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ABSTRACT

The effect of ultrasonic vibrations on the vapor
phase decomposition of cumene to benzene and propylene
was investigated employing silica-aluminum cracking cata-
lyst.

The catalytic reactor consisted of a 1 cm. diameter
stainless steel tube containing a 20 in. long preheater
and a 4 in, long catalyst chamber. The catalyst bed was
irradiated from above by means of an ultrasonic horn which
transmitted acoustical energy directly into the vapor.

The reactor was run at temperatures of 650°F. and
1O5OOF., frequencies of 26,000 cps and 39,000 cps, feed
rates of 20 to 600 gms./hr., power outputs of 0.5 to 1.3
watts/cm.2, and catalyst loadings of approximately 1 to
6 grams,

At temperatures and flow rates where external bulk
diffusion controlled the rate of reaction, the application
of ultrasound resulted in increases in the mass transfer
coefficient up to 40%. 1In the area where surface reaction
and internal pore diffusion controlled, the combined cata-
lyst effectiveness factor ~ surface reaction rate constant
was increased by up to 160%.

Confidence intervals were calculated for the coeffi-
cients of the equations expressing log kg as a function of

T and log ELk2 as a function of 7%— The analysis of
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variance indicated that the increases in mass transfer co-
efficients and combined catalyst effectiveness factor - sur-
face reaction rate constants were significant at ultra-
sonic frequencies of 39,000 cps. The increases obtained
between frequencies of 26,000 cps and no ultrasound were

of lesser significance.

It is postulated that ultrasound causes acoustic
streaming within the reactor tube and catalyst pores, re-
sulting in higher transport rates caused by the combined
effect of diffusion and forced convection as compared to
the effect of diffusion alone in the absence of ultrasound.
In addition, acoustic energy may causc localized heating
within the catalyst bed, thereby increasing the rate of

surface reaction.

-ii-
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CHAPTER I

INTRODUCTION

Purpose and Scope of Investigation

Considerable information is available in the litera-
ture concerning the use of ultrasonic vibrations as an
analytical tool and as a source of energy. Although most
earlier references describe the passive applications of
ultrasound, whereby the propagation characteristics of
the sound wave are employed, the field has recently ex-
panded into active applications of acoustical energy.
These active applications now include the effect of
ultrasonic vibrations on chemical reactions., Although
considerable information is available concerning sono-
chemical reactions, much of the data and results are
contradictory and almost all the experimentation deals
with uncatalyzed liquid phase reactions.

It therefore appeared to this author that because
of the paucity of quantitative data a most interesting
and challenging research would be the study of the effect
of ultrasonic vibrations on heterogeneous catalysis, or
more specifically, the effect of ultrasound on the cata-
lytic cracking of cumene,

Selection of system. The cumene system was selected

for this study because of the following reasons:
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1. Thermal cracking of cumene is negligible at the
temperatures employed (650°-1050°F.).

2. The reaction is essentially clean with a mini-
mum production of side products.

3. The reaction mechanism was determined by Garver22
in 1955 and published in his Doctoral Thesis,
thus providing an experimental base.

4, One literature reference published by Zhorov97
in 1967 indicates that ultrasound effects the rate
of this reaction, thereby providing this author

with some indication of success.

Investigation plan. The plan of the investigation was

to repeat some of Garver's work to obtain a firm basis for
the reaction mechanism in the absence of ultrasound, and
then to apply acoustical energy to the reaction and attempt
to determine the following effects:
1. The effect of ultrasound on the rate of reaction.
2. The effect of ultrasound on the kinetic rate con-

stant and the external diffusion coefficient,.

Literature Survey

Early references. Literature references to ultra-

sonic vibrations, or more accurately acoustical energy, oc-
cur as early as 1927. At that time, WOod92 developed a
piezoelectric oscillator of quartz which produced frequencies

up to 300,000 cps. It is now possible to produce frequencies
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of over 9 x 1010 cps. Frequency ranges between 20,000

and 109 cps are referred to as ultrasonic and ranges
above 109 cps are referred to as hypersonic, This in-
vestigation deals with the ultrasonic range between
20,000 and 50,000 cps.

Classification of acoustical energy. Acoustical

energy is generally classified according to its appli-
cation. Passive applications include those by which the
propagation characteristics of the sound wave are em-
ployed and active applications are those by which the
sound is used as a source of energy. Gregu5526 has
classified several applications of acoustical energy
according to the frequency employed. This classifica-
tion is shown in Table 1. It is interesting to note
that when Greguss prepared this summary in 1963, sono-
chemical effects were limited to liquid phase investiga-
tions only.

In addition to frequency, the second important vari-
able in the study of acoustical energy is sound intens-
ity.71 The intensity of audible sound lies between 10'16
and 10'4 watts/cm.z, with the latter value being the
threshold of pain. Sound intensities of 120,000 watts/cm?
at a frequency of 500,000 cps have been produced in liquids
at the Moscow Acoustical Institute. However, the intens-

ities most frequently applied in sonochemical research are

those between 1 and 10 watts/cm? Peak intensities of up
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TABLE 1

APPLICATIONS OF ACOUSTICAL ENERGY

Physical State

Passive Applications of Matter
1. Theoretical solid state research Solid

2, Computers Solid

3. Non-destructive testing Solid

L, Medical diagnostics Solid and Liquid
5. Viscoelastic research Solid

6. Seismic research Solid

7. Measurements, remote control Liquid and Gas
8. Flow measurements Liquid

9. Viscosity measurements Liquid
10, Level determinations Liquid

Frequency
cps

107-10%?
107-107
10°-10°
10°-107

up to 106

up to 104
10°-10°
103-10°
103-10°

10°-107
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TABLE 1 (continued)

APPLICATIONS OF ACOUSTICAL ENERGY

Physical State

Active Applications of Matter

1. Effect on alloys Solid and Liquid
2., Fatigue research Solid

3. Colloid chemistry Solid, Liquid and Gas
L4, Therapeutical applications Solid and Liquid
5. Boiler scale prevention Liquid

6. Effect on combustion processes Gas

7. Riochemical effects Liquid

8. Sonochemical effects Liquid

Frequency
cps

up to 105

up to 107

up to 106

102107

104-105

up to 104

10°-10"

up to 108



to 1.3 watts/cm.2 were studied in this investigation be-
cause this was the limitation of the equipment employed.

Liguid phase reactions, Many investigations have

been reported in the literature describing the effect of
ultrasound on liquid phase chemical reactions, but, un-
fortunately, much of this work has led to erroneous con-
clusions and contradictory results. For example, Shaw73
reported in 1967 that ultrasound caused scissions of the
polymer chain in polysiloxane solutions. He further
found that doubling the acoustic intensity at 20,000 cps
doubled the degradation rate. Porter58 confirmed this
observation that same year when he reported that the
average molecular weight of polyisobutylene dissolved in
trichlorobenzene was decreased from 466,000 to 20,600

54 explained

by irradiation with ultrasound. Peacocke
this phenomenum in 1968 as a result of his studies of the
effect of ultrasound on such linear macromolecules as
DNA by stating that the degradation is caused by stresses
resulting from the relative movement of the macromolecule
and the solvent molecule.

In contradiction to these observations, Makeevauo
reported in 1967 that polyvinyl chloride prepared by
the bulk polymerization of vinyl chloride and exposed
to ultrasound had a higher molecular weight and fewer

28

branches. Heymach appeared to add to the confusion
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when he reported that cavitation resulting from the
application of intense acoustical energy selectively
degraded polymers by fracturing longer chains at a
faster rate than shorter chains. He concluded that
ultrasonic irradiation may be a means of sharpening
molecular weight distributions.

Effect on reaction rates. In addition to experi-

mentation in the area of polymers and polymerization,
many investigators were interested in the effect of
ultrasound on reaction rates. Since it was early in the
study of this new form of energy, most investigators

made no attempt to explain the individual effects of in-
tensity and frequency. For example, in 1965 Mar1044 re-
ported that the reaction kinetics of the hydrolysis of
aspirin are pseudo first order with or without ultrasound.
He found that the reaction rate was increased with the
application of ultrasound.

In 1966, Manu'?

reported that ultrasound at
1,000,000 cps and 4 to 12 watts/cm.? increased the re-
action rate of the oxidation of the aldehyde group in
glucoge. 1In 1968, Stolyarov?7 noted that ultrasound at
frequencies of 20,000 to 100,000 cps increased the oxi-
dation rate of aluminum in water at 90°F. During that

61

same year, Prakash showed that the rate of production

of iodine from cesium iodide increased with the appli-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cation of ultrasound at frequencies of 1,000,000 cps and

2 In 1969, Kowalskal’

intensities of 1.4 to 2.4 watts/cm.
noted that ultrasonic irradiation increased the oxidation
rate of divalent iron to trivalent iron by 300%.

Acoustic intensity and frequency effect. As more

information became available describing the effect of
ultrasound on reaction kinetics, investigatoirs became

more concerned with the specific effects of intensity and
frequency. Most available data indicate that increasing
intensity increases the reaction rate, but the data con-
cerning the effect of frequency on reaction rate is highly
contradictory. During his study of complex ethers in

98

1966, Zilberg found that ultrasonic intensity increased

the reaction rate but frequency variations between

300,000 and 1,000,000 cps had no effect. Prakash60 ob-
served that increasing the intensity increased the sono-
chemical decomposition of CZHZBru' Riceéé, Sergeeva72,
Suess78 and Geissler'23 all independently confirmed the
observation that increasing ultrasonic intensity increases

10 reported that the re-

the reaction rate. 1In 1967, Chen
action rate of the hydrolysis of methyl acetate with HCl
catalyst increased with increasing ultrasonic intensity,
but that variations in frequency had no effect, thus con-
firming Zilberg!s work. However, in 1968, Saracco68 com-

pleted his study of the hydrogenation of olive o0il in
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cyclohexane with Raney nickel catalyst and ultrasound.
He discovered that the reaction rate reached a maximum
with increasing intensity and then decreased at any
frequency. He further observed that maximum reaction
rates were obtained at frequencies of 500,000 cps.
Finally, Paryjczak53 reported that the zero order rate
constant for the sono-oxidation of FeCl2 decreased with
increasing frequency.

Theory developments. In spite of these contradic-

tory conclusions, many investigators attempted to develop
theories to explain the sonochemical effect. In 1950,
Weissler91 proposed that the chemical reaction rate under
the influence of ultrasound is a function of the sound
intensity, duration of exposure, pressure, temperature

49 added the proposal that

and volume. In 1965, Nosov
intramolecular rearrangements and cavitation are the
effects of the application of ultrasound to chemical re-
actions. He further stated that electrical discharges
occur within the cavitation bubbles which ionize the sol-
vent and solutes, producing highly reactive free radicals.
Fogler19 agreed with the theory that cavitation increases
reaction rates as a result of his experimentation with the
liquid phase hydrolysis of methyl acetate. Currell13 pro-

duced acetylene by the ultrasonic cleavage of cyclohexanol.

His results were also consistent with the theory that the
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sonochemical reaction takes place within the cavitation
bubbles. Kessler32 was able to promote the chemical de-
composition of tetralin and methyl naphthalene by ultra-
sonic irradiation at frequencies of 80,000 cps. Griffing27
finally proposed that ultrasound causes cavitation and
luminescence simultaneously. Luminescence may be caused
by electrical charges within the cavitation bubble or by
extremely high temperatures within the bubble., The cavi-
tation bubbles then act as hot spots which may promote

or enhance chemical reactions.

Prakash6o found that the sonochemical decomposition
of CszBr4 increases with increasing ultrasonic intensity.
He theorized that ultrasonic energy caused the formation
of free radicals within the cavitation bubble. Tuchel86
concurred with the free radical theory as a result of his
experimentation with potassium iodide solution oxidations
irradiated with ultrasound at frequencies of 870,000 cps.

41 and TuxzynskiB? independently

In 1968, MargulisuB, Maltsev
arrived at the conclusion that reaction rate enhancement
is due to the formation of free radicals within the cavi-
tation holes,

In addition to the hot spot and free radical theories
associated with the cavitation phenomenon, some investi-

gators proposed other theories to explain the effect of

ultrasound on the rate of chemical reactions. For example,
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Vladar89 continuously produced Ca(OH)2 from pure CaCO3
and 002 in a tubular reactor and found that ultrasound
increased the rate of carbonation. He theorized that the
ultrasonic energy reduced the particle size of the solids

2F Studied

resulting in a higher reaction rate. Gindis
the effect of ultrasound on the electrochemical oxidation
of szn04 to KMnOu at frequencies of 20,000 cps and 25 to
30 watts/liter. He found that the degree of oxidation at
the anode was increased by 10% to 65% and concluded that
ultrasound increased the current efficiency of the elec-

trolyte by that amount. Needha.mq'8

applied ultrasound to
aspirin in ethanol-water solution and found that although
the same reaction order was maintained, the rate of degra-
dation increased. Needham theorized that ultrasound
lowered the activation energy, increased the rate of

molecular collisions, and increased the rate of movement

of the products away from each other.

Diffusion theory. In 1968, Belov- proposed that

ultrasound causes higher reaction rates by acceleration
of diffusional processes. In 1969, KowalskaBu, as a re-
sult of his studies of the application of ultrasonic

+ to Fe++t also concluded

fields to the oxidation of Fe'
that ultrasound decreases the thickness of the diffusion -
layer, This work, in addition to other confirming evidence,

led this author to believe that ultrasound would effect the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



rate of diffusion controlled solid-catalyzed gaseous re-

actions.

Catalyst activity. During the time when many inves-

tigators were studying the effect of ultrasound on un-
catalyzed liquid phase reactions, some scientists experi-
mented with the effect of ultrasound on catalysts. For
example, Berger'LL regenerated some catalysts at 900o to
1000°C. in the presence of ultrasound at 20 to 100

2 and found that the catalytic activity was

watts/cm.
enhanced. Slaczka75 irradiated nickel and cobalt cata-
lysts with ultrasound during their preparation by the
reduction of oxylates and found that their catalytic
activity were increased. He concluded that the ultra-
sonic energy at frequencies of 25,000 cps and 0.3
watts/cm.2 caused an increase in the number of crystal
defects, thus enhancing the activity. In 1960, Jones P
fastened one end of a bundle of catalytically coated wires
to an ultrasonic driver while the other end was suspended
in a reactor. He noted that the catalytic activity was
enhanced for the preparation of ammonia from nitrogen and
hydrogen when ultrasonic energy at frequencies of 500 to
300,000 cps was applied.

Gas phase reactions. In 1967, Zhorov’ ' studied the

effect of ultrasound on the catalytic cracking of cumene,

Zhorov proposed that the rate of reaction was controlled
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by the diffusion rate of the reactants and products to
and from the catalyst surface. He discovered that the
diffusion rate, and hence the rate of reaction, could be
increased by the application of ultrasonic vibrations.
Zhorov's equipment consisted of a continuous re-
actor in which he placedv7.9 gms. of aluminum-silicate

catalyst. Cumene was fed into the reactor at a feed

gm moles W/ a gm _cat-sec,
rate of 3.0 T ( Fp, = 9,468 7m mole ) and

cracked at 8780F. The rééctor was operated without
ultrasound for the first half hour and then ultrasonic
energy was applied for the second half hour at a fre-
quency of 20,000 cps and an amplitude of 5 to 6 microns.
Analysis of the liquid product (a mixture of cumene
and benzene) indicated that the concentration of benzene
increased by 20% as a result of the application of ultra-
sound. This result serves as the basis for this author's

research.

Reaction mechanism. Before any attempt is made to iso-

late the effect of ultrasound on the catalytic cracking of
cumene, it is necessary to first determine the reaction
mechanism of this system in the absence of ultrasonic energy.

Considerable work was completed in this area from 1949 through

1967 by such investigators as GreensfelderzS, Topchiev382’83,

64 50 55

Corriganlz, Rase™ ', Garverzz, Panchenkov-~, Perrin--,

Zhorov95’96’97, Pansing51 and Spozhakina76. One of the
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most complete investigations was published by Garver in
his Doctoral Dissertation of 1955, Garver determined that
the reaction mechanism for the cracking of cumene on
silica-alumina catalyst at 850°F., 950°F. and 1050°F.

was single site with surface reaction controlling and
propylene not adsorbed, His experimentation also lead

to the determination of the reaction rate constants.

This author'®s plan was to extend the work of Zhorov
into a more detailed quantitative study of the effect of
ultrasound on the solid catalyzed cumene reaction em-
ploying Garver's work as the basic starting point. This
detailed investigation had never been studied previously
as witnessed by the absence of published information con-
cerning the effect of ultrasound on solid-catalyzed

gaseous reactions.

Discussion

Ultrasound may increase the rate of a heterogeneous
sdlid catalyzed gas reaction by one or more of the follow-
ing methods.

1. Increase the number of active sites on the cata-

lyst surface.

2. Increase the rate of diffusional processes:

A. External bulk diffusion
B. Internal pore diffusion
3. Decrease the reaction activation energy.

4, 1Increase the surface reaction rate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

5. Increase the pressure at the mouth of the cata-~
lyst pore by the application of acoustic energy.
6. Develop localized thermal effects by the appli-

cation of ultrasonic energy.

Internal pore diffusion, the surface reaction rate
and the number of active sites are described in a single
constant, ékaz, the reaction rate constant. If ultra-
sonic energy affects any of these three parameters and
the data fit the reaction rate model at high flow rates,

then €Lk, can be calculated.

2
External bulk diffusion is proportional to the mass

transfer coefficient, kg. At low flow rates, mass transfer

controls the rate of reaction, and therefore the effect of

ultrasound onukg can be measured at low flow rates,

Acoustic pressure can be calculated and, in fact, the
variations in pressure at the mouth of the catalyst pore
as a result of the application of ultrasonic energy will
be shown to be negligible for the power employed in this

investigation.

Localized hot spots on the surface of the catalyst will
result in increased surface reaction rate constants and re-
action rates. Quantitative measurements of this phenomenon
are not possible in this investigation, but these thermal

effects will also manifest themselves in fkaz, a measurable

quantity.
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CHAPTER II

THEORY

Continuous Reaction Model

In solid-catalyzed gas-phase reactions, reaction
occurs at the gas-golid interfaces, These interfaces
lie on the external surface of the catalyst particle
and also on the internal surfaces within the catalyst
pore, The overall rate of reaction depends upon the

availability of these surfaces to the reactants,.

For the continuous reaction model, it is assumed
that the reaction mechanism consists of seven distinct
processes with the rate of reaction controlled by the

slowest process.

These processes are described in detail in Appen-

dices II1II through VII and briefly outlined below.

1. Gas film diffusion of reactants.
2. Pore diffusion of reactants.

3. Adsorption of reactants.

4, Surface reaction
5

. Desorption of products.
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6. Pore diffusion of products.
7. Gas film diffusion of products.

Gas film diffusion. Gas film diffusion of reactants

and products is handled mathematically as a single simple
diffusion process. The equation describing this process

is as follows:

pooo Po® o ey (1)
A RT 1+YAS
r, = gm moles cumene diffusing toward catalyst sur-
face per second per gm. catalyst, £n_moles
gm-sec.,
Pp = total pressure, atm.
_ s s cm.
kg = mass transfer coefficient, sec.
Y- .
Sf
Dpp = diffusivity ofzcumene in cumene, benzene and
cm.
propylene, Yy
éf = thickness of stagnant gas film between main gas
stream and external surface of catalyst, cm.
2
a = superficial surface area of catalyst, é%*—
3 .
_ cm., “~-atm.
R = 82.06 gm mole-~OK,
T = 9,
YAb = mole fraction cumene in main gas stream,
dimeasionless
YAS = mole fraction cumene on catalyst surface,
dimensionless
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Surface phenomena. The adsorption of cumene onto

the catalyst surface, the reaction of cumene on the sur-
face and the desorption of benzene from the catalyst sur-
face are also handled together mathematically. Garver
has shown that the following rate equation is consistent
with a single site mechanism whereby propylene is not
adsorbed and surface reaction is rate controlling.
Py - E&f§
C;: kK K

L7 27A :
(-r,q) = - (2)
Al 1+ KApA + KRpR

gm moles A

(rAl) = reaction rate, om cat-sec.
CL = concentration of total active sites on cata-
2
3 —cm.
lyst surface, om cat.
k2 = forward reaction rate constant for surface
. m moles
reaction, %ETZ:EEE.
KA = equilibrium adsorption constant for cumene,
1
atm.
Py = partial pressure of cumene, atm,
Pp = partial pressure of benzene, atm.
Py = partial pressure of propylenec, atm.
KB = equilibrium adsorption constant for benzene,
1
atm.
K = equilibrium constant for overall reaction, atm.

Effectiveness factor. The effect of pore diffusion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

of reactants and products on the rate of reaction is ex-
pressed by applying a correction factor to the rate
equation. This correction factor is known as € , the
effectiveness factor. The rate equation now reduces to

the following expression:
Py ~ PrYs

——

€ Lk, K K

A
(-r,,) = (3)
Al 1+ KAPA + KRpR

In the case of irreversible reaction, K approaches
infinity and the rate equation then becomes:

€Lk K,p
_ 2 ATA (L)

(-r,q) =
Al 1+ KApA + KRpB

The initial rate of reaction occurs when the partial
pressure of cumene is equal to the total pressure and the

partial pressures of benzene and propylene are zero.

. €Lk2KA7T (5)
o 1 + KA7T
_ . gm moles A
Ppq = reaction rate, gm cat-sec.
s . +» £m moles A
r. initial reaction rate, gm cat-sec.
€ = effectiveness factor, dimensionless
2
) i . . cm.
L = +total concentration of active sites, em cat.
k2 = forward reaction rate constant for surface
reaction, gm;%glgﬁ
Cm. —SeC.
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KA = equilibrium adsorption constant for cumene,
1
atm.
Kp = equilibrium adsorption constant for benzene,
1
atm,
K = equilibrium constant for overall reaction, atm.
Py = partial pressure of cumene, atm.
pp = partial pressure of benzene, atm,
Py = partial pressure of propyiene, atm.
TT = total pressure, atm.

The effectiveness factor is defined as the ratio of
the actual rate of reaction with pore diffusion present
to the rate of reaction if the resistance caused by pore
diffusion were absent. It is expressed by the following

relationship wherein hs is the Thiele Modulus:

1

1 1
€ —h3— tamh h, " h, (6)
S
1l
2

k_S

— SV
h, = r, D (7)

effectiveness factor, dimensionless

M
]

= Thiele Modulus, dimensionless

radius of catalyst particle, cm.

3
]

forward intrinsic rate constant for surface

~
]

Cll.

reaction, Se0
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2
SV = total surface of porous catalyst, em.
2
_ . o cm.
De = effective pore diffusivity, sec.

Reaction Design Equation

The reaction design equation is obtained by sub-
stituting the rate equation into the plug flow reactor

design equation,

fo
W axXa
- (-r,,) (8)
Fao Al
XA,
W = wt. catalyst, gms.
n - gm moles A
FAO = feed rate of cumene, Sec.
XAO = 1initial conversion of cumene, dimensionless
XAf = final conversion of cumene, dimensionless
. gm moles A
(-rAl) reaction rate, Zm cat-sec.

Reaction design equation with external diffusion

controlling. For bulk diffusion of cumene from the main

gas stream to the surface of the catalyst, the integrated
reactor design equation yields the following relationship

for the mass transfer coefficient:

*ap 1 (9)
g T (W/FA_)pnaln +iay
0" T 1+YA
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After substituting the constants and employing the log
mean mole fraction for the surface concentration of

cumene, the equation reduces to the following:

= 6.26 Xpp T (10)
g (W/Fag) 1In (1+Yapy)
where,
kg = Tass transfer coefficient, ggé‘
Xpp = final conversion of cumene, dimensionless
T = temperature, °k.
W = wt. catalyst, gms.
Fpo = initial cumene feed rate, gmg%%%gg
YArM = log mean mole fraction of cumene in the
bulk stream, dimensionless
R = gas constant, 82.06 gz.i;igTéK.
Pp = total pressure, atm.
a = superficial surface area of catalyst, gg$_
Yp, = mole fraction cumene in bulk stream,
dimensionless
Ypg = mole fraction cumene at catalyst surface,
dimensionless

Reaction design equation with surface reaction

controlling., For reversible reaction, the reaction de-

sign equation is as follows:
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1 1 1 (1+Xp3) . Xa
Fpg = 28 T 283 (1-X,8) = §2
2, 2
5 | L 1n (HXAS) 1 g, (1-8TAT) - XAl (4
Sl (1K.s) 282 52 (11)
where,
Y= + (12)
EL,k T T ELE,
2 KR
= + (13)
s €Tk KT ETkK, 3
jé__
S = [1 + —Z{q (14)

For irreversible reaction, K approaches infinity,
S becomes unity and the design equation reduces to the

following expression:

FXO = ¥%X, +@[-1n(1-xy) - x,] (15)
W = wt. catalyst, gms.
Fp = feed rate of cumene, gm moles A
o sec.
Xp = conversion of cumene, dimensionless
€ = effectiveness factor, dimensionless
= total concentration of active sites, gﬁgggéf
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T

2l

forward reaction rate constant for surface

reaction, moles
cm,~-sec.

equilibrium adsorption constant for cumene,

1
atm.

equilibrium adsorption constant for benzene,

1
atm.

equilibrium constant for overall reaction, atm.

total pressure, atm.

Ultrasonic Engineering

Fundamental equations. As a sound wave travels

through a gas, small volume elements of the gas contain-

ing millions of molecules alternately compress and expand

in the direction of the propagation of the sound wave.

The sine wave representations of the displacement, trans-

verse velocity, and transverse acceleration are as follows:

1}

1

Y cos[ %%I‘X;th =Y cos[ZTTf(t-%ﬁ ;

ymax =1 (16)

27Tf Y sin 27Tf(t-§); vy = 2T TY (17)

LIT2£2Y cos 2TTe(t-2); a = WTT28%Y  (18)

ma

y = displacement, cm.
Y = amplitude, cm.

= cm.
A = wavelength, oycle
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= =Y

=Vl = &

— . Sec.
T = period, Syole

V = velocity of propagation of wave form,

cm,
Sec L]
f = frequency, g%%%gg
=1
-7

x = distance traversed by wave form, cm.

t = time, sec.

cm.
secC.

v = transverse velocity,

cm.
secC.

a = transverse acceleration, )

Velocity of propagation. The velocity of propaga-

tion of a sound wave in a gas is a function on only the
physical properties of the gas and not of the character-
istics of the sound wave. This is illustrated in the

following equations:

1 1 %
3 2 =
[ _ | ¥l |&mT
IR - %) -
V = velocity of propagation of wave form, %gé—
/o = original gas density, %%ﬁg
2 en 2
_ s cm.< cm.-Sec. = EE:Q%;
k = compressibility, dyne om. (dyne = sec. )
p = pressure, YUES _ZM.

em.2 ' cm-sec.?

i

C
55’ dimensionless
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Cp = heat capacity of gas at constant pressure,
cal
gm-0C,
Cv = heat capacity of gas at constant volume,
cal
em-°C,
— 7 _€ergs  _ 1 x 10/ _dyne-cm,
R = 8.31 x 107 {570 0ok, 8.531 x 10 gm mole-9K.
_ _ _ gm-cm
(erg = dyne-cm. s )
T = temperature of gas, OK.
= —BmS.
M = molecular wt. of gas, Zm-mole

Acoustic pressure. The acoustic pressure exerted by

the sound wave as it traverses a gas is dependent
upon the velocity of propagation and the intensity of the
sound. The amplitude of the sound wave is a function of

the acoustic pressure.

1
Ppax = [Z/QOIV] (20)
Y = Pmax
27Tf/90V
Pnax = maximum pressure caused by sound wave, 2m?gs
i : ms.
o = original gas density, %Etj—
I = sound intensity, egg , dyng-cm.
cm.2-sec, cm.<-sec,
-7 watt-sec.
(10 ———E;ET__q
V = velocity of propagation, %gé_
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"‘)
il

frequency, Se0

]
I

amplitude, cm.

gm-cm.
dyne-sec.2

Conversion factor: 1

Typical values of wave characteristics. Values for

the velocity of propagation, wavelength, acoustic pressure,
amplitude, transverse velocity and acceleration were cal-
culated for cumene at various frequencies and temperatures
at the maximum power output and half power output of the
equipment. A summary of these calculations is shown in

Table 2.

As seen by the table, acoustic pressure as imposed
by the sound wave should have little effect on the reaction
rate because the pressure fluctuations above and below
atmospheric are only a maximum of 1.62 psi at 650°F. and
1.50 at 105OOF. Furthermore, the acoustic pressure is
lower at the higher frequency as a result of the mechani-

cal characteristics of the equipment.

This research will, in fact, show that the depen-
dency of reaction rate on power input alone for the range
studied is negligible and that frequency alone and fre-
quency together with power input are the important factors.
Molecular acceleration, which is a function of both fre-

quency and power, is very high in the ranges studied, as
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indicated in the table. This molecular motion results
in higher reaction rates by virtue of increased gas
diffusion rates. It will be shown that the increased
diffusion rate occurs both in the external diffusion

zone and within the catalyst pores.

Detailed derivations of the ultrasonic relation-
ships described in this chapter may be found in

Appendix X,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

CHAPTER III

EXPERIMENTAL EQUIPMENT

Flow Chart

Figure 1 1s a schematic flow chart of the apparatus
employed in this study. Valves and by-pass piping have
been omitted from the drawing for the purpose of main-
taining simplicity and clarity. Detailed specifications

of all the equipment employed are described in Table 3.

The system consists of two feed tanks to which the
cumene is charged, a feed rotameter for metering the feed
to the reactor, the reactor and a heat exchanger to con-
dense the cumene and benzene effluent. The small amount of

propylene gas formed is vented to the atmosphere.

The apparatus is also equipped with a nitrogen source
for pressurizing the feed tanks and blowing down the re-
actor prior to regeneration. A second rotameter is pro-

vided for metering regeneration air to the reactor,

Attached to the top of the reactor is the ultrasonic
horn by which the catalyst bed is irradiated with ultra-

sonic energy.

Feed System

Cumene is charged to the feed tanks whereupon they
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are pressured up to 10 psig with nitrogen. The nitrogen
pressure is maintained constant by means of a gas pres-
sure regulator so as to maintain a constant pressure
drop across the feed rotameter needle valve. The feed
rotameter is employed manually to control the cumene
feed rate to the reactor; however, for measurement pur-
poses, the difference in liquid level of the feed tanks
for the duration of the run is employed for the average

feed rate calculation.

Regeneration System

After each run, regeneration air is fed to the re-
actor through the air rotameter at a rate of approxi-
mately 0.1 scfm for a period of 24 hours to regenerate
the catalyst by burning off the carbon deposits (see

Appendix XIII).

Reactor

The reactor design is illustrated in Figures 2 and
3. It consists of a ¥ in. schedule 80 type 316 stainless
steel pipe, 20% in. long, welded to a 2 in. 0.D. stainless
steel rod drilled to an I.D. of 2°/64 in., The % in. pipe
is encased in a 2 in., 0.D. rod drilled to snugly fit the
pipe. The casing provides the reactor with mass so as to
stabilize the operating temperatures. The reactor is

flanged at both ends and is equipped with a % in. spud
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FIGURE 3

REACTOR THERMOCOUPLE LOCATION AND HEATING ZONES
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near the top for catalyst addition and product removal.

Inserted within the spud is a 1/8 in. thermocouple well,

The % in. x 203 in. long pipe serves as the pre-
heater section, and the upper 25/64 in., I.D. x 63/ in.
long cylinder is the catalyst chamber. The end of the
thermocouple well inserted within the spud extends down
into the catalyst chamber and is immersed in the catalyst
bed. The catalyst is supported within the chamber by

means of a fine mesh stainless steel screen.

The location of all seven thermocouples and five
heating elements are illustrated in Figure 3. Six of
the thermocouples, TI-1 through TI-6, are affixed to the
outside of the reactor wall and connected to a tempera-
ture recorded. The seventh thermocouple, TC-1, is in-
serted in the thermowell and connected to a temperature

controller.

The reactor is heated by five Nichrome V beaded
wire heaters located as indicated in Figure 3. The power
input to each heater is manually controlled by adjustment
of five powerstats. The powerstats controlling the power
input to heating zones 3 and 4 are automatically con-
trolled by the temperature controller which continuously
monitors the temperature at TC-1. Constant voltage is

maintained to the control circuit by use of a constant
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voltage transformer.

The entire reactor is insulated with approximately
4 in. of refractory rope and 2 in. of magnesia covered

with an aluminum sheath.

Condenser

The reaction products, cumene, benzene and propyl-
ene, enter the condenser from the reactor at approxi-
mately 650-1050°F. whereupon they are cooled to approxi-
mately 75°F. The cumene and benzene are condensed and
collected and the propylene, which remains in the vapor

phase at this temperature, is vented to the atmosphere,

Ultrasonic Horn

The ultrasonic horn is 3 in. in diameter and is
mounted directly atop the reactor by means of a specially
fabricated 3 in. by 1 in. adapter flange. The horn is
driven by a variable frequency ultrasonic generator with

a variable output frequency of 10,000 to 50,000 cps.

The maximum operating temperature of the piezo-
electric transducer which drives the horn is 30000.
(572°F.) and the minimum allowable operating temperature
of the horn to prevent condensation of the highest boiler,
cumene, is 153°C. (308°F.). Therefore, it is necessary
to maintain the temperature of the ultrasonic horn at

approximately 175°C. This is accomplished by recirculating
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heated o0il through the cooling chamber of the ultrasonic

horn as illustrated in Figure 4.

The oil is recirculated through a water cooled heat
exchanger to the ultrasonic horn cooling chamber and
thence to an electrically heated surge pot by means of a
1 gpm centrifugal pump. By proper adjustment of the power-
stat controlled electric heater and oil flow to the cooler,
it is possible to maintain the recirculating oil at approxi-

mately 175°¢.

Piping
All piping consists of % in, stainless steel threaded
pipe and fittings and 4 in. copper tubing with compression

type fittings. Teflon tape is employed on all threaded

connections,

Analytical Instrumentation

The quality of the effluent product is analyzed by
use of a gas-liquid chromatograph in conjunction with a
single pen strip chart recorder, The chromatograph response
was standardized daily by injecting and analyzing a known
sample, The analytical system is designed to handle either
gas samples taken from the reactor effluent prior to conden-~
sation or liquid samples from the condenser effluent. The
analysis of the liquid samples proved to be almost identical
to that of the gaseous sample. Comparative analyses and con-

version calculations are shown in Appendix IX.
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TABLE 3

EQUIPMENT SPECIFICATIONS

I'eed Tank No. 1

Manufacturer Corning Glass Co.

Material of construction Pyrex conical pipe

Length 36 in,

Working pressure 50 psig, max.

Diameter 1 in.

Calibration 10.79 gms. cumene/in.
F'eed Tank No. 2

Manufacturer Corning Glass Co.,

Material of construction Pyrex conical pipe

Length 36 in.

Working pressure 50 psig, max.

Diameter 1% in.

Calibration 24 .66 gms. cumene/in.
Feed Rotameter

Manufacturer Brooks Instrument Co.

Model No, 1357-8506

Meter size 2

Type 1357-01F1BAA

Serial no. 7010-48800

Tube no. R-2-25-D

Scale 250 mm.

Wetted parts Stainless steel

Packing Teflon

O-rings Kel-F

Valve needle taper no, 3

Orifice type Small

Connections % in. NPT

Float material Sapphire

Maximum flow rate
Float Material

Gm./Hr. Cumene

Glass 355
Sapphire 640
Stainless steel 1,267
Carboloy 2,130
Tantalum 2,300
Calibration (Sapphire float): Figure 5
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TABLE 3 (continued)

EQUIPMENT SPECIFICATIONS

Air Hotameter

Manufacturer
Tube no.
Type no.
Serial no.

Scale (direct calibration)

Reactor

Material of construction

Overall length
Outside diameter
Preheater
Material of
Construction
Length
Outside diameter
Inside diameter
Catalyst Chamber
Material of
construction
Length
Outside diameter
Inside diameter

Temperature Recorder

Manufacturer
Type

Range

No. of points
Model no.
Serial no,

Temperature Controller

Manufacturer
Type
Volts/cycles
Catalog no.
Serial no.

Fischer & Porter Co.
02—F-1/8—12—5/70
TII-1077/1-2
TII-1077/1

0-6 scfm hydrggen at
& psig and 75 F.

TyEe 316 stainless steel
274 in.
2.000 in.

Tyge 316 stainless steel
203 in.

2,000 in.

0.302 in.

Type 316 stainless steel
in.

2.000 in.

0.391 in.

Westronics Inc.
Strip 8hart
0-120071F,

12
MIIB/J/DV.5M
MIIB336

Leeds & Northrup Co.
Speedomax H

120/60
200-901-010-0023-6-024-0
65-35480-1-1
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TABLE 3 (continued)

EQUIPMENT SPECIFICATIONS

Temperature Controller (continued)

Range
Chart no.
Chart speed

Response time

0-2000°F,

620023

1 revolution/24 hrs.

5.0 seconds, full travel

Controller series 60

Heaters

Manufacturer
Type

Catalog no.

Length, each
Power, each

Temperature

Powerstats

Manufacturer
Type

Phase

Input

Output

Amps, max.
Kva, max.

Cole~Parmer Instrument Co.
Beaded Nichrome V wire
3116-1

12 ft.

400 watts

20000F ., max.

Superior Electric Co.
116

Single

120 volts, 50/60 cps
0-140 volts

9

1.3

Constant Voltage Transformer

Manufacturer
Catalog no.
Type no.
Primary

Secondary

Refractory Rope

Manufacturer
Style no.
Temperature

Sola Electric Co.

20-13-150 D476

CUN-1

95-130 volts, 60 cps,
single phase

118 volts, 4.24 amps

Johns~Manville
Thermo~Pac 2300
23000F,, max.
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TABLE 3 (continued)

EQUIPMENT SPECIFICATIONS

Condenser

Material of construction
Type

Length

Shell side

Tube side

Connections

Coolant (shell side)
Surface area

Ultrasonic Horn

Manufacturer

Material of construction
Model no.

Type

Frequency range
Acoustic energy

Input

Sound level

Nominal impedence
Efficiency

Length

Diameter

Weight .
Operating temperature
Serial no.

Ultrasonic Generator

Manufacturer
Model no,

Volts /eycles
Amps/phase
Frequency range

Power output
Output impedence
Weight

Serial no.

Type 316 stainless steel
Tube and shell

36 in.

1 in. sched. 40 pipe

1-% in. sched. 40 pipe

% in. NPT

Water

0.423 ft,2

Macrosonics International
Type 316 stainless steel
FH-15-0

0il cooled

10,000 cps to 100,000 cps
25 watts

100 watts

Above 166 db

L00 ohms

25%

18 in,

3 in.

11 1b.

3000C. max.

70-12

Macrosonics International

150 LF

120/50-60
L/single
10,000-50,000 cps
(Figure 65

20-80 watts
200-400 ohms

38 1lb.

00405
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TABLE 3 (continued)

EQUIPMENT SPECIFICATIONS

Heat Transfer 01l

Monsanto Chemical Co.
Therminol FR-1
7000F ., max.

Manufacturer

Type
Operating temperature

Thermometer, TI~7

Manufacturer Weston
Type Stem and dial
Range 0-3000C.

Recirculation Pump

Manufacturer Eastern Engineering Co,
Material of construction Carbon steel
Model D11
Type 100
Horsepower 1/8
Rpm 3,450
Capacity 1 gpm
0il Cooler

Shell Side
Material of construction Type 316 stainless steel
Diameter 2 in. Sched. 40 pipe
Length 36 in,

Tube Side
Material of construction Copper
Diameter % in.
Length 70 turns, 1 in. diameter

Heated Surge Pot

Type 316 stainless steel
2 in, sched., 40 pipe
12 in.

Material of construction
Diameter
Length

Gas-Ligquid Chromatograph

Varian Aerograph Co.
A-90-P

Manufacturer
Model
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TABLE 3 (continued)

EQUIPMENT SPECIFICATIONS

Gas-Liquid Chromatograph (continued)

Type
Part no.

Serial no.
Column

Strip Chart Recorder

Manufacturer

Type
Model no.
Range
Chart no.
Volts/cycles
Serial no.
Nitrogen
Manufacturer
Grade
Air
Manufacturer
Grade

Hydrocarbons
Helium
Manufacturer

Grade
Hydrocarbons

Manual temperature
programmer

90P3

343-026

10% Carbowax, 20 mesh,
on chrome-W

Minneapolis-Honeywell
Regulator Co.

Single pen strip chart
recorder

15307856-01-05-0-000~
030-07136

-0,05 to +1.05 mv

9283~NR

120/60

02003303008

Matheson Gas Products
Extra dry

Matheson Gas Products
Ultra zero
0.1 ppm max.

Matheson Gas Products
zero
2 ppm max.
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ULTRASONIC GENERATOR FREQUENCY CALIBRATION

FIGURE 6
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CHAPTER IV

EXPERIMENTAL PROCEDURE

Operating Conditions

The operating conditions studied in this investiga-
tion were temperatures of 65OOF. to 1050°F., feed rates
of 20 to 600 gms./hr., catalyst loadings of 0,958 to

5.748 gms., ultrasonic frequencies of 26,000 cps and

watts

39,000 cps, and power outputs of 0.05 to 1.3 om. 2 -

The general procedure followed was to obtain the desired
reactor temperature and then feed the cumene at a pre-
determined rate and catalyst loading. Each run was oper-
ated at two different ultrasonic frequencies and in the

absence of ultrasound.

General Procedure

The reactor was purged with air at reaction tempera-
ture after each run for a period of approximately 24 hours
to burn off any carbon deposit and regenerate the cata-
lyst. Calculations indicate (Appendix XIII) that 10 minutes
should be sufficient to burn off the carbon and visual in-
spection of the reactor after regeneration for 30 minutes
indicated it to be free from carbon, Comparison of conver-~
sions in the absence of ultrasound between runs employing
the same catalyst after many regenerations and nearly the
same operating conditions also indicated complete reactiva-

tion. For example, comparing Run No. 14.83 with Run No.
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22.135 shows conversions of 4.5% and 4.2% at feed rates

of 593 gms./hr. and 622 gms./hr., respectively, all other
conditions being identical. Similar checks are observed

in many other runs, for example Run No. 33.23 and 36.53.

The reactor was also purged with nitrogen after each run and
after each air purge in order to avoid the safety hazard of

hot cumene in the presence of air,

Each time the sonic frequency was changed during a
run, the product collected during the first ten minutes was
discarded and the product produced during the second ten
minutes was blended and sampled as representative of those
operating conditions. Previous work has shown that any de-~
crease in catalyst activity during a run of this length of

time could be neglected.

Temperature control. The temperature of the reactor

was controlled by manually adjusting two voltage regulators
which monitored the power input to the heating elements

along the preheater section. The catalyst chamber tempera-~
ture was controlled automatically by an on-off temperature
controller connected in series with two additional voltage
regulators which monitored the power input to the heating
elements along the catalyst chamber. The temperature for
this control point was sensed by a thermocouple located in
the catalyst chamber itself (see Appendix XV). A fifth manu-
ally operated voltage regulator was employed to control a

heating element located on the product discharge piping.
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The heaters were never turned off so that the re-
actor was always at temperature equilibrium. When the
reactor temperature was changed, approximately 24 hours
was allowed for the catalyst bed to again reach tempera-

ture equilibrium.

Feed rate control. The cumene feed rate was con-

trolled by pressurizing the feed tank to 10 psig with
nitrogen and recording the tank level and time at the
start and end of each run. The flow rate was controlled
by the feed flow rotameter, but the rate used in any sub-
sequent calculations was the rate obtained by difference

of the calibrated feed tank level.

Application of ultrasound. Each run was operated

first in the absence of ultrasound and then the ultra-

sonic generator was activated and frequencies of 26,000 cps
and 39,000 cps were irradiated upon the catalyst bed. The
order in which the higher and lower frequencies were em-
ployed was reversed many times throughout this study.

Each run was operated in the absence of ultrasound after
each of the frequency activated samples had been taken as a
check for decrease in catalyst activity from the start to
the end of the run. The analyses of the first and last
sample, i.e., the samples taken in the absence of ultrasound

were always essentially the same,

Sample analyses. In many instances, the gas stream

was fed directly to the gas chromatograph for analysis as
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a check against the liquid sample analysis. In all cases,
both methods of analysis yielded essentially the same
conversion calculation. The analysis of liquid samples

was preferred, because the same sample was injected a mini-
mum of three times into the gas chromatograph as a check

of the analytical technique. The vapor sample, of course,

could be injected only once.

The size of the gaseous sample was controlled by
filling a small tubing coil with the reaction products
and flushing the entire coil contents into the chromato-
graph with helium. Sample size of the liquid was con-
trolled by use of a 10 microliter hyperdermic needle cali-
brated in 0.2 microliters. The analyses of known liquid
samples were duplicated within 1%, indicating sample size

control to be adequate.

Detailed Procedure

The details of the experimental procedure for a typi-
cal run are as follows:

1. Set the reactor air purge rate at 6.0 scfh
employing the air flow rotameter.

2. Adjust the heater controls to obtain the desired
reactor temperature.

3. Adjust the automatic temperature controller set
point to the desired reactor temperature.

L, Allow approximately 24 hours for the reactor to

equilibrate at the desired temperature,
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12.

13.

14,

15.

51

Turn on the hot 0il recirculation pump and ad just
the heater control to maintain the oil at 155-160°C.
Turn off the air purge and purge the reactor with
nitrogen for 20 minutes.

Shut down the nitrogen purge and pressurize the
cumene feed tank to 10 psig with nitrogen.

Feed cumene to the reactor at the desired rate em-
ploying the feed flow rotameter to monitor that rate.
Record the feed tank level and time.

The first product will appear in 5 to 10 minutes.
Discard the product obtained during the first 10
minutes and collect, blend and sample the product
obtained during the second 10 minutes.

While maintaining all other operating conditions
constanc, activate the ultrasonic generator and

ad just it to the desired frequency.

Discard the product obtained during the first 10
minutes and collect, blend and sample the product
obtained during the second 10 minutes.

While maintaining all other operating conditions
constant, readjust the ultrasonic generator to
another frequency.

Discard the product obtained during the first 10
minutes and collect, blend and sample the product
collected during the second 10 minutes.

While maintaining all other operating conditions

constant, shut down the ultrasonic generator.
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17.

18.

19.

20,

21,

22,

52

Discard the product obtained during the first 10
minutes and collect, blend and sample the product
collected during the second 10 minutes.

Record the feed tank level and time.

Shut off the feed and purge the reactor with
nitrogen for 20 minutes.

Shut down the power to the hot o0il heater and

shut down the recirculation pump.

Shut down the nitrogen purge and set the air purge
rate at 6.0 scfh employing the air flow rotameter.
Air purge the reactor for 24 hours at the reaction
temperature prior to starting the next run,
Thoroughly blend each of the four samples obtained
in steps 10, 12, 14 and 16 to insure uniformity
within each sample. Inject a portion of each of the
samples three times into the gas chromatograph and
calculate the conversion., If the calculated con-
version of the samples obtained from steps 10 and
16 do not agree within 3%, discard the run.

(This was never necessary.)

The data sheet employed for this study is shown in

Pigure 7.

Copies of several actual completed data sheets

are included in Appendix XIV,.
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FIGURE 7
DATA SHEET
Hun NoO. Heactor Diameter, cCm.,.
Date Frequency, cps

Catalyst, gms.

Power, watts

Bed Height, cm.

Feed Tank Diameter,

in,

Time

Tank Height, in.

otameter, mm,

Rota, Feed BRate,  gms/hnr
Tank Feed Rate, gms/hr.

eater No, 1

Heater No, 2

Heater No, 3

Heater No

Hot Qil Heater

TI-1, OF,

TI-2, OF,

TI-31 an

TI-4, OF,

TI-5, °F.

TI-6, OF,

TI-7, OF, (Hot 0il)

TC-1, OF,

Ultrasound

W/F, pm cat-sec/em mole

Cumene, %

Benzene, %

Propylene, %

Conversion, X
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CHAPTER V

EXPERIMENTAL RESULTS

Presentation of All Data

All the data collected (Appendix XIV) are presented
herein as plots of conversion versus reciprocal space
velocity. The best curve fit of the data was calculated
for each temperature and frequency employed by the

quadratic regression equation:

x=a+ b (WF) +C (WPF)? (21)

Since the external mass transfer rate is dependent upon
feed rate, the equations of these curves are later em-
ployed to determine conversion at specific reciprocal
space velocities for the calculation of mass transfer co-

efficients.

The three constants obtained for each condition are
shown in Table 4. The plot of the curves showing all the
data points are in Appendix XVI and the plots for each
family of three curves for each frequency are shown for
all the temperatures studied in Figures 8 through 16.

The data points are omitted for clarity. It is noted that
although several of the curves cross at low reciprocal space
velocity, the actual data indicate higher conversions at
higher frequencies in every case. This 1s because the

shape of the gquadratic curves near the origin often does

not precisely fit the data points.
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TABLE 4

QUADRATIC EQUATION CONSTANTS

Temp. cps
OF x 10=3  Power a b x 10° ¢ x 101!
650 39 full ~-0.000959 1.74 -0.91
650 26 full -0.00605 1.76 -1.06
650 - of f -0.00664 1.75 -1.10
700 39 full 0.0309 1.45 0.590
700 26 full 0.0253, 0.923 0.790
700 - of f 0.0205 0.958 0.650
750 39 full 0.0231 7.55 ~3.74
750 26 full 0.0051 6.66 -3.17
750 - of f -0.0054 7.00 ~-3.70
800 39 full 0.0453 5.97 ~-2.32
800 26 full 0.0308 5.32 -1.93
800 - off 0.0226 5.41 -2.09
850 39 full 0.0282 9.92 -5.87
850 26 full 0.0252 9.04 -5.76
850 - of f 0.0258 8.40 -5.60
850 39 half 0.0989 5.01 -2.00
850 26 half 0.0974 4,79 -2.03
850 - of f 0.0258 8.40 -5.60
900 39 full 0.0877 5.33 -1.86
900 26 full 0.0789 4,16 -1.13
900 - off 0.0655 6.26 -3.15
950 39 full 0.0359 7.52 ~-1.75
950 26 full 0.0256 8.76 -4.30
950 - off 0.0255 8.12 =l 42
1000 39 full 0.215 20.3 -39.5
1000 26 full -0.0224 29.4 -75.2
1000 - of f -0.0213 29.8 ~-81.5
Full power = 25 watts
Half power = 12,5 watts
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Conversions obtained at temperatures above 85OOF. de-
creased slightly at higher temperatures at some feed rates
indidicating partial coking of the reactor. Although some
date were collected at 1O5OOF., coking of the reactor and
catalyst at this temperature caused considerable mechanical
difficulty with the apparatus. Therefore, attempts to

study the effect of ultrasound at 10500F. were abandoned.

The gquadratic curves presented herein are employed
for future calculation purposes only and should not be
construed to represent a theoretical model of the reaction

mechanism.

It will be shown that on the upper portion of the
guadratic curves, at low feed rates, external bulk diffusion
is the controlling factor for the reaction rate. On the
lower portion of the curves, at high feed rates, the com-
bined effect of surface reaction and internal pore diffusion

control the rate of reaction.

Although the quadratic curves show a decrease in con-
version at lower acoustical power inputs at low flow rates,
it will be shown later that there is, in fact, negligible
effect on either the mass transfer coefficient, kg, or the

kinetic rate constant, ékaz.
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External Diffusion Controlling

When external bulk diffusion controls the rate of re-
action, the mass transfer coefficient, kg, is the con-
trolling factor. The mass transfer coefficient is calcu-
lated from the following equation derived in Chapter II

and Appendix IV:

6.26 XAf T

kK = ;
& = (/B )in(l + Ya )

(22)

The mass transfer coefficient was calculated at three dif-

ferent feed rates corresponding to reciprocal space velo-

o Bm cat-sec.

om mole The re-

cities of 20,000, 50,000 and 80,00

sults of these calculations are shown in Table 5.

Temperature effect. As is shown in the Appendix VI,

the mass transfer coefficient is an exponential function
of temperature. Therefore, a plot of the logarithm of the
mass transfer coefficient versus temperature should yield
a straight line. This, in fact, is the case as illustrated
in Fipgures 17 through 22. The equations of the straight
lines as obtained by the method of least squares are shown
in Table 6. The calculation of the confidence intervals
shown in Table 6 is demonstrated in Appendix XXII,

As shown in the graphs, the mass transfer coefficients
calculated at 650°F, (616°K.) and 700°F. (644°K.) fall well
below the theoretical curve. The reason for this phenomenon

is because external bulk diffusion no longer controls the
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MASS TRANSFER COEFFICIENT

TABLE 5

f
Temp. cps
Op. X 10"3 Power
650 39 Full
650 26 Full
650 - off
700 39 Full
700 26 Full
700 - Ooff
750 39 Full
750 26 Full
750 - off
800 39 Full
800 26 Full
800 - off
850 39 Full
850 26 Full
850 - off
850 39 Half
850 26 Half
850 - off
900 39 Full
900 26 Full
900 - off
950 39 Full
950 26 Full
950 - off
1000 39 Full
1000 26 Full
1000 - Ooff

Note: Full power

w/FAO =
gm cat-sec,

20,000 om mole

Xa cm.

f g? sec.

0.030 0.0085
0.025 0.0071
0.024 0.0068
0.062 0.0180
0.047 0.0141
0.042 0.0126
0.159 0.0541
0.126 0.0419
0.120 0.0397
0.155 0.0548
0.129 0.0448
0.122 0.0421
0.203 0.0772
0.183 0.0636
0.171 0.0635
0.191 0.0720
0.185 0.0694
0.171 0.0635
0.187 0.0730
0.158 0.0604
0.178 0.0690
0.179 0.0720
0.184 0.0743
0.170 0.0680
0.270 0.1203
0.265 0.2277
0.249 0.1092

25 watts, half power

w/FAO =
gm cat-sec,

50,000 gm mole

cm.
Xap Ker Secs
0.063 0.0073
0.056 0.0065
0.053 0.0061
0.118 0.0149
0.091 0.0113
0.085 0.0105
0.307 0.0466
0.259 0.0379
0.252 0.0367
0.286 0.0445
0.249 0.0377
0.241 0.0363
0.378 0.0656
0.333 0.0588
0.306 0.0502
0.299 0.0489
0.286 0.0462
0.269 0.0430
0.308 0.0526
0.259 0.0426
0.300 0.0509
0.368 0.0683
0.356 0.0654
0.321 0

12.5 watts

L0574

-

w/FAO =
gm cat-sec,
80,000 =m mole

XAf , cm.
g? sec.
0.080 0.0059
0.067 0.0049
0.063 0.0046
0.185 0.0154
0.150 0.0122
0.139 0.0112
0.388 0.0392
0.335 0.0325
0.318 0.0304
0.374 0.0389
0.333 0.0336
0.322 0.0322
0.446 0.0511
0.380 0.0413
*0.339 0.0357
0.372 0.0402
0.351 0.0373
0.339 0.0357
0.395 0.0451
0.339 0.0370
0.365 0.0407
0.526 0.0696
0.451 0.0559

0.392 0.0463 o

- - ~
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TABLE 6
CONSTANTS OF THE EQUATION OF MASS TRANSFER COEFFICIENTS
AS A FUNCTION OF TEMPERATURE

General Equation: 1log kg = bT + a

w/FAO f x 99% Confidence 95% Confidence 90% Confidence Approximate
Interval Interval Interval Confidence
gm_cat-sec 1073
_gm mole Ccps a b a b a b a b a b
80,000 - =2.,66 0.00169 0.05 0,00007 0.03 0.00004 0.02 0.00003 - -
80,000 26 =2.75 0.00185 0.28 0.00038 0.15 0.00021 0.11 0.00015 75% 90%
80,000 39 -2.80 0.00203 0.31 0.00042 0.17 0.00023 0.12 0.00017 90% 97%
50,000 -  =2.74% 0,00193 0.19 0,00026 0.10 0.00014 0.08 0.,00011 - -
50,000 26 =2,71 0.00190 0.39 0.00054 0.21 0.00029 0.16 0.00022 30% 25%
50,000 39 -2.32 0.00146 0.28 0.00043 0.15 0.00023 0.11 0,00017 97% QU
20,000 - =3.39 0.00294 0.05 0.00008 0.03 0.00005 0.02 0.00004 - -
20,000 26 =3.36 0,00293 0.20 0.00024 0.12 0.00015 0.09 0.00011 52% 15%
20,000 39 =2.99 0.00253 0.31 0.00013 0.19 0.00008 0.14 0.00006 99% 99%

89
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rate of reaction at these low temperatures. 1In fact,

even at these low flow rates, surface reaction is so slow

at 650°F. and 7OOOF. that it becomes the controlling fac-
tor in the overall reaction rate, At above 850°F. (727OK.)
surface reaction rate is very rapid and external bulk diffu-

sion controls the rate of reaction.

Ultrasonic effect. The family of three curves show-

ing each frequency is plotted at the three feed rates in
Figures 23, 23A and 24, 1In all cases, the mass transfer
coefficient and hence the reaction rate is increased with
the application of ultrasound. The mass transfer rate

also increases at the higher frequencies, For example,

o Em cat-~-sec,
gm mole

at a reciprocal space velocity of 80,00 and
a frequency of 39,000 cps, the mass transfer coefficient
is increased by 37% at 1000°F. The increase of mass trans-

fer rates at other conditions are shown in Table 7.

Since in this range of feed rate and temperature re-
action rate is directly proportional to the mass transfer
coefficient, the results illustrated in Table 7 also apply
to reaction rate,

At high feed rates and low temperatures where surface
reaction begins to control the rate of reaction, high fre-
gquency sound waves appear to have a much greater effect on
the reaction rate than at higher temperatures where mass

transport controls. This phenomenon is indicated in the
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TABLE 7

INCREASE IN MASS TRANSFER COEFFICIENT AT SEVERAL FEED
RATES, TEMPERATURES AND ULTRASONIC FREQUENCIES

W/R %
om cat-sec. Temp. , £, Increase
gm mole °F. cps Power of kg
80,000 650 26,000 Full 2.0
80,000 850 26,000 Full 6.2
80,000 850 26,000 Half 9.7
80,000 1000 26,000 Full 9.6
80,000 650 39,000 Full 2.2
80,000 850 39,000 Full 20.5
80,000 850 39,000 Half 18.2
80,000 1000 39,000 Full 36.7
50,000 650 26,000 Full 2.7
50,000 850 26,000 Full 1.9
50,000 850 26,000 Half 0.7
50,000 1000 26,000 Full 1.3
50,000 650 39,000 Full 35.0
50,000 850 39,000 Full 19.7
50,000 850 39,000 Half 13.7
50,000 1000 39,000 Full 9.5
20,000 650 26,000 Full 5.7
20,000 850 26,000 Full 5.4
20,000 850 26,000 Half 3.7
20,000 1000 26,000 Full 5.2
20,000 650 39,000 Full 40,4
20,000 850 39,000 Full 26 .4
20,000 850 39,000 Half 28.8
20,000 1000 39,000 Full 16.8
Full power = 25 watts
Half power = 12,5 watts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

data of Table 7 at reciprocal space velocities of 20,000

£gm cat-sec.
gm mole

indicate that ultrasound has a greater influence upon pore

and frequencies of 39,000 cps. These data

diffusion and surface reaction rate than upon external

mass transport.

The data points on the graphs represented by triangles
are those obtained with the ultrasonic generator operating
at half power. Since these points fall on the theoretical
curve developed for full power within the 90% confidence
interval, it is concluded that power input has no effect
on the external mass transfer rate for the range of power

input studied in this research,

Surface Reaction and Pore Diffusion Controlling

Reaction rate model. The reaction design equation

for surface reaction controlling and propylene not ad-

sorbed as derived in Chapter 1l is as follows:

uo_y 1 1) (1+Xp8)  Xa

AL PE TS B Cw Tt S (23)
co| L, ras) 1 (1-£x4%)  Xa
Alzs3 M g s ~ 232 I - 82

where,
1 1

¥ = + (24)
€ Lk K A'fT € Lk,
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_ 2 KR
= CTHE,7T © ELk,K, (25)

The literature values of K, KA and KR are substituted into
the surface reaction rate equation and the values of €Lk2
are calculated at each temperature as described in Appendix
VIII. All the theoretical curves and the associated data
points are also shown in Appendix VIII, and the data do,

in fact, fit the theoretical model very well.

Ultrasonic effect. When surface reaction controls

the rate of reaction, the application of ultrasound in-
creased that rate by increasing the kinetic rate constant,
€Lk2, which is directly proportional to the overall rate
of reaction. The evaluation of the effectiveness factor
based upon physical characteristics of the catalyst is shown
in Appendix VI,

The graphs of conversion as a function of reciprocal
space velocity as calculated by the reaction rate model
are as illustrated in Figures 25 through 33, As illustrated
by the graphs, the conversion is increased in the presence
of ultrasound at every temperature studied. At temperatures
above 900°F., the decrease in conversion at some flow rates
again indicates possible coking of the reactor.

Table 8 shows the increase in the factor £Lk2

at several ultrasonic frequencies and temperatures.
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INCREASE OF KINETIC RATE CONSTANT AT SEVERAL

TABLE 8

TEMPERATURES AND ULTRASONIC FREQUENCIES

% Increase of €L ko

9k

26,000 cps

36%
20%
9%
b

TABLE 8A

39,000 cps

162%
86%
39%
22%

CONSTANTS OF THE EQUATIONS OF KINETIC RATE CONSTANTS

General Equation: log ELk2 = b{——} +

Frequency, cps

a
99% confidence
95% confidence
90% confidence
b

99% confidence
95% confidence
90% confidence

AS A FUNCTION OF TEMPEBRATURE

No
Ultrasound
-1.141
interval 1.062
interval 0.677
interval 0.531
~4812
interval 1343
interval 857
interval 671

Approximate confidence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
T

26,000

~1.637
1.0b2
0.664
0.521
~4115
1318
840
659

65%

a

39,000

~2.534
0.860
0.549
0,430
~2801
1088
69k
5

97%
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For example, at 650°F. an ultrasonic frequency input of
39,000 cps increases the catalyst effectiveness factor

by 162%.

Activation Energy

Arrhenius_model. The activation energy, E, is

calculated from the Arrhenius Law, employing the com-
bined parameter, Lkz, as the reaction rate constant.

I

ELk, = keTRT (27)

Figures 34 through 37 show the logarithm of the
parameter ékaz plotted against reciprocal temperature.
These plots yield a straight line, the equations for
which, calculated by the method of least squares, are as

follows and as shown in Table 8A.

. 1
No ultrasound: log £Lk2 4812 TOR -1.141 (28)

1

26,000 cps: log ELk, = -4115 —=— -1.637  (29)
TOR,
. _ 1
39,000 cps: log ELk, = -2801 —on -2.53%  (30)
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These calculations, which are described fully in
Appendix XVII, yield the values for the observed apparent

activation energy as shown in Table 9.

The data in Table 9 indicate that both the observed
apparent activation energy and the observed apparent
frequency factor decrease as the ultrasonic frequency
rises. However, an analysis based on the Thiele modulus
would indicate that if ultrasound improves the effective-
ness factor, then the apparent activation energy should
rise and approach the real activation energy based on

k2 since & becomes closer to one,

To determine the réal effect of ultrasound on

and k it is suggested that further studies with small

2’
particle sizes be made (£—~1) to separate these effects.
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EFFECTIVENESS FACTOR vs. TEMPERATURE
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ACTIVATION ENERGY AND CHARACTERIZATION FACTOR

Frequency

Cps

No
No
No
No
No
No
No
No
26,
39,

Ultrasound
Ultrasound
Ultrasound
Ultrasound
Ultrasound
Ultrasound
Ultrasound
Ultrasound
000

000

Activation Character.
Energy, E Factor, kg,
kcal gm moles
gm mole gm cat-sec., Investigator
11.0 - Eberly 101
34,0 - Bezre5
27.0 - Spozhakina?6
18.0 - Romanovskiilo2
3.0 - Panchenkov50
13.2 0.0021 Rase64
5.4 0.0700 Garver<?
12.1 0.0723 Lintner
10.4 0.0231 Lintner
7.1 0.0029 Lintner
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Table 9 also illustrates the values of activation
energy and characterization factor obtained by several
other investigators. Considering the wide range of
values obtained by other observers, the value calculated
by these data appear to be reasonable, It is interesting

to note that the total ultrasonic power input to the re-

N kecal

m which bracketed

actor ranged between 4,3 and 103.

the activation energy.

Ultrasonic effect. As shown in Figure 37, the value

of the effectiveness factor parameter, €IM2, increases
with increasing frequency. At low values of reciprocal
temperature or high values of temperature, the values of
€Lk2 become equal at all frequencies because surface re-
action rate no longer controls. At high temperatures,
surface reaction rate is very rapid and bulk diffusion
from the main gas stream to the surface of the catalyst

controls the overall rate of reaction,

The values of € Lk, obtained at half the power output

2
of the equipment are plotted as triangles on the graphs
for frequencies of 26,000 cps and 39,000 cps. The plots
indicate that this decrease in power input has negligible

effect on the value of ﬁkaz.

Summary of Results

In general, all the data lead to identical conclusions.

Ultrasound increases the rate of reaction ahd the reaction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103

rate increases with increasing frequency. Power input
has negligible effect on the rate of reaction for the
range studied.

Throughout the range of feed rates and temperatures
studied, external bulk diffusion controls at low feed
rates and high temperatures and conversely, surface reac-
tion controls or pore diffusion at high feed rates and low
temperatures. These phenomena are illustrated in Figure 38.

It should be noted that when the dimensions of E?Lkz

gm moles t cm.
gm cat-sec, sec.

Appendix XVIII, it can be plotted as a function of tem-

are transposed from , as shown in
perature as illustrated in Figure 38. In this figure,
€Lk2 is described as the intrinsic reaction rate con-
stant, ks. The scale of the abscissa has been altered to
correspond to kg, the mass transfer coefficient scale.
This alteration is necessary because the ékaz term is

not a function of k2’ the forward rate constant, alone,
but also of € and L, the catalyst effectiveness factor and

the concentration of active sites on the catalyst surface.

Acoustic Streaming

This research shows for the first time that the ap-
plication of ultrasonic vibrations to a solid catalyzed
gas reaction results in an increased reaction rate with in-
creasing frequency as a result of increased diffusion rates.

The diffusion rate is increased both externally from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-0.8

-1.6

-1.8

FIGURE 38

BATE CONSTANTS vs.

TEMPERATURE

104

Surface| eaction

Contrplling

N

.2
3.4
= 80,000
bExternal Difflusion 3.6
Controlling :
b
a
- -3.8
a = no uljtrasound
b = 26,000 cps
c = 39,000 cps
4,0
600 650 700 750 800 850
Temperature, k.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Loz k



105

bulk gas stream to the catalyst surface and internally
within the catalyst pore.

20 have independently offered a

Fogler and Lund
mathematical explanation for this phenomena which they
have identified as acoustic streaming. Their mathemati-
cal model states that within a duct, through which there
is a concentration gradient, mass transfer occurs by
molecular diffusion alone, However, when ultrasound is
applied to the duct, small vortex cells are set up in which
the gas moves circularly similar to eddy currents. This
forced convection within each cell coupled with diffu-

sion between cells results in a faster transport rate

within the duct than with diffusion alone,

If one assumes the duct to be a tubular reactor shell
or the pore of a catalyst, this model explains the results

and conclusions of this research.

Thermal Effects

The application of acoustic energy to a catalyst bed
may cause "hot spots" within the bed and thereby result
in localized accelerated reaction rates. This thermal ef-
fect alone or together with increased diffusion rates may
explain the increase in reaction rate observed in this re-

search,
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CHAPTER VI

CONCLUSIONS

The effect of ultrasonic vibrations on hetero-

geneous catalysis may be summarized as follows:

1. All the data collected at all temperatures and
frequencies yield quadratic curves when plotted
as conversion versus reciprocal space velocity.

2. In the area where external bulk diffusion con-
trols the rate of reaction, the logarithm of the
mass transfer coefficient is a linear function
of temperature at all ultrasonic frequencies.

The mass transfer coefficient and, therefore, the
rate of reaction increases with increasing ultra-
sonic frequency.

3. In the area where surface reaction and internal
pore diffusion control the rate of reaction, the
data fit the reaction rate model previously de-
rived by Garver at all frequencies and temperatures.

4, The kinetic rate constant, ékaz, increases with
increasing frequency.

5. The activation energy calculated from these data
decrease with increasing frequency.

6. Power input appears to affect the rate of reaction

in the plots of conversion versus reciprocal space
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velocity at low feed rates. However, in the logarith-

mic plots of mass transfer coefficient and kinetic

rate constant versus temperature, the effect of power

is not statistically significant for the range studied.
7. The increases of mass transfer coefficients and kinetic

rate constants obtained at a frequency of 39,000 cps

are statistically significant within confidence in-

tervals of 90%. The results obtained at 26,000 cps

lie within confidence limits of 50 to 60%, but the

raw data lead this author to believe that the lower

frequency also increases the rate of reaction.
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CHAPTER VII

RECOMMENDATIONS

This research demonstrates for the first time the
guantitative effect of ultrasonic vibrations on the rate
of a s0lid catalyzed gas reaction. It further demon-
strates that this reaction rate is increased in the reac-
tant feed flow range where external bulk diffusion con-
trols and in the range where internal pore diffusion is
the controlling factor. Increasing ultrasonic frequency
results in faster reaction rates, and power input in the
range studied has negligible effect. These phenomena

have never previously been quantitatively demonstrated.

It is this authort's hope that this research will in-
fluence other investigators to continue studies of the
effect of ultrasonic vibrations on heterogeneous catalyzed
reactions. The areas recommended for further study are
as follows:

1. Employ the use of powdered catalyst (Appendix XII)
to obtain an absolute value for the forward reac-
tion rate constant, kz. The absolute values of
the effectiveness factor, €, could then be calcu-
lated at various operating conditions employing
standard catalyst. It would then be possible to
determine the effect of ultrasound on each parameter

alone,
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11 cps and power inputs

2. Study frequencies up to 10
to 120 E%%%g to expand the range of this study.
It is now possible to obtain these conditions
with modern ultrasonic equipment, but this equip-
ment is, of course, considerably more expensive.

3. Study the effect of ultrasonic vibrations on
systems other than the cumene cracking reaction
and silica-alumina catalyst.

L, Investigate the possible thermal effects on the

datalyst due to the application of ultrasonic

energy.
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PHYSICAL PROPERTIES OF CUMENE, BENZENE AND PROPYLENE

The overall chemical reaction and some of the physi-

cal properties of the reactants and products, both pub-

lished and calculated, are as follows:

Reaction
06H5——CH—( CH3)2 = Oyl + CHB—CH=CH2
A —_— B + S
Cumene —— Benzene and Propylene
Physical Properties
Cumene Benzene Propylene
gms
M, Zm mole 120.19 78.11 42,08
SPG 0.862 0.879 -
mp, °c. -96.9 5.4 -185
BP, °C. 152.5 80.1 -48
Cp at 650°F., =S8t 0.588  0.541 0.624
o] cal
CP at 1050°F., m-0C . 0.736 0.682 0.756
- 1
Cy at 650°F., %55~ 0.571  0.515 0.576
1
C, at 1050°F., ——-grff%—‘ 0.719 0.656 0.708
TC, oK. 636.0 562.6 365.0
b g_z_rcri—mg_(ﬂ_e 162.6 96.0 66.6
PC, atm. 32.2 48,6 45,5
3
cm
VC, Zm mole 357 260 181
v, A 6.43 5.27 L,678
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Cumene Benzene Propylene
5i/K’ %K, 490 Lio 298.9
My GBI 315x107° 312x107% 233x107°
Var» Vase A - 5.85 5.554
ZAR/K, £as/Ks K. - Léh 383
KT¢s0/€ ans KTgs0/Epg s %K. - 1.328 1.608
KTy 050/Eans KPqgso/Engs Ko - 1.808 2.190
[JQAQ]65O,[flA$]65O - 1.262 1.165
[ 48] 105072 48] 1050 - 1.114 1.043
|Pag] 6507 [Pag] 6507
[Pag] 650 ggé? 0.1141 0.0956 0.1416
Pag] 10507 [Par] 1050
[Pas] 10507 ggé% 0.2044 0.1722 0.2513

Calculation of Critical Temperature of Cumene by the
6

Method of Edul jee 2

lOOTb

N = 1
T YTZYE (31)

T, = normal boiling point = 152.59. = 425,5%,

Edujlee's contributions:

YAy = o\ gy + 1ZZXTTH + 30 pg=g + A 1g3ng
+ Dopp
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ZXT = Edul jee atomic contribution by carbon
= =55.32
ZXTTH = BEdul jee atomic contribution by hydrogen
= +28.52
ZETC:C = Edul jee structural contribution by carbon-

carbon double bond
= +56.61
ZxTRing = Edujlee structural contribution by benzene
ring
= +53.52
KXTP = Edul jee position contribution by two branches
on the second carbon atom
= -1.42
LA, = 9(-55.32) + 12(28.52) + 3(56.61) + 53.52 - 1.42
= 66,29

o _ 100(525.5) _ 0
DC = 6. 59 = 6427K,

Calculation of Critical Temperature of Cumene by the

56

Method of Nokay

log T 1.2806 + 0.2985 log S + 0.62164 log Tb (32)

C
S = specific gravity of liquid = 0.862 gm§3
T, = normal boiling point = 152.5%C, = 766.9°R.
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log T, = 1.2806 + 0.2985 1og(0.862) + 0.62164 log(766.9)
= 1.2806 + 0.2985(-0.06449) + 0,62164(2,88474)
= 1.2806 - 0.01925 + 1.79327 = 3.05462
T, = 1134°R. = 674°F. = 357°C. = 630°K.

Calculation of the Molar Volume of Cumene at the Normal

Boiling Temperature by the Method of Kopps 56
Vi = Mg + 128V + Viging (33)
VbC = Kopps' additive atomic volume for carbon
= 14.8
VbH = Kopps'! additive atomic volume for hydrogen
= 3.7
— ' - 0 -
VbRing = Kopps! additive atomic volume for benzene
= =15.0
Vy = 9(14.8) + 12(3.7) -15.0
3
_ cm.
= 162.,6 om-mole

Calculation of the Critical Pressure of Cumene by the

Method of Edul jee

I
_ 10 M
o T (TP Y
M = molecular weight = 120,19 _g%g___
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Eduljee's contributions:

LAp = 90pc + 120 py + D iy + Dyp

ZXPC = Edul jee atomic contribution by carbon
= =9.35

ZXPH = Edul jee atomic contribution by hydrogen
= +16,20
= Bdul jee structural contribution by

benzene ring

= +84.5
ZBPP = Edul jee position contribution by one

branch on second carbon atom

= -1,6
L Ap = 9(-935) + 12(16.20) + 84,5 - 1,6 = 193.15
120.19 x 10"

P¢ = T(193.15)2

= 32.2 atm.

Calculation of the Critical Volume of Cumene by the

Method of Herzog

21.75 T¢

V, = (35)
C PC
PC = 32,2 atm,
_ o)
TC = 636.0°K.
_ 21.75(636.0) _ cm. 2
Ve = 32.2 = k30 gm-mole
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Calculation of the Critical Volume of Cumene by the

Method of Benson

Ve = Vb(o.422 log Py + 1.981) (36)
3
_ cm.
v, = 162.6 Zm-mole
Po = 32.2 atm.

V. = 162.6[0.422 log (32.2) + 1.981]

= 162.6 (2.195)

_ cm.J
= 357 gm-mole

Calculation of Lennard-Jones Parameters for Cumene

T = 1.18v7 = 1.18(162.6)" = (1.18)(5.45)

A b
= 6,43 A (37)

Ea Tc 636.0 _ o

K- =130 = 1.30 = #90°K

Calculation of the Molar Volume of Benzene at the Normal

Boiling Temperature by the Method of Kopps

Ve = Ve + Oy * Viging (38)
VbC = Kopps'! additive atomic volume for carbon
= 14.8
VbH = Kopps! additive atomic volume for hydrogen
= 3.7
VbBing = Kopps' additive atomic volume for benzene ring

= -15.0
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Cm3
Vy = 6(14.8) + 6(3.7) - 15.0 = 96.0 :

gm-mole

Celculation of the Molar Volume of Propylene at the

Normal Boiling Temperature by the Method of Kopps

Vi = Ve + ey (39)
VbC = Kopps'! additive atomic volume for carbon
va = Kopps! additive atomic volume for hydrogen
= 3.7
V. = 3(14.8) + 6(3.7) = 66.6 om0 _
b * ) - *Y gm-mole

Calculation of the Critical Viscosity of Cumene by the

Method of Uyehara and Watson

_61.6 Mgt

Mg = ——;ETZ———' (40)
_ ms
M= 120.19 ES
T, = 636.0°K,
_ cm. 3
Ve = 357 gm-mole

(61.6)(120.19) (636.0)"
Mg

= = 338 micropoise

(357)%

-6 Zm
338 x 10 cm-sec.

i

or, alternatively

U, = 1270 m%pg”
.=

TC e

PC = 32,2 atm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

3

% o
Mg = &1.70)(}2;13;,/6(32.2) = 292 micropoise

-6 __gm__
292 x 10 cm-secC,

]

Calculation of the Combined Lennard-Jones Parameters for

Cumene, Benzene and Propylene

T, +V% o
T, = A ; R _ 6.43 : 5:27 - 5,85 A (L1)
v LG 2
A +'g 6.43 + 4.678 _
Vs = ) 5 = 5.554 A (L2)
i 1 1
E—ﬁ“ﬁ = t%)(%} = = o0y (ano)] 7 _ () c0p (43)

Sl
1}
I

[(490)(298'9)] 2 - 3830K. (4h)

ol
K “|\K K/

KT 616°K. _ _
E___l-. = m = 1. QAH} 650 = 1.262

(o]

KTp _ 839°K.
EnR LoLoK,

i

-
(o 0]
o
€o]

Eps 3839K.

0
KTp . 839 K. - 2.190;

KT . 616°K. - 1.608;[QAS} 650 = 1-165
NS 38390K. {
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Calculate the Diffusivity of Cumene in Benzene at 650°F.

ol

D = 0.0018583 Ma T M (4

AR 7 Q 5)
Pp VAR AR

i

1 1
) 0.0018583[(616)3(120.19 * 78.11J
(1.0)(5.85)%(1.262)

[DAR]65O = 0.0956 ggé?

Calculate the Diffusivity of Cumene in Benzene at 105OOF.

1
1 1] 2
Pk A
p. = 0.0018583 (5)
AR ~ 2l
pT<V'AR§2AR
7%
311 1 J
- 0.0018583[(839) (120-19 ¥ 78.11)
) (1.0)(5.85)2(1.11k)
D = 0,1722 cm. 2
[ Aﬁ]1050 o sec.

Calculate the Diffusivity of Cumene in Propylene at 6500F.

T%L+iﬁi
p = 0.0018583 [ Mp Mg 46)
AS - ZQ
PpNps™) g
1
3(_1 1 |2
_ 0.0018583 [(616) (120.19 i 42.08)]
) (1.0)(5.554)2(1.165)
— cm.2
[DAQ 650 0.1k16 sec.
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Calculate the Diffusivity of Cumene in Propylene at 1050°F.

ol il
D, = 0.00185832 Mp Mg (L46)
Pp Vs QAs
%
3 1 1 ﬂ
_ 0.001858J;839) (120.19 * §7.08
- (1.0)(5.554)=(1.,043)
= 0.251 om. 2
[Das] 1050 = ©-2513 Geo,

Calculate the Diffusivity of Cumene in Benzene and

Propylene
1 -Y
A S Y (47)
AB Yg Yg
5. " b,
AR AS

Y, + Y, + ¥, =1

at g T Ig
Iz = 1g
Y, + 2 = 1
1 - Yy _
Y ~ I8 = v
1 - XYp _ 2
Dap T-Yp  T-Y% T, 1
2Dpp  2Dpg  Dap  Dyg
At 650°F,
2 2
[DAB] 650 = 1 L 1 S 1
Daz 650  Dam 650 0-0956 * 0.141

2
Ci.
0.1141 Sec.

i}
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At 1050°F.

2 2

[PAB]lOSO = 1 " 1
Dar 1050  Pas 1050

0.1722 ¥ 0.2513

2
cm.
0.2044 v

i1

Calculation of the Heat Capacity of Cumene by the Method
29

of Hougan, Watson and Ragatz

U.0.P. characterization factor.

4
(TR) L
= 8
K ° (48)
T, = boiling point at 1 atm. = 767°R.
G = specific gravity at 60°F., = 0.862
_ (76 _
K = -6:.2_8%%_— 10.62

Empirical eguation,

Cp = (0.0450K-0.233) + (0.440 + 0.0177K) x 1077¢

~0.1530 x 10-042 (49)

At t = 650°F.

Cp = (0.0450)(10.62)-0.233
+  0.440+(0.0177)(10.62) (650 x 10‘3)
- (0.1530)(650)2 x 10~°
cal
CP = 0.588 gm_oc.
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2.0
Cy = Cp - an mole="C. - o571 225~ (50)
120.19 —2mS__ BT
gm-mole
At t = 1050°F,
Cp = (0.0450)(10.62)-0.233
+  0.440+(0.0177)(10.62) (1050 x 10‘3)
- (01530)(1050)? x 10~°
G = 0.736 cal
P ° gm“ Co
cal
Gy = Cp - 2% Em mole=0C. = 0.719 225 (50)
ms *
120.19 EE%ESTE

Calculation of the Heat Capacity of Benzene by the Method
29

of Hougan, Watson and Ragatz

U.0.P. characterization factor.

_ (Tg) (48)
K= G
Ty = boiling point at 1 atm, = 636°R.
G = specific gravity at 60°F. = 0.879
_ (636) _
K=0omgp =978
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Empirical equation.

Cp = (0.0450K-0.233) + (0.440+0.0177K) x 10—3t

- 0.1530 x 10-0¢2 (49)

At t = 650°F.

Cyp (0.0450)(9.78)-~0.233

il

+  0.440+(0.0177)(9.78) (650 x 1072)

- (0.1530)(650)2 x 107°
_ cal
CP = 0,541 Emfoff."
2.0 cal 5
- gm-mole-"C, _ _cal
Cy = Cp - ogqy —ams_— = 0:315 5,757, (50)
gm-mole

At L = 1050°F.

Cp (0.0450)(9.78)~0.233

+ 0.440+(0.0177)(9.78) (1050 x 1072)

- (0.1530)(1050)2 x 10™°

cal
0.682 Zn-0C

Q
!

cal
C, = CP - z’ogm mole-°C., = 0.656 cal (50)

m-9C,
78,11 205 &
gm-mole
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Calculation of the Heat Capacity of Propylene by the

Method of Hougan, Watson and Ragatz29

Empirical equation.

Cp = 1.97 + (27.69 x 10‘3)T - (5.25 x 10‘6)T2

At T = 650°FP. = 1110°R,

C.o= 1.97 + (27.69 x 1072)(1110)

p
- (5.25 x 1070)(1110)%

cal
26.237 Timole-YC. . 0.624 —SaL

P L Zms gm-0C,
12,08 Eﬁjﬁaig

2.0 cal
*~ gm mole--C. _ 0.576 _cal

v P~ _gms gm=-0C,
42.08 BIE—

At T = 1050°F. = 1510°R.

Co = 1.97 + (27.69 x 1073)(1510)

- (5.25 x 107°)(1510

1
31.811 —L82 ]
gm mole-~C. - g 6 —C&
P Lo o8 —BWS .75 gm—ﬁc.
: gm-mole

Q
il

cal
em mole-°C. _ 0.708 cal

2.0
C,.. = C =
v P oms gm-C,
42.08 E;:HETE
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PHYSICAL PROPERTIES OF SILICA-ALUMINA CATALYST
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PHYSICAL PROPERTIES OF SILICA-ALUMINA CATALYST

The catalyst employed in this study was TCC

(Thermofor Catalytic Cracking) Silica-Alumina Cracking

Catalyst, supplied by the Mobil Chemical Company,

Paulsboro Catalyst Plant, Paulsboro, New Jersey. The

catalyst is designated as "Durabead 1" by Mobil.

The physical properties and Tyler screen data for

the catalyst are as follows:

Loose bulk density
Packed bulk density
Particle density
True solid density

Average diameter

Surface area

Average pore diameter

Effective pore diffusivity

Pore volume

Internal void fraction
External void fraction
Superficial surface area
Equivalent pore radius

Tortuosity factor

0.74 §§?3

= 0,82 AMS

cm,3

CHI.3

= 2.32 gms__

cm,3
0.358 cm.

2
250 x 1o¥ em.=
£m
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Total surface of porous

Radius of catalyst pellet

127

i

0.179 cm.

2
320 x 1ot em.=

catalyst S, = 3
cm.

Tyier Screen Analysis Wt. %
On 4 mesh 2.5
On 5 mesh 27.0
On 6 mesh 43,4
On 7 mesh 22.2
On 8 mesh 3.9
On 10 mesh 0.6
Through 10 mesh 0.3
99.9

Calculation of Superficial Area of Catalyst Surface, a

2
Catalyst Area/Pellet = 4Tr?, 52+ (53)
Catalyst Wt./Pellet = fT 3 _em.3_
J ' rp’ peliot
gms. Pellet I
[ P ecm,3 Pellet} (54)
_ 4 3 gms
= 31Trp0p Pe1tet
cm.
a = (47TrP Pellet) = 3 em.? catalyst
= AL rop om, catalyst
(BTTrP/oP Soiior) TpPp 8D y (55)
Fp cm. 3
2
a = 3 = 13,10 oM catalyst
gm., catalyst

(0.179 cm.)(1.28 %%%;)
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CORTINUOUS REACTION MODEL

In solid-catalyzed gas-phase reactions, it is
assumed that the reaction takes place at the gas-solid
interface, The interface lies on the external surface
of the catalyst and on the internal surfaces within .the
catalyst pore. The overall rate of reaction depends upon

the availability of these surfaces.

For the continuous reaction model, it is assumed
that the reaction mechanism consists of seven distinct
processes. That process, or combination of processes,
which are significantly slower than the others, control
the rate of reaction. The seven processes involved in
the catalytic cracking of cumene are described below

and illustrated in Figure 39.

Gas 'ilm Diffusion of Reactants

heactant cumene (A) diffuses from the main gas stream

to the external surface of the catalyst.

Pore Diffusion of Reactants

Reactant cumene (A) diffuses from the external sur-
face of the catalyst (mouth of the catalyst pore) into

the catalyst pore).

Adsorption of Reactants

Reactant cumene (A) is adsorbed onto the surface of
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the catalyst.

Surface Reaction

Adsorbed cumene (A) reacts to form adsorbed benzene
(R) and propylene (S) which is not adsorbed. This single
site reaction mechanism was shown in previous work by

Garver to be the actual mechanism occurring.

In the duval site reaction mechanism, both products

are adsorbed.

Desorption of Products

Adsorbed product benzene (R) is desorbed from the

catalyst surface.

Pore Diffusion of Products

Products benzene (R) and propylene (S) diffuse from
the catalyst pore to the external surface of the catalyst

(mouth of the catalyst pore).

Gas IMilm Diffusion of Products

Products benzene (R) and propylene (S) diffuse
from the external surface of the catalyst into the main

gas stream.
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FIGURE 139

CONTINUOUS REACTION MODEL

Main Gas Film
Gas | ~ T Catalyst Pore
Stream

N =
N

For reaction occurring on
interior surface of catalyst

Main | Gas Film ® ®

(ras
Stream

© B0
' ®

@

&
@®|

For reaction occurring on
exterior surface of catalyst

Catalyst Pore

e o o e e - - - w— — —

Distance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX IV

GAS FILM DIFFUSION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

GAS FILM DIFFUSION

The gas film diffusion of cumene (A), benzene (R)
and propylene (S), which is process one and seven of the
reaction mechanism, can be handled mathematically as a
simple diffusion process. LReactant A (cumene) diffuses
from the main gas stream to the catalyst surface and
products R and S (benzene and propylene) diffuse from
the catalyst surface into the main gas stream. These

phenomena are illustrated in Figure 40,
The diffusion rate is calculated as follows:

Material Balance on A

Input - Output + Generation = Accumulation
Input = rate of mass transfer of A into differential

element across rectangular surface at z

gm-moles gm-moles

2 —
= (Azcm )(NAz cml-sec. ) = LWNAZ sec. (56)

Output = rate of mass transfer of A out of differ-
ential element across rectangular surface
at z + dz

_ 2 a m-moles
= (A cm )[NAZ + 3z Na,)dz cmz—sec.}
dNAg gm-moles
= LW[NAZ+ 1s dz} Sec. (57)
Generation = rate of formation of A within differ~

ential element between z and z + dz
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FIGURE 40

GAS FILM DIFFUSION OF A, R, AND S
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nil (reaction takes place at catalyst
surface only, not within differential

(58)

element)

Accumulation = rate of accumulation of A within
differential element between z and z+dz
= nil (steady state) (59)
Substituting,
‘dNAZ
LWNAZ - LWNAZ - LW dz dz = 0
dNa,
- Lw—az~dz = 0
- dNAz (60)
dz
Define Fick's Law for System
dxp
NAZ = CDAB—S-;- + YA(NAZ + NBZ) (61)

From the stoichiometry of the reaction, A —= R + 5,

one mole of A yields one mole of R plus one mole of S;

therefore, A diffuses at half the combined rate of R + S,

and

NAZ =

Na, = -zNB,
NBZ = —ZNAZ
AYA
—CDAB—gjf + YA(NAZ - ZNAZ)
IYA
CDAB_:YE - YANAZ
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Yy
Na (1 + Ya) = -cbpg gz

cDaR Y,
NA, = - TT+%s) 32

chap d¥p
T (1+Yp) dz

1

NAZ

Substituting,

- = -3z |~ (1+Y,) dz

dNA, d [ cDpgp d¥al| _
dz -

= 0 (62)

d [ ecDap dYa]
dz|(1+Ya) dz |

Integrating,

d | cDpp dYa _
dz|(1+Y,) dz | °1

cDpp d¥p
(1+Y,)dz ~— 4

Since cDA is constant at constant pressure and

B
temperature,

da¥a q
Dpp | T1y,) - ©1 ) 42

CDABln( 1+Yp)

n

c12 + Co

Boundary Conditions

At z = 0, YA = YAb

At z =&, Yp = Ypg
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eDaRlIn( 1+YAb) c2

cDABIN(1+Y¥a) = ¢18 + ¢

c1d + cDABIN(1+Yap)

_ cDABIn(1+Ypg) _ cDaApln(1+YAy)

o S 5
= CDAB 1, (1+Y¥Ag)
D
cDppln(1+Yp) = EE%Q 1n[%%}%%§%} z + cDppln(1+YAp)
b

In (1+Ya) _ z y (1+YAg)
(1+¥ap) 5 " (1+¥ap)

(1+4Yp)  (14Yp )
(1+Ya,)  (14Yay)

| NN

(1+YAp) 4
(1+YA) = m% (1+YAS) Sy
4 1-%
(1+Ya) = (14+Ya)F (14Ypy) (63)

Calculate Molar Flow Through Film

_ gm-moles
(d?gthezoieS) - (Azcmz)(NAz cmz-sec.) = constant (64)
- 4y
NA cDAR A

z - (1+Yp) dz
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dNa _ -AzcDap d¥p
dt (1+Ypa)  dz
Integrating,
XAg

dN X dy
QPA [ gz = ~AzcD . S
dt 2CEAB | Txn)

0 XAp

dNpg (&) = -AzcDppln| (1+Ya.)

( 1+YAb)

1 dNp _ cDAB 1In|1+YAg
A, dt S T+Yp,

Let Az = S external surface area of

EX?
catalyst, cm2.

DAB _ . . cm
Let < = kg, mass transfer coefficient, sec.
Let ¢ = g%
cm2
Let a = superficial area of catalyst surface,;a—
a dNp 1+Y¥Ay prpkga 1+YAp
r, = =— —— = ck,aln|+—<—2| = in| ——> (65)
A SEX dt 28 1+¥p RT 1+¥pq
Where r, = 8m moles A diffusing toward the catalyst

surface per second per gm. catalyst.
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SURFACE PHENOMENA

The adsorption of cumene (A) onto the catalyst sur-
face, the reaction of cumene on the catalyst surface, and
the desorption of benzene (R) from the catalyst surface,
which are processes three, four and five of the reaction
mechanism, are handled together mathematically. The

following reaction mechanisms are possible:

Single Site Mechanism (Propylene Not Adsorbed)

1. Reactant molecule A (cumene) is adsorbed onto
the catalyst surface.
A+ 1 =—A-1
2. Adsorbed reactant A (cumene) reacts to form
adsorbed product R (benzene) and unadsorbed
product S (propylene).
A.]l === R.] + S
3. Adsorbed product R (benzene) is desorbed from

the catalyst surface.

Rel =————1R + 1

Single Site Mechanism (Benzene Not Adsorbed)

1. Reactant molecule A (cumene) is adsorbed onto

the catalyst surface.

A+1.—s——-———A.l
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2. Adsorbed reactant A (cumene) reacts to form
adsorbed product S (propylene) and unadsorbed
product B (benzene).

Al R+ S5S-1

3. Adsorbed product S (propylene) is desorbed from
the catalyst surface.

Se1l S+ 1

Dual Site Mechanism (Both Benzene and Propylene Are

Adsorbed)

1. Reactant molecule A (cumene) is adsorbed onto

the catalyst surface.

A+ 1 A-1

2. Adsorbed reactant A (cumene) reacts to form
adsorbed product R (benzene) and adsorbed
product S (propylene).

Al + 1 R-1 + S-1

3. Adsorbed product B (benzene) is desorbed from

the catalyst surface.

Re1 R+ 1
L, Adsorbed product S (propylene) is desorbed from

the catalyst surface.

Sel

S + 1

Garver has shown that at the conditions of his study

(1.0 atm., 850-1050°F.) the actual reaction mechanism is
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the single site mechanism with propylene not adsorbed
and with the surface reaction controlling. The reaction

rate expression for this mechanism is derived as follows:

Reactions
Ky
1. A+ 1 o Al (adsorption of A)
1
kp
2. A-1l ~:¥;%—L Rl + S (surface reaction;
2 S not adsorbed)
k3
3. Rel i kR + 1 (desorption of R)
3
k

L, A‘~*—E7——'R + S (overall reaction)

Rate equations are now written for each of the re-
action steps. Since surface reaction controls and is
therefore the slowest step, it is assumed that the ad-

sorption and desorption steps reach equilibrium.

Rate Equations

—_ ]
1. (—rA) = kypyCy = k'yCpq (66)
(adsorption of A; at equilibrium)
2. (=rpq) = kpChp - k'5pgCpy (67)

(surface reaction and S not adsorbed;
controlling)
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3. (-rRl) = kBCRl - k'BpRC1 (68)

(desorption of R; at equilibrium)

v o= = _ K3 _ mCl
37 Kgp ~ kil Cr1
4, (—PA) = kp, - k' D, Dg (overall reaction) (69)
kK DRPs
K = o— = ————
k! Py

Calculation of (-rpal) in Terms of Cj

Ca1l = KapaCy
Cr1 = KrppCi1

! = = =
K2 = K, T KKy

KpKp  Cpa1 , PsCgy |, PRy PRPg

- = = K
KR PACL Cal Cr1 PA
2 K,
k. K,p-K,p,C
(cr 1) = KoK,paCq — —2-A SRR
Al 2MAFAYY KKp
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Definition of C3

Cp = Cp = Cpy - Cg1 - C5 (71)
Ca1 = KaPp&y
Cr1 = KgPg¥y
Cqq = 0 (S not adsorbed)

Cp = Cu - EpppCy - Kgpply

c, = °L

1_1+KApA+KHpR

Substitute Cj1 into Rate Equation

[p papg}
(cr ) = CLkoKal™ (72)
Al 1+ KApA + KBPB

For irreversible reaction, k is very large and k'
is very small and K approaches infinity. The above then
reduces to the following expression:

(-ryq) = ———L-2-APA (73)
1+ KApA + KBpR

The initial rate of reaction, r,, occurs when the
partial pressure of A is equal to the total pressure,TT,

and the partial pressures of R and S are equal to zero.

_ PRDS]
CprkoKp PA K J (74)
1 + Kppp + Kppgr

(-r‘Al) =
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(-rpy) =1,

py =TT

P, = Pg = O

CLszAW (74)
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PORE DIFFUSION

The effect of pore diffusion (processes two and six
of the reaction mechanism) on the rate of reaction is
expressed by applying a correction factor to the rate
equation., The term CL’ total concentration of available
active sites, is replaced by the product of the terms L,
the total concentration of active sites, and €, the ratio
of the actual reaction rate to the theoretical reaction
rate if the resistance to pore diffusion were absent.

€ is known as the catalyst effectiveness factor.

The effectiveness factor of spherical catalysts

with arbitrarily shaped pores is derived as follows:

Rate Equation

[ pﬁsz
(r,) € Licgky K K K'p,D
- = = p — p
A 1+ K,p, + Kb A R¥S
= kgS,Cy - K'gS,ChCq (75)

Flow Chart

A cross section of the catalyst particle is shown in
Figure 41. The concentration of cumene on the surface of

the particle is CAg and the radius of the particle is rp.
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FIGURE 41

CROSS SECTION OF CATALYST PARTICLE
SHOWING DIFFERENTIAL ELEMENT
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Material Balance on Differential Element, dr.

Input - Qutput + Generation = Accumulation

Input
4G moles
2 2 cm2 - A cm3
I A2 B —_—
(+7TP cm )(Desec.) dr cm
dc
_ 2 A gm moles (76
= 4TTr De dr sec. 70)
OQutput
e moles
dacC dCal ¢« 3
2 | _ A _d Aldr cm
(477(r+dr)20m2)(De—§§52 dr ~ dr\dr cm
aca  acy ‘
= —Mrr(r2+2rdr+dr2)D + é.dr gm moles (77)
ar dar sec,
Generation
om moles _ gm moles
(rA Zm cat—sec.)(dwc gms cat.) = PAdwC” sec. (78)

_ gm moles 2 3 pm_cat,
= (ry om cat—sec.)(afrr drem”) (R p=or3 )
= 24,)2Mm _moles
B (rA)(uTGGPP dr) sec,
Accumulation = O (steady state) (79)
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Material Balance

dCA 2, 2 d%Cy
LT 2D —= + U4
r + L”T dI" 7TI" Dem dr

dC

A d
+8Trrere—a; + 8T rdrD vl dr

(r,) (4]TPrear) =

2
Ca dCa 2
e a2 dr + 87Trere—a; + (1, )(4T00Pr dr) =

4Trr2D

a%cy , 2 dCa , /PP (ra) = 0 (80)
dr2 r dr De

Calculation of Rate Equation

C (81)

- — et
(-rA) = kSS"C k SS C g

g A &R
Assume irreversible reaction

1
kg > kig

= kSSgCA

Substitute RHate Equation Into Material Balance

d®ca , 2 dCa _ PksSgCa _ (82)
drz r dr De

Integrate
Change of Variable

Let x = Capr

dx

Cpdr + rdCy rdCy = dx - Cpdr
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ar r dr r r dr rl

2 2
azoy _ fax|[1] , 182, x(2) 1
dr dr || r? r drl r3 rédr

Substitute
1afx oz odx, o2x, 2 dx _2x_ APpksSux . g
r dré P2 dr r3 r2 dr r3 DT
d®x _|kgPpSy| x = 0
dr<e De
General Solution
_ mr -mr _
X = Mle + Mze = CAr

+ + bk S
-v* /b2-lhac i 0= ﬂ; +___S]/j‘;is LY 3

m = = 2t
2a 2 De

_ 1 mr -mr
Cp = T [Mle + lie } (83)

Boundary Conditions

dcp

At v = 0, 5+ = 0

At r

It
ip}
v’
@]
o=
1
Q
fo =3
n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



152

dca |1 mM,e™ - mM e - _;_leemr + Mye™ ™
dr r r? J
2 - ]
r“ acy _ r mM,e™ - mM ™™ oM ™ + p e ™
hated < 1 2 1 2 ]
dr -
Ml = —M2
1 M, e™P 4 M e M'P
CAS = ;‘E 1 2
Cagrp = Mie™P - My e P
My = gmrp _ -mrp
— -CASPP
2 T GMIp _ -mrp
Back Substitute
mr -mr
o - i C sTpe C ST p®
A~ plgmrp _ mrp T mrp _ -mrp
_ CATp | ™ - oM _ CATp |sinh mr
r g~MI'p _ o-MI'p r sinh mrp
Ca.r sinh mr
s P
Cp = - (84)
r sinh mrp
k S E kaSy | %
__(EsPpSg|® _ | ksSy
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Calculation of Actual Reaction Rate

Actual reaction rate = Rate of diffusion into
catalyst pellet

5 4c gm moles
s = 2 2 cm< A cm3
iy = (4TTrg em®) (D, 225) | - T e N (85)
P
[dCp m moles
= 4TTr2 D_| == ARS8
P Te| dr _ sec.
L r =rp
dCy, 4 |CA rp sinh mr)  Ca_rp d |sinh mr
dr  dr r sinh mrp| sinh mrp dr r
_ CATrp rm cosh mr - sinh mr
" sinh mrp re
- Ca_ry, m _cosh mr  sinh mr
" sinh mrp r r<
ac Ca.TP m cosh mrp sinh mré]
= - - z
dl'r=rp sinh mr) rp rég, J
CAS mrp
- rp |tanh mrp -
2 Cas mrp
R, = 4JTr% D -1
P P 7€ rp | tanh mrp
_ 2 1 1
- MTrrP DeCAS™ e | Tanh mrp ~ mrp
- 4TTe2 pgcy, | 53] F - >
- TP “e¥As | TDg tanh (XSSVy3p,~ (kSSV)%
De P Y g ' rp
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ksSy 5
Let hg = mrp = rp D, (Thiele Modulus)
Ry = 4n JTr,D_C —t L (86)
P = "8l TpPeAs | Tamn hg ~ hg

Calculation of Maximum Beaction Rate

2
' - (3.3 cm cm gm moles
Boax = (37ZrPcm ) (kg Seo)(SchB)(CAs“gaj“")

_ MTTrngSVCAS gm moles (87)

3 sec.,

Definition of Effectiveness Factor

€ = effectiveness factor

actual rate of reaction with pore diffusion present
rate of reaction if resistance of pore
diffusion were absent

Ll'hsﬂlr'PDeCAs 1 1
= T3, «
5 1TrgkyS CA; | tanh hg  hg

3hsDe 1 1
= ‘[ S
Y PkSSV tanh hS hg
1.1
3rpks#Sy<De 1 1

T -
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3 1 1

rpkgé’SV% tanh hg - hg
it~ Ml

Dg®

3 1 1

€= s |Tamn g " Tig

(88)

Calculation of Effective Diffusivity, De

Definition of Effective Diffusivity

D.O
D "78“ (89)

cm2

effective diffusivity, Sec.

o
0}
]

@
I

fraction voids in catalyst particle

Q

tortuosity factor

cm2
secC.

S
10
i

combined diffusivity,

sz
secC.,

diffusivity of A in A+ R + S5,

sz

sec.,

DaB

Dk Knudsen diffusivity,

Molecular Diffusivity of A in A+ R + S

As previously calculated, the molecular diffusivity

of Ain A+ R + S, D,ps» are as follows:

2
_ cm
[DAB]6500F. = 0.1141 sec.

2
_ (o211
[Pas) 10500, = 0.204 Zoo
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Satterfield?o

has shown that in the temperature
range of 200%. to 5000°K., DAB is well represented by

a power function of temperature, that exponent being
1.82. The relationship between molecular diffusivity and

temperature then becomes as follows:

—5T1.82

D, = -0.00633 + 0.1008 + 10

AB

Where T is in OK. the values for DAB at several tem-

peratures are as follows:

T, °F. T, %K. DAB» ggé?
650 616 0.1141

700 6Ll 0.1242

750 672 0.13u47

800 700 0.1456

850 728 0.1568

900 756 0.1684

950 783 0.1799

1000 811 0.1922

1050 839 0.2044

Calculation of Knudsen Diffusivity
D, = 428 [ZRﬁTJ% (90)
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cmJ-atm 1b. oms cm
g = (82.06 gm mole OK)(14.7 infatm) (454 1b.)(980sec?)
& cm cm
(2.54 72) (2.54 37)
7 gm-cm?
= 8.32 x 107 1 hole-OK-sec?
- _gms
M= 120.19 gm mole
2V
r, = ETE
g
V = pore volume/gm. catalyst cm
g ’ > gm
_ 4 cm?
Sg = 250 x 10 o
cmJ
» = (2)(0.350 Z57) = 2,80 x 1077 cm.

(250 x 10% cm<)
gm

=

2 1
gm-cm %
D = (4)(280 x 10—7cm){%(8.32 X 107 em mole—OK—secz{] (TOK)
K~ gms
3 (120.19 o mole)
_ b % em”
DK = 2.478 x 10 T seo
The values for DK at several temperatures are as
follows:
2
1 cm-
T, °F. T, %K. (1°K) 2 Dk, sec.
650 616 24,82 0.00615
700 64l 25.38 0.00629
750 672 25.92 0.00647
800 700 26.46 0.00656
850 728 26.98 0.00669
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T, °F. T, °K. (79K, ) %
900 756 27.50
950 783 27.98

1000 811 28.48

1050 839 28.97

Calculation of Combined Diffusivity

= - = = 171.4
Bs|eso = 0.1161 * 0.00615 - 171
D = 0.00584 cme
S| 650 7 sec.
Similarly, 5
cm
T, °F, Dg, sec.
650 0.00584
700 0.00599
750 0.00613
800 0.00628
850 0.00642
900 0.00655
950 0.00667
1000 0.00681
1050 0.00694

cm2

Dk, sec.

0.00681
0.00693
0.00706
0.00718
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Calculation of Effective Diffusivity

Dg & Dg(0.448)

Dy = —— = o = 0.080 D (92)
T, °F. D, 222,
650 0.000467
700 0.000479
750 0.000490
800 0.000502
850 0.000514
900 0.000524
950 0.000534
1000 0.000545
1050 0.000555

Calculation of Thiele Modulus, hg

Definition of Thiele Modulus

1.
kSSV 2
hy = rp [ Do ] (93)
ry = radius of catalyst particle = 0,179 cm.
SV = total surface area of porous catalyst
4 cm?
= 320 x 10 —5
3 cm3
kS = forward intrinsic rate constant for
. cm,
surface reaction, Yy
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Calculation of kS

Initial Rate of Reaction

. €Lk2K97T
0 1 + KA7T

Pseudo First Order RBeaction (Appendix XI)

ro = kSSgCAo

Calculate kg

N €Lk2KA7T
g =
(1 + KATT)SgCAO
kA = equilibrium adsorption constant
1
for cumene, 2tm.
=1 atm.
L em?
S_ = 250 10" ——
g = 200 % &
Cp. = initial cumene concentration, EELJ%%EEi
o] cm
log;€Lk2 = 4812 5%5 -1.,141 (no ultrasound)

Calculation of hS

Y
wn

=

1 | kg 3 L kg2
hg = rPsV2 bg| = (0.179)(320 x 107)

e
kg 3
- 205
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Calculation of Effectiveness Factor, €

5=3_[___1______;_]
hS tanh hS hs

Summary of Calculations (No Ultrasound)

. €1k, x 10° kg x 107
Op, gmggaggé:§. 5%%? _E§_ _EL_
650 0.334 0.499 3.31 0.63
700 0.514 0.789 .11 0.55
750 0.762 1.200 5,01 0.48
800 1.099 1.778 5,01 0.48
850 1.534 2. 541 7.12 0.36
900 2.126 3.605 8.39 0.32
950 2.794 4,849 9.64 0.28
1000 3.657 6.486 11.04 0.25
1050 I,702 8.526 12.54 0.22

At frequency inputs of 26,000 cps and 39,000 cps the
rate constant é?lkz increases as shown previously because
the effectiveness factor, £ , or surface reaction rate con-
stant, k2, increases. When the effectiveness factor in-
creases, the Thiele Modulus, hS, must decrease, requiring
the effective diffusivity, De’ to increase, The effect of
ultrasound, therefore, may be to increase the diffusion

rate of cumene in the catalyst pores,.
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REACTION DESIGN EQUATION

The reaction design equation is derived by sub-
stituting the rate equation for the single site mechan-
ism, S (propylene) not adsorbed, with surface reaction
controlling into the plug flow reactor design equation.

The derivation is as follows:

Derivation of Design Equation for Plug Flow Reactor

Flow Chart (Figure 42)

Material Balance

Input - Output + Generation = Accumulation

Input
po g moles A
A sec.
Output
(¥, + dF,) 50 ggi?s :
Generation

gm moles A
sec,

gm moles A _
(+PA gm cat--sec.)(dw gm cat.) = ('FI'A)dw

Accumulation = 0 (steady state)

Material Balance

FA - FA - dFA = rAdW = 0

-dF, = (-r,)daw

A A
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3@
////M”””m
w«o Vop + Vo / e °vy
- VX Vyp + VX ¥y Ovy
IV Vap + Vua Va OVa
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dw_ _ _dXp
FAO (—PA)

Integrate
W Xa

dw  _ axa
FAO (-I'A)

FK; = T:;XT (97)

Calculation of Reaction Design Equation, Surface RBeactions

Controlling

Rate Equation for Single Site Mechanism, S (Propylene)
Not Adsorbed, and Surface Reaction Controlling

PRPS
€ LkoKp PA - 7%

("PA) = (98)
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Substitute Rate Equation Into Plug Flow Reactor
Design Equation

fo
LA dXy
FAO
[p Pﬁps]
€LkyK, |4 K
J 1 + KApA + KBpH
XAO

Solve for Partial Pressures in Terms of Conversion

and Total Pressure

Material Balance

Inlet Reactor Outlet
A NAO=NAO NA=NAO-XANAO NAf=NAo"XAfNAO
R NRO=NRO NR=NRO+XANAO NR"'NRO’*'XAfNAO
S N30=Nso N8=NSO+XANAO N8=NSO+XAfNAO

Total NAO+NRO+NSO NAO+NHO+NSO+XANAO NAO+NRd+NSO+XAfNAO

NATT (Np,-XaNa )Tl
Pa ™ Thgp T (N *Np +Ng +XaNp )

NgTT (NRotXaNay)TT

p = =
R NT (NAO+NHO+NSO+XANAO)

NSTT (Mg gHXala )T
p = =
S N (NAO+NRO+NSO+XANAO)
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However, NR, = NSo =0

Np (1 = X)TT (1 = Xp)TT

Pa T Wy (T + %)~ (T + %)

o = KpNpo TT X TT

R Nag (1 + Xp) (1 + Xp)
o XpNp T X T

Ps % Wp, (1 %) T (T + Xp)

Substitute for Partial Pressures in Rate Equation

PR ps]
€Lk A~ K

(~r,) =

(1-X)TT Xp°TT #
€LkpKal (1+Xa)  ~ (1+Xa)4K

Ka(1-Xa)TT N KaXaTT
L+ T(1Xy) (1+X,)

Ka(1-Xa)TT  KgXaTl

1 - L+ (1+Xp) +(1+XA)
(-ry) ngzKA[(l—XA)TT _ _XaA®[ % }
(1+Xp) (1+Xp) %K

1 _ ) (1 + KA'IT)
(-rp) = €Lk TT[1 - (1+§F)X 2]

J

(2 + KpTl )Xa
€LkpKaTT[1 - (1+§F)XA2;

(1 - KaTl + KgTT)X 2
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(1 + KATT)
€LiKpTT [1 = (144X, 2]

168

1

1 KaTT
= | ELRKATT * €TkKATT
=Y L - g
1 - SZXA 1 - éZXAZ

1 1
Y = €Tk KT T+ €Lk,
ndE
-7
(2 + KgTT)Xp

€Lk2KA7T[1 ~(1+1D)x ZJ

1 -

:

T
1+—K—)XA

_ 2 KRTT XA
~ | E€LkoKpTT * €LkoKp TT 1 - (1+_’£_V)XA2
_ Xa _ /GJXA
=5 {1 - é“XEZJ Tl - §7X,°
B 2 N KR
S = ToKgT t CTK.K,
mlz
S- 0
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(1 - KA?T + KH'}T)XAZ
€Lk2KA7T [1 - (l+Z(—I)XA2]

) 1 Ko Tl , KpTT Xp°
| €LkoKTT € LkoKaTT ELkopTT | |1 - (1+10)x,"
_ 1 L, K& X% ]
i, ——
€ELkoKpTT ~ €Lky = €LkpKpl|1 (1+_K_)1(AJ
2 (@ - ¥ )Xp?
- 18- ¥ | - )%
{/@ 1 - §%X,° 1 - &%,
2 Kg 1 1

B-¥= ELk, K0T ELk,K, - €Lk KTl ~ €Lko

_ 1 1 Ky
T CLIK,T T €Lk, | €Lk K,
e I
S— {1 + —IE-
1 Y 3 Xa (© - )Xp?

= r

, + + .
(-rp) 1 - §%,° 1 - §Xp° 1 - §FXL°

Substitute Rate Eguation into Plug Flow Reactor Design

Eguation and Integrate

Kag Aar Kag
2
W yax, BXpdXp (B -¥)Xy dXa
" 2, 2" 2, 2" 2.2
Ao |1 =8"xyT |1 - 87xa 1 - &%y
Xpq Ao Xpo
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y dXA oy 1 [1+XA§TA _ Y 3 1+XA3
TSHAtHL 28 likas] T 28 T Ixas
O
XAO=0
XAf=XA
XpadXp P 2 2 14a -5 2.2
= s In| -8 7%, +1 = —5 8%
et _éZXAH Y n[ S Xy }O o In (-97Ky +1)
X‘A =
XAfZXA XA
i
z2_ .2 .
(/j A/) Xy a%p” (B=-8)Ky (&-¥) axpu
S - &7 -§? J—SZXAZH
XAO:O (0]
(BN Xa (B-¥) | 1 1 (1+4pS)
- 52 §2 58 (1-Xp$)
V] Y (1+Xp3) 5 2.2 (S-¥)
Tag = 28 M aas) T 2er I (S8MAD) - Ty
(e-¥) | 1 L (1+Xp8)
$Z |28 “MIKps)
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[ ) sy
28 T 283 (1-%X,8)" §2

1 apn (HXRS) ) 1p1-&x %) - X4l (99)
+ -
r 283 (1-XpS) 287 §2

8/2 1 + 1
€ LkoKaTT €Lk,

Kp
€LkoKy

B = e

ELkKaTT

S- [HII}

K

i

Calculation of Reaction Design Equation, External

Diffusion Controlling

Rate Equation for External Diffusion Controlling

kaga 1n 1+YAb

r, = (100)
A R 1+YA
Substitute Rate Equation into Plug I'low Reactor
Equation
Aap
W dXA
FA_ ~ 1+Ya
© 225&3 in b
u RT 1+YAS
){Ao
_ XAfHT
prkga 1n YA,
> 1+¥p
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Calculate Mass Transfer Coefficient, kF

XAfBT
kz"' - 1+YAb (101)
> (W/F, )paaln
Ao p[‘ 1+YA
S
YAf3 = 0 (mole fraction cumene at catalyst surface)
3.z
R = 82,03 O atm.,
gm mole-°K,
T = %K.
r, = £m moles cumene feed
Ao sec.
W = gms, catalyst
Pp = 1.0 atm.
2
- cm
a=13.1 o,
y = oM.
& sec.
fo = conversion
YAb = YAj - YAQ - Yapy (mole fraction cumene in
L YA; bulk gas stream)
n
‘[Ao
Yp, = 1.0 (mole fraction cumene at reactor
inlet)
Y, = 1 - Xpp  (mole fraction cumene at
°© 714 X reactor outlet)
L - 6.261832 Xp¢T

£

(W/FAO)ln( 1+YALM)
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EVALUATION OF REACTION RATE CONSTANTS
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LVALUATION OF REACTION RATE CONSTANTS

As previously derived, the reaction design equation
for the catalytic cracking of cumene in a continuous plug

flow reactor is as follows:

v 1t (MHKAS) Xa
Fag 2s 28  (1-x,8) 7
1 1p (14XaS) L 1n(1-&xa%)- %A
+/6 3 N - v re (99)
28 (1-Xp8) 28 3«
Where,
5/= 1 + 1
ELkKATT & €Lky
_ 2 KR
A = TIh kg © €TkKp
1
T2
5— [1 + T
Gtarver 22 experimentally determined the reaction rate

constants at atmospheric pressure to bec as follows:

850°F. 0°F. 1050°F,
K, atm. 2.05 6.22 15.96
€Lk, HLMOIES 1,777 x 1077 2.165 x 1077 2.917 x 1077
L y
KA, aEmo 2.2 2.13 1,90
1
KB’ aEm 2.45 1.86 1.47
gm cat-sec.
Y, o moLo 81,300 67,800 52,250
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850°1, 950°F. 1050°F .
5, fncalzgee. 111,500 83,600 62,500
§, dimensionless 1.224 1.070 1.031

The above constants were obtained as follows:

Equilibrium Constant, K

Garver calculated the thermodynamic eqgnilibrium
constant for the dealkylation of cumene from the logarithms
of the equilibrium constants of formation for cumene,
benzene and propylene. The values for the equilibrium
constants of formation were obtained from Circular CL461

of the Wational Burcau of Standards.

The cquation expressing the equilibrium constant as

a function of temperature is as follows:

log K = -8,927[%%} + 7.126,

where K is in atmospheres and T is in Rankine.

Adsorption Constant for Cumene, Ka, and Combined Effective-

ness Factor and Forward Heaction Rate Constant for Surface

Reaction, €Lkp

Plot W/Fp _ vs. X, at varying Fp_ and total pressure,7]
0 A o 2110 o

and constant temperature, T, as shown in Figure 43.
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FIGURE 473

W
PLOT OF Xp VS, Fao AT

CONSTANT TEMPERATURE

772

W gm cat-sec.

FAO’ gm mole
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Rearrange the plug flow reactor design equation.

axa
(-PA)

I

dXa
FAO

, W

Plot the slope, dXA/d(FKg) vs. Xp at T ,,TT, and TFB.
and extrapolate back to Xy = 0 to find initial rate, rys
as shown in Figure 44,

Rearrange the initial rate equation.

_ ELkpKTT
Yo T TI+KaTT
ro  €LkpKp
T 1+K,TT
m. 1+, _TT
ro CLk,K, = €Lk,
T N
Plot —— vs. TI as shown in Figure 45,
0

Calculate €IMQ and Kp from the slope and intercept.

Repeat at 85OOF., 95OOF. and 105OOF.
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FIGURE 44

PLOT OF REACTION RATE VS. CONVERSION AT
CONSTANT TEMPERATURE

(-TA) =
dXp 7T3
W
d(y—)
Ta,
77 2
7
I"o3
Y'Oz
r'ol
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FIGURE 45

PLOT OF Z V3. 7T
(o]

s
o
1
slope = £ELK,
_1
£Lk2KA
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Adsorption Constant for Benzene, Ky

Assume Irreversible Beaction

Reaction Design Equation

W 1 1 | 1p (1+XaS) , fa
28 283 (1-xp8) $°2

+ -
s (1-Xp8) 282

For irreversible reaction

X
1

i
[1+—TK—FF= [1+ o]%

K = =2>>1

Il
[y

I

Back substitute

4o oy |fe s yanlitEa)l A
Fac 1 -1 (T=xa) 71

ln(1+XA)
<1~XA)' -2

el
oy

i

-
1 1n (1+Xa)
XXA +ﬁ 2 (1"XA)(1"XA2)

r11 1
XXA'i'ﬂ 5 nm-xA

U= ¥X, +8 [-1n(1-Xy) - XA]
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Rearrange the irreversible rate equation:

v Xa =8 |-1n(1-Xa) - X
Fz‘;_b’A =2l A a)

Calculate & at 850°F., 950°F, and 1050°F., and 1T 1,

T, and ﬂfB.
8/= 1 + 1
€LXKNTT € Lk,
W Op
Plot [EX; - Xé’ vVSs. [-ln(l—XA) - X4 at 850°F.,

950°F. and 1050°F., and at Tfl, o and77'3 as shown in

Figure 46,
Calculate KR from slope of straight line.

Reaction Desipgn Equation Constants X’,/?, and S

Since K, €Lkp, Ko and Kg are now known, ¥ , &

and & can be calculated at 8500F., 950°F. and 10500F.,
and ’ﬂ'l, ’}T2 and '}TB.

Summary of Results

Garver's investigation led to the following values

for K, K, and Ky:

1
log K = -892 ——| + 7,126 10
og 97[T%J 7 (103)
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FIGURE 46

W
PLOT OF l}_A_‘; -XXA:I vS. Elnu_xA)-x;l

W
[T*“__A; - Xxél

2 Kp
slove =S = FiR,  * ETkK,

[-1n(1-x) —XA]
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- 1
log K, = 700[{110[{] - 0.179 (104)
log K, = 2195[5%5}- 1.286 (105)

Evaluation of Beaction Rate Constants

For this research, TT= 1 atm. and €Lk, is handled
as a single constant. The rate equation then contains
four parameters; €Lk2, Ko, KR and K. The values of the
parameters K, Kp and KR obtained by Garver and extrapolated

to 650°F. are shown in Figure 47.

These literature values of three of the four
parameters were substituted into the surface reaction
rate equation, and the fourth parameter, (kag, was
computer calculated by curve fitting the data by use of

Marquardt's non-linear square fit program.

Table 10 shows the literature values of K, KA and
Kg for each of the temperatures studied along with the
calculated values of €Lk2 at 26,000 cps, 39,000 cps

and in the absence of ultrasound.

The graphs of conversion as a function of reciprocal
space velocity illustrating all the data points and the
calculated theoretical curves are illustrated in Figures
48 through 73. Considerable scattering of the data is apparent
at 650°F. because of the low conversions obtained at that tem-

perature and the accompanying analytical errors.
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FIGURE 52

CONVERSION vs. W/F
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FIGURE 58

CONVERSION vs, W/F
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FIGURE 61

CONVERSION vs, W/F
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FIGURE 64

CONVERSION vs. W/F
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SAMPLE ANALYSIS

Samples of the reactor effluent were obtained by

the following methods:

Gas Sample

The high temperature (650-1050°F,) gaseous effluent
is introduced directly into the gas chromatograph via a
gas sampling valve, This method proved to be no more
accurate than the liquid sample method, even though the

sample represents the entire effluent stream.

Liguid Sample

The reactor effluent is partially condensed and sub-
cooled to 70°F. The propylene remains in the gas phase
at this temperature and is vented from the system, The
remaining liquid phase is injected into the gas chromato-
graph., Little accuracy is sacrificed by this technique
because of the unaccounted for losses of cumene and

benzene in the gaseous propylene stream.

The following calculations compare the two sampling
techniques, assuming a total cumene feed to the reactor

of 100 gm moles and a conversion of 20%.
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Gas Sample Analysis (No Losses)

Material Balance

N N M
o) f gms.
gm-moles gm-moles mole % gm-mole gms . Wt .%

A 100.0 80.0 66.66 120.19 9,615,20 80.00

R - 20.0 16.67 78.11 1,562,20 13,00
S - 20.0 16.67 L2.08 841,60 7.00
Total 100.0 120.0 100.0 12,019,00 100.00
Conversion
X, = 120.19(wt.%R)
A~ 120.19(wt.ZR) + 78.11(wt.%A)
120.19(13.00)
120.19(13.00) + 78.11(80.00)
. 1562.2 _1562.2 _
= 1562.2 + 62048.8 - 7811.0 - 0-2000 (103)

Liquid Sample Analysis (All S Lost, No Other Losses)

Material Balance

NO Nf M
EmS .
gm-moles gm-moles mole 4 gm-mole oms . Wt.%

A 100.,0 80.0 80.0 120.19 9,615,20 86.02

R - 20,0 20.0 78.11  1,562.20 13.98
S - - - 42.08 - -
Total 100.0 100.0 100.0 11,177.40 100,00
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Conversion
X = 120.19(wt.%R)
A 7 120.19(wt.ZR) + 78.11(wt.%A)
- 120.19(13.98)
~120,19(13.98) + 78.11(86.02)
_ 1,680.2562 1,680.2562
= 1,680.2562 + 6,719.0222 - 8,399,278k - 0-2000
Ligquid Sample Analysis (Actual Losses)
Vapor Pressure at 70°F, (20°c.)
log P, = 6.92026 - $2505:380 = 6.92926 - 2206330
PA = 3,32 mm. Hg
log By = 6.89745 - 500330 = 6.89745 - FE206.350
Pp = 75.15 mm. Hg
Pg = 9.9 atm., = 7,524 mm, Hg
Condenser Flow Chart (Figure 74)
Overall Material Balance
F=1L+V (104)

120

L+ vV
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FIGUBE 74

CONDENSER FLOW CHART

V Sre
T = 70°F. -
YA
YR
ys
F = 120
T = 1000°F.
yrp = 0.1667
ny = 0,1667
L
T = 700F,
XA
XR
Xs
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Component Material Balance

YEaF = ¥,V + xAL; 80.0 = yoV + x,L (105)
VegF = ypV + xgl; 20.0 = ypV + xpL (106)
yegF = ySV + xSL; 20.0 = ygV + xgL (107)

Dalton's and Raocult's Laws

AA

Py = YT = %4Fp5 ¥y = 77 (108)
xgFPg

Py = YRTT = XgPr; Yy = 77 (109)
*s's

pS = ysTr = XBPS; yS = Tr (110)

Combine Material Balances and Dalton's and Raoult's Laws

. 80..0 ) 80,0
A 7% (120-L) L + $g5(120-L)
_ 80.0
T 0.52416 + 0.995632L
. 20.0 _ 20.0
R R B .1
L+ £(120-L) L+ 2%355(120-L)
) 20.0
11.8656 + 0.90112%
_ 20.0 _ 20.0
XS = PS =

L + TT(IZO-L) L+ 7 34(120-L)

_ 20.0
= 1,188 - 8.90L
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Trial and Error Solution

Let L = 100.0
- 80.0 _ __80.0 _
Xp T 0.52016 + 99.5632 - 100.08736 - 9-7993
- 20.0 _ __20.0  _
Xp = 11.8656 + 90.112 - 101.9776 = 0.1961
- 20.0 _ 20.0 _
Xs = 71,188 - 890 = 598 ~ = 0.0671
1.0625
Let L = 111.0
= 80.0 _ 80.0 _
Xp = 0.32516 + 110.51515 - 111.03931 - 0-7205
- 20.0 _ 20.0 _
Xy = 11,8656 + 100.0243 - 111.88992 - 0-1787
_ 20.0 _ 20,0 _
Xs = 71,188 - 987.9 = —5&57— = 0.1000
0.9992

Corrected Mole Fractions

= 0.7205 _ (,7011

¥A T 0.9992 ~
_0.1787 _

Xy = 0.9992 = 0.1788
_0.1000 _

Xg = 45995 = 0.1001

1.0000
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Material Balance

N, Np x
gm-moles gm-moles mole % gm moles gms. wt.%

A 100.,0 80.0421 72.11 120.19 9,620.34 0.8266

R - 19,8468 17.88 78,11 1,550.23 0.1332
S - 11.1111 10.01 42,08 L67.56 0.0402
Total 100.0 111.0000 100.00 11,638.13 1.0000
Conversion
_ 120.19(wt.%R)

Xp T 120.19(wt.4%R) + 78.11(wt.%A)

_ 120.19(13.32)
- (120.19)(13.,32) + 78.11(82.66

1,600.9308
1,600.9308 + 6,456,5726

_1,600.9308 _
= 8 057.5034 - 0-1987
Error
. _ (0.2000 - 0.1987)(100)
%o error = 0.2000

0.0013(100) _ .
0.2000 = = 0-65%
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Sample Calculation from Actual Data

Run No., 11.53

Analysis (Wt. %)

Liguid Sample Gas

Test 1 Test 2 Test 3 Average Sample

Cumene 90.62 91.35 91.30 91.09 89.11
Benzene 7.62 7.18 7.18 7.32 7.08
Propylene 1,76 1,47 1,52 1,59 3.81

100,00 100,00 100.00 100.00 100.00

Liguid Sample Conversion

_ 120.19(7.32) -
X = 130.19(7.32) + 78.11(91.09) - 11.0%

Gas Sample Conversion

- (120.19)(7.08) ) )
Xy = (120.19)(7.08) + 78.11(89.11) - 10-9%
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ULTRASONIC ENGINEERING

Fundamental Equations

Figure 76 illustrates a schematic representation of
the instantaneous position of the gas particles through
which a sound wave is travelling. The gas particles are
each volume elements of gas containing millions of mole-
cules. The drawing shows the alternate compression and
expansion of the gas in the direction of the propagation

of the sound wave.

Figure 76 illustrates the sine wave representation

of the sound wave.

Sound Wave Equation

y = Ycos[zd——-—ﬂ (x-Vt)} = Ycos[zﬂ'f(t-%)] (111)
cm
d cm_ _ (y.SMy q_sSec ) = sec w
cycle sec cycle f.c:;zc:les
sec
1
f =

Transverse Velocity

X
) %% _ 3('176 {Ycoszﬁf(t-v)} - _YSinzTFf(t-—\’,S)[zTrf]

<
1

-2 Trstinzﬂ’f(t-%) (112)

<
il
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FIGURE 75

SCHEMATIC DIAGRAM OF SOUND WAVE
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. e e eees w . . . . . o oo
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- Direction - Direction of
of particle wave propagation
motion
FIGURE 76

SINE WAVE REPRESENTATION OF SOUND WAVE
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- A -
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Transverse Acceleration

. av
a = dt

= —27TTYCOSZTTf(t-§)[27rﬂ

Velocity of Propagation of Sound Waves in a Gas

dt

_ 4 [-ZTTstinZTTf(t—%ﬂ

T 222 cos2 T T ( t-2)

224

(113)

Figure 77 illustrates an element of gas in a tube in

which there is a longitudinal sound wave.

rium and displaced positions are shown.

Newton's Second Law

F = ma

FNETD

=

o

il

i

Both the equilib-

(114)

dynes 2 dynes 2
(pgtp S22) (A en?) - (porprAp SL955) (4 om?)

-kaA dynes

(2o BB

dzx cm
at? se02

2
B a<y
-ApA —/OOAAX 102
_ -/\pA

& &L
N oD
\N]

ol
o
NS

(A cm2)(Z§x cm) —/OOAZXX gms.

1 p

/‘OOAAX:=

1

Ao

26

T/DO N\x
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FIGURE 77

ELEMENT OF GAS IN A TUBE IN WHICH THERE
IS A LONGITUDINAL SOUND WAVE

Equilibrium position

Displaced position

——— ¥+ oy ——
——  x - y ——t

o &\\ o
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Calculate p

Definition of Compressibility

K = - 1 change in volume
original volume |{change in pressure
1 d
= - T & (115)
Original volume = (Acmz)(ZXx:cm) = AZXx cm3
Change in volume
= (A x+y+Ay-y em) (A em?)-(A\x cem)(A em?)
= (Ax+Ay)a -/\xa
= ZSyA cm3
Change in pressure
_ (potp) + (pn+p+Ap)
2 - Po
_ 2po+2pfﬂp
- 2 - Po
= po+p+A2 -po
- dynes
P em2
K 1 Aya cm3 Ny cm?
—'_AAxcm3 piﬂ%§ - p/\x dyne
cm

Rearrange to Obtain »

po-1 By _ -1 g
k \x k ax

dp _ -1 42

dx k dx
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Substitute into Equation for Newton's Second Law

d%y _ _ 1 dp_ _ .1 |_ 1 d?
dt2 Qo dx Lol k dx
92y _ 1 §2§
Jtz—/Ook dx

Change Variables

Let y = f{x T vt) = f(u) = f

dy _ I3f _ éf. du

Jdx dx  Jdu Jdx

I
=

du _ dx tvy)  dax
ox dx T odx

J J J
P —aaﬁ'“—g‘ﬁ

2
éyz 3(5}’)= a(gﬁ) c\u. é(éf)

(1)_d 38y _ 3%
Ju du du<
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¥y _ 4 4y, _ 3 Bvdr  du g fvgr

(=) ) )

Atz - Jt ét - dt du - dt . éu dJu
+ + 232
Uty J Tvdre, _ vRaZer
Jd u( d u) Ju2
Substitution
v2d2r 1 32
2
du ok Jd u?
2 1
Vv =
/Ook
1 1%
2]
Adiabatic Compression
Definition
ov? = ¢ (117)
y=
Cy
Differentiate

Yy -1

dep-*- va dv = 0
dv _ _ _v¥ v
dp p¥v'l 0¥

Substitute into Compressibility Equation
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Substitution

! z[ﬁlok]% =[%]

pv = nRT

p ===

dynes (R ergs oK)(l dyne-cm)(ToK)

P “em gm mole- erg
gms
/o ~&mS
cm3 (M gm mole)
yrrl?
_ RT
- 4]

Pressure Variations in a Sound Wave

Pressure Equation

==
e

p:_
Sound Wave Egquation

y = Yoos[%%c (X-Vtﬂ

Differentiate and Combine Equations

dy _ -Ysin|2T[(x~vt)|}1 27| _ 2T ¥sin
dx -~ A A7 7 A

_ 2Ty sin[ZTT(x-Vt)]
KA A

229

:zl%

(119)

(120)

(121)

[gI[(x-Vtﬂ
A
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- [7]

2 1
v =
o
o= =L,
ol

g
1

2 TTQAQVZY sin[%T_T_(;{-Vt)]

p = pmaxsin[a—ﬁ(x—Vt)]

_ 2TV 2T 0o ¥ RTY
Pnax = "A - "Ma

_ 2Tl o oCpRTY
max = MAcy

(122)

o)
]

1
cpRT] 2

Intensity of a Sound Wave

Work Done on System

)
W o= -fpdv (123)
o]

= _ A1 dv
k= v, dp
dv = kvodp
D p
= <+ k = ﬁ L 2
w vopdp = kvo 5 = 3 kv _p
o) o)
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Energy per Unit Volume

W
max _ 1,..2
Vo 2KD o (124)
Intensity
Definition
_ ener

" (unit area)(unit time)

2 dyne- |
(3kpf, SLEE) (A em) (Vat cm)

I =
(A cm?)(dt sec)
. %kpz y dyne-cm
max cm-sec
cpRT]%
CvM
1 cyM
k = 2 = v
oV PoCphT
. cyM CpRT |5 cyM|z 1
v = =
/oocPRT cVM cPHP /"o
2 1
I = Pmax S (126)
%/90 CPBT
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FIGURE 78

INTENSITY FLOW CHART

cm
V, sec. o

A, cm

cm
(V sec.) (dt sec.)

— =
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Definition of a Decibel

/5 = 10 log == (127)

o

]

sound intensity level, decibels

&

~16 watts
I =10 —_—
o] cm?@
_ dynes _ 1n-16 watts . .
Prax = 0002 S505% at 1= 10 252 in air

Standing Waves

Definition

Standing waves are caused as a result of the reflec-
tion of sound waves back from the end of a tube. The total
displacement is the sum of the displacements of the original
wave and the reflected wave, Whereas, in a travelling wave
the amplitude remains constant as the wave form progresses,
in a standing wave, the amplitude fluctuates and the wave

form remains fixed.

Derivation of Standing Wave Equation

Digplacement of Original Wave

y, = Ycos[.z({@x-vw] (128)

Displacement of Reflected Wave

y, = -Ycos [%U-( "X"Vt)] (129)
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Total Displacement

Y=Y+ ¥, = Ycos[%%z(x-Vt)_ Ycos[%%[(-X-Vtﬁ
= Ycos[%%E(X-Vt{ - Ycos[g%[(X+Vtﬂ
= Ycos[%%[(x"Vtﬂ - cos[%%E(X+Vt)}

cos(X =@ ) - cos (X +8 ) = 2sindsing

Y{Zsin[zsz}sin[gzglgy

y:
_ v
f=3
Vv =fA

y = zxsin{z—g-’—‘] sin[—z—’r%.—(z—p] = ZYSin[zgx]sin[ZTTft]

<
1]

[ZYsin(ZTTftﬂ sin[zzrk]

Figure 79 defines the various terms associated with

a standing wave,

Fundamental Frequency
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FIGURE 79

SCHEMATIC DRAWING OF A STANDING WAVE
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=

fo = 35 = cyM] LL (130)

"Tuned" Wavelengths and Frequencies

L1, LT by,

LI —_ e ot~

3 5 n
[CPRI'] 1 [epRT]® 3 {CPRT 5 [CPBTJ n
cyM 4L cyM 41 cyM LI, cyM 4L

n=1,3,5,7,9,etc.

Summary of Ultrasonic Engineering Equations

Sound Wave Eguation

y = Ycos{%?—T—(x-Vt):l = YCOS[ZWf(t—%)] (111)
ymax =1
A=vr=1%
1
ff = T

Transverse Velocity

v = —ZTFstinz'fo(t-%) (112)

v = 2T fY (131)

max

Transverse Acceleration

a ==LTT2%Ycos2TT( t-%) (113)
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_ 2.2
8oy = LT “r<y (132)

Velocity of Propagation

R

_{mﬂ%‘
= |5 (119)

b=

Acoustic Pressure

2 .
b = [M%QV Y}51n[gfz__r(x-\lt)] (133)

- 2T o VY 2T o0o¥RIY  271,04cpRTY
max T A - MA - M(\cv

i

1
cPRT] 2

cpRT 2 3
ZTTT%/QO[_CVM} B [%/001] [ cyM

(122)

Intensity
2 L
c M |®
I = B’@‘—[—L} (126)
%fDO cpRT

= I _ I
B= 10 log P 10 log 5-10 TatEs (127)
cm?2

Amplitude

o

Y = Pnax [ CVM] (134)
27Tf/oo cpRT
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Standing Wave Equation

y = [2ysin(2ﬂ’ft)] sinzzzdx (135)

"Tuned" Wavelength and Frequencies

L1, L1, L,
A = KL ’ EE = -
1 1 1 1
. cpRT]® 1 [cpRT|® 3 |epRT|® 5 [cpRT =n
cyM LL? cyM| A4L? cyM] 4L° |cyM | 4L
v v v v

n=1,3,5,7,9,etc.

Typical Values of Wave Characteristics

The following values are calculated at the extreme
temperatures employed in this research, 650°F. and 105OOF.,
and at the two frequencies studied, 26,000 cps and 39,000
cps. Additionally, the calculations are made at the
maximum power output of the equipment at each frequency

and at one-half that power output.

Power Output

(o)

/A = power output, decibels
= 161 db at 26,000 cps
= 150 db at 39,000 cps

_ -16 watts
I, = constant, 10 —EBE_
I = intensity, watts
cm
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At 26,000 cps,

I _ & _ 161
log = = 45 = 1o = 16.1
> I, 7 10 T 10
4 = 1.259 x 106
o]
I = (1.259 x 1010)(10710) = 1,259 ¥BLLS
cm
At 39,000 cps,
L 150
tog 10 = 5= 55 = 15.0
I = 10%
i
cm?

The following calculations are for a temperature of
65OOF., a frequency of 26,000 cps and an acoustical

intensity of 1.259 Y2LLS
cm

Acoustic Pressure

% [cpRT
Prax =[2/SOI] cyM (122)
gms
/4) _ Eﬂ _ (1.0 a.tm)(120.19J_,m mole) - 0.00238 gms
o RT (82,06 —<m2=atm ) (gq60k) cm3

gm mole YK

(1.259 watts)(1 7 _dyne- cm) = 1.259 x 107 dynes
watt-sec cm-sec

=
]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



240

cp  0.588 —S2
oy " 0.7 —cal T -0
v ’ gm-°C

2
R = 8.31 x 10/ —gm=cm
2 sec2-gm mole-°K

T = 616°K.

gms
120.19 gm-mole

=
1

W=

[(2)(0.00238 %ﬁ%)(1.259x10
b = T

max =
gm-cm
b dyne-sec J
v gZm-cm
[(1.030)(8-31Xl0 SQCZ_Qm mole-oK

£ms
120.19 gm mole

8 dynes ]
cm-sec)

2 i
)(616°K)J

i

2 1 2 L
(59.9.28xloLL g4‘199»:—59-‘-’-)2(4.3868x108 eme_y*
cm5 8802

[}

(7.741%10%) (1.4k47x10°) dynes

cm

1.120x10° dynes
cm?

5 dynes -6 _1b_
_ (1.120x10° SL288) (2, 2481x10 Tyne) = 1.62 ;i%
in

max inz
(0.155 185
cm

Velocity of Propagation

- "
_[(1.030)(8.31x107 S on o o1e-0g) (616 Ki}
g£ms \
(120.19 gm mole)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



241

V = 20,945 Sl

sec,
Amplitude
1
P cyM]® o
Y = —-max [ V} - ——max (134)
217190 [ cpRT 2T £/0 oV

5 dynes m-cm
(1.120x107 =S—>—)(1 a;ﬁg:gg;z)

1 ms cm
(277) (26,000 —=—)(0.00238 £75) (20,945 27-)

Y

i1

0,0138 cm.

Transverse Velocity

Voox = 2TTfY (131)
= 277(26,000 —==)(0.0138 cm)
_ Cht.

Ymax ~ 2,254 sec,

Transverse Acceleration

a = WT%E%Y = 2Tty (132)
1 cm
) 277 (26,000 555/ (2.25% =)
(980 Qméﬁggg)
amax = 375,73)"’ g

The results of similar calculations for temperatures
of 650°F. and 1050°F., frequencies of 26,000 cps and
39,000 cps, and power outputs of full power and one-half

power are shown on the following Table 11.
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SUMMARY OF TYPICAL WAVE CHARACTERISTICS

o)

T, temperature, °F,

f, frequency, E%E

Power output

I, intensity, H§£%§
cm

. gms
t oo
re. gas density, cm3

cp/cy

V, velocity of propagation, om

sec

A , wavelength, cm.

. 1b
Prax? acoustic pressure, 02
Y, amplitude, cm.

transverse velocity ég%

X
Jmax’

B ox? transverse acceleration, g.

TABLE 11

650
26,000
full
1.259

0.00238
1.030
20,955

0.806

1.62

0.0138
2,254

375,734

650
26,000
half
0.630

0.00238
1.030
20,945

0.806

1.15

0.0098
1,601

266,881

650
39,000
full
0.100

0.00238
1.030
20,945

0.537
0.46

0.0026
637

159,279

650
39,000
half
0.050

0.00238
1.030
20,945

0.537
0.32

0.0018
L1

110,270
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TABLE 11 (continued)

SUMMARY OF TYPICAL WAVE CHARACTERISTICS

o

T, temperature, F.

f, frequency, E%E
Power output

watts

I, intensity, >
cm

3 £ms
P B2S density, o3

op/ oy
V, velocity of propagation,

cm
sec

A , wavelength, cm.

1b

b
in?

max’ acoustic pressure,

Y, amplitude, cm.

cm

transverse velocity, Sec

v
max?

a

max’ transverse acceleration, g.

1050
26,000
full
1.259

0.00175
1.024
2l4+,298

0.935
1.50

0.0149
2,434

Los5,740

1050
26,000
half
0.630

0.00175
1,024
24,298

0.935
1.06

0.0105
1.715

285,885

1050
39,000
full

0.100
0.00175
1,024
214,298

0.623
0.42

0.0028
686

171,531

1050
39,000
half
0.050

0.00175
1,024
244,298

0.620
0.30

0.0020
490

122,522
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Summary of Ultrasonic Engineering Nomenclature

V = velocity of propagation of wave form, ég%
Y = amplitude, cm.

cm
cycle

A = wave length,

t = time, sec.
X = distance traversed by wave form, cm,

y = displacement, cm,

f = frequency, gyeles

sec
. sec
T = period
p ? cycle
. cm
v = transverse velocity, Sec
. cm

a = transverse acceleration, —5
sec?

g, = conversion factor, 980 gé%?g
= original d ity, &02
A, = original gas density, o3

2 2

K = ressibilit cm cm-sec a _ gm=-cm

compressibility, dyno’ - (dyne oo?

Cp
§ = —

v

Cp = heat capacity of gas at constant pressure, F%%%E
Cy = heat capacity of gas at constant volume, Eﬁ%%a

_ 7 _ergs 7 _dyne-cm
R = 8.31 x 10" o552 op=8.31 x 107 —les i o

2
(erg = dyne - cm = gm;%m_)
& sec
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T = temperature of gas, %K.
M = molecular weight of gas, gm-$§1e
p = pressure, gﬁﬁgﬁ
Prox = maximum pressure caused by sound wave, Q§ﬁ§§
I = intensity, grg , dyge—cm (10-7 watt-sec)
cm~-sec cm“-sec erg

/f = sound intensity level, decibels

0—16 watts

I~ =1
© cm?

L = reactor length, cm.

n=1,3,5,7,9,etc.
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DESIGN EQUATION FOR PSEUDO FIRST ORDER REACTION

Plug Flow Reactor Design Eguation

XAf
W dXa

Fa fﬁﬁ (136)
XAO

=
i

wt., catalyst, gms.

_ gm moles A
FAO = feed rate of A, S60.
XAo = initial conversion of A

Xpp = final conversion of A

gm moles A
gm cat-sec

(-r,) = reaction rate,

Reaction
06H5—CH—(CH3)2 —— 06H6 + CH3—CH=CH2
Cumene Benzene Propylene
k
A b m——— R + S
k!
Rate Equation
(-r,) = kpp - k'pgbg (137)
npRT ]
Py =~y = CART
ngRT
Pp =~y = CrRT
nSRT
Pg = T—- = CgRT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



248

_ 2
(«I'A) = kRTC, - k'(RT) CxCq

A

gm moles A
gm cat-sec

(-r,) = reaction rate,
Ppas PRs Pg = partial pressure, atm.

k = forward reaction rate constant for overall

£m _moles
gm cat-atm-sec

reaction,

k! = reverse reaction rate constant for overall

gm moles
gm cat-atmé-sec

reaction,

3
S cm--atm
R = 82.06 Zm mole-OK

T = %K.

_ . gm_moles
CA’ Chs Cq = concentration, -

Substitute Rate Equation into Plug Flow Reactor Design

Equation
XAf
I *a (138)
- T 2
FAO kRTCA k'(RT) CRCS
XAO

Assume Pseudo First Order Reversible Reaction

Reaction
Kp
A D———= &R
k'P
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Rate Eguation

(—r'A) = kpC, - k' Cp (139)
I{ _ kP _ CR CHe
P~ k's,  CA - Ch

Material Balance

Inlet Reactor Outlet
A NAO=NA0 NA'-:NAO-XANAO NAszAO'XAfNAO
R NBO=NRO NR=NRO"XANAO NRf=NRO+XAfNAO
Total NagtNRg NaotNR, Nag+tNR,

Np Np -XaNp,  Nag(1-Xp)

CA = - = > = > = CAo(l—XA) = CAO—CAOXA
NR NRotXANAG NRo NAg Xa
= = = + = -+ X
CR v v v v CRo * CakA
Substitution

(—I"A) = kP(CAO—CAOXA) - k'P(CHo + CAOXA)

I

Cg
kpCa,(1-Xa) - k' Cag [CXQ + XAJ

At Equilibrium

CRO
-— +
kP CRO + CAOXA _ CAO XAe

] - B -
k P CAO CAOXA 1 XAe
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Cr k

6_9 + XAe = Eg— (1"XAe)

Ao I)

CR, ) Ky, (1—XAe) - XA,

CAO k'P

Substitution
(-r,) = k Ca (1=Xp) - k'.C EE— (1'er) - XAe + Xp
A P“Ap A PYAg k'p
= - - 1 ket
= kPCAO kPCAOXA kPCAO+kPCAOer+k PCAOXAG k PCAOXA
= kp(CpXag=CapXa) + k'p(Ca Xp ~Ch Xa)
— ]

(—I'A) = (kP+k P)CAO(XAG—XA) (140)
Substitute RBate Bquation into Plug Flow Reactor Design
kEgquation

XAf

W dxa
FAO (kP+k'P)CAO(XAe—XA)

XA

(0]

Initial rate (XA = Q)

= - = 1
ry (kP+k'P)CAO(XAe Xa) (kP+k P)CAOXAe
r.
4Kk ! = —
(kP k P)CAO T Xa
e
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XAf
W _ tAe dXp
FAO PO (X e"'XA)
XAO
Integrate
XA =X
W XA f XAe-XA
—— = —2 | ~In(Xp_-Xa) = =% | _1n(—~—")
XAO=O
X
_ Mhel-1n(1 - P4
. XA 1
FH_ - e ln|—=%xf (141)
Ao Yo l'er
Calculate Xpgq
C.
CR + X
K = __A_Q_____.l_{.e.
1 - XAe
CRo = 0
XA
K = 2
1 - Xa
XAe = K -~ KXAe
XA = K
€ K+ 1
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Tabulate Results

o) Xp

T, F, K, atm. e
850 2.01 0.626
950 6.21 0.861
1050 15.96 0.942

1
W Xp
W 1 -3

Plot “Ao vs. 1n XAeJ as Shown in Figure 80 to

Determine To

This plot can now be employed to calculate the
initial reaction rate, r,, as a check against the values
determined by extrapolation of the reaction rate vs. con-

version curves.
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FIGURE 80

PSEUDO FIRST ORDER PLOT OF DATA

W gm cat-sec

Fao,? gm mole T

1050°F .

I

11

950°F,
0.861

"

850°F.
0.626

~
> 3
oy
o
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RATIO OF EFFECTIVENESS FACTOR FOR

DIFFERENT SIZE CATALYST PARTICLES

Reaction Design Equation

LR y ( 1 1 |1p(2+Xp S ) . XA~
Fa, ~ 2S T 283 (i-Xp &) $2
1 9p(1+Xad ) 1 1n(1- ézXAz) - XAl (99)
P1253  (1xa8) " 252 &

= 1 1
S ELkoK ] Lko

S + —1B
A = CLkKall T €LkKp

T2
S= |1+ ¢
At constant conversion, vressure and temperature, 8
and X, are constant and the reaction design equation re-

duces to the following:

=

L ! + 1 Cy 2 + s Co
Faoo — | ELkKATT €Lkyp € LkoKpTl €Lk Ky
1 1 1 |c 2 KR C
= —= + + 2
€ V| TkoKaT " Tig| & V| TkokalT T TkoKa
=L fc,c,+ ¢, c
€ | ¥3 "1 L ~2
= 1 C (142)
€ 75
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Ratio of Reciprocal Space Velocity

IFa €1 _ €

wo = —5— = 2 (143)
W 5 1
FAo 2 €2

Plot W/FAp vs. XA for Various Size Catalyst Particles as

Shown in Figure 81

Plot W/Fp, vs. dp at Constant X, and Extrapolate to dp = 0

as Shown in Figure 82

Calculate Effectiveness Factor Employing Example Data

S
Fa
d W £ T wOJO
Catalyst P 2 B _Cat-5E0 e
No. cm, Fpy’ gm mole Fag
£ _ 1.1 _
0 0 1.1 0 = 17 = 1.00
E - _1.'_]:_ -
1 0.045 1.3 1 =155 = 0.85
1.1
2 . g - =2 = .
0.33 5.7 2 = T55 = 0.19
1.1
. L] g = - = [
3 0.43 7.6 3 78 0.15
€ = l-'—1—:.:
N 0.53 10.0 y = 1o = 0-11
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FIGURE 81

RECIPROCAL SPACE VELOCITY VS. CONVERSION

dP - 0.045 cm.

dp=0.33 cm.

0.28
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FIGURE 82

RECIPROCAL SPACE VELOCITY VS. CATALYST PARTICLE
DIAMETER AT CONSTANT CONVERSION

(X, = 0.28)
W
10\
/
1.1 /
/
/
/
dp
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Relationship Between Effectiveness Factor and Catalyst

Particle Diameter

Beaction Design Equation

[_ﬂ_1 = L f(Xy) at constant temperature — (144)

FAo1 61 and pressure

If only the outside surface of the catalyst is

effective, then € = Cga, where

C6 = a constant
a = outside surface area of catalyst cm?
B unit mass ? om
_ (ZTTPP pellet)
—£ms
TTrP /°p Pellet!
d
P
W) 2
" 4o dp.3
BTF(Z) P
6dp?
ap’ Py
_ _6
dp Pp
6Ce Co
dpp  dp
- 1
oot

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



260

1
A plot of dP vs. € should yield a straight line if

this assumption is true as shown in Figure 83.

__1or(xa) _ %P1 or(xa)
Fa 61 Cr

W - 1 f(Xp) = Cgf(Xp) (145)
FAodP Co

Data for all size catalysts should fall on the

curve of W VS, Xp.
FAOdP
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FIGURE 83

RECIPROCAL EFFECTIVENESS FACTOR VS.
CATALYST PARTICLE DIAMETER

dp, cm.
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FIGURE 84

W
CONVERSION VS, |=—i-
’.;Aodf;l
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THE CARBON-OXYGEN REACTION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



264

THE CARBON-OXYGEN REACTION

During several of the initial runs in this study, a
problem was encountered with carbonization of the cumene
at reaction temperatures of 1000°F. and subsequent plugging
of the reactor and fouling of the catalyst. Carbonization
was sometimes so severe that it was often very difficult

to remove the preheater from the reactor to clean it.

This problem was solved by purging the reactor with
air at reaction temperature for 24 hours after each run

to burn off the carbon.

The Carbon-0Oxyvegen Reaction Rate Equation

For the reaction

C + 0 —_— GO

2 2

B(S) + Alg) fFaseous product,
Parker and HottellZ' have shown that the rate equation for

surface reaction controlling is as follows:

14
4,32 x 10~ Ca, -44.000
_ 432 x & e Y} (146)

-PB Té

am.mcles carbon reacted
B sec-cmé

r = %,

CAF = concentration of oxygen, gmiﬁ%lgg

cal
gm mole-°K

R =1,98
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Calculation of Rate Constant, kg

4,32 x 10M o=14,000

,ks T% RT
_ - cm
ks = rate constant, S60
i 1 1 1
TF = (850°F.)% = (727°K)® = 27°k®
cal
" 1 - 44,202Em mole
_ 4.32 x 10 e a 0
kg = 55 (1.98 e mole—OK)(72/ K)

0.1598 x 10t% ¢-30.6

I

(0.1598 x 101%)(5.137 x 1071%) = 0.821 Sec

Calculation of Oxygen Concentration, CAp

(1.0 atm.) (0.21)

“Ag © (0.0821 Liter-atm., o s0x) (1000 —S02)
g gm mole-"K ’ liter

3.52 x 10—6 gm-moles
cm3

i}

Calculation of RBeaction Rate

-k Oy = cm_ -6 gm-moles
-r_ = kscAg = (0.821 Sec)(3.52 x 10 - )

i

-6 gm-moles
2.8 10 g—z——————
) x cm<-sec
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Calculation of Maximum Weight of Carbon

Assume 5% carbonization at a feed rate of 600 gms./hr.

cumene for 30 min,
ms _gms
(600 £72)(0.05)(0.5 hrs)(12.011 AIT—z)
(120,12 —B05_)

gms. carbon =

gm mole
= 1,5 gms. carbon
Calculation of Availlable Surface Area
Reactor
g = (0.767 in)(20.5 in) = 3.26 cmz
R cmy 2 :
(2.54 TH)
Preheater
g - (O.lé? 1nL(20.5 in) - ? 66 sz
F (2.54 Smy2 '
‘ in
Catalyst
C = (13.1 gm— (5.748 gms) = 75.30 cm2
Total area = 86.22 cm2
Bequired Reaction Time
. (1.5 gms)
= g ~6gmmole sec 2
(12.011 —F mole)(2 89x10 g—g~gg§5(6oazﬁ (86.22 cm?)

]

8.4 min,
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On several occasions, after two 20 minute runs, the
reactor was purged at 85OOF. for 30 minutes with air. The
reactor was subsequently disassembled and found to be

essentially free from carbon.
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DATA

The following Table 12 lists all the data collected in
this research. The digits before the decimal point in the
Run No., signify a series of runs made at the same tempera-
ture, The first or first and second digits after the decimal
point signify runs made at the same temperature and feed rate.

The last digit after the decimal point signifies the following:

1 - 39,000 cps
2 - 26,000 cps
3 - no ultrasound

A coding system was necessary to avoid confusion since
a total of 479 runs were made, involving some 640 samples
and 1,920 gas chromatograph analyses.

In every case, a run in the absence of ultrasound was
made before and after the application of ultrasound. The
analyses reported are the average of six samples, three
samples being taken before and three samples after.

The order in which the 39,000 cps and 26,000 cps ultra-
sonic frequencies were applied were randomly reversed
throughout the entire investigation,.

Conversions were calculated from liquid samples, but
were checked often against gas samples taken directly from
the reactor.

Figure 85 illustrates an actual data sheet,
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FIGURE 85

DATA SHEET
Run No., 16.1 Reactor Diameter, cm. 0.992
Date 5-1-72 Frequency, cps 39,26
Catalyst, gms. 5.748 Power, watts 25
Bed Height, cm. 10.158 Feed Tank Diameter, in. 1
Time 1225 1245 1330 1350 1410 1430 1450 1510
Tank Height, in. 32.85 32.85 31.05 30.40 29,70 29.00 28.20 -
Rotameter, mm. - 26 26 26 26 26 26 -
Rota. Feed Rate, gms/hr. - 25 25 25 25 25 25 -
Tank Feed Rate, gms/hr, - - - - - - 24 -
Heater No. 1 Lo 40 40 40 40 40 40 40
Heater No. 2 Lo Lo 40 40 L0 40 40 L0
Heater No. 3 4.0 Lo 40 4.0 40 40 40 Lo
Heater No, 4 and No. 5 40 40 L0 40 40 40 40 40
Hot 0il Heater 110 110 110 110 110 110 110 110
TI-1,CF. 70 70 70 70 70 70 70 70
T1-2,0F, 710 710 710 710 710 710 710 710
TI-3,0F, 750 750 750 750 750 750 750 750
TI-4,9F, 750 750 750 750 750 750 750 750
TI-5,°F. 750 750 750 750 750 750 750 750
TI-6,°F, 750 750 750 750 750 750 750 750
TI-7,9F, (Hot 0il) 350 348 3L6 348 350 352 354 352
TC-1,°F,. 750 750 750 750 750 750 750 750
Ultrasound of f off off off 26 39 off -
W/F,zm cat-sec/gm mole - - - - - - 102,900 ~
Cumene, % - - - 82.66 77.98 76.15 83,16 -
Benzene, % - - - 15.69 20,40 22.23 15,24
Propylene, % - - - 1.65 1,62 1.62 1,60 -
Conversion, X - - - 22.6 28.7 31.0 22,0 -
Nitrogen Purge on of f of f of f of f of f on of f
Air Purge of f off of f off of f off off on

042
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TABULATION OF DATA
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W/F X
Catalyst Bed Ht. Bed Dia. Ultrasound. Feed Rate gm cat-sec Lemp. Conversion
gms., cm. cm. cps watts gms/hr gm mole OF. %
5.7 10.2 0.992 - - 194 12,730 850 29.1
5.7 10.2 0.992 - - 102 24,200 850 30.9
5.7 10.2 0.992 - - 293 8,430 850 15.8
5.7 10.2 0.992 - - 387 6,380 850 9.1
5.7 10.2 0.992 - - 500 4,930 850 9.8
5.7 10.2 0.992 - - 589 L ,200 850 3.2
5.7 10.2 0.992 - - 99 25,000 950 39.7
5.7 10.2 0.992 - -~ 198 12,480 950 26.5
5.7 10.2 0,992 - - 304 8,125 950 19.0
5.7 10.2 0.992 - - 387 6,380 950 6.6
5.7 10,2 0.992 - - L96 1,980 950 13.5
5.7 10.2 0.992 - - 589 4,190 950 §.2
. 5.7 10.2 0.992 - - 97 25,500 1050 51.3
. 5.7 10.2 0.992 - - 194 12,750 1050 32.3
. 5.7 10.2 0.992 - - 302 8,170 1050 23.4
. 5.7 10.2 0.992 - - Lo7 6,075 1050 17.9
.91 5.7 10.2 0.992 - - 511 4,830 1050 14.8
.92 5.7 10.2 0.992 - - 600 4,120 1050 9.1
11 0.958 1.693 0.992 39,000 25 99 4,180 850 7.86
12 0.958 1.693 0.992 26,000 25 99 4,180 850 6.67
.13 0.958 1.693 0.992 - - 99 4,180 850 6.20
.21 0.958 1.693 0.992 39,000 25 193 2,150 850 3.73
.22 0.958 1.693 0.992 26,000 25 193 2,150 850 3.01
.23 0.958 1.693 0,992 - - 193 2,150 850 2.87

T2
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Run Catalyst Bed Ht. Bed Dia.
No. gms. cm. cm.
5.31 0.958 1,693 0,992
5.32 0.958 1.693  0.992
5.33 0.958 1.693 0.992
5.41 0.958 1.693 0.992
5.42 0.958 1.693 0.992
5.43 0.958 1,693 0.992
5.51 0.958 1,693 0.992
5.52 0.958 1,693 0.992
5.53 0.958 1.693 0.992
5.61 0.958 1.693 0.992
5.62 0.958 1.693 0.992
5.63 0.958 1.693 0.992
6.11 0.958 1.693 0.992
6.12 0.958 1,693 0.992
6.13 0.958 1.693 0.992
6.21 0.958 1.693 0.992
6.22 0.958 1,693 0.992
6.23 0.958 1.693 0.992
6.31 0.958 1.693 0.992
6.32 0,958 1,693 0.992
6.33 0.958 1.693 0.992
6.41 0.958 1.693 0.992
6.42 0.958 1.693 0.992
6.43 0.958 1.693 0.992

TABLE 12 (continued)

TABULATION OF DATA

WU/F X
Ultrasound Feed Rate gm cat-sec Temp. Conversion
cps _watts gms/hr  gm mole OF, %
39,000 25 296 1,400 850 2.35
26,000 25 296 1,400 850 2.15
- - 296 1,400 850 1.65
39,000 25 392 1,158 850 1.32
26,000 25 392 1,158 850 1,15
- - 392 1,158 850 0.763
39,000 25 501 827 850 0.429
26,000 25 501 827 850 0.275
- - 501 827 850 0.238
39,000 25 586 707 850 0.816
26,000 25 586 707 850 0.669
- - 586 707 850 0.505
39,000 25 99 4,180 950 7.02
26,000 25 99 4,180 950 5.69
- - 99 4,180 950 5.30
39,000 25 192 2,150 950 3.06
26,000 25 192 2,150 950 3.01
- - 192 2,150 950 3.26
39,000 25 285 1,453 950 2.03
26,000 25 285 1,453 950 1.80
- - 285 1,453 950 1.62
39,000 25 382 1,083 950 0.734
26,000 25 382 1,083 950 0.616
- - 382 1,083 950 0.671

ele
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TABLE 12 (continued)

TABULATION OF DATA

W/F X
Run Catalyst Bed Ht. Bed Dia, Ultrasound Feed Rate gm cat-sec Temp, Conversion
No. gms., cm. cm. cps watts gms/hr Zm mole OF, %
6.51 0.958 1.693 0.992 39,000 25 o1 8473 950 0.691
6.52 0.958 1.693 0.992 26,000 25 491 8473 950 0.492
6.53 0.958 1.693 0.992 - - L91 843 950 0.326
6.61 0.958 1.693 0.992 39,000 25 593 698 950 0.277
6.62 0.958 1.693  0.992 26,000 25 593 698 950 0.249
6.63 0.958 1.693 0.992 - - 593 698 950 0.258
7.11 0.958 1.693 0.992 39,000 25 98 L, 225 1050 5.39
7.12 0,958 1.693 0.992 26,000 25 98 L ,225 1050 4,01
7.13 0.958 1.693 0.992 - - 98 L,225 1050 3.98
7.21 0.958 1.693 0.992 39,000 25 211 1,963 1050 2.50
7.22 0.958 1.693 0.992 26,000 25 211 1,963 1050 2.70
7.23 0.958 1.693  0.992 - - 211 1,963 1050 3.95
8.11 0.958 1.693 0.992 39,000 25 98 4,230 1050 5.97
8.12 0.958 1.693 0.992 26,000 25 98 L, 230 1050 5.35
8.13 0.958 1.693 0,992 - - 98 4,230 1050 5.17
8.21 0.958 1.693 0.992 39,000 25 205 2,020 1050 2,76
8.22 0.958 1.693 0.992 26,000 25 205 2,020 1050 2.21
8.23 0.958 1.693 0.992 - - 205 2,020 1050 2.32
8.31 0.958 1.693 0.992 39,000 25 304 1,363 1050 1.59
8.32 0.958 1.695 0.992 265000 25 304 1,363 1050 1.53
8.33 0.958 1.697% 0.992 - - 304 1,363 1050 2.06
9.11 1.916 3.386 0,992 39,000 25 92 8,980 950 16.62
9.12 1,916 3.386 0.992 26,000 25 92 8,980 950 13,56 »
9.13 1.916 3.386 0.992 - - 92 8,980 950 12.26 )
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TABLE 12 (continued) t

TABULATION OF DATA

W/F X

Run Catalyst Bed Ht. Bed Dia. Ultrasound Feed Rate gm cat-sec Tgmp. Conversion
No. gms. cm. cm., cps watts gms/hr om mole F. %
9.21 1.916 3.386 0.992 39,000 25 202 4,090 950 6.33
9.22 1.916 3.386 0.992 26,000 25 202 4,090 950 6.53
9.23 1.916 3.386 0.992 - - 202 4,090 950 7.00
9.31 1.916 3.386 0.992 39,000 25 306 2,980 950 5.17
9.32 1.916 3.386 0.992 26,000 25 306 2,980 950 L,97
9.33 1.916 3.386 0.992 - - 306 2,980 950 L.97
9.41 1.916 3.386 0.992 39,000 25 b22 1,965 950 3.08
Q.42 1.916 3.386 0.992 26,000 25 422 1.965 950 2.59
9.43 1.916 3.386 0.992 - - L22 1,965 950 2.38
9.51 1.916 3.386 0.992 39,000 25 495 1,673 950 1.54
9.52 1.916 3.386 0.992 26,000 25 Lg7 1,673 950 1.52
9.53 1.916 3.386 0.992 - - 4G5 1,673 950 1.41
9.61 1.916 3.386 0.992 39,000 25 606 1,368 950 1.88
9.62 1,916 3.386 0.992 26,000 25 606 1,368 950 1.69
9.63 1.916 3.386 0.992 - - 606 1,368 950 1,46
10.11 1.916 3.386  0.992 39,000 25 112 7,390 850 6.09
10.12 1.916 3.386 0.992 26,000 25 112 7,390 850 L,79
10.13 1.916 3.386 0.992 - - 112 75390 850 5.12
10.21 1.916 3.386 0.992 39,000 25 203 L 080 850 L .30
10.22 1.916 3.386 0.992 26,000 25 203 4,080 850 3.85
10.23 1.916 3.386 0.992 - - 203 4,080 850 3.57
10.31 1.916 3.386 0.992 39,000 25 310 2,670 850 2.14
10.32 1.916 3.386 0.992 26,000 25 310 2,670 850 2.34
10.33 1.916 3.386 0.992 - - 310 2,670 850 2.00

12
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TABLE 12 (continued)

TABULATION OF DATA

W/F X
Run Catalyst Bed Ht,., Bed Dia. Ultrasound Feed Rate gm cat-sec Temp. Conversion
No. gms. cm. cm. cps _watts _gms/hr em mole OF, %
10.41 1.916 3.386 0.992 39,000 25 393 2,110 850 1,97
10.42 1.916 3.386 0.992 26,000 25 393 2,110 850 1.67
10.43 1.916 3.386 0.992 - - 393 2,110 850 1.53
10.51 1.916 3.386 0.992 39,000 25 L8l 1,714 850 1.29
10.52 1.916 3.386 0.992 26,000 25 L84 1,714 850 1.09
10.53 1.916 3.386 0.992 - - L84 1,714 850 0.840
10.61 1.916 3.386 0.992 39,000 25 609 1,370 850 0.637
10.62 1.916 3.386 0.992 26,000 25 609 1,370 850 0.415
10.63 1.916 3.386 0.992 - - 609 1,370 850 0.498
11,11 5.748 10.158 0.992 39,000 25 108 23,100 1000 29.3
11,12 5.748 10.158 0.992 26,000 25 108 23,100 1000 26.3
11,13 5.748 10.158 0.992 - - 108 23,100 1000 24 .2
11,21 5.748 10.158 0.992 39,000 25 208 11,950 1000 21.2
11,22 5.746 10.158 0.992 26,000 25 208 11,950 1000 24 .1
11,23 5.748 10.158 0.992 - - 208 11,950 1000 23.6
11.31 5.748 10.158 0.992 39,000 25 302 8,250 1000 17.7
11,32 5.748 10.158 0.992 26,000 25 302 8,250 1000 16.8
11,33 5.748 10,158 0.992 - - 302 8,250 1000 16.8
11.41 5.748 10.158 0.992 39,000 25 426 5,840 1000 13.0
11,42 5.748 10.158 0.992 26,000 25 426 5,840 1000 12.5
11,43 5.748 10.158 0.992 - - L26 5,840 1000 13,6
11,51 5.748 10.158 0.992 39,000 25 L84 5,150 1000 12.1
11.52 5,748 10.158 0.992 26,000 25 L 8L 5,150 1000 10.6
11,53 5.748 10.158 0.992 - - L 8L 5,150 1000 11.0

gLz
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TABLE 12 (continued)

TABULATION OF DATA

W/F X
Run Catalyst Bed Ht. Bed Dia. Ultrasound Feed Rate gm cat-sec Temp. Conversion
No. gms. cm. cm. cps watts gms/hr om mole OF, .

11.61 5.748 10.158  0.992 39,000 25 593 4,200 1000 8.49
11,62 5.748 10.158 0.992 26,000 25 5973 L,200 1000 8.39
11.63 5.748 10.158 0.992 - - 593 4,200 1000 7.94
12.11 5.478 10.158 0.992 39,000 25 101 24,600 950 27.2
12.12 5.748 10.158 0.992 26,000 25 101 2L 1600 950 22.9
12.13 5,748 10.158 0.992 - - 101 24,600 950 22.0
12.21 5.748 10.158 0.992 39,000 25 201 13,400 950 16.1
12.22 5.748 10,158 0.992 26,000 25 201 13,400 950 16.0
12.23 5.748 10.158  0.992 - - 201 12,400 950 16,0
12.31 5.748 10.158 0.992 39,000 25 321 7,750 950 144
12.32 5.748 10.158 0.992 26,000 25 321 7,750 950 12.4
12.33 5.748 10.158 0.992 - - 321 7,750 950 11.9
12,41 5.748 10,158 0.992 395,000 25 L17 5,975 950 10.6
12.42 5,748 10.158 0.992 26,000 25 L7 5,975 950 10.1
12.43 5.748 10.158 0.992 - - L17 5,975 950 9.93
12.51 5.748 10.158 0.992 39,000 25 483 5,150 950 9.32
12.52 5.748 10.158 0.992 26,000 25 L83 5,150 950 9.67
12.53 5.748 10.158 0.992 - - 483 5,150 950 8.97
12.61 5.748 10.158 0.992 39,000 25 589 4,230 950 8.08
12.62 5.748 10.158 0.992 26,000 25 589 4,230 950 8.13
12.63 5.748 10.158 0.992 - - 589 4,230 950 7.62
13.11 5.748 10.158 0.992 39,000 25 102 24,400 900 13.1
13.12 5.748 10.158 0.992 26,000 25 102 24,400 900 11.8
13.13 5.748 10.158 0.992 - - 102 24,400 900 12.0
13,21 5.748 10.158 0.992 39,000 25 212 11,730 900 11.6

92
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TABLE 12 (continued)

TABULATION OF DATA

W/F X

Run Catalyst Bed Ht. Bed Dia. Ultrasound Feed Rate gm cat-sec Temp., Conversion
No. gms. cm. cm. cps watts  gms/hr gm mole om, %
13.22 5.748 10.158 0.992 26,000 25 212 11,730 900 10.6
13.23 5,748 10.158 0.992 - - 212 11,730 900 9.88
13.31 5,748 10.158 0.992 39,000 25 331 7,520 900 10.5
13.32 5.748 10.158 0.992 26,000 25 331 7,520 900 9.71
13.33 5.748 10.158 0.962 - - 331 7,520 900 9.78
13.41 5.748 10.158 0.992 39,000 25 L25 5,870 900 7.98
13,42 5.748 10,158 0.992 26,000 25 425 5,870 900 8.37
13.43 5,748 10,158 0.992 - - 425 5,870 900 8.18
13.51 5.748 10.158 0.992 39,000 25 510 L /880 900 6.73
13.52 5.748 10.158 0.992 26,000 25 510 L ,880 900 6.04
13.53 5.748 10,158 0.992 - - 510 L,880 900 6 .64
13.61 5.748 10.158 0.992 39,000 25 639 3,900 900 7.04
13.62 5.748 10.158 0.992 26,000 25 639 3,900 900 5.92
13.63 5,748 10,158 0.992 - - 639 3,900 900 5.63
14,11 5.748 10.158 0.992 39,000 25 38 65,500 850 30,4
14,12 5.748 10.158 0.992 26,000 25 38 65,500 850 21.3
14,13 5.748 10.158 0.992 - - 38 65,500 850 20.5
14,21 5,748 10.158 0.992 39,000 25 87 28,600 850 26.7
14,22 5,748 10.158 0.992 26,000 25 87 28,600 850 26.1
14,23 5.748 10.158 0.992 - - 87 28,600 850 26.5
14,31 5,748 10,158 0.992 39,000 25 103 24,200 850 24,0
14,32 5.748 10.158 0.992 26,000 25 103 24,200 850 21 .4
14,33 5,748 10.158 0.992 - - 103 24,200 850 20.3
14,41 5.748 10.158 0.992 39,000 25 220 11,320 850 15.0
14,42 5.748 10,158 0.992 26,000 25 220 11,320 850 13.9
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TABLE 12 (continued)

TABULATION OF DATA

W/F X
Run Catalyst Bed Ht. Bed Dia. Ultrasound Feed Rate gm cat-sec Temp. Conversion

No. gms, cm. cm, cps watts gms/hr em mole OF,

14,43 5.748  10.158 0.992 - - 220 11,320 850 12.4
14,51 5.748  10.158 0.992 39,000 25 293 8,480 850 10.3
14,52 5.748  10.158 0.992 26,000 25 293 8,480 850 9.08
14,53 5.748  10.158 0.992 - - 293 8,480 850 9.20
14,61 5.748 10,158 0.992 39,000 25 388 6,409 850 8.52
14,62 5.748  10.158 0.992 26,000 25 388 6,409 850 6.93
14,63 5.748 10,158 0.992 - - 388 6,409 850 6.22
14,71 5.748  10.158 0.992 39,000 25 526 L,730 850 5.78
14,72 5.748  10.158 0.992 26,000 25 526 4,730 850 5.58
14.73 5.748  10.158 0.992 - - 526 L,730 850 5.61
14,81 5.748 10,158 0.992 39,000 25 593 4,200 850 7.47
14,82 5.748 10,158 0.992 26,000 25 593 4,200 850 5.92
14,83 5.748 10,158 0.992 - - 593 4,200 850 4,51
13.71 5.748  10.158 0.992 39,000 25 25 99,500 900 26.1
13.72 5.748  10.158 0.992 26,000 25 25 99,500 900 22.3
13.73 5.748  10.158 0.992 - - 25 99,500 900 23.9
13.81 5.748 10,158 0.992 39,000 25 bs 54,800 900 28.1
13.82 5.748  10.158 0.992 26,000 25 Ls 54,800 900 23.6
13.83 5.748 10,158 0.992 - - s 54,800 900 21,5
12.71 5.748 10,158 0.992 39,000 25 28 90,500 950 63.3
12.72 5.748  10.158 0.992 26,000 25 28 90,500 950 51.2
12.73 5.748 10.158 0.992 - - 28 90,500 950 h3.2
12,81 5.748  10.158 0.992 39,000 25 32 77,100 950 52.6 .
12.82 5.748  10.158 0.992 26,000 25 32 77,100 950 bh .1 3
12.83 5.748 10,158 0.992 - - 32 77,100 950 36.1
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TABLE 12 (continued)

TABULATION OF DATA

W/F X

Run Catalyst Bed Ht. Bed Dia. Ultrasound Feed Rate gm cat-sec Temp. Conversion

No. gms. cm. cm. cps  watts _egms/hr  gm mole OF, %
15.11 5.745  10.158 0.992 39,000 25 23 111,000 800 57.2
15,12 5.748  10.158 0.992 26,000 25 23 111,000 800 49.3
15.13 5.748  10.158 0.992 - - 23 111,000 800 48.9
15.21 5.748  10.158 0.992 39,000 25 34 73,300 800 33.9
15.22 5.748  10.158 0.992 26,000 25 34 73,300 800 30.2
15.23 5.748 10,158 0.992 - - 34 73,300 800 28.9
15.31 5.748  10.158 0.992 39,000 25 103 24,100 800 34.5
15.32 5.748  10.158 0.992 26,000 25 103 24,100 800 27.9
15.33 5.748 10.158 0.992 - - 103 24,100 800 26.3
15.41 5.748  10.158 0.992 39,000 25 187 13,350 800 20.9
15,42 5.748 10.158 0.992 26,000 25 187 13,350 800 18.2
15.43 5.748 10.158 0.992 - - 187 13.350 800 15.7
15.51 5.748  10.158 0.992 39,000 25 291 8,570 800 12.0
15.52 5.748 10.158 0.992 26,000 25 291 8,570 ‘800 9.80
15.53 5.748 10.158 0.992 - - 291 8,570 800 9.34
15.61 5.748  10.158 0.992 39,000 25 391 6,375 800 8.68
15.62 5.748 10,158 0.992 26,000 25 391 6,375 800 7.18
15.63 5.748 10.158 0.992 - - 391 6,375 800 5.68
15.71 5.748  10.158 0.992 39,000 25 499 5,000 800 7.39
15.72 5.748 10.158 0.992 26,000 25 499 5,000 800 5.66
15.73 5.748  10.158 0.992 - - 499 5,000 800 L.32
15.81 5.748  10.158 0.992 39,000 25 618 4,030 800 5.56
15.82 5.748 10.158 0.992 26,000 25 618 4,030 800 .93 N
15.83 5.748  10.158 0.992 - - 618 4,030 800 h.oo?
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TAZLL 12 (continusd)

TABULATICH O DATA

w/w %
gun Catalyst 3Bed #t., 2ed Dia Jltrasound 'eed Rate mm cat-sec Temp. Conversion
Yo. ems cm cn cos watts sms/hr  =m mole O, %

25.21 5.748 10.15¢ 0.992 39,000 25 70 32,725 700 3.75
25,22 5.748 10,153 0,992 25,000 25 76 32,725 700 6.35
25.23 5.748 10.158 0.992 - - 76 32,725 700 5.60
25.31 5.743 10.152 0.992 39,000 25 229 10,861 700 Y
25.32 5.748 10.158 0.992 26,000 25 229 10,861 700 3.50
25.33 5.748 10.158 0.992 - - 229 10,8061 700 3.00
25.41 5.748 10.15%8 0.992 39,000 25 261 9,529 700 4.50
25.42 5.748 10.155 0.992 20,000 25 261 9,529 700 3.49
25.43 5.748 10.158 0.992 - - 201 9,529 700 2.85
25.51 5.748 10.158 0.992 39,000 25 352 7,066 700 L,o1
25.52 5.743 10.158 0.992 26,000 25 352 7,066 700 3.05
25.53 5.748 10.158& 0.992 - - 352 7,060 700 2.65
22,11 5.748 10.158 0.992 39,000 25 2 99,500 850 b7.7
22.12 5.748 10.15¢& 0.992 39,000 12.5 25 99,500 850 h1.5
22.13 5.748 10.158 0.992 26,000 25 2 99,500 350 40,2
22.14 5.748 10.158 0.992 26,000 12.5 25 99,500 850 39.5
22.15 5.748 10.158 0.992 - - 25 29,500 850 36.6
22.21 5.748 10.1538 0.992 39,000 25 33 75,400 850 39.7
22,22 5.74%8 10.158 0.992 34,000 12.5 33 75,400 850 34,6
22.23 5.748 10.158 0.992 23,000 25 33 75,400 850 32.2
22.24 5.748  10.15% 0.992 26,000 12.5 33 75,400 850 30,0
22.25 5.758 10,158 0.992 - - 33 75,400 850 28,0
22.31 5.748 10.158 0.992 39,000 2 w7 52,500 850 34,4
22.32 5.748 10,158 0.992 39,000 12.5 Ly 52,800 850 28.0
22,33 5,748 10.1558 0.992 26,000 25 b 52,500 850 29.2
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TARLE 12 (continued)

TABULATION OFF DATA

/R X
Run Catalyst DBed Ht, 2Red Dia. Ultrasound reed ittate ¢m cat-sec Temp. Conversion
No. oms., cm. cm. cps  watts ms/hr m mole O, <%
32.13 5.748 10.15¢& 0.992 - - 31 81,000 850 33.5
33.11 5.748  10.158 0.992 39,000 25 33 76,200 900 Li .9
33.12 5,745 10.158 0.992 26,000 25 33 76,200 900 37.2
33.13 5.748 10.158 0.992 - - 33 76,200 900 33.4
33.21 5.748 10.158 0.992 39,0C0 25 25 93,100 900 49.9
33.22 5.7k8 10,158 0.992 26,000 25 25 98,100 900 i g
33.23 5.748 10.159 0.992 - - 25 98,100 900 L2.1
34,11 5.748 10,158 0.992 39,000 25 60 41,200 650 5.70
34,12 5.748 10.15%8 0.992 26,000 25 60 1,200 650 5.11
34.13 5.748 10,154 0.992 - - 60 41,200 650 b .82
34,21 5.748 10,158 0.992 39,000 25 ) 55,800 650 5.38
34,22 5,708 10,158 0.992 26,000 25 Lo 58,800 650 5.91
34,23 5.748 10.158 0.992 - - b2 58,800 650 5.42
35.11 5.748 10.158 0.992 39,000 25 25 101,000 300 39.9
35.12 5.748 10,158 0.992 26,000 25 25 101,000 800 37.1
35.13 5.748 10.15¢8 0.992 - - 25 101,000 800 34,9
35.21 5.748 10,153 0.992 39,000 25 20 124,300 800 L3.9
35.22 5,748 10.158 0.992 26,000 25 20 124,300 800 39.6
35.23 5.748 10,150 0.992 - - 20 124,300 800 38.1
36.13 5.748 10.153 0.992 - - 125 19,900 900 19.1
36.23 5.748 10.158 0.992 - - 82 30,100 900 27.6
36.33 5.748 10,158 0.992 - - 62 39,800 900 34,3
36.43 5.748 10.158 0.992 - - L1 50,200 900 bhi.6
36.53 5.748 10,158 0.992 - - 31 79,900 900 41,2
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THEERMOCOUPLEE CORBICTION

I'ne reaction temperature of all runs was controlled
by a Leeds & Northrup Speedomax Temperature Controller.
The controller maintained the desired temperature by
energizing and de-energizing the reactor heaters. 'The
control temperature was sensed by a thermocouple which
was inserted in a thermocouple well., The tip of the
thermocouple well was located inside the reactor and

into the catalyst bed.

Because of the heat conduction from the tip of the
thermocouple well to the cooler external end of the well,
the temperature at the thermocouple junction will be less
than the actual gas temperature passing by the tip.

Bird6 has shown this error to conform to the following

equation:

]
1 a - 1 (147)

1
mn m - ,b__I-_'_: 2
Lw - l,a co.gh[k;]

T, = temperature indicated by thermocouple,

1 95008,
Tw = temperature of cool end of thermocouple
well, 57008,
Ta = actual gas temperature, O,

_ A Btu
h = heat transfer coefficient, 120 hr—ft_OF .

L = length of well, 0.708 ft,
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_ .. Btu
k = thermal conductivity of metal, 60 o L2_OF.
B = thickness of well, 0.00692 ft,
950 - Ty _ 1
Z2° = 8 = L - 0.00000612

570 - T,  cosh 12.04 163,376

n o= O
r, = 950,

Therefore, the error is insignificant and the thermo-

couple does sense the actual ras temperature.,
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QUADRATIC REGRESSION EQUAT'ION

All the data collected at each temperature and fre-
quency are presented herein as plots of conversion versus
reciprocal space velocity. The curves best fitting the
data were calculated by the quadratic regression method to

fit the following equation:

X = a+ b(&) + c(ih? (21)
and ,

an + bL(H) + e L(? =T« (148)

al(3) + b2+ oL ()3 = L) (149)

al(h2 + b (3 T (Y = T2 (150)
where,

n = number oi' data points,

The resultinge three constants for czach operating
condition are shown in Table 13 and the data and calculated

curves are cshown in Figures 86 through 111,

The quadratic regression curves were employed only to

evaluate conversion at the specific reciprocal space velocities

gm cat-sec. . .
of 20,000, 50,000 and 80,000 o mole . The statistical
significance of the mass transfer coefficient as a function of
temperature as calculated from the conversion versus reciprocal
space velocity information obtained from the regression lines

was then determined.
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TABLE 13

QUADIATIC EQUATION CONSTANTS

296

f
Temp. cps 3
Op, v 107 Power a
650 39 full -0.000959
650 26 full -0.00605
650 - of f -0.00664
700 39 full 0.0309
700 26 full 0.0253
700 - of f 0.0205
750 39 full 0.0231
750 26 full 0.0051
750 - of f -0.0054
800 39 full 0.0453
800 26 full 0.0308
500 - off 0.0226
850 39 full 0.0282
850 26 full 0.0252
&50 - of f 0.0258
850 39 half 0.0989
850 26 half 0.0974
850 - of f 00,0258
900 39 full 0.0877
900 26 full 0.0789
900 - off 0.0655
950 39 full 0.0359
950 26 full 0.0256
950 - of f 0.0255
1000 39 full 0.0215
1000 26 full -0.0224
1000 - off -0.02173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b x 10 c x 1011
1.74 -0.91
1.76 -1.,06
1.75 -1.10
1.45 0.590
0.923 0.790
0.958 0.650
7.55 -3.74
6.66 -3.17
7.00 -3.70
5'9 "2032
5.32 -1.93
5,41 -2.09
9.92 -5.87
9.04 -5.76
8.40 -5.60
5.01 -2.00
L, 79 -2.03
8.40 -5.60
5.33 -1.86
L. 16 -1,13
6.26 -3.15
7.52 -1.75
8.76 -4 .30
8.12 -4 42

20.73 -39.5

29 .U -75.2

29.8 -81.5
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EVALUATION OF REACTION ACTIVATION ENERGY

Arrhenius!'! Law

Arrhenius' Law, which describes the reaction rate
constant as a function of the reaction activation enerpgy

and temperature is a follows:

i

i

k = k,e” KT (151)
where ,
. gm_moles
= re e S
k reaction rate constant, M oab-sec
rm_moles

k~ = frequen tor £

O quency factor, gm cat-sec

v = activation energy —cal__

“J? om mole
. o]
I' = temperature, K.
. cal
R = conversion factor, 1.98

em mole OK.

For solid catalyzed reactions, the surface reaction
rate corrected for pore diffusion, ETLKZ, is substituted
for k, the reaction rate constant. After this substitution
is made, the natural logarithm of the equation is taken in

order to obtain a linear function of reciprocal temperature.

B
€Lk2 = ke~ HI (152)
1n €Lk, = 1n k.- == 1n e
2 o~ BT
= B
In Ko 17
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vl + 1n l(o (153)

1n €Lk, = (- Ii) 1

Calculation of Activation Energy

% is the slope of the straight

line obtained when 1n €Lk? is plotted against reciprocal

In the above equation, -

temperature.

As shown in Chapter V, the equations for the curves

at the frequencies studied are as follows:

- - 1 .
no ultrasound: logéi&e = 4812 Ton -1.141 (154)
1
In €Lk, = -6157 Fop —2-628
26,000 cps: logéiA%,= =115 5%5 -1.637 (155)
1
In €Lk, = -5265 5p -3.770
39,000 cps: log€Lk, = -2601 o= -2.53%  (156)
= _ 1

The calculation of activation energy, I, from the
constants assocliated with reciprocal temperature obtained

from the above equations yield the following results:

1l

(6157)(1.98)

kcal
1z.1 gm mole

(5265)(1.98)

= 10.4 kcal
° gm mole

no ultrasound: - % = -6,57; L

—

i

26,000 cps,: = -5265; E

T
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(3584)(1.98)

1l

39,000 cps: - % = 3584; E

kcal

= 7.1 gm mole

Calculation of the Characterization Factor

No ultrasound: 1n ko = -2.628

- gm moles
ko 0.0723 gm cat-sec.
26,000 cps: in k, = =3.770
- gm _molesg
ko 0.0231 gm cat-sec,.
39,000 cps: 1n ko = 5,836
- __frm moles
ko 0.00293 gm cat-sec,
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BVALUATION OF INTHINSIC RATE CONSTANT

In order to plot €Lk2 as a function of Kelvin tem-~
perature on the same graph as the mass transfer coeftfi-~
cient, kp, the equations for fka? as a function of

tankine temperature must be transformed. The dimensions

m moles

vhich must be
rm cat-sec c 7

of €Lk? in these equations are

transposed to M o correspond to the dimensions of k_.

SeC 3

TThis is accomplished by the following calculations:

Ho Ultrasound

1

» = N —_— L L
]xx)GLkz 4812 won 1.141 (154)
Il rmm moles ; cm3-atm MmO
k., = ((?LKZ £m cat-sec)(dz‘g3 £m mole—o}()(l K)
= ' . cm
(1 atm)(13.1 £ cat)

or = 1.8%

losr kS = ]_o{rr‘ EL}{ + lo,())' TOK + lO;’" _éﬁ_‘_oj

2 13.1
lop k_ = -4B12 —2—— 1,141 + lor 10K + log 6.2618320
5 1. 810K
log k= ~2073.2388 4 . 00k _ o 3449293 (157)

s 0K

frequency = 26,000 cps

logz €Lk, = -4115 —=— -1.637 (155)
1O}
log kg = :225$5§ﬁﬁﬁ + log %K - 0.8399895 (158)
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Frequency = 39,000 cps

log €Lk, = -2801 r%f ~2.530 (156)
~15 .83
lor k = —l%;ﬁﬁ@ + log TOK - 1.7368171 (159)

'he values of log k  calculated at each temperature

»
and frequency are shown in Table 14, Some of the values
of the mass transfer cocfficient, kg, are also indicated

in the table.
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CALCULATION Oi' MAXIMUM PROBARLE RIBOR

Heciprocal Space Yeclocity, w/“Ao

W/ w W= WA 1 WdR
d(L/LAO) i A Y - wWdbp dd ddFp

1.'A02 - FAO - FAOZ
d.(w/FAoz i 2 ) d.I'AO
N/FAO W A

The maximum probable error is the sum of the individual

errors. Therefore,

W/ 191 ;
dglﬂ/le} i i . dle
i/ o W FAO

For example,

. +
W= 5,788 frms. - 0,001 gm.

o fms o+ ms
Fao = 200 1 0.8 fr.
W/ ) 2
d(/ AO) _ 0.001 ) 0.4 _ ¢ ! -
W/FAO W + 500 0.0001739 + 0,0040 = 0.00417
S ocrror = 0,429
A/Fp, = 12,035 L 52

Conversion, XA

Co = 120.19K
AT 120.198 + 78.11A

ax, = $120.198+76.114)(120.19)dR-120.19H(120.19dit+78.11dA)
AT (120.19Rk + 78.114)72

120,194k __(120.19)%rdr __ _ (120,19)(78,11)kdA
120.19+78.114 ~ (120.191+78,114)2  (120,198+78.11dA)2
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dXpg _ di . _ 120,19 di N . 78.11 dA

Xp (120.192+78.11A) (120.190+78.114)

For example,

7.32% % 0,124

,__.
-
1

=
It

91,09% T 0.53%

d4p - 0.12  120.19(0.12) + 78.11(0.53)
Ap  7.32  120.19(7.32) + 78.11(91.09)

% error = 2.34Y%
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CALCULATION OF POWER INPUT

The maximum total power output of the ultrasonic
horn employed in this research was 25 watts according
to the manufacturers specifications., The power input
per mole of reactor feed at the lowest and highest feed

rates studied is as follows:

Power Input at Feed Rate of 25 gms./hr.

(25 watts)(1 —‘—@&?—-—)(3600 889) (120,19 BB

P = watt-sec gm mole
- Joules cal
(4.186 )(?5 )(1000 kcal)
_ keal
= 103.4 gm~mole

Power Input at Feed Rate of 600 gms/hr.

(25 watts) (1 —99ULe (3550 5€¢) (120,19 A0S

P — watt-sec gm_mole
T Joules 2ms cal
(4,186 ==£=57) (600 £) (1000 ==27)
_ kcal
= 4.3 gm-mole
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SAMPLE CALCULATION OF THE MASS TRANSFER COEFFICIENT

The mass transfer coefficient is calculated from the

following equation derived in Chapter II and Appendix IV:

k

6.26 Xpo T
£ (22)

& (W/Fy )in(1l + Yar,)

Some actual values for the parameters are as follows:

W/FAO

T =

YAry =

Substitution

m cat-sec.
gm mole

20,000 &
850°r. = 727°K.

0.171
1-Xpp 1-0.171 _ 0.829

= = = 0.708

I+Xp¢  140.171  1.171 /

1-Xa, 1~0.708 0.292 ”
nl7Xa, " Tn —L_ " In 1.512 = 0%

0.708

of the above values into Equation (22) yields

the following:

(6.26)(0,171)(727)

= 0.0635 <O

k

g~ (20,000) 1n (0.845) sec
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ANALYSIS OI' VARIANCE

The confidence intervals for the coefficients of the

linear equations expressing log k_ as a function of T and

g
log GLMQ as a function of % are calculated as illustrated

in the following example.

gm cat-sec
£m mole

and No Ultrasound

Linear Equation at "/F , = 80,000

log k, = 0.00169T - 2.66

Let y = log kg
x =17
a = -2.66
b = 0.00169

Calculate SX and Sy

— l:anz - (= x)z}

“x nin - 1)

X

5 (number of data points)

o
il

X~ = 2,653,227
(zx)2= (3637)2 = 13,227,769

1
- (5)(2,653J227)__13’227,769 3 )
°x ° { 5% ] - 43.798

S. = [nf?yz - (E‘y)z} z

o
]
wn

10.336845
(=7.18143)% = 51.572936

O
i

W

(Ziy)2
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1
10. LI" - . —:A
=[5( 3362(3; 51 572936] "= 0.07595

Calculate r

bS
_ x _ (0.00169)(43.798) _ .

Calculate Sy.x

2\1% 4
S,y = 5, [(n'%iféjr )} 0.074595[4(0.0123945)]

yexX

i

0.0010689

Calculation of Sy and Sy

_2 _ {ggﬂz ~ [ 6 }2 = 529,100.76
= |EX - 3732
L
— 1. 529,100.76 | © _ .
s, = (0.0010689) [5 ERTTOY J = 0.0088889
S
. YeX (0.0010689)
S = T = 3 = o
b~ (a0, ()23, 798) 0.0000122
Calculate 99% Confidence Interval
bnz, = Y3,99 = 5.841
a= -2.66 % t5 995y = ~2.66%(5.841)(0.0088889) = -2.66%0.05
- -+ _ -+
b = 0.001697t5 goSy = 0.00169%(5.841)(0.0000122)
= 0.00169%0.00007
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Calculate 95% Confidence Interval

ty.p, = b3 g5 = 3.182
a = -2.66%(3.182)(0.0088889) = -2.66%0.03
b = 0.00169%(3.182)(0.0000122) = 0.00169%0.00004

Calculate 90% Confidence Interval

n-2, = t3’90 = 2.358

a = -2.66%(2.358)(0.0088889) = -2.66%0.02

b = 0.00169%5(2.358)(0.0000122) = 0.00169%0.00003

It

The confidence intervals are similarly calculated for the

remaining relationships.
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NOMEENCLA'TURIS

A = reference to cumene

A = area, cm2

2
a = superficial surface area of catalyst, 5%—
= - s cm
a = transverse acceleration, ———
sec
. . M= 25
C = total concentration of A + R + 5, m-moles
cm?
. M — S
CA = concentration of cumene, gm-moles
cm3
g . . . ; {7~ S
Cp. = equilibrium concentration of benzene, gm-moles
¢ cm3
cm®
Cao, = concentration of active sites occupied by A, ——
1 gm—-cat
CAS = concentration of cumene on catalyst surface, "m—mgleq
cm
: . : 2
CL = total concentration of available active sites, p;mggz
2
Cy = concentration of unoccupied active sites, —m—
1 ! 1 sites, m cat
CP = heal capacity of gas at constant pressure, Fﬁ%%ﬁf
. rm-moles
C,, = concentration of benzene m-moles
it ’ 3
cm
s s . . r 25
Cit, = equilibrium concentration of benzene, m_mole
- cm
2
Cjp, = concentration of active sitbes occunied by H,-JQin:
1 Fm cab
. . [m-mole:s
O = Y1 4 1 = 04 =2
Cq concentration of propylene, ~—253——
2
Cgs, = concentration of active sites occupied by S S
1 ; ? gm cat
(@)
- . : A - cal
CV heat capacity of jras at constant volume, T
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2
Y - : - Cm
diffusivity of A in A + it + 5, o=
SRR
. o . om?
diffusivity of cumene in benzene, sco
cm®
diffucivity of cumene in propylene, fEE
o
cm®
effective pore diffusivity, -<;
sec
cm®
. o . x s
(nudsen diffusivity, pyaya
cm®
combined diffusivity, —-=

averape diameter of catalyst pore, cm.

diameter of catalyst particle, cm,

. . rmocal
activation energy, nm—;ole

, oms
feed rate, =—
ed rate, hr

force, dynes

ffm-moles
sec.

e e W rm-moles
initial cumene teed rate, e = or

(sec text)

cycles
frequency, —%Eg—i

superficial masgs velocity of gas normal to

catalyst bed, ZE¥——

. . - lynes
conversion factor, 980 g%ﬁ_i
m.
k. Sy = )
Thicle modulus = mr, = rp Ty , dimensionless
e
ers dyne~cm. .. .7 watt-sec
intensit 10 e
intensity, C,275cc? cmi-sec ery; )

10—16 watts
cm*

equilibrium constant for overall reaction, atm,

equilibrium constant for surface reaction, atm,
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equilibrium desorption constant for I, atm,

equilibrium adsorption constant for A,

equilibrium adsorption constant for R, otm
forward reaction rate constant for overall reaction,

ffm moles
gm cat-atm-sec

cm®  cm-sec® (dyne = Hm=cm,
dyne? om ‘ sec?

compressibility,

reverse reaction rate constant for overall reaction,

ffm moles
om cat—atmz-sec

constant,

rm_moles
cm2—atm-sec

. r =G
rate constant for desorption of A, m_moles
cme-sec

rate constant for adsorption of A,

forward reaction rate constant for surface reaction,

om moles
cml-sec

reverse reaction rate constant for surface reaction,

fm moles
cm”-atm-sec

equilibrium desorption constant for R, atm.
~m _moles
cm“-atm-sec

rate constant for adsorption of I,

cem_

Daj .
“AB nass transfer coefficient, g

é ?
pseudo first order forward reaction rate constant,

cm3
fgm cat-sec

pseudo first order reverse reaction rate constant,

cm?
#m cat-sec
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forward intrinsic rate constant for surface reaction,

seC

reverse intrinsic rate constant for

)
cm+
om mole-sec

reactor lengsth, cm.

total concentration of active sites,

unoccupied active catalyst site, dimensionless

rms

moleccular weight
2T rm o mole

mass, ¢ms.

number of moles of A, ym moles

surface reaction,

initial number of moles of A, gm moles

final number of moles of A, gm moles

R . T — g
rate of mass transfer of A in z direction, Lmzmglgg

rate of mass transfer of k& + 5 in 2z direction,

total number of moles, fm-moles
173’5’7’9’ etC.
vapor pressure, mm, He

partial pressure, atm.

dynes
pressure a/nes
*  cm?l

critical pressure, atm,

maximum pressure caused by sound wave,

total pressure, atm,

cmB—atm

ideal pas constant, 82,06

cm

dynes
cm?

gm mole-CK,
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B = referencc to benzene

gm=-cal
om mole-YK

R = ideal gas constant, 1.987

: erys dyne-cm.
R = 8.31 x 1 7 :
5.3 v sm mole-OK? om mole-OK
2
TM=CMm
(ery = dyne-cm = “——Qé—)
sec
He = iteynold's number, dimensionless
2
tt = ideal gas constant, 8.3 x 1O7 fm cmo 5
I fm mole-~YK-sec
, . . m_moles
H = maximum reaction rate, £0-MMO=ES
‘max m 10 “rE sec.
. . . frm-moles
HP = rate of diffusion into catalyst pellet, dm:;E—*—
PR -
C . . om moles
r = initial rate of reaction -
o) ' ym cat-sec
r, = sm moles A diffusing toward catalyst surface per
A
rm-moles
~ - o {- JARLLNEUA S
second per gm catalyst, oM. See.
. ffm moles A
-r = reaction rate —
( Al) ’ m cat-sec
r, = equivalent radius of pore, cm.
ry = radius of catalyst particle, cm.
S = reference to propylene
SEY = external surface area of catalyst, cm2
& Cm2
5, = total surface area of porous catalyst, e
%d = total surface of porous catalyst = SH ng
s “/ 3 O i > o C yu /OP ‘(}:’ Cm3
m ) (o]
T = temperature, 7K,
_— . see
' = period, oycle

t = time, sec.

t = temperature, °c.

(@)

T, = ecritical temperature, C.
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. . . cm

/ = velocity of proparation of wave form, y

2o

. _ ) o e eme . cmJ
/. = molar volume at the normal boiliny; point, ————

b gm mole
/., = critical molar volume -—42&2——

C 7 ym-mole

3

. cn
Y = pore volume, ——

o frm

v = transverse velocity, fg%

3

v = volume, cm
vho= peiosht catalyst, rms.
il = work donc on A system dyne-cm, crgs.
U= weirht of catalyst, sms.
£ = distance traversed by wave form, cm.
= conversion of A, dimensionless
KA@ = equllibrium conversior. of cumene, dimensionless
fo = f'inal convercion of A
AAO = initial conversion of A
Y = mole fraction in mas phase
Y = amplitude, cm.
7, = mole fraction of A, dimensionless

YAy = mole fraction of A in bulk stream, dimensionless

YALM = log mean mole fraction of cumene in the bulk stream
dimensionless
Iqh = mole fraction of A at catalyst surface, dimensionless
410

y = displacement, cm.

z = distance in z direction, cmn.
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i

sound intensity lecvel, decibels
CP

Cv

o ox
i

= thickness of starnant pas film between main gas
strcam and external surface of catalyst, cm.

& = void fraction in nacked catalyst bed, dimensionless
€ = catalyst effcctiveness factor, dimensionless
_ 0
€/K = Lennard-Jones parameter, K.

O = catalyst internal void fraction, dimensionless
A cm.

= wave leng: —

wave length, ovele

T = total pressure, atm.

/O = fluid density, on i
/P = bulk density of catalyst bed, LmS

cm?

. . . . . "MS
/o = initial pas density Lms
° > cm3

/OP = catalyst pvarticle density, Eﬂ% of particle volume
cm

= true density of solid material in porous catalyst, 523

o

¥ = Lennard-Jones paramcter, A

T~ = tortuosity factor, dimensionless

g,

4o = critical viscosity, ey

§2D = collision intepral
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