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ABSTRACT

The problem of heat transfer in laminar flow of a gas
through a constant diameter cylindrical tube is treated.

The ¢as is cooled by the tube walls held at constant temper-
ature. Two tube inlet conditions are considered: (1) fully

develoved velocity and uniform temverature profiles (Graetz

boundary condition) and (2) uniform velocity and temperature
(UTV) profiles, Results of the theoretical and expverimental
phases of the work are presented.

The theoretical solution is based on the compressible
boundary layer equations with varying transport and thermo-
dynamic proverty terms retained, For the Graetz condition,
an existing finite d4ifference solution scheme is modified
for improved prediction of gradients at the wall, For the
UTV condition, a combined analytical-numerical solution
scheme is utilized., Similarity conditions are assumed at the
tube entrance continuing to a short distance downstream., The
results of this analytic solution are then patched to the
numerical finite difference scheme. Improved convergence over
the finite difference scheme is thus obtainable,

Numerical calculations of velocity and temperature pro-
files as well as of friction factors were carried out for air
and helium at wall-to-bulk temperature ratios ranging from 0,1
to 0.95 with inlet “ach numbers varying from 0.01 to 0,05,

The results of the calculations are presented in terms of

Nusselt number and product of friction factor and Reynolds



number vs, Graetz number, The local Nusselt number is shown
to be relatively insensitive to variation in inlet wall-to-
bulk temperature ratio, whereas the local friction factor
Reynolds number parameter showed some sensitivity to the
variation of this ratio,

Empirical equations are given for the Nusselt-Graetz
number relationship and the friction factor-Reynolds number
and a modified Graetz number relationship (which includes
the temperature ratio effect),

To substantiate the theoretical results, a limited
exverimental investigation was conducted. ILocal heat fluxes
and static pressure drops at several points along a 0.3 in,
diameter tube were measured, Data was obtained for air for
inlet Reynolds numbers ranging from 815 to 1950 and inlet
wall to bulk temperature ratios ranging from 0.4 to 1.0,

Heat transfer data for the Graetz boundary condition
and friction factor data for the UTV boundary condition are
in substantial agreement with the theoretical results. Close
agreement also exists for heat transfer results in the en-
trance for the UTV boundary condition, but in the downstream
region the data falls approximately 30% below the theoretical.
Friction factor data for the Graetz condition are substantially
less than the theoretical prediction in the entrance, This
may be due to a slight discontinuity in tube diameters (about

0.02 in,) between the flow development and cooling sections,
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CHAPTER 1., INTRODUCTION

l,1, Objective

It is intended that the present investigation shall
give definitive answers to the effect of high rate cool-
ing on the local heat transfer and wall friction para-
meters for the laminar flow of gases through cylindrical
tubes, Two commonly encountered gases ~ helium and air,
are examined in detail. Temperature differences consid-
ered may be large enough such that substantial variations
in gas transport and thermodynamic properties occur, The
tube wall temperature is constant. Initially, radial
temperature profiles are uniform and velocity profiles
may be either fully developed (parabolic) or uniform at
the point where cooling of the gas commences. In par-
ticular, it is desired to,

1., Obtain a theoretical prediction of the axial
behavior of the developing flow.

2. Develop satisfactory design correlations for
the results of the analysis,

3., Test ithe theoretical analysis by obtaining

experimental data umder conditions treated
in the theoretical analysis,

1,2. Method

For the theoretical analysis, the reduction of the
governing equations of motion, continuity and energy to
the boundary layer equations is examined. A finite diff-

erence algorithm for solution of the combined continuity,



energy and (axial) momentum boundary layer equations
with property variation has been obtained from Worsoe-
Schmidt (ref., 100) and modified for use ig the present
investigation. Because of the non-convergence of the
finite difference approach when a uniform inlet velocity
profile is specified, an analytical boundary layer solu-
tion is applied at the tube entrance, This solution,
which is based on a similarity assumption and which in-
cludes property variations, is patched to the finite
difference solution at a downstream point. An improved
method of evaluating wall parameters is examined. Corre-
lation of the wall parameter results in terms of signi-
ficant operational parameters is attempted along with

criteria as to when property variations can be ignored.,

For the experimental portion of the investigation,

a cylindrical test section is fabricated and calibrated
for the measurement of axial variation of local heat
transfer and static pressures for laminar gas flow, Two
inlet cenfigurations provide approximately the two gen-
eral sets of boundary conditions examined in the theoreti-
cal portion of the investigation., Experimental data will
be used to verify, when possible, the assumptions inher-
ent in the theoretical solution or to point our areas

where the analysis may be deficient.

A additional advantage of the combined experimental
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and theoretical approach is in the practical type of
data that is supplied. The idealized boundary condi-
tions treated in the theoretical portion are unattain-
able in a physical situation. A special effort was

made in the design of the apparatus to approach the
idealized conditions. Comparison of results with those
from the theoretical solution will help to determine if
the theoretical results can be applied to physical situ-
ations which also do not attain either of the idealized
conditions, but are closer to one set than the other,

In a crude sense, the derivative or sensitivity of the
wall parameters to small deviations in the boundary
conditions has been defined in addition to its value at
the limiting cases, This type of data is of much greater

value to the designer,

1.3, Scope and Reason for the Work

Recently, interest in the effect of variable fluid
properties on internal laminar fluid flow has greatly in-
creased., This can be attested to by the large number of
investigations, both experimental and analytical, which
have been addressed to this problem in the past decade,
Advances in technology have extended the range of tempera-
ture at which gas flow is utilized from temperatures
near the cryogenic range to several thousand degrees. Ex-

treme temperature differences occuring in a gas flow



situation can make the available constant property
solutions inapplicable for prediction of heat transfer
and flow characteristics. The majority of works de-
voted to prediction of these characteristics when gas
properties vary appreciably deal with heating of the
gas, Only a small portion is concerned with cooling
of the gas. This is surprising since in many applica-
tions where extreme heating occurs, extreme cooling is

also obtained.,

An example of a possibly very important future use
of gas in a heat transfer application with extreme temper-
ature differences can be seen in the development of fast
breeder reactors., Fast breeder reactors operate at far
higher temperatures than conventional reactors but the
result is a higher thermodynamic efficiency and reduced
thermal pollution. Also, the breeder reactor produces
more fissionable material than it consumes. Gas cooling
has a aistinct advantage (as opposed to liquid cooling)
in fast reactors since bubbles or voids cannot form in
a gas (ref, 78), A bubble or void might lead to over-
heating in a localized area which cannot be detected and
may result in consequent failure of a fuel pin or rup-
ture of a coolant passage., This type of failure was
responsible for the accident at the Enrico Fermi Nuclear
Generating Plant in 1967, While turbulent flow conditions

would normally be used for the operating mode, laminar
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flow may exist for periods during shutdown, low power
operation or loss of flow accidents, Increasing public
concern over the safety of nuclear facilities restricts
the margin for design error and demands that the designer

have data available for all possible modes of operation,

Modern electronic technology has triumphed in its
ability to miniaturize, but the result has been the cre-
ation of extremely high power densities in electronic
equipment and a subsequent need for cooling. In order
to realize the decrease in size, heat exchangers must of
necessity also be kept small, Laminar gas flow is im-
portant in this application since the maximum ratio of
heat transferred to pumping power required is obtained
with laminar flow in compact heat exchangers, While the
gas would be undergoing heating in the equipment, appli-
cations outside the earth's atmosphere would require re-

circulation, and subsequently, cooling of the gas,

Several high energy rocket propellants have been
developed which can be solidified at very low temperatures
and made suitable for use in solid fuel rockets. Prior
to burning it is necessary that the fuel be raised to
melting temperature, It has been proposed that this
could be accomplished by passing high temperature gas
through passages in the supercooled propellant. Precise

control of the supply of molten propellant generated would
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require an accurate estimate of the heat transfer from

the gas.

Recent application of the Brayton cycle in aerospace
applications requires recirculation and cooling of the
gas, Since flow and heat transfer losses may make up a
substantial portion of the energy expended by the working
fluid in the cycle, it is important that precise correla-
tions be available for the cooling as well as the heating
of the gas, Here again laminar flow becomes attractive

because of its efficiency.

1.4, Previous Theoretical Work

Theoretical consideration of heat transfer for a
fluid in laminar flow in a cylindrical tube dates back
to the first (correct) derivation of the partial differ-
ential equation for conservation of energy derived by
Poisson (68) in 1835, The first solution to this equation
was nublished fifty years later by Graetz (31) in 1885,
Graetz assumed radial symmetry of the velocity and tempera-
ture profiles, constant fluid properties and that se-
cond order derivatives of the temperature and velocity
in the axial direction could be neglected with respect
to other terms., In addition, Graetz assumed the follow-
ing set of boundary condtions which has come to be known
as the Graetz condition.:

l. At x = 0, the tube wall undergoes a step change
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from T, to 1, and remains constant at T, forx 2> 0.
2. For x < 0, the fluid temperature is uniform at T,

3., The velocity profile is fully developed (para-
bolic) at x = 0.

In his analysis, Graetz assumed constant fluid properties
so that lhe axial velocity nrofile is invariant with

axial disvlacement, Also implicit in this last condition
is a zero radial velocity component for all x. Upon sub-
stitution of the parabolic velocity profile in the energy
equation, a linear second order partial differential equa-
tion with temperature as the dependent variable is obtain-
ed. Graetz obtained an infinite series solution along
with the first three eigenfunctions and eigenvalues for
the series, Higher order eigenfunctions, eigenvalues and
additional solutions for these boundary conditions can

be found in vapers by Drew (24), Jakob (40), Larkin (53),
Lipkis (55) and Sellers, ‘lribus and Klein (79). The
latter authors (79) also obtained a solution fTor the
laminar flow of a gas in a cylindrical tube for +the case
of uniform energy input by a superposition of constant
wall temperature solutions. A more direct approach to

the uniform heat addition problem has been presented by

Siecel, Sparrow and Hallman (80),
When the axial conduction term in the energy equa-

tion, kéfT/bi? is non-negligible, the energy equation

reduces to a form for which the eigenfunctions are no



longer orthogonal, To circumvent this problem, Singh (82)
obtained expansions of the appropriate eigenfunctions

for the case of constant wall temperature in terms of
eigenfunctions for an auxiliary equation satisfying identi-
cal boundary conditions. For the case of constant heat
addition, Hsu (36) showed that the solution for the case
with axial conduction can be reduced to the solution for
zero axial conduction as a special case, Hsu also de-
rived the solution in the same eigenfunction form as for
the case of zero axial conduction-- the only difference
being in the magnitude of the eigenfunctions, eigenvalues
and coefficients of terms in the infinite series, The
results for both of these analyses showed that the effect
of axial conduction is negligible for Peclet numbers, Pe
(i.e. product of Reynolds number defined in terms of
axial displacement (Reyx) and Prandtl number (Pr) greater

than 100).

To date, there does not appear to be any closed form
analytical solution for the laminar flow of a fluid in a
circular tube with simultaneous development of velocity
and temperature profiles, Thearetical results presented
are based elther partially or totally upon numerical
techniques, The first of the solutions for these inlet
conditions was given by Kays (42). Kays neglected the
radial velocity component and assumed constant properties.,

In this case the axial momentum equation becomes uncoupled
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from the energy equation and use could be made of a solu-
tion for the developing velocity field in a tube previous-
ly obtained by Langhaar (52), Langhaar solved the mo-
mentum equation by making several linearizing assumptions,
Kays integrated the energy equation numerically for Pr = 0,7.
He found that there was a significant increase in the
Nusselt number over that obtained for a fully developed
profile, Ulrichson and Schmidt (92) refined the work of
Kays to include the radial component of velocity. Their
results indicated a significant decrease in the calculated
Nusselt number from Kays' results at points near the en-
trance., An implicit total finite difference solution to
the momentum equation was presented by Hornbeck (34),.
Fairly large variation was found compared to the velocity
profiles by Langhaar. However, good agreement was found

to exist between the axial pressure variations.,

One of the first analytical attempts to account for
the effect of property variations on the flow of a gas
was made by Deissler (20) for the case of uniform heat
flux, Deissler assumed fully developed velocity and
temperature profiles, so that his analysis would apply
only in a region far from the entrance. He removed axial
dependence from the governing equations by neglecting
acceleration terms in the axial direction and assuming
1. =zero radial velocity, 2. constant axial gradient of

of the bulk gas temperature (uniform heat addition) and
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3. that axial variations in fluid properties were negli-
gible with respect to radial variations, Further assuming
that the fluid density varied inversely with temperature
and that viscosity and thermal conductivity varied as
absolute temperature raised to the 0.68 power, Deissler
solved the coupled energy and momentum equations simul-
taneously by an iterative procedure, Although Deissler
did not check his results experimentally, the data in
several other references indicate that at high wall to
bulk temperature ratios the friction factor is signifi-
cantly underestimated. Sze (87) refined Deissler's
analysis by use of actual experimental tramsport proper-
ty variations, His results were in substantial agree-

ment with those of Deissler,

A combined experimental and analytical investiga-
tion of the laminar flow of carbon dioxide near its
critical point was presented by Koppel and Smith (48),

The authors essentially linearized the momentum equation
by assuming the radial velocity component was negligible
and that the product of density and axial velocity at

any radial point is independent of the axial coordinate,
These results are rather restricted in their applicability
to the flow of other gases due to the severe and unique
variation of the density and transport properties of COp

at its critical point.

Davenport (18) extended Deissler's analysis by
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including a radial velocity component., In essence,
Davenport concluded that the temperature and velocity
profiles are never fully developed. In order to test
his hypothesis, he derived a set of axially independent
energy and momentum equations in which the radial velocity
component was left as an arbitrary function subject to
the conditions that the radial velocity be zero at the
tube wall and centerline, and that at any radial point
the outward convective flux cannot exceed the inward
conduction heat transfer. By assuming different forms
of the radial velocity distributions, Davenport solved
the coupled equations by an iterative procedure., His
results indicated that the postulated radial velocity
was sufficient to account for the experimentally deter-
mined variation of the friction factor. The predicted
effect on the Nusselt number was less pronounced but de-
pended more heavily on the postulated variation of the

radial velocity component,

Worsoe-Schmidt (100) using a finite difference solu-
tion with a variable implicitness to the continuity and
coupled momentum and energy equations included the effect
of variable fluid properties, Specific heat, viscosity
and thermal conductivity were assumed to obey power law
variations with absolute temperature ratio and the fluid
density was assumed to obey the perfect gas law, Al-

though the solution was quite satisfactery for gas heating
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and a fully developed inlet velocity profile, a single
example computed with uniform velocity at the entrance
did not converge to the proper constant property solution
for the Nusselt number downstream, Worsoe~Schmidt postu-
lated that this was primarily due to large errors in the
solution of the momentum and energy equations at points
near the tube entrance. He also postulated that either

a restrictively small finite difference mesh size or an
appropriate analytical boundary layer solution at the
entrance would remove this problem., However, for the
Graetz boundary condition, the effect of the variable
properties on the Nusselt number when based on properties
evaluated at the local bulk temperature was rather small
and in good agreement with experimental data. The pre-~
dicted friction factor increased with heating rate, but
not as rapidly as the experimentally measured values,
Only one example was calculated for gas cooling, and this

was for a fully developed inlet velocity profile,

Following Worsoe-Schmidt's example, several finite
difference and finite volume solutions for laminar in-
ternal flow with variable fluid properties have appeared,
A slightly different algorithm for integration of the
same set of equations was published a short time later
by Deissler and Presler (20).for the case of constant
heat addition and uniform velocity and temperature pro-

files at the tube entrance, Convergence of the wall
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parameters was obtained in the far downstream region,

but provision was not made for inclusion of other boundary
conditions, The effect of variable fluid properties here
alsovshowed slight effect on the heat transfer results,

but marked effect on the shear stress, Since the boundary
conditions examined differed from those in Worsoe-Schmidt's
analysis, direct comparison of numerical results is not

possible.

A recent numerical solution allowing for inclusion
of an eddy exchange coefficient for turbulent motion in
addition to the molecular terms for transport properties
has been published by Bankston and McEligot (6). Sample
calculations for laminar flow included a uniform tempera-
ture profile at the entrance and varying hydrodynamic
entry lengths with the extremes of fully developed and
uniform velocity profiles included. Provision was made
for specification of arbitrary inlet profiles, The only
wall condition provided for was that of specified heat
flux, although this may be variable with the axial co=-

ordinate. No cases with gas cooling were presented.

Swearingen (86) in his Ph.D thesis presented a finite
difference solution for laminar variable property flow be-
tween parallel plates along with experimental results for
laminar flow heating in a cylindrical tube which will be
discussed later., Swearingen, allowing for a radial pres-

sure distribution, included the radial momentum equation
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in the set of finite difference equations to be solved,
although the other usual boundary layer assumptions were
invoked., . Flow between parallel plates bears several re-
semblances to flow in cylindrical tubes since: 1, the
flow is two-dimensional, 2. the flow is internal, 3. the
boundary layer equations apply at some distance from the
entrance and 4, +thermal and/or velocity boundary layers
are present at the wall in the entrance. In Swearingen's
case, only results for the case of specified wall heat
flux and fully developed inlet velocity profiles were
generated, Specification of a constant wall temperature
for all cases with compressible flow resulted in oscilla-
tions of the wall parameters near the entrance which were
large enough to render the solution of little value in
this region, Attempts to remove this oscillation by ap-
plication of an analytical starting solution at the first
two axial steps were not successful. Surprisingly, no

radial pressure distributions for any cases were presented.

In a finite volume solution also for variable property
flow between parallel plates, Schade and McEligot (73) were
able to obtain solutions for specified wall temperatures
and uniform wall heat flux. The radial momentum equation
was neglected, Both uniform and fully developed inlet
velocity profiles for heating and cooling of the gas were
treated. Step changes in the wall temperature were ap-

proximated by increasing the wall temperature over the
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first twenty axial steps until the desired value was
reached, For several cooling cases specified with a
fully developed inlet velocity, the pressure was seen to
rise with axial distance in the thermal entrance region,
For severe cooling and uniform inlet velocity, the pres-

sure drop in the entrance was found to be very small,

Similar finite difference and finite volume numerical
methods have been applied to laminar plasma flow, While
property variations associated with plasma cooling are
indeed extreme, the present study is addressed to laminar
flow of gases at subplasma temperatures. Characteristics
unique to plasmas limit the relevance o6f these investi-
gations to the topic under consideration. These charac-
teristics, along with a review of notable literature in

this field will be reserved for a later section,

To this date, no comprehensive numerical solutions
were found for cooling and for simultaneous development
of velocity and temperature profiles with uniform wall

temperatures for flow in cylindrical tubes.,

1.5, Previous Experimental Investigations

Experimental results for the laminar flow of gases
in circular tubes are meager, This is due in part to the
low heat transfer rates encountered in laminar flow,

Heat losses from the test section are usually large in

comparison with the heat transfer to the gas and can be
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diffiecult to account for, Of those experiments performed
in apparatus designed to minimize free convection effects,
the investigations of Kroll (51), Weiland and Lowdermilk
(97), Taylor and Kirchgessener (88), Kays and Nicoll (43),
Davenport (18), Dalle Donne and Bowditch (17), Taylor (89),
Bergman and Koppel (7) and Swearingen (86) are the most
notable, The conditions under which the data was taken
are presented in Table I along with correlations proposed,
Only one of these reports data for gas cooling (43), With
one exception, (7), the experimentally measured Nusselt
number and friction factor under the conditions of low

to moderate heat flux and negligible natural convection
effects were in relatively close agreement with the pre-
dicted values from the Graetz (31) and the Sellars, Tribus
and Klein (79) solutions, Bergman and Koppel report lower
heat transfer coefficients for uniform heat flux at low
axial velocities than those predicted by the Sellars,
Tribus and Klein analysis, and also a Reynolds number
dependence which is not predicted in any of the cited
references, They postulate that this is due to an increase
in the importance of the radial velocity component at low
axial velocities, The Reynolds number dependence may be
explained by the reduced validity of the usual boundary

layer assumptions for low Reynolds numbers (100),

However, when the heat flux becomes relatively large,

the experimental results of Davenport, Dalle Donne and
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Bowditch, Kays and Nicoll, and Taylor show significant
deviation of the friction factor from values predicted
from constant property results, whereas the Nusselt num-
bers for both uniform energy input and uniform surface
temperature were found to be in relatively close agree-
ment with the constant property values, Swearingen,
while not taking any pressure drop data, found that the
difference between his heat transfer results and Worsoe-
Schmidt's predictions were within his estimated experi-
mental uncertainty. Swearingen considered this as being
a confirmation of the assumptions made in the Worsoe-
Schmidt analysis, However, Searingen maintained a flow
development section of 100 diameters prior to the test
section, It would seem that a more critical test of
Worsoe-Schmidt's assumptions could be obtained for si-
multaneous velocity and temperature profile development
where large axial second derivatives would occur in the
momemtum as well as in the energy equation at points near

the tube entrance,

Of these experimental works, only that of Kays and
Nicoll deals with gas cooling. Mean, rather than local,
Nusselt numbers were measured for air, No friction factor
or pressure drop data were obtained. Velocity profiles
were essentially fully developed at the point where cooling
commenced since Kays used a development section of about

60 diameters., The bulk of the data was found to lie
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about five per cent below the constant property solu-
tion for ratios of the logarithmic mean fluid tempera-
ture to wall temperature ranging from approximately 1.0
to 1.8, This deviation was within the estimated experi-
mental uncertainty and Kays postulates that it was due
to a fixed error in the measurement of the inlet air
temperature, In none of these investigations were de~-
tailed measurements made of velocity and temperature

profiles,

When gases are heated to temperatures sufficiently
high such that the ionization fraction becomes non-negli-~
gible, the gas is described as a plasma, Recently a
great deal of attention has been devoted to this topic.
Plasma heat transfer differentiates itself from that of
a non dissociated gas in several ways (3, 26, 27)., Radia-
tion heat transfer is added to that by conduction to the
wall, In regions where a high cooling rate predominates,
a condition of thermal non-equilibrium can exist, Elec-
tron temperatures can exceed heavy particle temperatures
by several thousand degrees (3), Also, because of appre-
ciable concentration gradients there is a diffusion of
electrons to the cool wall where recombination and con-
sequents release of ionization energy can enhance heat
transfer-~ for this reason, a plasma must be treated as

a reacting two component gas.
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Early theoretical treatments of plasma flow suffered
from restrictive assumptions made in the formulation of
the problem, In 1967, Watson and Pegot (96) published
a numerical solution for the combined energy (with Ohm's
law), momentum and continuity equations in the arc re-
gion of a plasma generator. Of greater relevance here
is the excellent finite difference treatment of plasma
flow in the arc free region of a circular tube published
by Incropera, et al (38,39). Radiation and recombination
effects were included in the analysis, but it was not
possible to include thermal non-equilibrium and its effect
on the thermal conductivity. It was postulated that this
was one of the reasons that poor comparison with existing
experimental results was found, It was not possible to
correlate the heat transfer results in terms of variables
which are effective for moderate temperature gas flow,
Also, wall parameters were found to be extremely sensi-

tive to the assumed inlet profiles,

Unfortunately, experimental investigations for plasmas
suffer from a lack of consistent inlet conditions., For
example, in the experimental studies by Johnson, Choksi
and Eubank (41) the flow underwent an abrupt expansion
immediately after the plasma generator. Also, a spin was
imparted to the gas by the plasma generator in this in-
vestigation and those of Skrivan and Jaskowski (83) and

Wethern and Brodkey (98)., In no case was the magnitude
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of the spin accurately measured or its effect on the
heat transfer and flow characteristics isolated. In
the experimental study by Cann (10), the constricted
arc region was extended so tha a smooth transition into
the cooling section was obtained. However, a small but
non-negligible stabilizing axial magnetic field was
applied in the cooled section with a probable effect on
the wall parameters, Due to the rapid deterioration of
any plasma condition, the cooling sections in all these
studies were relatively short., For example, in the
Johnson et al study, the maximum length to diameter ra-

tio was 6,

Additional problems associated with plasma experi-
mentation are the cost and difficulty of measuring tempera-
ture and velocity profiles, the difficulty in measuring
ionization level, and the lack of experimental data for
gas properties at plasma temperatures which make it
necessary to resort to purely theoretical correlations
(25). In addition, variations in plasma transport proper-
ties with temperature may differ substantially from those
of the same gases at moderate temperature levels, For
example, the variation of the viscosity of argon with
temperatures above 20,000°K is opposite to that at moder-

ate temperatures (77).

There are a considerable number of papers referenced

in the Bibliography which have not been discussed. How-
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ever, it is believed that the papers discussed present
a good picture of the major contributions to the analysis

of the laminar flow of a gas in a cylindrical tube,
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CHAPTER 2, ANALYTICAL PROBLEM

2.1, Statement of the Problem

We are considering the laminar flow of a non-reacting,
non-absorbing, non-dissociated, single component, mona-
tomic thermally perfect gas inside a cylindrical tube,
The tube 1s axially symmetric, there is zero swirl and
no body forces (i.e. free convection effects are negli-
gible) and the flow is steady. The thermal conductivity,
absolute viscosity and specific heat are considered to
be functions of temperature only. Two sets of boundary
conditions are to be studied (Fig.l). In the first set,
we consider the gas flowing from a point in the tube at
Xx = =0, PFor x < 0, the wall temperature is constant
and equal to the fluid temperature, Ty, Also for x <0
the fluid temperature is uniform and the velocity pro-
file is parabolic, At x = 0 the wall temperature under-
goes a step change from Ty to Ty and remains at T, for
x > 0. This set of boundary condition is referred to as

the Graetz boundary condition,

In the second set both the velocity and temperature
profiles are uniform at x = 0, This condition would be
approximated by a fluid flowing directly from a reser-
voir into a tube in the absence of any development sec-
tion or more closely approached by providing the tube

with a bellmcocuth entrance, With this latter inlet
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condition the set will be referred to as the UTV (Uni-
form Temperature and Velocity profile) condition.l
Symmetry of the temperature and velocity profiles and
the no slip and impermeability condition at the wall
allows us to complete the two sets of boundary conditions
which are summarized in Figure 1, Only the case of gas
cooling will be considered;

T/ To < 1
The boundary condition of constant heat removal from the
gas was not considered since, unlike the case of gas
heating, this is not a physically realizable situation,
The analytical problem may now be identified as the de-
termination of the heat transfer and fluid friction at

the tube wall for these boundary conditions along with

satisfactory methods of correlation of these results,

The differential equations governing the situation
are the Navier Stokes, energy and continuity equations.
For the cylindrical coordinate system in Figure 1 and
incorporating the aforementioned assumptions, we may
write these as (37);

radial momentum:
P (V;F +u 9_x)'" ‘a—?+5,[2#%; +(-sm[5F+++ 57]]

VvV, au i (2.1)
+2 [w(Gr+ 50+ 250 -3

lThis set of boundary conditions is sometimes referred to
as the simultaneous development case, but this cannot be
considered as being sufficiently definitive since strict-
ly speaking, both profiles in the Grae® condition also
undergo development,
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axial momentum:
3_U Q_Q —_9d a2 au 2 au
p(var fU 3x)— 5—2-*-3—,([2#5;4-({—-3—#)[ + F +5% ]j'

(2.2)
*'%gF[ (av aUﬂ
energys
UZR VIR @+ 157 (kT kG0 = p(v"’“+u"H) (2.3)
continuity:
rar(rPV)-f- (PU)—— (2.4)

where &= viscous(mechanical) dissipation function
| Vv aVv_aU\2 oV v aul’
=u[2{(%) (Y)Y G- A E] (2as)

A= second coefficient of viscosity ( A=~%p.for a
monatomic gas)

= primary coefficient of viscosity

(= A+%M (= 0 for a monatomic gas).
For a thermally perfect gas we may write

dH =cpdT

(i,e, the specific heat may be removed from the differ-
ential operator). This allows us to write the energy
equation solely in terms of enthalpy as the dependent
variables
A AL ass s L i (2.6)

The equations in this form and generality impose a (pre-

sently) nearly unsolvable problem-- both in terms of a
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closed form or numerical type solution., They form a

set of non-linear equations by virtue of the product
terms in the dependent variables, The energy equation
is coupled to both momentum equations by virtue of its
velocity terms, and the momentum ecuations are likewise
coupled to the energy equation by virtue of the density
and viscosity terms. The equations are elliptic in
character due to the presence of second order deriva-
tives in two spatial directions. The solution for the
flow and temperature fields must be made "in toto"--
that is, values of the dependent variables must be speci=-
fied at the exit of the tube as well as at the walls and
inlet, As is generally done, the boundary layer assump-
tions will be invoked which both reduces the number of
equations to be solved and changes the classification

of the equations.

The rationale underlying the application of the
boundary layer assumptions will be reviewed., In certain
flow situations, the variation of the velocity and temper-
ature can be much greater in one spatial direction than
another, We can identify two such regions in internal
tube flow (Fig. 2)., In the entrance region where a thin
viscous and/or thermal boundary layer are developing at
the tube wall, variation of these quantities can be ex-

pected to be much greater in a direction normal to the
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flow than in an axial direction. Similar considerations
apply downstream of the region where the boundary layers
which have been growing along the tube wall have met at
the tube centerline, In regions such as these we can
apply an approximate order of magnitude analysis, We
denote ~ as meaning "of the order of magnitude of"

rather than its usual meaning. We then write,

2 1
a1

2. .1

ax x
where r, is the radius of the tube., In the inlet region
of a tube we would use a representative boundary layer
thickness as a characteristic dimension rather than rg.
Since for the gases which will be considered the Prandtl
numbers are fairly close to unity (i.e. the thermal and
velocity boundary layer thickness should be approximately
equal), the same characteristic dimension will apply to

the energy and momentum equations,

Let AP, = representative magnitude of radial pres-
sure variation
APX = representative magnitude of axial pres-
variation
U = representative magnitude of axial velocity
V = representative magnitude of radial velocity
p = representative magnitude of density.

We further denote the operators and @ as being order of
magnitude addition and subtraction and to simply mean that

the order of magnitude of a sum (or difference) of two
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terms conncected by the operator is that of the larger
term, If both are of the same order of magnitude, then

the order of the sum will be the same as for either term.

Expanding continuity (2.4) we have

v, 2(pV) L alpV) _ (2.7)

r ar ax

Since the first term becomes indeterminate at r = 0, we
can apply L'Hospital's rule at the centerline;

_av
ar

N

l _aVyar
rl-g

—ar ar,r=0 r=0

Due to the crudeness of the analysis, not much will be
lost if we use ¥/r, to represent V/r as well as oV/dr,
This will also be extended to the V/r terms which are
present in the axial and radial momentum equations. Also,
not much will be lost if we treat the density as being
constant, Applying an order of magnitude analysis to the

continuity equation (2,7) yields

V/rg Q}VV%OGDU/X =0 (2,.8)
or

V~r&bc (2.9)

Expanding the axial momentum equation (2.2) by an order

of magnitude analysis (for (= 0)t
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Substituting the magnitude of V in terms of U (1.9)

Tol~voflfoiolob tliod) ..

The order of magnitude representation of the radial

momentum equation (2,1) can be written:

vY-o@ag~_%A_r:r@_z [,29 7Y @U)]®""l:rx®rux:l

(2.12)
“liVAVv
“%[%95]
and substituting the relationship V,
UUr _U AP, U U
o @l o~ — S @u [,xe Lelol oubel
(2.13)

vu[0 b |

In the same case that r045<1, certain terms become small
when compared with others, If these terms are neglected
the following equations are obtained;

axial momentum:
2

1] LAP 7]

T @25 (2,14)
radial momentum:

0’ 1 AP M U r

7_g~_ﬁ7r@3r_g (] (2.,15)
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It can be seen that both of the terms which could deter-
mine the order of magnitude of the term :;_.APr/ro differ
by a factor ro/x from similar terms in thg axial momen-
tum equation., We can reasonably expect, therefore, that
the term representing the radial pressure gradient will
differ by a similar factor from the axial pressure gradi-
ent, For ro/x<<l we can also reasonably expect that the
neglect of the radial pressure variation would not effect
the solution greatly. This allows us to discard the ra-
dial momentum equation insofar as it provides information
about this variation.?

In the energy equation, we can use the same type of

representation for the variation of the enthalpy. Assuming

Qﬂ,\,éﬂ and éﬂ ~ AH
or o ox X

2From another standpoint, it would seem that more than
simplification is gained from this assumption when finite
difference or element techniques are used for solution,
For compressible laminar flow between parallel plates,
Swearingen (82) included the transverse momentum equation
by combining the radial and axial momentum equations
through elimination of the pressure terms in each., This
requires that cross derivatives of the pressure be taken
which raises the order of the equation representing mo-
mentum transfer from second to third, and for the case
of uniform inlet velocity and temperature profiles, intro-
duces a higher order singularity in boundary conditions
at x = 0 which must be accomodated by the solution. As
noted earlier, in Swearingen's case, large scale oscilla-
tions were obtained near the entrance for compressible
flow.
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where AH is a representative magnitude of the enthalpy
variation, we obtain after substitution of 2.9 -into the

energy equation,

— _ 2 2 =i _
045 @U) AR @ o2t A @ & Afie)’. PUAH @ PULH (2.16)
o

It can be seen that the second and fifth terms on the

. . AP d ko7
left hand side which represent V 5T and 3% Cp O

respectively are negligible with respect to the terms
oP 19 (k oH :
US} and‘ rb”fpar . Concerning

the dissipation function ¢ (2.5), the term (%%f can

derived from

be shown to be the controlling term when a boundary layer
analysis can be applied, However, inclusion of the addi-
tional terms will not affect the results of the simplifi-
cation that is Weing developed here-- that is the problem
will remain an initial value problem so that the addi-
tional terms in the dissipation can be included almost
free of charge, Thse terms can become significant -in

the entrance region for the UTV boundary condition, so
discussion will be withheld until Chapter 3 where this

boundary condition will be reviewed.

When terms which have been shown to be small are
neglected, the usual boundary layer equations are obtained

axial momentum:

[

U yaUy__dp 19 (.2
p(US:+VSr)= —'°+F(,7r(ru

X

[

5) (2.17)

by
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continuity:

%x(pU) +12 (rpV)=0 (2,18)

energys

H
PUBEHVED =USEH | Gk d

An additional consideration becomes important be-
fore we can fully justify the boundary layer assumptions.
If those non-boundary layer terms which we eliminated in
our simplification of the governing equations are larger
or of the same,order of magnitude as the terms which are
due solely to property variation, then the solutions
should be treated with caution. Those terms due to prop-
erty variation whose magnitude relative to neglected
terms can be calculated are 1,) the ratio of terms that

were eliminated from the axial momentum equation to the

term due the viscosity variation;
22 4,2 et
Ry= [a(ﬂav)+3ax(“ x) ™3 g 5r 'V{'/Ega (2.20)

and the ratio of the terms that were eliminated from the
energy equation toe the term which is due to thermal con-

ductivity and specific heat variation;

k
2 kaH /aH ac,
Ry= [5 xcoax )/ ar 5r"] (2.21)
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In order to estimate the magnitude of these ratios for
verification of our assumptions, we must anticipate the
solution of equations 2,17 through 2,19. In figure 3 and by
these ratios are plotted as a function of distance from
the tube entrance for the flow of helium and the UTV
boundary condition at TW/To = 0,1, This case represents
an extreme in terms of both numerators and denominators

in 2,20 and 2,21, The derivatives were evaluated by means
of radial and axial centered difference operators with
dependent variables obtained from a combined analytical
finite difference algorithm to be presented herein, It
should be noted that we are estimating terms from a solu~
tion of equations that neglect them, Along with these

ratios are plotted

U
Ry 5%”'531 P”a (2.22)

which represents the ratio of axial molecular momentum

transfer to axial convective momentum transfer, and

Ry= aax %%/OUS-}—‘ (2.23)
which represents the ratio of the axial molecular heat
transfer to the axial convective heat transfer., Both
numerators again represent terms eliminated from the
governing equations, Rep and Pr, represent the inlet
Reynolds and Prandtl numbers respectively. A feel for the
physical significance of these results can be obtained by

choosing ReoPr, = 1000, As a sample case, at r/rg = 0.95
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it can be seen that all of these ratios are reduced to
magnitudes less than 0,10 at ten diameters, whereas for

r/ro = 0.95, R] does not become less than 1 until 40 dia-
meters downstream and R3 does not become less than 1 until
50 diameters from the tube entrance, The behavior of Rj

and R, is due to the fact that the velocity and temperature
profiles remain extremely flat in the central region of the
tube for an axial distance which depends upon the severity
of the cooling. Radial derivatives in this region will be
quite small., It is not easy to determine what represents

an unacceptable ratio, Basing our decision upon the ratios
of terms in the core flow would lead us to discard the solu-
tion almost altogether, However, the absolute magnitude of
the derivatives in this region are several orders of magni-
tude smaller than those occurring in the region near the
tube wall and their effect will probably be small, An
ultimate quantitative answer will have to wait for a solu~
tion to equations 2,1 through 2,4 or for experimental veri-
fication, The results for the case shown are not representa-
tive of other temperature ratios or boundary conditions,

A finite difference solution to the equations 2,17, 2,18
and 2,19 was published by P.M, Worsoe-Schmidt (100) in his
Ph,D dissertation, and his algorithm will be made the basis
of the numerical portion of the solution to be presented
here., In the next section, the important points of the

Worsoe-Schmidt analysis are reviewed,
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2.2. The Worsoe-Schmidt Analysis

After Worsoe-Schmidt, we transform the boundary
layer equations in terms of the following non-dimensional
variables,

Independent variables:

x* = x/r RegPr,
rt = r/r,
Dependent variables:
ut = U/ug
+ . Y
vV o= UOReoPrO

P = (py~P)/po U2
p = p/p,
T/T

o
where ro = tube radius

Rep = inlet Reynolds number = Us2f0p/u,

Subscript o will otherwise be taken to denote gas proper-
ties evaluated at the inlet temperature,
Non—dimensionalized gas properties;

g =cp/c p.o

,U—+= M/ Mo

"= p/p,
The following expressions are assumed to adequately (and
most generally) represent the relationships between the

properties. and thermodynamic quantities for the gases

under consideration.
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a

F=6 (2.,24)
pit=gP (2.25)
kK= g° (2.26)
p=p1/6 (2.27)

For air and helium, these assumed power laws are quite

good (c.f. Appendix B), We define two non-dimensionalized

enthalpies,

H—H 9
HT= o f/}ngZ:TiE{w+q4} (2.28)
¢polo 1
+_H—Hw:/0 1 1+a _j+a
w

Subscript w refers to conditions at the tube wall. The
reasons for use of the two definitions of the enthalpy
will become clear in Chapter 4, The form in 2,28 is that
used throughout the Worsoce-Schmidt analysis. The form
2,29 will become necessary when we consider a similarity
boundary layer solution. For the present, we will be
using HT} although the form of the energy equation will

be unchanged since we have merely changed the zero
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reference, We also define,

Y%= ratio of specific heats = Cpo/cy,o

MO= inlet Mach no, =U°/VYORTO

Q$; non-dimensionalized heat flux =r4 /k To

With these new quantities, the governing equations become;

+
J’(U+aU + V+§g ) = g—P+ +2Pr [l St (r+/.c+aU+):| (2.30)
g_)(+(p+u+) + %%;Jr(rw*;,)zo (2.31)

+ + LY
p+(U+g%+ + V+%—;{1+) = (1-v)meutdE, + 2 RIS L )

dX r‘+ar+r C+ drt
+2( % -1)M3ptpr &' (2.32)
where
2
L out L 2 Yavh2 L vh? o 2fovt vt
e r+} ReoPry, o {—r’f} SRS (2.33)
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The boundary conditions in terms of the non-dimensionalized

variables are

at xt = 0 U+=2(l-r+2) or ut = 1 6 = 1
xt <0 rt =1
U+=O V+=O 0:]
xt >0 rt =1
ut = 0 vt =0 0 = 6,
x*$0 r+t=o0
dut _ + _ 96 —
'8?_{.—0 vt =0 ar+0

The unknowns in these equations are UT, V¥ andl{Twhich
are function of two space variables x* and r*, and the
non-dimensionalized pressure P(x*) which is a function of
only the axial co-ordinate, At first sight, there would
seem to be one equation less than that required for
solution, since there are only three equations here. Be-
fore application of the boundary layer assumptions, the
fourth zquation was provided by the radial momentum equa-
tion. The fourth equation in this case comes from the

integrated continuity equation,

1
:?/p+U+r‘+dr+ -1=0 (2.34)
0
which defines the flow as being confined., Integration

over the space variable r* provides an equation in terms
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of one variable, xt., Worsoe Schmidt used a two level
finite difference scheme with variable implicitness to
generate a marching solution in the axial direction, If
the velocity and temperature profiles are known at one
axial point, then the profiles at the next step can be
obtained with application of appropriate boundary condi-
tions and so on down the tube until the profile develop-
ment is sufficiently complete, Various discrete radial
and axial points in the tube are specified as node points
(Fige. &) where we either know or are solving for values
of the dependent variables. We defineqhm1as being

the value of a dependent variable corresponding to the
node m,n whose spatial point in the tube is given as

(mAx*, nart).>

m m+-o
[ oAX
O___-_m—1___________%_ _m+l — —0
|
T ,] m+0',,!] m+]:] ]
|
i£ = = =
]
m,N-1 m+cr,1:h -1 m+1,N-1 N—T
|
I

Figure 5, Designation of Mesh Points

3‘I‘his represents a simplification in that the radial and
axial mesh steps changed at different points in the tube,
If the axial step were Ax; for m; steps and Ax, for my
steps, the axial point would be My AXq HMyAX,
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Although we are solving for the dependent variables at
these points, this does not necessitate writing the

finite difference representation of the differential
equations to apply to these points, In the Worsoe-Schmidt
solution, the equations are radially centered at n Ar+.
but if the dependent variables are known at the m'th

axial point and we are solving for them at m+l, then the
equations are written so as to apply to the point m+o ,
where o is a constant less than or equal to 1. The rea-
son for doing this, and the significance of ¢ can be seen
in the following analysis. The radial difference operators

& and 8% are defined by

o (d)mln): (Dm,n.),.]—(bmln ( 2,35 )

2
8 (Pmp) = Pm,n11=2Pmn+ D, 0y (2.36)

By means of Taylor series expansions, the analytical
derivatives at the point m+o ,n can be related to values
of the dependent variables and their derivatives at the
axial points m and m+l, After some manipulation, the

following relationships can be derived;

Prr1,0~ Prmyn dd 2
LA Mo 1
5, ++[2(1—20')—23)+2Ax++(1—306"+302? 33?3 A2 (2.37)
— 54

v

+O(Ax+3)]
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08 (D 1,0)H(1-0)8( D) 3

[ 0( p) +2a D_ ax?

2ArT e

(2.38)
1é£b
+38 24 o(Ax* )+0(A’ )]
2 - 204,
08 (Pyp10) +(1-0) 8 (q’m,n?: o +[lo'(1—0‘) 64? 2B

Af"z Qe 2 Oxror*

(2.39)
+_]_b¢ Art +O(Ax+)+O(A “Ar ar)
28 X r )+ O( r

where all analytical derivatives apply to the point
(m+a)ax, nars  The bracketed terms on the right hand sides
of these expressions can be considered as representing
the error if the difference quotients on the rizht hand
sides are substituted in place of the analytical deriva-
tives in the differential equations, The value of o

can be seen to have a direct influence on the magnitude
of these terms, and the value of 0 should be chosen with
this in mind. Choosing o= 1/2 will minimize all the
coefficients in which o appears. This would appear to

be an optimum value if it were not for the fact that the



Lé,

solution was found to be unstable in this case, A
compromise value of O= 3/4 was chosen and was found to
yield stable results in-all cases., While it is possible
that a stable solution could have been chosen closer to
1/2, it is questionable whether it would have been worth-
while to have devoted the time to determing this o .,
Similar results were found by Worsoe-Schmidt and are
discussed by him (100)., It must be remembered that an
optimum determined for one set of boundary conditions

may not be stable for another set,

The values of the dependent variables at m+l are
evaluated by assuming a linear variation between neighbor-

ing axial points;

- 2.ko
B +qn—0(bm+l,n +(1—0) (bm,n ( :

In regions where large second and higher order axial
derivatives occur, this expression becomes less accept-
able., This is in addition to the error incurred by
dropping the second derivatives in the original equations.,
When these representations are substituted into the
partial differential equations 2.29, 2.30 and 2,31, a
relationship combining dp,, o, Prpyner and Py

is obtained at each radial node for o> 0, For this case

there are 3N +1 simultaneous equations in order to solve

for 3N +1 unknowns, For the particular case o= 0, we
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have an expression explicitly in &y, , and known quan-

tities at each radial node,

The difference equations obtained will still con-
tain products of the unknown variables, This non-lineari=~
ty can be neatly eliminated if we allow of linearization
by means of iteration. Wherever a product of the same
two dependent variables occur, we will substitute the
best available value for one of them and then solve the
linearized equation for the succeeding value, For example
if the first solution at (m+0)Axt is being performed, the
quantity ¢hﬁ¢hu1n will be used in place of (b;+hn
On the next iteration at this point, ¢m+Ln from the

first solution of the linearized equation would be used,

and so on until convergence is obtained.

A further linearization allows us to uncouple the
equations at each iteration, insofar as products of
different dependent variables occur, The details of this
linearization depend upon the sequence in which the equa-
tions are solved, The energy equation (2.32) is the
first equation to be solved at an axial point, so where
products of enthalpies and velocities occur, velocities
from the previous axial point are used., The integrated
continuity equation 2.,3% ean then be arranged to bring
out explicitly Pgyy which is contained in ﬁ%+Lm Values of

enthalpy from the present solution of the energy equation
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are used in evaluating the temperature dependent quanti=-
ties in the momentum equation., One exception to this

is the term ﬁ+U+. Generally, ﬁ* and Lﬁ- vary in oppo-
site directions along the tube., Using the new enthalpy
and pressure for the evaluation of ﬁ* and the old value
of Lﬁ'would roughly give us ﬁthnUEm which overesti-
mates ﬁE+LnU:+Ln . A better approkimation can be ob-
tained by‘using ﬁ%+u¢ﬁﬂn until estimates of both ﬁ;+bn
and U:+Ln are availaﬂie.u After the energy and momentum
equations, the differential form of the continuity equa-
tion (2,31) can be used for the evaluation of radial velo-
cities for use on the next iteration or at the next step.
Using this procedure reduces the problem to the solving
of 3 sets of N linear simultaneous equations plus the

total continuity equation,

Considering that upwards of 320 radial mesh divisions
were necessary for the solution of the most severe bound-
ary conditions, the solution of this many simultaneous
equations would still be prohibitive if it were not for
the fact that the coefficient matrices for the dependent
variables were of a particularly simple form, After the

aforementioned linearizations are made, the general form

“an extreme example of this type of linearization was used
in the theoretical analysis of Kcppel and Smith (48)
where it was assumed that the product of velocity and den-
sity, pu, at any radius is independent of the axial co-
ordinate,
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of the relationships that holds among the velocities and

enthalpies can be written as;

I _ T+ 1.+ I .+

Dn - "AnUm+1.n—l + BnUm+l,n - CnUm+l.n+l - Pm+l (2'41)
IT_ _,II + T, + _ AII+

D= -A, Hm+l.n-l + Bn Hm+l,n Ch Hm+1,n+l (2.42)

where the coefficients are functions of o and known
values of enthalpies from the previous step and/or the
last iteration., For the present the solution for the
pressure defect and the radial velocities is skipped.
At the centerline, consideration of symmetry allows a

relationship to be written among two of the dependent

variables:
I.+ I+ _ I
Bolm+1,0 ~ CoVm+1,1 = Pme1 = Do (2.43)
IT  + I1..+ _ nll
Bo Hm+l,o - G Hm+l,l =Dy (2,44)

Since there is specified wall temperature (and enthalpy)
and no slip (zero axial velocity) at the wall, the equa-

tions are written at the wall are:
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Al ot + B

N-1Ym+1,N-2 * Bn-1U

m+l,N-1 = Pm+1 = Pn-1 (2.45)

IT .+ II

T .+ _
N-1Tm+1,n8-1 = Py 7 Cnoalip+r, (2.46)

N-1fm+1,n-2 T B

-A

where subscript N refers to the node point at the wall,
The coefficient matrices for the enthalpy and velocity

are of the form:

XX000

0XXX0

00XXX _
T0XXX0
00XXX
000XX

which is a matrix of the tri-diagonalized type. Since
many of the elements are zero, inversion could be accom-
plished by means of one of the many available computer
inversions, particularly one which makes use of zero
checks. However, further simplification can be obtained

by assuming that relationships of the form;

+ I+ I

Um+l,n = EnUm+l,n+l * Fan+l * Gn (2.47)
HY = gllgt + ¢il (2.48)

m+l,n ~ n m+l,n+l n
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-+

exist., If such a relationship for Um+l,n-lls sub-

. . + + .
stituted in terms of Um+l,n and Hm+l,n-l is sub-
stituted in terms of H_ in equations (2,45) and

m+l,n
(2,46) respectively, solution may be made explicitly

+ +
for Um+l,n and Hm+l,n .
I I
+
g ——n ut p 1) (2.49)
m+l,n BI_AIEI m+l,n+1 BI_AIEI m+1
n nn-1 n nn-1
I ,I.1
+ Dn+AnGn-l
T 1.1
Bh=AnEnaa
. C%I N DII+AIIGII
H = H w B n n-l (2.50)
m+l,n BII_AIIEII m+l,n+1 pII_pIIpII '
n n n-1 n n n-1

where coefficients on the right hand sides can be di-
rectly associated with the coefficients in equations (2.47)

and (2.48), The following coefficients can be identified;

I ¢} oIl

- IT_. _ " n L
Bn = TSI ,IG0 (2.51) B" = oy Trom 20 )

n n n-1 n n n-1l
I 11,,I1,11
S e . S (2.52) Il _2nthnfn=l ., .
n = gI_ ,II ‘ n = pII_,IIGII )
n n n-1 n n n-1
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I,,I.1

I _ Dn+AnGn-l
B --A"E

n n n-1

where all coefficients in the recursive relationship
corresponding to radial node n can be written in terms of

the coefficients for radial node n-1l and other known quant-
ities, It can be seen that if the values of these coeff-
icients are known at the tube centerline, then all coeff-
icients can be evaluated successively out to the tube wall,
These coefficients are directly available in the momentum

and energy difference equations as written for the tube center-
line in equations 2.43 and 2.44, The following identities

can be made;

Bl = cl/p] (2.56)
Fl = 1/8] (2.57)
Gg = Dg/Bg (2.58)
el = ¢ll/pl1 (2.59)
GgI = cgl/agI (2.60)

Once all the coefficients are known and after applying the
boundary conditions at the wall (i.e. - known U;+1,N and

H+(0W)m+l,N ), the enthalpies and axial velocities can be
evaluated, this time from the wall succesively out to the

tube centerline,
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The differential form of the continuity equation
provides the radial velocities, Worsoe~Schmidt wrote
the difference quotients for this equation so as to
apply to the point m+o n-1/5. A new difference operator

is defined as

8'(¢mln+;_) =B 0~ Prn (2.,61)

In this case, the quotient representation of the partial
differential equation (2.31l) contains only two unknown

. s + + . s
quant1t1es,Vm+1'n_1land Vm+l,n so that an explicit solu-

tion may be made for vt,

Returning to the solution for the pressure defect,
an integration of the continuity equation consistent with
the finite difference scheme was obtained by successive
eliﬁination of the radial velocities in the difference
representation of the continuity equation., This results
ing
4ot N-% +

: N=1
(67U7) = ]§(;)+U+)m'0 +n§]n(ﬁ'U+)m’

m+l,0 o9 m+l,n "~ (2.62)

n

Extraction of a common term Pm+l from the density terms
on the left hand side of (2.,62) and substitution of the

recursive relationships for the axial velocities results
in an equation with P .q as the only unknown. Once this

quantity is determined the solution of the momentum



54,

equation may proceed since §P+ is known from (Pm+l m ) /Ax*

A note should be mentioned concerning the way in
which radial derivatives of the temperature and velocity
profiles were obtained at the wall, These guantities
are necessary for the calculation of the fluid friction
and heat transfer at the wall, Worsoe-Schmidt evaluated
these terms by taking the derivative of a third order
polynomial in r* fitted to the velocities and enthalpies
at the 4 radial node points closest to the wall, 1In

terms of the quantities at these nodes;

gg ye (l8U 1-9U§_2 + 2U§_3) (2.63)
w
gg = Zao+( LI +HIBHY | =OHy ,+2Hy 5)  (2.64)

where subscript N refers to the node point at the wall.,
Subscript m is absent since all variables pertain to the
same axial point. The term U; is absent from 2.63 since
U; = 0., The third order insures that inflection points
can be acommodated.
The order of solution and basic features of the in-
version for equations 2,45 and 2.46 and as described by
Worsoe-Schmidt in reference 100 were used without major

modification. Those requiring a more detailed review

than that presented here should consult that reference,
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CHAPTER 3. FINITE DIFFERENCE SOLUTION

THE GRAETZ BOUNDARY CONDITION

3.1, Basic Considerations

The variation with axial distance and inlet wall
to bulk temperature ratio of the local Nusselt number
Nu,q and friction factor f is sought. In terms of flow

quantities and fluid properties, these are defined by;

fRe o ZI‘OUum = —QTjV_ (3.1)
'm11jpy) U (U rtar+
2 m-m ,‘Lm 'u'm'[U rTdr
Nu, = Rroh  _ -2roq 2q* (3.2)
m k + .
m m{Tw=Tm)  k*(6,— 6,)

where subscript m refers to quantities or properties eval-
uated at the bulk fluid temperature at an axial point,
The non-dimensionalized heat transfer and wall shear stress

are defined in terms of the temperature and velocity pro-

files bys
+
=it 3, e (3.3)
+= _k+60 (30“’)
Gw or+ rt=31

respectively.,
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Values of the power law exponents a,b,c (2.24, 2,25,
2.,26) and % and P, were evaluated from published proper-
ty data for three gases: air, helium and carbon dioxide,
(See Appendix B) The transport properties of helium
follow the power law almost exactly, While air and CO,
are not monatomic gases, the transport properties for
air can still be fairly represented by the power law,
These representations are not very good for COp, but this
type of variation was assumed to hold true anyway so as
to provide a rough idea of the behavior of the gas. This
gas 1s of some interest since its transport properties
vary much more severely than the other two gases., Due
to this approximation, correlation of the wall parameters
for CO2 was not attempted. The properties and exponents
were evaluated from a least squares fit to the tabulated
data. The exponents were chosen so as to minimize the
sum-squared error for all reference (subscript zero)
points chosen in the range of tabulated data. Also, the
properties are weak functions of pressure. The data
was chosen for a pressure of 1 atmosphere which corres-
ponds closely with the conditions run in the experimental
apparatus, although this data should represent the proper-
ties quite accurately up to several atmospheres, The

data for the three gases is summarized in Table 3.1,
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Table 3,1, Transport and Thermodynamic Properties

Gas a b c Prg Y,

Air 0.12 0464 0.71 0.71 1.36
He 0.00 0,69 0.69 0,67 1.67
CO, 0.29 0,74 1.38 0.71 1,21

Straightforward application of the finite difference
program obtained from Worsoe-Schmidt and corresponding to
the description given in reference 100 tyvically resulted
in the behavior of fRe,p as shown in Figure 6, Similar
behavior was obtained for Nu,p. The results are for He
at an inlet wall to bulk temperature ratio of 0,10, The
parametric curves in each plot correspond to different
radial mesh divisions which are indicated on the graphs--
also, the discontinuities in each curve correspond to the
point where the number of mesh nodes was halved, At first
it was suspected that this behavior might be due to a
local instability or error in the profiles due to the mesh
change, but examination of the profiles directly before
and after the change revealed little or no noticeable
difference over what could be considered as normal axial
development, It should be noted from these plots that
the effect of the step change is diminished as the mesh

is refined. Also, the change to a coarser mesh in each
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case yields results that would be obtained if the coarser
mesh had been used entirely. For example, the wall para-
meters after a change from 80 to 40 radial divisions have
the same value as the results obtained for 40 radial divi-
sions throughout., This would seem to indicate an invari-
ance of the solution of the governing equations and points
to a deficiency in the method of evaluating the wall deri-

vatives,

In an effort to correct this, meny types and orders
of curvefits (for example-- splines, Chebyshev polynomials,
Lagrangian polynomials, ratios of rational polynomials,
etc,) were tried in place of the cubic polynomial used by
Worsoe~Schmidt and none were found to significantly im-
prove the behavior., For example, values of Nu,, obtained
from a 5 point spline for varying radial meshes are shown
in Figure 7., The reason for this failure in the cooling
case and not in the heating case can be illustrated by
examination of the expression for the error incurred when
a first derivative is evaluated from taking the derivative
of a Lagrangian polynomial of order n-1, The polynomial
is fitted at n tabular points of an analytical function F,
The true derivative is F'. At a tabular point, we can
write the error as (71);

Py, -y = e 3.5)

=7, art —r.
r; dr r=r,
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where n = number of tabular points
n-1 = order of the polynomial fit
. n-1
[n(r) =i£11(>r— ri?

A#r)= Lagrangian polynomial of order n-1

tabular point

]
H

a value of the independent variable included
in the range spanned by the tabular points

]
1

F = hypothetical closed form solution for the
velocity or enthalpy profile

Although it is impossible to evaluate r' in this case,
maximum values of the higher order derivatives of the
temperature and velocity profiles near the tube wall as
evaluated from difference quotients are summarized in
Table 3.2, These maximum values occur in the region that
would be included by polynomials of the degrees indicated
for 80 radial mesh points and were evaluated from a solu-
tion using 320 radial mesh points for the severest cooling
case ( 6,= 0,10) considered here, Magnitudes of the deri-
vatives for the severest heating case considered in the
Worsoe~Schmidt analysis (qx =20) are included for compari-
son, Since the factor {%— will be the same for both the
heating and cooling cases when the same order polynomial
and mesh sizes are used, the errors will be proportioned
to F'(r')., Polynomials of degree greater than 5 were

not included because of generally poor suitability of

high ordered polynomials for the calculation of derivatives,
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Both results are for helium with My = 0,03, It can be
seen that the higher ordered derivatives in our case are
greater by as much as three orders of magnitude, and are
on the average, one degree of magnitude greater, In
varticular, for the third order polynomial, the applicable
derivative of the velocity profile is 35 times greater

and for the temperature profile more than 250 times great-

er for the cooling case,

Table 3.2, High Ordered Profile Derivatives

Heating and Cooling

n Degree of Fit Velocity Profile Temperature

A (LJ_) Ai(l_)

Ar"\Ug /Jmax Ar"\ Ts Jmax

Cooling Heating Cooling Heating

3 2 0.786x10% 0.332x10°  0.148x106 0.312x10
L 3 0.723x107 0.211x10%  0.277x108 0.110x10'
5 L 0.158x1010 0.133x109  0.588x100 0.237x10'
6 5 0.387x10%2 0.731x10Mt  0.138x1013 0.151x10
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An independent method of evaluating the shear stress
and heat transfer can be obtained if a momentum and enérgy
balance is performed between two axial mesh points, Radial
integration of the momentum and energy equations 2,30 and
2,32 results in the following expressions for the average
heat transfer q; and wall shear stress ﬁfbetween two ad-

jacent axial points;

1
—+ _ 1 NI N T S + + 4+, 4
Qy = ZAx* (j’ UTHpridr g o ( uTHy ),
1
1 2 + +
+ 2(‘}6—1)Mo [(Pm+l-Pm)[(,[U r+dr+)m+l- (\O/U r+dr+)m:U
- (% M Pr [(f ( ) Tart)
+ {/L ( )r+dr+) ] +
+= ___l_.___ + +2 + + f +2 + -+
7 2PrdAx [(Op U dr pU dr )]

1
+ bProAx+(Pm-Pm+l)

The radial integrations were evaluated by means of Simpson's
4
rule with a resultant error of the order (Ar*)-? which is

smaller by a factor (Ar‘+)3 than that of the finite-difference
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scheme, Values of the Nusselt number and fRe,p as
evaluated from these expressions at one axial point are
shown in Figures 8 and 9 respectively as functions of the
maximum number of radial mesh points, Wall parameters
from the curvefit method are included for comparison.

In both cases, variation of the integrated values are
quite small, while the curvefit results are asymptotically
approaching these values, The error between the curve-
fit and the true first derivative will decrease with
decreasing Art by virtue of the function I (r) in equa-
tion 3.7. However, for the plotted values,'a small
difference between the two methods would still be present
even for infinitesmal Ar™ since the integrated parameters
apoly to the point (m —Y% )AX" rather than mAxt. At

most points though, the Valﬁe of Axt was sufficiently small
with respect to xt such that these values could be consider-
ed as point values, The results presented herein were

plotted with this correction at small xt,

Two additional considerations arising from this
analysis should be noted here. The first deals with con-
vergence checks that Worsoe-~Schmidt was able to use, An
independent check of how well the solution is satisfying
conservation of total momentum and energy in the tube can
be obtained by comparison of two sides of the equalities

obtained from the double integration of the momentum and
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energy equationss

Total Momeritum:
1 1 ’
2 [S[D+U+2r+dr+)x+ - Jp+U+2r+dr+)x+=o (3.8)
0 0

x+
=P - ULPr frjdx*
° o

Total Energy:

[ vt
2(fp"u M Hirtar®) = %:q"xdx‘* - 2(¥,-l)M§{ (3.9)

Ot ] A +,2
/S—B%ﬁr*dr*dx* - 2Pr, ﬁf{g—UJr) —
04X % 00 ©°F |

where Worsoe-Schmidt evaluated the ﬁt and q; terms from

the curvefit method. Since this method has been shown to
be unacceptable in our case, the only independent check

remaining is that of the conservation of mass equation;
1 + ’
2/0"11 rfart -1 =0 (3.10)
(0]

The conservation of mass is incorporated into the solution
on a local basis (2.62) so that equation 3,10 represents

a measure of the drift of the solution, It is also likely
that largé errors in 3,10 would reflect large errors in
the overall conservation of axial momentum, In addition,

a good indication of how well the solution is progressing
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can be provided by observing whether the wall parameters
converge to their correct asymptotic values in the down-
stream region and how the solution in the developing re-
gion behaves with varying mesh size and o . These latter
methods were used quite liberally throughout the genera-

tion of results,

Wall parameters obtained from equations 3,6 and 3.7
are shown plotted as a function of x%* in Figures 10 and
11 for air and helium respectively and Figures 12 and 13
for carbon dioxide., The parametric curves correspond to
different inlet wall to bulk temperature ratios which
range from sum 0,90 to O.l.5 The same results for air
are plotted in Figure 14 as a function of the non-di-
mensionalized axial co-ordinate x, based on local rather

than inlet conditions,

No clear advantage of one representation over the
other exists., While the parameters converge to their
asymptotic values more rapidly when plotted against x$,
the effect of wall to bulk temperature ratio is augmented
on Nu,ph. No improvement or degradation of the product

fRe,qn occurs in the entrance since these curves are very

SIt was not possible to evaluate the fully isothermal
Nusselt number since the term 6,—@, becomes zero in the
denominator of equation 3.2. Also, small absolute errors
in the solution for the temperature profile would result
in large errors in 6,4, if 6, were specified as, say
Ol99.
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nearly horizontal-- relative axial displacement does not
affect the vertical spacing. When plotted as a function
of x*, Nu,, shows surprisingly little variation with
respect to the inlet wall to bulk temperature ratio,

For example, the maximum decrease in this quantity re-
sulting from an almost ten fold decrease in the tempera-
ture ratio is on the order of 14% for air and helium and
33% for CO»., The Nusselt number reaches the fully
developed value more rapidly with reduced 6, . A simple
linear variation with inlet wall to bulk temperature
ratio will describe the theoretical Nusselt number be-

havior to within 5%.

+
Nu, = (3.67+ax*Pe %) (1-c(Fo -1)) (3.11)
w

0.0014x%20.35

Nu, = 3.67 xt > 0.35 (3.12)

1}

-0-584 C

i

where for air, A = 0.198 B 0.13

B: "‘2008

1]
n

He A= 0,201 B = -0,584 C = 0,15

The variation of the friction factor is more pronounced
and required a different type of correlation. If the
product fRe,, is plotted as a function of local wall to
mean temperature ratio, Figures 15 for helium and 16 for

air result, The different curves correspond to different
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inlet wall to bulk temperature ratios and were approxi-
mated by straight line segments passing through fRe,m=l6.0
at TW/Tm=1.O. The slopes of these lines were determined
by a least squares criterion for nearly equally spaced Tw/Tm.
These straight line approximations would seem to be fairly
good with the exception of TW/TO=O.10. The significance of
the slope'a of these log-~log plots is defined in the
equations
T \*
fRe,m=16('T—') (3.13)

m

In Figure 17, a for each gas is plotted against TW/To on

log~log paper and a correlation of the form

T o
a = b('_w') (30]-}4’)
l110

is excellent, The values of b and ¢ were also chosen by
a least squares criterion, The final form of the friction

factor correlations are,

for air,
T a 7 Oc25?
—1efiw _ w
fRe 'm—_lé(Tm) a = 0.904(@:) (3-15)
and for heliunm
7 0.251
a = o.957<—"!-) (3.16)
Ty

In the range 0.00lS)(%O.S. These correlations will
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describe the theoretical results within 9% for Ty/To = 0.10
and within 5% for Ty/Ty, > 0.20, The initial curvature
at the beginning of each of the curves in Figure 15 is

probably due to starting errors in the finite difference

solution.

The axial development of the axial velocity non-
dimensionalized with respect to the local mean velocity

and the reduced temperature, T,.p,q, Where

Treq = (T-T,)/(T,~T,) (3.17)

is shown in Figure 18 for air at inlet wall to bulk
temperature ratios of 0.10 and 0.90, Radial velocity V¥
development for the same cases are shown in Figure 19,
The physical reason for the observed behavior of the wall
parameters can be seen from these figures. For example,

the radial derivative of this reduced temperature,

Mpreq O [Ty~ T o6
et - arH\T, T, Tar/ (Tamt) (3.18)

is a term in the expression for Nu,p

k /OrT

2k
Nu'm = <___v_v>§2red (3-19)
m
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Figure 19, Dimensionless radial velocity profiles for

developing flow of air at two wall to inlet
temperature ratios, Graetz boundary condition,
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As the wall to bulk inlet temperature ratio is reduced,
the magnitude of the radial velocity increases in an
outward direction along with a convected energy, The
increasing density of the gas at the wall tends to aug-
ment the heat transfer, while the reduced thermal con-
ductivity at the wall tends to decrease it, The tempera-
ture profiles are seen to remain flatter for a further

axial distance with decreasing 6, along with a corres-
oTred
drt

to offset the decrease in thermal conductivity. On the

ponding increase in the magnitude of which tends
other hand, the slope of the non-dimensionalized velocity
U/U, 1is relatively insensitive to changes in 4§,

The product fRe,, may be written as,

fRe, = é%f?(gﬁzm) (3.20)

where since a(U/wnyar+shows'little change, the con-
trolling factor will be the term wuw/My . For example,
at small x* we have Ty/Tm = Tw/To. On this basis, for

o

w= 0.10, fRe,p should differ by a factor approximately

equal to;

b b

Pw _ (T T 0.69

= =f_wl=x W - . -

T <Tm> (T ) (0.10) 0,21
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from the isothermal product fRe,, for helium., 1In the
actual case, this factor is approximately equal to 0.28
at x* = 0.001 and becomes less than this and closer to
the above value for axial displacements less than this,
However, wall parameters obtained in the region before
this occur only after a few axial steps and should be
treated with a great deal of caution., For all inlet wall
to bulk temperature ratios, a region of increasing static
pressure occurred in the entrance-- the magnitude of the
rise and the extent of the region depended on the magni-
tude of the temperature ratio, Where a step change in
the wall temperature occurs, the axial derivative of the
bulk fluid temperature and the fluid bulk density will

be infinite, The deceleration of the flow in the entrance
will be of sufficient magnitude to overcome the static
pressure drop due to wall friction., This will be dis-
cussed further in Chapter 5. The Mach numbers that were
specified for the results presented (0,05 for helium and
0.03 for air) may be considered as being on the high side
for laminar flow, although the effect of halving these
values was found to have a negligible influence on the

results,
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CHAPTER U

UNIFORM TEMPERATURE AND VELOCITY PROFILE BOUNDARY CONDITIONS

ANALYTICAL SOLUTION

4,1, Background

Typical results obtained from the finite difference
solution when the boundary condition of uniform inlet
velocity and temperature profile is specified are shown
by the dotted line in Figure 20 for helium at an inlet wall
to bulk temperature ratio of 0,95. Mesh sizes and points
where changes occur are indicated., The solution has not
converged to yield the correct asymptotic value of Num
while not enough is known to determine if the friction factor
is correct, Due to the coupling of the momentum to the
energy equation, it is quite likely that error exists, For
the case 6,= 0.95, small absolute errors in the temp=-
erature profile due both to computational truncation in
the computer and +truncation of the terms in the deriv-
ative representations 2,37, 2.38 and 2,39 would result
in large errors in the evaluation of 6,-6, and Num.
However, divergent results in the dowﬁstfeam region for
wall to bulk temperature ratios down to 0.10 were ob-
tained, Absolute errors in the temperature profile
would have to be an order of magnitude greater to affect
the results for 6,= 0.10. This would seem to rule out

computational truncation as being responsible in this
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case, since this error will probably remain of the same
order of magnitude for both temperature ratios since

for the same mesh size, the number of computations will
stay roughly the same, The increased severity of the
cooling will result in larger magnitudes of the higher
order derivatives and increased magnitudes for the error
terms in equations 2,37, 2.38 and 2.39. This could be
the cause of the error, For a case Worsoe-Schmidt ran
with uniform temperature and velocity and constant heat
addition, Nu,p converged to the wrong asymptotic value,
He conjectured that this was due to large errors incurred
in the solution of the energy and momentum equations at
the tube entrance, Several cases run here with different
mesh sizes showed that in general, refinement of the mesh
in the entrance region improved the downstream results,
whereas refinement of the downstream mesh had little or
no effect, Little change was noted from varying o or
use of double precision arithmetic, These would seem to
support Worsoe-Schmidt's conjecture. While improvement
was noted, results were still unacceptable even using 320
radial mesh points and Ax* as small as 1,0x10”2 near the \

entrance (x* < 0.001),

L,2, Choice of Method of Solution

Two methods of resolving this difficulty were con-

sidered; 1.) by improvement and continued use of a



85.

completely finite difference solution or 2,) by use of an
analytical boundary layer solution in the tube entrance,
There are many methods by which the numerical solution
could be improved, For example, the program could have
been rewritten so that it would check its own convergence
and choose its own mesh size to achieve convergence, and/
or a variable radial mesh which would allow a much finer
radial step to be used near the wall where the variables
are undergoing far more variation than in the center
region of the tube, In order to test the suitability of
the completely finite difference scheme, a technique was
used which is often applied in the numerical sclution of
ordinary differential equations (71). As an illustration,

consider an ordinary differential equation of the form;

Qe
g

= F(x,y) Y(x,)=Y, (4.1)

which we are integrating from X, to Xg using a numerical
scheme~- for example, a Runge-Kutta method. If we obtain
values of Y(xe) from use of three different step sizes for
the variable x, we can plot the value of Y(xe) versus step
size Ax (Figure 2la), If our numerical scheme is stable
and consistent with the differential equation, we would
expect that a better estimate of Y(xe) (i.e, closer to the
exact solution of the differential equation) could be
obtained by fitting a curve through these values at Xg

and extrapolating to Ye for zero step size., For a
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extrapolation curve

extrapolated /
Ye

for AX=0

Y(x)

§

L"Axf_“ﬁ A
———————AX,

AXq

Figure 21, a. One dimensional extrapolation of finite
difference solution to zero mesh size,

U(ax,Ay)

U{(0,0)

/U(Ax2 .0)

/U(AXs ,O?

o -

Figure 21, b, Two dimensional extrapolation of finite
difference solution to zero mesh size,
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function of two variables, say U(x,y), the value of
U(xe,ye) for different step sizes in x and y would
define a surface (Figure 21b) and an estimate of the
value U(x,r) corresponding to Ax=0, Ar=0 would be
obtained by extrapolating the surface to a line in the
Ay=0 plane, then extrapolating the line to Ax=0, For

the case considered here, a relation of the form

2 b 2
_ . + J + " +
¢hm-—-¢bnvx;+Am,nAx By nfXT Y S (IAg Ar¥Ts

1+ ~
" +
Bm,nAr T eee ) (4-2)

was assumed to exist.q)m’n is the value of the dependent
variable (temperature or velocity) obtained at the node
m,n by use of step sizes Ax™ and Ar? in the numerical
solution, ¢@mn represents the value that would be ob-

3 3 ] ] " "
tained for zero step sizes and Am,n' Bm,n’ Am,n and Bm,n

are constants which must be determined for each node. In
the actual implementation of this equation to solve for
quﬂ‘ , the series in ax* and Ar” were truncated after
three terms., The constants were determined for all the
radial nodes at the axial point x*=0,001 by running 5
separate solutions to this point for the same boundary
conditions, but with varying ax* and ar*, (the finest mesh
used was Ax+=lo-5 with 320 radial nodes)., This allowed

solution for the values of the radial and axial velocitx

the enthalpy profiles and the pressure defect that
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correspond to a mesh much finer than the smallest
actually used. These refined profiles were reinserted
into the finite difference program and the solution con-
tinued in a normal manner, Double precision arithmetic
and ten iterations at each axial step for the complete
set of equations 2,30, 2.31, 2.32 up to x¥ = 0.20 were
used, The results are shown in Figure 20 for 6,= 0.95.
Similar improvement was found for §6,= 0,10, but in

both cases, complete convergence was not obtained, Differ-
ences between the extrapolated profiles and those from
the finest mesh size used were surprisingly small and

occurred in the second decimal place,

The method of using an analytical boundary solution
was evaluated by applying the Blasius solution for the
growth of a thermal and velocity boundary layer with
zero pressure gradient and constant properties, The velo-
city and temperature fields are assumed to undergo a
normal boundary layer growth at the tube wall., Outside
of this boundary layer lies a potential flow field with
uniform temperature and velocity. After determination
of a similarity parameter for use in the Blasius solution
consistent with the non-dimensionalized form of the
boundary layer equations, the axial velocity in the core,

+

Ue » and the pressure defect, (po-p)/ﬁbUg were evaluated

at any axial point by solving the total momentum and
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continuity equations.

The axial velocity profile development as obtained
from this solution is compared with that of Hornbeck (35)
for the isothermal case in Figure 22, For small x*, the
comparison is very good., The profiles obtained from this
method were patched to the numerical solution at several
axial points, A wide range of axial points was found for
which convergence in the downstream region was signifi-
cantly improved. Results for this method applied at x* =
0.00025 and 6, = 0,95 are shown plotted in Figure 20
along with those from the rational extrapolation method,
On the basis of these results, it was decided to proceed

with an improved analytical boundary layer solution at

the entrance,

The application of the constant property boundary
layer growth for 6,= 0,10 seemed to result in a signifi-
cant overestimate of Nu,pm at the entrance (with respect
to the completely numerical solution) for an extended
distance after a patch to the finite difference solution,
Properties in the boundary layer solution were evaluated
at a film temperature midway between the wall and inlet
bulk temperatures. It should be noted that the wall para-
meter results at the entrance obtained from the finite
difference solution were found to be insensitive to mesh
size, This lends confidence to the finite difference

results as being correct there and indicates that Blasius



-— e o] —— - -

//I'
, — o v— - o — — —
0 / e

U/U,
|
b‘\

- /
gé ———  Hornbeck
0 _q[ - ——-O Constant property n
Qé boundary layer plus Invisci
core

Figure 22, Comparison of axial velocity development
from simplified analysis with that from
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profiles are not suitable for the non-isothermal case,

An analytical boundary layer solution which in-
cludes property variation and pressure gradient is des-

cribed in the next section.

L,3, Similarity Solution-- Compressible Variable Property

Boundary Layver Growth with Pressure Gradient for

Tube Flow

A solution for the thermal and velocity boundary
layer growth at the wall in the entrance of a cylindrical
tube is sought along with a method of coupling this solu-
tion to the internal flow. Similarity methods have been
shown to yield satisfactory results for may situations
even where the requirements for similarity are not satis-
fied exactly (23, 85)., More will be said about these
requirements after the transformation of the boundary

layer equations in terms of the similarity parameter,

At points where the boundary layer thickness is
small with respect to the tube radius, (i.e. 0/b<<1),
the boundary layer behaves as though it were developing
on a flat plate. When an order of magnitude analysis is
applied to the boundary layer equations in cylindrical
co~ordinates, certain terms can be shown to be negligible,
When they are neglected the following non-dimensional

equations obtain;



Momentum;
+ + +
;#(Uf§¥4 + v'§%4) = gi + 2Pr0§§+(ﬂ*gg+) (4.3)
Continuity
(0" + £utsV) = 0 (4.
Energy;
bH
+ +8H — <\ - 6H2
PSR TV oy D S5+ (e 3y S+

+
2| ytdP +QU 42
-C%-l)MO[U dx*‘zpro“‘(ay+) ]

where the non-dimensionalized variables are the same as
in equations 2,30,2,31 and 2,32 with the exception of

_ b,6

= (H = H)/e T, (4.6)
and

yt = 1-r* (4.7)

where y+ represents the distance measured in a positive

92.

sense away from the wall, The transverse velocity maintains

the usual boundary layer convention of being positive in

a direction away from the wall, The transverse velocity is

related to the radial velocity by V = v,

We transform to the following non-dimensionalized
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independent variables after Dewey and Forbes (23):

Kt
— At [s
f—fpep.eUedx (L,8)
0
+
+ Y
n = Ve [ptay* (4.9)
V2¢& 0
where subscript e refers to conditions at the edge of
the boundary layer or in the central core flow, m is

the similarity parameter. We assume that at any point x*;

U+/U: = U/U, =f(n)

+ ..+
Hz/Hz'e - G(n)

where f(m ) and G(m ) are functions of n only. The
differential continuity equation 4.4 can be eliminated

by solving for V in terms of f anda G. After the required
transformations are made (c.f. Appendix I), the following
differential equations are obtained;

Momentum:

" ! " 12
zpr (Af(m)) + fn) £7(n) = g(fm— 2o (4.10)



Energy:

Y +2 , 2
z("G <”’)+ coaftm) = (,-1)¥2 28 (Pepfln) ~2praf’) (H.11)

+

Pr He P

where A= p“/pel"‘e (u’ 12 )
+
B= modified Falkner-Skan parameter =2U %?e (4,13)
e
the boundary conditions to be satisfied are
at M= 0 frm) =0 - G(m) =0

and at 7n=wo, f'(n) =1 G(n) = 1

The equations in this form represent a pair of coupled,
non-linear ordinary differential equations, In addition
they are of the two point boundary value type rather than
an initial value problem, The terms in these equations
which provide coupling to the internal flow are B 1in the

2
momentum equation and Ug and B 1in the energy equation,

It should be noted that an attempt was made to use
the Probstein-Elliott-Levy-Lees Transformation where it

is assumed that
u/ul =fme

and
H' /1] = Gme)

The prime still represents differentidation with respect
to M , The differential equations which result will

contain derivatives in both the 7 and ¢ directions,
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but are treated as differential equations in m only,

The ¢ derivatives are written as axial centered differ-
ence operators in terms of the unknown dependent variables
and their values on.the previous step. This allows a
stronger coupling to conditions outside the boundary
layer, or for example, to an axial variation of the wall
temperature. The problem came with representation of

the profiles at the previous step for evaluation of the
axlal derivatives, The values of the dependent variables
there are known at specified and equal 7 intervals, while
the integration procedure at the new step solves the equa-
tions and requires evaluation of the non m-derivative
terms at intermediate steps which are determined by the
convergence of the equations and are not known before-
hand. At the edge of the boundary layer, all terms in

the differential equations become extremely small,
Evidently, small error or inflections in the interpolation
schemes used were sufficient to give the integration
routine a great deal of difficulty in this region and the
routine often would report non-convergence at large
values of m , When convergence could be obtained, little
difference was seen in the profile from a test solution
where the ¢ dependence in f and ¢ was removed so the

variation terms were removed altogether.,

The assumption that the profiles are similar with
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respect to 7N 1is satisfied exactly if these differential
equations are functions of M only, This requirement

places the following restriction on some of the terms;

)\2)\(77) (th)_;,)
g(f- L= Fi(m) (4.15)
20\ oo f "
(v=1)M<( 2 Legf —2pr Af)  =F

Since the static pressure is assumed constant across

the boundary layer,

b
A =<Ee)(3—) (4.17)
7 AT

e

In the central core, we will have Ty, = T, and using

equation 2,29 we have

T 7 a+l at+1 J/an
T =T= 0: (G(l_ow )+0W ) (u’ll8)
e 0
and
- at1.  a-1/a+
A= (8y +(1-6,, )G) (4,19)

where G=G(7M) is the only dependent variable present
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so that equation 4,14 is satisfied exactly. Clearly,
equations 4,15 and 4,16 cannot be satisfied exactly, but
we note that in the entrance region, it can be shown by
using a constant property boundary layer solution in
conjunction with the total continuity equation, thatp
behaves approximately as VE and is equal to zero at
x*¥ = 0. Since we are applying this solution only for
small x+, B will always be small, The addition of
variable properties is not expected to change these re-
sults significantly. In fact 7or the cooling case, the
increased density at the wall results in a reduced velo-
city boundary layer displacement thickness and corres-~

pondingly, a reduced dUZ/dg and B since the flow to

the core is reduced, Our requirements are then met more
closely in the cooling than in the heating case, At
small x¥, expression 4,15 should be approximately equal
to zero., For laminar flow, the Mach numbers considered
are in the range 0.0l to 0,05 so that the multiplication
factor Mg is very small (0,0001 to 0,0025), Also, the
magnitude of U:Z/HZ does not differ significantly
from 1 in the region under consideration, It is important
to note that for some types of equations, the inclusion
of a small term can change the solution entirely, for
example, if the terms govern the order of the equation,
This is not the case here, It would be extremely diffi-

cult to give a definitive answer as to the error that is
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incurred by the assumption that at least local similarity
is satisfied, However, in an analysis of the incompress-
ible momentum equation with an external pressure gradient,
Dewey and Gross (23) by using an approach based on the
work of Mecksyn were abie to show that the derivative of
the velocity at the wall f&» from a solution assuming
local similarity can be written in terms of the exact
solution of the equation tgo) by,

f"(0)=f;'(o)[1 —0053€ +0(€?) +. ... ] (#.20)
where prime again denotes differentiation with respect

to m. The small parameter € 1is defined by

d 2¢ dud (4,21)

€(B)=2£{ =5 dB §d§ u+df

dé

which measures the departure of the solutions from com-
plete similarity., Expanding € and noting that dUg/d§?7%=
in the tube entrance, we obtain

2yt
6(/3)~2(B—B"+§+g§28 =0 at £€=0 (4,22)

This means that relaxation effects due to increasing or
decreasing B8 will be zero at the entrance and can be ex-
pected to remain small for small x*, This adds further

confidence to the use of this method for the present
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problem,

L. 4, Inteegration Procedure

The program for the integration of equations 4,10
and 4,11 was written so that an available algorithm for
the integration of ordinmary differential equations of the
initial value type could be used (15), Reduction of these
equations to initial value problems and the coupling to
the internal flow is described in this section, It is
assumed initially that the correct U: and B8 are known
at the axial point where the boundary layer profiles
are bheing determined, For the solution at the first

point, xt = 0 (€= 0), the exact values are known to be;

8=0 vt =1 (4.23)

The integration is started by specifying the known values
f*(o) = 0, G(0) = 0, guessing initial values of f"(0) and
G*'(0) and integrating the equations to a relatively large
value of the independent variable 7, where the boundary
layer growth is considered to be essentially complete, For
the Blasius solution and for the varlable property cases,
the solutions were within 0,01% of fully developed for
n="7.0. At N= 7, a check was made on the guantities
f*(m,)~1 and G(m,)-1. If these were both less than 0.0001
in absolute magnitude, then the values of f"(0) and G'(0)
were considered as the correct values for the specified

U;and B and solution could be transferred to
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determination of new values of B8 and U; (Figure 23),

If not, each of the initial guesses f"(0) and G*'(0)

were perturbed-- the magnitude of the perturbation de-
pendent on how many previous times solution had been
attempted for g8 and U; at this axial point. For example,
on the first solution, initial guesses for f“(0) and
G'(0) are made from the Blasius solution. On the next
guess, f'(0) is perturbed by an abselute amount 0,01,

and on the third guess, G'(0) and f'(0) are both per-
turbed by 0.01 from their initial values., We can solve

for the terms in the matrix

oG(e) 3G(e) AG(e). AG()
of (0)  3G'(0) N Af'(0) AG'(0)
| ~ (4,24)
ofte)  of ) | Af) Aftne)
3f'to) dG0) Af"(0) AG/0)

and, on a linear basis, can solve for the Af"(0) and
AG'(0) which will make the dependent variables assume

their correct free stream magnitudes., In matrix form,

9G(Me)  dc(m.)| | AfT0) 1.0-G(n, )
o) dG(o)

, / (4.25)
fme)  ofm. )| |ac' (o) 10-f'm, )
ft o) dG(o)
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The pair of initial values G'(0) and f"(0) from the last
trio of initial values which provided the best free
stream values for G and are designated the base solu-
tions onto which f"(0) and G*'(0) will be added in
order to form the next coefficient matrix, A flow chart

of this procedure is shown in Figure 24,

After the correct boundary values have been chosen
and the profiles obtained for a given g and U:, control
is returned to the part of the program which will calculate
a new 8 and U; corresponding to these profiles (Figure 24),
The new value of U; and static pressure must be deter-

mined by applying total conservation of momentum;

1 1
2[ gutrtart - (/,o*u*zr*dr*)xﬁo] -p
0 0 (4.26)

xt

+3F =
+4Pr (J;w dx =0
0

and conservation of mass (2,34). We denote y; as that

value of displacement corresponding to , or;

+=@_@_ =V2§p
ST 7 A

1
o+ 1 a+l
=&NU_1§ [(1-6, )G+8, ] dy (4,27)
e
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evaluate G(n), f(7)
for first step (3=0)
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evaluate B,Ug, P/PR,
from integrated

momentum and
continuity equations

J—
-

no

less than specified amount

-
-

solve differential
energy and momentum
equations for

f(n), G(7n)

!

evaluate [3,U},P/Pq

these values
of B,Ug, P/P, differ by

from values at last
iteration ?

print (or punch) [3,Ud, P/P,

A
no
yes is fhm -
last step ?
Figure 24,

G(n), fin),fn), n,ytxt

Flow diagram for coupling of boundary layer

development to internal tube flow,
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In the radial integrations, the following values of the

dependent variables were used;

r =0 to r’=1 Ve U Ue
+ + + +g’ a1 ]/C'+]
rt=l-y* to r*=1 ut=u_f 6= [(1-4,) Flo+62t]
The wall shear stress is given by
++ +2f//
IR, UL T(o)
o IwZe 1O (4.28)

w = ,——2§

The following equations are obtained from 2,34 and 4,26;

Total continuitys

(%OU;)Q - (207) (et ﬁﬁ"']*‘])
+2§[<ﬁdn) ﬁ e(n)dndnJ =0 (4.29)

Total momentum;
2

e
P 2 + 2 2
R - (&)« (ififs( oy 1,0
0 (4.30)
Te \2 778 Yl I
+70M%[2§{< ﬁdn) —2[f’ G(Q)dﬂdn‘
0 0

£

+
rap, WP [Ue gr) de| =
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Once the correct wall parameters were determined at a
given axial step, an additional integration of the equa-~
tions 4,10 and 4,11 was performed with evaluation of the.
dependent variables at equal 7n intervals, This was so
that all radial integrations could be carried out by
Simpson's rule, The analytical solution was applied in

a stepwise manner at equally spaced intervals A,

Once a solution was complete at an axial point, the
independent axial variable was incremented by A¢ and
the values of the profile dependent terms in equations
4,29 and 4.30 were approximated on this first solution

at €E+A¢ by their values from the previous axial point,.
This allowed for an initial estimate of B and q: and
control would be returned to the integration p?ocedure.
On proceeding iterations, new values for these terms
would be used., The last integral in the equation was

lihearized by applying a modified midpoint rule,

& £-A¢
U foode =[ U. ¢
[\/53- o\/—f?—fm)df
(4.31)
foo), + fol \(uf| ut
+< |_§§ ¢ N leac §)<\/2§ —\/?(ZIQ)

2
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We note that the continuity equation is a quadratic

in the product of unknowns .%.U: for which solution

o}
may be made directly. The momentum equation is a quadra-
tic both in p/po and p/pouz, and solution for the former
unknown may be made directly after determination of

p/bOU: « The unknown U; can then be determined.

The parameter B (4,13) was evaluated at each

axial point by use of local ¢ and U: and using

+ + +
Ve = Uelé “Vole s (4.32)
dg ~

for the derivative term, Solution could have been made
for this quantity directly at ¢ by taking the ¢é—
derivatives of equations 4,29 and 4,30 and solving the
non-linear simultaneous equations in dUZ/Hf and d(p/po)/ﬂg
which result, but it is questionable whether this
approach would be worth the effort, In the entrance re-
gion, the higher order derivatives will be rapidly de-
creasing in magnitude with axial distance. Consider the
evaluation of the first axial derivative by use of this
difference quotient (2.37). The coefficients of the
higher order derivatives in the error term are monotoni-
cally increasing with o for 0>1/2, At the same time,

the decrease in the magnitude of the derivatives with
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increasing o (increasing x¥) will partially offset this
so that the minimum error will occur at a point in-
between 0n+%T)AX+ and (m%ﬂ)Ai+. After several axial
steps, the relative difference in (m+og)ax® and (m+l)ax™*
will be negligible, Also, 4,32 is consistent with the

way axial derivatives were evaluated in the finite differ-

ence solution,

Convergence on the two iteration levels was consider-
ed complete at an axial point when successive values of
the parameter B differed by less than 0.1% and successive
values of U; and p/po differed by less than 0.00005 in
absolute magnitude., The program was coded in Fortran IV
and run on the RCA Spectra 70 computer at the college,
Integration of equations 4,10 and 4,11 took about 8 se-
conds and, on the average, 4 such solutions were needed
for convergence of G'(0) and f"(0). Approximately 3 or
L of these converged solutions were needed to complete
iteration for B, U; and p/pO so that a total of about
1.5 minutes was needed for each axial step. The axial
increment used for all patching solutions was A¢ = 5xlo'5.
No change in the free stream value of U: was found for
the axial step. Also, changing the value of 7, from 7
to 14 resulted in a change in absolute value of UZ of

less than lO"5 at the same axial displacement,

Comparison of the boundary layer profiles generated
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from this solution was made, when possible, with pub-
lished boundary layer data. For the constant property
case with zero nressure gradient, agreement was found to
be perfect within the 5 decimal place accuracy for the
enthalpy and velocity profiles of the Blasius solution
presented in Schlichting(75). Also, no difference was
found between present results for Pr = 1, Ty/Tg = 0.20

and the results of Reshotko and Cohen (72) for fB= 0,

The joining of this analytical solution to the
finite difference solution was made in a two step patch
at &= 0.,00025 and €= 0,00030, These particular
points were chosen because previously the best downstream
behavior was obtained when the Blasius solution was
patched to the finite difference solution in this region,
At &= 0.00025, complete radial and axial velocity and
enthalpy profiles along with p/bo generated by the
similarity solution were inserted as initial values into

the Worsoe-Schmidt program,

It can be shown that the function f is related to
the Cartesian stream function ¢ by
y=2¢£f (4.33)
and the radial velocity in terms of the stream function

is,
+
= 2L 9Y 0 Ay r—ui___lzgge vt
VoE TExr T kel 2§|:2§ U:df O (4.34)
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This was the expression used to evaluate the transverse
velocity in the boundary layer, Outside of the boundary
layer, the radial velocity is obtained from integration
of the continuity equation from the centerline out to a

radius r+:

4
,
vt - p1—+r+or+%(+<p+u+)dr+ (4.35)

Since in the core flow, ;{U: = F(x") only,'§§+(ﬁgUZ) is

+

a function of x" only in the region from r*t=0 to l-y;

where y; denotes the edge of the velocity boundary layer;

PO (2 uY) (4,36
Po

The radial velocity is seen to be a linear function of the
radius. The axial derivative was evaluated by the diff-
erence quotient 4.32, Once the profiles were patched, the
finite difference program was allowed to generate all profiles
for the next axial step. However, at this step the axial
velocities and enthalpies were re-entered from the analytical
entrance solution to begin the solution at the following

step., Radial velocities from the finite difference solution
were retained., This was done in order to help smooth the

patch., The solution for all proceeding steps continued
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in a normal manner, The effect of the pateh on the
velocity boundary layer development can be seen in Figure
22 where the velocity boundary layer as developed by the
finite difference solution after a typical patch is

shown compared with the solution from further independent
development of the similarity solution. The difference
is quite small and it would seem to indicate that the

two solutions are at least compatable., A listing of the
computer program used for the entrance region solution

is given in Appendix F,

4,5, Results

The largest descrepancy between the present entrance
solution and the finite difference solution can be seen
in the wvariation of the static pressure with axial dis-
tance, In Figure 26, the non-dimensionalized pressure
defect is shown for He at 6,= 0.1 from the similar
boundary layer growth and for two finite difference solu-
tions-- one being the results from the rational extrapola-
tion procedure noted earlier, The most obvious difference
is in the difference in signs of the static pressure drop.
The present analytical solution predicts a pressure rise
in the entrance due to deceleration from the severe cooling,
However, note that if the finite difference solutions
are visually extrapolated to x* = 0, a non zero pressure

defect is the result, This is not physically possible,
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It should be noted that refinement of the mesh was found
to reduce this pressure defect and displace it closer to
the results from the similarity solution., The finite
difference program normally begins the iterations at

the second step by using a pressure defect calculated on
the basis of a constant property boundary layer growth,
This implies a static pressure drop for all cases,
Changing the magnitude and sign of this initial guess

was found to make no difference in the final pressure
defect obtained after several iterations at the first
steps It should be noted that the shape of the curves
from both solutions are the same, Very little difference
was found in the wall parameters Nu,, and fRe,p near the
entrance for all solutions. The closest agreement was
obtained from the rational extrapolation procedure,

This would also lend confidence to the present results,
Perhaps it is not without merit to reiterate that all we
are actually doing is providing a better solution to the
set of equations 2,30 - 2,32, The question is still open
as to the applicability of these equations in the en-

trance region,

Downstream convergence was improved considerably by
this method, although absolute convergence (i.e., stability
of the wall parameters to infinite x+) was not obtained,
In all cases, the asymptotic Nusselt number was attained

first and stayed at this value until the friction factor
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differed by only a few percent from its fully developed
value, Downstream results from this method are compared
with those from the finite difference method in Figure 27
for He at TW/T0 = 0,50, Roughly the same mesh sizes
were used in the patching solution and in the completely
finite difference solution., The same magnitude of devia-
tion indicated by the horizontal line is developed in
the solution with the analytical boundary layer growth
at an axial point which is more than twice as far down-
stream than the completely numerical method. Comparison
of the axial variation of 6,6, and q) for the two
showed that the error in Nu,; is about equally divided
between these two quantities and is not due solely to
the error in either quantity. For example, if a large
error in the local heat flux is responsible, then the
problem could be indentified as a local one, Since we
can reasonably expect that Nu,p, will remain constant
once it has reached the fully developed value, continua-
tion of the solution might be made by specifying as a
boundary condition that Nu,, = 3,67 and evaluating a
heat flux on this basis, An error in the wall to bulk
temperature ratio represents an accumulation of small
errors whose presence and origin are hard to detect and
correct,

Wall parameters for the flow of helium and air are

+

shown plotted versus x° in Figures 28 and 29 respectively,
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The Nusselt number is almost completely insensitive to
the temperature ratio. This is not completely surprising
since the flow in the entrance of the tube is of a
boundary layer character and results from variable property
external boundary layer solutions for gases (72,23) have
shown little change with severe cooling. Here, for
helium Nu,, actually exhibits a slight increase with
increased cooling. The variation of the product fRe,,
with 6, is large in comparison with that of Nu,p, but
still rather small in an absolute sense, For example,

a tenfold decrease in the inlet wall to bulk temperature
ratio results in less than a 50% decrease in fReypme The
friction factor variation is nearly identical for the

two gases, The extremely slow convergence of this para-
meter for the case of 6,= 0.1 should be noted, For
example, for both gases, fRe,, still differs from its
fully developed value by 25% at x* = 0,85, To translate
this to physical terms, consider the flow of He at Rey =
1000, Then xT = 0.85 corresponds to an axial displacement
of more than 300 diameters. For the Graetz condition and
this same temperature ratio, this magnitude of deviation
from the isothermal fRe,, corresponds to approximately
half this displacement, Data for the isothermal case

for Nu,p and Pry,= 0,70 is also plotted from references
L3, 57 and 93 in Figure 30, Present results fall midway

between the results of Manohar and Ulrichson and Schmitz.



119,

*SUOT3BITESSAUT

J9Ul0 woJdJ jUswdoTaAdp Jaqunu 3TeSsSnN TBWISYLIO0S] JO UOSTIBAWO) °*(Qf 9anFT4
X
Ol 2.0l ¢ OLXT
_ _ _ Ferrr T _ _ rrrrrr I A
ipyounyy | S

(0£°0

juswdojaraqg

=id O} paidaiio))

S60=CL/M| ‘o :si|nsay juasalg
Zjlwyd§ pun uosyduin
sAD)] JO sjnsay

0£0=4d uoljipuo) Aippunog ALN
laquinpN §9ssSNN |pwuayjos] jo uosiipdwor

S0 I Y | |

ol

N



120,

In Figure 31, the centerline axial velocity development
from this solution is compared with that from Hornbeck (35).
Since, for reasons given previously, it was not possible
to run the fully isothermal case here, the case of Qw= 0,95

was used for comparison, Agreement here is excellent,

Representative axial velocity and temperature pro-
files are shown in Figure 32 for 6, = 0,10 and 0.50 and
radial velcity profiles in Figure 33 for 6, = 0.10 and
0,95 and the flow of helium, With the exception of
helium, where for the case shown of 6,= 0,10 an outward
radial velocity existed for a short distance from the
entrance, the displacement of gas in the velocity boundary
layer is responsible for an inward radial velocity. For
gas cooling, an outward radial velocity would bring gas
at a higher temperature from the core towards the wall,
The result is a flatter temperature profile and an in-
creased magnitude of temperature gradient and heat trans-
fer at the wall., In an incompressible UTV case, the
inward radial velocity profile reverses this effect, and
in a sense, effectively 'insulates' the wall., When
compressibility and cooling are introduced, the magnitude
of this inward velocity is reduced. Qualitatively, the
heat transfer is augmented for the reasons previously
stated and the net effect is to partially offset the

decrease in the thermal conductivity ratio at the wall,
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Figure 33.
Dimensionless radial velocity profiles for developing
flow of helium at two inlet temperature ratios.

UTV boundary condition, M, = 0.03
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kw//km (3.21), This is probably the primary reason

for the insensitivity of Nu,, to temverature ratio,

Near the center of the tube, the axial velocity
profiles show the most variation with wall to bulk
temperature ratio (Figure 31), As is the case with the
temperature profile, cooling flattens the profile. It
is difficult to argue through the reasons why this be-
havior i1s present since there are many possibly can-
celling effects., For example, as cooling is increased
the static pressure drop along the tube is increased,
The density near the wall is increased which in the
absence of a radial velocity tends to decrease the axial
velocity and its gradient at the wall, The magnitude
of the outward radial velocity component and the vis-
cosity ratio at the wall Mw/um are also all decreased,

* = 0,490 the velocity pro-

For the examples shown, at x
files have essentially reached the fully developed state,
while the product fRe,p, still differs from its fully
developed value by more than 50%-~ this difference must
be attributable to the factor Mw/ﬁm again. If the
velocity profile development is plotted as a function of
xm+ instead of x° (Figure 34), the fully developed state
is reached more quickly. Also the distortion of the

+

m is reduced when presented on this basis,

profiles with x
Using xm+ for the representation of fRe,, and Nu,qn is

questionable, Even though convergence of these quantities
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Figure 34, Reduced axial velocity development with X;
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is also quicker. The displacement of the curves with
respect to each other at points intermediate between

the entrance and fully developed regime would be increased,
Also, the excellent correlation of Nu,, with x* for all

TW/TO should not be sacrificed.

For Nu,m, 2 single correlation for all inlet wall

to bulk temperature ratios is recommended (maximum error
3%)
Nuym = 3467 + 0,2b6x*+70+592,-20.6x7 (4.37)
0.001<x%<0,50 |
NUu,q,q = 3.67 (4.38)
x>0,50
for both helium and air. For the local friction factor,

the following correlation is proposed;

1 - (fRe,)/(fRe) =[}.oé?(l-@w)x+‘0-57ﬂe13x+ (4.39)

x*t>0,002

where

. h.bo
B=Z700£675 ( )
The coefficients were determined from a least squares
multiple regression analysis. The quantity(fReh repre-
sents the isothermal quantity whose variation with axial
distance is well represented by,

+ s
(fRe)| = 16.,0+0,69lx+=0+576 =22.9x (b.iv1)
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for both gases in the range xt > 0,001l. An attempt was
made to isolate the effect temperature ratio has on the
friction factor by plotting the ratio (fRe!m)/(fRe)I at
the same axial (x1) points as a function of local wall
to mean temperature ratio, This is shown in Figure 35
for ailr and shows that for developing flow, correlation

is not possible on this basis,

4,6, Dissipation Function

The form of the dissipation function used in the

Worsoe-Schmidt analysis was,

ot p.“'(aU ) (b,42)
ort

However, in the assumed core flow for the UTV boundary
condition 5U+/br+ was assumed to be zero for the
similarity inlet solution and in the finite difference
solution, this term was found to be extremely small in
in the core. Since for an acceleration or decederation
of the mass flow in the core, the continulty equation
predicts a non-zero radial velocity in the core even
when dU'/dr*= 0., a re-examination of the complete
dissipation function showed that for the UTV boundary

condition the form

e 1) >+ 2 ‘(V+2+(Q\_/_+2 2<av v
drt (ReoPro)ZQ'?a' drt) 73 ar++'+ (bo.43)
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should be used, For the isothermal UTV condition, the
term dV'/3r+ can be shown to be larger by a factor ro/s
than the term 8U+/8x+ at the entrance, Examination
of these terms from the numerical solution showed that
the axiél derivative coﬁld still be neglected when
property variations were present, At the tube centerline
(r* = 0) application of L'Hospital's rule and symmetry
yields:

& +

3(Re Pr_)“\3r+ (L by

This dissipation function is operating over a fairly

long axial distance in the core and the integrated

effect on the temvperature profile and the wall parameters
may be non-negligible. An interesting point in the
inclusion of the factor ReyPr, which requires the speci-
fication of the Reynolds number when the additional terms
are included, Generally, Reynolds number dependence is

a characteristic of non-boundary layer flow., For example,
inclusion of axial second derivatives also requires speci-
fication of Regs, The initial value nature of the problem
is not changed by the inclusion of these terms, The
variation of Nu,y for helium at 6, = 0.90 is shown in
Figure 36 for several inlet Reynolds numbers. For Reg >

100, the change in Nu,p is negligible, While Reynolds



131,
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FIGURE 36. EFFECT OF ADDITIONAL TERMS

IN DISSIPATION
FUNCTION @ ON HEAT TRANSFER.
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numbers lower than this are not of any practical im-
portance, solutions are presented for Reynolds numbers
less than this for the sake of completeness., For Reynolds
numbers of this magnitude, the second order axial terms
would probably be of such magnitude as to make these
results of academic interest only, The eifect will be
reduced for lower wall to bulk temperature ratios due to
1.) the decrease in the magnitude of the radial velocity
component and 2,) the increasing magnitude of boundary
layer terms relative to these terms, o that it was not
necessary to test further cases, It is interesting to
note that the effect of the new dissipation function is
felt immediately in the entrance. This indicates that

the increased magnitude of Nu,pn is probably due to the
dissipation in the boundary layer at or near the wall
rather than in the core, Local viscous energy generation
at the wall would raise the gas temperature near the wall,
Perhaps it would be more applicable to define a convective
heat transfer coefficient using a wall to local film
temperature difference, Such a film temperature could

be defined, for example, by using the bulk temperature

in the thermal boundary layer rather than across the

whole tube. The effective "film" to wall temperature
difference is increased by a greater factor than the

ordinary wall to bulk temperature difference,
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CHAPTER 5. EXPERIMENTAL INVESTIGATION

5,1, Introduction

In this chapter the procedure and apparatus used
to obtain experimental data for gas cooling with the
sets of boundary conditions examined in the theoretical

portion of the investigation is described,

5,2, Experimental Apparatus

The apparatus was designed to measure the local
heat transfer and static pressure at several axial points
along a constant temperature cylindrical tube for cooling
of a gas with severe transverse temperature gradients,
The flow diagram is shown in Figure 37, Air supplied
from a reciprocating air compressor flows into supply
plenum, through a filter, scrubber and regulator and
into a settling tank. The flow than passes through a
resistively heated inconel tube into a mixing plenum
where its temperature and pressure are measured before
passing into a development section mounted directly
before the test section. The gas temperature is measured
in a mixing plenum mounted directly after the cooling
section, It then passes through a constant temperature
bath after which its temperature is measured, Finally
the flow is metered by a laminar flow meter and vented

to atmosphere,
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A, Ailr Supply

A Worthington two stage air compressor was connected
into the supply line. The gas was initially dried in a
water jacketed condensor after the high pressure cylindéf
in the compressor. The compressor ran continuously
during each test. Primary regulation of the supply plenum
pressure was accomplished by varying the bleed flow from
the supply plenum, This method provided an extremely
steady flow. The pressure was maintained in the plenum

at approximately 90 psig.,.

A King Model 2260-1 filter fitted with a King Model
9326 polisher cartridge was mounted in line directly be-~
fore a Denver-Harris model 1-03~C two stage pressure

regulator,

B. Preheater

The preheater consisted of a 1/8"D x 0.020" wall x 5°
inconel tube mounted in a steel cylinder loosely packed
with MgO powder and externally insulated with magnesite
sheath (Figure 38), Power is supplied from a Transtat
catalog no, 29145 single phase voltage regulator through
specially fabricated taps mounted at opposite ends of the
inconel tube, The preheater was electrically insulated
from the test section by a special flange fabricated from
316 S,S. and a Cermacast pottable ceramic, The power

input to the tube was measured with a Weston voltmeter-



136,

ammeter combination. Maximum exit gas temperatures

obtained were on the order of 1800 F,

C., Development Section

Two flow development sections were used, The first
provided a fully developed velocity and uniform tempera-
ture profile to the test section and is shown in a photo-
graph in Figure 39 and schematic in Figure 40, The en-
tering gas temperature was measured by a chromel-alumel
thermocouple mounted downstream of a pair of mixing
baffles. The thermocouple was fitted with a cylindrical
stainless steel radiation shield so that it effectively
"saw" only the center portion of these baffles and the
development tube centered in the downstream region. The
flow divided into a portion which flowed through an iso-
lated central tube leading into the cooling section and
a portion which flowed in an annulus surrounding this
tube., This flow was vented to the atmosphere through a
needle valve, The annular flow served as insulation to
assure that the flow development was adiabatic, The
length to diameter ratio of the =section was well over 100.
For the second development section, the annular section
was removed from the plenum, A bellmouth entrance was
used to provide nearly uniform velocity and temperature
profiles to the test section. The inlet Dbulk temperature

of the gas was measureed by bleeding air from the supply
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Figure 39. Photograph of adiabatic development
section
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plenum around a long stem 1/16 inch diameter chromel
alumel thermocouple (Figure 40). Pressure in the plenum
was measured by a Meriam 40 inch air-over-mercury mano-
meter, Magnesite sheath of approximately 1-1/2 inch
thickness was bonded to both development sections with

a refractory cement, Several inches of exterior fiber-
#lass insulation was added. All tube and thermocouple

fittings used were Gyrolok 316 stainless.

D. Exit Mixing Section

A schematic of this apparatus and a photograph
showing tne section mounted in its insulating case are
shown in Figure 41, After passing through the test
section, the zas flows through a short length of tube
in which several mixing baffles are mounted and over a
long stem, small diameter Cu-Con thermocouple proue
This air then flows back in an annulus around the tube
to serve as an insulator and then passes over the rear
of the thermocouple stem so the conduction losses are
reduced. This mixing vortion was mounted in a box filled
with several inches of MgO powder and vermiculite in-
sulation., The entire apparatus was then covered with

fiberglass insulation.

E. Metering

Prior to metering, the gas passes through several

turns of 1/ inch D copper tubing immersed in a room



140.

Cou nterflow _—"

Chamber

Vermiculite

S Photograph: Mixing Section
©
@
- /vermiculite
2 ,// 1/’/1/ I/II////// /////,//////////,//////// p
é V /// 4// // 5"x5"x6" xo/oéast rectangular contalnerz
\\ \\\\\MO </, |'Dx3.125 oxoossf,,,/
\MOO \\ \\ &\\\\ ? ANKY /}" 8.8. tube , ///’
//l:/ //,/:/, //,
AW mixing baffles ////////////é/ @5 IE\L"'I‘
— = . .
] il = %M
A, /'mzs""uo L CuCon 7
M ‘ thermocouple
\\L\\?\Q\\_\‘i\ AN\ Mgo ////////,///////// //
. I/l/,/l/'l// / /

/'/ /:/ /.1.5' a}575t ;:,0065 t/
1) ﬁ T T s | //m,

vermlculne

Figure 41, Schematic and photograph of exit mixing plenum



141,

temperature water bath, This insures that the temperature
correction term for the flowmeter will be small, The flow
rate is measured with a Meriam model 50 MW 20-1 factory
calibrated laminar flow element which provides a linear
differential pressure output with air flow rates up to

8 S.C.F.M, The output pressure is measured by a Teltrue
type A micromanometer with a resolution as low as 0,001
inch H,0., Gas temperature at the flowmeter was measured
by a long stem Cu-Con thermocouple mounted so that the
junction was inside the flowmeter and the gas flow was

along the stem,

F, Flow Control

The flow through the test section is controlled by
three needle valves, One is mounted in line between the
test section and flowmeter, one is upstream of the pre-
heater and one is mounted on the bleed line from the
develoovment section. The bleed flow rate was maintained
at a much larger value than the flow through the test
section, This was done so that changes in this latter
flow rate through the test section made by adjusting the
downstream valve would make only small relative changes
in the total flow rate through the preheater, Since the
power input to the preheater was not normally changed
during a test series for a fixed inlet temperature, this

procedure assured a fairly steady output temperature,
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G, Test Section

The test section is a 1" 0,D. x 0,294" I,D, 304
stainless steel tube, Pressure taps made from 1/16 D x
0.006 inch wall stainless tubes are brazed into the tube
at 7 axial points., Actual entry into the inner tube is
made by 0.040 inch diameter holes in the tube wall., Six
heat flux calorimeters are clamped to the tube at 6 axial
points where grooves are turned into the section, Axial
locations of the pressure taps and calorimeters are

given in Table 5,1,

Table 5,1, Test Section Dimensions

A. Axial location of pressure taps (in.)
1.250 6,550 16,150 25,749 35,349 44,949 50,248
(0,981 in., additional with bellmouth)

B. Axial location of calorimeters (to center of each)

1.730 11.330 20.930 30.529 40,129 49,728

The calorimeters consist of 304 S.,S. semi-circle sections
0.380 inch I.D, x 1,000 inch 0.D, x 0,500 inch width
fabricated from the same tube stock as the test section,
Thermocouple holes 0,030 inch D x 0.250 inch deep are
drilled into each section at radii of 0.250 inch and 0,437

inch, Teflon insulated 36 gage Cu-Con thermocouples
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made from thermocouple wire supplied by Thermo Electric
Company are mounted in the holes which are packed with

a high conductivity GE silicone grease, The thermocouples
are mounted in matched pairs formed by cutting the wire

and welding leads directly on either side of the cut,

This insures that each pair of thermocouples will have
leads of essentially the same composition since thermo-
couple wire may vary even from the same spool, The thermo-

couples are soldered with a 60-30 resin solder,

A 1/16 inch thick balsa facing is bonded with epoxy
to the face of each calorimeter (see photograph, Figure 43),
The thermocouple leads are epoxied into grooves cut into
this facing such that thermocouple conduction error is
reduced and the leads are protected from abrasion, The
calorimeters are pressed against the test section by
means of simple clamps fabricated from 1/8 inch t 304 S,S,
sheet stock., Contact resistance between the calorimeters
and the test section was reduced by liberal application
of silicone grease to all contact surfaces prior to

mounting.

The test section is immersed in a bath of H,0 which
is maintained at a pool boiling condition by approximately

12 immersion heaters.6 The test section plus constant

6

Inital attempts at using liquid No as the boiling medium
were unsuccessful due to the difficulty of maintaining a
good thermal bond of the calorimeters to the test section
at extremely low temperature,
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temperature bath is mounted in a large rectangular
vermiculite filled box, Maximum values of the ratio
Gr/Re? obtained in the test section were on the order
of 2.5 x 10=3 so that free convection effects are ex-
pected to be negligible (50,63). Gr is the Grashof
number calculated on the basis of maximum wall to gas
temperature difference, tube diameter and using gas
properties evaluated at temperatures midway between wall

and maximum gas temperature.

Provision was made for measurement of the static
pressure drop between any palr of pressure taps by means
of a pair of pressure switching banks., Pressure drops

were measured by a Teltrue type A. micromanometer,

The thermocouple outputs are measured on a recently
calibrated Leeds and Northrup type K3 potentiometer and
type 9834 null detector, External reference junctions
for the thermocouples were placed in an ice bath., Ab-
solute rather than differentail EMFs from the calorimeter
thermocouples are measured because most of the measuring

junctions were grounded to the test section,

Where possible, electrostatic shielding is applied
to thermocouple leads., External thermocouple leads are
glass on teflon insulated, Leakage currents are mini-
mized through extension of the internal guard circuit

of the potentiometer to its nower supply and standard
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cell, These are mounted on a capacitor formed from
sheets of polymethyl methacrylate and aluminum, This
was necessary due to the high humidity in the laboratory
from the boiling off of the H»0 in the test section bath,
Ground loops are eliminated by use of a 0.0l microfarad
mica capacitor inserted between the potentiometer and

earth ground.,

5.3, Calibration

A series of calibrations performed on portions of

the apparatus are described in this section,

A, Calibration of the Heat Flux Calorimeters

An analysis of the possible error in using a one
dimensional heat conduction equation to evaluate calori-
meter conductances is presented in Appendix C, This re-
sult necessitates a calibration of the calorimeters., The
calibration was performed on the calorimeters after
mounting on the test section by applying a known heat
flux to the inside wall of the test section and measuring
the corresponding AT across the calorimeters, The in-
side wall of the test section was coated with several
layers of a flat black refractory enamel in order that
the absorptivity of the wall would be uniform, A 1/8
in, D thin walled stainless steel tube whose surface
was uniformly roughened on a lathe with a #500 grit

emery cloth was mounted along the centerline of the test
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section. Figure 44 is a photograph of the calibration
setup. Thin ceramic spacers were mounted at points mid-
way between successive calorimeters in order to insure
centering of the wire, An analysis of the error intro-
duced by these spacers is presented in Appendix D and

is shown to be negligible, 1In order to eliminate sag

at high temperatures, a tension was applied to the wire
by a spring mounted in a vacuum chamber at the end of

the test section. Power leads and voltage taps were
introduced into the chamber containing the tensioning
spring by means of Conax sealing glands., Power was pro-
vided by a Variac model W20MT3 autotransformer and was
measured with a Weston 0-25 volt range voltmeter and 0-30
amp range precision ammeter, The system was evacuated

by a mechanical vacuum pump and pressure was measured
with a Scientific Glass no, 1-759 tilting type Mcleod
gaga, Pressure in the test section was maintainéd at

a maximum of approximately 0.02mm Hg in order to minimize

conduction and convection heat transfer,

The test was verformed with boiling HZO in the test
section bath, Tare thermocouple readings with zero
power to the healing tube were subtracted from readings
in the power-on test to correct for possible spurious
heat losses, The conductances as determined fram this
procedure are shown plotted as a function of axial

position in Figure 45, Error limits with respect to the
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mean value of all the conductances (Appendix C) are shown
plotted as horizontal lines, All conductances are seen to

lie within these limits,

B, Calibration of Thermocouples

The copper-constantan reference junction was obtained
from Conax Corporation with a factory calibration in
accordance with ASTM procedure E220-64 against a National
Bureau of Standards calibrated Platinum versus Platinum-
Rhodium thermocouple, The deviation at 32 °F was 0,00 °F,
This thermocouple was used for calibration of the flow-
meter and exit bulk temperature measuring thermocouples,
The deviations were too small (<0,.,25°F) to make a notice-
able difference in the results. No calibration was

necessary for the test section thermocouples.,

C. Adiabatic Development Section

Velocity profiles were measured at the exit of the
adiabatic development section which was used for genera-
tion of fully developed velocity profiles., This measure-
ment was taken for two reasons, 1l,) Since the velocity
profile development in the section will depend on L/(DReg)
where L/D is the length to diameter ratio of the develop-
ment section, it was necessary to find the maximum Reynolds
number for which the flow could be treated as fully
developed and 2.) it could be used for a check on the

flowmeter, During the test all bleed valves on the
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development section were closed and the flowmeter was

mounted upstream of the section.

A total pressure probe was fabricated from 0.020
inch 0.,D. X 0,010 inch I,D. 316 stainless steel hypo-
dermic needle stock, The probe was mounted on a micro-
scope vernier control stage and output was measured on
a type A micromanometer (see photograph, Figure 46),
The control stage was set for a traverse across a dia-
meter of the tube by means of a cylindrical brass plug
which fit into the end of the test section, A 0,022
inch wide rectangular groove was cut into the plug.,

The probe was moved into this groove and the microscope
stage adjusted until a traverse could be made by moving
one of the verniers without touching the sides of the
channel, An electrical circuit was set up with the
probe connected to one side of a battery and the test
section and plug conneeted to the other polarity. An
ammeter was placed in the circuit so that when contact
of the probe and plug occurred, the ammeter would give
a non-zero reading., Static pressure at the exit was
assumed equal to atmospheric., Corrections for measure-
ments near the tube wall as describe in reference 95
were applied, The data showed a flattening of the profile
at the centerline occuring at approximately Rey = 1800,
A third order polynomial identically satisfying the

zero slip condition at the wall was fitted to the data
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at Rey = 1585 by a least squares criterion (Figure 47) and
inserted as an initial velocity profile along with a uni=-
form temperature profile in the finite difference solu-
tion, The effect on Nu,pn and fRe,, was neglible, No
difference was seen in fRe,, at x* = 0,001 while Nu,y

was about 1% higher than that in the idealized case,
Also, an itegration of this préfile yielded a mass flow
rate within 3% of that indicated by the Meriam flowmeter,
This agreement is excellent considering that velocity
measurements near the tube wall have the least accuracy
and a greater weight in a flow rate calculation than

points near the center of the tube,

A second calibration was performed after the plenum
and development section were run for several hours at
1800 ¥, This was done so that any incipient change in
the calibration of the chromel alumel thermocouple in the
mixing section of the development section would be
triggered. The bulk temperature measuring chamber described
in section 5.2, was fitted with a chromel~alumel thermo-
couple and fitted onto the end of the development section,
The flowmeter was mounted downstream of the chamber,

For a Reynolds number of 1500 with the bleed open, the
exit temperature was correlated with the output from the
upstream thermocouple. The final exit temperature corre-
lation with upstream thermocouple output is shown in

Figure 48 which includes a correlation after a two point
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calibration at 32 °F and 212 °F of the chromel-alumel
thermocouple used in the bulk temperature measuring
device., This curve was used in the data reduction pro-

gram for correction of the upstream thermocouple output.

D. Mixing Section and Bellmouth

The velocity profiles from several bellmouths with
slightly varying geometry were measured with the total
pressure probe apparatus described in the previous sec-
tion. The bellmouth giving the most uniform velocity
profile (Figure 49) was mounted in the mixing supply
vplenum for the vortion of the experiment dealing with
the UTV boundary condition, Output of the chromel-alumel
thermocouple mounted in the bleed flow was monitored as
a function of its depth of immersion in the bleed flow
to determine the depth at which conduction error be-

comes negligible,

5.4, Leak Tests

Prior to the beginning of the two test series, the
test section was pressurized to 35 psig and all connections
were covered with a soap solution., This pressure was
well in excess of the maximum pressure (20 psig.) used
during the actual testing, Tygon plastic tubing was
used throughout and G.E, RTV silicone sealant was used

at all plastic-metal tube connections,
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5.5 Adiabatic Pressure Drop and Friction Factor

With the adiabatic development section in place,
two sets of pressure drop data were taken at 6,= 1.0
for the entering gas and test section both at room
temperature and 212 °F, The non-dimensionalized pressure
defect is plotted as a function of x*t - xo+ along with
the theoretical constant property pressure defect which,
due to the low experimental Mach numbers, should corres-
pond to the experimental data, xo+ is the position of
the first pressure tap measured from the point where
cooling was assumed to commence (Figure 50). Pressure
drops are taken with respect to the first tap. The
second tap is reading low and yields an average friction
factor between the first two taps which is almost 10% low.
No burrs were evident at the second tap, Other friction

factors agreed to within 5% of fully developed.

With the UTV development section in place, low
Reynolds number friction factors calculated on the basis
of a least squares fit to the pressure drop from pressure
taps 5 and 6 are shown in Figure 51, Since these taps
are so far downstream (~ 100 diameters), the fully
developed friction factor should be present, This is
borne out by the excellent agreement in Figure 51, 1In
addition to serving as a check on individual taps, the

adiabatic friction factor is important in another respect.
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Since in a plot of f versus Re, the tube diameter
effectively enters the reduction calculation in the
fifth power, errors in the measurement of this diameter

will be evident here.

5,6, Repeatability Test

In order to determine what effect the arrangement
of the immersion heaters in the constant temperature bath
have, two additional tests were performed with a re-
arranged immersion heater configuration for the UTV b.c.
for @, 0.50, (tests #50 and 51). No apparent effect
was found on either the heat transfer or the friction

factor results,

5.7« Wall Temperature Uniformity

The axial wall temperature drop between the first
and last calorimeter was, in the worst case, approximately
15°F, The local axial wall temperature gradients are
estimated to be approximately two orders of magnitude

less than the radial gradients.

5.8. Experimental Procedure

Prior to the beginning of each set of test runs at
a given inlet wall to bulk temperature ratio, the bleed
flow from the development section was opened, the valve
downstream of the test section was closed and the supply

pressure adjusted to 60 psig., The power level to the B
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preheater was adjusted in accordance with a bulk tempera-
ture power level curve that had been obtained from a
previous test series, About 7 hours of operation in this
state was necegssary for elimination of all thermal trans-
ients in the development section, Zero points on the
flowmeter and pressure drop micromanometers were set,

The integrity of the lines from the pressure taps and

the pressure switching banks were checked by seeing that
the micromanometer zero was maintained for pressure
measurements between several pairs of taps in the pres-
surized zero flow condition, Also at the no flow con-
dition, power was supplied to the immersion heaters and
the constant temperature bath was brought up to and held
at the pool hoiling condition for approximately a half

an hour. This allowed a complete set of tare thermo-
couple readings to be taken, This datawas used as a
correction for the readings with gas heat transfer for

that day.

The valve downstream of the test section was set
for the maximum inlet Reynolds number to be run and
about 45 minutes was allowed before data was taken,
Boiloff from the pool was replaced by boiling water
from a separate heater and tank in the laboratory. The

following data was taken;

1. Static pressure drops. With the adiabatic
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development section in place, the pressure drop
between the first and 6 succeeding pressure
taps were taken, With the bellmouth inlet,
pressure drops were recorded between the inlet
plenum and 2nd taps, the first and second tap,
and then between the second and 5 succeéding
taps. This series was made necessary by
fluctuation in the plenum pressure that were
not present in the downstream regions of the
tube, These fluctuations were dampened by
insertion of a laminarizing element in the
plenum and the insertion of a large volumein
the line from the inlet pressure tap so than an
integrated pressure difference was measured:
rather an instantaneous value,

2. Thermocouple outputs from both thermocouples in
each of the twelve calorimeters, the upstream
and exit mixing chamber and the flowmeter,

3., Pressure in the inlet plenum, atmospheric and
supply pressure.

A typical data sheet is shown in Figure 52, At the end
of a test series which usually included 5 or 6 mass flow
rates, the downstream valve was closed and an additional
set of zero gas flow thermocouple readings was taken,
The purpose of this second set of tare readings was to

detect any abnormal thermocouple output rather than %o
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!

Figure 52, Facsimile of original data sheet,



Variable Property Gasflow Test # _//
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V(in) volts 22.0

I(in) amps _3.0

Supply Pressure (1bf/in?) _&50
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serve as a tare reading.

5,9, Data Reduction Program

A computer program written in Fortran IV was used
in the reduction of all the data., It contained pro-
visions so that data from both inlet sections could be
treated. A listing of the program in included in
Appendix G along with a list of significant I/0 and
intermediate variables., Many descriptive comment cards
are distributed throughout the listing. ‘Wihe program
initially orints out all input data for an echo check,
Complete input and reduced data for all tests are in-
cluded in Appendix H, Third degree polynomial least
squares fits were used to represent various calibrations
and property variations, Coefficients for these fits
are initially read in as punched data, Gas properties
were taken from reference 32, A two section fit to the
Cu-Con thermocouple tables in reference 62 was used for
better accuracy. Also, the x/D ratios at which the pres-
sure taps and calorimeters are located are read in as
initial data. Since the test section is maintained at
a uniform temperature, no thermal expansion corrections
to the non-dimensionalized displacements are necessary,
Initially, the program converts and corrects the inlet
‘and flowmeter gas temperatures, calculates a corrected

mass flow rate and uses the expression

Re, = W M/ArD g (5.1)
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for the inlet Reynolds number where M is the mass flow
rate (lbm/min). The inlet air density (assuming zero
radial pressure variation) is calculated from the per-
fact gas law using the corrected inlet bulk temperature.
For the tests using the adiabatic development section,
the first pressure tap on the cooling section was used
as the reference for the pressure drops. Friction
factor data is measured from the point where cooling
was assumed to commence, Since the pressure drop from
the beginning of the adiabatic development section to
the cooling section will be on the order of 0.5 in, of
Ho0, the error in the density will be small from
assuming the absolute pressure is equal to the inlet

plenum pressure (about 20 psig). The inlet velocity,
U = Li/mD2p, (5.2)

and Prandtl number Pr, are calculated. An additional
word should be mentioned concerning the precise points
where the cooling and flow development were assumed to
start, The initial point of temperature profile de-
velopment was essentially the same for the two inlet
sections, Modified 316 S,S. Gyrolok 3/8 inch to 1/4 inch
tube fittings were used to connect the test and de-
velopment sections. For the adiabatic development
section, cooling was assumed to begin at the end of a

small lip on the cooling section on which the ferrules
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for the connecting tube fitting clamped, Little was
known about the type of thermal contact present, so for
the UTV development section, a high conductivity epoxy
was used to seal all fitting components, For this case,
cooling was assumed to begin midway between the down-
stream face of the mixing plenum and the outside face

of the test section bath. For both development sections
the connection was insulated with MgO powder, Actually,
the tube wall temperature will decrease along the connec-
tion from nearly inlet bulk temperature to 212 °F near
the face of the cooling section. The difference in
starting the cooling midway or at the lip is quite
small, amounting to only = J{ew percent difference in the
location of the first calorimeter and vressure tap and
almost indistinguishable in the graphs onresented herein.,
However, the measured velocity profile for the bellmouth
(Figure 45) shows that a finite velocity boundary layer
thickness has developed at the end of the bellmouth.

The point where the velocity field development begins
was therefore taken upstream of this, In order to make
this point correspond to a vhysical point on the test
section, displacements of the pressure taps are measured

from the upstream tip of the bellmouth.6 The effect of

6A detailed measurement of the profile with a boundary

layer probe might have allowed solving for an equiva-
lent point from which a constant property layer would
have reached the same displacement thickness., However,
the difference between this approach and the present is
not expected to be large.
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this displacement for the pressure drop data for a UTV

test run is shown in Figure 53,

A, Heat Transfer Data Reduction

The emf difference across each calorimeter 1s calcu-
lated and the tare emf difference 1s subtracted to leave
the differential emf due only to heat transfer from the
gas, The output from the thermocouple at the inner ra-
dius of each calorimeter is converted to a temperature
(deg.F) and the tube wall temperature used in the Nusselt
number is calculated from the one dimensional heat con-

duction equation in cylindrical co-ordinates;

(T, =TT ) In(r;/0.147) dea?) (5.3)
26,0 ln(ro/r'i) -

Tw = ’I‘.l +

Subscript o refers to the mean radius at which the outer
thermocounle is located and i refers to the inner thermo-
couple, The factor 26.0 represents the thermoelectric
power of a Cu-Con thermocouple with reference junction

at 32 °F and measuring junction at 212 °F obtained by a
visual fit to plotted data in reference (62)., TT refers
to thermocouple output (mv) and 0.l47 represents the in-

side radius of the test section (in,).

Provision is included in the program for the elimi-

nation of calorimeters whose thermocouples were giving
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spurious output., In such a case, this is noted on the
data sheet, The position of the bad calorimeters were
read into the data reduction program., If the response
of only one of the pair of calorimeters at each axial
position is poor, then the unit heat flux and wall
temperature for that point are calculated solely from
the good half., When both calerimeters are inoperative,
the axial point is skipped altogether. This is usually
indicated by a negative or obviously incorrect heat flux
in the reduced data. During the testing for the Graetz
b.c., the response of thermocouples in both calorimeters
at the third axial location from the entrance were
consistently spurious. Testing of these thermocouples
showed that those giving poor response were not grounded
to the test section. Although great care was taken in
the composition of the electrical measuring system, this
is undoubtably the cause of the trouble, An ungrounded
thermocouple at the second axial position intermittently
gave spurious output. A filter improved response some-

what for the UTV tests,

An important factor in the reduction of the heat
transfer and friction data is the method by which the
bulk gas temperature is evaluated at any axial point.
For the case of gas heating, the usual experimental
facility consists of a resistively heated tube for which

the local rate of heat transfer to the gas at every



170,

point along the tube can be calculated fairly well once
allowance is made for losses, In the present case, we
are provided with the local heat transfer rates at dis-
crete axial points rather than as a continuous function,
The method of fitting a function q;(x+) to the heat
transfer data for each run was used. The curve may then
be integrated to any axial point to obtain the net heat
lost up to that point., This was applied for many assumed

*y. Candidate functions examined were

forms of q;(x
those that could attain large magnitudes at the entrance
with a rapid decay. Downstream the function had to
approach zero asymptotically. Typical functions tested
were combinations of exponentials and powers of xt with
exponents less than 1. No function was found to be
satisfactory for the data at all axial points, There are
several problems associated with this method, With
the exception of the first calorimeter location, the
local heat transfer coefficients were found to be ex-~
tremely sensitive to the form of the assumed function
with the sensitivity increasing at the downstream calor-
imeter locations, Also, since the bulk temperature and
hence the heat transfer coefficients at downstream posi-
tions depend upon the results from the upstream calor-
imeters, there will be an integration of errors, This
can lead to a great relative error in the wall to bulk

temperature difference when this latter quantity becomes
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small, This problem is magnified in some cases due to
the absence of readings from the third calorimeter and
the low differential outputs in the downstream region,
An uncertainty analysis is presented in Appendix F

which shows that the uncertainty in Nu,m at the second

calorimeter is already of the order of 13%.

The test section was designed with a length to
diameter ratio far in excess of that required for the
laminar heat transfer tests., This was done so that
tests could be performed at a later time over an adequate
range of axial displacements for flow in the transition
and turbulent regime7. It is possible, however, by varying
the inlet Reynolds number to obtain a range of the modified

* sufficient for comparison with the

Graetz parameter x
theoretical results, Values of x' obtained at the second
calorimeter can be made to extend well into the theoretical
fully developed region., Emphasis was therefore placed on

the reduction of data from the first two calorimeters.,

7For turbulent heat transfer, the problem of experimental
uncertainty is somewhat reduced due to the high heat
transfer rates which can be maintained further downstream,
The high mass flow rates insure a much larger wall to bulk
temperature difference and a lower drop in gas bulk temper-
ature at a given displacement. In the experimental study
by Brim (9) in an apparatus similar to that used here, but
for turbulent flow, these problems were not as acute,
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The bulk temperatures were finally evaluated by the
integration of an analytical function fitted to the heat
flux only at the first two calorimeters, A further re-
striction placed on the function was that this integrated
flux should yield the bulk exit temperature as measured
in the exit mixing chamber. It was required that the
variation of the heat flux should closely approach the
shane of the theoretical variation, Most important, it
was necessary that when the function was fitted to
theoretical values of the heat flux and bulk temperature
for both boundary conditions, the theoretical Nu,, could
be retrieved, This is important past the second calori-
meter for evaluation of the local frictinn factor based
on total wall shear stress, The fitting of the bulk
temperature insures that the tail of the heat flux curve
will not shoot off unbounded. Between the second and
fifth calorimeters, the wall to bulk temperature differ
ence is only on the order of 100°F, lLarge relative
errors in this difference make up only small errors in
the absolute temperature level, The function which best
satisfied these criteria out of nearly one hundred forms

tested was;
A B C

qn = F(x) = 2V ()% [\ 25 (5.4)
# & 6
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where the three constant A, B, and C are determined from

q = F(Xl)
AL -
qll - F(X )
w X=X2
and
Texit L
o)
*/;pdT =ﬁ/éwd(x/b)
To 0

where x4, x, are the axial disvplacements of the first

2
and second calorimeters respectively,

T = exit gas temperature from downstream mixing

exit
plenum
L = total length of the test section
The specific heat was represented by a cubic polynomial

in temperature.

c,(T) = A(8) + B(8)T + c(8)T° +D(8)T>

The bulk temperature Tm X at any x is evaluated from,8
?
Tmx 2 ' L[ Tmx
_ B(8)T° , c(8)T3 , p(8)T |™
%/;p(T)dT = A(8)T + — + 3 | + n .
b (5.5)
) X
=T/;(x)d(x/b)
0

8For laminar flow the kinetic energy term /bug/chJ

can be shown to be negligible,
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This equation was solved for T, fo) by an iteration

!
process in the computer program which stopped when
successive values of mediffered by less than 1/4 deg. K.

Next, the local heat transfer r~oefficient 1s calculated

from
h = q./(Tm,x = Ty &)
and the Nusselt number

Nu_= hD/k_
where km = thermal conductivity evaluated at bulk
temperature = 0.01395(A(7)+B(7)Tm X
’
2 3
+0(7)T5 DT )
Twy = wall temperature evaluated from equation 5.3

and the non-dimensionalized heat flux from

+ ”
Q ~ qwro/koTo
where To = inlet temperature (deg. R)
ko = thermal conductivity (BTU/hr ftF)

Also, the local modified Graetz parameter at each calori-

meter was evaluated from

k
xt o= x* (Cp’°>(_i“> (5.6)
k

c
PsmMm o}

The heat flux fit (5.4) was also used in the reduction

of the friction factor and vressure drop data,

With the adiabatic development section in place,

the dimensionless pressure drop is;

P = (p, - p)/moU2 (5.7)

where py refers to the static pressure at the first tap
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location. Dimensionless displacements xt are measured
with respect to this point, For the UTV boundary condi-

tion, the dimensionless pressure defect calculated is
- 1.2 2
P = (p,-p-5al,) /0, (5.8)

4

and, as mentioned previously, x7 is measured from the

forward tip of the bellmouth. The reference: pressure pg
is the supply plenum static pressure., The term '%wag

in the numerator of (5.8) is included to account for the
acceleration of the gas from zero velocity in the supply

plenum to Uy at the end 6f the bellmouth where the transi-

tion into the test section is completed,? Two types

9An attempt was made to determine the initial pressure
drop experimentally since, due to velocity profile dis-
tortion in the bellmouth, the pressure drop may differ
from Vy(mUg). It is assumed that this initial pressure
drop can be written as K o U8 where K is a constant
which is a function of the béilmouth geometry., The pres-
sure drop actually measured 1is Q}—p—Kng where po—p

is the viscous parasitic pressure loss from the point
where the bellmouth joins the section to the first pres-
sure tap. It can be expected that the term (g}—Q»%bUg
will decrease with increasing Reynolds number. For large
Reynolds numbers, the governing term will be K and if
the total non-dimensionalized pressure drop is plotted as
a function of x+, it should approach K for small x*
(high Reg)., For several isothermal high Reynolds num-
ber runs, the dimensionless pressure did seem to be
approaching 1/2, but at a very slow rate., Large pressmre
fluctuations in the inlet plenum for high flow rates
limited the maximum Reynolds number for which this
test could be run.
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of manometer fluids (specific gravities 0.826 and 0.797)
were used during the experiment and an index JJ 1is
included in the data reduction program to indicate which
is used. The micromanomters were scaled to read directly
in inches of H20 when blue manometer fluid (s.g. 0.797)

was used,

In addition to the dimensionless pressure drop,
two types of local friction factor are calculated., The
first is based on the portion of the total wall shear

stress due to the static pressure drop only;

r
Tw,Ap= - 2—0 (di—i- (5-9)

A corresponding friction factor £, ap is defined in

terms of the dimensionless pressure gradient by

__ ™ _ . Pmd (Po=P) (5,10)
‘A - 2 P - .
P 3P PodX  pUg

and in terms of our non-dimensionalized variables,

1 (4P )873 (5.11)
LapReyy = —ﬁr_(dx+ uh
(o]

The total wall shear siress is given by
, G2
PnBa

r
7, =04
W= dx+(p + C

) (5.12)
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and a local friction factor hased on total wall shear

stress by

= T 1 2 = f)rnd_. - '£2
£ = Wahn = Togax+(P-C'5,) (5.13)
where G is the mean mass velociiy which is a constant

along the tube, The coefficient C' is defined by,
1
C'= :faUzr"“clr“"/,omurf1 (5.14)
0

and is a measure of the non-uniformity of the velocity
profile, For a uniform profile, C' = 1 and for a para-~
bolic profile C' = 4/3, A value of C' less than U4/3
indicates a flattened profile. Since the experimental
profiles will be undergoing development, C® is a function
of xt and should be kept within the differential operator
in equations 5,12 and 5.13, "The actual value of C is
known only at the entrance and approximately in the
downstream regions-- it is r.ot known at intermediate
points. In the entrance for the fully developed inlet
velocity, this momentum change due to profile development
comprises a substantial portion of the total friction
factor., For the UTV bondition, it is less important.

For present purposes, C' was assumed constant at 4/3

for the parabolic velocity profile since it will begin

at this value and reapproach it in the downstream region,
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]
For the UTV case, the actual C will begin at 1 and also
[}
asymptotically approach 4/3. A value of C = 7/6 which is

midway between these limits was used in the data reduction,

In order to evaluate the derivative terms in 5,11 and
5,13, a third order least squares polynomial was fitted to
the terms in the parenthesis at the pressure tap locations
and differentiated., The bulk properties were evaluated at
bulk temperatures obtained by using the same curvefit used
in the heat transfer calculations, All densities correspond
to inlet static pressure and local bulk temperature, Even
though this approach would allow plotting of the friection
factors as continuous functions of x+, they are calculated
and printed out only at the pressure tap locations, It is

felt that this better reflects the experimental nature of

the data.

Experimental inlet Mach numbers ranged from 0,009 to
0.023 which are somewhat less than that treated in the
theoretical analysis(i.,e, Mg = 0,03). For cooling, the
Mach number based on the mean axial velocity will decrease
along the tube, For example, for T /To = 0.5, the Mach
number downstream of the thermal development region will be
reduced by approximately 30% from its initial value,
Compressibility effects were shown to be small in the
theoretical analysis and are expected to have little effect

on the experimental results,
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CHAPTER 6, EXPERIMENTAL RESULTS

6.1, Graetz Boundary Condition

For both boundary conditions, heat transfer and
pressure drop data for air was obtained for inlet wall
to bulk temperature ratios of 0.6, 0.5 and 0.4 and
pressure drop data only for the additional isothermal
cases, For the Graetz boundary condition, the non-
dimensionalized pressure defect P is shown plotted
against x* in Figures 54, 55 and 56 along with the same
quantity from the finite difference solution, This de~
fect was considered as the best quantity for comparison
for three reasons., 1l.) The experimental defect requires
the least amount of computational reduction. 2.,) There
is minimal dependence on additional experimental or
inferred quantities such as the heat transfer and bulk
temperature. 3.,) The defect, rather than the wall shear
stress, would be the most significant parameter to a
designer, Similar to the friction factor, for laminar
flow it is a function solely of xt for a given gas and

6,» and hence, maintains the same generality,

In these plots one immediately notes that there is
a pressure rise in the entrance for both the experimental
and theoretical results, The reason is that when the gas
undergoes cooling, the resulting increase in bulk density

causes a net deceleration of the flow, If the
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cooling is severe enough, the deceleration pressure rise
can be great enough to offset the frictional pressure drop,
The experimental results show a pressure rise greater in
magnitude and extending over a further displacement than
the theory predicts, The pressure rise at the entrance

has profound effect on the character of the flow. Separate
curves diverging from the bulk of the data are shown in
Figure 54 and 55 for some of the higher Reynolds number
tests, Similar divergent data corresponding to high
Reynolds number tests for the other wall to bulk temperature
ratios was obtained. It should be noted that for gas
cooling, the Reynolds number increases with axial distance,
Although the data shown is for an inlet Reynolds number less
than 2000, this magnitude will be exceeded at some point,
All the results for several Rey are seen to plot on single
curves and no Reynolds number dependence is present,
Evidently, the divergence of the pressure defect for the
higher Reynolds number is the result of a transition to

the turbulent regime, It is not possible to determine the
precise point at which transition was triggered, It is
interesting to note that the ;omparison between the
theoretical and the experimental results improve as wall

to inlet bulk temperature ratio decreases, The friction
factor for these same tests for TW/To = 0,50 and 0,40 are

shown in Figure 57 and 58. The experimental fRe,p is
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much smaller in the entrance and increases at a much
greater rate than the theoretical results for all
temperature ratios, The fully developed fRe,, is
reached more quickly than the theoretical in each case,
Of necessity, the adiabatic development section was
designed so as to be 0,009" smaller in diameter than the
test section at room temperature, For the higher inlet
temperatures, the adiabatic section will be at a

higher temperature and will grow due to thermal expan-
sion, so the transition between the two sections will
become smoother. The increasing static pressure may
have a profound effect in the presence of such a dis-
continuity. Another possible reason for this behavior
may be the factor C' in equation 5.13 which may be
underestimated by choosing C' = 4/3, This is not how-
ever, considered a probable reason -since the theoretical
velocity profiles for the Graetz condition show a dis-
tinct flattening with decreasing 6, This results in a
value of C' closer to 1, Also, the pressure tap at

the entrance is reading a static pressure along the wall,
In a region of severc cooling and possible non-neglibible
radial pressure gradient, this pressure may not be
representative of the mean pressure existing across the
radius. Since the radial velocity will be in a radially
outward direction, we can reasonably expect that the

static pressure will decrease from the centerline to the
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wall, If this is the case, then the pressure measured
at the wall is underestimated so that pressure drops
along the tube would also be underestimated and the
magnitude of the pressure rise overestimated. Use of
the mean pressure would tend to move the experimental
and theoretical pressure drop and friction factor

closer to each other.

The local Nusselt number data from the first two
calorimeters are shown in Figure 59 for Q~= 0.40, 0,50
and 0,60 along with theoretical results for 6,= 0.40 and
0,60, Agreement is good, although the experimental re-
sults show more sensitivity to inlet temperature ratio.
Also, the variation with xt is greater than the theoreti-
cal, This can be explained in terms of the configura-
tion of the test section. There was a short, insulated
section between the annular section of the development
section and the cooling section. In the absence of
heat transfer from the gas in this section, a linear
temperature gradient could be expected. With gas flowing
in the section, the average temperature of the section
would probably increase, If the point at which cooling
is assumed to commence is taken as the centroid of the
temperature-displacement curve, this point would move
downstream, This displacement would increase with
higher flow rates and Reynolds numbers, In terms of

the experimental results shown in Figure 59, the data
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points at the left side of each of the two data clusters
correspond to higher Reynolds numbers than the other
points, The displacement of these points from the point
of cooling is reduced, so that these points should be
displaced to the left, Since the abscissa is logarithmic,
points in the left cluster will be affected more than
those in the right hand cluster. The 'floating' point

at which cooling starts will affect the results since

the integration of the heat flux curve used to determine

the bulk temperature begins at a fixed point,

The indeterminateness of the bulk temperature is
not present in the comparison of theoretical and experi-
mental dimensionless heat flux in Figure 60 for Q~= 0.5
and 0,6 and in Figure 61 for 6,= 0,40, Agreement is
excellent with the exception of some low experimental
points from the second calorimeter in Figure 62. Output
was rather spurious from this calorimeter during this
test series, but the data is included for completeness,
These results would seem to indicate that the spread of
the data for Nu,, may be due to the bulk temperature

calculation.

6,2, UTV Boundary Condition

Non-dimensionalized pressure defect data for the
UTV boundary condition is plotted in Figure 63 for 6y,= 0,60,

0,50 and 0,40 along with theoretical results for 6, = 0,50,
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1.0
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Figure 60, Experimental q;v" versus XT for air., Graetz

boundary condition,

Tw/ To =

0.6, 0.5

0.6
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1.5
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Figure 61, Experimental g versus X* for air. Graetz

boundary condition, T,/T, = 0.40
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The experimental results for 6, = 0,50 lie approximately
8% below the theoretical, It should be noted that for
the UTV inlet geometry, the pressure drop is measured
from the plenum., At the first pressure tap, it is
possible that a radial pressure gradient exists., In
this case, the deceleration of the flow at the wall and
the inward radial velocity at the wall is indicative

of a static pressure which decreases from wall to
centerline, This means that the first pressure tap
would be reading relatively high., Using the mean pres-
sure across the section would result in a higher pres-
sure drop from the plenum to the first tap, Although
the situation At the first tap is reversed from what

it was in the Graetz boundary condition, use of a mean
pressure would again move the experimental results

closer to the theoretical.,

Friction factor results are shown in Figure 63,
Theoretical results are for 6,= 0.50 are included for
comparison, Agreement is very good, It should be noted
that the use of a mean or lower pressure at the first
tap would tend to raise the friction factor slightly
at the first pressure tap (x* < 0.022) and lower the
data at x¥ ~ 0.05. This would make the comparison even
better, In the downstream region (x' > 0.2) the effect
of temperature ratio is small, but somewhat greater

than the theory vredicts. 'This may be partially due to



lQS¢

.\JQO -W.O .@.O = OB\BE

‘uoTiTpuod Arepunog ALn  *JITE JoJ X snsdea “eys Tejusurdedxy (9 eandid
+X

onr?ﬁ.ﬂk.ﬁlmﬁ% . mﬁ Nﬂ _.o_mwhw S & m 2 2.0

|
b
g
9
—2
g0=%/M . 3I9N3Y3440 3LINIA l,m
A 8| VA |
on o5 A—4_ O _$>
S % Ludﬂb/
O v Eye)
v 02
— loe
$0= A
G'0= vV —pop
90=%/M O og
‘08 ALN :¥iv ——Jo9
I I

W, ]



196,

use of a value of C/(l 1/6) in equation 5.13 which is
lower than the actual values in this region, Further
downstream, the axial variation of density will be so
small that the correct asymototic value of fRe,, would
still be reached, It should be noted that friction
factor data at the last pressure tap (#7) was not in-
cluded in the results, Values of the friction factor
at this tap for the isothermal flow tests were found

to be about 20% high, Similar results were obtained at
this tap during the cold flow tests. Since this tan is
so far downstream, it is hir-hly unlikely that the actual
fRe,pn at this voint differgs by mo:-e than a few percent

from 16.0.

local Nu,m is shown in Figure 64, The exaggerated
variation with x' of the data in each cluster is probably
due to the variation of wall temperature in the transi-
tion from the plenum to the test section, The darkened
data points are for run #44 and the uncertainty interval
for this run is indicated, This was discussed in section
5.1, A more direct comparison of theoretical and experi-
mental data is included in the axial variation of
plotted in Figure 65 for all the experimental UTV data,
Again, for run #44, Jata points are darkened and the
uncertainty interval is shown. The data falls a maxi-~
mum of approximately 35% below the theoretical, Data

from the third calorimeter from the entrance (which was
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V T/ T,=0.60
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X Figure 65, Experimental gy} versus x* for air. UTV

boundary condition,

T™w/To = 0.6, 0,5, 0,4
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not operative during most of the testing for the Graetz
b.c.) was relatively low for those tests in which it
was operative. It is hard to argue that this difference
is due to an error in one calorimeter (for example-- a
low calibration of the conductance of the third calori-
meter) since the transition of data between neighboring
calorimeters is continuous and the data is consistently
lower., Also, the good results obtained from the calori-
meters for the Graetz b,c. would add confidence to the

calibration.
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CHAPTER 7. SUMMARY AND CONCLUSIONS

7.1, Summary

The results of a combined experimental and analytical
investigation of heat transfer and flow characteristics for
the laminar flow of gases in cylindrical tubes at low wall
to bulk temperature ratios has been presented, For the
theoretical analysis, gas transport and thermodynamic
properties were treated as variable, It was possible to
modify an existing finite difference solution to the
boundary layer equations with property variation terms for
use in cooling cases. For the case when inlet temperature
and velocity profiles were uniform, the conditions for
similar thermal and velocity variable property boundary
layers to exist at the tube wall were found to be closely
obtained for small distances from the tube entrance. An
entrance region solution based on the similarity assumption
was patched to the finite difference solution and down-
stream convergence of the wall parameters from the finite
difference solution was seen to be significantly improved.
This improvement is believed due to reduced error in main-
taining net conservation of energy in the presence of
initial singularities in both the thermal and velocity
boundary conditions, Wall friction and heat transfer re-
sults obtained for air and helium can be best discussed in

four categories,
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7.2, Conclusions

7.2.1. Heat Transfer (Graetz Boundary Condition)

Theoretical heat transfer results as expressed in the
axial variation of the Nusselt number for fully developed
inlet velocity profiles were found to be relatively insen-
sitive to temperature ratio., Experimental Nusselt number
and dimensionless heat flux, q$ data for air supports this
conclusion, Maximum variation of the theoretical Nuy from
the isothermal Nu, occurring at an inlet wall to bulk tem-
perature ratio of 0,10 was found to be a decrease of
avoroximately 13% for air and 15% for helium., The theo-
retical axial variation of Nu, can be correlated within
¥ 5% by the following equations:

<

for air: (0,001 & x* < 0,35)

584

- +
Nup = (3.67 + 0.198x™" e 72087y (1-0,13(8,-1))

-

for helium: (0.001 = xT < 0,35)
+-'58ue—20.8x+) (1-0015( aw"l))

Nup = (3.67 + 0.201x

for both gases: (x'> 0.35)

Nuy = 3.67

7.2.2., Friction Factor (Graetz Boundary Condition)

Friction factors for fully developed inlet velocity
profiles are affected more severely by temperature ratio,
but the experimental and theoretical results are not in
agreement as to the degree of this variation. Experimental

friction factors and pressure drops were significantly
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lower in the entrance than the theoretical, This may have
been due to several factors. A pressure rise in the en-
trance in the presence of a discontinuity in the tube
diameter may have changed the character of the flow in this
region, The theoretical variation of the total friction

factor 1s well reoresented by the following equation:

287
r \@ for air: {a=0.90”(TW/To)'“5'

fRe. = 16(—X where
m 251
a=O.957(Tw/To) Z

Tm for helium:

This correlation is offered with the reservation that it

does not reoresent the experimental variation,

7.2.3, Heat Transfer (UTV Boundary Condition)

For the UTV boundary condition, the theoretical Nusselt
number, Num, was found to be almost totally insensitive to
cooling throughour the flow development region, Constant
property correlations for friction factor are recommended,
In the entrance region this behavior could have been
predicted, at least on a qualitative basis, by variable
property external boundary layer results for cooling (23),
Entrance effects predominate throughout the thermal
development region and correlation in terms of local sig-
nificant temperature ratios was not possible, The experi-
mental heat transfer data confirmed these results in the
entrance region where experimental uncertainties were

smallest, but in the mid and downstream region, experimental
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values of the local heat flux were found to be about 30%
below the predicted. The difference is not within the
estimated uncertainty and the consistency of the data is
difficult to explain. A single correlation applies to
the theoretical variation of Nuy, for helium and air at

all wall to bulk temperature ratios:

- + <+
Nu = 3.67 + 0.2u6x* *992 =20.6% (0.001%x 0. 5)

+>

Nu 3.67 (x' < 0.5)

m
This is offered with the reservation that it does not

represent the downstream experimental data well,

7.2.4, Friction Factor (UTV Boundary Condition)

Again, the small variation of the friction factor
with temperature ratio at the entrance could have been
vredicted from variable property external boundary layer
results, However, the axial pressure gradient has a
greater weight in the momentum equation than on the energy
equation, This gradient was found to be strongly effected
by temperature ratio along with a greater sensitivity of
the flow characteristics to temperature ratio, The flow
development region was found to be substantially lengthened
with extreme cooling. Maximum decrease of the friction
factor-Reynolds product for air and helium was approximately
h5%, Excellent agreement between theoretical and experi-

mental pressure drop and friction factor variation was
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obtained for the UTV boundary condition., The theoretical

friction factor results for air and helium are well corre-

lated by:
1 'BX+
1-(fRey,)/(TRe)y = 1.067(1-6y)x"" e (xt>0,001)
where B= ?.7OBWO'675
and (fRe)y = isothermal friction factor-Reynolds number

-.576 -22,9x"
product, (fRe)I = 16,0 + 0.69kxt e X

In general, for both boundary conditions, friction factor
and flow characteristics for both gases were found to be
much more sensitive to temperature ratio than heat trans-
fer results, In an absolute sense, variation of all
theoretical wall parameters were found to be relatively
insensitive to temperature ratio when the severity of the
cooling is considered, 'The modified Graetz parameter

based on inlet properties was deemed a better independent

-+

m which

variable for representation of the results than x
is based on local properties evaluated at the mean tempera-

tTure,
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Appendix A
Variable Property and Non=-Boundary Layer
Terms
When the full momentum and energy equations 2.2 and
2,3 are non-dimensionalized with the same variables that
were used to non-dimensionalize the boundary layer equations
in Chapter 2, the following forms result;

Axial momentum:

+aut +6U>__ Po QP 3%t U LT, 1 d 4oV
p( SHHV 5= p0%2a++2'°'o" S2 2P [ar+ar++(Reo )2 S o

4d 4aut 2 13TV )
T3t 5 It oF

Energy equationj

+aH1 anl) 24P 2 3 F dHY 23 +k+ aH]
V. =(1-
P ( 3% S+ T 3+ (1-Yo)MgU 3% ST (ReoPro) St +ax++ +ar ar

1200 —1)IMZ Propit T

where dﬁ— mechanical dissipation function

G SRR

We note that as the Reynolds number decreases, the import-

2
ance of the dissipation function as usually defined (§g+)

will decrease in relation to the other terms in the function,

However, if the decrease in Reynolds number is due to a
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decrease in the mass flow rate, thedecrease in Mg will
offset this rise., The term which is retained in the mom-
entum boundary layer equation and can be identified as
being due to property variation (excepting the density) is
L
af, %‘?'r', %%,4

The ratio of the non-boundary layer terms to this is,

ﬂwav 4 9 P_vau* a M AlrtvY)
or

R = LT rv " art
1

Re, Py 2 2U°

(Re. \ art ar

Using the power law representation for viscosity!

pr=e°

This becomes
b-1 90 av +e a‘v" +ﬂ-(beb‘99 DU ebﬂ: .2 ¥ 2(r*vY

R= be IR C IrrIkt ax*ax+ X' 3 ar®
= (Reoﬁ.\ beb - 96 QU"
T

Similarly, expanding the ratlo of the non-boundary layer
terms in the energy equation to the property variation

terms (neglecting the dissipation function),

R, - ?w% 9;(‘», | (te-a) %%%;‘L*e %—x}i' )
(Re. R RaY (3H+ :‘L_lc.ﬁ)) (ReoBa) (c-a) 93+aal::
The ratio of molecular to convective axial momentum transfer
is
re 2 SRD) | ano™ 3300 T
(ReoRY  p*u* u7 (ReoR)* pru~ 2"

and the ratio of molecular conduction to axial convective

heat transfer is;

X au
A ax+(cp ax‘+>
ES o +
(Re,fr) gy 93»?:*

Ry
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The radial and axial derivatives were evaluated by using
central difference operators and values of dependent var-

iables from the finite difference solution with ax*t = lO"LL

and art = 1/320,
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Appendix B

Gas Thermodynamic and Transport Properties

Data was drawn from several sources in the evaluation
of transport and thermodynamic properties for air, helium
and CO,. The exponents in the power law representation with
temperature were chosen so as to minimize the least square
error for all reference points (subscript zero) in the
desired ranges, In a usual least squares fit to N tabulated

values of a property Y, the quantity

SN

would be minimized by appropriate choice of exp., - Subscript
0 quantities are reference values. However, in the present
investigation the quantity which was minimized in most

instances was

; =k21{ié<%(‘ (% )exp> }

which means that the exponent is also an optimum with respect
to all refefenée points in the tabulated range. An exponent
chosen by such a criterion will differ somewhat from that
chosen by a ordinary least squares fit or a visual fit to
plotted data. Properties which did not require the use of

a reference quantity, namely Pr,and % were chosen by an ord-
inary least squares criterion. In several cases data from

more than one source is plotted in order to extend the temp-
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erature range or to serve as a confirmation of data from the
prime source, Graphical plots of the data are given in
Figures 66,67 and 68 for helium, air and CO, respectively,
The correlations used in the theoetical portion of the in-

vestigation are represented by solid lines.



40

k (erg/cm-sec °K)

QT
N

Cp/Cv
;/ o -O—F—0——9
¢
B Cp (BTU/IbyyF)
= O- or'“ O——0
10
9
8
Pr
7() ~ N e - _()
. T T
216'6(7'( ) 3400 500 600 700 860 9001000

Figure 66,

Thermodynamic and transport properties of

helium,




N oo

sz

v

k/keo
k.=1.395 x10-2BTU

l hr-f$-°F

v

R
/o

fho= 1155 x 1070 Ibm /f1-sec
| (11 l

Data of A Hilsenrath, et. al.
OKreith
V Vines

Cp/R

221,

\ \
, A 7% IS Cp/Cv
:Q# @7 Q_-O_,r Pr —_—
| 2 2 3 4 5 6 78910 20 30
T(°K) xI10~
Figure 67, Thermodynamic and transport properties for air,



14{ 222 .
3 A
2 1 i

i [.L//.Lo
/ Ho=9.2067 x10-61b/ft-sec.

. e |

2 o o
N
éf

/\v

2 2
/ k/ko

ko=8.40%x10"3 BTU/hr-f1-°F

1] IJ

3 4 5 67 8910 20 30

Thermodynamic and transport properties for
Figure 68, carbon dlioxide,

I
)
T (°K)x102

DATA OF A Hilsenrath,et. al

V Vines
2
C Cp/Cv —
Ll yaY
|
1
8
7 A
6 A 1
J T | ' Cp/R
5 R=004512BTU/Ib-°R |
|
4 2 3 4 5 6 7 8910 2 3

|
T (°K)x10~2



223,

Appendix C

Calorimeter Conductance:

Error in One Dimensional Heat Conduction Egquation

Due to Thermocouple location

A schematic of the calorimeter used to measure local
qy 1s shown in Figure L2, We assume that all thermo-
couples are homogeneous and thermocouple beads are in-
finitesmally small, We are trying to determine a maximum
range of deviation for the calorimeter conductance defined

as

Kea1™ qx/(Ti°To)

due solely to thermocouple bead location, T; and T, are
the temperatures measured by thermocouples in the inner
and outer holes respectively. When a thermocouple with

a bead diameter less than the hole diameter is inserted
into a calorimeter, the exact location of the thermocouple
is unknown, The uncertainty in the thermocouple location
is the sum of two uncertainties~- 1,) the location of the
thermocouple hole and 2,) the location of the thermocouple
in the holes, The holes drilled were 0.030"D., A realistic
maximum error in the location of the holes with respect

to the tube centerline is 0,005"., On the basis of the one
dimensional heat conduction equation in cylindrical co-

ordinatess Kk
K

cal” rtln(ri/ro)
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where r: radius where the center of the inner thermo-

t couple hole is located
ry = radius where.the center of the outer thermo-
couple hole is located
ry = inside radius of tube
k = thermal conductivity of calorimeter material

We assume that the temperature field in the calorimeter
is unaffected by the presence of holes, that the con-
ductivity of the calorimeter material is not a function
of radius and that the thermocouple bead will be at the
temperature of the point of the wall where it is touching,
This is not a bad approximation since although the holes
were packed with a high conductivity grease, the con-
ductivity of the thermocouples are greater by almost two
orders of magnitude than the filler. Also, there was a
possibility of voids =xisting in the packing. The mini-
mum value of conductance occurs with the tolerances and
free play of the thermocouples in the holes acting so as
to provide a maximum distance between the thermocouple
beads. The ratio of minimum calorimeter conductance to

that calculated using nominal dimensions can be shown to

Kcal,min = h 0.2500 = 0,80
K 0.4375 + 0,015 + 0,005
cal,nom ln(o.2500 — 0.005)

and the maximum ratio obtainable,

|n(_££ﬁﬁa
- 0.2500
0.2500 + 0,015 + 0.005

Kcal,max
Keal,nom In

) = 1128
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So that the total range of variation can be as large as
48%, In Figure 44 these error limits are shown drawn
with respect to the average value of all the calorimeter
conductances, While additional uncertainties (i.e. power
level during radiation test, uncertainty of thermocouple
output) could have been added to increase the limits,
there seems to be no reason for doing this since the
above uncertainty is sufficient to include all the con-

ductance scatter.,
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Appendix D

Calorimeter Radiation Calibration

End Effects and Conduction losses

A, Radiation

For the calibration, a 1/8 inch diameter stainless
steel tube was extended down the center of the test sec=-
tion. The section was evacuated with a mechanical vacu-
um pump and a voltage was applied to the heating element,
Knowledge of the power input to the element, assumption
of uniform irradiation to the tube inner wall and measure-
ment of the temperature difference corresponding to this
known qx allows calculation of the calorimeter conduct-
ance K where

K = q&/AE

where AE is the corrected difference in thermocouple emf
across each calorimeter half. In order to insure proper
centering of the heating element, several ceramic spacers
were mounted at points midway between the calorimeter lo-
cations, These will reduce the radiative heat transfer
in two ways. 1l.) The viewfactor from the wire to the wall
is reduced and 2.) the local temperature of the wire at
the spacer is reduced due to thermal conduction through
the spacer, Concerning the viewfactor, we consider the
geometry and co-ordinate system illustrated in Figure 69,

The elemental cylindrical area d4A, is at a point directly
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under the calorimeter, The ceramic spacers are mounted
at x=IL and it is desired to calculate the viewfactor
from the finite length of wire between these limits to

dAa The angle ¢; is the included angle between an inward

1°
facing normal from the tube inner wall and a line segment
of length r connecting dA2 and dAl where dAl is an element
of area on the heater. Angle ¢,lies between this same line
segment and dAz. The inside radius of the test section

is Ro and r is the radius of the heating element. The

geometric shape factor from the heater to dAl is;

L
_) [cos¢ycosdy
AFo -{%;--—-—- dAz}dAl

‘ITI‘2

writing cosd,, cos¢, in terms of geometric quantities;

L 2
AF. o =] RoFed* |aa
2°2=1 _—E_—E_é 2
_L(R0+x )
+1
=7rr§ 2X 5 +_l- tan 1 (%) dA2
Ro+x RO (o) -L

The percentage difference between the shapefactor for L=
and the shapefactor for the particular test section

dimensions isg

(AoFoo1 L5 (A2Fa 1) 1-u gm
(AF

< 0,01
2-l)L=w’
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It must be remembered that this does not include reflec-

tion or reradiation from the spacer,

B, Conduction lLosses

A total of 4 spacers, 1/16 inch thick x 1/8 inch I.D,.

X 0,294 ineh 0,D, were used to center the heating wire

at the centerline of the test section. Here we attempt

to calculate the thermal conduction loss through these
spacers from the wire to the wall, First, a temperature
of the heating wire must be determined. For radiation.
between two grey bodies which see only each other, the
total heat transfer may be written

1 Oy

= o(mrorhy (L L L P2
o = “(Tl'Tz)/<e,Al+ A" £2A2)

where n= reflectivity of heating tube (Ref. 49, Table 2,5
316 s. s 'as received') = 0,39

a = absorptivity of inside tube wall (taken as equal
to that of black enamel) = 0.95 (Ref, 50)

€= emissivity of heating tube = 1-0.,61 = 0.39
€)= emissivity of inside tube wall = 1-0.95 = 0,05
= surface area of heating wire = 7x(58"L) x (1/8'D)in2

2= surface area of inside tube wall == (58"L) x
(0.294"D)in2

T.= temperature of inside tube wall = 212 °F = 671 R
the power input to the heater during the radiation test
was 1167 BTU/hr., Using these qﬁantities in the above
expression yields T, = 1190 F. For the ceramic spacer,

taking the thermal conductivity as being approximately
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approximately equal to that of glass (0,40 BTU/hr ft F),

the conducted heat transfer through the disks is
(1190 °F-212 °F)

_ _l_"
Qconduction” uxlézx 2mx0 .40 In 0.294> BTU/hr
0.125
= 58 BTU/hr

This amounts to about 5% of the total heat transfer., How-
ever, a correction for this loss was not included in the
calibration for two reasons, First, in the vicinity of

the spacers, the temperature of the wire is reduced so the
wire-to-wall temperature difference is reduced. Second,
this analysis assumes perfect thermal contact of wire with
spacer and spacer with tube wall, It is probable that the
conduction losses are a fraction of the above, but there is

no way to calculate this quantity precisely.
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Appendix E

Uncertaintv Analysis - Nusselt Number, Friction Factor Data

The relationship between the uncertainty interval

. of a calculated quantity or depen-~

or precision index Wy

dent variable R and the uncertainty intervals wj of the
independent variables or measured quantities, X1 is

given by (46),
2 B\ o

wZ —;(al) w (E.1)
Since the uncertainty intervals of most of the instruments
whose outputs are combined to produce R are not known,
the recommendation of Kline and McClintok (46) will be
used, An interval is estimated for each instrument or
measurement for which it is felt the probability is 1 to
20 that the true value of the measured quantity lies out-~
side of this interval centered at the measured value,
For gages such as for pressure or voltage, the uncertainty
is taken as 1/2 of the least division on the dial, For
thermocouples, the uncertainty interval is taken as the
ISA calibration. Since the uncertainty interval for the
wall parameters will vary with each run, the time and
effort needed to treat nearly 40 tests and several hun-
dred data points would be prohibitive., Test run #44 was
chosen as an example for uncertainty calculations, Since

this particular run was one of the highest in terms of
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pressure drop and local heat fluxes, the uncertainty

intervals will be low in relation to those for other runs.,

If the uncertainty interval for this test can be shown

to span most of the data for the lower flux tests, then

there is no need to calculate these additional intervals,
The uncertainty in the calorimeter conductances must

be known, The expression for the conductance of a calo-

rimeter in terms of experimentally measured quantities

in the calibration is,

K. = EI/2 mryL
;=

x 3.413 BTU/hrfT?mv
(A€ test - A& tare)

where 8€test is the difference in thermocouple output
across calorimeter i1 corresponding to an electrical input
E x I to the heating wire and O€itare is the difference
in readings when there is no inpuf to the heating wire.
The factor 3.413 is a conversion between watts and BTU/hr,

Application of equation E.1l, yields

2 2 2 2 2
()= (32) + (S (tze) + #(3e)
Ki E I r, Aej

The coefficient 4 is present in front of the thermocouple
emf term since the differential emf will actually be a
combination of 4 thermocouple readings- 2 tare or zero
heat flux readings and 2 readings with heat flux,., Abso~
lute uncertainty intervals which were deemed appropriate
for all significant measured quantities are given in

Table E,1, Some word should be mentioned concerning some
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Table E.1,

Uncertainty Intervals. Experimentally Measured Quantities

Quantity Experimental ILevel Uncertainty
(Absolute)
E 15,1 volts 0.1V
I 22,6 amps 0.1 amp
Ty 0.294 inches 0.001 inches
L 58.625 inches 0.0625 inches
X1 9X2 1.75 inches,11,33in, 0,005 inches
(A€ )Ytest - (A&;)tare 0.055mv (avg,.) 0.,0010 mv,
(calibration)
M 0.4 - S,C,F.M, 1%
To 1670 °R (avg.) 59R
Po order of 8 inches 0.05 inches Hg
Hg
Po - D order of 0,10 inches 0,002 inches

H,0 H,0
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of these quantities. The interval for the thermocouple
output w, may seem to be extremely small, but it should
be remembered that we are dealing with a precision rather
than an accuracy error in this case, The ISA calibration
is essentially an accuracy term, The accuracy error is
effectively eliminated through subtraction of the tare
readings. The quantity w, was determined by a test on
the instrumentation during an actual run, It was found
that ten consecutive readings from the same thermocouple
could be included within an interval of 0,0010 mv, How-
ever, there were sporadic intervals when electrical in-
terference or power fluctuations would cause a much
greater variation. For most calorimeters, these periods
were the exception rather than the rule., The Meriam
flowmeter was calibrated to within a 0.5% of a Meriam
standard flow device, The error in the flow measurement
will increase due to errors in measurement of the output
pressure and quantities necessary for calculation of
correction factors., 1% should be quite representative
when these additional uncertainties are considered.
Substitution of the quantities in Table E,1 into the
above equation yields for an average conductance of
approximately 55.0 BTU/hrft2mv

WK.
1/ avg,
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or a deviation of approximately 3.7%.1 The expression
for the wall heat flux at any point is given by
qV.\;\ = Ki ( Aei,test - Aei'tare)

X
1
The uncertainty interval for the local heat transfer is

2
<lv_q ") = i e + (iK_3>
q” (Ae'i,teSt—Aei,tare) Ky

The uncertainty, as can be expected, is a function of the

output during the test. For UTV test #44, the uncertainty
intervals in the local heat flux are shown in Table E,2,
Since the local results presented in the text are averaged
from two calorimeters, the uncertainty should be some-
what less than these values., Since the output from the
fourth and further calorimeters from the entrance are
much smaller, the uncertainty interval is rather large
for these fluxes,

This problem is compounded in the calculation for
the gas bulk temperature, which besides the local heat
transfer rate, is the most important quantity in the
evaluation of Nu_ s Since the local heat fluxes are com-
bined in a rather complicated fashion in the integration
for the bulk temperature, a simplified analysis is used,
Since Nusselt number data is presented only for the first

two calorimeters, the uncertainty will be calculated

1Phis should not be confused with the uncertainty calcu-
lated in Appendix C which applies to the calorimeter be-
fore calibration,



Table E,2,

Uncertainty Intervals for Test Run # 44

Local Heat Transfer Rates
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Calorimeter
12
entrance

11
10

9

8

7

6

5

L

3

2 exit
1

(e )test « (Ae; )tare

(pv )

44,0
123.1
373
Lho,7
20.3
15.2
11.9
11.5
6.9
8.8
549
-0.5

w
Ky

hs,2
60,2
58,5
59.0
Lg,6
63.9
52.2
60,8
5749
5547
57.6
50.0

a

BTU
hr £t2

6520
7380
2180
2400
988
970
620
700
Loo
Lgs
340

N |

3.85
4,05
6,61
6.10
10.1
13.3
17.0
17.6
29,0
22,9
34,0
4o,0

*BTU/nr 12 mv



237,

only for these two points. We assume that the heat trans-
fer from the gas between the test section entrance and
first calorimeter is given by,
— "
Q = 2nroqwlxi
and up to the second calorimeter by
- - "
Q = 27Tro(XZ x1)qwlX t Q)
which represents an integration by means of Simpson's
rule, We also make the simplification that the specific
heat cp of the gas is constant so that the bulk tempera-
ture may be written as,
11 o
Ty = T - 2nroxlqw/Mcp
and
O
= - " - "
Tm2 = T, <%wroxlqw +(x,=%1)ay )/Mcp
X1 X2
where M is the mass flow rate, X1 and X, are the loca-

tions of calorimeters 1 and 2 respectively. Use of the

uncertainty intervals in Table E,.,2 results in

"Tm1 "o

T, - 00402 T, - 0.0545

Proceeding in thls manner, the uncertainty in the Nusselt

numbers at these points are:

w w
N1 5,078 N 6132
Nul Nu2

The bulk temperature enters the computation for the
friction factor (eqn. 5.13) by way of the density term,
Friction factor data is presented for axial points past
the second calorimeter and the uncertainty analysis for

the bulk temperature is not extended to this region:
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However, the second term in the brackets in equation
513, /%/bh rapidly decreases in importance along the
tube. For‘example by the fourth calorimeter in test #40,
the axial gradient of this term accounts for less than
25% of the total friction factor. The bulk temperature
is asymptotically approaching the limiting value of the
exit bulk temperature. This limiting value would tend
to bound the error on the negative side of the bulk temp-
erature so that continuation of the preceeding analysis
downstream would overestimate the error. The evaluation
of derivatives for discrete data can be a risky business
such as is performed here for the local friction factor,
The limiting error for the derivative is extremely diffi-
cult to determine and primarily for this reason an un-
certainty analysis is not performed on the local friction
factor. The non-dimensionalized pressure drop P easily
admits to such an analysis, however, The expression for
this quantity in terms of experimentally measured quanti-
ties is,

P = (2mp,(p,~p)r 2)/RT M
where R is the gas constant for air. The uncertainty in-
terval is given by

0_591 2<.Zl:fc92+(-¥§o)2+ (-w—(&:&)\)z . (;I;)_)i ) (Wﬁﬁy

po'p

where we have made a distinction between the uncertainty

interval for po and p,~p since the former quantity was
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measured by an air over mercury manometer and the latter
quantity was read with a micromanometer. Using the un-
certainty interval used previously for p, and a 0,001"
absolute uncertainty for the micromanometer reading, we
obtain the results in Table E,3 for runs #U4U4 and #25.
Run #25 is at about the middle of operational parameters
run in the Graetz boundary condition test series. We
note that the uncertainty level decreases with axial
displacement since the pressure defect is an integrated

quantity.
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Table E,. }-

Uncertainty Intervals for Non-Dimensionalized Pressure Drop

Test Run # 44

0.,0120
0,040k
0.,0919
0,143k
0.1949
0.2465
0.2749

0.136
0.266
0,471
0.648
04807
0,969
1.083

1,69
1,66
1.65
1.65<
1,65«
1.65<
1.65<

(%)

Test Run # 25

x¥t P
0,0362 -0.085
0.1018 0.039
0.1674 0.185
042330 0.398
0.2986 0,647
0.3349 0.796

Yp
—_——

h.5
9.2
2.5
1.88
1.73
1,70
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Appendix F

Computer Program

Solution of Similarity Boundary laver Equations

The basic initial value integration program (DESP)
requires that the simultaneous fourth order equations
4,10 and 4,11 be written as a set of simultaneous first

order equations, To this end let,

f= fl
L :d%:
f 5 &
fo =A,'F3='Fs
an
£ = (el pe )15 N R/ "
G =4
G' = %;F%c‘Fs
R PN TV S Mot
2 {0 e BB -aRn6Y) -2k i) [ ()

The following is a list of variables used in the computer

program,
Program name Meaning
A = exponent in power law for specific heat = a

B

exponent in power law for viscosity =b or

coefficient of UGQH% - total continuity equition
(4.29)

coefficient of p/pO - total momentum equation
(4.30)
-*
BETA = 25 dUe
us 4k

(a5)"2. (afs—As»'/ .

BUZZ
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exponent in power law for conductivity ¢ or
term in total continuity equation (4.29)
Te a e M
(3’53i([9uﬂén) —afﬂq)jem)éa_éq or
(o} [ []

term in total momentum equation (4.30)

e

= ?/ﬁ;oUe%Mo 2(3‘53 ( J(”"l)) cl’n geuﬂé.a

+aY, M‘z(;.S) yg(.n.)é.n.», P/P Ue¥h M

Rt MY (Filod s § 1) (G2 (2(5-a8)")]

n

N a  (Me
+ (28)My, {( feé.)m -2 J{#'(q)\aSem)én.J'»d

where
axial

COEF1
COEF2
COEF3
COEF4

DELF3

subscript o refers to values at the last
step.

= (¥ IM2
YM3
YRURY by

Pl (05/ }fe p:r

Afl0)= perturbation in derivative of velocity
at wall

DELF5 = AG'(o)= verturbation in derivative of enthalpy

DETA =

at wall

AN = stepsize in similarity parameter

DZETA =AY = stepsize in transformed axial

coordinate

ETA = ne = point where boundary layer growth is

EXP1
EXP2

EXP3

assumed to be complete
1/(A + 1)
(B-A~2)/(A+1)
(B-1)/(A+1)
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EXP4 = (C-A=-1)/(A+1)

ERRUE = acceptable absolute error l%é—ﬂ at MN=Ne
ERRHE = acceptable absolute error IE%'JI at N=MNe
ERPPO = acceptable absolute differencg in two suc-
cessive interated values of p/py at y§
ERUUE = acceptable aboslute difference in two suc-

cessive values of !%;"" at N=Ne
e
FUNC(L1,I) = {l«:.omos
FUNC(2,I) = £(tm-0a

FUNC(3,I) = G{(1-0an)

Ne
IGRALL = j odu

IGRAL2 =jne¥'(op( J gm.)én.)é.'y(
(=] no

IGRAL2 =jne¥ ) J orad o) dn
4 (o]

oras = [Plipdn 0

2
IGRALM = [ﬁeF‘(q»a(jetmm)M

GAMMA =Y,

MACH =M,

PDIF(1,1) = aflued/a+o)

PDIF(1,2) = 4F(n/26'0)

PDIF(2,1) = AGUHe) /AF0)

PDIF(2,2) = A6(Me)/AGY D)

PPO = p/p,

PPOO = (p/po)y = value of pressure ratio from last
iteration

PPO00 = p/py at last axial step
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STAR(1) = vt (obtained by interpolation from equalq
intervals to equal y* intervals)
STAR(2) = Ut (obtained by interpolation from equal”
intervals to gqual yt intervals)
STAR(3) = T/To (obtained by interpolation from
equalﬂ( intervals to equal y* inter~
vals)
TAIW =60

TAWL = (1-TA1W)

UEO = UZ value of free stream dimensionless velocity
from last iteration

UEQOO = Ug',o value of free stream dimensionless ve-
locity from last axial step

UE = Ug' value of free stream dimensionless velocity
at present step

Vv = V' radial velocity
x = x*

Y(1) = f

Y(2) = f'

Y(3) = £

Y(4) = G

Y(5) = G

YEND1 = fine)

YEND2 = §'(e)
YEND3 = G{#e)
YSRT3 = §'l)
YSRTS5 = G'(0) from guess or correction routine

YST3TO = f"(0)y = value of velocity derivative at
wall at last axial step
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Appendix G

This appendix is a listing of the data reduction
program described in Chapter 5. Major I/0 and inter-
mediate variables and different stages of the calculations

are identified through use of comment cards,
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Appendix H, Data

Raw and reduced experimental data is included in
this appendix. Tests numbered consecutively are in
chronological order., Reynolds numbers well above 2000,

Some results in the transition region are included.
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PARABILTC INLET VLLUCTIY TEST MO. 1
TARE TEST 1TAREN FROM KUM NO, 1
TARE THERMUCOUPLE OUTPUT (MV)

I TACISL) TACT,2) 1 TACI,1) TACL»2)
1 fh.2%15 64,2548 _ 17 . 44,2745 44,2770
2 4,2412 4,2367 .8 442771 4,21775
3 4.2765 4,2745% 9 4,2730 4,2589
4 4.2019 4.2816 10 4,2776 44,2781
5 4,26L13 4,2801 . 11 4,2926 44,2919
6 4.27120 4,0654 12 . 4,2919 42080
FEST THERMouCUUPLL GulpuT (0V)Y ..
I TTvIsl) TT(1,2) 1 O TTCLs1) TI(1,2)
1 4,24%20. hedB4b6 T 4,29878 4,2919
2 4,269 _a,2%7 8 4,2820 4,2936
3 4.2784 64,2746 9. 44,2919 4,302k
4 /"'Zbl-,_. i 0282.!*‘_. - ..‘.J._Q,.... — Q-dq-?q 47:3(,)7()
5 C4.,27169 4,285 11 4.3549 4,380
6 G4,269L . 64,2695 12 4.3515 &,3790

DIFFEREMT AL pRESSURE —FLOWMETER (IN,) = 0,300

FLOWMETER TERP. (MV) = 1,0574 BWULK EXIT TEHP (1Y) = 4,5/9¢
INLET PFESLURE. MAR » LEFT o 3,45 RIGHT  3.50 [He. HO

IMLED SULK TEMP (R~AL = 12.300

STATIC PKRELSURE DROP (IN,)

PL=P2 = -0.006 PL-P3 = 0.029 Pl=-P4 = 0,043
PL-P5 = 0,042 pl=-P5 = 0.1l28 Pl-P6 = 0,152
BLUE *AMUMLTER ELUID Sp GR 0.797 _
IMLET TEMPLR, TURE (DEG. v)_=_ . 574,18
/Ty = C0.647 MACH L. = 0011
PR = 0.T70%2098 REYD. = _1108.4
A+ (A+3M _ Q+ UM TBULK TW/TH (R
. DEG. Fu

Ne43.1L 00,3360 0.0508 ~Bfas5- 225,6h C.I7T L4y
Qe347u 042763 0.0563 AP 243,75 0L.754 0 1409.9
Qe2640 D.2:16L. Dll4a . 5079 272442 UeUlo 1471 eb
0.181U 0.1H41 Q.2157 gl 316,66 0.H6D 1419.5
OOO()QU D.2881. 0425064 . 305)0()4 _5879[’6 Ve /93 ]246:4.0
0.015%0  0.7146 00,7027 4.8038 528,66  .6H3 1] 3a.n

NOM DT GENSAOMALIZED PRISSUEE DRDP

X+ ) P+ R

0.0458 - 1.061

0.1289 0,322

0.2119 A I # S

0.2949 1.000

De3779 1.40}

04237 1,602 L

POSTTIUN O FIRST PRESSURE TAP = 9,0108]1

X+ (<+ M I F{REIM FP FP(RE)IM (i) Tt K VAR

) e GOk
0.0193 0.0:190 0.020006 097 -0.,0035H6 4,02 1173.8 DhLe UahOTL
0,0651 0D.0u08 0Q.005u3 6,003 0DL,00L78 R N A A L. Dl4D
O0.la48L  0.1lce95 Q4008927 11.53 0,00727 9,34 1285,4 2O (s 0GR
02312 0.1730 0.00931 L1252 0Q.00822 11.06 Linsad cVEa) g 89N
Ne3142 0.2536 0.COB/T 12,19 00,0078l 10,85 11391 FB0GH U934
0.3972 0.3i34 0.91075% 15.56. 0.,01035 14.70  1421,0 2320, 0,969
0.4430 - 04300684 B tlrd tovdi= H,01007 P4 tadree 224.9 0,981




PARABOLIC INLET VeLACITY TEST N0
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2
TARE TeST TAKEN pFROM RUN NU. 2
TARE THERMUCUUPLE HTPUT (MVY)
1 TACI,)) Ta(l,2) I TA(L, 1) TA(L,2)
2 4.1715 4.1690 8 4,2038 4.72100
3 4.284 44,2091 9 42096 H 42094
4 4921.40 4-(.'11.9 L"-, /"021',08 (’.213‘0
5 4.2091 4,2082 11 4.2306 4,2316
6 H.20115 4.,1968 12 44,2306 4,2°294
TEST THERNUCLUPLE UYJTpuT (YD) o .
1 1T(I,1) rr(l,2) 1 O TT(I,1) TT(1,2)
1 helB40 441959 T 4,2304 Go20421
’ G.1604 4.1807 4 C4.26]12 Hha? 12
3 b.216] h,2206 94,2427 Hhe?24579
4 He2212 42221 . 10__. . _4.2457 he2bHTH
5 4.2175 ha2244 11 64,3116 4o34TH
6 4,280 44 ¢091 0 12 44,3105 4,349
DIFFEREMTIAL PRESSURE ~FLOWMETER (IN,) = 0.385
FLOWMEFIER TEAP (MV) = 0,8435 BULK EXIT TEMP (V) = 4.,901u
INLET PRESSURE MAN » LLFT 2,95 RIGHT 3,05 Ip. HG
IMLET oULK TiMP CR-AL = 13.2499 .. _
STATIC PKREANSURE DROP (IMOY o
P1=P2 = =0,010 PL-P3 = 0,033 P1-Py4 = 0,064
PL=-P5 =  0.1CB8 PL-F5 = 0.161 P1-P6 = 0,193
BLUE MARDMLTER FLULID Sp GR 0,797 .
[MLET TEMPERATURE (DEG. F)Y =_ 613,91
IvisTy = D.622 NACH e = 0,016
PR = ", 712009 RLYD. = 1alb,1 .
A+ (A+) ] G+ THUM . TRULK TW/ TR (PN
el ) DEG. F,
Qe3377  N.2584  0.0503 AesQBT—~ 240.81 0.953  {v66.9
02069  0.2125 Q2863 . dobpat 264,99 0.923 1124.6
De2U3 0.1078 0.1263 LG8 300.56 QETY 1iHT.H
0139¢  QaloDLl. Ge2892 B 152,68 024 169 4.1
0.07/535 D087 00,3534 3.7100 432.42 UeTH 1H97.2
N.0LY5 00,0113 0.8745 5.2496 581,44 G.6470 140240

NON DIAEOSLIONALLIZED PRESSURE DROP

X+ Pt
0.035(’ "U,OS()
N.099) N,192
D.1629 N,374
0.22606 0,636
0.729. 0 C.945
0.3259 1.133

POSTITUN )

X+ (A+)M t
(r'vOl/’d O'(\lq_/ Oo'\)'.)].}l
0,051 D074 0.,00412
0.,1129 0,).10 0.20603
N, 1778 D,lb0l  0.20008
N.2416 0.1%65 0,00633
0,305 0.2416 0.200832

LT 00,2062 etz 863

(a3

P TRST PRESSURE TAP = 0,008313

CF(REIM Fp FP(RED A
Jo9L =0.00296 -4,29
6.33  0,00089 1,37

].(.).()c! U.O()479 7.848
11,56 0.00541 9,30
11,37 0,00520 9,33
L8535 0.007b1 13.86
ottt Pt 5%

{(pi )M TislILK
DG

16450 .6 994, 2
19lsa? 69) 43
lovbal AR 7.
L730.4 32440
Lr95.7 A81,0
LRGS0 eh1e6
18662 ;37408

TB/ Ty

V6037
Qe 106
(1o 193
G357
0.907
0)e944%
0960

v )
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TARE TEST TAKEN FROM RUM NO. 3
TAKE THERMOCUUPLE QUTRUT (MV)
I CTAVILY) ragl,2) 1 TA(L»1) TA(Ls?)
1 4.2441 4,2468 7 4.,2819 h.?2819
2 4.2418 442305 8 42860 4.21566
3 4.2602 4,2792 9 4.2811 Hho21CH
4 4,7266]1 4,2869 10 4,2R53 4,285
5 4.2901 4..889 11 4,2999 4,290
6 4.2776 4,2715 2 4,2994 4299
TEST THERMUCLURLE DUTPUT (MV) }
[ TTi1,1) TT(I,2) I TJT(I,1) TT(1,2)
1 4.2599 4,2592 7 4.3194 44,3154
? 4a2430 4.2419 8 443144 4.,3785
3 4.,2817 4,270 9 4.37215 4,3439
4 4,2+ R0 4,2894 10 %4,3305 4430460
5 4.2993 4,3055 11 4.3915 4,441
6 he2894 he?2912 12 4.3930 444350
DIFFLELNTTAL PRESSUKE —FLOWMETER (IN,) = w.442
FLUWAFTER TEMP (MVY) = 0,9812 BULK EXIT TERP (MV) =  4.9]50
INLFT PRESSURF MAN » LLFT 3440 RIGHT 3.50 Itte HG
INLET sULK TiMP CR-AL = 13.920
STATIC PRELSURE DRUOP (iMYy
P1=-P2 = =0.,2..8 Pl=-P3 = 0.006 Pl=-Pg = 0,068
P1-P% = 0.1,0 pPL-P5 = 0.182 Pl=-P6 = 0,20
BLUE MaNUOMETER pLOID Sp GR 0,797
INLED TEMPERATURE (DEG, F) = 647,82
/Ty = Se606 MACH in. = 0,018
Dp = UL,715244 REYD = 1592.9
X+ (x4 Q+ NUM FBULK W/ T8 (R i
_ DEG. F.
Ne?96 0.2/0H —fguimddrs ~3o403D5  240.22 0.957 21014
02350 0Q.1909  Q.0827 L34 27111 D912 20412
0,183 0.15%04 0Qe)769 L6 310.)1 edT2 1170202
Nel25 0,175 0e29%y HedD46 361.29 0DeB1I 1697 40
0.2677 0.712 0.34)4 3.9608 434,16 0753 1794.8
N.O173 0.0100 0.9052 6.3098 H71.63 .6H50 165362
NN UTENSLDALTZED PRESSURE NDROP
At P
00310 2,037
N.089 . T .029
Neltats ria313
0s24930 - N.hb4
N6 3 N,R30
N.2920 1.016
POSTTIIME O ERST PRESSURE TAP = 0.007464
X+ (A M F FIRE)M Fp FPOREIM (pEDH TaLK B/ 1y
NG F
H«D133 0,130 WD 195 =0.n07297 -h,H6 HERRE SR I SHY LG 643
NDeDAB O, 20920 YelUIVUD 5.19 =9,080006 -0,07 173244 IRTTI N o I ¥)
Neluzsd 00902 Qe00H38 Qe93 D3I A A,93 1u4s31.d B9 QL7817
ND.1596 0,1345 (.000659 2.9 0,00555 10,72 L93l.? 333.7 0.847
0.2167 Q.1760 0.,00727 1458 G,00617 12,327 2nhbae RS 097
0.2(43 0.2154 0.00767 L1S.87 0.00690 14,28 20090 9h.d 0,249
03057 0.23646 Lribied SHypbp- B0 b3 21015 AT D,U62




PAKABNLIC

TARE TES

T VAKFN FROM RJUN NuU. 4

TARE THERMUCHUPLE QUTPRJUT (MV)

I CTACTSY) TALL,2) | G TA(I,1) TA(LI.2)
2 b.72.:24 4,2212 8 4.2854 4, 28973
3 4.2084 42695 9 4.2837 4,2404
4 G4.2749 44,2729 10 4,2685 44,2865
5 426968 4.2893 11 443042 4.3041
6 4.2b12 44,2754 12 4.3039 4,3028
JTEST THERMOCLUPLE UUThruT (MV) B
I 1TeI,01) TT(I,2) 1 TT(I,1) TT(]s2)
1 he20Q he2393 7 4,3055 443055
2 4.2049 4,2403 8 4.3100 - 4.,3749
3 42851 4.2903 9 4.3101 4.3307
4 4.2900 4,2915 10 . 44,3180 H43338
5 4‘2998 40.5076 N ].1 1{05058 /015()5"1
6 442504 42942 12 44,5301 4.6536
DIFFEVCNTIAL PRESSURE ~FLOWMETER (IN,) = U.5606
FLOWMETER TENP (MV) = 0,B8002 BULK EXIT TEAP (nMV) = 4,3450
INLET PRESSULE MAMN , LEFI Se75 RIGHT 5.90 [N. HG
IMLET 8YULK TLiMP CR-AL = 14.021
STATIC PRELSURE DROP (IN,) . . .
P1-P2 = 0,02) PL-P3 = (0.002 PLl-P4 = 0,002
P1-P5 = 0,23 P1-P5 = 0.004 P1-P6H = 0.005
BLUE MAMUMETLR FLUID SP GR 0,797
INLET TEMPHRATURE (DEG., F)Y = 652,18
TW/TO = 7,603 MACH NO. =_ 0,020 ..
PR = 7,715627 REYD = 2067.5
X+ (At )M Q+ , MUM . TBULK TW/TH (RE Y
o ; . DEG, F,
02286 041712 =0.5541-926,.,1641 211.66 e 99/ 2310 .9
0.1845 0.1351 0.0018 -14.8064 191.29 1.031 /477245
Nelatis  0.1020 02437 =26.0078 B4 .58 Le(4?2 2197 ,3
0.0962 0.0711 02279 -56.1272 199.75 Lefi?2:) 2460649
N.052721 0,0409 D.4440 30.H8BY8 257.00 (939 26860
0.0080 0.0u73  2.3427 25,2938 458,10 Ve ThH 22975

NUN DIMENSIUNALTIZED PRESSHURE NROP

A+
0.02%4
0.0685
0.1126
Nel568
N0.2009
0.2253

PRSTTTOM
X+

D.01.3
00031'()
0.0788
0.1229
ND.1670
0.,2112
0.2355

P+

c,002] ‘

n.005] ManomeTER \.\ME Blew".
a0 ’D\Jmm\f VAwWeES.

INLET VELUCTIY TEST NO, 9 279,

0,017

N.012

n,01%
It FIRST PRESSURE TAP = 0.005748
(x+ ;M F F(REIM FpP FP{RED (b M THULK TR/

NeEG F

0.00596 2700472 4Bq, 6 ,711
C.0¢88 2H60,0 3201 0,461
0.0596 IR GH 20T (.987
N.0098 2rThaids 16,6 1,036
D.1217 2ARYy O VRY .9 1,040
D.1564 2nh0) o4 A0, ] Le0lH
0.1769 200 0 c13.1 0,994
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PARABOLTIC INLET VELGCITY TEST NO. 10
TARE TEST TAKEN pRUM RUM NO. 4
FAKE THERMUCLUPLE OQUTPUT (MV)

! TACI»1) TACL,?2) 1 TACI,1) TACT»2)
1 44,2189 44,2403 7 64,2861 4,289
2. he2i24 4,2212 8 44,2854 bhe2593
3 4,2684 4 ,2695 9 4 ,2637 he2204
4 4.2749 4,2729 10 4,2885 4,206
5 4,298 4,2893 11 4,3042 4,3948
6 4.2612 4,2754% 12 4.3039 4he3078
TEST THERMILCLUPLE OUTpUT (MV) . .
I 1T, 1) COTT(1,2) 1 TTCISL) T (1,
1 46,2519  4.2546 7 442948 4.2944
2 4,2407  4,2390 8 44,2963 4.3071
3 S AL,2B18 4,289 9 4,3073 4.37259
(' .402.&60 ’9.2308 10 R 4.5134 /;.38“1
5 44,294 hea2995 11 4.,4070 G491y
6 4,2839 44,2858 12 4.40068 bhathh]

DIFFESLNMTLIAL PRESSURE ~FLOWMETLR (IN,) = 0.492
FLUWME TER TEMP (MY) = 00,8700 BULK EXIT TO0P (HV) = 4,6330
INLET PRESLURE MAN » LLFT 4450 RIGHT  4.65 [n. HG

IMLET sULK TehP CR-AL = 14.025. .. . .
STATI(C PRELSWRE DROP (LM, . .
P1-P2 = -C.0L9 p1-P3 0.012 P1l=-Pg
PL-P5% = 0,147 pL-P5 = 0,222 P1-P6
BLUE MAIMETER. FLyID Sp GR 0.797. . .
INULET 1ENPLRATURE (DEGs 1) = 652,35
TW/T = _0L603. . NMACH D.. = 0.019..
PR = "a715B042 RLYD = . 1794.8

0,081
N,264%

X+  (A+)M __ Q+  _HUM___ TBULK  TW/TBR CWED I
, S  DEG. F.
062634 0.7 ,]11 —Gwicgdtm  detibsg 229,64 04972 237744

0.2125 D.1675 0.0701 b3 261447 URD3L 202
Q.1617 2.1324 00,1713 Sr4482- 302.04 0830  2101.0
Qell Y QadINY  utipde P 357.65  (ed20 DL/ ed
N0.00650 0.0563 0D.41h4 447837  436.75 G750 207,249
Q0.009¢ D.OUBY  1.1219 7.00979 583.92 (0649 1454

C DM DTAENSIOOALIZED PRLSSURE DROP.

At P+ : , R
0,028 -).073 . }
nN,078Y 0,046 e
0.1294 n.312 - .
0.18G0 “.563 v o

00231/0 '\.‘.351, .

Qe2593 1.014 S
POSTITINN DF FIRST PRESSURE TAF = 0,0060621

X+ (A+ M ¥ F(REIN Fp FRP(REYMA (1M TeuL 18/

BEG F
0.0L18 0.,0516 0.000u9 Cal7 -0.00423 -7.78 Ln3ee3d 2907 Ga035
00,0399 0,Q2573 0.0029)1  5.66 -9,00031 -0,59 V%70 a3 .4 0,704
0.0007 0,096 Q.2006L% 12.79 0,00435 92.00 20u93.7 397.9 0.7848
0.1416 0,1180 0.00721 15,80 0.,005493 12,79 2194.48 J217.0 0,453
00192/’ D.1b40 On'.)0722 1he48 n,00598 13,65 LoB) L8 cBL.6 00907
0+2433  0.1EHE . 200778 18¢37. 0,00687 16,20 23990 A5 04954

NP T13  0.2071 <wmillb A0yt St +Fkb  2397.6 2841 09T
v e e )
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PARABOLTC INLET VELOCITY TEST NO. 11
TARE TEST IAnEN FRiIM RUN NU. 4
TARE THEKRMUCGLUPLE OUTPUT (MY)

[ TA{],1) TACI,?2) 1 - TA(1,1) TACL»2)
1 4,?2389 64,2403 74,2861 h,2887
2. 4.222% 4.22172 8 4,2854 h 2993
3 h,2084 4,2695 9 4,2837 4 a2R04
4 64,2749 6.2729 10 4,2B85 he 2865
5 4.2u98 4,2R93 11 4.3042 he30%R
6 4.2512 he2TH4h 12 4,3039 4,30728
TEST THERMJICUURLE DUTPJIT (MV)
1 I'Tel, 1) TT(I,2) I TT(I,1) TT(1,2)
1 4.2530 he2567 7 4,3034 4.3
2 4.2421 hel416 8 443039 4.314H9
3 4.2609 4,2867 9 4.3199 b4e3423
4 ho2482 . 42887 10 443274 46,3421
5 4.299] 4,3048 11 443866 hetp5)p
6 4.28399 4.2913 12 4,3618 hohpt?
DIUFFERENTIAL PRESSURE —~FLOWMETER (IN.,) =  C.400
FLUWMEIER TEMP (MV) = 0,8700 BULK EXIT TEMP (mV) = 4,8980

INLET P<LSSUFE 11AY » LEFT  3,A0 RICGHT 3.70 IN. HG
INLET 8ULK TCLMP CR-AL = 1J 942 .
STATIC PRESSCRE DROP (UM

P1-P2 = ~0,015 Pl-P3 o 011 Pl-P4 = n.058
P1=P5 = 0,118 pL=-PY% = 0.175 Pl=P6 = 0.210
dLUFE MANOMET=R FLUID S» GR N¢797
IMLET TEMPLR-TUKE (DEG. F) = 648,77
TW/TO = TL.00% MACH Wn, = 0,016
PR = 4,,7154327 KEYD = 1461.5
X+ (A+)M 0+ MM i BULK VAR (RIYH
DEG. F.
Ne3236 0.2496 0.03214 Bt 238450 G959 1vi.2
Na20611] 0 2.67 0.0870 S DGR 264454 927 1Hin e
DelYny <1032 Vel619 LA Bot 305415 H.ATHE S 1n18.40

Nel36, O 1175 0e2311 4,073 366.55 L.} 4 17207
00737 00678 0.6186 49,2293  461.70 D7 Lol 7eh
00,0113 0.n)112 00,9355 5.0145 633,84 L,519 laTl.0

NON OTHERSINDALIZED PRESSURE DROP

A+ P+
0.0345 -, 0b4
0.0970 .06
0015(‘)/0 "').323
0.221Y9 N",655
Q0.2843 N.970
N.3183 1.169
PAOSTITUM ™ FIRST PRCSOSURE TAP = 0.008134
X4 (ad ) o 2 F(REIM Ep FR(RE)! (1 F )M TEULK 1B/ T
NG F
000]‘/‘3 Ol’)J.('S O-"U'KZ 0‘33 —”-()()"3! "(’,3\) l,"h'ln‘..) (‘('/o;,). ”0(3()7
D049 0.NG6EB (.00318 6,92 =0NG03R 0,59 L4740 231,40 6T

DelllH 0,092 0N0AA0 11437 0006062 T.74 147449 60 o 01 T4
Dd1739  0,14649 0,208320 1495 0.00608 11,85 1/70473 237406 Ualvh8
062364 0.1706 0.u0835 15,46 0.00704 13,03 14bhi.7 A2 .500
02989 00,2235 0.70832 16.84 C,00786 15.00 19045 2h 7 0,941
0e3330  0.2572 —Avr945  dBadi- B840 FhpBhe— (93100 CATeH OB
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PARABOLIC IMLET VELOCIIY TEST NO. 12

TARE TEST ITAKEN FROM RUN NQO, 4
TARE THERMUCLUPLE OJIrPUT (MV)

[ TA(I,1) TACT,2)Y 1 TACI, 1) Talls,2)
l 402}89 4.&403 - _.(< . 4’2861 /.027582
2 4.2224 442212 8 4.2854 4,219
3 4,284 44,2695 9 4.,2837 4,2500n
4 42749 442729 10 4,2885 h 2365
5 44,2698 4e2893 11 4.3042 4,347
6 h.20i12 hell54 12 he3039 4,307
VEST THERMUCLUPLE QuipyT V)
| TTel,3)y TT(I,2) 1 O TT(Is1) TIC1,2)
1 C4.2514  h.2560 7 4,3007 4.3007
2 4.,2421  4.2420 8 4.2986 4.3108
3 4.2839  44,2B92 9 4.3105 4.3,9)
T4 . 4!2&.‘195 R 40&898_-10 - - 4!31.()3 /’ode‘J
5 44,2992 4.3041 11 4.3813 hah LB
6 . 4.2884 442905 12 . 4.3809 4.42720
DIEFLRENTIAL PRESSURE ~FLMWMETER (IM,) =  G.350
FLOWMFIFR (EMP (MV) = 0,8685 BULK EXIT TEMP (BV) =  4.9570

[HLET PRESSUKE MAM » LEFT _3.40 RIGHT = 3,530 IN. W0
IMLET BULK TeMP CR~AL = 13.8l10..... .. .
STATLIC PRESSURE DROP (IN.) .

P1-P2 = _~0.0J0 Pl-P3. = 0a02) PLl=Pg4 =  0.085

P1L=P5 = 0,737 P1-F5 =_ 0,143 P1-P6 = 0,174

BLUE MAMUMUTER FLUID SP GR 0,797

[MLET TEMPLRATURE (DEG. F) .= 643,08

TW/TO = . _0.608.MACH N0, =._0.01l4 . ..

PR = U 71483, RIYD = 1282.4. ..

X4+ (aw)M o Qs U NUM o THULK W/ T CRED

_DEG. F.

Ne369) 0.2657 . Qetald e fS9E 240035 G001 66K
02978 022351 0.0793  ~98eb- 259,75 (933 Lnhis]
Qe2266  0.1043 (Q.1782 L3828 292.34  ULHI3 LH0AeY
0¢1553 0.1320 QeL1743  3.6322 344.18 0.836 15455
N.084]1 0.0759 (.3337 3.9530 428443 0757 144745
N0128 0.0126 H.8874  5.3140 595.31 UeH4L 1leoe]

WON DTRCNSIOUALIZED PRESSURE DRUP

X+ P+
0.0393 =0.075
0411560 e l%9
Oel8ly  0.397
0.2531 N.701
0.3243 L.035
0e3636 1.253 _
POSTTIUN D0t IRST PRESHURE TAP = 0.009277
X+ ariM F F(RE)M_ . FP PP(REDNIT (pEDY Tedlk TR/ T,

- S ne r
00')16() O:Ulb‘f O-OO’)()R 0:89 ‘0000415 "S.%(’) 15(107 'l'r] (_).()28
00,0559 00,0525 0.00%06 5.63 0.00045 D62 1380044 wDa,1 0,705
Del271L 01112 0.00742 L1elh  0.,00547 8,14 1496, OV, 04199
0,194 0.,1649 0.00766 12,34 0.00661 10,42 15754 1Ye2 VBB
Ne2690 0.2.60 Q00793 12.29 0.20644 100451 16334 ¢ cTh.0 0.915
Ne340d8 0.2065 0,00934 15601 0.20863 14.43 167243 2h a0 0,0
Ne38r2 0e2945 Dirdetnd dhydre D 00056 iy 16AALY 39,0 0,961
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PARABALIC INLF1 VELOCITY TEST NO. 13
TARE TEST iAREN FROM RUN NO. 4.
TARE THERMOCOUPLE QUTPUT (MV)

I TAVI, 1) TA(L,2) 1 TA(L» 1) TACls2)
1 4.2389 4.,2603 7 4.2861 Hhe2HRp
2. G4.2224 4.22172 8 4.2854 He 2093
3 4.26084 442695 9 4.2837 Hh 42,004
4 4.21749 442729 iu 4 2885 bo250K
5 4.2898 4.,2893 11 443042 43048
6 4,24512 He2754% 12 4,3039 he30 A H

TEST THIRMUCLUPLE QUTPUT (MY)
[ TT(l,1) TT(1,7) I TT(I»1) TT1C1, 2}
1 4.,2425 44,2055 7 4,216 he?9Y 06
2 4.23507 42289 ] 43047 b3t
3 4.2/63 . 4,2803 9 4.3078 he3i%]
4 42027 4.2821 10 44,3121 4.37274
5 442939 4.2978 11 4.3737 I RER
6 4.2640 h.2845 12 4,3715 haets(,M9

DIFFERENTIAL PRESSURE ~FLOWMETER (IN,) = 0,300

FLOWMETER TEBP (MV) =  0,6968 BULK EXIT TP (V) = 4,521

INLET PRESHUEFE AN » LgFT . 3450 RIGHT 3,70 IN. MG

IMLET sULK TLMP CR-AL = 14.020

STATIL PRESSGRE DROP (INGY

P1=-P2 = =0.257 pL=-P3 = 0.0?3 P1=-Pq = 0,052

P1=P5 = 0,348 Pl=PS = 0.129 P1-PO = 0,151

BLUFE PANDMETER FLUID Sp GR 0,797

INLET TEMPLRATURE (DEG. F)Y = 652,14

iw/TU = Q.604 MACH WDR. = 0,012

PR o= 0, 715623 REYD = 1120.2

X+ (A+)M 0+ Nt THULK TW/TH CRE VA
DEG. F.

N,6270 D301 0.0093 bRl 023,67 00980 JLGS.2
NDe340H NDe20G39 (Qe4b8 Ayl d 244,32 (1e" 1573 147049
Me259%1 0.2:.77 0Q.1402 btPAR- 279,410 D903 147 1.5
D.1776  D.149H5 —Bp3tFg— —d56808- 335,45 0.45%5  1260.d
N.09%9A1L 0.006% 00,3113 3.7787  426.56 0.(H% 1713
NeNLGT Dol H0  0.3L517 Hhe 1836 605,61 0.60734 Ltahe0

NOM DIGERSIOLALTZED PRESSURE DROP

At P+
N.N45% -0,067
Nell264 N.217
Qe2079 n.485
N.2894 N,822
0.37:8 1.215
Netlhd 1.419 ,
PUSTTICN OF FIRST PRESSURE TAP = 0,010608
X+ (r+)M F FI(REIM Fp FEP(REY LR Y (UL 18/ 7

PDEG F
0.,0189 0.0i88 0,90135 1.53 =0,00374 =4,2% 134,18 02l .3 n.621
00629 0.75999 0.900487 ° 5.91L 0,00100 1,272 1212.8 NPi.2 4,103
D«14%4 0.1.,63 0,00849 11618 9,000635 RL,37 1317.6 34427 Q.808
02268  0.1562 0.00910 12.70 0.00770 10,74 113949 10441 OLHT9
0.3083 0.2429 (0.908/8 el .0D0753 1N,9%4  1451.6 29T 1).934
0.38798  0.2988 Q..Ll045 1557 9.00960 14,31 149041 23204 09T
0.4347 0.3300 0.00997 14.99 0.00945 14.21 150143 272/ 0.984
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PARABOLIC INLEYT VELOCITY TEST WO, 20
TARE TEST TAKEN FROM RUN MO, 16
TARE THERMCLUPLE DUTPJUT (MV)
I TACL,)) Ta(l,2) 1 TA(IL» 1) TA(1,2)
1 64,2023 he23%21v 1 44,2768 46,2171
? 4.2180 4,2156 8 4.2749 Go2 187
3 4.2685 ho2b36 9 4.2793 4,21739
4 4.,2739 44,2719 10 4,2837 G4,25724
5 4.2H64 4.,2046 11 4.2966 44,2769
6 4.274] 4,2688 12 4.2908 hel N
TEST TufRMUCUUPLE SuTpruT (MV)
I IT¢I,1) Tr(1,2) 1 TT(1,1) TT(Ll,2)
1 4,000 44,2000 e 4,2839 4,2339
2 4.2000 4,000 8 4,2881 4,228
3 64,7000 4.0000 9 4,2800 he20h72
4 4.2,00 40000 . 10 442832 442184
5 4.2834 4.2831 11 4.3306 4a3 75
6 4.2/04 44,2686 12 443329 44318
DIFFERENMTIAL pRESSURE ~FLNWMETER (In,) = N.394
FLUWMETER TE~P (MY) = 00,8760 oULK EXIT TEMP (14V) = 4,2%53
INLET pPRpS§uURE MAN » LpFT 3470 RIGHT  3.85 [N. HG
INLET ByuLlK TeMp CR-AL = 7.985
STATIC PrESSURE DROP (1M,) ..
Pl=P2 = 0,012 P1-P3 = 0,045 P1-P4 = 0,103
PL-P5 = 0,15) pl-P5 = (0,206 Pl-P6 = 0,238
BLUE MANDMETER FLUID SP CF 0,797
INLFT TEMPERLTURE (DEG. ) = 0 397.35
TW/TU = D,783 MaCH ls = C,014
PR = (., 70069" REYD. = lobv3d .8
X+ (x+)M O+ plIM TRULK TW/TH (RN
) DEG. F.
Ne297 1 042472 D.0483 FrgeipBamge 214023 0B U4 LD
Ne234] 0.2.21 Q2363 bl 226,61 (4967 19001
Ol 76, 0.1u66 (e1206 e J444360 009520 1YW
061221 0.110]1 —=Fvbtiy =i b2a8 69,87 L.920 18462
N.066] 0,17 0.2510 4.,3143 3728,5H] e HTH LiFne?
0,011 0.0 00 0.6043  ©.3103 38B0.25 0802 16dv.7
NUN DT OWHSIQLWALIZED PRESSUKE DROP
A+ P+
0,039 N, 089
0008("9 '.338
Nel1429 ~LT66
0.1989 1.122
02549 1.532
N.2858 1.775
POSTTITHN O FIRST PRESSURE TAP = 0.007292
X + (r+ 1M F F(REIH Fp FPRE) A (P M Ty UK
Dt G F
0,020 0.0129 0.203%8 8,20 0,20102 3,71 167449 ELURS:
0.0639 D )421 0490829 L0020 0.00342 6,7 Vibn.2 Pl 9
00999 0.M9)17 De0071)1 L2491 Q,00607% 1,06 1515%.0 JEoLY
0.1559 0,189 0,930775 14,43 0,00707 (3,71 [ AEPRH cHLLY
02119 04144 0.00790 15.06 0.00732 (3,95 1203 L
00?67‘) 0.2300 OnC‘O'iJ? l():?() 01007\)8 15-/?1' L9%n 40 Alvgd
02988  0.7949  Lieiidfiald  dFobt— B3B8 +b7F 1046, Sl1ae7

18/ 7T

0,79
01473
N,500
)e939
U967
UeIBE
0998
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PAKABOLTC INLET VELUCITY TEST NO. 14
TARE TUS! JAKEN FROM RUM NO, 4
TARE THERMUCLUPLE QUTPUT (MV)

1 TACI, 1) TaiTl,2) I . TA(I, 1) Talls2)
iR 4,2389 . 442603 7 4.28061 4,2R82
2 4.2224 4.2212 8 4.,2854 4,2793
3 4.2684 h.2695 9 4.2837 4,2804
4 4.21749 h,2729 10 4,2885 4.,286%
5 4,2698 4,2893 11 4,3047 4.3048
6 4.2512 ho2T754 12 4.,3039 4,368
FTEST THERMUCUUPLE OyTlpdT (V)
1 TTil,1) CTT(L,2) 1 TT(L,1) Ti(]s2)
l 42327 4.,2317 1 4.2800 he2500
2 _ 4,289 4,276 8 ,072910 46,2910
3 H,2659 4 ,2693 9 44,2923 4.,3u09
5 4.,2538 4.,28%8 11 4.3655 4,3470
) G, 2737 . 44,2732 12 . 4,360l he 39739
DIFFERUNILIAL PRESSURE ~FLOWMETER (IN,Y = G.2bl
FLUOWMETFR LERP (MV) = 0,858% BULK FXIT TERP (MV) = 41,5950
INLET PRESLUKE MAp o LEFT 3,70 RIGHT  3.85 [N. 6
IMLET BULK .TEMP CR-AL =  13.97L__ . _. .. .

STATIC PRESSURE._DROP (LM,.)

P1-P2 = =N,003 pLl-P3 = 0,022 Pl=-P4 = 0.049
PL-P5 = 0,079 pP1-P5 = 0,L10 Pl=-P6 = 0,130
BLUE MANUMLTER gLyl Sp GR 04797 -
IMLET TEMPERATURE (DEG. F)_= 650,02
FA/TE = .. D.6Uy MACH WDe. . =..0.010 ...
S PR o= 0, 715437 REYD = 918.0.0 _ ... .
X+ X+ M O+, . CONUM U TBULK o TRHATD VPE Y
DEG. F.

0e5151 063917 ~Hvipiri— =SB~ 225.16 G.97/ 172304
04157 0.3199. 0.0484 _—bsfozf 236,79 0.963 1210.2
Ds31A2 02502 01183 xb453 264.55 (920 1184.6
Q21683 041776 ~pvabPpe —dbaB— J15.05 UR65 113247
O0.1174 0.,1242 0.20627 3.5455  a0hJH0 Ul 1O 105802
QeDL79 0.0} 76  0.735L 4.3993 597.89 u.039 GhCed

MO DINENSLOSALIZED PHESSURE DROP

At P+ .

0.054v  ~0,045

N.1543 0,304 . _

0.2538 D.687. . . . .

N.3532 L.11s L

Q.452 7 1.554...

0,575 1.836 o v
POSTTIUN Ot FIRST PRUSSURE TAP = 0,012949

X+ (X+)M F F(REIM FP FP(RL Ci B0 T ULK iB/1,

peEG F
0.023L 0.0229 (¢.00174 Leb2 -0.00387 =-3,061L 934147 Dlh,2 0,625
00078U 0-9/25 OoQUbdé 6.27 O-(JUZUB ?.()c' L\’“JOB “'7{107 Uo,lh
0.,1774 Q41519 0.01077 11.80 0,00303 9,45 1s0u.d 549095 0.25
062767 0.2:39 0.0ll20 12499 0,01002 Lla6e  L15HDGT cP6HLS5 UL,900
0.3763 0.2934 0.01031 1238 02,20947 t1.37 120143 L0802 UWI49
O.475%4% 0.3038 0.01129 14.67 0.01133 La.a3 1223, 22%,2 0L,97Y
0.5307 0.4540 0,01239 15,85 0,01266 15,56 1.29.0 FPn .9 UedBi




PARABOLIC INLFT VELUCLTY TEST NO. 27
TARE TEST VAREN FROUM RUM HG. 22
TARE THERMUCLUPLE QUTPUT (MV)
I TACT, 1) TACT,2) 1 TA(I,1) TA(L»?2)
1 4.244]) he2b5? N 4,2585 4 ,2594
2 4.2323 442290 8 4.2620 he2h64
3 4.2526 4425921 9 4.2562 he2H00
4 4.20L32 hel598 10 4.,2550 Helo?YH
5 4.2i0Db 44,2700 11 4,2865 44,2879
6 4,2592 4.2533 12 4.2854% 44,2843
TEST ITNERHMICOUPLE DUuTrygT (hv) »
[ rmel, 1) ITer,2) 1 TT(1,1) Trir,,)
) 4.2%30 4h¢e2698 7 4.3110 44,3110
2 4.2531 462530 8 443325 6431325
3 4.21764 4,2812 9 4.3316 he3987
4 42380 44,2920 lu 4,3338 443349
5 4.3003 443076 11 Teb623 f.673R
6 4.2456 442904 12 4.6076 hoeT0H77
DIFFEPENTIAL PRESSURE —fFLOWMETER (IN,) =  0.576
FLOWMETER TEAP (V) = 00,8599 BULK EXIT TENP (MV) =  6,.3300%
[HLFT PRESSURFE At » LEFT 5,80 RIGHT  6.0U IN. HG
INLET gULK TLHP CR-AL = 19,192 ..
STaTIC PRESSURE DRAP (IM,) N
")l—pe = —-(')'(:I"'b' PJ."'P} = 0.012 Pl"olf = Oolf“-)
PL=P5 = Q0,202 _pLl=P9 = 0.316 Pl=P6 = 0,381
BLUE MANUMETER RLyID Sp GR 0,797
INLET TEMPLRATURE (DEG. ) = 475,64
TW/TL = G.502 MACH n0, = 0.023
PR = .7402677 REYD = 1943.,0
X+ (X+)M a4+ NI TRULK W/ Th (REIM
, . ‘ DEG. F.
Ne2352 0.1t 13 -Gt At 28650 U898 2004465
N.18% 0,1448 (0.1159 T7.2150 275.21 09213 2065145
Deldda 01110 0a.178Y 9.8246 2R3.31 Ve 2072 .0
Ne09Gy 02N /B7 —SwriInli —JvBdb— 321,52 LadhAL 2H85.4
Ne0535 00457 2.5172 8.9709 414,89 0.771L 240/.2
00032 040,79 22255 14.3736 AT9.3D 0.604 ?179.4
SN DTOERSAOUALIZED PRESSUKE DROP
A+ P+
0.0251 ~0.11D
0.0705 0H.029
NDe1159 Na249%
0.1613 D496
De20167 Q717
0.2311 0.938
PASTITIUN Of + TsT PRESSURE TaP = 0.005912
X+ (x4 M F F(REIM Fp FPIRE)IM  tREIM TLULK 18/ 7Ty
_ NG ¥
N.0L36 Q.0103 0.00238 4,87 ~0,00576 -11,8u 2050.7 (l1odd 0,574
OvOBS() 0-').)20 O-OOQ?? J.Ocal. -0.0010? "2033 ?._/.’.ﬂ_’_;.i.' 50‘-'-2 ()lf-‘_97
D081 0.7'wbd 0,)0727 1822 0.00526 13,19 2L06.0 1543 ULH2]
0.,1264 0D.79806 0.00763 20,10 0,00706 18,61 2035%,0 (9746 0.e87
Dy1718 Nel2l4 0.,70711 19,08 9,00669 17,97 26057 FTHGD 1913
D217 0.166% 0.00738 19,77. 0.007688 21.1)L Qofu.? 649 UL109
002/'23 0-1(‘7(-1 0-')”734 2.()00:) ('000797 Z].l’) a'\‘_)‘l.j r'87-‘) ‘)o}‘()(}
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PARABDOLIC INLET VELQCITY TEST_ NO, 23

TARE TEST TAKEN FRUM RUN NQO. . 22 .

fARC THERMUCUOUPLE OQUTPUT (HV)
1 TA(I,1) TA(I,2) .1 TA(I»1)
1 ('-211.4]- - 4-&4.‘)2 __7 - 4:2585
2. 4.2323 4,2290 8 4.2620
3 4.2526 4.252) 9 he2562
4 4.2032 he2598 10 44,2550
5 4,2705 44,2700 _ 11 4.2865
6 4.2592 . 4,2533 12, _4.2854

TEST THERMUCLUPLE DUTPUT (V) .
I TT(I,1) TT(1,2) 1 TT([,1)
1 4.2562 he2609 7T . 4.2868
2 64,2456 4,2451 .. 8 _  4.30b4
3 4,2659  4,2699 9  4,3314
‘f . 4-2264- P 4.&792“ ._..,ll&)..,.m (’ 03407
5 he2854 . 442919 11_ . 4.4286
6. 4,216, 44,2726 12 . . 4.4384

DIFFERENTIAL PRESSURE ~FLOWMETER (IN,) =

FLUWMETER TELP _ (MV)
IMLET PRESSUKE MAN » LLFT
INLET. sULK. . TEMP CR-AL =

STATIC PRESSURE OROP (IM.) .

0,875v BULK EXIT TEMP
4. 70 RIGHT
19..157 ... .

TA

4,
4,
4,
4,
4,
4,

T

4o

4,

{9

[/

4.

. Oy
De35N5

(V)

PL~P2 = ~0,057 PL-P3 = -0,013 P1l-P4 = 0.0567
F1=P5 = 0,126 PL=-P5 = 0,205 P}1-P6 = 0,249
BLUE MAMOMLTER gLyID Sp GR.DL797 .
IMLET TEMPELRATURE (DEG, F) = __ 874,13
/T = 0,503 HMACH nne .=...0.021. .. . .
PR = " ZT40u71 REYD = 17008 _ .
X+ ae )Mo QA+ . hUM. _ TBULK TW/TR
DG, F
02688  0D.2054 00441 B8RO 276.94 0.909
02109 0Q.1730. 000977 =329 326,17 G.l54
0«165) 0.1289 0.1122 P8 397,37 O./BD
0el113] 0.1:13 ~guwigpdrt- —3256- 499,05 0700
N.0612 0.0584 _(.06232 h.2617 647.65 00609
O0eNUYI  0.0,94 L1850 G4.6719 191.49 D03
WO DIAENSLOALLZED PRLSSURE DRQAP
X+ P+
0.0286 -N.17% LEAR
0.08BH -2.039
0el324 J.l73
Ns1843 0,384
Ne2362 D.624
0.264Y 7.701
PASTTTIUN Of FIRST PRESLSURE TAP = 05,006756
X+ {(r+)M F FOREIM Fp FP(RE) N
00007 043400 O.nu2le 2,93 =0,00186 ~3,29
000920 O."Lf)? OoOU?d‘r lqo()s 009()/’3() 8.’92
0el44> 00,1255 (00782 1lhela 0.C0568 11,72
0019().’5 001(’09 OOOU(’“Z 11‘90“ 000()472 10,34
N0.2482 0.1938 0.00758 1740 GC.000648 14.92
02769 0.2115 0.,00808 8w 0,00685 —rérir

(I,2)

2594
2645
2500
2525
2379
23773

{(1,»2)

2ROB
3054
3082
3714
494n
5145

287.

=~ 5,859

4.85 [He M6

CRE DI

2351 ah
2,935
PARE AR
199443
1“\/’/'-7
L4750

(M

Lotign
J. /(’()~")-
12181
2062 .4
2197730
2352.0
2352.8

ALK
.G r
TP ,9
(D).l
L h .0
Al 2,5
9% .4
299, )
¢cT4,.8

1) PRESSURE TAP W 4.

YR

0091
N,55H
OehDH
Oe 144
UenH2l
UeIBLH
(1914
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PARABOLIC INLET VLLOCITY TEST NO. 24
TARE TLEST TAKEN EROM RUN NO. 22
TARE THERMGCUUPLE DUTPUT (V)

I 1ALT, L) TA(T,2) I S TACIS 1) TACT»2)
1 4,2441 44,2452 1 4.2545 4,759
2. 4.2323 64,2290 8 4.2620 4,204%
3 4.2526 142521 9 - bh.25602 44,2500
4 4.2032 4.2598 10 64,2550 he?2525
5 4.2705 4.2700 11 4.2865 4,2879
6 4.2592 4,2533 12 4.2854 bo20847
FEST THERMLCUUPRLE QulipyT (MV) L
I Tre1,1) TT(I,2) 1 TT(I,1) TT(Lsp)
1 4,2068 4,2730 7  4,3050 4.3050
Pd 44,2525 4h.2566 8 4.31064 4.,3164
3 4.2698 42783 9 4¢329% 4,3000
4 4,2003 . . 44,2836 10 | 4.3262 44,3474
5 4,2942 4.30%6 11 4.4222 4.4850
6 1002_750