Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

BI
ALBIRT WARREN PATTHRSON, JR.

A THESIS

- PRESENTED IN PARTIAL FULPILIMENT OFTHE REQUIREMENTS FOR THE DECRIRE
OP
MASTER OF SCIENCE IN CHEMICAL ENGINEFRING
AT
NEWARK COLIDGE OF ENGINEFERTG

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey June, 1972

APPROVAL OF THESIS

COMPUTERIZED COMPUTATION OF COUNTER-CURPENT EXTRACTION PROBLEMS FOR TERNARY LIQUID SYSTEMS

BI
ALBERT WARREN PATTERSON, JR.
FOR
DEPARTMENT OF CHEMICAL ENGINEFRING
NEWARK COLIEGE OF ENGINEFRING

BI

FACULTY COMMITTEES

NEWARK, NEW JERSEY JUNE, 1972

The author wishes to express his appreciation to Dr. J.E. stcormick for his helpful assistance and thoughtful review of this work.

Alse, the author expresses his appreciation to Hoffmann La Roche, Inc, for permitting him to use its facilities.

ABSTRACT

A Fortran computer program has been developed that will caleulate the number of theoretical equilibrium stages required for countercurrent liquidmiquid extraction design problem. It also fumishes a complete stagewise material balance. Further utility can be found by using it for optimization studies. The program can be urillized for threememponent sustams that form one pair of partialIT miscible liquids; the most Prequently occuring situetion. The progrem was witten for the Genernl Glectrie Mark I Time-Sharing System.

The program has a practieal advantage in that isothermal liquid squilibria data are used directly for calculation purposes. No use is nade of theoretically devived equations of the Hargules or RedlichKister type to prediet distribution coevicients, rather equilibria hata is correlated in tha region of theterest by nsing a three coefficient interpolating polynomal. The empirical correlation propowed by D.B. Hand is utilized to derive tie ine equations.

Some of the features of the program include the user's option of sither specifylig the mola or weight fraction of solute in the rafinate or the percentage overall recovery of solute in the extract. The latter option would be a the-censmine titerative procedure when attranted by hand computacion, An especially waluable ieature for opthaization studies is the storage of equilibria, data in permanent files so that parametric cases tan be run without the bother of having to input a large voluan of data for each case.

The program is arranged so as to ba used by a person with little or no knowledge of computer prograning. With this in mind a stepwise procedure for using the progran is presented along with solutions to sample problems.

Sample problems presented for the ternary system acetonewater-$1,1,2$-trichloroethane show good agreement with graphical procedures.

To my loving wife, Joan

TABIE OF CONTENTS

PAGE
I. Introduction 1
Scope of Thesis 2
Previous Work 4
II. Theory 5
Liquid Equilibria 5
Stagmise Solvent Extraction 7
Comntercurrent Multiple Contact Extraction 7
Graphical Method 8
Axalytical Method 12
III. Program Develomant 17
Representation of Solubility Data 17
The Program 20
The main program 20
Subprogram ATHR1 27
Subprogram FDXCE1 30
Subprogram SEMQ 30
IV. Sample Problems 34
Problem Input 37
Problem Output 37
V. Discussion 43
Gamparison of Graphical Method Versus Computerized 43
Calculation
Comparison of Linear Versus Parabolic Interpolation 44
Economic Analysis 44
VI. Conelusions and Recommendations 48
VII. Appendix 50
Text Nomenclature 51
Main Program Nomenclature 52
Program Listing 53
References 58
Figure No. Page
1 Ternary Iiquid Equilibria 6
2 Countercurrent Multiple Contact 6
3. Countercurrent Extraction - A Typical Graphical 9Construction
41 Rejected Intersection with Solubility Curve 19
48 Accepted Intersection with Solubility Curve 19
5 CCEXTG - Main Program Simplified Flow Chart 21
6 CCEXIG - Main Program Detailed Flow Chart 23
7 Subprogram ATER1 Detailed Flow Chart 28
8 Subprogram FDXCE1 Detailed Flow Chart 31
9 Subprogram SMEQ Detailed Flow Chart 32
Table No.TItlePage
1
1Comparison of Graphical and Computerized Methods45
2
Cemparison of Linear Versus Parabolic Interpolation 46of Solubility Data

I. INTRODUCTION

Today, separabions utilizing the liquid-liquid extraction technique ars extremely important in the chenical and petroleum industry. The theoretical or ideal stage fonns the basis for most industrial designs, and thus is the Pundemental unit considered during chemical engineering procesg develorment. In the bheoretical stage, intimate contact betreen the two phases is maintained for a sufilcient period of time se that diatribution equilibrium accurs. This is to say that the extract and raffinate equilibrium solutions.

When temary systems are considered, the interrelationships ang the phase equilibria, the number of theoretical stages, concentrations and weights of the varions streams are most easily represented oa a diggram of the phase equilibria. While several types of coordinate grotens can be used, the most ccamon for ternary equilibrium data in the triangular diagram elther of the equilateral or right isosceles type. For convenience the phght triangle will be utilized in the Pollowing discussions since it enables all points to be described on rectilinear coordinates.

The ase of graphical procedures for solving countercurrent, multiple contact design problems involving temary systems is usually straightforward as long as sufficient distribution and tie line data are aivailable. Treybal has presented a quite complete coverage of the methods mployed. These graphical methods are considered

Very much satisfactory for the majority of the design problems which may be encauntered wherein it is necessary to determine the number of theoretical equilibrium stages required to obtain a specified separation. However, often this approach becomes time consuming. For instance, when the engineer wants to consider several parametric cases required for optimization studies, it is often necessary to ake mumerous graphical constructions using several scales in order te obtain satisfactory accuracy. Furthermore, in one type of design mreblem the percent recovery of the solute is specified. If this is the case, a graphical-computational trial and error solution is necessary.

In addition, the graphical method often necessitates replotting data geveral times on various types of coordinates and scales to obtain accurate results for even the most elementary extraction design problem.

Scope of Thesis

It is believed that by appropriate mathematical formulations and development of a Fortran computer program that the above mentioned inconveniences of the graphical method can be eliminated. In addition, the computer will be able to store liquid equilibria data for any number of ternary systems in a readily accessible form for computation.

The intent of this thesis is the following:
(1) to develop mathematical relationships to describe and interrelate 1.. tie lines, concentrations, weights and various construction Ifnes with the phase equilibria isotherm.
(2) to develop a computer program in the Fortran language that will mploy the above mentioned mathematical relationships in order te selve practical design problems utilizing available phase solubility and equilibrium data;
(3) to test the above method by way of sample problems and compare the seanlts with the graphical method;
(4) to present a stepwise procedure for eass use of the program.

An can be seen, the deairable features of the graphical procedure will be maintained, but its shortcemings will be eliminated.

The desirability of using experimentally determined equilibrium data should be caphasized. Souders ${ }^{2}$ has stated that probably the mest inportant factor in the successful design of a separation process is the adequaey of the equilibrium data. He goes on to say, the best possible equilibrium data see those determined experimentally on the actual materials used in the process. "As useful as generalizations and correlations are in assessment and preliminary selection of separation processes, actual experiment is the final arbiter. For safe design, experimental data obtained in the laboratory or pilot plant is usually required."

All developments and discussions will be confined to ternary systems Corming one pair of partially miscible liquids, the most irequently occuring case. Furthermore, it will be assumed that equilibrium data are available to graphically describe the phase isotherm and establish a tie line correlation (as proposed by Hand)
of the form, ${ }^{3}$

$$
\begin{equation*}
\frac{X_{C B}}{X_{B B}}=k\left[\frac{X_{C A}}{X_{A A}}\right]^{r} \tag{1}
\end{equation*}
$$

where $X_{C B}$ and $X_{B B}$ are the weight fractions of components C and B resperiwnly in the mB^{\prime} rich phase, while X_{CA} and X_{AA} are the weight Practions of C and A in the "A" rich phase.

The systex acetonewater-1,1,2-trichloroethane at 25 degrees Coutigrade was chosen for sample problen purposes.

Previeus Work

Several compatational wothods ior solving countercurrent extraction problems have been proposed using either graphical os analytical techniques. ${ }^{4}$ The methods proposed by Snith and Brinkleys ${ }^{5}$ by Hanson, Duftin, and Scamervilie, ${ }^{6}$ and by Hartland, ${ }^{7}$ utilise the same basic approach for solving extraction problems. In general, the methods are iterative procedures based upon calculations made possible through a set of initial assungtions for solution. Corrections of the assunptions follow until hopefully, the final converged solution of the problem is found.

Roche, ${ }^{8}$ has proposed an algorithm which will solve both the material balance and equilibrium relationships simultaneously to obtain a valid solution to the general countercurrent extraction problem assuming the number of ideal equilibrium stages are known.

II. THEORY

Enquid Equilibria

Ternary liquid equilibria are usually reported in the literature on equilateral triangular coordinates where the apexes represent mare components A, B, and C, the solute, the carrier, and the solvent respectively. A binary mixture is represented by a point anywhere on the perimeter of the bsiangle. Its composition is comprised of the pure components at the and of that side. Any point inside the triangle represents a ternary mixture. This method of representatien has been described in various references which should be conaulted for further dotail.? Parthermore, the data can be replotted On a right triangular diagram, constructing in essence a rectangular coorsinate systern.

When ternary equilibria data for components A, B, C are presented on a Fight triangular ailagram (see Figure 1), the woight fractions (X_{B} and X_{C}) of components B and C of any specific mixture can be reai directly from the diagram. The weight fraction of A is determined by the difference Irom 1,0 . As is the case when the equilateral triangle is used for representing solubility data, all mixtures of components represented by points outside the phase isotherm curve D-R-P-J-G are single liquid phase solutions, while those mixtures within the area bounded by the curve form two immiscible liquid phases. A mixture with an overall composition of H will form two liquid phases of compositions K and J. The point H is on the tie
figure 1
TERNARY LIOUID EQUILIBRIA

Figure 2

COUNTERCURRENT MULTIPLE CONTACT

Line comncting points \mathbb{K} and J, In reality, the area of immiscibility contains an infinite number of tie lines which relate the compesitions of respective pairs of two phase solutions that are Pormed.

Stagewise Solvent Pxtraction

When systen constists of or can be reduced to the quivalent three eomponents, the two to bo separated and the solvent, it can be classified $2 s$ a siagle solvent system. For classification purpeses, either stagewise or continuous contact may exist depending mpon the arrangenent of the equipment. Stagewise contact inplies that the solyent and mixture to be separated are intimately contacted, gizon time to approach equilibrium, and separated. Such is the case when mixer-settlers are employed. On the other hand contimuous contact comotes the use of tower, column, or centrifugal designs where the selvent and mixture to be separated are continuously in centact within the oquipuent. Equilibrim is not usually approached.

Fundamental data and concepts are usually developed utilizing stagewise contact techniques. Once this data is available, scale-up techniques are employed. Stage afficiencies are taken into account to develop practical industrial scale processes utilizing continuous contact equipment.

Countercurrent Multiple Contact Extraction

Stagewise single-solvent extraction can be performed in several ways, depending upon the arrangement of the stages, each yielding
different results. For instance, extractions can usually be classified as single contact, differential, crosseurrent multiple contact, and countercurrent multiple contact. Perhaps the most interesting to stuxdy from a chemical process point of view is the last case.

When single-solvent axtraction is considered utilizing the countareurrent multiplesontact techique, cascade of stages is involFed where the extracting solvent (S) and solution to be extracted (F) enter at opposite ends of the cascade. Therefore, the extracts (E_{n}, E_{2}, E_{1} etc.) and raifinates (R_{1}, R_{2}, R_{n} etc.) flow countercerrently. See Figure 2. ${ }^{10}$ While the aforemmentioned process is necessarily continnous, it can be sinulated by a laboratory batchwise technique. 11 For the purposes of clarification and iormulae development, the general graphical procedure for solving a simple countercurrent extraction design problem will be reviewed.

Graphical method. Refer to Figure 3. ${ }^{12}$ Assume that the location of F, R_{n}, and S are known (ie. their weight as well as composition). M, representing the mixture of feed and solvent, is in the two-phase region. Its magnitude and location can be determined by calculating its composition by material balances.

An overall balance is:

$$
\begin{equation*}
M=F+S \tag{2}
\end{equation*}
$$

A C balance gives:

$$
\begin{equation*}
\mathrm{FX}_{\mathrm{CF}}+\mathrm{SX} \mathrm{CS}=\mathrm{MX} \mathrm{CM} \tag{3}
\end{equation*}
$$

FIGURE NO. 3 COUNTERCURRENT EXTRACTION

A TYPICAL GRAPHICAL CONSTRUCTION

where $X_{C F}$ is the iraction of component C in the feed stream, while $X_{C S}$ is the Iraction of component C in the solvent. M is the magnitude of the mix point and $X_{C M}$ is the weight fraction of C in the mixture. Therefore:

$$
\begin{equation*}
X_{C M}=\frac{X_{C F}+S X_{C S}}{M} \tag{4}
\end{equation*}
$$

A B balance yields

$$
\begin{equation*}
\mathrm{FX}_{\mathrm{BF}}+S \mathrm{X}_{\mathrm{BS}}=\mathrm{MX}_{\mathrm{BM}} \tag{5}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
X_{B M}=\frac{\mathrm{FX}_{\mathrm{BF}}+\mathrm{SX}_{\mathrm{BS}}}{\mathrm{M}} \tag{6}
\end{equation*}
$$

One point M, the mix point, is determined, the extract $E_{\mathcal{q}}$ can be Iecased by extending line $R_{n} M$ to its intersection with the B-rich solubility curve. By material balance the ralue of E_{1} can be determined.

$$
\begin{equation*}
E_{1}+R_{n}=F+S=M \tag{7}
\end{equation*}
$$

A series of material balances are used to relate E_{m+1} and R_{m}. A brief developnent follows. A material balance around stages 1 through nis

$$
\begin{equation*}
F+E_{m+1}=E_{1}+R_{m} \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
F-E_{1}=R_{m}-E_{m+1}=0 \tag{9}
\end{equation*}
$$

where 0 is the net flow between stages. It is the operating or delta point and is a constant for a given extraction problem. Point 0 can be located by extending lines $E F$ and $S R_{n}$ until they intersect. A material balance around the $\mathrm{m}^{\text {th }}$ stage is

$$
\begin{equation*}
R_{m-1}+E_{m+1}=R_{m}+E_{m} \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
R_{m-1}=E_{m}=R_{m}-E_{m+1}=0 \tag{11}
\end{equation*}
$$

From the above equations 9 and 11 it can be seen that any extract E_{m+1} can be located graphically by extending line $O R_{m}$ to its intersection with the B-rich solubility curve. The extract from stage m, E_{m}, and the raffinate R_{m} will be in equilibrium and located on the solubility curve at opposite ends of a tie line. Accordingly, starting from E_{1}, R_{1} may be located at the opposite end of the tie line through $\mathrm{E}_{1} . \mathrm{E}_{2}$ is found by extending line OR , to its intersection with the B-rich side of the solubility curve and R_{2} by the tie lime through E_{2}. This procedure is continued until R_{m} meets the requirements set forth in the specific problem. Thus the number of theoretical
quilibrium stages required to achieve a specified separation can be estimated.

Amalytical method. In order to solve the graphical problem solely by analytical methods it will be necessary to calculate the corposition of all the required points by using material balances in texms of the B and C emponents aince the coordinate system is based on them. Furthermore, it will be necessary to express the solubility curve in a mathematical form as a function of X_{B} and \mathbf{X}_{C}. For the purposes of the proposed calculation method, the solubility data will be interpolated by using a three coefficient polynomial in the local region of interest having the form

$$
\begin{equation*}
P\left(X_{C}\right)=A_{1} X_{B}^{2}+A_{2} X_{B}+A_{3} \tag{12}
\end{equation*}
$$

The three solubility data points nearest the intersection point of the solublifty curre and the construction line or tie line will be ase to evaluate the constants A_{1}, A_{2}, and A_{3}. The technique developel to determine which data points to use will be discussed later.

As previously stated the mix point M can be located by equations 2, 4 and 6.

Often the design problem may state only the required concentration of the solute C in the raffinate, $X_{C R N}$. If this is the case, $X_{\text {BRN }}$ must be found on the solubility curve in order to locate R_{n}. This is accorapliched by zolving the following equation for X_{B} $\mathrm{Z}_{\mathrm{BRN}}{ }^{\bullet}$

$$
\begin{equation*}
x_{C R N}=A_{1}\left(x_{\mathrm{BRN}}\right)^{2}+A_{2}\left(x_{\mathrm{BRN}}\right)+A_{3} \tag{13}
\end{equation*}
$$

The line $R_{n} M E_{1}$ now can be described nathernatically and the unknowns $X_{B E 1}$ and $X_{C E 1}$ inserted.

Equation 14 is now solved simultaneously with the applicable B-rich phase interpolating polynomial (Equation 15) for $X_{B E(1)}$ and $X_{C E(1)}$, the coordinates of point E_{1}.

$$
\begin{equation*}
x_{C E(1)}=A_{1}\left(x_{B E(1)}\right)^{2}+A_{2}\left(x_{B E(1)}\right)+A_{3} \tag{15}
\end{equation*}
$$

Point 0 can be determined by solving simultaneously the equations for Lines $E_{1} F O$ and $S R_{n} O$ for $X_{O B}$ and $X_{O C}$ Line $E_{1} F O$ is

$$
\begin{equation*}
\mathbf{x}_{O C}=\left[\frac{x_{C E}(1)-x_{C F}}{\bar{x}_{B E}(1)-x_{B F}}\right] x_{O B}+\left[x_{C E(1)}=x_{B F}\right]\left[\frac{x_{C E(1)}-x_{C F}}{X_{B E(1)}-x_{B F}}\right] \tag{16}
\end{equation*}
$$

While line $\mathrm{SR}_{\mathrm{n}} \mathrm{O}$ is

$$
\begin{equation*}
x_{O C}=\left[\frac{x_{C S}-x_{C R N}}{x_{B S}-x_{B R N}}\right] x_{O B}+\left[x_{C S}-x_{B R N}\right]\left[\frac{x_{C S}-x_{C R N}}{x_{B S}-x_{B R N}}\right] \tag{17}
\end{equation*}
$$

Raffinate R_{1} can now be located by solving the intersection of tie

Line $E_{1} R_{1}$ with the appropriate solubility polynomial. Using the Hand tie line correlation of the form

$$
\begin{equation*}
\frac{x_{C B}}{X_{B B}}=k\left[\frac{x_{C A}}{x_{A A}}\right]^{r} \tag{1}
\end{equation*}
$$

with previously determined constants k and r the proper set of known values can be inserted.

$$
\begin{equation*}
\frac{x_{C E(t)}}{X_{B E(1)}}=k\left[\frac{x_{C R(1)}}{X_{A R(1)}}\right]^{r} \tag{18}
\end{equation*}
$$

Since

$$
\begin{align*}
& x_{A R(1)}+x_{B R(1)}+X_{C R(1)}=1.0 \\
& x_{A R(1)}=1.0-x_{B R(1)}-x_{C R(1)} \tag{19}
\end{align*}
$$

Equation 19 is substituted into equation 18 to gield

$$
\begin{equation*}
\frac{x_{C E(1)}}{X_{\mathrm{BE}(1)}}=k\left[\frac{X_{\mathrm{CR}(1)}}{1 \cdot 0-X_{\mathrm{BR}(1)}-X_{\mathrm{CR}(1)}}\right]^{\mathbf{r}} \tag{20}
\end{equation*}
$$

The applicable solubility interpolating polynomial in the A-rich phase is

$$
\begin{equation*}
X_{C R(1)}=A_{1}\left(X_{B R(1)}\right)^{2}+A_{2}\left(X_{B R(1)}\right)+A_{3} \tag{21}
\end{equation*}
$$

Thns, $X_{B R(1)}$ and $X_{C R(1)}$ can be calculated by solving Equations 20 and 21 simultaneously.
E_{2} ean nos be located by finding the intersection of line $\mathrm{OR}_{1} \mathrm{E}_{2}$ (Equation 22) with the E-rich solubility interpolating polynomial (Equation 23).

$$
\begin{align*}
x_{C E(2)}= & {\left[\frac{x_{O C}-x_{C R(1)}}{X_{O B}-x_{B R(1)}}\right] x_{B E(2)}+\left[x_{O C}-x_{B R(1)}\right]\left[\frac{x_{O C}-x_{C R(1)}}{x_{O B}-X_{B R(1)}}\right] } \tag{22}\\
& x_{C E(2)}=A_{1}\left(X_{B E(1)}\right)^{2}+A_{2}\left(X_{B E(2)}\right)+A_{3} \tag{23}
\end{align*}
$$

Following the sane procedure the remaining extract and raffinate ecmpositions can be calculated.

The calculation of the magnitudes of the extracts and raffinates will complete the description of all streams. E_{1} and R_{n} can be caleulated by combining Equation 7 with the C balance.

$$
\begin{equation*}
X_{C E(1)} E_{1}+X_{C R N} R_{n}=X_{C M}^{M} \tag{24}
\end{equation*}
$$

Then,

$$
\begin{align*}
& E_{1}=\frac{M\left(X_{C M}-X_{C R N}\right)}{X_{C E(1)}-X_{C R N}} \tag{25}\\
& R_{n}=\frac{X_{C M} M-X_{C E(1)} E_{1}}{X_{C R N}} \tag{26}
\end{align*}
$$

The overall material balance for any stage m, Equation 10 , can be rearranged to gield

$$
\begin{equation*}
\mathbb{E}_{\mathrm{m}+1}=\mathrm{R}_{\mathrm{m}}+\mathrm{E}_{\mathrm{m}}-\mathrm{R}_{\mathrm{m}-1} \tag{27}
\end{equation*}
$$

And a C balance sor gtage na gives

$$
\begin{equation*}
{\underset{m}{m-1}}^{X_{C R(m-1)}}+E_{m+1} X_{C E(n+1)}=R_{n} X_{C R(n)}+E_{m} X_{C E(m)} \tag{28}
\end{equation*}
$$

By :embining Equations 27 and 28
$R_{m}=\frac{R_{(m-1)}\left(X_{C R(m-1)}-X_{C E(m+1)}\right)+E_{m}\left(X_{C E(m+1)}-X_{C E(m)}\right)}{X_{C R(m)}-X_{C E(m+1)}}$

Thus R_{1} can be calculated using Equation 29 by setting $m-1=F$ and $\mathrm{m}=1$. E_{2} is Ionnd Irom Equation 27 where $m=1$. By letting $m=2$, R_{2} and E_{3} can be calculated frora Equations 29 and 27 . The remaining extracts and rafinates are calculated in a similar manner knowing their component concentrations.

III. PROGRAM DEVELOPMENT

Representation of Solubility Data

An important consideration in the develoment of the Fortran program was how to mathematically aescribe the solubility curve of the ternary liquid system. As stated in the previous section, it was decided to describe the data using a three coefficient polynomial, a parabola.

$$
\begin{equation*}
P\left(x_{C}\right)=A_{1}\left(x_{B}\right)^{2}+A_{2}\left(x_{B}\right)+A_{3} \tag{12}
\end{equation*}
$$

Thus, by polymomial interpolation between available data points, the antire curve can be described in small sections. The use of mare sophisticated, though empirical, equations such as the two constant Margules Equation ${ }^{13}$ or the three constant Redlich and Kister Equation ${ }^{1 / 4}$ was considered. However, the approach taken was to assume that laboratory data was available, and why not use it directly.

A Pirst approach using linear interpolation between data points proved satisfactory, however, more accuracy was obtained by using polynonial interpolation. Hastland has previously proposed a linear approximation tochnique. ${ }^{15}$ A comparison of results obtained using linear versus parabolic interpolation is presented in a later section.

By utilizing Equation 12, therefore, the intersections of tie lines and construction lines with the solubility curve could be determined analytically. The subprogram, ATER1 was written for
this purpose. The constants A_{1}, A_{2}, A_{3} are determined by substituting thre sets of data points $\left(B_{i}, C_{i}\right)$ into the equation as follows

$$
\begin{align*}
& C_{1}=A_{1} B_{1}^{2}+A_{2} B_{1}+A_{3} \\
& C_{2}=A_{1} B_{2}^{2}+A_{2} B_{2}+A_{3} \\
& C=A_{1} B_{2}^{2}+A_{2} B_{3}+A_{3}
\end{align*}
$$

This set of simultaneous linear equations can be solved by ant of the usual means. A subprogram, SFMO, mploying a modified Grauss... Jordan elimination technique to the augmented matrix of the above Linear system was written to dotermine A_{1}, A_{2}, and A_{3} in the present wøric.

- Tre only problem that remains is order to conclude the discussion of the solubility curve is how the three sets of data points are chosen in the region of intersection. The approach used here was to test each successive set of the data points starting from the X_{B} axis by calculating the intersection of the interpolating tie line or construction line. The coordinates of the point of intersection were accepted only if they fell within the bounds of the data points used. Otherwise, the calculated intersection point was rejected and the next set of three successive data points were teated. Refer to Figure 4 A and 4 B . The iteration method begins on the applicable side of the solubility curve, the A-rich side or the B-rich side.

FIGURE 4A REJECTED INTERSECTION

FIGURE 4B
ACCEPTED INTERSECTION

The Program

The Fortran program consists of the following subdivisions: (1) the MAIN Program, (2) subprogram ATER1, (3) subprogram FDXCE1, and (4) subprogram SMEQ. Each subdivision will be discussed separately in the Iollowing sections.

The main program, Refer to the Flow Charts (Figure numbers 5 and 6). Utilizing the appropriate equations that were developed in the chapter on theory, the main program calculates the number of theoretical equilibrium stages required for a specified separation. It ia necessary for the user to specify the following:
(1) a. the weight fraction of the socute in the raffinate, $\mathrm{X}_{\text {CRN }}$ -
b. the percent recovery of solute C in the extract.
(2) the composition ($X_{B F}, X_{C F}$) and the magnitude (F) of the feed stream.
(3) the composition ($X_{B S}, X_{C S}$) and the magnitude (S) of the selvent stream.
(4) the constants (k, r) for the tie-line correlation (Equation 1).
(5) solubility data as a function of the wight fraction of B, X_{B} and the weight fraction of C, X_{C}.

The program will then procede to calculate n, the number of ideal stages rounded to the nearest higher integer value. In addition, the location of the mix point, M, and the operating point, 0 , will be given as an output. Furthermore, a complete component

FIGURE HO. 5-1
CCEXIG - MAIN PROGRAM SIMPLIFIED FLOW CHART

FIGURE NO. 5-2
CCEXTG - MAIN PROGRAM SIMPLIFIED FLOW CHART (CONT.)

FIGURE NO. 6-1

```
CCEXTG - MATN PROGRAM DETAILED FLOW CHART
```


FIGURE NO. 6-2
CCEXTG - MATN PROGRAM
DETAIIED FIOW CHART (CONT.)

PIGURE NO. $6-3$
CCEXTG - MAIN PROCRAM (CONT.)

FIGURE NO. 6-4
ecexth - main program (cont.)

material balance is calculated for each ideal stage giving the composisions as well as the magaitudes of each extract and raffinate.

Essentially the program calculates M, the mix point, using Equations 294, and 6. Then the weight fraction of the carrier in the zefrinate, $X_{\text {greff }}$ is lound by solving Equation 13. The extract I_{1} is located by using Equations 14 and 15 . The operating point 0 in now determined by solving Equations 16 and 17 for $X_{O C}$ and $X_{O B}$. R_{1} is now located from E_{1} by solving the Hand tie line correlation (Equation 20) sinultaneously with Equation 21. E_{2} is located from R_{1} and the operating point 0 by Equations 22 and 23. In a similar manner, the extracts and rafrinates continue to be located until the weight frection of the salute in the raffinate, $X_{C R N}$, meets the specified requirements of the problem. The progran is ccapleted when the magnitudes of all the extracts and raffinates are calculated uaing oyarall gitge material balances along with C component balaness (Equations 25, 26, 27, and 29).

Subprogyam ATER1. The subprogram ATER1 functions as the solubility data interpolating routine for the program. Refer to the Plow chart for ATER1 (Figure 7). This routine does the following: (1) Determines the set of applicable solubility data points to use for the interpolating parabola, (2) Calculates the constants for Equation 12 with the aid of another subprogran, SEMQ, and (3) determines the intersection of the above described interpolating parabola with a tie line or construction line. The coordinates for the point of intersection are then supplied to the main program.

FIGURE NO.7-1
TESUBFROGRAME ATER1
DETAIIED FLOW CHART

FIGURE NO. 7-2
SUBPROGRAM ATER1 (CONT.)

ATw 1 accesses solubility data frcm perwanent external files which have been established by the user prior to running the main program. The names SLAWT1 and SLAWT2 have bsen given to these files in the sample problem, however the user can furnish any names he wishes. The solubility data thus becones a permanent part in the user's catalog of files and can be accessed any nunber of times without having to rementer large volumes of data. Furthernore, the aser may mat to store solubility data for several ternary liquid syatems. If this is the case, the user can utilize any one of these data files by merely changing one line in the program.

Subprogram FDXCE1. This subprogram determines the coordinates of E_{1} by finding the intersection of the line $\mathrm{F}_{\mathrm{n}} \mathrm{M}$ with the solubility -curve. Refer to Figure 8. It was anyantageons to ase a subprogram for this calculation since it is utilized several times within the main program.

Subprogram SEMO. SEMQ is a second-order subprogram in that it is called exclusively by subprogram ATER1. Refer to Figure Number 9. SEMQ is a general subprogram that solves a set of up to ten linear simultaneous equations. The Gauss-Jordan elimination method ${ }^{16}$ is used to reduce the augmented matrix to the diagonal form. In order to minimize round-off exrors comnon to this technique, a modification was devised. For example, if a pivot element is not zero but is amall, it may contain a large relative error, A search is made at each elimination step for the elenent of greatest magnitude in the pirot column, and the rows are exchanged so as to use it as the pivot element.

FIGURE NO. 8
SUBPROGRAM FDXCE1
DETAIIED FLOW CHART

PTAURE NO. 9-1
SUBPROGRAM SENQ
DETAILED FLOW CHART

PIGURE NO. 9-2
SUBFROGRAM SEMQ (CONT.)

IV. SAMPIE PROBIEMS

Perhaps the best method that can be used to explain the functioning of the program is by way of sample problens. The sample problem chosen was one which has been previously solved by Treybal using the graphical procedure. ${ }^{17}$

The program was written in time sharing Fortran language utilizing 18 the General Electric Mark I Time Sharing Service. The system is accessed via a teletype terminal which may or may not be equipped with a paper tape reader and punch. The solubility data for the sample solvent system, Acetone - Water - 1,1,2 - Trichloroethane, is available in the literature. ${ }^{19}$ The following procedure assumes the program, CCEXTG, has been previously stored in the user's catalog of saved programs, but it will be necessary to establish solubility data files.

External Data Files

Files must be established for the solubility data if the data has not been previously stored. The user can give the files any six character names consisting of letters and digits. The names of these files will be specified in, and used by, the main program.. The data will be stored as pairs of coordinate points (X_{B}, X_{C}) on the solubility curve. The first file (SLAWT1 in the sample problem) stores the data points starting at the X_{B} axis on the A-rich side, for example the following three sets of data points: .0044, . 0000 ; .0052, . 0482; .0065, .1172. The second file (SLAWT2 in the sample
problem) stores the solubility data point pairs starting at the X_{B} axis on the B-rich side:.9989, .0011; .9473, .0501; .9011, .0953. The files need not have equal numbers of sets of data points. The data can most conveniently be prepunched off line on paper tape then fed into the terminal via a paper tape reader as is shown on the following pages.

The user must first call and log-on the computer. The first computer request is for a file name, old or new. In the example, the keyboard input from the user is underlined. After the first file name is entered, the data are entered off the punch tape. This file may or may not be SAVED. A new file name is entered and the second set of data are transmitted to the computer via punched tape. Again, the file may or may not be put on SAVE.

The next keyboard response, OLD CCEXTG, recalls the actual program for use. The first requirement is identification of the appropriate data files, in this case SLAWT1 and SLAWT2. This is actually the first statement of GCEXTG and is line number 100. The form required 1s:

100 SFILE SLAWT1, SLAWT2 REPLACE

REPLACE is used as a matter of safety to insure that other data files stored in memory are not used inadvertently, causing erroneous results.

The user should then type RUN. The program title, time and data are then printed out.

NE $:$
NEW FILE NAME-SLALTI (AXY name can be used. Six character maximun) RESDY.

$\frac{\text { TAPE }}{\text { KEADY }}$ (Operator should start tape reader.)

```
10 .0044,.0000,.0052,.0482,.0065,.1172,.0070,.1446
20 .0073,.1832,.0072,.2454,.0102..2713
30 .0117,.3225,.0172,.3717,.0018,.4185
40 . 0435,.4712,.n677,.514%,.0963,.5499
50 . 1000,.5504,.1539,.5333,.2071,.5993
70 . 3167,.5855,.3331,.5435,.4335,.5112
80 . 4673,.47C1,.5437,.4214,.6006,.3733
90 .6417..3396,.675%,.3104,.7036,.9321
100 .7572,.2329,.7958,.1966,.8465,.1476
110 .9011,.0953..9473..0501,.9939,.0000
120 ENDFILE
```

SAVE
READY.
NEG
NEU FILE NAME-GLAST2
KEADY.
$\frac{\text { TAPE }}{\text { READY (Operator shouId start tape reader.) }}$

10	.9959,.0011,.9475,.0501,.9011,.0953
20	-8465, 1476, .7958, 1966, -7572,.6329
30	- 7036. $2321,6717.3104,6417.3396$
40	, 6006, . $3783, .5438,4414,4878, .4721$
50	-4338, . 5112, .3431, - $4485 \cdot .3167$. 5355
60	.2639.6096, \%404, 6059, . 2320, .6017
70	-2071, .5993, . 1439, .5333, •1000, .5504
80	.0963, 5499, 0677, 5135, .0435, .4713
90	- 0218,.4185, +172, $3717 \cdot .0117 \cdot .3225$
100	- 0102,.2713, 0692,.2454,.0078, . 188 2
110	-0070, 1436, 0065, 1172,.0052,.0432,.0044,.0000
120	ENDFILE

(Now it is necessary to insert the names of the data files (SLAMT1
and SLAWT2) into the program CCEXTG.)

```
OLD CCEXTG
FEADY.
100 SFTLF SLAST1,SLEGTO
EEFLGGF
REALY.
```

In this computer system, the program will ask a series of questions calling for various data as input. These must be supplied in the proper sequence and are as follows:

Problem Input

First line. Problem name. The problem name can consist of any 72 printable characters, including blanks. Second line.

1. ZCRN. The specifise weight fraction of solute C to be contained in the final raifinate. If the percent recovery of solute C is specified, snter 0.0 for XCRN.
2. XBF, XCF. The X_{B} and X_{C} coordinate of the feed entering stage 1.
3. XBS, XCS. The X_{B} and X_{C} coordinates of the solvent entering stage n .
4. Pe.S. The weights of the feed and solvent respectively.
5. SCON, ECDN. The constants k and r in the Hand tie line correlation equation for the specific ternary system.
6. FERC. The percent recovery of the solute C. (ie., the percent of C recovered in the extract flowing from stage 1). If XCRN is specified, enter 0.0 ior the value of PERC.

Problem Output

- 1. Problem name.

2. The calculated values of XCRN if PERC is specified
3. The weights and compositions of the feed and solvent streams
4. The weight and composition of the feed solvent mixture. (Mix Point)
5. The coordinates of the operating point, 0
6. The weights and fractional compositions of the extracts and raffinates from stages one through n. Stage n is the first iateger stage which satisfies the input specification for XCRN ar PERC.

Two sample problems follow. In the first problem XCRN will be specified. (a value of 0.0 will be inserted for PFRC), while in the second sample problem, the corresponding value of PFRC will be specified (a value of 0.0 will be inserted for RCRN). The input values for the sample problems are as follows:

$$
\begin{array}{ll}
\mathrm{XCRN}=0.1 \text { or } 0.0 & F=100.0 \\
\mathrm{XBF}=0.0 & S=30.0 \\
X C F=0.5 & S C O N=1.841 \\
X B S=1.0 & \text { ECON }=1.057 \\
X C S=0.0 & \text { PERC }=0.0 \text { or } 90.2
\end{array}
$$

In the example the first line of user input is

SAMPIE PROBIKM 1 XCRN IS SPECIFIED
While the second line consists of the user assigned values of

XCRN, XBF, XCF, XBS, XCS, F, S, SCON, ECON, PERC

After these data are accepted, the program continues automatically and prints the appropriate.output.

FUN
CCEXTG 19:52 09 MON 03/27/72
IN SMEO
IN •FIFST
? SAMPLF PGOLLEY 1 XCFN TS SPECIFIED

SAMPLE PCOBLEM 1 XCFN IS SFECIFIED

RUN

```
CCEXTG 19:59 O9 MON 03/27/72
```

IN SMEQ
IN •FIRST

```
? SAMPLE PRSELEM ? FFRC IS SPFCIFIED
? 0.0,0.0,0.3,1,0,0.0,110.0,30.0,1, 4,1,1.0.7,00.2
```

SAMPLE PHOELEM 2. PERC IS SPECIFIED
/XCFN= .0291
STREAN WEIGHT - X(A) X(E) X(C)

FEED	100.000	.5000	.0000	.5000
SOLVENT	30.0000	.0000	1.0000	.0000
MIX POINT	130.000		.2308	.3846
QPERATING FOINT			-1.5524	.2545

Stage 1
EXTRACT 80.8693 .0747 .3672 . 5531
FAFFINATE 88.6754 . 5316 .0250 . 4434
STAGE 2

EXTFACT	69.5446	.0458	.4589	.4934
FAFFINATE	73.9246	.6143	.0142	.3710

STAGE 3				
EXTRACT	54.7939	. 0272	. 5611	. 4117
FAFFINATE	64.1916	.6972	. 0105	.2920
STAGE . 4				
EXTRACT	45.0609	. 0176	. 6745	- 3079
RAFFINATE	56.5231	. 7826	-0082	. 2092
STAGE 5				
EXTRACT	37.3924	. 0073	.8067	- 1860
RAFFINATE	$50 \cdot 5331$.8713	. 0066	. 122.1
STAGE 6				
EXTRACT	31.4024	-0023	.9563	-0414
KAFFINATE	174.871	- 9673	- 0049	- 0278

AT LINE NO. 35: STDP END

USED 131.OO LNTTS.

V. DISCUSSION

To the best of the author's knowledge, this 1s the first computerized attempt at ternary liquid extraction problems using the parabolic interpolation approach to represent solubility data. It is believed that considerable accuracy can be achieved using such a method.

Nete in particular that the Hand coefficients (k, r) must have been developed prior to using CCEXTG. This approach was chosen because many systems have considerable data scatter. In addition, there are some special systems that have two sets of Hand coefficients, ie. the direction in which the tie lines slope change as the concentration of component " C " is increased. With minor modification to CCEXTG, the above situation can be accommodated. Since this was the first work using thia interpolation approach, the rain effort was directed toward overall program development leaving refinements for the future.

Comparison of Graphical Method Versus Conputerized Calculation
Using sample problem 1 as a basis, the results obtained using the computer program(parabolic interpolation) versus the results obtained by Treybal using the graphical method are compared. (See Table 1). The values for XCE and XCR for each ideal stage are compared for graphical and the computerized quethod. As can be seen, the results obtained differ by only 1.6 percent.

Comparison of Linear versus Parabolic Interpolation
In order to evaluate the merits of using parabolic interpolation of the solubility data, it will be necessary to compare results obtained using parabolic interpolation with those obtained using linear interpolation of data. A very early version of the progran used linear interpolation. These results are abailable for comparison.

Again using the sample problem 1 as a basis for comparison, the values obtained for XCE and XCR using linear versus parabolic interpolation are compared. (See Table II). The values differ by an average of 13 percent. It is obvious that better results are -btained using parabolic interpolation.

Eeonomic Analysis

When considering computer computation, the cost of solving a problem should not be overlooked. In order to present an estimation of the cost of solving a problem using the program CCEXTG, the two sample problems were considered typical. The cost of solving these problems can be calculated by using the number of computer resource units (CRU's) printed at the end of the problem by the computer. In Mark I time-sharing, the cost of a CRU is $\$.05$. In addition to the above cost, a terminal connect time charge must be added of $\$ 8.50$ per hour. ${ }^{20}$ Cost calculations for the two sample problems follow:

Sample problem 1. XCRN is specified.

$$
\begin{aligned}
& \text { \$.05/GRU X } 46.67 \text { CRU's }=\quad \$ 2.34 \\
& \$ 8.50 / \mathrm{Hr} . \mathrm{X} 0.1 \quad \begin{array}{l}
\mathrm{Hr} \\
\\
\text { Total Cost }
\end{array}=\quad \frac{0.85}{\$ 3.19}
\end{aligned}
$$

TABLE I

COMPARISON OF GRAPHICAL AND COMPUTERIZED METHODS

| GRAPHICAL
 METHODCOMPUTERIZED
 METHOD | ABSOLUTE
 DIFFERENCE | PERCENTAGE
 DIFFERENCE |
| :---: | :---: | :---: | :---: |

Stage No. 1

XCE	0.557	0.558	0.001	0.18
XCR	0.438	0.443	0.005	1.14

STAGE No. 2
XCE
XCR
STAGE No. 3
XCE
XCR
0.403
0.287

$$
0.300
$$

0.206
0.306
0.206
0.006
2.00
0.002
0.97

STAGE No. 5

XCE	0.180	0.183		0.003	1.66
XCR	0.120	0.120		0.000	0.00
No. 6					
XCE	0.038	0.036		0.002	5.26
XCR	0.025	0.024		0.001	4.00
			Average	0.004	1.65

TABLE II

COMPARISON OF LINEAR VERSUS PARABOLIC INTERPOLATION OF SOLUBILITTY DATA

LINEAR	PARABOLIC VALUES	ABSOLUTE DALUES	PFRCENTAGE DIFFERENCE

STAGE NO. 1

XCE
XCR
STAGE No. 2

XCR
0.491
0.366
0.557
0.440

TAGE No. 3
XCE
XCR
0.404
0.285
0.297
0.201

XCR
STAGE No. 5

XCE

XCR
0.171
0.112
0.120
0.120
0.012
7.01
7.14

STAGE No. 6

XCE	0.022	0.036		0.014	70.00
XCR	0.015	0.024		0.009	60.00
			Average	0.008	13.00

0.022
0.015
0.015
0.024

Average
0.008

Sample problem 2. PERC is specified.

As can be seen, the cost is well within reason when compared to the enginear's man-hours required to solve such a problem with equivalent accuracy.

VI. CONCLUSIONS AND RECOMENDATIONS

The following conclusions are presented:

1. A Fortran computer program has been developed that will calculate the number of ideal stages required for a specified ternary countercurrent liquid extraction problem. Furthermore, the program calculates the weights and compositions of all extracts and raffinates.
2. The above program ntilizes experimentally foun solubility data to describe the phase equilibria isotherm. This is accomplished by the use of an interpolating parabola. Data has been presented that proves the use of parabolic interpolation is far superior to using linear interpolation for this purpose. The results obtained using linear interpolation differ from those found by parabolic interpolation by 13 percent.
3. The necessary relationships to describe and interrelate all tie lines, concentrations, weights, and construction lines with the phase equilibria isotherm have been developed.
4. The Fortran program has been tested and compared to published graphical solutions of extraction problems. The computer calculated values are within 2 percent of the graphically found values.
5. A stepwise procedure for the use of the program has been presented.
6. An economie cost analysis of using the program to solve typical extraction problems shows that costs are quite reasonable.

It is recomended that the following investigations be considered for future work:

1. Utilize the proposed computer program on additional solvent sygitems to further test the parabolic interpolation method for solubility data.
2. Conduct a study wherein the number of solubility data points are successively reduced to determine the effect on the accuracy of the calculation method.
3. Conduct an optimization study for an extraction design problem utilizing the computer program wherein feed rates and/or compositions of feed streams are adjusted to determine the best operating conditions.
4. Expand the capability of the calculation method to accommodate four-component systems. Possibly a four-ccefficient polynomial can be employed to represent the solubility data.
5. Incorporate a subprogram into CCEXTG that will calculate the values of k and r for the tie line correlation.

APPENDIX
(Component A, the main component of the carrier
B Componext B, the main component of the extracting solvent
C Component C, the solute
E Extract solution weight
F Feed solution weight
k A constant
M Mx point
m Any stage in the cascade
3 Total nuber of stages in the cascade or the last stage

- Operating point

R Raffinate solution weight

- A constant

S Extracting solvent weight
X Weight or mole fraction
Subscripts:
A,B,C Components A, B, C
E Extract
F Feed
M Mix point
$0 \quad$ Operating point
R Raffinate
$S \quad$ Solvent
1,2, etc. Stage 1,2, etc.

MAIN PROGRAM NOMENCLATURE

AINT1, AINT2	Programing variable.
AM1, AM2	Programing variable
CORRL	Tie line correlation variable
E1	Weight of extract from stage 1
ECON	Exponential constant, tie line correlation
E(M)	Weight of extract from stage M
P	Weight of feed
PRINC	Incremental variable used in XCRN search routine
ETNTN	Programing variable
ESTDPEN	Programing variable
PERC	Percent recovery of component A in extract, E_{1}
N	Stage number
R (M)	Weight of raffinate from stage M
RN	Weight of raffinate from last stage
S	Weight of solvent
Sc¢N	Constant, tie line correlation
X \quad ¢ B, X χ C	Coordinates of the operating point
$\operatorname{XAE}(\mathrm{N}), \mathrm{XBE}(\mathrm{N}), \mathrm{XCE}(\mathrm{N})$	Fraction of A, B, C in extract from stage N
XAF, $\mathrm{XBF}, \mathrm{XCF}$	Fraction of A, B, C, in feed
XAS, XBS, XCS	Fraction of A, B, C in solvent
XBRN, XCRN	Fraction of B, C in specified raffinate
$\operatorname{XAR}(\mathrm{N}), \operatorname{XBR}(\mathrm{N}), \mathrm{XCR}(\mathrm{N})$	Fraction of A, B, C, in raffinate from stage N
ZM	Mix point magnitude, F+S
ZINT, ZSI¢FE	Programing variable
XTRAN, XTRA	Programing variable


```
            1090C MATN PROGRAM
            1100
            1110 COMON A(1O,11),NOF,XCRV,XEFV,XCM,XEM
            1120 DTMENSION XCR(2O), XBK",XEE",XCE*,XAE",XAF",F",F"*
            1130 INTEGER PNOE(72)
            1140 180 FGFNAT(72A1)
            1150 181 FकRMAT(///////)
            1160 182 FORNAT(///'STRGGM",13X,"WEIGHT XX(A) X(B) X(C)")
            1170 183 F隹ATG//"FEEL",18K,G10.6.3F3.4)
            1180 184 FgFVAT("SmLUENT",9X, (210.6,3F8.4)
            1190 185 FПFMAT(//"STACE *sID)
            1200 156 FgFMaT(/"EXTKACT",9N,610.6,3FB.4)
            1210 187 FOFVAT("EAFFTNATE",7X,G10.6,3FB.4)
            1220 188 FOFMAT("MIX POINT",7X,G10.6,8K,aF8. A)
            1230 189 FOFMAT("OPEFATING POINT ",13X,2F8.4)
                    1240 INPUT 18O,PKOE
                    1250 INPUT,XCRN,XEF,XCF,XES,XCS,F,S,SCON,ECON,PEFC
                    1260 PHINT 181
                    1270 FRINT 18O,FHOE
                    1280C FINE MIX POTNT
                    1290
                    1300 KAF=1.O-XEF-XCF
                    1310 XAS=1.0-XES-XCS
                    1320 - XEM=((F$XEF)+(SHXES))/(F+5)
                    1330 ZN=F+S
                    1340 ZINT=BINT(XCF,XEF,XCS,XES)
                    1350 ZSLOFE=SLOFE(KCF,XDF,XCS,XFS)
                    1360 XCM=(ZSLOPE*XEM)+ZIUT
                    1370C DEGIDE IF XCFN IS GIVEN GR MUST EE FOUND
                    1380
                    1390 IF(XCEN-0.0)110,110,100
                    1400 100 CDNTINUE
                    1410C FINDS XBKN IF XCHN IS GIVEN
                    1420
                            1430 CALL ATEFI(XCFN,O.O,XENN,XTRAN,1)
                            1440 GO T0 150
                            1450 110.CONTINUE
1460
```



```
1470C FINDS XCRN IF NOT GIVEN-USES ITERATION NETHOD
1480
1490C TNITIALZATION
1500 XCFN=0.0OO1;FKINC=. 10
1510 120 CONTINUE
1520 FN=((1.O-(.O1%FEFC))*F*XCF)/XCFN
1530C FINDS XFFN FGR ASSUNED XCFN
1540 CALL ATEF1(XCFQ,O.O,XBFN,XTFA,1)
1550 . CALL FDXCE1(XCF(1),XEE(1))
15600 . El= ( (F*XCF)+(S*XCS)-(XCKN*FN) )/XCE(1)
1570 XCRN=XCNN+FRINC
1580 IF(F+S-E.1-FN)120,130,130
1590 130 OONTINUE
1600 XCRN=XCFN-(2.O&FRINC)
1610 FFINC=.1*FKINC
1620 IF(FKINC-.0001)140,140,120
1630 140 CONTINUE
1640 PRINT,"/XCKN=", XCFN
1650 , C0 T% /100
1660 150 CNNTINUE
1670
1680C FIND E(1) GIVEN FN-M
1690 CALL FDXCEI(XCF(1), XBE(1))
1700 AM1=(XCF-XCE(1))/(XEF-KEE(1))
1710.. AM2=(XCKN-XCS)/(XF-N-XBS)
1720 AINT1=XCF-( ( (KCF-XCF(1))/(XEF-XEE(1) ) ) *XBF)
```



```
1750 XOC=(GM1*(AINTP-AINT1)/(ANI-AMR))+AINT1
1 7 6 0
1770C FIND PAFFINATE COMPOSITMON,K(N)
1780C INTEFSECTION OF TIE LINE WITH SOLUBILITY CURVE
1790
1800 N=1
1810 70 GONTINUE
1820 COFFL=1.O/ECON*(LOG(XCE(N)/(XEE(M)*SCON)))
1830 COFRL=EXF(CORHL)
184OC TIE LINE; XCA=-CGKRL/(1+CORML)*XEA+COFRL/(1+COKFL)
```



```
1860 XAF(N)=1.0-XEF(N)-XCE(N)
1870 XAE(N)=1.O-XEE(N)-XCE(N)
1880 IF (XCR(N)-XCFN) 90,90,80
1890
```

```
1900c
    1910C WITH SOLUBILITY CURVE.
    1920
    1930 80 N=N+1
    1940 EINTN=EINT(XCF(N-1),XPKCN-1),XOC,XOE)
    1950 ESLQPEN=SLOPE(XCH(N-1),XFR(N-1),XOC,KOE)
    1960 CALL ATEF1(EINTN, ESLDPEN,KBE(N),XCE(N),?)
    1970 60 T0 70
    1980
    1990C CALCULATE EXTRACTS + FAFFINATES
    2000
    201090 E(1)=ZM*(XCM-XCEN)/(XCE(1)-KCFN)
    2020 FN= ((XCM*ZV)-(XCE(1)*E(1)))/XCNO
    2030 F(1)=(F*(XCF-KCE(2))+(E(1)*(XCE(2)-XCE(1))))/
    2040 +(XCF(1)-XCE(2))
    2050 E(2)=H(1)+F(1)-F
    2060 DG 160,M=2,N
    2070 F(M)=(K(M-1)*(KCFE(M-1)-XCE(M+1))+(E(M)*(XCE(M+1)-
    2080 + XCE(m))) /( 
    2090 E(M+1)=E(M)+E(M)-R(N-1)
    2100 160 Contivue
    2110 FRINT 182
    2120 FFENT 183,F,XOF,XEF,XCF
    2130 FFINT 184,S,XAS,XES,XCS
    2140 PKINT 188,ZM,XEM, XCM
    2150 PKINT 189,XOB,KOC
    2160 DO 170,M=1,N
    2170 FRINT 185,#
    2180 FEINT 186,E(M),XAE(M),XEE(M),XCE(M)
    2190 PRINT 187,K(V),XAK(M),XEF(M),XCR(M)
    2200 170 CBNTINUE
    2210 SUSE SMEG
    2220 ` STQP
    2230 END
```

1. Treybal, R.E., Liquid Extraction (New York, 1963), chap. 6.
2. Souders, Mott, "The Countercurrent Separation Process," Chemical Engineering Progress, 60: 75-82. (1964).
3. Hand, D.B., Journal of Physical Chemistry, 34: 1961 ff. (1930).
4. Hanson, Carl, "Solvent Extraction," Chemical Engineering, August 26, 1968, pp. 76-98.
5. Smith, B.D., and W.K. Brinkley, "Rigorous Solution of Multicomponent, Multistage Extraction Problems, " AICHE Journal 6:451 ff. (1960).
6. Hanson, D.N., J.H. Duffin, and G.F. Somerville, Gomputation of Maltistage Separation Processes (New York, 1962), chap. 4.
7. Hartland, Stanley, Counter-Current Extraction (New York 1970), chap. 4 .
8. Roche, E.C., "Rigorous Solution of Multicomponent Multistage Liquid-Liquid Extraction Problems," British Chemical Engineering, 14: 1397 ff. (1969).
9. Treybal, chap. 2.
10. Treybal, p. 225.
11. Scheibel, E.G., "Calculation of Liquid-Liquid Extraction Processes," Industrial Engineering and Chemistry 46:16 ff. (1954).
12. Treybal, p. 226-227.
13. Carlson, H.C., and A.P. Colburn, Industrial Engineering and Chemistry, $34: 581 \mathrm{ff}$. (1942).
14. Redlich, O., and A.T. Kister, Industrial Engineering and Chemistry, 40:341 ff. (1948).
15. Hartland, chap. 6.
16. Southworth, R.W., and S.L. Deleeuw, Digital Computation and Numerical Methods (New York 1965), pp. 216-230.
17. Treybal, p. 234.

REFPERENCES (cont.)

18. Mark I Time Sharing Service Reference Manual (1969).
19. Treybal, R.E., L.D. Weber, J.F. Daley, "The System Acetone-Water-1,1,2, Trichloroethane, " Industrial Engineering and Chemistry, $38: 817 \mathrm{ff}$. (1964).
20. Giella, Michael L., Personal Communication, marketing representative, General Electric Company.
