Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

INFORMATION TO USERS

This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

- The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
- 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
- 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again beginning below the first row and continuing on until complete.
- 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

University Microfilms

300 North Zeeb Road Ann Arbor, Michigan 48106 A Xerox Education Company

72-26,337

SHILLING, Norman Zethward, 1944-THE EFFECT OF VARIABLE PROPERTIES ON THE LAMINAR FLOW OF GASES IN CYLINDRICAL TUBES AT LOW WALL TO BULK TEMPERATURE RATIOS.

. _

1

Newark College of Engineering, D.Eng.Sc., 1972 Engineering, mechanical

University Microfilms, A XEROX Company, Ann Arbor, Michigan

PLEASE NOTE:

•

.

Some pages may have indistinct print. Filmed as received. .

University Microfilms, A Xerox Education Company

THE EFFECT OF VARIABLE PROPERTIES ON THE LAMINAR FLOW OF GASES IN CYLINDRICAL TUBES AT LOW WALL TO BULK TEMPERATURE RATIOS

ΒY

NORMAN ZETHWARD SHILLING

A DISSERTATION

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

0F

DOCTOR OF ENGINEERING SCIENCE IN MECHANICAL ENGINEERING

AT

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author(s). Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work

Newark, New Jersey

1971

APPROVAL OF THESIS

THE EFFECT OF VARIABLE PROPERTIES ON THE LAMINAR FLOW OF GASES IN CYLINDRICAL TUBES AT LOW WALL TO BULK TEMPERATURE RATIOS

ΒY

NORMAN ZETHWARD SHILLING

FOR

DEPARTMENT OF MECHANICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

ΒY

FACULTY COMMITTEE

APPROVED:	CHAIRMAN
TILL HOVED .	CHILLING AND CONTRACTOR OF THE CONTRACTOR OF T

NEWARK, NEW JERSEY NOVEMBER, 1971

ABSTRACT

The problem of heat transfer in laminar flow of a gas through a constant diameter cylindrical tube is treated. The gas is cooled by the tube walls held at constant temperature. Two tube inlet conditions are considered: (1) fully developed velocity and uniform temperature profiles (Graetz boundary condition) and (2) uniform velocity and temperature (UTV) profiles. Results of the theoretical and experimental phases of the work are presented.

The theoretical solution is based on the compressible boundary layer equations with varying transport and thermodynamic property terms retained. For the Graetz condition, an existing finite difference solution scheme is modified for improved prediction of gradients at the wall. For the UTV condition, a combined analytical-numerical solution scheme is utilized. Similarity conditions are assumed at the tube entrance continuing to a short distance downstream. The results of this analytic solution are then patched to the numerical finite difference scheme. Improved convergence over the finite difference scheme is thus obtainable.

Numerical calculations of velocity and temperature profiles as well as of friction factors were carried out for air and helium at wall-to-bulk temperature ratios ranging from 0.1 to 0.95 with inlet Mach numbers varying from 0.01 to 0.05.

The results of the calculations are presented in terms of Nusselt number and product of friction factor and Reynolds number vs. Graetz number. The local Nusselt number is shown to be relatively insensitive to variation in inlet wall-tobulk temperature ratio, whereas the local friction factor Reynolds number parameter showed some sensitivity to the variation of this ratio.

Empirical equations are given for the Nusselt-Graetz number relationship and the friction factor-Reynolds number and a modified Graetz number relationship (which includes the temperature ratio effect).

To substantiate the theoretical results, a limited experimental investigation was conducted. Local heat fluxes and static pressure drops at several points along a 0.3 in. diameter tube were measured. Data was obtained for air for inlet Reynolds numbers ranging from 815 to 1950 and inlet wall to bulk temperature ratios ranging from 0.4 to 1.0.

Heat transfer data for the Graetz boundary condition and friction factor data for the UTV boundary condition are in substantial agreement with the theoretical results. Close agreement also exists for heat transfer results in the entrance for the UTV boundary condition, but in the downstream region the data falls approximately 30% below the theoretical. Friction factor data for the Graetz condition are substantially less than the theoretical prediction in the entrance. This may be due to a slight discontinuity in tube diameters (about 0.02 in.) between the flow development and cooling sections.

ACKNOWLEDGEMENTS

The author wishes to thank his principal advisor, Dr. Richard C. Progelhof, for his helpful criticisms and suggestions made during this investigation. He also appreciates the interest and encouragement of Dr. Rong Chen and Professor Robert Jacobs while the work was in progress. He is grateful for the constructive criticism offered by Dr. G. Peyser, Professor E.H. Stamper, Dr. P.J. Florio and Dr. William Haberman during the preparation of the manuscript and he is also grateful for the support provided by the Foundation for the Advancement of Graduate Study in Engineering.

Cahit Kitaplioglu aided in the correlation of theoretical results. Special thanks are extended to Anita LaSalle for her encouragement and help in the programming and debugging. Paul Baham and Richard Baseil also provided assistance.

These acknowledgements would not be complete if mention were not made of my dear wife, Eleanor, who in addition to her sacrifice and inexhaustable supply of encouragement also did the typing.

TABLE OF CONTENTS

Abs	stract	• • • • • • • • • • • • • • • • • • • •	iii
Acknowledgements v			v
Tal	ole of	Contents	vi
Li	st of	Illustrations	viv
Lis	st of (Tables	xiv
Nor	nencla	ture	xv
1.	Intro	duction	l
	1.1.	Objective	l
	1.2.	Method	l
	1.3.	Scope and Reason for Work	3
	1.4.	Previous Theoretical Work	6
	1.5.	Previous Experimental Investigations	15
2.	Analy	tical Problem	23
	2.1.	Statement of the Problem	23
	2.2.	The Worsoe-Schmidt Analysis	39
3.	Finite	e Difference Solution - The Graetz	
	Bounda	ary Condition	55
	3.1.	Basic Considerations	55
4.	Unifo	rm Temperature and Velocity Profile	80
	Bounda	Providence - Analytical Solution	02
	4•⊥•	Background	02 01
	4.2.	Choice of Method of Solution ,	84
	4.3.	Similarity Solution- Compressible Variable Property Boundary Laver Growth	
		with Pressure Gradient for Tube Flow	91

	4.4.	Integration Procedure	99
	4.5.	Results	110
	4.6.	Dissipation Function	128
5.	Exper	imental Investigation	133
	5.1.	Introduction	133
	5.2.	Experimental Apparatus	133
		A. Air Supply	135
		B. Preheater	135
		C. Development Section	136
		D. Exit Mixing Section	139
		E. Metering	139
		F. Flow Control	141
		G. Test Section	142
	5.3.	Calibration	146
		A. Calibration of Heat Flux Calorimeters.	146
		B. Calibration of Thermocouples	150
		C. Adiabatic Development Section	150
		D. Mixing Section and Bellmouth	156
	5.4.	Leak Tests	156
	5.5.	Adiabatic Pressure Drop and Friction	
		Factors	157
	5.6.	Repeatability Test	160
	5.7.	Wall Temperature Uniformity	160
	5.8.	Experimental Procedure	160
	5.9.	Data Reduction Program	168

6.	Expe	rime	ntal Results	180
	6.1.	Gra	aetz Boundary Condition	180
	6.2.	UT	V Boundary Condition	190
7.	Summa	ary a	and Conclusions	200
	7.1.	Su	mmary	200
	7.2.	Coi	nclusions	201
Refe	erence	es		205
Appe	endix	Α.	Variable Property and Non-Boundary	
			Layer Terms	215
Appe	endix	Β.	Thermodynamic and Transport Properties.	218
Арре	endix	C.	Calorimeter Conductance: Error in One Dimensional Heat Conduction Equation	
			Due to Thermocouple Location	223
Appe	endix	D.	Calorimeter Radiation Calibration -	
			End Effects and Conduction Losses A. Radiation	226 226
			B. Conduction Losses	229
Appe	endix	E.	Uncertainty Analysis - Nusselt Number Friction Factor Data	231
Appe	endix	F.	Solution of Similarity Boundary Layer	241
Anne	ndiv	G	Data Reduction Program	250
Anne	ndix	н.	Data	275
Anne	ndix	т.	Derivation of the Similar Boundary	
ring	TOTY	-L •	Layer Equations	316

LIST OF ILLUSTRATIONS

Figure		Pag
1.	Idealized boundary conditions	• 24
2.	Boundary layer regions in internal tube flow	• 28
3.	Relative magnitude of terms in axial momentum and energy equations $r/r_0 = 0.10$, $T_w/T_0 = 0.10$, UTV boundary condition	• 36
4.	Relative magnitude of terms in axial momentum and energy equations $r/r_0 = 0.95$, $T_w/T_0 = 0.10$, UTV boundary condition	• 37
5.	Designation of mesh points	• 43
6.	Effect of change of radial mesh size on fRe, when evaluated from cubic polynomial	^m 58
7.	Effect of change on radial mesh size on Nu, m when evaluated from 5 point spline	5 8
8.	Variation of local Nusselt number with radia mesh size at a fixed axial point. Integrate energy equation and 5 point spline	1 d • 64
9.	Variation of fRe _{em} with radial mesh size at a fixed axial point. Integrated momentum equation and cubic polynomial	. 64
10.	Axial variation of fRe, m and Nu, m for air Graetz boundary condition. $M_0 = 0.03$. 67
11.	Axial variation of $fRe_{,m}$ and $Nu_{,m}$ for helium Graetz boundary condition. $M_0 = 0.05$. 68
12.	Axial variation of $Nu_{,m}$ for carbon dioxide Graetz boundary condition, $M_0 = 0.01$. 69
13.	Axial variation of fRe, _m for carbon dioxide Graetz boundary condition. $M_0 = 0.01$. 70
14.	Local Nusselt Number and fRe, wersus x_m^+ for air. Graetz boundary condition. $M_0 = 0.03$.71

Page

15.	fRe, versus T_w/T_0 for helium. Graetz boundary condition. $M_0 = 0.05$
16.	Variation of fRe, m with T_w/T_o for air. Graetz boundary condition. $M_o = 0.01$
17.	Exponent in fRe, correlation for air, helium and carbon dioxide versus T_W/T_0 . Graetz boundary condition
18.	Axial development of reduced temperature and u/u_m for air at two inlet temperature ratios 78
19.	Dimensionless radial velocity profiles for developing flow of air at two wall to inlet temperature ratios. Graetz boundary condition
20.	Axial variation of Nu, _m and fRe, _m for UTV boundary condition. Helium, $T_w/T_0 = 0.95$, $M_0 = 0.03$
21.	One dimensional extrapolation of finite difference (Runge-Kutta) solution to zero step size
22.	Comparison of axial velocity development from simplified analysis with that of Horn- beck
23.	Flow diagram for solution similarity from boundary layer equations
24.	Flow diagram for coupling of boundary layer development to internal tube flow
25.	Comparison of velocity boundary layer before and after patch to finite difference solution lll
26.	Axial variation of dimensionless pressure defect for patched and completely finite difference solution. Helium, UTV boundary condition. $T_W/T_0 = 0.01$
27.	Comparison of downstream Nusselt Number behavior from patched and completely finite difference solutions. Air, UTV boundary condition. $T_W/T_0 = 0.5$, $M_0 = 0.01$ 115

Page

28.	Axial variation of fRe, m and Nu, m for helium at several inlet temperature ratios UTV boundary condition, $M_0 = 0.03$ 116
29.	Axial variation of fRe, m and Nu, m for air at several inlet temperature ratios. UTV boundary condition, $M_0 = 0.01117$
30.	Comparison of isothermal Nusselt number development from other investigations 119
31.	Development of centerline axial velocity from patching solution compared with Horn- beck. UTV boundary condition
32.	Axial development of reduced temperature and U/Um for air at two inlet temperature ratios, UTV boundary condition 122
33.	Dimensionless radial velocity profiles for developing flow of helium at two inlet temperature ratios. UTV boundary condition124
34.	Reduced axial velocity development with x_m^+
35.	$fRe_{m}/(fRe)_{I}$ versus T_{w}/T_{m} . Air, UTV boundary condition
36.	Effect of additional terms in dissipation function on local heat transfer
37.	Schematic diagram of experimental apparatus 134
38.	Photograph of preheater137
39.	Photograph of adiabatic development section 137
40.	Schematic of inlet development section apparatus
41.	Schematic and photograph of exit mixing plenum 140
42.	Test section. Detail of pressure tap and heat flux calorimeter144
43.	Photograph of heat flux calorimeter Pair 144

Page

44.	Photograph of test section and apparatus immediately before radiation calibration	148
45.	Axial variation of calorimeter conductance.	149
46.	Velocity profile measuring apparatus Photograph of microscope stage and plug	152
47.	Exit velocity profile from adiabatic development section	154
48.	Calibration of adiabatic section thermo- couple	155
49.	Velocity profile from bellmouth used in UTV development section	155
50.	Isothermal dimensionless pressure drop along test section with adiabatic develop- ment section in place	158
51.	Friction factor in downstream region with UTV development section in place	159
52.	Facsimile of original data sheet	164
53.	Effect on dimensionless pressure drop of displacing point at which flow development commences. UTV boundary condition	176
54.	Experimental dimensionless pressure defect Air, Graetz boundary condition, $T_w T_o = 0.6$	181
55.	Experimental dimensionless pressure defect Air, Graetz boundary condition, $T_w/T_0=0.5$.	182
56.	Experimental dimensionless pressure defect Air, Graetz boundary condition, $T_w/T_0=0.4$.	183
57.	Experimental friction factor results. Air, $T_w/T_0=0.5$. Graetz boundary condition	185
58.	Experimental friction factor results. Air, $T_w/T_o=0.4$. Graetz boundary condition	186

gure	Page
59.	Experimental local Nu, _m versus x ⁺ , Graetz boundary condition
60.	Experimental q^+ versus x^+ for air. Graetz boundary condition, $T_w/T_0 = 0.60$, 0.40 191
61.	Experimental q^+ versus x^+ for air. Graetz boundary condition, $T_w/T_0 = 0.40192$
62.	Experimental dimensionless pressure defect versus x^+ for air. UTV boundary condition $T_w/T_0 = 0.60, 0.50, 0.40$
63.	Experimental fRe, m versus x^+ . Air, UTV boundary condition. $T_w/T_0 = 0.60, 0.50, 0.40$
64.	Experimental Nu, wersus x^+ . Air, UTV boundary condition. $T_w/T_0 = 0.6, 0.5, 0.4.197$
65.	Experimental q ⁺ versus x ⁺ for air. UTV boundary condition. $T_w/T_0 = 0.6, 0.5, 0.4.198$
66.	Thermo dy namic and transport properties for helium
67.	Thermodynamic and transport properties for air
68.	Thermodynamic and transport properties for carbon dioxide222
69.	Coordinate system for radiation calibration. 226

LIST OF TABLES

Page	Ι	Table
19	Review of previous experimental results	1.1
57	Transport and thermodynamic properties	3.1
61	High ordered profile derivatives- heating and cooling	3.2
142	Test section dimensions	5.1
233	Uncertainty intervals- experimentally measured quantities	E.l
236	Uncertainty intervals for test run #44- local heat transfer data	E.2
240	Uncertainty intervals for non-dimensional- ized pressure drop	E•3

Nomenclature

Roman Letter Symbol	Meaning
A ₁ , A ₂	area
A_n^{I} , A_n^{II}	coefficient in linearized form of momentum and energy difference equations pertaining to radial node n
a	exponent in power law for specific heat, or exponent in wall parameter correlation
B ^I , B ^{II}	coefficient in linearized form of momentum or energy difference equations pertaining to radial node n
b	exponent in power law for viscosity, or exponent in wall parameter correlation
Cʻ	coefficient in expression for local friction factor, 2 ∫ ρu ² rdr/ρ _m u ² m
С	coefficient in transformation of axial coord- inate in similar boundary layer solution
C _n , C _n ^{II}	coefficient in linearized form of momentum or energy difference equations pertaining to radial node n
с	exponent in power law for thermal conductivity
с _р	specific heat at constant pressure
c ⁺ p	dimensionless specific heat
c _v	specific heat at constant volume
D	diameter
D_n^{II}, D_n^{I}	term in linearized form of momentum or energy difference equations pertaining to radial node n
Е	voltage, or sum-squared error

E_n^I, E_n^{II}	coefficient in recursive relationship for axial velocity or enthalpy
е	thermocouple output
F	hypothetical closed form solution for velocity or enthalpy
F ₁ (η), F ₂ (η)	right hand sides of momentum and energy similar boundary layer equations
	coefficient of pressure in recursive relationship for axial velocity
F2-1	viewfactor from heating element to tube wall in radiation calibration
f	friction factor based on local wall shear stress
f Δp	friction factor based on static pressure gradient
f	velocity function, $U^{\dagger}/U^{\dagger}_{e}$
G	enthalpy function, $H_2^+/H_{2,e}^+$
G ^I n, G ^{II}	term in recursive relationship for velocity or enthalpy
Н	enthalpy
H_1^+	dimensionless enthalpy, $(H-H_o)/c_{p,o}$ To
H_2^+	dimensionless enthalpy, $(H - H_w)/c_{p,o}T_o$
Ι	current
k	thermal conductivity
к ⁺	dimensionless thermal conductivity, k/k _o
к	calorimeter conductance, $q''_w/(T_i-T_o)$
L	length
Μ	total number of axial steps in finite difference solution

•

inlet Mach number M Ŵ mass flow rate axial node index m radial node index at wall Ν local Nusselt number, $-2r_{o}q_{w}''/k_{m}(T_{w}-T_{m})$ Num radial node index n dimensionless pressure defect, Ρ $(p_0-p)/\rho_0 U_0^2$ Peclet modulus, Re Pr Pe Prandtl number, $c_n \mu/k$ Pr modified Prandtl number, $c_n^+ \mu^+ / k^+$ Pr^+ static pressure q p+ dimensionless static pressure, p/p Q_r radiative heat flux q," heat flux at tube inner wall q+ dimensionless wall heat flux, $r_0 q_w'/k_0 T_0$ gas constant in perfect gas law R ratio of neglected terms to viscosity R₁ variation terms in axial momentum equation ratio of neglected terms to specific R, heat and thermal conductivity variation terms in energy equation ratio of axial molecular momentum transfer R3 to axial convective momentum transfer ratio of axial molecular heat transfer Rц to axial convective heat transfer Reo inlet Reynolds number, $2r_0 U_0 \rho_0/\mu_0$ R_{o}, r_{o} tube radius Rem Reynolds number based on local mean properties, $2r_0 U_m \rho_m / \mu_m$

r	radial coordinate	
r+	dimensionless radial coordinate, r/r _o	
Т	temperature	
U	axial velocity	
υ ⁺	dimensionless axial velocity, U/U_o	
Ū	representative magnitude of axial velocity variation	
\overline{v}	radial velocity	
v ⁺	dimensionless radial velocity,(V/U _o)Re _o Pr _o	
V	representative magnitude of radial velocity variation	
×	axial coordinate	
, x+	dimensionless axial coordinate (modified Graetz parameter), x/r _o Re _o Pr _o	
\mathbf{x}_{m}^{+}	dimensionless axial coordinate based on local mean properties	
y+	dimensionless distance from tube wall, l-r ⁺	
Y	thermodynamic or transport property, or dependent variable	
Greek Letter Symbols		
β	modified Falkner Skan parameter, $\frac{2\xi}{U+d\xi} \frac{dU_e^+}{d\xi}$	
Γ	$\prod_{i=1}^{n} (r-r_i)$	
γ	ratio of specific heats, cp/cv	
Δp_x , Δp_r	representative magnitudes of radial and axial pressure variation	
$\Delta r^+, \Delta x^+$	dimensionless radial and axial mesh steps	
$\delta_r \delta^2$	radial difference operators	
E	small parameter in error expansion for wall derivative of axial velocity	

•

ζ	term in Navier Stokes equations $+$
η	similarity parameter, $\frac{Ue^+}{\sqrt{2E}} \int_{\rho}^{\gamma'} d\gamma^+$
θ	temperature ratio, T/T_0
Λ_{n}	Lagrangian polynomial of degree n-l
λ	term in transformed momentum and energy similarity boundary layer equations, $\mu^+\rho^+/C\rho_e^+\mu_e^+$ or second coefficient of viscosity
μ	absolute viscosity
μ^+	dimensionless viscosity, μ/μ_o
ξ	transformed axial coordinate, $\int_{0}^{x_{e}^{+}} \mu_{e}^{+} dx^{+}$
ρ	density
$ ho^+$	dimensionless density, $\rho/ ho_{ m o}$
σ	weighting factor in divided difference derivative representations, or Stefan- Boltzmann constant
$\tau_{\mathbf{w}}^+$,	dimensionless wall shear stress, $r_0 \tau_w / \mu_0 U_0$
$ au_{w}$	local wall shear stress, $\mu_{\rm w} \partial U / \partial r^+ _{r=r_o}$
τ _{w, Δ} p	wall shear stress due to static pressure gradient
Φ	dependent variable
φ	angle, or dependent variable
Ω	dummy independent variable
ω	absolute uncertainty interval

Subscripts

•

cp	constant property
e	evaluated at edge of boundary layer
I	isothermal

i	inner, or running index
k	running index
m	mean or bulk
m,n	referring to axial node m, radial node n
0	outer
w	evaluated at wall
x	local
œ	far field

CHAPTER 1. INTRODUCTION

1.1. Objective

It is intended that the present investigation shall give definitive answers to the effect of high rate cooling on the local heat transfer and wall friction parameters for the laminar flow of gases through cylindrical tubes. Two commonly encountered gases - helium and air, are examined in detail. Temperature differences considered may be large enough such that substantial variations in gas transport and thermodynamic properties occur. The tube wall temperature is constant. Initially, radial temperature profiles are uniform and velocity profiles may be either fully developed (parabolic) or uniform at the point where cooling of the gas commences. In particular, it is desired to,

- 1. Obtain a theoretical prediction of the axial behavior of the developing flow.
- 2. Develop satisfactory design correlations for the results of the analysis.
- 3. Test the theoretical analysis by obtaining experimental data under conditions treated in the theoretical analysis.

1.2. Method

For the theoretical analysis, the reduction of the governing equations of motion, continuity and energy to the boundary layer equations is examined. A finite difference algorithm for solution of the combined continuity. energy and (axial) momentum boundary layer equations with property variation has been obtained from Worsoe-Schmidt (ref. 100) and modified for use in the present investigation. Because of the non-convergence of the finite difference approach when a uniform inlet velocity profile is specified, an analytical boundary layer solution is applied at the tube entrance. This solution, which is based on a similarity assumption and which includes property variations, is patched to the finite difference solution at a downstream point. An improved method of evaluating wall parameters is examined. Correlation of the wall parameters is attempted along with criteria as to when property variations can be ignored.

For the experimental portion of the investigation, a cylindrical test section is fabricated and calibrated for the measurement of axial variation of local heat transfer and static pressures for laminar gas flow. Two inlet configurations provide approximately the two general sets of boundary conditions examined in the theoretical portion of the investigation. Experimental data will be used to verify, when possible, the assumptions inherent in the theoretical solution or to point our areas where the analysis may be deficient.

A additional advantage of the combined experimental

and theoretical approach is in the practical type of data that is supplied. The idealized boundary conditions treated in the theoretical portion are unattainable in a physical situation. A special effort was made in the design of the apparatus to approach the idealized conditions. Comparison of results with those from the theoretical solution will help to determine if the theoretical results can be applied to physical situations which also do not attain either of the idealized conditions, but are closer to one set than the other. In a crude sense, the derivative or sensitivity of the wall parameters to small deviations in the boundary conditions has been defined in addition to its value at the limiting cases. This type of data is of much greater value to the designer.

1.3. Scope and Reason for the Work

Recently, interest in the effect of variable fluid properties on internal laminar fluid flow has greatly increased. This can be attested to by the large number of investigations, both experimental and analytical, which have been addressed to this problem in the past decade. Advances in technology have extended the range of temperature at which gas flow is utilized from temperatures near the cryogenic range to several thousand degrees. Extreme temperature differences occuring in a gas flow

situation can make the available constant property solutions inapplicable for prediction of heat transfer and flow characteristics. The majority of works devoted to prediction of these characteristics when gas properties vary appreciably deal with heating of the gas. Only a small portion is concerned with cooling of the gas. This is surprising since in many applications where extreme heating occurs, extreme cooling is also obtained.

An example of a possibly very important future use of gas in a heat transfer application with extreme temperature differences can be seen in the development of fast breeder reactors. Fast breeder reactors operate at far higher temperatures than conventional reactors but the result is a higher thermodynamic efficiency and reduced thermal pollution. Also, the breeder reactor produces more fissionable material than it consumes. Gas cooling has a distinct advantage (as opposed to liquid cooling) in fast reactors since bubbles or voids cannot form in a gas (ref. 78). A bubble or void might lead to overheating in a localized area which cannot be detected and may result in consequent failure of a fuel pin or rupture of a coolant passage. This type of failure was responsible for the accident at the Enrico Fermi Nuclear Generating Plant in 1967. While turbulent flow conditions would normally be used for the operating mode, laminar

flow may exist for periods during shutdown, low power operation or loss of flow accidents. Increasing public concern over the safety of nuclear facilities restricts the margin for design error and demands that the designer have data available for all possible modes of operation.

Modern electronic technology has triumphed in its ability to miniaturize, but the result has been the creation of extremely high power densities in electronic equipment and a subsequent need for cooling. In order to realize the decrease in size, heat exchangers must of necessity also be kept small. Laminar gas flow is important in this application since the maximum ratio of heat transferred to pumping power required is obtained with laminar flow in compact heat exchangers. While the gas would be undergoing heating in the equipment, applications outside the earth's atmosphere would require recirculation, and subsequently, cooling of the gas.

Several high energy rocket propellants have been developed which can be solidified at very low temperatures and made suitable for use in solid fuel rockets. Prior to burning it is necessary that the fuel be raised to melting temperature. It has been proposed that this could be accomplished by passing high temperature gas through passages in the supercooled propellant. Precise control of the supply of molten propellant generated would

require an accurate estimate of the heat transfer from the gas.

Recent application of the Brayton cycle in aerospace applications requires recirculation and cooling of the gas. Since flow and heat transfer losses may make up a substantial portion of the energy expended by the working fluid in the cycle, it is important that precise correlations be available for the cooling as well as the heating of the gas. Here again laminar flow becomes attractive because of its efficiency.

1.4. Previous Theoretical Work

Theoretical consideration of heat transfer for a fluid in laminar flow in a cylindrical tube dates back to the first (correct) derivation of the partial differential equation for conservation of energy derived by Poisson (68) in 1835. The first solution to this equation was published fifty years later by Graetz (31) in 1885. Graetz assumed radial symmetry of the velocity and temperature profiles, constant fluid properties and that second order derivatives of the temperature and velocity in the axial direction could be neglected with respect to other terms. In addition, Graetz assumed the following set of boundary condtions which has come to be known as the Graetz condition:

1. At x = 0, the tube wall undergoes a step change

from T_o to T_w and remains constant at T_w for $x \ge 0$.

- 2. For $x \leq 0$, the fluid temperature is uniform at T_0
- The velocity profile is fully developed (parabolic) at x = 0.

In his analysis. Graetz assumed constant fluid properties so that the axial velocity profile is invariant with axial displacement. Also implicit in this last condition is a zero radial velocity component for all x. Upon substitution of the parabolic velocity profile in the energy equation, a linear second order partial differential equation with temperature as the dependent variable is obtained. Graetz obtained an infinite series solution along with the first three eigenfunctions and eigenvalues for the series. Higher order eigenfunctions, eigenvalues and additional solutions for these boundary conditions can be found in papers by Drew (24), Jakob (40), Larkin (53), Lipkis (55) and Sellers, Tribus and Klein (79). The latter authors (79) also obtained a solution for the laminar flow of a gas in a cylindrical tube for the case of uniform energy input by a superposition of constant wall temperature solutions. A more direct approach to the uniform heat addition problem has been presented by Siegel, Sparrow and Hallman (80).

When the axial conduction term in the energy equation, $k(\partial^2 T/\partial x^2)$ is non-negligible, the energy equation reduces to a form for which the eigenfunctions are no

longer orthogonal. To circumvent this problem, Singh (82) obtained expansions of the appropriate eigenfunctions for the case of constant wall temperature in terms of eigenfunctions for an auxiliary equation satisfying identical boundary conditions. For the case of constant heat addition, Hsu (36) showed that the solution for the case with axial conduction can be reduced to the solution for zero axial conduction as a special case. Hsu also derived the solution in the same eigenfunction form as for the case of zero axial conduction -- the only difference being in the magnitude of the eigenfunctions, eigenvalues and coefficients of terms in the infinite series. The results for both of these analyses showed that the effect of axial conduction is negligible for Peclet numbers. Pe (i.e. product of Reynolds number defined in terms of axial displacement (Rex) and Prandtl number (Pr) greater than 100).

To date, there does not appear to be any closed form analytical solution for the laminar flow of a fluid in a circular tube with simultaneous development of velocity and temperature profiles. Theoretical results presented are based either partially or totally upon numerical techniques. The first of the solutions for these inlet conditions was given by Kays (42). Kays neglected the radial velocity component and assumed constant properties. In this case the axial momentum equation becomes uncoupled

from the energy equation and use could be made of a solution for the developing velocity field in a tube previously obtained by Langhaar (52). Langhaar solved the momentum equation by making several linearizing assumptions. Kays integrated the energy equation numerically for Pr = 0.7. He found that there was a significant increase in the Nusselt number over that obtained for a fully developed profile. Ulrichson and Schmidt (92) refined the work of Kays to include the radial component of velocity. Their results indicated a significant decrease in the calculated Nusselt number from Kays' results at points near the entrance. An implicit total finite difference solution to the momentum equation was presented by Hornbeck (34). Fairly large variation was found compared to the velocity profiles by Langhaar. However, good agreement was found to exist between the axial pressure variations.

One of the first analytical attempts to account for the effect of property variations on the flow of a gas was made by Deissler (20) for the case of uniform heat flux. Deissler assumed fully developed velocity and temperature profiles, so that his analysis would apply only in a region far from the entrance. He removed axial dependence from the governing equations by neglecting acceleration terms in the axial direction and assuming 1. zero radial velocity, 2. constant axial gradient of of the bulk gas temperature (uniform heat addition) and

÷

3. that axial variations in fluid properties were negligible with respect to radial variations. Further assuming that the fluid density varied inversely with temperature and that viscosity and thermal conductivity varied as absolute temperature raised to the 0.68 power, Deissler solved the coupled energy and momentum equations simultaneously by an iterative procedure. Although Deissler did not check his results experimentally, the data in several other references indicate that at high wall to bulk temperature ratios the friction factor is significantly underestimated. Sze (87) refined Deissler's analysis by use of actual experimental transport property variations. His results were in substantial agreement with those of Deissler.

A combined experimental and analytical investigation of the laminar flow of carbon dioxide near its critical point was presented by Koppel and Smith (48). The authors essentially linearized the momentum equation by assuming the radial velocity component was negligible and that the product of density and axial velocity at any radial point is independent of the axial coordinate. These results are rather restricted in their applicability to the flow of other gases due to the severe and unique variation of the density and transport properties of CO₂ at its critical point.

Davenport (18) extended Deissler's analysis by

including a radial velocity component. In essence. Davenport concluded that the temperature and velocity profiles are never fully developed. In order to test his hypothesis, he derived a set of axially independent energy and momentum equations in which the radial velocity component was left as an arbitrary function subject to the conditions that the radial velocity be zero at the tube wall and centerline, and that at any radial point the outward convective flux cannot exceed the inward conduction heat transfer. By assuming different forms of the radial velocity distributions, Davenport solved the coupled equations by an iterative procedure. His results indicated that the postulated radial velocity was sufficient to account for the experimentally determined variation of the friction factor. The predicted effect on the Nusselt number was less pronounced but depended more heavily on the postulated variation of the radial velocity component.

Worsoe-Schmidt (100) using a finite difference solution with a variable implicitness to the continuity and coupled momentum and energy equations included the effect of variable fluid properties. Specific heat, viscosity and thermal conductivity were assumed to obey power law variations with absolute temperature ratio and the fluid density was assumed to obey the perfect gas law. Although the solution was quite satisfactory for gas heating
and a fully developed inlet velocity profile, a single example computed with uniform velocity at the entrance did not converge to the proper constant property solution for the Nusselt number downstream. Worsoe-Schmidt postulated that this was primarily due to large errors in the solution of the momentum and energy equations at points near the tube entrance. He also postulated that either a restrictively small finite difference mesh size or an appropriate analytical boundary layer solution at the entrance would remove this problem. However, for the Graetz boundary condition, the effect of the variable properties on the Nusselt number when based on properties evaluated at the local bulk temperature was rather small and in good agreement with experimental data. The predicted friction factor increased with heating rate, but not as rapidly as the experimentally measured values. Only one example was calculated for gas cooling, and this was for a fully developed inlet velocity profile.

Following Worsoe-Schmidt's example, several finite difference and finite volume solutions for laminar internal flow with variable fluid properties have appeared. A slightly different algorithm for integration of the same set of equations was published a short time later by Deissler and Presler (20) for the case of constant heat addition and uniform velocity and temperature profiles at the tube entrance. Convergence of the wall parameters was obtained in the far downstream region, but provision was not made for inclusion of other boundary conditions. The effect of variable fluid properties here also showed slight effect on the heat transfer results, but marked effect on the shear stress. Since the boundary conditions examined differed from those in Worsoe-Schmidt's analysis, direct comparison of numerical results is not possible.

A recent numerical solution allowing for inclusion of an eddy exchange coefficient for turbulent motion in addition to the molecular terms for transport properties has been published by Bankston and McEligot (6). Sample calculations for laminar flow included a uniform temperature profile at the entrance and varying hydrodynamic entry lengths with the extremes of fully developed and uniform velocity profiles included. Provision was made for specification of arbitrary inlet profiles. The only wall condition provided for was that of specified heat flux, although this may be variable with the axial coordinate. No cases with gas cooling were presented.

Swearingen (86) in his Ph.D thesis presented a finite difference solution for laminar variable property flow between parallel plates along with experimental results for laminar flow heating in a cylindrical tube which will be discussed later. Swearingen, allowing for a radial pressure distribution, included the radial momentum equation

in the set of finite difference equations to be solved. although the other usual boundary layer assumptions were invoked. Flow between parallel plates bears several resemblances to flow in cylindrical tubes since: 1. the flow is two-dimensional, 2. the flow is internal, 3. the boundary layer equations apply at some distance from the entrance and 4. thermal and/or velocity boundary layers are present at the wall in the entrance. In Swearingen's case. only results for the case of specified wall heat flux and fully developed inlet velocity profiles were generated. Specification of a constant wall temperature for all cases with compressible flow resulted in oscillations of the wall parameters near the entrance which were large enough to render the solution of little value in this region. Attempts to remove this oscillation by application of an analytical starting solution at the first two axial steps were not successful. Surprisingly, no radial pressure distributions for any cases were presented.

In a finite volume solution also for variable property flow between parallel plates, Schade and McEligot (73) were able to obtain solutions for specified wall temperatures and uniform wall heat flux. The radial momentum equation was neglected. Both uniform and fully developed inlet velocity profiles for heating and cooling of the gas were treated. Step changes in the wall temperature were approximated by increasing the wall temperature over the first twenty axial steps until the desired value was reached. For several cooling cases specified with a fully developed inlet velocity, the pressure was seen to rise with axial distance in the thermal entrance region. For severe cooling and uniform inlet velocity, the pressure drop in the entrance was found to be very small.

Similar finite difference and finite volume numerical methods have been applied to laminar plasma flow. While property variations associated with plasma cooling are indeed extreme, the present study is addressed to laminar flow of gases at subplasma temperatures. Characteristics unique to plasmas limit the relevance of these investigations to the topic under consideration. These characteristics, along with a review of notable literature in this field will be reserved for a later section.

To this date, no comprehensive numerical solutions were found for cooling and for simultaneous development of velocity and temperature profiles with uniform wall temperatures for flow in cylindrical tubes.

1.5. Previous Experimental Investigations

Experimental results for the laminar flow of gases in circular tubes are meager. This is due in part to the low heat transfer rates encountered in laminar flow. Heat losses from the test section are usually large in comparison with the heat transfer to the gas and can be

difficult to account for. Of those experiments performed in apparatus designed to minimize free convection effects. the investigations of Kroll (51), Weiland and Lowdermilk (97). Taylor and Kirchgessener (88), Kays and Nicoll (43). Davenport (18), Dalle Donne and Bowditch (17), Taylor (89), Bergman and Koppel (7) and Swearingen (86) are the most notable. The conditions under which the data was taken are presented in Table I along with correlations proposed. Only one of these reports data for gas cooling (43). With one exception, (7), the experimentally measured Nusselt number and friction factor under the conditions of low to moderate heat flux and negligible natural convection effects were in relatively close agreement with the predicted values from the Graetz (31) and the Sellars, Tribus and Klein (79) solutions. Bergman and Koppel report lower heat transfer coefficients for uniform heat flux at low axial velocities than those predicted by the Sellars. Tribus and Klein analysis, and also a Reynolds number dependence which is not predicted in any of the cited references. They postulate that this is due to an increase in the importance of the radial velocity component at low axial velocities. The Reynolds number dependence may be explained by the reduced validity of the usual boundary layer assumptions for low Reynolds numbers (100).

However, when the heat flux becomes relatively large, the experimental results of Davenport, Dalle Donne and

Bowditch. Kays and Nicoll, and Taylor show significant deviation of the friction factor from values predicted from constant property results, whereas the Nusselt numbers for both uniform energy input and uniform surface temperature were found to be in relatively close agreement with the constant property values. Swearingen, while not taking any pressure drop data, found that the difference between his heat transfer results and Worsoe-Schmidt's predictions were within his estimated experimental uncertainty. Swearingen considered this as being a confirmation of the assumptions made in the Worsoe-Schmidt analysis. However, Searingen maintained a flow development section of 100 diameters prior to the test section. It would seem that a more critical test of Worsoe-Schmidt's assumptions could be obtained for simultaneous velocity and temperature profile development where large axial second derivatives would occur in the momentum as well as in the energy equation at points near the tube entrance.

Of these experimental works, only that of Kays and Nicoll deals with gas cooling. Mean, rather than local, Nusselt numbers were measured for air. No friction factor or pressure drop data were obtained. Velocity profiles were essentially fully developed at the point where cooling commenced since Kays used a development section of about 60 diameters. The bulk of the data was found to lie

about five per cent below the constant property solution for ratios of the logarithmic mean fluid temperature to wall temperature ranging from approximately 1.0 to 1.8. This deviation was within the estimated experimental uncertainty and Kays postulates that it was due to a fixed error in the measurement of the inlet air temperature. In none of these investigations were detailed measurements made of velocity and temperature profiles.

When gases are heated to temperatures sufficiently high such that the ionization fraction becomes non-negligible, the gas is described as a plasma. Recently a great deal of attention has been devoted to this topic. Plasma heat transfer differentiates itself from that of a non dissociated gas in several ways (3, 26, 27). Radiation heat transfer is added to that by conduction to the wall. In regions where a high cooling rate predominates. a condition of thermal non-equilibrium can exist. Electron temperatures can exceed heavy particle temperatures by several thousand degrees (3). Also, because of appreciable concentration gradients there is a diffusion of electrons to the cool wall where recombination and consequents release of ionization energy can enhance heat transfer -- for this reason, a plasma must be treated as a reacting two component gas.

		Table	I. Review o	f Experi	nental R	esults
Author	ន ក្នុ	Reynolds number	Boundary Conditions	우 년 단 년	ם ום	Correlations, Results
Davenport (18)	Helium	200-2200	G	12.2	128	Nu=Nucp $\frac{f}{f_{cp}} = (\frac{T_w}{T_m})^{1.35}$
Kays & Nicoll (42)	Air	664-1300 955-1300	G, E₁	11.9 .5685	80 66.7	Nu=Nu Nu=Nucp
Dalle Donne & Bowditch (17)	Air Helium	100-2000	G	11.80	90 180	Nu=Nu _{cp} $\frac{f}{f_{cp}} = (\frac{T_W}{T_m})^{1.67} (1/2" C$ $\frac{f}{f_{cp}} = (\frac{T_W}{T_m})^{3.33} (1/4" C$
		80-2300	E1	11.35	11-98	$Nu_{b} = 1 \cdot 5 \left(\frac{wc_{p}}{k_{m}}\right)^{0 \cdot \frac{1}{k}0} f = \frac{16}{Re_{f}}$
Kroll (51)	Air	$\frac{\mathrm{Gr} > 15}{\mathrm{wc}_{\mathrm{p,m}}} \\ \frac{\mathrm{wc}_{\mathrm{p,m}}}{\mathrm{k}_{\mathrm{m}}} < 400$	G		8-80	$Nu_{b} = 1.47 \left(\frac{wc_{p}}{k_{m}L}\right)^{0.46} f = \frac{16}{Re_{f}}$
Taylor (88)	Helium	370-1300	ъ	13.4		$f = \frac{16}{Re_f}$
Bergman & Koppel (7)	Nitroger	1 N.A.	G	11.13	330	Reynolds number dependence
Swearingen (86)	Helium Air	1442-2065	G	11.9	1.2-97	Confirmation of Results in Ref. 100

Early theoretical treatments of plasma flow suffered from restrictive assumptions made in the formulation of the problem. In 1967. Watson and Pegot (96) published a numerical solution for the combined energy (with Ohm's law). momentum and continuity equations in the arc region of a plasma generator. Of greater relevance here is the excellent finite difference treatment of plasma flow in the arc free region of a circular tube published by Incropera, et al (38,39). Radiation and recombination effects were included in the analysis, but it was not possible to include thermal non-equilibrium and its effect on the thermal conductivity. It was postulated that this was one of the reasons that poor comparison with existing experimental results was found. It was not possible to correlate the heat transfer results in terms of variables which are effective for moderate temperature gas flow. Also, wall parameters were found to be extremely sensitive to the assumed inlet profiles.

Unfortunately, experimental investigations for plasmas suffer from a lack of consistent inlet conditions. For example, in the experimental studies by Johnson, Choksi and Eubank (41) the flow underwent an abrupt expansion immediately after the plasma generator. Also, a spin was imparted to the gas by the plasma generator in this investigation and those of Skrivan and Jaskowski (83) and Wethern and Brodkey (98). In no case was the magnitude of the spin accurately measured or its effect on the heat transfer and flow characteristics isolated. In the experimental study by Cann (10), the constricted arc region was extended so tha a smooth transition into the cooling section was obtained. However, a small but non-negligible stabilizing axial magnetic field was applied in the cooled section with a probable effect on the wall parameters. Due to the rapid deterioration of any plasma condition, the cooling sections in all these studies were relatively short. For example, in the Johnson et al study, the maximum length to diameter ratio was 6.

Additional problems associated with plasma experimentation are the cost and difficulty of measuring temperature and velocity profiles, the difficulty in measuring ionization level, and the lack of experimental data for gas properties at plasma temperatures which make it necessary to resort to purely theoretical correlations (25). In addition, variations in plasma transport properties with temperature may differ substantially from those of the same gases at moderate temperature levels. For example, the variation of the viscosity of argon with temperatures above 20,000 °K is opposite to that at moderate temperatures (77).

There are a considerable number of papers referenced in the Bibliography which have not been discussed. How-

ever, it is believed that the papers discussed present a good picture of the major contributions to the analysis of the laminar flow of a gas in a cylindrical tube.

CHAPTER 2. ANALYTICAL PROBLEM

2.1. Statement of the Problem

We are considering the laminar flow of a non-reacting, non-absorbing, non-dissociated, single component, monatomic thermally perfect gas inside a cylindrical tube. The tube is axially symmetric, there is zero swirl and no body forces (i.e. free convection effects are negligible) and the flow is steady. The thermal conductivity, absolute viscosity and specific heat are considered to be functions of temperature only. Two sets of boundary conditions are to be studied (Fig.1). In the first set, we consider the gas flowing from a point in the tube at $x = -\infty$. For x < 0, the wall temperature is constant and equal to the fluid temperature, T_0 . Also for $x \leq 0$ the fluid temperature is uniform and the velocity profile is parabolic. At x = 0 the wall temperature undergoes a step change from T_O to T_W and remains at T_W for x > 0. This set of boundary condition is referred to as the Graetz boundary condition.

In the second set both the velocity and temperature profiles are uniform at x = 0. This condition would be approximated by a fluid flowing directly from a reservoir into a tube in the absence of any development section or more closely approached by providing the tube with a bellmouth entrance. With this latter inlet

GRAETZ	BOUN	DARY CO	NDITION	
X=0		U=2U ₀ (T= To	
X≨O	r=0	90 /9 r = 0		91/9L= 0
X≥O	r=r _o	U=0	V=0	T= T _w
X≤0	r=r _o	U=O	V=0	T=To

UNIFORM TEMPERATURE AND VELOCITY (UTV)

X=0		U=Uo	T= T _o	
X≩O	r=0	∂U/9 r =0		∂ T/ ∂r = 0
X≥0	r=r _o	U=0	V=O	T= T _w
X<0		U=O	V=O	T= T _o

FIGURE I. IDEALIZED BOUNDARY CONDITIONS

condition the set will be referred to as the UTV (Uniform Temperature and Velocity profile) condition.¹ Symmetry of the temperature and velocity profiles and the no slip and impermeability condition at the wall allows us to complete the two sets of boundary conditions which are summarized in Figure 1. Only the case of gas cooling will be considered;

$T_w/T_0 < 1$

The boundary condition of constant heat removal from the gas was not considered since, unlike the case of gas heating, this is not a physically realizable situation. The analytical problem may now be identified as the determination of the heat transfer and fluid friction at the tube wall for these boundary conditions along with satisfactory methods of correlation of these results.

The differential equations governing the situation are the Navier Stokes, energy and continuity equations. For the cylindrical coordinate system in Figure 1 and incorporating the aforementioned assumptions, we may write these as (37);

radial momentum:

$$\rho\left(\mathbf{V}\frac{\partial \mathbf{V}}{\partial \mathbf{r}} + \mathbf{U}\frac{\partial \mathbf{V}}{\partial \mathbf{x}}\right) = -\frac{\partial p}{\partial r} + \frac{\partial}{\partial r} \left[2\mu \frac{\partial \mathbf{V}}{\partial r} + (\zeta - \frac{2}{3}\mu) \left[\frac{\partial \mathbf{V}}{\partial r} + \frac{\mathbf{V}}{r} + \frac{\partial \mathbf{U}}{\partial \mathbf{x}}\right]\right] \\
+ \frac{\partial}{\partial \mathbf{x}} \left[\mu \left(\frac{\partial \mathbf{V}}{\partial r} + \frac{\partial \mathbf{U}}{\partial r}\right)\right] + \frac{2\mu}{r} \left[\frac{\partial \mathbf{V}}{\partial r} - \frac{\mathbf{V}}{r}\right]$$
(2.1)

¹This set of boundary conditions is sometimes referred to as the simultaneous development case, but this cannot be considered as being sufficiently definitive since strictly speaking, both profiles in the Graet condition also undergo development.

axial momentum:

$$\rho(\bigvee_{\partial r}^{\partial U} + \bigcup_{\partial x}^{\partial U}) = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left[2\mu \frac{\partial U}{\partial x} + (\zeta - \frac{2}{3}\mu) \left[\frac{\partial V}{\partial r} + \frac{V}{r} + \frac{\partial U}{\partial x} \right] \right]$$

$$+ \frac{1}{r} \frac{\partial}{\partial r} \left[\mu r \left(\frac{\partial V}{\partial x} + \frac{\partial U}{\partial r} \right) \right]$$
(2.2)

energy:

$$U\frac{\partial p}{\partial x} + V\frac{\partial p}{\partial r} + \Phi + \frac{1}{r}\frac{\partial}{\partial r}(rk\frac{\partial T}{\partial r}) + \frac{\partial}{\partial x}(k\frac{\partial T}{\partial x}) = \rho(V\frac{\partial H}{\partial r} + U\frac{\partial H}{\partial x})$$
(2.3)

continuity:

$$\frac{1}{r}\frac{\partial}{\partial r}(r\rho V) + \frac{\partial}{\partial x}(\rho U) = 0$$
(2.4)

where Φ = viscous(mechanical) dissipation function

$$= \mu \left[2 \left\{ \left(\frac{\partial V}{\partial r} \right)^2 + \left(\frac{V}{r} \right)^2 + \left(\frac{\partial U}{\partial x} \right)^2 \right\} + \left(\frac{\partial V}{\partial x} - \frac{\partial U}{\partial r} \right)^2 \right] + \lambda \left[\frac{\partial V}{\partial r} + \frac{V}{r} + \frac{\partial U}{\partial x} \right]^2 \qquad (2.5)$$

- $\lambda =$ second coefficient of viscosity ($\lambda = -\frac{2}{3}\mu$ for a monatomic gas)
- μ = primary coefficient of viscosity

$$\zeta = \lambda + \frac{2}{3}\mu$$
 ($\zeta = 0$ for a monatomic gas).

For a thermally perfect gas we may write

$$dH = c_p dT$$

(i.e. the specific heat may be removed from the differential operator). This allows us to write the energy equation solely in terms of enthalpy as the dependent variable;

$$U\frac{\partial p}{\partial x} + V\frac{\partial p}{\partial r} + \Phi + \frac{1}{r}\frac{\partial}{\partial r}r\frac{k}{c_{p}\partial r} + \frac{\partial}{\partial x}\frac{k}{c_{p}\partial x}\frac{\partial H}{\partial x} = \rho(V\frac{\partial H}{\partial r} + U\frac{\partial H}{\partial x})$$
(2.6)

The equations in this form and generality impose a (presently) nearly unsolvable problem-- both in terms of a

closed form or numerical type solution. They form a set of non-linear equations by virtue of the product terms in the dependent variables. The energy equation is coupled to both momentum equations by virtue of its velocity terms. and the momentum equations are likewise coupled to the energy equation by virtue of the density and viscosity terms. The equations are elliptic in character due to the presence of second order derivatives in two spatial directions. The solution for the flow and temperature fields must be made "in toto" --that is, values of the dependent variables must be specified at the exit of the tube as well as at the walls and inlet. As is generally done, the boundary layer assumptions will be invoked which both reduces the number of equations to be solved and changes the classification of the equations.

The rationale underlying the application of the boundary layer assumptions will be reviewed. In certain flow situations, the variation of the velocity and temperature can be much greater in one spatial direction than another. We can identify two such regions in internal tube flow (Fig. 2). In the entrance region where a thin viscous and/or thermal boundary layer are developing at the tube wall, variation of these quantities can be expected to be much greater in a direction normal to the

flow than in an axial direction. Similar considerations apply downstream of the region where the boundary layers which have been growing along the tube wall have met at the tube centerline. In regions such as these we can apply an approximate order of magnitude analysis. We denote \sim as meaning "of the order of magnitude of" rather than its usual meaning. We then write,

$$\frac{\partial}{\partial \mathbf{r}} \sim \frac{1}{\mathbf{r}_0} \qquad \qquad \frac{\partial}{\partial \mathbf{x}} \sim \frac{1}{\mathbf{x}}$$

where r_0 is the radius of the tube. In the inlet region of a tube we would use a representative boundary layer thickness as a characteristic dimension rather than r_0 . Since for the gases which will be considered the Prandtl numbers are fairly close to unity (i.e. the thermal and velocity boundary layer thickness should be approximately equal), the same characteristic dimension will apply to the energy and momentum equations.

Let $\Delta \mathbf{P}_{\mathbf{r}}$ = representative magnitude of radial pressure variation $\Delta \mathbf{P}_{\mathbf{x}}$ = representative magnitude of axial presvariation $\mathbf{\bar{U}}$ = representative magnitude of axial velocity $\mathbf{\bar{V}}$ = representative magnitude of radial velocity $\mathbf{\bar{\rho}}$ = representative magnitude of density.

We further denote the operators \bigoplus and \bigoplus as being order of magnitude addition and subtraction and to simply mean that the order of magnitude of a sum (or difference) of two

terms connected by the operator is that of the larger term. If both are of the same order of magnitude, then the order of the sum will be the same as for either term. Expanding continuity (2.4) we have

$$\frac{\rho V}{r} + \frac{\partial (\rho V)}{\partial r} + \frac{\partial (\rho U)}{\partial x} = 0$$
 (2.7)

Since the first term becomes indeterminate at r = 0, we can apply L'Hospital's rule at the centerline;

$$\left. \frac{V}{r} \right|_{r=0} = \frac{\partial V}{\partial r} \left| \frac{\partial r}{\partial r} \right|_{r=0} = \frac{\partial V}{\partial r} \left|_{r=0} \right|_{r=0}$$

Due to the crudeness of the analysis, not much will be lost if we use \overline{V}/r_0 to represent V/r as well as $\partial V/\partial r$. This will also be extended to the V/r terms which are present in the axial and radial momentum equations. Also, not much will be lost if we treat the density as being constant. Applying an order of magnitude analysis to the continuity equation (2.7) yields

$$\overline{V}/r_{0} \bigoplus \overline{V}/r_{0} \bigoplus \overline{U}/x = 0 \qquad (2.8)$$

or

$$V \sim r_0 U/x \qquad (2.9)$$

Expanding the axial momentum equation (2.2) by an order of magnitude analysis (for $\zeta = 0$):

$$\nabla \overline{\underline{U}}_{r_{o}} \oplus \overline{\underline{U}}_{x}^{\underline{U}} \sim -\frac{1}{\overline{\rho}} \frac{\Delta P_{x}}{x} \oplus \frac{\mu}{\overline{\rho}} \frac{1}{x} \left[2 \frac{\overline{\underline{U}}}{x} \oplus \frac{2}{3} (\overline{\underline{V}}_{r_{o}} \oplus \overline{\underline{V}}_{r_{o}} \oplus \overline{\underline{U}}) \right] \oplus 2 \frac{\mu}{\overline{\rho}} \left[\frac{\overline{\underline{V}}}{r_{o}} \oplus \frac{\overline{\underline{U}}}{r_{o}^{2}} \right]$$
(2.10)

Substituting the magnitude of \overline{V} in terms of \overline{U} (1.9)

$$\frac{\overline{U}}{x}^{2} \bigoplus \frac{\overline{U}^{2}}{x} \sim -\frac{1}{\overline{\rho}} \frac{\Delta P_{x}}{x} \bigoplus \frac{\mu}{\overline{\rho}} \left[2 \frac{\overline{U}}{x^{2}} \bigoplus \frac{2}{3} (\frac{\overline{U}}{x^{2}} \bigoplus \frac{\overline{U}}{x^{2}} \bigoplus \frac{\overline{U}}{x^{2}}) + \frac{2\mu}{\overline{\rho}} \left[\frac{\overline{U}}{x^{2}} \bigoplus \frac{\overline{U}}{r_{0}^{2}} \right]$$
(2.11)

The order of magnitude representation of the radial momentum equation (2.1) can be written:

$$\overline{\nabla}_{r_{o}}^{\overline{V}} \bigoplus \overline{U}_{\overline{x}}^{\overline{V}} \sim -\frac{1}{\overline{r}} \frac{\Delta^{p}}{r_{o}} r \bigoplus 2\mu \left[\frac{\overline{V}}{r_{o}^{2}} \bigoplus \frac{1}{3} (2\frac{\overline{V}}{r_{o}^{2}} \bigoplus \frac{\overline{U}}{\overline{x}r_{o}}) \right] \bigoplus \mu \left[\frac{\overline{V}}{r_{o}x} \bigoplus \frac{\overline{U}}{r_{o}x} \right]$$

$$+ 2\frac{\mu}{r_{o}} \left[\frac{\overline{V}}{r_{o}} \bigoplus \frac{\overline{V}}{r_{o}} \right]$$

$$(2.12)$$

and substituting the relationship
$$\overline{V}$$
,
 $\overline{U}\overline{U}\overline{v}r_{o} \bigoplus \overline{U}\overline{U}\overline{v}r_{o} \sim -\frac{\Delta P}{\overline{\rho}r_{o}} \bigoplus 2\mu \left[\overline{U}_{r_{o}x} \bigoplus \frac{1}{3} (2\overline{U}_{r_{o}x} \bigoplus \overline{U}_{xr_{o}}) \right] \bigoplus \mu \left[\overline{U}_{x^{2}} \bigoplus \overline{U}_{r_{o}x} \right]$

$$+2\mu \left[\overline{U}_{xr_{o}} \bigoplus \overline{U}_{xr_{o}} \right] \qquad (2.13)$$

In the same case that $r_0/x <<1$, certain terms become small when compared with others. If these terms are neglected the following equations are obtained;

axial momentum:

$$\frac{\overline{U}^2}{x} \sim -\frac{1}{\rho} \frac{\Delta P_x}{x} \bigoplus 2 \frac{\mu}{\rho} \frac{\overline{U}}{r_o^2}$$
(2.14)

radial momentum:

$$\frac{\overline{U}^2}{x} \stackrel{\mathbf{r_o}}{\longrightarrow} \mathbf{\sim} -\frac{1}{\overline{\rho}} \frac{\Delta P}{r} \mathbf{r} \bigoplus \frac{\mu}{\overline{\rho}} \frac{\overline{U}}{\mathbf{r}_0^2} \stackrel{\mathbf{r_o}}{\xrightarrow{\mathbf{r}}}$$
(2.15)

It can be seen that both of the terms which could determine the order of magnitude of the term $\frac{-1}{\rho} \Delta P_r/r_0$ differ by a factor r_0/x from similar terms in the axial momentum equation. We can reasonably expect, therefore, that the term representing the radial pressure gradient will differ by a similar factor from the axial pressure gradient. For $r_0/x<<1$ we can also reasonably expect that the neglect of the radial pressure variation would not effect the solution greatly. This allows us to discard the radial momentum equation insofar as it provides information about this variation.²

In the energy equation, we can use the same type of representation for the variation of the enthalpy. Assuming

$$\frac{\partial H}{\partial r} \sim \frac{\Delta H}{r_0}$$
 and $\frac{\partial H}{\partial x} \sim \frac{\Delta H}{x}$

²From another standpoint, it would seem that more than simplification is gained from this assumption when finite difference or element techniques are used for solution. For compressible laminar flow between parallel plates, Swearingen (82) included the transverse momentum equation by combining the radial and axial momentum equations through elimination of the pressure terms in each. This requires that cross derivatives of the pressure be taken which raises the order of the equation representing momentum transfer from second to third, and for the case of uniform inlet velocity and temperature profiles, introduces a higher order singularity in boundary conditions at x = 0 which must be accomodated by the solution. As noted earlier, in Swearingen's case, large scale oscillations were obtained near the entrance for compressible flow.

where ΔH is a representative magnitude of the enthalpy variation, we obtain after substitution of 2.9 into the energy equation,

$$\bar{U} \frac{\Delta P}{x} \oplus \bar{U} \left(\frac{r_{o}}{x}\right)^{2} \frac{\Delta P}{x} \oplus \Phi \oplus 2\frac{k}{c_{p}} \frac{\Delta H}{r_{o}^{2}} \oplus \frac{k}{c_{p}} \frac{\Delta H}{r_{o}^{2}} \left(\frac{r_{o}}{x}\right)^{2} \sim \overline{\rho} \overline{U} \frac{\Delta H}{x} \oplus \overline{\rho} \overline{U} \frac{\Delta H}{x} \qquad (2.16)$$

It can be seen that the second and fifth terms on the left hand side which represent V $\frac{\partial P}{\partial r}$ and $\frac{\partial}{\partial x} \frac{k}{c_p} \frac{\partial T}{\partial x}$ respectively are negligible with respect to the terms $U\frac{\partial P}{\partial x}$ and $\frac{1}{r}\frac{\partial}{\partial r}r\frac{k}{c_{p}}\frac{\partial H}{\partial r}$. Concerning derived from the dissipation function Φ (2.5), the term $\left(\frac{\partial U}{\partial r}\right)^2$ can be shown to be the controlling term when a boundary layer analysis can be applied. However, inclusion of the additional terms will not affect the results of the simplification that is being developed here -- that is the problem will remain an initial value problem so that the additional terms in the dissipation can be included almost free of charge. Thse terms can become significant in the entrance region for the UTV boundary condition, so discussion will be withheld until Chapter 3 where this boundary condition will be reviewed.

When terms which have been shown to be small are neglected, the usual boundary layer equations are obtained axial momentum:

$$\rho(U\frac{\partial U}{\partial x} + V\frac{\partial U}{\partial r}) = -\frac{dp}{dx} + \frac{1}{r}\frac{\partial}{\partial r}(r\mu\frac{\partial U}{\partial r})$$
(2.17)

continuity:

$$\frac{\partial}{\partial x}(\rho U) + \frac{1}{r} \frac{\partial}{\partial r}(r \rho V) = 0$$
 (2.18)

energy:

$$\rho(U\frac{\partial H}{\partial x} + V\frac{\partial H}{\partial r}) = U\frac{dp}{dx} + \frac{i}{r}\frac{\partial}{\partial r}r\frac{k}{c_{p}}\frac{\partial H}{\partial r} + \Phi \qquad (2.19)$$

An additional consideration becomes important before we can fully justify the boundary layer assumptions. If those non-boundary layer terms which we eliminated in our simplification of the governing equations are larger or of the same order of magnitude as the terms which are due solely to property variation, then the solutions should be treated with caution. Those terms due to property variation whose magnitude relative to neglected terms can be calculated are 1.) the ratio of terms that were eliminated from the axial momentum equation to the term due the viscosity variation;

$$R_{l} = \left[\frac{\partial}{\partial r}(\mu \frac{\partial V}{\partial x}) + \frac{4}{3}\frac{\partial}{\partial x}(\mu \frac{\partial U}{\partial x}) - \frac{2}{3}\frac{\partial}{\partial x}\mu \frac{\partial}{\partial r}(rV)\right] / \frac{\partial U}{\partial r}\frac{\partial \mu}{\partial r}$$
(2.20)

and the ratio of the terms that were eliminated from the energy equation to the term which is due to thermal conductivity and specific heat variation;

$$R_{2} = \left[\frac{\partial}{\partial x} \frac{k}{c_{p}} \frac{\partial H}{\partial x} / \frac{\partial H}{\partial r} \frac{\partial k}{\partial r}\right]$$
(2.21)

In order to estimate the magnitude of these ratios for verification of our assumptions, we must anticipate the solution of equations 2.17 through 2.19. In figure 3 and 4 these ratios are plotted as a function of distance from the tube entrance for the flow of helium and the UTV boundary condition at $T_w/T_0 = 0.1$. This case represents an extreme in terms of both numerators and denominators in 2.20 and 2.21. The derivatives were evaluated by means of radial and axial centered difference operators with dependent variables obtained from a combined analytical finite difference algorithm to be presented herein. It should be noted that we are estimating terms from a solution of equations that neglect them. Along with these ratios are plotted

$$R_{3} = \frac{\partial}{\partial x} \mu \frac{\partial U}{\partial x} \rho U \frac{\partial U}{\partial x}$$
(2.22)

which represents the ratio of axial molecular momentum transfer to axial convective momentum transfer, and

$$R_{\mu} = \frac{\partial}{\partial x} \frac{k}{c} \frac{\partial H}{\partial x} \rho U \frac{\partial H}{\partial x}$$
(2.23)

which represents the ratio of the axial molecular heat transfer to the axial convective heat transfer. Both numerators again represent terms eliminated from the governing equations. Re₀ and Pr₀ represent the inlet Reynolds and Prandtl numbers respectively. A feel for the physical significance of these results can be obtained by choosing $\text{Re}_0\text{Pr}_0 = 1000$. As a sample case, at $r/r_0 = 0.95$

Figure 4. Relative magnitude of terms in axial momentum and energy equations. $R/R_0 = 0.95$. UTV boundary condition.

it can be seen that all of these ratios are reduced to magnitudes less than 0.10 at ten diameters, whereas for $r/r_0 = 0.95$, R₁ does not become less than 1 until 40 diameters downstream and R3 does not become less than 1 until 50 diameters from the tube entrance. The behavior of R_1 and R_2 is due to the fact that the velocity and temperature profiles remain extremely flat in the central region of the tube for an axial distance which depends upon the severity of the cooling. Radial derivatives in this region will be quite small. It is not easy to determine what represents an unacceptable ratio. Basing our decision upon the ratios of terms in the core flow would lead us to discard the solution almost altogether. However, the absolute magnitude of the derivatives in this region are several orders of magnitude smaller than those occurring in the region near the tube wall and their effect will probably be small. An ultimate quantitative answer will have to wait for a solution to equations 2.1 through 2.4 or for experimental verification. The results for the case shown are not representative of other temperature ratios or boundary conditions.

A finite difference solution to the equations 2.17, 2.18 and 2.19 was published by P.M. Worsoe-Schmidt (100) in his Ph.D dissertation, and his algorithm will be made the basis of the numerical portion of the solution to be presented here. In the next section, the important points of the Worsoe-Schmidt analysis are reviewed.

2.2. The Worsoe-Schmidt Analysis

After Worsoe-Schmidt, we transform the boundary layer equations in terms of the following non-dimensional variables.

Independent variables:

$$x^+ = x/r_0 \text{Re}_0 \text{Pr}_0$$

 $r^+ = r/r_0$

Dependent variables:

$$U^{+} = U/U_{0}$$

$$V^{+} = \frac{V}{U_{0}} \operatorname{Re}_{0} \operatorname{Pr}_{0}$$

$$P = (p_{0} - p)/\rho_{0} U_{0}^{2}$$

$$p^{+} = p/p_{0}$$

$$\theta = T/T_{0}$$

where $r_0 = tube radius$

 Re_0 = inlet Reynolds number = $U_0^2 r_0 \rho_0 / \mu_0$ Subscript o will otherwise be taken to denote gas properties evaluated at the inlet temperature. Non-dimensionalized gas properties;

$$c_{p}^{+} = c_{p}/c_{p,o}$$
$$\mu^{+} = \mu/\mu_{o}$$
$$\rho^{+} = \rho/\rho_{o}$$

The following expressions are assumed to adequately (and most generally) represent the relationships between the properties, and thermodynamic quantities for the gases under consideration.

$$c_{p}^{+} = \theta^{\alpha} \qquad (2.24)$$

$$\mu^{+} = \theta^{\mathsf{b}} \tag{2.25}$$

$$\mathbf{k}^{+} = \boldsymbol{\theta}^{\mathbf{c}} \tag{2.26}$$

$$\rho^+ = \rho^+ / \theta \qquad (2.27)$$

For air and helium, these assumed power laws are quite good (c.f. Appendix B). We define two non-dimensionalized enthalpies,

$$H_{1}^{+} = \frac{H - H_{0}}{c_{p,0}T_{0}} = \int_{1}^{\theta} c_{p}^{+} d\theta = \frac{1}{1 + \alpha} \left\{ \theta^{1 + \alpha} - 1 \right\}$$
(2.28)

$$H_{2}^{+} = \frac{H - H}{c_{p,o}T_{o}} = \int_{\theta_{w}}^{\theta} c_{p}^{+} d\theta = \frac{1}{1 + \alpha} \left\{ \theta^{1 + \alpha} \theta_{w}^{1 + \alpha} \right\}$$
(2.29)

Subscript w refers to conditions at the tube wall. The reasons for use of the two definitions of the enthalpy will become clear in Chapter 4. The form in 2.28 is that used throughout the Worsoe-Schmidt analysis. The form 2.29 will become necessary when we consider a similarity boundary layer solution. For the present, we will be using H_1^+ , although the form of the energy equation will be unchanged since we have merely changed the zero

reference. We also define,

$$\gamma_{o}$$
 = ratio of specific heats = $c_{p,o}/c_{v,o}$
 M_{o} = inlet Mach no. = $U_{o}/\sqrt{\gamma_{o}RT_{o}}$
 q_{w}^{+} = non-dimensionalized heat flux = $r_{o}q_{w}^{+}/k_{o}T_{o}$

With these new quantities, the governing equations become;

$$\rho^{+}(U^{+}\frac{\partial U^{+}}{\partial x^{+}} + V^{+}\frac{\partial U^{+}}{\partial r^{+}}) = \frac{dP}{dx^{+}} + 2Pr_{o}\left[\frac{1}{r} + \frac{\partial}{\partial r^{+}} + (r^{+}\mu^{+}\frac{\partial U^{+}}{\partial r^{+}})\right]$$
(2.30)

$$\frac{\partial}{\partial x} + (\rho^+ U^+) + \frac{1}{r} + \frac{\partial}{\partial r} + (r^+ V^+ \rho) = 0$$
(2.31)

$$\rho^{+}(U + \frac{\partial H_{1}^{+}}{\partial x^{+}} + V + \frac{\partial H_{1}^{+}}{\partial r^{+}}) = (1 - \gamma_{o}) M_{o}^{2} U^{+} \frac{dP}{dx^{+}} + \frac{2}{r} + \frac{\partial}{\partial r} + (r + \frac{k}{c} + \frac{\partial}{p} + \frac{\partial H_{1}^{+}}{\partial r^{+}}) + 2(\gamma_{o} - 1) M_{o}^{2} \mu^{+} Pr_{o} \Phi^{+}$$

$$(2.32)$$

where

$$\Phi^{+} = \left\{ \frac{\partial U}{\partial r}^{+} \right\} + \frac{2}{\operatorname{Re}_{O}\operatorname{Pr}_{O}} \left\{ \left(\frac{\partial V}{\partial r}^{+} \right)^{2} + \left\{ \frac{V}{r}^{+} \right\}^{2} - \frac{2}{3} \left[\frac{\partial V}{\partial r}^{+} + \frac{V}{r}^{+} \right]^{2} \right\}$$
(2.33)

The boundary conditions in terms of the non-dimensionalized variables are

$$\underline{\operatorname{at} \mathbf{x}^{+} = 0} \quad \mathbf{U}^{+} = 2(1 - r^{+2}) \quad \text{or} \quad \mathbf{U}^{+} = 1 \qquad \theta = 1$$

$$\frac{\underline{\mathbf{x}^{+} < 0} \quad \underline{r^{+} = 1}}{\mathbf{U}^{+} = 0} \qquad \mathbf{V}^{+} = 0 \qquad \theta = 1$$

$$\frac{\underline{\mathbf{x}^{+} \ge 0} \quad \underline{r^{+} = 1}}{\mathbf{U}^{+} = 0} \qquad \mathbf{V}^{+} = 0 \qquad \theta = \theta_{\mathbf{w}}$$

$$\frac{\underline{\mathbf{x}^{+} \le 0} \quad \underline{r^{+} = 0}}{\frac{\partial \mathbf{U}^{+}}{\partial \mathbf{r}^{+}} = 0} \qquad \mathbf{V}^{+} = 0 \qquad \frac{\partial \theta}{\partial \mathbf{r}^{+}} = 0$$

The unknowns in these equations are U^+ , V^+ and H_1^+ which are function of two space variables x^+ and r^+ , and the non-dimensionalized pressure $P(x^+)$ which is a function of only the axial co-ordinate. At first sight, there would seem to be one equation less than that required for solution, since there are only three equations here. Before application of the boundary layer assumptions, the fourth equation was provided by the radial momentum equation. The fourth equation in this case comes from the integrated continuity equation,

$$2\int_{0}^{1} \rho^{+} U^{+} r^{+} dr^{+} - 1 = 0 \qquad (2.34)$$

which defines the flow as being confined. Integration over the space variable r⁺ provides an equation in terms of one variable, x^+ . Worsoe Schmidt used a two level finite difference scheme with variable implicitness to generate a marching solution in the axial direction. If the velocity and temperature profiles are known at one axial point, then the profiles at the next step can be obtained with application of appropriate boundary conditions and so on down the tube until the profile development is sufficiently complete. Various discrete radial and axial points in the tube are specified as node points (Fig. 4) where we either know or are solving for values of the dependent variables. We define $\phi_{m,n}$ as being the value of a dependent variable corresponding to the node m,n whose spatial point in the tube is given as $(m\Delta x^+, n\Delta r^+)$.³

³This represents a simplification in that the radial and axial mesh steps changed at different points in the tube. If the axial step were Δx_1 for m_1 steps and Δx_2 for m_2 steps, the axial point would be $m_1 \Delta x_1 + m_2 \Delta x_2$.

Although we are solving for the dependent variables at these points, this does not necessitate writing the finite difference representation of the differential equations to apply to these points. In the Worsoe-Schmidt solution, the equations are radially centered at n Δr^+ , but if the dependent variables are known at the m'th axial point and we are solving for them at m+1, then the equations are written so as to apply to the point m+ σ , where σ is a constant less than or equal to 1. The reason for doing this, and the significance of σ can be seen in the following analysis. The radial difference operators δ and δ^2 are defined by

$$\delta (\Phi_{\mathsf{m},\mathsf{n}}) = \Phi_{\mathsf{m},\mathsf{n}+1} - \Phi_{\mathsf{m},\mathsf{n}} \tag{2.35}$$

$$\delta^{2}(\Phi_{m,n}) = \Phi_{m,n+1} - 2\Phi_{m,n} + \Phi_{m,n-1}$$
(2.36)

By means of Taylor series expansions, the analytical derivatives at the point $m+\sigma$, n can be related to values of the dependent variables and their derivatives at the axial points m and m+1. After some manipulation, the following relationships can be derived;

$$\frac{\Phi_{m+1,n} - \Phi_{m,n}}{\Delta x^{+}} = \frac{\partial \Phi}{\partial x^{+}} + \left[\frac{1}{2}(1 - 2\sigma)\frac{\partial^{2}\Phi}{\partial x^{+}2}\Delta x^{+} + \frac{(1 - 3\sigma + 3\sigma^{2})}{6}\frac{\partial^{3}\Phi}{\partial x^{+}3}\Delta x^{+2} + O(\Delta x^{+3})\right]$$
(2.37)

$$\frac{\sigma\delta(\Phi_{m+1,n}) + (1-\sigma)\delta(\Phi_{m,n})}{2\Delta r^{+}} = \frac{\partial\Phi}{\partial r^{+}} + \left[\frac{1}{2}\sigma(1-\rho)\frac{\partial^{3}\Phi}{\partial x^{+2}\partial r^{1}}\Delta x^{+2} + \frac{1}{6}\frac{\partial^{3}\Phi}{\partial r^{+3}}\Delta r^{+2} + O(\Delta x^{+4}) + O(\Delta r^{-4})\right]$$

$$(2.38)$$

$$\frac{\sigma \delta^{2}(\Phi_{m+1,n}) + (1-\sigma) \delta^{2}(\Phi_{m,n})}{\Delta r^{+2}} = \frac{\partial^{2} \Phi}{\partial r^{+2}} + \left[\frac{1}{2}\sigma(1-\sigma)\frac{\partial^{4} \Phi}{\partial x^{+2} \partial r^{+2}} \Delta x^{+2} + \frac{1}{2}\frac{\partial^{4} \Phi}{\partial x^{+2} \partial r^{+4}} + O(\Delta x^{+4}) + O(\Delta x^{+2} \Delta r^{+2}) + O(\Delta r^{+4})\right]$$

$$(2.39)$$

where all analytical derivatives apply to the point $(m+\sigma)\Delta x^{\dagger}, n\Delta r^{\bullet}$. The bracketed terms on the right hand sides of these expressions can be considered as representing the error if the difference quotients on the right hand sides are substituted in place of the analytical derivatives in the differential equations. The value of σ can be seen to have a direct influence on the magnitude of these terms, and the value of σ should be chosen with this in mind. Choosing $\sigma = 1/2$ will minimize all the coefficients in which σ appears. This would appear to be an optimum value if it were not for the fact that the

solution was found to be unstable in this case. A compromise value of $\sigma = 3/4$ was chosen and was found to yield stable results in all cases. While it is possible that a stable solution could have been chosen closer to 1/2, it is questionable whether it would have been worthwhile to have devoted the time to determing this σ . Similar results were found by Worsoe-Schmidt and are discussed by him (100). It must be remembered that an optimum determined for one set of boundary conditions may not be stable for another set.

The values of the dependent variables at m+l are evaluated by assuming a linear variation between neighboring axial points;

$$\Phi_{m+\sigma,n} = \sigma \Phi_{m+1,n} + (1-\sigma) \Phi_{m,n}$$
(2.40)

In regions where large second and higher order axial derivatives occur, this expression becomes less acceptable. This is in addition to the error incurred by dropping the second derivatives in the original equations. When these representations are substituted into the partial differential equations 2.29, 2.30 and 2.31, a relationship combining $\Phi_{m+1,n}$, $\Phi_{m+1,n+1}$ and $\Phi_{m+1,n-1}$ is obtained at each radial node for $\sigma > 0$. For this case there are 3N +1 simultaneous equations in order to solve for 3N +1 unknowns. For the particular case $\sigma = 0$, we have an expression explicitly in $\Phi_{m+1,n}$ and known quantities at each radial node.

The difference equations obtained will still contain products of the unknown variables. This non-linearity can be neatly eliminated if we allow of linearization by means of iteration. Wherever a product of the same two dependent variables occur, we will substitute the best available value for one of them and then solve the linearized equation for the succeeding value. For example if the first solution at $(m+\sigma)\Delta x^{+}$ is being performed, the quantity $\Phi_{m,n}\Phi_{m+1,n}$ will be used in place of $\Phi^{2}_{m+1,n}$ On the next iteration at this point, $\Phi_{m+1,n}$ from the first solution of the linearized equation would be used, and so on until convergence is obtained.

A further linearization allows us to uncouple the equations at each iteration, insofar as products of different dependent variables occur. The details of this linearization depend upon the sequence in which the equations are solved. The energy equation (2.32) is the first equation to be solved at an axial point, so where products of enthalpies and velocities occur, velocities from the previous axial point are used. The integrated continuity equation 2.34 can then be arranged to bring out explicitly P_{m+1} which is contained in $\rho_{m+1,n}^+$. Values of enthalpy from the present solution of the energy equation
are used in evaluating the temperature dependent quantities in the momentum equation. One exception to this is the term $\rho^+ U^+$. Generally, ρ^+ and U^+ vary in opposite directions along the tube. Using the new enthalpy and pressure for the evaluation of ρ^+ and the old value of U^+ would roughly give us $\rho^+_{m+1,n}U^+_{m,n}$ which overestimates $\rho^+_{m+1,n}U^+_{m+1,n}$. A better approximation can be obtained by using $\rho^+_{m+1,n}U^+_{m,n}$ until estimates of both $\rho^+_{m+1,n}$ and $U^+_{m+1,n}$ are available.⁴ After the energy and momentum equations, the differential form of the continuity equation (2.31) can be used for the evaluation of radial velocities for use on the next iteration or at the next step. Using this procedure reduces the problem to the solving of 3 sets of N linear simultaneous equations plus the total continuity equation.

Considering that upwards of 320 radial mesh divisions were necessary for the solution of the most severe boundary conditions, the solution of this many simultaneous equations would still be prohibitive if it were not for the fact that the coefficient matrices for the dependent variables were of a particularly simple form. After the aforementioned linearizations are made, the general form

⁴An extreme example of this type of linearization was used in the theoretical analysis of Kcppel and Smith (48) where it was assumed that the product of velocity and density, ρv , at any radius is independent of the axial coordinate.

of the relationships that holds among the velocities and enthalpies can be written as;

$$D_{n}^{I} = -A_{n}^{I}U_{m+1,n-1}^{+} + B_{n}^{I}U_{m+1,n}^{+} - C_{n}^{I}U_{m+1,n+1}^{+} - P_{m+1}$$
(2.41)

$$D_{n}^{II} = -A_{n}^{II}H_{m+1,n-1}^{+} + B_{n}^{II}H_{m+1,n}^{+} - C_{n}^{II}H_{m+1,n+1}^{+}$$
(2.42)

where the coefficients are functions of σ and known values of enthalpies from the previous step and/or the last iteration. For the present the solution for the pressure defect and the radial velocities is skipped. At the centerline, consideration of symmetry allows a relationship to be written among two of the dependent variables:

$$B_{o}^{I}U_{m+1,0}^{+} - C_{o}^{I}U_{m+1,1}^{+} - P_{m+1} = D_{o}^{I}$$
(2.43)

$$B_{o}^{II}H_{m+1,o}^{+} - C_{o}^{II}H_{m+1,1}^{+} = D_{o}^{II}$$
 (2.44)

Since there is specified wall temperature (and enthalpy) and no slip (zero axial velocity) at the wall, the equations are written at the wall are:

$$-A_{N-1}^{I}U_{m+1,N-2}^{+} + B_{N-1}^{I}U_{m+1,N-1}^{+} - P_{m+1} = D_{N-1}^{I}$$
(2.45)

$$-A_{N-1}^{II}H_{m+1,N-2}^{+} + B_{N-1}^{II}H_{m+1,N-1}^{+} = D_{N}^{II} + C_{N-1}^{II}H_{m+1,N}^{+}$$
(2.46)

where subscript N refers to the node point at the wall. The coefficient matrices for the enthalpy and velocity are of the form:

which is a matrix of the tri-diagonalized type. Since many of the elements are zero, inversion could be accomplished by means of one of the many available computer inversions, particularly one which makes use of zero checks. However, further simplification can be obtained by assuming that relationships of the form;

$$U_{m+1,n}^{+} = E_{n}^{I}U_{m+1,n+1}^{+} + F_{n}P_{m+1} + G_{n}^{I}$$
(2.47)

$$H_{m+1,n}^{+} = E_{n}^{II} H_{m+1,n+1}^{+} + G_{n}^{II}$$
 (2.48)

exist. If such a relationship for $U_{m+1,n-1}^{+}$ is substituted in terms of $U_{m+1,n}^{+}$ and $H_{m+1,n-1}^{+}$ is substituted in terms of $H_{m+1,n}^{+}$ in equations (2.45) and (2.46) respectively, solution may be made explicitly for $U_{m+1,n}^{+}$ and $H_{m+1,n}^{+}$.

$$U_{m+1,n}^{+} = \frac{C_{n}^{I}}{B_{n}^{I} - A_{n}^{I}E_{n-1}^{I}} U_{m+1,n+1}^{+} + \frac{(1 + A_{n}^{I}F_{n-1})}{B_{n}^{I} - A_{n}^{I}E_{n-1}^{I}} P_{m+1} \qquad (2.49)$$

$$+ \frac{D_{n}^{I} + A_{n}^{I}G_{n-1}^{I}}{B_{n}^{I} - A_{n}^{I}E_{n-1}^{I}}$$

$$H_{m+1,n}^{+} = \frac{C_{n}^{II}}{B_{n}^{II} - A_{n}^{II}E_{n-1}^{II}} H_{m+1,n+1}^{+} + \frac{D_{n}^{II} + A_{n}^{II}G_{n-1}^{II}}{B_{n}^{II} - A_{n}^{II}E_{n-1}^{II}}$$
(2.50)

where coefficients on the right hand sides can be directly associated with the coefficients in equations (2.47) and (2.48). The following coefficients can be identified;

$$E_{n}^{I} = \frac{C_{n}^{I}}{B_{n}^{I} - A_{n}^{I}E_{n-1}^{I}}$$
(2.51) $E_{n}^{II} = \frac{C_{n}^{II}}{B_{n}^{II} - A_{n}^{II}E_{n-1}^{II}}$ (2.54)

$$F_{n}^{I} = \frac{1 + A_{n}^{I} F_{n-1}}{B_{n}^{I} - A_{n}^{I} E_{n-1}^{I}} \qquad (2.52) \qquad G_{n}^{II} = \frac{D_{n}^{II} + A_{n}^{II} G_{n-1}^{II}}{B_{n}^{II} - A_{n}^{II} E_{n-1}^{II}} (2.55)$$

$$G_{n}^{I} = \frac{D_{n}^{I} + A_{n}^{I} G_{n-1}^{I}}{B_{n}^{I} - A_{n}^{I} E_{n-1}^{I}}$$
(2.53)

where all coefficients in the recursive relationship corresponding to radial node n can be written in terms of the coefficients for radial node n-1 and other known quantities. It can be seen that if the values of these coefficients are known at the tube centerline, then all coefficients can be evaluated successively out to the tube wall. These coefficients are directly available in the momentum and energy difference equations as written for the tube centerline in equations 2.43 and 2.44. The following identities can be made;

$$E_{o}^{I} = C_{o}^{I}/B_{o}^{I}$$
 (2.56)

$$F_0^{I} = 1/B_0^{I}$$
 (2.57)

$$G_0^{I} = D_0^{I} / B_0^{I} \qquad (2.58)$$

$$E_{o}^{II} = C_{o}^{II} / B_{o}^{II}$$
(2.59)
$$G_{o}^{II} = C_{o}^{II} / B_{o}^{II}$$
(2.60)

Once all the coefficients are known and after applying the boundary conditions at the wall (i.e. - known $U_{m+1,N}^+$ and $H^+(\theta_w)_{m+1,N}$), the enthalpies and axial velocities can be evaluated, this time from the wall successively out to the tube centerline.

The differential form of the continuity equation provides the radial velocities. Worsoe-Schmidt wrote the difference quotients for this equation so as to apply to the point $m+\sigma$, n-1/2. A new difference operator is defined as

$$\delta'(\Phi_{m,n+\frac{1}{2}}) = \Phi_{m,n} - \Phi_{m,n-1}$$
(2.61)

In this case, the quotient representation of the partial differential equation (2.31) contains only two unknown quantities, $V_{m+1,n-1}^+$ and $V_{m+1,n}^+$ so that an explicit solution may be made for V^+ .

Returning to the solution for the pressure defect, an integration of the continuity equation consistent with the finite difference scheme was obtained by successive elimination of the radial velocities in the difference representation of the continuity equation. This results in;

$$\frac{1}{8}(\rho^{+}U^{+})_{m+1,0} + \sum_{n=1}^{N-1}(\rho^{+}U^{+})_{m+1,n} = \frac{1}{8}(\rho^{+}U^{+})_{m,0} + \sum_{n=1}^{N-1}(\rho^{+}U^{+})_{m,n} \quad (2.62)$$

Extraction of a common term P_{m+1} from the density terms on the left hand side of (2.62) and substitution of the recursive relationships for the axial velocities results in an equation with P_{m+1} as the only unknown. Once this quantity is determined the solution of the momentum equation may proceed since $\frac{dP}{dx^+}$ is known from $(P_{m+1}-P_m)/\Delta x^+$

A note should be mentioned concerning the way in which radial derivatives of the temperature and velocity profiles were obtained at the wall. These quantities are necessary for the calculation of the fluid friction and heat transfer at the wall. Worsoe-Schmidt evaluated these terms by taking the derivative of a third order polynomial in r^+ fitted to the velocities and enthalpies at the 4 radial node points closest to the wall. In terms of the quantities at these nodes;

$$\frac{\partial U}{\partial r^{+}}\Big|_{w}^{=} \frac{1}{6\Delta r^{+}} (18U_{N-1}^{+} -9U_{N-2}^{+} + 2U_{N-3}^{+})$$
(2.63)
$$\frac{\partial H}{\partial r^{+}}\Big|_{w}^{=} \frac{1}{6\Delta r^{+}} (11H_{N}^{+} +18H_{N-1}^{+} -9H_{N-2}^{+} +2H_{N-3}^{+})$$
(2.64)

where subscript N refers to the node point at the wall. Subscript m is absent since all variables pertain to the same axial point. The term U_N^+ is absent from 2.63 since $U_N^+ = 0$. The third order insures that inflection points can be acommodated.

The order of solution and basic features of the inversion for equations 2.45 and 2.46 and as described by Worsoe-Schmidt in reference 100 were used without major modification. Those requiring a more detailed review than that presented here should consult that reference.

CHAPTER 3. FINITE DIFFERENCE SOLUTION THE GRAETZ BOUNDARY CONDITION

3.1. Basic Considerations

The variation with axial distance and inlet wall to bulk temperature ratio of the local Nusselt number Nu,m and friction factor f is sought. In terms of flow quantities and fluid properties, these are defined by;

fRe,
$$_{m} = \left[\frac{-\tau_{w}}{\frac{1}{2}(\rho U)_{m}U_{m}}\right] \left[\frac{2r_{o}U_{m}\rho_{m}}{\mu_{m}}\right] = \frac{-2\tau_{w}^{+}}{\mu_{m}^{+}\int_{o}^{U}r_{m}^{+}dr_{m}^{+}}$$
 (3.1)

Nu,
$$m = \frac{2r_0h}{k_m} = \frac{-2r_0q_w''}{k_m(T_w-T_m)} = \frac{2q^+}{k_m^+(\theta_w-\theta_m)}$$
 (3.2)

where subscript m refers to quantities or properties evaluated at the bulk fluid temperature at an axial point. The non-dimensionalized heat transfer and wall shear stress are defined in terms of the temperature and velocity profiles by;

$$\tau_{w}^{+} = -\mu_{w}^{+} \frac{\partial U}{\partial r^{+}} \Big|_{r^{+}=1}$$
(3.3)

$$q_{w}^{+} = -k \frac{\partial \theta}{\partial r} |_{r} |_{r+1}$$
(3.4)

respectively.

Values of the power law exponents a,b,c (2.24, 2.25, 2.26) and γ_0 and Pr_0 were evaluated from published property data for three gases: air, helium and carbon dioxide. (See Appendix B) The transport properties of helium follow the power law almost exactly. While air and CO2 are not monatomic gases, the transport properties for air can still be fairly represented by the power law. These representations are not very good for CO2, but this type of variation was assumed to hold true anyway so as to provide a rough idea of the behavior of the gas. This gas is of some interest since its transport properties vary much more severely than the other two gases. Due to this approximation, correlation of the wall parameters for CO2 was not attempted. The properties and exponents were evaluated from a least squares fit to the tabulated The exponents were chosen so as to minimize the data. sum-squared error for all reference (subscript zero) points chosen in the range of tabulated data. Also, the properties are weak functions of pressure. The data was chosen for a pressure of 1 atmosphere which corresponds closely with the conditions run in the experimental apparatus, although this data should represent the properties quite accurately up to several atmospheres. The data for the three gases is summarized in Table 3.1.

Gas	a	Ъ	С	Pro	γ _o
Air	0.12	0.64	0.71	0.71	1.36
He	0.00	0.69	0.69	0.67	1.67
co ₂	0.29	0.74	1.38	0.71	1,21
۲.		·	2	·	

Table 3.1. Transport and Thermodynamic Properties

Straightforward application of the finite difference program obtained from Worsoe-Schmidt and corresponding to the description given in reference 100 typically resulted in the behavior of fRe, m as shown in Figure 6. Similar behavior was obtained for Nu, m. The results are for He at an inlet wall to bulk temperature ratio of 0.10. The parametric curves in each plot correspond to different radial mesh divisions which are indicated on the graphs-also, the discontinuities in each curve correspond to the point where the number of mesh nodes was halved. At first it was suspected that this behavior might be due to a local instability or error in the profiles due to the mesh change, but examination of the profiles directly before and after the change revealed little or no noticeable difference over what could be considered as normal axial development. It should be noted from these plots that the effect of the step change is diminished as the mesh is refined. Also, the change to a coarser mesh in each

case yields results that would be obtained if the coarser mesh had been used entirely. For example, the wall parameters after a change from 80 to 40 radial divisions have the same value as the results obtained for 40 radial divisions throughout. This would seem to indicate an invariance of the solution of the governing equations and points to a deficiency in the method of evaluating the wall derivatives.

In an effort to correct this, many types and orders of curvefits (for example-- splines, Chebyshev polynomials, Lagrangian polynomials, ratios of rational polynomials, etc.) were tried in place of the cubic polynomial used by Worsoe-Schmidt and none were found to significantly improve the behavior. For example, values of $Nu_{,m}$ obtained from a 5 point spline for varying radial meshes are shown in Figure 7. The reason for this failure in the cooling case and not in the heating case can be illustrated by examination of the expression for the error incurred when a first derivative is evaluated from taking the derivative of a Lagrangian polynomial of order n-1. The polynomial is fitted at n tabular points of an analytical function F. The true derivative is F¹. At a tabular point, we can write the error as (71);

$$\frac{\mathrm{d}}{\mathrm{d}r} + (F(r))_{r=r_{i}} - (\frac{\mathrm{d}\Lambda_{n-1}}{\mathrm{d}r})_{r=r_{i}} = \frac{\Gamma_{n}}{n!} F^{n}(r^{\bullet}) \quad (3.5)$$

where n = number of tabular points

n-1 = order of the polynomial fit $\Gamma_n(r) = \prod_{i=1}^{n-1} (r-r_i)$ $\Lambda_n(r) = \text{ Lagrangian polynomial of order n-1}$ $r_i = \text{ tabular point}$ $r^{\bullet} = \text{ a value of the independent variable included}$ in the range spanned by the tabular points F = hypothetical closed form solution for the velocity or enthalpy profile

Although it is impossible to evaluate r' in this case, maximum values of the higher order derivatives of the temperature and velocity profiles near the tube wall as evaluated from difference quotients are summarized in Table 3.2. These maximum values occur in the region that would be included by polynomials of the degrees indicated for 80 radial mesh points and were evaluated from a solution using 320 radial mesh points for the severest cooling case ($\theta_w = 0.10$) considered here. Magnitudes of the derivatives for the severest heating case considered in the Worsoe-Schmidt analysis $(q_w^+ = 20)$ are included for compari-Since the factor $\frac{\Gamma_n}{n!}$ will be the same for both the son. heating and cooling cases when the same order polynomial and mesh sizes are used, the errors will be proportioned to $F^{n}(r^{*})$. Polynomials of degree greater than 5 were not included because of generally poor suitability of high ordered polynomials for the calculation of derivatives. Both results are for helium with $M_0 = 0.03$. It can be seen that the higher ordered derivatives in our case are greater by as much as three orders of magnitude, and are on the average, one degree of magnitude greater. In particular, for the third order polynomial, the applicable derivative of the velocity profile is 35 times greater and for the temperature profile more than 250 times greater for the cooling case.

> Table 3.2. High Ordered Profile Derivatives Heating and Cooling

<u>n</u>	<u>Degree of Fit</u>	Velocity Pro	ofile	Temperatu	<u>ure</u>
		$\left \frac{\Delta}{\Delta r} \right \left \frac{\Delta}{U_o} \right $	max	$\left \frac{\Delta}{\Delta r^{n}}\left(\frac{1}{T_{o}}\right)_{max}\right $	
		Cooling	Heating	<u>Cooling</u>	<u>Heating</u>
3	2	0.786x10 ⁴	0.332x10 ³	0.148x10 ⁶	0.312x10
4	3	0.723x10 ⁷	0.211x10 ⁶	0.277x10 ⁸	0.110x10 ⁴
5	4	0.158x10 ¹⁰	0.133x10 ⁹	0.588x10 ¹⁰	0.237x10 ⁴
6	5	0.387x10 ¹²	0.731x10 ¹¹	0.134×10^{13}	0.151x10

An independent method of evaluating the shear stress and heat transfer can be obtained if a momentum and energy balance is performed between two axial mesh points. Radial integration of the momentum and energy equations 2.30 and 2,32 results in the following expressions for the average heat transfer q_w^+ and wall shear stress τ_w^+ between two adjacent axial points;

$$\begin{split} \overline{q}_{W}^{+} &= \frac{1}{2\Delta x} + \begin{cases} \left(\int_{0}^{1} \rho^{1} U^{+} H_{1}^{+} r^{+} dr^{+} \right)_{m+1} - \left(\int_{0}^{1} \rho^{1} U^{+} H_{1}^{+} r^{+} dr^{+} \right)_{m} \\ &+ \frac{1}{2} (\gamma_{0} - 1) M_{0}^{2} \left[\left(P_{m+1} - P_{m} \right) \left[\left(\int_{0}^{1} U^{+} r^{+} dr^{+} \right)_{m+1} - \left(\int_{0}^{1} U^{+} r^{+} dr^{+} \right)_{m} \right] \right] \\ &- (\gamma_{0} - 1) M_{0}^{2} Pr_{0} \left[\left(\int_{0}^{1} \mu^{+} \left(\frac{\partial U^{+}}{\partial r^{+}} \right)_{r}^{2} r^{+} dr^{+} \right)_{m+1} \\ &+ \left(\int_{0}^{1} \mu^{1} \left(\frac{\partial U^{+}}{\partial r^{+}} \right)_{r}^{2} r^{+} dr^{+} \right)_{m} \right] \Delta x^{+} \\ \end{cases}$$

$$\tau_{w}^{+} = \frac{1}{2Pr_{o}\Delta x} + \left[\left(\int_{0}^{1} \rho^{+} U^{+2} r^{+} dr^{+} \right)_{m+1} - \left(\int_{0}^{1} \rho^{+} U^{+2} r^{+} dr^{+} \right)_{m} \right] + \frac{1}{4Pr_{o}\Delta x} + \left(P_{m} - P_{m+1} \right)$$

The radial integrations were evaluated by means of Simpson's rule with a resultant error of the order $(\Delta r^+)^5$ which is smaller by a factor $(\Delta r^+)^3$ than that of the finite-difference

scheme. Values of the Nusselt number and fRe,m as evaluated from these expressions at one axial point are shown in Figures 8 and 9 respectively as functions of the maximum number of radial mesh points. Wall parameters from the curvefit method are included for comparison. In both cases, variation of the integrated values are quite small, while the curvefit results are asymptotically approaching these values. The error between the curvefit and the true first derivative will decrease with decreasing Δr^+ by virtue of the function $\Gamma_{n}(r)$ in equation 3.7. However, for the plotted values, a small difference between the two methods would still be present even for infinitesmal Δr^+ since the integrated parameters apply to the point $(m - \frac{1}{2})\Delta x^+$ rather than $m\Delta x^+$. At most points though, the value of Δx^+ was sufficiently small with respect to x^+ such that these values could be considered as point values. The results presented herein were plotted with this correction at small x^+ .

Two additional considerations arising from this analysis should be noted here. The first deals with convergence checks that Worsoe-Schmidt was able to use. An independent check of how well the solution is satisfying conservation of total momentum and energy in the tube can be obtained by comparison of two sides of the equalities obtained from the double integration of the momentum and

63.

Figure 8. Variation of local Nusselt number with radial mesh size at a fixed axial point. Integrated energy equation and 5 point spline.

Figure 9. Variation of fRe.m with radial mesh size at a fixed axial point. Integrated energy equation and cubic polynomial.

energy equations;

Total Momentum:

$$2\left[\left(\int_{0}^{1}\rho^{+}U^{+2}r^{+}dr^{+}\right)_{x} + - \left(\int_{0}^{1}\rho^{+}U^{+2}r^{+}dr^{+}\right)_{x} + = 0 \right]$$

$$= P - 4Pr_{0}\int_{0}^{x^{+}}r^{+}_{w}dx^{+}$$
(3.8)

Total Energy:

$$2 \left(\int_{0}^{1} \phi^{+} U^{+} H_{1}^{+} r^{+} dr^{+} \right)_{x^{+}} = 4 \int_{0}^{1} q_{w}^{x^{+}} dx^{+} - 2(\gamma - 1) M_{0}^{2} \left\{ (3.9) \int_{0}^{1} \frac{dP}{dx} + \int_{0}^{1} U^{+} r^{+} dr^{+} dx^{+} - 2Pr_{0} \int_{0}^{1} \int_{0}^{1} \frac{dU^{+}}{\partial r^{+}} \right)^{2} r^{+} dr^{+} dx^{+} \left\}$$

where Worsoe-Schmidt evaluated the τ_w^+ and q_w^+ terms from the curvefit method. Since this method has been shown to be unacceptable in our case, the only independent check remaining is that of the conservation of mass equation;

$$2\int_{0}^{1} U^{\dagger}r^{\dagger}dr^{\dagger} - 1 = 0 \qquad (3.10)$$

The conservation of mass is incorporated into the solution on a local basis (2.62) so that equation 3.10 represents a measure of the drift of the solution. It is also likely that large errors in 3.10 would reflect large errors in the overall conservation of axial momentum. In addition, a good indication of how well the solution is progressing can be provided by observing whether the wall parameters converge to their correct asymptotic values in the downstream region and how the solution in the developing region behaves with varying mesh size and σ . These latter methods were used quite liberally throughout the generation of results.

Wall parameters obtained from equations 3.6 and 3.7 are shown plotted as a function of x^+ in Figures 10 and 11 for air and helium respectively and Figures 12 and 13 for carbon dioxide. The parametric curves correspond to different inlet wall to bulk temperature ratios which range from sum 0.90 to 0.1.⁵ The same results for air are plotted in Figure 14 as a function of the non-dimensionalized axial co-ordinate x_m^+ based on local rather than inlet conditions.

No clear advantage of one representation over the other exists. While the parameters converge to their asymptotic values more rapidly when plotted against $x_{m,}^{+}$ the effect of wall to bulk temperature ratio is augmented on Nu,_m. No improvement or degradation of the product fRe,_m occurs in the entrance since these curves are very

⁵It was not possible to evaluate the fully isothermal Nusselt number since the term $\theta_w - \theta_m$ becomes zero in the denominator of equation 3.2. Also, small absolute errors in the solution for the temperature profile would result in large errors in $\theta_w - \theta_m$ if θ_w were specified as, say 0.99.

70.

-71-

nearly horizontal-- relative axial displacement does not affect the vertical spacing. When plotted as a function of x^+ , Nu, m shows surprisingly little variation with respect to the inlet wall to bulk temperature ratio. For example, the maximum decrease in this quantity resulting from an almost ten fold decrease in the temperature ratio is on the order of 14% for air and helium and 33% for CO₂. The Nusselt number reaches the fully developed value more rapidly with reduced θ_w . A simple linear variation with inlet wall to bulk temperature ratio will describe the theoretical Nusselt number behavior to within 5%.

$$Nu_{m} = (3.67 + Ax^{+B}e^{-\beta x})(1 - C(\frac{T}{T_{W}} - 1))$$
(3.11)
$$0.001 \le x^{+} \le 0.35$$

 $Nu_{m} = 3.67$ $x^{+} > 0.35$ (3.12)

where for air, A = 0.198 B = -0.584 C = 0.13He A = 0.201 B = -0.584 C = 0.15 $\beta = -20.8$

The variation of the friction factor is more pronounced and required a different type of correlation. If the product fRe,_m is plotted as a function of local wall to mean temperature ratio, Figures 15 for helium and 16 for air result. The different curves correspond to different

73.

inlet wall to bulk temperature ratios and were approximated by straight line segments passing through fRe,_m=16.0 at T_w/T_m =1.0. The slopes of these lines were determined by a least squares criterion for nearly equally spaced T_w/T_m . These straight line approximations would seem to be fairly good with the exception of T_w/T_0 =0.10. The significance of the slope a of these log-log plots is defined in the equation;

fRe,
$$m = 16 \left(\frac{T_w}{T_m}\right)^a$$
 (3.13)

In Figure 17, a for each gas is plotted against T_w/T_o on log-log paper and a correlation of the form

$$a = b \left(\frac{T_{w}}{T_{o}}\right)^{c}$$
(3.14)

is excellent. The values of b and c were also chosen by a least squares criterion. The final form of the friction factor correlations are,

for air,

$$fRe_{m} = 16 \left(\frac{T_{w}}{T_{m}}\right)^{a}$$
 $a = 0.904 \left(\frac{T_{w}}{T_{o}}\right)^{0.257}$ (3.15)

and for helium

$$a = 0.957 \left(\frac{T_W}{T_o} \right)^{0.251}$$
 (3.16)

In the range $0.001 \le x^+ \le 0.5$. These correlations will

describe the theoretical results within 9% for $T_w/T_0 = 0.10$ and within 5% for $T_w/T_0 \ge 0.20$. The initial curvature at the beginning of each of the curves in Figure 15 is probably due to starting errors in the finite difference solution.

The axial development of the axial velocity nondimensionalized with respect to the local mean velocity and the reduced temperature, T_{red} , where

$$T_{red} = (T - T_w) / (T_m - T_w)$$
 (3.17)

is shown in Figure 18 for air at inlet wall to bulk temperature ratios of 0.10 and 0.90. Radial velocity V^+ development for the same cases are shown in Figure 19. The physical reason for the observed behavior of the wall parameters can be seen from these figures. For example, the radial derivative of this reduced temperature,

$$\frac{\partial T_{r}ed}{\partial r^{+}} = \frac{\partial}{\partial r^{+}} \left(\frac{T_{w} - T}{T_{w} - T_{m}} \right) = -\frac{\partial \theta}{\partial r^{+}} / (T_{w} - T_{m})$$
(3.18)

is a term in the expression for $Nu_{,m}$

$$Nu_{m} = \left(\frac{2k_{w}}{k_{m}}\right)\frac{\partial T}{\partial r^{+}}$$
(3.19)

78.

Axial development of reduced temperature and velocity profiles for two wall Air, Graetz boundary condition. to inlet temperature ratios.

Figure 19. Dimensionless radial velocity profiles for developing flow of air at two wall to inlet temperature ratios. Graetz boundary condition.

As the wall to bulk inlet temperature ratio is reduced, the magnitude of the radial velocity increases in an outward direction along with a convected energy. The increasing density of the gas at the wall tends to augment the heat transfer, while the reduced thermal conductivity at the wall tends to decrease it. The temperature profiles are seen to remain flatter for a further axial distance with decreasing θ_w along with a corresponding increase in the magnitude of $\frac{\partial Tred}{\partial r^+}$ which tends to offset the decrease in thermal conductivity. On the other hand, the slope of the non-dimensionalized velocity U/U_m is relatively insensitive to changes in θ_w . The product fRe,m may be written as,

$$fRe_{m} = \frac{4\mu_{w}}{\mu_{m}} \frac{\partial(U/U_{m})}{\partial r^{+}}$$
(3.20)

where since $\partial(U/U_m)/\partial r^+$ shows little change, the controlling factor will be the term μ_w/μ_m . For example, at small x^+ we have $T_w/T_m \approx T_w/T_0$. On this basis, for $\theta_w = 0.10$, fRe,m should differ by a factor approximately equal to;

$$\frac{\mu_{\mathbf{w}}}{\mu_{\mathbf{m}}} = \left(\frac{\mathrm{T}_{\mathbf{w}}}{\mathrm{T}_{\mathbf{m}}}\right)^{\mathbf{b}} \approx \left(\frac{\mathrm{T}_{\mathbf{w}}}{\mathrm{T}_{\mathbf{o}}}\right)^{\mathbf{b}} = (0.10)^{0.69} = 0.21$$

from the isothermal product fRe, m for helium. In the actual case, this factor is approximately equal to 0.28 at $x^+ = 0.001$ and becomes less than this and closer to the above value for axial displacements less than this. However, wall parameters obtained in the region before this occur only after a few axial steps and should be treated with a great deal of caution. For all inlet wall to bulk temperature ratios, a region of increasing static pressure occurred in the entrance-- the magnitude of the rise and the extent of the region depended on the magnitude of the temperature ratio. Where a step change in the wall temperature occurs, the axial derivative of the bulk fluid temperature and the fluid bulk density will be infinite. The deceleration of the flow in the entrance will be of sufficient magnitude to overcome the static pressure drop due to wall friction. This will be discussed further in Chapter 5. The Mach numbers that were specified for the results presented (0.05 for helium and 0.03 for air) may be considered as being on the high side for laminar flow, although the effect of halving these values was found to have a negligible influence on the results.

CHAPTER 4

UNIFORM TEMPERATURE AND VELOCITY PROFILE BOUNDARY CONDITIONS ANALYTICAL SOLUTION

4.1. Background

Typical results obtained from the finite difference solution when the boundary condition of uniform inlet velocity and temperature profile is specified are shown by the dotted line in Figure 20 for helium at an inlet wall to bulk temperature ratio of 0.95. Mesh sizes and points where changes occur are indicated. The solution has not converged to yield the correct asymptotic value of Num while not enough is known to determine if the friction factor is correct. Due to the coupling of the momentum to the energy equation, it is quite likely that error exists. For the case θ_w = 0.95, small absolute errors in the temperature profile due both to computational truncation in the computer and truncation of the terms in the derivative representations 2.37, 2.38 and 2.39 would result in large errors in the evaluation of $\theta_{\rm w}-\theta_{\rm m}$ and Nu_m . However, divergent results in the downstream region for wall to bulk temperature ratios down to 0.10 were obtained. Absolute errors in the temperature profile would have to be an order of magnitude greater to affect the results for $\theta_w = 0.10$. This would seem to rule out computational truncation as being responsible in this

case, since this error will probably remain of the same order of magnitude for both temperature ratios since for the same mesh size, the number of computations will stay roughly the same. The increased severity of the cooling will result in larger magnitudes of the higher order derivatives and increased magnitudes for the error terms in equations 2.37. 2.38 and 2.39. This could be the cause of the error. For a case Worsoe-Schmidt ran with uniform temperature and velocity and constant heat addition, Nu, m converged to the wrong asymptotic value. He conjectured that this was due to large errors incurred in the solution of the energy and momentum equations at the tube entrance. Several cases run here with different mesh sizes showed that in general, refinement of the mesh in the entrance region improved the downstream results. whereas refinement of the downstream mesh had little or no effect. Little change was noted from varying σ or use of double precision arithmetic. These would seem to support Worsoe-Schmidt's conjecture. While improvement was noted, results were still unacceptable even using 320 radial mesh points and Δx^{\dagger} as small as 1.0x10⁻⁵ near the entrance $(x^+ \leq 0.001)$.

4.2. Choice of Method of Solution

Two methods of resolving this difficulty were considered; 1.) by improvement and continued use of a

completely finite difference solution or 2.) by use of an analytical boundary layer solution in the tube entrance. There are many methods by which the numerical solution could be improved. For example, the program could have been rewritten so that it would check its own convergence and choose its own mesh size to achieve convergence, and/ or a variable radial mesh which would allow a much finer radial step to be used near the wall where the variables are undergoing far more variation than in the center region of the tube. In order to test the suitability of the completely finite difference scheme, a technique was used which is often applied in the numerical solution of ordinary differential equations (71). As an illustration, consider an ordinary differential equation of the form;

$$\frac{dY}{dx} = F(x,y) \qquad Y(x_0) = Y_0 \qquad (4.1)$$

which we are integrating from x_0 to x_e using a numerical scheme-- for example, a Runge-Kutta method. If we obtain values of $Y(x_e)$ from use of three different step sizes for the variable x, we can plot the value of $Y(x_e)$ versus step size Δx (Figure 21a). If our numerical scheme is stable and consistent with the differential equation, we would expect that a better estimate of $Y(x_e)$ (i.e. closer to the exact solution of the differential equation) could be obtained by fitting a curve through these values at x_e and extrapolating to Y_e for zero step size. For a

Figure 21. a. One dimensional extrapolation of finite difference solution to zero mesh size.

Figure 21. b. Two dimensional extrapolation of finite difference solution to zero mesh size.

86.

function of two variables, say U(x,y), the value of $U(x_e, y_e)$ for different step sizes in x and y would define a surface (Figure 21b) and an estimate of the value U(x,r) corresponding to $\Delta x=0$, $\Delta r=0$ would be obtained by extrapolating the surface to a line in the $\Delta y=0$ plane, then extrapolating the line to $\Delta x=0$. For the case considered here, a relation of the form

$$\Phi_{m,n} = \Phi_{0,m,n} (1 + A_{m,n}^{*} \Delta x^{+2} + B_{m,n}^{*} \Delta x^{+4} + \dots) (1 + A_{m,n}^{*} \Delta r^{+2} + B_{m,n}^{*} \Delta r^{+4} + \dots)$$

$$B_{m,n}^{*} \Delta r^{+4} + \dots)$$
(4.2)

was assumed to exist. $\Phi_{\!m,n}$ is the value of the dependent variable (temperature or velocity) obtained at the node m,n by use of step sizes Δx^+ and Δr^+ in the numerical solution, $\Phi_{o_{m,n}}$ represents the value that would be obtained for zero step sizes and $A_{m,n}^{\bullet}$, $B_{m,n}^{\bullet}$, $A_{m,n}^{"}$ and $B_{m,n}^{"}$ are constants which must be determined for each node. In the actual implementation of this equation to solve for $\Phi_{\!o_{m,n}}$, the series in Δx^+ and Δr^+ were truncated after three terms. The constants were determined for all the radial nodes at the axial point $x^{+}=0.001$ by running 5 separate solutions to this point for the same boundary conditions, but with varying Δx^+ and Δr^+ , (the finest mesh used was $\Delta x^{+}=10^{-5}$ with 320 radial nodes). This allowed solution for the values of the radial and axial velocity, the enthalpy profiles and the pressure defect that

correspond to a mesh much finer than the smallest actually used. These refined profiles were reinserted into the finite difference program and the solution continued in a normal manner. Double precision arithmetic and ten iterations at each axial step for the complete set of equations 2.30, 2.31, 2.32 up to $x^+ = 0.20$ were used. The results are shown in Figure 20 for $\theta_w = 0.95$. Similar improvement was found for $\theta_w = 0.10$, but in both cases, complete convergence was not obtained. Differences between the extrapolated profiles and those from the finest mesh size used were surprisingly small and occurred in the second decimal place.

The method of using an analytical boundary solution was evaluated by applying the Blasius solution for the growth of a thermal and velocity boundary layer with zero pressure gradient and constant properties. The velocity and temperature fields are assumed to undergo a normal boundary layer growth at the tube wall. Outside of this boundary layer lies a potential flow field with uniform temperature and velocity. After determination of a similarity parameter for use in the Blasius solution consistent with the non-dimensionalized form of the boundary layer equations, the axial velocity in the core, U_e^+ , and the pressure defect, $(p_0-p)/\rho_0 U_0^2$ were evaluated at any axial point by solving the total momentum and

continuity equations.

The axial velocity profile development as obtained from this solution is compared with that of Hornbeck (35) for the isothermal case in Figure 22. For small x^+ , the comparison is very good. The profiles obtained from this method were patched to the numerical solution at several axial points. A wide range of axial points was found for which convergence in the downstream region was significantly improved. Results for this method applied at $x^+ =$ 0.00025 and $\theta_w = 0.95$ are shown plotted in Figure 20 along with those from the rational extrapolation method. On the basis of these results, it was decided to proceed with an improved analytical boundary layer solution at the entrance.

The application of the constant property boundary layer growth for $\theta_w = 0.10$ seemed to result in a significant overestimate of Nu,m at the entrance (with respect to the completely numerical solution) for an extended distance after a patch to the finite difference solution. Properties in the boundary layer solution were evaluated at a film temperature midway between the wall and inlet bulk temperatures. It should be noted that the wall parameter results at the entrance obtained from the finite difference solution were found to be insensitive to mesh size. This lends confidence to the finite difference results as being correct there and indicates that Blasius

profiles are not suitable for the non-isothermal case.

An analytical boundary layer solution which includes property variation and pressure gradient is described in the next section.

<u>4.3. Similarity Solution-- Compressible Variable Property</u> <u>Boundary Layer Growth with Pressure Gradient for</u> Tube Flow

A solution for the thermal and velocity boundary layer growth at the wall in the entrance of a cylindrical tube is sought along with a method of coupling this solution to the internal flow. Similarity methods have been shown to yield satisfactory results for may situations even where the requirements for similarity are not satisfied exactly (23, 85). More will be said about these requirements after the transformation of the boundary layer equations in terms of the similarity parameter.

At points where the boundary layer thickness is small with respect to the tube radius, (i.e. $\delta/r_0 <<1$), the boundary layer behaves as though it were developing on a flat plate. When an order of magnitude analysis is applied to the boundary layer equations in cylindrical co-ordinates, certain terms can be shown to be negligible. When they are neglected the following non-dimensional equations obtain; Momentum;

$$\rho^{+}(U\frac{+\partial U}{\partial x^{+}} + V\frac{-\partial U}{\partial y^{+}}) = \frac{dP}{dx^{+}} + 2Pr_{0}\frac{\partial}{\partial y^{+}}(\mu^{+}\frac{\partial U}{\partial y^{+}})$$
(4.3)

Continuity

$$\frac{\partial}{\partial x^{+}}(\rho^{+}U^{+}) + \frac{\partial}{\partial y^{+}}(\rho^{+}V^{+}) = 0 \qquad (4.4)$$

Energy;

$$\rho^{\dagger}(U^{\dagger}\frac{\partial H_{2}^{\dagger}}{\partial x^{\dagger}} + V^{-}\frac{\partial H_{2}^{\dagger}}{\partial y^{\dagger}}) = \frac{\partial}{\partial y^{\dagger}}(\frac{k}{c}\frac{\partial H_{2}^{\dagger}}{\partial y^{\dagger}}) - (\gamma_{0}-1)M_{0}^{2}\left[U^{\dagger}\frac{\partial H_{2}}{\partial x^{\dagger}} - 2Pr_{0}\mu^{\dagger}(\frac{\partial U^{\dagger}}{\partial y^{\dagger}})^{2}\right]$$

where the non-dimensionalized variables are the same as in equations 2.30,2.31 and 2.32 with the exception of

$$H_2^+ = (H - H_w)/c_{p,o}T_o$$
 (4.6)

and

$$y^+ = 1 - r^+$$
 (4.7)

where y^+ represents the distance measured in a positive sense away from the wall. The transverse velocity maintains the usual boundary layer convention of being positive in a direction away from the wall. The transverse velocity is related to the radial velocity by $V^- = -V^+$.

We transform to the following non-dimensionalized

independent variables after Dewey and Forbes (23):

$$\xi = \int_{0}^{x^{+}} \rho_{e}^{+} \mu_{e}^{+} U_{e}^{+} dx^{+} \qquad (4.8)$$

$$\eta = \frac{U_{e}^{+}}{\sqrt{2\xi}} \int_{0}^{y^{+}} \rho^{+} dy^{+} \qquad (4.9)$$

where subscript e refers to conditions at the edge of the boundary layer or in the central core flow. η is the similarity parameter. We assume that at any point x^+ ;

$$U^{+}/U_{e}^{+} = U/U_{e} = f'(\eta)$$

$$H_2^+/H_{2,e}^+ = G(\eta)$$

,

where $f(\eta)$ and $G(\eta)$ are functions of η only. The differential continuity equation 4.4 can be eliminated by solving for V⁻ in terms of f and G. After the required transformations are made (c.f. Appendix I), the following differential equations are obtained; Momentum:

$$2\Pr_{0}(\lambda f''(\eta))' + f(\eta) f''(\eta) = \beta(f'_{\eta}(\eta) - \frac{\rho_{e}}{\rho})$$
(4.10)

Energy:

$$2\left(\frac{\lambda G'(\eta)}{Pr^{+}}\right)' + G'(\eta)f(\eta) = (\gamma_{0}-1)M_{0}^{2}\frac{U_{e}^{+2}}{H_{e}^{+}}\frac{\rho_{e}}{\rho}\beta f'(\eta) - 2Pr_{0}\lambda f''^{2} (4.11)$$

where
$$\lambda = \rho \mu / \rho_e \mu_e$$
 (4.12)
 $\beta = \text{ modified Falkner-Skan parameter} = \frac{2\xi}{U_e^+ d\xi} \frac{dU_e^+}{d\xi}$ (4.13)

the boundary conditions to be satisfied are

at $\eta = 0$ $f'(\eta) = 0$ $G(\eta) = 0$ and at $\eta = \infty$, $f'(\eta) = 1$ $G(\eta) = 1$ The equations in this form represent a pair of coupled, non-linear ordinary differential equations. In addition they are of the two point boundary value type rather than an initial value problem. The terms in these equations which provide coupling to the internal flow are β in the momentum equation and U_e^{+2} and β in the energy equation.

It should be noted that an attempt was made to use the Probstein-Elliott-Levy-Lees Transformation where it is assumed that

 $U/U_{\rho}^{+} = \mathbf{f}'(\eta,\xi)$

 $\mathrm{H}^{+}/\mathrm{H}_{e}^{+}=\mathrm{G}(\eta,\xi)$

and

The prime still represents differentiation with respect to η . The differential equations which result will contain derivatives in both the η and ξ directions,

but are treated as differential equations in η only. The ξ derivatives are written as axial centered difference operators in terms of the unknown dependent variables and their values on the previous step. This allows a stronger coupling to conditions outside the boundary layer, or for example, to an axial variation of the wall temperature. The problem came with representation of the profiles at the previous step for evaluation of the axial derivatives. The values of the dependent variables there are known at specified and equal η intervals, while the integration procedure at the new step solves the equations and requires evaluation of the non η -derivative terms at intermediate steps which are determined by the convergence of the equations and are not known beforehand. At the edge of the boundary layer, all terms in the differential equations become extremely small. Evidently, small error or inflections in the interpolation schemes used were sufficient to give the integration routine a great deal of difficulty in this region and the routine often would report non-convergence at large values of η . When convergence could be obtained, little difference was seen in the profile from a test solution where the ξ dependence in \mathbf{f} and \mathbf{G} was removed so the variation terms were removed altogether.

The assumption that the profiles are similar with

respect to η is satisfied exactly if these differential equations are functions of η only. This requirement places the following restriction on some of the terms;

$$\lambda = \lambda(\eta) \tag{4.14}$$

$$\beta(f^2 - \frac{\rho}{\rho}) = F_1(\eta) \qquad (4.15)$$

$$(\gamma_{o}-1) \operatorname{M}_{o}^{2} \left(\frac{U_{e}^{+2}}{H_{e}^{+}} \right) \left(\frac{\rho_{e}}{\rho} \beta f' - 2 \operatorname{Pr}_{o} \lambda f'' \right) = \operatorname{F}_{2}(\eta)$$

$$(4.16)$$

Since the static pressure is assumed constant across the boundary layer,

$$\lambda = \left(\frac{T}{T}e\right)\left(\frac{T}{T_e}\right)^b \tag{4.17}$$

In the central core, we will have $T_e = T_o$ and using equation 2.29 we have

.

$$\frac{T}{T_{e}} = \frac{T}{T_{o}} = \theta = (G(1 - \theta_{w}^{a+1}) + \theta_{w}^{a+1})^{1/a+1}$$
(4.18)

and

$$\lambda = \left(\theta_{w}^{\alpha+1} + (1 - \theta_{w}^{\alpha+1})G\right)^{\alpha-1/\alpha+1}$$
(4.19)

where $G=G(\eta)$ is the only dependent variable present

so that equation 4.14 is satisfied exactly. Clearly, equations 4,15 and 4,16 cannot be satisfied exactly, but we note that in the entrance region, it can be shown by using a constant property boundary layer solution in conjunction with the total continuity equation. that β behaves approximately as $\sqrt{\xi}$ and is equal to zero at $x^+ = 0$. Since we are applying this solution only for small x^+ , β will always be small. The addition of variable properties is not expected to change these results significantly. In fact for the cooling case, the increased density at the wall results in a reduced velocity boundary layer displacement thickness and correspondingly, a reduced $dU_{\rho}^{+}/d\xi$ and β since the flow to the core is reduced. Our requirements are then met more At closely in the cooling than in the heating case. small x^+ , expression 4.15 should be approximately equal to zero. For laminar flow, the Mach numbers considered are in the range 0.01 to 0.05 so that the multiplication factor M_0^2 is very small (0.0001 to 0.0025). Also, the magnitude of U_e^{+2}/H_e^+ does not differ significantly from 1 in the region under consideration. It is important to note that for some types of equations, the inclusion of a small term can change the solution entirely, for example, if the terms govern the order of the equation. This is not the case here. It would be extremely difficult to give a definitive answer as to the error that is

incurred by the assumption that at least local similarity is satisfied. However, in an analysis of the incompressible momentum equation with an external pressure gradient, Dewey and Gross (23) by using an approach based on the work of Mecksyn were able to show that the derivative of the velocity at the wall f'(0) from a solution assuming local similarity can be written in terms of the exact solution of the equation $f'_{0}(0)$ by,

$$f''(0) = f_0''(0) \left[1 - 0.053\epsilon + 0(\epsilon^2) + \dots \right]$$
 (4.20)

where prime again denotes differentiation with respect to η . The small parameter ϵ is defined by

$$\epsilon(\beta) = 2\xi \frac{d\beta}{d\xi} = 2\xi \frac{d}{d\xi} \frac{2\xi}{u_{\beta}} \frac{dU_{e}^{\dagger}}{d\xi}$$
(4.21)

which measures the departure of the solutions from complete similarity. Expanding ϵ and noting that $dU_e^+/d\xi \sim \frac{1}{\sqrt{\xi}}$ in the tube entrance, we obtain

$$\epsilon(\beta) \sim 2(\beta - \beta^2 + \frac{\xi^2}{U_{\rho}^+} \frac{d^2 U_{e}^+}{d\xi^2}) = 0 \text{ at } \xi = 0$$
 (4.22)

This means that relaxation effects due to increasing or decreasing β will be zero at the entrance and can be expected to remain small for small x⁺. This adds further confidence to the use of this method for the present problem.

4.4. Integration Procedure

The program for the integration of equations 4.10 and 4.11 was written so that an available algorithm for the integration of ordinary differential equations of the initial value type could be used (15). Reduction of these equations to initial value problems and the coupling to the internal flow is described in this section. It is assumed initially that the correct U_e^+ and β are known at the axial point where the boundary layer profiles are being determined. For the solution at the first point, $x^+ = 0$ ($\xi = 0$), the exact values are known to be;

$$\beta = 0$$
 $U_e^+ = 1$ (4.23)

The integration is started by specifying the known values f'(0) = 0, G(0) = 0, guessing initial values of f''(0) and G'(0) and integrating the equations to a relatively large value of the independent variable η_e where the boundary layer growth is considered to be essentially complete. For the Blasius solution and for the variable property cases, the solutions were within 0.01% of fully developed for $\eta = 7.0$. At $\eta = 7$, a check was made on the quantities $f'(\eta_e)$ -1 and $G(\eta_e)$ -1. If these were both less than 0.0001 in absolute magnitude, then the values of f''(0) and G'(0) were considered as the correct values for the specified U_e^+ and β and solution could be transferred to

determination of new values of β and U_e^+ (Figure 23). If not, each of the initial guesses f''(0) and G'(0)were perturbed-- the magnitude of the perturbation dependent on how many previous times solution had been attempted for β and U_e^+ at this axial point. For example, on the first solution, initial guesses for f''(0) and G'(0) are made from the Blasius solution. On the next guess, f'(0) is perturbed by an absolute amount 0.01, and on the third guess, G'(0) and f'(0) are both perturbed by 0.01 from their initial values. We can solve for the terms in the matrix

$$\begin{vmatrix} \frac{\partial G(n_{e})}{\partial f''(0)} & \frac{\partial G(n_{e})}{\partial G'(0)} \\ \frac{\partial f'(n_{e})}{\partial f''(0)} & \frac{\partial f'(n_{e})}{\partial G'(0)} \end{vmatrix} \approx \begin{vmatrix} \frac{\Delta G(n_{e})}{\Delta f''(0)} & \frac{\Delta G(n_{e})}{\Delta G'(0)} \\ \frac{\Delta f'(n_{e})}{\Delta f''(0)} & \frac{\Delta f'(n_{e})}{\Delta G'(0)} \end{vmatrix}$$
(4.24)

and, on a linear basis, can solve for the $\Delta \mathbf{f}''(0)$ and $\Delta G'(0)$ which will make the dependent variables assume their correct free stream magnitudes. In matrix form,

$$\begin{vmatrix} \frac{\partial G(\eta_{e})}{\partial f'(0)} & \frac{\partial G(\eta_{e})}{\partial G'(0)} \\ \frac{\partial f'(\eta_{e})}{\partial f''(0)} & \frac{\partial f'(\eta_{e})}{\partial G'(0)} \end{vmatrix} \qquad \Delta f''(0) = \begin{vmatrix} 1.0 - G(\eta_{e}) \\ 0 \\ 0 \\ 1.0 - f'(\eta_{e}) \end{vmatrix}$$
(4.25)

The pair of initial values G'(0) and f''(0) from the last trio of initial values which provided the best free stream values for G and are designated the base solutions onto which f''(0) and G'(0) will be added in order to form the next coefficient matrix. A flow chart of this procedure is shown in Figure 24.

After the correct boundary values have been chosen and the profiles obtained for a given β and U_e^+ , control is returned to the part of the program which will calculate a new β and U_e^+ corresponding to these profiles (Figure 24). The new value of U_e^+ and static pressure must be determined by applying total conservation of momentum;

$${}^{2}\left[\int_{0}^{0} p^{\dagger} U^{+2} r^{+} dr^{+} - \left(\int_{0}^{0} p^{\dagger} U^{+2} r^{+} dr^{+}\right)_{x} {}^{+}_{=0}\right] -P \qquad (4.26)$$

$${}^{+4} P r_{0} \int_{0}^{x^{+}} r^{+}_{w} dx^{+} = 0$$

and conservation of mass (2.34). We denote y_e^+ as that value of displacement corresponding to , or;

$$y_{e}^{+} = \frac{\sqrt{2\xi}}{U_{e}^{+}} \int_{0}^{\eta_{e}} \frac{d\eta}{\rho^{+}} = \frac{\sqrt{2\xi}}{U_{e}^{+}} \frac{p_{o}}{p} \int_{0}^{\eta_{e}} \theta d\eta$$
$$= \frac{p_{o}}{\frac{\sqrt{2\xi}}{p}} \int_{0}^{\eta_{e}} [(1 - \theta_{w}^{\alpha+1})G + \theta_{w}^{\alpha+1}]^{1/\alpha+1} d\eta \qquad (4.27)$$

Figure 24. Flow diagram for coupling of boundary layer development to internal tube flow.

In the radial integrations, the following values of the dependent variables were used;

$$r^{+}=0 \quad \text{to} \quad r^{+}=1-y_{e}^{+} \qquad U^{+}=U_{e}^{+}$$
$$r^{+}=1-y_{e}^{+} \quad \text{to} \quad r^{+}=1 \qquad U^{+}=U_{e}^{+}\mathbf{f}' \qquad \theta = \left[(1-\theta_{w})^{\alpha+1}G+\theta_{w}^{\alpha+1}\right]^{1/\alpha+1}$$

The wall shear stress is given by

$$\tau_{w}^{+} = \frac{\mu_{w}^{+} \rho_{w}^{+} U_{e}^{+2} f_{(0)}^{''}}{\sqrt{2\xi}}$$
(4.28)

The following equations are obtained from 2.34 and 4.26; Total continuity;

$$\begin{pmatrix} \frac{p}{p_0} U_e^+ \end{pmatrix}^2 + \begin{pmatrix} \frac{p}{p_0} U_e^+ \end{pmatrix} \left(2\sqrt{2\xi} \left[f(\eta_e) - \int_0^{\eta_e} \theta d\eta \right] - 1 \right] \right)$$

$$+ 2\xi \left[\left(\int_0^{\eta_e} \theta d\eta \right)^2 - 2\int_0^{\eta_e} f_0^{\eta_e} \theta(\Omega) d\Omega d\eta \right] = 0$$

$$(4.29)$$

Total momentum;

$$\left(\frac{p}{p_{o}}\right)^{2} - \left(\frac{p}{p_{o}}\right)(1 + \gamma_{o}M_{o}^{2}) + \left(\frac{p}{p_{o}}U_{e}^{+}\right)\gamma_{o}M_{o}^{2}\left[2\sqrt{2\xi}\left(\int_{0}^{\eta_{e}}[f'^{2}-\theta]d\eta\right) + \frac{p}{p_{o}}U_{e}^{+}\right]$$

$$+ \gamma_{o}M_{o}^{2}\left[2\xi\left\{\left(\int_{0}^{\eta_{e}}\theta d\eta\right)^{2} - 2\int_{0}^{\eta_{e}}[f'^{2}_{j}\theta(\Omega)d\Omega d\eta\right\}$$

$$+ 4Pr_{o}\frac{\mu_{w}\rho_{w}p}{\mu_{e}\rho_{e}}\int_{0}^{\xi}\int_{\sqrt{2\xi}}^{\xi}[f'(0)d\xi] = 0$$

$$(4.30)$$

Once the correct wall parameters were determined at a given axial step, an additional integration of the equations 4.10 and 4.11 was performed with evaluation of the. dependent variables at equal η intervals. This was so that all radial integrations could be carried out by Simpson's rule. The analytical solution was applied in a stepwise manner at equally spaced intervals $\Delta \xi$. Once a solution was complete at an axial point, the independent axial variable was incremented by $\Delta \xi$ and the values of the profile dependent terms in equations 4.29 and 4.30 were approximated on this first solution at $\xi + \Delta \xi$ by their values from the previous axial point. This allowed for an initial estimate of β and U_{e}^{+} and control would be returned to the integration procedure. On proceeding iterations, new values for these terms would be used. The last integral in the equation was linearized by applying a modified midpoint rule.

$$\int_{0}^{\xi} \frac{U_{e}^{+}}{\sqrt{2\xi}} f'(0) d\xi = \int_{0}^{\xi} \frac{U_{e}^{-\Delta\xi}}{\sqrt{2\xi}} f'(0) d\xi$$

$$+\left(\frac{f'(0)|_{\xi-\Delta\xi}+f(0)|_{\xi}}{2}\right)\left(\frac{U_{e}^{+}|_{\xi-\Delta\xi}-U_{e}^{+}|_{\xi}}{2}\right)\left(\sqrt{2\xi}-\sqrt{2(\xi-\Delta\xi)}\right)$$

$$(4.31)$$

We note that the continuity equation is a quadratic in the product of unknowns $\frac{p}{p_0}U_e^+$ for which solution may be made directly. The momentum equation is a quadratic both in p/p₀ and p/p₀U_e⁺. and solution for the former unknown may be made directly after determination of $p/p_0U_e^+$. The unknown U_e^+ can then be determined.

The parameter β (4.13) was evaluated at each, axial point by use of local ξ and U_{ρ}^{+} and using

$$\frac{\mathrm{d}U_{\mathrm{e}}^{+}}{\mathrm{d}\xi} = \frac{U_{\mathrm{e}}^{+}|_{\xi} - U_{\mathrm{e}}^{+}|_{\xi-\Delta\xi}}{\Delta\xi} \qquad (4.32)$$

for the derivative term. Solution could have been made for this quantity directly at ξ by taking the ξ derivatives of equations 4.29 and 4.30 and solving the non-linear simultaneous equations in $dU_e^+/d\xi$ and $d(p/p_0)/d\xi$ which result, but it is questionable whether this approach would be worth the effort. In the entrance region, the higher order derivatives will be rapidly decreasing in magnitude with axial distance. Consider the evaluation of the first axial derivative by use of this difference quotient (2.37). The coefficients of the higher order derivatives in the error term are monotonically increasing with σ for $\sigma > 1/2$. At the same time, the decrease in the magnitude of the derivatives with increasing σ (increasing x⁺) will partially offset this so that the minimum error will occur at a point inbetween $(m + \sigma)\Delta x^+$ and $(m+1)\Delta x^+$. After several axial steps, the relative difference in $(m+\sigma)\Delta x^+$ and $(m+1)\Delta x^+$ will be negligible. Also, 4.32 is consistent with the way axial derivatives were evaluated in the finite difference solution.

Convergence on the two iteration levels was considered complete at an axial point when successive values of the parameter $m{eta}$ differed by less than 0.1% and successive values of U_e^+ and p/po differed by less than 0.00005 in absolute magnitude. The program was coded in Fortran IV and run on the RCA Spectra 70 computer at the college. Integration of equations 4.10 and 4.11 took about 8 seconds and, on the average, 4 such solutions were needed for convergence of G'(0) and f''(0). Approximately 3 or 4 of these converged solutions were needed to complete iteration for β , U_{ρ}^{+} and p/p_{0} so that a total of about 1.5 minutes was needed for each axial step. The axial increment used for all patching solutions was $\Delta \xi = 5 \times 10^{-5}$. No change in the free stream value of U_{e}^{+} was found for the axial step. Also, changing the value of η_e from 7 to 14 resulted in a change in absolute value of U_e^+ of less than 10^{-5} at the same axial displacement.

Comparison of the boundary layer profiles generated

from this solution was made, when possible, with published boundary layer data. For the constant property case with zero pressure gradient, agreement was found to be perfect within the 5 decimal place accuracy for the enthalpy and velocity profiles of the Blasius solution presented in Schlichting(75). Also, no difference was found between present results for Pr = 1, $T_W/T_0 = 0.20$ and the results of Reshotko and Cohen (72) for $\beta = 0$.

The joining of this analytical solution to the finite difference solution was made in a two step patch at $\xi = 0.00025$ and $\xi = 0.00030$. These particular points were chosen because previously the best downstream behavior was obtained when the Blasius solution was patched to the finite difference solution in this region. At $\xi = 0.00025$, complete radial and axial velocity and enthalpy profiles along with p/p_0 generated by the similarity solution were inserted as initial values into the Worsoe-Schmidt program.

It can be shown that the function f is related to the Cartesian stream function ψ by

$$\psi = 2\xi f \tag{4.33}$$

and the radial velocity in terms of the stream function is,

$$\mathbf{v}^{-} = -\frac{1}{\rho^{+}\partial\mathbf{x}^{+}} = \frac{\rho_{\mathbf{e}}}{\rho}\mu_{\mathbf{e}}^{+} \mathbf{U}_{\mathbf{e}}^{+} \sqrt{2\xi} \left[\frac{\mathbf{f}}{2\xi} - \frac{\eta}{\mathbf{U}_{\mathbf{e}}^{+}} \frac{\mathrm{d}\mathbf{U}_{\mathbf{e}}^{+}}{\mathbf{U}_{\mathbf{e}}^{+}} - \eta_{2\xi}^{-} \mathbf{U}_{\mathbf{e}}^{+} \right]$$
(4.34)

This was the expression used to evaluate the transverse velocity in the boundary layer. Outside of the boundary layer, the radial velocity is obtained from integration of the continuity equation from the centerline out to a radius r^+ ;

$$V^{+} = - \frac{1}{\rho^{+}r} + \int_{0}^{r^{+}} r^{+} \frac{\partial}{\partial x} + (\rho^{+}U^{+}) dr^{+} \qquad (4.35)$$

Since in the core flow, $\rho_e^+ U_e^+ = F(x^+)$ only, $\frac{\partial}{\partial x^+} (\rho_e^+ U_e^+)$ is a function of x^+ only in the region from $r^{+=0}$ to $1-y_e^+$ where y_e^+ denotes the edge of the velocity boundary layer;

$$V^{+} = \frac{-r^{+}}{2\rho_{e}}\frac{\partial}{\partial x^{+}}(\rho_{e}U_{e}^{+}) = -\frac{r^{+}p_{o}}{2\rho_{e}}\frac{\partial}{\partial x^{+}}(\frac{p}{p_{o}}U_{e}^{+}) \qquad (4.36)$$

The radial velocity is seen to be a linear function of the radius. The axial derivative was evaluated by the difference quotient 4.32. Once the profiles were patched, the finite difference program was allowed to generate all profiles for the next axial step. However, at this step the axial velocities and enthalpies were re-entered from the analytical entrance solution to begin the solution at the following step. Radial velocities from the finite difference solution were retained. This was done in order to help smooth the patch. The solution for all proceeding steps continued in a normal manner. The effect of the patch on the velocity boundary layer development can be seen in Figure 22 where the velocity boundary layer as developed by the finite difference solution after a typical patch is shown compared with the solution from further independent development of the similarity solution. The difference is quite small and it would seem to indicate that the two solutions are at least compatable. A listing of the computer program used for the entrance region solution is given in Appendix F.

4.5. Results

The largest descrepancy between the present entrance solution and the finite difference solution can be seen in the variation of the static pressure with axial distance. In Figure 26, the non-dimensionalized pressure defect is shown for He at $\theta_w = 0.1$ from the similar boundary layer growth and for two finite difference solutions-- one being the results from the rational extrapolation procedure noted earlier. The most obvious difference is in the difference in signs of the static pressure drop. The present analytical solution predicts a pressure rise in the entrance due to deceleration from the severe cooling. However, note that if the finite difference solutions are visually extrapolated to $x^+ = 0$, a non zero pressure defect is the result. This is not physically possible.

Axial variation of dimensionless pressure defect for patched and complete finite difference solution. Air, UTV boundary condition, $M_0 = 0.03$ Figure 26.

It should be noted that refinement of the mesh was found to reduce this pressure defect and displace it closer to the results from the similarity solution. The finite difference program normally begins the iterations at the second step by using a pressure defect calculated on the basis of a constant property boundary layer growth. This implies a static pressure drop for all cases. Changing the magnitude and sign of this initial guess was found to make no difference in the final pressure defect obtained after several iterations at the first It should be noted that the shape of the curves step. from both solutions are the same. Very little difference was found in the wall parameters Nu,m and fRe,m near the entrance for all solutions. The closest agreement was obtained from the rational extrapolation procedure. This would also lend confidence to the present results. Perhaps it is not without merit to reiterate that all we are actually doing is providing a better solution to the set of equations 2.30 - 2.32. The question is still open as to the applicability of these equations in the entrance region.

Downstream convergence was improved considerably by this method, although absolute convergence (i.e. stability of the wall parameters to infinite x^+) was not obtained. In all cases, the asymptotic Nusselt number was attained first and stayed at this value until the friction factor

differed by only a few percent from its fully developed value. Downstream results from this method are compared with those from the finite difference method in Figure 27 for He at $T_w/T_o = 0.50$. Roughly the same mesh sizes were used in the patching solution and in the completely finite difference solution. The same magnitude of deviation indicated by the horizontal line is developed in the solution with the analytical boundary layer growth at an axial point which is more than twice as far downstream than the completely numerical method. Comparison of the axial variation of $\theta_{w}-\theta_{m}$ and q_{w}^{+} for the two showed that the error in Nu, m is about equally divided between these two quantities and is not due solely to the error in either quantity. For example, if a large error in the local heat flux is responsible, then the problem could be indentified as a local one. Since we can reasonably expect that $Nu_{,m}$ will remain constant once it has reached the fully developed value, continuation of the solution might be made by specifying as a boundary condition that $Nu_{m} = 3.67$ and evaluating a heat flux on this basis. An error in the wall to bulk temperature ratio represents an accumulation of small errors whose presence and origin are hard to detect and correct.

Wall parameters for the flow of helium and air are shown plotted versus x^+ in Figures 28 and 29 respectively.

The Nusselt number is almost completely insensitive to the temperature ratio. This is not completely surprising since the flow in the entrance of the tube is of a boundary layer character and results from variable property external boundary layer solutions for gases (72,23) have shown little change with severe cooling. Here, for helium Nu, m actually exhibits a slight increase with increased cooling. The variation of the product fRe, m with θ_w is large in comparison with that of Nu,_m, but still rather small in an absolute sense. For example, a tenfold decrease in the inlet wall to bulk temperature ratio results in less than a 50% decrease in fRe, m. The friction factor variation is nearly identical for the two gases. The extremely slow convergence of this parameter for the case of $\theta_w = 0.1$ should be noted. For example, for both gases, fRe, m still differs from its fully developed value by 25% at $x^+ = 0.85$. To translate this to physical terms, consider the flow of He at $Re_0 =$ 1000. Then $x^+ = 0.85$ corresponds to an axial displacement of more than 300 diameters. For the Graetz condition and this same temperature ratio, this magnitude of deviation from the isothermal fRe, m corresponds to approximately half this displacement. Data for the isothermal case for Nu_{m} and $Pr_{o} = 0.70$ is also plotted from references 43, 57 and 93 in Figure 30. Present results fall midway between the results of Manohar and Ulrichson and Schmitz.

In Figure 31, the centerline axial velocity development from this solution is compared with that from Hornbeck (35). Since, for reasons given previously, it was not possible to run the fully isothermal case here, the case of $\theta_w = 0.95$ was used for comparison. Agreement here is excellent.

Representative axial velocity and temperature profiles are shown in Figure 32 for $\theta_{\rm w}$ = 0.10 and 0.50 and radial velcity profiles in Figure 33 for $\theta_{\rm w}$ = 0.10 and 0.95 and the flow of helium. With the exception of helium, where for the case shown of $\theta_w = 0.10$ an outward radial velocity existed for a short distance from the entrance, the displacement of gas in the velocity boundary layer is responsible for an inward radial velocity. For gas cooling, an outward radial velocity would bring gas at a higher temperature from the core towards the wall. The result is a flatter temperature profile and an increased magnitude of temperature gradient and heat transfer at the wall. In an incompressible UTV case, the inward radial velocity profile reverses this effect, and in a sense, effectively 'insulates' the wall. When compressibility and cooling are introduced, the magnitude of this inward velocity is reduced. Qualitatively, the heat transfer is augmented for the reasons previously stated and the net effect is to partially offset the decrease in the thermal conductivity ratio at the wall,

122.

Figure 33.

Dimensionless radial velocity profiles for developing flow of helium at two inlet temperature ratios. UTV boundary condition, $M_0 = 0.03$

 k_w/k_m (3.21). This is probably the primary reason for the insensitivity of Nu_{,m} to temperature ratio.

Near the center of the tube, the axial velocity profiles show the most variation with wall to bulk temperature ratio (Figure 31). As is the case with the temperature profile, cooling flattens the profile. It is difficult to argue through the reasons why this behavior is present since there are many possibly cancelling effects. For example, as cooling is increased the static pressure drop along the tube is increased. The density near the wall is increased which in the absence of a radial velocity tends to decrease the axial velocity and its gradient at the wall. The magnitude of the outward radial velocity component and the viscosity ratio at the wall μ_w/μ_m are also all decreased. For the examples shown, at $x^+ = 0.490$ the velocity profiles have essentially reached the fully developed state, while the product fRe, m still differs from its fully developed value by more than 50% -- this difference must be attributable to the factor μ_w/μ_m again. If the velocity profile development is plotted as a function of x_m^+ instead of x^+ (Figure 34), the fully developed state is reached more quickly. Also the distortion of the profiles with x_m^+ is reduced when presented on this basis. Using x_m^+ for the representation of fRe,_m and Nu,_m is questionable. Even though convergence of these quantities

Figure 34. Reduced axial velocity development with X_m^+

126.

is also quicker. The displacement of the curves with respect to each other at points intermediate between the entrance and fully developed regime would be increased. Also, the excellent correlation of Nu_{m} with x^+ for all T_w/T_o should not be sacrificed.

For Nu,m, a single correlation for all inlet wall to bulk temperature ratios is recommended (maximum error 3%),

$$Nu_{m} = 3.67 + 0.246x^{+-0.592}e^{-20.6x^{+}}$$
(4.37)
$$0.001 \le x^{+} \le 0.50$$

$$Nu_{m} = 3.67$$
 (4.38)
 $x^{+>0.50}$

for both helium and air. For the local friction factor, the following correlation is proposed;

$$1 - (fRe_{m})/(fRe)_{I} = \left[1.067(1-\theta_{w})x^{+-0.576}\right]e^{-\beta x^{+}} \qquad (4.39)$$
$$x^{+>0.002}$$

where

$$\beta = 7.70 \theta_{\rm w}^{0.675} \tag{4.40}$$

The coefficients were determined from a least squares multiple regression analysis. The quantity (fRe)_I represents the isothermal quantity whose variation with axial distance is well represented by,

$$(fRe)_{I} = 16.0+0.694x^{+-0.576}e^{-22.9x^{+}}$$
 (4.41)

for both gases in the range $x^+ > 0.001$. An attempt was made to isolate the effect temperature ratio has on the friction factor by plotting the ratio $(fRe_{m})/(fRe)_I$ at the same axial (x^+) points as a function of local wall to mean temperature ratio. This is shown in Figure 35 for air and shows that for developing flow, correlation is not possible on this basis.

4.6. Dissipation Function

The form of the dissipation function used in the Worsoe-Schmidt analysis was,

$$\Phi^{+} = \mu^{+} \left(\frac{\partial U}{\partial r}^{+}\right)^{2} \qquad (4.42)$$

However, in the assumed core flow for the UTV boundary condition $\partial U^{+}/\partial r^{+}$ was assumed to be zero for the similarity inlet solution and in the finite difference solution, this term was found to be extremely small in in the core. Since for an acceleration or deceleration of the mass flow in the core, the continuity equation predicts a non-zero radial velocity in the core even when $\partial U^{+}/\partial r^{+}=0$, a re-examination of the complete dissipation function showed that for the UTV boundary condition the form

$$\Phi^{+}=\mu^{+}\left[\left(\frac{\partial U}{\partial r}^{+}\right)^{2}+\frac{2}{\left(\operatorname{Re}_{O}\operatorname{Pr}_{O}\right)^{2}}\left\{\left(\frac{V}{r}^{+}\right)^{2}+\left(\frac{\partial V}{\partial r}^{+}\right)^{2}-\frac{2}{3}\left(\frac{\partial V}{\partial r}^{+}+\frac{V}{r}^{+}\right)^{2}\right\}$$
 (4.43)

129.

should be used. For the isothermal UTV condition, the term $\partial V^+ / \partial r^+$ can be shown to be larger by a factor r_0 / δ than the term $\partial U^+ / \partial x^+$ at the entrance. Examination of these terms from the numerical solution showed that the axial derivative could still be neglected when property variations were present. At the tube centerline $(r^+ = 0)$ application of L'Hospital's rule and symmetry yields:

$$\frac{4\mu^{+}}{3(\operatorname{Re}_{O}\operatorname{Pr}_{O})^{2}}\left(\frac{\partial V}{\partial r}^{+}\right)^{2} = \Phi^{+} \qquad (4.44)$$

This dissipation function is operating over a fairly long axial distance in the core and the integrated effect on the temperature profile and the wall parameters may be non-negligible. An interesting point in the inclusion of the factor Re_0Pr_0 which requires the specification of the Reynolds number when the additional terms are included. Generally, Reynolds number dependence is a characteristic of non-boundary layer flow. For example, inclusion of axial second derivatives also requires specification of Re_0 . The initial value nature of the problem is not changed by the inclusion of these terms. The variation of $\text{Nu}_{,m}$ for helium at $\theta_w = 0.90$ is shown in Figure 36 for several inlet Reynolds numbers. For $\text{Re}_0 >$ 100, the change in $\text{Nu}_{,m}$ is negligible. While Reynolds

FIGURE 36. EFFECT OF ADDITIONAL TERMS IN DISSIPATION FUNCTION Φ on heat transfer.

numbers lower than this are not of any practical importance, solutions are presented for Reynolds numbers less than this for the sake of completeness. For Reynolds numbers of this magnitude, the second order axial terms would probably be of such magnitude as to make these results of academic interest only. The effect will be reduced for lower wall to bulk temperature ratios due to 1.) the decrease in the magnitude of the radial velocity component and 2.) the increasing magnitude of boundary layer terms relative to these terms, so that it was not necessary to test further cases. It is interesting to note that the effect of the new dissipation function is felt immediately in the entrance. This indicates that the increased magnitude of Nu, m is probably due to the dissipation in the boundary layer at or near the wall rather than in the core. Local viscous energy generation at the wall would raise the gas temperature near the wall. Perhaps it would be more applicable to define a convective heat transfer coefficient using a wall to local film temperature difference. Such a film temperature could be defined, for example, by using the bulk temperature in the thermal boundary layer rather than across the whole tube. The effective "film" to wall temperature difference is increased by a greater factor than the ordinary wall to bulk temperature difference.

132.

CHAPTER 5. EXPERIMENTAL INVESTIGATION

5.1. Introduction

In this chapter the procedure and apparatus used to obtain experimental data for gas cooling with the sets of boundary conditions examined in the theoretical portion of the investigation is described.

5.2. Experimental Apparatus

The apparatus was designed to measure the local heat transfer and static pressure at several axial points along a constant temperature cylindrical tube for cooling of a gas with severe transverse temperature gradients. The flow diagram is shown in Figure 37. Air supplied from a reciprocating air compressor flows into supply plenum. through a filter. scrubber and regulator and into a settling tank. The flow than passes through a resistively heated inconel tube into a mixing plenum where its temperature and pressure are measured before passing into a development section mounted directly before the test section. The gas temperature is measured in a mixing plenum mounted directly after the cooling section. It then passes through a constant temperature bath after which its temperature is measured. Finally the flow is metered by a laminar flow meter and vented to atmosphere.

Schematic diagram of experimental apparatus Figure 37.

134.

A. Air Supply

A Worthington two stage air compressor was connected into the supply line. The gas was initially dried in a water jacketed condensor after the high pressure cylinder in the compressor. The compressor ran continuously during each test. Primary regulation of the supply plenum pressure was accomplished by varying the bleed flow from the supply plenum. This method provided an extremely steady flow. The pressure was maintained in the plenum at approximately 90 psig.

A King Model 2260-1 filter fitted with a King Model 9326 polisher cartridge was mounted in line directly before a Denver-Harris model 1503-C two stage pressure regulator.

B. Preheater

The preheater consisted of a 1/8"D x 0.020" wall x 5' inconel tube mounted in a steel cylinder loosely packed with MgO powder and externally insulated with magnesite sheath (Figure 38). Power is supplied from a Transtat catalog no. 29145 single phase voltage regulator through specially fabricated taps mounted at opposite ends of the inconel tube. The preheater was electrically insulated from the test section by a special flange fabricated from 316 S.S. and a Cermacast pottable ceramic. The power input to the tube was measured with a Weston voltmeterammeter combination. Maximum exit gas temperatures obtained were on the order of 1800 F.

C. Development Section

Two flow development sections were used. The first provided a fully developed velocity and uniform temperature profile to the test section and is shown in a photograph in Figure 39 and schematic in Figure 40. The entering gas temperature was measured by a chromel-alumel thermocouple mounted downstream of a pair of mixing baffles. The thermocouple was fitted with a cylindrical stainless steel radiation shield so that it effectively "saw" only the center portion of these baffles and the development tube centered in the downstream region. The flow divided into a portion which flowed through an isolated central tube leading into the cooling section and a portion which flowed in an annulus surrounding this This flow was vented to the atmosphere through a tube. needle valve. The annular flow served as insulation to assure that the flow development was adiabatic. The length to diameter ratio of the section was well over 100. For the second development section, the annular section was removed from the plenum. A bellmouth entrance was used to provide nearly uniform velocity and temperature profiles to the test section. The inlet bulk temperature of the gas was measureed by bleeding air from the supply

Figure 38. Photograph of preheater

Figure 39. Photograph of adiabatic development section

.

Schematic of inlet development section apparatus Figure 40.

plenum around a long stem 1/16 inch diameter chromel alumel thermocouple (Figure 40). Pressure in the plenum was measured by a Meriam 40 inch air-over-mercury manometer. Magnesite sheath of approximately 1-1/2 inch thickness was bonded to both development sections with a refractory cement. Several inches of exterior fiberglass insulation was added. All tube and thermocouple fittings used were Gyrolok 316 stainless.

D. Exit Mixing Section

A schematic of this apparatus and a photograph showing the section mounted in its insulating case are shown in Figure 41. After passing through the test section, the gas flows through a short length of tube in which several mixing baffles are mounted and over a long stem, small diameter Cu-Con thermocouple probe. This air then flows back in an annulus around the tube to serve as an insulator and then passes over the rear of the thermocouple stem so the conduction losses are reduced. This mixing portion was mounted in a box filled with several inches of MgO powder and vermiculite insulation. The entire apparatus was then covered with fiberglass insulation.

E. Metering

Prior to metering, the gas passes through several turns of 1/4 inch D copper tubing immersed in a room

temperature water bath. This insures that the temperature correction term for the flowmeter will be small. The flow rate is measured with a Meriam model 50 MW 20-1 factory calibrated laminar flow element which provides a linear differential pressure output with air flow rates up to 8 S.C.F.M. The output pressure is measured by a Teltrue type A micromanometer with a resolution as low as 0.001 inch H_20 . Gas temperature at the flowmeter was measured by a long stem Cu-Con thermocouple mounted so that the junction was inside the flowmeter and the gas flow was along the stem.

F. Flow Control

The flow through the test section is controlled by three needle valves. One is mounted in line between the test section and flowmeter, one is upstream of the preheater and one is mounted on the bleed line from the development section. The bleed flow rate was maintained at a much larger value than the flow through the test section. This was done so that changes in this latter flow rate through the test section made by adjusting the downstream valve would make only small relative changes in the total flow rate through the preheater. Since the power input to the preheater was not normally changed during a test series for a fixed inlet temperature, this procedure assured a fairly steady output temperature.

G. Test Section

The test section is a 1" 0.D. x 0.294" I.D. 304 stainless steel tube. Pressure taps made from 1/16 D x 0.006 inch wall stainless tubes are brazed into the tube at 7 axial points. Actual entry into the inner tube is made by 0.040 inch diameter holes in the tube wall. Six heat flux calorimeters are clamped to the tube at 6 axial points where grooves are turned into the section. Axial locations of the pressure taps and calorimeters are given in Table 5.1.

Table 5.1. Test Section Dimensions

A. Axial location of pressure taps (in.)
1.250 6.550 16.150 25.749 35.349 44.949 50.248
(0.981 in. additional with bellmouth)
B. Axial location of calorimeters (to center of each)
1.730 11.330 20.930 30.529 40.129 49.728

The calorimeters consist of 304 S.S. semi-circle sections 0.380 inch I.D. x 1.000 inch 0.D. x 0.500 inch width fabricated from the same tube stock as the test section. Thermocouple holes 0.030 inch D x 0.250 inch deep are drilled into each section at radii of 0.250 inch and 0.437 inch. Teflon insulated 36 gage Cu-Con thermocouples made from thermocouple wire supplied by Thermo Electric Company are mounted in the holes which are packed with a high conductivity GE silicone grease. The thermocouples are mounted in matched pairs formed by cutting the wire and welding leads directly on either side of the cut. This insures that each pair of thermocouples will have leads of essentially the same composition since thermocouple wire may vary even from the same spool. The thermocouples are soldered with a 60-30 resin solder.

A 1/16 inch thick balsa facing is bonded with epoxy to the face of each calorimeter (see photograph, Figure 43). The thermocouple leads are epoxied into grooves cut into this facing such that thermocouple conduction error is reduced and the leads are protected from abrasion. The calorimeters are pressed against the test section by means of simple clamps fabricated from 1/8 inch t 304 S.S. sheet stock. Contact resistance between the calorimeters and the test section was reduced by liberal application of silicone grease to all contact surfaces prior to mounting.

The test section is immersed in a bath of H₂O which is maintained at a pool boiling condition by approximately 12 immersion heaters.⁶ The test section plus constant

⁶Inital attempts at using liquid N₂ as the boiling medium were unsuccessful due to the difficulty of maintaining a good thermal bond of the calorimeters to the test section at extremely low temperature.

Figure 42. Test Section Pressure Tap and Calorimeter - Detail

Figure 43. Heat flux calorimeter pair — photograph

temperature bath is mounted in a large rectangular vermiculite filled box. Maximum values of the ratio Gr/Re^2 obtained in the test section were on the order of 2.5 x 10⁻³ so that free convection effects are expected to be negligible (50,63). Gr is the Grashof number calculated on the basis of maximum wall to gas temperature difference, tube diameter and using gas properties evaluated at temperatures midway between wall and maximum gas temperature.

Provision was made for measurement of the static pressure drop between any pair of pressure taps by means of a pair of pressure switching banks. Pressure drops were measured by a Teltrue type A. micromanometer.

The thermocouple outputs are measured on a recently calibrated Leeds and Northrup type K3 potentiometer and type 9834 null detector. External reference junctions for the thermocouples were placed in an ice bath. Absolute rather than differentail EMFs from the calorimeter thermocouples are measured because most of the measuring junctions were grounded to the test section.

Where possible, electrostatic shielding is applied to thermocouple leads. External thermocouple leads are glass on teflon insulated. Leakage currents are minimized through extension of the internal guard circuit of the potentiometer to its power supply and standard cell. These are mounted on a capacitor formed from sheets of polymethyl methacrylate and aluminum. This was necessary due to the high humidity in the laboratory from the boiling off of the H₂O in the test section bath. Ground loops are eliminated by use of a 0.01 microfarad mica capacitor inserted between the potentiometer and earth ground.

5.3. Calibration

A series of calibrations performed on portions of the apparatus are described in this section.

A. Calibration of the Heat Flux Calorimeters

An analysis of the possible error in using a one dimensional heat conduction equation to evaluate calorimeter conductances is presented in Appendix C. This result necessitates a calibration of the calorimeters. The calibration was performed on the calorimeters after mounting on the test section by applying a known heat flux to the inside wall of the test section and measuring the corresponding ΔT across the calorimeters. The inside wall of the test section was coated with several layers of a flat black refractory enamel in order that the absorptivity of the wall would be uniform. A 1/8 in. D thin walled stainless steel tube whose surface was uniformly roughened on a lathe with a #500 grit emery cloth was mounted along the centerline of the test

section. Figure 44 is a photograph of the calibration setup. Thin ceramic spacers were mounted at points midway between successive calorimeters in order to insure centering of the wire. An analysis of the error introduced by these spacers is presented in Appendix D and is shown to be negligible. In order to eliminate sag at high temperatures, a tension was applied to the wire by a spring mounted in a vacuum chamber at the end of the test section. Power leads and voltage taps were introduced into the chamber containing the tensioning spring by means of Conax sealing glands. Power was provided by a Variac model W20MT3 autotransformer and was measured with a Weston 0-25 volt range voltmeter and 0-30 amp range precision ammeter. The system was evacuated by a mechanical vacuum pump and pressure was measured with a Scientific Glass no. 1-759 tilting type McLeod gaga. Pressure in the test section was maintained at a maximum of approximately 0.02mm Hg in order to minimize conduction and convection heat transfer.

The test was performed with boiling H_20 in the test section bath. Tare thermocouple readings with zero power to the heating tube were subtracted from readings in the power-on test to correct for possible spurious heat losses. The conductances as determined from this procedure are shown plotted as a function of axial position in Figure 45. Error limits with respect to the

Figure 44. Photograph of test section and apparatus for radiation calibration

148.

Figure 45. Axial variation of calorimeter conductance.

mean value of all the conductances (Appendix C) are shown plotted as horizontal lines. All conductances are seen to lie within these limits.

B. Calibration of Thermocouples

The copper-constantan reference junction was obtained from Conax Corporation with a factory calibration in accordance with ASTM procedure E220-64 against a National Bureau of Standards calibrated Platinum versus Platinum-Rhodium thermocouple. The deviation at $32 \,^{\circ}$ F was $0.00 \,^{\circ}$ F. This thermocouple was used for calibration of the flowmeter and exit bulk temperature measuring thermocouples. The deviations were too small (<0.25 $\,^{\circ}$ F) to make a noticeable difference in the results. No calibration was necessary for the test section thermocouples.

C. Adiabatic Development Section

Velocity profiles were measured at the exit of the adiabatic development section which was used for generation of fully developed velocity profiles. This measurement was taken for two reasons. 1.) Since the velocity profile development in the section will depend on $L/(DRe_0)$ where L/D is the length to diameter ratio of the development section, it was necessary to find the maximum Reynolds number for which the flow could be treated as fully developed and 2.) it could be used for a check on the flowmeter. During the test all bleed values on the

development section were closed and the flowmeter was mounted upstream of the section.

A total pressure probe was fabricated from 0.020 inch O.D. x O.010 inch I.D. 316 stainless steel hypodermic needle stock. The probe was mounted on a microscope vernier control stage and output was measured on a type A micromanometer (see photograph, Figure 46). The control stage was set for a traverse across a diameter of the tube by means of a cylindrical brass plug which fit into the end of the test section. A 0.022 inch wide rectangular groove was cut into the plug. The probe was moved into this groove and the microscope stage adjusted until a traverse could be made by moving one of the verniers without touching the sides of the channel. An electrical circuit was set up with the probe connected to one side of a battery and the test section and plug connected to the other polarity. An ammeter was placed in the circuit so that when contact of the probe and plug occurred, the ammeter would give a non-zero reading. Static pressure at the exit was assumed equal to atmospheric. Corrections for measurements near the tube wall as describe in reference 95 were applied. The data showed a flattening of the profile at the centerline occuring at approximately $Re_0 = 1800$. A third order polynomial identically satisfying the zero slip condition at the wall was fitted to the data

Figure 46. Velocity profile measuring apparatus Microscope stage and plug

at $\text{Re}_0 = 1585$ by a least squares criterion (Figure 47) and inserted as an initial velocity profile along with a uniform temperature profile in the finite difference solution. The effect on Nu,m and fRe,m was neglible. No difference was seen in fRe,m at $x^+ = 0.001$ while Nu,m was about 1% higher than that in the idealized case. Also, an itegration of this profile yielded a mass flow rate within 3% of that indicated by the Meriam flowmeter. This agreement is excellent considering that velocity measurements near the tube wall have the least accuracy and a greater weight in a flow rate calculation than points near the center of the tube.

A second calibration was performed after the plenum and development section were run for several hours at 1800 F. This was done so that any incipient change in the calibration of the chromel alumel thermocouple in the mixing section of the development section would be triggered. The bulk temperature measuring chamber described in section 5.2. was fitted with a chromel-alumel thermocouple and fitted onto the end of the development section. The flowmeter was mounted downstream of the chamber. For a Reynolds number of 1500 with the bleed open, the exit temperature was correlated with the output from the upstream thermocouple. The final exit temperature correlation with upstream thermocouple output is shown in Figure 48 which includes a correlation after a two point

Figure 47. Exit velocity profile from adiabatic development section.

Figure 49. Velocity profile from bellmouth used in UTV development section.
calibration at 32 °F and 212 °F of the chromel-alumel thermocouple used in the bulk temperature measuring device. This curve was used in the data reduction program for correction of the upstream thermocouple output.

D. Mixing Section and Bellmouth

The velocity profiles from several bellmouths with slightly varying geometry were measured with the total pressure probe apparatus described in the previous section. The bellmouth giving the most uniform velocity profile (Figure 49) was mounted in the mixing supply plenum for the portion of the experiment dealing with the UTV boundary condition. Output of the chromel-alumel thermocouple mounted in the bleed flow was monitored as a function of its depth of immersion in the bleed flow to determine the depth at which conduction error becomes negligible.

5.4. Leak Tests

Prior to the beginning of the two test series, the test section was pressurized to 35 psig and all connections were covered with a soap solution. This pressure was well in excess of the maximum pressure (20 psig.) used during the actual testing. Tygon plastic tubing was used throughout and G.E. RTV silicone sealant was used at all plastic-metal tube connections.

5.5 Adiabatic Pressure Drop and Friction Factor

With the adiabatic development section in place, two sets of pressure drop data were taken at $\theta_w = 1.0$ for the entering gas and test section both at room temperature and 212 °F. The non-dimensionalized pressure defect is plotted as a function of $x^+ - x_0^+$ along with the theoretical constant property pressure defect which, due to the low experimental Mach numbers, should correspond to the experimental data. x_0^+ is the position of the first pressure tap measured from the point where cooling was assumed to commence (Figure 50). Pressure drops are taken with respect to the first tap. The second tap is reading low and yields an average friction factor between the first two taps which is almost 10% low. No burrs were evident at the second tap. Other friction factors agreed to within 5% of fully developed.

With the UTV development section in place, low Reynolds number friction factors calculated on the basis of a least squares fit to the pressure drop from pressure taps 5 and 6 are shown in Figure 51. Since these taps are so far downstream (~100 diameters), the fully developed friction factor should be present. This is borne out by the excellent agreement in Figure 51. In addition to serving as a check on individual taps, the adiabatic friction factor is important in another respect.

Figure 50. Isothermal dimensionless pressure drop along test section with adiabatic development section in place.

Figure 51. Friction factor in downstream region with UTV development section in place.

Since in a plot of f versus Re, the tube diameter effectively enters the reduction calculation in the fifth power, errors in the measurement of this diameter will be evident here.

5.6. Repeatability Test

In order to determine what effect the arrangement of the immersion heaters in the constant temperature bath have, two additional tests were performed with a rearranged immersion heater configuration for the UTV b.c. for θ_w = 0.50. (tests #50 and 51). No apparent effect was found on either the heat transfer or the friction factor results.

5.7. Wall Temperature Uniformity

The axial wall temperature drop between the first and last calorimeter was, in the worst case, approximately 15°F. The local axial wall temperature gradients are estimated to be approximately two orders of magnitude less than the radial gradients.

5.8. Experimental Procedure

Prior to the beginning of each set of test runs at a given inlet wall to bulk temperature ratio, the bleed flow from the development section was opened, the valve downstream of the test section was closed and the supply pressure adjusted to 60 psig. The power level to the

preheater was adjusted in accordance with a bulk temperature power level curve that had been obtained from a previous test series. About 7 hours of operation in this state was necessary for elimination of all thermal transjents in the development section. Zero points on the flowmeter and pressure drop micromanometers were set. The integrity of the lines from the pressure taps and the pressure switching banks were checked by seeing that the micromanometer zero was maintained for pressure measurements between several pairs of taps in the pressurized zero flow condition. Also at the no flow condition, power was supplied to the immersion heaters and the constant temperature bath was brought up to and held at the pool boiling condition for approximately a half an hour. This allowed a complete set of tare thermocouple readings to be taken. This data was used as a correction for the readings with gas heat transfer for that day.

The valve downstream of the test section was set for the maximum inlet Reynolds number to be run and about 45 minutes was allowed before data was taken. Boiloff from the pool was replaced by boiling water from a separate heater and tank in the laboratory. The following data was taken;

1. Static pressure drops. With the adiabatic

development section in place, the pressure drop between the first and 6 succeeding pressure taps were taken. With the bellmouth inlet, pressure drops were recorded between the inlet plenum and 2nd taps, the first and second tap. and then between the second and 5 succeeding This series was made necessary by taps. fluctuation in the plenum pressure that were not present in the downstream regions of the tube. These fluctuations were dampened by insertion of a laminarizing element in the plenum and the insertion of a large volume in the line from the inlet pressure tap so than an integrated pressure difference was measured rather an instantaneous value.

- 2. Thermocouple outputs from both thermocouples in each of the twelve calorimeters, the upstream and exit mixing chamber and the flowmeter.
- Pressure in the inlet plenum, atmospheric and supply pressure.

A typical data sheet is shown in Figure 52. At the end of a test series which usually included 5 or 6 mass flow rates, the downstream valve was closed and an additional set of zero gas flow thermocouple readings was taken. The purpose of this second set of tare readings was to detect any abnormal thermocouple output rather than to Figure 52. Facsimile of original data sheet.

Variable Property Gasflow Test # <u>//</u> Date <u>4//2/7/</u> V(in) volts <u>22.0</u> I(in) amps <u>3/-0</u> Supply Pressure (lbf/in²) <u>6%0</u> Atmospheric Pressure (in. hg) <u>30.20</u>

Tare Thermocouple Readings - Boiling, zero flow

Flow Test

Differential Pressure - Flowmeter (in. H_20) <u>0.400</u> Flowmeter Temperature Cu-Con (mv) <u>0.3760</u> Bulk Temperature Cu-Con (mv) <u>4.8980</u> P₁ (in. hg.) Left <u>3.60</u> Right <u>3.70</u> Upstream Temperature Cr-Al (mv) <u>13.942</u>

Static Pressure Drop (in. H20) -Base MONEMETER FLUID

$P_1 - P_2$	-0.015 (Ave.)	P1-P5	0,118
$P_1 - P_3$	0.011	P1-P6	0.175
P1-P4	0.058	P1-P7	0.210

Thermocouple Output

<u>Cal</u> .	Station	<u>Output(mv</u>)	Cal.	Station	<u>Output(mv</u>)
1	1 4.2	2530	7	13 4	3034
2	2 4.	2567	8	$-\frac{14}{15}$	<u>DIND</u>
3	<u>4</u> 4 /	1914 (309	9	$\frac{16 \cancel{3}}{17 \cancel{4}}$	184 (SFURILUS) 8199
4	<u>6 4,2</u> 7 4.	2381	10	$\frac{18}{19}$	342-3
5	8 4.	• <u>5 \$ 7</u>		$\frac{20}{21}$ $\frac{4}{4}$	3.4.2.1
ן ג	10 4	31.48	14	22 ./.	9252 9252
б	$\frac{11}{12} \frac{1}{7}$	<u>2894</u> 2913	12	23 1.	426)

Taken by <u>A. Skilling the 11</u>

serve as a tare reading.

5.9. Data Reduction Program

A computer program written in Fortran IV was used in the reduction of all the data. It contained provisions so that data from both inlet sections could be treated. A listing of the program in included in Appendix G along with a list of significant I/O and intermediate variables. Many descriptive comment cards are distributed throughout the listing. The program initially prints out all input data for an echo check. Complete input and reduced data for all tests are included in Appendix H. Third degree polynomial least squares fits were used to represent various calibrations and property variations. Coefficients for these fits are initially read in as punched data. Gas properties were taken from reference 32. A two section fit to the Cu-Con thermocouple tables in reference 62 was used for better accuracy. Also, the x/D ratios at which the pressure taps and calorimeters are located are read in as initial data. Since the test section is maintained at a uniform temperature, no thermal expansion corrections to the non-dimensionalized displacements are necessary. Initially, the program converts and corrects the inlet and flowmeter gas temperatures. calculates a corrected mass flow rate and uses the expression

$$\operatorname{Re}_{O} = 4 \, \mathrm{M} / \pi \mathrm{D} \mu_{O} \tag{5.1}$$

for the inlet Reynolds number where \mathring{M} is the mass flow rate (lb_m/min). The inlet air density (assuming zero radial pressure variation) is calculated from the perfact gas law using the corrected inlet bulk temperature. For the tests using the adiabatic development section, the first pressure tap on the cooling section was used as the reference for the pressure drops. Friction factor data is measured from the point where cooling was assumed to commence. Since the pressure drop from the beginning of the adiabatic development section to the cooling section will be on the order of 0.5 in. of H₂0, the error in the density will be small from assuming the absolute pressure is equal to the inlet plenum pressure (about 20 psig). The inlet velocity,

$$U_{\rm o} = 4M/\pi D^2 \rho_{\rm o} \tag{5.2}$$

and Prandtl number Pr_0 are calculated. An additional word should be mentioned concerning the precise points where the cooling and flow development were assumed to start. The initial point of temperature profile development was essentially the same for the two inlet sections. Modified 316 S.S. Gyrolok 3/8 inch to 1/4 inch tube fittings were used to connect the test and development sections. For the adiabatic development section, cooling was assumed to begin at the end of a small lip on the cooling section on which the ferrules

for the connecting tube fitting clamped. Little was known about the type of thermal contact present, so for the UTV development section, a high conductivity epoxy was used to seal all fitting components. For this case, cooling was assumed to begin midway between the downstream face of the mixing plenum and the outside face of the test section bath. For both development sections the connection was insulated with MgO powder. Actually, the tube wall temperature will decrease along the connection from nearly inlet bulk temperature to 212 °F near the face of the cooling section. The difference in starting the cooling midway or at the lip is quite small. amounting to only a few percent difference in the location of the first calorimeter and pressure tap and almost indistinguishable in the graphs presented herein. However, the measured velocity profile for the bellmouth (Figure 45) shows that a finite velocity boundary layer thickness has developed at the end of the bellmouth. The point where the velocity field development begins was therefore taken upstream of this. In order to make this point correspond to a physical point on the test section, displacements of the pressure taps are measured from the upstream tip of the bellmouth.⁶ The effect of

⁶A detailed measurement of the profile with a boundary layer probe might have allowed solving for an equivalent point from which a constant property layer would have reached the same displacement thickness. However, the difference between this approach and the present is not expected to be large.

this displacement for the pressure drop data for a UTV test run is shown in Figure 53.

A. Heat Transfer Data Reduction

The emf difference across each calorimeter is calculated and the tare emf difference is subtracted to leave the differential emf due only to heat transfer from the gas. The output from the thermocouple at the inner radius of each calorimeter is converted to a temperature (deg.F) and the tube wall temperature used in the Nusselt number is calculated from the one dimensional heat conduction equation in cylindrical co-ordinates;

$$T_{w} = T_{i} + \frac{(TT_{i} - TT_{o})}{26.0} \frac{\ln(r_{i}/0.147)}{\ln(r_{o}/r_{i})}$$
(deg.F)

Subscript o refers to the mean radius at which the outer thermocouple is located and i refers to the inner thermocouple. The factor 26.0 represents the thermoelectric power of a Cu-Con thermocouple with reference junction at $32 \,^{\circ}$ F and measuring junction at $212 \,^{\circ}$ F obtained by a visual fit to plotted data in reference (62). TT refers to thermocouple output (mv) and 0.147 represents the inside radius of the test section (in.).

Provision is included in the program for the elimination of calorimeters whose thermocouples were giving

spurious output. In such a case, this is noted on the data sheet. The position of the bad calorimeters were read into the data reduction program. If the response of only one of the pair of calorimeters at each axial position is poor, then the unit heat flux and wall temperature for that point are calculated solely from the good half. When both calorimeters are inoperative, the axial point is skipped altogether. This is usually indicated by a negative or obviously incorrect heat flux in the reduced data. During the testing for the Graetz b.c., the response of thermocouples in both calorimeters at the third axial location from the entrance were consistently spurious. Testing of these thermocouples showed that those giving poor response were not grounded to the test section. Although great care was taken in the composition of the electrical measuring system, this is undoubtably the cause of the trouble. An ungrounded thermocouple at the second axial position intermittently gave spurious output. A filter improved response somewhat for the UTV tests.

An important factor in the reduction of the heat transfer and friction data is the method by which the bulk gas temperature is evaluated at any axial point. For the case of gas heating, the usual experimental facility consists of a resistively heated tube for which the local rate of heat transfer to the gas at every

point along the tube can be calculated fairly well once allowance is made for losses. In the present case, we are provided with the local heat transfer rates at discrete axial points rather than as a continuous function. The method of fitting a function $q_w^+(x^+)$ to the heat transfer data for each run was used. The curve may then be integrated to any axial point to obtain the net heat lost up to that point. This was applied for many assumed forms of $q_{uv}^+(x^+)$. Candidate functions examined were those that could attain large magnitudes at the entrance with a rapid decay. Downstream the function had to approach zero asymptotically. Typical functions tested were combinations of exponentials and powers of x^+ with exponents less than 1. No function was found to be satisfactory for the data at all axial points. There are several problems associated with this method. With the exception of the first calorimeter location. the local heat transfer coefficients were found to be extremely sensitive to the form of the assumed function with the sensitivity increasing at the downstream calorimeter locations. Also, since the bulk temperature and hence the heat transfer coefficients at downstream positions depend upon the results from the upstream calorimeters, there will be an integration of errors. This can lead to a great relative error in the wall to bulk temperature difference when this latter quantity becomes

small. This problem is magnified in some cases due to the absence of readings from the third calorimeter and the low differential outputs in the downstream region. An uncertainty analysis is presented in Appendix F which shows that the uncertainty in Nu_{m} at the second calorimeter is already of the order of 13%.

The test section was designed with a length to diameter ratio far in excess of that required for the laminar heat transfer tests. This was done so that tests could be performed at a later time over an adequate range of axial displacements for flow in the transition and turbulent regime⁷. It is possible, however, by varying the inlet Reynolds number to obtain a range of the modified Graetz parameter x^+ sufficient for comparison with the theoretical results. Values of x^+ obtained at the second calorimeter can be made to extend well into the theoretical fully developed region. Emphasis was therefore placed on the reduction of data from the first two calorimeters.

⁷For turbulent heat transfer, the problem of experimental uncertainty is somewhat reduced due to the high heat transfer rates which can be maintained further downstream. The high mass flow rates insure a much larger wall to bulk temperature difference and a lower drop in gas bulk temperature at a given displacement. In the experimental study by Brim (9) in an apparatus similar to that used here, but for turbulent flow, these problems were not as acute.

The bulk temperatures were finally evaluated by the integration of an analytical function fitted to the heat flux only at the first two calorimeters. A further restriction placed on the function was that this integrated flux should yield the bulk exit temperature as measured in the exit mixing chamber. It was required that the variation of the heat flux should closely approach the shape of the theoretical variation. Most important, it was necessary that when the function was fitted to theoretical values of the heat flux and bulk temperature for both boundary conditions, the theoretical Nu,m could be retrieved. This is important past the second calorimeter for evaluation of the local friction factor based on total wall shear stress. The fitting of the bulk temperature insures that the tail of the heat flux curve will not shoot off unbounded. Between the second and fifth calorimeters, the wall to bulk temperature differ ence is only on the order of 100 °F. Large relative errors in this difference make up only small errors in the absolute temperature level. The function which best satisfied these criteria out of nearly one hundred forms tested was:

$$q_{W}^{"} = F(x) = \frac{A}{\left(\frac{x}{D}\right)}.45 + \frac{B}{\left(\frac{x}{D}\right)}.39 + \frac{C}{\left(\frac{x}{D}\right)}.25$$
(5.4)

where the three constant A, B, and C are determined from

$$\begin{array}{c} \mathbf{q}_{w}'' \Big|_{\mathbf{x}=\mathbf{x}_{1}} = F(\mathbf{x}_{1}) \\ \mathbf{q}_{w}'' \Big|_{\mathbf{x}=\mathbf{x}_{2}} = F(\mathbf{x}_{2}) \end{array}$$

and

$$\int_{T_{O}}^{\infty} \int_{0}^{T_{exit}} = \pi \int_{0}^{L} q_{W}^{"} d(x/D)$$

where x_1 , x_2 are the axial displacements of the first and second calorimeters respectively.

- T_{exit} = exit gas temperature from downstream mixing plenum
- L = total length of the test section

The specific heat was represented by a cubic polynomial in temperature.

$$c_p(T) = A(8) + B(8)T + C(8)T^2 + D(8)T^3$$

The bulk temperature $T_{m,x}$ at any x is evaluated from,⁸

$$M \int_{C} \frac{f_{m,x}}{f_{0}} (T) dT = A(8)T + \frac{B(8)T^{2}}{2} + \frac{C(8)T^{3}}{3} + \frac{D(8)T^{4}}{4} \Big|_{T_{0}}^{T_{m,x}} (5.5)$$
$$= \pi \int_{0}^{x} F(x) d(x/D)$$

⁸For laminar flow the kinetic energy term $\rho_0 U_0^2/2g_c J$ can be shown to be negligible.

This equation was solved for $T_{m,x}(^{\circ}K)$ by an iteration process in the computer program which stopped when successive values of T_{mx} differed by less than 1/4 deg. K. Next, the local heat transfer coefficient is calculated from

 $h = q_w'/(T_{m,x} - T_{w,x})$ and the Nusselt number

where k_m = thermal conductivity evaluated at bulk

temperature =
$$0.01395(A(7)+B(7)T_{m,x} + C(7)T_{m,x}^2 + D(7)T_{m,x}^3)$$

 Tw_x = wall temperature evaluated from equation 5.3 and the non-dimensionalized heat flux from

 $q_w^+ = q_w^{"}r_o/k_o T_o$ where $T_o =$ inlet temperature (deg. R)

 k_0 = thermal conductivity (BTU/hr ft F) Also, the local modified Graetz parameter at each calorimeter was evaluated from

$$\mathbf{x}_{m}^{+} = \mathbf{x}^{+} \left(\frac{c_{\mathbf{p},\mathbf{o}}}{c_{\mathbf{p},\mathbf{m}}} \right) \left(\frac{k_{m}}{k_{o}} \right)$$
(5.6)

The heat flux fit (5.4) was also used in the reduction of the friction factor and pressure drop data.

With the adiabatic development section in place, the dimensionless pressure drop is;

$$P = (p_0 - p) / \rho_0 U_0^2$$
 (5.7)

where \mathbf{p}_{O} refers to the static pressure at the first tap

location. Dimensionless displacements x^+ are measured with respect to this point. For the UTV boundary condition, the dimensionless pressure defect calculated is

$$P = (p_0 - p - \frac{1}{2}\rho_0 U_0^2) / \rho_0 U_0^2$$
(5.8)

and, as mentioned previously, x^+ is measured from the forward tip of the bellmouth. The reference pressure p_0 is the supply plenum static pressure. The term $\frac{1}{2}\rho_0 U_0^2$ in the numerator of (5.8) is included to account for the acceleration of the gas from zero velocity in the supply plenum to U_0 at the end of the bellmouth where the transition into the test section is completed.⁹ Two types

⁹An attempt was made to determine the initial pressure drop experimentally since, due to velocity profile distortion in the bellmouth, the pressure drop may differ from $V_2(\rho_0 U_0^2)$. It is assumed that this initial pressure drop can be written as $K \rho_0 U_0^2$ where K is a constant which is a function of the bellmouth geometry. The pressure drop actually measured is $p'_0 - p - K_0 U_0^2$ where $p'_0 - p$ is the viscous parasitic pressure loss from the point where the bellmouth joins the section to the first pressure tap. It can be expected that the term $(p'_0 - p)/\rho_0 U_0^2$ will decrease with increasing Reynolds number. For large Reynolds numbers, the governing term will be K and if the total non-dimensionalized pressure drop is plotted as a function of x^+ , it should approach K for small x^+ (high Re₀). For several isothermal high Reynolds number runs, the dimensionless pressure did seem to be approaching 1/2, but at a very slow rate. Large pressure fluctuations in the inlet plenum for high flow rates limited the maximum Reynolds number for which this test could be run.

of manometer fluids (specific gravities 0.826 and 0.797) were used during the experiment and an index JJ is included in the data reduction program to indicate which is used. The micromanomters were scaled to read directly in inches of H_20 when blue manometer fluid (s.g. 0.797) was used.

In addition to the dimensionless pressure drop, two types of local friction factor are calculated. The first is based on the portion of the total wall shear stress due to the static pressure drop only;

$$\tau_{w,\Delta p} = -\frac{r_o}{2} \frac{dp}{dx}$$
(5.9)

A corresponding friction factor $f_{,\Delta p}$ is defined in terms of the dimensionless pressure gradient by

$$f_{,\Delta p} = \frac{\tau_{w,\Delta p}}{\frac{1}{2}\rho_{m}U_{m}^{2}} = r_{o}\frac{\rho_{m}d}{\rho_{o}dx}(\frac{p_{o}-p}{\rho_{o}U_{o}^{2}})$$
(5.10)

and in terms of our non-dimensionalized variables.

$$f_{\Delta p} \operatorname{Re}_{m} = \frac{1}{\Pr_{o}} \left(\frac{\mathrm{dP}}{\mathrm{dx}^{+}} \right) \frac{\rho_{m}^{+}}{\mu_{m}^{+}}$$
(5.11)

The total wall shear stress is given by

$$\tau_{w} = \frac{r_{o}d}{2} \frac{d}{dx} + (p + C' \frac{G^{2}}{\rho_{m}g_{c}})$$
(5.12)

and a local friction factor based on total wall shear stress by

$$f = \tau_{w} / \frac{1}{2} \rho_{m} U_{m}^{2} = r_{o} \frac{\rho_{m} d}{\rho_{o} dx} + (p - C \cdot \frac{\rho_{o}}{\rho_{m}})$$
(5.13)

where C is the mean mass velocity which is a constant along the tube. The coefficient C' is defined by,

$$C' \equiv 2 \int_{0}^{1} p_{u}^{2} r^{+} dr^{+} / \rho_{m} U_{m}^{2}$$
 (5.14)

and is a measure of the non-uniformity of the velocity profile. For a uniform profile, C' = 1 and for a parabolic profile $C^* = 4/3$. A value of C^* less than 4/3indicates a flattened profile. Since the experimental profiles will be undergoing development. C[•] is a function of x^+ and should be kept within the differential operator in equations 5.12 and 5.13. The actual value of C is known only at the entrance and approximately in the downstream regions -- it is not known at intermediate points. In the entrance for the fully developed inlet velocity, this momentum change due to profile development comprises a substantial portion of the total friction factor. For the UTV bondition, it is less important. For present purposes, C' was assumed constant at 4/3for the parabolic velocity profile since it will begin at this value and reapproach it in the downstream region.

For the UTV case, the actual C will begin at 1 and also asymptotically approach 4/3. A value of C = 7/6 which is midway between these limits was used in the data reduction.

In order to evaluate the derivative terms in 5.11 and 5.13, a third order least squares polynomial was fitted to the terms in the parenthesis at the pressure tap locations and differentiated. The bulk properties were evaluated at bulk temperatures obtained by using the same curvefit used in the heat transfer calculations. All densities correspond to inlet static pressure and local bulk temperature. Even though this approach would allow plotting of the friction factors as continuous functions of x^+ , they are calculated and printed out only at the pressure tap locations. It is felt that this better reflects the experimental nature of the data.

Experimental inlet Mach numbers ranged from 0.009 to 0.023 which are somewhat less than that treated in the theoretical analysis(i.e. $M_0 = 0.03$). For cooling, the Mach number based on the mean axial velocity will decrease along the tube. For example, for $T_W/T_0 = 0.5$, the Mach number downstream of the thermal development region will be reduced by approximately 30% from its initial value. Compressibility effects were shown to be small in the theoretical analysis and are expected to have little effect on the experimental results.

CHAPTER 6. EXPERIMENTAL RESULTS

6.1. Graetz Boundary Condition

For both boundary conditions, heat transfer and pressure drop data for air was obtained for inlet wall to bulk temperature ratios of 0.6, 0.5 and 0.4 and pressure drop data only for the additional isothermal cases. For the Graetz boundary condition, the nondimensionalized pressure defect P is shown plotted against x^+ in Figures 54, 55 and 56 along with the same quantity from the finite difference solution. This defect was considered as the best quantity for comparison for three reasons. 1.) The experimental defect requires the least amount of computational reduction. 2.) There is minimal dependence on additional experimental or inferred quantities such as the heat transfer and bulk temperature. 3.) The defect, rather than the wall shear stress, would be the most significant parameter to a designer. Similar to the friction factor, for laminar flow it is a function solely of x^+ for a given gas and $\theta_{\rm o}$, and hence, maintains the same generality.

In these plots one immediately notes that there is a pressure rise in the entrance for both the experimental and theoretical results. The reason is that when the gas undergoes cooling, the resulting increase in bulk density causes a net deceleration of the flow. If the

 $T_W/T_O = 0.40$

cooling is severe enough, the deceleration pressure rise can be great enough to offset the frictional pressure drop. The experimental results show a pressure rise greater in magnitude and extending over a further displacement than the theory predicts. The pressure rise at the entrance has profound effect on the character of the flow. Separate curves diverging from the bulk of the data are shown in Figure 54 and 55 for some of the higher Reynolds number tests. Similar divergent data corresponding to high Reynolds number tests for the other wall to bulk temperature ratios was obtained. It should be noted that for gas cooling, the Reynolds number increases with axial distance. Although the data shown is for an inlet Reynolds number less than 2000, this magnitude will be exceeded at some point. All the results for several Reo are seen to plot on single curves and no Reynolds number dependence is present. Evidently, the divergence of the pressure defect for the higher Reynolds number is the result of a transition to the turbulent regime. It is not possible to determine the precise point at which transition was triggered. It is interesting to note that the comparison between the theoretical and the experimental results improve as wall to inlet bulk temperature ratio decreases. The friction factor for these same tests for $T_w/T_o = 0.50$ and 0.40 are shown in Figure 57 and 58. The experimental fRe,m is

^{186.}

meat

much smaller in the entrance and increases at a much greater rate than the theoretical results for all temperature ratios. The fully developed fRe, is reached more quickly than the theoretical in each case. Of necessity, the adiabatic development section was designed so as to be 0.009" smaller in diameter than the test section at room temperature. For the higher inlet temperatures, the adiabatic section will be at a higher temperature and will grow due to thermal expansion, so the transition between the two sections will become smoother. The increasing static pressure may have a profound effect in the presence of such a discontinuity. Another possible reason for this behavior may be the factor C' in equation 5.13 which may be underestimated by choosing $C^{\bullet} = 4/3$. This is not however, considered a probable reason since the theoretical velocity profiles for the Graetz condition show a distinct flattening with decreasing θ_{w^*} . This results in a value of C' closer to 1. Also, the pressure tap at the entrance is reading a static pressure along the wall. In a region of severe cooling and possible non-neglibible radial pressure gradient, this pressure may not be representative of the mean pressure existing across the radius. Since the radial velocity will be in a radially outward direction, we can reasonably expect that the static pressure will decrease from the centerline to the

wall. If this is the case, then the pressure measured at the wall is underestimated so that pressure drops along the tube would also be underestimated and the magnitude of the pressure rise overestimated. Use of the mean pressure would tend to move the experimental and theoretical pressure drop and friction factor closer to each other.

The local Nusselt number data from the first two calorimeters are shown in Figure 59 for $\theta_w = 0.40$, 0.50 and 0.60 along with theoretical results for θ_w = 0.40 and 0.60. Agreement is good. although the experimental results show more sensitivity to inlet temperature ratio. Also, the variation with x^+ is greater than the theoretical. This can be explained in terms of the configuration of the test section. There was a short, insulated section between the annular section of the development section and the cooling section. In the absence of heat transfer from the gas in this section, a linear temperature gradient could be expected. With gas flowing in the section, the average temperature of the section would probably increase. If the point at which cooling is assumed to commence is taken as the centroid of the temperature-displacement curve, this point would move downstream. This displacement would increase with higher flow rates and Reynolds numbers. In terms of the experimental results shown in Figure 59, the data

points at the left side of each of the two data clusters correspond to higher Reynolds numbers than the other points. The displacement of these points from the point of cooling is reduced, so that these points should be displaced to the left. Since the abscissa is logarithmic, points in the left cluster will be affected more than those in the right hand cluster. The 'floating' point at which cooling starts will affect the results since the integration of the heat flux curve used to determine the bulk temperature begins at a fixed point.

The indeterminateness of the bulk temperature is not present in the comparison of theoretical and experimental dimensionless heat flux in Figure 60 for $\theta_w = 0.5$ and 0.6 and in Figure 61 for $\theta_w = 0.40$. Agreement is excellent with the exception of some low experimental points from the second calorimeter in Figure 62. Output was rather spurious from this calorimeter during this test series, but the data is included for completeness. These results would seem to indicate that the spread of the data for Nu,m may be due to the bulk temperature calculation.

6.2. UTV_Boundary Condition

Non-dimensionalized pressure defect data for the UTV boundary condition is plotted in Figure 63 for $\theta_w = 0.60$, 0.50 and 0.40 along with theoretical results for $\theta_w = 0.50$.

The experimental results for $\theta_w = 0.50$ lie approximately 8% below the theoretical. It should be noted that for the UTV inlet geometry. the pressure drop is measured from the plenum. At the first pressure tap, it is possible that a radial pressure gradient exists. In this case, the deceleration of the flow at the wall and the inward radial velocity at the wall is indicative of a static pressure which decreases from wall to centerline. This means that the first pressure tap would be reading relatively high. Using the mean pressure across the section would result in a higher pressure drop from the plenum to the first tap. Although the situation at the first tap is reversed from what it was in the Graetz boundary condition, use of a mean pressure would again move the experimental results closer to the theoretical.

Friction factor results are shown in Figure 63. Theoretical results are for $\theta_w = 0.50$ are included for comparison. Agreement is very good. It should be noted that the use of a mean or lower pressure at the first tap would tend to raise the friction factor slightly at the first pressure tap (x⁺ < 0.022) and lower the data at x⁺ ~ 0.05. This would make the comparison even better. In the downstream region (x⁺ > 0.2) the effect of temperature ratio is small, but somewhat greater than the theory predicts. This may be partially due to

use of a value of C'(1 1/6) in equation 5.13 which is lower than the actual values in this region. Further downstream, the axial variation of density will be so small that the correct asymptotic value of fRe,m would still be reached. It should be noted that friction factor data at the last pressure tap (#7) was not included in the results. Values of the friction factor at this tap for the isothermal flow tests were found to be about 20% high. Similar results were obtained at this tap during the cold flow tests. Since this tap is so far downstream, it is highly unlikely that the actual fRe,m at this point differs by mode than a few percent from 16.0.

Local Nu,m is shown in Figure 6^{4} . The exaggerated variation with x^{+} of the data in each cluster is probably due to the variation of wall temperature in the transition from the plenum to the test section. The darkened data points are for run #44 and the uncertainty interval for this run is indicated. This was discussed in section 5.1. A more direct comparison of theoretical and experimental data is included in the axial variation of plotted in Figure 65 for all the experimental UTV data. Again, for run #44, data points are darkened and the uncertainty interval is shown. The data falls a maximum of approximately 35% below the theoretical. Data from the third calorimeter from the entrance (which was

•

not operative during most of the testing for the Graetz b.c.) was relatively low for those tests in which it was operative. It is hard to argue that this difference is due to an error in one calorimeter (for example-- a low calibration of the conductance of the third calorimeter) since the transition of data between neighboring calorimeters is continuous and the data is consistently lower. Also, the good results obtained from the calorimeters for the Graetz b.c. would add confidence to the calibration.

CHAPTER 7. SUMMARY AND CONCLUSIONS

7.1. Summary

The results of a combined experimental and analytical investigation of heat transfer and flow characteristics for the laminar flow of gases in cylindrical tubes at low wall to bulk temperature ratios has been presented. For the theoretical analysis, gas transport and thermodynamic properties were treated as variable. It was possible to modify an existing finite difference solution to the boundary layer equations with property variation terms for use in cooling cases. For the case when inlet temperature and velocity profiles were uniform. the conditions for similar thermal and velocity variable property boundary layers to exist at the tube wall were found to be closely obtained for small distances from the tube entrance. An entrance region solution based on the similarity assumption was patched to the finite difference solution and downstream convergence of the wall parameters from the finite difference solution was seen to be significantly improved. This improvement is believed due to reduced error in maintaining net conservation of energy in the presence of initial singularities in both the thermal and velocity boundary conditions. Wall friction and heat transfer results obtained for air and helium can be best discussed in four categories.

7.2. Conclusions

7.2.1. Heat Transfer (Graetz Boundary Condition)

Theoretical heat transfer results as expressed in the axial variation of the Nusselt number for fully developed inlet velocity profiles were found to be relatively insensitive to temperature ratio. Experimental Nusselt number and dimensionless heat flux, q_w^+ data for air supports this conclusion. Maximum variation of the theoretical Nu_m from the isothermal Nu_m occurring at an inlet wall to bulk temperature ratio of 0.10 was found to be a decrease of approximately 13% for air and 15% for helium. The theoretical axial variation of Nu_m can be correlated within $\frac{1}{2}$ 5% by the following equations:

 $\frac{\text{for air:}}{\text{Nu}_{m}} = (3.67 + 0.198x^{+-.584} - 20.8x^{+}) (1-0.13(\theta_{W}-1))$ $\frac{\text{for helium:}}{\text{Nu}_{m}} = (3.67 + 0.201x^{+-.584} - 20.8x^{+})(1-0.15(\theta_{W}-1))$ $\frac{\text{for both gases:}}{\text{for both gases:}} (x^{+} > 0.35)$ $\frac{\text{Nu}_{m}}{\text{Nu}_{m}} = 3.67$

7.2.2. Friction Factor (Graetz Boundary Condition)

Friction factors for fully developed inlet velocity profiles are affected more severely by temperature ratio, but the experimental and theoretical results are not in agreement as to the degree of this variation. Experimental friction factors and pressure drops were significantly lower in the entrance than the theoretical. This may have been due to several factors. A pressure rise in the entrance in the presence of a discontinuity in the tube diameter may have changed the character of the flow in this region. The theoretical variation of the total friction factor is well represented by the following equation:

$$fRe_{m} = 16 \left(\frac{T_{w}}{T_{m}}\right)^{a} \text{ where } for air: \begin{cases} a=0.904(T_{w}/T_{o})^{.257} \\ a=0.957(T_{w}/T_{o})^{.251} \end{cases}$$

This correlation is offered with the reservation that it does not represent the experimental variation.

7.2.3. Heat Transfer (UTV Boundary Condition)

For the UTV boundary condition, the theoretical Nusselt number, Nu_m, was found to be almost totally insensitive to cooling throughour the flow development region. Constant property correlations for friction factor are recommended. In the entrance region this behavior could have been predicted, at least on a qualitative basis, by variable property external boundary layer results for cooling (23). Entrance effects predominate throughout the thermal development region and correlation in terms of local significant temperature ratios was not possible. The experimental heat transfer data confirmed these results in the entrance region where experimental uncertainties were smallest, but in the mid and downstream region, experimental values of the local heat flux were found to be about 30% below the predicted. The difference is not within the estimated uncertainty and the consistency of the data is difficult to explain. A single correlation applies to the theoretical variation of Nu_m for helium and air at all wall to bulk temperature ratios:

 $Nu_{m} = 3.67 + 0.246x^{+-.592} e^{-20.6x^{+}} (0.001^{\leq}x^{+<0.5})$ $Nu_{m} = 3.67 (x^{+\geq}0.5)$

This is offered with the reservation that it does not represent the downstream experimental data well.

7.2.4. Friction Factor (UTV Boundary Condition)

Again, the small variation of the friction factor with temperature ratio at the entrance could have been predicted from variable property external boundary layer results. However, the axial pressure gradient has a greater weight in the momentum equation than on the energy equation. This gradient was found to be strongly effected by temperature ratio along with a greater sensitivity of the flow characteristics to temperature ratio. The flow development region was found to be substantially lengthened with extreme cooling. Maximum decrease of the friction factor-Reynolds product for air and helium was approximately 45%. Excellent agreement between theoretical and experimental pressure drop and friction factor variation was obtained for the UTV boundary condition. The theoretical friction factor results for air and helium are well correlated by:

 $1 - (fRe_{m}) / (fRe)_{I} = 1.067 (1 - \theta_{w}) x^{+\frac{1}{4}} e^{-\beta x^{+}} (x^{+} > 0.001)$ where $\beta = 7.70 \theta_{w}^{0.675}$

and $(fRe)_{I}$ = isothermal friction factor-Reynolds number product, $(fRe)_{I}$ = 16.0 + 0.694x⁺ - .576 e^{-22.9x⁺}

In general, for both boundary conditions, friction factor and flow characteristics for both gases were found to be much more sensitive to temperature ratio than heat transfer results. In an absolute sense, variation of all theoretical wall parameters were found to be relatively insensitive to temperature ratio when the severity of the cooling is considered. The modified Graetz parameter based on inlet properties was deemed a better independent variable for representation of the results than x_m^+ which is based on local properties evaluated at the mean temperature.

REFERENCES

- 1. Atkins, G.T., <u>Some Special Cases of Laminar Flow</u> <u>Heat Transfer</u>, Preprint 57a, A.I.Ch.E., 1965
- 2. Back, Lloyd H., <u>Effects of Surface Cooling and Heating</u> on <u>Structure of Low Speed</u>, <u>Laminar Boundary Layer Gas</u> <u>Flows with Constant Free Stream Velocity</u>, Technical Report 32-1301, Jet Propulsion Laboratory, Pasadena, 1968
- 3. Bahadori, M.N. and Soo, M., "Non Equilibrium Transport Phenomenon of Partially Ionized Argon," <u>Int. Jour. of</u> <u>Heat and Mass Transfer</u>, Vol. 9, 1966
- 4. Bankston, C.A. and McEligot, "Calculation of Heat Transfer to Gases with Varying Properties in the Entry Region of Circular Ducts," <u>Int. Jour. of Heat and Mass</u> <u>Transfer</u>, Vol. 13, No. 2, 1970
- 5. Bankston, C.A. and D.M. McEligot, <u>Calculation of Heat</u> <u>Transfer to Gases Flowing in a Circular Tube with</u> <u>Arbitrary Wall Heat Flux Distributions</u>, Report LA-4154, Los Alamos Scientific Laboratory, 1969
- 6. Bankston, C.A. and D.M. McEligot, <u>A Numerical Method</u> for Solving the Boundary Layer Equations for Gas Flow with Transfer and Property Variations, Report LA-4149, Los Alamos Scientific Laboratory, 1969
- 7. Bergman, P.D. and L.B. Koppel, "Uniform Flux Heat Transfer to a Gas in Laminar Forced Convection in a Circular Tube," <u>A.I.Ch.E.</u>, Vol. 12, No. 4, 1966
- 8. Bradley, D. and A.G. Entwistle, "Developed Laminar Flow Heat Transfer from Air for Variable Physical Properties," <u>Int. Jour. of Heat and Mass Transfer</u>, Vol. 8, 1965
- 9. Brim, Larry Hyde, <u>Turbulent Heat Transfer in a Circular</u> <u>Tube at High Bulk to Wall Temperature Ratio: An Experi-</u> <u>mental Study</u>, Ph.D. Thesis, Institute for Plasma Research, Stanford University, 1969
- 10. Cann, G.L., <u>Energy Transfer Processes in a Partially</u> <u>Ionized Gas</u>, GALCIT Memo No. 61, Gugenheim Aeronautical Laboratory, California Institute of Technology, June 1961

- 11. Cebeci, T. and A.O. Smith, <u>A Finite Difference Method</u> for Calculating Laminar and Turbulent Boundary Layers, A.S.M.E. Paper No. 70-WA/HT-34, 1970
- 12. Cholette, S., See Ref. 30
- 13. Crane, P.C. and P.A. Fox, "Desub Integration of a First Order System of Ordinary Differential Equations," <u>Numerical Mathematics Computer Library 1</u>, Vol. 2, Issue 1, Bell Telephone Laboratories, 1969
- 14. Crane, P.C. and P.A. Fox, "A Comparative Study of Computer Programs for Integrating Differential Equations," <u>Numerical Mathematics Computer Programs - Library 1</u>, Vol. 2. Issue 2, Bell Telephone Laboratories, 1969
- 15. Christiansen E.B. and H.E. Lemmon, "Entrance Region Flow," <u>A.I.Ch.E.</u>, Vol. 11 No. 6, 1965
- 16. Codegone, C., "The Air Convection Coefficients in Pipes from 400 to 70 700 C," <u>Proc. of the General Discussion</u> <u>on Heat Transfer</u>, Inst. of Mech. Engrs., 1951
- 17. Dalle Done, M. and F.H. Bowditch, "<u>High Temperature</u> <u>Heat Transfer</u>, Nuclear Engr., Vol. 8, 1963
- 18. Davenport, M., <u>The Effect of Transverse Temperature</u> <u>Gradients on the Heat Transfer and Friction for Laminar</u> <u>Flow of Gases</u>, Ph.D. Thesis, Department of Mechanical Engineering, Stanford University, 1962
- 19. Davenport, M.E. and G. Leppert, "The Effect of Transverse Temperature Gradients of the Heat Transfer and Friction for Laminar Flow of Gases," <u>Trans. A.S.M.E.</u>, <u>Jour. of Heat Transfer</u>, Ser. C, Vol. 87, 1965
- 20. Deissler, R.G., <u>Analytical Investigation of Fully</u> <u>Developed Laminar Flow in Tubes with Heat Transfer</u> with Fluid Properties Variable Along the Radius, NACA TN 2410
- 21. Deissler, R.G. and A.L. Loeffler, Jr., "Heat Transfer and Friction for Fluids Flowing Over Surfaces at High Temperatures and High Velocities," <u>Trans. A.S.M.E.</u>, <u>Jour. of Heat Transfer</u>, Ser. C., Vol. 81, 1959

- 22. Deissler, R.G. and A.F. Presler, "Analysis of Developing Laminar Flow and Heat Transfer in a Tube for a Gas with Variable Properties," <u>Proc. of the Third</u> <u>International Heat Transfer Conference</u>, Vol. 1, 1966
- 23. Dewey, C.F. Jr. and J.F. Gross, "Exact Solutions of the Laminar Boundary Layer Equations," <u>Advances in</u> <u>Heat Transfer</u> (Hartnett, J.P. and T.F. Irvine -eds.), Vol. 4, 1967
- 24. Drew, T.B., "Mathematical Attacks on Forced Convection Problems," <u>Amer. Inst. of Chem. Engrg.</u>, Vol. 26, 1931
- 25. Eckert, E.R.G. and E. Pfender, "Advances in Plasma Heat Transfer," <u>Advances in Heat Transfer</u> (Hartnett, J.P. and T.F. Irvine -eds.), Vol. 4, 1967
- 26. Emmons, H.W., "Recent Developments in Plasma Heat Transfer," <u>Mod. Dev. in Heat Transfer</u> (W. Idele -ed.), Academic Press, 1963
- 27. Emmons, H.W., "Plasma Heat Transfer," <u>Proc. of the Annual</u> <u>Meeting of the A.S.M.E.</u>, (Clark, J.A. -ed.) Pergamon, 1963
- 28. Gambill, W.R., "An Evaluation of Recent Correlations for High Flux Heat Transfer," <u>Chemical Engineering</u>, Aug. 1967
- 29. Gorton, C.W., K.R. Purdy, and C.J. Bell, "Non-Isothermal Velocity Profiles," <u>A.I.Ch.E. Journal</u>, Vol. 9, No. 1, 1963
- 30. Goryainov, L.A., V.A. Beilin, and V.A. Pavlenko, "Determination of the Reynolds Number in Heat Transfer Relations." <u>Progress in Heat Transfer</u>, (Konakov, P.K. ed.), Consultant Bureau, New York, 1966
- 31. Graetz, L., "Uber die Wärmeleitungsfähigkeit von Flussigkeiten," <u>Anneler d. Physik</u>, Vol. 25, 1885
- 32. Hilsenrath, J., C.W. Beckett, W.S. Benedict, L. Fano, H.J. Hoge, J.F. Masi, R.L. Nuttall, Y.S. Touloukian, and H.W. Woolley, <u>Tables of Thermal Properties of Gases</u>, National Bureau of Standards, Circular 564, 1955

- 33. Hirschfelder, J.O., C.F. Curtiss and R.B. Bird, <u>Molecular Theory of Gases and Liquids</u>, Wiley, New York, 1954
- 34. Hornbeck, R.W., <u>An All Numerical Method for Heat</u> <u>Transfer in the Inlet of a Tube</u>, A.S.M.E. Preprint 65-WA/HT-36, 1965
- 35. Hornbeck, R.W., "Laminar Flow in the Entrance Region of a Pipe," <u>Appl. Sci. Res</u>., Vol. 13, 1964
- 36. Hsu, C., "An Exact Mathematical Solution for Entrance Region Laminar Heat Transfer with Axial Conduction," <u>Appl. Sci. Res</u>., Vol. 17, 1967
- 37. Hughes, W.F. and E.W. Gaylord, <u>Basic Equations of</u> <u>Engineering Science</u>, McGraw Hill, New York, 1964
- 38. Incropera, F.P., N.W. Bower and R.L. Kingsburg, <u>Numerical Studies of Internal Equilibrium Flows of</u> <u>Plasmas</u>, A.S.M.E. Paper 69-WA/HT-55, 1969
- 39. Incropera, F.P. and G. Leppert, "Laminar Flow Heat Transfer from an Argon Plasma in a Circular Tube," Int. Jour. of Heat and Mass Transfer, Vol. 10, 1967
- 40. Jakob, M., <u>Heat Transfer</u>, John Wiley, 1959
- 41. Johnson, J.R., N.M. Choksi, and P.T. Eubank, "Entrance Heat Transfer from a Plasma Stream in a Circular Tube," <u>IEEC Process Design and Development</u>, 7, 1968
- 42. Kays, W.M., "Numerical Solutions for Laminar Flow Heat Transfer in Circular Tubes," <u>Trans. A.S.M.E.</u>, Vol. 77, 1955
- 43. Kays, W.M. and W.B. Nicoll, "Laminar Flow Heat Transfer to a Gas with Large Temperature Differences," <u>Trans</u>. <u>A.S.M.E., Jour. of Heat Transfer</u>, Ser. C., Vol. 85, 1963
- 44. Kays, W.M., <u>Convective Heat and Mass Transfer</u>, McGraw Hill, 1958
- 45. Kettleborough, C.F., <u>Poiseuille Flow with Variable</u> <u>Fluid Properties</u>, A.S.M.E. Paper No. 66-WA/Fe-22, 1966

- 46. Kline, S.J. and McClintok, "Describing Uncertainties in Single Sample Experiments," <u>Mechanical Engineering</u>, Jan., 1953
- 47. Knudson, J.G. and D.L. Katz, <u>Fluid Dynamics and Heat</u> <u>Transfer</u>, McGraw Hill, 1958
- 48. Koppel, L.B. and J.M. Smith, "Laminar Flow Heat Transfer for Variable Physical Properties," <u>Trans. A.S.M.E.</u> <u>Jour. of Heat Transfer</u>, Ser. C, Vol. 84, 1962
- 49. Kreith, F., <u>Radiation Heat Transfer for Spacecraft and</u> <u>Solar Power Plant Design</u>, International Textbook, Scranton, 1967
- 50. Kreith, F., <u>Principles of Heat Transfer</u>, International Textbook, Scranton, 1965
- 51. Kroll, C.L., <u>Heat Transfer and Pressure Prop. for Air</u> Flowing in Small Tubes, ScD Thesis, MIT, 1951
- 52. Langhaar, H.L., "Steady Flow in the Transition Length of a Straight Tube," <u>Trans. A.S.M.E</u>., Vol. 64, 1942
- 53. Larkin, B.K., "High Order Eigenfunctions of the Graetz Problem," <u>A.I.Ch.E. Journal</u>, Vol. 7, No. 3, 1961
- 54. Lick, Wilbert J. and H.W. Emmons, <u>Transport Properties</u> of <u>Helium from 200 to 50.000 K</u>, Cambridge, Harvard University Press, 1965
- 55. Lipkis, R.P., <u>Heat Transfer to an Incompressible Fluid</u> <u>in Laminar Motion</u>, M.S. Thesis, University of California, Los Angeles, 1954
- 56. Magee, P.M., <u>The Effect of Large Temperature Gradients</u> on <u>Turbulent Flow of Gases in the Thermal Entrance Re-</u> gion of <u>Tubes</u>, Ph.D. Thesis, Department of Mechanical Engineering, Stanford University, 1965
- 57. Manohar, R., "Analysis of Laminar Flow Heat Transfer in the Entrance Region of Circular Tubes," <u>Int. Jour.</u> <u>of Heat and Mass Transfer</u>, Vol. 12, No. 1, 1970
- 58. McAdams, W.H., <u>Heat Transmission</u>, McGraw-Hill, New York, 1954

- 59. McEligot, D.M., <u>Effect of Large Temperature Gradients</u> on <u>Turbulent Flow of Gases in the Downstream Region of</u> <u>Tubes</u>, Ph.D. Thesis, Department of Mechanical Engineering, Stanford University, 1963
- 60. McEligot, D.M., P.M. Magee and G. Leppert, "Effect of Large Temperature Gradients on Convective Heat Transfer: The Downstream Region," <u>Trans. of ASME</u>, <u>Jour. of</u> <u>Heat Transfer</u>, Ser. C., Vol. 87, 1965
- 61. Mori, Y., K. Futagami, S. Tokuda and M. Nakamura, "Forced Convection Heat Transfer in Uniformly Heated Horizontal Tubes," <u>Int. Jour. of Heat and Mass Trans-</u> <u>fer</u>, Vol. 9, 1966
- 62. National Bureau of Standards, <u>Reference Tables for</u> <u>Thermocouples</u>, Circular 561, 1955
- 63. Newell, P.H. and A.E. Bergles, "Analysis of Combined Free and Forced Convection for Fully Developed Laminar Flow in Horizontal Tubes," <u>Trans. ASME</u>, <u>Jour. of Heat</u> <u>Transfer</u>, C, 92, 1970
- 64. Perkins, H.C. and P. Worsoe-Schmidt, "Turbulent Heat and Momentum Transfer for Gases in Circular Tubes at Wall to Bulk Temperature Ratios to Seven," <u>Int. Jour.</u> of Heat and Mass Transfer, Vol. 8, 1965
- 65. Petukhov, B.S., V.V. Kirillov, and V.N. Maidanik, "Heat Transfer Experimental Research for Turbulent Gas Flow in Pipes at High Temperature Difference between Wall and Bulk Fluid Temperature," <u>Proc. of the Third</u> <u>International Heat Transfer Conference</u>, Vol. 1, 1966
- 66. Pigford, R.L., "Non-Isothermal Flow and Heat Transfer Inside Vertical Tubes," <u>Chem. Engrg. Prog. Symp.</u>, No. 17 Vol. 51, 1955
- 67. Pinkel, R.L., "A Summary of NACA Research on Heat Transfer and Friction for Air Flowing Through Tubes with Large Temperature Differences," <u>Trans. ASME</u>, Vol. 76, 1954
- 68. Poisson, S.D., <u>Theorie Mathematique de la Chaleur</u>, Bachilier, Paris, 1835

- 69. Poots, G. and M.H. Rogers, "Laminar Flow between Parallel Flat Plates, with Heat Transfer, of Water with Variable Physical Properties," <u>Inst. Jour. of</u> <u>Heat and Mass Transfer</u>, Vol. 8, 1965
- 70. Poppendick, H.F., "Heating and Cooling Solutions for Viscous Liquid Flow in Pipes," <u>Heat Transfer</u>, <u>Thermodynamics and Education</u>, Pergamon, (Johnson, H.A. -ed.), 1955
- 71. Ralston, A., <u>A First Course in Numerical Analysis</u>, McGraw Hill, 1965
- 72. Reshotko, E. and C.B. Cohen, <u>Similar Solutions for</u> <u>the Compressible Laminar Boundary Layer with Heat</u> <u>Transfer and Pressure Gradient</u>, NACA Rep. 1294, 1956
- 73. Rosenberg, D.E. and J.D. Hellums, "Flow Development and Heat Transfer in Variable Viscosity Fluids," <u>I. & E.C. Fundamentals</u>, Vol. 4, No. 4, 1965
- 74. Schade, K.W. and D.M. McEligot, "Cartesian Graetz Problems with Air and Property Variations," <u>Int. Jour.</u> of <u>Heat and Mass Transfer</u>, Vol. 14, 1971
- 75. Scheele, G.F. and T.J. Hanratty, "Effect of Natural Convection Instabilities on Rates of Heat Transfer at Low Reynolds Numbers," <u>A.I.Ch.E. Journal</u>, Vol. 9, No. 2, 1963
- 76. Schenk, H., <u>Theories of Engineering Experimentation</u>, McGraw Hill, New York, 1961
- 77. Schmidt, P.S. and G. Leppert, <u>Heat Transfer from Plasma</u> <u>in Tube Flow</u>, ASME Paper 69-WA/HT-54, 1970
- 78. Seaborg, G.T. and J.L. Bloom, "Fast Breeder Reactors," Scientific American, Vol. 223, No. 5, 1970
- 79. Sellars, J.R., M. Tribes and J.S. Klein, "Heat Transfer to Laminar Flow in a Round Tube or Flat Conduit -The Graetz Problem Extended," <u>Trans. ASME</u>, Vol. 78, 1956
- 80. Siegel, R., E.M. Sparrow and T.M. Hallman, "Steady Laminar Heat Transfer in a Circular Tube with Prescribed Heat Flux," <u>Appl. Sci. Res</u>., A7, 1958

- 81. Siegwarth, D.P., R.D. Mikesell, T.C. Readal, T.J. Hanratty, "Effect of Secondary Flow on the Temperature Field and Primary Flow in a Heated Horizontal Tube," Int. Jour. of Heat and Mass Transfer, Vol. 12, 1969
- 82. Singh, S.N., "Heat Transfer by Laminar Flow in Cylindrical Tube," <u>Appl. Sci. Res</u>., 1958
- 83. Skrivan, T.F. and W. Von Jaskowsky, "Heat Transfer from Plasmas to Water Cooled Tubes," <u>I. & E.C. Process</u> <u>Design and Development 4</u>, 1965
- 84. Slaby, J.G., W.L. Maag and B.L. Siegel, <u>Laminar and</u> <u>Turbulent Hydrogen Heat Transfer and Friction Co-</u> <u>efficients over Parallel Plates at 5000 R</u>, NASA TN D-2435, 1964
- 85. Smith, A.M.O., "Rapid Laminar Boundary Layer Calculations by Piecewise Application of Similar Solutions," Jour. of Aerospace Science, 23, 1956
- 86. Swearingen, T.B., <u>Internal Laminar Heat Transfer to a</u> <u>Gas with Temperature Dependent Properties</u>, Ph.D. Thesis, Engineering Experiment Station, Arizona University, Tucson, 1969
- 87. Sze, B.C., <u>The Effect of Temperature Dependent Proper-</u> <u>ties on Heat Transfer in Circular Tubes</u>, Ph.D. Thesis, Stanford University, 1957
- 88. Taylor, M.F. and T. A. Kirchgessener, <u>Measurements of</u> <u>Heat Transfer and Friction Coefficients for Helium</u> <u>Flowing in a Tube at Surface to Temperatures up to</u> <u>5900 F</u>, NASA TN-D-133, 1959
- 89. Taylor, M.F., <u>Experimental Local Heat Transfer Data</u> for Precooled Hydrogen and Helium at Surface Temperatures up to 5300 R, NASA TN-D-2595, 1965
- 90. Taylor, M.F., "A Method of Correlating Local and Average Friction Coefficients for both Laminar and Turbulent Flow of Gases through a Smooth Tube with Surface to Fluid Bulk Temperature Ratios from 0.35 to 7.35," <u>Int. Jour. of Heat and Mass Transfer</u>, Vol. 10, 1967

- 91. Taylor, M.F., <u>A Method of Correlating Local and Aver-age Friction Coefficients for both Laminar and Turbu-lent Flow of Gases through a Smooth Tube with Surface to Fluid Bulk Temperature Ratios from 0.35 to 7.35, NASA, TR-R267, 1967</u>
- 92. Tyagi, V.P., "Heat Transfer and Skin Friction in a Channel: Laminar Flow with Variable Physical Properties," <u>Int. Jour. of Heat and Mass Transfer</u>, Vol. 8, 1965
- 93. Ulrichson, D.L. and R.A. Schmitz, "Laminar Flow Heat Transfer in the Entrance Regions of Circular Tubes," <u>Int. Jour. Heat and Mass Transfer</u>, Vol. 8, 1965
- 94. Vines, R.G., "Measurement of Thermal Conductivity of Gases at High Temperatures," <u>Trans. ASME. Jour. of Heat</u> <u>Transfer</u>, Ser. C, Vol. 82, 1960
- 95. Volluz, R.J., "Wind Tunnel Instrumentation and Operation," <u>Handbook of Supersonic Aerodynamics</u>, Section 20 NAVORD Report 1488, Vol. 6, 1961
- 96. Watson, V.R. and E.B. Pegot, <u>Numerical Calculations</u> for the Characteristics of a Gas Flowing through a Constricted Arc, NASA TN-D-4042, 1967
- 97. Weiland, W.F. and W.H. Lowdermilk, <u>Measurement of Heat</u> <u>Transfer and Friction Coefficients for Air Flow in a</u> <u>Tube Length-Diameter Ratio of 15 at High Surface Temperature</u>, NACA RM E-53E04, 1953
- 98. Wethern, R.J. and R.S. Brodskey, "Heat and Momentum Transfer in Laminar Flow: Helium at Plasma Temperatures," <u>A.I.Ch.E. Journal</u>, Vol. 9, No. 1, 1963
- 99. Woff, H., "Heating and Cooling Air and Carbon Dioxide in the Thermal Entrance Region of a Circular Duct with Large Gas to Wall Temperature Differences, <u>Trans. ASME</u>, <u>Journal of Heat Transfer</u>, Sec. C, Vol. 81, 1959
- 100. Worsoe-Schmidt, P.M., <u>Finite Difference Solution for</u> <u>Laminar Flow of Gas in a Tube at High Heating Rate</u>, Ph.D. Thesis, Department of Mechanical Engineering, Stanford University, 1965

- 101. Worsoe-Schmidt, P.M., "Heat Transfer and Friction for Laminar Flow of Helium and Carbon Dioxide in a Circular Tube at High Heating Rate", <u>Int. Jour. of Heat and</u> <u>Mass Transfer</u>, Vol. 9, 1966
- 102. Worsoe-Schmidt, P.M., Personal Communication, March 7, 1969
- 103. Yang, K., "Laminar Forced Convection of Liquids in Tubes with Variable Viscosity," <u>Trans. ASME, Journal of Heat</u> <u>Transfer</u>, Ser. C., Vol. 84, 1962
- 104. Zellnik, H.E. and S.W. Churchill, "Convective Heat Transfer from High Temperature Air Inside a Tube," <u>A.I.Ch.E.</u>, Vol.4, No. 1, 1958

Appendix A

Variable Property and Non-Boundary Layer Terms

When the full momentum and energy equations 2.2 and 2.3 are non-dimensionalized with the same variables that were used to non-dimensionalize the boundary layer equations in Chapter 2, the following forms result; Axial momentum:

$$\rho^{+}\left(U^{+}\frac{\partial U^{+}}{\partial x^{+}} + V^{+}\frac{\partial U^{+}}{\partial r^{+}}\right) = -\frac{P_{o}}{\rho_{o}U_{o}}^{2}\frac{\partial P}{\partial x^{+}} + 2Pr_{o}\mu^{+}\frac{\partial^{2}U^{+}}{\partial r^{+}} + 2Pr_{o}\left[\frac{\partial U}{\partial r^{+}}\frac{\partial \mu^{+}}{\partial r^{+}} + \frac{1}{(Re_{o}Pr_{o})}^{2}2\left|\frac{\partial}{\partial r^{+}}\mu^{+}\frac{\partial V}{\partial x^{+}}\right| + \frac{4}{3}\frac{\partial}{\partial x^{+}}\mu^{+}\frac{\partial U^{+}}{\partial x^{+}} - \frac{2}{3r^{+}}\frac{\partial}{\partial x^{+}}\mu^{+}\frac{\partial(r^{+}+V^{+})}{\partial r^{+}}\right]$$

Energy equation;

$$\rho^{+}\left(U^{+}\frac{\partial H_{1}^{+}}{\partial x^{+}}+V^{+}\frac{\partial H_{1}^{+}}{\partial r^{+}}\right) = (1-\gamma_{0})M_{0}^{2}U^{+}\frac{\partial P}{\partial x^{+}}+\frac{2}{(Re_{0}Pr_{0})^{2}}\frac{\partial}{\partial x^{+}}\frac{k^{+}}{c_{p}^{+}}\frac{\partial H_{1}^{+}}{\partial x^{+}}+\frac{2}{r^{+}}\frac{\partial}{\partial r}+r^{+}\frac{k^{+}}{c_{p}^{+}}\frac{\partial H_{1}^{+}}{\partial r^{+}}$$

 $+2(\gamma_{0}-1)M_{0}^{2}Pr_{0}\mu^{+}\Phi^{+}$

where Φ^{+} = mechanical dissipation function = $\left[\left(\frac{\partial U}{\partial r^{+}} \right)^{2} + \frac{2}{(\text{Re}_{o}\text{Pr}_{o})^{2}} \left(\frac{\partial V^{+}}{\partial r^{+}} \right)^{2} + \left(\frac{V}{r^{+}} \right)^{2} - \frac{2}{3} \left(\frac{\partial V^{+}}{\partial r^{+}} + \frac{V}{r^{+}} \right)^{2} \right\} \right]$

We note that as the Reynolds number decreases, the importance of the dissipation function as usually defined $\left(\frac{\partial U^{\dagger}}{\partial r^{\dagger}}\right)^2$ will decrease in relation to the other terms in the function, However, if the decrease in Reynolds number is due to a decrease in the mass flow rate, the decrease in M_0^2 will offset this rise. The term which is retained in the momentum boundary layer equation and can be identified as being due to property variation (excepting the density) is

The ratio of the non-boundary layer terms to this is,

$$R_{i} = \frac{\frac{\partial}{\partial r_{+}} \mu^{+} \frac{\partial V_{+}^{+}}{\partial x_{+}^{+}} \frac{\partial}{\partial a_{+}} \frac{\partial}{\partial x_{+}} \mu^{+} \frac{\partial U_{+}^{+}}{\partial x_{+}^{+}} \frac{\partial}{\partial a_{+}} \frac{\partial (r^{+} V^{+})}{\partial r_{+}^{+}}}{(Re_{o} P_{o})^{a} \frac{\partial \mu^{+}}{\partial r_{+}^{+}} \frac{\partial U_{+}^{+}}{\partial r_{+}^{+}}}$$

Using the power law representation for viscosity!

This becomes

$$R_{i} = \frac{b\theta^{b-1} \frac{\partial \theta}{\partial r} \frac{\partial V^{+}}{\partial x^{+}} + \theta^{b} \frac{\partial^{a} V^{+}}{\partial r^{+} \partial x^{+}} + \frac{4}{3} (b\theta^{b-1} \frac{\partial \theta}{\partial x} \frac{\partial U^{+}}{\partial x^{+}} + \theta^{b} \frac{\partial^{a} U^{+}}{\partial x^{+}}) - \frac{\partial}{\partial} \mu^{+} \frac{\partial (r^{+} V^{+})}{\partial r^{+}}}{(R_{e_{o}} R_{o})^{a} b \theta^{b-1} \frac{\partial \theta}{\partial r} \frac{\partial U^{+}}{\partial r^{+}}}$$

Similarly, expanding the ratio of the non-boundary layer terms in the energy equation to the property variation terms (neglecting the dissipation function),

$$R_{a} = \frac{\frac{\partial}{\partial x} + \frac{k^{2}}{c \beta} \frac{\partial H_{1}^{\dagger}}{\partial x^{+}}}{\left(R_{e_{o}}R_{b}\right)^{a} \left(\frac{\partial H_{1}^{\dagger}}{\partial r^{+}} + \frac{\partial (\frac{k^{2}}{c \beta})}{\partial r^{+}}\right)^{a}} = \frac{1}{\left(R_{e_{o}}R_{b}\right)^{a}} \frac{\left((c-\alpha) \frac{\partial \theta}{\partial x} + \frac{\partial H_{1}^{\dagger}}{\partial x^{+}} + \theta \frac{\partial^{a}H_{1}^{\dagger}}{\partial x^{+}}\right)}{\left(c-\alpha\right) \frac{\partial \theta}{\partial r} \frac{\partial H_{1}^{\dagger}}{\partial r^{+}}}$$

The ratio of molecular to convective axial momentum transfer is

$$R_{3} = \frac{2 P_{r_{0}}}{\left(R_{e_{0}}R_{b}\right)^{a}} \frac{\frac{\partial}{\partial x} + \left(\mu^{+} \frac{\partial U^{+}}{\partial x^{+}}\right)}{\rho^{+}U^{+} \frac{\partial U^{+}}{\partial x^{+}}} = \frac{\alpha \left(b \theta^{b^{-1}} \frac{\partial \theta}{\partial x^{+}} \frac{\partial U^{+}}{\partial x^{+}} + \theta^{b} \frac{\partial^{a} U^{+}}{\partial x^{+}}\right)}{\left(R_{e_{0}}R_{b}\right)^{a} \dot{\rho}^{+}U^{+} \frac{\partial U^{+}}{\partial x^{+}}}$$

n +

and the ratio of molecular conduction to axial convective heat transfer is;

. .

$$R_{4} = \frac{2}{(R_{e_{o}}R_{b})^{a}} \xrightarrow{\frac{\partial}{\partial X^{+}}} (\frac{t}{c_{i}} \frac{\partial}{\partial X^{+}})^{a}}{\rho^{+}U^{+} \frac{\partial H_{i}^{+}}{\partial X^{+}}}$$

The radial and axial derivatives were evaluated by using central difference operators and values of dependent variables from the finite difference solution with $\Delta x^+ = 10^{-44}$ and $\Delta r^+ = 1/320$.

Appendix B

Gas Thermodynamic and Transport Properties

Data was drawn from several sources in the evaluation of transport and thermodynamic properties for air, helium and CO_2 . The exponents in the power law representation with temperature were chosen so as to minimize the least square error for all reference points (subscript zero) in the desired ranges. In a usual least squares fit to N tabulated values of a property Y, the quantity

$$E = \sum_{i=1}^{n} \left(\frac{Y_i}{Y_o} - \left(\frac{T_i}{T_o} \right)^{exp} \right)^2$$

would be minimized by appropriate choice of exp. Subscript O quantities are reference values. However, in the present investigation the quantity which was minimized in most instances was

$$E = \sum_{k=1}^{n} \left\{ \sum_{i=1}^{n} \left(\frac{Y_i}{Y_k} - \left(\frac{T_i}{T_k} \right)^{exp} \right)^2 \right\}$$

which means that the exponent is also an optimum with respect to all reference points in the tabulated range. An exponent chosen by such a criterion will differ somewhat from that chosen by a ordinary least squares fit or a visual fit to plotted data. Properties which did not require the use of a reference quantity, namely Pr_0 and γ_0 were chosen by an ordinary least squares criterion. In several cases data from more than one source is plotted in order to extend the temperature range or to serve as a confirmation of data from the prime source. Graphical plots of the data are given in Figures 66,67 and 68 for helium, air and CO₂ respectively. The correlations used in the theoetical portion of the investigation are represented by solid lines.

helium.

ŧ

Figure 67. Thermodynamic and transport properties for air.

Appendix C

Calorimeter Conductance:

Error in One Dimensional Heat Conduction Equation

Due to Thermocouple Location

A schematic of the calorimeter used to measure local q_w is shown in Figure 42. We assume that all thermocouples are homogeneous and thermocouple beads are infinitesmally small. We are trying to determine a maximum range of deviation for the calorimeter conductance defined as

$$K_{cal} = q_w'' / (T_i - T_o)$$

due solely to thermocouple bead location. T_i and T_o are the temperatures measured by thermocouples in the inner and outer holes respectively. When a thermocouple with a bead diameter less than the hole diameter is inserted into a calorimeter, the exact location of the thermocouple is unknown. The uncertainty in the thermocouple location is the sum of two uncertainties-- 1.) the location of the thermocouple hole and 2.) the location of the thermocouple in the holes. The holes drilled were 0.030"D. A realistic maximum error in the location of the holes with respect to the tube centerline is 0.005". On the basis of the one dimensional heat conduction equation in cylindrical coordinates;

$$K_{cal} = \frac{n}{r_t \ln(r_i/r_o)}$$

- where r_i = radius where the center of the inner thermocouple hole is located
 - r_o = radius where the center of the outer thermocouple hole is located
 - r_+ = inside radius of tube

k = thermal conductivity of calorimeter material We assume that the temperature field in the calorimeter is unaffected by the presence of holes, that the conductivity of the calorimeter material is not a function of radius and that the thermocouple bead will be at the temperature of the point of the wall where it is touching. This is not a bad approximation since although the holes were packed with a high conductivity grease, the conductivity of the thermocouples are greater by almost two orders of magnitude than the filler. Also, there was a possibility of voids existing in the packing. The minimum value of conductance occurs with the tolerances and free play of the thermocouples in the holes acting so as to provide a maximum distance between the thermocouple beads. The ratio of minimum calorimeter conductance to that calculated using nominal dimensions can be shown to be. (a loor)

$$\frac{K_{cal,min}}{K_{cal,nom}} = \frac{\ln\left(\frac{0.4375}{0.2500}\right)}{\ln\left(\frac{0.4375 + 0.015 + 0.005}{0.2500 - 0.015 - 0.005}\right)} = 0.80$$

and the maximum ratio obtainable,
$$\ln\left(\frac{0.4375}{0.2500}\right)$$

$$\frac{K_{cal,max}}{K_{cal,nom}} = \frac{(0.2500)}{\ln\left(\frac{0.4375 - 0.015 - 0.005}{0.2500 + 0.015 + 0.005}\right)} = 1.28$$

So that the total range of variation can be as large as 48%. In Figure 44 these error limits are shown drawn with respect to the average value of all the calorimeter conductances. While additional uncertainties (i.e. power level during radiation test, uncertainty of thermocouple output) could have been added to increase the limits, there seems to be no reason for doing this since the above uncertainty is sufficient to include all the conductance scatter.

Appendix D

Calorimeter Radiation Calibration End Effects and Conduction Losses

A. Radiation

For the calibration, a 1/8 inch diameter stainless steel tube was extended down the center of the test section. The section was evacuated with a mechanical vacuum pump and a voltage was applied to the heating element. Knowledge of the power input to the element, assumption of uniform irradiation to the tube inner wall and measurement of the temperature difference corresponding to this known $q_w^{"}$ allows calculation of the calorimeter conductance K where

$$K = q_w'' / \Delta E$$

where ΔE is the corrected difference in thermocouple emf across each calorimeter half. In order to insure proper centering of the heating element, several ceramic spacers were mounted at points midway between the calorimeter locations. These will reduce the radiative heat transfer in two ways. 1.) The viewfactor from the wire to the wall is reduced and 2.) the local temperature of the wire at the spacer is reduced due to thermal conduction through the spacer. Concerning the viewfactor, we consider the geometry and co-ordinate system illustrated in Figure 69. The elemental cylindrical area dA, is at a point directly

under the calorimeter. The ceramic spacers are mounted at x= \pm L and it is desired to calculate the viewfactor from the finite length of wire between these limits to dA_1 . The angle ϕ_1 is the included angle between an inward facing normal from the tube inner wall and a line segment of length r connecting dA_2 and dA_1 where dA_1 is an element of area on the heater. Angle ϕ_2 lies between this same line segment and dA_2 . The inside radius of the test section is R_0 and r_0 is the radius of the heating element. The geometric shape factor from the heater to dA_1 is;

$$A_2F_{2-1} = \left\{ \int_{L}^{L} \frac{\cos\phi_1\cos\phi_2}{\pi r^2} dA_2 \right\} dA_1$$

writing $\cos\phi_1$, $\cos\phi_2$ in terms of geometric quantities;

$$A_{2}F_{2-1} = \left[\int_{-L}^{L} \frac{R_{0}^{2}r_{0}dx}{(R_{0}^{2}+x^{2})^{2}} \right] dA_{2}$$
$$= \pi r_{0}^{2} \left[\frac{x}{R_{0}^{2}+x^{2}} + \frac{1}{R_{0}} \tan^{-1}\left(\frac{x}{R_{0}}\right) \right] dA_{2} \right]_{-L}^{+L}$$

The percentage difference between the shapefactor for L= and the shapefactor for the particular test section dimensions is;

$$\frac{(A_2F_{2-1})(A_2F_{2-1})L=4.8"}{(A_2F_{2-1})L=\infty} < 0.01$$

It must be remembered that this does not include reflection or reradiation from the spacer.

B. Conduction Losses

A total of 4 spacers, 1/16 inch thick x 1/8 inch I.D. x 0.294 inch O.D. were used to center the heating wire at the centerline of the test section. Here we attempt to calculate the thermal conduction loss through these spacers from the wire to the wall. First, a temperature of the heating wire must be determined. For radiation between two grey bodies which see only each other, the total heat transfer may be written

$$Q_{\mathbf{r}} = \sigma(\mathbf{T}_{1}^{\mu} - \mathbf{T}_{2}^{\mu}) / \left(\frac{\rho_{1}}{\epsilon_{1}A_{1}} + \frac{1}{A_{1}} + \frac{\rho_{2}}{\epsilon_{2}A_{2}}\right)$$

where ρ_1 = reflectivity of heating tube (Ref. 49. Table 2.5 316 s. s. 'as received') = 0.39 α_2 = absorptivity of inside tube wall (taken as equal to that of black enamel) = 0.95 (Ref. 50) ϵ_1 = emissivity of heating tube = 1-0.61 = 0.39 ϵ_2 = emissivity of inside tube wall = 1-0.95 = 0.05 A_1 = surface area of heating wire = $\pi x(58$ "L) x (1/8'D)in² A_2 = surface area of inside tube wall = $\pi (58$ "L) x

 T_2 = temperature of inside tube wall = 212 °F = 671 °R the power input to the heater during the radiation test was 1167 BTU/hr. Using these quantities in the above expression yields $T_1 = 1190$ °F. For the ceramic spacer, taking the thermal conductivity as being approximately approximately equal to that of glass (0.40 BTU/hr ft F), the conducted heat transfer through the disks is $q_{conduction} = 4x \frac{1}{16}x 2\pi x 0.40 \frac{(1190 \text{ }^{\circ}\text{F}-212 \text{ }^{\circ}\text{F})}{\ln\left(\frac{0.294}{0.125}\right)}$ BTU/hr = 58 BTU/hr

This amounts to about 5% of the total heat transfer. However, a correction for this loss was not included in the calibration for two reasons. First, in the vicinity of the spacers, the temperature of the wire is reduced so the wire-to-wall temperature difference is reduced. Second, this analysis assumes perfect thermal contact of wire with spacer and spacer with tube wall. It is probable that the conduction losses are a fraction of the above, but there is no way to calculate this quantity precisely.

Appendix E

Uncertainty Analysis - Nusselt Number, Friction Factor Data

The relationship between the uncertainty interval or precision index w_i of a calculated quantity or dependent variable R and the uncertainty intervals w_i of the independent variables or measured quantities, x_i , is given by (46),

$$w_{r}^{2} = \sum_{i=1}^{n} \left(\frac{\partial R}{\partial x_{i}}\right)^{2} w_{i}^{2}$$
 (E.1)

Since the uncertainty intervals of most of the instruments whose outputs are combined to produce R are not known, the recommendation of Kline and McClintok (46) will be used. An interval is estimated for each instrument or measurement for which it is felt the probability is 1 to 20 that the true value of the measured quantity lies outside of this interval centered at the measured value. For gages such as for pressure or voltage, the uncertainty is taken as 1/2 of the least division on the dial. For thermocouples, the uncertainty interval is taken as the ISA calibration. Since the uncertainty interval for the wall parameters will vary with each run, the time and effort needed to treat nearly 40 tests and several hundred data points would be prohibitive. Test run #44 was chosen as an example for uncertainty calculations. Since this particular run was one of the highest in terms of

pressure drop and local heat fluxes, the uncertainty intervals will be low in relation to those for other runs. If the uncertainty interval for this test can be shown to span most of the data for the lower flux tests, then there is no need to calculate these additional intervals.

The uncertainty in the calorimeter conductances must be known. The expression for the conductance of a calorimeter in terms of experimentally measured quantities in the calibration is,

$$K_{i} = \frac{EI/2 \pi r_{o}L}{(\Delta e_{i,test} - \Delta e_{i,tare})} \times 3.413 BTU/hrfT^{2}mv$$

where $\Delta e_{i,test}$ is the difference in thermocouple output across calorimeter i corresponding to an electrical input E x I to the heating wire and $\Delta e_{i,tare}$ is the difference in readings when there is no input to the heating wire. The factor 3.413 is a conversion between watts and BTU/hr. Application of equation E.1. yields

$$\left(\frac{w_{K_{i}}}{K_{i}}\right)^{2} = \left(\frac{w_{E}}{E}\right)^{2} + \left(\frac{w_{I}}{I}\right)^{2} + \left(\frac{w_{r_{O}}}{r_{O}}\right)^{2} + 4\left(\frac{w_{e}}{\Delta e_{i}}\right)^{2}$$

The coefficient 4 is present in front of the thermocouple emf term since the differential emf will actually be a combination of 4 thermocouple readings- 2 tare or zero heat flux readings and 2 readings with heat flux. Absolute uncertainty intervals which were deemed appropriate for all significant measured quantities are given in Table E.1. Some word should be mentioned concerning some Uncertainty Intervals. Experimentally Measured Quantities

Quantity	Experimental Level	<u>Uncertainty</u> (Absolute)
E	15.1 volts	O.l V
I	22.6 amps	0.l amp
т _о	0.294 inches	0.001 inches
L	58.625 inches	0.0625 inches
x ₁ ,x ₂	1.75 inches,11.33in	• 0.005 inches
(Δe_{i}) test - (Δe_{i}) test (Calibration)	are 0.055mv (avg.)	0.0010 mv.
Μ	0.4 - S.C.F.M.	1%
Тo	1670 °R (avg.)	5° R
po	order of 8 inches Hg	0.05 inches Hg
p _o - p	order of 0.10 inches H ₂ 0	s 0.002 inches H ₂ 0

of these quantities. The interval for the thermocouple output w_ may seem to be extremely small, but it should be remembered that we are dealing with a precision rather than an accuracy error in this case. The ISA calibration is essentially an accuracy term. The accuracy error is effectively eliminated through subtraction of the tare readings. The quantity we was determined by a test on the instrumentation during an actual run. It was found that ten consecutive readings from the same thermocouple could be included within an interval of 0.0010 mv. However, there were sporadic intervals when electrical interference or power fluctuations would cause a much greater variation. For most calorimeters, these periods were the exception rather than the rule. The Meriam flowmeter was calibrated to within a 0.5% of a Meriam standard flow device. The error in the flow measurement will increase due to errors in measurement of the output pressure and quantities necessary for calculation of correction factors. 1% should be quite representative when these additional uncertainties are considered.

Substitution of the quantities in Table E.1 into the above equation yields for an average conductance of approximately 55.0 BTU/hrft²mv

$$\left(\frac{W_{K_{i}}}{K_{i}}\right)_{avg.} = 0.037$$

or a deviation of approximately 3.7%.¹ The expression for the wall heat flux at any point is given by

$$q_w''|_{x_1} = K_i (\Delta e_{i,test} - \Delta e_{i,tare})$$

The uncertainty interval for the local heat transfer is

$$\left(\frac{w_{q}}{q}''\right)^{2} = 4 \left(\frac{w_{e}}{(\Delta e_{i,i}, \text{test}^{-\Delta e_{i,i}, \text{tare}})}\right)^{2} + \left(\frac{w_{K_{i}}}{K_{i}}\right)^{2}$$

The uncertainty, as can be expected, is a function of the output during the test. For UTV test #44, the uncertainty intervals in the local heat flux are shown in Table E.2. Since the local results presented in the text are averaged from two calorimeters, the uncertainty should be somewhat less than these values. Since the output from the fourth and further calorimeters from the entrance are much smaller, the uncertainty interval is rather large for these fluxes.

This problem is compounded in the calculation for the gas bulk temperature, which besides the local heat transfer rate, is the most important quantity in the evaluation of Nu_m . Since the local heat fluxes are combined in a rather complicated fashion in the integration for the bulk temperature, a simplified analysis is used. Since Nusselt number data is presented only for the first two calorimeters, the uncertainty will be calculated

¹This should not be confused with the uncertainty calculated in Appendix C which applies to the calorimeter before calibration.

Table E.2.

Uncertainty Intervals for Test Run # 44

Local Heat Transfer Rates

Calorime	ter	(Δe_{i}) test - (Δe_{i}) tare ($\mu \vee$)	К [*] і	q <mark>w</mark> BTU hrft ²	^w q " %
12		144.0	45.2	6520	3.85
11	entrance	123.1	60.2	7380	4.05
lo		37.3	58.5	2180	6.61
9		40.7	59.0	2400	6.10
8		20.3	48.6	988	10.1
7		15.2	63.9	970	13.3
6		11.9	52.2	620	17.0
5		11.5	60.8	700	17.6
4		6.9	57.9	400	29.0
3		8.8	55.7	485	22.9
2	exit	5.9	57.6	340	34.0
1		-0.5	50.0	-25	40.0

*BTU/hr ft² mv

only for these two points. We assume that the heat transfer from the gas between the test section entrance and first calorimeter is given by,

$$Q_1 = 2\pi r_0 q_w' | x_1$$

and up to the second calorimeter by

 $Q_2 = 2\pi r_0 (x_2 - x_1) q_w' \Big|_{x_2} + Q_1$ which represents an integration by means of Simpson's rule. We also make the simplification that the specific heat c_p of the gas is constant so that the bulk temperature may be written as,

$$T_{ml} = T_o - 2\pi r_o x_l q_w' M c_p$$

and

$$T_{m_2} = T_0 - \left(2\pi r_0 x_1 q_w'' \Big|_{x_1} + (x_2 - x_1) q_w'' \Big|_{x_2}\right) / \mathring{M}c_p$$

where M is the mass flow rate, x_1 and x_2 are the locations of calorimeters 1 and 2 respectively. Use of the uncertainty intervals in Table E.2 results in

$$\frac{w_{\rm Tml}}{T_{\rm ml}} = 0.0402 \qquad \qquad \frac{w_{\rm Tm2}}{T_{\rm m2}} = 0.0545$$

Proceeding in this manner, the uncertainty in the Nusselt numbers at these points are:

$$\frac{w_{Nu_{1}}}{Nu_{1}} = 0.078 \qquad \frac{w_{Nu_{2}}}{Nu_{2}} = 0.132$$

The bulk temperature enters the computation for the friction factor (eqn. 5.13) by way of the density term. Friction factor data is presented for axial points past the second calorimeter and the uncertainty analysis for the bulk temperature is not extended to this region.

However, the second term in the brackets in equation 5.13, $\rho_{\rm o}/\rho_{\rm m}$ rapidly decreases in importance along the tube. For example by the fourth calorimeter in test #40, the axial gradient of this term accounts for less than 25% of the total friction factor. The bulk temperature is asymptotically approaching the limiting value of the exit bulk temperature. This limiting value would tend to bound the error on the negative side of the bulk temperature so that continuation of the preceeding analysis downstream would overestimate the error. The evaluation of derivatives for discrete data can be a risky business such as is performed here for the local friction factor. The limiting error for the derivative is extremely difficult to determine and primarily for this reason an uncertainty analysis is not performed on the local friction factor. The non-dimensionalized pressure drop P easily admits to such an analysis, however. The expression for this quantity in terms of experimentally measured quantities is,

$$P = (2\pi p_{0}(p_{0}-p)r_{0}^{2})/RT_{0}M^{2}$$

where R is the gas constant for air. The uncertainty interval is given by

$$\left(\frac{w_{\rm p}}{{\rm p}}\right)^2 = 2\left(\frac{w_{\rm r}}{{\rm r}_{\rm o}}\right)^2 + \left(\frac{w_{\rm T}}{{\rm T}_{\rm o}}\right)^2 + \left(\frac{w({\rm p}_{\rm o}-{\rm p})}{{\rm p}_{\rm o}-{\rm p}}\right)^2 + \left(\frac{w_{\rm p}}{{\rm p}_{\rm o}}\right)^2 + 2\left(\frac{w_{\rm M}}{{\rm m}}\right)^2$$

where we have made a distinction between the uncertainty interval for p_0 and p_0-p since the former quantity was

measured by an air over mercury manometer and the latter quantity was read with a micromanometer. Using the uncertainty interval used previously for p_0 and a 0.001" absolute uncertainty for the micromanometer reading, we obtain the results in Table E.3 for runs #44 and #25. Run #25 is at about the middle of operational parameters run in the Graetz boundary condition test series. We note that the uncertainty level decreases with axial displacement since the pressure defect is an integrated quantity. Uncertainty Intervals for Non-Dimensionalized Pressure Drop

Test	Run # 41	<u>+</u>		<u>Test Run # 25</u>	
\mathbf{x}^+	р -	₩ <u>P</u> (%)	x ⁺	Р	м ^Р
0.0120	0.136	1.69	0.0362	-0.085	4.5
0.0404	0.266	1.66	0.1018	0.039	9.2
0.0919	0.471	1.65	0.1674	0.185	2.5
0.1434	0.648	1.65<	0.2330	0.398	1.88
0.1949	0.807	1.65<	0.2986	0.647	1.73
0.2465	0.969	1.65<	0.3349	0.796	1.70
0.2749	1.083	1.65<			

Appendix F

Computer Program

Solution of Similarity Boundary Layer Equations

The basic initial value integration program (DESP) requires that the simultaneous fourth order equations 4.10 and 4.11 be written as a set of simultaneous first order equations. To this end let,

$$f = f_{1}$$

$$f^{*} = \frac{df_{1}}{d\eta} = f_{a}$$

$$f^{*} = \frac{df_{a}}{d\eta} = f_{3}$$

$$f^{**} = \left\{ \rho f_{a}^{*} - \rho_{e}^{*} / \rho^{*} \right\} - f_{3} f_{1} - \lambda^{1} f_{3} P_{b}^{2} \right\} / \lambda P_{r_{0}}$$

$$G = f_{u_{r}}$$

$$G^{*} = \frac{df_{u}}{d\eta} = f_{5}$$

$$G^{*} = \frac{df_{s}}{d\eta} = \left\{ (\gamma_{0}-1)M_{0}^{a} \frac{U_{0}^{*}}{H_{a,e}^{*}} (\rho (\rho_{0}^{*} - \alpha P_{r_{0}} \lambda f_{3}^{*}) - f_{5} f_{1} - \alpha f_{5} (\lambda / P_{r}^{*})^{2} \right\} / \alpha (\lambda / P_{r}^{*})$$

The following is a list of variables used in the computer program.

Program na	ame		Me	anir	<u>1</u> g		
A = 0	exponent in	power	law	for	specific	heat	= a
B = 0	exponent in	power	law	for	viscosity	r=b o	r
= (coefficient	; of Ve	P/p	• tot	al contir	nuity	equation (4.29)
= (coefficient	of p/p	po -	tota	al momentu	ım equ	ation (4.30)
BETA	$= \frac{25}{45} \frac{dU_{e}^{\dagger}}{45}$						
BUZZ	= (23) 1/2_ (2(3-	·15))1/2					

C = exponent in power law for conductivity c or

$$= \text{term in total continuity equation (4.29)}$$

$$= (a\xi) \left\{ \left(\int_{0}^{Me} \Theta(\alpha) d\alpha \right)^{a} - a \int_{0}^{Me} \int_{0}^{Me} \Theta(\alpha) d\alpha d\eta \right\} \text{ or } \left(2 \text{ term in total momentum equation (4.30)} \right)^{a} = P_{1/p_{0}} U_{e}^{b} \vartheta_{0} M_{0}^{a} \left\{ 2(a\xi)^{1/2} \left(\int_{0}^{Me} (f'(\eta))^{a} d\eta - \int_{0}^{Me} \Theta(\alpha) d\alpha \right) \right. \right. \right. \right. \\ \left. + a \vartheta_{0} M_{0}^{a} \left\{ 2(a\xi)^{1/2} \int_{0}^{Me} (\sigma(\alpha) d\alpha + P_{1/p_{0}} U_{e}^{b} \vartheta_{0} M_{0}^{a} \right. \right. \\ \left. + P_{0} \vartheta_{0} M_{0}^{a} \lambda_{\omega} \left(f_{0}^{m}(0) + f'(0) \right) \left((a\xi)^{1/2} - (a(\xi - A\xi)^{1/2}) \right\} \right. \\ \left. + (a\xi) M_{0}^{a} \vartheta_{0} \left\{ \left(\int_{0}^{Me} (\alpha) d\alpha \right)^{a} - 2 \int_{0}^{Me} (f'(\eta))^{a} \int_{0}^{Me} (\alpha) d\alpha d\eta \right\} \right. \right.$$

where subscript o refers to values at the last axial step. $COEFI = (\chi_{0}-1)M_{0}^{a}$ $COEF2 = \chi_0 M_0^a$ $COEF3 = 1+\% M_{o}^{a}$ $COEF4 = \mu \frac{1}{\omega} \rho \frac{1}{\omega} / \mu \frac{1}{e} \rho \frac{1}{e}$ DELF3 = $\Delta f''_{(0)}$ = perturbation in derivative of velocity at wall DELF5 = $\Delta G'(o)$ = perturbation in derivative of enthalpy at wall DETA = $\Delta \eta$ = stepsize in similarity parameter DZETA = $\Delta \xi$ = stepsize in transformed axial coordinate = point where boundary layer growth is ETA = η_e assumed to be complete EXPl = 1/(A + 1)EXP2 = (B-A-2)/(A+1)EXP3 = (B-1)/(A+1)

EXP4 = (C-A-1)/(A+1)ERRUE = acceptable absolute error $\left|\frac{U^{+}}{U_{z}}-i\right|$ at $\mathcal{N}=\mathcal{N}e$ ERRHE = acceptable absolute error $\left|\frac{H_{2}}{H_{2,e}}\right|$ at $\mathcal{N} = \mathcal{N}e$ ERPPO = acceptable absolute difference in two successive interated values of p/p_0 at \S ERUUE = acceptable aboslute difference in two successive values of $\left| \frac{U^{+}}{U_{a}^{+}} \right|$ at $\mathcal{M} = \mathcal{M}e$ $FUNC(1, I) = f((I-I)\Delta \eta)_{r}$ $FUNC(2, I) = f'((I-I)\Delta H)_{F}$ $FUNC(3, I) = G((I-I)\Delta \eta)_{\xi}$ IGRALL = dedn $IGRAL2 = \int_{0}^{n_{e}} f(\eta) \left(\int_{0}^{\eta} (n) dn \right) d\eta$ $IGRAL2 = \int_{0}^{n_{e}} f(\eta) \left(\int_{0}^{\eta} (n) dn \right) dn$ IGRAL3 = $\int_{\alpha}^{n_e} (f(n))^2 dn$ n IGRAL4 = $\int_{0}^{n_e} (f'(\eta))^a (\int_{0}^{\eta} (\alpha) d\alpha) d\eta$ $GAMMA = Y_0$ MACH $= M_{n}$ $PDIF(1.1) = \Delta f'(N_e) / \Delta f''(o)$ $PDIF(1,2) = \Delta f'(\eta_e) / \Delta G'(o)$ $PDIF(2,1) = \Delta G(Me) / \Delta f''(o)$ $PDIF(2,2) = \Delta G(M_e) / \Delta G'(o)$ $PPO = p/p_0$ $PPOO = (p/p_0)_0 = value of pressure ratio from last iteration$ PP000 = p/p_0 at last axial step

STAR(1) = V^+ (obtained by interpolation from equal η intervals to equal y^+ intervals) $STAR(2) = U^+$ (obtained by interpolation from equal η intervals to equal y^+ intervals) $STAR(3) = T/T_0$ (obtained by interpolation from equal η intervals to equal y^+ intervals) TALW = Θ_{ω}^{a+i} TAWl = (l - TAlW)UEO = U_e^+ value of free stream dimensionless velocity from last iteration UE00 = U_e^+ , value of free stream dimensionless ve-locity from last axial step $UE = U_e^+$ value of free stream dimensionless velocity at present step $V = V^+$ radial velocity $X = X^+$ Y(1) = fY(2) = f'Y(3) = f''Y(4) = G $Y(5) = G^{\bullet}$ $YEND1 = f(n_e)$ $YEND2 = f'(m_e)$ YEND3 = G(Me)YSRT3 = f''(0)YSRT5 = G'(0) from guess or correction routine $YST3T0 = f''(0)_0 = value of velocity derivative at$ wall at last axial step

10/50/06		****	CHECK	****		22,EXP3,	r2,00644)= ,F8.4			
DATE = 71323	(#	大学 法并书 李吉尔齐 大学 水子 大学大学大学 大学大学 大学大	F U/UE, F (STREAM FUNCT)) FOR USE IN CONVERGENCE	**********	,101)	A, PR, COEF1, COEF3, FXP1, EXP	A, IWIU, FIA, UFIA, UECU, CUEF IGRAL 5, II	GR AL 5								4, 8H Y(2) = F3.4, 7H Y(5)			
20 FF0UT1	J9ROUTINE FEOUTI(Y,DY,N,X,SPTYPE,≭	****************	HIS SUBROUTINE PULLS OUT VALUES OF VD H/HE AT ETA (END OF THE B.L.) VD CORRECTIVE PROCEDURE	······································	IMENSION Y(5), DY(5), F(101), FUNC(3.	DAMEN F, FUNC, NOFNS, BETA, TALW, DZET	XP4, YENU1, YENU2, YENU4, XENU, UE, ZEL TAN1, IGRAL1, IGRAL2, IGRAL3, IGRAL4,	FAL IGRAL1, IGRAL2, IGRAL3, IGRAL4, I	JGICAL SPTYPE	F (.NOT. SPTYPE)RETURN	F (X. EQ. 0) RETURN	E ND I = X (1)	END2=Y(2)	END4=Y(4)	RITF(6,1)YEND1,YEND2,YEND4	0°MAT(20H AT ETA=END, Y(1) = ,F8.		ETUPN	UN CIN
LEVEL	S S	* ن ں ر		(* ວບບເ	ם ب		→ → 	æ	ب	I	F	7	7	۲	M	ш. ,	1)	Cr I	L.
د د					-														
FORTRAN I	1000				0002	£000		9004	0005	0006	2007	8000	0000	0010	0011	0012		0013	0014

đ

 10/50/06		*** ** **	E IN Tores Appens to	*****			P1,EXP2,EXP3, 0.COFF2.COFF4																	
DATE = 71323	(*	** *** ***	L PARAMETERS FOR US Equations. Also S Printout if this H His step	******		, 101) RAI 4. TCRAI 5	A, PR, COEF1, COEF3, EX A, TWIO, FIA, DFTA, UFC	IGRAL5, II																
FEOUT 2	OUT2(Y, DY, N, X, SPTYPE,	******	NE CALCULATES INTEGRAI MENTUM AND CONTINUITY ENTHALPY PROFILES FOR RGENCE CRITERIA FOR TI	******	E E) RFTURN	.),DY(5),F(101),FUNC(3 	NDP.YEND4.XEND.UF.ZFT	IGRAL2, IGRAL3, IGRAL4,	AW1*Y(4))**EXPI		0 TO 2	GC TO 3	<pre>(2) ↓±0</pre>	+4_0*INGRN ++4_0*TFMD*V/21	+++ +++ (2) ++(5) ++(5)		.+4.0*Y(2)*Y(2)*TEMP					· ·		
20	SUBRCUTINE FE	*****	THIS SUBROUTI INTEGRATED MC VELNCITY AND SATISFY CONVE	*****	LPGICAL SPTYP IF(.NOT.SPTYP	DIMENSION Y (5 3 FAL INCRN-16	COMMON F,FUNC	I, TAWI, IGRAL 1,	INGRN=(TALW+T	TEMP=TEMD+1NG	IF (X . EQ. ETA) C	IF(KIK.FQ1)	CHECK=CHECK+4	IG2AL1=IGPAL1 TGRAL2=IGPAL2	IGRAL3 = IGRAL3	K [K=-F] K	1 CP 41 4 = 1 GRAL4	GG TC 5	K [K =]	СнЕСК=0.0	IGPAL1=0.0 TEMP-INCON/2	ICDALOED O	16FAL2-0.0	IGPAL4=0.0
V G LEVEL	ر	υυ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ى ن ر)														1					
FORTRAN I	1000				0003 0003	0004 7075	0006		0001 2000	8000 0000	0100	0011	2100	0013	0015	0016	7 10C	8100	0019	0.02.0	0021	2200 2200	0024	0025

M=)	2 IGRAL1=IGRAL1+INGRN	CHECK = CHECK + Y (2)	IGRAL2=Y(2) *TEMP+[GRAL2	I GRAL3=IGRAL3+Y(2) *Y (2)	I GRAL4= I GRAL 4+Y(2) *Y(2)*T FMP	GU TU 5	3 [GRAL]=[GPAL]+2.0*INGRN	CHFCK=CHECK+2。0*Y(2)	[GPAL2=]GFAL2+2。0*TFMP*Y[2]	[G2AL4=[GRA14+2.0*Y(2)*Y(2)#TEMP	[GRAL3=[GRAL3+2.0*Y(2)*Y(2)	K I K=-K I K	5 4=4+1	FUNC(1, M) = Y(1)	FUNC(2, M) = Y(2)	FUNC(3, M)=Y(4)	IF(X.NE.ETAJGO TO 6	CHECK=CHECK #DETA/3.0	WRITE(6,100)CHECK,YEND1	100 FDRMAT(3H CHECK =,F3.6,PH CHECK =,F3.6)	ICRALI=IGRAL1*DETA/3.0	I G?AL2=I GRAL2*DETA*DFTA/3.0	I GR A L 3 = I GF A L 3 * DE T A / 3 . N	I @ A T 4 = I @ A T 4 * U E I 4 * U E I 4 / 3 ° U	6 RETURN	END
0026	0027	0028	0029	0030	0031	0032	0033	0034	0035	0036	0037	0038	0 03 9	0700	0041	0042	0043	0044	0045	0 0 4 6	2047	004 B	ن 00 d	0050	0051	0052

:

ī

247.

FORTRAN IV G LE	VFL	2.0 FEVAL	DATE = 71323	10/50/06
0001		SUBRCUTINE FEVAL(Y,X,DY)		
υ U (******************	********	******
ن ن ن ن		THIS SUPROUTINE EVALUATES THE RIGHT H EQUATIONS AFTER CONVERSION TO A SET C DIFFERENTIAL EQUATIONS AND IS CALLED	AND SIDE OF THE ROUND/ NF SIMULTANEDUS FIRST (BY DESP	ARY LAYER Jrder
	.,	****************	• * * * * * * * * * * * * * * * * * * *	*****
0002		DIMENSION Y(5),DY(5),F(101),FUNC(3,10 COMMEN E ENVE NOTAS BETA TAIM DIFTA E)]),FPRM(3) se foff] foff3 fybl,Fy	0 2 E VD 3 .
	1 1	СОМАЧИТТ, ТОИС, МОГИЗ, ТЕГА, ГАТИ, УССТА, Т ЕХР4, YENDI, YEND2, YEND4, XEND, UE, ZFTA,] , TAWI, IGPALI, IGRAL2, IGPAL3, IGRAL4, IGF	<pre>Control Control C</pre>	F2, COEF4
9004	-	RFAL ICPAL1, IGRAL2, IGRAL3, IGRAL4, IGRA	125	
0005		0Y(1) = Y(2)		
0006		DY(2)=Y(3)		
0007		HARCH=TA1W+TAW1*Y(4)		
0008	-	ŊY (3)= (¤ETΔ*(Y(2)*Y {2)-HARCH**EXPl)-Y vostIVHI*v/3)*v/E////// 2 эков+нАрСU+*f	/{3)*Y(1)-2.0*PR*EXP3* ///21	HARCH**E
000	-	07{4}=Y{5}		
0010		<pre>D>(5)=(CGEF1*UE*UE*(BFTA*HARCH**EXP1*</pre>	*Y (2) - 2 . 0 * PR * H4R CH* * E XI	P3*Y(3)*
	1	Y(3))-2.0*EXP4*HARCH**(EXP4-1.0)*TAW]	<pre>[*Y(5)*Y(5)-Y(5)*Y(1))</pre>	/{2.0*HA
	- 1	QCH**FXp4)		
1100		RETURN		
0012		FND		

PAG

•

1323 10/50/06	********		******	*****	NTIAL FQUATIONS FOR Re dependent propert	******			• • •			HE VELOCITY AND	THEIR FREE STREAM	WILL RE COMPLETED		ON DIWENSIONALIZED	+9	
MAIN DATE = 7	***********		***********	***********	GRATES THE SIMILARITY DIFFERE GAS IN A TUBE WITH TEMPERATU	***********	RE NAMED AS FULLOWS	FECTFIC HEATS CP/CV NO.	O BULK TEMPERATURE RATIO	CER LAW FOR SPECIFIC HEAT WER LAW FOR VISCOSITY	LAW FOR CONDUCTIVITY	SEDRMED Y VARIABLE AT WHICH T	r LAYERS ARE ASSUMED 10 REACH	ASSUME OFFECTIONS AT WHICH SOLUTUTONS	THE AND I AT ETA	ABSOLUTE DIFFERENCE BETWEEN N	ETA	
:L 20	*******	MAIN PROCRAM	*****	*****	THIS PROGRAM INTE Laminar flow of A Tes.	******	INPUT VARIABLES A	GAMMA=RATIO OF SP Mach=Inlet Mach	TWTC=INLET WALL T PR=PPANDTL NO.	A=EXPONENT IN POW B=EXPONENT IN POW	C=FXPCNFNT IN POW	ETA=VALUE OF TRAN	ENTHALPY RCUNDARY VALUES	MENO. OF AXIAL ME EDDUE-ACCEDIARIE	AXIAL VELOCITY U/	FRPHF=ACCEPTARLF	ENTHALPY ANU 1 AI	
FORTRAN IV G LEVE	υu		ن ن ن	ں ر	ں ں ں ں	000		ن ں ر	ບ ບ			ں ر			ں ر	C (

,E9.3,9H ERUUE STRE COMMEN F, FUNC, NOFNS, BETA, TALW, DZETA, PR, COEFI, CCEF3, EXP1, EXP2, EXP3, LEXP4, YENCL, YEND2, YEND4, XEND, UE, ZETA, TWTO, ETA, DETA, UE CO, COFF2, COEF4 ******************************** ********************** DIMENSION F(101), FLAP(3), GLAP(3), PDIF(2,2), ERR(3), FUNC(3,101), Y(5) , F8.4) = ,I4,21H ETA (FREE USED wISS1, wISS2, NETA, IGRAL 1, IGRAL 2, IGRAL3, IGRAL4, IGRAL5, MACH ,F8.4) CALCULATE COEFFICIENTS AND EXPONENTS WHICH ARE FREQUENTLY ŧ ,F8.4,5H C 11 40 FORMAT(9H ERRUE = •E9.3,9H ERRHE = •E9.3,9H ERPPC = FURMAT(12H MACH ND. = ,F8.4,8H T/TO = ,F8.4,6H PR 0 1, TAW1, IGPAL1, ICRAL2, IGRAL3, IGPAL4, IGRAL5, II 39 FORVAT(9H DZETA = ,F8.4,17H # AXIAL STEPS FORMAT(9H CAMMA = ,F8.4,5H A = ,F8.4,5H B WRITE (6,40) FRRUE, ERRHE, FRPPD, FPUUE READ(5,8)ERRUE,ERRHE,ERPPO,ERUUE EXTERNAL FEVAL, AF, FFOUT1, FEOUT2 DCURLE PRECISION 3,C,PPOUE, PPC READ(5,3)DZETA,M,N,XEND WR I TF (6, 38) MACH, TWTO, PR (, DN(100), STAR (3), V(100) READ(5,1)GAMMA,A,B,C,PR WRITE(6,39)DZETA,M,FTA WR I T F (6, 37) GAMMA, A, B, C LOGICAL FIRST, SPTYPE FORMAT(E6.2,213,F5.2) READ(5,2)MACH, TWTO TAIW=TWTO** (A+1.0) IN CALCULATIONS FORMAT(5F6.4) FDRMAT(2F4.2) FDRMAT (4 F8.5) DWS=1.0/320.0 I = FTA/DETA+2 $1 \Delta M$) = , F8.4) ECHO CHECK DETA=0.10SILT FTA = X ENDPEAL RFAL 33 37 \sim m œ ں 000000000 90028 6000 0100 0013 0014 0015 0016 0 C I 7 0018 0 01 9 0200 0023 0003 0012 0021 0022 0024 0005 0004 0000 0001 1100 0025 0026 0 0 2 R 0029 0005 0027

F YSRT5=(A+1.0)*TWTD**A/TAW1*(1.0-TWTD)*0.332*PR**0.3333 COEF1=(GAMMA-1.0)*COEF1*(A+1.)/TAW1 IF(TAW1.F0.0.0)G0 T0 702 IF(TAW1.EQ.0.0)GP IN 700 IF(MM.CE.4)DELF3=0.0001 IF (MM.GE.4) DFLF5=0.0001 EXP1=1.0/(1.0+A) EXP2=(P-A-2.0)/(A+1.0) FXP4 = (C-A-1.0) / (A+1.0)COEF3=1.0+CAMMA*COFF1 EXP3={B-1.0}/(A+1.0) COFF4=TWTC**(8-1.0) CDEF2=GAMMA*COFF1 COEF1=MACH*MACH $TAWI = (I \cdot O - TAIW)$ YSPT3=0.332 2ELF3=0.001 DELF5=0.001 ບບີ່ 1 ≃ີບບີ່ d d XSTAPT=0.0 IGRAL5=0.0 GO TP 703 YSPT5=C.0 GO TC 701 CCFF1=0.0 ETA=XEND CONTINUE **BETA=0.0** CONTINUE UF00=1.0 ZETA=0.0 UE=1.0 0.0=XX H=0.10 NN=5 0=WW X III O 702 703 33 700 101 ഹ 0054 0055 0039 0040 0041 0043 004*4* 0047 0.05 R 0500 0060 0062 0063 0064 0065 0066 0035 0035 0036 0037 0045 0045 3048 00049 0050 0051 0052 0053 0056 0057 0061 0032 0038 0030 0033 0031

i

<pre>Y(3)=YSRT3 Y(3)=YSRT3 F(5)=YSRT5 F(5)=YSRT5 Y(1)=0.0</pre>

;

																		:											2	253	•		
																		:															
10/50/06	• .) / DE T	/ DET										****	:	** *******		• £800)		*****	•	•
DATE = 71323								5					IF(2,1)	1,2)*(1.0-GLAP(I))	2,1)*(1.0-FLAP(I))										* **** *****	LES	********		<pre>、,H,E&RUE,AE,FEOUT2</pre>		*********		NTUM FOUNTIONS
NIN	1)={GLAP{2}-GLAP{1})/DELF3 2)={GLAP{3}-GLAP{2}}/DELF5	= 1, 2 B S { 1 _ 0 - F1 A P { I })	BS(1.0-GLAP(I))	SQRT(MISS1**2.0+MISS2**2.0)		1).GE.ERR(2))I=2	I).GE.ERR(3))I=3	.1.0R.I.EQ.2)YSRT5=YSRT5-DELF	.1)YSRT3=YSRT3-DELF3	=FLAP(I)	=GLAP(I)		F(1,1)*PDIF(2,2)-PDIF(1,2)*PD	PDIF(2,2)*(1.0-FLAP(I))-PDIF(PDIF(I,1)*(1.0-GLAP(I))-PDIF(SRT3+DELF3			0	RT3	0	R T 5			********	PETAILED BOUNDARY LAYER PROFI	*************		SP(DETA,FEVAL,NN,Y,XSTART,ETA He.O)GC TD 24	FTA	***************************************		NTEGRATED CONTINUITY AND MOMF 16 AND P/PD
20	PDIF(2, PDIF(2,	MISS1=A	MISS2=A	ERR(I)=	I = 1	1 E (E B B (IF (EPR (IF(I.FQ	IF{I.E0	FLAP(1)	GL 4P(1)	KK=1	DET=PD1	DELF3={	0ELF5=(YSRT3=Y	GO TO 6	Y(1) = 0.	Y(2) = 0.	Y(3)=YS	Y(4) = 0.	$\gamma(5) = \gamma S$	C=XX		****	NIVIGU	****		CALL DE IF(MM.N	ZETA=DZ	*****	•	SOLVE 1 FPR U/L
ν G LFVEL				13														6						J	ر ر	00	ن ر	J	17		ن ر) ر.	00
FORTRAN I'	0095 0096	009 / 009 R	6000	0010	1010	0102	0103	0104	0105	0106	0107	0108	6010	0110	1110	0112	0113	0114	0115	0116	0117	0118	0110						0120	0122			

ŧ.

							•				-	•				•	•								2	54	•			
**************	24 B=2.0*{2.0*ZFTA)**3.5*{YEND1-IGRAL1)+1.3	C=2.0*ZETA*(IGRAL1**2.0-2.0*IGRAL2)	PPUUF=(-B+DSCRT(P**2.0-4.0*C))/2.0	「一一門」。「〇一一〇一一〇一〇一〇一〇一〇一〇一〇一〇一〇一〇一〇一〇一〇一〇一〇一〇一	80/2 / = 1 / • 0 * / E 1 / • * • 0 • 3 - 1 / • 0 * 1 / E 1 / - 0 / E 1 / 1 * * 0 • 3 8 / ^ E E 2 + ^ ^ * 80 * / ^ E E 2 * ^ 1 / E A 1 / E A 1 / 7 * / V E 7 7 ^ / • V S 7 7) * 11 E A 1 / • ^ /	D===C(E) D++C++F+C(E) C++C(E) ++(LGK)=C+F(LGK)=C+F(LD) D(D+1) D(D) +C(E) C++C) C=DDC(E+E)+(D) F(2, 0++C) D++C) D++C) ++C(E+C) +C(E) A - 1C(E) (1)+DDC(E+D) +C(E+C)+CA	18UZZ*(YST3T0+YSRT3))+COFFZ*(2.0*ZETA)*(IGRAL1**2.0-2.0*IGRAL4)	PPD=(-B+CSORT(B**2.0-4.0*C))/2.0	UE=PPOUF/PPO	WRTF(6,50)UF,PPC 50 EDBMAT/8H U/UD = .E9 5.8H D/DD = .E9 5)		*************************	CHECK IF U/UF AND P/PO DIFFER BY LESS THAN SPECIFIED AMOUNT ' FROM VALUES CALCULATED FOR LAST ITERATION		***********************	IF(FIRST.OR.MM.EQ.0) GO TO 18 FEQSEARS(UF-UFO)		TETERS, FRUITE, AND, FRRA, JE, FRPPANICA TA 19		Üde = ÜÜde	BETA=2.0*7FTA/UF*(UE-UEDO)/DZETA			FIRST= "FALSE"	HETA=2.0*ZFTA/UE*(UE-UEDD)/DZETA	IF(MM.EQ.0)GD TD 20				
U U U	,										ں ⁻	ີ່	ں ں ر	ပ	ပပ												ں :			
	0123	0124	0125	071C	1710	0120		0130	0131	0132		•				0134	0136	7137	0138	0139	0140	0141	0143	0144	0145	0146		•	•	

· .

, F8 ******************************* ************************ IF THIS IS X+=0, THEN BOUNDARY LAYERS CAN ONLY BE PRINTED AS FUNCTIONS OF ETA SINCE IN THE Y+-X+ SYSTEM, THE BOUNDARY LAYER Ħ , F8.5,6Н Х 0.0 UF/U0=1.0 P/P0=1.0 X=0 //} 11 ,F8.5,8H P/PO H/HE) WPITF(6,32)FTA, FUNC(1,1),FUNC(2,1),FUNC(3,1) U/UE FQ4MAT(2X,F5.2,4X,F8.5,2(2X,F8.5)) BETA=2.0*ZETA*(UE-UEQC)/(DZETA*UE 19 XX=XX+PZFTA/(UF+UEOO)*(PPCGC+PPO) в TEMP=[TA1W+TAW1*FUNC(3,1))**EXP1 THICKNESS IS THEORETICALLY ZERO 25 FCRMAT(8H ZETA = ,F8.5,8H U/UE**(I)**λ WR ITE (6,25) ZET A, UE, PPU, XX FCRMAT(38H ZFTA = ETA 11=FUNC(2,1)*UF F()) = FUNC(1, J) DD 26 I=1,11 ETA=ETA+DETA YST3T0=YSRT3 DO 23 I=1, II **% R i T E (6 , 2 B)** WR ITF (6,21) WR ITF (6,22) CDRMAT (35H $00 \cdot 0 = (1) NG$ GO TC 33 NE TA=0.0 CONTINUE ETA=0.0 S X=NETA 60 TC (= w w 1.5) 32 67 20 22 21 ł 0148 0149 0150 0152 0153 0154 0155 0157 0158 0159 0168 0169 0110 0160 0163 **J164** 0165 0166 0167 0171 0162 0172 0161 0147 0151

FURTRAN IV G LEVEL 20

MAIN

DATE = 71323 10/50/06

i

PAG

;

FY=-(X-SILT-DETA)*(X-SILT-2.0*DETA)*(X-SILT-3.0*DETA)*F(IND-1)/6.0 +(X-SILT)*(X-SILT-2.0*DETA)*(X-SILT-3.0*DETA)*F(IND)/2.0-(X-SILT)* 1 (X-SIL T-DET A) * (X-SIL T-3, 3*DET A) *F(IND+1)/2.0+ (X-SIL T) * (X-SIL T-DFT A V(I)=TEMP*UE*(2.0*ZFTA)**0.5*([NFTA*(1.0+BFTA)*FUNC{2,I}-FUNC{1,I}) 28 FCRMAT(3X,3H Y ,4X,5H NETA,3X,5H U/UE,7X,5H U/UD,7X,5H T/TO,7X,5H WR ITE(6, 31)DN(1), NETA, CUNC(2,1), U, TEMP, FUNC(3,1), V(1) DN(I+I)=DN(I)+(2.0*ZETA)**0.5*DETA/(UE*PPO)*TEMP 402 IF(YY.GE.DN(K).AND.YY.LT.DN(KULP))GO TO 31 FORMAT(1X,F6.4,F8.4,1X,F9.6,4(3X,F9.6)) FY=FY+Y*(X-DETA)*F(3)/(2.0*DETA**2.0) FY=-X*(X-2.0*DETA)*F(2)/DFTA**2.0 [] * (Y-SIL T-2.0*DETA) *F(IND+2)/6.0 IF(MM.LT.LAP)GO TO 409 IF(IND.GF.LKJ)IND=LKJ IF(IND.LF.1)G0 T0 60 SILT=IND*CETA-DETA DEX=X/DETA-0.00001 IH/HE, 7X, 3H V+//) DO 401 K=1,KLAP FY=FY/DETA**3.0 NETA=NFTA+DETA 1)/(2.0*ZETA)) DO 67 J=1,II KL10=11-2 GO TC 401 I + ON I = ON II + ON I = ON ICONTINUE CONTINUE KULP = K + IGO TO 71 ND MOR'S=1 LK J= 1 1-3 YY=0.00 I ND=DFX [\ \ \ = \ \ -] 26 406 60 11 6610 0173 0185 0189 0193 0195 3196 0197 9158 0020 0201 0202 0203 0183 0194 0186 0187 0138 0190 0192 0194 0175 0176 0177 0178 0179 0180 1910 1810 0182

		•
0204	402 I=K GOTP 407	:
0206 0207	401 CONTINUE 407 CONTINUE	
	· · ·	
	C SINCE CUTPUT FROM INTEGRATION ROUTINE IS AT EQUAL FTA INTERVALS C IT IS NECESSARY TO INTERPOLATE FOR VALUES OF THE DEPENDENT C VARIABLES AT EQUALLY SPACED Y+=1-R/RO VALUES. USE PARABOLA FIT C THRU LAST AND TWO FORWARD TABULATED VALUES OF DEPENDENT VARIABLE	
	۲ ۲ ۲ ۲	
0208	C n0 403 J=2+3	
0209	ST AR {]) = { YY-DN { [+ 1 } } *{ YY-DN { [+ 2 } } *FUNC { J, [} / { (DN { [} -DN { [+ 1 }) *(DN { [1] }) + (YY-DN { [1] }) *(YY-DN { [1 + 2 }) } + (YY-DN { [1] }) *(YY-DN { [1 + 2 }) + (YY-DN { [1] }) *(YY-DN { [1 + 1 }) + ((DN { [1 + 1 }) -DN { [1] }) *(I + 2) }) + (YY-DN { [1] }) *(I + 1)) *((DN { [1 + 2 })) + (YY-DN { [1] }) *(I + 1)) *((DN { [1 + 2 })) + (YY-DN { [1] }) *(I + 1)) *FUNC { [J, I + 2 }) /((DN { [1 + 2 }) -DN { [1] }) *(I + 2)) }	
	1(1)) * (DN(1+2)-DN(1+1)))	
0211	STAR(1)=(YY-DN(I+1))*(YY-DN(I+2))*V(I)/((DN(I)-DN(I+1))*(DN[I)-DN(
	11+2)))+(YY-DN([))*(YY-DN([+2))*V(1+1)/(DN([+2)-DN([))*(DN([+1))*(DN([+2)-DN([]))*(DN([+2)-DN([]+2)-D	
2120 8120	STAR{?)=UE*STAR{2} STAP{3}=[TA]₩+TAW]≠STAR{3})★≑FXP]	
) 4 1	C PUNCH PROFILES FOR USE IN FINITE DIFFERENCE PROGRAM	
0214	WRITE(98,404)STAR(2),STAR(1),STAR(3)	
0215	IF(Y,GI,UN(KLAP))GU IU 405 Nowene-Nomeneij	
7170	YURAN - NOMENON I TO AND A STATEMENT AND A STAT	
0218	404 FORMAT(FI1.7,FI1.4,FI1.7)	
0219	GO TC 406	
0220	405 CONTINUE	
1 ~ 2 0	WRITE(92,408)X,PPO	2
0222	408 FORMAT(F7.5,F11.7)	257
0223	FISH={PP(#VF+PP()()#UEUD)/{2.3*PP()*ULEIA) WRITFY98.4101NOMONS.HF.FISH	7•
0225	410 FORMAT (14,2F8,5)	

		· · · ·			
<pre>409 CONTINUE IF(MM.EQ.M) GD TO 30 IF(MM.EQ.M) GD TO 30 IGPAL5=IGRAL5+0.25*(UE+UEOD)*(YST3T0+YSRT3)*(ZETA**0.5-(ZETA-DZETA 1)**0.5) DD 248 J=1.II F(J)=FUNC(1,J) 248 CONTINUE 248 CONTINUE</pre>	C ####################################	C	YST3T0=YSRT3 FIRST=.TRUE.	MM=MM+1 PPCOC=PPC UEDC=UE	GG TG 24 ROO CALL ERROR 30 STOP END
0226 0228 0228 0229 0230 0231		2532	0234	0235 0236 0237	0238 0239 0240 0241

.

• •

1

<u>Appendix G</u>

This appendix is a listing of the data reduction program described in Chapter 5. Major I/O and intermediate variables and different stages of the calculations are identified through use of comment cards.

;

r.						
FORTPAN IV 6 LEV	VEL	20 M	AIN	DATE = 71313	20/42/36	PAGE 00
		*******	** *****	******	*****	
		VADIADE DOODEDIV 1 AV	TNIAD EL CUI DATA DE			
	-	VANIMOLE PRUPERIT LAM FINALIZED 6/18/71	INAN FLUM UALA KE			
		ALL CUPVEFITS ARF OF	POLYNOMIAL THIRD	DEGREE TYPE A+B	X+CX2+DX3	
		ALL THEPMOCOUPLF CORR REFERENCE JUNCTION TE	ELATIONS ARE FOR Mperature	32 .2 DEG. F.		:
		THE FULLOWING SURVERT	DTC ADDI V AC FULL			
		I REFERS TO CU-CON TH	ERMOCOUPLE OUTPUT	* RANGE 200 TO	600 DEG F	
C		(DEG. F. VS. MV)				• • •
		2 REFERS TO CR-AL THE	RMOCOUPLE OUTPUT,	RANGE 200 TO 1	880 DEG. F.	
J		(DEG. F. – MV)				
		3 REFFRS TO CALIBRATI	ON OF UPSTREAM CR	-AL THERMOCOUPL	ш.	
		DEG. F. (IRUF) VS. UF A REFERS IN CULONN TH	G. F. (MEASUKED))	DI LUCE DUJ IU	400 DEG E	:
		5 RFFERS TO TEMPERATU	RE CURRECTION FAC	TCR FOR LAMINAF	E FLOW ELEMENT	
		(CURPECTION FACTOR VS	. DFG. F.) RANGF	50-120 DEG. F.	•	
J		ALL TRANSPORT PROPERT	Y CORRELATIONS OF	DATA IN NBS 56	,4	
<u>ں</u>	·	6 RFFFRS TO ABSOLUTE	VISCOSITY RATIO V	FRSUS TEMPERATU	JRE	
J		MU/WUR VS. DEG. K				
C		RANCE 200-1800 DFG. F	•			
Ċ		7 REFERS TO THERMAL C	CUNDUCTIVITY RATIC	J K/KO VS. DEG.	•	
َن : :		RANGE 200-1800 DFG. F	• KII=0.01395 BTU	J/HR FT DEG. F.		
J		RANGE 200-1800 DEG. F	•			
		A REFERS TO SPECIFIC	HEAT RATIO CP/R V	/S. DFG. K.		
J		PANGE 200-1800 DEG. F	. R=GAS CONSTANT=	-0.0685 BIU/LBM	DEG. :.	
						2
ں		K=NC. CF RUN FROM WHI	CH TAPE TEST WAS	TAKEN		60
ບ	,	II=""OF RUN				: • •
0		JJ=0 MEANS BLUE MAN.	FLUID AT MICROMAN	JOMETER		
U		JJ=1 MEANS RED MAN.	FLUID AT MICROMAN	LOMETER		
C		KKK=0 MFANS PVUT BOUN	IDARY CONDITION			
U		KKK=1 MFANS UVT BOUND	JARY CONDITION			
ں						
		*******	** *** * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*****	
ں 						

• • • • •

										:		261	•
<pre>Df MF NS fON A(9), B(9), C(9), D(9), COND(12), XDC(6), XDP(7), DELP(8), TA(12 1,2), TT(12,2), FBAD(6), TW(12), FLUX(12), DELT(12), TB(7), PHI(4,4), XXDP(18), XXPC(6), RHS(4), PDIV(7), X(7), AAA(100), ANS(4), FFF(2,8) EQUIVALENCE(PHI, AAA) COD 1 / 1 C</pre>	<pre>UU 1 1-1.0 READ(5,100)A(1),B(1),C(1),D(1) CONTINUF FORMAT(4F12.7)</pre>	*******************************	READ IN CALCRIMETER CONDUCTANCES BEGINNING WITH EXIT BOTTOM CALORIMETER TO INLET TOP CALORIMETER (BIU/HRFT2 MV(CU-CON))	***********	READ(5,101)(COND(1),1=1,12) FORMAT(4F8.2)	*****	READ IN X/D RATIOS WHERE CALORIMETERS ARE LOCATED BEGINNING WITH CALORIMETER CLOSEST TO EXIT	*********	READ(5,102)(XXDC(1),1=1,6) 2 FQRMAT(3F7.3)	*********	READ IN X/D RATIOS WHERF PRESSUPE TAPS ARE LOCATED Beginning with tap closest entrance	************************	<pre>RFAD(5,157)(XDP(1),1=1,7) RFAD(5,157)(XDP(1),1=1,7) READ(5,163)11,JJ,KKK,K WRITF(6,301) RPMAT(1H1) PF0RMAT(414) RF(T1_CT_500)GO TO 508</pre>
	100			ວ ບ (ں ں ں ں	، ں ر	, 10 , 10	: • ت د ا	ا ن ن ن	000	15 50 30 16
0001	0004 0005 0006				0007				0100 6000	1			0017 0015 0014 0015 0015 0015 0017

READ IN TEST DATA AS FOLLOWS READ IN TEST DATA AS FOLLOWS PATV=ATWOSPHERIC PRESSURE (IN. HG) PATV=ATWOSPHERIC PRESSURE (IN. HG) PATV=ATWOSPHERIC PRESSURE NETAL ACCROSS LAMINAR FLOW EL PEPERSSURE AT STATIC TAP #1 (IN. HG.) LEFT COLLU P2=PRESSURE AT STATIC TAP #1 (IN. HG.) LEFT COLLUPLE P2=PRESSURE AT STATIC TAP #1 (IN. HG.) LEFT STATE P2=PRESSURE AT STATIC PRESSURE DATA P5PRATIF6.2.F6.3.2F7.4.2F5.2.F7.3) P2=PRESSURE DATA P2=PRESSURE DATA P2=PRESSU	*****	EMENT (IN. H2O) OW ELEMENT MN UMN	*****	****	• 13) • 13) • 13)
	************	READ IN TEST DATA AS FOLLOWS PATW=ATMCSPHERIC PRESSURE (IN. HG) PFM=PRESSURF DIFFERNTIAL ACCROSS LAMINAR FLOW EL TFM=CUTPUT FROM CU-CON THFRMCCUPLE LOCATFD AT FL P1=PRESSURE AT STATIC TAP #1 (IN. HG.) LEFT COLLU P2=PRESSURE AT STATIC TAP #1 (IN. HG.) LEFT COLLU	**************************************	☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆	<pre>IF(KKK)500,500,501 WRITF(6,505)11 WEITF(6,505)11 FORWAT(3F6.3) GO TC 502 WRITF(6,506)11 GO TC 502 WRITF(6,506)11 RFAD(5,504)(0FLP(1),1=1,7) GONINUF FORMAT(4F5.3) FORMAT(4F5.3) FORMAT(4F5.3) FORMAT(4F5.3) FORMAT(10X,35H PARARCLIC INLFT VELOCITY TEST NO WRITF(6,6)K FORMAT(/10X,35H SIMULTANEPUS DEVELOPMENT TEST NO WRITF(6,6)K FORMAT(10X,35H TARE TEST TAKEN FROM RUN NO. ,13) ************************************</pre>

0033						
	READ(5,104)(TA(I,1),TA(I,2),I=1,12) C ************************************					
	C READ IN THERMOCOUPLE READING FOR TEST WITH GASFLOW (MV)					
	۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲					
0034	t. READ(5,104)(TT([,1),TT([,2),I=1,12)					
0035	C ECHP CHECK 104 FORMAT(2F7.4)					
0036 0037	WRITE(6,805) 805 FORMAT(10X,30H TARE THERMOCOUPLE OUTPUT (MV))					
0038 0039	WRITE(6,808) DO 806 I=1,6					
0040						
0041	WRITE(6,807)1,14(1,1),14(1,2),K,14(K,1),14(K,2) 806 CONTINUE	2				
0043	807 FORMAT(10X,2(2X,13,2(3X,F8.4)))					
0044	808 FURMAI(LUX, 5H 1,5X, 5H 1A(1,1),4X, 5H 1A(1,2),5H 1 ,2X, 5H 1A(1, 11),4X,8H TA(1,2)/)					
0045	WRITE(6,809) BOG ECRMATTIOY, 30H TEST THERMOCOUDIE DUITPUT (MV))					
0047	WRITE(6,550)					
004 R	550 FORMAT(IOX,5H I,3X,8H TT(I,1),4X,8H TT(I,2),5H I ,2X,8H TT(I, 11),4X,8H TT(I,2)/)					
0049	DO 810 I=1,6 K=1+6					
0051	WP ITF (6,807) [, TT([,1]), TT([,2],K,TT(K,1]), TT(K,2)					
0052	RIO CENTINUF Additic olindem					
0054	RELETENCE ALLEER RIJ FURMAT(IOX,42H DIFFERENTIAL PRESSURE -FLOWMFTER (IN.) = ,F6.3)					
0055	WPITE(6,312)TEM,TBULK	26				
963D	HIZ FURMATTIOX,23H FLUWMETER TEMP (MV) = ,F7.4,23H BULK EXIT TEMP (MV) [= ,F7.4)	53.				
0057 0058	WRITE(6,814)P1,P2 01/ Endwattiny 27H inter dressinge wan tert fes 2 th dicht es 2 th i					
3 60 0	DIA FORTEN (1004210 100FF) FACSSORE FAN 7 FEFT 153.2470 N 1901 153.2910 1 18. HG)					
0 6 5 9	WPITE(6,815)TUP					
0000	815 FORMAT(10X,25H INLET BULK TFMP (R-AL = ,F7.3)					
0062 0062	BI6 FORMAT(IOX,27H STATIC PRESSURE DROP (IN.))					
					26	4 •
--	---	--	---	--	---	--
<pre>IF(kkk.FQ.0)G0 TO 817 WPITF(6,819)DELP(1),DELP(2),DFLP(3) PENRMAT(10X,9H PO-P2 = ,F6.3,9H P1-P2 = ,F6.3,9H P2-P3 = ,F6.3' WPITF(6,820)DELP(4),DELP(5),DFLP(6) OFORMAT(10X,9H P2-P4 = ,F6.3,9H P2-P5 = ,F6.3,9H P2-P6 = ,F6.3) WPITF(6.821)DFLP(7)</pre>	<pre>1 FURMAT(IOX,9H P2-P7 = ,F6.3) GC TO R22 7 WRITF(6,823)DELP(1),DELP(2),DELP(3) WRITF(6,824)DFLP(4),DFLP(5),DELP(6)</pre>	3 FORMAT(IOX,9H PI-P2 = ,F6.3,9H PI-P3 = ,F6.3,9H PI-P4 = ,F6.3) 4 FORMAT(IOX,9H PI-P5 = ,F6.3,9H PI-P5 = ,F6.3,9H PI-P6 = ,F6.3) 2 CONTINUE IF(JJ.EQ.0)GO TO 825 WRITE(6.826) GO TO 827 GO TO 827	5 WRITE(6,828) 7 CONTINUE 6 FCRWAT(10X,32H RED MANNMETER FLUID SP GR 0.826) 8 FORMAT(10X,33H BLUE MANNMETER FLUID SP GR 0.797)	CALCULATE MASS FLOW RATE , MACH AND PEYNOLDS NUMBERS QMAS=CCRRECTED MASS FLOW RATE (LRM/MIN) TFM=GAS RULK TEMPERATURE AT FLOWMFTER ********************************	TFM=A(4)+B(4)*TFM+C(4)*TFM**2。O+D(4)*TFM**3。O DMAS=D。O751*PFM*4。37/4。OD*(A(5)+B(5)*TFM+C(5)*TFM**2。O+D(5)*TFM**3 1。O)	CALCULATE INLET REYNOLDS NUMBFR TIN=INLFT GAS TEMPERATURE=CORRECTED UPSIREAM ADIABATIC DEVELCPMENT SECTION TEMPERATURE TUP=UPSTREAM MIXING CHAMBFR GAS TEMPERATURE (DEG. F.) #************************************
816	82	8 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	32 82 82 82 82 82 82 82 82		ບ ບບ	
0063 0064 0065 0066 0067	0069 0070 0071 0072	0073 0074 0075 0075 0078 0078	0079 0080 0081 0082		0033 0034	

·				265.
TUP=A(2)+B(2)*TUP+C(2)*TUP**2.0+D(2)*TUP**3.0 TIN=A(3)+B(3)*TUP+C(3)*TUP**2.0+D(3)*TUP**3.0 WRITF(6,829)TIN	<pre>TIN=TIN+459.7 SPEC=671.0/TIN FORMAT(10X,30H INLET TFMPERATURE {DEG. F) = ,F9.2) TAP=TIN/1.8 VISC=0.00001153#(A(6)+B(6)*TAP+C(6)*TAP**2.0) TBULK=A(1)+B(1)*TBULK+C(1)*TBULK**2.0+D(1)*TBULK**3.0</pre>	<pre>************************************</pre>	UIN=576.0*0MAS/(0.294**2.0*3.1415*60.0*DENS) VMACH=35.4*0MAS/(DFNS*SORT(2405.0*TIN)) WRITF(6.106)SPEC,VMACH 6 FORMAT(10X,9H TW/TO = ,F8.3,12H MACH NO. = ,F6.3) 5SUAP=0.0685*(A(R)+R(R)*TAP+C(R)*TAP**2.0+D(R)*TAP**3.0) CONPP=0.01395*(A(7)+R(7)*TAP+C(7)*TAP**2.0+D(7)*TAP**3.0) PP=VISC*(SURP/CCNDP*3600.0 REYD=4.0*0MAS/(60.0*3.1414*VISC*0.294)*12.0 WRITF(6,300)PR,PFYD 5 FORMAT(10X,6H PR = ,F8.6,8H RFYD = ,F8.1/)	<pre>************************************</pre>
	829		106	0 0 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0087	0088 0089 0090 0091 0092 0093	0004	0095 0096 0098 0098 0098 0099 0100 0101 0102 0103 0103	0105 0105 0107 0108

						•			266.	
N. 1=1 100	READ(5,108)IBAD(1) 11 CONTINUF 201 CONTINUE	C	C ************************************	R1=0.2500 R2=0.4375 DO 12 I=1,12 C	С ************************************	С АЧТЕТСЕТСТИАТОЛЕ КТОТОТЕЛЕД БТ ТИМЕК ПЕЛИЧИСТЕ (UEV• Г•) С ++++++++++++++++++++++++++++++++++++	<pre>Awp=A(1)+B(1)*TT(1,2)+C(1)*TT(1,2)**2.0+D(1)**TT(1,2)**3.0 TW(1)=AMP+(TT(1,2)-TT(1,1))/26.0*LOG(R1/0.147)/LOG(R2/R1) DELT(1)=TT(1,2)-TT(1,1)-TA(1,2)+TA(1,1) FLUX(1)=COND(1)*DELT(1)*1000.0 12 CONTINUE C</pre>	. ************************************	<pre>C NEXT RFMOVE SPURIOUS CALORIMETER RFADINGS, REPLACE WITH RFADING C OF OPPOSITE CALORIMETER. AT LEAST ONE CALORIMETER MUST RE C OPERATIVE AT EACH AXIAL POSITION. INTEGRATE HEAT FLUX CURVE TO C OPERATIVE AS BULK TEMPERATURE AT EACH AXIAL POSITION C OBTAIN GAS BULK TEMPERATURE AT EACH AXIAL POSITION C ************************************</pre>	
6010	0110 0111 0112			0113 0114 0115			0116 0117 0118 0119 0119 0120			

÷

<pre>1 F(N) 401, 401, 400 CCNTINUF K=N DC 13 N=1, K KCHEK= (1BAD(N) +1) IF(KCHEK) 15, 15, 14 KK= IFAD(N) FLUX(KK) =FLUX(KK+ IW(KK) =FLUX(KK+ IW(KK) =FLUX(KK+ IW(KK) =FLUX(KK+ IW(KK) =FLUX(KK+ IW(K)) = (11), 2 CONTINUE DO 18 I=1, 11, 2 FLUX(K) = (FUX(I) +1W(I) CONTINUE DO 18 I=1, 11, 2 FLUX(K) = (FUX(I) +1W(I) CONTINUE DO 18 I=1, 11, 2 FLUX(K) = (FUX(I) +1W(I) CONTINUE DO 18 I=1, 11, 2 FLUX(K) = (FUX(I) +1, 2 K= (1+1)/2 FLUX(K) = (FUX(I) +1, 2 K= (1+1)/2 FLUX(K) = (FUX(I) +1, 2 K= (1+1)/2 CONTINUE DO 18 I=1, 11, 2 K= (1+1)/2 FLUX(K) = (FUX(I) +1, 2 K= (1+1)/2 FLUX(K) = (FUX(I) +1, 2 K= (1+1)/2 FLUX(K) = (FUX(I) +1, 2 K= (1+1)/2 CONTINUE DO 18 I=1, 11, 2 K= (1+1)/2 FLUX(K) = (FUX(I) +1, 2 K= (1+1)/2 FLUX(K) = (FUX(K) +1, 2 K= (1+1)/2 FLUX(K) =</pre>		/2-IBAD(N)/2 1)		FLUX([+1))/2.0 +1))/2.0 1	**************************************	******************************	**************************************	******************
	IF(N)401,401,400 0 CONTINUE K=N	DC 13 N=1,K KCHEK=(IBAD(N)+1)/ IF(KCHEK)15,15,14 4 KK=IFAD(N) FLUX(KK)=FLUX(KK+1) TW(KK)=TW(KK+1) CO TO 13	5 KK=IBAD(N) FLUX(KK)=FLUX(KK-1) TW(KK)=TW(KK-1) 3 CONTINUE 01 CONTINUE D0 18 I=1,11,2	<pre>K=(1+1)/2 FLUX(K)=(FLUX(I)+F TW(K)=(TW(I)+TW(I) R CONTINUE Dn 183 I=1,6 IF(KK)180,180,181</pre>	******************** ASSUME COOLING OF FND FACF OF THE PL	<pre>************************************</pre>	★★★★★★★★★★★★ USE FIPST AND SEC REQUIRE CONSERVAT	******

		•											20	58 .			
	TAULK={TRULK+459.7)/1.8	*************	ASSUME COCLING OF GAS CEASES JUST INSIDE FORWARD FACE OF BULK TEMPERATURE MEASURING PLENUM 1.25 IN. FROM LAST CALORIMETER EVALUATE THE TOTAL HEAT TRANSFER FROM THE GAS FROM ENTRANCE TO FXIT	*************************	XDCFND=XDC(1)+1.250/0.294 QTOT=(60.0*0.0685*1.8*QMAS)*(A(8)*(TAP-TRULK)+B(8)*(TAP**2.0-TBULK 1**2.C)/2.C+C(3)*(TAP**3.0-TBULK**3.0)/3.0)	******************************	HEAT FLUX VARIATION GIVEN 3Y AA/X**0.425+BB/X**0.39+CC/X**0.25	*******	EXP1=0.450 FYD2=0.390		Pul(1.1)=1.0/50(5)**FAPI Pul(2.1)=1.0/XOC(5)**FXPI Pult2.1/-VOCESS**1.0_EVPI1/// 0.6V011	PHI(1,2)=1.0/X00(6)**EX02	PHILS.2)=I.T.7/0(9)+**EX02 PHI(3.2)=XECEND**(I.0-EYP2)/(I.0-EXP2) PHIL3)=I.0/XCC(5)**FXP3	Pul(2,3)=1.C/XDC(5)**EXP3 Dult2 2/-vrresstatio_Evrosizio_Crossizio	ри калана и калана постати и калала (постати) Ф1=АНS (FLUX (б))	Q2=&RS(FLUX(5)) &3=529_\$\$*QTCT	
		່າບເ		ပပ	U (ں ب	U U L	י ט ע ו	ن ا		•						U
	0147				0148 0149				0120 0120	152 152	0154 0154		0158 0158 0158	(31)	CL62	r163 C164	

ł

	21 CONTINUE	0170
	E × K F × A × (I × (I) − 1 U L U) I F (F R G P − 0 - 25) 31 - 31 - 32	0178
	[F[N].GT.50)GO TO 509	0176
9.	[**Z*U]/Z*U+(.[8]*[]AP**3*()-18[]]**3*()/3*()/A[8] NI-NI+1	0176
26	TR(I)=(-QTRAN/(60.0*0.0695*1.8*QMAS)+A(8)*TAP+B(8)*(TAP**2.0-TR(I)	0174
	NI=2 32 T() ()=TP()	
		C1 71
	11)+33*XDC(1)**(1.0+EXP2)/(1.0+FXP2)+CC*XDC(1)**(1.0+EXP3)/(1.0+EXP 13))	
	U'' 31 1=1,5)TKAN=2.∩*0.147*C.294*3.1414/144.5*(4∧*×0C([)**(1.0−E×Pl)/(1.0−F×P	6210
· · · · · · · · · · · · · · · · · · ·		
•	C ITERATION COMPLETE WHEN TWO SUCCESSIVE VALUES OF THE BULK C temperature are mithin 174 deg. cf fach other	:
: .	C OTRANETITAL HEAT TRANSFERRED FROM GAS UP TO POINT XDC(I)	
	C NOW SCLVE ITEPATIVELY FOR GAS BULK TEMPERATURES AT EACH CALCRIMETE	
• • •	I-рн[(3.2) *Рн[(2,1))+Q2*(РН[(1,2)*РН](3,1)-РН](3,2)*РН[(1,1))/DET	
	l-рн[(2,])*Рн[{1,3})}+Q]*(Рн[(3,])*Рн[{2,3})-Рн[(2,])*Рн](3,3)))/ЛЕТ СС=(Д3*(РнГ(2,2)*РнГ(1,1)-РнГ(2,1)*РнГ(1,2))-Д]*(РНГ(2,2)*РнГ(3,1)	C168
	BB=(C2*(PHI(1,1)*PHI(3,3)-PHI(1,3)*PHI(3,1))-03*(PHI(1,1)*PHI(2,3)	0167
· · ·	ΔΔ=(C]*(PHI(2,2)*PHI(3,3)-PHI(3,2)*PHI(2,3))-G2*(PHI(1,2)*PHI(3,3))-D22*(PHI(1,2)*PHI(3,3))	0166
	1,4/1+FA1(),2/2/-FA1()1,3/4FA1(),4/1)+FA1(),2/1/+(FA1(),2/1+FA1)/2/2/-FA1(),]3/*DH1(2,2))	
	DET=PHI(1,1)*(PHI(2,2)*PHI(3,3)-PHI(3,2)*PHI(2,3))-PHI(2,1)*(PHI(1) 1 2)*PHI(2,2)=DHI(1,2)*PHI(2,2)*PHI(2,3)*(PHI(1))	0165
	· ************************************	
· · · · · · · · · · · · · · · · · · ·	C SOLVE FOR AA, PR, CC	
	C 站本的外科学校外科学校会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社	

+,4X,6H [X+]M,3X,3H Q+,5X,4H NUM,4X,6H TB M]	EG. F.)		d(7)+B(7)*TB([)+C(7)*TB[])**2.0+D(7)*TB(])	TB(I)-TW(I)) CONDR	**********************	SE GRAFTZ PARAMETERS BASED UN INLET AND ERTIFS	******************	/(REYD*PR)	<pre>(8) +B(8) *TB(I) +C(8) *TB(I) **2 • 0 +D(8) *TB(I) * >*(* (* (* * * * * * * * * * * * * * *</pre>	MAS/(3.1414#0.294#VISCB#60.0)	<pre>[] / (REYR*VISCR*CSUBP*1800.0)</pre>	(1)*1。8) *F1 UX(1)/(T IN*CONDP)	59.7	C, XI.OC, ONON, BNUSS, TBB, RATIO, REYB	4.F4.4.FX.2.F7.6.3.F3.L]		NON DIMENSIONALIZED PRESSURE DROP)		X+ ,5X,3H P+)	173	T 4 1 1 - XUD (1 1 1 / / 8 E VU # DB) # 2 "U	[1]=DFLP(])*0.826/0.797	• 4 * 1) F L P (I) / { I 2 • 0 * 1) E N S * U I N * * 2 • 0)	P[[+]), JFLP[])
WPITE(6,839) 839 FORMAT(12X,3H X+,4 1TW/TR,2X,6H (RE)M) WDITE(6,820)	R40 FORMAT (43X, 8H DEG.	TW([]=TW([]+459.7	LAPW=LW(I)/I.8 CONDE=0.01395*(A(7	H=FLUX(I)/(1.8*TBC BNUSS=H+0.0245/CON	C ************************************	C CALCULATE INVERSE C LOCAL BULK PROPERT	C ++++++++++++++++++++++++++++++++++++	C XINC=XFC(1)*2.0/(R	CSUBP=0.0685#(A(B)	v i scone o e o o o o i i sora i REYB=4 e 0*12 e 0*0MAS	XL nc = c nubb × xnc (1) /	NA 1 10 = 1 W (1) / (1 M (1) ONDN = 0 - 1 4 7 / 1 2 - 0 * F 1	TBB=1.8*TB(I)-459.	WRITE(6, 150)XINC, X	150 FURMAI(LUX, 3F8.4,F 23 CONTIMUE	Walte(6, 830)	830 FORMAT[/]0X,34H NC	WEITE(6,841)	841 FORMAT(10X, 6H X+	IF(KKK)]72,172,173	(+1)dUX)≂((+1)dUXX AXUD((+1))=(XUD(X)	TF(JJ, EQ. 1) DEL P(1)	DFLP([]=32.2*62.4*	WRITF(6+107)XXDP() R CONTINUE

											•			:		a management of the second s											2	72	2.		
	× ΔΡ (Ι) = ΔΩΡ (Ι) = ΔΩΡ (Ι)	13 CCNTINUE	GD TO 414	12 00 415 I=1,6		UELY(ILK)=UELY(ILY)	(1) = (1) = (1)					************	BEGIN ITERATION FOR BULK TEMPERATURES (DEG. K.)		***********************	Di 422 I=1,7	QTF AN= 2.0*3. [4]4*C.147*0.254/144.0*(AA*X[])**(1.0-EXP])/(1.0-EXP])	[+33*x([)**(].0-EXP2)/(].0-EXP2)/(].0-EXP2)+CC*X([)**(].0-EXP3)/(].0-EXP3))	T2(I)=TAP	TR(I)=(-OTPAN/(60.0*0.0685*1.8*0MAS)+A(8)*TAP+B(8)*(TAP**2.0-TB(I)	1**2.0)/2.0+C(8)*(TAP**3.0-TB(I)**3.0)/3.0)/A(8)	REYP=4.0*12.0*0MAS/[60.0+3.1414+0.294+VISCB)	[+]N=]N	IF (NI.GT.50)GD TD 509	FRROR = APS(TR(I)-TOLD)	1F(FRRPR-0.25)417,417,416	I 7 CONTINUE		***********************	CALCHLATE MEAN PEVNOLOS NIIMBED AND PRANDTI NIIMBED AT PRESSURE	CALCULAT L PEAK ALTNULUS NUPBER AND FRANDIE NUPBER AT FRESSURE TAP #1
	0236	C237 4	C233	C239 4	C240	 0242	0243	144	0740		7	י נ	· · · · · · · · · · · · · · · · · · ·	J		c250	0251		0252	0255	1	0256	0257	0258	0259	0260	0261 4	U	U U	<u>ن</u> ر	ں ر

· ,

				273.
۲ ۴۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	C 422 CONTINUE IT=0 BO2 CONTINUE DUSP=DELP(1) IT=IT+1	C ************************************	C DISP=XXDP(2)-XXDP(1) DN 700 I=1.4 DN 701 J=1.4 PHI(1.J)=DISP**(I+J) 701 CNNTINUE PHS(1)=(DELP(2)-DUSP)*DISP**I 700 CNTINUE 700 CNTINUE 700 CNTINUE 700 TO2 I=1.7 DN 702 J=1.4 DN 703 J=1.4DN 703 J=1.4 DN 703 J=1.4DN 703 J=1.4 DN 703 J=1.4DN 703 J=1.4 DN 703 J=1.4DN 703 J=1.	C NOW CALCULATE DERIVATIVE OF NON-DIMENSIONALIZED PRESSURE C NOW CALCULATE DERIVATIVE OF NON-DIMENSIONALIZED PRESSURE C OROP AT TAP POINTS WITH RESPECT TO GRAETZ PARAMETER
	0262 0263 0264 0265 0265		0267 0269 0269 0271 0271 0275 0275 0275 0275 0277 0277 0277 0281 0283 0285 0285 0285	

تعريبه اللغ عبر والمستقلية شراور والمستعملة فتستقر وسلام والمناق فالمسابق فكالرا فالمثق	
0324	510 FURMAT (34H BULK TEMPERATURE DID NOT CUNVERGE)
0325	509 WRTF(6.510)
0700	
0327	508 STUP
0328	
Hand the second s	
والمحالي المحالي	
	2

Appendix H. Data

•

Raw and reduced experimental data is included in this appendix. Tests numbered consecutively are in chronological order. Reynolds numbers well above 2000. Some results in the transition region are included.

PARABULIC INLET VE TARE TEST TAKEN FR TARE THERMOCOUPLE I TA(I,1)	LUCITY TEST NO OM RUN NO. 1 DUTPUT (MV) TA(I,2) I	• 1 TA(I,1)	ΤΛ(1,2)	
1 4.2515 2 4.2412 3 4.2765 4 4.2019 5 4.2813 6 4.2720 TEST THERMUCHUFLE I TT(I,1)	4.2548 7 4.2367 8 4.2745 9 4.2816 10 4.2801 11 4.2654 12 DUTPUT (NV) TT(1,2) 1	4,2745 4,2771 4,2730 4,2776 4,2926 4,2919 TT(1,1)	4.2770 4.2775 4.2589 4.2781 4.2919 4.2986 T1(1,2)	
1 4.2520 2 4.2369 3 4.2784 4 4.2617 5 4.2769 6 4.2691 DIFFERENTIAL PRESS FLOWMETER TEMP (MV INLET PRESSURE DR P1-P2 = -0.006 P1- P1-P5 = 0.092 P1- BLUE MANUMETER FLU INLET TEMPTRATURE	4.2546 4.2367 8 4.2367 8 4.2815 10 4.2815 11 4.2695 12 URE -FLOWMETER 1.0524 BU . LEF1 3.45 -AL - 12.300 OP (1N.) P3 = 0.029 P1 P5 = 0.128 P1 ID SP GR 0.797 (DEG. H) =	4.2838 4.2820 4.2919 4.2979 4.3549 4.3515 (IN,) = 0.300 LK EXIT TEMP (IN RIGHT 3.50 IN- -P4 = 0.053 -P6 = 0.152 578.18	4.2919 4.2936 4.3026 4.3076 4.3800 4.3790 V) = 4.5790 HG	
TW/TU = 0.647 M $PR = 0.702598 REYD$ $X + (x+)M$ $0.4301 0.3360 0$ $0.3470 0.2763 0$ $0.2640 0.2161 0$ $0.1810 0.1541 0$ $0.0980 0.0881 0$ $0.0150 0.0146 0$	ACH ND. = _0.0 = 1108.4 Q+ NUM 0508 9.1205 0563 4.7852 1744 7.5699 2152 5.2304 2563 3.5064 7027 4.8038	11 TBULK IW/TB DEG. F. 225.66 U.977 243.75 U.954 - 272.42 U.916 - 316.66 0.865 387.46 U.793 528.66 U.683	(RE)H 1434.2 1409.0 1371.6 1319.5 1244.0 1136.0	
NON DIAENSIORALIZE X+ P+ 0.0458 -0.061 0.1289 0.322 0.2119 0.574 0.2949 1.000 0.3779 1.401 0.4237 1.662 POSIFIUN OF FIRST X+ (K+)M	D PRESSURE DRD PRESSURE TAP = F F(RE)M	P 0.010811 FP FP(RE)м (_F E)м Толцк 197 рт с F	ſ _{ſ!}
0.0193 0.0190 0 0.0651 0.0008 0 0.1481 0.1295 0 0.2312 0.1730 0 0.3142 0.2536 0 0.3972 0.3134 0 0.4430 0.3464 0	.00086 0.97 .00503 6.03 .00897 11.53 .00931 12.52 .00877 12.19 .01095 15.56 .01095 15.56	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1123.8 541.6 0.671 1199.7 441.7 0.745 1285.0 347.4 0.832 1345.8 292.0 0.894 1390.1 256.5 0.938 1421.0 233.5 0.969 - 1453.2 224.9 0.981	

. .

•

		277.
PARABOL	LIC INTEL VELOCITY TEST ND. 2	
TARE TE	EST TAKEN FROM RUN NU. 2	
TARE TI	HERMUCUUPLE OUTPUT (MV)	
I	$ A(\mathbf{I}_{q}) = (A(\mathbf{I}_{q}) + (A(\mathbf{I}_{q}))) = (A(\mathbf{I}_{q}) + (A(\mathbf{I}_{q})))$	
1	4.1866 4.1866 7 4.2095 4.2111	
2	4.1715 4.1690 8 4.2038 4.2110	
3	4.2084 4.2091 9 4.2096 4.2094	
· 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
5	4.2015 4.1968 12 4.2306 4.2294	
TEST TO	SERNUCLUPLE DUTPUT (MY)	
I	$ T(I_j) = T(I_j2) = TT(I_j1) = TT(I_j2) $	
1	A 1946 A 1959 7 4-2304 4-2021	
2	4.1804 4.1807 3 4.2412 4.2412	
3	4.2161 4.2206 9 4.2427 4.2579	
4	4.2212 4.2221 10 4.2457 4.2578	
5	$4 \cdot 2175$ $4 \cdot 2244$ 11 $4 \cdot 3116$ $4 \cdot 3475$	
DIFFER	$= 4 \cdot 2004 \qquad 4 \cdot 2090 \qquad 4 \cdot 209$	
FLUWMET	$IER IE_{1}P (MV) = 0.8435 BULK EXIT TEMP (MV) = 4.9610$	
INLET P	PESSURE MAN , LEFT 2.95 RIGHT 3.05 IN. HG	
INLET D	3ULK TIMP CR-AL = 13.249	
51ATIC 01_02 ~	-PREDSURE DRUP (11.)	
P1-P5 =	$= 0.108 \text{ P}_{-}\text{P}_{5} = 0.161 \text{ P}_{-}\text{P}_{6} = 0.193$	
BLUE MA	ANDMETER FLUID SP GR 0,797	
INLET J	EMPERATURE (DEG. F) = 618.91	
[W/ [ŋ] =	$= 0.622$ MACH $y_{11} = 0.016$	
17K	1120/9_RETU	
Χ+	(X+)M Q+ NUM TBULK TW/TB (PC)N	
	$DFG_{\bullet} F_{\bullet}$	
0.3307	7 0.2584 0.0503	
0.2030	1 0.1678 0.12637950 300.56 0.879 1767.5	
0.1392	2 9.1201 6.2892 5.3210 352.68 0.824 1693.1	
0.0753	3 0.0687 0.3538 3.9100 432.42 0.751 1597.2	
0.0115	0.0113 0.8745 2.2490 281.44 0.047 1402.0	
NON DIR	TENSIDUALIZED PRESSURE DROP	
X+	P +	
0.0352	2 -0,056	
0.0991	$\mathbf{L} = (0, 192)$	
0.2268	0.636	
0.29:0	0.945	
0.3259) 1.133	
POSILIU	JN DE ETRST PRESSURE TAP = 0,008313	
X +		с.,
().0148	3 0.0147 0.00131 1.91 -0.00296 -4.29 1450.6 5	94.2 0.637
0.05:1	0.0474 0.00412 6.33 0.00089 1.37 1535.7 4	9).3 0.706
0.1139	0.1/10 0.00603 10.92 0.00479 7.88 1046.2 3	87.7 0.793 24 0 6 557
0.11/8	5 0.1965 0.00633 11.37 0.00520 9.33 1795.7 2	81.0 0.907
0.3055	0.2416 0.00832 15.35 0.00751 13.86 1845.0 d	51.6 0.944
0.3447	7 0.2162 -0.00863 -16.11 -0.00001 -14.94 1866.2 /	37.8 0.960

. PARABOLIC INLET VELOCITY TEST NO. 3 TARE TEST TAKEN FROM RUN NO. 3 TARE THERMUCHUPLE DUTPUT (MV) TA(1,2) I TA(I,1) TA([,2) TAILI Ι -. .7 4.2819 4.2819 4.2468 1 4.2441 4.2866 4.2866 4.2305 8 2 4.2318 4.2764 9 4.2811 4.2792 3 4.2802 4,2869 10 4.2853 4.2852 4.2861 4 4,2999 4.2998 5 4.2889 4.2901 11 4.2956 4,2994 4.2715 4.2776 12 6 TEST THERMOCOUPLE DUTPUT (MV) TT(I,1)TT(1+2)TT(I,2)I I TT([,]) 7 4.3154 4.3154 4.2599 4.2592 1 8 4.3285 4.2419 4.3144 2 4.2430 9 4.2817 4.2870 4.3215 4.3439 3 4,3305 4,3440 4.2894 10 4 4.2180 5 4.2993 4,3055 11 4.3915 4.4319 4.3930 4.4350 4.2912 6 4.2894 12 DIFFLEENTIAL PRESSURE -FLOWMETER (IN.) = 0.442 FLUWMETER TEMP (MV) = 0,9812 BULK EXIT TEMP (MV) = 4.9150 INLET PRESSURE MAN , LLFT 3.40 RIGHT 3.50 IN. HG INLET BULK TEMP CR-AL = 13.920 STATIC PRESSURE DROP (IN.) 0.006 P1 - P4 =P1-P2 = -0.008 P1-P3 = 0.068 0.182 P1-P6 =0.220 0.120_P1-P5 = P1-P5 = BLUE MANUMETER FLUID SP GR 0,797. INLET TEMPERATURE (DEG. F) = ____647,82 TW/TU = 0.606 MACH ND. = 0.018 1592.9 pp = 0.715244 REYD = IW/TB $(R_L)M$ NUM TBULK $(\lambda +)M$ Χ+ () +DEG. F. 0.951 240.22 2101-4 0.2969 0.2295 -0.2372 0.919 2041-2 4-1-34 271.11 0.2390 0.1909 0.0827 5-1786 310-11 0.872 1172.2 0.1769 0.1823 0.1504 361.29 1092.0 0.819 5~39+6 0.2940 0.1250 0.1075 0.753 1794.8 3.9608 434,14 0.0677 0.0012 0.34141653.2 0.013 0.0100 0.9652 6.3098 571.63 0.656 NON UTPENSIONALIZED PRESSURE DROP X+ P+. -0.037 0.0310 0.0890 - .029 0.1463 6.313 0.2030 0.556 0.2619 0.839 0.2920 1.016 POSITION OF FIRST PRESSURE TAP = 0.007464 FP(RE)M (RE)M TBULK 18711 F F(RE)M FP Χ+ { λ +) M DLG F -545.0 0.643 -4.86 1630.5 1.95 -0.00297 0.0133 0.0130 0.00119 436.8 0.710 5.19 -0.00004 -0.07 1732.4 0.0450 0.1920 0.00300 9.93 6,93 1543.3 393.8 0.787 0.00538 0.00376 0.1023 0.0902 333.7 0.847 12.92 10.72 1931-2 0,00555 0.1345 0.1596 0.00659 289.3 0.697 14,58 12,37 2005-2 0.2169 0.1760 0.00727 0.00617 254.0 0.940 15.87 0.00690 14.25 2069+5 0.2/43 0.2154 0.00767 238.7 0.962 2101.5 19-1-2-0.00777

0.3051

0.2364

PARABOLIC IN	LET VELOCITY TE	ST' NO. 9		279.
TARE TEST IA	KEN FREM RUN NU	• 4		
TARE THERMUC	UPLE DUTPUT (M		ΤΛ(Ι.2)	
	J17 _ TA(1)27			
1 4.2	389 4.2403	7 4.2861	4.2882	
2 4.7	724 4.2212	8 4.2854	4.2893	
3 4.2	684 4.2695	9 4•2837 10 6-2885	4.2865	
4. 4•A 5 4•2	898 4.2893	11 4.3042	4.3048	
6 4.2	612 4.2754	12 4.3039	4.3028	
. TEST THERMUC	LUPLE DUTPUT (M	V)		
INTI)) TT(I)2)	<u>I</u> TI(I,1)	Τ[(],2)	
1 4.2	400 4.2393	7 4.3055	4.3055	
2 4.2	849 4.2403	8 4.3100	4.3249	
3 4.2	851 4.2903	9 4.3101	4.3307	
4 4.2	900 4.2915		4.3338	
5 4•2	998 4.3070	12 4.5301	4.6536	
DIFFERENTIAL	PRESSURE -FLOW	$METER(IN_{\bullet}) = 0$.566	
FLOWMFIER IE	PP(MV) = 0.86	02 BULK EXIT TER	(MV) = 4.3450	1
INLET PRESSU	RE MAN , LEFT	5.75 RIGHT 5.90	J EN. HG	
INLET BULK T	LMP CR-AL = 14	.021		
STATIC PRESS	URE DROP (IN.)	$02 V_{1} - 04 - 0.01$	12	
$P_1 - P_2 = 0.0$	01 P1 - P5 = 0.0	04 P1 - P6 = 0.00)5	
BLUE MANUMET	LR FLUID SP GR	0,797		
INLET TEMPER	ATURE (DEG. F)	= 652.18		
TW/TD = 0	.603 MACH NO. =	0.020		
PR = 0.71502	$\gamma REYD = 2067$	• 2		
X+ (λ+	2M. Q+ N	UM TBULK I	TW/TB (RE)M	
		DEG. F.		
0.2286 0.1	712 -0.5541-926	•1641 211•66 (1.997 7.811.9	
0.1404 0.1	0.20 0.2137 = 26	.0078 184.58	.642 2492.3	
0.0962 0.0	711 0.2279 -56	.1272 199.75 1	.020 2846.9	
0.0521 0.0	409 0.4440 30	.8898 257.00 (1.939 2689.6	
0.0080 0.0	073 2.3427 25	.2938 458.10	1.745 2297.5	
NON DIMENSIO	HALTZED PRESSUR	E DROP		
X+ P	+	. 		
0.0244 0	,002			
0.0685 0	.005 MANOMETER	LINE BLEW		
0.1568 ()	-0101 DUMMY VAL	VE2.		
0.2009 0	.012	· •		
0.2253 0	,015			
POSITION OF	FIRST PRESSURE	ТАР = 0.005748 ргум Ер н		TRUCK TRZT
λ+ (λ+		NEVEL ET E	DE DE	EGF
0.0193 0.0	096 Q.0082/ X	8.67 0.0000	0.24 2256.2	+B4.6 0.711
0.0346 0.0	288 0 00508 1	K. 1/8 0 00008	(1, 2) 2540.0	52(.1 0.861
0.0788 0.0	596 0. 144	(1.00 0.N0006	$0 \bigvee 6 2 (82.5) 0 \\ 0 \bigvee 6 2 (76.8) 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	280 • 7 0 • 907 188 - 6 1 - 036
0.1229 0.0	217 0.00217	0.00007	οχ9 2385.2	B5.9 1.040
0.2112 0.1	564 -0.000 7 -	1.01 0/00009	9.25 2.641.8	200.1 1.018
0.2355 0.1	769 - 6.0000 -	1.6d 0.0001x	1.34 2304.0 2	213.1 0.998

PARABULIC INLET TARE TEST TAKEN TARE THERMUCHUP	VELOCITY TEST ND. FRUM RUN ND. 4 F OUTPUT (MV)	10	
I TA(I,1)	Ι_ ((, Ι) ΑΤ	TA(1,1)	ΤΛ(Ι,2)
1 4.2189	4.2403 7	4.2861	4.2882
2 4.2/24	4.2212 8	4.2854	4.2893
3 4.2684	4.2695 9	4.2837	4.2804
4 4.2749	4.2729 10	4,2885	4.2865
5 4.2098	4,2893 11	4.3042	4.3048
6 4.2812	4,2754 12	4.3039	4.3028
IEST THERMUCOUPL	E DUTPUT (MV)		* 11 / 1 · · · · · ·
$\mathbf{I} = (\mathbf{I} \cdot \mathbf{I} \cdot \mathbf{I} \cdot \mathbf{I})$	· · · · · · · · · · · · · · · · · · ·	([]])	
1 4 2610	4 3546 7	4 2948	4.2948
1 + 4 + 2 - 1 - 2 + 2 - 2 + 2 - 2 - 2 + 2 - 2 - 2 - 2	4.2340 8	4 2963	4 3071
ム サルビサリノ ス 4、2518	4.2859 9	4.3073	4.3259
4 4.2860	4.2868 10	4.3134	4.3281
5 4.2941	4.2995 11	4.4070	4.4512
6 4.2839	4.2858 12	4.4068	4.4541
DIFFERENTIAL PRE	SSURE - FLOWMETER (I	N_{\bullet}) = 0.492	
FLOWME (ER. LENP.)	(MV) = 0.8700 BULK	EXIL LEND (N	V) = 4,6330
INCER PRESSURE N	1AN 🧃 LEFT : 4.50 RIC	HT 4.65 IN.	HG
INLET BULK TEMP	CR-AL = 14.025	··· · · · · · ·	
STATIC PREJSURE	DROP (IN.)		
P1 - P2 = -0.019	$P_{1} - P_{3} = 0.012 P_{1} - P_{4}$	= 0.244	
$P_1 - P_2 = 0.14 L_{1}$	$P_{1} - P_{2} = 0.222 P_{1} - P_{2}$	= 0,204	
TNUET PARAMETERS F	-LUID.SP GR 9•174 SF (DFG, F) = 652	- 35	
TW/TU = 0.607	$A MACH MD_{2} = 0.019$		
PR = 0.715042 Rf	Y() = 1794.8		
X+ (<u>X+)M</u>	Q+ <u>HUM</u> T	BULK IW/TB	(長氏)14
	DE	G. F.	
0.2634 0.2011	<u>-0-074-</u> <u>1-1462</u>	29.04 0.972	$\frac{2}{2} \frac{3}{4} + 4$
0.2125 0.1675	0.0701 4.6962	01±4/ .0+931	$C \rightarrow C \rightarrow C$
0.1190 0.0049	0.1(12) - 2(12)	57.65 0.822	○ _ & _ : : <u>.</u> • : : : ○ : : : : : : : : : : : : : : : : : :
$0 \cdot 0600 = 0 \cdot 0563$	0 4164 4.7837 4	36.75 0.750	2022.9
0.0092 0.00989	1.1219 7.0979 5	83.92 0.649	1354.7
NON DIMENSIONALI	IZED PRESSURE DROP.	· · · · · · · ·	
λ+ P+	<u>.</u>		
0.0281 = 0.072)		
0.1298 0.31 ²) / / / / / / / / / / / / / / / / / / /		
-0.1806 0.561	ι	· · ·	
0.2314 0.851		·····	
0.2595 1.014			
POSITION OF FIRM	ST PRESSURE TAP = 0.	006621	
$X + (\lambda + jM)$	F F(RE)M	FP FP(RE)A (HE)M TOULK TO/T
0.0118 0.0116	0.00009 0.17 -0.	00423 -7.78	1072 6 202 8 0 204
0.0349 0.0373	0.007A1 - 0.00	000001 -0.00 00438 0.04	2 - 2 + 7 + 9 = - 4 + 9 + 6 = 0 + 70 + 7 = 0 = 0 = 78.8
0+0907 0+0796	0.00721 15 80 0	00422 7.00 00502 12 30	219/1.8 227.9 0.853
0.1924 = 0.1546	- 0.00722 16-48 0	00598 13-65	2281.8 286.6 0.907
0.2433 0.1288	0.00778 18.37 0	00687 16.20	2359.6 244.5 0.954
0.2713 0.2071	- ++++++++++++++++++++++++++++++++++++	00728 17.45	2397.6 228.1 0.977

						281.
PARABULIC	INLET	VELOCITY	TEST NO.	11		
TARE TES		FRIM RUN	NEL 4			
TARE TES	MUC HOU	C DELTROT	(MV)			
TAKE UNET	ΥΝΟΛ (ΙΦΕ <u>Γ</u> Ι Έλιτικ			TA/T))	таста	2)
1		IA(1)		IA(1)1)	FAXIE	6.1
			_			
1	4.2389	4.240	3 7	4,2861	4.288	2
2	4.2224	4.221	2 8	4.2854	4.289	3
3	4.2684	4.269	5 9	4.2837	4.280	4
4	4.2749	4.272	9 10	4.2885	4.286	5
5		/ 200	2 11	A 2042	4 304	8
·	4.2070	4 4 2 0 7	9 II / 10	4 - 2018	A 202	0
0	4.2012	4.215	4 12	9.007	9 • 207	0
TEST THE	swhch/hF	ECONTRAL	(MV)			
I	(T(I ,1))	TT(I)	2) I	TT(1,1)	و]}!!	21
1	4.2530	4.256	7 7	4.3034	4.3.33	4
2	4.2421	4.241	6 8	4.3039	4.318	9
2	4 2:09	4 286	7 9	4.3199	4.342	3
5	4 2 2 2 2 2	4 200	7 10	6 2274	4.342	1
4	4+2002	4.200		1 9066	4 246	
<u>ר</u>	4 • 2991	4.304	8 11	4 • 3800	4.475	
6	4.2899	4 • 291	3 12	4,3818	4.420	1
DIFFEREN	TIAL PRE	SSURE -FL	OWMETER ($[N_{\bullet}) =$	U•400	
FLUWMEIER	く「ENP()	MV) = 0.	8700 BULK	EXIT TE	MP (MV) =	4.8980
INLET PRE	ESSUPE II.	AN . LEFT	3.60 RI	GHT 3.7	O IN. HG	
TNEET RUI	K TEMP	$CR = \Delta I =$	13.942		·	
STATIC DE)			
01 00 -		1 D	011 01_D	- 0 0	ь Q	
P[-P2	"V+015 P	$1 - P_3 = 0$	175 01 D	4 - 0.0	10	
PI-P5 =	0.118 b	1 - 12 = 0	•175 PI-P	0 - 0.2	10	,
BINE WANT	DMETER F	LUID \$2 G	R 0.191			
INLET IEI	MPLR_TUR	E (DEG. F) =64	8.77		
TW/TO =	0.605	MACH NO.	= 0.016)		
PR = 0.7	15327 RE	$Y_0 = 14$	61.5			
·	· · <u> </u>					
Х+	(X+)M	0+	NUM	TBULK	IW/TB (R	<u>r</u> .) M
			, n	FG. F.		
0-3236	0.2.96	0-0327	- 3., 5, 4., 7.	238.50	0.959 193	2.2
0 7(1)	0 2 67	0.5870	<u>. uuna</u>	264.54	0.927 185	5.0
0.2011 5.1001	0.2007	$0 \bullet 0 \bullet 0$	1 05 7	204124	0 970 190	9 0
0 • 1987	0-1032	0.1010		303.15	9•070 101 0 816 170	0 • V
0.1362	0.1175	0.2311	4.0703	200.22	0.614 - 177	2 • 7 97 - 6
0.0737	0.0678	0.4186	4.2293	461.70	0./*L LOL	(•8
0.0113	0.0112	0.9355	5.0145	633.84	0.519 147	1.0
NON UTHER	SIDPALI	ZED PRESS	URE DRDP			
Χ+	P+					
0.0345	-0 084					
0.007	C 04	· ·				
0.0970	0.002					
0.1094	0.323		÷			
0.2219	0,655					
0.2843	0.970					
0.3183	1.169					
PASTELUM	DI FIRS	T PRESSUR	E TAP = 0	.008134		
X +	(x+1M	F F	F(RE)M	FP	FP(RE)H (REAM TEULK TB/T _{EE}
- · · ·	· · · · · · · ·	•			·	DLG F
0 0145	0 0145	0 000000	0.33 -0	-00431	-6.30 146	5.5 641.2 0.607
0.0142	0 0/20	0.000000	4.92 -0	L 000 48	-0.59 154	2.0 531.4 0.678
0.0470	0.0000		11 39 0		7 74 1/7	4.4 401.4 0.774
0.1115	0.0992	0.00540		• UU 4 0 Z	1.14 LU/	サモノ マワシモゴ (Felter ノーヴ - うなう ない ちんロー
0.1739	0.1464	0.0820	14.55 ()	+0066H	11.05 1//	
().2364	0.1906	0.00835	15,46 0	•00704	13.03 135	1.1 232.5 0.305
0.2989	0.2035	0.00832	16.84 0	.00786	15.00 100	4.5 244.9 0.947
0.3334	0.2572	-0	1-1-1	+908-79	16,94- 193	1.5 237.4 0.964

PARABOLIC INLET TARE TEST TAKEN TARE THERMOCOUPL I TA(I,1)	VELOCITY TEST NO. FRUM RUN NO. 4 E OUTPUT (MV) TA(I,2) I	12 TA(I,1)	ΤΑ(Ι,2)	
1 4.2389 2 4.2224 3 4.2684 4 4.2749 5 4.2698 6 4.2612 FEST THERMUCOUPL I TT(I,1)	4.2403 7 4.2212 8 4.2695 9 4.2729 10 4.2893 11 4.2754 12 E QUIPUT (MV) TT(1,2) I	4.2861 4.2854 4.2837 4.2885 4.3042 4.3039 TT(I,1)	4.2382 4.2893 4.2804 4.2865 4.3048 4.3028 TT([;2]	
1 4.2514 2 4.2421 3 4.2839 4 4.2895 5 4.2992 6 4.2884 DIFFERENTIAL PRE FLOWMFIER (EMP) (INLET PRESSURE M INLET BULK TEMP STATIC PRESSURE P1-P2 = -0.010 P P1-P5 = 0.027 P BLUE MANUMETER F INLET FEMPLRATUR INLET FEMPLRATUR INLET FEMPLRATUR INLET FEMPLRATUR INLET FEMPLRATUR INLET FEMPLRATUR INLET FEMPLRATUR INLET FEMPLRATUR	4.2560 7 4.2420 8 4.2892 9 4.2898 10 4.3041 11 4.2905 12 SSURE -FLDWMETER MV) = 0.8685 BUL AN, LEFT 3.40 R CR-AL = 13.810 DROP (1N.) 1-P3 = 0.021 P1- 1-P5 = 0.143 P1- LUID SP GR 0.797 E (DEG. f) = 6 MACH ND. = 0.01 YD = 1282.4	4.3007 4.2986 4.3105 4.3163 4.3813 4.3809 (IN.) = 0.350 K EXII TEMP (N IGHT 3.50 IN. P4 = 0.055 P6 = 0.174 43.08	4.3007 4.3108 4.3291 4.3275 4.4180 4.4226 V) = 4.9670 HG	
X+ (x+)M 0.3690 0.2057 0.2978 0.2351 0.2266 0.1843 0.1553 0.1320 0.0841 0.0759 0.0128 0.0126	Q+ NUM Q.0475 4.7991 D.0793 4.9206 Q.1782 6.3828 Q.1743 3.6322 Q.3337 3.9530 Q.8874 5.3140	TBULK IW/TB DEG. F. 240.35 0.957 259.75 0.933 292.34 0.893 344.18 0.836 428.43 0.757 595.31 0.641	(RE)N 1688 - 0 1657 - 1 1608 - 9 1540 - 5 1647 - 5 1312 - 1	
NON DIMENSIONALI X+ P+ 0.0393 -0.075 0.1106 0.149 0.1816 0.397 0.2531 0.701 0.3243 1.035 0.3636 1.253 PUSITION DU HIRS X+ (X±)M	ZED PRESSURE DROP T PRESSURE TAP = F F(RE)M	0.009277 FP iP(RE)H (PE)H TOULK TB/	۲
0.0166 0.0164 0.0559 0.0525 0.1271 0.1112 0.1984 0.1649 0.2696 0.2.60 0.3408 0.2665 0.3802 0.2945	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00415 -5.39 0.00045 0.62 0.00547 8.18 0.00661 10.42 0.00644 10.51 0.00863 14.43 0.00554 16.17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

13 PARABOLIC INLET VELOCITY TEST NO. TARE TEST TAKEN FROM RUN NO. 4 TARE THERMUCUUPLE DUTPUT (MV) TA(1,1)TA(1,2) $IA(I_2)$ I Ι 1A(I)7 4.2861 4.2382 4.2389 4.2403 1 8 4.2854 4.2893 2 4 . 2224 4.2212 9 4.2837 4.2:04 4.2695 3 4.2084 4.2865 4.2885 4.2729 10 4 4.2749 4.3048 5 4.3042 4.2893 4.2898 11 4.3028 4.3039 6 4.2512 4.2754 12 TEST THERMUCUUPLE OUTPUT (NV) TT(1,2) Ι TT(I,I)11(1,2)I TT(1,1) 7 4.2916 4.2716 4.2455 1 4.2425 4.3047 2 4.2307 4.2289 8 4.3047 9 4.3078 4.3191 3 4.2/68 4,2803 4 4.2027 4.2821 10 4.3121 4.3226 5 4.3737 4.4082 4.2978 4-2939 11 4,3715 4.4099 12 6 4.2840 4.2845 DIFFERENTIAL PRESSURE -FLOWMETER (IN.) = 0.300 FLOWMETER (FKP (MV) = 0.6968 BULK EXIT (EAP (MV) = 4.5215 INLET PRESSURE MAN , LEFT 3.50 RIGHT 3.70 IN. HG INLET BULK TEMP CR-AL = 14,020 STATIC PRESSORE DROP (IN.) 0.023 P1 - P4 =0.052 P1-P2 = -0.007 P1-P3 =0.129 P1-P6 = 0.151 0.088 P1-P5 = P1-P5 = BLUE MANDMETER FLUID SP GR 0.797 INLET TEMPERATURE (DEG. F) = . 652.14 0.604 HACH ND. = 0.012 1W/TU = PR = 0.715623 REYD = 1120.2 TBULK TW/TB (RE) IS NUM X +(X+)M ()+DEG. F. 0.980 1505.2 0.4220 0.3201 0.0093 223.62 4.27:3 1474.9 244.32 0.953 0.3415 0.0458 0.2639 1427.5 6-1228-279.41 0.908 0.2591 0.2.77 0.1402 335.45 0.845 1360.0 1-5680-0.1776 0.1495 -~~~ 1271.3 0.0961 3.7787 426.56 0.759 0.0064 0.3113 4.7836 6()5.6] 0.634 1145.0 0.0147 0.0144 0.8157 NON DIGENSIONALIZED PRESSURE DROP Χ+ P+ 0.0459 -0.067 0.217 0.1264 0.2079 0.485 0.2894 0.822 0.37.8 1.210 0.4150 1.419 POSITION OF FIRST PRESSURE TAP = 0.010608 FP(RE)H (PE)H TEULK 18/T FP X+ F F(RE)M $(\lambda +)M$ DEG F 621.3 0.621 1.53 -0.00374 -4.25 1134.8 0,00135 0.0189 0.01881.22 1213.8 496.2 0.703 5,91 0.0639 0.0599 0.00437 0.00100 8.37 374.7 0.805 1317.6 11.18 9,00635 0.1.63 0.00849 0.1454 1394.9 10.74 1 304.1 0.879 0.2268 0.1062 0.00910 12.70 0.00770 10,94 254.7 0.934 1451.6 12.74 0.00753 0.2429 0.00878 0.3083 14.31 232.4 0.971 1490.1 15.57 0.00960 0.3878 0.2988 0.01045 222.8 0.984 14.99 14.21 1504.3 0.00945 0.4347 0.3300 0.00997

20 PARABOLIC INLET VELOCITY TEST NO. TARE TEST TAKEN FROM RUN ND. 16 TARE THERMUCLUPLE DUTPUT (MV) TA(1,2) I TA(1,1) TA(1)2) Ι TA(1,1) 4,2768 4.2771 4.2323 4.2321 1 8 4.2749 4.2785 2 4.2180 4.2156 9 4.2793 4.2739 3 4.2685 4.2686 4.2837 4.2524 4.2739 4.2719 10 4 4.2969 4.2966 5 4.2864 4.2846 11 4.2968 4.2937 6 4.2741 4.2688 12 TEST THERMUCUUPLE DUTPUT (MV) $TT(I_{j}1)$ TT(1,2) $TT(I_2)$ I I 7 4.2839 4.2839 1 4.0000 4,0000 2 4.0000 8 4,2881 4.2381 4.0000 9 4.2800 4.2042 3 4+2000 4.0000 4.2384 10 4.2832 4 4.0000 4.0000 4.3306 4.3475 5 4.2834 4.2831 11 4.2686 12 4.3329 4-3+82 6 4.2/04 DIFFERENTIAL PRESSURE -FLOWMETER (IN.) = 0.394 FLUWMETER TEMP (MV) = 0,8760 GULK EXIT TEMP (MV) = -4.2953 INLET PRESSURF MAN , LEFT 3.70 RIGHT 3.85 IN. HG INLET BULK TEMP CR-AL = 7.985 STATIC PRESSURE DROP (IN.) P1-P2 = 0.012 P1-P3 = 0.045 P1-P4 =0.103 0.206 P1-P6 = 0.15) P1-P5 =0.238 P1-P5 = BLUE MANDMETER FLUID SP GP 0,797 397.35 INLET TEMPERATURE (DEG. F) = 0.783 MACH 40. # 0.0.014 TW/TU = PR = 0.700698 REYD = 1663.8 (x+)M Q+ TW/TB X+ NUM TBULK (Rf.)# DEG. F. 0.980 1948-3 0.2961 ᡩᢛ᠋ᡩᡃ᠍ᢖ᠊ᢓᠴ 214.23 0.2472 0.0483 0.962 1924-1 0.2.21 226.61 0.2341 0.0363 744.34 11.952 1.91.0 0.1781 0.1566 0.1206 -1-1-126 269.87 2.1748 0.920 1846.2 0.1221 0.1101 -6.44) 308.51 0.874 1784.2 0.0661 0.0617 0.2510 4.0183 1084.2 380.25 0.802 0.0101 0.0.00 0.6043 6.3103 NUN DIMENSIOGALIZED PRESSURE ORDP λ+ P +0.0309 . 089 0.0869 1.338 0.1429 0.766 0.1989 1.122 0.2549 1,532 0.2858 1.775 PUSITION OF FIRST PRESSURE TAP = 0.007292 TEULK 187 Tri (pE)H FP P(RE) = 1X + (入+) M F F(RE)M DEG F 386.3 0.794 3.71 1074.9 8,00 0.00105 0.0130 0.0129 0.00358 330.9 0.843 1740.2 6,76 10.20 0.0439 0.0421 0,00529 0.00342 280.9 0.900 12,91 0.00609 11.06 1515.6 0.0999 0.0717 0.00711 , 55.9 0.939 1567.8 0.1559 14.48 0.00707 13.21 0,1389 0.00775 15,06 13,95 , 34,7 0.967 0.00732 0.2119 0.1649 0.00790 219,8 0.988 16.20 0.00798 15.44 1934.6 0.2677 0.2300 .0.00837 + 6-7-3-1946.7 213.7 0.998 0.2988 44448-2-3-17-30 ᠂᠋ᢕ᠋ᡎ᠋᠋᠄ᡍᡀᡍ 0.2549

PARABOLI	C INLET	VELUCITY	TEST_ND.	14		
TARE ILS	I TAKEN	FROM RUN	NU. 4			
TARE THE	RMUCLUPL	E DOIDO		TA (Y))	T (1 - 7)	
i		TACI		I A LI J LI	IAVIJZI	
1	4 2:00			4 2861	6 2882	
. L .	4.207		12 I	4 • 2001	4.2891	
<u>د</u>	4 • 2 2 2 4	4 + 6 6		4.20J7 4.20J7	4 · 2 / · · 3	
	4 + 2004	4.20	20 10	4.2001	4.2365	
E	4 • 7 (49	4 + 2 7 ·		4.2002	4.2005	
5	4.7878	4.20	99 <u>1</u> 1	4.3042	4 3028	
rect nur	9 • 2 0 <u>1</u> 2	1+467. E. D. E. J.		_ + • J() J /		
IEST THE	KYWCUUPL			TT(1,1)	T1(1.2)	
1 I	((2 2 7 7 7 7 7 7 7 7			[[(]]]]		
1	4 7.577	()	17 7	4 2800	6 2500	
. . .	1.2261	4+22	1	4 • 2000	A 2010	
2	4+4189	4.4		4 2 7 1 0	4.2910	
3	4.2029	4.20	9 <u>0</u> 7	4 4 2 7 2 2	4.3084	
4	4.• 21.21		10.10		4.3004	
2	4.2038	4•28		4 - 36 2 2	4.3970	
6	4.2131	4+21	32 <u>1</u> 2	4,2001	9.2929	
DIFFERLN	LINE PRE	SSURE -FI		IN_{\bullet} = 0	• 2 3 L	N
FLUWMELF	<u>R LENP (</u>	MY) = 0	8282 BULK		P ((1V) = (1+⊅)	7 50
INCET PR	ESJURE M	AN J LEF	1 3.70 RT	641 3.85	[N. 116	
INLET BU	LK TEMP	CR-AL -	13.971			
STATIC P	RESSURE	DROP (IN	•,) • • • • • • •			
P1 - P2 =	-0 <u>-0</u> 03_P	1 - P3 = 0	0,022 <u>P1-P</u>	4 = 0.04	9	
$P_1 - P_5 =$	0.079.P	1 - P5 = 0	0,110 P1-P	6 = 0, 13	0	
BLUE MAN	OMETER F	LUID SP (GR 0.797			
INLET IF	MPERATUR	E (DEG. 1	F) = 65	0 . 0 2		
1//TU = .		MACH ND	. = 0.010			
PR = 3.7	15437 RE	YD =	918.0			
				•••• • • • • • •		
X+	(X+)M	Q+,	NUN	TBULK	W/TB (PE)14	
• •			D	EG.F.		
0.5151	0.3917	-0+1264	<u>_5+}-}-</u>	225.16 Q	•977 1230•4	
0.4157	.0.3199	0.0484 .	- 5-8028 -	236.79 0	.963 1216.3	
0.3162	0.2502	0•1183	-6-6-53	<u>264.55</u> 0	•926 1184•6	
0.5169	0.1796	᠆᠋ ᢕ᠂᠋᠅ᡬᡐᡘ ᢇ	<u>-1-3908</u>	315.65 0	•865 1132•2	
0+1174	0.1042	0.2627	3.5455	406.80 0	.776 1.55.2	
0.0179	0.0176	0.7351	4.3993	597.89 U	•639 940•9	
	•					
NON DIME	HS1013ALI	ZED PRESS	SURE DROP.			
χ+	.P+					
0.0549	-0.045					
0.1543	0.304					
0.2538	0.687					
0.3532	1.115		· · · ·			
0.4527	1.55.4	•••				
0.5075	1.836		41 F			
POSITION	DI FIRS	T PRESSU	RE TAP = 0	.012949		
X +	(X+)M	F	F(RE)M	FP F	P(RE).1 (RE).	TEULK IB/T
	-		. .			DEG P
0.0231	0.0229	0.00174	1.62 -0	.00387 -	3.61 031.7	515.2 0.625
0.0780	0.0725	0.00624	6.27 0	.00203	2.04 1003.8	479.7 0.715
0.1774	0.1519	0.01077	11.80 .0	,00863 '	9.45 1025.7	354.5 0.425
0.2769	0.2.29	0.01120	12.99 0	.01002 1	1.64 1159.7	286,5 0,900
0.3/63	0.2934	0.01031	12.38 0	.00947 L	1.37 1201.3	248.2 0.749
0.3/63	0.2934	0.01031	12.38 0 14.67 0	• 00947 1 • 01183 1	1.37 1201.3 4.48 1223.7	248.2 0.949 229.2 0.975

PARABOLIC INLET VELUCITY TEST NO. 22 TARE TEST LAKEN FROM RUN HO. 22 TARE THERMOCOUPLE OUTPUT (MV) TA(1,1)TA(1,2) I TA(1,1) TA(1,2) I _7 4.2585 4.2594 1 4.2441 4.2452 4.2645 Ż 8 4.2620 4.2323 4.2290 3 4.2521 9 4.2562 4.2500 4.2526 4.2550 4.2525 4 4.2032 4.2598 10 4.2879 5 4.2105 4.2700 11 4.2865 4.2854 4.2843 6 4.2592 4.2533 12 TEST THERMOCOUPLE OUTPUT (NV) TT(1,1)TT(1,2)I TT(I) TT(1,2)I 7 4.3110 4.3110 1 4.2530 4.2698 4.2530 8 4.3325 4.3325 2 4.2531 4.2812 9 4.3316 4.3582 3 4.2764 4,3338 4.3589 4.2920 4 10 4.2380 4.6738 4.3076 11 4.5623 5 4.3003 4.6076 4.7673 4.2904 12 6 4.2056 DIFFERENTIAL PRESSURE -FLOWMETER (IN.) = 0.576 FLOWMFIER IE P (NV) = 0.8599 BULK EXIT TEMP (NV) = 6.3303 INLET PRESSURE MAN , LEFT 5.80 RIGHT 6.00 IN. HG INLET BULK TEMP CR-AL = 19.192... STATIC PRESSURE DRAP (IN.) $P_1 - P_2 = -0.045 P_1 - P_3 = 0.012 P_1 - P_4 =$ 0.100 P1-P5 = 0.202 P1-P5 = 0.316 P1-P6 =0.381 BLUE MANUMETER FLUID SP GR 0.797 INLET FEMPLERATURE (DEG. F) = ____ 875.64 0.502 MACH NO. = 0.023 IW/TO = 1943.0 PR = 3.740267 REYD = TBULK TW/TB (RE)M X + (X+)MQ+ MIIM DEG. F. 7-4787 286.50 0.890 2164.5 0.2352 0.1113-0-1 275.21 0.913 2691.6 7.2150 0.1158 0.1898 0.1448 2672.0 9.8246 283.31 0.904 0.1444 0.1110 0.1789 2585+4 0.9936- 321.52 0.861 0.0990 0.0787 0. 7287 0.0535 0.0457 0.5172 8.9709 414.89 0.7712407.2 14.3736 679.30 0.604 2579.4 0.0.79 2.2255 0.0082 NON DIDENSIONALIZED PRESSURE DROP Χ+ P+ 0.0251 -0.110 0.0705 0.029 0.1159 0.245 0.1613 0.496 0.2067 0.777 0.2317 0.938 PASITIUN OF FIRST PRESSURE TAP = 0.005912 TUULK [8/Tn FP FP(RE)M **AREIM** E(RE)M Χ+ (X+)MF NFG F /10.3 0.574 0.00238 4.87 -0.00576 -11.80 2050.2 0.0106 0.0103 -2.32 2269.0 504.2 0.697 10.81 -0.00105 0.0356 0.00477 0.00020 2506.5 358.3 0.821 18.22 0.00526 13.19 0.0810 0.1064 0.00727 297.6 0.887 21.35.0 18.61 0.1264 0.0986 0.00763 20,10 0.00706 2685.2 276.3 0.913 0.1718 0.1314 0.00711 19,08 0,00669 17.97 278.9 0.009 2578.9 19.77 21.11 .0.00788 0.2172 0.1(65 0.00738 2059. 287.5 0.699 20.05 0.00797 21.19 0.2423 0.00754 0.1072

			-	0.00
	PARABOLIC	INLET VELOCITY TEST	ND. 23 22	207 •
	FARE THER	KMUCOUPLE OUTPUT (NV) TA(I,1)	Ι ΤΔ(Ι,)	ΤΛ(Ι,2)
	1 2	4.2441 4.2452 4.2323 4.2290 4.252 4.2290	7 4.2585 8 4.2620 9 4.2563	4.2594 4.2645 4.2500
•	3 4 5	4.2520 4.2521 4.2632 4.2598 4.2705 4.2700	4.2550 10 4.2550 11 4.2865	4.2525 4.2879
	6 TEST THER I T	4.2592 4.2533 MUCLUPLE DUTPUT (MV) TT(I,1) TT(I,2)	12 4,2854 1 TT([,1)	4.2843 TT(1.2)
	1 2 3	4.2562 4.2609 4.2456 4.2451 4.2659 4.2699	7 4.2868 8 4.3054 9 4.3314	4.2868 4.3054 4.3682
	4 5	4.2764 4.2792 4.20919 4.2054 4.2919	10 4.3407 11 4.4286 12 4.4384	4.3714 4.4948 4.5145
	DIFFERENT FLUWMETER	IAL PRESSURE -FLOWME $1EhP_{MAN} = 0.8750$	<u>TER (IN.) = 0.505</u> BULK EXIT TEMP (1 70 RIGHT 4.85 IN	$\frac{1}{10} \approx 5.8591$
	INLET BUL STATIC PR P1-P2 = -	13000010000000000000000000000000000000	P1 - PA = 0.057	
	P1-P5 = BLUE MAND	0.126 P1-P5 = 0.205 $METER FLUID SP GR 0.1$ $PERATURE (DEG, E) =$	P1 - P6 = 0,249 797 874.13	
	IW/TO =_ PR = ℃,74	= 0.503 MACH ND = 1700.8	0.021	
	X+	(x+)MQ+NUM	TBULK TW/TE DEG. F.	(PE)11
	0.2688 0.2169 0.1651	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	980 276.94 0.909 939 326.17 0.854 930 397.37 0.780	2 2351+5 2253+5 2 232-8 1994-3
	0.0612 0.0093	0.0584 _C.6232 4.2 0.0594 1.1856 4.6	517 647.85 0.605 779 891.49 0.505	με44.7 1693.0
	NON DINEN X+ 0.0286	P+ -0 175	DRQP	U PRESSURE TAP #1
	0.08/15	-0.039 J.173		
	0.2362 0.2648 POSITION	0.624 0.761 DE FIRST PRESSURE TA	P = 0.006756	
	X +	(X+)M F F(RE)M FP IP(RE	DA (RE)M FRULK IB/TE PLG F
	0.0121 0.0407 0.0926	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>→</u> <u>-</u>	- 1083.5 - 07.9 0.491 - 1706.2 - 751.2 0.555 - 1918.1 - 565.6 0.655
	0.1445 0.1963	0.1255 0.00782 16. 0.1609 0.00642 14.	14 0.00568 11.77 06 0.00472 10.34	2062.8 443.5 0.744 2193.0 359.4 0.521
	0.2482 0.2769	0.1938 0.00758 17. 0.2115 0.00808 	40 0.00648 14.92 9₩ 0.00685 16.1 7	- 2352.8 274.8 0.914

• •

PARABOLI TARE TES TARE THEF I	C INLET VELOCI 1 TAKEN FROM F RMUCUUPLE DUTF TA(I,1) TA	TY TEST NO. 24 RUN NO. 22 PUT (MV) A(I,2) I TA(I,1) TA(1,2)	
1 2 3 4 5 6 1EST THE 1	4.2441 4 4.2323 4 4.2526 4 4.2632 4 4.2705 4 4.2592 4 RMUCUUPLE UUTE TT(I,1) T	2452 7 4.258 2290 8 4.262 2521 9 4.256 2598 10 4.255 2700 11 4.286 2533 12 4.285 0T (NV) TT(1,1)	 5 4.2594 0 4.2645 2 4.2500 0 4.2525 5 4.2879 4 4.2843) TT(1.2) 	
1 2 3 4 5 6 DIFFEPEN FLOWMETEN INLET PN INLET PN P1-P2 = P1-P5 = FLOE MAND INLET TEN TW/TO = PR = 0.74	4.2668 4 4.2525 4 4.2698 4 4.2698 4 4.2803 4 4.2942 4 4.2750 4 4.2750 4 4.2750 4 4.2750 4 TIAL PRESSURE R TEMP (MV) = ESSURE MAN , L LK. TEMP CR-AL RESSURE DROP (-0.020 P1-P3 = 0.087 P1-P5 = DMETER FLUID S MPERATURE (DEC 0.497 MACH 42262 REYD =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 4.3050 4 4.3164 4 4.3600 2 4.3474 2 4.4850 0 4.5048 0.451 EMP (MV) = 5.6150 10 IN. HG 033 188	,)
X+ 0.3020 0.2437 0.1854 0.1271 0.0688 0.0105	(X+)M Q+ 0.2287 0.106 0.1933 0.139 0.1548 0.171 0.1548 0.171 0.1121 0.022 0.0643 0.436 0.0104 1.101	NUM TBULK DEG. F. DEG. F. 268.90 4.9133 321.00 0 3.5238 387.11 0 3.5238 387.11 0 3.5695 594.65 0 5.2187 807.97	TW/TB (RE)H 0.920 2111.3 0.859 2017.3 0.792 1915.3 0.720 1805.6 0.639 1686.5 0.530 1546.0	
NDN DIHF X+ 0.0322 0.0905 0.1488 0.2071 0.2654 0.2975 POSITION X+	NSIDHALIZED PF P+ -0.073 -0.029 0.122 0.317 0.549 0.686 DF FIRST PRES (X+)M F	SURE TAP = 0.007591 F(RE)M FP	FP(RE)M (RE)M DE	TaSULK TBZT -0 F
0.0135 0.0457 0.1040 0.1623 0.2206 0.2789 0.3111	0.0135 0.001 0.0441 0.002 0.0945 0.004 0.1394 0.006 0.1797 0.007 0.2163 0.007 0.2354 0.008	63 2.51 -0.00335 86 4.64 -0.00102 72 8.25 0.00234 10 11.33 0.00427 708 13.92 0.00531 793 16.36 0.00655 842 17.78 0.00704	-5.15 1534.8 -1.65 1619.4 4.08 1745.2 7.94 1859.1 10.43 1964.7 13.51 2062.6 14.88 2113.2	326.7 0.522 579.5 0.590 528.0 0.680 427.1 0.757 351.9 0.828 293.4 0.892 266.4 0.925

PARABOLIC INLET VELOCITY TEST NO. 25	
TARE THERMUCHUPLE GUTPUT (MV)	T
1. 4.2441 4.2452 7 4.	2585 4.2594
2 4.2323 4.2290 8 4.	2020 4+2045 2562 6-2500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2550 4.2525
5 4.2705 4.2700 11 4.	2865 4.2079
6 4.2592 4.2533 12 4.	2854 4.2843
TEST THERMUCLUPLE DUTPUT (MV)	• · · · · · · · · · · · · · · · · · · ·
	(1, 1) $(1, 2)$
1 4.2000 4.2664 7 4.	2954 4.2954
2 4.2.166 4.2494 8 4.	3071 4.3071
3 4.2642 4.2712 9 4.	3194 4.3484
4 4.2/39 4.2768 10 4.	3189 4.3402
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4210 4.4704 6270 6.6968
DIFFEPCHTIAL PRESSURE -FLOWMETER (IN.)	= ().40'
FLOWMETER LENP (MV) = 0.8775 BULK EXI	T = TEMP (MV) = 5.4448
INLET PRESSURE MAN , LEFT 3.25 RIGHT	3.35 IN. HG
INLET BULK TEMP CR-AL = 19,485	
STATIC PRESSURE DRUP (19.)	0.0/1
P1-P5 = 0.089 P1-P5 = 0.145 P1-P6 =	0.179
BLUE MANDMETER FLUID SP. GR 0.797	- · ·
INLET TEMPERATURE (DEG. F) = 888.21	· · · · ·
[W/10] =0.498.MACH ND. =0.018	
PR	
X+ (2+)M Q+ MUM TBUL	K TWZTB (RE)M
0.2294 0.2657 0.2964 7.666 261.	F• 78 (1,929 1888•()
0.2742 0.2156 0.1235 $4.4453 310.$	00 0.871 1808.7
0.2086 0.1729 0.1896 4.1910 376.	51 0.802 1715.0
0.1430 0.1,53 <u>-0.0283</u> <u>-0.3718</u> 469.	12 0.723 1603.6
0.0774 0.0126 0.4393 3.4752 $604.$	12 0.633 1491.2
0.0113 0.0118 1.0182 4.0001 640.	01 0+527 1554+7
NON DIMENSIONALIZED PRESSURE DROP	
X+ P+	
0.0362 - 0.085	
0.1674 0.185	
0.2330 0.398	
0.2986 C.647	
	6 4 D
YT (ATAM G E(BE)M ED XT (ATAM G E(BE)M ED	243 . FP(RE)M (RE)M TEULK 18/16
	DEG F
0.0152 0.0152 0.00144 1.95 -0.003	78 -5.11 1350.6 859.0 0.509
0.0515 0.0499 0.00359 5.12 -0.000	59 -0.84 1426.5 099.8 0.579
0.11/1 $0.1.65$ 0.00601 9.31 0.003	39 2.18 1349.3 269.3 U.079 - 81 8 00 1661.2 418 7 0.765
- U+1027 U+1001 U+00070 11+64 U+004 - U-2483 0-2004 0-00697 12-28 0-005	27 9.29 1761.3 340.4 0.839
ニー ひきとうひゃう ひきにしつ たいせいひつ たたまにみ ふきひびろう	
0.3139 0.2414 0.00845 15.62 0.007	31 13.50 1847.9 283.8 0.903

	290.
PARABULIC INLET VELUCITY TEST NU. 20	
TARE LEGT LAREN FRUM RUN NU+ 22 TARE THERMORDER OUTDUT (MV)	
$T = TA(T_1) = TA(T_2) T = TA(T_1) = TA(T_2)$	
$\mathbf{I} = \mathbf{I} \mathbf{A} \mathbf{A} \mathbf{I} \mathbf{J} \mathbf{L} \mathbf{I}, \qquad \mathbf{I} \mathbf{A} \mathbf{A} \mathbf{J} \mathbf{C} \mathbf{I} = \mathbf{I}, \qquad \mathbf{I} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{J} \mathbf{C} \mathbf{I}$	
1 4.2441 4.2452 7 4.2585 4.2594	
2 4.2323 4.2290 8 4.2608 4.2608	
3 4.2526 4.2521 9 4.2562 4.2500	
4 4.2632 4.2598 10 4.2550 4.2525	
5 4.2705 4.2700 11 4.2865 4.2879	
6 4.2592 4.2533 12 4.2854 4.2843	
TEST THERMUCUUPLE DUTPUT (MV)	
$\mathbf{I} = T(\mathbf{I},\mathbf{I}) \qquad T(\mathbf{I},2) = I \qquad T(\mathbf{I},1) \qquad T(\mathbf{I},2)$	
$\frac{1}{2} + \frac{4 \cdot 2568}{2568} + \frac{4 \cdot 2615}{2568} + \frac{1}{2568} + \frac{4 \cdot 2604}{2568} + \frac{1}{2568} $	
2 4.2460 4.2464 6 4.5012 4.5012	
$\frac{5}{4} + \frac{2011}{2010} + \frac{4}{2000} + \frac{2010}{2000} + \frac{2010}{2000} + \frac{4}{2000} + \frac{2010}{2000} + \frac{4}{2000} + \frac{2010}{2000} + \frac{2010}{200} + \frac{2010}{2000} + \frac{2010}{200}$	
$5 \qquad 4.2869 \qquad 4.2925 \qquad 11 \qquad 4.4057 \qquad 4.4581$	
6 4.2716 4.2748 12 4.4124 4.4724	
DIFFERENTIAL DRESSURE -FLOWMETER (IN.) = 0.353	
FLOWMETER LENP (MV) = 0.8656 BULK EXIT TEHP (MV) = 5.1	177
INLET PRESSURE MAN, LEFT 3.15 RIGHT 3.30 IN. HG	
INLET BULK TEMP CR-AL = 19.124	
STATIC PRESSURE DROP (IN.)	
P1-P2 = -0.011 P1-P3 = 0.007 P1-P4 = 0.046	
$P_1 - P_5 = 0.088 P_1 - P_5 = 0.138 P_1 - P_6 = 0.167$,
BLUE MANDMETER FLUID SP GR 0.197	
$\frac{191E1}{10} + \frac{1088}{10} + \frac{1086}{10} +$	
TW/TU =0.504 MACH NU. € V.VIO	
PR = 0.100000 Ket 0 = 0.110000 m	
X+ (X+)M Q+ NUM TBULK TW/TB (PE)M	
DEG, F.	
0.3840 0.2665 0.0625 -6.1007 251.82 0.942 1664.5	
$0.3098 \ 0.2412 \ 0.1159 \ -3.2034 \ 297.24 \ 0.680 \ 1010.5$	
0.2357 0.1927 0.1527 3.8357 350.38 0.822 $1.337.9$	
$0.1610 0.1390 - \frac{0.000}{0.000} - \frac{0.0000}{0.000} 435.03 0.100 1455.10 \\ 0.0875 0.0206 0.2367 3.1135 550.53 0.666 1355.2$	
0.0875 0.0804 0.031 0.9371 4.7688 765.67 0.553 1231.4	
NON DIGENSIONALIZED PRESSURE DROP	
X+ P+	
0.0409 -0.064	
0.1150 0.041	
0.1892 0.266	
0.2633 0.509	
0.0700 $0.1020.05171000$ $0.001000000000000000000000000000000000$	
X = (X + i)M = F = F(RF)M = FP = FP(RF)M = (FF)M	THULK TRATE
	DEG F
0.0172 0.0.70 0.00178 2.17 -0.00361 -4.41 1.21.0	180.0 0.539
0.0581 0.0553 0.003/9 4.91 -0.00032 -0.41 1297.7	633,6 0.614
0.1323 0.1179 0.00633 8.89 0.00399 5.61 1404.1	486.7 0.710
0.2064 0.1735 0.00700 11.36 0.00590 8.82 1995-6	392.3 0.788
0.2805 0.2239 0.00825 13.01 0.00658 10.37 15//.0	324.7 0.856
0.3546 0.2704 0.00936 15.43 0.00812 13.39 1649.4	273.0 0.917
0.3956 0.2949 0.44.05 16.93 0.00883 14.89 1685.6	249.7 0.947

			VELOCITY	TEST NO.	27		
	TADE TES	T IAUEN .		NET 22			
	TARE TES	I IANEN	FRUM RUN				
	TAKE THE	RMUCLOPL	E DUTPUT		TA (7 1)	TACTON	
	I	$ A(I_21) $, Z) 1		ΙΑΓΓΣΖΙ	
	1	4.2441	4.24	5?7	4 • 2585	4.2594	
	2	4.2323	4.229	9 <u>0</u> 8	4,2608	4.2608	
	3	4.2526	4.25	21 9	4.2562	4.2500	
	4	4 2622	4 250		4,2550	4.2525	
• •		4 2002	4.07/		4 2865	4.2879	
	ن ر	4.2705	4+41	10 <u>1</u> 2	4.2000	A 2042	•
	0	4.2092	4.422	32 IC .	4,2024	·• • (, 0 · · ·)	
	TEST THE	RHUCGUPLI	E DUTPUT	CMV /		* * (• • • •)	
	I	TT(I).	. TT(I.	,2)	[(])]	11(1)51	
	1	4.2580	4.26	16 7	4.2848	4.2848	
	2	4.2463	4.24	58 8	4.2855	4.2978	
	3	4.2655	4.270	10 9	4.3061	4.3274	
		4 2724	4 27	54 10	4.3121	4.3275	
		- T • 2127 . - 4 - 76 4 0	· · · · · · · · · · · · · · · · · · ·	75 11	4 4010	4 4500	
	2	4.2840			4,4010		
	6	4 . 27.02	4.21	28	4.4072	4,4043	
	DIFFEREN	TIAL PRES	SSURE -FI	OMWELER	$(1N_{\bullet}) = 0$	• 300	
	FLOWMELE	R LEMP ($4V_{1} = 0$	8576_BUL	K EXIT TEM	(MV) = 4.7	620
	INLET PR	ESSURE M	AN , LEF	1 3,20 R	IGHT 3.35	IN. HG	
	INLET BU	LK TEMP ($CR-\Delta L =$	19.233	·		
	STATIC P	RESSIRE)			
			URUI (410) 1 07 - 4	1. 01 E - 21	$P_{\ell} = 0.0$	0	
	P1=P2 .=		1-P3 (<u>. 133 01-</u>	$P_4 = 0.000$	7	
	PI-PD -	0 <u>03</u> 2P.	1 - 1 - 1 = 1	1.1.2.2. <u>ET</u>	P0 0.14	* {	
	BLUE MAN	UMETER. FI	LUID.SP (JR Q. (9.			
	INLET LE	MPERATURI	E (DEC, P	<u>) = </u>	77,40		
	1₩/Το = .	. 2,502	MACH NO.	=0.01	.3		
	PR = .0.7	40497 <u>RE</u>	YD. =10	11.8			
	X+	(x+)M	Q +	NUM	TBULK I	W/TB (RE)M	
					DEG. E.		
	0 4515	0 3311	0 1453	7-5-6446	235.17	.964 1456.2	
	0 7666	0 2174		A. 1748	272.22	. 215 1404.7	
	0.5044	. V	-0.0244		220 00 0		-
	0.2112	.0.2220.	0.1419	7 7 6 7		/+040 L390+J 、 744 - 1353 A	
	0.1400	0.1051	0.1911	3.2403	410.00 U	1+100 1/JZ+4	
	0.1029	0.0944	0.3348	3 . [384	549.69 0	•660 1123•2	
	0.0157	0.0156	0.8764	4.1453	<u>800-84</u> 0	1.538 1035.1	
	NIN DINE	SIDLALL	ZED PRES:	SURE DROP			
	X +	P +.					
	0 0491	-0.063		- · · · · ·			
	0,0701	0.100	• •				
	0.1000	0.120	<u>.</u>				
	0.2224	. 9.316.					
	0.3096	0.652					
	0.3968	0.974	•••• · ·		va • •		
	0.4449	1.164					
	POSTTUM	OF FIRS	T PRESSUE	KE TAP =	0.011350		
	X.4	(x + 1M)	F	E(RE)M	FP F	P(RF)4 (RF)M	FFULK TB/T
	/\ F	111	,	un un talle dubit u			DEG F
	0 01 11	0.0.000	0.0.00	2 05	0.00300	2 17 1026 6	22 R A 524
	0.0203	0.0202	0.0028/	C 470 -	0.00207 ~	·J∎LE LUAU+2 A 172 - 1×07 - 4	642 3 0 404
	0.0084	0.0653	0.00434	2.2.2	0.00010		
	0.1555	76 د 0 ، 1	0.00756	9• <u>0</u> 9	0,00476	5.13 1203.3	4/2.1 0./19
	0.2427	0.2005	0.00917	11.87	0.00716	9.26 1294.7	369.4 0.810
	0.3299	0.2575	0.01007	13.81	0.00815 1	1.17 1370.9	299.2 0.885
	0.4170	0.3115	0.01103	15.78	0.00953 1	3.64 1430.7	252.1 0.944
	0.4652	0.3410	<u>Guille</u>	+6-74	4)	4.79 1456.5	233.6 0.969
	A COLOR OF THE STATE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				•	and the second se

PARABOLIC INLET TARE TEST TAKEN TARE THERMOCOUPL I TA(I,I)	VELOCITY TEST ND. 28 FROM RUN ND. 22 E DUTPUT (MV) TA(I,2) I TA(I,) TA(I,2)
1 4.2441 2 4.2323 3 4.2526 4 4.2632 5 4.2705 6 4.2592 TEST THERMOCHUPE I TT(I,1)	4.2452 7 4.25 4.2290 8 4.26 4.2521 9 4.25 4.2598 10 4.25 4.2700 11 4.26 4.2700 11 4.26 4.2533 12 4.28 E DUTPUT (MV) TF(I,2) I TT(I	685 4.2594 608 4.2562 62 4.2500 550 4.2525 365 4.2879 354 4.2843 (1) TT(1,2)
1 4.2522 2 4.2372 3 4.2533 4 4.2650 5 4.2776 6 4.2654 DIFFERENTIAL PRE FLUWMETER LENP (INLET PRESSURE M INLET BULK TEMP STATIC PRESSURE P1-P2 = -0.007 F P1-P5 = 0.076 F BLUE MANUMETER F INLET TEMPERATUR TW/TU = 0.503	4.2556 7 4.27 4.2366 8 4.28 4.2568 9 4.29 4.2654 10 4.30 4.2803 11 4.39 4.2662 12 4.40 SSURE -FLONMETER (IN.) = MV) = 0.8621 BULK EXIT AAN, LEFT 3.45 RIGHT 5 CR-AL = 19.160 DRUP (IN.) 91-P3 = 0.019 P1-P4 = 0 P1-P5 = 0.109 P1-P4 = 0 ELUID SP GR 0.797 RE (DEG. F) = 874.26 MACH ND. = 0.011	769 4.2769 804 4.2926 900 4.3140 962 4.3198 921 4.4362 900 4.4484 = 0.251 TEMP (MV) = 4.8085 3.50 IN. HG
PR = 0.740087 Re $X + (X+)M$ $0.5398 0.3970$ $0.4356 0.3900$ $0.3314 0.2033$ $0.2272 0.1926$ $0.1230 0.1128$ $0.0188 0.0187$	$\begin{array}{rcl} YD &=& 846.8 \\ \hline Q+ & NUM & TBULK \\ & DEG, F, \\ 0.0430 & \hline 0.4119 & 237.66 \\ 0.0710 & \hline 4.9501 & 267.87 \\ 0.1122 & \hline 3.8409 & 321.05 \\ 0.2610 & \hline 4.6733 & 407.48 \\ 0.3022 & 2.8358 & 548.26 \\ 0.7712 & \hline 3.5008 & 818.24 \\ \end{array}$	TW/TB (RF)M 5 0.960 1214.7 2 0.921 1180.5 5 0.859 1126.7 3 0.774 1054.2 0 0.667 965.3 4 0.530 860.8
NON DIJENSIONALI X+ P+ 0.0575 -0.083 0.1617 0.220 0.2660 0.486 0.3702 0.871 0.4744 1.256 0.5319 1.036 POSITION OF FIRS X+ (X+)M	ZED PRESSURE DROP 3 5 5 5 5 5 7 PRESSURE TAP = 0.0135 6 7 F(RE)M FP	LEAK IN PRESSURE TAP #7 70 FP(RE)M (RE)M THULK TB/10
0.0242 0.0818 0.0783 0.1860 0.1640 0.29)2 0.2380 0.3944 0.357 0.4986 0.3719 0.5561 0.4091	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

		-				293.
		· · · ·		••••••••••••••••••••••••••••••••••••••		
	PARABOLIO	C INLET VEL	DCITY TEST NU	D, 29		
	TARE THE	RMUCAUPLE O	UTPUT (MV)			
	Ī	TA(I,1)	ΤΑ(Ι,2)Ι	TA(I)) TA(I>2)	
	1	4 2514	1 2527 7	4 2568	8 4.2559	
	2	4.2370	4.2350 8	4.2588	8 4.2613	
	3	4.2604	4,2609 9	4.2714	4 4.2554	
	4	4.2713	4.2708 10	4.2768	B 4.2744	
•	. 5	4.2822	4,2818 11	4.3079	9 4.3085	
	O TEST THE	- 4+2 <u>/</u> 31 ⊵м⊡сіцьі ⊑ п	4,20 <u>71</u> 12. 		4 4 9 00	
	I I I I I I I I I I I I I I I I I I I	ΚΜΔΟΔ <u>Ο</u> ΡΓΕ Ο [Τ(Ι,])		TT(I,1)) TT(],2)	
	1	4.2739	4.2824 7	4.323	1 4.3231	
	2	4,2021	4,20// 8	4.3222	4 3,4001	
	4	4.2909	4.2972 10	4.3573	3 4.3886	
	5	4.3105	4.3270 11	4,5043	3 4.6031	
	6	4.2889	4.2948 12	4.5019	9 4.6098	
	DIFFEREN	TIAL PRESSU	RE -FLOWMETE	$R_{(IN_{*})} =$	0.461	
	FLOWMETER	R LEMP. (MV)	= 0.8049 BU	JEK EXII IE DICUT A S	±MP (MV) ≖ 5.90 ΣΩ IN ΩΩ	50 150
	THET BUI	LOOUKE MAN Lk temp (da	<u>א הצרי יייאע</u> או = 26,550	<u>KIONI 4</u> 42		
	STATIC PR	RESSURE DRD	P (IN.)		· · ·	
	P1-P2 =	-0.038 P1-P	3 = -0.002 P	$1 - P_4 = 0.0$	006	
	P1-P5 =	0.097 P1-P	5 = 0.123 P	$1 - P_0 = 0.1$	163	١
	BLUE MAN	DMETÉR FLUI	D SP GR 0.79 DFC FN -	1 101 10		
	INCEL (E)	C ADO MA	<u>060. F) = 0.</u>	12 2		
	PR = 0.7'	56968_REYD	= 1487.5			
				TONIX		
	X+	(<u></u>	+ <u>FIMT</u>	DEG. F.		
	0.2890	0.2248 0.	0946 6-662	2 286 22	0.899 2148.6	
	0.2332	0.1937.0.	1112 3,598	H. 365.60	0.814 2012.2	
	0.1774	0.1571 0.	1489 2.67.1	461.62	0.729 1880.7	
	0.1216	0.1143 0.	2341 2.019	<u>→ 582.09</u>	$(1 \cdot 540 + 1/54 \cdot 5)$	
	0.0050	0.0021 0.0001	4720 3•3070 2920 5.4383	3 1030.24	0.459 1514.5	
	0.0101					
	NON DINER	SIDMALIZED	PRESSURE_DRO	3P		
	λ+ Ο Ο3Ου		i kanali i			
	0.0866	-0.007	· · · · · · · · · · · · · · · · · · ·			
	0.1424	0.016	······			
	0.1982	0.276				
	0.2540	0.349	.			
	0.2848	0.462	DECLIDE TAD -	- 0 007065		
	РЦ5111ЦМ Х+	- UF EIKST P - (X++)M	F F(RF)M	FP	FP(RF)M (RF)M	TEULK TB7
		• • • • • • • • •		• • • • • • • •		DEG F
	0.0130	0.0131 0.	00131 1.97	-0.00444	-6.69 1506.0	1.,56.8 0.443
	0.0438	0.0442 0.	00302 4,76	-0.00149	-2.35 1572.3	877.1 0.510
	0.0996	0.1420 0.	00525 8+87 00626 11-27	0.00245	9+14 1071+6 7-31 1914-7	517.8 0.687
	0.2111	0.1814 0.	00639 12.42	0.00410	7.97 1943.4	411.0 0.771
	0.2669	0.2149 0.	00631 13.11	0.00449	9.32 2077.2	324.0 0.057
	0.2977	0.2311 0.		∙0∎00675	-4-96 2153.1	282.3 0.905

1 B Z T LI

						~/
		THE FT VELOCITY	TLET NO	20		
	TARADULIN	C INLER VELUCIT		20		
	TAKE TES	I TAKEN FRUM RUN	NU • _ 27			
	TARE THE	KWOCOUPLE DUTPOT			TAITON	
	I	ΓΑ(Ι) ΓΑ(Ι)	2) 1		14(1)5)	
			·			
	1	4.2514 4.25	27 7	4,2568	4.2559	
	2	4.2370 4.23	50 8	4.2588	4.2613	
	3	4.2004 4.260)9 9	4.2714	4.2654	
	4	4.2713 4.270	08 10	4.2768	4.2744	
•	5	4.2822 4.28	18 11	4.3079	4.3085	
•	6	4.2731 4.26	71 12	4.3064	4.3066	
	TEST THEF	MACHUPLE HUTPUT	(MV)			
	T	(T(T, 1)) $TT(T)$	2) 1	TT(1,1)	TT(1,2)	
	*		· · · · · ·			
	1	4-2696 4-276	51 7	4.3120	4.3120	
	1 2	A 2568 A 26		4 3157	4.3343	
	2	4.200 4.20		4.3378	4 3204	
	3	4.2740 4.20		4 - 5 5 7 0	4 0 0 0 0	
	4	4.2860 4.29	19 IV	4,2427	4.2720	
	5	4.2913 4.302	36 11	4.4939	4.5793	
	6	4-2728 4-279	99 12	4 • 4784	4.5777	
	DIFFEREN	TAL PRESSURE -FI	_DWMETER ($IN_{\bullet}) = 0.41$	02	
	FLOWMERER	$R + E \oplus P (MV) = 0$	8140 BULK	EXIT TEMP	(MV) = 5.5973	b
	INLET PRE	SSURE MAN . LEF	5 3.40 RI	GHT 3.60 I	N. HG	
	INLET BUI	K TEMP CR-AL =	26.325	2		
	STATIC PR	ESSURE DRIP (IN)			
	D1 = D2 = 1	(0.024 D) D3(0.024 D)	•/. 	4 = 0.020		
	P1=P2 = -	-0.027 place	1 + 0 + 0 + 1 - r	4 = 0.162		
	P]-P5 =	0.071 P1-P5 = 0	J. 129 P1-P	$\dot{\mathbf{o}} = 0.10\%$		
	BLUE MANU	JMETER FLUID SP (JR 0.797			
	INLET TE	IPERATURE (DEG. F	=) = 117	2.28		
	FW/TD =		. = 0.020			
	PR = 0.75	5439 REYD = 12	296.4			
	X+	<u>(x+)M</u> 0+	NUM	TBULK TW/	TB (RE)14	
			D	EĢ, F.		
	0.3322	0.2547 0.0730	- 6-4213	271.57 0.9	17 1896•2	
	0.2681	0.2195 0.1005	3.5903	348.51 0.8	31 1776.0	
	0.2040	0.1784 0.1651	3,20,29	443.76 0.7	43 1657.3	
	0-1398	0.1303 0.1889	2 2165	565.70 0.6	56 1541.2	
	0 0757	0.0746 0.4280	3 1092	733.12 0.5	65 1428.8	
	0.0157	0.0170 0.4280	J • 1 () / 2		58 1310 A	
	0.0110	0.0117 1.1209	4.0422 1	020+42 0+4	0 1017+4	
	NON DITE					
	NON DIREI	ISTUNALIZED PRESS	JUKE UKUP			
	X+	P +				
	0.0354	-0,087				
	0.0995	-0.035				
	0.1637	0.072				
	0.2278	0.257				
	0.2920	0.468				
	0.3274	0 587	• •			
		me etper opeeelle		008352		
		ALLETER LESSAL	E(DE)M			TPHER TB/1
	X+	マクナ 万円 二二一門	CARG/11		NETH TRETT NU	
			0 0	000/0		О Г БЕ Б Л АДЭ
	0.0149	0.0151 0.00225	2.95 -0	.00368 -4.	80 1311+9 10	
	0.0503	0.0507 0.00337	4.62 -0	.00133 -1.	82 13/2.4	49.0 0.513
	0.1144	0.1100 0.00513	7,61 0	.00220 3.	26 1482.7 6	41,50,610
	0.1786	0.1616 0.00659	10.52.0	.00427 6.1	82 1596.9 5	00.4 0.700
	0.242/	0.2057 0.00779	13.35 0	.00545 9.3	34 1714.2 3	73.2 0.788
	0.3069	0.2434 0.00885	16.22.0	.00704 12.9	92 1833.7 3	07.9 0.875
	0.3423	0.2618 6.00	+7-8	-907-38 - 14	• <u>+</u> 1900•1 2	67.8 0.923
	V V V V V V					

TARE TEST TARE THER	INLET VELU TAKEN FRUM MUCHUPLE UU	ICITY TEST NO. 1 RUN NO. 29 JTPUT (MV)	31	
I I	A(I∍1)	TA(I)2) I	ΤΛ(Ι,1)	ΤΑ(Ι•2)
.1	4.2514	4.2527 7	4.2568	4.2559
2_	4.2370	4,2350 8	4.2588	4.2613
3	4.2604	4.2609 9	4.2714	4.2654
4	4.2713	4.2708 10	4.2768	4.2744
5	4.2822	4,2818 11	4.3079	4 • 3085 6 - 2066
	4•2/31	$\frac{4+20}{11} \frac{12}{11}$	4,3(104	4.5005
	MULUUPLE UL Tit.13	/PUT (NV/ TT/T.2) T	TT(I.1)	ΤΤ(Ι•2)
≜ •.	• • • • • • • • • • • • • • • • • • • •			· · · · · ·
1	4.2689	4.2731 7	4.3056	4.3056
2	4.2562	4,2582 8	4,3310	4.3310
3	4 . 2783	4,2839 9	4.3355	4.3710
4	4.2873.	4.290810	4.3397	4.3665
5	4.2869	4,2966 11	4 • 4898	4.5/52
	4.2/2/ 1/1 pp=cclp	4.2/82 12	. 9±472↓ TN N = 11 305	4.2009
FLOWMETER	THE PRESSUM	= 0.8158 BULK	FXIT TEMP (M	$V_{1} = 5.4096$
TNIET PRE	SSURE MAN .	LIFET 3.50 RT	GHT 3.65 IN.	HG
INLET BUL	K TUND CR-A	L = 26.710		
STATIC PR	ESSURE DROP	(IN.)		
P1-P2 = -	0.017 P1-P3	= -0.008 P1 - P	4 = 0.032	
P1 - P5 =	0.073_P1-P5	= 0.121 P1-P	6 = 0.151	
BLUE MAND	METER FLUID) SP GR 0.797		
INLET FEM	PURATURE (D	DEG, F) =118	7 • 49_	
	0.407 MAC	H HU. F. V.V.L.		
$PK = 2 \cdot (.9)$	а⊴эь.к <u>ст</u>).=	·ΥΩζ.• <i>Ω</i>		
X+ .	(<u>,+)</u> MQ+	NUM	TBULK TW/TB	(RE)M
X+	(<u>,</u> +)M Q+	- NUM D	TBULK TW/TB EG. F.	(RE)H
X+	(x+)M Q+	NUM 0444 -5-0054	TBULK TW/TB EG. F. 258.82 0.933 298.79 0.885	(RE)H 1455-4 1403-9
X+ 0.4370 0.3527	(A+)M Q+ 0.3517 0.0 0.2777 0.0	NUM 0444 -5-0054 0615 3-6631 432 4-2018	TBULK TW/TB EG. F. 258.82 0.933 298.79 0.885 372.86 0.806	(RE)H 1455-4 1403-9 1322-0
X+ 0.4370 0.3527 0.2683 0.1839	(A+)M Q+ 0-3517 0-0 0-2777 0-0 0-2243 0-1 0-1261 0-1	NUM 0444 -5.0054 0615 3.6631 432 -4.2918	TBULK TW/TB EG. F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704	(RE)H 1455-4 1403-9 1322-0 1216-3
X+ 0.4370 0.3527 0.2683 0.1839 0.0996	(x+)M Q+ 0-3517 0.0 0-2777 0.0 0-2243 0.1 0.1561 -0-3 0-2574 0.4	$\begin{array}{r} NUM \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	TBULK IW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583	(RE)H 1455.4 1403.9 1322.0 1216.3 1099.1
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152	(A+)M Q+ 0-3517 0-0 0-2777 0-0 0-2243 0-1 0-1561 -0-3 0-5574 0-4 0-9154 1-1	NUM 0444 <u>5.0054</u> 0615 3.6631 432 <u>4.2918</u> 076 <u>0.1184</u> 075 3.2735 026 4.2987 1	TBULK TW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583 085.32 0.441	(RE)H 1455-4 1403-9 1322-0 1216-3 1099-1 -992-3
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152	(A+)M Q+ 0.3517 0.0 0.2777 0.0 0.2243 0.1 0.1561 $-0.30.5774$ 0.4 0.0154 1.1	NUM 0444 <u>5.0054</u> 0615 3.6631 432 <u>4.2018</u> 075 3.2735 026 4.2987 1	TBULK TW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583 385.32 0.441	(RE)H 1455-4 1403-9 1322-0 1216-3 1099-1 092-3
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152 NON DTAEN	(A+)M Q+ 0.3517 0.0 0.2777 0.0 0.2243 0.1 0.1561 0.1 0.7574 0.4 0.0154 1.1 SIDHALIZED	NUM D 0444 <u>5.0054</u> 015 3.6631 432 <u>4.2918</u> 076 <u>0.1184</u> 075 3.2735 026 4.2987 1 PRESSURE DRDP	TBULK IW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583 085.32 0.441	(RE)M 1455-4 1403-9 1322-0 1216-3 1099-1 092-3
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152 NON DIMEN X+	(A+)M Q+ 0.3517 0.0 0.2777 0.0 0.2243 0.1 0.1561 0.3 0.7574 0.4 0.9154 1.1 SIDHALIZED P+	NUM 0444 <u>5.0054</u> 0615 3.6631 432 <u>4.2918</u> 075 3.2735 026 4.2987 1 PRESSURE DRDP	TBULK TW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583 385.32 0.441	(RE)H 1455.4 1403.9 1322.0 1216.3 1099.1 092.3
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152 NON DIMEN X+ 0.0466 0.220	(A+)M Q+ 0.3517 0.0 0.2777 0.0 0.2243 0.1 0.1561 0.3 0.0274 0.4 0.0154 1.1 SIDHALIZED P+ -0.105	NUM 0444 <u>5.0054</u> 0615 3.6631 432 <u>4.2918</u> 075 3.2735 026 4.2987 1 PRESSURE DRDP	TBULK TW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583 385.32 0.441	(RE)H 1455-4 1403-9 1322-0 1216-3 1099-1 092-3
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152 NON DIAEN X+ 0.0466 0.1359 0.2154	(A+)M Q+ 0.3517 0.0 0.2777 0.0 0.2243 0.1 0.1561 -0.3 0.7574 0.4 0.0154 1.1 SIDHALIZED P+ -0.105 -0.050 0.200	NUM 0444 -5.0054 0615 3.6631 432 -4.2918 075 3.2735 026 4.2987 1 PRESSURE DRDP	TBULK IW/TB EG.F. 258.82 ().933 298.79 ().885 372.86 ().806 495.72 ().704 697.47 ().583 ().441	(RE)M 1455.4 1403.9 1322.0 1216.3 1099.1 092.3
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152 NON DIGEN X+ 0.0466 0.1329 0.2153 0.2997	(A+)M Q+ 0.3517 0.0 0.2777 0.0 0.2243 0.1 0.1561 -0.3 0.0274 0.4 0.0154 1.1 SIDHALIZED P+ -0.105 -0.050 0.200 0.460	NUM 0444 <u>5.0054</u> 0615 3.6631 432 <u>4.2918</u> 075 3.2735 026 4.2987 1 PRESSURE DRDP	TBULK IW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583 085.32 0.441	(RE)H 1455.4 1403.9 1322.0 1216.3 1099.1 092.3
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152 MON DIMEN X+ 0.0466 0.1359 0.2153 0.2997 0.3840	(A+)M Q+ 0.3517 0.0 0.2777 0.0 0.2243 0.1 0.1561 -0.3 0.0274 0.4 0.0154 1.1 SIDNALIZED P+ -0.105 -0.050 0.200 0.460 0.760	NUM 0444 <u>-5.0054</u> 0615 3.6631 432 <u>4.2918</u> 075 3.2735 026 4.2987 1 PRESSURE DROP	TBULK TW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583 085.32 0.441	(RE)H 1455.4 1403.9 1322.0 1216.3 1099.1 092.3
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152 NON DIMEN X+ 0.0466 0.1359 0.2153 0.2997 0.3840 0.4306	(A+)M Q+ 0.3517 0.0 0.2777 0.0 0.2243 0.1 0.1561 0.3 0.7974 0.4 0.0154 1.1 SIDHALIZED P+ -0.105 -0.050 0.200 0.460 0.760 0.950	NUM 0444 <u>5.0054</u> 0615 3.6631 432 <u>4.2918</u> 075 3.2735 026 4.2987 1 PRESSURE DRDP	TBULK IW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583 085.32 0.441	(RE)H 1455.4 1403.9 1322.0 1216.3 1099.1 092.3
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152 NON DIAEN X+ 0.0466 0.1359 0.2153 0.2997 0.3840 0.4306 PDSITION	(A+)M Q+ 0.3517 0.0 0.2777 0.0 0.2243 0.1 0.1561 -0.3 0.0274 0.4 0.0154 1.1 SIDHALIZED P+ -0.105 -0.050 0.200 0.460 0.760 0.950 DF FJRST PR	NUM $p_{444} = \frac{5 \cdot 0.054}{3 \cdot 0.054}$ $p_{432} = \frac{4 \cdot 2^{9} \cdot 18}{-9 \cdot 1 \cdot 184}$ $p_{75} = 3 \cdot 2735$ $p_{26} = 4 \cdot 2987$ 1 PRESSURE DRDP PRESSURE TAP = 0	TBULK IW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583 085.32 0.441	(RE)H 1455.4 1403.9 1322.0 1216.3 1099.1 092.3
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152 NON DIAEN X+ 0.0466 0.1359 0.2153 0.2997 0.3840 0.4306 PDSITION X+	(A+)M Q+ 0.3517 0.0 0.2777 0.0 0.2243 0.1 0.1561 0.3 0.7974 0.4 0.0154 1.1 SIDHALIZED P+ -0.105 -0.050 0.200 0.460 0.765 0.955 DF FJRST PR (X+)M	NUM $p_{444} = \frac{5 \cdot 0.054}{5 \cdot 0.054}$ $p_{615} = 3 \cdot 6631$ $432 = \frac{4 \cdot 2918}{5 \cdot 0.1184}$ $p_{75} = 3 \cdot 2735$ $026 = 4 \cdot 2987$ 1 PRESSURE DRDP PRESSURE DRDP F = F(RE)M	TBULK IW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583 085.32 0.441	(RE)H 1455.4 1403.9 1322.0 1216.3 1099.1 092.3)M (RE)M FBULK TB/T) DEG F
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152 NON DIGEN X+ 0.0466 0.1329 0.2153 0.2997 0.3840 0.4306 PDSITIUN X+ 0.0195	(A+)M Q+ 0.3517 0.0 0.2777 0.0 0.2243 0.1 0.1561 -0.3 0.0274 0.4 0.0154 1.1 SIDHALIZED P+ -0.105 -0.050 0.200 0.460 0.765 0.955 DF FJRST PR (X+)M 0.0198 0.0	NUM $P_{444} = \frac{5 \cdot 0.054}{3 \cdot 631}$ $432 = \frac{4 \cdot 2.918}{3 \cdot 2.918}$ $0.75 = 3 \cdot 2.735$ $0.26 = 4 \cdot 2.987$ 1 PRESSURE DRDP PRESSURE DRDP $P_{RESSURE} = 0$ F = F(RE)M $0.219 = 2 \cdot 16 = 0$	TBULK TW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583 085.32 0.441 .010986 FP FP(RE .00526 -5.19	(RE)H 1455.4 1403.9 1322.0 1216.3 1099.1 092.3)M (RE)M FBULK TB/T) DEG F 087.0 1118.5 0.426
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152 MON DIMEN X+ 0.0466 0.1359 0.2153 0.2997 0.3840 0.4306 PDSITION X+ 0.0196 0.0062	(A+)M Q+ 0.3517 0.0 0.2777 0.0 0.2243 0.1 0.1561 -0.3 0.0274 0.4 0.0154 1.1 SIDHALIZED P+ -0.105 -0.050 0.200 0.460 0.765 0.955 DF FJRST PR (X+)M 0.0198 0.0 0.0568 0.0	NUM $P_{444} = \frac{5 \cdot 0.054}{5 \cdot 0.054}$ $P_{432} = \frac{4 \cdot 2.918}{0.75}$ $P_{75} = \frac{0 \cdot 1184}{0.75}$ $0.26 = 4 \cdot 2.987$ $P_{75} = 2.735$ $0.26 = 4 \cdot 2.987$ $P_{75} = 0$ $P_{75} = 0$	TBULK TW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583 085.32 0.441 .010986 FP FP(RE .00526 -5.19 .00152 -1.58	(RE)H 1455.4 1403.9 1322.0 1216.3 1099.1 092.3)M (RE)M FBULK TB/T) DEG F 987.0 1118.5 0.426 1040.8 850.3 0.513
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152 NON DIMEN X+ 0.0466 0.1359 0.2153 0.2997 0.3840 0.4306 PDSITION X+ 0.0195 0.0062 0.1506	(A+)M Q+ 0.3517 0.0 0.2777 0.0 0.2243 0.1 0.1561 0.3 0.7974 0.4 0.0154 1.1 SIDHALIZED P+ -0.105 -0.050 0.200 0.460 0.765 0.955 DF FJRST PR (X+)M 0.0198 0.0 0.0568 0.0 0.1419 0.0	NUM $p_{444} = \frac{5 \cdot 0.054}{5 \cdot 0.054}$ $p_{615} = 3 \cdot 6631$ $432 = \frac{4 \cdot 2918}{5 \cdot 0.1184}$ $p_{75} = 3 \cdot 2735$ $026 = 4 \cdot 2987$ 1 PRESSURE DRDP PRESSURE DRDP $p_{RESSURE} = DRDP$ $p_{RESSURE} = 0$ F = F(RE)M $p_{0219} = 2 \cdot 16 = 0$ $p_{0458} = 4 \cdot 76 = 0$ $p_{0804} = 9 \cdot 30 = 0$	TBULK IW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583 085.32 0.441 .010986 FP FP(RE .00526 -5.19 .00152 -1.58 .00429 4.96	(RE)H 1455.4 1403.9 1322.0 1216.3 1099.1 092.3)M (RE)M FBULK TB/T) DEG F 987.0 1118.5 0.426 1040.8 50.3 0.513 1156.8 583.2 0.644
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152 NON DIGEN X+ 0.0466 0.1359 0.2153 0.2997 0.3840 0.4306 PDSITION X+ 0.0196 0.0062 0.1506 0.2349	(x+)M Q+ 0.3517 0.0 0.2777 0.0 0.2243 0.1 0.1561 -0.3 0.0274 0.4 0.0154 1.1 SIDHALIZED P+ -0.105 -0.050 0.200 0.460 0.760 0.950 DF FJRST PR (X+)M 0.0198 0.0 0.0568 0.0 0.1419 0.0 0.2041 0.0	NUM $p_{444} - 5 \cdot 0.054$ $p_{615} - 3 \cdot 6631$ $432 - 4 \cdot 2.918$ $0.76 - 0 \cdot 1.184$ $0.75 - 3 \cdot 2.735$ $0.26 - 4 \cdot 2.987 - 1$ PRESSURE DRDP PRESSURE DRDP PRESSURE DRDP 0.219 - 0.0000000000000000000000000000000000	TBULK IW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583 085.32 0.441 .010986 FP FP(RE .00526 -5.19 .00152 -1.58 .00429 4.96 .00750 9.53	(RE)H 1455.4 1403.9 1322.0 1216.3 1099.1 092.3)M (RE)M FBULK TB/T) DEG F 987.0 1118.5 0.426 1040.8 583.2 0.644 1269.9 426.6 0.758
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152 NUN DIMEN X+ 0.0466 0.1309 0.2153 0.2997 0.3840 0.4306 PDSITIUN X+ 0.0195 0.0062 0.1506 0.2349 0.3193	(A+)M Q+ 0.3517 0.0 0.2777 0.0 0.2243 0.1 0.1561 -0.3 0.0274 0.4 0.0154 1.1 SIDHALIZED P+ -0.105 -0.050 0.200 0.460 0.765 0.955 DF FJRST PR (X+)M 0.0198 0.0 0.3568 0.0 0.1419 0.0 0.2041 0.0 0.2587 0.0	NUM $P_{444} = \frac{5 \cdot 0.054}{5 \cdot 0.054}$ $P_{432} = \frac{4 \cdot 2.918}{5 \cdot 0.2918}$ $P_{75} = \frac{3 \cdot 2.937}{5 \cdot 0.26}$ $P_{75} = \frac{3 \cdot 2.987}{5 \cdot 0.26}$ P_{7	TBULK IW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583 085.32 0.441 .010986 FP FP(RE .00526 -5.19 .00152 -1.58 .00429 4.96 .00750 9.53 .00884 12.07	(RE)H 1455.4 1403.9 1322.0 1216.3 1099.1 092.3 PEG F 987.0 1118.5 0.426 1040.8 50.3 0.513 1156.8 583.2 0.644 1269.9 426.6 0.758 1364.7 330.7 0.850
X+ 0.4370 0.3527 0.2683 0.1839 0.0996 0.0152 NUN DIAEN X+ 0.0466 0.1359 0.2153 0.2997 0.3840 0.4306 PDSITIUN X+ 0.0195 0.0062 0.1506 0.2349 0.3193 0.4036	(A+)M Q+ 0.3517 0.0 0.2777 0.0 0.2243 0.1 0.1561 0.3 0.7974 0.4 0.0154 1.1 SIDHALIZED P+ -0.105 -0.050 0.200 0.460 0.765 0.955 DF FJRST PR (X+)M 0.0198 0.0 0.1419 0.0 0.2587 0.0 0.3115 0.0	NUM $p_{444} = \frac{5 \cdot 0.054}{5 \cdot 0.054}$ $p_{615} = 3 \cdot 6631$ $432 = \frac{4 \cdot 2.918}{5 \cdot 0.2918}$ $p_{75} = 3 \cdot 2735$ $p_{2026} = 4 \cdot 2987$ 1 PRESSURE DRDP PRESSURE DRDP $p_{10219} = 2 \cdot 16 = 0$ $p_{1003} = 12 \cdot 74 = 0$ $p_{1031} = 14 \cdot 89 = 0$ $p_{1135} = 16 \cdot 97 = 0$	TBULK IW/TB EG.F. 258.82 0.933 298.79 0.885 372.86 0.806 495.72 0.704 697.47 0.583 085.32 0.441 .010986 FP FP(RE .00526 -5.19 .00152 -1.58 .00429 4.96 .00750 9.53 .00884 12.07 .01082 15.49	(RE)H 1455.4 1403.9 1322.0 1216.3 1099.1 092.3 092.3 056.F 987.0 1118.5 0.426 1040.8 50.3 0.513 1156.8 0.83.2 0.644 1269.9 426.6 0.758 1364.7 330.7 0.850 1431.7 275.1 0.914 165.2 0.937

PARABOLIC INLET VELOCITY TEST NO. 32 TARE TEST TAKEN FROM RUN NO. ___29 TARE THERMOCOUPLE DUTPUT (MV) TA(1,1) TA(I,1) TA(1,2)TA(1,2) I Ι 7 4,2559 4.2568 4.2527 1 4.2514 4.2350 4.2588 4.2613 8 2 4.2370 4.2654 4.2604 4.2609 9 4.2714 3 4.2708 10 4.2768 4.2744 4 4.2713 4.3085 5 4.2822 4.3079 . . 4.2818 11 4.3066 4.3064 6 4.2731 4.2671 12 THERMOCOUPLE OUTPUT (MV). TEST TT(1,2)I $TT(I_{J})$ TT(1,2) I $TT(I_{j}1)$ 7 4.2924 4.2608 4,2924 1 4.2572 8 4.3164 4.2464 4.3164 2 4.2464 9 4.2776 4.3186 4.3527 3 4.2725 4,3310 4.3546 4.2836 10 4 4-2824 4.5564 5 4.2745 4.2821 11 4.4771 4.5475 4.4572 4.2705 12 6 4.2631 DIFFERENTIAL PRESSURE -FLOWMETER (IN.) = 0.304 FLUWMEIER IENP (MV) = 0.8088 BULK EXIT TEMP (MV) = 4.6971 INLET PRESSURE MAN , LEFT 3.65 RIGHT 3.80 IN. HG INLET BULK TEMP CR-AL = 27.051 ... STATIC PRESSURE DROP (IN.) P1-P2 = -0.014 P1-P3 = -0.003 P1-P4 = 0.037 0.114 P1-P6 =0.137 0.073 P1-P5 = P1 - P5 =BLUE MANUMETER FLUID SP GR 0.797_ INLET TEMPERATURE (DEG. F) = 1200.87 0.404 MACH NO. = 0.015 $FW/T_{II} =$ 979.1 PR = 0.750376 REYD = TW/TB (RE)M TBULK (X+)M Q+ RUM-Χ+ DEG. F. 235.41 0.964 1484.9 0.4372 0.3247 0.0269 -0-0152 295.71 0.888 1404.3 0.3528 0.2776 0.0418 2.0122 U.797 1310.5 381.35 0.2684 0.2262 0.1651 1207.5 0.697 -++++++2-503.90 0.1840 0.1672 -0-0()76-1100.6 0.3590 2.9800 688.61 U-587 0.0996 0.5574 996+6 0.0152 0.0155 1.0398 4.3687 1040.08 0.454 NON DIMENSIONALIZED PRESSURE DROP λ+ P+ 0.0460 -0.090 0.1310 -0.020 9.2154 0.236 0.2993 .0.457 0.3841 0.719 0.4307 0.804 POSITION DE FIRST PRESSURE TAP = 0,010989 FP(RE)H (RE)M THULK 18/Tn FP F(RE)M Χ+ (X+) M F DIGE 999.3 1072.8 0.438 -4.95 0.0190 0.00213 2.11 -0.00499 0.0199 324.7 0.523 0.00461 4.82 -0.00108 -1.131045.3 0.0562 0.0067 5.23 1152.8 585.4 0.643 9.10 0.00454 0.1500 0.1423 0.00795 8,93 1259.3 434.1 0.749 12.07 0.00710 0.2350 0.2.58 0.00990 334.6 0.846 10.36 1357.1 0.3194 0.2001 0.01008 13.68 0,00763 0.00892 12.80 262.7 0.930 15.42 1444.6 0.4930 0.3086 0.01068 -14-79-And the second 1486.7 232.7 0.970 ----0.4503 0.3341 0-01-1-0

PARABULIC INCLET VELOCITY TEST NO. 33 TARE TEST LAREN FROM RUN NO. 29 TARE THERMUCUUPLE DUTPUT (MV) TA(1,2)TA(I,2) I TA(1,1) I $1A(I_{J})$ 4.2568 4.2527 7 4.2559 4.2514 1 4.2613 8 4.2588 4.2350 2 4.2.70 - 9 4.2654 4.2714 3 4.2604 4,2609 4.2768 4.2744 4.2708 10 4.2713 4 11 4.3079 4.3085 4.2818 5 4.2822 4.3066 4.3064 12 4.2671 6 4.2/31 TEST THERMUCHINE DUTPUT (MV) TT(1)2)TT(1,2) I $TT(I_{j})$ Ŧ 11(1)) 4.2632 7 4.2883 4.3015 4-26-18 1 4.2471 8 4.2977 4.3132 2 4.2470 4.2756 9 4.3148 4.3402 3 4.2118 4.2828 10 4.3285 4.3501 4 4.2015 4.2814 11 4.4664 4.5418 5 4.2769 4.2675 12 4.4500 4.5306 6 4.2059 DIFFERENTIAL PRESSURE -FLOWMETER (IN.) = .0.253 FLUWMETER IE: P (MV) = 0.8010 BULK EXIT TEMP (MV) = 4.4556 INLET PRESUME MAM , LEFT 3.80 RIGHT 4.00 IN. HG INLET BULK TUMP CR-AL = 27.156 STATIC PRESSURE DRUP (IN.) P1-P2 = -0.008 P1-P3 = 0.013.P1-P4. # ... 0.042 P1-P5 = 0.069 P1-P5 = 0.104 P1-P6 = 0.124BLUE MANUMETER FLUID SP GR 0.727INLET TEMPERATURE (DEG. F) = 1204.97 PR = 7.751.92 REYU = 815.5NUM TBULK TW/TB (RE)M Χ+ (A+) M ... Q+____DEG._F. 8.9247 223.51 0.981 1251.7 0.5244 0.3350 0.0202 3.3565 _266.28 1201,3 0.3243 ...0.0339 0.924 0.4232 3.6973 341.60 1125.9 0.837 0.2035 0.0933 0.3219 3.2626 464.14 0.727 1031.0 0.2257 0.1964 0.1803 2.9339 664.56 926+4 0.599 0.3304 0.1195 0.1161 0.448 3.9162 1059.97 827.7 0.9573 0.0192 0.0185 NON DIMENSIOVALIZED PRESSURE DRDP........ X+ P+ -0.073 0.0559 0.1571 2.117 0.2583 :.635 0.3596 0.4608 0.956 0.5167 1.138 PHISTITUM DE FIRST PRESSURE TAP = 0.013182 TBULK (RE)M TB/T F F(RE)M FP FP(RE)M X+ (X+)M DEG F 1095.7 0.432 822.5 -3.60. 2.89 -0.00437 0.0235 0.0239 0.00351 817.7 0.526 0.29 873.6 0.0%00 . 0.00674 5.89 0.00033 0.0194 551,0 0.665 10.15 0.00654 6.39 278.0 0.01038 0.1876 0.1683 395.4 0.786 9.21 1079.0 12.00 0.00853 0.2819 0.2405 0.01120 9.99 299.0 0.885 1165.0 12.83 0.00857 0.01101 0.3831 0.3.30 241.3 0.958 14.41 1228.2. 0.01331 14.34 0.01173 0.4343 0.3027 221.9 0.985 1251.9 0.54:2 0.3/65 ()+()12J5 15-46

стын	TART	n e			омг нт	TEST	- MA	2	<i>I</i> .								298.	•	
TARE	TEST	14	KEN	FROM	1 RUN	NLI.	34	د ا	7										
IARE	THER	MuC	цŪР	LEUU	JTPUT	(MV)		·				_							
I	. 1	ΑιΙ	> 1)		ΤΛ(Ι	,2)	Ι.,	Т	A(I	، 1)		T,	4 (I	2 S I)				
1		4.2	480		4.25	06	7	-	4.2	506		4	.25	34					
2		4.2	.69		4.23	32	8		4.2	502		4,	25	55					
3		4.2	569		4.25	71	9		4.2	510		4.	.24	86					
4		4.6	1596		4.20	91 . 13	10		4•2 4.2	243 746		4	• <u>८ २</u> • २ ७	29 77					
6		4.2	498		4.24	52	12		4.2	785		4	27	89					
TEST	THEP	MUC	чUн	LE OL	JTPUT	(MV)													
τ	T	T(I	(] و		TT (I	,2)	I.	Т	Τ(Ι	(1 e		Ţ	T (I	• 2 1)				
1		4.7	598	•••	4.26	68	7		4.2	730		4	.28	19					
2		4.2	495		4.24	81	8		4.2	710		4,	• 2 ^A	44					
3		4.2	054		4.26	92	9		4.2	772		4	.29	24					
4		4 . 2	074 770		4.21	02	10		4•2 4.3	824 700		4.	• 2 7 • 4 1	49 58					
6		4.2	605		4,25	94	12		4.3	774		4	43	00					
DIFFE	RENT	IAL	pR	្ទន្តប្រ	RE -F	LOWME	TER	(IN	,)	= (0.4	08							
FLOWM	1E LER	E	MР 	(MV)	= 0	.9218	BUL	K E	XII T		MP O t	(MV)) ≍	4	.56	1 ()			
	- кні - кні	<u>5</u> 50 К Т	19 Е. (Гемо	14N J (8-/) LEM VI =	14.8	о0 г 55	ci en		2.1	U I	N • T	10						
STATI	C PR	ESS	URE	URDF) (IN	,)													
P0-P2	: =	0.1	02	P1-P2	2 =	0.049	P <u>2</u> -	-P3	=	0.0	74								
P2-P4) = .	0,1	31.1	2-P5) =	0.189	PZ-	-P6	=	0.2	41								
	' = . 1ANOM	U • Z	R 19. R 19.	HTD	SP G	R 0.8	26												
INLET	TEM	PER	ATU	λΕ (C	EC.	F) =	e	588.	22										
IW/TC] =		.58	5 MAC	H NO	•	0.01	7											
68 =	0.71	894	6 R	=YD =	: 1	455•/													
X +		(.+) <u>M</u>	Q +	•	NUM		1B	ULK		IW/	тв	(RE)	М				
								DEG	• F	•	~ ~	~# E.	1.0	20	7				
()•34 0•26	13 <u>0</u> 100	0.2	433.	0.0)704 1593 -		764	26	1+3 0-9	5	0•9 0•9	75 31	19	16.	.3				
0.19	182	0.1	604	0.0	1936	-3-1-	3.72	30	1.9	3 (0.8	80	18	47.	1				
0.13	158	0.1	148	0 • 1	58/	-32-	2-1-1-	. 35	4.3	5 (0.8	24	17	69.	2				
0.07	34	0.0	653	. Q•3	3057	3.8	436	42	8.3 6 0	3 (0•7 0•6	56 53	16	75. a.	8				
0+01	.]J	Q• ()	0.00	() • ¥	1984	0.0	047	57	2.7	4 (0.0	22	1.7	94•	1				
NON C	THEN	SID	ha4L (IZED	PRES	SURE	DRQF	>											
Х+		P	+																
0.01	.45 .00		18(Ś 7			÷												
0.11	14	0	. 81	('\															
0.17	38	1	.114	+															
0.23	162	1	.413	3															
0.29	196	1	-68) 86/				-	.											
X+		۲ + ۲)	•0 <u>)</u> •) M	.)	F	F(RE)M		FP	I	FP (RE) r	1	(RE)M	TRU	ЦK	187	r n
								•		_		. 6	•			OLG P			
0.01	.45	0.0	141	0.0	1229	18.	68 42	0.0	082	2	12.	48 74	15	19• 15	4	- 572• - 482	0 7 0	•037 _714	
0.04	14	0.0	421	0.0)1270 0841	14.	49	0.0	069	ວ 7	12.	00	17	23.	Ú,	387.	30	.793	
0.17	38	0.1	437	0.0	0753	13.	61	0.0	065	1	īī.	77	13	07.	1	326,	5 0	.855	
0.23	62	01	.67.7	0.0	0776	14.	58	0.0	066	8	12.	57	18	80.	1	280.	3 ()	,908	
0.29	186	0.2	290	0.	0820	15.	95 7.	0.0	074	8	14.	55 oz	$19 \\ 10$	45. 70	9 я	-243. 226	30	- 725 - 980	
0.33	うい	V • C	208	بئسبها المهك	(interstric t)		1	****	ort-t	- T	1.0.4	UD D	1.7	17.	U	<i>i. I</i> − 2 •	, 0	•	

			-					
	C			TEET NO	 			299.
	SIMULIAN	EUUS DEVE			• 22			
	IARE LES	I JAKEN F	RUM RUN	14U+24				
	IARE THE	RMUCUUPLE			πλ(Γ.)	ι т	A(1.2)	
	1		IACL	· 21				
			 			<u> </u>	357/	
	1	4.24.80	4.220)0(4,220	4	+ C D D 4	
	2	4,2369	4,23	32 8	4.200		• 2 2 2 2	
	3	4+2569	4.27			.U 4 17 /	• 2 4 0 0	
	4	4.2596	4.25		4,274	·) 4	• 2009	
		4.2028	4.20		. 4 • 279		-2111	
	6	4.2498	4.24		4.278	12 4	•2709	
•	TEST THE	RMGCOUPLE			·	۰ .	F (F) \ \	
	I .		TICL	,2)	11(1)	<i>,</i> ,	1 (1,2)	
						0 (5 12 45 45	
	1	4.2488	4.25		4 • 202	0 4	•2700	
	2	4.2401	4,23	75 8	4.203	9 4	• 2.124	
	3	4.2569	4.260)6 9	4,200	4 4	•2785	
	4	4.2599	4.25	/410		1 4	.2815	
	5	4.2062	4,26	20 11	4.358	4	• 3972	
	6	4.2519)9 12	4.301	3 4	• 4 () 3 8	
	DIFFEREN	LIAL PRES	SURE	OWMELER	$(1N_{\bullet}) =$	0.350	()	201
	FLOWMETE	R <u>IEIP</u> (M	V) = 0.	<u>9268 BU</u>	LK EXIL I	EWE (MV) = 4.3	294
	INLET PR	ESSURE MA	N. A. LEFT	3.80	RIGHI 4.	00 IN.	нь	
	INLET BU	LK TEMP C	$R = \Delta L = 0$	14 • 785				
	STATIC_P	RESSURE D	RDP (IN		· · · · · · · · ·			
÷	P0-P2 =	.9.140.pl	-p2 = 0).031 22	-p3 = 0,	065		
	22-P4 =	0.1.8 p2	- <u>P5.</u> = (),150 PZ	<u>-p6 = 0.</u>	199		
	P2-P7 =	0.236						
	RED MAND	MELER FLU	ID SP GF	0.826				1
	THLET TE	MPERATURE	(DEG. H) =	685. 19			
		0.586	MACH ND	= 0.0	14			
	$PR = Q_{\bullet}Z$	18050 REY	D.≘	249.5				
	· · · ·	(< + \ M		NILIM	TOULK	IW/TR	(RC) h	
	ΛΤ	YOTUP.		14810				
	0 3765	() 2(12 -	6. <u>3517</u>	3/. 23.L	219 47	0.988	1712.0	
	0.2.23	0 2012 7	0 0396	-2-10-20	251.42	0.700	1657.6	
	0.2210	Q + <u>C</u> 241	0.0914	3 4758	201.31	0.592	1598.3	
	$0 \cdot c \rightarrow 10$	0.1024	0•0717 . o calad	1 9779	242.20	0.536	1531-4	
	0+1202	0.01320 -	6 9570	1.4729	414.26	0.768	1050-8	
	0.0100			6 2880	561.87	0.661	1324.9	
	0.0121		U•0041	0.2000	201:01	0.001	()24•)	
	NEANE DITUTT	LIS. ΠΝΑΙ 177	 rb. ppc s s					
	AT	DT	EN LUCAT	DONE TONG	•			
	0 0160	. ET. () 370	-	· · -				
	0 0571	D 494	-		• ···· ··			
		0.0470						
	U+1670	1 2402	• • • •	• • • • • •	• • •			
	0.2752	1 67A						
	V+C176	1 D19	DAAR DEC	DANST	• • • •			
	0.2480 0.2001	1.717	FUUL ICES	LUNDE				
	AT 0.209T	C+103 (X+1)M	с. С	F(PF)M	E D	FP(DF)	M (DF)M	TUULK TBAT
	ΛŤ	10111	ſ	скіх ц († 11),	• *	· · · · · · · · · · · · · · · · · · ·	and the state of the	DLGF
	0.0149	0.0163	0.01107	14.52	0.00687	9.02	1311-6	578.5 0.647
	0.0571	0.0521	0.01125	15.72	0.00830	11.60	1397-8	467.8 0.724
		0 1 16 -	0.00071	14.48	0-00830	12.39	1491-6	374.2 0.305
	0.1290	0.1.42	U • UU7(1) 0 00704	12 45	0.00697	10.90	1964-0	314.9 0.867
	つ・Cリイン ひ つつビン	0 2 40	0.000000 3.0734	<u>, (, , ,)</u> <u>,) (</u> ,)	0.00071 0.00676	<u>1.1 - 00</u>	1626-5	276.2 0.920
	0.2400	$\bigcirc * \mathcal{L} _ \bigcirc \mathcal{I} = \bigcirc * \mathcal{L} _ \bigcirc \mathcal{I} = \bigcirc * \mathcal{I} = \bigcirc ? = \neg \mathcal{I} = \bigcirc ? = \bigcirc ? = \neg \mathcal{I} = \bigcirc ? = \bigcirc ? = \neg \mathcal{I} = \bigcirc ? $	መድምለም መመ ሰ በ114 1	10 20	0-01050	<u></u>	1,32.1	234.2 0.968
	0.2480	0.2040 -			0.134E		1717 5	216.8 0.993
	0.2081	U.CEVB -	the second s		2 . J T . J T	1.1.4.2.4	エトトレ・フ	1 A 17 B (J - 17 B 7 F 2
300. SIMULTANEOUS DEVELOPMENT TEST NO. 36 TARE TEST TAKEN FROM RUN NO. 34 TARE THERMUCOUPLE DUTPUT (MV) TA(1,2) TA(I,1) TA(1,2) I ΤΑ([,]) Ι. 7.____ 4.2534 4.2506 4.2480 4.2506 1 4.2555 8 4.2502 2 4.2369 4.2332 9 4.2510 4.2486 3 4.2569 4.2571 4 4.2596 4.2591 10 4.2543 4.2539 4.2746 4.2177 5 4.2628 4.2613 11 4.2785 4.2789 4.2452 12 6 4.2498 FEST THERMOCOUPLE DUTPUT (NV) Ι $TT(I_{J})$ TT(1,2)1 TT(I,I)TT(1,2) 7 4.2674 4.2562 4.2613 4.2542 1 8 4.2607 4.2574 4.2399 2 4.2417 9 4.2/49 3 4.2605 4.2681 4-2588 4.2614 4.2706 4.2796 4 4.2622 10 4.3884 4-2538 11 4.3518 5 4.2560 4.3570 4.4013 4.2359 12 6 4.2363 DIFFERENTIAL PRESSURE -FLOWMETER (IN.) = 0.300 FLOWMETER TEMP (MV) = 0.9209 BULK EXIT TEMP (MV) = 4.2962 INLET PRESSURE MAN , LEFT 3,90 RIGHT 4,10 IN. HG INLET BULK TEMP CR-AL = 14.788 STATIC PRESSURE DROP (IN.) PO-P2 = 0.113 P1-P2 = 0.033 P2-P3 =().045 0.164 $p_{2}-p_{1} = 0.192$ RED MANUMELEK FLUID SP GR 0.826 INLET TEMPERATURE (DEG. E) = ____ 685.32 $TW/T_{0} = 0.586 \text{ MACH ND} = 0.012$ PR = 0.718069 REYD = 1071.8TBULK NUM TW/TB (RE)M Χ+ (X+)M Q+ DEG. F. 0.991 1471.6 0.3271.0.0163 fine of the spiller 216.45 0.4389 243.98 0.952 1432.0 0.2716 0.0134 -t--0.3541 1385.7 0.906 0.2693 4-0531 279.32 0.2137 0.0903 9-2564 0.852 1329.9 0.1846 0.1527 1.4470 327.04 3.3197 398.50 0.782 1258.5 0.2237 0.0999 0.0071 5.9517 553.76 0.666 1141.5 0.0143 0.8135 0.0150 NON DIMENSIONALIZED PRESSURE DROP Χ+ P+ 0.0197 0.282 0.0665 0.604 1.048 0.1513 0.2361 1.419 1.765 0.3209 0.4057 2.201 0.4525 2.483 (FE)M TPULK TB/T F(RE)M FP(RE)H X + FP F (X+)M DEGE 571.7 0.651 12.39 1150+1 0.0197 0.0190 0.01551 17.51 0.01097 0.01008 12,20 1209.9 453.8 0.735 0.0665 0.0003 0.11325 16,03 1295+2 358.3 0.021 12.70 10.81 0.1513 0.1285 0.00930 0.00834 101.1 U.883 0.00799 1357.4 12.21 10,85 0.2361 0.1913 0.00900 260.4 0.933 13.13 1404.0 0.3209_0.2505 0.01046 14.73 0.00933 229.4 0.975 19.00 0.01231 17.85 1450.6 0.4057 0.3069 0.01310 +-----1471.5 215.1 0.995 20.54 A-01328 0.4525 0.3372 9.1396

SIMULTANEOUS DEVELOPMENT TEST ND. 37 FARE TEST TAKEN FRUM RUN NU. 34 TARE THERMUCUUPLE DUTPUT (MV) I TA(I,1) TA(I,2) I TA(I,1) TA(1,2)	301.
 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
STATIC PRESSURE DROP (1N.) PO-P2 = 0.074 P1-P2 = 0.023 P2-P3 = 0.035 P2-P4 = 0.068 P2-P5 = 0.096 P2-P6 = 0.127 P2-P7 = 0.148 RED MANOMETER FLUID SP GR 0.826 INLET TEMPERATURE (DEG. F) = 692.72 TW/T0 = 0.582 MACH ND. = 0.010 PR =719379 REYD = 888.4 X+ (X+)M O+ NUM TBULK TW/T8 (FL)M	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
NON DIMENSIDMALIZED PRESSURE DROP X+ P+ 0.0237 0.215 0.0872 0.543 0.0872 0.543 0.1823 1.035 0.2845 1.504 0.3867 1.903 0.4889 2.348 0.5453 2.641 F F(RE)M FP FP(RE)M T	ULK TB/T
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F 3.9 0.653 9 0.741 3 0.828 3 0.890 2 0.938 9 0.978 3 6 0.998

-

302. SIMULTANEOUS DEVELOPMENT TEST NO. 38 TARE TEST TAKEN FRUM RUN NO. 38 TARE THERMOCOUPLE OUTPUT (MV) . 1 TA(1,1) TA([)2) TA(I,1)TA(I,2) I 7. 4.2548 4,2601 4.2629 4.2515 1 4.2361 8 4.2594 4.2622 2 4.2418 9 4.2544 4.2605 4.2577 3 4.2601 10 4.2592 4.2584 4 4.2606 4.2628 4.2923 4.2890 5 4.2585 4.2561 11 4.2936 4.2384 12 4.2954 6 4.2387 LIEST THERMUCUUPLE DUTPUT (MV) $TT(I_{1})$ $TT(I_{j}1)$ Ι $TT(I_{j}1)$ TT(1,2)I 4.3063 7 4.2928 4.2112 4.2760 1 4.3105 8 4.2957 2 4.2577 4.2591 4.3283 9 4.3047 3 4.2753 4.2806 4.3339 4 4.2781 4.2812 10 4.3106 5 4.2905 4.4675 4.5483 4.2832 11 4.5744 4.2749 12 4.4770 6 4.2719 DIFFERENTIAL PRESSURE -FLOWMETER (IN,) = 0.500 FLOWMETER LEMP (MV) = 0.9405 BULK EXIT TEMP (MV) = 4.9550 INLET PRESSURE MAN , LEFT 6.80 RIGHT 7.00 IN. HG INLET BULK TEMP CR-AL = 19.485 STATIC PRESSURE DROP (IN.) PO-P2 = 0.262 P1-P2 =0.054 P2 - P3 =0.092 0.216 P2 - P6 =0.311 0.140 p2-p5 =P2-P4 = p2-p7 = 0.350 RED MANDMETER FLUID SP GR 0.826 INLET TEMPERATURE (DEG. F) = ____ 888.21 TW/TU = 0.498 MACH ND. = 0.019 PR = 0.741920 REYD = 1663.6 TBULK TW/TB (RE)M X + (X+)M Ũ+ NUM DEG. F. 0.2023 243.33 0.954 2382.3 0.2739 0.0579 0.900 2287.5 0.0915 4-4-4-4-4-5 286.22 0.2210 0.1701 2184.5 0.837 3-4735 341.80 0.1681 0.1357 0.1203 2:65.4 0.1152 0.0981 0.2001 3-4517 416.65 0.767 1926.9 0.0623 0.0565 0.4454 4.6152 526.37 0.682 7.7514 745.64 0.565 1/39.9 0.0094 0.0092 1.4193 NON DIMENSIONALIZED PRESSURE DROP Χ+ P +0.0123 0.223 0.0415 0.409 0.0944 0.727 0.1473 0.894 2002.0 1.161 0.2532 1,490 0.2824 1.625 THUR TB/TL FP(RE)4 $(\mathbf{r} \in \mathcal{H})$ X+ (x+)M F F(RE)M FP DEG F 12.56 1723.3 166.5 0.547 21.32 0.0123 0.0121 0.01237 0.00729 50%.1 0.629 11.27 1242.8 18,22 0.00612 0.0415 0.0391 0.00938 465.2 0.726 1996.8 0.0944 0.0030 0.00598 13.94 0.00501 10.00 376.0 0.604 5150.3 0.1473 0.00718 15.25 0.00576 12.23 0.1222 2.35.1 312.0 0.870 ڡڔ؋ۑڹ؞ۅ 0.2002 0.1579 20-44 0-00744 2414.3 63.4 0.929 1-9-04 1.7 22 0.2532 0.1910 241.3 0.958 2383.4 19,56 1-7-1-4 0.2824 0.2085

	SIMULTAN TARE TES TARE THE	EQUS DEVEN T TAKEN FO RMUCHUPLE	LOPMENT ROM RUN DUTPUT	TEST NO NO. 38 (MV)	. 39			303.
	Ī	TA(1,1)	TAIL	2) I.	TA(1)1) т	A(1,2)	
	٦	4.2515	4.25	48 7	4.260	1 4	.2629	
-	2	4 2418	4.23	81 8	4.259	4 4	.2622	
	2	4.2601	4.26	05 9	4.257	7 4	.2544	
	4	4.2628	4.26	06 10	4.259	2 4	.2584	
	5	4.2585	4.25	61 11	4.289	0 4	. 2923	
	6	4.2387	4.23	84 12	4.293	6 4	.2954	
• .•	TEST THE	RMUCHUNE	BUTDAT	(MV)			• ·	
	I III.	TT(1,1)	TT(I	,2) I	TT(1,1) т	T(I,2)	
	1	4-2690	4.27	35 7	4.289	3 4	.3015	
	2	4.2559	4.25	69 8	4.291	9 4	.3062	
	3	4.2725	4.27	75 9	4.300	0 4	.3210	
	<u> </u>	4.2765	4.27	99 10	4.306	6 4	.3273	
•	5	4.2811	4.28	73 11	4.434	7 4	.5069	
	6	4.2708	4.27	35 12	4.447	1 4	.5371	
	DIFFEREN	TIAL PRES	SURE -F	LOWMETER	$(IN_{*}) =$	0.452	_	
	FLOWMELE	R LEMP (M	V) = 0	9432 BUI	K EXIL T	EMP (MV) = 5.20	525
	INLET PR	ESSURE MAI	N . LEF	1710_1	RIGHT 7.	30 IN.	HG	
	INLET. BU	LK TEMP CI	R-AL= .	19.738				
	STATIC P	RESSURE DI	ROP (IN	•)				
	P0-P2 =	0.215 P.1.	-P2 = 0	0.043 P2.	$-P_3 = 0_{+}$	075		
	P2-P4 =	0.114 P2.	-P5 = 0	0.169 P2:	-P6 = 0.	219		
	P2 - P7 = 0	.0.257				.		
	RED MAND	METER ELU	ID SP. GI	R 0.826				
	INLET IE	MPERATURE.	(DEG.)	F)=	899. 05			
	TW/TO =		MACH .ND	. = .0.0	17			
	PR = 2.7	43367_REY	D.=14	499.1				
	X +	(X+)M	0+	NUM	Талк	TWZTB	(RT) 14	
					DEG. E.			
	0.3034	0.2265 -	0-0514	4-8434	254.36	0.938	2129.3	
	0.2448	0.1902 4	0.0905	4-1572	297.83	0.886	2048.0	
	0.1862	0.1514	0.1060	7-41-2	353.08	0.826	1956.6	
	0.1276	0.1093 (0.1810	2-9778	427.08	0.758	1353.1	
	0.0690	0.0628	0.3920	3.9770	535.23	0.676	1132.6	
	0.0104	0.0.01	1.2694	6.3863	752.38	0.561	1568.5	
	NON DIME	NSIDNALIZI	ED PRES	SURE DROI	<u> </u>			
	X+							
	0.0136	0.235						
	0.0460	0.418						
	0.1046	. 0.740	·					
	0.1632	0.906						
	0.2218	1.143						
	0.28€4	1.354						
	0.3127	1.517						
	X+	(X+2N	F	F(RE)M	- FP	FP(RE)	N (RE)M	UEG F
	0.0136	0.0134	0.01142	17.74	0.00638	9.91	1553.6	175.3 0.544
	0.0460	0.0433	0.00998	16.56	0.00627	10.41	1659.1	615,8 0,625
	0.1046	0.0924	0.00736	13.20	0.00545	9.78	1/93.3	474.9 0.719
	0 16 3 2				5 - 5 - 1 - 1	0 3/	1004	207 0 0 792
		()) 50 1 (0.00626	11.91	0.00490	フ・フリ	エンビイ・エ	20140 04142
	0.2218	0.1764 (0.00626	11.91	0.00490	9.24 10.61	2001.0	323.5 0.858
	0.2218 0.2804	0.1363 (0.1764 (0.2137 (0.00626 0.00674 0.008.13	11.91 13.49 17.33	0.00490 0.00530 0 .0072 6	9.54 10.61 15.16	2001.0	323.5 0.858 275.0 0.914

SI TA	MULTAN	EDUS DEV 1 TAKEN RM (COURT	ELOPMENT FROM RUN	TEST ND. ND. 38 (AV)	40			304.
1 1	I	TA(1 ,1)	TA(I)	2) 1	TA(I)1) т	A (I • 2)	
•	1	4.2515	4.254	48 7	4.260	1 4	.2629	
	2	4.2418	4.238	31 8	4.259	4 4	.2622	
	3	4.2001	4.260)5 9	4.257	7 4	.2.544	
	4	4.2028	4.260	06 10	4.259	2 4	.2584	
	5	4.2585	4.250	51 11	4.289	0 4	•2923	
	6	4.2387	4.238	34 12	4.293	6 4	.2954	
, TE	ST THE I	RMUCUUPL TT(I,1)	E DUTPUT TT(I)	(MV) ,2) I	TT(I)1) т	1([,2)	
	1	4.2700	4.270	5 7	4.285	9 4	.2973	
	2	4.2579	4.25	79 8	4.291	5 4	.3046	
	3	4.2724	4.27	54 9	4.298	0 4	.3158	
	4	4.2761	4.28(04 10 .	4,304	94	.3231	
	5	4.2813	4.285	52 11	4 • 431	2 4	•498() F = D :	
	6	4-2695	4.272	29 12	4.443	0 4	• 5295	
U I	FFEREN	TTAL PRE	SSURE -FL	JWMEIEK (0.402 EMP (MV) - 4.96	505
፦ L.		К ГЕМР (Геспор м	$M(V) = U_0$,9492 BULK 1 7 50 01		GAR AND	/ ~ च∎.७0 सि	12.1
	1661 PK	ESDUKE M	ANLI LEFI Criati -	20.009	oni i.	GO IN•		
10 S T	ATIC P	KESSJRE	DROP (IN.	.)				
9 0 P 0	-P2 =	0.169 P	1 - P2 = (027 P2-P	3 = 0.	070		
P2	-P4 =	0.100 P	2 - P5 = 0	0.160 P2-P	6 = 0.	216		
P 2	2-p7 ∸	0.238						
RE	D MAHD	MELER FL	UID SP GA	0.826				
I	ILET TE	MPERATUR	E (DEG. F) = 91	0.65			
15	//[[] = 7	0.490	MACH ND	= 0.012				
рк	: = 0•/	44722. <u>K</u> E	YD = 13	0.0.0.1				
	X+	(\ +) M	0+	NUM D	TBULK DEG. F.	1W/T8	(PE)M	
0	.3416	0.2520	0.0419	-5-4378 -	243.61	0.953	1912•7	
C	.2756	0.2118	0.0803		285.87	0.900	1839.3	
Q	.2096	0.1687	0•0888	-2-++++- <u>+</u> - <u>+</u> - <u>+</u>	340.05	0.839	1756-9	
0	.1436	0.1,19	0.1618		412.70	$() \cdot 770$	1663•4	
0	$) \cdot 0 / / /$	0.0/01	0.3426	3.1271	219+10	0.566	12923+4	
C	•0117	(, 0)	1+1798	0.000	142.00	()•)00	1 7 7 • 2	
NÇ	IN DIME X+	NSINUALI P+	ZED PRESS	SURE DROP				
0	.0153	0.275						
Q	.0518	0.423						
Q	.1178	0.806						
Q	1838	0.969	•					
Q	.2497	1.297						
Ú	-3157	1,604						
0)• 3222 V 1	1.721	r	E(DE)M	E D	FP(RE)		танык тв/т
	**	174719	r	E V K E V P			i trazin	DEG F
0	0.0153	0.0151	0.01117	15.48 0	.00587	8.14	1385+0	166.5 0.548
C	.0518	0.0485	0.00936	14,64 0	.00599	8,90	1485,3	500.8 0.633
C	•1178	0.1030	0.00817	13.14 0	.00625	10.06	1609+1	459,9 0.730
C	.1838	0.1519	0.00836	14.30 O	.00702	15.01	1709.6	373.3 0.806
Q	.2497	0.1.2.65	0.00935	16.80 0	.00787	14.15	1797.0	311.1 0.871
0	.3157	0.2079	0.00913	17.11 0	.00804	15.08	1010 0	203.4 0.929 961 6 6 660
C	.3522	0.2596	(1+1)() 7 16	╻<u>╫</u>╺┽┥ ╋			1213+0	C41+0 0+930

		••• •• •• ••			
		-			
SIMULTAN TARE TES TARE THE	HEDUS DEVELOPM ST FAKEN FROM	ENT TEST ND. RUN ND43 Put (MV)	41		305.
I		A(1,2) I	TA(1,1)	ΤΛ(Ι,2)	
1	4.2020 4	.2628 7	4.2620	4.2642	
2	4.2484 4	.2461 8	4.2638	4.2660	
3	4.2640 4	,2648 9	4.2650	4.2512	
4	4.2679 4	.2664 10	4.2667	4.2656	
· 5	4.2572 4	$\frac{2555}{12}$	4.2904	4.3000	
TEST THE	4 • <u>2 2 7 0</u> • 4 • <u>2 2 7 0</u> • 4 • <u>7 6 2 7 •</u> 11 1	•6271 X4 Ndt (MV)		1 • 2 9 • 2	
I		T(1,2) I	TT(I,1)	T.L.(T • 5)	
1	4.2643 4	.2677 7	4.2800	4.2879	
2.	4.2521 4	,2513 8	4.2829	4.2930	
3	4.2644 4	.2705 9	4.2903	4.3046	
4	4.2.7.19 4	.27.41 10	4.2972	4.3130	
5	4.2774 4	+2811 11	4.4124	4.4005 4.5025	
	4.20/0 4	• 2009 12	(1 + 9 + 9 + 1)	4 • 2929 251	
	R TEMP (MV) =	0.9462 KUI	K FXII TEMP	(MV) = 4.69	32
INLET PR	tessure man .	LEFT 7.80 P	RIGHT A.OU	IN. HG	
TNLET BU	ILK.TEMP_CR-AL	= 19.223	·		
STATIC	RESSURE DROP	(IN.)			
PO - P2 =	0.135 P1-P2	= 0.000 P2-	$-P_3 = 0.052$		
P2-P4 =	0.092 P2-P5	= 0.122 P2-	-P6 = 0.163		
p2-p7 =	0.191		and the second		
RED MANU	MELER FLUID S	P GK V.829	74 07		t.
19621.16	MPERALURE(UE	u• r./	1./0.//		
n p = 0.7		1170.5	1, 6,		
PiX = ⊊▲1	INTERCIPSE				
X+	<u>(X+)M</u> Q+	NUM	TBULK TW,	(RE)M	
0.3901	0.2854 0.03	41 6.3012		967 1687.9	
0.3147	0.2395 0.08	14 5.2597	272.67 0.9	916 1625.8	
0.2394	0.1908 0.06	25 2.0650	325.43 0.0	854 1553+0	
0.1640	0.1382 0.11	97 2.26.14	398.20 0.	783 1465+0	
0.0887	0.0197 0.31	62 3.4842	207.21 0.6	595 1306+8 576 1997 7	
0.0133	0.0130 1.03	10 2.1448		DIU 1281•1	
HON DIGE	NSIDNALIZED P	RESSURE DROP))		
<u>Λ</u> Λ17⊨	<u>ሥ</u> ተ . & ຮຽα		•		
0.0172	504				
0.1345	2.886 IF	K IN MANOME	TER		
0.2098	1.191				
0.2852	1.4.8				
() • 3 6 0,5	1/72				
0+4021	1.929				דיניתי שוווא
X +	(X+)M F	r(PE)M	. FK FP	VKE779 VPE779 [NG F
0.0175	0.0172 N.00	29\$ 3.6\$ -	-Q.00232 \-2.	.87. 1.215.3	153.6 0.554
0.0591	0.0553 0 00	7:/4 \9.1/3	00364 4.	.7/4 1304.6	,89.7 ().64()
0.1345	0.1170 0.11	104 1 . 13	0.00/03 12.	<u>-24 1418.2</u>	446.1 0.742
0 • 2098	0.1720 .0.0	896 13X38	0.0(743 11)	(22 15)(+3	578.5 0.921 207 0 0 204
0.2852	0.2222 0.70	$\sqrt{32}$ 19.83	0.00125	1056 D	251.4 0.945
0.3605	0.2041 0.01		01120 R	17.88.7	231.2 0.972
U • 9 U Z L	- ハ・ビュュア - A・ハ下	にまい モンドキングサー	CIATERU 100		

•-

SIMULTANE	EDUS DEVELOP	MENT TEST ND.	42		306.
TARE TEST	IAKEN FROM	1 RUN ND. 43			
TARE THER	MUCUUPLE DU	JTPUT (MV)	ΤΛ(Γ.))	ΤΛ(Ι.2)	
	ALLI	TA(1)21 1			
1	4.2020	4.2628 7	4.2620	4.2642	
2	4.2484	4.2461 8	4.2638	4.266()	
3	4.2640	4.2648 9	4.2650	4.2612	
4	4.2079	4.2664 10	4 • 2667	4.2000	
5 S	4.2272	4,2000 II A 0301 10	4.2989	4.3015	
	MUCLUPIE DI				
III	T(I,1)	TT(1,2) I	TT(1,1)	TT(1,2)	
١	4 2(6)	4 2625 7	6 2779	4.2356	
L 2	4.2532	4.2520 8	4.2830	4.2925	
3	4.2706	4.2727 9	4.2880	4.2988	
4	4.2745	4.2752 10	4.2949	4.3076	
5	4.2652	4.2664 11	4.4018	4.4491	
6	4.2454	4.2486 12	4,4158 (IN) = 1, 20	4•4878 0	
	TERB (MV) TAL PRESSUR	= 0.9510.8UL1	K FXIT TEMP (MV) = 4.2465	
INLET PRE	SSURE MAN	LEFT 8.10 R	IGHT 8.30 IN	• HG	
INLET BUL	K TEMP CR-A	AL = 19.269	• ···		
STATIC PR	RESSURE DROP	P ((IN,))			
PO-P2 =	0.024 P1-P2	2 = 0.024 P2-1	$P_3 = 0.032$		
PZ-P4 =	0.1.4	= 0.091 P2-1	PD = 0.134		
	V+144 18188 BLUTD	SP GR 0.826			
INLET TEM	1PERATURE (C)EG. F) = 8'	78.94		
IW/TU =	0,501 MAC	$H_{\rm MD} = 0.010$	0		
PR = 0.74	10999 REYD =	: 999,3			
X +	$(\lambda +)M$ $\ddot{Q} +$	F NUM	TBULK IW/T	B (RF)M	
	· · · · · · ·		DEG. F.		
0.4568	0.3282 0.0)226 17-3350	216.07 0.99	2 1466 • 5	
0.3685	0.2757 0.0	319 -2-9262	255.34 0.93	8 [4]]•2	
0.2803	0.1592 0.0	$\frac{1540}{127} - \frac{4789}{789}$	375.83 0.80	3 1274.5	
0.1038	0.0920 0.2	577 3.1961	479.90 0.71	5 1187.0	
0.0156	0.0151 0.9	203 5.5040	702.05 0.58	4 1060.3	
	APTOLEVIZED	PRESSURE DRUP			
0.0205	0.225				
0.0692	0.472		••		
0.1574	0.805				
0.2457	1.171	• · · · · · ·			
0.4221	. L#410 1 850	· · · ·			
0.4709	1.956	• · · • ·			
X+	(x+)M	F F(RE)M	FP PP	E)M (RE)M TE	. ИСК ТВИТ
0.0205	0 0 200 0 0	1450 15 20 3	1-00894 9-4	DEG 7 1048-4 725	r (.) 0.566
0.0692	0.0639 0.0)1203 13.62 (0.00800 9.0	5 1131.8 55	,9 0,659
0.1574	0.1349 0.0	0913 11.25	0.00720 8.8	/ 1231.8 421	.5 0.762
0.2457	0+1981 0+0	0954 12.51 (0.00823 10.7	9 1311+1 338	0.0.842
0.3339	0.2559 0.0)1120 15.44(0.00973 = 13.4	2 13/3.9 2/9	··U U·909
0.4221	0.3097 0.0	11004 10+10 (10401 <u>9-70</u> -0	0.00751 13.0	ս լարորեցացի չ17	.2 0.997
マ・マイシス	・ しょうしつ エー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		ショー マンチャンチョー ニートリート (4)		-

.

SIMULTANEQUS DEVELOPMENT TEST NO. TARE TEST TAKEN FROM RUN NO. 43 TARE THERMOCOUPLE OUTPUT (NV)	. 43		307.
I [TA(I,1)] [TA(I,2)]	TA([,1)	ΤΑ(Ι,2)	
1 4.2620 4.2628 7	4.2620	4.2642	
2 4.2484 4.2461 8	4.2638	4.2660	
3 4.2040 4.2648 9	4.2650	4.2612	•
4 4.2079 4.2664 10	4.2667	4.2656	
5 4.2572 4.2555 11	4.2964	4,3000	
6 4.2390 4.2391 12	4.2989	4.3015	
FEST THERMOCHUPLE DUTPUT (MV)	····	77112 21	
	1111911	11() #21	
1 4.2627 4.2644 7	4.2724	4.2789	
2 4.2486 4.2476 8	4.2768	4.2850	
3 4.2077 4.2706 9	4.2839	4.2929	
4 4.2711 4.2714 10	4.2907	4.3012	
5 4.2621 4.2641 11	4.3892	4.4325	
6 4.2468 4.2470 12	4.4065	4.4715	
DIFFERENTIAL PRESSURE -FLOWMETER	$(IN_{\bullet}) = 0.252$		
FLOWMETER [EhP (HV) = 0.9521 BUL	K EXIL LEMP (A	IV) = 4.3865	
INLE PRESSURE MAN , LEFT 8.50 P	(IGH) 8 • 70 IN	, HG	
INLET BULK TIMP CR-AL $=$ 19.484	••••••••••••••••••••••••••••••••••••••		
$\frac{1}{2} \frac{1}{2} \frac{1}$	$P_{2} = 0.01$		
PO = P2 = 0 + 0.20, $PI = P2 = P3 = 0 + 0.11$, $P2 = P5 = 0 + 0.11$, $P2 = P5$	-P6 = 0.108		
$p_{2-p_{1}}^{2} = 0.122$			
RED MANUMETER FLUID_SP GR 0.826			
INLET IENPERATURE (DEG. E) = 8	383.17		
TW/TU.=0.498 MACH NO. =0.00)9		
PR = 0.741915_REYD = 837.2			
	тынк тылт	4 (RE) N	
	DEG. F.		
0.5443 0.3926 0.0188 8.0035	220.39 0.985	5 1226+3	
0.4391 0.3271 0.0349 3.5324	251.73 0.943	3 1189.3	
0.3340 0.2593 0.0363 1.6767	295.73 0.887	7 1142+6	
0.2289 0.1073 0.0895 2.2334	359.66 0.819	9 1084.0	
0.1237 0.1684 0.2144 2.9237	461.41 0.729	1008.7	
0+0186 0+0180 0+8229 5+0786	693.42 0.58	/ 893•7	
WON DIMENSIONALTZED DRESSURE DROP	- · ·		
X+ P+			
0.0244 0.697			
0.0825 0.538			
0.1876			
0.2923 1.149.			
0.3979 1.650			
0.5030 2.138			
0.5611 2.346	πρ Ε ρ /ρε	5.) (DE3M	
X+ (X+)M . F FIRE/M.		1710 (KG70) DE(S F
0.0244 0.0238 -0.00050 -0.44 -	0.00647 -5.71	L DE2+8 //	20.4 0.569
0.0825 0.0755 0.00458 4.40	0.00029 0.28	3 959,3 50	43.0 0.670
0.1876 0.1587 0.01066 11.16	0.00873 9.15	5 1047.1 40)3.5 0.778
0,2928 0.2333 0.01263 14.06	0.01137 12.66	5 1113.6 37	24.4 0.857
0.3979 0.3026 0.01284 14.97	0.01134, 13.24	2 1165.7 2	71.7 0.918
0.5030 0.3689 0.01491 18.00	A+01-21-7 16+6-	1 1/0/+3- 2.	34.7 ().967
0.5611 0.4(47 01219 14,95	0-0-1-1-4-4 -1-4	tin ntrahantanan β	19.0 0.990

308. SIMULTANEOUS DEVELOPMENT TEST ND. 44 TARE TEST TAKEN FROM RUN NO. 44 TARE THERMUCOUPLE DUTPUT (NV) TA(1,1) TA(1,2) 1 $TA(I_{J}I)$ TA(1,2) I 4.2600 7 4.2434 4.2474 4.2534 1 4.2485 4.2426 8 4.2468 2 4.2462 9 4.2591 4.2546 4.2614 3 4.2621 4.2583 10 4.2603 4 4.2650 4.2061 4.3068 5 4.2651 11 4.3038 4.2047 4.3030 4.3076 12 4.2573 4.2524 6 TEST THERMOCOUPLE DUTPUT (MV). TT(1,2) $TT(I_{J})$ I $TT(I_{j}1)$ $TT(I_2) I$ 7 4.3007 4.3199 4.2700 4.2761 1 8 4.2981 4.3201 4,2578 4.2555 2 9 4.3630 4.3268 3 4.2/56 4,2837 4.3570 4.3222 4 4.27.96 11 4.5335 4.6596 5 4.2982 4.2871 4.6564 4.5178 4.2795 12 6 4.2725 DIFFERENTIAL PRESSURE -FLOWMETER (IN.) = 0.508 FLUWMETER TEMP (MV) = 0.9780 BULK EXIT TEMP (MV) = 5.4841 INLET PRESSURE MAN , LEFT 4.70 RIGHT 4.85 IN. HG INLET BULK TEMP CR-AL = 27.375. STATIC PRESSURE DREP (IN.) 0.310 pl-p2 = 0.053 p2-p3 =0.083 $\rho 0 - p2 =$ 0.155 p2-p5 = 0.219 p2-p6 =0.285 $p_{2}-p_{4} =$ $p_{2-p_{7}} =$ 0.331 BLUE MANUMETER FLUID SP GR 0.797 INLET TEMPERATURE (DEG. F) = ___1213.49. TW/TO = 0.401 MACH NO. = 0.023 PR = C. 752584 REYD = 1599.6 NUM (X+)M Q+ TBULK TW/TH - (RF) H X+ DEG. F. 0.924 2357.4 266.27 0.2667 0.2047 3-0412 2224.8 0-1-1-3-4 4-,-3960 332.97 0.847 0.2151 0.1751 3-4394 417.28 0.765 2487.6 0.1417 -<u>0-1-4-4</u>+3 0.1636 1346+3 528.31 0.681 0.2288 3.1752 0.1121 0.10341:00.1 687.56 0.587 0.4964 4.1730 0.0606 0.0594 1.6269 7.3769 1000.08 0.469 1640.6 0.0091 0.0193 NON DIMENSIONALIZED PRESSURE DROP p., X+ 0.0120 0.136 0.04.14 0.206 . . 0.0919 0.471 0.1434 0.648 0.1949 0.807 0.2465 0,969 0.2749 1.083 TEULK 18/11 F(RE)M FP FP(RE)N (PE)N £ X+ (x+)M DLG F 6.75 1621.9 1032.7 0.450 16.45 0.00414 0.0120 0.0122 0.01010 7,84 204.5 0.531 1721.5 15.67 0.00455 0.0407 0.00910 0.0404 599.1 0.634 8,60 1871.7 0.00460 0.0875 0.00709 13.27 0.0919 465.4 0.724 2115.0 9-96446 -H-CH-0.1434 0.1283 2154.1 372.3 0.801 +0-1+ 0.1949 0.1638 1 to a factor of the second 9-104-13--() - () for d () 297.6 0.887 +3.9+ 2281.8 0.1950 ╺<u></u><u>╋</u>╼╤╎╼╗╌<u></u>╪<u></u>╋┥<u></u>┱╼ 0.2465 2361.1 263.0 0.929 0.2749 0.2106 manth H

SIMULTAN	IEDUS DEVEL	OPMENT I	ESI AU.	45			309.
TARE TES	ST TAKEN FR	UM RUN 1	NÚ				
FARE THE	RMOCOUPLE	OUTPUT ((MV)				
T	ΤΛ(Τ.1)	ΤΛ(Τ.)	>) T	TA(1.1)) Т.	(1,2)	
▲ ·	(14/13/11)	1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	F				
•			······································	1 2/2/		3/7/	
1	. 4.2534	4.2600)	4.2434	• 4	2414	
2	4.2.62	. 4.2426	<u> 8 </u>	4,2468	3 4	2485	
3	4.2021	4.2614	9	4.2591	4	2540	
- 4	4 2661	4.2650) 10	4.2603	3 4	2588	
5	A 3647	4 2651	1	4 3038	3 4	3068	
	4.2041	4,2971	k) (†) (†	2020	
6 .	4.25/3	4.272'	• <u>1</u> <u>4</u>	4.0000	, 4	2010	
L. TEST THE	ЕКМЫСЫШРЦЕ		({ { } / / / / / / / / / /				
I	TT(I,1)	- TT(I)	<u>} 1</u>	<u></u>) T	T(1)2)	
1	4.2692	4.2686	5 7	4.2899) 4	3060	
1 7	4 3.0E	- 4 2520	·	4 2012	> 4	3098	
<i>L</i>	4,2402		/O	4 23/16		3460	
. 3	4,2706)	4,3101	Ļ 4.	2408	
4		4.2794	H <u> </u>	4.3142	2	3434	
5	4.2801	4,2887	7 11	4.5140	> 4	6271	
6	4.2665	4.2724	+ 12	4.4949) 4	6291	
OTEEDEN			NAMETER ((TN) =	0.452		
	HITAT BREDD	UKEFLL	INFIGLED_ 3	\.∦!\.∎ 4		5 37	3.
FUNMELE	R LEAP MY	1	1829 BUL			i <u>≃</u> 2•34	20
INLET PH	ESSURE MAN	J LEFI	5.00 R	IGHT 5.2	25 IN. 1	16	
INLET AL	ILK TEMP CR	=AL =	27220				
STATIC	RESSURE DR	OP (IN.))				
00.00	A 2. F 01	02 - 0	034 02-0	23 - 0.0	168		
PU-r2 -		$P_{1}Z_{1} = 0$	175 13		117		
P2-P4 =	0.12/_P2-	P2=0.	<u>112. r.c.</u>	20 = 0.0			
p2-p7 ≞.				<u></u>			
BLUE MAN	KIMETER CLII	ID SP GR	0.797				
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	تاهية بناي الجينة. التيلا سية	Na uN Rati ≮ Louis				
INLET TE	MPERATURE	(DEG. F)	= 120	.46			
INLET TE	MPERATURE	(DEG. F)	= 120	7.46	 		
INLET TE TW/TO =	MPERATURE	(DEG. F) ACH ND.	= 0.020)7 .46	· · ·		
INLET TE TW/TO =_ PR =_017	MPERATURE 0.402 M 251528 REYD	(DEG. F) ACH NO. .= 142	= 120 = 0.020 22.8)7.46	• • • • • •		
INLET TE TW/TO =_ PR =0.7	MPERATURE 0.402 M 151528 REYD	(DEG. F) ACH ND. _= 142	= 120 = 0.020 22.8	07.46	· · · ·	D - :) M	
INLET TE TW/TD =_ PR =_0.7 X+	MPERATURE 0.402 M 251528 KEYD (X+)M	(DEG. F) ACH ND. = 142 Q+	= 120 = 0.020 22.8	7.46 7 7.8ULK	TW/TR	(RE)M	
INLET TE TW/TO = PR =0.7 X+	MPERATURE 0.402 M 251528 KEYD (X+)M	(DEG. F) ACH ND. = 142 Q+	120 = 0.020 22.8	7.46 7 7BULK 2EG, F.	TW/TB	(RE)M	
INLET TE TW/TD = PR =0.7 X+	MPERATURE 0.402 M 251528 REYD (X+)M	(DEG. F) ACH ND. = 142 Q+	= 120 $= 0.020$ 22.8 NUM $= 1.4207$	27.46 2 TBULK 2EG.F. 261.78	TW/TR 0.929	(RE)M	
INLET TE TW/TD = PR =0.7 X+	MPERATURE 0.402 M 251528 REYD (X+)M 0.2292 C	(DEG. F) ACH ND. = 142 Q+	= 120 $= 0.020$ 22.8 NUM $= 1.4207$	7.46 TBULK DEG, F. 261.78	TW/TB 0-929	(RE)M 2104-9	
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 G	(DEG. F) ACH ND. = 142 Q+ .0133 .038	$= 120$ $= 0.020$ 22.8 NUM $= 1.4207$ $\frac{1.4207}{(.1953)}$	7.46 TBULK DEG, F. 261.78 326.38	TW/TB 0-929 0.853	(RE)M 2104-9 1989-1	
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 G 0.1586 0	(DEG. F) ACH ND. = 142 Q+ •••133 ••••38 •1247	$= 120$ $= 0.020$ 22.8 NUM $= 1.4207$ 1.4207 $\frac{1.4207}{2.9927}$	D7.46 DEG.F. 261.78 326.38 409.95	TW/TR 0-929 0-853 0-772	(R[)M 2104-9 1989-1 1966-0	
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1586 0 0.1159 0	(DEG. F) ACH ND. = 142 Q+ .0133 .038 .1247 .1872	= 120 $= 0.020$ 2.8 NUM $= 1.4237$ 4.1053 2.9927 2.9927 2.9927	D7.46 DEG.F. 261.78 326.38 409.95 522.05	TW/TB 0-929 0-853 0-772 (1-685	(RE)M 2104-9 1989-1 1966-0 1736-9	
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0	(DEG. F) ACH ND. = 142 Q+ .0133 .038 .038 .1247 .1872 .4548	= 120 $= 0.020$ 2.8 NUM $= 1.4237$ 4.1853 2.9927 2.46459 3.8285	TBULK DEG, F. 261:78 326:38 409:95 522:05 684:90	TW/TB 0-929 0-853 0-772 (-685 0-588	(RE)M <u>2104-9</u> <u>1989-1</u> 1966-0 1736-9 1602-4	
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0	(DEG. F) ACH ND. = 142 Q+ .0133 .0338 .038 .1247 .1872 .4548 .4548 .4548	= 120 $= 0.020$ 2.8 $= 0.020$ 2.8 $= 0.020$ 2.8 $= 0.020$ $= 0.020$ $= 0.020$ $= 0.020$ $= 0.020$	TBULK DEG, F. 261:78 326:38 409:95 522:05 684:90	TW/TB 0-929 0-853 0-772 0-685 0-588 0-467	(R[)M <u>2104-9</u> <u>1089-1</u> 1066-0 1736-9 1602-4 1957-8	
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0104 1	(DEG. F) ACH ND. = 142 Q+ •0133 •0338 •1247 •1872 •4548 •4619	= 120 $= 0.020$ 2.8 $= 0.020$ 2.8 $= 0.020$ 2.8 $= 0.020$ $= 0.020$ $= 0.020$	D7.46 DEG, F. 261.78 326.38 409.95 522.05 684.90 1003.81	TW/TB 0-929 0-853 0-772 0-685 0-588 0-467	(RE)M 2104-9 1089-1 1066-0 1736-9 1602-4 1457-8	
INLET TE TW/TD = PR = 0.7 X+ 0.3002 0.2422 0.1842 0.1842 0.1262 0.0682 0.0102	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0104 1	(DEG. F) ACH ND. = 142 Q+ .0133 .033 .033 .1247 .1872 .4548 .4619	$= 120$ $= 0.020$ 2.8 NUM $\frac{1.4207}{4.1053}$ $\frac{2.9927}{2.6459}$ 3.8285 6.5485	D7.46 DEG.F. 261.78 326.38 409.95 522.05 684.90 1003.81	TW/TB 0-929 0.853 0.772 (0.685 0.588 0.467	(RE)M <u>2104-9</u> <u>1089-1</u> 1066-0 1736-9 1602-4 1457-8	
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NDN DIME	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0104 1 N\$10:ALIZE	(DEG. F) ACH ND. = 142 Q+ .0133 .033 .033 .1247 .1872 .4548 .4619 D PRESSU	120 = 0.020 2.8 NUM 1.4207 4.1853 2.9927 2.4459 3.8285 6.5485 JRE DRDP	D7.46 DEG.F. 261.78 326.38 409.95 522.05 684.90 1003.81	TW/TB 0-929 0.853 0.772 (.685 0.588 0.467	(RE)M <u>2104-9</u> <u>1089-1</u> 1066-0 1736-9 1602-4 1457.8	
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NDN DIME X+	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0104 1 N\$10:ALIZE P+	(DEG. F) ACH ND. = 142 Q+ .0133 .0338 .1247 .1247 .1872 .4548 .4619 D PRESSU	120 = 0.020 2.8 NUM 1.4207 4.1053 2.9927 2.6459 3.8285 6.5485 JRE DRDP	D7.46 DEG.F. 261.78 326.38 409.95 522.05 684.90 1003.81	TW/TB 0-929 0.853 0.772 (0.685 0.588 0.467	(R[)M <u>2104-9</u> <u>1089-1</u> 1066-0 1736-9 1602-4 1457.8	
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NDN DIME X+ 0.0135	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0104 1 N\$10:ALIZE P+ 0.169	(DEG. F) ACH ND. = 142 Q+ .0133 .033 .033 .033 .1247 .1872 .4548 .4619 D PRESSU	= 120 = 0.020 2.8 NUM 1.4207 4.1853 2.9927 2.6459 3.8285 6.5485 JRE DRDP	D7.46 DEG.F. 261.78 326.38 409.95 522.05 684.90 1003.81	TW/TB 0-929 0.853 0.772 0.685 0.588 0.467	(R[)M <u>2104-9</u> <u>1089-1</u> 1066-0 1736-9 1602-4 1457.8	
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NDN DIME X+ 0.0135 0.0455	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0104 1 N\$10:ALIZE P+ 0.169 0.283	(DEG. F) ACH ND. = 142 Q+ .0133 .033 .033 .033 .1247 .1872 .4548 .4619 D PRESSU	= 120 = 0.020 2.8 NUM 1.4207 4.1853 2.9927 2.6459 3.8285 6.5485 JRE DRDP	D7.46 DEG.F. 261.78 326.38 409.95 522.05 684.90 1003.81	TW/TB 0-929 0.853 0.772 0.685 0.588 0.467	(RE)M <u>2104-9</u> <u>1089-1</u> 1066-0 1736-9 1602-4 1457-8	
INLET TE TW/TD = PR = 0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NDN DIME X+ 0.0135 0.0455	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0104 1 N\$10:ALIZE P+ 0.169 0.283	(DEG. F) ACH ND. = 142 Q+ .0133 .033 .033 .1247 .1872 .4548 .4619 D PRESSU	= 120 = 0.020 2.8 NUM 1.4207 4.1853 2.9927 2.6459 3.8285 6.5485 JRE DRDP	D7.46 DEG.F. 261.78 326.38 409.95 522.05 684.90 1003.81	TW/TB 0-929 0.853 0.772 0.685 0.588 0.467	(RE)M <u>2104-9</u> <u>1089-1</u> 1066-0 1736-9 1602-4 1457-8	
INLET TE TW/TD = PR = 0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NDN DIME X+ 0.0135 0.0455 0.1035	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0104 1 N\$10:ALIZE P+ 0.169 0.283 0.499	(DEG. F) ACH ND. = 142 Q+ .0133 .033 .033 .1247 .1247 .1872 .4548 .4619 D PRESSU	= 120 = 0.020 2.8 NUM 1.4207 4.1853 2.9927 2.6459 3.8285 6.5485 JRE DRDP	D7.46 DEG.F. 261.78 326.38 409.95 522.05 684.90 1003.81	TW/TB 0-929 0.853 0.772 0.685 0.588 0.467	(RE)M <u>2104-9</u> <u>1089-1</u> 1066-0 1736-9 1602-4 1457-8	
INLET TE TW/TD = PR = 0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NDN DIME X+ 0.0135 0.0455 0.1035 0.1615	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0667 0 0.0104 1 N\$10:ALIZE P+ 0.169 0.283 0.499 0.687	(DEG. F) ACH ND. = 142 Q+ .0133 .0938 .1247 .1872 .4548 .4619 D PRESSU	= 120 = 0.020 2.8 NUM 1.4207 4.1853 2.0459 3.8285 6.5485 JRE DRDP	D7.46 DEG.F. 261.78 326.38 409.95 522.05 684.90 1003.81	TW/TB 0-929 0-853 0-772 0-685 0-588 0-467	(RE)M 2104-9 1089-1 1066-0 1736-9 1602-4 1457-8	
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NDN DIME X+ 0.0135 0.0455 0.1035 0.1615 0.2195	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0104 1 N\$10:ALIZE P+ 0.169 0.283 0.499 0.687 0.842	(DEG. F) ACH ND. = 142 Q+ •0133 •0738 •1247 •1872 •4548 •4619 D PRESSU	= 120 = 0.020 2.8 NUM 1.4207 4.1853 2.9927 2.6459 3.8285 6.5485 JRE DRDP	D7.46 DEG.F. 261.78 326.38 409.95 522.05 684.90 1003.81	TW/TB 0-929 0.853 0.772 0.685 0.588 0.467	(R[)M <u>2104-9</u> <u>1089-1</u> 1066-0 1736-9 1602-4 1457.8	
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NDN DIME X+ 0.0135 0.0455 0.1035 0.1615 0.2195 0.2774	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0104 1 N\$10:ALIZE P+ 0.169 0.283 0.499 0.687 0.842 1.038	(DEG. F) ACH ND. = 142 Q+ •0133 •0738 •1247 •1872 •4548 •4619 D PRESSU	= 120 = 0.020 2.8 NUM 1.4207 4.1853 2.9927 2.6459 3.8285 6.5485 JRE DRDP	D7.46 DEG.F. 261.78 326.38 409.95 522.05 684.90 1003.81	TW/TB 0-929 0.853 0.772 0.685 0.588 0.467	(R[)M <u>2104-9</u> <u>1089-1</u> 1066-0 1736-9 1602-4 1457.8	
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NDN DIME X+ 0.0135 0.0455 0.1035 0.1615 0.2195 0.2774 0.3095	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1259 C 0.1586 O 0.1159 O 0.0667 O 0.0104 1 N\$10hALIZE P+ 0.169 0.283 0.499 0.687 0.842 1.038 1.150	(DEG. F) ACH ND. = 142 Q+ .0133 .033 .033 .033 .1247 .1872 .4548 .4619 D PRESSU	= 120 = 0.020 2.8 NUM 1.4207 4.1853 2.9927 2.6459 3.8285 6.5485 JRE DRDP	D7.46 DEG.F. 261.78 326.38 409.95 522.05 684.90 1003.81	TW/TB 0-929 0.853 0.772 0.685 0.588 0.467	(RE)M <u>2104-9</u> <u>1089-1</u> 1066-0 1736-9 1602-4 1457.8	
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NON DIME X+ 0.0135 0.0455 0.1035 0.1615 0.2195 0.2774 0.3095	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0104 1 N\$10:ALIZE P+ 0.169 0.283 0.499 0.687 0.842 1.038 1.150 (X+)M	(DEG. F) ACH ND. = 142 Q+ •0133 •0738 •1247 •1872 •4548 •4619 D PRESSU	= 120 = 0.020 2.8 NUM 1.4207 4.1853 2.9927 2.6459 3.8285 6.5485 JRE DRDP	EP	TW/TB 0-929 0.853 0.772 0.685 0.588 0.467	(RE)M <u>2104-9</u> <u>1080-1</u> 1066-0 1736-9 1602-4 1457-8 (RE)M	Γωυικ ιθ/Το
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NON DIME X+ 0.0135 0.0455 0.1035 0.1615 0.2195 0.2774 0.3095 X+	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0104 1 N\$10:ALIZE P+ 0.169 0.283 0.499 0.687 0.842 1.038 1.150 (X+)M	(DEG. F) ACH ND. = 142 Q+ •0133 •0738 •1247 •1872 •4548 •4619 D PRESSU	= 120 = 0.020 2.8 NUM 1.4207 4.1053 2.9927 2.6459 3.8285 6.5485 JRE DRDP	FP	TW/TB 0-929 0.853 0.772 0.685 0.588 0.467	(RE)M <u>2104-9</u> <u>1080-1</u> 1066-0 1736-9 1602-4 1457-8 1457-8	քնՍ ԼК 18/ Т0 ԵՐՏ Բ
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NON DIME X+ 0.0135 0.0455 0.1035 0.1615 0.2195 0.2774 0.3095 X+	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0104 1 NSIDNALIZE P+ 0.169 0.283 0.499 0.687 0.842 1.038 1.150 (X+)M	(DEG. F) ACH ND. = 142 Q+ •0133 •0738 •1247 •1872 •4548 •4619 D PRESSU	= 120 = 0.020 2.8 NUM 1.4207 4.1053 2.9927 2.6459 3.8285 6.5485 JRE DRDP	FP	TW/TB 0-929 0.853 0.772 0.685 0.588 0.467 FP(RE):	(RE)M <u>2104-9</u> <u>1080-1</u> 1066-0 1736-9 1602-4 1457-8 1457-8	ТЪИЦК 18/ТО DEG F
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NON DIME X+ 0.0135 0.1035 0.1615 0.2195 0.2774 0.3095 X+ 0.0135	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0667 0 0.0104 1 NSIDNALIZE P+ 0.169 0.283 0.499 0.687 0.842 1.038 1.150 (X+)M 0.0137 0	(DEG. F) ACH ND. = 142 Q+ •0133 •033 •033 •1247 •1872 •4548 •4619 D PRESSU D PRESSU	<pre>120 = 0.020 2.8 NUM 1.4207 4.1053 2.9927 2.6459 3.8285 6.5485 JRE DRDP JRE DRDP (RE)M 13.82</pre>	FP C.00352	TW/TB 0-929 0.853 0.772 0.685 0.588 0.467 FP(RE): 5.10	(RE)M <u>2104-9</u> <u>1080-1</u> 1066-0 1736-9 1602-4 1457-8 (RE)M 1447-6	TEULK 18/TO DEG F 1036-5 0-449
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NDN DIME X+ 0.0135 0.1615 0.2195 0.2774 0.3095 X+ 0.0135 0.0455	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0104 1 NSIDNALIZE P+ 0.169 0.283 0.499 0.687 0.842 1.038 1.150 (X+)M 0.0137 0 0.0458 0	(DEG. F) ACH ND. = 142 Q+ •0133 •0738 •1247 •1872 •4548 •4619 D PRESSU D PRESSU F F •00955 •00955	= 120 = 0.020 2.8 NUM 1.4207 4.1053 2.9927 2.6459 3.8285 6.5485 JRE DRDP JRE DRDP (RE)M 13.82 13.71	FP C.00352 D.7.46 DEG.F. 261.78 326.38 409.95 522.05 684.90 1003.81	TW/TB 0-929 0.853 0.772 0.685 0.588 0.467 FP(RE): 5.10 6.63	(RE)M 2104-9 1080-1 1066-0 1736-9 1602-4 1457-8 1457-8 1457-8 1447-6 1530-6	「ひししK 18/TO DEG F 1036.5 0.449 そ04.3 0.531
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NDN DIME X+ 0.0135 0.1615 0.2195 0.2774 0.3095 X+ 0.0135 0.0455 0.2195 0.2774	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0104 1 NSIDNALIZE P+ 0.169 0.283 0.499 0.687 0.842 1.038 1.150 (X+)M 0.0137 0 0.0458 0 0.0283 0	(DEG. F) ACH ND. = 142 Q+ •0133 •0738 •1247 •1872 •4548 •4619 D PRESSU D PRESSU F F •00955 •00955 •00955	= 120 = 0.020 2.8 NUM 1.4207 4.1053 2.9927 2.6459 3.8285 6.5485 JRE DRDP JRE DRDP (RE)M 13.82 (13.71 12.39	D7.46 DEG.F. 261.78 326.38 409.95 522.05 684.90 1003.81 FP 0.00433 0.00485	TW/TB 0-929 0.853 0.772 0.685 0.588 0.467 FP(RE): 5.10 6.63 8.10	(RE)M <u>2104-9</u> <u>1080-1</u> 1066-0 1736-9 1602-4 1457-8 1457-8 1457-8 1457-6 1530-6 1668-3	TUULK 18/TO DEG F 1036.5 0.449 804.3 0.531 594.3 0.637
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NDN DIME X+ 0.0135 0.1035 0.1615 0.2195 0.2774 0.3095 X+ 0.0135 0.0455 0.1035 0.0455 0.1035 0.1035 0.1035 0.1035	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1259 C 0.1586 0 0.1159 0 0.0667 0 0.0104 1 NSIDNALIZE P+ 0.169 0.283 0.499 0.687 0.842 1.038 1.150 (X+)M 0.0137 0 0.0458 0 0.0283 0 0.1637 0 0.0458 0 0.0283 0 0.1637 0 0.0458 0 0.0283 0 0.1637 0 0.0458 0 0.04	(DEG. F) ACH ND. = 142 Q+ •0133 •0738 •1247 •1872 •4548 •4619 D PRESSU D PRESSU F F •00955 •00955 •00955	= 120 = 0.020 2.8 NUM 1.4207 4.1953 2.9927 2.6459 3.8285 6.5485 JRE DRDP JRE DRDP 13.82 (RE)M 13.82 (13.71 12.39 (12.13)	EP FP C.00352 D.00481	TW/TB 0.929 0.853 0.772 0.685 0.588 0.467 FP(RE): 5.10 6.63 8.10 8.66	(RE)M 2104-9 1089-1 1066-0 1736-9 1602-4 1457-8 1457-8 1457-8 1447-6 1530-6 1668-3 1799-9	TBULK 18/TO DEG F 1030-5 0-449 804-3 0-531 594-3 0-637 461-3 0-729
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NDN DIME X+ 0.0135 0.0455 0.1035 0.2195 0.2774 0.3095 X+ 0.0135 0.0455 0.1615 0.1615	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1259 C 0.1586 O 0.1159 O 0.0667 O 0.0104 1 NSIDNALIZE P+ 0.169 0.283 0.499 0.687 0.842 1.038 1.150 (X+)M 0.0137 O 0.0458 O 0.0283 O 0.1437 O 0.1437 O	(DEG. F) ACH ND. = 142 Q+ •0133 •0738 •1247 •1872 •4548 •4619 D PRESSU D PRESSU 0 PRESSU 0 0955 •00955 •00955 •00896 •00742	$= 120$ $= 0.020$ 2.8 $\frac{1.4237}{4.1953}$ $\frac{1.4237}{2.6459}$ 3.8285 6.5485 $JRE DRDP$ $I3.82$ $(RE)M$ 13.82 13.71 12.39 12.13 $(RE) = 120$	EP FP C.00352 D.00481 D.00505	TW/TB 0.929 0.853 0.772 0.685 0.588 0.467 FP(RE): 5.10 6.63 8.10 8.66 9.72	(RE)M 2104-9 1089-1 1066-0 1736-9 1602-4 1457-8 1457-8 1457-8 1447-6 1530-6 1668-3 1799-9 1025-9	TBULK 18/TO DEG F 1030-5 0-449 804-3 0-531 594-3 0-637 461-3 0-729 365-2 0-814
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NDN 01ME X+ 0.0135 0.0455 0.1035 0.2195 0.1615 0.2195	MPERATURE 0.402 M 251528 KEYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1259 C 0.1586 O 0.1159 O 0.0667 O 0.0104 1 NSIDNALIZE P+ 0.169 0.283 0.499 0.687 0.842 1.038 1.150 (X+)M 0.0137 O 0.0458 O 0.0458 O 0.1437 O 0.1832 O	(DEG. F) ACH ND. = 142 Q+ •0133 •0738 •1247 •1872 •4548 •4619 D PRESSU D PRESSU 0 PRESSU 0 0955 •00955 •00955 •00955 •00896 •00742 •00674 •00713	$= 0.020$ $= 0.020$ 2.8 $\frac{1.4207}{4.1953}$ $\frac{1.4207}{2.6459}$ 3.8285 6.5485 $JRE DRDP$ $I3.82$ 13.71 12.39 12.13 13.73 0	FP C.00352 0.0481 0.0505	TW/TB 0-929 0.853 0.772 0.685 0.588 0.467 FP(RE): 5.10 6.63 8.10 8.66 9.72	(RE)M 2104-9 1089-1 1066-0 1736-9 1602-4 1457-8 1457-8 1457-8 1447-6 1530-6 1668-3 1799-9 1925-9 226-6	TBULK 18/TO DEG F 1030-5 0-449 804-3 0-531 594-3 0-637 461-3 0-729 365-2 0-814
INLET TE TW/TD = PR =0.7 X+ 0.3002 0.2422 0.1842 0.1262 0.0682 0.0102 NDN DIME X+ 0.0135 0.0455 0.1035 0.2195 0.2774 0.0135 0.0455 0.1615 0.2195 0.2774	MPERATURE 0.402 M 21528 REYD (X+)M 0.2292 C 0.1259 C 0.1259 C 0.1259 C 0.1259 C 0.1259 C 0.1259 C 0.1259 C 0.0667 C 0.0158 C 0.0283 C 0.499 C 0.687 - 0.842 1.038 C 1.150 (X+)M 0.0137 C 0.0458 C	(DEG. F) ACH ND. = 142 Q+ -0133 .033 .033 .1247 .1872 .4548 .4619 D PRESSU D PRESSU D PRESSU .00955 .00955 .00896 .00742 .00674 .00713 .0134	$= 120$ $= 0.020$ 2.8 $\frac{1.4207}{4.1953}$ $\frac{1.4207}{2.6459}$ 3.8285 6.5485 $JRE DRDP$ $I3.82$ $(RE)M$ 13.82 13.71 12.39 12.13 13.73 0 17.04	FP C.00352 D.00481 D.00505 D.00471 D.00505 D.00471	TW/TB 0-929 0.853 0.772 0.685 0.588 0.467 FP(RE): 5.10 6.63 8.10 8.66 9.72 13.73	(RE)M 2104-9 1089-1 1066-0 1736-9 1602-4 1457-8 1457-8 1457-8 1447-6 1530-6 1668-3 1799-9 1925-9 2045-4	TEULK 18/TO DEG F 1030-5 0-449 804-3 0-531 594-3 0-637 461-3 0-729 365-2 0-814 292-0 0-894

STMULTAD		TEST NO. 46	310.
TARE TES	1 LALEN FRIM RUN	ND. 44	
TARE THE	RMUCUUPLE OUTPUT	(NV)	
Ī	TA(I,1) TA(I	2) I TA(I) TA(I)	,2)
1	4.2534 4.26	00 7 4.2434 4.24	74
2	4.2462 4.24	26 8 4.2468 4.24	85
3	4.2621 4.26	14 9 4.2591 4.2:	46
4	4.2661 4.26	50 10 4.2603 4.25	88
5	4.2047 4.26	51 11 4.3038 4.30	68
6	4.2573 4.25	24 12 4.3030 4.30	76
TEST THE	RMOCUUPLE DUTPUT	(MV)	
I	1T(I,1) TT(I	2) I TT(I) TT(I)	,2)
1	4,2602 4,26	51 7 4.2830 4.29	69
2	4.2450 4.24	82 8 4.2850 4.30	26
3	4.2656 4.27	14 9 4.3085 4.3	5 <u>0</u>
4	4.2705 4.27	36 _10 4.3083 4.33	48
5	4.2754 4.28	23 11 4.4998 4.6(54
6	4.2631 4.26	76 12 4.4814 4.60)48
DIFFEREN	ITIAL PRESSURE -F	LOWMETER (IN,) = 0.402	
FLOWMETE	R IEMP (MV) = 0	19822 BULK EXIT FEMP (4V) -	5.0053
INLET PR	LESSURE MAN > LEF	T. 5,35 RIGHT. 5.50 IN. HG	
INLET BU	ILK IEMP CR-AL =		
SIAILC B	KESSURE DRUP (IN	\bullet h_{1} h_{2} h_{2} h_{3} h_{2} h_{3}	
	0.109.02 = 05 =	0.151 P2 - P6 = 0.201	
$p_2 = p_7^2 =$	0 232	0•19 <u>1</u>	
ELLE MAR	LAMETER FLUTD SP	GR 0.797	
ENLET TE	MPERATURE (DEG.	F) = 1210.19	
TW/TO =	0.402 MACH NO	. = 0.018	
PR = 0,7	752005 REYD = 1	265,4	
X+	(X+)M Q+	NUM TBULK TWITH	RE)M
		DEG. F.	
0.3373	0.2547 0.0361	5-0722 250-05 0-944 1	93+1
0.2722	0.2175 0.0709	3.6817 311.56 0.870 1	91.
0.2070	0.1759 0.1038	$-\frac{2}{2}$ $\frac{390.29}{132}$ $\frac{390.29}{10}$ $\frac{16}{10}$	40.2
0.1418	0.1286 0.1647	$\frac{2}{2}$	47 ()
0.0767	0.0742 0.3839	5.3394 030.13 0.000 14	05-5
0.0115	0.0111 1.3058	0.4270 907.99 0.470 (
NON DIAF	NSIDMALIZED PRES	SURE DROP	
X+	P+ 0 195		
0.0101			
0.1163	$\begin{array}{c} 0 \bullet 517 \\ 0 \bullet 549 \end{array}$	· · · ·	
0 1914			
0.2466	0.936	· · · ·	
6.116.0	1,138		
0.3478	1.265		
X+	(X+)M F	F(RE)M FP FP(RE)M	(FE)M THULK TB/TO
0.0151	0.0155 0.01071	13.87 0.00437 5.66 17	95+1 1002+8 0+459
0.0511	0.0511 0.00937	13.61 0.00508 7.01 1.	79.2 766.4 0.548
0.1163	0.1091 0.00792	11.94 0.00542 8.18 Lb	07.5 563.8 0.656
0.1814	0.1594 0.00721	11.72 0.00536 8.70 16	25.1 438.5 0.748
0.2460	0.2034 0.00717	13.49.0.00562 9.76 17	35.9 348.2 0.831
0.3118	0.2424 0.00891	16.40 0.00715 13.10 18	40.6 278.9 0.909
0.3478	0.2622 6	- 18.53 0.0.00037 -15.77 -18	95.7 247.1 0.950

•

	SIMULTANEDUS	DEVELOPMENT	TEST NO. 47	- - .		311.
	TARE TEST TAK	EN FROM RUN	NU. 44			
	I TACE	$\frac{1}{1} = TA(I)$,2) I TA(I=1)	TA(1,2)	
	1 4.25	22 4.25	30 7 4.	2532	4.2563	
	2 4.23	73 4.23	55 8 4.	2550	4.2582	
	3 4.25	50 4.25	50 9 4,	2562	4.2523	
	4 4.25	88 4.25	29 10 4.	2592	4.2569	
	5 4.26	03 4.25	35 11 4.	2923	4,2976	
	6 4.25	18 4.24	35 12 4,	2937	4,3006	
	TEST THERMUCO	URLE DUTPUT	(MV)			
	I IT(I)	1)	,2) I TT([,])	ΤΤ(1,2)	
	1 425	93 4.26	6 7 4.	2764	4.2878	
	2 4.24	51 4.240	<u>,7 8</u> 4.	2790	4.2941	
~	34.25	85 4,26	6 9 4.	2982	4.3206	
	4. 4.20	13	<u>54</u>	3026	4.3256	
	5 4.27	09 4.276	<u> 11 4.</u>	4837	4.5782	
	6	04 4.264	$\frac{12}{12}$	40,40	4.2805	
	DIFFERENIAL	PRESSURE -FI	OVOR DILLY EVI	≕ (),300 Т ТЕМР (М	VN - 4 7076	
	THUMMELER JEM	= MAN = 1 = 0	19 <u>792 DULN EAI</u> 1 6 70 DICUT		vy ≈	
	INFEL WRE2204	ELMAN. J. 4653 Mr. CR-AL =	27 512	2.70.10.	10	
	STATIC DRESSI	RE NORD (IN	- C. I. B. D. H. D. L. D. H.			
	PO-P2 = 0.14	$4 \text{ pl}_{P2} = ($	(31 P2 - P3 =	0.048	• •	·
	P2-P4 = 0.08	8 P2 - P5 = (124 P2 - P6 =	0.167		
	P2 - P7 = .0.19	0				
	BLUE MANDMETE	R FLUID SP (R 0.797			1
	INLET. TEMPERA	TURE (DEG. 1	·) <u>= 1218.85</u>			
	TW/T() =Q.	400 MACH HO.	= 0.015			
	PR = 0.753525		01.6			
	X+ (X+)	MQ+	NUM TBUL	K TW/TB	(名[]名)	
	0-3868 0.28	85 0-0213	6.7599 236.	Гт. 68 йт962	1570.1	
	0.3120 0.24	71 0.0874	5.2561 299.	22 0.883	1576•7	
	0.2373 0.20	05 0.0921	2 6853 380.	04 0.799	1477.3	
	0.1626 0.14	71 ()+1291	2-1043 488.	93 0.708	1372.2	
	0.0879 0.08	52 0.3446	3.2219 649.	25 0.607	1260.8	
	0.0132 0.01	35 1.1991	5.6405 977.	22 0.475	1139.1	
	NON DIGENSIDO	ALTZED PRESS				
	X+ P+		a a ser e de la companya de la compa			
	0.0174 0.	183				
	0.0586 0.	352				
	0.1333. 0.	613				
	0.2080 . 0.	835				
	0.2827 1.	031				
	0.3575 1.	265				
	0.3987 1.	387				
	X+ (X+)	M.F	F(RE)M	LD(RF	14 VRE7M DEC	иццк (нутц) 5 р
	0.0174 0.01	77 0.01230	13.85 0.005	34 6.58	1125.9 101	2.7 0.450
	0.0586 0.05	87 0.01094	13.12 0.006	7.22	1199.6 16	9.8 0.546
	0.1333 0.12	50 0.00844	11.10 0.005	84 7.69	1315-8 55	9.7 0.659
	0.2080 0.18	20 0.00789	11.24 0.005	36 8.4 8	1423.7 42	9,8 0,755
	0.2827 0.23	14 0.00835.	13.50 0.005	51, 10.09	1525.8 33	0.7 0.843
	0.3575 0.27	49 0.00970	15.74 0.007	83 12.70	1622-1 26	5.9 0.926
	0.3987 0.29	69 0-00968	14-19 -0-004	17 13.67	1672.7 23	3.7 0.969

· · · ·

SIMULTAN	EDUS DEV	ЕГОБИЕНТ	TEST NO.	48			312.
TARE TES	TTAKEN	FREIM RUN	NU. 44				
TARE THE	RMUCGUPL	E DUTPUT	(MV)) т <i>і</i>	(1.2)	
_ ۲	(A(I))				/ //		
1	4.2522	4.25	30 7	4.253	2 4.	2563	
2	4.2373	4.235	55 8	4.255	0 4.	2582	
3	4.2550	4.25	50 9	4.256	2 4.	2523	
4 5	4.2500	4 • 6 7 6	15 11	4.292	3 4,	2976	
6	4.2518	4.248	35 12	4.293	7 4.	3006	
TEST THE	RMOCUUPL	E GUTPUT	(MV)		\		
I	$TT(I_{J}1)$	TT(I)	2) 1] [[]])	(1)2)	
1	4.2535	4.25	64 7	4.271	1 4.	2836	
2	4.2381	4.238	39 8	4.274	2 4.	2828	
3	4.2574	4.26	16 9	4.291	1 4.	3102	
4	4 2035	4 • 200	+0 <u>1</u> 0 98 11	4 . 271	2 4. 4 4.	5307	
6	4.2569	4.25	12	4.444	0 4,	5463	
DIFFEREN	TIAL PRE	SSURE -FI	OWMETER	$(IN_{\bullet}) =$	0.305		
FLOWMETE	R IEMP (MV = 0	,9816 BUL	K EXIT T	EMP (MV)) = 4.4 ³	940
INLEF PR	ESSURE M Her Temp		27,000 P		20 JN • 1	10	
STATIC P	RESSURE	DROP (IN.)	•• •			
P0-P2 =	.0.110 P	1 - P 2 = 0	0.025 P2-	-P3 = 0.4	038		
P2-P4 =	0.008 P	2 - P5 = ()•096_P2-	-P6 = 0.	132		
BLUE MAN	DMETER F	LUID SP (GR 0.797				
INLET TE	MPERATUR	E (DEG. I	-) = 11	98.87			
TW/TO =	0,405	MACH NO	= 0,01	3			
PR = 0.7	20029 RE	YD =	960•7				
X+	(++)M	0+	NUM	TBULK	FW/TB	(RE)11	
			2 6300	DEG. F.	0.974	1.47.4	
0.3594	0.2408	0.0240	5.17.17	288.04	0.896	1387.1	
0.2733	0.2281	0.0779	2-42.42	368.10	0.810	1298.7	
0.1873	0.1679	0.1020	1-71-8	478.59	0.715	1203+1	
0.1012	0.0976	0.3140	2.9363	643.56	0.609	(10]+2 080 0	
0.0152	0.0155	1.0505	4.0000	711.24	9 • 4 7 4	900.09	
NON DIGE	NSIDMALI	ZED PRESS	SURE DROP)			
X+	P+		• •				
0.02(0	0,130		· · · ·				
0.1535	0.595			•			
0.2396	0.813		• • • •				
0.3256	1.025						
0.4592	1 637	· · · ·		•••			
X+	(X+) <u>M</u>	F	F(RE)M	FP	FP(RE)	(pE)M	TEULK TB/TO
				0.00(33	6 30	OB1 O	DEG F 1512 3 0 266
0.0200	0.0204	0.01281	12.57	0.00642	6.71	1046.1	767.6 0.547
0.1535	0.1430	0.00875	10.08	0.00605	6.97	1151.6	551.2 0.664
D.2396	0.2074	0+00808	10.11	0.00613	7.67	1250.2	418.3 0.765
0.3250	0.2630	0.00925	17,42	0.00716	9.61 13.48	142625	224,7 0.020
0.4592	0.3379	0.01098	17.73-	-)*()[054]	<u><u>j</u>.5</u>	1469+4	225.3 0.981

.

.

-

SIMULTANEOUS DEVELOPMENT TEST NO. 49	313.
TARE TEST LAVEN FROM RUN NO. 44	JrJ•
TARE THERMOCOLIPUE OUTPUT (MV)	
T = TA(1,1) = TA(1,2) = TA(1,1) = TA(1,2)	
1 4 2622 4 2530 7 4.2532 4.2563	
1 - 4 - 222 - 4 - 2250 - 4 - 2550 - 4 - 2582	
$\chi = 4 \cdot 2512 = 4 \cdot 2522 = 0 = 4 \cdot 2520 = 4 \cdot 2523$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
5 4.2003 4.2085 12 4.2923 4.2710	
$- 6 4 \cdot 2518 - 4 \cdot 2485 - 12 - 4 \cdot 2451 - 4 \cdot 5000$	
TEST THERMUCDUPLE UUTPUT (MV)	•
$\mathbf{I} = \{\mathbf{I} \in [\mathbf{I}, \mathbf{I}\}, \dots, \mathbf{I} \in [\mathbf{I}, \mathbf{Z}\}, \dots, \mathbf{I} = [\mathbf{I} \in [\mathbf{I}, \mathbf{Z}]\} = [\mathbf{I} \in [\mathbf{I}, \mathbf{Z}]]$	
1 4.2541 4.2554 / 4.2657 4.2747	
2 4.2.88 4.2360 8 4.2689 4.2801	
3 4.2562 4.2592 9 4.2857 4.3000	<u>.</u>
4 4.2004 4.2613 10 4.2932 4.3101	
5 4.2647 4.2666 11 4.4329 4.5030	
6 4.2557 4.2567 12 4.4315 4.5241	
DIFFERENTIAL PRESSURE -FLOWMETER (IN.) = 0.252	
FLOWMETER LEMP (MV) = 0.9918 BULK EXIT TEMP (MV) = 4.2700	
INLET PRESSURE MAN, LEFT 6.10 RIGHT 6.20 IN. HG	
INLET BULK TEMP $CR-AL = 26.650$	
STATIC PRESSURE DROP (IN.)	
PO-P2 = 0.076 PI-P2 = 0.076 P2-P3 = 0.076	
$P_{2}-P_{4} = 0.052 P_{2}-P_{5} = 0.080 P_{2}-P_{6} = 0.108$	
D2-D7 = 0.138	
$\mathbf{F}_{\mathbf{F}} = \mathbf{F}_{\mathbf{F}} = $	
(MET TEMPERATURE (DEG. F) - 1185.13	
TW/T0 = 0.000 MACH SD = 0.011	
$\frac{1}{1} \frac{1}{1} \frac{1}{2} = \frac{1}{1} \frac{1}{2} \frac{1}{4} \frac{1}{1} \frac{1}{2} $	
KK = . W • LH_LOHL. KET()	
YA CANN OA NUM TRUCK IW/TH (RE)!	
0.5469 0.3434 0.0698 7.2664 217.66 0.989 1223.6	
0.5402 0.5204 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	
0.4304 0.3320 0.0000 0.000 0.000 0	
0.3319 0.2692 0.0337 2.1038 $3.33.04$ 0.047 1019	
$0 \cdot 2274 0 \cdot 1987 0 \cdot 0915 1 \cdot 8942 930 \cdot 20 0 \cdot 747 1017 \cdot 10$	
$() \cdot 1/3) () \cdot 1/67 () \cdot 2034 (2 \cdot 7)/3 () (4 \cdot 07 () \cdot 051 () / 7) \cdot 3$	
0.0185 0.0187 0.9289 4.3811 957.83 0.480 319.5	
NON DIMENSIONALIZED PRESSURE DRUP	
X+	
0.0243 -V.509	
0.0820 · · · · · · · · · · · · · · · · · · ·	
0.1865 $1\lambda109$ 1.1109	
0.2910 0. ¥97 Misreading	
0.3954 1.203	
$0.4999 = 1/.5 d_{\rm B}$	
0.5570 . 2.84	
X+ $(\lambda+)M$ F $\Gamma(RE)M$ FP FP(RE)M (RE)M	THERE FRATE
Dt.	G F
0.0243 0.0247 N.04338 25.67 N.03684 29.94 B12.1, 9	95.0 0.462
0.0820 0.0010 0 02974 20.01 0 02478 21.3/3 0/3.7 /	34.5 0.562
0.1865 0.1699 U.VUSU9 X.B/ 0.20820 X.D6 972.5 5	10.4 0.692
0.2919 0.2448 0. 192 2 $103 - 0.01006$ - 1060.3 3	8(1,4 (),890
0.3954 0.3108 0.2021 10.40 0.2020 8/17 1135.6 2	95.5 0.889
0.4999 0.3721 0/01005 28.48 0/01847 28.47 1196.9 2	38.4 0.962
0.5576 0.4053 0.02350 28.78 0.02241 7.44 1224.4 2	15.7 0.995

.

314. SIMULTANEOUS DEVELOPMENT TEST ND. 50 TARE TEST LAKEN FROM RUN NO. 50 TARE THERMOCOUPLE OUTPUT (MV) TA(1,1) TA(1,2) Ι TA(I,1) $TA(I_2)$ I . . 7... 4.2516 4.2531 1 4.2401 4.2410 8 2 4.2534 4.2571 4.2275 4.2261 9 4.2551 4.2513 4.2537 3 4.2532 4... 4.2566 4.2560 4.2561 10 4.2566 5 4.2597 4.2872 4.2896 11 4.2002 4.2904 4,2875 6 4.2523 4.2489 12 .IEST THERMUCLUPLE DUTPUT (MV) TT(1,1) TT([,1) TT(1,2) $TT(I_2)$ I I ? 4.2730 4.2835 1 4.2564 4.2594 8 4.2751 4.2874 2 4.2427 4.2421 9 4.2911 4.3067 4.2599 4.2620 3 4,2930 4.3112 4.2649 4 10 4.2622 4.4286 4.2769 . 11 4.4910 5 4.2719 6 4.2609 4.2626 12 4.42.02 4.5001 DIFFERENTIAL PRESSURE -FLOWMETER (IN.) = 0.402 FLUWMFIER TEMP (MV) = 0.9756 BULK EXIT TEMP (MV) = 4.6890 INLET PRESSURE MAN, LEFT 7.50 RIGHT 7.70 IN. HG INLET BULK TEMP CR-AL = 19.589 STATIC PRESSURE DROP (IN.) 0.155 P1-P2 = 0.031 P2-P3 =0.048 PO-P2 = 0.093 P2 - P5 =0.133 P2 - P6 =0.176 $P_{2} - P_{4} =$ P2-P7 = 0.206 BLUE MANDMETER FLUID SP GR 0.797 INLET TEMPLRATURE (DEG. F) = 892.67 0,496_MACH_NQ. = _0.015 TW/T() =1330.0 PR = 0.742513 REYD =Χ+ (X+)M Q+ NUM-TBULK TW/TB (RF)MDEG. F. 0.965 1924 • 0 6.0527 0.3423 0.0342 234.11 0.2504 2-4088 U.903 1838+8 282.44 0.2762 0.2118 0.0431 0.2101 0.1695 0.0944 2,7250 341.92 0.837 1748.4418.55 0.764 1651.1 0.1439 0.1227 0.1561 2-6652 1541.9 0.0778 0.0706 3.5833 526.39 0.6810-3457 6.1711 740.03 ().566 1395.6 0.011/ 0.0114 1.1140 NON DIMENSIONALIZED PRESSURE DROP Χ+ P++ 0.189 0.0154 0.0519 0.361 0.1180 0,626 0,1841 0.878 0.2503 1.098 0.3164 1.337 0.3529 1.500 (RE)M TBULK TB/TO X + (A+)M F F(RE)MFP FP(RE)M DEG F 1382.2 762.7 0.550 0.0154 0.0151 14.32 0.00536 7.41 0.01036 0,00574 8.47 1476.4 606.2 0.630 13.91 0.0519 0.0488 0.00942 466.9 0.725 0.1180 9.10 1596.5 0.1038 0.00765 12.22 0.00570 371.4 0.802 9.49 1698.6 0.1841 0.1528 12.01 0.00559 0.00707 10.75 1792.0 510.4 0.872 0.2503 0.1970 13.77.0.00600 0.00769 251.0 0.937 14.20 1879.6 0.3164 0.2372 0.00905 17.00 0.00759 231.7 0.971 0.3529 10.34 0.00846 17-07 1925 - 8 0.2579

						•		
			сприсыт	TEST NO				315.
	TADE TE	ST LALEN		NO. 50	· •	·		
		СРИНСКИ . Срински пири		(MV)				
					ΤΛ(Ι.)) т	· ([)	
	I			2 <u> </u>			AV1821	
	•	4 2 3 1		10 7	1 251	6 1	2521	
	1	.9.2401		<u>1 Q</u>	4+421		2531	
	2	4.2275	4.22	61 8	4.202	34 4 - /	+• 20 (L	
	. 3	4.2532	4.25	37 9	4.25	1 4	.2513	
	4 *	4.2566	4.25	61 10.	4.250	6 4	-2560	
	. 5	4.2002	4,25	97 11	4,28/	2 4	.2896	
•	6	4.2523	4.24	89 12	4,287	75 4	-2904	
	TEST TH	ERMUCUUPL	E DUTPUT	(MY)				
	I	TT(1,1)	TT(I	,2) I	TT(1)1	.) T	T(1+2)	
			-					
	1	4.2543	4.25	64 7	4.264	6 4	.2750	
	2	4.2394	4.23	91 8	4.268	39 4	.2802	
•	2	4.2573	4.26	09 9	4.28	34 4	2971	
Ē	د. ۱	4 2615	4 CO	62 101	4.288	6 4	3032	
	F	······································	4.20		7•200 4 412		170A	
	2 . 6	4 • 20 / 2	4.20	7.7 <u> </u>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4906	
	0.	4 • 62 19			· <u>···</u> ································	ຸມ 4 () 151	• • • 700	
·	DIFFERE	NIJAL PRE	SSURE -E					4 6 3
	FLUWMEI	EK LEHP (MV.) = 0	, 9962 BU			() = 4,4 ⊎C	003
	INCELP	RESSURE M	AN 🦻 LEE	1 7.80	RIGHL /.	90 IN•	HG	
	INLET B	ULK. TEMP	CR-AL =	12.650				
	STATIC	PRESSURE	DROP (IN	•)				
	PO-P2 =	0.126 P	1 - P2 =	0.000 P2	-P3 = 0,	042		
	P2-P4 =	0,081 P	2-15 =	0.113 P2	-P6 = 0.	,152		
	p2-p7 =	0.177						
	BLUE MA	NOMETER F	LIID SP	GR 0.797	•			•
•	INLEI I	EMPERATUR	E (DEG.	F) =	895.28			
	EW/To =	0.495	HACH MO	. = 0.0	13			
	D P = 0	742862 85	v h = 1	160.8				
	PN CI.	J. F.E.S. & La	• L2 • • • • • • •					
	X +	(X+)M	0+	NUM	TRULK	TWZTB	(RF)M	
			(4. 1	··· ···	0FC F		, <u>,</u> ,,	
	0.202	0.0010	0.0101	<u> </u>		0 078	1696.5	
	0.3720	U.•2540	0.0191	5 2016		0 970	1675+5	
	0.0100		.0.0144 .	0 20/0	200 02	0.050	102704	
	0+2420	01907	0.0547	2-2006	- <u>220</u> +26	0.859	1004+2	
	0.1648	0.1377	$0 \cdot 1470$	3.0165	388.40	0.791	1473+4	
	0.0831	0.0792	_C•2787	3.4(142	487.30	U • 7 (19	1378.0	
	0.0134	0,0129	1.0491	6.4253	700-23	0.585	1233.0	
		· ••·· • •						
	NUN DIA	ENSIDHALI.	ZED PRES	SURE_DRC	IP			
	Χ+	.P.+	.					
	0.0176	0.423						
	0.0594	0.423			. .			
	0.1351	0.733						
	0.2109	1 019	-					
	0.2866	1 253						
	0.3623	1 520						
		1 720		· · · · · · ·				
	U • 4041	. I = 7 2 0	c	E(DE)M	ED	LD(DE)	N (RF)M	
	A. +	INTIM.	г	T VINE / PI	F T	ITANG/	11 15 6. 710	DEG E
	0 (1)-74	0 0 70	0.00000	4 00	-0 00210	_2 57	1224 0	725.2 0.567
	0.0176	0.0172	0.00.03	++U9	-0.00210 0.00200	-0.21	1212 4	562 0 0 457
	0.0594	0.0548	0.00587	7,00		2,70	エンドハッサ	
	0.1351	0.1164	0.00948	12.23	9.00769	10.97	1613-3	サラム・L り・1フラ スちょう かんのつい
	0.2109	0.1/16	0.00866	13.10	0.00738			$\frac{1}{2} \left(\frac{1}{4} \right) = \frac{1}{2} \left(\frac{1}{4} \right) \left(\frac{1}{4}$
	0.2860	0.2220	_ Q•00750	. 11.92	0.00547	9.49	1509+5	\begin{aligned} \begin{aligned} \begin{aligned} & \mathcal{V} & \mathcal & \mathcal{V} & \math
	0.3623	0.2684	0.01025	17.02	0.00905	15.03	1659.0	745.4 0.9 5 3
	0 4044	0 2024	0 1113	10 71	<u>a anauz</u>	4.4	1696.7	223.0 0.984

Appendix I

Derivation of the Similar Boundary Layer Equations

When the thermal or velocity boundary layer thickness on a body of revolution is small when compared to the local radius of the body, then the energy, continuity and momentum equations (2.30, 2.31, 2.32) may be written with the radius terms removed;

$$\rho^{+}\upsilon^{+}\frac{\partial \upsilon^{+}}{\partial x^{+}} + \rho^{+}\nu^{+}\frac{\partial \upsilon^{+}}{\partial r^{+}} = \frac{dp}{dx^{+}} + 2\Pr_{0}\frac{\partial}{\partial r^{+}}\mu^{+}\frac{\partial \upsilon^{+}}{\partial r^{+}}$$
(1.1)

$$\frac{\partial}{\partial x} (\rho^{\dagger} \mathbf{U}^{\dagger}) + \frac{\partial}{\partial r} (\rho^{\dagger} \mathbf{V}^{\dagger}) = 0$$
(1.2)

$$\rho^{+} \mathbf{U}^{+} \frac{\partial \mathbf{H}^{+}}{\partial \mathbf{x}^{+}}^{2} + \rho^{+} \mathbf{V}^{+} \frac{\partial \mathbf{H}}{\partial \mathbf{r}^{+}}^{2} = 2 \frac{\partial}{\partial \mathbf{r}^{+}} \frac{\mathbf{k}^{+}}{\mathbf{c}^{+}_{\mathbf{p}}} \frac{\partial \mathbf{H}}{\partial \mathbf{r}^{+}}^{2} - (\gamma_{o} - 1) \mathcal{M}_{0}^{2} \left(\mathbf{U}^{+} \frac{d\mathbf{p}}{d\mathbf{x}^{+}} - 2 \mathbf{Pr}_{0} \,\mu^{+} \left(\frac{\partial \mathbf{U}^{+}}{\partial \mathbf{r}^{+}} \right)^{2} \right)$$
(1.3)

where the usual form of the dissipation term in the energy equation has been retained. The stream function ψ is introduced to eliminate the continuity equation;

$$\frac{\partial \psi}{\partial \mathbf{x}^{+}} = -\rho^{+} \mathbf{v}^{+} \tag{I.4}$$

$$\frac{\partial \psi}{\partial \mathbf{y}^{+}} = \rho^{+} \mathbf{U}^{+} \tag{I.5}$$

We introduce the transformation to new independent variables;

$$\xi = \int_{0}^{X^{+}} C \rho_{e}^{+} \mu_{e}^{+} U_{e}^{+} d_{X}^{+}$$
(I.6)

$$\eta = \frac{U_e^+}{\sqrt{2\xi}} \int_0^{\gamma_e^+} d\gamma^+ \qquad (1.7)$$

where $y^+=1-r^+$ represents the dimensionless displacement from the tube wall and C is a constant. Subscript e refers to quantities at the edge of the boundary layer or in the central core. We also introduce two new dependent variables;

$$\mathbf{U}^{\dagger} \mathbf{U}_{e}^{\dagger} = \mathbf{f}^{\dagger}(\eta) \tag{I. 8}$$

$$H^{+}/H^{+}_{2,e} = G(n)$$
 (I. 9)

Expanding the axial derivative in terms of the new independent variables,

$$\frac{\partial}{\partial x^{+}} = \frac{\partial \xi}{\partial x^{+} \partial \xi} + \frac{\partial \eta}{\partial x^{+} \partial \eta}$$
(I.10)

and the radial derivative,

$$\frac{\partial}{\partial \mathbf{y}^{+}} = -\frac{\partial}{\partial \mathbf{r}^{+}} = \frac{\partial \eta}{\partial \mathbf{y}^{+} \partial \eta} + \frac{\partial \xi}{\partial \mathbf{y}^{+} \partial \xi} \qquad (1.11)$$

It can be shown that the stream function ψ is is related to the velocity function f by,

$$\psi = \sqrt{2\xi} \mathbf{f}$$

From the stream function we may solve for the radial velocity,

$$\mathbf{v}^{+} = -\frac{1}{\rho^{+}} \frac{\partial \psi}{\partial \mathbf{x}^{+}} = -\frac{1}{\rho^{+}} \left(\frac{\partial \xi}{\partial \mathbf{x}^{+}} \frac{\mathbf{f}}{\sqrt{2\xi}} + \frac{\partial \eta}{\partial \mathbf{x}^{+}} \frac{\partial}{\partial \eta} \frac{\partial}{\partial \eta} (\sqrt{2\xi} \mathbf{f}) \right)$$
(1.12)

$$= \underline{C} \frac{\rho_e^* \mu_e^* \upsilon_e^*}{\rho^*} \left(\frac{\eta f'}{\sqrt{2\xi}} - \frac{f}{\sqrt{2\xi}} - \frac{\eta f' \sqrt{2\xi}}{\upsilon_e^*} \frac{\partial \upsilon_e^*}{\partial \xi} \right)$$
(1.13)

where primes denote differentiation with respect to η . We consider each term in the momentum equation separately. Starting with the first term on the left hand side of equation I.1.;

$$\rho^{\dagger} \mathbf{U}^{\dagger} \frac{\partial \mathbf{U}^{\dagger}}{\partial \mathbf{x}^{\dagger}} = \rho^{\dagger} \mathbf{U}^{\dagger} \left(\frac{\partial \xi}{\partial \mathbf{x}^{\dagger}} \frac{\partial \mathbf{U}^{\dagger}}{\partial \xi} + \frac{\partial \eta}{\partial \mathbf{x}^{\dagger}} \frac{\partial \mathbf{U}^{\dagger}}{\partial \eta} \right)$$
(1.14)

$$= \rho^{+} \mathsf{U}^{+} \left(\frac{\partial \xi}{\partial x^{+} \partial \xi} \frac{\partial (\mathsf{u}_{e}^{+} \mathsf{f}^{'})}{\partial \xi} + \frac{\partial (\mathsf{u}_{e}^{+} \mathsf{f}^{'})}{\partial \eta} \frac{\partial \eta}{\partial \xi} \frac{\partial \xi}{\partial x^{+}} \right)$$
(1.15)

We note that ξ is a function only of the axial coordinate x^+ since all quantities of which it is composed are functions only of the axial coordinate. Continuing the expansion:

$$\rho^{\dagger} U^{\dagger} \frac{\partial U^{\dagger}}{\partial x^{\dagger}} = C \rho_{e}^{\dagger} \mu_{e}^{\dagger} U_{e}^{\dagger} \rho^{\dagger} \left(U_{e}^{\dagger} \mathbf{f}^{\prime 2} \frac{\partial U_{e}^{\dagger}}{\partial \xi} + \eta \mathbf{f}^{\prime} \mathbf{f}^{\prime \prime} U_{e}^{\dagger} \frac{\partial U^{\dagger}}{\partial \xi} - \eta \frac{\mathbf{f}^{\prime} \mathbf{f}^{\prime \prime}}{2\xi} U_{e}^{\dagger 2} \right)$$
(1.16)

In the solution of the boundary layer equations at the tube wall, the convention for the sign of the transverse velocity v^+ was reversed. A positive value is away from the tube wall. This is in accordance with usual boundary layer convention.

$$\rho^{\dagger} \vee^{\dagger} \frac{\partial U^{\dagger}}{\partial \gamma^{\dagger}} = C \rho_{e}^{\dagger} \mu_{e}^{\dagger} U_{e}^{\dagger} \rho^{\dagger} \left(\frac{\eta f'}{\sqrt{2\xi}} - f' \eta \frac{\sqrt{2\xi}}{U_{e}^{\dagger}} \frac{\partial U_{e}^{\dagger}}{\partial \xi} - \frac{f}{\sqrt{2\xi}} \right) U_{e}^{\dagger} \frac{f'' \rho^{\dagger} U_{e}^{\dagger}}{\sqrt{2\xi}}$$
(1.17)

Next consider,

$$\frac{\partial}{\partial \mathbf{r}} \mu^{*} \frac{\partial U^{*}}{\partial \mathbf{r}^{*}} = \frac{\partial}{\partial \gamma^{*}} \mu^{*} \frac{\partial U^{*}}{\partial \gamma^{*}} \qquad (I.18)$$

$$= \frac{\partial \eta}{\partial \gamma^{*} \partial \eta} \left(\frac{\partial \eta}{\partial \gamma^{*} \partial \eta} \right)^{2} + \mu^{*} \frac{\partial^{2} \eta}{\partial \eta \partial \gamma^{*} \partial \eta} \frac{\partial U^{*} \partial \eta}{\partial \gamma^{*} \partial \eta} + \mu^{*} \left(\frac{\partial \eta}{\partial \gamma^{*}} \right)^{2} \frac{\partial^{2} U^{*}}{\partial \eta^{2}}$$

$$= \frac{\rho^{*} U^{*}}{2\xi} \left(\frac{\partial \mu^{*}}{\partial \eta} \rho^{*} \mathbf{f}'' + \mu^{*} \mathbf{f}'' \frac{\partial \rho^{*}}{\partial \eta} + \mu^{*} \rho^{*} \mathbf{f}''' \right) \qquad (I.19)$$

$$= \frac{\rho^* \cup \rho^*}{2\xi} e^{\left(\mu^* \rho^* \mathbf{f}''\right)'} \tag{I.20}$$

The pressure gradient term becomes;

$$\frac{\mathrm{d}P}{\mathrm{d}x^{+}} = \frac{\mathrm{d}}{\mathrm{d}x^{+}} \left(\frac{P_{\mathrm{o}} - P}{\rho_{\mathrm{o}} U_{\mathrm{o}}^{2}} \right) = -\frac{\mathrm{d}P}{\mathrm{d}x^{+}} \rho_{\mathrm{o}} U_{\mathrm{o}}^{2}$$
(1.21)

Since we are assuming the flow in the core is inviscid (i.e. potential flow),

$$\frac{\mathrm{d}p}{\mathrm{d}x^{+}} = -\rho_{e} U_{e} \frac{\mathrm{d}U_{e}}{\mathrm{d}x^{+}} \tag{I.22}$$

$$\frac{\mathrm{d}P}{\mathrm{d}x^{+}} = \frac{\rho_{e} \cup e_{\mathrm{d}x^{+}}^{\mathrm{d}} / \rho_{o} \cup_{o}^{2}}{e_{e}^{+} \cup e_{\mathrm{d}x^{+}}^{\mathrm{d}}}$$
(I.23)

$$\frac{\mathrm{d}P}{\mathrm{d}\xi} = \frac{\mathrm{d}P}{\mathrm{d}x^{+}\mathrm{d}\xi} = \rho_{e}^{*} U_{e}^{*} \frac{\mathrm{d}U_{e}^{+}}{C\rho_{e}^{*} U_{e}^{+} \mu_{e}^{+}\mathrm{d}x^{+}} = \rho_{e}^{*} U_{e}^{*} \frac{\mathrm{d}U_{e}^{+}}{\mathrm{d}\xi}$$
(I.24)

After combining all terms in the momentum equation and after division by a common factor $C\rho_e\rho\,\mu_e\,U_e/2\xi$, many terms are found to cancel. The final result is;

$$\frac{2\xi}{U_e^+\partial\xi} \frac{\partial U_e^+}{\partial \xi} \left(\mathbf{f}' - \frac{\rho_e^+}{\rho^+} \right) = \frac{2\mathsf{Pr}_o}{\mathsf{C}\mu_e^+\rho_e^+} \left(\mu^{+}\mu^{+}\mathbf{f}'' \right)' + \mathsf{f} \mathbf{f}''$$
(1.25)

Drawing the constant term $C\mu_e^+\rho_e^+$ within the differential in the first term on the right hand side of this equation;

$$\frac{2\xi}{U_e^*}\frac{\partial U_e^*}{\partial \xi}\left(\mathbf{f}'-\frac{\rho_e}{\rho}\right) = 2\Pr_o\left(\mathbf{A}\mathbf{f}''\right)' + \mathbf{f}\mathbf{f}'' \qquad (1.26)$$

where

.

$$\lambda = \frac{\mu^* \rho^*}{C \mu_e^* \rho_e^*} \tag{I.27}$$

For the energy equation, the free stream or "core" enthalpy is considered as being invariant with axial distance;

$$\frac{\partial H_{2,e}^{\dagger}}{\partial \xi} = \frac{\partial H_{2,e}^{\dagger}}{\partial x^{\dagger}} = 0$$
 (1.28)

Again considering separate terms in the energy equation;

$$\rho^{\dagger} \cup^{\dagger} \frac{\partial \mathbf{H}_{\mathbf{2}}^{\dagger}}{\partial \mathbf{X}^{\dagger}} = \rho^{\dagger} \cup_{e}^{e} \mathbf{f}^{\prime} \mathbf{H}_{\mathbf{2},e}^{\dagger} \frac{\partial \mathbf{G}}{\partial \eta} \frac{\partial \eta}{\partial \xi} \frac{\partial \xi}{\partial \mathbf{X}^{\dagger}}$$
(1.29)

$$= C \rho_{e}^{\dagger} \rho^{\dagger} \mu_{e}^{\dagger} \cup_{e}^{\dagger 2} \mathbf{H}_{2,e}^{\dagger} G' \left(\frac{\eta}{U_{e}^{\dagger}} \frac{\partial U}{\partial \xi}^{\dagger} - \frac{\eta}{2\xi} \right)$$
(I.30)

$$\rho^{*} V^{*} \frac{\partial H^{*}_{2}}{\partial \gamma^{*}} = \rho^{*} V^{*} \frac{\partial H^{*}_{2}}{\partial \eta} \frac{\partial \eta}{\partial \gamma^{*}}$$
(1.31)

$$= C \rho_{e}^{\dagger} \mu_{e}^{\dagger} \cup_{e}^{\dagger} \left(\frac{\eta f'}{\sqrt{2\xi}} - \frac{f}{\sqrt{2\xi}} - \eta f' \frac{\sqrt{2\xi}}{\cup_{e}^{\dagger}} \frac{\partial \cup_{e}^{\dagger}}{\partial \xi} \right) \left(\frac{\rho^{\dagger} \cup_{e}^{\dagger}}{\sqrt{2\xi}} \right) H_{2,e}^{\dagger} G' \qquad (1.32)$$

$$\frac{\partial}{\partial y^{\dagger}} \left(\frac{k^{\dagger}}{c_{p}^{\dagger}} \frac{\partial H_{2}^{\dagger}}{\partial y^{\dagger}} \right) = \frac{\partial \eta}{\partial y^{\dagger}} \frac{\partial}{\partial \eta} \left(\frac{k^{\dagger}}{c_{p}^{\dagger}} \frac{\partial \eta}{\partial y^{\dagger}} \frac{\partial H_{2}^{\dagger}}{\partial \eta} \right)$$
(1.33)

$$= \left(\frac{\rho^{*} \cup_{e}^{*}}{\sqrt{2\xi}}\right)^{2} H_{2,e}^{*} G' \frac{\partial}{\partial \eta} \left(\frac{k^{*}}{c_{p}^{*}}\right) + \left(\frac{\rho^{*} \cup_{e}^{*}}{\sqrt{2\xi}}\right) \frac{k^{*}}{c_{p}^{*}} \frac{\cup_{e}^{*}}{\sqrt{2\xi}} H_{2,e}^{*} G' \frac{\partial \rho^{*}}{\partial \eta} + \left(\frac{\rho^{*} \cup_{e}^{*}}{\sqrt{2\xi}}\right)^{2} \frac{k^{*}}{c_{p}^{*}} H_{2,e}^{*} G' \qquad (1.34)$$

$$= \frac{\rho^{+} \cup e^{+}}{2\xi} H_{2,e}^{+} \left[\rho^{+} G' \frac{\partial}{\partial \eta} \left(\frac{k^{+}}{c_{p}^{+}} \right) + \frac{k^{+}}{c_{p}^{+}} G' \frac{\partial \rho^{+}}{\partial \eta} + \rho^{+} \frac{k^{+}}{c_{p}^{+}} G'' \right]$$
(1.35)

•

$$= \frac{\rho^{\dagger} \cup_{\ell}^{\ast 2} \mathrm{H}_{2,\ell}^{\ast} e\left(\rho^{\dagger} \mathrm{G} \frac{\mathrm{k}^{\ast}}{\mathrm{c}_{p}^{\ast}}\right)' \qquad (1.36)$$

$$U^{*}\frac{\mathrm{d}P}{\mathrm{d}X} = C \rho_{e}^{+} \mu_{e}^{+} U_{e}^{+3} \mathbf{f}' \frac{\mathrm{d}U_{e}^{+}}{\mathrm{d}\xi}$$
(I.37)

After combining these terms into a single expression, many terms are seen to cancel. The final result is; .

$$2\left(\frac{\rho^{+}\cup_{e}^{+2}H_{2,e}^{+}}{2\xi}\right)\left(\rho^{+}\frac{k^{+}}{c_{p}^{+}}G'\right) + \frac{\rho^{+}\cup_{e}^{+}H_{2,e}^{+}}{2\xi}c_{e}\rho_{e}^{+}\mu_{e}^{+}G'f$$

$$= (\gamma_{o}-1)M_{o}^{2}\left[\cup_{e}^{+4}\rho_{e}^{+2}\mu_{e}^{+}f'\frac{C}{U_{e}^{+}}\frac{\partial \cup_{e}^{+}}{\partial \xi} - 2Pr_{o}\cup_{e}^{+4}f''\frac{2\rho^{+2}}{2\xi}\right] \quad (I.39)$$

Dividing by a common factor $C\rho_e^+\mu_{e/2\xi}^+$ yields;

$${}^{2}\left(\!\frac{\rho^{+}G'\frac{k^{+}}{C\dot{p}}}{C\rho_{e}^{+}\mu_{e}^{+}}\!\right)'\!+\!G'\mathfrak{f} = (\gamma_{0}-1)\mathsf{M}_{0}^{2}\left[\frac{\rho_{e}^{+}\bigcup_{e}^{+}Q}{\rho^{+}H_{2,e}^{+}}\mathfrak{f}'\frac{2\xi}{U_{e}^{+}}\frac{dU_{e}^{+}}{d\xi}\!-\!2\mathsf{Pr}_{0}\frac{\rho^{+}}{\rho_{e}^{+}}\frac{\mu^{+}}{C\mu_{e}^{+}}\frac{U_{e}^{+}}{H_{2,e}^{+}}\mathfrak{f}''^{2}\right] \quad (I.40)$$

Let

.

$$\beta = \frac{2\xi}{U_e^+} \frac{dU_e^+}{d\xi} \tag{I.41}$$

$$Pr^{+}_{r} = c_{p}^{+} \mu^{t} / k^{+}$$
 (1.42)

The final form of the equation becomes

•

.

$$2\left(\frac{\lambda G'}{Pr^{+}}\right)' + G'f = (\gamma_0 - 1) M_0^2 \left[\frac{\rho_e}{\rho} \frac{U_e^{+2}}{H_{2,e}^{+}} \beta f' - 2 Pr_0 \lambda \frac{U_e^{+2}}{H_{2,e}^{+}} f''^2\right]$$
(1.43)

VITA

Norman Zethward Shilling, son of Edward Shilling and Bessie Arlene Jenkins was born in on

He graduated from Lyndhurst High School, Lyndhurst, New Jersey in 1962 and attended Stevens Institute of Technology and Newark College of Engineering. He received his B.S. in M.E. from the latter institution with the designation Summa Cum Laude in June, 1966. He was elected to membership in Pi Tau Sigma and Tau Beta Pi honor societies.

In September of 1966 he entered Massachusetts Institute of Technology holding a National Science Foundation Traineeship. He was nominated and elected to the MIT chapter of Sigma Xi in May of 1967. His M.S. thesis topic was "Dynamic Compensation Techniques for Plenum Fluid Suspensions". He completed requirements for his M.S. in M.E. in August 1967.

On September 2, 1967 he married Mary Eleanor Powell of Lyndhurst, New Jersey and subsequently returned to Newark College of Engineering as a doctoral candidate in the Department of Mechanical Engineering. While completing requirements for the D.Sc. degree he was the recipient of NASA research and NDEA teaching fellowships. He began work on the present dissertation in June of 1969. All experimental work was performed in the Mechanical Engineering Department laboratories during the period from September 1969 to August 1971. Support was provided by the Foundation for the Advancement of Graduate Study in Engineering.