Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

The Optimization Of A Catalytic

Methanol Reactor

Using Quench Feed

By

John Paul McBurney

A Thesis

Presented In Partial Fulfillment Of

The Requirements For The Degree

Of

Master Of Science In Chemical Engineering

At

Newark College Of Engineering

This thesis is to be used only with due regard to the rights of the author. Bibliographical reference may be noted, but passages must not be copied without permission of the college and without credit being given in subsequent written or published work.

Newark, New Jersey 1970

Abstract

The production of methanol in a catalytic quench feed reactor is studied by means of a computerized model and optimized in terms of total reactor length necessary to achieve a given production rate. The methanol reaction rate can be maximized in a quench reactor through the use of cold stream feeds along the length of reactor.

Since the methanol reaction temperature is restricted to an upper limit of 405° C, the addition of cold stream feed along the adiabatic reactor enables the desired conversion to be reached. For two given levels of conversion, 12% and 15%, an optimum inlet temperature, quench temperature, and quench feed fraction is found.

Approval Of Thesis

THE OPTIMIZATION OF A CATALYTIC METHANOL REACTOR USING QUENCH FEED

By

John Paul McBurney

For

Department Of Chemical Engineering

Newark College Of Engineering

By

Faculty Committee

Approved:

Table of Contents

]	Page
Title Page .	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	8		•	i
Abstract .	•	•	•	•		•	•		•	•	•	•	٠		•	•	•	•	•	•	ii
Approval Page	9	•	•	•		•	e	•		•	•		•	•	•	•	•		•	•	iii
Introduction	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	l
Procedure		•	•	•		6	•	•	•	• .	•	•	•	•	•	•	•	•	•	•	4
Review of Li-	teı	rat	tui	re	•	•	•	•	•		•	•	•		•	•			•	• •	5
Theory	٠	•	•	•		•	a	•	•	•	•	•	•	•	•	•	•	•	•	•	7
Discussion .	•	•	`•		•	•	•	•	•	•	•	•	•		•	٩	•	•	•	•	11
Conclusions	•	.•	•	•	•	•	•	•	•		•	•	•	٠	•	•	•	٠	٠		26
Discussion	of	Re	esi	ul	ts	•	•	•	•	•	•	•		•	4	•	•	•	•	٠	27
Nomenclature	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		۰. ۲	• •	•	•	34
Appendix	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	35
Bibliography			•			•				•	•		•	•	•			•	•	•	77

.

LIST OF FIGURES

Figure	1.	Five Stage Quench Reactor System
Figure	2.	Effect of Inlet Temperature on Reactor Length
Figure	3.	Effect of Quench Percentage on Reactor Length
Figure	4.	Effect of Inlet Temperature on Overall
		Reactor Length
Figure	5.	Effect of Quench Temperature on Overall
	×	Reactor Length
Figure	6.	Reciprocal Reaction Rate vs. Conversion
Figure	7.	Reciprocal Optimum Reaction Rate vs. Conversion

LIST OF TABLES

.

Table I	Critical Constants for Specific Volume
Table II	Temperature Dependent Rate Constants
Table III	Heat Capacity Constants
Table IV through Table XV	Computer Outputs for the Study
Table XVI	Optimum Reactor for 12% Conversion
Table XVII	Optimum Reactor for 15% Conversion

Introduction

The methanol reaction is catalytic and reversible. The rate of reaction can be expressed as:

$$(-r_{CO}) = \gamma \cdot \frac{f_{CO} f_{H_2}^2 - f_{CH_3OH}/K_{eq}}{(A + Bf_{CO} + Cf_{H_2} + Df_{CH_3OH})}$$
(1)

where n_{1} is defined as the catalyst effectiveness, and A, B, C, and D are temperature dependent constants defined by Natta.⁽⁹⁾

The reaction is carried out in a catalytic plug flow reactor. Natta⁽⁹⁾ defines the differential design as:

$$(-r_{\rm CO}) dW = F dy$$
 (2)

where dW is the differential weight of catalyst, F is the molar feed rate of gas, and dy is the fraction of the number of moles of inlet gas converted to methanol.

A quench converter can be effectively used when an exothermic, reversible reaction, such as the formation of methanol from carbon monoxide and hydrogen, causes the equilibrium conversion to be lowered as the temperature of the reactants along the plug flow reactor increases. As the temperature in the reactor increases, the conversion is limited to the equilibrium value of conversion at that temperature. Since this value can be lower than the required conversion in the reactor, a reduction in reactant temperature is done through the use of a cold stream quench feed, made up of the same composition as the inlet feed to the reactor, being introduced at various points along the reactor length. The temperature reduction will raise the value of equilibrium conversion and enable the reactor to achieve the required conversion. The quench feed is a given percentage of the total feed and is fixed for a particular reactor system. The quench stream is divided into fractions for introduction at teach reactor stage inlet. The section of reactor between the introduction of two feed streams is known as a stage. For an n stage converter there are n-l quench feed fractions. There are n-2 variables for the quench feed stream since the last quench fraction F_{Ω} (N-1) must be equal to

$$1 - \sum_{I=1}^{N-2} F_Q(I).$$

The reactor can be optimized in terms of reactor length once certain other operating conditions are specified. In the design equation the differential weight of catalyst, dW, is equal to the catalyst bulk density times the differential volume element which is the product of the cross sectional reactor area and the differential reactor length, dL.

Since the length of reactor is related to the investment cost for the converter, the minimum cost can be approximated by summing the cost of each catalyst section in terms of dollars per unit length and using this as a basis for comparision with other methods of producing methanol. The optimization problem can be then defined as follows: For a given inlet flow rate, feed composition, and production rate of methanol, find the reaction system which minimizes the reactor length. The reaction system includes the individual bed lengths, fraction of the total feed used for quenching, temperature of the quench stream, and inlet temperature to the first reactor stage.

The reactor length can best be minimized by keeping the reaction temperature in each stage as close as possible to the temperature limit for the methanol reaction, which for the purpose of this investigation was set at 405°C, since above this temperature undesirable side reactions occur. The computer model of the methanol reactor was developed so that each reaction stage would convert carbon monoxide and hydrogen to methanol until the temperature limit was reached. In the last reaction stage the reaction would proceed until the desired conversion was achieved.

Procedure

A tubular, catalytic, guench feed reactor for the production of methanol can be optimized in terms of many variables as they effect reactor length. These include temperature of inlet gases, ratio of carbon monoxide to hydrogen in the feed, number of reactor stages, reaction pressure, catalyst effectiveness, and fraction of the total feed used for quenching. For purposes of this computer study many of these variables are held constant and reactor length is optimized on inlet temperature, quench feed fraction, and quench temperature. Reaction pressure is assumed constant for all cases at 280 atmospheres. Inlet molar ratio of hydrogen to carbon monoxide is fixed at three to one. The catalyst used in the model to develop the expression for catalyst effectiveness consists of 75% ZnO and 25% Cr_2O_3 . This effectiveness factor is held constant at a value of 0.67.

Review of the Literature

5

The basic texts in the area of reactor design include books by $\operatorname{Aris}^{(1)(2)}$ and Kramer and Westerkelp⁽⁶⁾. $\operatorname{Aris}^{(1)}$ discusses the use of cold shot as well as interchange cooling in the development of optimal design. Other work done in the area of optimal design of tubular reactors for an exothermic, reversible process was done by Siebenthal and $\operatorname{Aris}^{(9)}$. They developed a method whereby the length of reactor was minimized by optimally distributing the feed along the reactor length. This work was expanded by Shipman and Hickman⁽⁸⁾ to apply particularly to the ammonia reaction.

In their work, Shipman and Hickman developed a computer model to simulate an optimum quench converter. This model permits the user to obtain optimum conditions of bed length, heat exchanger area, catalyst volume, and quench stream feeds. All that is required as input data is production rate, inlet flow rate and composition, and allowable pressure drop. The objective function, total length of reactor and heat exchanger, was minimized by an optimization algorithm which performs a modified gradient optimization which reaches a desired minima by derivative finding.

XB5= EXIT CONVERSION

FIVE STAGE QUENCH REACTOR SYSTEM

,

Theory

The production of methanol is affected through the use of a catalytic, plug flow reactor. The exothermic reaction requires both a heat and material balance in order to design the reactor. The design of reactors in which exothermic reversible reactions take place is complicated by the fact that the equilibrium conversion decreases with increasing temperature. Therefore, instead of approaching high conversions in longer plug flow reactors, only the equilibrium conversion can be reached. The methanol reaction is further complicated by the fact that at temperatures in excess of 405° C, undesirable side reactions occur. The use of a quench feed reactor is beneficial for an exothermic reaction and lends itself readily for optimization. Quench feeds are selectively introduced so that the reaction rate can be kept as high as possible.

Methanol is formed by the reaction $CO + 2H_2 + CH_3 OH$. The material balance needed to design the reactor is performed on a differential volume element dV. The input to the volume element equals the output plus the disappearance or appearance of the component by reaction. In terms of carbon monoxide the equation can be

expressed as:

$$F_{COO} dX_{CO} = (-r_{CO}) dV$$
 (3)

where F_{CO_0} is the initial molar flow rate of the carbon monoxide to the reactor dX_{CO} is the conversion of carbon monoxide to methanol in the differential volume element dV and $-r_{CO}$ is the rate of reaction. The differential volume element can be replaced by the differential weight of catalyst dW. For consistency the expression for the rate of reaction must have units of weight per time per weight of catalyst.

The differential weight of catalyst can be replaced by the product of the bulk density of the catalyst, the cross sectional area of the reactor, and the differential reactor length. The equation can now be expressed as

$$F_{CO_0} dX_{CO} = (-r_{CO}) \ \ \theta_{b} \ \ A_{cr} \ \ dL$$
(4)

on rearrangement

$$dL = \frac{F_{CO_0} dX_{CO}}{(-r_{CO}) \ell_{b} \ell_{cr}}$$
(5)

The heat balance is then performed on the same volume element. The heat formed by the reaction minus the heat transferred is equal to the heat accumulated in the gases and the catalyst. Symbolically

$$(-\Delta H_r) F_{CO_o} dX_{CO} - UA (T_g - T_s) = F_i c_{pi} dT$$
 (6)

In order to simplify the probelm slightly it will be assumed that the reactor is operating adiabatically. Therefore the term $UA(T_g - T_s)$ will become equal to zero.

The rate of reaction for methanol in a catalytic system has been derived by Wrampe (14) and is expressed as a function of equilibrium constant, component fugacities, and catalyst effectiveness factor.

$$(-r_{CO}) = \eta \cdot \frac{(\emptyset_{CO}^{N}_{CO}^{P}) (\emptyset_{H_{2}}^{N}_{H_{2}}^{P})^{2} - (\emptyset_{CH_{3}^{OH}^{H}_{CH_{3}^{OH}^{P}}^{H}) / \kappa_{eq}}{(A+B(\emptyset_{CO}^{N}_{CO}^{P}) + C(\emptyset_{H_{2}}^{N}_{H_{2}^{P}}^{H}) + D(\emptyset_{CH_{3}^{OH}^{N}_{CH_{3}^{OH}^{P}}^{OH}^{P}))^{3}} (7)$$

The rate expression is a function of both temperature and conversion. In order to solve these equations for a temperature profile along the length of reactor, it is necessary to resort to iterative techniques.

At some point along the reactor length it becomes necessary to introduce a certain percentage of the quench feed in order to reduce the temperature and maximize the reaction rate. At this point of introduction it is necessary to perform an enthalpy balance to obtain the inlet feed temperature to the next reactor stage. The temperature profile is again calculated using the iterative technique and after a given length of reactor, quench feed is again added. For an n stage reactor there are n-l quench feeds. Gases leaving the nth stage are at temperature T_N . For the optimum reactor length this exit temperature should be the maximum allowable temperature, which has been arbitrarily fixed at 405°C for this reactor simulation.

The optimization was achieved after examining numerous computer runs which generated data of reactor length versus temperature of inlet feed, quench feed fraction, and quench feed temperature. For different levels of conversion there exist optimum values of inlet temperature, quench temperature, and quench fraction which minimize reactor length. The computer simulation of the reaction system allows each reactor section to reach an exit conversion which corresponds to an exit temperature of about 400°C. At that point quench feed is added and the computer performs an enthalpy balance to arrive at the inlet temperature for the succeeding stage. Only temperatures and quench fractions which allow the desired conversion to be achieved without violating the temperature constraint can be considered in selecting the minimum reactor length.

Discussion

One method for the commercial production of methanol is by the reaction

$$CO + 2H_2 \rightleftharpoons CH_3OH$$
 (8)

Since this reaction is exothermic and reversible it is conceivable that it can be carried out in a quench feed reactor. This type of reaction is well suited for optimization since once the reaction temperature gets too high, conversion is limited by the equilibrium value. A quench feed reactor acts as a series of plug flow reactors. In the case of the methanol reaction these reactor sections are packed with catalyst. The feed to the first stage is comprised of carbon monoxide, hydrogen, and inerts. The inlet temperature feed composition and feed rate are specified for a given system. The feed reacts catalytically and for a given conversion of carbon monoxide to methanol, the resulting temperature of the gas stream and the length of reactor section needed to achieve this conversion can be calculated.

When the gases leave the first stage, they are combined with a certain percentage of the quench feed. The quench feed for this problem consists of the same concentration of carbon monoxide, hydrogen, and inerts as the feed to the first stage. The temperature of

the quench stream is lower and is used to lower the temperature of the combined streams. The feed entering the second stage of the reactor will have a different composition than that entering the first stage. There is now more methanol present in the inlet stream to the second stage. Also the ratio of hydrogen to carbon monoxide has changed. If the moles are initially present in a three to one ratio and ten percent of the carbon monoxide is converted, the resulting ratio would be 2.8:0.9 or 3.11:1. The change is reactant ratio must be accounted for in the calculations. The calculation is repeated for each stage in the reactor system. The gases leaving the n reactor stage contain the product at the desired level of conversion and at an elevated temperature.

The rate expression for the methanol reaction has been derived by $Wrampe^{(14)}$ as

$$-\mathbf{r}_{CO} = \frac{(\mathscr{A}_{CO}^{N}_{CO}^{P}) (\mathscr{A}_{H_{2}}^{N}_{H_{2}}^{P})^{2} - (\mathscr{A}_{CH_{3}^{OH}}^{N}_{CH_{3}^{OH}}^{N}_{CH_{3}^{OH}}^{P})/K_{eq}}{(A + B(\mathscr{A}_{CO}^{N}_{CO}^{P}) + C(\mathscr{A}_{H_{2}}^{N}_{H_{2}^{P}}^{P}) + D(\mathscr{A}_{CH_{3}^{OH}}^{N}_{CH_{3}^{OH}}^{P}))^{2}} (9)$$

The fugacity coefficient of each component, ϕ_i , can be calculated once the specific volume of the gas V_i , is known. The equation for the specific volume is given by Ewell⁽⁴⁾ as

$$V_{i} = \frac{RT}{P + \frac{b_{i}}{V_{i}^{7/4}T}}$$
(10)

The values of b_i and c_i , which are critical temperature and pressure dependent constants, have been calculated by Wrampe⁽¹⁴⁾ and are found in Table I. The specific volume can be calculated by an iterative procedure which varies the left hand side of the equation until it matches the right. The specific volume of the gas at the given temperature and pressure is then used to calculate the fugacity coefficient through the equation derived by Ewell.⁽⁴⁾

In determining the mole fraction of each component it is necessary to perform a material balance at a point along the reactor length.

COMPONENT	INITIAL	REACTING	REMAINING
CO	F _{COo}	x F CO	F _{COl} (l-x)
H ₂	F _H ₂₀	2 x F _{CO}	F _{H20} - 2 x F _{CO0}
СНЗОН	F _{CH3} 0Ho	0	F _{CH3} OH ⁺ x F _{CO}
I(inerts)	FI	0	FI

The total molar flow rate in the reactor element at any time can be found by taking the sum of all the components.

$$F_{TOT} = F_{COO} + F_{H_{2O}} + F_{CH_3OH_O} + F_I - 2 \times F_{COO}$$
 (12)

If the feed ratio of hydrogen to carbon monoxide is

Component	<u>b</u>	$C \times 10^2$
Carbon Monoxide	265.96	2.5127
Hydrogen	12.44	1.6957
Methanol	5878.4	4.2593

TABLE I

Critical Constants For Specific Volume

replaced by M, the equation can be reduced to

$$F_{TOT} = F_{COO} (1 + M - 2x + \frac{F_{CH_3OHo} + F_I}{F_{CO}})$$
 (13)

and by letting Z = 1 + M - 2x + $\frac{F_{CH_3}OH_0 + F_I}{\frac{F_{CO0}}{F_{CO0}}}$, the

equation can be further simplified.

The mole fractions of the components at any time t and conversion x can be expressed as follows

$$N_{\rm CO} = \frac{1-x}{Z} \tag{14}$$

$$N_{\rm H_2} = \frac{M - 2x}{Z} \tag{15}$$

$$N_{CH_{3}OH} = \frac{N_{CH_{3}OHO} + x}{N_{COO}}$$
(16)

These values can then be substituted into the rate expression. The equilibrium constant, K_{eq} , has been calculated by Wrampe⁽¹⁴⁾from the free energy equation given by Othmer.⁽³⁾

$$K_{eq} = \exp(\frac{8975}{T} - 8.093 \ln T - .00563T - 0.5124 x)$$

$$10^{6}T^{2} - 0.0408 \times 10^{9}T^{3} + 24.31) \quad (17)$$
The constants A, E, C, and D in equation⁽¹⁾ are
temperature dependent and were derived by Wrampe.⁽¹⁴⁾
The value of A reported by Wrampe is incorrect and has

been recalculated by regression analysis from the original data given by Natta.⁽⁹⁾ The values for B, C, and D are correct and all can be found in Table II. At a given temperature, pressure, and conversion the rate of disappearance of carbon monoxide can be found.

The volume of reactor needed to produce a given amount of methanol for a given flow rate can then be found once the rate is known. The solution is complicated by the fact that the rate varies with conversion and temperature. It is necessary to solve simultaneous heat and mass balances in order to find the length of reactor needed to effect the desired conversion and the temperature of the product gas stream. From the plug flow reactor design equation the length of reactor, dL can be found by

$$dL = \frac{F_{CO} dx}{-r_{CO} \rho_{b} A_{cr}}$$
(18)

For a computer solution the equation must be transformed to difference notation.

$$\Delta L = \frac{F_{CO_0} \Delta X}{\rho_b A_{cr}} \left(\frac{1}{-r_{CO}}\right)_{avg}.$$
(19)

	Temperature	e Dependent C	onstants	
	In The	Rate Express	ion	
Temp, ^O C	A	B	<u>C</u>	<u>D</u> .
320	50	4.1	.92	22.5
330	66	3.3	.70	19.0
340	08,	3.0	• 54	15.5
350	93	2.6	.40	12.2
360	180	2.1	. 30	9.9
370	117	1.9	.23	7.6
380	122	1.6	.18	6.0
390	126	1.2	·]4	4.8
400	127	1.0	.10	4.0

TABLE II

 $A = 2.265 \times 10^{-5} T^{3} - .0539T^{2} + 41.99T - 1.06 \times 10^{4}$ $B = 6.8829 \times 10^{4} \exp(-1.6368 \times 10^{-2}T)$ $C = 7.2655 \times 10^{6} \exp(-2.679 \times 10^{-2}T)$ $D = 2.0985 \times 10^{7} \exp(-2.3046 \times 10^{-2})$

The heat rise in the catalyst bed section can be found from the heat balance.

$$(-\Delta H_r)_{avg} F_{CO_0} dx = \sum (F_i C_{pi})_{avg} dT$$
 (20)

The heat capacities and heat of reaction vary with temperature. The molar flow rate of each component varies with conversion. The temperature change can be found with the aid of the computer through the use of delta notation.

$$\Delta T = \frac{(-H_r)_{avg} F_{CO_o} \Delta X}{\Sigma F_i C_{pi avg}}$$
(21)

To solve this equation it is first necessary to develop an expression for the heat of reaction as a function of temperature. The expression for the heat of reaction, ΔH_r , can be derived by considering the following equations. The equation for the synthesis of methanol from carbon monoxide and hydrogen is of the form

$$aA + bB \rightarrow cC$$
 (22)

The change in heat of reaction with temperature can be expressed as

$$\Delta H_{r_2} = \Delta H_{r_1} + \int_{T_1}^{T_2} \nabla C_p \, dT$$
(23)

where

$$\nabla Cp = cCp_c - aCp_a - bCp_b$$
 (24)

The values of a, b, and c are the coefficients of the general synthesis equation. The heat capacity of each

component, C_{pi}, is of the form

 $Cp_i = \ll_i + \beta_i T + \aleph_j T^2$ (25)In order to evaluate ∇C_{D} it is necessary to break it down into its ~, B, and yportions.

Then

 $\nabla \propto = C \alpha_c - a \alpha_a - b \alpha_h$ (26)

Values for $\nabla \beta$ and $\nabla \delta$ are similarly calculated. The heat capacities of carbon monoxide, hydrogen, and methanol are given by Smith and Van Ness and are presented in Table III.

With the heat capacity broken down into its components the equation can be integrated. The integration results in

$$\Delta H_{r_2} = \Delta H_{r_1} + \nabla \simeq (T - T_1) + \frac{\nabla B}{2} (T^2 - T_1^2) + \frac{\nabla \mathcal{X}}{3} (T^3 - T_1^3)$$
(27)

Since the value of the heat of reaction can be found in the literature at a temperature of 298° K(25° C) ⁽³⁾ the heat of reaction as a function of temperature can then be written.

$$H_r(+) = -48,100 - 15.92T + .0115045T^2 - 2.53967 \times 10^{-6}T^3$$
 (28)

Since the moles of any component vary with the conversion. the average value of the molar flow rate of each component must be used for the computation over the delta interval.

Once all the terms have been defined it becomes possible to perform an iterative calculation to determine the length of reactor needed and the temperature of the gas stream at a given conversion. This calculation is best performed on

III TIBAT

<u>Heat Capacity Constants</u>

Component	\propto	<u>3 x103</u>	Tx10 ⁶
Carbon Monoxide	6.42	1.665	-0.196
Hydrogen	6.947	-0.2	0.48
Nitrogen	4.39 ¹ ;	24.274	-6.855

a computer since it requires a repetitive trial and error procedure to arrive at the correct answer. The first step is to pick a desired conversion, Δx , over a small increment of reactor length, ΔL .

The temperature at T is known and a value of temperature at T + Δ T is guessed at. Having values of temperature and conversion at two points along the reactor, it is possible to calculate values of heat capacity and heat of reaction, which are temperature dependent, component molar flow rates, which are conversion dependent, and reaction rate which varies with both temperature and conversion.

The values of the rate expression at the two points in the reactor are then averaged. This must be done by averaging the reciprocal of the rate at T with the reciprocal of the rate at T + Δ T. Using this average value the length of the reactor interval can be calculated by equation 19. This value then permits the weight of catalyst to be calculated.

$$W_{\text{cat}} = Q_{\text{bulk}} + A_{\text{cr}} + \Delta L$$
 (29)

Since heat and material balances must be solved simultaneously, the temperature guessed at point B in the reactor can be checked through the use of equation 21.

The average values of ΔH_r and $F_i C_{pi}$ are determined by summing the values calculated at points A and B and taking half of that amount. If the value of ΔT calculated by equation 21 equals the value guessed at point B then both equations are satisfied and the values of temperature, conversion, and length at point B are obtained. If the value of ΔT in equation 21 does not equal the value guessed at point B, then this value of ΔT is used as the new guess. The check of these guesses is then performed using the procedure previously described. Once the guess of ΔT and the value of ΔT from equation 21 agree within a reasonable variation (.05°K) then the equations can be considered solved.

If all of the variables in equations 19 and 21 varied linearly then the value of conversion in a total reactor stage could be used and a corresponding stage length calculated. This is not the case since the rate expression contains an Arrhenius dependent rate constant. It is necessary therefore to take values of ΔX small enough so that the expressions do not deviate from linearity sufficiently enough to affect the arithematic averages used in the calculations. With the value of conversion sufficiently small, for example $\Delta X = 0.002$, the values of T, L, and x at point B are computed. The values are then made equal to new point A values and the procedure is continued until the desired conversion is reached.

Exiting the first reactor stage at conversion XBI and temperature TBI the gas stream is cooled by a fraction of the quench stream. The temperature of the entrance stream to the second stage TA2 is that temperature. In order to find TA2 it is necessary to perform an enthalpy balance at the mixing point. It will be assumed for this model that there is no enthalpy of mixing at this junction. Since the change in enthalpy of any system is based upon the difference of two temperatures it is possible to choose a lower temperature that can be used as a reference. The most convenient temperature to use for this reference point is the quench feed temperature, TQ.

Since the temperature of the quench stream is used as the reference temperature the enthalpy of the stream can be found by the equation.

$$\Delta H = \sum_{TQ}^{TB1} F_{i} Cp_{i} dT$$
(30)

The expression for the variance of heat capacity with temperature, equation 15, has to be inserted and the change in enthalpy can then be represented as

$$\Delta H = \sum_{TQ}^{TB1} F_{i} (\alpha_{i} + \beta_{i}T + \delta_{i}T^{2}) dT$$
(31)

Upon integration the equation reduces to

$$\Delta H = \Sigma F_{i} (\ll_{i} (TB1-TQ) + \frac{\beta i}{2} (TB1^{2} - TQ^{2}) + \frac{\chi_{i}}{3} (TB1^{3}-TQ^{3})) \quad (32)$$

Since all the values are known, the enthalpy of the exit stream can be found. When the quench feed is added, the moles of each component are increased without increasing the heat content of the mixed stream. If the heat content is the same while the molar quantities are increased, then the temperature of the combined stream must be lowered.

$$\Delta H = Q = \sum \int_{TQ}^{TA2} F_i C_{p_i} dT$$
(33)

The value of N_i is equal to the moles in the first stage exit stream, N_i, plus the moles of the each component present in the quench feed fraction, N_{iQ}. The temperature, TA_2 , can then be found as one root of the cubic equation that results. The expansion of equation 23 yields.

$$\Delta H = \sum_{TQ} \sum_{TQ}^{TA2} F_{i} (\sim_{i} + \beta_{i}T + \gamma_{i}T^{2}) dT$$
(34)

The integration gives the following result

$$\Delta H = \Sigma F_{i}^{\alpha} (TA2 - TQ) + \frac{\Sigma F_{i}B_{i}}{2} (TA2^{2} - TQ^{2}) + \frac{\Sigma F_{i}\delta_{i}(TA2^{3} - TQ^{3})}{3}$$
(35)

Since TQ is constant it can be removed from the expression and the equation can be written as

$$K_3(TA2)^3 + K_2(TA2)^2 + K_1(TA_2) - K_4 = 0$$
 (36)

where

$$K_{3} = \sum \frac{N_{1} \approx 1}{3}$$
(37)
$$K_{2} = \sum \frac{N_{1} \approx 1}{2}$$
(38)

$$K_{1} = \sum N_{i} \approx i$$
 (39)

and

$$K_{4} = \Delta H + K_{1}(TQ) + K_{2}(TQ)^{2} + K_{3}(TQ)^{3}$$
 (40)

The solution of equation 36 for TA2 can be obtained through a computerized numerical method of root finding. If y is a function of TA2 then it has a positive or negative value for all temperatures except the desired root. The computer examines a range of temperatures and evaluates y for each of these temperatures. If at any point the computer finds that successive values of y have differing signs then it determines that a root exists in the interval. Since the interval is relatively large the computer must continue to halve the interval until the root can be isolated to within a reasonable degree of precision. Through the use of this half interval technique the computer will continue to search for the root in this manner until the successive values of temperature are within 0.0004 degrees where upon the equation is considered solved.

The calculations for length of reactor versus conversion and for various inlet reactor temperatures are repeated for each of the five arbitrarily chosen stages. If quench temperature, inlet temperature, and quench fraction values are selected properly then the required conversion can be achieved in the reactor without exceeding the temperature constraint.

The variations possible in this quench feed reactor system that are optimized by this computer study are quench feed fraction, quench temperature, and inlet temperature. At a production rate of 300 tons/day with 24 hr/day operation the required feed rate of carbon monoxide to the reactor is 5200 lb moles/hr. for 15% conversion. For the case of 12% conversion the same inlet flow rate was used so the production from this unit would be 240 tons/day. Kirk and Othmer⁽³⁾ report normal operating conditions for a methanol reactor of 12 to 15% conversion, an M ratio of 2 to 6, and reactor temperatures between 250 and 400° C.

The optimization of the quench feed methanol reactor was achieved by allowing the rate of reaction in each stage to be as high as possible. The reaction rate increases with increasing temperature so that operation of the reaction at temperatures approaching the temperature constraint would be ideal. To take advantage of this, the computer model was arranged in such a way that the temperature at the reactor exit would always be maximumallowable. The results of varying inlet temperature, quench temperature, and quench fraction in the reaction system are compiled in Tables IV through XV. In many of the computer runs values were chosen such that the required conversion could not be achieved without violating the temperature restriction.

CONCLUSIONS

The optimum reactor length for an adiabatic, five stage, quench feed, methanol reactor is 42.79 feet for 12% conversion and 70.60 feet for 15% conversion. For 12% conversion the optimum conditions for inlet temperature, quench temperature, and quench feed fraction are 613° K, 316° K and .19 respectively. The conversion, inlet temperature, and exit temperature for each of the five stages can be found in Table 16. For the reactor operating at 15% conversion the optimum conditions are: inlet temperature, 613.16° K; quench temperature, 313.16° K; quench fraction, .275. The computer simulation of this reactor can be found in Table 17.

The quench feed reactor, operating adiabatically, is not particularly suited for the methanol reaction, because the reaction temperature limit is much more restrictive than the equilibrium conversion restrictions which made quench feed reactors a good choice for other reactions involving a reversible exothermic process.

DISCUSSION OF RECULTS

A reactor length of 70.6 feet is necessary to achieve the required production of methanol at 15% conversion. A reactor operating isothermally at 395°C would meet production requirements at a length of 46 feet. Other methods of operating a methanol reactor along with reactor length needed to meet required production can be found in the Appendix. All of these reactors are all shorter than the quench feed reactor.

This does not necessarily mean that the quench reactor should be excluded from consideration in the design of a methanol reactor. If a methanol quench reactor could be fabricated and operated to allow a controlled rate of heatloss along the reactor length then it is conceivable that shorter reactor stages would be required since more conversion could be achieved in any given stage before the reaction heat raises the temperature above the restraint threshold. Since some heat would be dissipated through the insulation, the reaction temperature could be kept at a high value for a longer time thereby decreasing the needed reactor volume.

Another consideration in the choice of reactor would be the capital cost of equipment. It is conceivable that the quench feed reactor would be more economical since it would not involve the use of inside tubes for cooling.
When the other methanol reactors were sized for length comparison only the catalytic cross sectional area was taken into account. The incorporation of a tube bundle for cooling inside the packed bed effectively increases the reactor cross section and consequently the weight of metal needed for the fabrication of the shell. Once design information was obtained to calculate the area required for the tube bundle then the total reactor volume could be compared on an equal basis with the quench feed reactor. Of further importance in terms of cost in the design of the optimum temperature reactor or the isothermal reactor would be the control equipment needed to ensure that the reaction follows the required temperature path.

Figure 2 shows the effect that inlet temperature has on the reactor length needed to achieve 3% conversion cannot be achieved without violating the temperature constraint on the system. Figure 3 illustrates the effect that a varying percentage of the total feed used as quench feed has on the reactor length. Below a quench percentage of about 30 percent the conversion in a five stage reactor will not reach 15 percent without exceeding a reaction temperature of 405°C. Figure 4 demonstrates the effect of inlet temperature on overall reactor length for a given quench percentage and a given quench temperature. Figure

5 shows the effect on reactor length produced by varying the quench temperature with a fixed quench fraction and inlet temperature.

NCIGENCI,ATURE

	A	Temperature dependent rate constant, (moles-gm catalyst/hr)-1/3
	Acr	Reactor cross sectional area, cm ²
•	B	Temperature dependent rate constant, (moles-gm catalyst/hr)-1/3
	b	Critical temperature and pressure constant, atm-liters ² /mole ²
I	С	Temp. dep. rate constant, (moles-gm catalyst/hr) ^{-1/3}
:	с	Critical temp. and pressure constant, atm-liters ² /mole ²
1	Cp	Heat capacity, Cal/gm- ^O C
-	D	Temp. dep. rate constant, (moles-gm catalyst/hr) ^{-1/3}
	F	Molar flow rate of gas, moles/hr.
	FQ	Quench feed fraction, dimensionless
	f	Fugacity, dimensionless
- 2	AHr	Heat of reaction. Cal/gm
	I	Inert gas flow, moles/hr.
	Keq	Equilibrium constant, dimensionless
	L	Reactor length, cm
]	M	Ratio of hydrogen to carbon monoxide, dimensionless
	N	Moles
	P .	Reaction pressure, atmospheres
	R	Gas constant, li-atm/g mole ^O K
	-r _{co}	Reaction rate of carbon monoxide to methanol, moles/gm catalyst/hr
	V	Molar specific volume, liters/gm mole
` · ·	Ŵ	Catalyst weight, gm
ć	×	Heat capacity coefficient, Cal/gm ^O C
. (ß	Heat capacity coefficient, Cal/gm
	5	Heat capacity coefficient, Cal- ^O C/gm
• <	ϕ_{-}	Fugacity coefficient, atm ⁻¹
,7	n	Catalyst effectiveness factor, dimensionless
F	С Б	Catalyst bulk density, gm/cm ²

			APPENDIX
APF	PENDIX	А	Sample Problem
APF	ENDIX	В	Computer Program
APF	ENDIX	C	Comparison with Other Reactors
APF	ENDIX	D	Computer Output

APPENDIX A

Sample Problem

The computer simulation of the methanol quench feed reactor has been programmed generally enough so that it can be used with various operating conditions. Values used for computations are arbitrary but are matched, where possible, with known industrial conditions. The production rate of 300 tons of methanol per day typifies medium scale methanol reaction systems. It has been reported by Kirk and Othmer that most methanol reactors operate between 12 and 16% conversion. With a 15% conversion of carbon monoxide to methanol, the molar feed rate of carbon monoxide to the reactor is 5200 lb moles/hr. This feed is divided into a preheated fraction and a quench feed fraction. This rate assumes that the reactor operates 24 hours/day. The inlet stream also contains hydrogen in a ratio of from 3 to 4 times as much as carbon monoxide. The remainder of the inlet is comprised of 10% inerts which are assumed to be nitrogen.

Each reactor stage is 70 centimeters in diameter and is packed with catalyst pellets at a bulk density of 0.82508 gm/cm³. The reactor operates at a pressure of 280 atmospheres which has been assumed constant to simplify the problem slightly.

The initial conditions of inlet temperature, quench temperature, quench fraction, and quench distribution are specified as input data and are listed at the beginning of the computer output. Each reactor stage length is printed individually and the total quench reactor length is outputted at the end of the problem. The exit conversion is the highest possible under the temperature restriction imposed on the methanol reaction.

INITIAL CONDITIONS

INLET TEMPERATURE 👦	613.1599
QUENCH TEMPERATURE	313.1599
REACTOR PRESSURE, ATM.	280.0000
REACTOR CROSS SECTION, SO, CM.	3848,44751
CATALYST BULK DENSITY, GM/CU CM	0.82508
QUENCH FRACTION OF TOTAL FEED	0.300
FRACTION OF QUENCH TO SECOND STAGE	0.250
FRACTION OF QUENCH TO THIRD STAGE	C.250
FRACTION OF QUENCH TO FOURTH STAGE	0.250
FRACTION OF QUENCH TO FIFTH STAGE FIRST REACTOR STAGE	0.250
INLET MOLES CAPBON MONOXIDE	0.165147E C7 3.000000
TEMPERATURE AT EXIT STAGE LENGTH, CM. MOLE FRACTION METHANOL	674.630 285.407 0.03600
LENGTH OF REACTOR STAGE, FT.	9.364
SECOND REACTOR STAGE	
TEMPERATURE AT INLET MOLE FRACTION METHANOL INLET MOLES CARBON MONOXIDE M RATIO	605.68530 0.03252 0.176896E C7 3.033609
TEMPERATURE AT EXIT STAGE LENGTH, CM. MOLE FRACTION METHANOL	675.178 510.197 0.07452
LENGTH OF REACTOR STAGE, FT.	16.739
THIRD REACTOR STAGE	
TEMPERATURE AT INLET MOLE FRACTION METHANOL INLET MOLES CARRON MONOXIDE M RATIO	611.21826 0.06794 0.186911E_07 3.072896
TEMPERATURE AT EXIT STAGE LENGTH, CM. MOLE FRACTION METHANOL	675.110 571.173 0.10794
LENGTH OF REACTOR STAGE, FT.	18.739

	TEMPERATURE AT INLET MOLE FRACTION METHANOL INLET MOLES CARBON MONOXIDE M RATIO	615.54565 0.09919 0.196584E_07 3.110113	
	TEMPERATURE AT EXIT STAGE LENGTH, CM, MOLE FRACTION METHANOL	674.321 649.690 0.13719	···· · ··· · · · · · · · · · · · · · ·
	LENGTH OF REACTOR STAGE, FT.	21.315	
in production in the second	FIFTH REACTOR STAGE	. 	• • • • · · · ·
	TEMPERATURE AT INLET MOLE FRACTION METHANOL INLET MOLES CARBON MONOXIDE M RATIO	618.70117 0.12690 0.205985E 07 3.145345	· · · · · · · · · · · · · · · · · · ·
	TEMPERATURE AT EXIT STAGE LENGTH, CM. MOLE FRACTION METHANOL	654.806 579.797 0.15090	· · · · · · · · · · · · · · · · · · ·
	LENGTH OF REACTOR STAGE, FT.	19.022	
-	TOTAL LENGTH OF QUENCH REACTOR	85.17889	· · · · · · · ·
gallik Halistenan, demonstrat at maar 1970 var dat Au			
Westing		``	· · · · · · · · · · · · · · · · · · ·
s.			annan ar an
			
			· · · · · · · · · · · · · · · · · · ·
Constants for a planar value of your Android a descense			• .
			· · · · · · · · · · · · · · · · · · ·
Beater and a second se		1999 - 1999 - Anna Marina an Anna an Anna an Anna an Anna Anna	
The constant function of the second sec	· · · · · · · · · · · · · · · · · · ·		
	·		
8. 			na kanalana ara-angan para-ang
Ç.			· ut among .
ì			
			• •
		· · · · · · · · · · · · · · · · · · ·	· · ·

APPENDIX B

The computer simulation of an adiabatic five stage methanol reactor operating with quench feed has been programmed generally enough so that it can be used with varying conditions. Values of limiting conversion in each stage, quench fraction to each stage, quench temperature, and inlet temperature are supplied as data. After defining various constants initial molar flow rates are calculated. These values are used to calculate reactor length and temperature for a given value of conversion beginning at statement 135. An interval of conversion is set and values of equilibrium constant, fugacity coefficients, and others are calculated for both ends of the interval to establish a reaction rate in statements 200 through 435.

Statement 440 calculates an incremental reactor length using an average value of reaction rae. Statement 525 calculates a temperature rise and compares it to an initial guess. If the value is in close agreement the calculation continues in the next increment of length. This procedure will continue until either the conversion restraint or the temperature restraint is violated.

At this point the gases exit the first reactor stage and mixed with quench gases. An enthalpy balance and material balance are calculated in statements 600 through 745. This enthalpy balance is used to determine an inlet temperature to the second stage. The material balance

defined the quantity of eacle component entering the next stage. This procedure is repeates so that conversions, temperatures, and lengths can be found and outputted for the five reactor stages.

	REAL LB+LA+M
	COMIONTA1, T0, P+ACR, ROB, F0+01+02+03+04
с <u>с</u>	COMPUTER SIMULATION OF A FIVE STAGE METHAMOL QUENCH REACTOR
_ C	
5	FORMAT(12)
10	READ(5,5)LIMIT
•	IF (LIMIT) 25,760,15
15	READ(5,20)X81,A82,X83,X84,X85,Q1,Q2,Q3,Q4
20	FORMAT(9F3+0)
25	READ(5,30)TO,TA1,FQ
30	FORMAT(3F10+0)
	CTOT = 2.35924506 1
	HIOT = 7.07772E06
	ETOT = 0.0
	OTOT = 1.04805E06
	$P = 280 \cdot 0$
	$ACR = 3948 \cdot 44775$
	ROB = 0.82>08
	CALL OUTPU
	WRITE(6,35)
35	FORMAT(20X, FIRST REACTOR STAGE /)
40	ALPCO = 6.42
45	ALPIN = 6.524
50	ALPHY = 5.947
55	$ALPME = 4 \cdot 394$
	BETIN = 1.6652 = 0.3
65	BETIN = $1 \cdot 2202 = 0.2$
10	$\begin{array}{c} BL(R) = -O(Z)C = -O($
	D = 1 + L = 24 + 2 + 4 = -0.3
5.U 0.E	GAMUN = -0.001F = 0.6
າມ ດວ	GAMIN = 0.0012 00
	$GAMME = -G_{1}SEE = 0.6$
	$F(\alpha) = C[\alpha] * (1, - E\alpha)$
	FHYI = HIOI * (1 - FQ)
	FMFI = FIOT * (1 - FQ)
	FIN = OTOT * (1 FQ)
	FCO2 = FQ * CTOT
	FHYQ = FQ * HTOT
	FMEQ = FQ * ETOT
	FINQ = FQ * OTOT
	XA1 = 0.0
	KTO = 1
	1TO = 1
	ITEM = 1
•	JTEM = 1
100	CONTINUE
	GOTO(105,110,115,120,130),ITEM
105	TA = TAI
	XA = XA1
	XB = XB1
r 45.	FCO = FCO1
	FHY = FHY1
· · ·	FML = FMLI
•	FIN = FINI
•~	G010 135
110	IA = IA2
· · · ·	XA = XAZ
	XB = XB2
	$\mathbf{F}_{\mathbf{U}} = \mathbf{F}_{\mathbf{U}} \mathbf{U}_{\mathbf{Z}}$

													•• ••
		F	EUV 2	· .					*				
		EME =	EME 2				• •		1 n vri				
10000		FIN =	FIN2.										
		GOTO	135								•		
· -	115	TA =	TA3 VA2			•							*
		XB =	XB3								مستعدد المسورة		
		FCO =	FC03										
	• · -	FHY =	FHY3	··· ·				• • •					
		FME =	FME3 FINR										
•••		GOTO	135		-								-
	120	TA =	TA4				. ~.				سنجس ، سرم مورد		
		XA =	XA4			<i>.</i>							
		KU = 1 FCO =	FCO4				a units, a based of the c. a		· · · · · · · · · · · · · · · · · · ·				
		FHY =	FHY4			a							
		FME =	FME4										
	175	FORMA	1(15X) SINA	E120/)								
		60T0	135										
	130	TA =	TA5										
		XA =	XA5 .					· · · ·					a
		- X번 두 - FHY =	EHY5										
• ·		FME =	FME5										
		FIN =	FIN5			.							
	125	GOTO	135										
	200	WRITE	(6.140)FCO									
	140	FOR'4A	.T(10X)	'INLE	ET MO	LES	C ARB0	N MON	OXIDE',1	3x,E12	•6)		
		LA =	0.0	25	<u>^</u> 2						,		
· • •	145	CHY =	1.695	7E -	02								
	155	CC0 =	2.512	27E -	02								
	150	BME =	5.878	4E3						•			
	165	BC0 =	2.659	4C1 26E2									
	175	R = C	.08257	7									
	180	ETTA	= 06										
	185	WRITE	HT / T))M			·· ·					•••••••••••••••••	
	190	FORMA	T(10X)	M R/	110	•33X	•F10	6/)					antin 1997 - 17
4. ¹		DELX	= 0.00)2				·					
· · · ·			X3 - X 0 l=1	(A) /	DEL)	ζ		······	مر جميع ميند ، يوريين ، يعينو				
	195	DELT	= 0.1	• 1									
	200	X3 =	XA + (DELX									
	205	TB =	TA + 1	DELT		-			·······		·····		
	210	AKOA	= DEL = EXP	((89)	75.	/ TA)	- (8	2.093	* ALOG(T	(A)) +	(0.00563	* TA)	(
		1 (0.9	5124£ .	- 061	* (TA *	* 2)) - ((0.0408E	- 09)	* (TA *	+ * 3))	+ 2
		24.31	I EVO				_ 14		* * * * * * *		10 00563	2 # TH1	
	220	1 (0.9	= EXP 51245 -	- 06) - 06)	()• / * ('	/ 151 TB *	* 2)) - (- * ALUG(1 - (0.0408E	E ~ 09)	* (10 *	+ * 3))	+ 2
		24.31)	•	•			•					
	•	SOME	= (R	* TA) / (Ρ.		•					
	225	EN ≂ SAMEI	SOMEF	(P *	ΤΔΙ	/ 10	+ 18	MF /	(TA * (F))	. * * -1	.75))))) + CME	
		TUV	= ABSI.	SOMER	- E'	() (//	- 10	1 km 2	1171 - 1661 - 1	· ·· ·		ւ ։ երքքետո	
. .		IF C	TUV -	0.011	230	230	225						••••
	• .									•			

```
a ser a s
 230 VMEA = SOMEF
                                               . . . . . .
     SOMEF = (R * TB) / P
 235 \text{ EN} = \text{SOMEF}
     SOMEF = '( (R * TB) / (P + (BME / (TB * (EN * * 1.75))))) + CME
     TUV = ABS(SOMEF - EN)
     IF (TUV - 0.01) 240,240,235
 240 VMEB = SOMEF
                                  in the second second
     SOMEF = (R * TA) / P
 245 \text{ EN} = \text{SOMEF}
                                     SCMEF = ( (R * TA) / (P * (BCO / (TA * (EN * * 1.75))))) + CCO
     TUV = ABS(SOMEF - EN)
                                 · · · · · · · · · · · · · · · ·
     IF (TUV - 0.01) 250:250:245
 250 VCOA = SOMEF
                                                 . . . . . . . . . .
     SOMEF = (R * TB) / P
 255 EN = SOMEF
                                   . . . . ....
     SOMEF = ( (R * TB) / (P + (BCO / (TB * (EN * * 1.75))))) + CCO
     TUV = ABS(SOMEF - EN)
                                  IF (TUV - 0.01) 260:260:255
 260 VCOB = SOMEF
                                    in any contract of the contract of the second
     SOMEF = (R * TA) / P
 265 EN = SOMEF
     SOMEF = ( (R * TA) / (P + (BHY / (TA * (EN * * 1.75))))) + CHY
     TUV = ABS(SOMEF - EN)
     1F (TUV - 0.01) 270:270:265
     SOMEF = (R * TB) / P
 270 VHYA = SOMEF
     EN = SOMEF
SOMEF = ( (R * TB) / (P + (BHY / (TB * (EN * * 1.75))))) + CHY
 275 EN = SOMEF
     TUV = ABS(SOMEF - EN)
IF (TUV - 0.01) 280:280:275
 280 VHYB = SOMEF
     FUCA = EXP(ALOGI (R * TA) / (P * (VCOA - CCO))) + (CCO / (VCOA - C
     1CO)) - ( (7. * BCO) / (3. * R * (TA * * 2) * (VCOA * * 0.75))))
     FUCB = EXP(ALOG( (R * TB) / (P * (VCOB - CCO))) + (CCO / (VCOB - C
     1CO)) - ( (7. * BCO) / (3. * R * (TE * * 2) * (VCOB * * 0.75))))
     FUHA = EXP(ALOG( (R * TA) / (P * (VHYA - CHY))) + (CHY / (VHYA - C
    1HY)) - ( (7. * BHY) / (3. * R * (TA * * 2) * (VHYA * * 0.75))))
     FUHB = EXP(ALOG( (R * TB) / (P * (VHYB - CHY))) + (CHY / (VHYB - C
     14Y)) - ( (7. * BHY) / (3. * R * (TB * * 2) * (VHYB * * 0.75))))
     FUMA = EXP(ALOG( (R * TA) / (P * (VMEA - CME))) + (CME / (VMEA - C
     1992)) - ( (7. * BME) / (3. * R * (TA * * 2) * (VMEA * * 0.75))))
     FUMB = EXP(ALOG( (R * TB) / (P * (VMEB - CME))) + (CME / (VMEB - C
    11E)) - ( (7. * BME) / (3. * R * (TB * * 2) * (VMEB * * 0.75))))
 285 ZA = 1. + M - (2. * XA) + ( (FME + F1K) / FCO)
 290 ZB = 1. + M - (2. * XB) + ( (FME + FIN) / FCO)
 295 \text{ ACOA} = (1. - \text{XA}) / \text{ZA}
 300 \text{ AHYA} = (M - XA) / ZA
                                         305 AMEA = ( (FME / FCO) + XA) / ZA
     ATA = 2 \cdot 265E - 05 * (TA * * 3) - 0 \cdot 0539 * (TA * * 2) + 41 \cdot 99 * TA
     1 -1.062E04
     ATB = 2.265E - 05 * (TB * * 3) - 0.0539 * (TB * * 2) + 41.99 * TB
    1 -1.062E04
 310 BTA = 6.8829E4 * (EXP( - 1.6368E - 02 * TA))
                                                   أست المتعالمة العام أستا
 315 BTB = 6.6829E4 * (EXP( - 1.6368E - 02 * TB))
 320 CTA = 7.2655E6 * (EXP( - 2.679E - 02 * TA))
 325 CTB = 7.2655E6 * (EXP( - 2.679E - 02 * TB))
 330 DTA = 2.09+6E7 * (EXP( - 2.3046E - 02 * TA))
                                                    ter a company and an ended to an ended to
 335 DTB = 2.0986E7 * (EXP( - 2.3046E - 02 * TB))
 340 ACOB = (1. - XB) / ZB
345 AHYB = (M - XB) / ZB
                                                       and the second second
 350 AMEB = ( (FME / FCO) + XB) / ZB
```

```
355 SYA = (FUCA * ACOA * P) * ( (FUHA * AHYA * P) * * 2) - ( (FUMA * A
     1MEA * P) / AROA)
360 RHYA = (ATA + (BTA * FUCA * ACOA * P) + (CTA * FUHA * AHYA * P) +
    1(DTA * FUMA * AMEA * P)) * * 3
365 RCOA = (SYA / RHYA) * ETTA
370 SYB = (FUCB * ACOB * P) * ( (FUHB * AHYB * P) * * 2) - ( (FUMB * A
    IMEB * PI / AKUBI
375 RHYE = (ATB + (8TB * FUCB * ACOB * P) + (CTB * FUHB * AHYB * P) *
  1(DTE * FUVE * AMEE * P)) * * 3
380 RCOB = (SYB / RHYB) * ETTA
385 RAV = ( (1. / RCOA) + (1. / RCOB)) / 2.
390 CPMA = 4.394 + (24.2745 - 03 * TA) - (6.8555 - 06 * (TA * * 2))
395 CPV8 = 4.394 + (24.274E - 03 * TB) - (6.8555E - 06 * (TB * * 2))
400 CPCA = 6.42 + (1.655E - 03 * TA) - (0.196E - 06 * (TA * * 2.))
405 CPCB = 6.42 + (1.6655E - 03 * TB) - (0.195E - 06 * (TB * * 2.))_____
410 CPmA = 6.947 - (0.2E - 03 * TA) + (0.48E - 06 * (TA * * 2.))
415 CPmB = 6.947 - (0.2E - 03 * TB) + (0.48E - 06 * (TB * * 2.))
420 CPIA = 6.524 + (1.2502 - 03 * TA) - (0.001E - 06 * (TA * * 2.))
425 CP16 = 6.524 + (1.250E - 03 * TB) - (0.001E - 06 * (TB * * 2.))
430 DELHA = - 48100. - (15.92 * TA) + (11.50456 - 03 * (TA * * 2)) - (
     12:53967E - 06 * (TA * * 3))
435 DELEB = - 46100. - (15.92 * TB) + (11.5045E - 03 * (TB * * 2)) - (
     12.53967E - 06 * (TB * * 3))
                                                                             a parameters and an extension of the as
440 DELL = ( (FCO * DELX * RAV) / (ACR * ROB))
445 HRAV = (DELHA + DELHB) 1/ 2.
                                                        •
450 FMEA = ZA * AMEA * CPMA * FCO
455 FYEB = ZB * AMEB * CPMB * FC0
460 FCOA = ZA * ACOA * CPCA * FCO
465 \text{ FCOB} = \text{ZB} * \text{ACOB} * \text{CPCB} * \text{FCO}
                                                                 and a second sec
470 FHYA = ZA * AHYA * CPHA * FCO
475 FHYB = 28 * AHYB * CPHB * FC0
480 \text{ FIA} = \text{FIN} * \text{CPIA}
485 FIB = FIN * CPIB
                                                490 FIAV = (FIA + FIB) / 2.
495 FMAV = (FMEA + FMEB) / 2.
                                                      ~ ·
                                                            500 FCAV = (FCOA + FCOB) / 2.
505 FHAV = (FHYA + FHYB) / 2.
                                                      510 CPK = 0.177
515 FLBK = ROB * DELL * ACR
                                                  520 FKAV = FLBK * CPK
525 DELT = ( - HRAV * FCO * DELX) / (FMAV + FHAV + FCAV + FIAV).
 530 Q = ABS(DELT - BOLD)
       LB = LA + DELL
                                                         IF (0 - 0.05) 535,535,545
 535 CONTINUE
       XA = XB
       TA = TB
                                                  . .. .. . . . ..........
       LA = LB
       IF (TA - 673.16) 540.540.560
 540 CONTINUE
       GOTO 550
                                 545 GOTO 205
 550 CONTINUE
 555 FORMAT(10X+'TEMPERATURE AT EXIT',19X+F7.3,/10X+'STAGE LENGTH, CM.*
     1,20X,F8.3,/10X, MOLE FRACTION METHANOL +18X,F7.5/)
 560 WRITE(6,555)TA, LA, KA
       DIS = LA / 30.48
                                                                       in a second or a scattering of the second
       WRITE(6,565)DIS
 565 FORMATIIOX, 'LENGTH OF REACTOR STAGE+FT. 13X+F7.3/1
       GOTO(570+600+615+530+645)+JTEM
 570 \cdot TB1 = 1A
```

•	این از م <mark>رابعی</mark> با در میکند. با میکند برای با در با در این
	XB1 = XA
	DIS1 = LA / 30.48
	$F(U2 = F(U1 * (1) - AD1) + U1 + F(U0), \dots \dots$
	$FHY_2 = FHY_1 + (Q_1 * FHY_Q) - (2 * FCO_1 * (XB_1))$
	FIN2 = FIN1 + (Q1 * FINQ)
575	FORMAT(10X+E12+4+10X+E12+4)
	GOTO 655
530	TA2 = GEORG
E 9 E	WRIIE(6)585) FORMAT/2014 FEECOND DEACTOR STAGE(/)
282	WRITE(6.590)TA2
590	FORMAT(10X, 'TEMPERATURE AT INLET', 20X, F9.5)
2.00	XA2 = XB1 * FC01 / (FC01 + (Q1 * FC0Q))
	WRITE(6,595)XA2
595	FORMAT(10X, MOLE FRACTION METHANOL', 19X, F7.5)
	GOTO 750
600	TB2 = IA
	$\frac{AD2}{DIS2} = 14 / 30.48$
	F(03 = (F(01 + (01 * F(00))) * (1 - XB2) + (02 * F(00))
	FME2 = (FC01 + (Q1 * FC0Q)) * XB2
	FHY3 = FHY1 + ((Q1 + Q2) * FHYQ) - (2. * ((FCU1 + (Q1 * FCOQ)) *
	1(X82)))
	FIN3 = FIN2 + (Q2 * FINQ)
	G010 655
605	TA3 = GEORG
610	WRITE(01010) Engrations, Itaird Reactor STAGE(/)
910	POINT (2.07) TO TO REPORT OF OUR OF THE TO T
	$x_{A3} = x_{B2} * (FC01 + (Q1 * FC0Q)) / (FC01 + (_(Q1 + Q2) * FC0Q))$
	WRITE(6,595)XA3
	GOTO 750
615	TB3 = TA
	XB3 = XA
	$D_{153} = LA / 30*48$ ECO(4 - (ECO) + ((0) + 02) * ECO(1) * (1 - XB3) + (03 * ECO(1))
	F(04 = (F(0) + ((0) + 02) * F(00)) * XB3
	FHY4 = FHY1 + ((Q1 + Q2 + Q3) * FHYQ) + (2. * ((FC01 + (Q1 + Q2))))
	1* FCOQ) * (X53)))
	FIN4 = FIN3 + (Q3 * FINQ)
	GOTO 655
620	
621	FORMAT(141+20X+FOURTH REACTOR STAGE*/)
02.	WRITE(6,590)TA4
	XA4 = XB3 * (FC01 + ((C1 + Q2) * FC00)) / (FC01 + ((Q1 + Q2 + Q3)))
	1) * FCOO))
	WRITE(6:595)XA4
	GOTO 750
630) THE = TA \sim
•	FCO5 = (FC01 + ((01 + 02 + 03) * FC00)) * (1 - XB4) + (04 * FC00)
	1)
	FME5 = (FC01 + ((01 + 02 + 03) * FC00)) * XB4
	FHY5 = FHY1 + FHY0 + (2. * ((FC01 + (01 + 02 + 03) * FC00) * (XB4
	1)))
	FIN5 = FIN4 + (Q4 * FIN0)
	GOTO 655

the second s WRITE(6,640) 640 FORMAT(20X) FIFTH REACTOR STAGE // ____WRITE(6.590)TA5 XA5 = XB4 * (FCO1 + ((Q1 + Q2 + Q3) * FCOQ)) / (FCO1 + FCOQ) WRITE(6:595)XA5 GOTO 750 645 TB5 = TA. . a a cara a ser en entre en entre en en en en en en anter en anteres desterantes en entre en entre en en en en XB5 ≈ XA DIS5 = LA / 30.48 $v_{155} = LA / 30.48.$ YTOT = DIS1 + DIS2 + DIS3 + DIS4 + DIS5 WRITE(6,650)YTOT 650 FORMAT(10X; TOTAL LENGTH OF QUENCH REACTOR !: 10X; F10; 5///) GOTO 755 655 CONTINUE GOTO(660,665,670,675),1TO 660 FC0 = FC02FHY = FHY2and a second FME = FME2 FIN = FIN2QUE = 01 T8 = T81------GOTO 680 665 FCO = FCO3ere and a second sec FHY = FHY3FME = FME3FIN = FIN3.. QUE = Q2 TB = TB2GOTO 680 -670 FCO = FCO4 FHY = FHY4----FME = FME4 $_$ FIN = FIN4 والمستحد والمستحد والمراجعة والمراجعة والمستحد والمحمد والمحمد والمحمد والمستحد والمراجع والمحمد والمراجع والمراجع والمراجع والمحمد QUE = Q3TB = TB3GOTO 680 675 FC0 = FC05 والارتفاق والمراجع والمستقد والمستقد المستركي المراجع الرابي المراجع المراجع المراجع المراجع والمراجع المراجع FHY = FHY5FME = FME5 FIN = FIN5QUE = Q4TB = TB4GOTO 680 680 GCO = (FCO - (QUE + FCOQ))GHY = (FHY - (QUE * FHYQ))GIN = FIN - (QUE * FINQ)GME = FME 685 EA = ((GCO * ALPCO) + (GHY * ALPHY) + (FIN * ALPIN) + (GME * ALPM 1E)) * (TB - TQ) . 690 EB = (((GCO * BETCO) + (GHY * BETHY) + (FIN * BETIN) + (GME * BE 1TME)) * ((TB * * 2) - (TQ * * 2))) / 2. **.** . . 695 EC = (((GCO * GAMCO) + (GHY * GAMHY) + (FIN * GAMIN) + (GME * GA 1MME)) * ((TB * * 3) - (TQ * * 3))) / 3. 700 ENTH = EA + EB + EC GICO = (QUE * FCOQ) + GCOوالمراجع المراجع المراجع والمراجع والمراجع المراجع والمراجع GIHY = (QUE * FHYQ) + GHY GIME = (QUE * FHYQ) + GMEGIIN = (QUE * FINQ) + GINED = (GICO * ALPCO) + (GIHY * ALPHY) + (GIME * ALPME) + (GIIN * AL ... 1PIN) EF = ((GICO * BETCO) + (GIHY * BETHY) + (GIME * BETME) + (GIIN *

· ·

· · · · · · · · · · · · · · · · · · ·	· ·							•
· · · · · · · · · · · · · · · · · · ·				••••• •			•••••••••	
· · · · · · · · · · · · ·	· •			J				•
	· · · · ·	Э				-		
	: • • • • • • • • • • • •			·· •				
			••••		• •.		• •	·· •.
· · · · · · · · · · · · · · · · · · ·				-			· • • •	
				.		• • ••••		
	· - •					· •		-
			•		-			
								•
							END	0.04
	•					010	2015	092
					Э О	ONII OT C	010 0 7/0 0	552
				[+ [+	· 01 · 01	= K = 1	K10 110	
			t T	* h + h	11E	= y = y	NELA TIEV	 051
n an	K10	11155	9402	9*50	9 • 0	85)(0109	641
			<i></i>	 . 	- - 	τ.	0100	372
				1	DEI E	- 1 NNI.	LNOD	072
	072 • 972	•97L	2s ، 1	/ 1	ם בר.	130 =		
		572	57L	(07)	E • 0'	NNI. NS	LNOD I F	582
· · · · · · · · · · · · · · · · · · ·			(00)	- r (םרם)) K) S (K (:8A : 8A :	20 = 00 =	
				(۲ (۲. ۲	97 : 72 (сотс е U Я	CEL
						IONI. GL (C071 C071	527
	077	\$ 671	• 0E/	107	ر ۲01	. = (* 1	10 10 11	720
) + (EC * (L * * 3)) ~ DV	12 * * 1	L) *	33)	+ ()	*	(ED	= X	SIL
•	571	•otz	•012	(*8		- 1	1 E (- C I -
				T	919 919	223	= 1	302
* 2)) + (EG * (TR * * 3)) - DA	* (1K *	(EE	+ (2	* 1!	001 001	. =	CLOY	
(10 * * 5)) + (EC * (10 * * 3))	+ (EE *	+ (0)	.* (י ו (בו	9 79 8 F H]	EZS EN E	Lis = DV =	
* CAMHY) + (GIME * CAMME) + (GIIN *	YHID) 4	+ (03	onno	* 0: * 0:	נפוס נפוס איק	((N) ((N	1849 = 93 1138	t T
· · · · · · · · · · · · · · · · · · ·	•			,	. .			•
26								

•• • • • • •	
	COMMENT TAL, TO, P, ACP, ROB, FU, 01,02,03,04
20	FOR MAI (141, 30X, 'INITIAL CONDITIONS'//)
1653	WRITE(6,6951)111 FUNMAT(10X.*INLET TEMPERATURE*,22X,F0.4/)
8392	
€ 2¢3	#PITE(6,5993) P FOR/AT(104, PEACTOR ORESSURE, ATM, 4,18X, ES.4/)
	WRITE(6,3394)ACR For MATELOX, MREACTOR CROSS SECTION, SQ. CM. (,10X,F10.5/)
8.305	WOITE(6, MORE) RUR DEMSITY, GM/CU (M. 1, CX, F9.5/)
	WRITE(0,20)F0 FORMAT(10X, 'QUENCH FRACTION OF TOTAL FEED! 11X, F7.3 7)
40	WPITE(6,40101 FORMAT(30X,FERACTION OF QUENCH TO SECOND STAGE+,6X,F7.3/)
8==6	FOR MAT(1+X, "FFACTION OF QUENCH TO THIPD STAGE ',7X, F7.3 /)
Fac7	PRITE(6,2397)03 FORMAT(104,1FRACTION OF QUENCH TO FOURTH STAGE(,6X,F7.3 7)
8998	WRITE(A, 3200)04 FORMAT(10X, 'FRACTION, OF QUENCH TO FIFTH STAGE', 7X, F7.3)
	END
, - , , , , , , , , , , , , , , , , , ,	
•••••••••••	·····
1. W BW Inflition Bills distriction in a second second second	
· · · · · · · · · · · · · · · · · · ·	

-

53

.

- -- -----

APPENDIX C

COMPARISON OF OTHER METHANOL REACTORS WITH A QUENCH REACTOR FOR 15 % CONVERSION

QUENCH REACTOR

LENGTH = 70.6 FEET ISOTHERMAL REACTOR AT 395 °C $\frac{W}{F_{A_0}} = \int \frac{dx}{r_a}$ FROM FIQURE $\int \frac{dx}{r_a} = 1.889$ FA0 = 2359.24 Kmoles/hr W = 4455 Kg catalystW = PL × Acr × L $l_{\rm k} = .82508 \, {\rm gm/cm^3}$ $A_{cr} = 3848.45 \text{ cm}^2$ 4.455 * 106 .82508 # 3848.45 * 30.48 L = 46.03 feet 46.0 FEET LENGTH =

Figure 6

OPTIMUM REACTION RATE PEACTOR

 $\frac{VV}{F_{AO}} = \int_{O}^{O} \frac{clx}{F_{aopt}}$

FROM FIGURE 7 .15 $\int \frac{dx}{r_{aopt}} = 1.175$ $F_{Ao} = 2359.24$ Kmoles/hr. W = 2772 Kg cat. W = 2772 Kg cat. $W = P_{b} \times A_{cr} \times L$ $P_{b} = .82503$ gm/cm³ $A_{cr} = 3848.45$ cm²

L = 28.64 feet (This assumes catalyst effectiveness Sactor of 1.0) For catalyst effectiveness Factor of 0.67 L = 28.64 / 0.67

 $LENGTH = \frac{42.8}{FEFT}$

FROM WRAMPE

FOR 300 TON/DAY PRODUCTION

$$V = \frac{17300 + 359}{49,830}$$

= 124.64 ft³ reactor volume

$$A_{cr} = 4.142 ft^2$$

$$L = V/A_{cr}$$

LENGTH =

30.1 FEET

•

APPENDIX D

			61	
	· .	•	• •	· · · ·
	en de la companya de La companya de la comp	Table IV		·
		-		·
· · · ·	•		· · · ·	
• .	QUENCH FRI	ACTION = 0.20		x
	and a second	····· · ··· ··· ··· ··· ··· ··· ··· ··		· · · · · ·
INL INL	ET TEMPERATURE	CONVERSION	REACTOR LENGTH	· ·
· · · · · · · · · · · · · · · · · · ·	608.15	0:126	48 <u></u> 48	"
	613.16	0:123	46.29	· .
	623.16	0.118	41.71	
	628.16	Je117	39.80	
	633.16	0.113	38.12	· · · · · · · · · · · · · · · · · · ·
	638 • 16	0.110	36.01	· · · · · · ·
				and an
	- · · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
	···· · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·				·····
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
· · ·				·
	· · · · · · · · · · · · · · · · · · ·	· · ···· ····· · · · · · · · · · · · ·	······	· · · · ·
	an a	· • · · · · · · · · ·	······································	
·····	and an			· · · · · · · · · · · · · · · · · · · ·

	، ایند میرین ا رواب	. <u>.</u> .,,,	· Server	· · · · · ·		nan i an i a	62		
			i.	- 					
		· · ·	Tal	<u>ple V</u>		.*			
									·
	- · · · ·	QUENCH	FRACT	ION = 0	€25			•	
		· · · ·			· · · -			1 	
		ET TEMPERATU	JRE - C	ONVERSI	0 N -	- REACT	OR LENG	тн	
	· 	.					· .	· ·	•
		603.16		0:148		6	7.48	·	•
		613.16		-0.144	• 	6	3.69		· ·
		623+16		0.140	-		0.30 -		· · · ·
	<mark></mark>	528.16		0.137			6.44	···· · · ·	- × -
	·,	633 • 16		-0.134		<u>5</u>	5.44		
	• •	638.16		0.132		<u>.</u>	52.69		
	·								
								and and the second s	
	· · · · · · · · · · · · · · · · · · ·	·····	<u> </u>						
	· · · · · · · · · · · · · · · · · · · ·		a. 18. i. i mene is ins			<u></u>	· ···· · ····		ъ
,	•			• · · • •		· · · · · · · · · ·		• • • • • • • • • • •	
		-			• ••••••			· ••• -•• •• · · • ••	
		·	•	• •		· · · · · · · · · · · · · · · · · · ·		• -•, -	
		چر د. د. د. د.							•
						-			
					-				•
	, .	•		•	•	• • • •	30	•	· ·
		n Alexandre and Alexandre and	• •··			• ••	• •	·	
	· · · · · · · · · · · · · · · · · · ·	ing a management of the second		· · ·			an isa ana si s	· · · · · ·	
	· .			,					

•			63		
		Table VI			
'n					
	in a second second a second of the second				
•	QUENCH FR	ACTION = 0.30	tang tang tang tang tang tang tang tang		
··· · · · · ·		• •			
INLE1	I TEMPERATURE	CONVERSION	REACTOR LENGTH		
م من من من من من من من من من					
:					
• · · · · · · ·	608 • 16	0.150	84 • /5 - · · ·		
	- 613.16	0.150	85 · 17		
	623.16	0.151			
	029020		,		
, 2 ⁴	628.16	0.150			
	- 633.16		78 . 17		
	- 638.17	0.150	77.080		
-			•		
	·				
	· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
	Table \	 VII	· · ·	64	· · ·
--	---	---------------------------------------	---------------------------------------	--	-------------
	B arristanningan and rooman and arrighte	egen figer of a film mage			
	•				
QUENC-	+ FRACTION	= 0:35	, .		• • •
a an			••••••••••••	· · · ·	
INLET TEMPERATI	JRE CONVE	RSION R	EACTOR LER	GTH	
· · · · · · · · · · · · · · · · · · ·		.	·· ·· ·		
608.16	0+1	50	119.86		
		51			· · · ·
523.16	0.1	.50	108.00		* -
528.15	0.1	.50	105.45		.
633.16	0.1	50			
638016	0.1	.50	105.73		s is a
	· ·· ·· ·· · · · · · · · · · · · · · ·	•		···· · · · · · · · · · · · · · · · · ·	
·		· · · · · · · · · · · · · · · · · · ·			
• • • • • • • • •	• •	 		· · · ·	•

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			 	•
	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·····	· 	
	· <u></u> .' <u></u>				•
	 	· · · · · · · · · ·	- · ·		
-8- - •	· · · · · ·		 	· · ·	
	••••••	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		• .

		<u>Table VIII</u>			
				· · ·	
	QUENCH FRA	ACTION = 0.40		•	
INLET	TEMPERATURE	CONVERSION	REACTOR LENG	STH	
· · · · · · · · · · · · · · · · · · ·	· · · · ·	.	· · · · · · ·		
and a second second Second second second Second second	508.16	0.150	226.2		
••••••••••••••••••••••••••••••••••••••	-613.16	0 . 150	207.6	· · · · · · · · · · · · · · · · · · ·	
· · ·	623.16	0.150	185.4	• ••• • • •	" : · ·
	628.16	0.150	180.4		
	-633.16	0.130			
· ·	638.16	0.149	165.7		
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
			· ·····		····
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · ·	
- ,	· •··· •				- · · · ·
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · ·	بھی 	. <u></u>	 :	· .	
•				•	

			66	
• • • • • • • • • • • • • • • • • • • •	<u></u> <u>Ta</u>	ble IX		
	QUENCH FRA	CTION = 0.17		
	ar ar an		μου ματιμέτρουματι το το ματαλογία το πολογία το πολογία του του του του πολογία του το το το το το το το το τ	** * 5 * 5*****
	QUENCH TEMPERATURE	CONVERSION	REACTOR LENGTH	
	313.16	0.112	38.44	
	317.16	0.110	37.40	
	321.16	0110	37.39	
· ·		-		
	naan haan geroor an	· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	QUENCH-FRA	CT-10N=-018		
	,		· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	QUENCH TEMPERATURE	CONVERSION	- REACTOR LENGTH	
			40.25	
	317.16	0.115	40.15	
		0 • 1 1 3		
· · · · · · · · · · · · · · · · · · ·				• ·# ·# ·##
· · · · · · · · · · · · · · · · · · ·	QUENCH FRA	ACTION = 0.19		
en soles e presente and an a	*			
	QUENCH TEMPERATURE	CONVERSION	REACTOR LENGTH	via de altera, a literatura e
n an				
	313.16	0.120	43.25	
	316.16	0.120	42.79	
in the structure of the second second structure of the second second second second second second second second s	ի Գեքքի Գեֆիծիֆի քայուտ հանցերցի տեղան մեն է է է չչեր վործը՝ համ և անստես տատարի ստնդամին կատ համաստանին պետ է	an a	ու երջանցություն երկությունը է տեսու է է է է է է երկությունը է է արի փուտիսներին է հիմինի տեսիսներին երկություն Հ	

	a ann a' the Constanting of Anna an Anna anna an Anna anna an Anna anna			67
	Ta	<u>ible X</u>		
an an a suit ann ann ann ann ann an ann ann an ann		, and all a fair and a second of a second		από μενα με την αλλητι τις ανικε
. <u>.</u>				
a na na ann an an ann ann an an an ann	QUENCH FRA	CTION = 0.20		19 A
- 🗶 tageta (n. 1995) et la serie de la s				
	QUENCH TEMPERATURE	CONVERSION	REACTOR LENGT	H
				· · · · · · · · · · · · · · · · · · ·
-	313.16	0.123	46.29	antan wasana wasa s
	323.16	0.121 -	44 • 42	······
	333.16	0.119	43.11	
	• 353•16	0 • 114	39.90	
	373.16	0.110	37.82	
, a a a cara ana ang sanakana ang a ang ang ang ang ang ang ang an		0:105	34.62	
a a substantia a substanti	· · · · · · · · · · · · · · · · · · ·			
		an an air air an ann an ann an ann an ann an ann an a		
		an tha an	ante esta de ante esta activata en esta de ante de la companya de la companya de la companya de la companya de L	nan an a' mananana an
			· · · · · · · · · · · · · · · · · · ·	
Naradh e de alta e datas da la colar, e an, e narada danas provos di anteriorante				
		an a' an an an ann ann ann ann ann ann a		
				na an an an an an an ann an an an an an
· · · · · · · · · · · · · · · · · · ·		·		·
• • • • • • • • • • • • • • • • • • •	······································			
				· · · · · · · · · · · · · · · · · · ·
alan a a an ann a chlar shin o' a caise, ar gan airse suga ann				
المراجع والمراجع	e de la companya de l		· · · · · · · · · · · · · · · · · · ·	····· ··· ··· · ···· · ···· · · ···· · ·
• •		••• • • ••• ••• •••	an a	

2000 - 200	· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·	να το παρατικό το το διατικό το	able XT	00	·
	ang ang mang a dana ang ang ang ang ang ang ang ang ang		n artan de la de la conserva a marta a marta.	n in an
	· · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · ·	· • • • • • • • • • • • • • • • • • • •
	QUENCH FRA	CTION = 0.25		· · · · · · · · · · · · · · · · · · ·
	QUENCH TEMPERATURE	CONVERSION	REACTOR LENGTH	· ·
	313.16	0.144	63.69	· .
	323•16	0.141	61.16	
	333.16	0.139	59.13	
	353.16	0:132	54.10	
	373•16	0.126	48.39	
An a fa a tha an	393.16	0.121	44,72	
	413:16	0.114	40.16	
	433.16	0.108	37.01	
				· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·	
	QUENCH FRA	CTION = 0.27		
ter - ter Markersen same derse andere -	QUENCH TEMPERATURE	CONVERSION	REACTOR LENGTH	
		an an an an ann ann ann a s a' a' suid-sina s an		··· ··· ··· ··· ··· ··· ··· ··· ··· ··
	318.16	0.150	72.01	
and the barrent of the state of	323.16	0.150	70:75	
		••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	
		ana ni nyaja na ni		· ··· · ··· ·
		1. 1999 1997 1999 1999 1999 1999 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 19		
· · · · · · · · · · · ·	19 (19 1) 19 (19 1) 19 (19 1) 19 (19 1) 19 (19 1) 19 (19 1) 19 (19 1) 19 (19 1) 19 (19 1) 19 (19 1) 19 (19 1) 1 19 (19 1) 19 (19 1) 19 (19 1) 19 (19 1) 19 (19 1) 19 (19 1) 19 (19 1) 19 (19 1) 19 (19 1) 19 (19 1) 19 (19 1) 19	nyn reine i er en en i en i er i er i er i		······••••••••••••••••••••••••••••••••
•	· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	an en	•• .

a de la composición d		69	<i>.</i>
Ţε	able XII		
			· · / ·.
QUENCH FRA	ACTION = 0.275		
QUENCH TEMPERATURE	CONVERSION	REACTOR LENGTH	<u> </u>
212.16	0.151	7/1 9.9	
	0.1/0		······
323 e 10	0.149	12031	- an and an in the second s
328.16	0.149	70.60	1.00 (maginary 1.01 - 1.02), ganada (da 100 - 101 - 14
333.16	0.148	69.36	
353.16	. 0.141	62.64	
373•16	0.138	56.50	
393.16	0.128	50.19	
413.16	0.121	45.13	· · · · · · · · · · · · · · · · · · ·
433•16	0.113	40.50	······································
			a that want cannot be a search to a search the second second second second second second second second second s
			······································
			en al al a subari del di Sanda Sara Sanda na s
			n ann ann an ann an an an an an an an an
		·	
		· · · · · · · · · · · · · · · · · · ·	•
	n na sea ann an ann an ann an ann ann ann ann		n a milan da lina kanakan kata katakan k
· · · · · · · · · · · · · · · · · · ·			•
and the second			

Table XIII

QUENCH FRACTION = 0.30

------ INLET TEMPERATURE

CONVERSION - REACTOR LENGTH

313.16 0.151 85.18 323.16 0:149 ---- 80.94 333.16 0.150 78.30 353.16 0:150 72.73 .373.16 An energy is a second of a 393.15 0.135 56.78 413.16 0.127 50.38 . . 433.16 -45 . 74 0.121 ----453.16 0.112 40.23 -.

	· · · · · · ·		71	
· · · · · · · · · · · · · · · · · · ·		na y nan anal na a' minin wa mawa y		
	Та	ble XIV	• • • • • • • • • • • • • • • • • • •	
	QUENCH FRA	CTION = 0.40		- · · ·
<u>, </u>		······································		
	QUENCH TERPERATURE	CONVERSION	REACTOR LENGTH	
· · · · · · · · · · · · · · · · · · ·	••••		· · · · ·	
	313016	0 e 150	207.61	
	333.16	06151	154 • 26	
	353.16	0.150	125.05	
	373.16	0.151	104.34	· · · · · · · · · · · · · · · · · · ·
	393.16	0 6 1 5 1	93093	• •
	413015	0.151	82 0 15	•. • •
	433016	0.145	71057	
	453016	0.134	59.78	
	· ····· · · · · · · · · · · · · · · ·	• • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · ·			··· · · · · · · · · · · · · · · · · ·	÷ .
· · · · · · · · · · · · · · · · · · ·		····	· · · · · · · · · · · · · · · · · · ·	····
· · · · · · · · · · · · · · · · · · ·				
		a hord da a an		
			· <u>- ··· - ·· ·· ·· ·· ·· ·</u>	·
				ana a sa sa sa
·				· .
· · · ·	······	······································		
· · · · · · · · · · · · · · · · · · ·				n w.e. ,
,	· · · · · · · · · · · · · · · · · · ·			

		72	
	Table XV		,
	 The second design of the second second second design of the second design of the		- •
- QUEN	CH FRACTION = 0.5	0	
			• · · · • • • • • • • • • • • • • • • •
		DENCTOD LENGTH	
	ATORE CORVERSION		<u>.</u> .
313+16	0.150	1328.6	
333.16	0,151	71408	
353,16	0 < 150	43500	
373+16	0 • 150	270 ¢ 2	
393 • 16		180.00	
413*16	0 2 1 5 1	13464	
433.15	0 < 1 5 1	10963	······································
453 € 16	0 • 150	91.37	· · · ·
473.16	0 ¢ 1 4 1	74 • 21	
n na			
			·
			·· ·· /* · · ·· ·· ·· ·· ·· ··
		·····	. <u></u>
	,		· · · ·
·····			
		i i i i i i i i i	·
			er i cruan
		in i se	

<u>Table XVI</u>

OPTIMUM REACTOR FOR 12% COUVERSECT INITIAL CONDITIONS

	INLET TEMPERATURE	613.1600
	OUENCH TEMPERATURE	316.1600
	REACTOR PRESSURE, ATM.	- 280.0000
	REACTOR CROSS SECTIONSO. CM.	3848 . 44775
	CATALYST BULK DENSITY+GM/CU CM	0 • 82508
· • ·	QUENCH FRACTION OF TOTAL FEED .	0 • 1 • 0
	FRACTION OF RUENCH TO SECOND STAGE	0 • 2 5 0
	FRACTION OF QUENCH TO THIRD STAGE	0 * 250
·	FRACTION OF QUENCH TO FOURTH STAGE	0.250
	FRACTION OF QUENCH TO FIFTH STAGE FIRST REACTOR STAGE	0.250
	INLET MOLES CARBON MONOXIDE M RATIO	0.191093E 07 3.000000
	TEMPERATURE AT EXIT STAGE LENGTH, CM. MOLE FRACTION METHANOL	674.632 330.277 0.03599
	LENGTH OF REACTOR STAGE FT.	10.835
<u>.</u>	SECOND REACTOR STAGE	
	TEMPERATURE AT INLET Mole fraction methation inlet moles carhom monoxide m patio	633.12398 0.03400 0.195425E 07 3.035202
	TEMPERATURE AT EXIT STAGE LENGTH: CM: MOLE FRACTION METHANOL	676.084 206.664 0.06000
	LENGTH OF REACTOR STAGE FT.	6 . 780
	THIRD REACTOR STAGE	
	TEMPERATURE AT INLET MOLE FRACTION METHANOL INLET MOLES CARHON MONDAIDE M RATIO	636.31002 0.05685 0.201371E 07 3.060283
	TEMPERATURE AT EXIT STAGE LENGTH: CM. Mole Fraction Wethandl	675.071 219.976 0.080°5
	LENGTH OF REACTOR STAGE FT.	7.63.84
	FOURTH REACTOR STAGE	

73

.

TEMPERATURE AT INLET 637.15841 MOLE FRACTION METHADOL 0.07682 INLET MOLES CARBON MONOXIDE 0.207453E 07 M RAIIO 3.083217 TEMPERATURE AT EXIT 675.136 STAGE LENGTH, CM. 255.308 MOLE FRACTION METHANOL 0.10082 - --- - LENGTH OF REACTOR STAGE: FT. 8.376 FIFTH REACTOR STAGE TEMPERATURE AT INLEY 638:80636 MOLE FOACTION METHANOL 0.09603 INLET MOLES CARBON MONOXIDE 0.2132678 07 M RATIO . 3.106237 TEMPERATURE AT EXIT 676.028 STAGE LENGTH, CM. 293:004 MOLE FRACTION METHANOL 0.12003 LENGTH OF REACTOR STAGE, FT. 9.612 TOTAL LENGTH OF QUENCH REACTOR 42.78973 المستعدية أمتنا المتناصر والمنا ------.

.

74

Table XVII

. . . OPTIMUM REACTOR FOR 15% CONVERSION

INITIAL CONDITIONS

متريسي بنا همينا برويين التأييس	INLET TEMPERATURE	613.1599
	QUENCH TENPERATURE	328,1599
	REACTOR PRESSURE, ATM.	280,0000
an a state a gent priva president of a gent president of	REACTOR CROSS SECTION, SQ. CM.	3848.44751
	CATALYST BULK DENSITY, GM/CU CM	0.82508
en e nacionalista i	QUENCH FRACTION OF TOTAL FEED	0. 275
	FRACTION OF QUENCH TO SECOND STAGE	0.250
	FRACTION OF QUENCH TO THIRD STACE	0,250
	FRACTION OF QUENCH TO FOURTH STAGE	0,250
	FRACTION OF QUENCH TO FIFTH STAGE FIRST REACTOR STAGE	0.250
	TEMPERATURE AT EXIT STAGE LENGTH: CM. MOLE FRACTION METHANOL	674.630 295.600 0:03600
	LENGTH OF REACTOR STAGE, FT.	· 9 ₆ 698
	SECOND REACTOR STAGE	
	TEMPERATURE AT INLET MOLE FRACTION METHANOL INLET MOLES CARBON MOROXIDE M.RATIO	614.32495 0.03288 0.181107E 07 3.033999
	TEMPERATURE AT EXIT	673°876 376°983 0°06888
Mitte Stanger, and addressed in Product an area o	LENGTH OF REACTOR STAGE, FT.	12,368
	THIRD REACTOR STAGE	• • • • • • • • • • • • • • • • • • •
· · ·	TEMPERATURE AT INLET MOLE FRACTION METHANOL INLET MOLES CARBON MUNOXIDE M RATIO	617.77344 0.06339 0.190585E 07 3.067085
· • •	TEMPERATURE AT EXIT Stage length, cm. Mole fraction methanol	675:536 444:232 0:09939
Norman and camera i	LENGTH OF REACTOR STAGE, FT.	14.575

FOURTH REACTOR STAGE

	_TEMPERATURE AT INLET MOLE FRACTION METHANOL INLET MOLES CARBON MONOXIDE		622.70190 0.09205 0.199480E 07	
	M RATIO		3e101388	
	TEMPERATURE AT EXIT STAGE LENGTH, CM. MOLE FRACTION METHANOL		675.671 486.525 0.12605	
	LENGTH OF REACTOR STAGE:FT.		15.962	
х	FIFTH REACTOR STAGE			•• ••• •
	TEMPERATURE AT INLET MOLE FRACTION METHANOL INLET MOLES CARBON MONOXIDE M RATIO	······································	625.94604 0.11739 0.208230E 07 3.132999	· · · · · · · · · · · · · · · · · · ·
	_TEMPERATURE AT EXIT STAGE LENGTH, CM. .MOLE FRACTION METHANOL		674,485 548:452 0,14939	
-	LENGTH OF REACTOR STAGE: F7.		17.994	
n Marina ay	TOTAL LENGTH OF QUENCH REACTOR		70,59685	
			• • • • • • • • • • • • • • • • • • •	the serve the second
	·			
*****				• · • · • • • • • • • • • • • • • • • •
м мілісті і і мас ім жмі				
N				
	······································			
				t the all of a
		an a man ann ann an		
·····				
		1		
				· · · · · · · · · · · · · · · · · · ·

References

- 1. Aris, R. <u>The Optimal Design of Chemical Reactors</u>, New York Academis Press Inc., 1961.
- 2. Aris, R. Introduction to the Analysis of Chemical Reactors, Prentice Hall, 1965.
- 3. Encyclopedia of Chemical Technology, Kirk, R. E., and Othner, D. F., Volume IX, Interscience Publishers Inc., 1951, pp. 40-45.
- 4. Ewell, R. H., "Calculation of Chemical Equilibrium at High Pressures", <u>Industrial & Engineering Chemistry</u>, Vol. 32, February 1940, pp. 147-153.
 - International Critical Tables, Washburn, E. W. (ed.),
 Volume V, McGraw-Hill, Inc., New York, 1929.
 - Kramer, H. and Westerterp, K. R. <u>Elements of Chemical</u> <u>Reactor Design and Operation</u>, Academic Press, New York, 1963.
 - 7. Levenspiel, Octabe, <u>Chemical Reaction Engineering</u>, John Wiley & Sons, Inc., New York, 1962.
 - 8. Lewis, Gilbert N. and Randall, Merle, <u>Thermodynamics</u> McGraw-Hill, Inc., New York, 1961.
 - 9. Natta, G., "Synthesis of Methanol" in <u>Hydrogenation</u> <u>and Dehydrogenation</u>, Volume 3 of P. H. Emmett, ed., Catalysis, Reinhold Publishing Corporation, New York, 1955, pp. 349-412.

- 10. Pasquon, I., "Heat and Mass Transfer in Methanol Synthesis Optimum Operating Conditions of the Reactors", Journal of Catalysis 1, 1962, pp. 508-520.
- 11. Shipman, L. M. and Hickman, J. B., "Optimum Design of Ammonia Quench Converters", <u>Chemical</u> <u>Engineering Progress</u>, American Institution of Chemical Engineering, New York, Volume 64 Number 5, May, 1968, pp. 59-63.
- 12. Siebenthal, N. and Aris, R., "Studies in Optimization", Chemical Engineering Science, 1964, Volume 19, pp. 747-761.
- 13. Smith, J. M. and Van Ness, H. C., <u>Introduction to</u> <u>Chemical Engineering Thermodynamics</u>, McGraw Hill, Inc., New York, 1959.
- 14. Wrampe, Peter, <u>Optimization of a Catalytic Methanol</u> <u>Reactor</u>, Master's Thesis, Newark College of Engineering, 1968.