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ABSTRACT

The effects of shear, rotatory inertia and
inplane forces on the transverse vibration of 
thin plates are studied. In addition, the ef
fect of shear on the buckling of thin plates 
is examined. A general differential equation of 
motion is derived for an isotropic thin plate 
subjected to normal and inplane forces with the 
consideration of shear and rotatory inertia. The
method of internal constraints and Hamilton's 
principle are utilized.

The resulting fourth order differential equa
tion is solved for simply supported plates of 
various shapes by employing a finite difference 
technique. The shapes examined are a square, a
circle, a circular annulus, and an elliptic 
annulus. The differential equation is written in
its finite difference form and finally as a 
matrix. The value of the matrix is determined 
using the lower and upper decomposition method.
The first few natural frequencies and the critical 
buckling loads are obtained using an iterative
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technique.

The numerical results for the several shapes 
examined show that the inclusion of shear, rota
tory inertia, and inplane forces result in sub
stantially lower natural frequencies. The inclusion 
of shear effect in the buckling analysis also 
results in significantly lowering the critical 
buckling load.

As a check on the numerical technique em
ployed in the study, natural frequencies and 
critical buckling loads neglecting the effects of 
shear and rotatory inertia were also determined. 
Excellent agreement between these numerical results 
and analytical data obtained from classical 
theories is obtained.
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I. INTRODUCTION

In the classical theory for the vibration
of thin plates, the natural frequencies are ob
tained without consideration of the effects of 
shear and rotatory inertia. In recent years a 
few researchers have formulated the vibration 
problem which includes these effects. No numeri
cal results, however, were presented. The shear 
effects were also disregarded in the buckling an
alysis. It is known that these effects lower the
natural frequencies and the buckling loads of the
plate because of increased inertia and flexibility.

The objective of this study is to investigate
the effects of shear, rotatory inertia and inplane 
forces on the flexural vibration and the effect 
of shear on the buckling of elastic isotropic 
plates. It is known that these effects are very
important for vibration and stability problems for
"relatively thick" thin plates. The design of 
nuclear pressure vessels frequently calls for an 
accurate analysis of this type. In this study 
the simply supported square, circular, annular 
circular and annular elliptical plates are considered.
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In Section II of this thesis a brief his
torical background for the vibration and stability 
of plates is given.

In Section III a general differential equation 
of motion considering the effects of shear and
rotatory inertia and subjected to normal and in
plane forces, is derived by the method of inter
nal constraints and using Hamilton’s principle.
This method assumes that the elastic displacements
must comply with the special equations of con
straints. It is assumed that the plates are 
thin and that the amplitudes of vibrations and the 
deflection of the middle surface are small enough
to Ignore second order effects. The differential 
equation can be reduced to a number of special 
equations for plate problems in statics and dy
namics. These are shown in Section IV.

In Section V a finite difference technique is 
employed for computing the natural frequencies and 
the critical buckling loads. The fourth order 
differential equation is first reduced to a 
second order equation, then written in its finite 

difference form and finally in the form of a
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matrix. The correct values of the natural fre
quency or the critical buckling load would make
the value of their respective determinants to be 
zero. The determinant is eveluated using the
lower and upper decomposition method which is
briefly explained in Appendix A.

In Section VI fundamental frequencies for a 
square plate for various thickness-to-side length 
ratio and for a circular plate for various
thickness-to-diameter ratio are computed with and 
without the effects of shear and rotatory inertia.
The first four natural frequencies are also eval
uated for a circular plate to see in what
degree these effects influence the higher natural 
frequencies. Critical buckling loads for circular 
and annular circular plates for various thickness- 
to-diameter ratios are calculated considering the 
effects of shear. This is computed for both 
circular and annular circular plates so that the 
shear effects to buckling on both simply and 
multiply connected regions may be examined. The 
effects of tensile and compressive inplane forces,
acting on both inner and outer edges of an



annular circular and annular elliptical plate, on 
their natural frequencies are studied with and 
without the effects of shear and rotatory iner
tia. Discussion to these results are also given 
in Section VI.

Conclusions are drawn in Section VII and 
recommendations are outlined in Section VIII.



II HISTORICAL BACKGROUND

In the earlier period of investigation of 
transverse vibration of elastic bodies the ef
fects of shear and rotatory inertia were not 
considered. In 18^8 D. Bernoulli and Euler
were among the first to present a "classical 
theory" for the transverse vibration of elastic 
bars by neglecting these effects. In 1889 an
approximate method, due to Lord Rayleigh (^9) 
which took Into account the effect of rotatory 
inertia did not improve the results very much.

In 1921 S. Timoshenko (60) showed the im
portance of shear in the transverse vibration 
of bars, and also showed that the effects of 
shear and rotatory inertia previously disregarded 
by other authors were equally important. It is 
well-known that both these effects decrease the 
computed frequencies because of increased inertia 
and flexibility of the system.

In the case of flexural vibration of plate 
there is no agreement among results following ap 
plication of the "classical theory", by Lagrange 
and the theories by Lord Rayleigh (50) in 1889
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and by H. Lamb (29) in 1917. In the clas
sical two dimensional theory used by Lagrange it 
was assumed that the velocity of straight crested
waves is inversely proportional to the wave-length. 
This assumption is good for wave-lengths which are 
large in comparison with the thickness of the 
plate but does not hold well for waves of small 
length or for higher natural frequencies. There
fore Lagrange's theory gives good results only for 
fundamental frequency of thin plate.

For static deflection of thin elastic plates, 
the classical theory used by G. Kirchhoff (20) 
in 1850 neglects the effects of shear deformation 
and the effects of normal stress. Results ob
tained from Kirchhoff's theory are applicable only
in certain cases.

In the middle of the twentieth century
E. Reissner (52), (53), (5*0, H. Hencky (22),
L. Bolle (6), M. Schafer (56) and A. Kromm (27), 
(28) presented new theories for the deflection 
o-f thin plates taking into account the effect 
of shear. These authors used hypotheses con
cerning the stress distribution over the plate
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cross-section in order to obtain the equation of 
equilibrium. These theories are referred to as
"engineering theories" in order to distinguish them 
from other theories .

In 19^5 Reissner (52) obtained the equation
of equilibrium using the hypotheses that the 
stress due to the bending moment varies linearly, 
whereas those due to the shear vary according to
a parabolic law across the section of the plate. 
At the same time he included the effects due
to the normal stress which was previously dis
regarded by G. Kirchhoff.

L. Bolle (6) in his important work in 19^7,
independently from Reissner, obtained the same 
equilibrium equations and boundary conditions on 
the deformation of thin plates by taking into 
account the effects of shear. The equations of 
equilbrium by Reissner taking into account the 
transverse deformation of the plate due to shear 
were also derived by Green (19) in 19^9 using 
Castigliano's Theorem. Schafer (56) in 1952 and 
Kromm (28) in 1953, also studied the effect of 
shear on the static deflection of plates.



A first presentation of a consistent theory 
for dynamic behaviour of plates including the 
effects of shear deformation and rotatory inertia 
was made by Uflyand (61) in 19*18. However in 
1951 Mindlin (38) unquestionably made the most 
profound contribution to this subject. His paper 
showed how a more comprehensive two-dimensional 
theory of bars may be deduced directly from the 
three-dimensional equations of elasticity. He also 
suggested a formula for the value of the constant 
' k' which took into account the non-linear dis
tribution of shear stress across the cross section 
of the plate.

In 1961 Volterra (66) included the effects of 
shear and rotatory inertia in the vibration study 
of elastic bars and plates by the "method pf 
internal constraints", which assumes that the
elastic displacements must comply with certain 
equations of constraint. Lee (30) in 1963 studied 
the effects of shear and rotatory inertia on the 
vibration of a wedge by a generalized minimum
principle; a step-by-step iteration method is 
generalized to apply to a coupled simultaneous
differential equation in order to obtain an ap
proximate solution for the flexural vibration
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frequencies of a wedge. In 1966 Callahan (7),
(8) included the effects of shear and rotatory
inertia by assuming certain functions which took 
into account these effects and formulated the 
vibration problem in the form of an infinite
determinant. No numerical work was done by 
these above-mentioned authors.

The elastic stability of plates has been 
treated by several researchers neglecting the 
effects of shear. Saint Venant in 1883 was 
among the first to derive a differential equa
tion for the stability of a plate. In the 
past two decades several researchers such as Dean 
(12), Conway and Leissa (10), Mansfield (3*0, 
Robinson (55)a Timoshenko (58), Yamaki (71) and 
several others studied the plate stability prob
lem under several loading conditions for various 
shaped plates. In 1970 Brand and Uthgenannt 
(62) studied the stability of orthotropic annular 
circular plates under uniform compressive forces 
applied at both edges for several boundary condi
tions, and obtained critical buckling loads by 
solving the equilibrium equation using a finite 
difference technique. The only known numerical
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solution for the vibration with the Influence 
of inplane forces for a simply supported circular 
plate was obtained by Wah (68) in 1962. The 
work done by all the above researchers was with
out the consideration of shear.

No numerical work is available on the effects 
of shear and rotatory inertia on the natural 
frequency of transverse vibration of plates or 
the effects of shear on the critical buckling load
of plates. In this study a general differential
equation of motion is derived for a plate sub
jected to normal and inplane forces and consi
dering the effects of shear and rotatory inertia. 
Natural frequencies and critical buckling loads 
are computed including these effects and compared 
with values obtained by using the classical theory.
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111 DERIVATION of the d i f f e r e n t i a l e q u a t i o n

A. METHOD OF INTERNAL CONSTRAINTS.

In deriving the equation of motion for a 
thin elastic plate by the classical Lagrange
theory, the effects of shear and rotatory inertia
were neglected. We take these effects into con
siderations by the "Method of Internal Constraints"
(66). This method assumes that the elastic dis
placements must comply with special equations of
constraints.

We assume that the components of the elastic
displacements U, V, W, in the x, y, and z, dir
ections may be developed in a Taylor series in 
z with the coefficients being functions of the 
variables x, y and t.

U(x,y,z,t) = UQ(x,y,t) + z U - ^ x ^ t )  + Jg z2U2(x,y,t) + ..

V(x,y,z,t) = VQ (x,y,t) + z V1 (x,y,t) + Jg z2V2(x,y,t) + ..

W(x,y,z,t) = WQ(x,y,t) + z W ^ x ^ t )  + z2W2(x,y,t) + ..

In discussing flexural vibrations and buckling 
we make the following assumptions concerning the
development of the series:
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a. Terms of higher order than the second order
in z are neglected.

b. The particles of the plate which were ori
ginally in the xy-plane move only in the 
z-direction.

U(x,y,0,t) = V(x3y,03t) = 0

c. Finally every plane originally perpendicular
to the x and y axes respectively remain
plane.

U(x3y 3 z3t) = -U(x 3y 3-z 31)

V(x,y3z3t) = -V(x3y 3-z,t)

With the above assumptions equations (3-1) 
reduce to the following:

U = z Ui(x,y,t)

V = z Vi(x3y 3t)
2W = W0(x3y 3t) + z Wi(x3y,t) + ^ z W2(x3y 3t)

To determine the coefficients W^(x3y 3t) and 
W2(x,y3t) we satisfy the requirement that:
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n = q (x,y,t) at z = +§•Z O c-

Oz = 0 at z = -H

The expression for ,the normal stress <FZ is

E(l-v) 3W A VE / 3U 3V.
°z = (1+v)(l-2v) 3z + (1+v)(l-2v) (ax + 3y' (3-3J

Differentiating equation (3.2) and substituting 
in the above equation we have:

E(l-v) A „ x ^ vE /3 Ut a 3 V i .
z " (1+v ) (1-2V ) Ŵ1 + z 2 ' + (1+v ) (l-2v ) z '3 X  + ay '

(3.4)

Using the above conditions that oz = qQ (x,y,t) 
at z = M. and <?2 = 0 at z = - ^ we have the follow
ing:

q o ^ y ^ )  = E(l-v)
(1+v)(l-2v) (Wi+^- W2) + vEH

2(l+v)(l-2v)
3Ui
3x

3Vi
3y

0 = E(l-v)
(1+v)(l-2v)

H(Wl - £ VI2) - VEH 3Ui
2(1+v)(l-2v) 3x

3Vi
3y

(3.5)



in

Solving the above equation (3-5) simultaneously, 
the coefficients W ^ x ^ t )  and: W2(x,y,t) are:

(1+v)(l-2v)Wi(x,y,t) = ---2E(i-v)" Q o ^ y ^ )  (3 .6)

W2(x,y,t) (1+v)(l-2v) 
E(l-v)H 4c
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B. STRAIN-DISPLACEMENT RELATIONS

The following are the expressions for the 
strain displacement relations:

e = = 3U 3Vx 9X xy 3y T 9x

3V 3V 3W
Ey = Vyz = SF + ( 3 . 7 )

iW _ 3W + 3U
z - 3z ^zx 3x 3z

Differentiating the expressions for U, V and 
W In equation (3-2) and neglecting the terms con-

ptaining z in comparison with the linear terms, 
the equations (3-7) reduce to:

'x = z = z

'xy = z 3Vi
3x



— S IjLVl a _ z _̂ L_ (W ±  + iXiN x „ (1+v) (l-2v) 2E(1-v) qo z i_v c3x 3y 2E(1-v)

v _ v + , (1+v)(l-2v) 3qnyz V1 + 3y z 2E(1-V) 3y^

y = n + H a  + 2 (l+vKlr2vI 3aa (3rzx 1 3x 2E(1-v) 3x



C. STRESS-STRAIN RELATIONS

The following are the stress-strain relations

°x - 2 G ex + A <ex + ey + Ez>

o = 2 G e  + X ( e  + e + e ) y y x y z

a = 2 G £ + X (e + e + e )z z x y z

(3.9)T = G Y xy 'xy

t = k G Y yz yz

x = k G Y  zx zx

The factor 'k* is introduced in order to 
take into account the non-linear distribution of 
shear stresses across the cross section of the 
plate. It has the same significance as the

n2 
I?
n2Timoshenko shear coefficient. The value for

k2 for v = 0.3 is suggested by Mindlin (30), 
and is unity if shear effects are neglected.



Mindlin obtained the value of k from an 
equation where the wave velocity of the wave 
length is given in the form of a trancendental 
equation. The value of k obtained from the 
equation was tested with that obtained from 
the known exact solution for straight crested 
flexural waves.
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D. STRAIN ENERGY

The expression for strain energy including 
the energy of plate compression and transverse 
shear:

UE == h j  [ (ox £x + ay ey + az cz) dx dy dz +
( 3 .10)

^Txy ^xy + Tyz Yyz + Tzx ^zx^ dx dy dz3 

Using equations (3-9) evaluate the following:

°x ex = ^2 G ex + Xe  ̂ ex = 2 G ex2 + Xe ex

ay ey = ^2 G ey + X e  ̂ e y  = 2 G ey2 + Xe ey (3.n)

az £z = (2 G e z  + Xe) ez = 2 G ez2 + Xe ez

T Y = (G Y ) Y = G Y 2 lxy 'xy v 'xy' 'xy 'xy11

V  yZ * <k G V >  V  - k G W  (3.12)

TzxY zx ” (k G Yzx^ Yzx ” k G Yzx2

where e = e + e„ + e„a y &
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Adding the equations of (3.11) we have:

(ax ex + 0y ey + az ez} = Xe (ex + ey + ez} +

2 G (e^ + + e\) (3.13)

Similarly, adding the equations of (3.12) we
have:

(t y + t y + t  Y ) = G ( y 2 + k Y 2 + k Y 2) xy 'xy yz yz zx zx xy yz zx

Substituting equations (3-13) and (3.14) into 
equation (3.10) we have the following expression 
for the strain energy:

(
rXe(e + e + e ) + 2 G (e2 + e2 + e2) +L x y z x y z

/
v

G ( Y 2 + k Y 2 + k Y  2)] dx dy dz ( xy yz zx

(3.14)

3-15)

Substituting the strain-displacement relations 
(3.8) into the above equation (3*15) for strain- 
energy yields:



(1+v) (l-2v) .. /tt. 2 „ „ 2,3Ui.2 2 / 9 Vi. 2
+ E(l-v) + z/H) qo> + 2 G {z (9x :) + 2 (9y J

v2 _2,3u1 8v1v2 . (1+V)2(1-2V)2 r n 2 o+  p z (  +  ) +  5----- p (% + z/H) q ^(1-v) 3y E (1-v) 0

2 (i+v) (i-2v) ,, ,„w 3Ui . avi s \ .i„ ?,aui . avn N 
-  — *----- -*-Z   z(k + z / H ) ( -----L +  L) qD> +IG zd ( L +  L)E(l-v)2 9x 9y 9y 9x

, , ... , 3Wn (1 + v) (1-2v) 9q 2 9Wn (l+v)(l-2v)
+ k ( V x  +  +  z  ” 2 e " ( T - v T  9y "  +  k ( U l  +  9 3 T  +  Z -2 E T I ^ r r

(3.16)

(|^o.)2} 3 dx dy dz. 3 X

Simplifying and integrating equation (3*16) 
with respect to z we obtain:
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UT - * ( [- S j  (»Hl , + J L  (JVi,
J 1-v2 3x 1-v2 3y
A

+ 2 v E I (3Ul3Vl) + _ J   (k IHT)2 + I(8Vj
1-V 8x 3y 2(l+v) 3y 3x

+ 2 I ( ^ L  ^1±) + K H V-, 2 + 2 k H V-,
3y 3x x x 3y

3W~ 3W~ 2 8W^ 2+ 2 k Ux ^  + k H (^a) + k H ( ^ )

+ (2G+\)(l+v)2(l-2v)2 H 2 + G K I(l+v)2(l-
E 2 (1-v )2 3 ^E2 (1-v)2

(3.17)

+H/2

where I = z^ dz «112

-H/2

+ k H U 12

2v) 2



E. KINETIC ENERGY

The expression for the kinetic energy is:

ke
= p ([(8U)2 + (3V, ( 3W)2 ] dx dy dz (3

2 j at at at

The expressions for the particle velocities 
are obtained by differentiating equation (3.2) 
with respect to time and neglecting the terms 
containing z2 in comparison with the linear 
terms. Thus we have:

au = z au1 . av _ z av-
9t 9t * at at

= 3Wa + z (1+v)(l-2v) 3qn 
at at 2E(i-v) at (3.19)

Substituting equation (3-19) into equation
(3.18) we have the following expression for 
kinetic energy:



+ (1±V)_(1^)_ Jg* 2] dx dz
2E(l-v) 3t

Integrating the above expressions for kin
etic energy with respect to z we obtain:

P ( [i(iLLL)2 + I(§±L)2 + h ( ^ ) 2

A

+ (1+v) (1-2vj j (i£a)2] dx dy 
4E2(1-v)^ dt

(3 .20)



P. WORK DONE BY EXTERNAL FORCES

Let the intensity of the normally distributed 
force be qQ (x,y,t) and the magnitude of the in
plane forces acting in the middle plane of the
plate per unit length be NY , N , and N„,, asx y xy
shown in Fig. 1.

Projecting these forces on the x and y
axes and assuming that there are no body forces'
or tangential forces acting in these directions on
the faces of the plate, we obtain the following 
equations of equilibrium in the x and y direct
ions respectively:

9X ay
(3.21)

d^xy + 3Ny _ o 
3X ay

In considering the projection of the forces
shown in Fig. 1., on the z-axis, we must take
into account the bending of the plate and the
resulting small angles between the forces Nx and
N that act on the opposite sides of the element. 

«/

As a result of this bending the projection of 
the normal forces Nx on the z-axis is:
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- Nx dy —  + (Nx + dx) (—  + dx) dy (
9x 3x 3x 3x

After simplification, if the small quantities 
of higher than the second order are neglected, 
this projection becomes:

Nx |— dx dy + — ^ dx dy“X OX ox

Similarly, the projection of the inplane 
forces N on the z-axis is:1/

Nv dx dy + — ^ —  dx dy
3 y 3y 9y

Considering the projection of the shearing
forces Nv,. on the z-axis, we observe that the*y
slope of the deflection surface in the y-
direction on the two opposite sides of the ele-2
ment is ^  and ^  dx. Hence theay 3y 3x3y

3 .22)

3.23)

3-24)



jection of the shearing forces on the z-axis is 
equal to:

a2w 9Nxy 3W
dx dy +    dx dy9x ay (3.25)

An analogous expression can be obtained for
the projection of the shearing forces N « Nyx *y
on the z-axis. The final expression for the
projection of all the shearing forces on the z-
axis can be written as:

dx dy +   dx dy +ax 9y
(3.

Adding expressions (3.23), (3-24), and (3.26)
to the load qQ dx dy acting on the element and 
using equation (3.21) yields:
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In our case we have uniform boundary force,
that is, Nv„ = 0 and Nv = N„ = N. Thereforex y  x y

equation (3 - 27) reduces to:

qQ + NV2W (3.28)

The virtual work done by the external force
q (x,y,t) and the inplane force N in a virtual o
displacement <5 W is:

«WE =

A

(q + NV W) 6W dx dy (3-29)
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G. HAMILTON'S PRINCIPLE AND THE DIFFERENTIAL 
EQUATION:

Hamilton's principle is:
t-̂  t-ĵ

6 j (UE - Ke ) dt = ^  wE dt (3

t t.o o
which can also be written as:

6 \ <KE ' UE + V dt = 0 (3
Substituting the expressions (3.16), (3.20)

and (3 *29) for the kinetic energy, strain 
energy and the work done by the external for
ces respectively into the above equation (3*31)
yields:

3U-
9t *e>2

A

( W C L ^ v ) 2 I(^ )2] dx(Jy _ 
4E2(1-v )2 9t

.30)

.31)
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+ 2vEI (3Ui 3V t + E I(iML)2
l-v2 8x 9y 2(l+v) 9y

K ^ L ) 2
3x

2 I( 3Un 3Vj 
3y 3x

k H V, + 2 k H Vx 3Wr
9y

k H Ut 2 + 2 k H Ux 9W,
9x k H < | W

, (2G+X)(1+v)2(i_2v)2 H . « . G k I (1+v)2 (i_2v)2 .9q„v2
+ ----- E2(i-W2------  3 V  + te2(l-v)2 ‘‘I T '

tl

+ (■^a )2}J dx dy} dt + I |(qQ + N V2w) <$W dx dy dt = 03Y
t ' A

(3-32)

Performing the variation and grouping the (SÛ , 
6V-̂  and 6W-̂  terms separately and setting each of 
them equal to zero we have:

6Ui terms:
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D + (1+v) d 92Vj + 1-v d 92U-̂
9x2 2 3x9y 2 3y2

(3.33)

E H k 9Wn _ E H k y _ pĤ _ 92Ut = Q 
2(1+v) 9x 2(l+v) 12 9t2

6V-, terms:

d 3 % l  +  l + y D i f S l .  +  l = S t D s ! | L
9y2 2 3x3y 2 3x2

(3.34)

E H k 9Wn _ E H k y _ pH3 d2Y1 _
2(1+v) 9y 2(l+v) 1 12 3t2

6W0 terms:

E H k 2W , E H k / 9Uj_ + 9Vj 
2(l+v) 0 2(1+v) 9x 9y

(3.35)
2

_ PH 9 Wo. + q + N V2W = 0
3t2 0
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Therefore we have 3 equations in terms of 
u 1 j ^1 and W©* These are:

„ 32Ut 1+v „ 32Vt 1-v ^ 32UnD — 7̂ - +   D  L +   D -o-1-3x2 2 3x3y 2 3y '

E H k 3Wn E H k = PH^ 32Ut
2(1+v) 3x 2(1+v) 1 12 3t2

(3.36)

afYL 1+v sfuj. + l=v sfvj.
3y2 2 3x3y 2 3x2

E H k _ E H k _ pH3
2(1+v) 3y 2(l+v) 1 12 9t2

(3.37)

E H k 
2(l+v)

V2W, E H k 
2(l+v)

3Vi)
8y

PH
31 - q, - N V W.

(3.38)
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Differentiating equation (3*36) with respect 
to x and equation (3.37) with respect to y 
and adding them together results in:

(D v 2 . E H k _ pH3 ; (3Uj_ +
2(l+v) 12 3t2 3x 3y

-  H- —  V2 W0 (3.39)2(1+v)

Eliminating the term (lHl_ + IXl) between the3x 3y
above equation and equation (3-38) we obtain:

(V2 - 2 d +v) -JL-) (D - P--—  $— — ) Wp p oE k 3t 12 dt*

+ = (1 _ — — —  v2 + -4 ,
3t 6(1-v)k 6Ek 31

(qD + N v2 WQ ) (3.^0)



3*1

The above equation (3.40) is the general dif
ferential equation of motion of an elastic plate 
under normal and inplane forces, including the 
effects of shear and rotatory inertia.

Neglecting the terms due to shear and rotatory 
inertia in equation (3*40) we obtain the classical 
equation:

D Wo qD + H V2 W0 (3.41)
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IV. EQUATIONS DEDUCIBLE FROM THE GENERAL EQUATION:

1. Neglecting shear and rotatory inertia:

a). Static plate equation with a uniform load:

Cases a) and b) have been studied by 
several researchers such as Boidine (3), Leissa 
(31), Molachlan (36), McNitt (37), Reid (51) 
and Yu (73) in rectangular, polar, and el
liptical coordinates for various shaped plates and 
for several boundary conditions.

Case c) has been studied by Bradley (4), 
Conway (11), Dean (12), Herrmann (23), Mansfield

q0 (x >y) (4.1)

b). Forced plate vibration:

DV^Wo + qQ (x,y,t) (4.2)

c). Buckling problem:

o + o 0 (4.3)

d). Vibration with inplane forces:

o + NV2Wo 0 (4.4)



(34), Yamaki (71) and several other researchers 
for various loading and boundary conditions.

Case d) has been studied by Kaul (25), 
Lurie (33), Wah (68), and several other in
vestigators for various shaped plates with dif
ferent boundary and loading conditions.
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2. Including the effects of shear and rotatory
inertia:

a). Static plate equation with a uniform load:

- (1 - s n ^ T k  ^  qo u ’y) <'K 5 >

b). Forced plate vibration:

(V2 - 2P ^ +V  ̂ J^L) (D V2 - SMI JL.) w 
E k 9t2 12 8t2 °

+ PH ^ a  = (1 _ - J i - y 2 + - 4 )  qo (,.6)
at 6(l-v)k 6Ek 3t

c). Buckling problem:

H2 _2n t xt _2t., ,'o' (4.7)
2

Dv4Wo = (1 -  H---  V2) (-N V2W0 )
6(l-v)k

d). Vibration with inplane forces:

(\72 - 2p(l+v) a ) (d v2 - Pi1.3 _JL_)W0
Ek at2 12 at2 (4.8)

+  p h  t= ( l - - - - - **£—  v 2 + P H 2^ -t .V .̂ _ l £ )  N V 2 W
3t2 6(1-v)k 6Ek 912 °

Case a) is identical to the equation ob
tained by Reissner (54) and studied by Green (19). 
Case b) has been studied by Callahan (8),
Fettis (14) and Lee (30) who developed certain



functions which took into account the effect of
shear and rotatory inertia. No numerical work 
is available.

To the best knowledge of this author cases
c) and d) have not been previously derived. 
Equations (4.7) and (4.8) are derived in this
study and are solved for simply supported square, 
circular, annular circular and annular elliptical
plates using the finite difference method.
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V. NUMERICAL PROCEDURE

A. Reduction of the fourth order differential 
equation to a second order:

Equation (4.8) is:

(— E.g.?- + H2N ) 70w . (p £  + PH3 +
12(l-v2) 6(l-v)k ° 12 6k(1-v)

ph£ ci+^M) V2W + N V2w - PH ^2- (5.1)
6Ek a t2 °  ° a t 2

_ 2 (1+V) pH3 a^w
Ek 12 at21 .

Define
pH3 + pH3 + PH2(1+v)N
12______ 6k(l-v)________6Ek____

EH3 + H2n

B

12(l-v^) 6(l-v)k

_________ N___________
EH3 + H2N 

12(1-v2) 6(l-v)k

j>H_
EH3 + H2N

12(1-v2) 6(1-v)k

pH
D

3(l+v)
6Ek

EH3 , H2N
12(1-v2) 6(l-v)k

(5.2)
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Substituting expressions (5.2) into equation
(5.1) we have: 

a2 Va t 2 " ~ a t *  atV4wc = A v2W0 + B y2wo - c - D (5.3)

Let W0(x,y,t) = W(x,y) Cos(pt) (5.4)
where 'p* is the frequency in radians per second.

Differentiating equation (5.4) with respect to
time and substituting into equation (5.3) yields:

V^W = - A p2v2W + B v2W + Cp2W - D p^W. (5-5)

The above equation can be written as:

V4W = -(Ap 2 - B) V2W - (D p^ - C p2)W (5>6)

Introduce a function M defined as:
2 2M = - a2 (— — + — !£) , a is the grid size,3x2 3y2 ’

which can be written as:

M = - i2 V2W (5<7)

Differentiating equation (5.7) twice with res
pect to x and y respectively and adding yields:

v 2m = - i 2 A  (5-8)



H i

Substituting equations (5-7) and (5.8) into equa
tion (5 -6) we have:

-~2 v2m = (A p2 - B) ^ - (D p*1 - C p2) W (5.9)a a

_llMultiplying the above equation (5*9) by - a 
yields:

V p ^  - B) M + a^(D p^ - C p^)W (5.10)

Define:
R « a2 A

a2 B

-2 ^ (5.1Da C

U = a2 D

Substituting the expressions (5 .11) into 
equation (5 .10) yields:

-a2 V2M = (Rp2- S)M - (Up21 - Tp2)W (5.12)

Thus instead of a fourth order differential 
equation we have two second order differential 
equations (5 -7) and (5 .12).



k 2

Recall that for a simply supported boundary
3 2 «2condition W = 0 and — ^ ^ = 0. These8y

conditions are suitable for the above numerical
technique since we can set:

and = 0

for the mesh points on the boundaries.



B. FINITE DIFFERENCE METHOD:

The Laplacian operator V 2 is written in its 
finite difference form as:

a2 V2Wij = (Wi+ljJ + + Wisj+1 + ^±,3-1

(5.
-  ' W1,J)

Note that there are five points involved in 
the above finite difference equation; points to 
the right, left, above and below the central 
point (x^ , y^). This finite difference represent
ation for the Laplacian operator has an error of 

— 20(a ), provided that W is sufficiently smooth.

It Is convenient to represent the above 
equation (5 .13) pictorially, where the linear com
bination of W's is represented graphically as:
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1

v 2w.ij -  1
a2

- 4 W_.ij (5.14)

Writing equation (5-7) in pictorial form:

- 4 w ij = Mij (5-15)

This can also be written as:

-  1

-  1 -  1 Wij = Mij (5.16)

-  l
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Writing equation (5.12) in pictorial form:

-  1

- 1 4 - 1

-  1

= (Rp2-S)Mj_j - (Up^-Tp2) Wit} (t

Eliminating M.. from the above equation by -1* J
using equation (5 .16):

-  1

- 1 4 - 1

-  l

-  l

- 1 4 - 1

-  1

W±J = (Rp2-S)

-  1

- 1 4 - 1 Wij ~ (Up^-Tp2) WIj (5 .18 )

-  1

.17)



The pictorial representation for the Laplacian 
operator when written for any particular grid be
comes an augmented coefficients matrix, the wij's 
and the j fs become column vectors. These are
shown for various shaped grids in Section VI - 
Results and Discussion. Defining the pictorial 
operator for any general grid as matrix [a], 
we can write the equation (5 .18) in terms of a
matrix [a] and column vectors:

[a] [a] (Wij) = (Rp2 - S) [a] (Wi j >
- (Up^ - Tp2 ) {WiJ} (5-19)

Define: [3] = [a] [a]

Then equation (5.19) becomes:

[3] {W^} = (Rp2 - S) [a] {W±j}
- (Up2* - Tp2) {Wij}

The above equation is used to study the 
vibration and buckling problem, in which the 
effects of shear, rotatory inertia and inplane
forces are included in the constants R, S, T and

(5 .20)

(5.21)
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C. VIBRATION PROBLEM:

In order to evaluate the natural frequencies
we rearrange equation (5 .21) and define a matrix
[p] as follows:

H  = [3] - (Rp2 - S) [a] - (Up21 - Tp2) [i] ([

Thus the vibration problem with inplane forces
including the effects of shear and rotatory in
ertia for any simply supported plate reduces to:

[p] (Wij) = 0

The determinant of matrix [p] is evaluated
to obtain the natural frequencies of the plate.
The matrix [P] has the natural frequency of the 
plate ’p ' as the only unknown and the correct 
value of ’p' makes the determinant of matrix [p] 
equal to zero. The order of the matrix [p]
depends on the number of mesh points taken for
a particular grid as shown in Section VI.

.22)
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D. BUCKLING PROBLEM:

For evaluating the critical buckling load we 
set the constants R, T, and U in equation 
(5.12) to be equal to zero. Thus equation (5.21)
reduces to:

[6] (Wij) = -S [a] (Wij) (5.24)

Rearrange the above equation and define:

[b] = [8] + S [a] (5.25)

Then the buckling problem including the ef
fects of shear for a simply supported plate re
duces to:

[b] {Wij} = 0 (5.26)

The determinant of matrix [b] is evaluated 
to determine the critical buckling load of a
plate. The matrix [b ] has the critical buckling 
load as the unknown and the correct value makes 
the determinant of matrix [b ] equal to zero.
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E. NUMERICAL EXAMPLE : ANNULAR ELLIPTICAL PLATE:

We shall now illustrate with an example 
how the finite difference technique is applied 
and how the matrices [a] , [p] and [b] are
formulated for an annular elliptical plate sub
jected to inplane forces and simply supported
on its inner and outer edges.

It is evident from symmetry that the cal
culations need be extended over an area of
one-fourth the plate only, as shown in Fig. 7.
This area of the plate Is divided Into a num
ber of square mesh of mesh size a = a/6. This 
yields 28 mesh points for computation. With
reference to Fig. 7 we write the difference 
equations at all grid points not on the bound
aries for which M and W are different from
zero. At the remaining nodes on the boundaries
M and W are zero from the boundary conditions.

The difference equations for equation (5-16) 
for different mesh points are written as:
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n = 2 :

W2 - T-T  W2 = m 2

n = 3 :

- W2 + 1» W3 - 2 Wy = M-

n = 6 :

W0 + ±_ V/, Wr1 + a2  ̂ a2 1 + a2 ' 1 + a2 W12 =

2 2 4̂ ?
—  ------------ W q  —  ------------ W f. +  '  W 7  —  ____________ W i  o  —  M 71 + 33 1 + a3 a3 1 + a3

n = 11 :

— ---  W n ia/l a5 J--L (1 +■ an) (1 + aK) W12 n  + a. ji) Cl + Sc) ^

= M11

n = 12 :

— Wg — "*■ ^ W 1 2  - W 3̂ — W ]_8 = M 1 2

n = 13 :

1 + a / W, 1 + a. W 12 i- W13 1 + a. W19 = M13
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n = 16 :

W 16  - _______ W,71 + a7 17 1 + a-. W 22 = M 16

n = 17 :

- W11 - w16 4 w17 - w18 - w23 = M17

n = 18 :

-  W12 -  W17 18 - W 19 - w24 = M18

n = 19

(l+a8)(l+a9) W13 " (l+a8)(l+ag) Wl8 + a^~a^ W19 " M19

n = 22 :

-  W16 4 W22 - 2 W 23 = M22

n = 23 :

W,
1+aio ' 1 7

1+a W
10 22 W

l10 23 1+a W
10 24

= M 23

n = 24 :

" (T+aii)(l+a127 W18 (i+aliy(l+a12) W23 + W2H ~ M2K

(5.27)
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The above finite difference equations (5.27)
can be written in a matrix form as:

[COEFFICIENT m a t r i x] (wn ) = {Mn } (5.28)

This coefficient matrix is previously defined
as matrix [a] 3 and Wn and Mn are column vectors 
The coefficient matrix is shown as:

Grid Size: a =1.00

The fractions of the grid size are:

a± = 0.250 a7 = 0.810

a2 = 0.^50 ag = 0.200

a3 = 0.925 a9 = 0.350

a^ = 0.200 a10 = 0.850

a = 0.300 axl = 0.4255

a^ = 0.675 ®T2 = 0*325
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Once matrix [a] is obtained, the matrices 
[B] , [P] and [B] are easily obtained from
equations (5.20) } (5 .23) and (5-25) respectively.

In order to compute the natural frequency 
'p' or the critical buckling load 'Ncr'; the 
value of 'p' or ’Ncr* is considered correct if
it makes the determinant of its respective matrix 
to be zero. These values are approximated by
using the following technique. First the matrices
[P] and [B] are written as a product of their
respective upper and lower triangular matrices.
It is known from the lower and upper decomposi
tion method (Appendix A) that the value of the 
determinant is the trace of the upper triangular
matrix. The trace of the respective upper 
triangular matrices contain 1p * or 'Ncr'. Dif
ferent values of 'p ’ or 'Ncr' are tried so that 
the correct value will make their respective de
terminant equal to zero. The iterative procedure
used for this is the interpolation or the false
position method (57).

Matrices [P] and [b] are evaluated by the 
lower and upper decomposition method (Appendix A)



to determine the natural frequencies and the 
critical buckling load of the plate respectively 
The computer program used to determine the 
matrices [3], [p] and [b] and to evaluate the
frequency 'p' and the critical buckling load 
'Ncr' is given in the Appendix C. The results 
are given in Section VI D.

The numerical technique has been shown to 
give excellent results. The accuracy of the re
suits depend on the grid size. Several mesh 
points were chosen to obtain good results. The 
values of the natural frequencies and critical 
buckling loads obtained using 40 to 50 mesh
points compared very well (0 - 0.1%) with those 
obtained using 20 to 30 mesh points. Results 
obtained using the above numerical technique 
neglecting the effects of shear and rotatory
inertia compared very well (0 - 0.5%) with those
obtained by previous researchers.
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VI. RESULTS AND DISCUSSIONS

A. Square Plate:

Using the technique discussed in Section V,
the fundamental frequency for a simply supported 
square plate is determined using equation (5-23). 
The normal and inplane forces are not included
in the computation. It is evident from symmetry
that the grid need be extended only over an 
area of one-eighth of the plate; twenty mesh 
points are taken as shown in Fig. 2. The finite
difference equations for these mesh points and
the coefficient matrix [a] are given in Appendix
B.l.

Natural frequencies for four different thick- 
ness-to-side ratios are computed to study the 
effects of shear and rotatory inertia. These
effects decrease the natural frequency by 3.90 
to .92 percent for plate thickness-to-side ratio
of 0.1 to .025 respectively. The results are
given in Table 1 and are also plotted in 
Fig. 8. It can be seen that the effects of
shear and rotatory inertia are fairly signifi
cant for a relatively thick thin plate.
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The results obtained by neglecting shear and 
rotatory inertia are in good agreement with data 
obtained by Conway and Leissa (10)3 Vet (63), 
Young (72) and others with classical theory.
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B. Circular Plate:

Fundamental frequencies and critical buckling 
loads are studied for a simply supported cir
cular plate. Due to the symmetry of the plate, 
only one eighth of the plate is used to construct
the. grid as shown in Fig. 3- The finite dif
ference equations and their coefficient matrix 
are given in Appendix B.2. Higher natural fre
quencies and their respective mode shapes are 
also computed by extending the grid over half 
the plate as shown in Fig. 1^. The difference 
equations for the 39 Interrior mesh points and 
the method for determining the mode shapes are
given in Appendix B.2.

Vibration:

Table 2. lists the fundamental frequencies
for various thickness - to - diameter ratios. The
percentage frequency decrease due to the effects 
of shear and rotatory inertia, Is from 4.15$ to 
1.48$ as the thickness to diameter ratio de
creases from 0.1 to 0.025* The fundamental fre
quencies for these thickness - to - diameter ratios 
are plotted in Fig. 9.
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Table 3. lists the first four natural fre
quencies and their respective mode shapes. The
mode shapes are computed to check the accuracy 
of the computed frequencies. The nodal pattern 
for the third natural mode is plotted in Pig.
15. The percentage frequency decrease for the
first four natural frequencies due to the effect
of shear and rotatory inertia are 4.21, 4.98,
5.89 and 7*36 percent respectively, for a 
thickness to diameter ratio of 0.1. ^p in 
Table 3» is defined as:

Ap = •pa2/p/D

One notes that for fairly thick plates the 
effect of shear and rotatory inertia included 
in the computation give significant corrections 
to the classical frequencies. The correction is 
equally significant to higher natural frequencies.

Buckling:

Considering the effect of shear, the criti
cal buckling loads for different thickness to
diameter ratios are calculated from equation (5 .26).



The critical buckling load reduces from 5*71 to 
0.39 percent for thickness-to-diameter ratio of 
0.1 to 0.025 respectively. The results are
given in Table 4 and plotted on curves shown 
in Fig. 10 in which the quantity ^  is the 
critical buckling load parameter defined as:

P .An ^ Ncr a /pT d

It is again observed that the effect of 
shear reduces the critical buckling load signi
ficantly for a relatively thick thin plate.

The values of the natural frequencies and 
the critical buckling load computed without the 
effects of shear and rotatory inertia, and shear 
respectively agree well with data obtained by 
Boidine (3), Conway (11), Dean (12), Yamaki
(71) and others using the classical theory.
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C. Annular Circular Plate:

For an annular circular plate shown in
Fig. the effects of shear on the critical
buckling load for various thickness - to - diameter 
ratios is studied. The interrelationship between 
the tensile and compressive inplane forces on
the natural frequency including the effects of 
shear and rotatory inertia is also examined. Both 
inner and outer edges are simply supported and 
subjected to the same inplane force intensity.
Due to symmetry one eighth of the plate is used 
to construct the grid. The grid and mesh points 
are shown in Fig. 5- Twenty one mesh points are 
adopted to obtain their finite difference equa
tions and the coefficient matrix [a]. These are 
given in Appendix B.3-

Critical buckling loads for four different 
thickness-to-diameter ratios are evaluated using 
equation (5 .27) including the effect of shear.
The classical critical buckling load are also 
obtained by neglecting the effect of shear from 
the above equation. It is seen that the critical 
buckling load decreases from the classical case
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by 28.05# to 2.41# for a thickness-to-the- 
outslde diameter ratio of 0.1 to 0.25 res
pectively. The results are tabulated in Table 5 
and plotted in Pig. 11. Thus we see that the
effects of shear are very significant on the 
buckling load as the thin plate thickness increases.

Vibration with Inplane Forces:

Next the influence of inplane forces on the 
natural frequencies is investigated. Fundamental
frequencies for a range of tensile inplane for
ces and compressive inplane forces (not greater 
than the critical buckling load) are determined. 
These frequencies are computed from equation (5-23)
including the effects of shear and rotatory iner
tia. The results are compared in Table 6 and 
shown in Fig. 12. The quantity <j>c in Table 6 
is defined as:

x = Ncr a2
27.25 D

It is observed that the effects of shear 
and rotatory inertia are more important when the 
plate is under compressive inplane forces and 
become less significant as the tensile inplane
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forces get larger.

The values of the natural frequencies and 
the critical buckling loads evaluated using the
classical theory agree well with the data ob
tained by Mansfield (34), Raju (48), Wah (68),
Yamaki (71) and others.



D. Annular Elliptical Plate:

An annular elliptical plate was used as 
an illustration of the numerical technique dis
cussed in Section - V.E. Fundamental frequencies 
for different values of tensile and compressive 
inplane forces, and the critical buckling load 
for a thickness-to-the-outer major axis of 0.1 
were computed using equation (5.23). This equa
tion includes the effects of shear and rotatory 
inertia. The results are compared in Table 7 
and plotted on a curve in Fig. 13. The quan
tity <J>E is a multiple of the critical bcukling 
load defined as:

(j) - Ncr a2
E 27.4 D

It is again observed that the effects of 
shear and rotatory inertia are more important when 
the plate is subjected to compressive inplane 
forces.

To the best knowledge of the author no data 
using the classical theory is available In the 
existing literature concerning the critical buckling
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load or the natural frequency of an annular el
liptical plate.



VII. CONCLUSION

Prom the numerical results obtained in 
this study for various shaped plates it is
concluded that the effects of shear and ro
tatory inertia in vibration analysis gives lower 
values for the fundamental frequencies as compared 
to the results for the classical theory. Further
more the influence of shear and rotatory inertia 
become more significant for higher modes of 
vibration. These effects become more significant
as the plate thickness is increased and are very 
significant for the annular plates.

Inclusion of shear effect in the buckling
study also shows that the critical buckling load 
is smaller than predicted by the classical non
shear case. Again, the shear effect becomes sig
nificant as the plate thickness is increased, 
particularly for annular plates.

It is also shown in the study that for
annular plates the effects of shear and rotatory 
inertia are very important when the plates are 
subjected to large compressive inplane forces on
both inner and outer edges and become less 
significant for large tensile inplane forces.
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In general, it is concluded that the effects 
of shear and rotatory inertia on the natural 
frequencies and the effect of shear on the 
buckling load previously disregarded are very 
pronounced for sufficiently thick plates, parti
cularly in the case of annular plates.
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VIII. RECOMMENDATION 

Equation of Motion:

The general differential equation of motion 
derived in this study is for thin isotropic 
elastic plates. The same method of analysis 
could be followed to obtain an equation of 
motion for orthotropic elastic plates. Further 
work could be carried out by following the 
work of Mossakowski (42), Pandalai (46) and 
Uthgennant and Brand (62).

Boundary Conditions:

The numerical method employed in this study 
is applicable to simply supported boundaries be
cause only in this case does the fourth order 
partial differential equation reduce to a second 
order as shown in Section - V. It is felt that 
numerical techniques by Bramble (5) and Ehrlich 
(20) for solving biharmonic equations may be 
useful for other boundary conditions.
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dx

3Nx ^N + -JL dx x 9x

(a)

N, > N + dxx 8x
Nv,r + 8Nxy dx 
Xy "3x

* N VV + dy-xy >y

(b)

Figure. 1. a) Deflected Surface due to Inplane Forces,

1. b) Equilibrium of a Small Element 
Subjected to Inplane Forces .
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11 12

5

10

1 H

17

19

20

Figure. 2 Simply Supported Square Plate with
its Grid (2a = 10") .
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10

12i r

Figure 3 Simply Supported Circular Plate with 
its Grid (2a = 10").
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Figure. 4 Simply Supported Annular Circular Plate
(a±/a0 = 0.5, 2a0 = 10") under Hydrostatic
Compression.
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2120,

1211

321

Figure 5 Grid for an Annular Circular Plate 
Shown In Figure 4.
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Figure. 6 Simply Supported Annular Elliptical 
Plate (H/2a0 = 0.1, b0/a0 =0.4,

bi/bQ = 0.5) under Hydrostatic 

Compression .



75

20

213

122
1

11

10

2816 22

Figure 7 Grid for an Annular Elliptical 
Plate Shown in Figure 6 .
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0 USING CLASSICAL 
THEORY

.0
WITH SHEAR AND 
ROTATORY INERTIA

.0

VET
o>

.0

.0250.0 107505
H/2a

Figure 8 Fundamental Frequency Parameters for 
a Simply Supported Square Plate 
(2a = 10").
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USING CLASSICAL 
THEORYl.OOO-

0.775-
WITH SHEAR AND 
ROTATORY INERTIA

0 . 500 -

o BOIDINE
0.225-

.025 .100.0 .075.05
H/2a

Figure 9 Fundamental Frequency Parameters of 
a Simply Supported Circular Plate 
(2a = 10").



78

300

WITHOUT SHEAR

WITH
150. '

BRYAN

0.0 0 .05 0 .10

H/2a

SHEAR

(6)

Figure 10 Critical Buckling Load Parameter 
for a Simply Supported Circular 
Plate. (2a = 10") ,



1500. ■

WITHOUT SHEAR

WITH SHEAR

o YAMAKI (71)

0.100 .05
H/2a0

Figure 11 Critical Buckling Load Parameter for 
a Simply Supported Annular Circular 
Plate (a^/a0 = 0.5, 2a0 = 10").



80

25.0 PERCENTAGE FREQUENCY 
DECREASE

20 .0

10 .0 -

- 1.0
compressive

0.5 0.0
<j>c=Ncr aQ2/27.25 D

0.5 1.0 + 
tensile

Figure 12 Percentage Frequency Decrease for a Simply 
Supported Annular Circular Plate Subjected 
to Inplane Forces N

(ai/ao = °*5’ H/2ao = °*1 » 2ao = 10n)-
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25.0 ' PERCENTAGE FREQUENCY 
DECREASE

20.0 '

15.0 -

10 .0 -

1.00.51.0 0.00.5
compressive tensile

= Ncr /27 . 4 D

Figure 13 Percentage Frequency Decrease for a 
Simply Supported Annular Elliptical 
Plate Subjected to Inplane Forces 
N (H/2ao=0.1, bD/a0 =0.4, a1/aQ =0.5, 
b1/bQ = 0.5, 2ao = 10").
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0 11
21

12 22

20

20 '10

Figure 14 Simply Supported Circular Plate
with its Grid Extended Over Half 
the Plate (2a = 10"),
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007 0 <

0 .7  8

0 .7  0

- 0 . 9  9 0 7 1

- 0 . 7  9 0 .6 0

0 .3 1 0.2

Figure 15 Mode Shape for the Third Natural 
Mode.



H
2a

XP
Without Shear 
and Rotatory 
Inertia.

XP
With Shear and 
Rotatory 
Inertia.

% Decrease in 
Frequency due 
to Shear and 
Rotatory 
Inertia.

0.025 1.210 1.199 0.92

0.050 2.420 2.380 1.45

0.075 3 .620 3.520 2.48

0 .100 4 .840 4 .650 

.............

3.90

Table 1 Fundamental Frequency Parameters for a 
Simply Supported Square Plate with and 
without the Effects of Shear and 
Rotatory Inertia (2a = 10").
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H
2a

XP
Without Shear and 
Rotatory Iriertia.

XP
With Shear and 
Rotatory Inertia

% Decrease in 
Frequency due 
to Shear and 
.Rotatory 
Inertia.

0.025 0.3062 0.3010 1.48

0.050 0.6125 0.5980 2 .26

0.075 0.9180 0.8850 3.08

0.100 1.225 1.172 4 .15

Table 2 Fundamental Frequency Parameters for a 
Simply Supported Circular Plate with 
and without the Effects of Shear and 
Rotatory Inertia (2a = 10"),
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H
2a

hi
Without Shear

K
With Shear

% Decrease in 
the Critical 
Buckling Load 
due to Shear.

0.025 2.064 2.071 0.39

0.0 50 23.080 23.450 1.48

0.075 94 .08 97.26 3.23

0.100 246.12 261.48 5.71

Table 4 Critical Buckling Load Parameters for a 
Simply Supported Circular Plate with 
and without the Effects of Shear 

(2a = 10").
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H
2a

An
Without Shear. With Shear

% Decrease In 
the Critical 
Buckling Load 
due to Shear.

0.025 13.10 13.44 2.41

0.050 138.80 152.02 9.05

0.075 517-12 631.23 18.60

0.100 1235.15 1720.45 28.03

Table 5 Critical Buckling Load Parameters for an 
Annular Circular Plate with and without 
the Effects of Shear 

(a-i/a0 = 0.5, 2a0 = 10"),
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Xn
With Shear and 
Rotatory Inertia

% Decrease In

$0
PWithout Shear 

and Rotatory 
Inertia.

Frequency due 
to Shear and 
'Rotatory 
Inertia.

+1.00 53.60 48.82 8.52

+0.75 50 .01 45.80 10.08

oLHo+ 46.82 37.62 13.23

+ 0.25 1)3.72 36.56 15 .12

0.0 40.04 33.60 16.06

-0.25 37.51 30.40 17.71

i o o 33.63 27.50 19 .02

-0.75 28.11 21.41 23.26

-1.00 20.80 0.0 28.05% De
crease In the

-1.392 0.0 -
Critical Buck
ling Load.

Table. 6 Frequency Parameters for a Simply Support
ed Annular Circular Plate (ai/ao = 0.5, 
H/2a0 = 0.1, 2a = 10") Subjected to Inplane 
Forces.



4>e

APWithout Shear 
and Rotatory 
Inertia.

XPWith Shear and 
Rotatory Inertia.

% Decrease ir 
Frequency due 
tp Shear and 
Rotatory In
ertia .

+1.00 50 .04 45.20 10.30

+0.75 47.60 41.23 11.28

+0.50 44 .50 37.8 0 15-30
+0.25 41.80 34.61 17.21

+0.0 38.50 31.74 18.05
-0.25 34.70 27 .92 19.80
-0.50 30.82 22.40 20.91

-0.75 26.23 19.75 24 .80
-1.00

-1.398

18.62

0.0

0.0 28.2% Decrease 
m  the Criti
cal Buckling 
jO ad.

Table 7 Frequency Parameters for a Simply Supported 
Annular Elliptical Plate Subjected to In
plane Forces N (H/2a0 = 0.1. bQ/a0 = 0.4, 
ai/ao = 0.5, t>i/b0 = 0.5, 2a0 = 10").



APPENDIX A

A. LOWER AND UPPER DECOMPOSITION METHOD

Definition: A lower triangular matrix is a
square matrix [c]= C y  such that C y  = 0 for
i < j. Similarly, if C y  = 0 for i > j, then

[c]is a upper triangular matrix (*J1).

L U Theorem:

Given a square matrix A of order n, let [Ak]
denote the principal minor matrix made from
the first k rows and columns. Assume that
det [Ak] is not equal to zero for k = 1,2,
 ,n-l. Then there exists a unique
lower triangular matrix L = [ m y ] » with mji = m22

= .....  = mnn = 1, and a unique upper triangular
matrix U = Cuyl so that L U = A. Moreover,

Det [A] = u-^ U22 u33 ........unn*

The above technique is used to evaluate
the Matrices [p] and [Bj of equations (5-23)
and (5.26) respectively.



92

APPENDIX - B.l

RECTANGULAR PLATE

The pictorial equation (5.16) is written in 
finite difference form for a grid of a rect
angular plate shown in Pig. 2.

The difference equations are:

4 WD — 4 W2 = M0

- W0 + 4 Wx - W2 - 2 Wg = M]_

- W-l + 4 W2 - w3 - 2 w7 = m2

- w2 + 4 w3 - - 2 Ws = m3

" w3 + 4 - w5 - 2 w9 =

- 2 W]_ + 4 W6 - 2 Wy = M6

w 2 - w 6 + 4 w 7 - w 8 — = m7

w3 “ W7 + 4 w8 - W9 - W12 = m8

W4 - w 8 + 4 w 9 - w 10 — W]_3 — m9

2 W7 + 4 W11 - 2 W12 = M n

- w8 - wi;L + 4 w12 - w13 - w15 = m 12
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- W9 - w12 + 4 W13 - wli} - wl6 - m 13

- 2 W]_2  ̂wi5 — 2 W]_5 = 1̂ 15

- Wj.3 - WX5 + 4 W;l6 - W]_y - Wxq “ m16

- 2 W16 +  ̂wl8 “ 2 w19 = m18

Grid size : a = 1.00
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APPENDIX B .2

CIRCULAR PLATE

The pictorial equation (5.16) is written in 
finite difference form for a grid of a cir
cular plate shown in Fig. 3- The difference
equations are:

4 W c - 4 W 2 = M 0

- WQ +  ̂ w2 - w2 - 2 Wg =

- W 1 + 4 W 2 - W 3 - 2 Wy = M 2

- W 2 + 4 Wg — Wij — 2 Wg = M 3

- Wg + 4 W/j — 2 Wg = Mjj

- 2 W x + 4 Wg - 2 Wy = Mg

- W 2 — Wg + 4 Wy — Wg — ^11 = My

- Wg - Wy + 4 Wg — Wg — ^12 = m 8

- ___ 2___ w _____ 2____ w + 4_ w - 2---- w = M
1 + * 1 + ax a al 9 1 + al 3 9

- 2 Wy + 4 W^j. — 2 Wq_2 = ^11

- Wg - W n  + 4 w12 - w13 - W 1 5 = m 1 2

- q— —---- W rt - =— ---  W,„ + —  W. _ = M n _1 + a2 9 1 + a2 12 a2 13 13
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- 2 wi2 + 4 W15 = M15

Grid size : a = 1.00

The fractions of the grid size are

a-j_ = 0.916

- 0.625
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The pictorial equation (5-16) is written in 
finite difference form for a grid of a cir
cular plate shown in Fig. i/|. The difference 
equations are:

W1 - W2 - 2 W12 =

W1 + 4 W2 - W3 - 2 W13 = M2

W2 + 4 W3 - W^ - 2 W1]} = M3

W3 + U -  W5 -  2 W15 =

W„ + H W5 - Wg - 2 W16 = H5

W5 + * W6 - W7 - 2 "l7 = ”6

Wg + 4 Wy — Wg — 2 Wjg — My

W7 + D W 8 - W 9 - 2 Wig = Mg

w + 4 W - 2 VI = MW8 9 20 9

I+SJ W1 T i~ "12 " ITiJ 13 " 1+ai 22 ~ 12
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W2 - W12 + 4 W13 - Wllf W23 M13

-  ^ 1 3 *  ̂^14 — W 15 - ^24 M14
- W„ - wli} + itw1(; - Wn* - W15 '16 " "25 M15

w5 " wi5 + 11 wi6 " w17 “ W 26 M16

W6 - W16 + 4 W17 - W18 ' W27 M17

W7 " W17 +  ̂ W18 " W19 - W28 M18

w  — w  + 4 w  ~ w  ~8 18 19 20 29 M19

1+a-,
W, —  w19 + ~  l+a-̂  a^

W20 1+a^"  W30 * M20

2 4— —  W. _ + —  w0_l+a2 I2 l+a2 23 22

W 1 3  - W 2 2  + ^ W 2 3  - W 2t - W 33 M23
- W14 w 23 + 4 W 2 jj - w 2 ^ - M24
- Wlc - W n„ + 4 W25 - W9£ - w'15 " 24 '26 " 35 M25
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Wl6 " w25 +  ̂ W26 w27 _ w36 M26

W17 ' W26 + ^ 2 7  - W28 - W37 M27

W - W + 4 W ^ - W  - W r,18 27 28 29 38 M28

w - W „ + 4 W - W - w19 28 29 30 39 M29

1+a.
W20 1+a. 29 a. 30 M30

W23 + 21 w33 “ W34 M33

W24 “ ^33 +  ̂ W34 W35 “ W42 M34

w25 - w34 + 4 w35 - w 36 - w 43

w26 “ W35 + 11 W36 " w37 " W44

M35

m36

W - W + 4 w  - w „ - w.27 36 37 38 w45

w28 “ w37 + 24 W38 " w39 " W46

M37

m38

w w + 4 w29 38 39 M39



101

2 w . + 4 ^w34 + —  ^2 l+a.2 3-2
w

1+3;
M42

W
l+a. 35 l+a. W 42 + —  W43 W44 M43

W36 " w»3 + “ - V M44

— —  W 
1+a, 37 1+3, + ~ W45 W

1+3, 66 M45

 £_ w
1+3. 38 _ 2 _  + i_ W

l+32 45 a2 46
M46

From the 3bove difference equations the coef
ficient matrix [a] is constructed and finally 
the matrix [P] of order 39 is obtained. The 
fundamental and the three consecutive frequencies 
are computed. With knowledge of nodal patterns 
from the classical case it is noted that when 
using half the plate for computation, care should 
be taken to assign proper signs to the difference 
equations. The respective mode shapes are obtained
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by substituting the value of 'p' into the matrix 
[P] and computing the eigen vectors using the 
computer program given in Appendix C.
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APPENDIX B.3 

ANNULAR CIRCULAR PLATE

The pictorial equation (5.16) Is written in
finite difference form for a grid of an annular 
circular plate shown in Pig. 5.

The difference equations are:

4 W2 - W3 - 2W7 = M2

— W 2 + 4 W 3 - 2 Wg — M 3

W2 — Wg + 4 Wy — Wg — W^2 = M7

+ —  W,

W13 M12

1 + a„ w7 M13

M15

Grid size : a = 0.833

The fraction of the grid size are:

a1 = 0.150 , a2 = 0.900 , a3 = 0.750 , a^ = 0.70
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APPENDIX C 

COMPUTER PROGRAM

Vibration Problem: Annular Elliptical Plate

PROGRAM FREQ 
C SHEAR AND ROTATORY INERTIA

COMMON M,N,R,S,T,U,D(19,19),E(19,19)
DIMENSION P (2) , A ( 20,20),B(20 ,20) ,C(20,20),F(20,20) 

R E A D (5j1) M,N
READ(5,2) DEN,THI,RAD,PRAT,EOD,SCOF,PFORCE
READ( 5,3) G,Gl,G2,G3,Gil,G5,G6,G7,G8jG9,G10jGll,G12
DENI = EOD*THI**3/(12.«(l.-PRAT*«2))
DEN2 = THI**2*PFORCE/(6.*(l.-PRAT)*SCOF))
DENOM =DEN1 + DEN2 
R1 = DEN*THI**3/12
R2 » DEN«THI»*3/(6.*SCOF*(l.-PRAT))
R3 = DEN«THI**2*(1. + PRAT)/(6.*EOD*SCOF)
R = G**2*(R1 + R2 + R3)/DENOM 
S = G#*2*PF0RCE/DEN0M 
T = G**4*DEN*THI/DENOM
U1 = DEN«*2«THI**3*(1.+ PRAT)/(6.*EOD*SCOF)
U = g **4*U1/DENOM 
DO 1H8 II = 1 ,N
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COMPUTER PROGRAM (cont»d)

C
C

DO 148 JJ = 1 ,N 
D(II,JJ) + 0.0 

148 CONTINUE
THE ELEMENTS OF THE MATRIX (a) OF EQUATION 
(5-16) ARE READ IN AS:
D (1,1) = 4.0/G1
D (1 
D( 1 
D( 2 
D(2 
D(2 
D(3 
D(3 
D(3 
D(3 
D( 4 
D (4 
D(4 
D( 4 
D(5 
D(5 
D(5

2) = -2.0/(1.0 + Gl)
3) = -4.0/(1.0 + Gl)
1 ) = - 1.0
2) = 4.0
4) = -2.0
1) = -2.0/(1.0 + G2)
3) = 4.0/G2
4) = -2.0/(1.0 + G2)
6) = -2.0/(1.0 + G2)
2) = -2 .0/(1.0 + G3)
3) = -2 .0/(1.0 + G3)
4) = 4.0/G3
7) = -2 .0/(1.0 + G3)
5) = 4.0/G4*G5
6 ) = -4.0/((1.0 + G4)(1.0 + G5))
9) = -4.0/((1.0 + G4)(1.0 + G5))
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COMPUTER PROGRAM (cont'd)

D (6 oiH1IIon

D (6 5) = -1.0
D (6 6) = 4.0
D (6 7)= -1.0
D (6 10) = -1.0
D(7 4) = -2.0/(1.0 + G6)
D(7 6) = -2 .0/(1.0 + G6)
D(7 7) = 4.0/G6
D(7 11) = -2 .0/(1 .0 G6)
D (8 8) = 4.0/G7
D( 8 9) = _4.0/(1.0 + G 7)
D (8 12)= -2 .0/(1.0 + G7)
D(9 5) = -1.0
D(9 8) = -1.0
D(9 9) = 4.0
D(9 10) = 1.0
D(9 13) = -1.0
D( 1C ,6) = -1.0
D( 1C ,9) = -1.0
D(10,10) = 4.0 
D(l-,11) = -1.0 
D (10,14 ) = -1.0
D(ll,7) = -4.0/((1.0 + G8)(1.0 + G9))
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COMPUTER PROGRAM (cont'd)

D(11,10) = -4.0/((1.0 + G8)(1.0 + G9))
Dll,11) = 4.0/G8*G9
D (12,8) = -1.0
D(12,12) = 4.0
D(12,13) = -2.0
D(13,9) = -2.0/(1.0 + G10)
D13,12) = -2.0/(1.0 + G10)
D(13,13) = 4.0/G10 
0(13,14) = -2.0/(1.0 + G10)
D(l4,10) = -4.0/((1.0 + Gil)(1.0 + G12))
D(l4,13) = -4.0/((1.0 + Gil) (1.0 + G12) )
D(l4,l4) = 4.0/(G11*G12)
DO 173 K = 1 ,N
DO 169 I = 1 ,N
SUM =0.0 
DO 154 J = 1 ,N 

154 SUM = D(K,J)*D(J,I) + SUM 
169 E(K,I) = SUM 

C E(K,I) IS MATRIX (6) DEFINED BY EQUATION
C (5-20).

173 CONTINUE
DO 26 IK = 70000, 100000, 10000 
DI = IK
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COMPUTER PROGRAM (contd'd)

H = 250.0 
El = DI + 10000.0 
ERROR =0.01 
AI = DI -H 
BI = El - H 
YL = DET(AI)
WRITE(6.100)YL 
XL = Al 
XR = Al + H 
YR = DET(XR)
WRITE(6, 200)YR 
L = 1

6 IF(YR)l4,7,1^
7 P(L) = XR 

WRITE(6,12)XR 
STOP

14 IF(YR*YL)22,15,17
15 P(L) = XL 

WRITE(6,12)XL 
STOP

17 WRITE(6 j 3 4)YL,YR 
WRITE(6,2 5)XL,XR
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COMPUTER PROGRAM (cont'd)

XL = XR 
YL = YR 
XR = XR + H 
IF(XR - B1) 20,20,18 

18 L = L -1
WRITE(6,36)DI,EI 
GO TO 26 

20 YR = DET(XR)
GO TO 6

22 WRITE(6,34)YL,YR
DELTA = ABS(YL)*(XR - XL)/(ABS(YL) + ABS(YR)) 
WRITE(6,77)DELTA 
IF(ABS(XR - XI) - ERROR)23 j 23}50 

50 IF(DELTA - ERROR)23,23,24
23 P(L) = XI 

WRITE(6,12)XI 
STOP

24 YI = DET(XI)
IF(YI*YR)32,23,29

29 XR = XI 
YR = YI 
GO TO 22 

32 XL = XI
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COMPUTER PROGRAM (cont’d)

YL = YI 
GO TO 22 

26 CONTINUE
1 FORMAT(215)
2 F0RMAT(E10.4,3F5.2,E10.4,F5.3,F12.1)
3 FORMAT(13F6.4)
12 FORMAT(10X,17HTHE FREQUENCY 1S=,E17.9)
34 FORMAT(10X,3HYL=,E15.7,10X,3HYR=,E15.7)
25 FORMAT(10X,3HXL=,E17,9,10X,3HXR=,E17.9)
36 FORMAT(5X, 'NO ROOTS BETWEEN''E17.9,'AND'#E17.9)
77 FORMAT(10X,6HDELTA=,E15.7)
100 FORMAT(10X,3HYL=,E15.7)
200 FORMAT(10X,3HYR=,E15.7)

STOP
END

FUNCTION DET(P)

C THE FOLLOWING SUBROUTING DETERMINES THE MATRIX(P)
C USING EQUATION (5-22) AND THEN CALCULATES THE
C VALUE OF THE DETERMINANT OF THE MATRIX(P) BY THE
C LOWER AND UPPER DECOMPOSITION METHOD.
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COMPUTER PROGRAM (cont'd)

COMMON M,N,R,S,T,U,D(19,19),E(19,19)
DIMENSION A(20,20),B(20,20),C(20,20),F(20,20)
DO 115 KK = 1,N 
DO 112 II = 1,N 
F(KK,II) = 0.0 
IF(KK.EQ.II) P(KK,II)=1.0 

112 A(KKjII)=E(KK,II)-D(KK5II)*(R*P**2-S)+F(KKjII)*(U*P#*4-T*P##2) 
C MATRIX A(KK,II) IS MATRIX(P) DEFINED BY EQUATION (5 .22)

115 CONTINUE 
N1 = N - 1 
DO 89 L = 1,N1 
DO 33 I = 1SN 
DO 33 J = 1 }N
B (IjJ) = 0.0
IF(I.EQ.J) B(I,J) = 1.0 

33 CONTINUE 
K = L + 1 
DO I = K,N 

44 B( I, L) = -A(I,L)/A(L.L)
DO 73 K = 1 ,N 
DO 69 I + 1jN 
SUM =0.0 
DO 5^ J I,N
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COMPUTER PROGRAM (cont'd)

54 SUM = SUM + B(K,J)«A(J,I)
69 C(K,I) = SUM
73 CONTINUE

DO 84 I = 1,N 
DO 84 J =1 ,N 

84 A(I,J) = C(I,J)
89 CONTINUE

DET =1. 0  
DO 132 I =1,N 

132 DET = DET*A(1,1)
RETURN
END

C WHEN THE NATURAL FREQUENCY IS TO BE DETER-
C MINED WITHOUT THE EFFECTS OF SHEAR AND
C ROTATORY INERTIA THAT IS BY USING THE CLAS-
C SICAL THEORY THE FOLLOWING CHANGES ARE MADE
C IN THE ABOVE PROGRAM:

DEN2 =0. 0  
DENOM = DENI 
R1 = 0.0 
R2 = 0.0
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COMPUTER PROGRAM (cont'd)

R3 = 0.0 
R = 0.0 
U1 = 0.0 
U = 0.0

Buckling Problem: Annular Elliptical Plate

PROGRAM LOAD 
C SHEAR AND ROTATORY INERTIA

COMMON M,N,G,D(20 3 20),E(20,20),DEN,THI,RAD,PRAT,SCOF,EOD 
DIMENSION PFORCE(2),A(20,20),B(20,20),C(20,20) 
READ(5,1)M,N
READ(5,2)DEN,THI,RAD,PRAT,EOD,SCOF 
READ(5,3)G,G1,G2, G3,G4,G5,G6,G7,G8,G9,G10 ,G11,G12 
DO 148 II = 1,N 
DO 148 JJ = 1 jN 
D (II,JJ) = 0.0 

148 CONTINUE
C THE ELEMENTS OF THE MATRIX (a) DEFINED BY
C EQUATION (5.16) ARE READ IN AS:

D(1,1) = 4.0/G1 
D(l,2) = -2.0/(1.0 + Gl)
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COMPUTER PROGRAM (cont’d)

D(l,3) = -4.0/(1.0 + Gl)
D(2,l) = -1.0
D( 2 j 2) = 4.0
D(2,4) = -2.0
D(3,3) = 4.0/G2
0(3,4) = -2.0/(1.0 + G2)

D(13,13) = 4.0/G10
D(13jl4) = -2.0/(1.0 + G10)
D(14,10) = -4.0/((1.0 + Gil)(1.0
D(l4,13) = -4 . 0/( (1.0 + G11H1.0
D(l4,l4) = 4.0/(Gll#G12)
DO 173 K = 1 ,N
DO 169 I = 1,N
SUM =0.0 
DO 154 J = 1,N 

154 SUM = D(K,J)*D(J,I) + SUM

+ G12) ) 
+ G12) )
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COMPUTER PROGRAM (cont'd)

169 E(K,I) = SUM
173 CONTINUE

C E(K,I) IS MATRIX(3) DEFINED BY EQUATION (5-20).
DO 26 IK = 70000, 100000, 10000 
DI = IK 
H = 250.0 
El = DI + 10000.0 
ERROR =0.01 
Al = DI - H 
BI = El - H 
YL = DET(AI)
WRITE(6,100) YL 
XL = Al 
XR = Al + H 
YR = DET(XR)
WRITE(6,200)YR 
L = 1

6 IF(YR)l4,7,l4
7 PFORCE(L) = XR 

WRITE(6,12)XR 
STOP

14 IF(YR*YL)22,15,17
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COMPUTER PROGRAM (cont'd)

15 PPORCE(L) = XL 
WRITE(6 j12)XL 
STOP

17 WRITE(6,3^)YL,YR 
WRITE(6,25)XL,XR 
XL = XR
YL = YR
XR = XR + H
IF(XR - B1)20,20,18

18 L = L - 1 
WRITE(6 ,36)DI,EI 
GO TO 26

20 YR = DET(XR)
GO TO 6

22 WRITE(6,34)YL,YR
DELTA = ABS(YL)*(XR - XL)/(ABS(YL) + ABS(YR)) 
WRITE(6,77)DELTA 
XI = XL + DELTA
IF(ABS(XR - XI) - ERROR)23,23»50 

50 IP (DELTA - ERROR) 23,23,2^1
23 PPORCE(L) = XI 

WRITE(6,12)XI 
STOP



24

29

32

26
1
2
3
12
34
25
36
77
100
200
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COMPUTER PROGRAM (cont'd)

YI = DET(XI)
IF(YI#YR)32,23,29
XR = XI
YR = YI
GO TO 22
XL = XI
YL = YI
GO TO 22
CONTINUE
FORMAT(215)
FORMAT(E10.4,3F5.2,E10.4,F5.3,F12.1)
FORMAT(13F6.4)
FORMAT(10X,21HTHE BUCKLING LOAD IS=,E17.9) 
FORMAT(10XJ3HYL=,E15.7,10X,3HYR=,E15.7)
FORMAT(10X,3HXL=,E17,9,10X,3HXR=,E17.9)
FORMAT(5X, ’NO ROOTS BETWEEN’»E17.9,’A N D E 1 7 •9) 
FORMAT(10X,6HDELTA=,E15-7)
FORMAT(10X,3HYL=,El5.7)
FORMAT(10X,3HYR=,E15.7)
STOP
END
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COMPUTER PROGRAM (cont’d)

FUNCTION DET(PFORCE)
C THE FOLLOWING SUBROUTINE DETERMINES THE MATRIX(B)
C DEFINED BY EQUATION (5 .25) AND THEN CALCULATES
C THE VALUE OF THE DETERMINANT OF THE MATRIX(B)
C BY THE LOWER AND UPPER DECOMPOSITION METHOD.

COMMON M.N.G.D(20,20),E(20S20),DEN,THI,RAD,SCOF,PRAT,EOD 
DIMENSION A(20,20),B(20,20),C(20,20)
DENI = EOD*THI#*3/(12.0*(1.0 - PRAT#*2))
DEN2 = THI**2*PFORCE/(6.0#(1.0 - PRAT)*SC0F)
DENOM = DENI - DEN2 
S = G##2#PFORCE/DENOM 
DO 115 KK = 1jN 
DO 112 II = 1 ,N 

112 A(KK,II) = E(KK,II) - D(KK,II)«S 
C MATRIX A(KK,II) IS MATRIX(B) DEFINED BY
C EQUATION (5.26).

115 CONTINUE 
N1 = N - 1 
DO 89 L = 1,N1 
DO 33 I = 1,N 
DO 33 J = 1 jN 
B(I,J) = 0.0 
IF(I.EQ.J) B(I,J) = 1.0
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COMPUTER PROGRAM (cont'd)

33 CONTINUE 
K = L + 1
DO I = K,N

44 B(I,L) = -A(I5L)/A(L,L)
DO 73 K = 1 ,N 
DO 69 I = 1 jN 
SUM =0.0 
DO 54 J 1 ,N

54 SUM = SUM + B(K,J)*A(J,I)
69 C(K,I) = SUM 
73 CONTINUE

DO 84 I = 1 ,N 
DO 84 J = 1,N 

84 A(IjJ) = C(I,J)
89 CONTINUE 

DET =1.0 
DO 132 I = 1,N 

132 DET = DET*A(1,1)
RETURN
END
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COMPUTER PROGRAM (contd)

C WHEN THE CRITICAL BUCKLING LOAD IS TO BE
C DETERMINED WITHOUT THE EFFECTS OF SHEAR
C AND ROTATORY INERTIA THAT IS BY USING THE
C CLASSICAL THEORY THE FOLLOWING CHANGES ARE
C MADE IN THE ABOVE PROGRAM:

DEN2 =0. 0  
DENOM = DENI
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MODE SHAPES:

To solve the system [A] {X} = {B}

SUBROUTINE LINEEQ(N ,NN,A ,B ,X ,DIGITS)
DIMENSION A (NN,NN),B (NN),X (NN)
DIMENSION UL(30,30),IPS(30),SCALES(30),R(30),DX(30)
NO = 30

C N = THE NUMBER OP EQUATIONS TO BE SOLVE
C NN THE DIMENSION NUMBER OP A, B, X IN THE MAIN PROGRAM
C NO = THE DIMENSION NUMBER OP THE WORK SPACES UL,IPS,SCALES,
C R,DX

CALL DECOMP(N,NN,A,UL,SCALES,IPS,NO)
CALL SOLVE(N,NN,UL,B,X,IPS,NO)
CALL IMPROV(N,NN,A,UL,B,X,IPS,R,DX,DIGITS,NO)
RETURN
END

SUBROUTINE DECOMP(N ,NN,A ,UL,SCALES,IPS,NO)
C SUBROUTINE FOR SOLVING A LINEAR SYSTEM
C PROM COMPUTER SOLUTION OP LINEAR ALGEBRAIC SYSTEMS
C BY FORSYTHE AND MOLER
C PRENTICE HALLj 1967, PAGE 68-70

DIMENSION A(NN,NN)
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DIMENSION UL(NO,NO),SCALES(NO),IPS(NO) 
C INITIALIZE IPS,UL AND SCALES

DO 5 1=1,N 
IPS(I)=I 
ROWNRM=0.0 
DO 2 J=1 ,N 
UL(I,J)=A(I,J)
IF(ROWNRM=ABS(UL(I,J)))1,2,2

1 ROWNRM=ABS(UL(I,J ))
2 CONTINUE 

IP(ROWNRM) 3,4,3
3 SCALES(I) = 1.O/ROWNRM 

GO TO 5
4 CALL SING(I)

SCALES(I ) =0.0
5 CONTINUE

C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
NM1 = N-l 
DO 17 K=1,NM1 
BIG =0.0 
DO 11 I=K,N 
IP=IPS(I)
SIZE=ABS(UL(IP,K))*SCALES(IP) 
IP(SIZE-BIG)11,11,10
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10 BIG=SIZE 
IDXPIV=I

11 CONTINUE 
IF(BIG) 13,12,13

12 CALL SING(2)
GO TO 17

13 IF(IDXPIV = K) 14,15,14
14 J=IPS(K)

IPS(K)=IPS(IDXPIV)
IPS(IDXPIV) = J

15 KP=IPS(K)
PIVOT=UL(KP,K)
KP1=K+1
DO 16 I=KP1,N 
IP=IPS(I)
EM = -UL(IP,K)/PIVOT 
UL(IP,K) = -EM 
DO 16 J=KP1,N
UL(IP,J ) = UL(IP,J)+EM*UL(KP,J)

C INNER LOOP,USE MACHINE LANGUAGE CODING IF
C COMPILER DOES NOT PRODUCE EFFICIENT CODE.
16 CONTINUE
17 CONTINUE 

KP=IPS(N)



IF(UL(KP,N))19,18,19 
CALL SING(2)
RETURN
END

SUBROUTINE SOLVE (N,NN,UL,B,X,IPS,NO) 
DIMENSION B (NN),X (NN)
DIMENSION UL(NO,NO),IPS(NO)
NP1=N+1
IP=IPS(1)
X(1)=B(IP)
DO 2 1=2,N 
IP=IPS(I)
IM1=I-1 
SUM =0.0 
DO 1 J=1,IM1 
SUM=SUM+UL(IP,J)*X(J)
X(I)=B(IP)-SUM
IP=IPS(N)
X(N)=X(N)/UL(IP,N) .
DO 4 IBACK=2,N 
I=NP1-IBACK
I GOES FROM (N-l), . . . ,1
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IP1=I+1 
SUM =0.0 
DO 3 J=IP1,N

3 SUM=SUM+UL(IP,J )*X(J)
4 X(I) = (X(I)=SUM)/UL(IP, I)

RETURN
END

SUBROUTINE SING(IWHY)
11 FORMAT(5^H MATRIX WITH ZERO ROW IN DECOMPOSE.)
12 FORMAT(5^H SINGULAR MATRIX IN DECOMPOSE. ZERO DIVIDE

IN SOLVE.)
13 FORMAT (54H NO CONVERGENCE IN IMPRUV. MATRIX IS NEARLY

SINGULAR.)
GO TO (1,2,3),IWHY

1 PRINT 11
GO TO 10

2 PRINT 12
GO TO 10

3 PRINT 13
10 RETURN

END

SUBROUTINE IMPRUV(N ,NN,A ,UL,B ,X ,IPS,R ,DX,DIGITS,NO)



DIMENSION A(NN,NN),X(NN)
DIMENSION UL(NO,NO),IPS(NO),R(NO),DX(NO 
USES ABS(),AMAX1(),ALOG10()
DOUBLE PRECISION SUM 
EPS = 1.0E=8 
ITMAX = 1 6
*** EPS AND ITMAX ARE MACHINE DEPENDENT. **#
XNORM =0, 0  
DO 1 1=1,N
XN0RM=AMAX1(XNORM,ABS(X(I)))
IF (XNORM)3,2,3 
DIGITS = -ALOGIO(EPS)
GO TO 10
DO 9 ITER=1,ITMAX 
DO 5 1=1,N 
SUM =0 . 0 
DO 4 J=1,N
SUM=SUM+A(I ,J)*DBLE(X(J))
SUM=B(I)-SUM 
R( I)=SUM
*** IT IS ESSENTIAL THAT A(I,J)*X(J) YIELD A DOUBLE 
PRECISION RESULT AND THAT THE ABOVE + AND - BE 
DOUBLE PRECISION.##*
CALL SOLVE (N,NN,UL,R,DX,IPS,NO)
DXNORM =0 . 0
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DO 6 1=1,N 
T=X(I)
X(I)=X(I)+DX(I)
DXNORM=AMAXl(DXNORM,ABS(X(I)-T))

6 CONTINUE
IF(ITER-1)8,7,8

7 DIGITS=-ALOG10(AMAX1(DXNORM/XNORM,EPS))
8 IF (DXNORM-EPS*XNORM)10,10,9
9 CONTINUE

C ITERATION DID NOT CONVERGE
CALL SING(3)

10 RETURN
END
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NOMENCLATURE

W work done by external forces, lb - InE

K kinetic energy, lb - inE

W(x,y) normal mode deflection amplitude, inch

p natural frequency, rad/sec

A = p/lO4

n mesh points

a grid size

ai fraction of grid size (1 = 1,2,  ....)

i,j indices

2qQ normal force intensity, lb/in

Nx ,Ny,NXy inplane force intensity, lb/in

Xp = pa2 /p7T5‘ natural frequency parameter

An = Ncr a2/^7U critical buckling load
parameter

= rccr.̂|.o._ multiple of the critical
buckling load for an an
nular circular plate



NOMENCLATURE (cont'd)

_ Ncr multiple of the critical27-
buckling load for an an
nular elliptical plate

rectangular coordinates

time, seconds

plate dimensions, inches

outer major and minor axes respectively
of an annular elliptical plate

inner major and minor axes respectively
of an annular elliptical plate

mass density per unit area of the
plate, 0.00073 lbs sec2/inch2 for steel

modulus of elasticity of an isotropic 
plate, 30 x 10^ lbs/inch^ for steel

poisson's ratio, 0.3 for steel

= E/2(l+v) modulus of rigidity of an
isotropic plate

plate thickness

= / -1 V- f /i— n— v Lame's constant(1+v)(l-2v)



NOMENCLATURE (cont’d)

2= II /12 shear stress factor

plate displacements in the x, 
z directions respectively

Strain energy, lb - in 
EH^= i2(l-v2T plexural rigidity

= 3^W + 3^W
3X2 ay2
3^W 3^W 3**W
3x^ 3x23y2 3y2

unitary matrix

critical buckling load, lb/in
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