Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation.

Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen.
The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.
COMPUTER MODEL FOR REACTOR DESIGN
OF AN ETHANE CRACKING UNIT
by
Derek J. Lough
A THESIS PRESENTED IN PARTIAL FULFILLMENT
OF
THE REQUIREMENTS FOR THE DEGREE
OF
MASTER OF SCIENCE IN CHEMICAL ENGINEERING
AT
NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

NEWARK, NEW JERSEY
1971
APPROVAL OF THESIS

COMPUTER MODEL FOR REACTOR DESIGN
OF AN ETHANE CRACKING UNIT

by

Derek J. Lough

FOR

DEPARTMENT OF CHEMICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

BY

FACULTY COMMITTEE

APPROVED:

NEWARK, NEW JERSEY

JUNE, 1971
ABSTRACT

REACTOR DESIGN FOR ETHANE CRACKING UNIT
by Derek J. Lough

June, 1971

The purpose of this thesis is to develop a Fortran Computer Program to model the radiation section of a pyrolysis tube reactor designed for cracking 100 percent ethane feed. The model calculates the length of the tubular reactor required to obtain a specified ethane conversion or the ethane conversion for a specified reactor length. The resulting solution yields a conversion profile, a temperature profile, and the reactor residence time as a function of tube length. From this data it can be determined if the design is adequate and lies within the reactor model's constraints.
The author expresses his appreciation to Dr. E. C. Roche, Jr. for his advice and assistance in this thesis. In addition, the author wishes to thank E. I. duPont de Nemours and Co., Deepwater, New Jersey for their assistance and use of their IBM 1130 Digital Computer.
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Theory of Pyrolysis Tube Reactors</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>Approach and Equations Used in the Model</td>
<td>5</td>
</tr>
<tr>
<td>III</td>
<td>Reactor Model Constraints</td>
<td>17</td>
</tr>
<tr>
<td>IV</td>
<td>Example Problems</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>A. Example No. 1</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>B. Example No. 2</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>C. Example No. 3</td>
<td>31</td>
</tr>
<tr>
<td>V</td>
<td>Reactor Constraints that can be Removed by Future Work</td>
<td>35</td>
</tr>
</tbody>
</table>

Appendix I
Input Data Sheet 38

Appendix II
A. Program Listing 40
B. Definition of Fortran Nomenclature 46

Bibliography 50
CHAPTER I

THEORY BEHIND TUBULAR REACTORS

Tubular furnaces for the synthesis of ethylene are the simplest and most common ones in use today. Tubular furnaces consist of a convection section and a radiation section, heated by natural gas fired burners in the furnace itself.

The tubular reactor is relatively simple and easy to operate, however, it does have a number of limitations. First, pyrolysis of ethane gives rise to some carbon formation. This condition is aggravated by very high temperatures, long residence time at these temperatures, and the presence of any liquid hydrocarbon phase. With this in mind, tubular cracking units should be designed for use on completely vaporized feedstocks and for short residence times at high temperatures. The latter requirement calls for high heat flux furnaces so designed that the preheated feed can be rapidly brought to the desired cracking temperature.

The use of steam with the ethane feed is a method of limiting the carbon or coke formation in the tubes. Steam serves a four-fold purpose in such an application:

1. It reduces the partial pressure of the ethane and permits complete vaporization of ethane before the highest temperatures are reached.
2. In reducing the partial pressure of hydrocarbon higher conversion of feed is obtained.

3. The residence time of the hydrocarbon in the high temperature pyrolysis zone is lowered.

4. Steam assists in keeping the furnace tubes clean, having a scavenger action due to reaction of steam with carbon to form carbon monoxide and hydrogen.

The steam to ethane weight ratio is usually 0.2 - 0.4 lb. steam per lb. ethane feed. (ref. no. 13)

Pyrolysis of ethane is an endothermic reaction and, in addition, the sensible plus vaporization heat loads are high. In the tubular cracking furnace the reactant temperature rises continuously from inlet to outlet of the reactor coil. The temperature gradient is greater at the inlet, where the charge is being heated to the temperature level at which the reaction rate is substantial, and is less rapid towards the tube exit due to the endothermic nature of the reactions. Convection and radiation sections are incorporated in the furnace design to steepen the temperature gradient and bring the ethane up to the desired reaction temperature rapidly.
The convection section serves to handle vaporization and preheating, while the radiation section, in the furnace proper, contributes the remaining sensible heat plus the heat of reaction.

Two reactions of importance in the cracking of ethane are:

\[
\begin{align*}
C_2H_6 & \xrightarrow{k_1} C_2H_4 + H_2 & (1) \\
\text{ethane} & \quad \text{ethylene} & \quad \text{hydrogen} \\
C_2H_6 & \xrightarrow{k_2} \frac{1}{2} C_2H_4 + CH_4 & (2) \\
\text{ethane} & \quad \text{ethylene} & \quad \text{methane}
\end{align*}
\]

The dependence of the reaction rate constants on temperature is obtained by the Arrhenius equation:

\[
k = Ae^{-\frac{E}{RT}}
\]

- \(k \) = reaction rate constant (sec.\(^{-1}\))
- \(A \) = frequency factor (sec.\(^{-1}\))
- \(E \) = activation energy (BTU/lb. mole or cal./g. mole)
- \(T \) = absolute temperature (°R or °K)
- \(R \) = gas constant (1.987 BTU/lb. mole-°R or 1.987 cal./g. mole-°K)

\[1. \text{Units chosen must be consistent to obtain a dimensionless exponential term.}\]
The necessary parameters for the reactions are:

<table>
<thead>
<tr>
<th>Reaction</th>
<th>k_1</th>
<th>k_2</th>
<th>$E_{cal/g. mole}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.535×10^{14} sec$^{-1}$</td>
<td>2.58×10^{16} sec$^{-1}$</td>
<td>70,2002</td>
</tr>
</tbody>
</table>

Neglecting the reversible kinetics of reactions (1) and (2) is possible and can give reasonable results up to a conversion of 75 percent. This method has the effect of absorbing the equilibrium effects into the first order forward reaction rate constants. To go beyond conversions of 75 percent it is necessary to include the reverse reaction kinetics. This model as presented does not include the reversible kinetics necessary to allow ethane conversions above 75 percent and hence must be applied only to the design of systems with less than 75 percent conversion. A discussion of the reversible kinetics is presented in Chapter V. Normal commercial practice is to crack ethane at a level of 55-60 percent conversion per pass. Ethane feedstock has the advantage of high ethylene yield with minimum production of by-products other than hydrogen and methane. (ref. no. 6)

CHAPTER II
APPROACH AND EQUATIONS USED IN DEVELOPING THE MODEL

The purpose of the model is to calculate the length of reactor tube required to obtain a certain ethane conversion or calculate the ethane conversion for a fixed reactor length under specified reactor conditions. The model simulates only the radiation section of the fired reactor, since it is here that the chemical reactions take place, rather than in the convection section of the furnace.

The tubular reactor is assumed to be plug-flow, with no radial concentration gradients or axial dispersion. This is quite realistic, since Reynolds numbers in a practical design are in the range of 300,000 to 600,000. The ideal gas law is used in the calculations, which is also a good assumption in the range of 2-6 atmospheres encountered in practical designs.

The model itself is broken up into three parts, (1) input and calculation of constants, (2) iterative procedure to calculate conversion vs. reactor length, and (3) output.

4. The basic approach and equations used in developing this model were obtained from "Design Case Study 6, Ethylene Plant Design and Economics" by W.L. Bolles & B.D. Smith, Washington University, St. Louis, Missouri.
INPUT & CALCULATION OF CONSTANTS

To completely specify the system, six process variables and five reactor variables must be specified, they are:

(1) Process
 A. The desired ethane conversion (wt. percent) or the desired reactor length (ft.).
 B. The steam to ethane ratio (lb. steam per lb. ethane).
 C. The inlet pressure to the radiation section (atm.).
 D. The inlet temperature to the radiation section (°F).
 E. The radiating flue gas temperature (°F).
 F. The feed mass velocity (lb./hr.-ft.²).

(2) Reactor
 A. Inside tube diameter (inches).
 B. Length at center line of one tube plus return bend (ft.).
 C. The number of tube rows per bank.
 D. The thermal conductivity of the tubing.
 E. Tube surface emissivity.

The input data sheet for submitting the above variables is found in Appendix I.
The first step is to calculate those quantities that will remain constant throughout the simulation, such as the tube pitch, the tube wall thickness, the factor for added resistance of return bends, and the production rate in pounds per hour.

Calculations
After all the constants have been defined, the program begins the iterative calculation procedure of determining the degree of reaction through the reactor. Since the reaction is a linear process, the reactor equations are solved numerically by considering small incremental lengths of reactor tubing. The calculation steps are as follows:

1. **Gas Parameters**

 Molecular weight:
 \[\text{MWf} = \frac{1}{\sum \frac{\text{Xi}}{\text{Mi}}} \]
 where, \(\text{MWf} \) = molecular weight of gas mixture
 \(\text{Mi} \) = molecular weight of component
 \(\text{Xi} \) = weight fraction of component

 Density:
 \[\zeta = \frac{(P)(\text{MWf})}{(R)(T)} \]
 where, \(\zeta \) = density, lb./ft.\(^3\)
 \(P \) = pressure, atm.
 \(T \) = temperature gas, °R
 \(R \) = gas constant, 0.73 atm.-ft.\(^3\)/lb.mole °R
Specific heat:

\[C_i = A + BT + CT^2 \]

where, \(C_i \) = component specific heat, BTU/lb. mole °R
\(T \) = temperature, °K

This method for calculating component specific heat is accurate over the range of 77°F to 2200°F.

Enthalpy:

\[H_i = H_i^0 + \int_{Tr}^{T} C_i \, dT \]

where, \(H_i \) = component enthalpy, BTU/lb. mole
\(H_i^0 \) = heat of formation, BTU/lb. mole at 537°R
\(C_i \) = specific heat, BTU/lb. mole °R
\(Tr \) = reference temperature, 537°R
\(T \) = current temperature, °R

Viscosity:

\[\mu_i = \left(.0027 \frac{MW}{V_B} \right)^{1/2} \left(\frac{T}{V_B} \right)^{3/2} \frac{T^{3/2}}{(1.47 TB + T)} \]

where, \(\mu_i \) = viscosity, centipoise
\(V_B \) = volume constant, cc/g. mole
\(TB \) = temperature constant, °K
\(T \) = current temperature, °K
\(MW \) = molecular weight component

Thermal conductivity:

\[K_i = 0.605 J_i(4C_i + 10) \]

where, \(K_i = \) thermal conductivity,
\(\text{BTU/hr.} \cdot \text{ft}^{-2} \cdot \text{°F} \)

The values of specific heat, enthalpy, viscosity, and thermal conductivity of the individual components are then all combined using Kay's rule to obtain the values for the gas mixture. For example, in the case of enthalpy,

\[H_f = \sum Y_i H_i \]

where, \(H_f = \) gas enthalpy
\(Y_i = \) mole fraction component
\(H_i = \) component enthalpy
2. Reactor Parameters

Reynolds Number

\[N_{re} = \frac{D \cdot V \cdot \rho}{\mu} \]

where, \(D \) = inside tube diameter, ft.
\(N_{re} \) = Reynolds Number, dimensionless

Prandtl Number

\[N_{pr} = \frac{C_f \cdot \mu}{K} \]

where, \(N_{pr} \) = Prandtl number, dimensionless
\(C_f \) = specific heat gas, BTU/lb. mole °F.

Velocity

\[V = \frac{F}{C \cdot A} \times \frac{1}{3600} \]

where, \(V \) = velocity, ft./sec.
\(F \) = production rate, lb./hr. per pass
\(C \) = density gas, lb./ft.³
\(A \) = cross sectional area tube, ft.²

Sonic Velocity

\[V_s = 223 \left(\frac{\chi \cdot T}{M \cdot W} \right)^{\frac{1}{2}} \]

where, \(\chi \) = heat capacity ratio, dimensionless
\(V_s \) = sonic velocity, ft./sec.

Mach Number

\[M_a = \frac{V}{V_s} \]

where, \(M_a \) = Mach number, dimensionless
The Mach number is an indication of how close the velocity of the gas is to the speed of sound, a Mach number of 1.0 being equal to the speed of sound.

3. Kinetic Constants

\[k = Ae^{-E/RT} \]

where,
\(k \) = reaction rate constant
\(A \) = frequency factor
\(E \) = activation energy

4. Heat Flux

The heat flux across the tube wall is calculated using the following procedure:

A. A heat flux \((dq/dAo)\) of 5000 BTU/hr.-ft\(^2\) is assumed based on the outside tube area.

B. The inside tube surface temperature is calculated by convection.

\[dq/dAo = hi (Di/Do) (Ti-Tg) \]

where,
\(hi \) = heat transfer film coefficient, BTU/ft\(^2\)-°F

\(Di, Do \) = inside and outside tube diameter, ft.

\(Ti \) = inside tube surface temperature, °F

\(Tg \) = temperature of gas, °F
C. The outside tube surface temperature is calculated by conduction.
\[
dq/dA_o = (K_t/Th)(T_o - T_i)
\]
where, \(K_t\) = thermal conductivity tube, BTU/hr.-ft\(^2\)-°F
\(Th\) = tube wall thickness, ft.
\(T_o\) = tube outside temperature, °F

D. A new value of heat flux is calculated from the radiation equation.
\[
dq/dA_o = \delta \phi (T_f^4 - T_o^4)
\]
where, \(\delta\) = Stefan-Boltzmann constant,
\[
1.713 \times 10^{-9} \text{ BTU/ft}^2\text{-hr.-}^\circ\text{R}^4
\]
\(\phi\) = tube bank geometry - emissivity factor
\(T_f\) = furnace temperature, °R
\(T_o\) = outside tube surface temperature, °R

E. Steps A through D are repeated until the value obtained for the heat flux remains constant for two successive iterations.

5. Friction Factors

Fluid friction: \(^7\)
\[
f = 0.0035 + 0.264 (Nre)^{-0.42}
\]
where, \(f\) = fluid friction factor

Equivalent length:
\[L_r = \frac{(K_r)(D_i)}{4f} \]
where, \(L_r \) = equivalent length of return bends, ft.
\(K_r \) = factor for added resistance of return bends

Ratio of equivalent length to straight length:
\[\Lambda = \frac{(L_r + L_s)}{L_s} \]
where, \(L_s \) = length at center line of one tube plus return bend, ft.

6. Gradients, Change in Gas Conditions with Length

Concentration:
\[
\frac{dC_2H_6}{dL} = - \left(\frac{1}{V} \right) (k_1 + k_2) X_l
\]
\[
\frac{dC_2H_4}{dL} = \left(\frac{1}{V} \right) \left(\frac{MC_2H_4/MC_2H_6}{k_1 + k_2/2} \right) X_l
\]
\[
\frac{dCH_4}{dL} = \left(\frac{1}{V} \right) \left(\frac{MC_2H_4/MC_2H_6}{k_2} \right) X_l
\]
\[
\frac{dH_2}{dL} = \left(\frac{1}{V} \right) \left(\frac{MH_2/MC_2H_6}{k_1} \right) X_l
\]
\[
\frac{dH_2O}{dL} = 0
\]

where, \(k \) = reaction constants, sec.\(^{-1}\)

where \(C_2H_6 \xrightarrow{k_1} C_2H_4 + H_2 \)
\(C_2H_6 \xrightarrow{k_2} 1/2 C_2H_4 + CH_4 \)

\(M \) = molecular weight
\(V \) = velocity, ft./sec.
\(X_l \) = weight fraction ethane
Molecular weight:
\[\frac{dM}{dL} = -MW^2 \sum \left(\frac{1}{M_i} \right) \left(\frac{dx_i}{dL} \right) \]

where, \(M_i = \) molecular weight of individual component
\(MW = \) average molecular weight of the gas mixture

Heat transfer:
\[\frac{dq}{dL} = (5.14)(D_D)(\frac{dq}{dA_o}) \]

Temperature and pressure:

The temperature and pressure gradients are obtained by solving the mechanical energy balance and the total energy balance simultaneously. The mechanical balance:

\[\left(\frac{C_p V^2}{gT} \right) \frac{dT}{dL} + \left(1 - \frac{C_p V^2}{gT} \right) \frac{dP}{dL} + \left(\frac{4 \Delta f C V^2}{2g \delta_i} - \frac{V^2}{gM} \right) \frac{dM}{dL} = 0 \]

The energy balance:

\[\left(C_p + \frac{V^2}{gT} \right) \frac{dT}{dL} + \left(-\frac{V^2}{gT} \right) \frac{dP}{dL} + \left(\sum H_i \frac{dx_i}{dL} - \frac{V^2}{gM} \frac{dM}{dL} - \frac{1}{F} \frac{dq}{dL} \right) = 0 \]

where, \(J = \) dimensional constant, 778 ft·lb./BTU
\(g = \) dimensional constant, 32.2 ft./sec.²

The above represent two linear equations in two unknowns, of the form:

\[A_1X + B_1Y + C_1 = 0 \]
\[A_2X + B_2Y + C_2 = 0 \]
where, \(X = \frac{dT}{dL} \), the temperature change per foot of incremental reactor length

\(Y = \frac{dP}{dL} \), the pressure change per foot of incremental reactor length

\[
X = \frac{(B_1/B_2) C_2 - C_1}{A_1 - (B_1/B_2) A_2} = \text{\(^{0}\text{F.}/\text{ft.} \)}
\]

\[
Y = \frac{(A_1/A_2) C_2 - C_1}{B_1 - (A_1/A_2) B_2} = \text{lb. force/ft.}^2\text{-ft.}
\]

7. **Increments and New Values of Variables**

Tubular reactor design consists of the use of Euler's method of numerical integration with tube length as the independent variable. Thus, the change in \(Y \), any dependent variable, is:

\[
\Delta Y_i = (dY/dL)_i \Delta L_i, \quad \text{where } L \text{ is tube length}
\]

\[
Y = Y_0 + \Delta Y, \quad \text{where } Y_0 \text{ is the previous value of the dependent variable.}
\]

The new values of molecular weight, temperature, pressure, and conversion are calculated in this manner, and the overall program loop repeated until the desired conversion or reactor length is obtained.
Output

The computer printout offers all the necessary information for the design of the radiation section of the furnace. The process and reactor data are printed and act as a check on the input data. A conversion profile is presented, which correlates conversion to ethylene, methane, and hydrogen as a function of reactor length, temperature, and tube residence time. The outlet tube velocity, the production rate, the physical properties, and the Mach number are also included for the designers information.

A sample of the printout is included with the examples in Chapter IV
CHAPTER III

REACTOR MODEL CONSTRAINTS

The reactor model has certain constraints which are dependent on processing and physical design of the furnace and reactor. The important constraints associated with the derived model are:

1. **Process Velocity**
 The Mach number (velocity of gas/sonic velocity) of the gas flowing through the tubes must be kept below 1.0. This is necessary to keep the gas velocity below the speed of sound.

2. **Process Pressure**
 The process pressure must be kept above 1.0 atmospheres to prevent leakage of air into the process. Air in the process side will cause oxidation and carbonization of the tubes.

3. **Material Temperatures**
 The following are the temperature limits for the materials of construction in the reactor and furnace.
 - A. Incoloy tubes <1800°F at 30 psig
 - B. Incoloy tube hangers <2100°F
 - C. K-23 refractory brick <2100°F
 - D. Mild steel stack <1000°F
4. Conversion

The conversion of ethane to form ethylene and by-products is limited to 75 percent in this model. The reversible kinetics of reactions (1) and (2) presented in Chapter I must be included before the model's stability can be extended beyond 75 percent ethane conversion.
CHAPTER IV

EXAMPLE PROBLEMS

This chapter contains three example problems chosen to show the methods used in applying the computer model to design of the radiation section of a pyrolysis tube reactor for cracking ethane.

Example no. 1 is a conversion based problem, in which the model develops a reactor design for a specified set of conditions and a desired ethane conversion per pass.

Example no. 2 is a length based problem, in which the model develops a reactor design for the conditions of example no. 1 and a specified tubular reactor length.

Example no. 3 shows the importance of selecting a suitable incremental length for use in the model's calculations. A large incremental length is found to produce instability in the reactor model.
A. Example No. 1 - Reactor length required for specified ethane conversion.

The purpose of this example is to determine the reactor length required to obtain a specified ethane conversion. The necessary data and input are found below.

(1) Select the reactor geometry

(a) Tube material - Incoloy
Most ethane cracking units employ Incoloy as the tube material. Incoloy tubes do however have some temperature limitations, and must be kept below 1800°F. Specification of the tube material also specifies the tube surface emissivity and tube thermal conductivity which are .90 and 12.5 respectively for Incoloy.

(b) Tube inside diameter - 4 inches
The tube inside diameters selected are usually between 3 and 5 inches. The tube wall thickness (D/16) and the tube pitch (2D) are then calculated from the diameter.
(c) Number of tube rows per bank - 1

This can be 1 or 2, depending on the case in study. The tube pitch is equal to (2D) for the one tube row case, and (3D) for the two tube row case.

(d) Tube length including return bend - 15 ft.

Usual design lengths are between 12 and 20 ft.

(2) Select the operating conditions

(a) Feed composition - 100 percent ethane

The model is designed for 100 percent ethane feed.

(b) Feed pressure - 5.5 atm. absolute

Inlet pressures are in the range of 4-6 atm.

(c) Steam ratio - 0.2 lb. steam/lb. hydrocarbon

The steam ratio is usually in the range of 0.2-0.4 lb. steam/lb. hydrocarbon feed.

(d) Mass velocity - 82,800 lb./hr.-ft.²

This is the mass velocity of the gas including steam. Mass velocities in the range of 50,000 to 90,000 lb./hr.-ft.² are common.
(e) Flue gas equilibrium temperature - 1900°F.

The flue gas temperature, equivalent to the furnace temperature, is usually between 1800 and 2000 °F. during ethane pyrolysis.

(f) Feed temperature - 250 °F.

Since the model is designed to include only single phase flow, it is important that the feed temperature is kept above the dew point of the inlet steam in order to avoid two phase flow. Feed temperatures are in the range of 200 - 300 °F., depending on the inlet steam ratio and total pressure of the gas.

(g) Ethane conversion - 55 percent

From the above conditions the necessary data are inserted into the model. The results show that for an ethane conversion of 55 percent the reactor length required is 600 feet and the ethylene yield is 48 percent of the ethane fed (see attached printout). The temperature of the gas at the reactor outlet has increased to 1526°F. and the pressure decreased to 1.33 atm., both within the reactor model's constraints. The pressure, however, is approaching atmospheric and extension of this case beyond 55 percent conversion
may cause problems of excessive pressure drop and violation of model constraints. To extend this case beyond 55 percent conversion it would be necessary to study the effects of increasing the tube diameter, which would in turn reduce the velocity in the tube and accordingly also the pressure drop. Another important value obtained from the results is the total heat duty required in the radiation section of the furnace. This number is necessary to assist in design of the furnace heating system.

A number of cases must be tried to define the optimum conversion and reactor length to satisfy a given problem. Consideration must be given to the residence time of the gas in the reactor which if too long can contribute to the decomposition of ethylene into by-products (ref. no. 2) and to the total heat duty which can affect furnace sizing and thus capital investment. When all the reactor variables have been optimized it is possible to define the furnace heating requirements and the size of the convection section.
EXAMPLE NO. 1 RESULTS

INPUT DATA CHECK

PROCESS DATA

THE MASS FLOW RATE IS 82800.0 LB/HR-FT²

INLET TEMPERATURE TO RADIATION SECTION IS 250.00 F.

INLET PRESSURE TO RADIATION SECTION IS 5.5 ATM

TEMPERATURE IN THE RADIATION SECTION IS 1900.00 F.

THE STEAM TO HYDROCARBON RATIO IS .20

THE SPECIFIED ETHANE CONVERSION IS 55.00

REACTOR DATA

THE TUBE DIAMETER IS 4.00 INCHES

THE EMISSIVITY IS .90

THE THERMAL CONDUCTIVITY OF THE TUBES IS 12.50 BTU/HR-FT-°F

THE LENGTH OF TUBES INC. RETURN BEND IS 15.0 FT

THE FURNACE HAS ONE TUBE ROW PER BANK
<table>
<thead>
<tr>
<th>GAS TEMP</th>
<th>GAS PRES</th>
<th>TUBE LENGTH</th>
<th>RESIDENCE TIME</th>
<th>CONVERSION</th>
<th>ETHANE</th>
<th>ETHYLENE</th>
<th>METHANE</th>
<th>HYDROGEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEG F</td>
<td>ATM</td>
<td>FT</td>
<td>SEC</td>
<td>WT PCT</td>
<td>WT PCT</td>
<td>WT PCT</td>
<td>WT PCT</td>
<td>WT PCT</td>
</tr>
<tr>
<td>356</td>
<td>5.44</td>
<td>90</td>
<td>.12</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>450</td>
<td>5.40</td>
<td>90</td>
<td>.23</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>537</td>
<td>5.44</td>
<td>30</td>
<td>.33</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>617</td>
<td>5.42</td>
<td>40</td>
<td>.42</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>692</td>
<td>5.39</td>
<td>50</td>
<td>.50</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>751</td>
<td>5.37</td>
<td>60</td>
<td>.57</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>826</td>
<td>5.34</td>
<td>70</td>
<td>.77</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>887</td>
<td>5.31</td>
<td>80</td>
<td>.81</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>944</td>
<td>5.28</td>
<td>90</td>
<td>.77</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>997</td>
<td>5.25</td>
<td>60</td>
<td>.83</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>1048</td>
<td>5.22</td>
<td>110</td>
<td>.89</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>1096</td>
<td>5.18</td>
<td>120</td>
<td>.93</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>1141</td>
<td>5.15</td>
<td>170</td>
<td>1.00</td>
<td>3.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>1183</td>
<td>5.11</td>
<td>140</td>
<td>1.05</td>
<td>5.00</td>
<td>99.99</td>
<td>.01</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>Time (s)</td>
<td>Velocity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1507</td>
<td>2.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1511</td>
<td>2.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1514</td>
<td>2.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1518</td>
<td>1.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1522</td>
<td>1.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1525</td>
<td>1.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1528</td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Output Information

- **Outlet Tube Velocity**: 1079.3 ft/sec
- **Mach Number**: Must be below 1.0 (is 0.45)
- **Hydrocarbon Production Rate**: 6018.3 lb/hr
- **Total Heat Duty in the Radiant Section**: 13159696.0 BTU/hr
B. Example No. 2 - Ethane conversion for specified reactor length

The purpose of this example is to determine the ethane conversion and ethylene yield obtained for a specified reactor length. The reactor length specified is 580 ft., all the remaining input data being the same as that in example no. 1.

As can be seen from the attached printout, the profile is the same as example no. 1 to the 580 ft. length where this example ends. The same criterion for design of the reactor as discussed in example no. 1 apply here.
EXAMPLE NO. 2 RESULTS

INPUT DATA CHECK

THE MASS FLOW RATE IS 82800.0 LB/HR-FT²

INLET TEMPERATURE TO RADIATION SECTION IS 250.00 F.

INLET PRESSURE TO RADIATION SECTION IS 5.5 ATM

TEMPERATURE IN THE RADIATION SECTION IS 1900.00 F.

THE STEAM TO HYDROCARBON RATIO IS .20

THE SPECIFIED REACTOR LENGTH IS 580.000 FT

PROCESS DATA

REACTOR DATA

THE TUBE DIAMETER IS 4.00 INCHES

THE EMISSIVITY IS .90

THE THERMAL CONDUCTIVITY OF THE TUBES IS 12.50 BTU/HR-FT-F.

THE LENGTH OF TUBES INC. RETURN BEND IS 15.0 FT

THE FURNACE HAS ONE TUBE RAW PER BANK
<table>
<thead>
<tr>
<th>GAS TEMP</th>
<th>GAS PRES</th>
<th>TUBE LENGTH</th>
<th>RESIDENCE TIME</th>
<th>ETHANE</th>
<th>ETHYLENE</th>
<th>METHANE</th>
<th>HYDROGEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATMP</td>
<td>FT</td>
<td>SEC</td>
<td>WT. PCT</td>
<td>WT. PCT</td>
<td>WT. PCT</td>
<td>WT. PCT</td>
<td>WT. PCT</td>
</tr>
<tr>
<td>356</td>
<td>5.48</td>
<td>100</td>
<td>.12</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>450</td>
<td>5.40</td>
<td>200</td>
<td>.23</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>537</td>
<td>5.44</td>
<td>300</td>
<td>.33</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>617</td>
<td>5.42</td>
<td>400</td>
<td>.42</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>692</td>
<td>5.39</td>
<td>500</td>
<td>.50</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>761</td>
<td>5.37</td>
<td>600</td>
<td>.67</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>826</td>
<td>5.34</td>
<td>700</td>
<td>.64</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>887</td>
<td>5.31</td>
<td>800</td>
<td>.71</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>944</td>
<td>5.28</td>
<td>900</td>
<td>.77</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>997</td>
<td>5.25</td>
<td>1000</td>
<td>.83</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>1048</td>
<td>5.22</td>
<td>1100</td>
<td>.88</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>1096</td>
<td>5.19</td>
<td>1200</td>
<td>.95</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>1141</td>
<td>5.15</td>
<td>1300</td>
<td>1.00</td>
<td>.00</td>
<td>100.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>1183</td>
<td>5.11</td>
<td>1400</td>
<td>1.05</td>
<td>.00</td>
<td>99.95</td>
<td>.01</td>
<td>.00</td>
</tr>
<tr>
<td>1224</td>
<td>5.07</td>
<td>1500</td>
<td>1.10</td>
<td>.02</td>
<td>99.98</td>
<td>.02</td>
<td>.00</td>
</tr>
<tr>
<td>1261</td>
<td>5.03</td>
<td>1600</td>
<td>1.15</td>
<td>.05</td>
<td>99.95</td>
<td>.05</td>
<td>.00</td>
</tr>
<tr>
<td>1297</td>
<td>4.99</td>
<td>1700</td>
<td>1.20</td>
<td>.12</td>
<td>99.88</td>
<td>.11</td>
<td>.00</td>
</tr>
<tr>
<td>1330</td>
<td>4.95</td>
<td>1800</td>
<td>1.24</td>
<td>.17</td>
<td>99.73</td>
<td>.20</td>
<td>.01</td>
</tr>
<tr>
<td>1367</td>
<td>4.91</td>
<td>1900</td>
<td>1.29</td>
<td>.29</td>
<td>99.55</td>
<td>.40</td>
<td>.02</td>
</tr>
<tr>
<td>1398</td>
<td>4.87</td>
<td>2000</td>
<td>1.33</td>
<td>.41</td>
<td>99.33</td>
<td>.69</td>
<td>.03</td>
</tr>
<tr>
<td>1411</td>
<td>4.82</td>
<td>2100</td>
<td>1.37</td>
<td>1.73</td>
<td>98.27</td>
<td>1.67</td>
<td>.05</td>
</tr>
<tr>
<td>1419</td>
<td>4.78</td>
<td>2200</td>
<td>1.42</td>
<td>2.70</td>
<td>97.30</td>
<td>2.84</td>
<td>.09</td>
</tr>
<tr>
<td>1425</td>
<td>4.73</td>
<td>2300</td>
<td>1.46</td>
<td>3.88</td>
<td>96.12</td>
<td>3.50</td>
<td>.14</td>
</tr>
<tr>
<td>1429</td>
<td>4.68</td>
<td>2400</td>
<td>1.51</td>
<td>5.21</td>
<td>94.79</td>
<td>4.69</td>
<td>.17</td>
</tr>
<tr>
<td>1432</td>
<td>4.63</td>
<td>2500</td>
<td>1.55</td>
<td>6.62</td>
<td>93.38</td>
<td>5.96</td>
<td>.11</td>
</tr>
<tr>
<td>1436</td>
<td>4.58</td>
<td>2600</td>
<td>1.59</td>
<td>8.03</td>
<td>91.91</td>
<td>7.27</td>
<td>.13</td>
</tr>
<tr>
<td>1439</td>
<td>4.53</td>
<td>2700</td>
<td>1.61</td>
<td>9.57</td>
<td>90.43</td>
<td>8.54</td>
<td>.14</td>
</tr>
<tr>
<td>1443</td>
<td>4.48</td>
<td>2800</td>
<td>1.66</td>
<td>11.97</td>
<td>88.32</td>
<td>9.93</td>
<td>.15</td>
</tr>
<tr>
<td>1449</td>
<td>4.43</td>
<td>2900</td>
<td>1.71</td>
<td>12.58</td>
<td>87.21</td>
<td>11.30</td>
<td>.16</td>
</tr>
<tr>
<td>1451</td>
<td>4.37</td>
<td>3000</td>
<td>1.76</td>
<td>14.09</td>
<td>85.91</td>
<td>12.65</td>
<td>.18</td>
</tr>
<tr>
<td>1456</td>
<td>4.32</td>
<td>3100</td>
<td>1.75</td>
<td>15.60</td>
<td>84.40</td>
<td>13.99</td>
<td>.20</td>
</tr>
<tr>
<td>1460</td>
<td>4.28</td>
<td>3200</td>
<td>1.78</td>
<td>16.72</td>
<td>83.28</td>
<td>15.28</td>
<td>.22</td>
</tr>
<tr>
<td>1467</td>
<td>4.20</td>
<td>3300</td>
<td>1.81</td>
<td>18.61</td>
<td>81.39</td>
<td>16.68</td>
<td>.24</td>
</tr>
<tr>
<td>1470</td>
<td>4.16</td>
<td>3400</td>
<td>1.84</td>
<td>20.11</td>
<td>79.59</td>
<td>18.02</td>
<td>.26</td>
</tr>
<tr>
<td>1474</td>
<td>4.11</td>
<td>3500</td>
<td>1.87</td>
<td>21.60</td>
<td>78.40</td>
<td>19.36</td>
<td>.28</td>
</tr>
<tr>
<td>1476</td>
<td>4.07</td>
<td>3600</td>
<td>1.91</td>
<td>23.09</td>
<td>76.91</td>
<td>20.66</td>
<td>.30</td>
</tr>
<tr>
<td>1478</td>
<td>4.03</td>
<td>3700</td>
<td>1.95</td>
<td>24.58</td>
<td>75.42</td>
<td>22.02</td>
<td>.32</td>
</tr>
<tr>
<td>1480</td>
<td>4.00</td>
<td>3800</td>
<td>1.98</td>
<td>25.98</td>
<td>73.94</td>
<td>23.38</td>
<td>.34</td>
</tr>
<tr>
<td>1483</td>
<td>3.96</td>
<td>3900</td>
<td>2.01</td>
<td>27.38</td>
<td>72.46</td>
<td>24.76</td>
<td>.36</td>
</tr>
<tr>
<td>1486</td>
<td>3.92</td>
<td>4000</td>
<td>2.04</td>
<td>28.78</td>
<td>70.97</td>
<td>26.16</td>
<td>.38</td>
</tr>
<tr>
<td>1488</td>
<td>3.87</td>
<td>4100</td>
<td>2.07</td>
<td>30.18</td>
<td>69.48</td>
<td>27.57</td>
<td>.40</td>
</tr>
<tr>
<td>1490</td>
<td>3.83</td>
<td>4200</td>
<td>2.09</td>
<td>31.59</td>
<td>68.09</td>
<td>28.97</td>
<td>.42</td>
</tr>
<tr>
<td>1492</td>
<td>3.80</td>
<td>4300</td>
<td>2.13</td>
<td>32.99</td>
<td>66.60</td>
<td>30.36</td>
<td>.44</td>
</tr>
<tr>
<td>1494</td>
<td>3.76</td>
<td>4400</td>
<td>2.16</td>
<td>34.39</td>
<td>65.11</td>
<td>31.77</td>
<td>.46</td>
</tr>
<tr>
<td>1496</td>
<td>3.72</td>
<td>4500</td>
<td>2.19</td>
<td>35.78</td>
<td>63.62</td>
<td>33.17</td>
<td>.48</td>
</tr>
<tr>
<td>1497</td>
<td>3.68</td>
<td>4600</td>
<td>2.22</td>
<td>37.17</td>
<td>62.13</td>
<td>34.58</td>
<td>.50</td>
</tr>
<tr>
<td>1499</td>
<td>3.64</td>
<td>4700</td>
<td>2.25</td>
<td>38.56</td>
<td>60.64</td>
<td>35.99</td>
<td>.52</td>
</tr>
<tr>
<td>1500</td>
<td>3.60</td>
<td>4800</td>
<td>2.28</td>
<td>39.94</td>
<td>59.15</td>
<td>37.40</td>
<td>.54</td>
</tr>
<tr>
<td>1502</td>
<td>3.56</td>
<td>4900</td>
<td>2.31</td>
<td>41.32</td>
<td>57.66</td>
<td>38.81</td>
<td>.56</td>
</tr>
<tr>
<td>1503</td>
<td>3.52</td>
<td>5000</td>
<td>2.34</td>
<td>42.71</td>
<td>56.17</td>
<td>40.22</td>
<td>.58</td>
</tr>
</tbody>
</table>
ADDITIONAL OUTPUT INFORMATION

1. **Outlet Tube Velocity:** 854.1 ft/sec
2. **Mach Number:** 0.36
3. **Hydrocarbon Production Rate:** 6018.3 lb/hr
4. **Total Heat Duty in the Radiant Section:** 12827761.0 BTU/hr

<table>
<thead>
<tr>
<th>Time</th>
<th>Velocity</th>
<th>Temperature</th>
<th>Outlet Temperature</th>
<th>Heat Duty</th>
<th>Mach</th>
<th>Hydrocarbon Rate</th>
<th>Heat Duty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1507</td>
<td>2.42</td>
<td>540</td>
<td>2.31</td>
<td>48.39</td>
<td>51.61</td>
<td>63.19</td>
<td>2.26</td>
</tr>
<tr>
<td>1511</td>
<td>2.29</td>
<td>560</td>
<td>2.32</td>
<td>49.64</td>
<td>50.36</td>
<td>44.29</td>
<td>2.33</td>
</tr>
<tr>
<td>1514</td>
<td>2.14</td>
<td>560</td>
<td>2.34</td>
<td>50.84</td>
<td>49.16</td>
<td>46.35</td>
<td>2.40</td>
</tr>
<tr>
<td>1516</td>
<td>1.96</td>
<td>570</td>
<td>2.35</td>
<td>52.01</td>
<td>47.95</td>
<td>46.38</td>
<td>2.47</td>
</tr>
<tr>
<td>1522</td>
<td>1.80</td>
<td>580</td>
<td>2.36</td>
<td>53.11</td>
<td>46.49</td>
<td>47.38</td>
<td>2.53</td>
</tr>
</tbody>
</table>
C. Example No. 3 - Comparison of stability vs. incremental length size

This example is identical to example no. 2, however the incremental reactor length used in the calculations has been increased from 10 to 50 ft., the purpose being to determine the effect, if any, on the model's stability.

The results of this example (see attached printout) show an oscillation of the gas temperature along the reactor. The process temperature decreased because of the large length increment employed. The large increment produced a high temperature at the end of the preceding increment, causing the calculated reaction in the next increment to be large, and the negative heat of reaction to exceed the heat transferred which in turn caused the temperature to fall. This phenomena continued to occur along the reactor causing oscillation in the process temperature.

The use of a 10 ft. incremental length in examples nos. 1 & 2 did not produce any oscillations or cause instability in the model, therefore it is concluded that 10 ft. increments are satisfactory for design of the reactor.
It may be necessary on certain problems to reduce the incremental length below 10 ft. to obtain a satisfactory design. This may be especially necessary in problems where conversion is specified, since for the last 10 ft. increment the conversion may go beyond the specified value.
EXAMPLE NO. 3

INPUT DATA CHECK

THE MASS FLOW RATE IS 82800.0 LB/HR-FT²

INLET TEMPERATURE TO RADIATION SECTION IS 250.00 F.

INLET PRESSURE TO RADIATION SECTION IS 5.5 ATM

TEMPERATURE IN THE RADIATION SECTION IS 1900.00 F.

THE STEAM TO HYDROCARBON RATIO IS 0.20

THE SPECIFIED REACTOR LENGTH IS 580.000 FT

PROCESS DATA

REACTOR DATA

THE TUBE DIAMETER IS 0.00 INCHES

THE EMITTIVITY IS 0.90

THE THERMAL CONDUCTIVITY OF THE TUBES IS 13.50 BTU/HR-FT-F.

THE LENGTH OF TUBES INC. RETURN BEND IS 15.0 FT

THE FURNACE HAS ONE TUBE ROW PER BANK
<table>
<thead>
<tr>
<th>GAS TEMP DEG F</th>
<th>GAS PRESS ATM</th>
<th>TUBE LENGTH FT</th>
<th>RESIDENCE TIME SEC</th>
<th>CONVERSION WT PCT</th>
<th>ETHANE WT PCT</th>
<th>ETHYLENE WT PCT</th>
<th>METHANE WT PCT</th>
<th>HYDROGEN WT PCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>778</td>
<td>5.41</td>
<td>50</td>
<td>62</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1097</td>
<td>5.27</td>
</tr>
<tr>
<td>1007</td>
<td>10.27</td>
<td>100</td>
<td>97</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1478</td>
<td>4.89</td>
</tr>
<tr>
<td>1322</td>
<td>15.10</td>
<td>150</td>
<td>125</td>
<td>99.99</td>
<td>0.01</td>
<td>0.00</td>
<td>1478</td>
<td>4.89</td>
</tr>
<tr>
<td>1478</td>
<td>19.19</td>
<td>200</td>
<td>148</td>
<td>98.74</td>
<td>1.14</td>
<td>0.03</td>
<td>1478</td>
<td>4.89</td>
</tr>
<tr>
<td>1293</td>
<td>24.66</td>
<td>250</td>
<td>168</td>
<td>78.98</td>
<td>18.72</td>
<td>1.04</td>
<td>1293</td>
<td>4.66</td>
</tr>
<tr>
<td>1666</td>
<td>34.64</td>
<td>300</td>
<td>186</td>
<td>76.54</td>
<td>19.12</td>
<td>1.05</td>
<td>1666</td>
<td>4.41</td>
</tr>
<tr>
<td>1433</td>
<td>43.12</td>
<td>350</td>
<td>202</td>
<td>68.51</td>
<td>28.05</td>
<td>1.63</td>
<td>1433</td>
<td>4.12</td>
</tr>
<tr>
<td>1565</td>
<td>52.79</td>
<td>400</td>
<td>217</td>
<td>64.13</td>
<td>31.97</td>
<td>1.72</td>
<td>1565</td>
<td>3.79</td>
</tr>
<tr>
<td>1635</td>
<td>59.41</td>
<td>450</td>
<td>229</td>
<td>52.27</td>
<td>42.44</td>
<td>2.37</td>
<td>1635</td>
<td>3.41</td>
</tr>
<tr>
<td>1533</td>
<td>66.94</td>
<td>500</td>
<td>240</td>
<td>49.64</td>
<td>54.33</td>
<td>3.17</td>
<td>1533</td>
<td>3.04</td>
</tr>
<tr>
<td>1472</td>
<td>74.41</td>
<td>550</td>
<td>255</td>
<td>54.64</td>
<td>34.89</td>
<td>3.71</td>
<td>1472</td>
<td>2.68</td>
</tr>
<tr>
<td>1560</td>
<td>82.40</td>
<td>600</td>
<td>285</td>
<td>56.78</td>
<td>3.29</td>
<td>3.85</td>
<td>1560</td>
<td>2.21</td>
</tr>
</tbody>
</table>

Additional Output Information

The outlet tube velocity is 716.8 ft/sec.

The Mach number, which must be below 1.0, is 0.30.

The hydrocarbon production rate is 6018.3 lb/hr.

The total heat duty in the radiant section is 134535880 BTU/hr.
CHAPTER V

REACTOR CONSTRAINTS THAT CAN BE REMOVED BY FUTURE WORK

To render the model a complete picture of ethane cracking, three items must be added to the cracking simulation. These three items are discussed below:

1. The reversible reaction kinetics of reactions (1) and (2) are necessary additions to the simulation to allow ethane conversions above the present limit of 75 percent.

An attempt has been made to calculate the reversible rate constants from the equilibrium constants of the cracking reactions. To do this the equilibrium constants are calculated from component partial pressures which are then used to calculate the reverse rate constants as the ratio of the forward rate constant to the equilibrium constant. This method makes the assumption that the reaction is at equilibrium at the end of each length increment, which in actual practice may not be the case. The use of this calculation procedure in the reactor model produced instability and was not successful in predicting the reverse reaction rate constants.
The pyrolysis of ethylene was also investigated as a possible mechanism for the reversible reactions. This approach is not accurate, since the pyrolysis of ethylene forms several high molecular weight compounds in addition to those predicted by the reverse reactions.

It is recommended that a thorough literature search be conducted in an attempt to locate kinetic data applicable to the reverse reactions of the ethane/ethylene system, and that the reactor model be revised to include the reversible kinetics.

2. The model as written provides only for the design of the radiation section of a cracking furnace and excludes the convection or preheating section. At present the exit gas temperature from the convection section (inlet to radiation section) is required as input data to the model. To provide a more complete model the inlet temperature to the radiation section should be calculated based on the design of a furnace convection section.
3. The model lacks a fuel calculation for determination of the amount of natural gas and excess air required to provide the necessary heat to produce cracking temperatures. At present a temperature is assumed for the furnace interior with no regard to fuel or burner requirements. Inclusion of this will aid in determining burner sizing and also assist in predicting natural gas costs.
APPENDIX I

INPUT DATA SHEET

<table>
<thead>
<tr>
<th>Card No.</th>
<th>Input</th>
<th>Column No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Length or conversion option</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0 - Ethane conversion specified</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 - Reactor tube length specified</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Length or conversion desired</td>
<td>1 - 10</td>
</tr>
<tr>
<td></td>
<td>- Conversion specified as percent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Length specified in feet</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>A. Steam ratio as</td>
<td>1 - 10</td>
</tr>
<tr>
<td></td>
<td>lb. steam/lb. hydrocarbon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. Incremental reactor length</td>
<td>11 - 20</td>
</tr>
<tr>
<td></td>
<td>(preferred is 10 ft.)</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>A. Inlet pressure (atm.)</td>
<td>1 - 10</td>
</tr>
<tr>
<td></td>
<td>B. Inlet temperature (°F)</td>
<td>11 - 20</td>
</tr>
<tr>
<td></td>
<td>C. Furnace temperature (°F)</td>
<td>21 - 30</td>
</tr>
<tr>
<td></td>
<td>D. Mass flow rate (lb./hr.-ft.²)</td>
<td>31 - 40</td>
</tr>
<tr>
<td></td>
<td>(including steam)</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>A. Inside tube diameter (inches)</td>
<td>1 - 10</td>
</tr>
<tr>
<td></td>
<td>B. Length at center line of one tube plus return bend (ft.)</td>
<td>11 - 20</td>
</tr>
<tr>
<td></td>
<td>C. Tube bank option (integer)</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>0 - one row per tube bank</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 - two tube rows per bank</td>
<td></td>
</tr>
<tr>
<td>Card No.</td>
<td>Input</td>
<td>Column No.</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>D. Thermal conductivity of tubing (BTU/hr.-ft.-°F)</td>
<td>31 - 40</td>
</tr>
<tr>
<td></td>
<td>E. Tube surface emissivity</td>
<td>41 - 50</td>
</tr>
</tbody>
</table>
APPENDIX II

A. Program Listing

0 MAR 29, '71 ID=OCDJ1-EC1
1135816, LAUGH
6K MISI, (TERC)
6K F2, (DEVICE, SI)
6K F3, (DEVICE, LA)

FLAG VERSION 3

AVAILABLE MEMORY SIZE:

PROGRAM AND INITIALIZED VARIABLES = 5487 (WORDS)
NONINITIALIZED VARIABLES = 12798 (WORDS)
TOTAL = 18285 (WORDS)

C

PYROLYSIS OF ETHANE TO FORM ETHYLENE

ETHANE COMPONENT NO. 1
ETHYLENE COMPONENT NO. 2
METHANE COMPONENT NO. 3
HYDROGEN COMPONENT NO. 4
STEAM COMPONENT NO. 5

DIMENSION HFORM(5), WTC(5), TB(5), XC(5), CC(5)
DIMENSION XB(5), Y(5), CP(5), ENTHC(5), ENTHP(5), U(5), F(5)
DIMENSION THRM(5), THM(5), GFOR(5), SUM(5), HSS(5), DEL(5)

INPUT DATA

READ(2, 250) RFAC(2,280), LAPT
IF(LAPT = 1) 250, 251, 251
READ(2, 252) FLN
GO TO 253
READ(2, 252) C
GO TO 253
CONTINUE
READ(2, 252) C
FORMAT(F10.3)
READ(2, 51) RATIO, DELTA
READ(2, 52) PRESE, TEMPP, TG, GFLAI
READ(2, 52) DTI, EQU, NAPT, THRMD, EMS
WRITE(3, 101)
WRITE(3, 100)
WRITE(3, 53)
FORMAT(20X,'PROCESS DATA',//)
WRITE(3, 532)
FORMAT(1X,'THE MASS FLOW RATE IS', F10.1, ' LB/HR-FT2',//)
WRITE(3, 534)
FORMAT(1X,'INLET TEMPERATURE TO RADIATION SECTION IS', F9.2, ' F',//)
WRITE(3, 536)
FORMAT(1X,'INLET PRESSURE TO RADIATION SECTION IS', F9.2, ' ATM',//)
WRITE(3, 538)
FORMAT(1X,'THE STEAM TO HYDROCARBON RATIO IS', F5.2,//)
IF(LAPT-1) 290, 291, 291
WRITE(3, 539) C
GO TO 292
291 WRITE(3,533)ELN
293 FORMAT(1X,'THE SPECIFIED REACTOR LENGTH IS ',F9.3,' FT'///)
292 CONTINUE
50 FORMAT(1X,'THE SPECIFIED ETHANE CONVERSION IS ',F5.2///)
530 WRITE(3,530)
531 FORMAT(1X,'THE TUBE DIAMETER IS ',F5.2,' INCHES'///)
533 FORMAT(1X,'THE EMISSIVITY IS ',F5.2///)
534 FORMAT(1X,'THE THERMAL CONDUCTIVITY OF THE TUBES IS ',F5.2,' BTU/'
1 HP-FT-1.'///)
535 FORMAT(1X,'THE LENGTH OF TUBES INC. RETURN BEND IS ',F5.1,' FT'///
1)
540 IF(LOPT-1)540,541,541
541 CONTINUE
541 WRITE(3,550)
542 GO TO 552
550 FORMAT(1X,'THE FURNACE HAS ONE TUBE ROW PER BANK')
551 FORMAT(1X,'THE FURNACE HAS TWO TUBE ROWS PER BANK')

COUNT=0.
QW=0.

FAC WEIGHTING FACTOR ON HEAT FLUX TO DAMPEN OSCILLATORY BEHAVIOR
FAC=0.
HEATG=5000.
I=0
RESD=0.

C CALCULATION OF CONSTANTS

IF(LOPT-1)240,261,261
240 CD=160.*C
261 CONTINUE
TEMPF=TEMPF+460.
D1=D1/12.
D6=D1/8.
THICK=(D6-D1)/2.
560 S=2.0*DI
561 S=3.0*DI
562 CONTINUE
IF(S/D1=2.)*57c,570,571
570 RK=.75
571 RK=.5
572 CONTINUE
AT=3.14*((D1/2.)**2.)
FLOW=GFLOW*AI

WTC(1)=30.
WTC(2)=29.
WTC(3)=16.
WTC(4)=2.
WTC(5)=1.
HFORM(1)=36400.
HFORM(2) = 22555.
HFORM(3) = 32200.
HFORM(4) = 0.
HFORM(5) = -104000.
VB(1) = 51.2
VB(2) = 44.4
VB(3) = 29.6
VB(4) = 14.3
VB(5) = 18.9
TB(1) = 184.2
TB(2) = 169.5
TB(3) = 111.7
TB(4) = 20.4
TB(5) = 373.2
XC(2) = 0.
XC(3) = 0.
XC(4) = 0.
XC(5) = 1 - XC(1) * FLAW

BEGINNING OF OVERALL LOOP

MOLECULAR WEIGHT------MOLE FRACTIONS------DENSITY FLUID

XF = C
DO 1 J = 1, 5
XF = XF + X(J) / WTC(J)
TF = 1 / XF
DO 2 J = 1, 5
Y(J) = XP(J) / XP
DENSE = PRESF * WTF / (0.73 * TEMPF)

ENTHALPY CALCULATIONS

TEMP = TEMPF / 1.8
CP(1) = Y(1) * (2.247 * 0.32 + TEMPF - 0.00011 * (TEMPF ** 2.))
CP(2) = Y(2) * (2.83 + 0.25 * TEMPF - 0.000087 * (TEMPF ** 2.))
CP(3) = Y(3) * (3.381 + 0.127 * TEMPF - 0.0000333 * (TEMPF ** 2.))
CP(4) = Y(4) * (4.947 + 0.002 * TEMPF + 0.000005 * (TEMPF ** 2.))
CP(5) = Y(5) * (7.219 + 0.024 * TEMPF + 0.000003 * (TEMPF ** 2.))
HCAFF = 0.
DO 3 J = 1, 5
HCAFF = HCAFF + CP(J)
GAMAF = HCAFF / (HCAFF - 0.987)
ENTHF = 0.
DO 83 J = 1, 5
IF(Y(J) - 0.01) GO TO 80
80 ENTHC(J) = HFORM(J)
81 ENTHF = ENTHF + ENTHC(J)
83 ENTHF = ENTHF + ENTHP(J)

VELF = FLAW / (DENSE * AT)
VELF = VELF / 3600.
SNAV = 223 * SQRT(GAMAF * TEMPF / WTF)
AMACH = VEL / SNAV
VISCOITY AND THERMAL CONDUCTIVITY

DO 22 J=1,5
 IF(Y(J)=-.001)112,111,111
//
 CC(J)=.81
 GO TO 113
//
111 CC(J)=CP(J)/(Y(J)*WTC(J))
//
113 CONTINUE
//
U(J)=(.0027)*(WTC(J)**.05)*(TEMPC**1.5))/((VB(J)**.67)*(1.47)*TB(J)+TEMPC)
//
F(J)=U(J)*Y(J)*2.42
//
VISCF=VISCF+F(J)
//
THRM(J)=.605*U(J)*(4.*CC(J)*WTC(J)+10.)/WTC(J)
//
THH(J)=Y(J)*THRM(J)*.57
//
THERM=THERM+THM(J)
//
REYN=DI*DENSF/VISCF
//
PRNTL=(HCAPF/WTF)*VISCF/THERM
//
GEOM=1/FW1
//
OMEGA=S/DE+ATAN(((S/DS)**0.)*(1.))**.5-((S/DS)**2-1.)*.5
//
IF(NGPT -1)6,7,7
//
6 GEOM=1./EMIS-1.+3.14/(2.*OMEGA)108
//
GO TO 8
//
7 GEOM=1./EMIS-1.+3.14/(2.*OMEGA-((OMEGA**2)*DS/S))
//
8 CONTINUE

ITERATIVE PROCEDURE FOR CALCULATING THE HEAT FLUX

HI=.023*(THERM/DI)*(REYN**.9)*(PRNTL**.4)
//
IF(I-1)201,200,200
//
201 HEAT=HEATG
//
GO TO 202
//
200 HEAT=HEAT2
//
202 CONTINUE
//
DF 10 J=1,20
//
TIN=((HEAT*DB)/(HI*DI))+(TEMPF-460.)*
//
TH=(HEAT*THICK/THM)*TIN
//
HEAT2=(1+713E-9/GEOM)*((T+460.)*.4+(T+460.)*.4)
//
IF(ABS((((HEAT2-HEAT)/(HEAT2+HEAT))**2.)-.005))11,11,77
//
77 HEAT=(HEAT*FAC+HEAT2)/(FAC+1.)
//
10 CONTINUE
//
WRITE(3,2000)
//
FRIC=0.035+.264/(REYN**.42)
//
EQL=RK*DI/(4.*FRIC)
//
GAMBA=(EQL+EQS)/EQS
//
V=1./VFL

INCREMENTING

GFRC(1)=-V*(R1+R2)*XC(1)
GFRC(2) = v(WTC(2)/WTC(1))*(R1+R2/2)*XC(1)
GFRC(3) = v(WTC(3)/WTC(1))*R2*XC(1)
GFRC(4) = v(WTC(4)/WTC(1))*R1*XC(1)
GFRC(5) = 0.

SUM(J) = (1/WTC(J))*GFRC(J)
GMWT = SUM(J)*WTF**2
GREAT = 3.14*DS*HEAT2
VSQ = VEL**2

CONSTANTS FOR TEMPERATURE AND PRESSURE

A1 = HCAPF/TF+VSQ/(778*32.2*TEMPF)
A2 = DENSF*VSQ/(32.2*TEMPF)
PRESS = PRESF*2116.8
B1 = VSQ/(778*32.2*PRESS)
B2 = DENSF*VSQ/(32.2*PRESS)

HS = C1
HS = HS+HS(J)
C1 = HS/(778*32.2*TEMPF)*GMWT*GHEAT/FLAW
C2 = (4*GANBA*DENSF*VSQ*FRIC)/(2*38.2*DI)-(DENSF*VSQ*GMWT)/(32.2*TF)
GTEMP = ((B1/P2)*C2-C1)/(A1-(B1/B2)*A)
GPRES = (((A1/A2)*C2-C1)/(B1-(A1/A2)*B2))/2116.8

NEW ITERATIVE VALUES

DEL(J) = GFRC(J)*DELTA
DELG = GHEAT*DELTA
DELT = GTEMP*DELTA
DELP = GPRES*DELTA
TEMPF = TEMPF+DELT
TEMPF = TEMPF-446.
PRESF = PRESF+DELP

OUTPUT

COUNT = 1+C1
ELNTH = COUNT*DELTA
RES = DELTA/VEL
RESD = RESD+RES
CANV = 100.-X1
IF(T-1)850,851,851
 CONTINUE
WRITE(3,101)
WRITE(3,700)
700 FORMAT(6X,'GAS TEMP',3X,'GAS PRES',3X,'TUBE LENGTH',3X,'RESIDENCE')
1 TIME, 3X 'CONVERSION', 3X 'ETHANE', 4X, 'ETHYLENE', 4X, 'METHANE', 5X, 'H

WRITE (3, 702)

WRITE (3, 703) CNT, 9X, 'WT PCT', 6X, 'WT PCT', 6X, 'WT PCT'//)
703 CONTINUE

WRITE (3, 703) TEMP, PRESE, LENTh, RESP, CONV, X1, X2, X3, X4

WRITE (3, 703) TEMP, PRESE, LENTh, RESP, CONV, X1, X2, X3, X4

IF (LOPT-1) 270, 271, 271
270 IF (X1-CD) 17, 17, 18
17 GO TO 272
271 IF (LENTH-ELN) 18, 272, 272
272 CONTINUE

WRITE (3, 1001)
1001 FORMAT ('ADDITIONAL OUTPUT INFORMATION'//)

WRITE (3, 810) VEL
810 FORMAT (1X, 'THE OUTLET TUBE VELOCITY IS', F10.1, ' FT/SEC'//)

WRITE (3, 810) VEL
810 FORMAT (1X, 'THE OUTLET TUBE VELOCITY IS', F10.1, ' FT/SEC'//)

WRITE (3, 812) AMACH
812 FORMAT (1X, 'THE MACH NUMBER - WHICH MUST BE BELOW 1.0 - IS', F5.2)//

WRITE (3, 812) AMACH
812 FORMAT (1X, 'THE MACH NUMBER - WHICH MUST BE BELOW 1.0 - IS', F5.2)//

WRITE (3, 811) HLB
811 FORMAT (1X, 'THE HYDROCARBON PRODUCTION RATE IS', F10.1, ' LB/HR'//)

WRITE (3, 811) HLB
811 FORMAT (1X, 'THE HYDROCARBON PRODUCTION RATE IS', F10.1, ' LB/HR'//)

WRITE (3, 1000) QQQ
1000 FORMAT (1X, 'THE TOTAL HEAT DUTY IN THE RADIANT SECTION IS', F20.1, ')

CALL EXIT

END

ACTUAL PROGRAM SIZE:
PROGRAM AND INITIALIZED VARIABLES = 1951 (WORDS)
UN-INITIALIZED VARIABLES = 191 (WORDS)
TOTAL = 2142 (WORDS)
B. Definition of Fortran Nomenclature

A1 - Constant for calculation of temperature and pressure gradients
A2 - Constant for calculation of temperature and pressure gradients
AI - Cross sectional area of tube (ft.²)
AMACH - Mach number
B1 - Constant for calculation of temperature and pressure gradients
B2 - Constant for calculation of temperature and pressure gradients
C1 - Constant for calculation of temperature and pressure gradients
C2 - Constant for calculation of temperature and pressure gradients
CC - Individual component heat capacity (BTU/lb.)
CO - Desired ethane conversion (lb. ethane reacted/ lb. ethane fed)* 100
CONV - Ethane conversion along reactor tube
 (lb. ethane reacted/ lb. ethane fed)* 100
CP - Individual component contribution to total gas
 heat capacity (BTU/lb. mole)
DII - Inside tube diameter (inches)
DI - Inside tube diameter (ft.)
DEL - Change in weight concentration over incremental length
DELQ - Change in heat input over incremental length (BTU)
DELP - Change in pressure over incremental length (atm.)
DELT - Change in temperature over incremental length (°F.)
DELT-A - Incremental length (ft.)
DO - Outside tube diameter (ft.)
ELN - Specified reactor tube length (ft.)
ELATH - Total length of tube (ft.)
EMIS - Emissivity of tube surface
ENTHC - Enthalpy of individual component (BTU/lb. mole)
ENTHF - Enthalpy of total gas (BTU/lb. mole)
FAC - Weighting factor on heat flux to dampen oscillatory behavior
FLOW - Production rate (lb./hr.)
FRIC - Fanning friction factor
GAMAF - Specific heat ratio (const. pressure/constant volume) of gas
GAMBA - Ratio of equivalent length (friction) to straight length
GEOM - Tube bank geometry - emissivity factor
GFLOW - Mass velocity (lb./hr.-ft²)
GFRC - Change in component concentration with length (l/ft.)
GHEAT - Change in heat input with length (BTU/ft.)
GMWT - Change in molecular weight of gas with length (lb./lb. mole-ft.)
GPRES - Change in pressure of gas with length (ATM/ft.)
GTEMP - Change in temperature of gas with length (°F./ft.)
HCAFP - Heat capacity of the total gas (BTU/lb. mole)
HEAT2 - Actual heat flux across tube (BTU/ft²)
HEATG - Initial guess at HEAT2
HFORM - Heat of formation of individual components (BTU/lb. mole)
HI - Heat transfer film coefficient, inside tube,(BTU/hr.-ft²-°F.)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOPT</td>
<td>Option for selection of conversion or length problem</td>
</tr>
<tr>
<td>NOPT</td>
<td>Tube bank geometry option</td>
</tr>
<tr>
<td>PRESF</td>
<td>Pressure of the gas (ATM)</td>
</tr>
<tr>
<td>PRNTL</td>
<td>Prantl number of the gas</td>
</tr>
<tr>
<td>QQR</td>
<td>Total amount of heat input to gas in tube (BTU)</td>
</tr>
<tr>
<td>R1</td>
<td>Reaction rate constant of reaction No. 1 (sec⁻¹)</td>
</tr>
<tr>
<td>R2</td>
<td>Reaction rate constant of reaction No. 2 (sec⁻¹)</td>
</tr>
<tr>
<td>RES</td>
<td>Gas residence time in incremental length (sec)</td>
</tr>
<tr>
<td>RATIO</td>
<td>Steam to ethane ratio (lb. steam/lb. ethane)</td>
</tr>
<tr>
<td>RESD</td>
<td>Accumulated residence time of gas in tube (sec)</td>
</tr>
<tr>
<td>REYN</td>
<td>Reynolds number of gas</td>
</tr>
<tr>
<td>RK</td>
<td>Factor for added resistance of return bends</td>
</tr>
<tr>
<td>S</td>
<td>Tube spacing (pitch), center to center (ft.)</td>
</tr>
<tr>
<td>SONV</td>
<td>Sonic velocity (ft./sec.)</td>
</tr>
<tr>
<td>TE</td>
<td>Constant for calculation of viscosity and thermal cond. (°K)</td>
</tr>
<tr>
<td>TEMPT</td>
<td>Temperature of gas (°F.)</td>
</tr>
<tr>
<td>TEMPO</td>
<td>Temperature of gas (°K)</td>
</tr>
<tr>
<td>TEMPP</td>
<td>Temperature of gas (°R)</td>
</tr>
<tr>
<td>TG</td>
<td>Temperature inside furnace (°F.)</td>
</tr>
<tr>
<td>THICK</td>
<td>Tube wall thickness (ft.)</td>
</tr>
</tbody>
</table>
THERM - Thermal conductivity of gas (BTU/hr.-ft.-°F.)
THRMD - Thermal conductivity of tubing (BTU/hr.-ft.-°F.)
TIN - Temperature of inside tube surface (°F.)
TO - Temperature of outside tube surface (°F.)
VB - Constant for calculation of viscosity and thermal cond. (CC/g. mole)
VEL - Velocity of gas (ft./sec.)
VISCF - Viscosity of gas (lb./ft.-hr.)
WOLF - Hydrocarbon production rate (lb./hr.)
WTC - Molecular weight of component (lb./lb. mole)
WTF - Molecular weight of gas (lb./lb. mole)
XC - Weight fraction of individual component (including steam)
X1 - Weight fraction individual component (no steam)
X2 - Weight fraction individual component (no steam)
X3 - Weight fraction individual component (no steam)
X4 - Weight fraction individual component (no steam)
Y - Mole fraction of individual components (including steam)
BIBLIOGRAPHY

