31.0<br>16.12 5.746 10.156 0.992 26,000 25 24 102,900 750 28.7<br>16.13 5.746 10.158 0.992 26,000 25 24 102,900 750 28.7<br>16.21 5.746 10.158 0.992 26,000 25 24 102,900 750 22.3<br>16.23 5.746 10.158 0.992 26,000 25 42 42 59,300 750 22.5<br>16.23 5.746 10.158 0.992 26,000 25 42 69,300 750 26.5<br>16.33 5.746 10.158 0.992 26,000 25 42 70 750 26.5<br>16.33 5.746 10.158 0.992 26,000 25 42 70 750 26.5<br>16.33 5.746 10.158 0.992 26,000 25 101 24,600 750 26.5<br>16.33 5.746 10.158 0.992 26,000 25 101 24,600 750 19.4<br>16.33 5.746 10.158 0.992 39,000 25 101 24,600 750 19.4 | 16.11 5.748 10.156 0.992 39,000 25 24 102,900 750 31.0<br>16.12 5.748 10.156 0.992 26,000 25 24 102,900 750 28.7<br>16.13 5.748 10.158 0.992 25,000 25 24 102,900 750 28.7<br>16.21 5.748 10.158 0.992 29,000 25 24 102,900 750 28.7<br>16.21 5.748 10.158 0.992 29,000 25 42 759 300 750 28.7<br>16.23 5.748 10.158 0.992 29,000 25 42 759 300 750 28.7<br>16.23 5.748 10.158 0.992 29,000 25 42 750 28.7<br>16.33 5.748 10.158 0.992 29,000 25 42 750 750 750 750 19.4<br>16.31 5.748 10.158 0.992 39,000 25 101 24,000 750 119.4<br>16.32 5.748 10.158 0.992 39,000 25 100 750 1101 24,000 750 119.4<br>16.42 7.748 10.158 0.992 26,000 25 100 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 24,000 750 1101 100 1101 100 100 100 100 100 100 | 16.11 $5.748$ $10.156$ $0.992$ $39,000$ $25$ $24$ $10.2,900$ $750$ $31.0$ 16.12 $5.748$ $10.156$ $0.9922$ $26,000$ $25$ $24$ $102,900$ $750$ $31.0$ 16.13 $5.748$ $10.156$ $0.9922$ $25,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.21 $5.748$ $10.156$ $0.9922$ $29,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.22 $5.748$ $10.156$ $0.9922$ $39,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.23 $5.748$ $10.156$ $0.9922$ $39,000$ $25$ $442$ $59,300$ $750$ $28.7$ 16.23 $5.748$ $10.156$ $0.9922$ $39,000$ $25$ $142$ $750$ $26,50$ 16.23 $5.748$ $10.156$ $0.9922$ $39,000$ $25$ $1101$ $24,600$ $750$ 16.41 $5.748$ $10.156$ $0.9922$ $39,000$ $25$ $1101$ $24,600$ $750$ 16.42 $5.748$ $10.156$ $0.9922$ $26,000$ $25$ $1101$ $24,600$ $750$ 16.42 $5.748$ $10.156$ $0.9922$ $26,000$ $25$ $1101$ $24,600$ 16.42 $5.748$ $10.156$ $0.9922$ $26,000$ $256$ $112,700$ 16.42 $5.748$ $10.156$ $0.9922$ $26,500$ $750$ $136,700$ 16.42 $5.748$ $10.156$ $0.9922$ $26,500$ < | 16.11 $5.748$ 10.156 $0.992$ $39,000$ $25$ $24$ $10.156$ $0.992$ $39,000$ $25$ $24$ $102,900$ $750$ $31.0$ 16.12 $5.748$ $10.156$ $0.992$ $25,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.21 $5.746$ $10.156$ $0.992$ $29,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.22 $5.746$ $10.156$ $0.992$ $29,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.23 $5.746$ $10.156$ $0.992$ $29,000$ $25$ $42$ $42$ $59,300$ $750$ $21.7$ 16.31 $5.746$ $10.156$ $0.992$ $39,000$ $25$ $42$ $42$ $59,300$ $750$ $26.5$ 16.33 $5.746$ $10.156$ $0.992$ $39,000$ $25$ $1001$ $24,500$ $750$ $26.5$ 16.41 $5.746$ $10.156$ $0.992$ $26,000$ $25$ $1001$ $24,500$ $750$ $26.5$ 16.42 $5.746$ $10.156$ $0.992$ $26,000$ $25$ $196$ $12,700$ $760$ $760$ 16.42 $5.746$ $10.156$ $0.992$ $26,000$ $25$ $196$ $12,700$ $760$ 16.42 $5.746$ $10.156$ $0.992$ $26,000$ $25$ $196$ $12,700$ $760$ 16.42 $5.746$ $10.156$ $0.992$ $26,000$ $750$ $760$ $760$ 16.42 $10.156$ $0.992$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 16.11 $5.745$ 10.155 $0.992$ $39,000$ $25$ $24$ $102,900$ $750$ $31.0$ 16.12 $5.748$ $10.158$ $0.992$ $26,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.13 $5.748$ $10.156$ $0.992$ $29,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.23 $5.748$ $10.156$ $0.992$ $39,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.23 $5.748$ $10.156$ $0.992$ $29,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.23 $5.748$ $10.156$ $0.992$ $29,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.23 $5.748$ $10.156$ $0.992$ $29,000$ $25$ $142$ $59,300$ $750$ $28.7$ 16.33 $5.748$ $10.156$ $0.992$ $26,000$ $25$ $112,700$ $750$ $26.5$ 16.43 $5.748$ $10.156$ $0.992$ $26,000$ $25$ $122,700$ $750$ $760$ 16.43 $5.748$ $10.156$ $0.992$ $26,000$ $25$ $28.7$ $28.7$ 16.53 $5.748$ $10.156$ $0.992$ $26,000$ $25$ $28.7$ 16.53 $5.748$ $10.156$ $0.992$ $26,000$ $25$ $28.7$ 16.53 $5.748$ $10.156$ $0.992$ $26,000$ $25$ $28.7$ 16.53 $5.748$ $10.156$ $0.992$ $26,000$ $25$ $28.830$ <t< td=""><td>16.11<math>5.748</math>10.156<math>0.992</math><math>39,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>31.0</math>16.12<math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>31.0</math>16.23<math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>32.3</math>16.23<math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>32.3</math>16.23<math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>22.3</math>16.33<math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>442</math><math>750</math><math>770</math><math>7748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>1101</math><math>24,900</math><math>750</math><math>22.3</math><math>7,748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>1101</math><math>24,900</math><math>750</math><math>21.7</math><math>16.57</math><math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>1121</math><math>24,900</math><math>750</math><math>7,748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>122.7</math><math>22.23</math><math>22.5</math><math>16.57</math><math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>24,900</math><math>750</math><math>7,77</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>22.23</math><math>22.23</math><math>16.57</math><math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>28,900</math><math>16.57</math><math>5.748</math><math>10.156</math><math>0.992</math><math>26,000</math><math>25</math><math>28,900</math><td< td=""><td>16.11<math>5.748</math>10.158<math>0.992</math><math>39,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>31.0</math>16.12<math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>28.7</math>16.22<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>28.7</math>16.22<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>28.7</math>16.23<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>28.7</math>16.23<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>28.7</math>16.33<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>442</math><math>59,300</math><math>750</math><math>28.7</math>16.43<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>442</math><math>29,300</math><math>750</math><math>28.7</math>16.43<math>5.748</math><math>10.158</math><math>0.992</math><math>28,000</math><math>25</math><math>442</math><math>29,300</math><math>750</math><math>28.7</math>16.43<math>5.748</math><math>10.158</math><math>0.992</math><math>28,000</math><math>25</math><math>190</math><math>122,700</math><math>760</math><math>760</math>16.44<math>5.748</math><math>10.156</math><math>0.992</math><math>28,000</math><math>25</math><math>28,700</math><math>760</math><math>760</math>16.45<math>5.748</math><math>10.156</math><math>0.992</math><math>28,000</math><math>25</math><math>28,700</math><math>760</math>16.45<math>5.748</math><math>10.156</math><math>0.992</math><math>28,000</math><math>750</math><math>760</math>16.55</td><td>16.11<math>5.748</math>10.158<math>0.992</math><math>39,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>31.0</math>16.12<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.13<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.22<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.23<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.33<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>442</math><math>59,300</math><math>750</math><math>28.7</math>16.33<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>1101</math><math>24,600</math><math>750</math><math>28.7</math>16.41<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>1101</math><math>24,600</math><math>750</math><math>28.7</math>16.43<math>5.748</math><math>10.156</math><math>0.9922</math><math>29,000</math><math>25</math><math>1121</math><math>24,600</math><math>750</math><math>26.5</math>16.43<math>5.748</math><math>10.156</math><math>0.9922</math><math>29,000</math><math>25</math><math>122,700</math><math>750</math><math>750</math><math>26.5</math>16.43<math>5.748</math><math>10.156</math><math>0.9922</math><math>29,000</math><math>25</math><math>222.2</math><math>572.8</math><math>26.50</math><math>750</math><math>750</math>16.63<math>5.748</math><math>10.156</math><math>0.9922</math><math>29,000</math><math>25</math><math>222.2</math><math>572.8</math><math>26.50</math><math>750</math><math>750</math>16.63<math>5.748</math><math>10.156</math></td></td<></td></t<> <td>16.115.74810.1580.99239,0002524102,90075031.016.125.74810.1580.99229,0002524102,90075031.016.125.74810.1580.99239,0002524102,90075031.016.235.74810.1580.99239,0002524102,90075031.016.315.74810.1580.99239,0002524102,90075031.016.325.74810.1580.99239,0002524102,90075031.716.325.74810.1580.99239,0002544226,5930075031.716.415.74810.1580.992239,0002544224,60075031.716.425.74810.1580.992239,0002544226,5930075016.615.74810.1580.992239,0002544226,5930075016.615.74810.1580.992239,0002524,90075075075016.615.74810.1580.992239,0002524,90075075016.635.77810.1580.992239,0002524,90075075016.655.77810.1550.992229,0002524,80075075016.655.74810.155</td> <td>16.11       5.743       10.155       <math>0.992</math>       39,000       25       24       102,900       750       31.0         16.12       5.744       10.158       <math>0.992</math>       29,000       25       24       102,900       750       28.7         16.21       5.744       10.158       <math>0.992</math>       29,000       25       24       102,900       750       28.7         16.22       5.744       10.158       <math>0.9922</math>       29,000       25       24       102,900       750       28.7         16.23       5.7445       10.158       <math>0.9922</math>       29,000       25       24       102,900       750       28.7         16.31       5.7445       10.158       <math>0.9922</math>       29,000       25       442       790       750       28.7       760       750       26.5       77       26.5       77       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       2</td> <td>16:11       <math>5.748</math>       10.158       <math>0.992</math> <math>26,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math> <math>31.0</math>         16:12       <math>5.748</math>       10.158       <math>0.9922</math> <math>26,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math> <math>31.0</math>         16:23       <math>5.748</math>       10.158       <math>0.9922</math> <math>26,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math> <math>750</math></td> <td>16:11       <math>5.748</math>       10:158       <math>0.992</math> <math>29,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math>         16:23       <math>5.748</math>       10:158       <math>0.992</math> <math>29,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math>         16:23       <math>5.748</math>       10:158       <math>0.992</math> <math>29,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math>         16:23       <math>5.748</math>       10:158       <math>0.992</math> <math>29,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math>         16:33       <math>5.748</math>       10:158       <math>0.992</math> <math>29,000</math> <math>25</math> <math>442</math> <math>5700</math> <math>750</math> <math>28,2900</math> <math>750</math> <math>7500</math> <math>7500</math></td> <td>16:11       <math>5.748</math>       10.158       <math>0.992</math> <math>39,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math> <math>212,300</math>         16:12       <math>5.748</math>       10.158       <math>0.9922</math> <math>29,000</math> <math>25</math> <math>24</math> <math>102,900</math> <math>750</math> <math>22,300</math> <math>750</math></td> | 16.11 $5.748$ 10.156 $0.992$ $39,000$ $25$ $24$ $102,900$ $750$ $31.0$ 16.12 $5.748$ $10.158$ $0.992$ $26,000$ $25$ $24$ $102,900$ $750$ $31.0$ 16.23 $5.748$ $10.158$ $0.992$ $26,000$ $25$ $24$ $102,900$ $750$ $32.3$ 16.23 $5.748$ $10.158$ $0.992$ $26,000$ $25$ $24$ $102,900$ $750$ $32.3$ 16.23 $5.748$ $10.158$ $0.992$ $26,000$ $25$ $24$ $102,900$ $750$ $22.3$ 16.33 $5.748$ $10.158$ $0.992$ $26,000$ $25$ $442$ $750$ $770$ $7748$ $10.158$ $0.992$ $26,000$ $25$ $1101$ $24,900$ $750$ $22.3$ $7,748$ $10.158$ $0.992$ $26,000$ $25$ $1101$ $24,900$ $750$ $21.7$ $16.57$ $5.748$ $10.158$ $0.992$ $26,000$ $25$ $1121$ $24,900$ $750$ $7,748$ $10.158$ $0.992$ $26,000$ $25$ $122.7$ $22.23$ $22.5$ $16.57$ $5.748$ $10.158$ $0.992$ $26,000$ $25$ $24,900$ $750$ $7,77$ $10.158$ $0.992$ $26,000$ $25$ $22.23$ $22.23$ $16.57$ $5.748$ $10.158$ $0.992$ $26,000$ $25$ $28,900$ $16.57$ $5.748$ $10.156$ $0.992$ $26,000$ $25$ $28,900$ <td< td=""><td>16.11<math>5.748</math>10.158<math>0.992</math><math>39,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>31.0</math>16.12<math>5.748</math><math>10.158</math><math>0.992</math><math>26,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>28.7</math>16.22<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>28.7</math>16.22<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>28.7</math>16.23<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>28.7</math>16.23<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102.900</math><math>750</math><math>28.7</math>16.33<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>442</math><math>59,300</math><math>750</math><math>28.7</math>16.43<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>442</math><math>29,300</math><math>750</math><math>28.7</math>16.43<math>5.748</math><math>10.158</math><math>0.992</math><math>28,000</math><math>25</math><math>442</math><math>29,300</math><math>750</math><math>28.7</math>16.43<math>5.748</math><math>10.158</math><math>0.992</math><math>28,000</math><math>25</math><math>190</math><math>122,700</math><math>760</math><math>760</math>16.44<math>5.748</math><math>10.156</math><math>0.992</math><math>28,000</math><math>25</math><math>28,700</math><math>760</math><math>760</math>16.45<math>5.748</math><math>10.156</math><math>0.992</math><math>28,000</math><math>25</math><math>28,700</math><math>760</math>16.45<math>5.748</math><math>10.156</math><math>0.992</math><math>28,000</math><math>750</math><math>760</math>16.55</td><td>16.11<math>5.748</math>10.158<math>0.992</math><math>39,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>31.0</math>16.12<math>5.748</math><math>10.158</math><math>0.992</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.13<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.22<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.23<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>24</math><math>102,900</math><math>750</math><math>28.7</math>16.33<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>442</math><math>59,300</math><math>750</math><math>28.7</math>16.33<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>1101</math><math>24,600</math><math>750</math><math>28.7</math>16.41<math>5.748</math><math>10.158</math><math>0.9922</math><math>29,000</math><math>25</math><math>1101</math><math>24,600</math><math>750</math><math>28.7</math>16.43<math>5.748</math><math>10.156</math><math>0.9922</math><math>29,000</math><math>25</math><math>1121</math><math>24,600</math><math>750</math><math>26.5</math>16.43<math>5.748</math><math>10.156</math><math>0.9922</math><math>29,000</math><math>25</math><math>122,700</math><math>750</math><math>750</math><math>26.5</math>16.43<math>5.748</math><math>10.156</math><math>0.9922</math><math>29,000</math><math>25</math><math>222.2</math><math>572.8</math><math>26.50</math><math>750</math><math>750</math>16.63<math>5.748</math><math>10.156</math><math>0.9922</math><math>29,000</math><math>25</math><math>222.2</math><math>572.8</math><math>26.50</math><math>750</math><math>750</math>16.63<math>5.748</math><math>10.156</math></td></td<> | 16.11 $5.748$ 10.158 $0.992$ $39,000$ $25$ $24$ $102.900$ $750$ $31.0$ 16.12 $5.748$ $10.158$ $0.992$ $26,000$ $25$ $24$ $102.900$ $750$ $28.7$ 16.22 $5.748$ $10.158$ $0.992$ $29,000$ $25$ $24$ $102.900$ $750$ $28.7$ 16.22 $5.748$ $10.158$ $0.992$ $29,000$ $25$ $24$ $102.900$ $750$ $28.7$ 16.23 $5.748$ $10.158$ $0.992$ $29,000$ $25$ $24$ $102.900$ $750$ $28.7$ 16.23 $5.748$ $10.158$ $0.992$ $29,000$ $25$ $24$ $102.900$ $750$ $28.7$ 16.33 $5.748$ $10.158$ $0.992$ $29,000$ $25$ $442$ $59,300$ $750$ $28.7$ 16.43 $5.748$ $10.158$ $0.992$ $29,000$ $25$ $442$ $29,300$ $750$ $28.7$ 16.43 $5.748$ $10.158$ $0.992$ $28,000$ $25$ $442$ $29,300$ $750$ $28.7$ 16.43 $5.748$ $10.158$ $0.992$ $28,000$ $25$ $190$ $122,700$ $760$ $760$ 16.44 $5.748$ $10.156$ $0.992$ $28,000$ $25$ $28,700$ $760$ $760$ 16.45 $5.748$ $10.156$ $0.992$ $28,000$ $25$ $28,700$ $760$ 16.45 $5.748$ $10.156$ $0.992$ $28,000$ $750$ $760$ 16.55 | 16.11 $5.748$ 10.158 $0.992$ $39,000$ $25$ $24$ $102,900$ $750$ $31.0$ 16.12 $5.748$ $10.158$ $0.992$ $29,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.13 $5.748$ $10.158$ $0.9922$ $29,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.22 $5.748$ $10.158$ $0.9922$ $29,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.23 $5.748$ $10.158$ $0.9922$ $29,000$ $25$ $24$ $102,900$ $750$ $28.7$ 16.33 $5.748$ $10.158$ $0.9922$ $29,000$ $25$ $442$ $59,300$ $750$ $28.7$ 16.33 $5.748$ $10.158$ $0.9922$ $29,000$ $25$ $1101$ $24,600$ $750$ $28.7$ 16.41 $5.748$ $10.158$ $0.9922$ $29,000$ $25$ $1101$ $24,600$ $750$ $28.7$ 16.43 $5.748$ $10.156$ $0.9922$ $29,000$ $25$ $1121$ $24,600$ $750$ $26.5$ 16.43 $5.748$ $10.156$ $0.9922$ $29,000$ $25$ $122,700$ $750$ $750$ $26.5$ 16.43 $5.748$ $10.156$ $0.9922$ $29,000$ $25$ $222.2$ $572.8$ $26.50$ $750$ $750$ 16.63 $5.748$ $10.156$ $0.9922$ $29,000$ $25$ $222.2$ $572.8$ $26.50$ $750$ $750$ 16.63 $5.748$ $10.156$ | 16.115.74810.1580.99239,0002524102,90075031.016.125.74810.1580.99229,0002524102,90075031.016.125.74810.1580.99239,0002524102,90075031.016.235.74810.1580.99239,0002524102,90075031.016.315.74810.1580.99239,0002524102,90075031.016.325.74810.1580.99239,0002524102,90075031.716.325.74810.1580.99239,0002544226,5930075031.716.415.74810.1580.992239,0002544224,60075031.716.425.74810.1580.992239,0002544226,5930075016.615.74810.1580.992239,0002544226,5930075016.615.74810.1580.992239,0002524,90075075075016.615.74810.1580.992239,0002524,90075075016.635.77810.1580.992239,0002524,90075075016.655.77810.1550.992229,0002524,80075075016.655.74810.155 | 16.11       5.743       10.155 $0.992$ 39,000       25       24       102,900       750       31.0         16.12       5.744       10.158 $0.992$ 29,000       25       24       102,900       750       28.7         16.21       5.744       10.158 $0.992$ 29,000       25       24       102,900       750       28.7         16.22       5.744       10.158 $0.9922$ 29,000       25       24       102,900       750       28.7         16.23       5.7445       10.158 $0.9922$ 29,000       25       24       102,900       750       28.7         16.31       5.7445       10.158 $0.9922$ 29,000       25       442       790       750       28.7       760       750       26.5       77       26.5       77       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       27.6       2 | 16:11 $5.748$ 10.158 $0.992$ $26,000$ $25$ $24$ $102,900$ $750$ $31.0$ 16:12 $5.748$ 10.158 $0.9922$ $26,000$ $25$ $24$ $102,900$ $750$ $31.0$ 16:23 $5.748$ 10.158 $0.9922$ $26,000$ $25$ $24$ $102,900$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ $750$ | 16:11 $5.748$ 10:158 $0.992$ $29,000$ $25$ $24$ $102,900$ $750$ 16:23 $5.748$ 10:158 $0.992$ $29,000$ $25$ $24$ $102,900$ $750$ 16:23 $5.748$ 10:158 $0.992$ $29,000$ $25$ $24$ $102,900$ $750$ 16:23 $5.748$ 10:158 $0.992$ $29,000$ $25$ $24$ $102,900$ $750$ 16:33 $5.748$ 10:158 $0.992$ $29,000$ $25$ $442$ $5700$ $750$ $28,2900$ $750$ $28,2900$ $750$ $28,2900$ $750$ $28,2900$ $750$ $28,2900$ $750$ $28,2900$ $750$ $28,2900$ $750$ $28,2900$ $750$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ $7500$ | 16:11 $5.748$ 10.158 $0.992$ $39,000$ $25$ $24$ $102,900$ $750$ $212,300$ 16:12 $5.748$ 10.158 $0.9922$ $29,000$ $25$ $24$ $102,900$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ $22,300$ $750$ |

•

)

| DATA       |
|------------|
| ЧO         |
| TABULATION |

|          | X<br>Conversion                            | 1111<br>000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Temp.<br>OF                                | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 제/관<br><u>Rm cat-sec</u><br><u>Rm mole</u> | нны<br>плили плинны<br>плили плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плинны<br>плины<br>плинны<br>плины<br>плины<br>плины<br>плины<br>плины<br>плины<br>плины<br>плины<br>плины<br>плины<br>плины |
| ۲        | Feed Rate<br>gms/hr                        | ややか0008881110000000880000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N OF DA  | ound                                       | 1991991991991991991991991<br>NN NN NN NN NN NN NN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ABULATIO | Ultras<br>cps                              | 5000<br>500<br>500<br>500<br>500<br>500<br>500<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ē        | Bed Dia.<br>cm.                            | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | Bed Ht.<br>cm.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | Catalyst<br>gms.                           | $\mathcal{N}\mathcal{N}\mathcal{N}\mathcal{N}\mathcal{N}\mathcal{N}\mathcal{N}\mathcal{N}\mathcal{N}\mathcal{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | Run<br>No.                                 | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| continued)    |  |
|---------------|--|
| $\overline{}$ |  |
| ~<br>ᠳ        |  |
| TABLE         |  |

| DATA       |
|------------|
| 0H<br>O    |
| TABULATION |

| on                                         | . 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82     |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| X<br>Conversi                              | 9930<br>4920<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74820<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>749200<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74970<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>74920<br>7492000<br>74000<br>74000<br>74000<br>74000<br>74000<br>74000<br>74000<br>74000<br>74000<br>74000<br>740000<br>740000<br>740000<br>740000<br>74000000<br>7400000000 | 0.229  |
| Temp.                                      | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 650    |
| M/F<br><u>Am cat-sec</u><br><u>Am mole</u> | С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11,110 |
| Feed Rate<br>gms/hr                        | ・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・<br>・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 224    |
| und<br>atts                                | 88188188188188188188<br>88 88 88 88 88 88 88 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1      |
| Ultraso<br>cps w                           | 500       500       500       500       500         500       500       500       500       500       500         500       500       500       500       500       500         500       500       500       500       500       500         500       500       500       500       500       500         500       500       500       500       500       500         500       500       500       500       500       500         500       500       500       500       500       500         500       500       500       500       500       500         500       500       500       500       500       500         500       500       500       500       500       500         500       500       500       500       500       500         500       500       500       500       500       500         500       500       500       500       500       500         500       500       500       500       500       500         500       500       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| Bed Dia.<br>cm.                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.992  |
| Bed Ht.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.158 |
| Catalyst<br>gms.                           | $\mathcal{N}\mathcal{N}\mathcal{N}\mathcal{N}\mathcal{N}\mathcal{N}\mathcal{N}\mathcal{N}\mathcal{N}\mathcal{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.748  |
| Run<br>No.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.33  |

| X<br>Conversion                            | 1.31     | 0.790   | 0.623  | 0.433  | 0.175           | 0.080  | 0.371  | 0.204   | 0.214  | 56.8   | 4.04   | 45.9   | 37.5            | 28.9             | 26.5   | 22.0           | 16.7            | 15.7   | 20.6    | 16.7            | 16.4   | 17.9    | 16.0   | 17.4   |
|--------------------------------------------|----------|---------|--------|--------|-----------------|--------|--------|---------|--------|--------|--------|--------|-----------------|------------------|--------|----------------|-----------------|--------|---------|-----------------|--------|---------|--------|--------|
| Temp.<br>off.                              | ó50      | 650     | 650    | ó50    | 650             | 650    | 650    | 650     | 650    | 900    | 900    | 006    | 900             | 006              | 900    | 900            | 900             | 900    | 900     | 900             | 900    | 900     | 900    | 900    |
| a/r<br><u>em cat-sec</u><br><u>en mole</u> | 7,550    | 7,550   | 7,550  | 5,190  | 5,190           | 5,190  | 4,320  | 4,320   | 4,310  | 79,100 | 79,100 | 79,100 | 33,400          | 33,400           | 33,400 | 10.930         | 10,930          | 10.930 | 10,170  | 10.170          | 10,170 | 7,175   | 7,175  | 7,175  |
| Feed Rate<br>ms/hr                         | 330      | 330     | 330    | 0<1    | 480             | 100    | 578    | 578     | 578    | 32     | 32     | 32     | 75              | 75               | 75     | 228            | 228             | 228    | 245     | 245             | 245    | 347     | 347    | 347    |
| ound<br>atts                               | 57<br>10 | 01<br>1 | 1      | 57     | 5;<br>10        | t      | 25     | Ч<br>УЛ | 1      | 25     | 52     | 1      | 2<br>Ú          | 1<br>1<br>1<br>1 | I      | 50<br>10<br>10 | С'<br>С'        | I      | ~;<br>7 | 25<br>55        | I      | 25<br>7 | 25     | I      |
| <u>Ultrasc</u><br>cps :                    | 39,000   | 26,000  | 1      | 39,000 | 26 <b>,</b> 000 | 1      | 39,000 | 26,000  | 1      | 39,000 | 26,000 | 1      | 39 <b>,0</b> 00 | 26,000           | 1      | 39,000         | 26 <b>,</b> 000 | 1      | 39,000  | 26 <b>,</b> 000 | 1      | 39,000  | 26,000 | • 1    |
| Bed Dia.<br>cm.                            | 200.0    | 0.992   | 0.992  | 0.992  | 0.992           | 0.942  | 0.992  | 0.992   | 0.992  | 0.992  | 0.992  | 0.992  | 0.992           | 0.992            | 0.992  | 0.992          | 0.992           | 0.992  | 0.992   | 0.992           | 0.992  | 0.992   | 0.992  | 0.992  |
| Bed Ht.<br>cm.                             | 10.158   | 10.158  | 10.158 | 10.158 | 10.158          | 10.158 | 10.158 | 10.150  | 10.158 | 10.158 | 10.158 | 10.158 | 10.158          | 10.158           | 10.158 | 10.158         | 10.158          | 10.158 | 10.153  | 10.158          | 10.158 | 10.158  | 10.158 | 10.158 |
| Catalyst<br>gms.                           | 5.748    | 5.748   | 5.743  | 5.748  | 5.745           | 5.748  | 5.748  | 5.748   | 5.748  | 5.748  | 5.748  | 5.748  | 5.748           | 5.748            | 5.748  | 5.748          | 5.748           | 5.748  | 5.748   | 5.748           | 5.748  | 5.748   | 5.748  | 5.748  |
| kun<br>No.                                 | 19.41    | 19.42   | 19.43  | 18.71  | 18.72           | 18.73  | 18.81  | 18.82   | 18.83  | 21.11  | 21.12  | 21.13  | 21.21           | 21.22            | 21.23  | 21.31          | 21.32           | 21.33  | 21.41   | 21.42           | 21.43  | 21.51   | 21.52  | 21.53  |

| X<br>Conversion       | <i>4 www.wggggggggggggggggggggggggggggggggg</i>  |
|-----------------------|--------------------------------------------------|
| Temp.                 | ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽<br>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩        |
| Rm cat-sec<br>Rm mole | 00000000000000000000000000000000000000           |
| Feed fate             | 11115550000000000000000000000000000000           |
| ound<br>watts         | NATAATAATAATAATAATAATAAT<br>NA NA KA NA NA NA NA |
| UI tras<br>cos        |                                                  |
| Bed Dia.<br>cm.       | 00000000000000000000000000000000000000           |
| Beá Ht.<br>cm.        |                                                  |
| Catalyst<br>ms.       | <i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>     |
| Run<br>Eo.            |                                                  |

|                    | X<br>Conversion              | 444<br>90000000000000000000000000000000000          |
|--------------------|------------------------------|-----------------------------------------------------|
|                    | Temp.                        | 00000000000000000000000000000000000000              |
| TABULATION OF DATA | w/F<br>gm cat-sec<br>gm mole | 00000000000000000000000000000000000000              |
|                    | Feed Rate<br>rms/hr          | $\begin{array}{c} A A A A A A A A$                  |
|                    | ound<br>watts                | GATAATAATAATAATAATAATAAT<br>NN NY NN NN NN NN NN NN |
|                    | Ultras<br>cps                |                                                     |
|                    | Bed Dia.<br>cm.              | <pre>A A A A A A A A A A A A A A A A A A A</pre>    |
|                    | Bed Ht.<br>om.               |                                                     |
|                    | Catalyst<br>gms.             | <i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>        |
|                    | hun<br>No.                   | 00000000000000000000000000000000000000              |

•

TABULATION OF DATA

4

| Run<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Catalyst                                                                                                                                                                                    | Bed Ht.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bed Dia.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>Ultras</u><br>cps                                                                                                                                                             | ound<br>watts                                                        | Feed Rate<br>gms/hr                                                                                                                                      | W/F<br><u>mm cat-sec</u><br><u>Am mole</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Temp.<br>OF.                                                       | X<br>Conversio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 25.21         25.22         25.23         25.31         25.33         25.42         25.43         25.42         25.53         25.53         25.42         25.53         25.53         25.53         25.53         25.53         25.53         25.53         25.53         22.113         22.23         22.23         22.23         22.23         22.33         22.33         22.33         22.33         22.33         22.33         22.33         22.33         22.33         22.33         22.33         22.33         22.33         22.33         22.33         23.33         24.33         25.33         25.33         25.33         25.33         25.33         25.33         25.33         25.33         25.33         25.33 | 5.748<br>5.748<br>5.7448<br>5.77448<br>5.77448<br>5.77448<br>5.77448<br>5.774488<br>5.774488<br>5.774488<br>5.774488<br>5.7744888<br>5.77448888<br>5.77448888888888888888888888888888888888 | 10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.1 | 0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0 | 39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>26,000<br>26,000<br>26,000<br>26,000<br>26,000<br>26,000<br>26,000<br>26,000 | $\begin{array}{c} 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\$ | 76<br>76<br>229<br>229<br>261<br>261<br>261<br>352<br>25<br>25<br>25<br>25<br>333<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>3 | 32,725<br>32,725<br>32,725<br>10,861<br>10,861<br>10,861<br>9,529<br>9,529<br>7,066<br>7,066<br>7,066<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>99,500<br>90,500<br>90,500<br>90,500<br>90,500<br>90,500<br>90,500<br>90,500<br>90,500<br>90,500<br>90,5000<br>90,500<br>90,500<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,5000<br>90,50000<br>90,50000<br>90,50000<br>90,50000<br>90,50000000000 | 700<br>700<br>700<br>700<br>700<br>700<br>700<br>700<br>700<br>700 | 3.75<br>5.620<br>5.000<br>5.4324<br>32.432.4<br>410.256<br>394.2004<br>32.5676<br>394.2004<br>32.5676<br>394.2004<br>32.5676<br>394.2004<br>32.5676<br>394.2004<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>394.2000<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676<br>32.5676 |    |
| 22 <b>.</b> ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.(40                                                                                                                                                                                       | 10.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 <b>,</b> 000                                                                                                                                                                  | 25                                                                   | 4 (                                                                                                                                                      | J∠,öUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 050                                                                | 29.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C  |

| X<br>Conversion                            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                   |                                                                                              |
|--------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Tem p.                                     | ຒຠຠຒຒຒຒຠຒຒຒຠຒຒຒຒຒຒຒຒຒ<br><i>ຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎ</i><br>୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦ | 000<br>000<br>000                                                                            |
| W/F<br><u>em cat-sec</u><br><u>em mole</u> | <i>ммщщщщий и и и и и и и и и и и и и и и и и</i>                        | 00<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| Feed Sate<br>Ems/hr                        | 19999999999999999999999999999999999999                                   | 000<br>000<br>000<br>000                                                                     |
| ouna<br>watis                              | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                    | 545<br>25<br>25                                                                              |
| Ultras<br>cps                              |                                                                          | 39,000<br>26,000                                                                             |
| Bed Dia.<br>cm.                            |                                                                          | 0.992                                                                                        |
| Bed Ht.<br>cm.                             |                                                                          | 10.158                                                                                       |
| Catalyst<br>gms.                           | x w w w w w w w w w w w w w w w w w w w                                  | 5.748<br>5.748                                                                               |
| Run<br>No.                                 | 80555555555555555555555555555555555555                                   | 22 83<br>22 83<br>22 83                                                                      |

| 8                     |                                                                            |                                                              |                                                                                             |                                                                                             |                                                                                                              |                                                                         | 288                                                                                                                           |
|-----------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| X<br>Conversic        | 16.3<br>14.0                                                               |                                                              |                                                                                             |                                                                                             |                                                                                                              | 10.9<br>9.31<br>9.96                                                    | 110.4<br>11.5<br>8.90<br>4.21                                                                                                 |
| Temp.                 | 882<br>2000<br>000                                                         | 0000<br>0000<br>0000                                         | 0000<br>0000                                                                                | 000<br>000<br>000                                                                           | 888888<br>77070<br>0000                                                                                      | 00000000000000000000000000000000000000                                  | 88888<br>77777<br>00000                                                                                                       |
| am cat-sec<br>am mole | 9,475<br>9,475<br>020                                                      | 0000<br>0500<br>0500<br>0500                                 | 0000<br>0000<br>0000                                                                        | 000<br>000<br>000<br>000                                                                    | 0000<br>00000<br>00000                                                                                       | 、<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 4,900<br>900<br>10,010<br>10<br>10<br>10                                                                                      |
| Feed Rate<br>Ems/hr   | 263<br>263<br>311                                                          |                                                              | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 0,0,0<br>0,0,0<br>0,0,0                                                                     | キキキキ<br>00000<br>ルルルル                                                                                        |                                                                         | 6, 6, 6, 9, 9<br>6, 6, 6, 9, 9<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |
| vatts                 | 12.5<br>25.5                                                               | 122<br>27<br>7<br>7                                          | 1 2 2 1 2 1                                                                                 | う<br>ろ<br>ー<br>こ                                                                            | 000000<br>0000<br>0000                                                                                       | 2152 I                                                                  | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                                               |
| <u>Ultrasc</u><br>cps | 26,000<br>39,000                                                           | 39,000<br>26,000<br>26,000                                   | 39,000<br>39,000                                                                            | 26,000<br>26,000                                                                            | 39,000<br>26,000<br>26,000                                                                                   | <b>39,000</b><br>26,000                                                 | 26,000<br>39,000<br>39,000                                                                                                    |
| Bed Dia.<br>cm.       | 0.992<br>0.992<br>0.992                                                    | 0000<br>0000<br>0000<br>0000                                 |                                                                                             | 0.992<br>0.992                                                                              | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                                         | 0.992<br>0.992<br>0.992<br>0.992                                        | 0.992<br>0.992<br>0.992<br>0.992                                                                                              |
| Bed Ht.<br>cm.        | 10.110.110.1158<br>10.1158<br>1158                                         | 100110<br>1001<br>1001<br>1000<br>1000<br>1000<br>1000<br>1  |                                                                                             |                                                                                             | 10.158<br>10.158<br>1588<br>1588                                                                             | 11011<br>10011<br>10011<br>10000<br>00000                               | 10.110.110.110.110.110.110.110.110.110.                                                                                       |
| Catalyst<br>gms.      | NNN<br>-775<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>252<br>252 | NNN1<br>2222<br>2222<br>2222<br>2222<br>2222<br>2222<br>2222 |                                                                                             | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 000000<br>5550<br>75550<br>75500<br>75500<br>75500<br>75500<br>75500<br>75500<br>75500<br>755000<br>75500000 | NNNN<br>7480<br>7480<br>7480<br>7480<br>7480<br>7480<br>7480<br>7480    | л. 748<br>л. 748<br>л. 748<br>л. 748<br>л. 748<br>л. 748                                                                      |
| Run<br>No.            | 22.84<br>22.85<br>22.91                                                    | 22.92<br>22.94<br>22.94                                      | 22.101<br>22.102                                                                            | 22.105<br>22.104                                                                            | 22.111<br>22.112<br>22.113<br>22.114                                                                         | 22.115<br>22.121<br>22.122<br>22.122                                    | 22.124<br>22.125<br>22.131<br>22.131<br>22.133<br>22.133<br>22.133                                                            |

| Conversion                   | 40000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89<br>19                                                                                    |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Temp.<br>of.                 | 444<br>22220000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 820                                                                                         |
| M/F<br>mm cat-sec<br>mm mole | ннч<br>в 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S1,000                                                                                      |
| Feed Rate<br>gms/hr          | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <del></del>                                                                               |
| ound<br>watts                | H AA HA AA AA AA AA AA AA A<br>A WW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| Ultras<br>cps                | 26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000         26,000 | 26,000                                                                                      |
| Bed Dia.<br>cm.              | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.992                                                                                       |
| Bed Ht.<br>cm.               | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.150                                                                                      |
| Catalyst<br>gms.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.748                                                                                       |
| Run<br>No.                   | 2255<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237<br>237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32.12                                                                                       |

TABULATION OF DATA

| Run<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Catalyst                                  | Bed Ht.<br>cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bed Dia.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>Ultra</u><br>cps                                                                              | sound<br>watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Feed Rate                                                                                    | W/F<br><u>Am cat-sec</u><br>gm mole                                                                                                                                                              | Temp.<br>O <sub>F</sub> .                                                                      | X<br>Conversion<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32.13<br>33.11<br>33.12<br>33.21<br>33.22<br>33.23<br>33.22<br>33.23<br>34.12<br>34.22<br>34.23<br>34.22<br>34.23<br>34.22<br>34.23<br>34.22<br>35.12<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.22<br>35.23<br>35.22<br>35.23<br>35.22<br>35.23<br>35.22<br>35.23<br>35.23<br>35.23<br>35.23<br>35.23<br>35.23<br>35.23<br>35.23<br>35.23<br>35.23<br>35.23 | 55555555555555555555555555555555555555    | 10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.158<br>10.1 | 0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992<br>0.992 | 39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000<br>39,000<br>26,000 | - 255<br>255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - 255 - | 31<br>33<br>33<br>25<br>25<br>25<br>60<br>60<br>42<br>42<br>42<br>25<br>25<br>20<br>20<br>20 | 81,000<br>76,200<br>76,200<br>98,100<br>98,100<br>98,100<br>41,200<br>41,200<br>41,200<br>41,200<br>58,800<br>58,800<br>58,800<br>101,000<br>101,000<br>101,000<br>101,000<br>124,300<br>124,300 | 850<br>900<br>900<br>900<br>900<br>900<br>650<br>650<br>650<br>650<br>800<br>800<br>800<br>800 | 33.59<br>34.7.24<br>37.99<br>39.51<br>39.51<br>4.2.771<br>4.2.771<br>4.2.771<br>4.2.771<br>4.2.771<br>4.2.9<br>5.12<br>39.91<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.19<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>39.10<br>3 |
| 36.23<br>36.33<br>36.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.748<br>5.748<br>5.748<br>5.748<br>5.748 | 10.158<br>10.158<br>10.158<br>10.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.992<br>0.992<br>0.992<br>0.992<br>0.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82<br>62<br>41<br>31                                                                         | 30,100<br>39,800<br>60,200<br>79,900                                                                                                                                                             | 900<br>900<br>900<br>900                                                                       | 27.6<br>34.3<br>41.6<br>41.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

APPENDIX XV

- -

THERMOCOUPLE CORRECTION

#### THERMOCOUPLE CORRECTION

The reaction temperature of all runs was controlled by a Leeds & Northrup Speedomax Temperature Controller. The controller maintained the desired temperature by energizing and de-energizing the reactor heaters. The control temperature was sensed by a thermocouple which was inserted in a thermocouple well. The tip of the thermocouple well was located inside the reactor and into the catalyst bed.

Because of the heat conduction from the tip of the thermocouple well to the cooler external end of the well, the temperature at the thermocouple junction will be less than the actual gas temperature passing by the tip. Bird<sup>6</sup> has shown this error to conform to the following equation:

$$\frac{T_{1} - T_{a}}{T_{w} - T_{a}} = \frac{1}{\cosh\left[\frac{hL^{2}}{kB}\right]^{\frac{1}{2}}}$$

$$T_{1} = \text{temperature indicated by thermocouple,}$$

$$T_{1} = \text{temperature of cool end of thermocouple}$$

$$T_{w} = \text{temperature of cool end of thermocouple}$$

$$T_{a} = \text{actual gas temperature, } ^{O}F.$$

$$T_{a} = \text{actual gas temperature, } ^{O}F.$$

$$h = \text{heat transfer coefficient, } 120 \frac{Btu}{hr-ft-^{O}F.}$$

$$L = \text{length of well, } 0.708 \text{ ft.}$$

k = thermal conductivity of metal, 60  $\frac{Btu}{hr-ft^2-o_F}$ . B = thickness of well, 0.00692 ft.

$$\frac{950 - T_{a}}{570 - T_{a}} = \frac{1}{\cosh 12.04} = \frac{1}{163,376} = 0.00000612$$
$$T_{a} = 950^{0} F.$$

Therefore, the error is insignificant and the thermocouple does sense the actual gas temperature. APPENDIX XVI

QUADRATIC REGRESSION EQUATION

#### QUADRATIC REGRESSION EQUATION

All the data collected at each temperature and frequency are presented herein as plots of conversion versus reciprocal space velocity. The curves best fitting the data were calculated by the quadratic regression method to fit the following equation:

$$X = a + b(\frac{W}{F}) + c(\frac{W}{F})^2$$
 (21)

and,

an + b
$$\sum \left(\frac{W}{F}\right)$$
 + c $\sum \left(\frac{W}{F}\right)^2 = \sum X$  (148)

$$a\sum\left(\frac{W}{F}\right) + b\sum\left(\frac{W}{F}\right)^{2} + c\sum\left(\frac{W}{F}\right)^{3} = \sum(X)\left(\frac{W}{F}\right)$$
(149)

$$a\sum \left(\frac{W}{F}\right)^{2} + b\sum \left(\frac{W}{F}\right)^{3} + c\sum \left(\frac{W}{F}\right)^{4} = \sum \left(x\right) \left(\frac{W}{F}\right)^{2}$$
(150)

where,

n = number of data points.

The resulting three constants for each operating condition are shown in Table 13 and the data and calculated curves are shown in Figures 86 through 111.

The quadratic regression curves were employed only to evaluate conversion at the specific reciprocal space velocities of 20,000, 50,000 and 80,000  $\frac{\text{gm cat-sec.}}{\text{gm mole}}$ . The statistical significance of the mass transfer coefficient as a function of temperature as calculated from the conversion versus reciprocal space velocity information obtained from the regression lines was then determined.

### TABLE 13

### QUADRATIC EQUATION CONSTANTS

| Temp.<br>OF | $\frac{f}{x 10^{-3}}$ | Power | a         | <u>b x 10<sup>6</sup></u> | <u>c x 10<sup>11</sup></u> |
|-------------|-----------------------|-------|-----------|---------------------------|----------------------------|
| 650         | 39                    | full  | -0.000959 | 1.74                      | -0.91                      |
| 650         | 26                    | full  | -0.00605  | 1.76                      | -1.06                      |
| 650         | _                     | off   | -0.00664  | 1.75                      | -1.10                      |
| 700         | 39                    | full  | 0.0309    | 1.45                      | 0.590                      |
| 700         | 26                    | full  | 0.0253    | 0.923                     | 0.790                      |
| 700         | -                     | off   | 0.0205    | 0.958                     | 0.650                      |
| 750         | 39                    | full  | 0.0231    | 7.55                      | -3.74                      |
| 750         | 26                    | full  | 0.0051    | 6.66                      | -3.17                      |
| 750         | -                     | off   | -0.0054   | 7.00                      | -3.70                      |
| 800         | 39                    | full  | 0.0453    | 5.97                      | -2.32                      |
| 800         | 26                    | full  | 0.0308    | 5.32                      | -1.93                      |
| 800         | -                     | off   | 0.0226    | 5.41                      | -2.09                      |
| 850         | 39                    | full  | 0.0282    | 9.92                      | -5.87                      |
| 850         | 26                    | full  | 0.0252    | 9.04                      | -5.76                      |
| 850         |                       | off   | 0.0258    | 8.40                      | -5.60                      |
| 850         | 39                    | half  | 0.0989    | 5.01                      | -2.00                      |
| 850         | 26                    | half  | 0.0974    | 4.79                      | -2.03                      |
| 850         | -                     | off   | 0.0258    | 8.40                      | -5.60                      |
| 900         | 39                    | full  | 0.0877    | 5.33                      | -1.86                      |
| 900         | 26                    | full  | 0.0789    | 4.16                      | -1.13                      |
| 900         | -                     | off   | 0.0655    | 6.26                      | -3.15                      |
| 950         | 39                    | full  | 0.0359    | 7.52                      | -1.75                      |
| 950         | 26                    | full  | 0.0256    | 8.76                      | -4.30                      |
| 950         | -                     | off   | 0.0255    | 8.12                      | -4.42                      |
| 1000        | 39                    | full  | 0.0215    | 20.3                      | -39.5                      |
| 1000        | 26                    | full  | -0.0224   | 29.4                      | -75.2                      |
| 1000        |                       | off   | -0.0213   | 29.8                      | -81.5                      |











Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. .







304

FIGURE 93







FIGURE 97












311

FIGURE 100





Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.







Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.







318

FIGURE 107



CONVERSION VS. W/F







322

# APPENDIX XVII

## EVALUATION OF REACTION ACTIVATION ENERGY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f

### EVALUATION OF REACTION ACTIVATION ENERGY

### Arrhenius' Law

Arrhenius' Law, which describes the reaction rate constant as a function of the reaction activation energy and temperature is a follows:

$$k = k_0 e^{-\frac{E}{RT}}$$
(151)

where,

k = reaction rate constant, 
$$\frac{\rho m \text{ moles}}{\rho m \text{ cat-sec}}$$
  
k<sub>o</sub> = frequency factor,  $\frac{\rho m \text{ moles}}{\rho m \text{ cat-sec}}$   
E = activation energy,  $\frac{\text{cal}}{\rho m \text{ mole}}$   
T = temperature,<sup>O</sup>K.  
H = conversion factor, 1.98  $\frac{\text{cal}}{\rho m \text{ mole}}$ <sup>OK</sup>.

For solid catalyzed reactions, the surface reaction rate corrected for pore diffusion,  $\mathcal{E} Lk_2$ , is substituted for k, the reaction rate constant. After this substitution is made, the natural logarithm of the equation is taken in order to obtain a linear function of reciprocal temperature.

$$\mathcal{E}_{Lk_{2}} = k_{0}e^{-\frac{E}{RT}}$$
(152)  
$$\ln \mathcal{E}_{Lk_{2}} = \ln k_{0} - \frac{E}{RT} \ln e$$
$$= \ln k_{0} - \frac{E}{RT}$$

$$\ln \mathcal{E}Lk_2 = \left(-\frac{E}{R}\right)\frac{1}{T} + \ln k_0 \tag{153}$$

Calculation of Activation Energy

In the above equation,  $-\frac{E}{R}$  is the slope of the straight line obtained when  $\ln \epsilon Ek_2$  is plotted against reciprocal temperature.

As shown in Chapter V, the equations for the curves at the frequencies studied are as follows:

no ultrasound: 
$$\log \in Lk_2 = -4812 \frac{1}{TOR} - 1.141$$
 (154)  
 $\ln \in Lk_2 = -6157 \frac{1}{TOK} - 2.628$   
26,000 cps:  $\log \in Lk_2 = -4115 \frac{1}{TOR} - 1.637$  (155)  
 $\ln \in Lk_2 = -5265 \frac{1}{TOK} - 3.770$   
39,000 cps:  $\log \in Lk_2 = -2801 \frac{1}{TOR} - 2.534$  (156)  
 $\ln \in Lk_2 = -3584 \frac{1}{TOK} - 5.836$ 

The calculation of activation energy, E, from the constants associated with reciprocal temperature obtained from the above equations yield the following results:

no ultrasound: 
$$-\frac{E}{R} = -6.57$$
; E = (6157)(1.98)  
= 12.1  $\frac{\text{kcal}}{\text{gm mole}}$   
26,000 cps;  $-\frac{E}{R} = -5265$ ; E = (5265)(1.98)  
= 10.4  $\frac{\text{kcal}}{\text{gm mole}}$ 

39,000 cps: 
$$-\frac{E}{R} = 3584$$
; E = (3584)(1.98)  
= 7.1  $\frac{\text{kcal}}{\text{gm mole}}$ 

Calculation of the Characterization Factor

| No ultrasound: | $\ln k_0 = -2.628$                                           |
|----------------|--------------------------------------------------------------|
|                | $k_0 = 0.0723 \frac{gm moles}{gm cat-sec.}$                  |
| 26,000 cps:    | $\ln k_{0} = -3.770$                                         |
|                | $k_0 = 0.0231 \frac{\text{gm moles}}{\text{gm cat-sec.}}$    |
| 39,000 cps:    | $ln k_0 = 5.836$                                             |
|                | $k_o = 0.00293 \frac{gm \text{ moles}}{gm \text{ cat-sec.}}$ |

APPENDIX XVIII

J.1.

EVALUATION OF INTRINSIC RATE CONSTANT

### EVALUATION OF INTRINSIC RATE CONSTANT

In order to plot  $\[mathcal{ELk}_2\]$  as a function of Kelvin temperature on the same graph as the mass transfer coefficient,  $k_g$ , the equations for  $\[mathcal{ELk}_2\]$  as a function of Kankine temperature must be transformed. The dimensions of  $\[mathcal{ELk}_2\]$  in these equations are  $\[mathcal{mmodes}\]$  which must be transposed to  $\[mathcal{Cm}\]$  to correspond to the dimensions of  $k_g$ . This is accomplished by the following calculations:

### No Ultrasound

$$\log \in Lk_{2} = -4812 \frac{1}{T^{O}_{H}} - 1.141$$

$$k_{S} = \frac{(\in Lk_{2} \frac{\text{fm moles}}{\text{fm cat-sec}})(82.03 \frac{\text{cm}^{3}-\text{atm}}{\text{fm mole}-^{O}_{K}})(T^{O}_{K})}{(1 \text{ atm})(13.1 \frac{\text{cm}^{2}}{\text{fm cat}})}$$

$$T^{O}_{H} = 1.8^{O}_{K}$$
(154)

$$\log k_{s} = \log \ \epsilon Lk_{2} + \log \ T^{0}K + \log \ \frac{82.03}{13.1}$$
$$\log k_{s} = -4812 \ \frac{1}{1.87^{0}K} -1.141 + \log \ T^{0}K + \log \ 6.2618320$$

$$\log k_{\rm s} = \frac{-2673.2388}{T^0 \rm K} + \log T^0 \rm K - 0.3443293$$
(157)

Frequency = 26,000 cps

$$\log \in Lk_2 = -4115 \frac{1}{T^0 R} - 1.637$$
 (155)

$$\log k_{\rm s} = \frac{-2286.3666}{{\rm T}^{\rm o}{\rm K}} + \log {\rm T}^{\rm o}{\rm K} - 0.8399895$$
 (158)

## Frequency = 39,000 cps

.

$$\log \in Lk_2 = -2801 \frac{1}{T^0_H} -2.534$$
 (156)

$$\log k_{\rm s} = \frac{-1555.8388}{4^{\rm o}K} + \log T^{\rm o}K - 1.7368171$$
(159)

The values of log  $k_s$  calculated at each temperature and frequency are shown in Table 14. Some of the values of the mass transfer coefficient,  $k_g$ , are also indicated in the table. TABLE 14

INTRINSIC RATE CONSTANT AND MASS THANSFER COEFFICIENT

EO

|      |      |        |                               |         |          |                       | log k <sub>g</sub> | , sec   |         |                   |
|------|------|--------|-------------------------------|---------|----------|-----------------------|--------------------|---------|---------|-------------------|
|      |      | ЛС     | og k <sub>s</sub> , <u>cr</u> |         | W/F = 80 | , 000 ق <u>س</u><br>ب | cat-sec<br>1 mole  | W/F = 2 | 0,000 E | cat-sec<br>m mole |
| E    | E    | No     | li<br>¢-r                     | <br>9-1 | ON       | <br>6-1               | 11<br>61           | No      | <br>    | <br>4-1           |
| (    | -' c | Ultra- | 26,000                        | 39,000  | Ultra-   | 26,000                | 39 <b>,</b> 000    | Ultra-  | 26,000  | 39,000            |
| Но   | Ж    | sound  | cps                           | CDS     | Sourd    | cps                   | CDS                | sound   | cps     | cps               |
|      |      |        |                               |         |          |                       |                    |         |         |                   |
| 650  | 616  | -3.89  | -3.76                         | -3.47   | -1.62    | -1.61                 | -1.55              | -1.58   | -1.56   | -1.43             |
| 700  | 644  | -3.67  | -3.58                         | -3.34   |          |                       |                    |         |         |                   |
| 750  | 672  | -3.49  | -3.41                         | -3.22   | -1.52    | -1.51                 | -1.44              | -1.41   | -1.39   | -1.29             |
| 800  | 200  | -3.32  | -3.26                         | -3.11   |          |                       |                    |         |         |                   |
| 850  | 727  | -3.16  | -3.12                         | -3.02   |          |                       |                    |         |         |                   |
| 900  | 755  | -3.01  | -2.99                         | -2.92   | -1.38    | -1.35                 | -1.27              | -1.17   | -1.15   | -1.08             |
| 950  | 783  | -2.86  | -2.87                         | -2.83   |          |                       |                    |         |         |                   |
| 1000 | 811  | -2.73  | -2.75                         | -2.75   | -1.29    | -1.25                 | -1.15              | -1.01   | -0.98   | -0.94             |

APPENDIX XIX

CALCULATION OF MAXIMUM PROBABLE ERROR

## CALCULATION OF MAXIMUM PROBABLE ERROR

Reciprocal Space Velocity, W/PAo

$$\frac{d(W/FA_{0})}{W/FA_{0}} = \frac{FA_{0}dW - WdFA_{0}}{FA_{0}^{2}} = \frac{dW}{FA_{0}} - \frac{WdFA_{0}}{FA_{0}^{2}}$$
$$\frac{d(W/FA_{0})}{W/FA_{0}} = \frac{dW}{W} - \frac{dFA_{0}}{FA_{0}}$$

The maximum probable error is the sum of the individual errors. Therefore,

$$\frac{d(W/FA_{O})}{W/FA_{O}} = \frac{dW}{W} + \frac{dFA_{O}}{FA_{O}}$$

For example,

$$W = 5.748 \text{ pms.} \stackrel{+}{=} 0.001 \text{ pm.}$$

$$F_{A_0} = 200 \frac{\text{pms}}{\text{hr.}} \stackrel{+}{=} 0.8 \frac{\text{pms}}{\text{hr.}}$$

$$\frac{d(\frac{W/F_{A_0}}{W/F_{A_0}})}{\frac{W}{F_{A_0}}} = \frac{0.001}{5.748} + \frac{0.8}{200} = 0.0001739 + 0.0040 = 0.00417$$

$$\frac{W}{F_{A_0}} = 12.42\%$$

Conversion, XA

$$\begin{split} \chi_{A} &= \frac{120.19\text{R}}{120.19\text{R} + 78.11\text{A}} \\ \mathrm{d}\chi_{A} &= \frac{(120.19\text{R} + 78.11\text{A})(120.19)\text{d}\text{R} - 120.19\text{R}(120.19\text{d}\text{R} + 78.11\text{d}\text{A})}{(120.19\text{R} + 78.11\text{A})^{2}} \\ &= \frac{120.19\text{d}\text{R}}{120.19\text{R} + 78.11\text{A}} - \frac{(120.19)^{2}\text{R}\text{d}r}{(120.19\text{R} + 78.11\text{A})^{2}} - \frac{(120.19)(78.11)\text{R}\text{d}\text{A}}{(120.19\text{R} + 78.11\text{d}\text{A})^{2}} \end{split}$$

$$\frac{dX_A}{X_A} = \frac{dR}{R} + \frac{120.19 \ dR}{(120.19R+78.11A)} + \frac{78.11 \ dA}{(120.19R+78.11A)}$$

For example,

$$R = 7.32\% + 0.12\%$$
$$A = 91.09\% + 0.53\%$$

$$\frac{dX_A}{X_A} = \frac{0.12}{7.32} + \frac{120.19(0.12) + 78.11(0.53)}{120.19(7.32) + 78.11(91.09)}$$

% error = 
$$2.34\%$$
  
X<sub>A</sub> =  $11.0\% \pm 0.2\%$ 

APPENDIX XX

CALCULATION OF POWER INPUT

### CALCULATION OF POWER INPUT

The maximum total power output of the ultrasonic horn employed in this research was 25 watts according to the manufacturers specifications. The power input per mole of reactor feed at the lowest and highest feed rates studied is as follows:

Power Input at Feed Rate of 25 gms./hr.

$$P = \frac{(25 \text{ watts})(1 \frac{\text{Joule}}{\text{watt-sec}})(3600 \frac{\text{sec}}{\text{hr}})(120.19 \frac{\text{gms}}{\text{gm mole}})}{(4.186 \frac{\text{Joules}}{\text{cal}})(25 \frac{\text{gms}}{\text{hr}})(1000 \frac{\text{cal}}{\text{kcal}})}$$
$$= 103.4 \frac{\text{kcal}}{\text{gm-mole}}$$

Power Input at Feed Rate of 600 gms/hr.

$$P = \frac{(25 \text{ watts})(1 \frac{\text{Joule}}{\text{watt-sec}})(3600 \frac{\text{sec}}{\text{hr}})(120.19 \frac{\text{gms}}{\text{gm mole}})}{(4.186 \frac{\text{Joules}}{\text{cal}})(600 \frac{\text{gms}}{\text{hr}})(1000 \frac{\text{cal}}{\text{kcal}})}$$
$$= 4.3 \frac{\text{kcal}}{\text{cal}}$$

335

. ·

APPENDIX XXI

SAMPLE CALCULATION OF THE MASS TRANSFER COEFFICIENT

## SAMPLE CALCULATION OF THE MASS TRANSFER COEFFICIENT

.....

The mass transfer coefficient is calculated from the following equation derived in Chapter II and Appendix IV:

$$k_{g} = \frac{6.26 X_{A_{f}} T}{(W/F_{A_{O}}) ln(1 + Y_{A_{LM}})}$$
(22)

Some actual values for the parameters are as follows:

$$W/F_{A_0} = 20,000 \frac{\text{gm cat-sec.}}{\text{gm mole}}$$
$$T = 850^{\circ}F. = 727^{\circ}K.$$
$$X_{A_f} = 0.171$$
$$X_{A_0} = \frac{1-X_{A_f}}{1+X_{A_f}} = \frac{1-0.171}{1+0.171} = \frac{0.829}{1.171} = 0.708$$

$$Y_{A_{LM}} = \frac{1 - X_{A_0}}{\ln 1 / X_{A_0}} + \frac{1 - 0.708}{\ln \frac{1}{0.708}} = \frac{0.292}{\ln 1.412} = 0.845$$

Substitution of the above values into Equation (22) yields the following:

$$k_{g} = \frac{(6.26)(0.171)(727)}{(20,000) \ln (0.845)} = 0.0635 \frac{cm}{sec}$$

### APPENDIX XXII

## ANALYSIS OF VARIANCE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

## ANALYSIS OF VARIANCE

The confidence intervals for the coefficients of the linear equations expressing log  $k_g$  as a function of T and log  $\ell Lk_2$  as a function of  $\frac{1}{T}$  are calculated as illustrated in the following example.

Linear Equation at  $W/F_0 = 80,000 \frac{gm \text{ cat-sec}}{gm \text{ mole}}$  and No Ultrasound

$$\log k_g = 0.00169T - 2.66$$
  
Let y =  $\log k_g$   
x = T  
a = -2.66  
b = 0.00169

 $\underline{\texttt{Calculate S}_{x} \texttt{ and S}_{y}}$ 

$$S_{x} = \left[\frac{n \sum x^{2} - (\sum x)^{2}}{n(n-1)}\right]^{\frac{1}{2}}$$

$$n = 5 \text{ (number of data points)}$$

$$x^{2} = 2,653,227$$

$$(\sum x)^{2} = (3637)^{2} = 13,227,769$$

$$S_{x} = \left[\frac{(5)(2,653,227) - 13,227,769}{5(4)}\right]^{\frac{1}{2}} = 43.798$$

$$S_{y} = \left[\frac{n \sum y^{2} - (\sum y)^{2}}{n(n-1)}\right]^{\frac{1}{2}}$$

$$n = 5$$

$$y^{2} = 10.336845$$

$$(\sum y)^{2} = (-7.18143)^{2} = 51.572936$$

$$S_{y} = \left[\frac{5(10.336845) - 51.572936}{5(4)}\right]^{\frac{1}{2}} = 0.074595$$

Calculate r

$$r = \frac{bS_x}{S_y} = \frac{(0.00169)(43.798)}{0.074595} = 0.9922729$$

.

Calculate  $S_{y \cdot x}$ 

$$S_{y \cdot x} = S_{y} \left[ \frac{(n-1)(1-r^{2})}{(n-2)} \right]^{\frac{1}{2}} = 0.074595 \left[ \frac{4(0.0153945)}{3} \right]^{\frac{1}{2}}$$
  
= 0.0010689

Calculation of  ${\rm S}_{a}$  and  ${\rm S}_{b}$ 

$$S_{a} = S_{y \cdot x} \left[ \frac{1}{n} + \frac{\overline{x}^{2}}{(n-1)S_{x}^{2}} \right]^{\frac{1}{2}}$$

$$\overline{x}^{2} = \left[ \frac{\underline{z} \cdot x}{n} \right]^{2} = \left[ \frac{3637}{5} \right]^{2} = 529,100.76$$

$$S_{a} = (0.0010689) \left[ \frac{1}{5} + \frac{529,100.76}{4(43.798)^{2}} \right]^{\frac{1}{2}} = 0.0088889$$

$$S_{b} = \frac{S_{y \cdot x}}{(n-1)^{\frac{1}{2}}S_{x}} = \frac{(0.0010689)}{(4)^{\frac{1}{2}}(43.798)} = 0.0000122$$

Calculate 99% Confidence Interval

$$t_{n-2}$$
, =  $t_{3,99}$  = 5.841  
 $a = -2.66 \stackrel{t}{=} t_{3,99} s_a = -2.66 \stackrel{t}{=} (5.841)(0.0088889) = -2.66 \stackrel{t}{=} 0.05$   
 $b = 0.00169 \stackrel{t}{=} t_{3,99} s_b = 0.00169 \stackrel{t}{=} (5.841)(0.0000122)$   
 $= 0.00169 \stackrel{t}{=} 0.00007$ 

Calculate 95% Confidence Interval

$$t_{n-2}$$
, =  $t_{3,95}$  = 3.182  
 $a = -2.66^{+}(3.182)(0.0088889) = -2.66^{+}0.03$   
 $b = 0.00169^{+}(3.182)(0.0000122) = 0.00169^{+}0.00004$ 

Calculate 90% Confidence Interval

$$t_{n-2}$$
, =  $t_{3,90}$  = 2.358  
a = -2.66<sup>+</sup>(2.358)(0.0088889) = -2.66<sup>+</sup>0.02  
b = 0.00169<sup>+</sup>(2.358)(0.0000122) = 0.00169<sup>+</sup>0.00003

The confidence intervals are similarly calculated for the remaining relationships.

#### NOMENCLATURE

A = reference to cumene $A = area, cm^2$ a = superficial surface area of catalyst,  $\frac{cm^2}{\rho m}$ a = transverse acceleration,  $\frac{cm}{sec^2}$ C = total concentration of A + R + S,  $\frac{\text{gm-moles}}{\text{cm}^3}$  $C_A = \text{concentration of cumene}, \frac{\text{gm-moles}}{\text{cm}^3}$  $C_{A_c}$  = equilibrium concentration of benzene,  $\frac{m-moles}{cm^3}$  $CA_1$  = concentration of active sites occupied by A,  $\frac{cm^2}{gm-cat}$  $C_{A_s}$  = concentration of cumene on catalyst surface,  $\frac{gm-moles}{cm^3}$  $C_{\rm L}$  = total concentration of available active sites,  $\frac{\rm cm^2}{\rm gm}$  cat  $C_1$  = concentration of unoccupied active sites,  $\frac{cm^2}{gm}$  cat  $C_{\rm P}$  = heat capacity of gas at constant pressure,  $\frac{cal}{gm-O_{\rm C}}$ .  $C_{\rm R}$  = concentration of benzene,  $\frac{\rm gm-moles}{\rm cm^3}$  $C_{R_e}$  = equilibrium concentration of benzene,  $\frac{gm \text{ moles}}{cm^3}$  $C_{\rm R1}$  = concentration of active sites occupied by R,  $\frac{{\rm cm}^2}{{\rm gm} {\rm cat}}$  $C_{\rm S}$  = concentration of propylene,  $\frac{\text{Am-moles}}{\text{cm}^2}$  $C_{S_1}$  = concentration of active sites occupied by S,  $\frac{cm^2}{gm}$  cat  $C_V$  = heat capacity of gas at constant volume,  $\frac{cal}{gm-OC}$ .

$$\begin{array}{l} {\rm D}_{\rm AB} = {\rm diffusivity of A in A + R + S, \frac{{\rm cm}^2}{{\rm sec}}} \\ {\rm D}_{\rm AH} = {\rm diffusivity of cumene in benzene, \frac{{\rm cm}^2}{{\rm sec}}} \\ {\rm D}_{\rm AS} = {\rm diffusivity of cumene in propylene, \frac{{\rm cm}^2}{{\rm sec}}} \\ {\rm D}_{\rm AS} = {\rm diffusivity of cumene in propylene, \frac{{\rm cm}^2}{{\rm sec}}} \\ {\rm D}_{\rm g} = {\rm effective pore diffusivity, \frac{{\rm cm}^2}{{\rm sec}}} \\ {\rm D}_{\rm g} = {\rm effective pore diffusivity, \frac{{\rm cm}^2}{{\rm sec}}} \\ {\rm D}_{\rm g} = {\rm combined diffusivity, \frac{{\rm cm}^2}{{\rm sec}}} \\ {\rm d} = {\rm average diameter of catalyst pore, cm.} \\ {\rm d}_{\rm p} = {\rm diameter of catalyst particle, cm.} \\ {\rm E} = {\rm activation energy, \frac{{\rm ffm \ cal}}{{\rm fm}}} \\ {\rm F} = {\rm feed \ rate, \frac{{\rm ffm}}{{\rm hr}}} \\ {\rm F} = {\rm force, \ dynes} \\ {\rm F}_{\rm AO} = {\rm initial \ cumene \ feed \ rate, \frac{{\rm ffm-moles}}{{\rm hr}}} \\ {\rm f = {\rm frequency, \frac{{\rm cycles}}{{\rm sec}}}} \\ {\rm G} = {\rm superficial \ mass \ velocity \ of \ gas \ normal \ to } \\ {\rm catalyst \ bed, \frac{{\rm ffm}}{{\rm cm}^2-{\rm sec}}}} \\ {\rm h}_{\rm S} = {\rm Thiele \ modulus = mr_{\rm p} = r_{\rm p} \frac{{\rm k}_{\rm s}{\rm S}_{\rm y}}{{\rm d}_{\rm p}}} \\ {\rm intensity, \frac{{\rm erg}}{{\rm cm}^2-{\rm sec}}} \\ {\rm I = {\rm intensity, \frac{{\rm erg}}{{\rm cm}^2-{\rm sec}}}, \frac{{\rm dyne-cm.}}{{\rm cm}^2-{\rm sec}} ({\rm 10^{-7} \ \frac{{\rm watt-sec}}{{\rm erg}}}) \\ {\rm I}_{\rm O} = {\rm 10^{-16} \ \frac{{\rm watts}}{{\rm cm}^2}} \\ {\rm K} = {\rm equilibrium \ constant \ for \ overall \ reaction, \ atm.} \\ {\rm K}_{\rm 2} = {\rm equilibrium \ constant \ for \ surface \ reaction, \ atm.} \end{array}$$

 $K_3$  = equilibrium desorption constant for K, atm.  $K_A$  = equilibrium adsorption constant for A,  $\frac{1}{atm}$ .  $K_{R}$  = equilibrium adsorption constant for R,  $\frac{1}{atm}$ . k = forward reaction rate constant for overall reaction, gm moles gm cat-atm-sec k = compressibility,  $\frac{cm^2}{dyne}$ ,  $\frac{cm-sec^2}{gm}$  (dyne =  $\frac{gm-cm}{sec^2}$ )  $k^{1}$  = reverse reaction rate constant for overall reaction, gm moles gm cat-atm<sup>2</sup>-sec  $k_0 = \text{constant}, \frac{\text{cm}}{\text{sec}}$  $k_1 = rate constant for adsorption of A, \frac{gm moles}{cm^2 - atm-sec}$  $k'_1$  = rate constant for desorption of A,  $\frac{gm \text{ moles}}{gm^2 - sec}$  $k_2$  = forward reaction rate constant for surface reaction, <u>gm moles</u> cm<sup>2</sup>-sec  $k_2^{\dagger}$  = reverse reaction rate constant for surface reaction, <u>m</u> moles cm<sup>2</sup>-atm-sec  $k_3$  = equilibrium desorption constant for R, atm.  $k'_3$  = rate constant for adsorption of R,  $\frac{\text{gm moles}}{\text{cm}^2-\text{atm-sec}}$  $k_g = \frac{D_{AB}}{S}$ , mass transfer coefficient,  $\frac{cm}{sec}$  $k_{\rm P}$  = pseudo first order forward reaction rate constant, <u>cm<sup>3</sup></u> gm cat-sec  $k_{p}^{T}$  = pseudo first order reverse reaction rate constant, <u>cm</u>3 gm cat-sec

$$k_{s} = \text{forward intrinsic rate constant for surface reaction,} \\ \frac{GM}{SeC}$$

$$k_{s}^{t} = \text{reverse intrinsic rate constant for surface reaction,} \\ \frac{GM}{MM} = \frac{GM}{MM}$$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. .
H = reference to benzene  
H = ideal gas constant, 1.987 
$$\frac{pm-cal}{pm-mole-OK}$$
  
H = 8.31 x 10<sup>7</sup>  $\frac{ergs}{pm-mole-oK}$ ,  $\frac{dyne-cm}{gm-mole-OK}$   
(erg = dyne-cm =  $\frac{pm-cm^2}{sec^2}$ )  
H<sub>e</sub> = Heynold's number, dimensionless  
H<sub>g</sub> = ideal gas constant, 8.3 x 10<sup>7</sup>  $\frac{pm-cm^2}{gm-mole-OK-sec^2}$   
H<sub>max</sub> = maximum reaction rate,  $\frac{fm-moles}{sec}$   
H<sub>max</sub> = rate of diffusion into catalyst pollet,  $\frac{fm-moles}{sec}$   
H<sub>max</sub> = moles A diffusing toward catalyst surface per  
second per gm catalyst,  $\frac{gm-moles}{gm,sec}$   
(-rA<sub>1</sub>) = reaction rate,  $\frac{fm-moles}{gm}$  cat-sec  
F<sub>e</sub> = equivalent radius of pore, cm.  
F<sub>p</sub> = radius of catalyst particle, cm.  
S = reference to propylene  
S<sub>EX</sub> = external surface area of catalyst, cm<sup>2</sup>  
S<sub>g</sub> = total surface area of porous catalyst,  $\frac{cm^2}{cm}$   
S = total surface of porous catalyst =  $\rho_p S_g$ ,  $\frac{cm^2}{cm^3}$   
T = temperature, <sup>O</sup>K.  
T = period,  $\frac{sec}{cycle}$   
t = time, sec.  
t = temperature, <sup>O</sup>C.  
T<sub>g</sub> = critical temperature, <sup>O</sup>C.

-

V = velocity of propagation of wave form,  $\frac{cm}{sec}$  $V_{\rm b}$  = molar volume at the normal boiling point,  $\frac{\rm cm^3}{\rm gm\ mole}$  $V_{\rm C}$  = critical molar volume,  $\frac{\rm cm^3}{\rm cm-mole}$  $V_{cr} = \text{pore volume, } \frac{\text{cm}^2}{\text{crm}}$  $v = \text{transverse velocity}, \frac{\text{CM}}{\text{sec}}$  $v = volume, cm^3$ W = weight catalyst, gms. W = work done on A system dyne-cm, ergs.  $\mathcal{U}_{c}$  = weight of catalyst, gms. X = distance traversed by wave form, cm.  $X_{A}$  = conversion of A, dimensionless  $X_{Ae}$  = equilibrium conversion of cumene, dimensionless  $X_{Af}$  = final conversion of A  $X_{A_{O}}$  = initial conversion of A Y = mole fraction in gas phase Y = amplitude, cm. $Y_{\Lambda}$  = mole fraction of A, dimensionless  $Y_{A_{b}}$  = mole fraction of A in bulk stream, dimensionless  $\mathbb{Y}_{A_{LM}}$  = log mean mole fraction of cumene in the bulk stream dimensionless  $Y_{A_{C}}$  = mole fraction of A at catalyst surface, dimensionless y = displacement, cm.z = distance in z direction, cm.

٠.

,

 $\beta$  = sound intensity level, decibels  $\lambda = \frac{c^{n}}{c^{n}}$  $\delta$  = thickness of stagnant gas film between main gas stream and external surface of catalyst, cm.  $\mathcal{E}$  = void fraction in packed catalyst bed, dimensionless  $\epsilon$  = catalyst effectiveness factor, dimensionless  $\epsilon_{K}$  = Lennard-Jones parameter,  $\circ_{K}$ .  $\Theta$  = catalyst internal void fraction, dimensionless  $\lambda$  = wave length,  $\frac{cm}{cycle}$  $\mathcal{T}$  = total pressure, atm.  $\rho$  = fluid density,  $\frac{\rho ms}{cm^3}$  $\rho_{\rm B}$  = bulk density of catalyst bed,  $\frac{gms}{cm^3}$  $\rho_0$  = initial gas density,  $\frac{\rho_{\rm ms}}{cm^3}$  $\rho_p$  = catalyst particle density,  $\frac{\rho_ms}{cm^3}$  of particle volume  $\rho_{+}$  = true density of solid material in porous catalyst,  $\frac{gms}{cm^3}$  $\nabla$  = Lennard-Jones parameter, Å  $\tau$  = tortuosity factor, dimensionless  $\mathcal{M}_{C}$  = critical viscosity,  $\frac{\beta m}{cm-sec}$  $\Omega_0 = \text{collision integral}$ 

## LITERATURE REFERENCES

- 1. Aerstin, F.G., Timmerhaus, K.D., and Fogler, H.S., <u>A.I.Ch.E. Journal</u>, Vol. 13, 1967, p. 453.
- Arkhangel'skii, M.E., <u>Zh. Fiz. Khim.</u>, Volume 43, 1969, pp. 942-945.
- 3. Belov, B.G., <u>U.S.S.K.</u> Patent No. 226,328, September 5, 1968.
- 4. Berger, Heinz, <u>German Patent No. 1,279,660</u>, October 10, 1968
- 5. Bezre, Walid E., Romanovskii, B.V., and Topchieva, K.V., <u>Kinet. Katal.</u>, Vol. 9, 1968, pp. 931-934.
- 6. Bird, R. Byron, <u>Transport Phenomena.</u> New York: John Wiley and Sons, Inc., 1965, pp. 529-531.
- 7. Boucher, R.M.G., Towey, J.P., and Tobin, C.D., <u>Research and Development</u>, February, 1966.
- 8. Boucher, R.M.G., British Chemical Engineering, Vol. 15, 1970, pp. 363-367.
- 9. Brown, Charles Edwin, Effect of Catalyst Particle Size on the Bate of Synthesis of Methyl Alcohol in an Internally-Recycled Difference Reactor, Doctoral Dissertation, University of Connecticut, 1969, 205 pages.
- Chen, J.M., and Kalback, W.M., <u>Industrial and</u> <u>Engineering Fundamentals</u>, Vol. 6, No. 2, May 1967, pp. 175-178.
- Christie, Dan Edwin, <u>Intermediate College Mechanics</u>. Hew York: McGraw-Hill Book Company, Inc., 1952, pp. 424-425.
- Corrigan, T.E., Garver, J.C., Rase, H.R., and Kirk, R.S., <u>Chemical Engineering Progress</u>, Vol. 49, 1953, pp. 603-610.
- 13. Currell, Douglas L., Nagy, Stanley S., <u>Journal of</u> <u>the Acoustical Society of America</u>, Vol. 44, No. 5, 1968, pp. 1201-1203.

- 14. Fedotov, A.M., <u>U.S.S.P. Patent No. 212,900</u>, September 5, 1968.
- Fogler, S., "Studies in Ultrasonic Reaction Kinetics," <u>Symposium on Selected Papers - Part I</u>, American Institute of Chemical Engineers, November 26,-30, 1967.
- 16. Fogler, S., <u>Sound and Vibrations</u>, Vol 1, No. 8, August, 1967, pp. 17-21.
- 17. Fogler, H. Scott, "Sonochemical Engineering," <u>Chemical Engineering Symposium Series</u>, American Institute of Chemical Engineers, Vol. 67, No. 109, 1971.
- 18. Popler, H. Scott, <u>Industrial and Engineering Chemical</u> <u>Fundamentals</u>, Vol. 7, No. 3, 1968, pp. 387-396.
- 19. Fogler, H. Scott, and Barnes, D., <u>Industrial and</u> <u>Engineering Chemical Fundamentals</u>, Vol. 7, No. 2, 1968, pp. 222-226.
- 20. Fogler, H. Scott, and Lund, K., <u>Journal of the</u> <u>Acoustical Society of America</u>, Vol. 49, No. 114, 1970.
- 21. Fridman, V.M., Novitskii, B.G., Baklanov, N.M., and Kochetov, A.S., <u>British Patent No. 1,113,128</u>, May 8, 1968, 3 pp.
- 22. Garver, John, <u>The Kinetics and Mechanism of the</u> <u>Catalytic Cracking of Cumene</u>, Doctoral Dissertation, University of Wisconsin, 1955.
- 23. Geissler, George, <u>Strahlentherapie</u>, Vol. 136, No. 6, 1968, pp. 761-765.
- 24. Gindis, A.P., <u>Akust. Ul'trazvuk. Mezhved. Besp.</u> <u>Nauch.-Tekh.</u>, Vol. 2, 1966, pp. 102-105.
- 25. Greensfelder, B.S., Voge, H.H., and Good, G.M., <u>Industrial Engineering Chemistry</u>, Vol. 41, 1949, pp. 2573-2584.
- 26. Greguss, P., <u>International Chemical Engineering</u>, Vol. 3, No. 2, April, 1963, pp. 280-294.

- 27. Criffing, V., and Sette, D., <u>Journal of Chemistry</u> and <u>Physics</u>, Vol. 23, No. 503, 1955.
- 28. Heymach, George J., and Jost, Donald E., <u>Journal of</u> <u>Polymer Science</u>, Part C, No. 25, 1967, pp. 143-145.
- 29. Hougan, Olaf A., Watson, Kennoth M., and Bagatz, Boland, A., <u>Chemical Process Principals, Part I,</u> <u>Material and Energy Balances</u>. New York: John Wiley and Sons, Inc., 1965.
- 30. Jones, James E. <u>,U.S. Patent No. 3,029,766</u>, April 17, 1962, 7 pp.
- 31. Jones, James B., "Ultrasonically Activated Catalysts for Chemical Reactions," <u>U.S. Patent No. 3,245,892</u>, April 12, 1966, 4 pp.
- 32. Kessler, Theodore, Sharkey, A.G., and Friedel, R.A., <u>U.S. Bureau of Mines</u>, Report of Investigation No. 7027, 1967, 11 pp.
- 33. Kokorev, D.T., Malakhov, R.A., Klyucharev, A.E., Morozov, V.A., and Stepanyuk, V.N., <u>lzobret-</u> <u>Prom. Obraztsy Touarnye Znaki</u>, Vol. 45, No. 24, 1968.
- 34. Kowalska, Eugenia, and Mizera, Jan, <u>Przem. Chem.</u>, Vol. 48, No. 4, 1969, pp. 210-212.
- 35. Kunii, D., and Levenspiel, O., <u>Fluidization Engineering</u>. Hew York: John Wiley and Sons, Inc., 1969.
- 36. Lange, Horbert A., <u>Handbook of Chemistry</u>. Sandusky, Ohio: Handbook Publishers, Inc., 1939.
- 37. Levenspiel, Octave, <u>Chemical Reaction Engineering</u>. New York: John Wiley and Sons, Inc., 1965, pp. 426-475.
- 38. Levy, M.R., <u>Nature</u>, Vol. 85, No. 4707, January 16, 1960, p. 159.
- 39. Macarovici, Constantin, Iscrulescu, Virginia T., and Kovasci, Istvan, <u>Rumanian Patent No. 51,305</u>, November, 1968, 4 pp.
- 40. Makeeva, L.G., Neklyudova, N.I., Vasil'evich, L.V., Dzhagupov, R.G., and Ragozin, Yu S., <u>Vestn. Mosk.</u> <u>Univ., Series II</u>, Vol. 22, No. 3, 1967.

- 41. Mal'tsev, A.N., Margulis, M.A., <u>Akust. Zh.</u>, Vol 14, No. 2, 1968, pp. 295-297.
- 42. Manu, V., Sasu, C., and Lucretia, Oprei, <u>Rev. Fiz.</u> <u>Chim.</u>, Series A, Vol. 3, No. 11, 1966, pp. 405-412.
- 43. Margulis, M.A., Mal'tsev, A.N., <u>Zh. Fiz. Chim.</u>, Vol. 42, No. 6, 1968, pp. 1441-1451.
- 44. Mario, E., and Gerraughty, R.J., Journal of Pharmaceutical Science, Vol. 54, No. 2, 1965, pp. 321-323.
- 45. Mason, Warren P., U.S. <u>Government Research Develop-</u> ment <u>Report</u>, Vol. 68, No. 11, 1968, pp. 105-106.
- 46. Mathewson, W.F., and Smith, J.C., <u>Chemical Engineering</u> <u>Progress Symposium Series</u>, Vol. 59, No. 41, 1963.
- 47. Mezaki, Reiji, and Happel, John, <u>Catalysis Review</u>, Vol. 3, No. 2, 1969, pp. 241-270.
- 48. Needham, T.E., Jr., and Gerraughty, Robert J., Journal of Pharmaceutical Science, Vol. 58, No. 1, 1969, pp. 62-64.
- 49. Nosav, V.A., "Soviet Progress in Applied Ultrasonics, Jol. 2," <u>Ultrasonics in the Chemical Industry</u>, Consultant Bureau, New York, 1965, 164 pp.
- 50. Panchenkov, G.N. and Zhorov, Yu. N., <u>Neftekhimiya</u>, Vol 1, 1961, pp. 172-181.
- 51. Pansing, W.F. and Malloy, J.B., <u>Chemical Engineering</u> Progress, Vol. 58, No. 12, 1962, pp. 53-54.
- 52. Paryjczak, Tadeusz and Witekowa, Stanislawa, Zesz. Nauk. Politech. Lodz. Chem., No. 18, 1967, pp. 91-100.
- 53. Paryjczak, Tadeusz, <u>Wiad. Chem.</u>, Vol 23, No. 6, 1969, pp. 377-398.
- 54. Peacocke, A.R. and Pritchard, N.J., <u>Biopolymers</u>, Vol. 6, No. 4, 1968, pp. 605-623.
- 55. Perrin, Marcel, Compt. Rend., Vol. 254, 1962, pp. 269-271.
- 56. Perry, John H., <u>Chemical Engineering Handbook</u>. New York: McGraw-Hill Book Company, 1963.

352

- 57. Peterson, E.E., <u>Chemical Reaction Analysis</u>. Englewood Cliff, New Jersey: Prentice-Hall, Inc., 1965
- 58. Porter, R.S., Journal of Applied Polymer Science, Vol. 11, No. 3, 1967, pp. 335-340
- 59. Prakash, S., and Pandey, J.D., <u>University of</u> <u>Allahabad Studies</u>, 1965, pp. 23-45.
- 60. Prakash, Satya, Prasad, B., and Prakash, S., <u>Vijnana</u> <u>Parishad Anusandhan Patrika</u>, Vol. 9, No. 2, 1966, pp. 109-115.
- 61. Prakash, Sheo and Jain, S.K., <u>Chim. Anal.</u>, Vol.50, No. 6, 1968, pp. 321-324.
- 62. Prakash, Sheo, Pandey, J.D. and Prakash, O.M., <u>Indian Journal of Chemistry</u>, Vol. 6, No. 3, 1968, pp. 143-144.
- 63. Prater, C.D. and Lago, R.M., <u>Advances in Catalysis</u>, Vol. 8, 1956, pp. 293-339.
- 64. Rase, H.F. and Kirk, R.S., <u>Chemical Engineering</u> Progress, Vol. 50, 1954, pp. 35-44.
- 65. Rayleigh, Lord, Phil. Magazine, Vol. 34, No. 94, 1917.
- 66. Rice, F.A.H. and Veguilla-Berdecia, L.A., <u>Journal</u> of <u>Physical Chemistry</u>, Vol. 71, No. 12, 1967, pp. 3774-3779.
- 67. Kossini, F.D., <u>Selected Values of Properties of</u> <u>Hydrocarbons</u>, National Bureau of Standards, C461, Washington, D.C., 1947.
- 68. Saracco, G. and Arzano, F., <u>Chim. Ind.</u>, Vol. 50, No. 3, 1968, pp. 314-318.
- 69. Satterfield, Charles N., <u>Mass Transfer in Heterogeneous</u> <u>Catalysis</u>. Cambridge, Massachusetts: M.I.T. Press, 1970.
- 70. Satterfield, Charles N., <u>The Role of Diffusion in</u> <u>Catalysis</u>. Massachusetts: Addison-Wesley Publishing Co., Inc., 1963, pp. 31-36.
- 71. Sears, Francis W., <u>Principals of Physics I</u>. Cambridge 42, Massachusetts: Addison-Wesley Publishing Co., Inc., 1947, pp. 471-527.

353

- 72. Sergeeva, K. Ya., <u>Akust. Zh.</u>, Vol. 13, No. 1, 1967.
- 73. Shaw, M.T. and Rodriguez, F., <u>Journal of Applied</u> Polymer Science, Vol. 11, 1967, pp. 991-999.
- 74. Slaczka, Andrzej, <u>Bocz. Chem.</u>, Vol. 42, No. 6, 1968, pp. 1073-1081.
- 75. Slaczka, Andrzej, <u>International Chemical Engineering</u>, Vol. 9, No. 1, 1969, pp. 63-68.
- 76. Spozhakina, A.A., Moskovskaya, I.F. and Topchieva, K.V., <u>Kinet. Katal.</u>, Vol. 8, No. 3, 1967, pp. 614-619.
- 77. Stolyarov, E.A., <u>Zh. Prikl. Khim.</u>, Vol. 41, No. 10, 1968, pp. 2302-2303.
- 78. Suess, W., <u>Pharm. Zentraln. Deut.</u>, Vol. 106, No. 2, 1967, pp. 96-90.
- 79. Tabuchi, Daisaku, <u>Mem. Inst. Sci. Ind. Res.</u>, Osaka University No. 24, 1967, pp. 21-24.
- 80. Tabuchi, Daisaku, <u>Mem. Inst. Sci. Ind. Res.</u>, Osaka University No. 25, 1968, pp. 29-34.
- 81. Topchieva, K.V. and Panchenkov, G.M., <u>Doklady Akad.</u> <u>Nauk. U.S.S.B.</u>, Vol. 74, 1950, pp. 1109-1112.
- 82. Topchieva, K.V., Antipina, T.V. and He-Hsiian, L., <u>Kinetika I Kataliz</u>, Vol. 1, 1960, pp. 471-477.
- 83. Topchieva, K.V., Romanovskii, B.V. and Timoshenko, V.I., <u>Kinetica I Kataliz</u>, Vol. 6, No. 3, 1965, pp. 471-475.
- 84. Topil'skii, G.S., Egorov, P.A., and Korchagin, L.V., <u>Ukr. Khim. Zh.</u>, Vol. 34, No. 8, 1968, pp. 853-856.
- 85. Tschernitz, J.L., Bornstein, S., Beckmann, R.B. and Hougan, O.A., <u>Transactions of the American Institute</u> of Chemical Engineers, Vol. 42, 1946, pp. 886-903.
- 86. Tuchel, N., Farmacia, Vol. 15, No. 6, 1967, pp. 341-346.
- 87. Tuszynski, T.M. and Graydon, W.F., <u>Industrial</u> <u>Engineering Chemical Fundamentals</u>, Vol. 7, No. 3, 1968, pp. 396-400.

- 88. Villaine, Philippe, <u>Commission of Atomic Energy</u> (France), 1968.
- 89. Vladar, J., Vladar, L., Sarkany, I. and Tivadar, P., British Patent No. 1,074,099, June 28, 1967, 5 pp.
- 90. Wagner, Carl, Science Collog., Vol. 3, 1968, pp. 17-30.
- 91. Weissler, A., Cooper, H.V. and Snyder, S., Journal of the American Chemical Society, Vol. 72, 1950, p. 1769.
- 92. Wood, H.W. and Loomis, A.L., London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Vol. 4, No. 22, 1927, pp. 417-436.
- 93. Yang, K.H. and Hougan, O.A., <u>Chemical Engineering</u> Progress, No. 46, 1950, pp. 146-157.
- 94. Zelikman, Y.L., Telezhkin, B.V., and Sadykova, S.K., <u>Sb. Dokl. Nauch.-Tekh. Konf., Sib. Proek. Nauch.-</u> <u>Isled. Inst. Tsvet. Met.</u>, No. 1, 1966, pp. 209-216.
- 95. Zhorov, Yu. M. and Panchenkov, G.M., <u>Tr. Mosk. Inst.</u> <u>Mef'tekhim I Gas. Prom.</u>, No. 37, 1962, pp. 19-23.
- 96. Zhorov, Yu. M. and Panchenkov, G.M., <u>Tr. Nosk. Inst.</u> <u>Neftekhim I Gas. Prom.</u>, No. 37, 1962, pp. 12-18.
- 97. Zhorov, Yu. M., Poluyanchenko, E.K. and Panchenkov, G.M., <u>Tr. Mosk. Inst. Neftekhim I Gas. Prom.</u>, No. 69, 1967, pp. 169-171.
- 98. Zil'berg, G.A. and Zodboev, D.D., <u>Tr. Vost.-Sib.</u> <u>Tekhnol. Inst.</u>, No. 2, Part 1, 1966, pp. 273-283.
- 99. Burford, Roger L. <u>Statistics: A Computer Approach</u>. Columbus, Ohio: Charles E. Merrill Publishing Company, 1968, pp. 326-327.
- 100. Von Mises, Richard, <u>Mathematical Theory of Probability</u> <u>and Statistics.</u> New York, New York: Academic Press, 1964, p. 680.
- 101. Eberly, Paul E. Jr., Kimberlin, Charles, N. Jr., <u>Industrial Engineering Chemistry Product Research</u> <u>Development</u>, 1970, 9(3), pp. 335-40.
- 102. Romanovski, B.V., Hud Chi Thauh, K., Topchieva, K.V., Piguzova, L.I., <u>Kinet. Katal.</u>, Volume 7, No. 5, 1966, pp. 841-9.

355

## VITA

William Lintner, Jr. was born in

in ... He received his B.S.Ch.E. from the Massachusetts Institute of Technology in 1953 and his M.S.Ch.E. from Newark College of Engineering in 1965.

The research for his doctoral dissertation was accomplished in the Chemical Engineering Laboratories of the Newark College of Engineering during the period between September, 1969 and November, 1972. Financial assistance for the research was provided by Newark College of Engineering and the du Pont Fellowship which was awarded during 1972.

Mr. Linther is a member of the American Institute of Plant Engineers and is a licensed Professional Engineer. He is married and has two children.

He is presently a partner in Chemical Systems, Inc., a chemical engineering design and construction firm.