Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

A COMPARATIVE ANALYSIS OF MULTICONPONENT DISTILLATION MINIMUM REFLUX VETHODS

BY
JOSEPH H. F. LOOZEN

A THESIS
PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF
MASTER OF SCIENCE IN CHEMICAL ENGINEERING
AT
NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

$$
\begin{array}{r}
\text { Newark, New Jersey } \\
1970
\end{array}
$$

ABSTRACT

One of the most important factors to know in the design of distillation columns is the minimum refiux ratio. Numerous procedures have been developed for the determination of the value of the minimum reflux ratio for multicomponent mixtures requiring various degrees of computational effort. Shortcut techniques are obviously advantageous with respect to computation time. After reviewing the available methods, those by Underwood, Colburn, Schefbel and Montross, Murdoch and Holland, and Shiras et al. were selected for further evaluation, mainly on the basis of practical potential.

Comparison of these procedures was accomplished by calculating the minimum reflux ratio for a large number of systems with widely varying conditions. Considerable differences were found between the results of these methods; the spread between the lowest and highest value varying from less than 10% for a 4 -component system with adjacent keys to over 100% for an 8 -component mixture with one split key. It was established that these deviations stem mainly from differences in the relative volatilities.

The reliability and usefulness of the methods investigated would have to be determined by comparison of the results with those from a rigorous calculation. For general application, only the techniques by Underwood
and Shiras et al. can be considered since they contain a feature for determining the product composition. Scheibel and Montross' procedure is the only one which can be used to carry out a hand calculation within a reasonable length of time.

APPROVAL OF THESIS
A COMPARATIVE ANALYSIS OF MULTICOMPONENT DISTILLATION MINIMUM REPLUX METHODS BY JOSEPH H. F. LOOZEN FOR

DEPARTMENT OF CHEMICAL ENGINEERING NEWARK COLLEGE OF ENGINEERING

BY

FACULTY COMMITTEE

APPROVED: \qquad
\qquad
\qquad

NEWARK, NEW JERSEY MAY, 1970

ACKNOWLEDGMENTS

The assistance and guidance given by Dr. E. C. Roche, Jr. is appreciated.

The author wishes to thank the Allied Chemical Corporation for the use of its computer facilities.

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION 1
II. A COLUMN AT MINIMUM REFLUX 3
III. LITERATURE SURVEY 9
IV. DISCUSSION OF SELECTED SHORTCUT METHODS. 13
Underwood's Method. 14
Colburn's Method. 17
Shiras, Hanson, and Gibson's Method. 20
Scheibel and Montross' Method 22
Murdoch and Holland's Method. 25
V. COMPUTATIONS 28
Selected Systems 28
Procedures 29
Programs and Results 34
VI. CONCLUSIONS 37
VII. RECOMMENDATIONS 41
APPENDIX. 44
REFERENCES 104
Figure Page
I. A Column at Minimum Reflux.................. 5
2. MoCabe-Thiele Diagram for a Binary and for a Multicomponent System................. 7

LIST OF TABLES

Table Page

1. Specifications and Solutions of Example 1... 45
2. Specifications and Solutions of Example 2... 45
3. Specifications and Solutions of Example 3... 46
4. Specifications and Solutions of Example 4... 46
5. Specifications and Solutions of Example 5.. 47
6. Specifications and Solutions of Example 6.. 47
7. Specifications and Solutions of Example 7.. 48
8. Specifications and Solutions of Example 8.. 48
9. Specifications and Solutions of Example 9.. 49
10. Specifications and Solutions of Example 10 49
11. Specifications and Solutions of Example 11. 50
12. Specifications and Solutions of Example 12. 50
13. Specifications and Solutions of Example 13. 51
14. Specifications and Solutions of Example 14. 51
15. Specifications and Solutions of Example 15.. 52
16. Specifications and Solutions of Example 16.. 52
17. Specifications and Solutions of Example 17.. 53
18. Specifications and Solutions of Example 18.. 53
19. Specifications and Solutions of Example 19. 54
20. Specifications and Solutions of Example 20. 54
21. Specifications and Solutions of Example 21.. 55
22. Specifications and Solutions of Example 22. 55
23. Specifications and Solutions of Example 23.. 56

LIST OF TABLES (CONTINUED)

Table Page
24. Specifications and Solutions of Example 24... 56
25. Specifications and Solutions of Example 25... 57
26. Specifications and Solutions of Example 26... 57
27. Specifications and Solutions of Example 27... 58
28. Specifications and Solutions of Example 28... 58
29. Specifications and Solutions of Example 29... 59
30. Specifications and Solutions of Example 30... 59
31. Specifications and Solutions of Example 31... 60
32. Specifications and Solutions of Example 32... 60
33. Specifications and Solutions of Example 33... 61
34. Specifications and Solutions of Example 34... 61
35. Specifications and Solutions of Example 35... 62
36. Specifications and Solutions of Example 36... 62
37. Specifications and Solutions of Example 37... 63
38. Specifications and Solutions of Example 38... 63
39. Specifications and Solutions of Example 39... 64
40. Specifications and Solutions of Example 40... 64
42. Specifications and Solutions of Example 41... 65
42. Specifications and Solutions of Example 42... 65
43. Specifications and Solutions of Example 43... 66
44. Specifications and Solutions of Example 44... 66
45. Specifications and Solutions of Example 45... 67

LIST OF TABLES (CONTINUED)

Table Page
46. Specifications and Solutions of Example 46 67
47. Specifications and Solutions of Example 47. 68
48. Specifications and Solutions of Example 48 68
49. Values of the Minimum Reflux Ratio for Different Feed Conditions by the Method of Underwood. 69
50. Values of the Minimum Reflux Ratio for Different Feed Conditions by the Method of Colburn 69
51. Values of the Minimum Reflux Ratio for Different Feed Conditions by the Method of Shiras et al. 70
52. Values of the Minimum Reflux Ratio for Different Feed Conditions by the Method of Scheibel and Montross 70
53. Values of the Minimum Rerlux Ratio for Different Feed Conditions by the Method of Murdoch and Holland 71
54. Values of the Minimum Reflux Ratio by the Method of Scheibel and Montross using Relative Volatility Data from All Methods Analyzed. 72
55. Relative Volatilities by the Method of Underwood 74
56. Relative Volatilities by the Method of Colbum 75
57. Relative Volatilities by the Method of Shiras et al. 77
58. Relative Volatilities by the Method of Scheibel \& Montross 78
59. Relative Volatilities by the Method of Murdoch \& Holland 80

LIST OH TABLES (G 'TNUED)

Table Page
60. Temperatures at a Top and ditom of the 82
61. Equilibrium Data 83
62. Program for Calculating the Minimum Reflux Ratio by the Method of Underwood. 84
63. Program for Calculating the Minimum Reflux Ratio by the Method of Colburn................ 86
64. Program for Calculating the Minimum Reflux Ratio by the Method of Shiras et al. 90
65. Program for Calculating the Minimum Reflux Ratio by the Method of Schefibel and Montross. 93
66. Program for Calculating the Minimum Reflux Ratio by the Method of Murdoch and Holland.. 95
67. Program for Calculating the Dew Point of a Multicomponent Mixture.......................... 99
68. Program for Calculating the Bubble Point of a Multicomponent Mixture 100
69. Program for Calculating Relative Volatilities 101
70. Program Terminology 102

INTRODUCEION

A fractionating column has two limits of operation based upon reflux ratio. The lower limit is fixed by minimum reflux; under this condition, an infinite number of theoretical equilibrium stages are required to achieve the desired separation. The upper limit is that at total reflux. It is evident that for a given product distribution a fractionating column must be operated between these two conditions with respect to reflux ratio.

The minimum reflux ratio is an important factor to know in the design of a distillation column. An operating reflux ratio which lies between 1.2 and 1.5 times the minimum reflux ratio is generally considered the most economic. This value fixes the number of plates and the heating and cooling loads necessary for a specified separation of a given feed.

A large number of investigators have developed methods for determining the minimum reflux value of multicomponent systems. Most of these methods are known as "shortcut" techniques, indicating that one or more simplifying assumptions have been made.

Shortcut methods for the approximate solution of multicomponent separation problems, in themselves a rather extensive computational effort, continue to serve useful
purposes even though computers are available to provide rigorous solutions, The available equiliurium data may not be sufficiently accurate to justify the longer rigorous methods. In design studies a large number of cases can be worked quickly by a shortcut method to get the optimum conditions, and then the exact solution can be obtained via a rigorous calculation. The computer time required for the latter is considerably longer than that for a shortcut method.

The purpose of this work was to examine the known shortcut methods and to select those which seem most valuable for practical application. These methods were then evaluated and compared by calculating the minimum reflux for a large number of hydrocarbon systems under varied conditions.

The many and complex calculations involved were carried out partly on an IBM 1130 computer and the remainder with the G. E. Mark II Time-Sharing System. The programs used have been written in Fortran IV language and are Iisted in the Appendix (pp. 84-101).

CHAPTER II

A COLUMN AT MINIMUM REFLUX

In a conventional distillation, one feed stream and two product streams constitute the flow of material to and from the column. For a multicomponent feed, the desired separation is usually specified in terms of two key components. One is the light key, which is the most volatile component to appear in the bottom product or bottoms, while the heavy key is the least volatile component in the top product or distillate. The separation ratio between the distillate and bottoms is specified for both keys. Usually the keys are adjacent components with respect to relative volatility. If then the separation ratio between the distillate and the bottoms is high for the light key and low for the heavy key, the distillation is called a sharp separation. All components lighter than the light key will go to the distillate, while those heavier than the heavy key end up in the bottoms. Components which appear only in one product are referred to as separated components. However, components with volatilities intermediate to those of the keys may be present. These will always be distributed between the two products and are referred to as split keys.

A distillation column operating at minimum reflux may be considered to consist of seven zones. From the
top of the column dow, these zones will be referred to as distillate zone, rectifying pinch zone, rectifying zone, feedzone, stripping zone, stripping pinch zone, and bottoms zone. A schematic representation of a column operating at minimum reflux is shown in Figure 1 for a multicomponent and for a binary system.

The feed zone is very small and exists between the two plates where the feed enters the column. The feed combines with the streams entering from the adjacent sections to form the liquid and vapor streams which leave the feed zone. The zone immediately above the feed zone is the rectifying zone. All components of the feed which do not appear in the distillate are fractionated to zero in this section. The next zone upwards is the rectifying pinch zone. The temperature and composition remain constant throughout this entire section, which consists of an infinite number of piates. The top section in the distillation column is the distillate zone in which the fractionation from the pinch zone composition to that of the distillate takes place. The lower part of the distillation column consists of similar zones as just described for the upper half of the column. In the stripping zone, the light components which do not appear in the bottom product are fractionated to zero. Then follows the stripping pinch zone in which the temperature and

> Binary Distillation

> Multicomponent Distiliation

FIGURE 1. A COLUMN AT MINIMUM REFLUX
composition do not change. Finally, in the bottom section of the column, fractionation to the composition of the bottom product occurs.

The above presentation is only true when the distillation yields at least one light and one heavy separated component; 1. e. at least one component which appears only in the distillate, and at least one component which appears only in the bottoms. If there is no separated component in the bottom product, the stripping zone does not exist. The stripping pinch zone is then adjacent to the feed zone. This is similar for the upper half of the column if all components of the feed appear in the distillate. When all components of the feed distribute between the two products, both pinch zones merge; and the system becomes analogous to that of a binary mixture.

Figure 2 represents the McCabe-Thiele diagram for a binary mixture and for a multicomponent system in which the same two constituents are the key components. For a binary mixture, $D F$ and $B F$ give the minimum reflux ratio for the rectifying section and the minimum boilup ratio for the stripping section respectively. As we move along these operating lines, the change in composition on adjacent plates becomes less and less until it becomes negligible at the feed plate. At F; the compositions are

FIGURE 2. MCCABE-THIELE DIAGRAM FOR A BINARX AND FOR A MULTICOMPONENT SYSTEM

```
referred to as being "pinched." In a multicomponent sys-
tem, the presenco os components lighter than the light
key will shift the operating line DF to some value DN;
and the components heavier than the heavy key will shift
the lower line BF to BM. The extent of these shifts de-
pends upon the required separation.
```


CHAPTER III

LITERATURE SURVEY

Most of the earlier work in developing methods for determining minimum refilux was directed towards empirical or shortcut techniques. The latter always included one or more assumptions which cannot really be expected to exist in a multicomponent distillation. Some of the more common assumptions are constant molal overflow and constant or linear relative volatility. Afterwards, more rigorous methods ($1,2,4,7,9,13,17$) have been developed, some of which still contained limiting assumptions.

In 1932, Fenske (10) and Underwood (21) independently presented procedures for determining minimum reflux assuming constant overflow and constant relative volatility. The equations include the key components only; and, as such, they should only be applied to binary mixtures or to completely distributed systems. Only for chose systems is the pinch composition equal to that of the equilibrium feed.

Gilliland (11) was the first to recognize the effect of non-key components on minimum reflux. He developed two methods based on constant overflow, constant relative volatility, and known product composition which yield an upper and lower limit for the minimum reilux. Complex terms are involved in these trial and error calculations.

The two limits are often so far apart that the practical value of this method is dubious.

Maxwell (14) developed a semi-empirical equation which does not require trial and error. He determines the minimum reflux for two arbitrary states of feed vaporization and then interpolates or extrapolates for the actual feed condition. A limit is given as to the extent of interpolation or extrapolation allowed. Several assumptions were made in the derivation of this method. It is definitely the simplest one available and is recommended if a quick answer is needed. R. C. Erbar (7) found from a large number of problems with bubble-point liquid feed that Maxwell's results have an average deviation of -23.1% from those obtained by Underwood's method with a maximum of -59.9% and a minimum of -1.1%.

Brown and Martin (5) assumed that at minimum reflux the ratio of the key components in the liquid in the zones of constant composition is equal to that in the liquid feed. This can only be true in limiting cases. Calculation of the minimum reflux on this basis involves trial and error and gives a value on the safe side.

Colburn (6) confirmed from actual data that the condition which Brown and Martin (5) assumed does not exist for most cases. He developed an empirical method which

As considered one of the most accurate and is described in more detail in Chapter IV.

Hogan (12) derived his method from essentially the same basic considerations as previous investigators did. He was the first to cover distribution of more than two components between the distillate and the bottoms.

An empirical equation for the calculation of the minimum reflux ratio was presented by Scheibel and Montross (19). The equation yields a direct result eliminating tedious trial and error procedures. This method is described in detail in Chapter IV.

The method developed by Mayfield and May (16) is limited to complete separations of mixtures which involve only one component in the distillate or one component in the bottoms.

The shortcut technique which has found the widest acceptance was worked out by Underwood (22). Shortly afterwards, he expanded the usefulness of this method to determine the distillate composition (23). The method is described in detail in Chapter IV.

Bailey and Coates (3) modified the procedure by Scheibel and Montross (19) to apply to systems with varyIng volatility. This involves a lengthy correction on a
trial and erre basis which offsets at least part of the ease of calcaintion of the original method.

May's method (15) Is based upon the resolution of the multicomponent system into an equivalent series of binary mixtures. Constant molal overflow and constant relative volatility are assumed, and the method does not apply to systems containing split keys.

Three methods for calculating minimum reflux rates were presented by Shiras, Hanson, and Gibson (20). The first method is limited to systems with all components of the feed being distributed. The second method simplifies Underwood's method (23), specifically in respect to determination of the distillate composition. This procedure is explained in detail in Chapter IV. The third method is a more rigorous plate to plate calculation.

Murdoch and Holland (18) developed two alternate equations which are analytical expressions of the methods proposed by Underwood (23) and Colburn (6). The Underwood analogue is more useful since it can be used for split key containing systems and will be fully explained in Chapter IV.

Erbar, Joyner, and Maddox (8) pointed out that Underwood's (23) prediction of product composition sometimes yields unrealistic values.

DISCUSSION OF SELECTED SHORTCUT METHODS

As has been shown in the previous chapter, quite a large number of shortcut methods for determining minimum reflux were developed over the past forty years. All of these have been based on one or more simplifying assumptions. These assumptions may affect the value of minimum reflux differently under different conditions. The value of each method should be judged mainly on the basis of results. However, it was considered more meaningful to evaluate a small number of methods under widely varying conditions rather than to check all available methods on just a few problems. All methods have been assessed for their practical value based on range of application, reported accuracy, assumptions made, and ease of calculation. Based on these criteria, the methods by the following investigators have been selected for comparison:

Underwood
Colburn
Shiras, Hanson, and Gibson
Scheibel and Montross
Murdoch and Holland

Underwood's method (23) is generally considered the most accurate and has found the widest acceptance. It is completely rigorous for systems to which the assumptions
of constant overflow and constant relative volatility apply. Since Colbur's procedure (16) is derived from empirical data obtained by the laborious trial-stepwise procedure, this method was selected because of its practical basis. Shiras et al. (20) simplified Underwood's method by providing a means for determining in advance which components distribute, thereby eliminating the need for solving simultaneous equations. The empirical equation developed by Scheibel and Montross (19) was selected because of its ease of calculation since it does not involve trial and error, and Murdoch and Holland's extension of Underwood's method seemed mainly advantageous for systems containing splitkey components (18).

Underwood's Method

Underwood assumed constant molal overflow and constant relative volatility in the derivation of his rigorous analytical equations. The method is exact for systems In which above assumptions are valid and can be applied to mixtures of any feed condition with or without split-key components.

It is possible to predict for some systems which comm ponents will distribute. For instance, when sharp separations are involved, only the keys and the split-key components will appear in both products. In many cases, however, this prediction cannot be made with any certainty.

If there is any doubt whether or not a component will distribute, it should be considered as a distributed component and the calculation should proceed accordingly. Solution of simultaneous equations is required when components other than the keys distribute; whereby the number of unknowns, and also the number of equations, increases by one for each additional distributed component. Unrealistic values found for overhead concentrations, which either exceed the amount of the component in the feed or which are negative, have to be corrected. For systems with components of variable relative volatility, Underwood suggests to use the value at the average column temperature.

When the light key and heavy key are the only distributed components, the following stepwise method is used:

1. Determine by trial and error the value of θ, Which liesbetween the α values of the key components from the equation:

$$
\begin{equation*}
\frac{\alpha_{1} x_{1} F}{\alpha_{3}-\theta}+\frac{\alpha_{2} x_{2} F}{\alpha_{2}-\theta}+\cdots-\cdots-\frac{\alpha_{n} x_{n F}}{\alpha_{n}-\theta}=1-q \tag{U-1}
\end{equation*}
$$

where $x_{1 F}=$ mole fraction of component 1 in the feed
$\alpha_{1}=$ volatility of component 1 relative to that of the heavy key;
q = heat required to vaporize one mole of feed divided by the molal latent heat
of the feed. For a bubble-point feed $q=1.0 ;$ for a dew-point feed $q=0$. 2. Calculate the minimum reflux ratio $\left(\frac{I_{0}}{D}\right) \min$ by substituting θ in
$\frac{\alpha_{1} x_{1 D}}{\alpha_{1}-\theta}+\frac{\alpha_{2} x_{2 D}}{\alpha_{2}-\theta}+---\frac{\alpha_{n} x_{n D}}{\alpha_{n}-\theta}=\left(\frac{L_{0}}{D}\right)_{m i n}+1$
where $x_{i D}=$ mole fraction of component in the distillate.

Whenever a system contains more distributed components than the two keys, one additional θ value has to be determined for each additional distributed component. In the situation where there is one split key, two values of θ have to be determined in a similar way as was described before. One lies between α (light key) and α (split key), and the other between $\alpha($ split key) and α (heavy key). The distillate will contain the components lighter than the light key, the key components in the amount to give the desired separation, and an unknown amount of the split key. Multiplying the equation which contains the distillate fractions by the total distillate gives:
$\left(L_{0}\right)_{\min }+D=\frac{\alpha_{2} D_{1}}{\alpha_{1}-\theta}+\frac{\alpha_{2} D_{2}}{\alpha_{2}-\theta}+\frac{\alpha_{s k} D_{s k}}{\alpha_{s k}-\theta}+\cdots-\cdots-\frac{\alpha_{n} D_{n}}{\alpha_{n}-\theta}$
where $D_{1}=$ number of moles of component 1 in the
distillate; $s k=$ split key. Substitute each of the two θ values separately in the above equation. Subtraction of the two resulting equations yielas one equation from which
$D_{\text {sk }}$ can be found. Then the total distillate D is known, and (L_{0}) min can be calculated from the last equation. Colburn's Method

Colburn's empirical method involves calculation of the compositions in the rectifying and stripping pinch at a number of trial values for the reflux ratio. A certain relation between these compositions is then checked versus an empirically derived factor to determine which reflux ratio is the minimum reflux ratio. The empirical factor was derived from a large number of problems with widely different conditions, the results of which were determined by stepwise calculations. Product compositions have to be known to enable execution of the computations which involve twice the use of trial and errox. It should be noted that the assumption of constant overflow was made Indirectly in the development of this procedure. The applicability of this method to systems containing split keys is of questionable value.

Following is the stepwise calculational procedure:

1. Use as initial temperature for the upper pinch: $T_{n}=T_{\text {top }}+\frac{T \text { bottom }-T \text { top }}{3}$, and for the lower pinch:
$T_{m}=T_{\text {bottom }}-\frac{T \text { bottom }-T \text { top }}{3}, \quad(C-2)$
where $T_{\text {top }}$ and I bottom represent the temperatures at the two ends of the distillation column.
2. Assume a reflux ratio L_{n} / D for the rectifying section of the column.
3. Calculate the reflux ratio L_{m} / B for the stripping section from L_{n} / D and the given feed condition.
4. Determine the composition of the rectifying and stripping pinch using Brown and Martin's equations: $x_{n}=\frac{x_{D}}{K+(K-1)\left(L_{n} / D\right)} \quad$ (Rectifying Section) ($C-3$).
$x_{m}=\frac{x_{B}}{K+(I-K)\left(L_{m} / B\right)} \quad$ (Stripping Section) ($\left.C-4\right)$
where $x_{n}=$ concentration of a component in the upper pinch (includes heavy key and lighter components); $x_{m}=$ concentration of a component in the lower pinch (includes light key and heavier components);
$K=$ equilibrium ratio $y \% / x$ of a component at the pinch temperature T_{m} or T_{n};
$x_{D}=$ concentration of a component in the distillate;
$x_{B}=$ concentration of a component in the bottoms.
5. Check if the sum of the concentrations of the componerts in the upper pinch, $\sum x_{n}$, equals unity. If it does not, assume a new pinch temperature and repeat undil this criteria is satisfied. Similarly, $\sum x_{m}$ should equal unity.
6. Evaluate Psi (I) $=x_{m} / r_{n}$
where $r_{m}=$ ratio of light key to heavy key in the stripping pinch;
$r_{n}=$ ratio of light key to heavy key in the rectifying pinch.
7. Evaluate $\operatorname{Psi}(2)=\frac{1}{\left(1-\sum C_{m} \alpha x_{m}\right)\left(1-\sum C_{n} x_{n}\right)} \quad(C-6)$ where $\sum C_{m} \alpha x_{m}=$ Summation of values of $C_{m} \alpha x$ for all components heavier than the heavy key in the stripping pinch;
$\sum C_{n} x_{n}=$ Summation of values of $C_{n} x$ for all components lighter than the light key in the rectifying pinch;
$C_{m}, C_{n}=$ correction factors, which are plotted in Colburn's article as a function of relative volatility.
8. If the two Psi-values calculated above are equal, the assumed reflux ratio is the minimum reflux ratio. If they differ by more than a few per cent, assume a new reflux ratio and repeat the calculational procedure until the two Psi-values
```
are within this range.
```

Shiras, Hanson and Gibson's Method
This method is an extension and elaboration of Underwood's method and is exact for all separations for which the assumptions of constant molal overflow and constant relative volatility are valid. A time-saving advantage is that they provide a simple means of determining the distribution of all components. Therefore, only one θ value has to be determined; this is particularly advantageous for mixtures with more than one distributed component in addition to the key components. When the relative volatility cannot be considered constant throughout the distillation column, Shiras et al. suggest to determine this value for all components at an estimated feed plate temperature. The latter can be arrived at in two ways: one being the arithmetic mean of the top plate and reboiler temperatures weighted by the molal amounts of top and bottom product; the alternative is the temperature at which the K values of the two key components are equally distant from unity.

The concentration in the distillate of components other than the two keys is determined for a part vapor feed from the following equation:

$$
\frac{D\left(X_{i}\right)_{D}}{L_{f}\left(X_{i}\right)_{f}}=\frac{\left(\alpha_{i}-1\right) D\left(X_{a}\right)_{D}}{\left(\alpha_{a}-1\right) L_{f}\left(X_{a}\right)_{f}}+\frac{\left(\alpha_{a}-\alpha_{1}\right) D\left(X_{b}\right)_{D}}{\left(\alpha_{a}-1\right) L_{f}\left(X_{b}\right)_{f}}
$$

```
where \(D\) = moles of top product;
    \(\left(X_{1}\right)_{D}=\) mole fraction of component \(i\) in distillate;
    \(L_{\mathrm{f}}=\) moles of liquid feed;
    \(\left(X_{i}\right)_{f}=\) mole fraction of component \(i\) in liquid por-
        tion of feed;
    \(\alpha=\) volatility relative to that of the heavy
        key;
    a = light key component;
    b = heavy key component.
```

The $\left(X_{1}\right)_{f}$ values can be obtained from the flash, if any, of the feed. If the ratio of the amount of a component in the distillate to that of the total quantity of that component in the feed is greater than one or negative, the component is presumed to be non-distributing and the amount of it in the distillate is respectively equal to that in the feed or zero; if this ratio lies between zero and one, the component does distribute.

If the feed is boiling-point liquid, L_{f} is equal to the total feed and $\left(X_{1}\right)_{f}$ is the mole fraction of component i in the feed.

For a dew-point feed, the equation to be used is:

$$
\begin{equation*}
\frac{\alpha_{1} D\left(X_{1}\right)_{D}}{F\left(X_{1}\right)_{F}}=\frac{\alpha_{a}\left(\alpha_{1}-1\right) D\left(X_{a}\right)_{D}}{\left(\alpha_{a}-1\right) F\left(X_{a}\right)_{F}}+\frac{\left(\alpha_{a}-\alpha_{1}\right) D\left(X_{b}\right)_{D}}{\left(\alpha_{a}-1\right) F\left(X_{b}\right)_{F}} \tag{SHG-2}
\end{equation*}
$$

where $F=$ moles of total feed;

$$
\left(X_{i}\right)_{F}=\text { moles of component i in feed. }
$$

Having detemmed the distillate composition this way and the alpha values as outlined before, Underwood's " θ function" method for systems without split keys is used to calculate the minimum reflux for systems with and without split-key components.

Scheibel and Montross' Method
These investigators developed an empirical equation for the calculation of the minimum reflux ratio. It is divided into three parts:
(a) The reflux required to soparate the key components, if components lighter than the light key have infinite volatility and components heavier than the heavy key have zero volatility.
(b) The reflux necessary to separate the heavier components from the light key, considering their actual volatilities.
(c) The reflux required for the separation of the lighter components from the heavy key, considering their actual volatilities.

This method was developed from a large number of problems with widely different conditions and yielded a straightforward equation which does not require trial and error.

It can be applied to systems with bubble-point liquid, part vapor, or dew-point vapor as feed. If split keys are involved, the amount of these components going overhead has to be known. The relative volatilities are determined at an estimated feed plate temperature for systems in which these quantities are temperature dependent.

Following is a step-by-step account of the minimum reflux calculation:

1. Evaluate $m=\frac{M_{L}-\sum M_{D}}{M_{V}-\sum_{A}^{M_{i}}}$

$$
\begin{aligned}
\text { where } m= & \text { pseudoratio of liquid to vapor in feed; } \\
M_{L}= & \text { moles of liquid feed; } \\
M_{V}= & \text { moles of vapor feed; } \\
{\left[M_{D}=\right.} & \text { total moles of components heavier than } \\
& \text { heavy key in feed; } \\
{\left[M_{A}=\right.} & \text { total moles of components lighter than } \\
& \text { light key in feed. }
\end{aligned}
$$

2. Determine the value of x_{i} between zero and unity from

$$
\begin{equation*}
x_{i}=\frac{\left(\alpha_{B}-1\right)(1+m) \frac{X_{B}}{X_{B}+X_{C}}-\alpha_{B}-m \pm \sqrt{Q}}{2 m\left(\alpha_{B}-1\right)} \tag{SM-2}
\end{equation*}
$$

where $Q=\left\{\left(\alpha_{B}-1\right)(1+m) \frac{X_{B}}{X_{B}+X_{C}}-\alpha_{B}-m\right\}^{2}+$

$$
\begin{equation*}
4 m\left(\alpha_{B}-I\right)(I+m) \frac{X_{B}}{X_{B}+X_{C}} \tag{SM-3}
\end{equation*}
$$

$$
\begin{aligned}
\mathrm{x}_{1}= & \text { mole fraction of light key at inter- } \\
& \text { section of operating lines at minimum } \\
& \text { reflux, based on key components only; } \\
\mathrm{X}_{\mathrm{B}}= & \text { mole fraction of light key in feed; } \\
\mathrm{X}_{\mathrm{C}}= & \text { mole fraction of heavy key in feed; } \\
\alpha_{\mathrm{B}}= & \text { relative volatility of keys at feed } \\
& \text { tray. }
\end{aligned}
$$

3. Calculate the pseudo minimum reflux ratio

$$
\begin{equation*}
R_{M}^{2}=\frac{x_{P}}{\left(\alpha_{B}-1\right) x_{i}}-\frac{\left(1-x_{P}\right) \alpha_{B}}{\left(1-x_{1}\right)\left(\alpha_{B}-1\right)} \tag{SM-4}
\end{equation*}
$$

where $x_{P}=$ mole fraction of light key in distillate based on total keys in distillate.
4. The minimum reflux ratio R_{M} is then given by:

$$
\begin{equation*}
R_{M}=\frac{1}{X_{B}+\sum X_{A}}\left\{X_{B} R_{M}^{1}+\left(X_{C}+\sum X_{D}\right) \sum_{\frac{X_{D}}{\alpha_{B}}-1}^{\alpha_{D}}+\sum \frac{X_{A}}{\alpha_{A}}\left(1+\frac{\alpha_{B}}{\alpha_{A}}\right)\right\} \tag{SM-5}
\end{equation*}
$$

where $X_{A}=$ total mole fraction of components lighter than light key in feed; $X_{D}=$ total mole fraction of components heavier than heavy key in feed.

The terms inside the brackets represent, in order, the three fractions of the reflux necessary for the required separation as mentioned in the beginning of this discussion,

Murdoch and Holland's Method
These investigators developed an Over-all Balance Equation which is an extension of the Underwood method. It is, therefore, based on the assumptions of constant molal overflow and constant relative volatility. This method does not require solution of simultaneous equations, however, the procedure used for determining relative volatilities is quite involved.

Murdoch and Holland use the following alpha-values for systems with variable relative volatility:
for all components lighter than the light key $\alpha=\alpha_{P R}$,
for the keys and splitkey components $\alpha=\frac{\alpha_{P R}{ }^{+\alpha} P S}{2}$,
for all components heavier than the heavy key $\alpha=\alpha_{\text {PS }}$,
where $\alpha_{P R}$ and $\alpha_{P S}$ are the relative volatilities at
the rectifying pinch and at the stripping pinch respectively.

The alpha's in the pinches are determined as follows:
a. Assume a value for the minimum reflux ratio.
b. Using this value, calculate by trial and error the temperatures of the two pinches by pinch composition equations (see Colburn).
c. Evaluate the a's at these temperatures.
d. Check the calculated minimum reflux ratio versus the assumed value.
e. Repeat the calculation using the computed minimum reflux ratio if these two values differ greatly.

Fon systems without split keys, Underwood's " θ function" technique is applied using relative volatilities computed as outlined above, The steps involved in applyIng the Over-all Balance Method to systems containing split-key components are as follows:

1. Calculate, by trial and error, the θ 's having values between the relative volatilities of the key components from the equation
$\frac{\alpha_{1} x_{1 F}}{\alpha_{1}-\theta}+\frac{\alpha_{2} x_{2 F}}{\alpha_{2}-\theta}+\cdots--\frac{\alpha_{n} x_{n F}}{\alpha_{n}-\theta}=1-q \quad(M H-1)$
where $x_{i F}=$ mole fraction of component 1 in the feed;
α_{1}. $=$ volatility of component 1 relative to that of the heavy key;
q = heat required to vaporize one mole of feed divided by the molal latent heat of the reed.

Two θ values are required for systems containing one split key.
2. Evaluate

$$
\begin{equation*}
v=\frac{i=h+1}{i=h+1} \theta_{i}^{\ell-1} \alpha_{i} \tag{MH-2}
\end{equation*}
$$

```
where }\pi=\mathrm{ product of factors;
    h = heavy key component;
    \ell = light key component;
    i = component number. Components are
        arranged in order of increasing vola-
        tility.
```

3. Evaluate:

$$
\begin{equation*}
\sum_{j=h, l, L} \frac{\omega_{j}}{\alpha_{j}} D x_{D j} \tag{MH-3}
\end{equation*}
$$

where $f=$ component number;
$L=$ any component lighter than the light key;
$D=$ moles of top product per mole of feed;
$x_{D j}=$ mole fraction of component j in the top product,

$$
\begin{equation*}
\text { and } \quad \omega_{j}=\frac{\sum_{i=h+1}^{\ell-1}\left(i-\frac{\alpha_{i}}{\alpha_{j}}\right)}{i=h+1}\left(1-\frac{\theta_{i}}{\alpha_{j}}\right) \tag{MH-4}
\end{equation*}
$$

4. Multiply each term in item 3 by α_{j} giving:

$$
\begin{equation*}
\sum_{j=h, \ell, L} \omega_{j} D x_{D j} \tag{MH-5}
\end{equation*}
$$

5. Evaluate:

$$
\rho=v \frac{j=h_{k, L} \frac{\omega_{j}}{\alpha_{j}} D x_{D j}}{\sum} \sum_{j=h, \ell, L}^{\omega_{j} D x_{D j}}
$$

6. Calculate the minimum reflux ratio: \quad RMIN $=\frac{\rho}{i-\rho}$

CHAPTER V

COMPUTATIONS

Selected Systems
The minimum rerlux ratio was calculated for mixtures of four to eight hydrocarbons, distilled at 400 psia. The components involved are: $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{8}, i-\mathrm{C}_{4} \mathrm{H}_{10}, n-\mathrm{C}_{4} \mathrm{H}_{20}$, $1-\mathrm{C}_{5} \mathrm{H}_{12}, \mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}$, and $\mathrm{n}-\mathrm{C}_{8} \mathrm{H}_{18}$. The relative volatilities of these compounds vary with temperature.

The following variables and combinations of these variables were considered in setting up the 48 problems which have been solved by each of the five methods:

1. Feed condition------dew-point vapor
50% vapor
bubble-point liquid
2. Feed composition----fraction of keys in the feed key ratio
fraction lighter than the light key
fraction heavier than the heavy key
3. Components---m--------total number key components split-key component

In problems 1-10, the feed composition is varied for a system of four components with adjacent keys and 50%
vapor feed. Problems 1l-16 involve eight components, adjacent keys, 50% vapon feed, and different feed compositions. The systems of problems 17-22 consist of eight components, including one split key, with different feed compositions and 50% vapor feed. Problems 23-28 involve six components, different feed compositions, and 50% vapor feed; although the key components are adjacent, their relative volatility is greater than in problems 1-16. Problems 29-38 and 3948 are identical to problems 1-10 except for the feed condition, which is bubble-point liquid and dew-point vapor respectively.

All systems evaluated represent sharp separations. The separation ratio D / B, which denotes the split of a component between the top product and bottom product, is 30 for the light key and $1 / 30$ for the heavy key in all problems.

Procedures

Since the systems to be evaluated represent sharp separations, it was reasonable to assume that the components lighter than the light key and the components heavfer than the heavy key would all be separated components. The results from the method by Shiras et al. proved this to be a valid assumption. The split keys in problems 1722 were initially assumed to distribute evenly between the
distillate and the bottom product, which deviated little from the actual results obtained by the methods of Underwood and Shiras et al. The composition of the two product streams was thus known, and the temperatures at the top and bottom of the column were then determined by calculating the dew point of the vapor with the same composition as the distillate and the bubble point of the bottom product. In making the bubble point calculation, the mole fraction X_{i} of all components in the bottom product is known. For a bubble-point liquid, the sum of the mole fractions in the vapor equals unity, $1=\sum_{i}^{C} K_{i} X_{i}$ or in func$i=1$
tional notation, $f(T)=\sum K_{i} X_{i}-1$. The bubble point is then determined as the positive value of T such that $f(T)=$ 0 . Since each K-value increases with temperature, only one positive value of T will satisfy that expression. The K values (1) are given as a polynomial of the temperature at the specified pressure in Table 61 of the Appendix. In a similar manner, the dew point of a vapor can be determined from the expression $F(T)=\sum Y_{i} / K_{i}-1$. All bubble points and dew points were determined with an accuracy of $1^{\circ} \mathrm{F}$ allowing $f(T)$ to deviate from zero no more than 0.007 .

Underwood. A separate program was used to calculate the relative volatilities at the average column temperature. The technique of interval halving was applied in the trial and error procedure to determine the theta values. The
main program consists of two parts, one for systems without split-key components and the other part for systems with one split key.

Colburn. The two correction terms C_{m} and C_{n}, each of which is shown in Colburn's article in a graph as some non-linear function of a relative volatilities term, have been omitted, since according to Colburn, this can be done "without introducing appreciable error."

In determining the composition and the temperature of the pinches, it is not sufficient to find a temperature such that the sum of the mole fractions of the constituents of a particular pinch, for a given reflux and distillate composition, equals unity. It is easily overlooked that negative values can be obtained for individual mole fractions. Therefore, the second criteria is that the mole fraction of each component be positive.

Because of the sharp separations of the systems analyzed, the mole fractions of the heavy key in the distillates and those of the light key in the bottom products are rather small. Consequently, the mole fraction of the heavy key in the rectifying pinch and the mole fraction of the light key in the stripping pinch, as determined by the respective pinch equations, are very temperature sensitive. Considering only the rectifying pinch, change in
temperature of $0.1^{\circ} \mathrm{F}$ may easily change the mole fraction of the heavy key in that pinch by as much as 0.2 , while leaving the mole fractions of the other components essentially unaffected; the total mole fraction will then also change by 0.2 . Pursuing this procedure to find the temperature which yields a total mole fraction of unity, would require temperature differences between subsequent trials of $0.01^{\circ} \mathrm{F}$. This seemed unreal and unnecessary, so that the following technique was used. The temperature was determined to within $0.1^{\circ} \mathrm{F}$; then the mole fraction of the heavy key was found by subtracting the sum of the mole fractions of the other components in the rectifying pinch from unity. The same procedure was used for the light key in the stripping pinch.

The minimum reflux ratio was determined, also by a trial and error procedure, to the nearest 0.01 . The distribution of the split-key components, as obtained by Underwood's method, was used in the solution of problems 17-22.

Shiras et al. All systems with part vapor feed necessitated calculation of the composition of the liquid part of the feed. This was accomplished by using the equations:

$$
l_{i}=f_{i} /\left(I+V K_{i} / L\right) \text { and } v_{i}=f_{i}-l_{1}
$$

where $\ell_{i}=$ moles of liquid of component in the feed; $f_{i}=$ total moles of component in in feed;
$v_{i}=$ moles of vapor of component in the feed;
$K_{i}=$ equilibrium constant of component $1 ;$
$V=$ total moles of vapor feed;
$I=$ total moles of liquid feed.
If the feed contains vapor and liquid in a certain ratio V/L, a temperature is assumed and the individual ℓ_{i} 's and v_{1} 's are determined and summed groupwise. If $\frac{\sum v_{1}}{\sum l_{1}}=\frac{V}{L}$,
the assumed temperature is the temperature. of the feed, and the composition of the vapor and liquid are known. Another trial with a new temperature must be carried out if the above equality has not been met.

The relative volatilities at the feed-plate temperature have been determined with a separate program. The feed-plate temperature was estimated as the arithmetic mean of the top plate and reboiler temperatures, weighted by the molal amounts of distillate and bottom product. Interval halving was the convergence technique used to determine the theta value.

Scheibel and Montross. The distribution of the split key as obtained by Underwood's method for problems 17-22 was used in the final equation of the procedure by Scheibel and Montross. The fraction of the split key going overhead was added to the light key, while the remainder
became part of the heavy key.

For systems with variable relative volatilities, the investigators suggest to use the values at the feed-plate temperature; the latter is determined as the bubble point of the keys at the intersection of the feed line and equilibrium line. However, this requires the x-values of the keys at this point, which cannot be obtained without using a values. Therefore, exact execution of the procedure as proposed by Scheibel and Montross, makes it a trial and error method after all.

Murdoch and Holland. The program consists of two parts, of which that for non split-key systems is essentially a combination of Colburn's and Underwood's procedures; the other part is for mixtures containing one split key and also includes some of the techniques used by Colburn and Underwood.

The reflux ratio upon which the relative volatilities are based is within 1% of the calculated value. All theta values have been determined by interval halving.

Programs and Results

Tables $1-48$ show the essential data of examples $1-48$, including feed condition, feed composition, distillate composition, and the minimum reflux ratio as calculated by each of the five methods. The letters L and H desig-
nate the light and heavy key components.

The effect of the feed condition on the minimum reflux ratio can be seen from tables $1-10$ and 29-48. For easy comparison, the results have been grouped for each method as shown in tables 49-53.

Table 54 illustrates the effect of the relative volatilities as suggested by the different investigators when applied to the same minimum reflux method, Scheibel's in this case. Since Colburn in his method uses the two sets of α values from the pinches, Murdoch and Holland's technique was applied for reducing it to one set of data. The α values of the rectifying pinch were used for the components lighter than the light key, those of the stripping pinch for the components heavier than the heavy key; and for the distributed components, the arithmetic average of the values in the two pinches was employed.

The relative volatilities from the different methods which have been used in calculating the results of Table 54; are shown in tables 55-59.

The temperatures calculated for the top and bottom of the distillation column are presented in Table 60.

Table 61 shows the equilibrium data for the hydrocarbon compounds at 400 psia as a function of the temperature.

The computer programs for determining the minimum reflux ratio by the methods of Underwood, Colburn, Shiras et al., Scheibel and Montross, and Murdoch and Holland are given in Tables 62-66. The programs for the calculation of bubble point, dew point, and relative volatilities are shown in Tables 67-69. An explanation of the terminology used in the programs is given in Table 70. All prom grams were written specifically to solve the examples selected for this work, and they may require minor changes to be suitable for general application.

CHAPTER VT

CONCLUSIONS
The minimum reflux results have been given in terms of the minimum reflux ratio since this magnitude, by itself, reveals an important characteristic of any system. The initial assumption that all components lighter than the light key and heavier than the heavy key would become separated components was proven to be valid by the results of Shiras et al. This was anticipated because of the sharp separations of the systems involved.

Tables 1-10 show that the results of the five methods are within 10% of one another for 4 -component systems with adjacent keys. The spread between the minimum and maximum values is larger when the system contains unequal amounts of separated light and heavy components. A similar tendency in the results is observed if the feed condition for these systems is changed. Tables 29-38 and 39-48 show this for bubble-point liquid and dew-point vapor feeds, and the remarkably identical effect of the feed condition on each of the five methods can be seen from Tables 49-53.

As is shown in Tables 11-16, the spread between the two most extreme results increased to about 30% based on the smaller value for systems containing 8 components. Again, the magnitude of this range depends on the feed
composition, whereby systems with unequal amounts of separated components yielded the largest difference in results. It may be noted that the same methods gave the highest and lowest values as in the case of the 4 -component systems. When the amount of heavy separated components exceeded that of the light separated components, Scheibel and Montross' method yielded the lowest result; and Shiras et al.'s procedure, the highest. The reverse was observed when the amount of ligh't components exceeded that of the heavy constituents.

The data for 8 -component systems containing one split key are shown in Tables 17-22. Shiras et al.'s and Underwood's are the only methods which provide a means for calculating the distribution of split keys. Appreciable difference was found in the results from these two procedures. Shiras' method yielded approximately the same amount of split key in the distillate for all 6 examples, which is surprising in view of the considerable variation in the feed composition. These results and other data derived from them are shown in parentheses. It is the amount of split key in the overhead product as obtained from Underwood's method which is included in the total moles of distillate upon which all minimum reflux ratio's are based. Colburn's method gave low values for the minimum reflux ratio for all six problems, and the trend
seen in previous results is not as prevailing in these examples. The spread between the lowest and highest values of the minimum reflux ratio ranged from 45% to 125%, a sharp increase when compared to that of the 8 -component systems with adjacent keys.

When the relative volatility of adjacent keys was increased, the spread in the results ranged from 20% to 130% for the 6-component systems shown in Tables 23-28. Again, as in all previous examples, the largest difference was obtained for systems with small amounts of heavy separated components.

A remarkable parallel exists between the results given in Table 54 and those in Tables 1-49. It shows that the differences in the relative volatility data, as suggested by the respective investigators, is the main cause of the differences obtained for the value of the minimum reflux ratio.

In summary, it can be said that the spread between the results from the five methods increases when:
a. The amounts of separated light and heavy components become unequal
b. The amount of separated light components exceeds that of the separated heavy components
c. The number of components increases
d. Split keys are present
e. The relative volatility between the key components increases.

The fact that each method uses a different basis for calculating the relative volatilities accounts to a great extent for the differences in results between the methods.

CHAPTER VII

RECOMMENDATIONS

Considerable variation was found in the results of the minimum reflux ratio as obtained from the methods by Underwood, Colburn, Scheibel and Montross, Murdoch and Holland, and Shiras et al. For certain systems, the spread was more than 100% of the lowest value. Most of the deviations were caused by differences in the relative volatilities as used in these particular procedures.

To ascertain which of these methods is preferable for general application or for a particular type of system and to determine their degree of reliability, comparison of the results with those from a rigorous calculation is required. This would also identify which basis for the relative volatilities best represents these properties in systems in which they are temperature dependent.

The only methods which incorporate determination of the product composition are those by Underwood and Shiras et al. Colburn, and Scheibel and Montross do not offer this feature, while Murdoch's procedure is identical to that by Underwood. Therefore, only the first two methods can be considered for general application. Until the superiority of either one with respect to product prediction has been established, the following combination of these two procedures is suggested:

1. Determine which components distribute by the procedure of Shiras et al.
2. Apply Underwood's θ function technique to obtain the distillate composition and the minimum reflux. This will require solution of simultaneous equations when components other than the keys distribute. Underwood's suggestion for calculating relatlve volatilities in systems where they vary does not necessarily have to be followed. Data arrived at a different way should be used if they are known to be more representative of that particular system.

It is difficult to give an accurate assessment of the computer effort required for each method. The computation time involved depends on the starting values selected in trial and error procedures, convergence techniques, etc. Also, the programs used are not claimed to be optimized. A qualitative indication, shown in order of increasing effort required, is as follows: Scheibel and Montross, Underwood, Shiras et al., Murdoch and Holland, Colburn.

Scheibel and Montross' method is the only one feasible for hand calculation within a reasonable length of time and is suggested for use if a computer is not read-
ily available. Relative volatilities should be determined at the average column temperature, thereby eliminating the trial and error technique required to match these values with those at the feed plate temperature.

$$
A P P E N D I X
$$

TABLE 1. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 1
FEEDCONDITION 50\% VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX	
	NR		MOLES	MOLES	METHOD	RATIO
C3H8	3		40.00	40.00	Underwood	2.64
i-C4H10	4	L	14.00	13.55	Colburn	2.69
n-C4H10	5	H	6.00	0.19	Shiras et al.	2.59
1-C5H12	6		40.00		Scheibel \& Montross	2.62
					Murdoch \& Holland	2.58
TOTAL			100.00	53.74		

TABLE 2. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 2 FEEDCONDITION 50\% VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \text { NR } \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE INMOLES	MINIMUM REFLUX	
					METHOD	RATIO
C3H8	3		40.00	40.00	Underwood	3.05
i-C4H10	4	L	6.00	5.81	Colburn	3.42
n-C4H10	5	H	14.00	0.45	Shiras et al.	3.09
1-C5H12	6		40.00		Scheibel \& Montross	3.22
					Murdoch \& Holland	3.20
TOTAL			100.00	46.26		

TABLE 3. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 3 FEEDCONDITION 50\% VAPOR

COMPONENT	$\begin{aligned} & \text { COMP } \\ & \text { NR } \end{aligned}$	KEY	FEED IN MOLES	DISTILLATE INMOLES	MINIMUM REFLUX	
					METHOD	RATIO
C3H8	3		25.00	25.00	Underwood	4.58
1-C4H10	4	L	33.00	31.94	Colburn	4.56
n-C4H10	5	H	17.00	0.55	Shiras et al.	4.49
i-C5H12	6		25.00		Scheibel \& Montross	4.48
					Murdoch \& Holland	4.46
TOTAL			100.00	57.49		

TABLE 4. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 4
FEEDCONDITION 50% VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \text { NR } \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
С3H8	3		25.00	25.00	Underwood	6.19
1-C4H10	4	L	17.00	16.45	Colburn	6.58
n-C4H10	5	H	33.00	1.06	Shiras et al.	6.30
1-C5H12	6		25.00		Scheibel \& Montross	6.35
					Murdoch \& Holland	6.37
TOTAL			100.00	42.51		

TABLE 5. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 5 FEEDCONDITION 50\% VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX	
	NR		MOLES	MOLES	METHOD	RATIO
C3H8	3		10.00	10.00	Underwood	6.13
1-C4H10	4	L	53.00	51.29	Colburn	6.03
n-C4H10	5	H	27.00	0.87	Shiras et al.	6.02
1-C5H12	6		10.00		Scheibe \& Montross	6.00
					Murdoch \& Holland	6.00
total			100.00	62.16		

TABLE 6. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 6 FEEDCONDITION 50\% VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \text { NR } \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE INMOLES	MINIMUM REFLUX	
					METHOD	RATIO
C3H8	3		10.00	10.00	Underwood	10.25
1-C4H10	4	L	27.00	26.13	Colburn	10.56
n-C4H10	5	H	53.00	1.71	Shiras et al.	10.44
1-C5H12	6		10.00		Scheibel \& Montross	10.38
					Murdoch \& Holland	10.44
TOTAL			100.00	37.84		

TABLE 7. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 7 FEEDCONDITION 50\% VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX	
	NR		MOLES	MOLES	METHOD	RATIO
C3H8	3		5.00	5.00	Underwood	7.48
1-C4H10	4	L	33.00	31.94	Colburn	7.39
n-C4H10	5	H	17.00	0.55	Shiras et al.	7.67
1-C5H12	6		45.00		Scheibel \& Montross	7.06
TOTAL			100.00	37.49		

TABLE 8, SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 8
FEEDCONDITION 50\% VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX	
	NR		MOLES	MOLES	METHOD	RATIO
C3H8	3		5.00	5.00	Underwood	13.28
$1-$ C4H10	4	I	17.00	16.45	Colburn	13.77
n-C4H10	5	H	33.00	1.06	Shiras et al.	14.08
$1-$ C5H12	6		45.00		Scheibel \& Montross	13.00
					Murdoch \& Holland	13.39
TOTAL			100.00	22.51		

TABLE 9, SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 9 FEEDCONDITION 50\% VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \mathrm{NR} \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
C3H8	3		45.00	45.00	Underwood	3.24
1-C4H10	4	L	33.00	31.94	Colburn	3.26
n-C4H10	5	H	17.00	0.55	Shiras et al.	3.02
1-C5H12	6		5.00		Scheibel \& Montross Murdoch \& Holland	$\begin{aligned} & 3.33 \\ & 3.21 \end{aligned}$
TOTAL			100.00	77.49		

TABLE 10. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 10
FEEDCONDITION 50\% VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \mathrm{NR} \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
C3H8	3		45.00	45.00	Underwood	3.79
1-C4H10	4	L	17.00	16.45	Colburn	4.06
n-C4H10	5	H	33.00	1.06	Shiras et al.	3.68
1-C5H12	6		5.00		Scheibel \& Montross	4.16
					Murdoch \& Holland	3.94
TOTAL			100.00	62.51		

TABLE 11. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 11
FEEDCONDITION 50\% VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \text { NR } \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
CH4	1		11.00	11.00	Underwood	2.98
C2H6	2		12.00	12.00	Colburn	2.95
C3H8	3		12.00	12.00	Shiras et al.	2.90
i-C4H10	4	L	20.00	19.35	Scheibel \& Montross	2.94
n-C4H10	5	H	10.00	0.32	Murdoch \& Holland	2.90
$1-\mathrm{C} 5 \mathrm{H} 12$	6		12.00			
n-C5H12	7		12.00			
n-C8H18	8		11.00			
TOTAL			100.00	54.67		

TABLE 12. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 12 FEEDCONDITION 50% VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX NR	
	MOLES	MOLES	METHOD	RATIO		
CH4	1		11.00	11.00	Underwood	3.51
C2H6	2		12.00	12.00	Colburn	3.91
C3H8	3		12.00	12.00	Shiras et al.	3.61
1-C4H10	4	L	10.00	9.68	Scheibel \& MontroSs	3.68
n-C4H10	5	H	20.00	0.65	Murdoch \& Holland	3.73
i-C5H12	6		12.00			
n-C5H12	7		12.00			
n-C8H18	8		11.00			
TOTAL			100.00	45.33		

TABLE 13. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 13
FEEDCONDITION 50\% VAPOR

| COMPONENT | COMP | KEY | FEED IN | DISTILLATE IN | MINIMUM REFLUX | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | NR | | MOLES | MOLES | METHOD | RATIO |
| CH4 | 1 | | 1.00 | 1.00 | Underwood | 7.41 |
| C2H6 | 2 | | 2.00 | 2.00 | Colburn | 7.42 |
| C3H8 | 3 | | 4.00 | 4.00 | Shiras et al. | 8.09 |
| 1-C4H10 | 4 | L | 20.00 | 19.35 | Scheibel \& Montross | 6.90 |
| n-C4H10 | 5 | H | 10.00 | 0.32 | Murdoch \& Holland | 7.25 |
| I-C5H12 | 6 | | 30.00 | | | |
| n-C5H12 | 7 | | 20.00 | | | |
| n-C8H18 | 8 | | 13.00 | | | |
| TOTAL | | | 100.00 | 26.67 | | |

TABLE 14, SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 14 FEEDCONDITION 50\% VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \text { NR } \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
CH4	1		1.00	1.00	Underwood	12.33
C2H6	2		2.00	2.00	Colburn	13.16
C3H8	3		4.00	4.00	Shiras et al.	13.92
1-C4H10	4	L	10.00	9.68	Scheibel \& Montross	11.85
n-C4H10	5	H	20.00	0.65	Murdoch \& Holland	12.68
1-C5H12	6		30.00			
$\mathrm{n}-\mathrm{C} 5 \mathrm{H} 12$	7		20.00			
$\mathrm{n}-\mathrm{C} 8 \mathrm{H} 18$	8		13.00			
TOTAL			100.00	17.33		

TABLE 15. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 15
FEEDCONDITION 50% VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLLATE IN	MINIMUM REFLUX NR	
	MOLES	MOLES	METHOD	RATIO		
CH4	1		13.00	13.00	Underwood	1.80
C2H6	2		20.00	20.00	Colburn	1.81
C3H8	3		30.00	30.00	Shiras et al.	1.52
$1-\mathrm{C4H10}$	4	L	20.00	19.35	Scheibel \& Montross	1.93
n-C4H10	5	H	10.00	0.32	Murdoch \& Holland	1.79
1-C5H12	6		4.00			
n-C5H12	7		2.00			
n-C8H18	8		1.00			
TOTAL			100.00	82.67		

TABLE 16. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 16
FEEDCONDITION 50% VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \mathrm{NR} \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
CH 4	1		13.00	13.00	Underwood	1.80
C2H6	2		20.00	20.00	Colburn	2.02
C3H8	3		30.00	30.00	Shiras et al.	1.59
i-C4H10	4	L	10.00	9.68	Scheibel \& Montross	2.13
n-C4H10	5	H	20.00	0.65	Murdoch \& Holland	1.91
1-C5H12	6		4.00			
$\mathrm{n}-\mathrm{C} 5 \mathrm{H12}$	7		2.00			
$\mathrm{n}-\mathrm{C8H1} 8$	8		1.00			
TOTAL			100.00	73.33		

TABLE 17. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 17 FEEDCONDITION 50\% VAPOR

COMPONENT	COMP KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX		
	NR		MOLES	MOLES	METHOD	RATIO
CH4	1		10.00	10.00	Underwood	1.19
C2H6	2		10.00	10.00	Colburn	0.82
C3H8	3		10.00	10.00	Shiras et al.	$1.11(1.11)$
i-C4H10	4	L	20.00	19.35	Scheibel \& Montross	1.08
n-C4H10	5		10.00	$6.87(6.98)$	Murdoch \& Holland	1.19
1-C5H12	6	H	10.00	0.32		
n-C5H12	7		15.00			
n-C8H18	8		15.00			
TOTAL			100.00	$56.54(56.65$		

TABLE 18. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 18 FEEDCONDITION 50\% VAPOR

COMPONENT	COMP	KEY	FEED IN			
NR		DISTILLATE IN				
MOLES	MOLES	$\begin{array}{c}\text { MINIMUM REFLUX } \\ \text { RATIO }\end{array}$				
CH4	1		10.00	10.00	Underwood	1.46
C2H6	2		10.00	10.00	Colburn	1.15
C3H8	3		10.00	10.00	Shiras et al.	Scheibel \& Montross

TABLE 19. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 19
FEEDCONDITION 50\% VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \therefore \text { NR } \end{gathered}$	KEY.	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
CH4	1		1.00	1.00	Underwood	3.24
С2H6	2		2.00	2.00	Colburn	2.63
С3H8	3		2.00	2.00	Shiras et al.	3.84 (3.77)
1-C4H10	4	L	20.00	19.35	Scheibel \& Montross	2.64
$\mathrm{n}-\mathrm{C} 4 \mathrm{H} 10$	5		10.00	6.38(6.97)	Murdoch \& Holland	3.42
1-C5H12	6	H	10.00	0.32		
n-C5H12	7		35.00			
n - $\mathrm{C} 8 \mathrm{H1} 8$	8		20.00			
TOTAL			100.00	$31.05(31.64)$		
		ble	20. SPEC	ICATIONS AND SOL EDCONDITION 50\%	UTIONS OF EXAMPLE 20 VAPOR	
COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REP	
	NR		MOLES	MOLES	METHOD	RATIO
CH 4	1		1.00	1.00	Underwood	4.90
С2 2 H 6	2		2.00	2.00	Colburn	4.13
C3H8	3		2.00	2.00	Shiras et al.	5.97 (5.80)
1-C4H10	4	L	10.00	9.68	Scheibel \& Montross	5.82
n-C4H10	5		10.00	$6.34(6.97)$	Murdoch \& Holland	5.40
i-C5H12	6	H	20.00	0.65		
$\mathrm{n}-\mathrm{C} 5 \mathrm{H} 12$	7		35.00			
$\mathrm{n}-\mathrm{C} 8 \mathrm{H} 18$	8		20.00			
TOTAL			100.00	21.67(22.30)		

TABLE 21. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 21 FEEDCONDITION 50% VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \mathrm{NR} \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
CH4	1		15.00	15.00	Underwood	0.60
C2H6	2		20.00	20.00	Colburn	0.32
C3H8	3		20.00	20.00	Shiras et al.	0.31 (0.31)
1-C4H10	4	L	20.00	19.35	Scheibel \& Montross	0.67
n-C4H10	5		10.00	$6.04(6.83)$	Murdoch \& Holland	0.56
i-C5H12	6	H	10.00	0.32		
n-C5H12	7		3.00			
$\mathrm{n}-\mathrm{C8H18}$	8		2.00			
TOTAL			100.00	$80.71(81.50)$		
	TABLE 22. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 22 FEEDCONDITION 50\% VAPOR					
COMPONENT	$\begin{gathered} \text { COMP } \\ \mathrm{NR} \end{gathered}$	KEY	FEED IN MOLES	DISTILIATE IN MOLES	MINIMUM REFLUX	
					NETHOD	RATIO
CH4	1		15.00	15.00	Underwood	0.65
C2H6	2		20.00	20.00	Colburn	0.42
C3H8	3		20.00	20.00	Shiras et al.	0.40 (0.39)
i-C4H10	4	L	10.00	9.68	Scheibel \& Montross	0.96
n-C4H10	5		10.00	$5.84(6.87)$	Murdoch \& Holland	0.66
i-C5H12	6	H	20.00	0.65		
n-C5H12	7		3.00			
$\mathrm{n}-\mathrm{C8H1} 8$	8		2.00			
TOTAL			100.00	$71.17(72.20)$		

TABLE 23. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 23
FEEDCONDITION 50\% VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \text { NR } \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	Ratio
CH 4	1		15.00	15.00	Underwood	0.51
C2H6	2		20.00	20.00	Colburn	0.43
C3H8	3	L	20.00	19.35	Shiras et al.	0.48
1-C4H10	4				Scheibel \& Montross	0.37
n-C4H10	5				Murdoch \& Holland	0.51
1-C5H12	6	H	10.00	0.32		
n-C5H12	7		20.00			
$\mathrm{n}-\mathrm{C} 8 \mathrm{H} 18$	8		15.00			
TOTAL			100.00	54.67		

FEEDCONDITION 50\% VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \mathrm{NR} \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
CH4	1		15.00	15.00	Underwood	0.67
C2H6	2		20.00	20.00	Colburn	0.79
C3H8	3	L	10.00	9.68	Shiras et al.	0.70
i-C4H10	4				Scheibel \& Montross	0.73
n-C4H10	5				Murdoch \& Holland	0.78
1-C5H12	6	H	20.00	0.65		
n-C5H12	7		20.00			
$\mathrm{n}-\mathrm{C} 8 \mathrm{H} 18$	8		15.00			
TOTAL			100.00	45.33		

TABLE 25. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 25 FEEDCONDITION 50\% VAPOR

COMPONENT	$\begin{aligned} & \text { COMP } \\ & \text { NR } \end{aligned}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
CH 4	1		2.00	2.00	Underwood	2.33
C2H6	2		3.00	3.00	Colburn	2.50
C3H8	3	L	20.00	19.35	Shiras et al.	2.77
1-C4H10	4				Scheibel \& Montross	1.92
n-C4H10	5				Murdoch \& Holland	2.70
1-C5H12	6	H	10.00	0.32		
n-C5H12	7		40.00			
n-C8H18	8		25.00			
TOTAL			100.00	24.67		

TABLE 26. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 26 FEEDCONDITION 50% VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \text { NR } \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REPLUX	
					METHOD	RATIO
CH 4	1		2.00	2.00	Underwood	4.24
C2H6	2		3.00	3.00	Colburn	5.05
C3H8	3	L	10.00	9.68	Shiras et al.	5.18
i-C4H10	4				Scheibel \& Montross	4.34
n-C4H10	5				Murdoch \& Holland	5.06
i-C5H12	6	H	20.00	0.65		
n-C5H12	7		40.00			
$\mathrm{n}-\mathrm{C} 8 \mathrm{H} 18$	8		25.00			
TOTAL			100.00	15.33		

TABLE 27. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 27
FEEDCONDITION 50% VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \text { NR } \end{gathered}$		FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
CH4	1		25.00	25.00	Underwood	0.18
C2H6	2		40.00	40.00	Colburn	0.08
C3H8	3	I	20,00	19.35	Shiras et al.	0.09
1-C4H10	4				Scheibel \& Montross	0.16
n -C4H10	5				Murdoch \& Holland	0.10
1-C5H12	6	H	10.00	0.32		
$\mathrm{n}-\mathrm{C} 5 \mathrm{H} 12$	7		3.00			
n-C8H18	8		2.00			
TOTAL			100.00	84.67		
TABLE 28. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 28 FEEDCONDITION 50\% VAPOR						
COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX	
	NR		MOLES	MOLES	METHOD	RATIO
CH4	1		25.00	25.00	Underwood	0.19
С2Н6	2		40.00	40.00	Colburn	0.09
C3H8	3	L	10.00	9.68	Shiras et al.	0.11
1-C4H10	4				Scheibel \& Montross	0.21
$\mathrm{n}-\mathrm{C} 4 \mathrm{HlO}$					Murdoch \& Holland	0.11
1-C5H12	6	H	20.00	0.65		
$\mathrm{n}-\mathrm{C} 5 \mathrm{H} 12$	7		3.00			
n-C8H18	8		2.00			
TOTAL			100.00	75.33		

TABLE 29. SEE ICATIONS AND SOLUTIONS OF EXAMPLE 29 FEEDCONDITION BUBBLE-POINT LIQUID

COMPONENT	$\begin{aligned} & \text { COMP } \\ & \text { NR } \end{aligned}$	KEY	FEED IN MOLES	DISTILLATE INMOLES	MINIMUM REFLUX	
					METHOD	RATIO
C3H8	3		40.00	40.00	Underwood	2.38
i-c4H10	4	L	14.00	13.55	Colburn	2.34
n-C4H10	5	H	6.00	0.19	Shiras et al.	2.34
1-C5H12	6		40.00		Scheibel \& Montross	2.39
					Murdoch \& Holland	2.29
TOTAL			100.00	53.74		

TABLE 30. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 30 FEEDCONDITION BUBBLE-POINT LIQUID

COMPONENT	$\begin{gathered} \text { COMP } \\ \text { NR } \end{gathered}$	KEY	$\begin{aligned} & \text { FEED IN } \\ & \text { MOLES } \end{aligned}$	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
C3H8	3		40.00	40.00	Underwood	2.45
1-C4H10	4	L	6.00	5.81	Colburn	2.71
n-C4H10	5	H	14.00	0.45	Shiras et al.	2.50
1-C5H12	6		40.00		Scheibel \& Montross	2.58
					Murdoch \& Holland	2.56
TOTAL			100.00	46.26		

TABLE 31. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 31
FEEDCONDITION BUBBLE-POINT LIQUID

COMPONENT	$\begin{gathered} \text { COMP } \\ \text { NR } \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
C3H8	3		25.00	25.00	Underwood	4.30
1-C4H10	4	L	33.00	31.94	Colburn	4.24
n-C4H10	5	H	17.00	0.55	Shiras et al.	4.21
1-C5H12	6		25.00		Scheibel \& Montross	4.18
					Murdoch \& Holland	4.18
TOTAL			100.00	57.49		

TABLE 32. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 32 FEEDCONDITION BUBBLE-POINT LIQUID

COMPONENT	COMP KEYNR		FEED IN DISTILLATE IN MOLES MOLES		MINIMUM REFLUX			
			METHOD	RATIO				
C3H8	3				25.00	25.00	Underwood	5.48
1-C4H10	4	L	17.00	16.45	Colburn	5.82		
n-C4H10	5	H	33.00	1.06	Shiras et al.	5.60		
1-C5H12	6		25.00		Scheibel \& Montross	5.65		
					Murdoch \& Holland	5.67		
TOTAL			100.00	42.51				

TABLE 33. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 33
FEEDCONDITION BUBBLE-POINT LIQUID

COMPONENT	COMP					
	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX		
NOLES	MOLES	METHOD		RATIO		
C3H8	3		10.00	10.00	Underwood	5.87
1-C4H10	4	L	53.00	51.29	Colburn	5.75
n-C4H10	5	H	27.00	0.87	Shiras et al.	5.76
1-C5H12	6		10.00		Scheibel \& Montross	5.74
					Murdoch \& Holland	5.74
TOTAL			100.00	62.16		

TABLE 34. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 34
FEEDCONDITION BUBBLE-POINT LIQUID

COMPONENT	COMP	KEY	FEED IN	DISTILLATIE IN	MINIMUM REFLUX	
	NR		MOLES	MOLES	METHOD	RATIO
C3H8	3		10.00	10.00	Underwood	9.43
1-C4H10	4	L	27.00	26.13	Colburn	9.69
n-C4H10	5	H	53.00	1.71	Shiraset al.	9.62
i-C5H12	6		10.00		Scheibel\& Montross	9.56
					Murdoch \& Holland	9.62
TOTAL			100.00	37.84		

TABLE 35. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 35 FEEDCONDITION BUBBLE-POINT LIQUID

COMPONENT	COMP.	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX	
- .	NR		MOLES	MOLES	METHOD	RATIO
C3H8	3		5.00	5.00	Underwood	6.91
1-C4H10	4	L	33.00	31.94	Colburn	6.74
n-C4H10	5	H	17.00	0.55	Shiras et al.	7.11
i-C5H12	6		45.00		Scheibel \& Montross	6.60
					Murdoch \& Holland	6.67
TOTAL			100.00	37.49		

TABLE 36. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 36
FEEDCONDITION BUBBLE-POINT LIQUID

COMPONENT	$\begin{gathered} \text { COMP } \\ \mathrm{NR} \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
C3H8	3		5.00	5.00	Underwood	11.72
1-C4H10	4	L	17.00	16.45	Colburn	12.16
$\mathrm{n}-\mathrm{C} 4 \mathrm{H} 10$	5	H	33.00	1.06	Shiras et al.	12.54
1-C5H12	6		45.00		Scheibel \& Montross	11.52
					Murdoch \& Holland	11.90
TOTAL			100.00	22.51		

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM R	
	NR		MOLES	MOLES	METHOD	RATIO
$\begin{aligned} & \mathrm{C} 3 \mathrm{H} 8 \\ & \mathrm{i}-\mathrm{C} 4 \mathrm{H} 10 \\ & \mathrm{n}-\mathrm{C} 4 \mathrm{H} 10 \\ & 1-\mathrm{C} 5 \mathrm{H} 12 \end{aligned}$	3456	LH	45.00	45.00	Underwood	3.08
			33.00	31.94	Colburn	3.08
			17.00	0.55	Shiras et al.	$\begin{aligned} & 2.87 \\ & 3.13 \\ & 3.05 \end{aligned}$
			5.00		Scheibel \& Montross Murdoch \& Holland	
TOTAL		100.00		77.49		
	TABLE		38. SPEC FEED	ICATIONS AND	LUTIONS OF EXAMPLES 38 POINT LIQUID	
COMPONENT	$\begin{gathered} \text { COMP } \\ \text { NR } \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
$\begin{aligned} & \mathrm{C} 3 \mathrm{H} 8 \\ & \mathrm{i}-\mathrm{C} 4 \mathrm{H} 10 \\ & \mathrm{n}-\mathrm{C} 4 \mathrm{H} 10 \\ & \mathrm{i}-\mathrm{C} 5 \mathrm{H} 12 \end{aligned}$	3456	L	$\begin{array}{r} 45.00 \\ 17.00 \\ 33.00 \\ 5.00 \end{array}$	$\begin{array}{r} 45.00 \\ 16.45 \\ 1.06 \end{array}$	Underwood Colburn Shiras et al. Scheibel \& Montross Murdoch \& Holland	$\begin{aligned} & 3.41 \\ & 3.65 \\ & 3.29 \\ & 3.69 \\ & 3.54 \end{aligned}$
TOTAL				62.51		

TABLE 39. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 39 FEEDCONDITION DEW-POINT VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \text { NR } \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
C3H8	3		40.00	40.00	Underwood	3.05
1-C4H10	4	L	14.00	13.55	Colburn	3.21
n-C4H10	5	H	6.00	0.19	Shiras et al.	3.01
i-C5H12	6		40.00		Scheibel \& Montross	3.05
					Murdoch \& Holland	3.03
TOTAL			100.00	53.74		

TABLE 40, SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 40 FEEDCONDITION DEW-POINT VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \text { NR } \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
C3H8	3		40.00	40.00	Underwood	3.83
i-C4H10	4	L	6.00	5.81	Colburn	4.26
n-C4H10	5	H	14.00	0.45	Shiras et al.	3.88
1-C5H12	6		40.00		Scheibel \& Montross	4.04
					Murdoch \& Holland	3.98
TOTAL			100.00	46.26		

TABLE 41. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 41 FEEDCONDITION DEW-POINT VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX	
	NR		MOLES	MOLES	METHOD	RATIO
C3H8	3		25.00	25.00	Underwood	4.92
1-C4H10	4	L	33.00	31.94	Colburn	4.95
n-C4H10	5	H	17.00	.55	Shiras et al.	4.83
1-C5HI2	6		25.00		Schelbel \& Montross	4.84
					Murdoch \& Holland	4.81
TOTAL			100.00	57.49		

TABLE 42. SPECIFICATIONS AND SOLUTIONS OF EXANPLE 42 FEEDCONDITION DEW-POINT VAPOR

COMPONENT	$\begin{gathered} \text { COMP KEY } \\ \text { NR } \end{gathered}$		FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX		
			METHOD		RATIO		
C3H8	3			25.00	25.00	Underwood	6.98
1-C4H10	4	L	17.00	16.45	Colburn	7.40	
n - C 4 H 10	5	H	33.00	1.06	Shiras et al.	7.10	
i-C5H12	6		25.00		Scheibel \& Montross	7.18	
					Murdoch \& Holland	7.16	
TOTAL			100.00	42.51			

TABLE 43. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 43 FEEDCONDITION DEW-POINT VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \text { NR } \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
C3H8	3		10.00	10.00	Underwood	6.43
1-C4H10	4	L	53.00	51.29	Colburn	6.36
n-C4H10	5	H	27.00	0.87	Shiras et al.	6.32
1-C5H12	6		10.00		Scheibel \& Montross	6.30 6.30
TOTAL			100.00	62.16		

TABLE 44, SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 44 FEEDCONDITION DEW-POINT VAPOR

COMPONENT	$\begin{gathered} \text { COMP } \\ \text { NR } \end{gathered}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATIO
C3H8	3		10.00	10.00	Underwood	21.14
i-C4H10	4	L	27.00	26.13	Colburn	11.46
n-C4H10	5	H	53.00	1.71	Shiras et al.	11.33
i-C5H12	6		10.00		Scheibel \& Montross	11.32
					Murdoch \& Holland	11.32
TOTAL			200.00	37.84		

TABLE 45. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 45 FEEDCONDITION DEW-POINT VAPOR

COMPONENT	$\begin{aligned} & \text { COMP } \\ & \text { NR } \end{aligned}$	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
					METHOD	RATTO
C3H8	3		5.00	5.00	Underwood	8.16
1-C4H10	4	L	33.00	31.94	Colburn	8.15
n-C4H10	5	H	17.00	0.55	Shiras et 21.	8.36
1-C5H12	6		45.00		Scheibel \& Montross	7.67
					Murdoch \& Holland	7.90
TOTAL			100.00	37.49		

TABLE 46. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 46 FEEDCONDITION DEW-POINT VAPOR

COMPONENT	COMP	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REFLUX	
	NR				METHOD	RATIO
C3H8	3		5.00	5.00	Underwood	14.96
1-C4H10	4	L	17.00	16.45	Colburn	15.52
n-C4H10	5	H	33.00	1.06	Shiras et al.	15.78
1-C5H12	6		45.00		Scheibel \& Montross	14.63
					Murdoch \& Holland	15.00
TOTAL			100.00	22.51		

TABLE 49. VALUES OF THE MINIMUM REFLUX RATIO FOR DIFFERENT FEED CONDITIONS BY THE METHOD OF UNDERWOOD

	A	9.9	19.7	6.1	11.5	4.2	8.0	7.6	11.7	4.9	10.3
Bubble-Point Lic	(29-38)	2.38	2.45	4.30	5.48	5.87	9.43	6.91	11.72	3.08	3.41
50\% Vapor	($1-10$)	2.64	3.05	4.58	6.19	6.13	10.25	7.48	13.28	3.24	3.80
Dew-Point Vapor	(39-48)	3.05	3.83	4.92	6.98	6.43	11.14	8.16	14.96	3.43	4.26
	B	14.8	25.6	7.4	12.8	4.9	8.7	9.1	12.6	5.9	12.1

TABLE 50, VALUES OF THE MINIMUM REFLUX RATIO FOR DIFFERENT FEED CONDITIONS BY THE METHOD OF COLBURN

	A	13.0	20.7	7.0	11.6	4.6	8.3	8.8	11.8	5.5	10.1
Bubble-Point Liq. $(29-38)$	2.34	2.71	4.24	5.82	5.75	9.69	6.74	12.16	3.08	3.65	
50\% Vapor											
Dew-Point Vapor	$(1-10)$	2.69	3.42	4.56	6.58	6.03	10.56	7.39	13.77	3.26	4.06
$(39-48)$	3.21	4.26	4.95	7.40	6.36	11.46	8.15	15.52	3.48	4.56	
	B 19.4	24.6	8.5	12.4	5.5	8.5	10.3	12.7	6.7	12.3	

A and B designate respectively the percentage deviation of the bubble-point
liquid and dew-point vapor results from that of the 50% vapor feed.

TABLE 51. VALUES OF THE MINIMUM REFLUX RATIO FOR DIFFERENT FEED CONDITIONS BY THE METHOD OF SHIRAS ET AL.

	A	9.7	19.1	6.2	11.1	4.3	7.8	7.3	10.9	5.0	10.6
Bubble-point Liq	(29-38)	2.34	2.50	4.21	5.60	5.76	9.62	7.11	12.54	2.87	3.29
50\% Vapor	($1-10$)	2.59	3.09	4.49	6.30	6.02	10.44	7.67	14.08	3.02	3.68
Dew-Point Vapor	(39-48)	3.01	3.88	4.83	7.10	6.32	11.33	8.36	15.78	3.22	4.14
	B	16.2	25.6	7.6	12.7	5.0	8.5	9.0	12.1	6.6	12.5

TABLE 52. VALUES OF THE MINIMUM REFLUX RATIO FOR DIFFERENT FEED CONDITIONS BY THE METHOD OF SCHEIBEL AND MONTROSS

	A	8.8	19.9	6.7	11.0	4.3	7.9	6.5	11.4	6.0	11.3
Bubble-Point Liq. $(29-38)$	2.39	2.58	4.18	5.65	5.74	9.56	6.60	11.52	3.13	3.69	
50\% Vapor	(1-10)	2.62	3.22	4.48	6.35	6.00	10.38	7.06	13.00	3.33	4.16
Dew-Point Vapor	$(39-48)$	3.05	4.04	4.84	7.18	6.30	11.32	7.67	14.63	3.58	4.69
B 16.4	25.5	8.0	13.1	5.0	9.1	8.6	12.6	7.5	12.7		

A and B designate respectively the percentage deviation of the bubble-point liquid and dew-point vapor results from that of the 50% vapor feed.

TABLE 53. VALUES OF THE MINIMUM REFLUX RATIO FOR DIFFERENT FEED CONDITIONS BY THE METHOD OF MURDOCH AND HOLLAND

TABLE 54. VALUES OF THE MINIMUM REFLUX RATIO BY THE METHOD OF SCHEIBEL AND MONTROSS USING RELATIVE VOLATILITY DATA FROM ALL METHODS ANALYZED.

Example	Scheibel \& Montross	Underwood	Colburn	Shiras et al.	Murdoch \& Holland
1 (a)	2.62	2.70	2.65	2.66	2.65
2	3.22	3.11	3.21	3.15	3.22
3	4.48	4.60	4.49	4.51	4.49
4	6.35	6.21	6.38	6.32	6.38
5	6.00	6.14	6.00	6.03	6.00
6	10.38	10.24	10.43	10.43	10.43
7	7.06	7.59	7.33	7.79	7.33
8	13.00	13.30	13.37	14.12	13.38
9	3.33	3.25	3.23	3.05	3.23
10	4.16	3.89	4.03	3.77	4.03
11 (b)	2.94	3.04	2.95	2.96	2.95
12	3.68	3.51	3.70	3.60	3.70
13	6.90	7.68	7.49	8.42	7.50
14	11.85	12.38	12.65	14.02	22.71
15	1.93	1.82	1.81	1.54	1.81
16	2.13	1.86	1.97	1. 64	1.96
17 (c)	1.08	1.13	1.08	1.08	1.10
18	1.91	1.69	1.81	1.76	1.84
19	2.64	2.89	3.05	3.19	3.02
20	5.82	5.68	6.21	6.43	6.19
21	0.67	0.61	0.52	0.47	0.56
22	0.96	0.73	0.60	0.60	0.75
23 (d)	0.37	0.42	0.40	0.39	0.40
24	0.73	0.59	0.68	0.63	0.68
25	1.92	1.94	2.24	2.32	2.21
26	4.34	3.97	4.70	4.92	4.71
27	0.16	0.18	0.09	0.08	0.09
28	0.21	0.17	0.09	0.09	0.10
29 (e)	2.39	2.48	2.39	2.44	2.43
30 .	2.58	2.50	2.56	2.55	2.61
31	4.18	4.33	4.20	4.24	4.22
32	5.65	5.50	5.62	5.62	5.68
33	5.74	5.88	5.74	5.76	5.74
34	9.56	9.42	9.56	9.61	9.61
35	6.60	7.13	6.83	7.33	6.88
36	11.52	12.89	11.89	12.71	12.04
37	3.13	3.07	3.04	2.87	3.04
38	3.69	3.44	3.57	3.33	3.58

TABLE 54 (CONTINUED)

Example	The relative volatilit from the procedures by				
	Scheibel \& Montross	Underwood	Colburn	Shiras et al.	Murdoch \& Holland
39 (f)	3.05	3.09	3.10	3.06	3.06
40	4.04	3.90	4.05	3.95	4.00
41	4.84	4.94	4.86	4.86	4.84
42	7.28	7.00	7.21	7.12	7.15
43	6.30	6.44	6.33	6.33	6.30
44	21.32	12.13	11.32	21.31	11.32
45	7.67	8.16	7.94	8.36	7.89
46	14.63	14.88	15.01	15.69	14.93
47	3.58	3.49	3.49	3.28	3.48
48	4.69	4.40	4.58	4.29	4.57

(a) Examples $1-10: 4$ components, ajjacent keys, 50% vapor feed
(b) Examples 11-16: 8 components, adjacent keys, 50% vapor feed
(c) Examples 17-22: 8 components, one split key, 50% vapor feed
(d) Examples 23-28: 6 components, adjacent keys with higher relative volatility, 50\% vapor feed
(e) Examples 29-38: 4 components, adjacent keys, bubblepoint liquid feed
(f) Examples 39-48: 4 components, adjacent keys, dewpoint vapor feed

TABLE 55. RELATIVE VOLATILITIES BY THE METHOD OF UNDERWOOD

EXAMPLE	CH4	C2H6	C3H8	i-C4H10	n-C4H10	1-C5H12	$\mathrm{n}-\mathrm{C} 5 \mathrm{H} 12$	n-C8H18	TEMP. (OR)
1			1.962	1.209	1.000	0.616			724.0
2			1.999	1.215	1.000	0.605			713.5
3			1.956	1.208	1.000	0.618			726.0
4			1.992	1.214	1.000	0.607			715.5
5			1.959	1.209	1.000	0.617			725.0
6			1.980	1.212	1.000	0.610			719.0
7			1.906	1.199	1.000	0.633			\% 41.5
8			1.928	1.203	1.000	0.626			93:5
9			2.019	1.219	1.000	0.599			706.0
10			2.049	1.224	1.000	0.591			700.0
11	11.116	3.956	1.949	1.207	1.000	0.620	0.531	0.066	728.0
12	12.653	4.244	2.023	1.219	1.000	0.598	0.505	0.057	707.0
13	9.523	3.639	1.866	1.192	1.000	0.646	0.564	0.081	755.0
14	10.243	3.785	1.904	1.199	1.000	0.634	0.548	0.074	742.0
15	13.814	4.453	2.074	1.228	1.000	0.584	0.488	0.051	693.5
16	15.243	4.702	2.135	1.238	1.000	0.568	0.470	0.046	679.0
17	15.042	5.705	2.912	1.855	1.553	1.000	0.871	0.123	752.0
18	16.333	6.012	3.018	1.897	1.580	1.000	0.864	0.115	740.5
19	12.757	5.139	2.713	1.774	1.501	1.000	0.885	0.140	776.5
20	13.049	5.213	2.739	1.785	1.508	1.000	0.883	0.138	773.0
21	20.229	6.894	3.315	2.013	1.655	1.000	0.847	0.098	712.5
22	21.059	7.074	3.374	2.036	1.669	1.000	0.844	0.096	707.5
23	20.310	6.911	3.321			1.000	0.847	0.098	712.0
24	22.118	7.301	3.448			1.000	0.841	0.092	701.5
25	16.097	5.957	2.999			1.000	0.866	0.117	742.5
26	16.333	6.012	3.018			1.000	0.864	0.115	740.5
27	27.530	8.413	3.799			1.000	0.825	0.079	676.0
28	28.795	8.663	3.876			1.000	0.822	0.077	671.0

The volatility data for examples 29-38 and 39-48 are identical to those of
examples $1-10$, since they are based on the same temperatures.

TABLE 56. RELATIVE VOLATILITIES BY THE METHOD OF COLBURN

EXAMPLE	CH4	$\mathrm{C2H6}$	C3H8	1-C4H10	n-C4H10	i-C5H12	n-C5H12	n-C8H18
1			2.087	1.213	1.000	0.644		
2			2.054	1.209	1.000	0.649		
3			2.027	1.213	1.000	0.621		
4			1.992	1.208	1.000	0.629		
5			1.997	1.214	1.000	0.612		
6			1.965	1.208	1.000	0.622		
7			1.984	1.207	1.000	0.633		
8			1.955	1.203	1.000	0.638		
9			2.058	1.220	1.000	0.610		
10			2.032	1.215	1.000	0.619		
11	13.760	4.444	2.073	1.213	1.000	0.638	0.554	0.076
12	12.982	4.305.	2.038	1.208	1.000	0.644	0.562	0.080
13	11.848	4.096	1.985	1.200	1.000	0.657	0.578	0.088
14	11.264	3.985	1.957	1.198	1.000	0.658	0.579	0.088
15	15.675	4.776	2.153	1.227	1.000	0.612	0.522	0.063
15	15.148	4.686	2.131	1.222	1.000	0.622	0.533	0.068
17	22.507	7.384	3.475	1.880	1. 568	1.000	0.902	0.168
18	19.156	6.657	3.237	1.820	1.530	1.000	0.907	0.178
19	14.518	5.578	2.869	1.739	1.478	1.000	0.910	0.186
20	13.058	5.216	2.749	1.710	1.459	1.000	0.911	0.189
21	35.279	9.896	4.245	2.103	1.709	1.000	0.872	0.124
22	31.567	9.200	4.039	2.223	1.658	1.000	0.887	0.243
23	32.560	9.388	3.321			1.000	0.898	0.160
24	22.923	7.472	2.971			1.000	0.906	0.176
25	14.730	5.630	2.615			1.000	0.913	0.194
26	12.612	5.102	2.521			1.000	0.914	0.194
27	95.158	19.300	5.275			1.000	0.822	0.076
28	85.065	17.869	4.791			1.000	0.850	0.101

TABLE 56. (CONTINUED)

EXAMPLE	CH 4	C 2 H 6	C3H8	i-C4H10	n-C4H10	i-C5H12	n-C5H12	n-C8H18
29			2.107	1.216	1.000	0.636		
30			2.084	1.212	1.000	0.644		
31			2.028	1.214	1.000	0.619		
32			2.000	1.210	1.000	0.628		
33			2.001	1.214	1.000	0.611		
34			1.968	1.209	1.000	0.621		
35			1.990	1.208	1.000	0.630		
36			1.959	1.204	1.000	0.637		
37			2.065	1.220	1.000	0.609		
38			2.043	1.216	1.000	0.618		
39			2.063	1.209	1.000	0.650		
40			2.030	1.206	1.000	0.652		
41			2.015	1.212	1.000	0.624		
42			1.984	1.207	1.000	0.631		
43			1.994	1.213	1.000	0.613		
44			1.961	1.208	1.000	0.623		
45			1.979	1.206	1.000	0.635		
46			1.951	1.202	1.000	0.640		
47			2.051	1.218	1,000	0.611		
48			2.022	1.213	1.000	0.621		

TABLE 57. RELATIVE VOLATILITIES BY THE METHOD OF SHIRAS ET AL.

EXAMPLE	CH 4	С2Н6	C3H8	1-C4H10	n-C4H10	i-C5H12	n-C5H12	$\underline{\mathrm{n}-\mathrm{CBHIL}}$	TEMP. $\left(O_{R}\right)$
1			1.981	1.212	1.000	0.610			718.6
2			1.980	1.212	1.000	0.610			719.0
3			1.981	1.212	1.000	0.610			718.7
4			1.966	1.210	1.000	0.614			722.9
5			1.982	1.213	1.000	0.610			718.2
6			1.956	1.208	1.000	0.617			725.8
7			1.873	1.194	1.000	0.644			752.4
8			1.861	1.191	1.000	0.648			756.8
9			2.110	1.234	1.000	0.574			684.9
10			2.095	1.231	1.000	0.578			688.5
11	11.775	4.081	1.981	1.212	1.000	0.610	0.519	0.062	718.5
12	21.906	4.106	1.988	1.213	1.000	0.608	0.517	0.061	716.7
13	7.999	3.313	1.777	1.176	1.000	0.676	0.603	0.101	788.6
14	7.956	3.303	1.774	1.176	1.000	0.677	0.604	0.102	789.7
15	19.882	5.459	2.311	1.267	1.000	0.529	0.427	0.034	642.9
16	20.070	5.488	2.317	1.268	1.000	0.528	0.426	0.034	641.7
17	16.144	5.968	3.003	1.891	1.576	1.000	0.865	0.116	742.1
18	15.191	5.741	2.925	1.860	1.556	1.000	0.870	0.122	750.6
19	10.505	4.543	2.498	1.686	1.444	1.000	0.901	0.166	808.8
20	9.951	4.390	2.442	1.663	1.429	1.000	0.905	0.175	818.7
21	31.685	9,222	4.045	2.282	1.822	1.000	0.817	0.072	660.6
22	29.403	8.782	3.913	2.235	1.793	1.000	0.821	0.076	668.7
23	22.904	7.468	3.502			1.000	0.838	0.090	697.3
24	19.659	6.768	3.273			1.000	0.850	0.100	716.1
25	10.516	4.547	2.500			1.000	0.901	0.166	808.6
26	9.504	4.263	2.396			1.000	0.909	0.183	827.5
27	77.296	16.736	6.042			1.000	0.786	0.043	577.5
28	61.230	14.289	5.439			1.000	0.789	0.048	597.0

The volatility data for examples 29-38 and 39-48 are identical to those of examples $1-10$, since they are based on the same temperatures.

TABLE 58. RELATIVE VOLATILITIES BY THE METHOD OF SCHEIBEL AND MONTROSS

EXAMPLE	CH4	C2H6	C3H8	i-C4H10	$\mathrm{n}-\mathrm{C4H10}$	1-C5H12	$\mathrm{n}-\mathrm{C} 5 \mathrm{H} 12$	n-C8H18
1			1.994	1.215	1.000	0.607		
2			1.953	1.208	1.000	0.619		
3			1.987	1.214	1.000	0.609		
4			1.956	1.209	1.000	0.618		
5			1.987	1.214	1.000	0.609		
6			1.956	1.209	1.000	0.618		
7			1.987	1.214	1.000	0.609		
8			1.953	1.208	1.000	0.619		
9			1.991	1.214	1.000	0.608		
10			1.956	1.209	1.000	0.618		
11	11.885	4.103	1.987	1.214	1.000	0.609	0.518	0.062
12	11.251	3.982	1.956	1.209	1.000	0.618	0.529	0.066
13	11.812	4.089	1.984	1.213	1.000	0.610	0.519	0.062
14	11.183	3.970	1.953	1.208	1.000	0.619	0.530	0.067
15	12.033	4.130	1.994	1.215	1.000	0.607	0.516	0.061
16	11.319	3.995	1.960	1.209	1.000	0.617	0.528	0.066
17	16.274	5.999	3.014	1.896	1.580	1.000	0.865	0.116
18	12.965	5.192	2.732	1.783	1.506	1.000	0.884	0.139
19	15.148	5.731	2.922	1.859	1.556	1.000	0.871	0.123
20	12.398	5.047	2.681	1.762	1.493	1.000	0.888	0.144
21	17.264	6.229	3.093	1.927	1.600	1.000	0.860	0.111
22	13.666	5.368	2.795	1.808	1.523	1.000	0.880	0.133
23	24.572	7.815	3.613			1.000	0.834	0.086
24	15.042	5.706	2.913			1.000	0.872	0.124
25	16.514	6.055	3.033			1.000	0.864	0.115
26	12.799	5.150	2.717			1.000	0.885	0.141
27	33.722	9.607	4.160			1.000	0.813	0.070
28	22.582	7.400	3.480			1.000	0.840	0.091

TABLE 58. (CONTINUED)

EXAMPLE	CH 4	C2H6	C3H8	1-C4H10	n-C4H10	1-C5H12	n-C5H12	n-C8H18
29			2.001	1.216	1.000	0.605		
30			1.963	1.210	1.000	0.616		
31			1.994	1.215	1.000	0.607		
32			1.960	1.209	1.000	0.617		
33			1.991	1.214	1.000	0.608		
34			1.960	1.209	1.000	0.617		
35			1.991	1.214	1.000	0.608		
36			1.960	1.209	1.000	0.617		
37			1.994	1.215	1.000	0.607		
38			1.963	1.210	1.000	0.616		
39			1.980	1.213	1.000	0.611		
40			1.943	1.206	1.000	0.622		
41			1.984	1.213	1.000	0.610		
42			1.953	1.208	1.000	0.619		
43			1.987	1.214	1.000	0.609		
44			1.953	1.208	1.000	0.619		
45			1.980	1.213	1.000	0.611		
46			1.950	1.207	1.000	0.620		
47			1.984	1.213	1.000	0.610		
48			1.953	1.208	1.000	0.619		

TABLE 59. RELATIVE VOLATILITIES BY THE METHOD OF MURDOCH AND HOLLAND

EXAMPLE	CH 4	C 2 H 6	C3H8	i-C4H10	n-C4H1O	1-C5H12	$\mathrm{n}-\mathrm{C5H12}$	n-C8H18
1			2.092	1.213	1.000	0.645		
2			2.062	1.208	1.000	0.652		
3			2.023	1.213	1.000	0.622		
4			1.994	1.208	1.000	0.631		
5			1.997	1.214	1.000	0.612		
6			1.965	1.208	1.000	0.622		
7			1.986	1.207	1.000	0.633		
8			1.956	1.203	1.000	0.639		
9			2.059	1.220	1.000	0.610		
10			2.037	1.215	1.000	0.620		
11	13.796	4.450	2.074	1.213	1.000	0.638	0.554	0.077
12	13.100	4.326	2.043	1.208	1.000	0.646	0.564	0.081
13	11.870	4.100	1.986	1.200	1.000	0.658	0.579	0.088
14	11.298	3.991	1.959	1.197	1.000	0.660	0.582	0.090
15	15.697	4.779	2.154	1.227	1.000	0.612	0.522	0.063
16	15.425	4.733	2.143	1.223	1.000	0.623	0.535	0.068
17	19.052	6.634	3.229	1.862	1.558	1.000	0.891	0.149
18	16.883	6.141	3.063	1.805	1.521	1.000	0.900	0.164
19	13.666	5.368	2.795	1.743	1.481	1.000	0.903	0.170
20	12.516	5.077	2.691	1.711	1.460	1.000	0.907	0.179
21	27.580	8.423	3.803	2.044	1.674	1.000	0.866	0.117
22	25.193	7.943	3.653	1.974	1.629	1.000	0.880	0.133
23	29.430	8.788	3.296			1.000	0.888	0.145
24	23.136	7.517	2.971			1.000	0.907	0.179
25	14.448	5.561	2.635			1.000	0.908	0.182
26	12.620	5.104	2.519			1.000	0.914	0.195
27	85.722	17.964	5.134			1.000	0.821	0.076
28	73.763	16.211	4.622			1.000	0.847	0.098

TABLE 59. (CONTINUED)

EXAMPLE	CH 4	C2H6	C3H8	1-C4H10	n-C4H10	i-C5H12	n-C5H12	n-C8H18
29			2.109	1.213	1.000	0.650		
30			2.093	1.209	1.000	0.660		
31			2.029	1.213	1.000	0.623		
32			2.002	1.208	1.000	0.634		
33			2.001	1.214	1.000	0.613		
34			1.968	1.208	1.000	0.624		
35			1.990	1.207	1.000	0.636		
36			1.960	1.2;2	1.000	0.644		
37			2.065	1.220	1.000	0.611		
38			2.048	1.215	1.000	0.622		
38			2.069	1.212	1.000	0.639		
40			2.037	1.209	1.000	0.642		
41			2.017	1.213	1.000	0.620		
42			1.986	1.209	1.000	0.627		
43			1.995	1.214	1.000	0.612		
44			1.962	1.208	1.000	0.621		
45			1.980	1.207	1.000	0.630		
46			1.952	1.203	1.000	0.635		
47			2.052	1.219	1.000	0.609		
48			2.025	1.214	1.000	0.618		

EXAMPLE	BOTTOM OF THE DISTILLATION COLUMN	
	TOP, ORANKINE	BOITOM, ${ }^{\circ}$ RANKINE
1	652	796
2	640	787
3	677	775
4	666	765
5	697	753
6	691	747
7	698	785
8	694	775
9	666	750
10	654	746
11	626	830
12	603	811
13	683	827
14	669	815
15	616	771
16	599	759
17	646	858
18	632	849
19	697	856
20	696	850
21	625	800
22	612	803
23	555	869
24	545	858
25	612	873
26	615	866
27	534	818
28	525	817

The corresponding temperatures for examples 29-38 and 39-48 are equal to those of examples $1-10$ because of identical compositions of the products.

TABLE 61. EQUILIBRIUM DATA

$$
p=400 \text { psia }
$$

Comp.	$a_{1} \times 10$	$a_{2} \times 10^{3}$	$\mathrm{a}_{3} \times 10^{6}$	$a_{4} \times 10^{9}$
CH 4	-3.2551482	2.3553786	-3.1371170	1.3397973
C2H6	-2.7947232	1.4124232	-1.4582948	0.50974162
C3H8	-2.7980091	1.1811943	-1.0935041	0.3518042
1-C4H10	-2.3209137	0.87122379	-0.66100972	0.1667774
n-C4H10	-2.3203344	0.83753226	-0.61774360	0.15243376
i-C5H12	-0.6981454	0.088862037	0.3968955	-0.2907607
$\mathrm{n}-\mathrm{C} 5 \mathrm{H} 22$	0.37103008	-0.36257004	0.99113800	-0.5444111
n-c8H18	0.905211	-0.4839184	0.819390	-0.332217

$$
\left(K_{i} / T\right)^{I / 3}=a_{1 i}+a_{2 i} T^{T+a_{31} T^{2}+a_{4 i} T^{3} \quad\left(T \text { in } o_{R}\right) ~}
$$

(Taken from Reference 1)

TABLE 62. PROGRAM FOR CATCULATING THE MINIMUM REFLUX RATIO BX THE METHOD OF UNDERWOOD

A FORTRAN PROGRAM FOR THE IBM 1130 SYSTEM
DIMENSION THETA(2), $\operatorname{FUNC}(2), \operatorname{FUNIC}(2), \operatorname{FEED}(8), \operatorname{DIST}(8)$, ALFA (8)
$\operatorname{INDEX}=1$
$1 \operatorname{READ}(2,2) \operatorname{LIMIT}, N F C, N C, K L, K H$
2 FORMAT(5I2)
IF (LIMIT) 3,99,3
$3 \mathrm{NLC}=\mathrm{NFC}+\mathrm{NC}-1$
$\operatorname{READ}(2,5)$ HEAT, SDIST
$7 \operatorname{READ}(2,5)(\operatorname{FEED}(I), I=\operatorname{NFC}, \operatorname{NLC})$
$\operatorname{READ}(2,5) \quad(\operatorname{ALFA}(N), N=N F C, N L C)$
$\operatorname{READ}(2,5)$ ($\operatorname{DIST}(M), M=N F C, \operatorname{NLC})$
5 FORMAT (8F10.0)
IF (KH-KL-2) 13,12,99
13 THIGH=ALFA(KL)
TLOW=ALFA (KH)
DO $40 \quad J=1,20$
TETA $=(T H I G H+T L O W) * .5$
FUNCT=0.
DO $15 \mathrm{I}=\mathrm{NFC}, \mathrm{NLC}$
15. FUNCT=FUNCT+(ALFA(I)*FEED (I))/(ALFA(I)-TETA)

FUNCT=FUNCT/100.-HEAT
IF (FUNCM) 20,45,25
20 TLOW=TETA
GO. TO 30
25 THIGH=TETA
30 IF (FUNCT**2-1.0E-6) 45,45,40
40 CONTINUE
45 RMIN $=0$.
DO $65 I=N F C, N L C$
65 RMIN=RMIN+(DISM(I)*ALFA(I))/(ALFA(I)-TETA)
RMIN $=($ RMIN $/$ SDIST $)-1.0$
WRITE (3,70) INDEX, FUNCT, TETA, RMIN
70 FORMAT (IX, I4, 8X,F8.5,5X,F8.5,2X,F7.4)
GO TO 750
$12 \mathrm{KSI}=\mathrm{KL}+1$
$\operatorname{DIST}(\mathrm{KSI})=0$.
THIGH=ALFA(KL)
80 TLOW=ALEA (KSI)
DO $400 \mathrm{~J}=1,20$
THETA $($ KSI $)=($ THIGH+TLOW $) * .5$
FUNCT=0.
DO $150 \mathrm{I}=\mathrm{NF} \mathrm{C}, \mathrm{NLC}$
150 FUNCT=FUNCT+(ALFA(I)*FEED(I))/(ALFA(I)-THETA(KSI))

```
    FUNCT=FUNCT/100.-HEAT
    IF(FUNCT) 200,450,250
200 TLOW=THETA(KSI)
    GO TO 300
250 THIGH=THETA(KSI)
300 IF(FUNCT**2-1.0E-6) 420,420,400
4 0 0 ~ C O N T I N U E ~
420 FUN=FUNCN
    IF(KSI-KH) 430,450,450
430 KIP=KSI
    THYGH=ALFA(KIP)
    KSI=KSI+1
    GO TO 80
450:KLI=KL+1
    KL2=KL+2
    DO 550 J=KL1, KL2
    FUNC(J)=0.
    DO 550 I=NFC,NLC
    RUNC}(J)=FUNC(J)+(ALFA(I)*DIST(I))/(ALFA(I)-THETA(J)
5 5 0 ~ C O N T I N U E ~
    DO 600 J=KL1,KL2
600 FUNIC(J)=ALFA(KLI)/(ALFA(KLI)-THETA(J))
    ABEL=FUNIC(KLI)-FUNIC(KL2)
    BRAM=FUNC(KL2)-FUNC(KL1)
    DIST(KLI)=BRAM/ABEL
    SDIST=0.
    DO }650\textrm{M}=\mathrm{ NFC,NLC
650. SDIST=SDIST+DIST(M)
    FUNC(KLI)=FUNC(KLI)+FUNIC(KLI)*DIST(KLI)
    RMIN=FUNC(KLI)/SDIST-1.
    WRITE(3,700) INDEX,DIST(KLI), RMIN,THETA(KLI),THETA(KL2)
700 FORMAT(IX,I4,5X,F6.3,5X,F7.4,5X,F8.5,5X,F8.5)
750. INDEX=INDEX+1
    GO TO I
    99 CALL EXIT
        END
```

TABLE 63. PROGRAM FOR CALCULATTNG THE MINIMUM REFLUX RATIO BY THE METHOD OF COLBURN

A FORTRAN PROGRAM FOR THE G.E. MARK II SYSTEM
$\begin{array}{ll}10 & \operatorname{DIMENSION} \operatorname{XDIST}(8), \operatorname{XBOT}(8), \operatorname{EQVN}(8), \operatorname{EQVM}(8), \operatorname{XN}(8), \\ 208 & \operatorname{XM}(8), A(8,4), \operatorname{ALFAN}(8), \operatorname{ALFAM}(8), \operatorname{SUMHM}(8),\end{array}$
25\& $\operatorname{SUMLN}(8), \operatorname{XNXM}(8)$
30 FILENAME FK
40 PRINT, "DATAFILE"
50 INPUT,FK
$60 \quad$ INDEX $=1$
707 READ (FK, 8)L, LIMIT, NFC, NC, KL, KH
808 FORMAT (V)
$90 \quad \mathrm{NLC}=\mathrm{NFC}+\mathrm{NC}-1$
$100 \operatorname{IF}(L I M I T)$ 9,999,11
1109 DO $260 \quad I=1,8$
$120260 \operatorname{READ}(\mathrm{FK}, 8) \mathrm{L},(\mathrm{A}(\mathrm{I}, \mathrm{J}), J=1,4)$
13011 READ (FK, 8)L,TN,TM,TOTD,TOTB, FELIQ, REFLN
$140 \operatorname{READ}(F K, 8) L,(X D I S T(I), I=N F C, K H)$
$150 \operatorname{READ}(F K, 8) \mathrm{L},(\operatorname{XBOT}(K), K=K L, N L C)$
160250 TOTDB $=T O T D / T O T B$
$170 \quad$ FLQTB=FELIQ/TOTB
$180 \quad J Y=5$
181 JYE=5
182 MTKE=10
$183 \quad I K=5$
$184 \quad$ TKE $=5$
190
200
205
210
220
230
240
250
260
265
270
275 \&
280
290
300
303
305
310

320	12
330	15

$34010 \operatorname{IF}($ INDAX-2) $17,50,50$

TABLE 63. (CONTINUED)

350
360 370 380 390
400
410
420
430
440
450
460
470
471
472
473
474
475
476
477
478
479
480
482
483
485
486
487
488
490
500
510
520
525
530
5358
540
550
560
563
565
570

```
    17 TN=TN+10.
```

 17 TN=TN+10.
 GO mO 5
 GO mO 5
 20 IND=IND+1
 20 IND=IND+1
 IF(IND--2) 30,25,30
 IF(IND--2) 30,25,30
 25 TNI=TN
 25 TNI=TN
 XNTO=XNTOT
 XNTO=XNTOT
 TN=TN-1.
 TN=TN-1.
 INDAX=2
 INDAX=2
 GO TO 5
 GO TO 5
 30IF((1.-XNTOT)-(XNTOT-XNTO)) 60,60,25
 30IF((1.-XNTOT)-(XNTOT-XNTO)) 60,60,25
 50 TN=TN+1.
 50 TN=TN+1.
 INDOX=3
 INDOX=3
 GO TO }
 GO TO }
 6 0 ~ X N T = X N T O T ~
 6 0 ~ X N T = X N T O T ~
 IT(XNTOT-1.) 120,125,130
 IT(XNTOT-1.) 120,125,130
 120 TN=TN-0.1
120 TN=TN-0.1
ITA=5
ITA=5
GO TO 5
GO TO 5
130TN=TN+0.1
130TN=TN+0.1
ITA=6
ITA=6
GO TO 5
GO TO 5
140 IF(XNTOT-1.) 120,125,125
140 IF(XNTOT-1.) 120,125,125
150 IF(XNTOT-1.) 125,125,130
150 IF(XNTOT-1.) 125,125,130
125 SXN=0.
125 SXN=0.
DO 126.I=NFC,KL
DO 126.I=NFC,KL
126 SXN=SXN+XN(I)
126 SXN=SXN+XN(I)
XN(KH)=1.-SXN
XN(KH)=1.-SXN
IDA=1
IDA=1
ITO=1
ITO=1
TMI=0.
TMI=0.
TM=TM-100.
TM=TM-100.
65 ХMTOT=0.
65 ХMTOT=0.
DO }70\textrm{K}=\textrm{KL},NL
DO }70\textrm{K}=\textrm{KL},NL
IF(XBOT(K)) 70,70,78
IF(XBOT(K)) 70,70,78
78 EQVM(K)=TM*(A(K,1)+A(K,2)*TM+A(K,3)*TM**2+
78 EQVM(K)=TM*(A(K,1)+A(K,2)*TM+A(K,3)*TM**2+
A(K,4)*TV**3)**3
A(K,4)*TV**3)**3
XM(K)=XBOT}(\textrm{K})/(\operatorname{EQVM}(\textrm{K})+(1.-\operatorname{EQVM}(\textrm{K}))*REFLM
XM(K)=XBOT}(\textrm{K})/(\operatorname{EQVM}(\textrm{K})+(1.-\operatorname{EQVM}(\textrm{K}))*REFLM
IF(XM(K)) 77,77,700
IF(XM(K)) 77,77,700
700 XMTOT=XMTNOT+XM(K)
700 XMTOT=XMTNOT+XM(K)
7 0 ~ C O N T I N U E ~
7 0 ~ C O N T I N U E ~
IF(ITO-5) 71,160,170
IF(ITO-5) 71,160,170
71 IF(IDA-2) 72, 100,72
71 IF(IDA-2) 72, 100,72
72 IF(TM1+5.-TM) 73,73,85
72 IF(TM1+5.-TM) 73,73,85
73 IF(XMTOT-1.) 75,100,77
73 IF(XMTOT-1.) 75,100,77
75 TM=TM+10.
75 TM=TM+10.
GO TO 65
GO TO 65
77 TM工=TM
77 TM工=TM
XMTO=XMTOT
XMTO=XMTOT
TM=TM-1.
TM=TM-1.
GO TO }6

```
    GO TO }6
```

	TABLE 63. (CONTINUED)
660	$85 \mathrm{IF}(($ XMTOT-1. $)-($ XMTO-XMTOT $)$) $90,77,77$
670	90 IF (XMTO-1.) 95,100,100
680	$95 T M=T M+1$.
690	IDA $=2$
701	$100 \mathrm{XMT}=\mathrm{XHPOT}$
702	IE (XNTOT-1.) 180,200,190
703	$180 \mathrm{TM}=\mathrm{TM}+0.1$
704	ITO $=5$
705	GO TO 65
706	190 TM $=T M-0.1$
707	ITO $=6$
708	GO TO 65
709	$160 \operatorname{IF}$ (XMTOT-1.) 180,200,200
710	170 IF (XMTOT-1.) 200,200,190
712	$200 \mathrm{SXM}=0$.
713	DO $108 \mathrm{~K}=\mathrm{KH}, \mathrm{NLC}$
715	$108 \mathrm{SXM}=\mathrm{SXM}+\mathrm{XM}(\mathrm{K})$
716	XM $(\mathrm{KL})=1 .-\mathrm{SXM}$
718	$\mathrm{RMRN}=(\mathrm{XM}(\mathrm{KL}) / \mathrm{XM}(\mathrm{KH})) /(\mathrm{XN}(\mathrm{KL}) / \mathrm{XN}(\mathrm{KH}))$
720	TOTHM $=0$.
730	$\mathrm{KHI}=\mathrm{KH}+1$
740	DO $105 \mathrm{I}=\mathrm{KHI}$, NLC
750	$\operatorname{ALFAM}(I)=E Q V M(I) / E Q V M(K H)$
760	$\operatorname{SUMHM}(I)=\operatorname{ALFAM}(I) * \operatorname{XM}(I)$
770	105 TOTHM=TOTHM + SUMHM (I)
780	TOTLN $=0$.
790	$K L 1=K L-1$
800	DO $110 \mathrm{~J}=\mathrm{NFC}, \mathrm{KLI}$
810	$\operatorname{SUMLN}(J)=\mathrm{XN}(J)$
820	110 TOTLN=TOTLN+SUNLN(J)
830	PSI $=1 . /((1 .-T O T H M) *(1 .-T O T L N))$
840	IF (RMRN-PSI) 280,350,290
845	$280 \operatorname{IF}(\mathrm{MLKE}-10) 301,295,331$
850	290 IF (MIKE-10) 301,295,331
855	295 IF (RMRN-PSI) 301,350,331
860	301 IF (RMRN-PSI) 303,350,302
870	302 IF (IK-12) 999,310,999
880	$303 \mathrm{IF}($ IKE-15) $305,350,350$
890	305 REFLN $=$ REFLN+0.1
900	MIKE $=5$
910	IK=12
920	GO TO 4
925	310 REFLN=REFLN-0.01
930	IKE $=15$
935	GO TO 4
940	331 IF (RMRN-PSI) 332,350,333
945	$332 \operatorname{IF}(J Y-12) 999,320,999$
950	$333 \mathrm{IF}(J Y E-15) 335,350,350$
955	335 REFLN=REFLN-0.1

TABLE 63. (CONTINUED)

960
965 970 980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190

```
    MIKE=15
```

 MIKE=15
 JY=32
 JY=32
 GO 2O 4
 GO 2O 4
 320 REFLN=REFLN+0.01
 320 REFLN=REFLN+0.01
 JYE=15
 JYE=15
 GO TO 4
 GO TO 4
 350 DRTNT 115,INDEX,TN, XNTOT,TM, XMTOT,RMRN,PSI,REFIN
 350 DRTNT 115,INDEX,TN, XNTOT,TM, XMTOT,RMRN,PSI,REFIN
 115 FORMAT(I3,2X,7F9.4)
 115 FORMAT(I3,2X,7F9.4)
 IF (KH-KL-2) 415,400,415
 IF (KH-KL-2) 415,400,415
 400 DO 410 M=KL,KH
 400 DO 410 M=KL,KH
 410 XNXM(M)=XN(M)/XM(M)
 410 XNXM(M)=XN(M)/XM(M)
 PRTNT 405,(XNXM(M),M=KL,KH)
 PRTNT 405,(XNXM(M),M=KL,KH)
 4 0 5 ~ F O R M A T ~ (3 H 1 0 . 4) ~
 4 0 5 ~ F O R M A T ~ (3 H 1 0 . 4) ~
 425 DO 420 I =NFC, KH
 425 DO 420 I =NFC, KH
 420 ALFAN(I)=EQVN(I)/EQVN(KH)
 420 ALFAN(I)=EQVN(I)/EQVN(KH)
 PRINT 425,(ALFAN(I),I=NFC,KH)
 PRINT 425,(ALFAN(I),I=NFC,KH)
 425 FORMAT(7F10.4)
 425 FORMAT(7F10.4)
 DO 430 N=KL,NLC
 DO 430 N=KL,NLC
 430.ALFAM(N)=EQVM(N)/EQVM(KH)
 430.ALFAM(N)=EQVM(N)/EQVM(KH)
 PRINT 435,(ALFAM(N),N=KL,NLC)
 PRINT 435,(ALFAM(N),N=KL,NLC)
 435 FORMAT(7F10.4)
 435 FORMAT(7F10.4)
 INDEX=INDEX+1
 INDEX=INDEX+1
 GO TO 7
 GO TO 7
 999 STOP
 999 STOP
 END
    ```
    END
```

TABLE 64. PROGRAM FOR CALCULATING THE MINIMUM REFLUX RATIO BY THE METHOD OF SHIRAS ET AL.

A FORTRAN PROGRAM FOR THE G.E. MARK II SYSTEM

```
10
20&
25&
30
4 0
50
60
7 0
80
90
100
110
120
130
1 4 0
150
160
170
1 7 2
1 7 3
174
175
176
177
178
180
190
200
210
215%
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
```

```
            DIMENSION FEED(8),FLUID (8),VAP (8),XLIQ(8),A(8,4),
```

 DIMENSION FEED(8),FLUID (8),VAP (8),XLIQ(8),A(8,4),
 EQVF(8), ALFA(8),DIST (8),EQV (8),XDIST (8),THETA(8),
 EQVF(8), ALFA(8),DIST (8),EQV (8),XDIST (8),THETA(8),
 TERMA (8),TERMB(8),RATIO(8)
 TERMA (8),TERMB(8),RATIO(8)
 FILENAME FP
 FILENAME FP
 PRINT, "DATAFILE"
 PRINT, "DATAFILE"
 INPUT,FP
 INPUT,FP
 INDEX=1
 INDEX=1
 7 READ(FP,8)L,LIMIT,NFC,NC,KL,KH
 7 READ(FP,8)L,LIMIT,NFC,NC,KL,KH
 8 FORMAT(V)
 8 FORMAT(V)
 NLC=NFC+NC-1
 NLC=NFC+NC-1
 IF(IINIT) 9,999,11
 IF(IINIT) 9,999,11
 9 DO 12 I=1,8
 9 DO 12 I=1,8
 12 RFAD(FP,8)I, (A(I,J),J=1,4)
 12 RFAD(FP,8)I, (A(I,J),J=1,4)
 11 READ(FP,8)I,(FEED(I),I=NFC,NLC)
 11 READ(FP,8)I,(FEED(I),I=NFC,NLC)
 READ(TP, 8)L,(ALFA(I),I=1,8)
 READ(TP, 8)L,(ALFA(I),I=1,8)
 READ(FP,8)L,DIST(KL),DIST(KH),SUMVA
 READ(FP,8)L,DIST(KL),DIST(KH),SUMVA
 TR=715.
 TR=715.
 EPS=0.25
 EPS=0.25
 IF(SUMVA-50.) 244,15,144
 IF(SUMVA-50.) 244,15,144
 144 SUMFL=0.
144 SUMFL=0.
SUMVA=100.
SUMVA=100.
GO TO 62
GO TO 62
244 SUMFL=100.
244 SUMFL=100.
SUMVA=0.
SUMVA=0.
GO TO }5
GO TO }5
15 SUMFL=0.
15 SUMFL=0.
SUMVA=0.
SUMVA=0.
DO 20 I=NFC,NLC
DO 20 I=NFC,NLC
EQV}(I)=TR*(A(I,I)+A(I,2)*TR+A(I, 3)*TR**2+A(I, 4)
EQV}(I)=TR*(A(I,I)+A(I,2)*TR+A(I, 3)*TR**2+A(I, 4)
TR**3)**3
TR**3)**3
FLUID (I)=\operatorname{FEED}(I)/(I.+EQV(I))
FLUID (I)=\operatorname{FEED}(I)/(I.+EQV(I))
VAP(I)=FEED(I)-FLUID(I)
VAP(I)=FEED(I)-FLUID(I)
SUMFL=SUMFL+FLUID (I)
SUMFL=SUMFL+FLUID (I)
SUVVA=SUMVA +VAP(I)
SUVVA=SUMVA +VAP(I)
20 CONTINUE
20 CONTINUE
IF (ABS (SUMFL-SUMVA)-EPS) 40,40,25
IF (ABS (SUMFL-SUMVA)-EPS) 40,40,25
25 IF(SUMFL--SUMVA) 30,40,35
25 IF(SUMFL--SUMVA) 30,40,35
30 TR=TR-1.
30 TR=TR-1.
EPS=EPS+0.025
EPS=EPS+0.025
GO TO 15
GO TO 15
35TR=TR+1.
35TR=TR+1.
EPS=EPS+0.025
EPS=EPS+0.025
GO TO 15
GO TO 15
40 DO 45 K=NFC,NLC
40 DO 45 K=NFC,NLC
XLIQ(K)=FLUTD(K)/SUMFL

```
    XLIQ(K)=FLUTD(K)/SUMFL
```

TABLE 64. (CONTINUED)

| 390 | 45 | CONTINUE |
| :---: | :---: | :---: |
| 391 | | GO TO 62 |
| 400 | 57 | DO $58 \mathrm{I}=\mathrm{NFC}, \mathrm{NLC}$ |
| 410 | | $\operatorname{FLUID}(\mathrm{I})=\mathrm{FEED}(\mathrm{I})$ |
| 415 | 58 | CONTINUE |
| 420 | 62 | SDIST $=0$. |
| 430 | 65 | DO $100 \mathrm{I}=\mathrm{NFC}, \mathrm{NLC}$ |
| 440 | | $\operatorname{TF}(\operatorname{FEED}(\mathrm{I})) 90,90,69$ |
| 445 | 69 | IF (I-KL) 705,95,70 |
| 450 | 70 | IF (I-KH) 705,95,705 |
| 452 | 705 | IT (SUMVA-100.) 75,750,750 |
| 460 | 75 | $\operatorname{TERMA}(I)=((\operatorname{ALFA}(I)-1). * \operatorname{DST}(\mathrm{KL})) /((\operatorname{ALFA}(\mathrm{KL})-1) *$. |
| 465\% | | FLUID (KL)) |
| 470 | | $\operatorname{TERMB}(I)=((\operatorname{ALFA}(\mathrm{KL})-\operatorname{ALFA}(I)) * \operatorname{DIST}(\mathrm{KH})) /((\operatorname{ALFA}(\mathrm{KL})$ |
| 475\% | | -1.)*FLUTD (KH)) |
| 480 | | $\operatorname{DIST}(I)=\operatorname{FLUID}(I) *(T E R M A(I)+T E R M B(I))$ |
| 481 | | GO TO 710 |
| 482 | 750 | $\operatorname{TERMA}(I)=A L F A(K L) *(A L F A(I)-1) * D I S T.(K L) / ~$ |
| 483\% | | $((A L F A(K L)-1) * F E E D.(K L))$ |
| 485 | | $\operatorname{TERMB}(I)=(\operatorname{LLFA}(\mathrm{KL})-\operatorname{ALFA}(I)) * D I S T(K H) /((\operatorname{ALFA}(\mathrm{KL})-1)$. |
| 486\% | | *FEED (KH)) |
| 487 | | $\operatorname{DIST}(I)=\operatorname{PEED}(I) *(\operatorname{TERMA}(I)+\operatorname{TERMB}(I)) / \operatorname{ALFA}(I)$ |
| 490 | 710 | $\operatorname{RATIO}(I)=\mathrm{DIST}(\mathrm{I}) / \mathrm{FEED}(\mathrm{I})$ |
| 500 | | IF (RATIO(I)-1.) 85,80,80 |
| 510 | 80 | $\operatorname{DIST}(I)=\mathrm{FEED}(\mathrm{I})$ |
| 520 | | GO TO 95 |
| 530 | 85 | $\operatorname{IF}(\operatorname{RaTIO}(\mathrm{I})) 90,90,95$ |
| 540 | 90 | $\operatorname{DIST}(\mathrm{I})=0$. |
| 550 | 95 | SDIST=SDIST+DIST (I) |
| 560 | 100 | CONTINUE |
| 570 | | DO $105 \mathrm{~K}=\mathrm{NFC}, \mathrm{NLC}$ |
| 580 | | $\operatorname{XDIST}(\mathrm{K})=\mathrm{DIST}(\mathrm{K}) / \mathrm{SDIST}$ |
| 590 | 105 | CONTINUE |
| 593 | | IF (KH-KL-2) $800,800,900$ |
| 595 | 800 | KSI=KL+1 |
| 597 | | GO TO 950 |
| 600 | 900 | $\mathrm{KSI}=\mathrm{KH}$ |
| 610 | 950 | THIGH=ALFA(KL) |
| 620 | 108 | TLOW=ALFA (KSI) |
| 630 | | DO $130 \mathrm{~J}=1,20$ |
| 640 | | THETA (KSI) $=($ THIGH+TLOW $) * .5$ |
| 650 | | FUNCT $=0$. |
| 660 | | DO $110 \mathrm{I}=$ NFC, NLC |
| 670 | | FUNCT=FUNCT+(ALFA $(I) * \operatorname{FEED}(\mathrm{I})) /(\operatorname{ALFA}(I)-T H E T A(K S I))$ |
| 680 | 110 | CONTINUE |
| 690 | | FUNCT = FUNCT - SUMVA |
| 700 | | IF (FUNCT) 115,135,120 |
| 710 | 115 | TLOW=THETA (KSI) |
| 720 | | GO TO 125 |

TABLE 64. (CONTINUED)

730120 THIGH=THETA(KSI)
$740125 \operatorname{IF}($ FUNCT/100.)**2-1.E-6) 135,135,130
750130 CONTINUE
760135 REFY $M=0.0$
$770 \quad$ DO $145 \mathrm{M}=\mathrm{NFP}, \mathrm{NLC}$
780 TERM=THETA(KSI)*XDIST(M)/(ALFA(M)-THETA(KSI))
790 REFLM=REFLM+TERM
800145 CONTINUE
810 PRINT 48,INDEX,SUMFL, SUMVA, TR,THETA(KSI), REFLM
820
840
850
860
870
48 FORMAT(I3,2X,5F10.4)
PRINT 44, (DIST(M), $M=N F C, N L C)$
44 Format (8F10.4)
INDEX=INDEX+1
GO TO 7
999 STOP
END

TABLE 65. PROGRAM FOR CALCULATING THE MINIMUM REFLUX RATIO BY THE METHOD OF SCHEIBEL AND MONTROSS

A FORTRAN. PROGRAM FOR THE G.E. MARK II SYSTEM

| 10 | DIMENSION FEED (8), DIST (8), ALFA (8) |
| :---: | :---: |
| 20 | FILENAME FS |
| 30 | PRINT, "DATAFILE" |
| 40 | INPUT, F S |
| 50 | INDEX $=1$ |
| 60 | 1 READ (FS, 8)L, LIMIT, NFC, NC, KL, KH |
| 70 | 8 FORMAT(V) |
| 80 | $N L C=N F C+N C-1$ |
| 90 | IF (LIMIT) 9,99,3 |
| 100 | 3 READ (FS, 8) L, XBS , XCS |
| 110 | 9 READ (FS, 8)L, SUMHF, SUMLF,FLMOL, FVMOL, DIST(KL), DIST(KH) |
| 120 | SMALM $=($ FLMOL-SUMHF $) /($ FVMOL-SUMLF $)$ |
| 130 | $7 \mathrm{READ}(\mathrm{FS}, 8) \mathrm{L},(\operatorname{ALFA}(\mathrm{N}), \mathrm{N}=\mathrm{NFC}, \mathrm{NLC})$ |
| 140 | $\operatorname{READ}(\mathrm{FS}, 8) \mathrm{L},(\operatorname{FEED}(\mathrm{I}), \mathrm{I}=\mathrm{NF} \mathrm{C}, \mathrm{NLC})$ |
| 150 | $X B=\operatorname{FEED}(\mathrm{KL}) / 100$. |
| 160 | $\mathrm{XC}=\mathrm{FEED}(\mathrm{KH}) / 100$. |
| 170 | SQIRT $=((($ ALFA $(K L)-1) *.(1 .+S M A L M) * X B /(X B+X C))-A L F A(K L) ~$ |
| 180\% | -SMALM)**2+(4.*SMALM* (ALFA (KL)-1.)* $(1 .+$ SMALM $) *$ XB) $/$ |
| 185\& | $(X B+X C)) * * .5$ |
| 190 | $\mathrm{XIN}=(((\operatorname{ALFA}(\mathrm{KL})-1) *.(1 .+S M A L M) * X B /(X B+X C))-A L F A(K L)$ |
| 195* | -SMALM-SQIRT)/(2.*SMALM* (ALFA (KL)-1.)) |
| 200 | IF (XIN-1.) 6,10,10 |
| 210 | $6 \mathrm{IF}(\mathrm{XIN}) 10,10,88$ |
| 220 | $88 \mathrm{XI}=\mathrm{XIN}$ |
| 230 | GO TO 23 |
| 240 | $10 \mathrm{XIP}=(($ (ALFA $(\mathrm{KL})-1) *.(1 .+$ SMALM $) * X B /(X B+X C))-\operatorname{ALFA}(\mathrm{KL})-$ |
| 245\& | SMALM+SQIRT)/(2.*SMALM* (ALFA (KL)-1.)) |
| 250 | IF (XIP-1.) 15,23,23 |
| 260 | $15 \mathrm{IF}(\mathrm{XIP}) 40,18,18$ |
| 270 | $18 \mathrm{XI}=\mathrm{XIP}$ |
| 280 | $23 \mathrm{XP}=\mathrm{DIST}(\mathrm{KL}) /(\mathrm{DIST}(\mathrm{KL})+\mathrm{DIST}(\mathrm{KH}))$ |
| 290 | $\operatorname{SRMIN}=(X P /((\operatorname{ALFA}(\mathrm{KL})-1) * X I))-.((1,-X P) * A L F A(K L)) /$ |
| 295* | $((1 .-X I) *(A L F A(K L)-1)$. |
| 300 | $\mathrm{KH1}=\mathrm{KH}+1$ |
| 310 | SUMB $=0$. |
| 320 | DO $25 \mathrm{~J}=\mathrm{KHL}$, NLC |
| 330 | $25 \operatorname{SUMB}=\operatorname{SUMB}+(\operatorname{FEED}(J) / 100) /.((\operatorname{ALFA}(\operatorname{KL}) / \operatorname{ALFA}(J))-1$. |
| 340 | SUMT $=0$. |
| 350 | $\mathrm{KL} 2=\mathrm{KL}-1$ |
| 360 | DO $30 . K=N E C, K L 1$ |
| 370 | $30 \mathrm{SUMT}=\operatorname{SUMT}+(.01 * \operatorname{FEED}(\mathrm{~K}) / \mathrm{ALFA}(\mathrm{K}))^{*}(1 .+A L F A(K L) / A L F A(K))$ |
| 380 | IF (KH-KL-2) 28, 27,28 |
| 390 | $28 \mathrm{RMIN}=(\mathrm{XB}$ *SRMIN+(XC+SUMHF/100.)*SUMB+SUMT $) /$ |
| 3958 | (XB+SUMLF/100.) |

TABLE 65. (CONTINUED)

```
400 GO TO 29
4 0 5 2 7 ~ R M I N = ( X B S * S R M I N + ( X C S + S U M H F / 1 0 0 . ) * S U M B + S U M T ) /
410& (XBS+SUMLF/100.)
4 2 0 2 9 ~ P R I N T ~ 3 5 , I N D E X , X I , R M I N ~
4 3 0 ~ 3 5 ~ F O R M A T ( I 3 , 2 X , 2 F 1 0 . 4 )
440 40 INDEX=INDEX+1
450 GO TO 1
460 99 STOP
4 7 0 ~ E N D
```

TABLE 66. PROGRAM FOR CALCULATING THE MINIMUM REFLUX RATIO BY ThE METHOD OF MURDOCH AND HOLLAND

A FORTRAN PROGRAM FOR THE G.E. MARK II SYSTEM

```
    DIMENSION XDIST(8), XBOT(8), EQVN(8), EQVM(8),XN(8),
                XM(8),A(8,4),ALFAN(8),ALFAM(8),ALFA(8),FEED(8),
                        DIST(8),TERM(8),TUM(8),THETA(8)
    FILENAME FC
    PRINT, "DATAFILE"
    INPUT,FC
    INDEX=1
    7 READ(FC,8)I,LIMIT,NFC,NC,KL,KH
    8 FORMAT(V)
    NLC=NFC+NC-1
    IF(LIMIT) 9,999,11
    9 DO 266 I=1,8
    266 READ (FC, 8)L, (A(I,J),J=1,4)
    11 READ(FC,8)L,TN,TM,TOTD,TOTB,FELIQ,REFLN
    READ (FC,8)L,(XDIST(I),T=NFC,KH)
    READ(FC,8)L,(XBOT(K),K=KL,NLC)
    250 TOTDB=TOTD/TOTB
        FLQTB=FELIQ/TOTB
        READ (FC,8)L,(FEED (N),N=NFC,NLC)
        SDIST=TOTD
        DO 2 I=NFC,KH
    2 DIST(I)=SDIST*XDIST(I)
        KON=1
        HEAT=FELIQ/100.
    4 REFLM=REFLN*TOTDB+FLQTB
        IND=1
        ITA=1
        INDAX=1
        INDOX=1
        TN1=0.
        TN=TN-100.
        5 XNTOT=0.
        DO 6 I=NFC,KH
        IF(XDIST(I)) 6,6,27
    27 EQVN(I)=TN*(A(I,I)+A(I,2)*TN+A(I, 3)*TN**2+
        A(I, 4)*TN**3)**3
    XN(I)=XDIST(I)/(EQVN(I)+(EQVN(I)-I, )*REFLN}
        IF(XN(I)) 10,10,600
    600 XNTOT=XNTOT+XN(I)
    6 \text { CONTINUE}
        IF(ITA-5) 270,140,150
270 IF(INDOX-3) 12,60,12
    12 IF(TNI+5.-TN ) 15,15,20
```

330 340 350 360 370 380 390 400
410
420
430
440
450
460
470
471
472
473
474
475
476
477
478
479
480
482
483
487
488
490
500
510
520
525
530
535\&
540
550
560
563
565
570
580

```
15 IF(XNTOT-1.) 20,60,10
    10 TF(INDAX-2) 17,50,50
    17 TN=TN+10.
    - GO TO 5
    20 IND=IND+1
    IF(IND-2) 30,25,30
    25 TN1=TN
    XNTO=XNTOT
    TN=TN-1.
    INDAX=2
    GO TO 5
    30 IF((1.-XNTOT)-(XNTOT-XNTO)) 60,60,25
    50 TN=TN+1.
    INDOX=3
    GO TO 5
    60 XNT=XNTOT
    IF(XNTOT-1.) 120,125,130
120TN=TN-0.1
    ITA=5
    GO TO 5
130TN=TN+0.1
    ITA=6
    GO TO 5
140 IF(XNTOT-1.) 120,125,125
150 IF(XNTOT-1.) 125,125,130
125 DO 126 I=NFC,KH
126 ALFAN(I)=EQVN(I)/EQVN(KH)
    IDA=1
    ITO=1
    TMI=0.
    TM=TM-100.
    6 5 \mathrm { XMTOT=0. }
    DO 70 K=KL,NLC
    IF(XBOT (K)) 70,70,78
    78 EQVM(K)=TM* (A (K,1)+A(K,2)*TM+A(K,3)*TM**2+
        A(K,4)*TM**3)**3
    XM(K)=XBOT}(K)/(EQVM(K)+(1,-EQVM(K))*REFLM
    IF(XM(K)) 77,77,700
700 XMTOT=XMTOT+XM(K)
    70 CONTINUE
    IF(ITO-5) 71,160,170
    71 IF (IDA-2) 72,100,72
    72 IF (TM1 +5.-TM) 73,73,85
    73 IF(XMTOT-1.) 75,100,77
    75TM=TM+10.
    GO TO 65
    77 TM1=TM
    XMTO= XMTOT
    TM=TM-1.
```

TABLE 66, (CONTINUED)

```
650
6 6 0
6 7 0
6 8 0
6 9 0
701
702
703
7 0 4
705
706
7 0 7
708
7 0 9
737 GO TO 205
742 GO TO 205
750
755
760
765
770
775
780
785
790
800
805
810
815
820
825
830
835
840
845
850
855
860
865
```

```
710 170 TF(XMTOT-1.) 200,200,190
```

710 170 TF(XMTOT-1.) 200,200,190
712 200 DO 108 K=KL,NLC
712 200 DO 108 K=KL,NLC
715 108 ALFAM(K)=EQVM(K)/EQVM(KH)
715 108 ALFAM(K)=EQVM(K)/EQVM(KH)
720 DO 205 I=NFC,NLC
720 DO 205 I=NFC,NLC
725 IF(I-KL) 210,215,215
725 IF(I-KL) 210,215,215
730 215 IF (I-KH) 220,220,230
730 215 IF (I-KH) 220,220,230
735 210 ALFA(I)=ALFAN(I)
735 210 ALFA(I)=ALFAN(I)
740 220 ALFA(I)=(ALFAN(I)+ALFAM}(I))*.
740 220 ALFA(I)=(ALFAN(I)+ALFAM}(I))*.
745 230 ALFA(I)=ALFAM(I)
745 230 ALFA(I)=ALFAM(I)

```
GO TO 65
    85 IF((XMTOT-1.)-(XMTO-XMTOT)) 90,77,77
    85 IF((XMTOT-1.)-(XMTO-XMTOT)) 90,77,77
    90 IF(XMTO-1.) 95,100,100
    90 IF(XMTO-1.) 95,100,100
    95 TM=TM+1.
    95 TM=TM+1.
        IDA=2
        IDA=2
100 XMT=XMTOT
100 XMT=XMTOT
        IF(XMTOT-1.) 180,200,190
        IF(XMTOT-1.) 180,200,190
    180TM=TM+0.2
    180TM=TM+0.2
        ITO=5
        ITO=5
        GO TO }6
        GO TO }6
190 TM=TM-0.1
190 TM=TM-0.1
        ITO}=
        ITO}=
        GO TO 65
        GO TO 65
    160 IF(XMTOT-1.) 180,200,200
    160 IF(XMTOT-1.) 180,200,200
    170 IF(XMTOT-1.) 200,200,190
    170 IF(XMTOT-1.) 200,200,190
    205 CONTINUE
    205 CONTINUE
    IF(KH-KL-2) 235,275,235
    IF(KH-KL-2) 235,275,235
    235 THIGH=ALPA(KL)
    235 THIGH=ALPA(KL)
    TLOW=ALFA(KH)
    TLOW=ALFA(KH)
    DO 260 J=I,20
    DO 260 J=I,20
    TETA=(THIGH+TLOW)*.5
    TETA=(THIGH+TLOW)*.5
    FUNCT=0.
    FUNCT=0.
    DO 240 I=NFC,NLC
    DO 240 I=NFC,NLC
240 FUNCT=FUNCT+(ALFA(I)*FEED(I))/(ALFA(I)-TETA)
240 FUNCT=FUNCT+(ALFA(I)*FEED(I))/(ALFA(I)-TETA)
    FUNCT=FUNCT/100.-HEAT
    FUNCT=FUNCT/100.-HEAT
    IF(FUNCT) 245,265,750
    IF(FUNCT) 245,265,750
245 TLOW=TETA
245 TLOW=TETA
    GO TO 255
    GO TO 255
750 THIGH=TETA
750 THIGH=TETA
255 IF(FUNCT**2-1.0E-6) 265,265,260
255 IF(FUNCT**2-1.0E-6) 265,265,260
260 CONTINUE
260 CONTINUE
265 RMIN=0.
265 RMIN=0.
    DO }720\mathrm{ I=NFC,NLC
    DO }720\mathrm{ I=NFC,NLC
720 RMIN=RMIN+(DIST(I)*ALFA(I))/(ALFA(I)-TETA)
720 RMIN=RMIN+(DIST(I)*ALFA(I))/(ALFA(I)-TETA)
    RMIN=(RMIN/SDIST)-1.0
    RMIN=(RMIN/SDIST)-1.0
    GO TO 350
    GO TO 350
275 KSI=KL+1
275 KSI=KL+1
    THIGH=ALFA(KL)
```

 THIGH=ALFA(KL)
    ```
table 66. (CONTINUED)
```

280 TLOV-ALFA(KSI)
DO 3:5 J=1,20
THETA(KSI)=(THIGH+TLOW)*.5
FUNCT=0.
DO 285 I=NFC,NLC
285 FUNCT=FUNCT+(ALFA(I)*FEED(I))/(ALFA(I)-THETA(KSI))
FUNCT=FUNCT/100.-HEAT
IF(FUNCT) 290,300,295
290 TLOW=THETA(KSI)
GO TO 300
295 THIGH=THETA(KSI)
300 IF(ABS (FUNCT**2)-1.0E-6) 310,310,305
305 CONTINUE
310 FUN=FUNCT
IF(KSI-KH) 315,320,320
315 KIP=KSI
THIGH=ALFA(KIP)
KSI=KSI+1
GO TO 280
320 KLI=KL+1
KL2=KL+2
V=THETA(KLI)*THETA(KL2)/ALFA(KLI)
STERM=0.
STUM=0.
DO 340 I=NFC,KH
IF(I-KLI) 325,340,325
325 TERM(I)=(ALFA(I)-ALFA(KLI))*DIST(I)/((ALFA(I)-
THETA(KL1))*(ALFA(I)-THETA(KL2)))
STERM=STERM+TERM(I)
TUM(I)=ALFA(I)*TERM(I)
330 STUM=STUM+TUM(I)
340 CONTINUE
RHO=V* STERM/STUM
RMIN=RHO/(I.-RHO)
350 IF(ABS(RMIN-REFLN)-.01*RMIN) 365,365,355
355 KON=KON+1
IF(KON-10) 360,360,365
360 REFLN=(REFLN+RMIN)*.5
GO TO 4
365 PRINT 370,INDEX,TN,TM,REFLN,RMIN,KON
370 FORMAT(I3,2X,4F10.4,2X,I3)
PRINT 375,(ALFA(I),I=NFC,NLC)
375 FORMAT(8F8.4)
INDEX=INDEX+1
GO TO }
999 STOP
END

```

TABLE 67. PROGRAM FOR CALCULATING THE DEW POINT OF A MULTICOMPONENT MIXTURE

A FORTRAN PROGRAM FOR THE TBM 1130 SYSTEM
DIMENSION \(\wedge(8,4), Y(8), X(8), \operatorname{EQV}(8)\) WRTIE \((3,63)\)
63 FORMAT ('I DEW POINT CALCULATION'//' RUN NO.',5X, \({ }^{\prime}\) DP (DEG.R)', \(5 \mathrm{X},{ }^{\prime}\) SUM X'/)
INDEX=1
\(1 \operatorname{READ}(2,2)\) LIMTT,NFC,NC,NLC,TR
2 FORMAT (4I2, 2X,F10.3) IF (LIMIT) 3,99,7
\(3 \operatorname{READ}(2,5)((A(L, M), M=1,4), L=1,8)\)
5 FORMAT(4F20.10)
\(7 \operatorname{READ}(2,10)(Y(I), I=N F C, N L C)\)
10 FORMAT (8F10.5)
\(E P S N=.1\)
DELTA \(=.003\)
15 XTOT=0.
16 DO \(20 I=N E C\), NLC
\(18 \operatorname{EQV}(I)=T R *(A(I, I)+A(I, 2) * T R+A(I, 3) * T R * * 2+A(I, 4) * T R * * 3) * 3\) \(X(I)=Y(I) / E Q V(I)\)
20 XTOT=XTOT+X(I) \(Z=X T O T-1\).
\(\operatorname{IF}(\operatorname{ABS}(Z)-E P S N) 40,40,25\)
\(25 \operatorname{IF}(Z) 30,60,35\)
\(30 T R=T R-10\).
\(E P S N=E P S N+.02\)
GO TO 15
\(35 \mathrm{TR}=\mathrm{TR}+10\).
EPSN \(=E P S N+.02\)
GO TO 15
\(40 \operatorname{IF}(\operatorname{ABS}(Z)-D E L T A) 60,60,45\)
\(45 \operatorname{IF}(Z) 50,60,55\)
\(50 \quad T R=T R-1\).
DELTA \(=\) DELTA +.0002
- GO TO 15
\(55 T R=T R+1\).
DELTA \(=\) DELTA +.0002
GO TO 15
60 WRITE (3,65) INDEX,TR,XTOT
65 FORMAT (IX,I4, 9X,F7.2,5X,F7.5)
INDEX = INDEX +1
GO TO 1
99 CALL EXIT
END

TABLE 68. PROGRAM FOR CALCULATING THE BUBBLE POINT OF A

\section*{MULTICOMPONENT MIXTURE}

A FORTRAN PROGRAM FOR THE IBM 1130 SYSTEM
```

 DIMENSION A(8,4),Y(8),X(8),EQV(8)
 WRITE (3,63)
 63 FORMAT('I BUBBLE POINT CALCULATION'//' RUN NO.',
 5X,'BP(DEG.R)',5X,'SUM Y'/)
 INDEX=1
 1 READ(2,2) LIMIT,NFC,NC,NLC,TR
 2 FORMAT(4I2,2X,FIO.3)
 IF(LIMIT) 3,99,7
 3 READ (2,5) ((A(I,M),M=1,4),L=1,8)
 5 FORMAT(4F20.10)
 7 READ (2,10) (X (I),I=NFC,NLC)
 10 FORMAT(8F10.5)
 EPSN=.1
 DELTA=.003
 YTOT=0.
 16 DO 20 I=NEC,NLC
 18 EQV (I)=TR*(A(I,I)+A(I,2)*TR+A(I, 3)*TR**2+A(I,4)*TR**3)**3
 Y(I)=X(I)*EQV (I)
 20 YTOT=YTOT+Y(I)
 Z=YTOT-1.
 IF(ABS(Z)-EPSN) 40,40,25
 25 IF(Z) 30,60,35
 30 TR=TR+10.
 EPSN=EPSN+.02
 GO TO 15
 35TR=TR-10.
 EPSN=EPSN+.02
 GO TO 15
 40 IF (ABS (Z)-DELTA) 60,60,45
 45 IF(Z) 50,60,55
 50 TR=TR+1.
 DELTA=DELTA+.0002
 GO TO 15
 55 TR=TR-1.
 DELTA=DELTA+.0002
 GO TO 15
 60 WRITE (3,65) INDEX,TR,YTOT
 65 FORMAT(IX,I4,9X,F7.2,5X,F7.5)
 INDEX=INDEX +1
 GO TO 1
 99 CALL EXIT
 END
    ```

TABLE 69. PROGRAM FOR CALCULATING RELATIVE VOLATILITIES

A FORTRAN PROGRAM FOR THE IBM 1130 SYSTEM
```

 DIMENSION A \((8,4), \operatorname{EQV}(8), \operatorname{ALFA}(8)\)
 WRITE \((3,4)\)
    ```

```

 \({ }^{\prime} \mathrm{C} 2 \mathrm{H} 6^{\prime}, 7 \mathrm{X},{ }^{\prime} \mathrm{C} 3 \mathrm{H} \mathbf{B}^{\prime}, 6 \mathrm{X},{ }^{\prime} \mathrm{I}-\mathrm{C} 4 \mathrm{H} 10^{\prime}, 5 \mathrm{X}, \mathrm{N}-\mathrm{C} 4 \mathrm{HI} 0^{\prime}, 5 \mathrm{X}\),
 \({ }^{\prime} \mathrm{I}-\mathrm{C} 5 \mathrm{H} 12^{\prime}, 5 \mathrm{X},{ }^{\prime} \mathrm{N}-\mathrm{C} 5 \mathrm{H} 12^{\prime}, 5 \mathrm{X},{ }^{\prime} \mathrm{N}-\mathrm{C} 8 \mathrm{H} 18^{\prime}, 7 \mathrm{X},{ }^{\prime} \mathrm{TR}{ }^{\prime} /\))
 INDEX=1
 \(1 \operatorname{READ}(2,2) \operatorname{LIMIT}, \mathrm{KH}, \mathrm{TR}\)
 2 FORMAT (2I2,6X,F10.0)
 IF (LIMIT) 3,99,7
 \(3 \operatorname{READ}(2,5)((A(L, M), M=1,4), L=1,8)\)
 5 FORMAT(4F20.10)
 7 DO \(10 \quad I=1,8\)
 \(10 \operatorname{EQV}(I)=T R *(A(I, I)+A(I, 2) * T R+A(I, 3) * T R * * 2+A(I, 4) * T R * * 3) * 3\)
 DO \(15 I=1,8\)
 \(15 \mathrm{ALFA}(I)=E Q V(I) / E Q V(\mathrm{KH})\)
 \(\operatorname{WRITE}(3,20)\) INDEX, (ALFA(I), \(I=1,8), T R\)
 20 FORMAT (\(1 \mathrm{X}, 工 4,9 \mathrm{X}, \mathrm{F} 8.3,3 \mathrm{X}, \mathrm{F} 8.3,3 \mathrm{X}, \mathrm{FB} .3,3 \mathrm{X}, \mathrm{F} 8.3,3 \mathrm{X}, \mathrm{F} 8.3\),
 \(3 \mathrm{X}, \mathrm{F} 8.3,3 \mathrm{X}, \mathrm{F} 8.3,3 \mathrm{X}, \mathrm{F} 8.3,3 \mathrm{X}, \mathrm{F} 8.2\))
 INDEX=INDEX +1
 GO TO 1
 99 CALL EXIT
 END
    ```

\section*{TABLE 70. PROGRAM TERMINOLOGY}
```

A - Represents four equilibrium constants per component
ALFA - Volatility relative to that of the heavy key
ALFAM - Volatiluty relative to that of the heavy key in the
stripping pinch
ALFAN - Volatility relative to that of the heavy key in the
rectifying pinch
DIST - Moles of a component in the distillate
EQV - Equilibrium value of a component
EQVM - Equilibxium value of a component in the stripping
pinch
EQVN - Equilibrium value of a component in the rectifying
pinch
FEED - Moles of a component in the feed
FELIQ - Total moles of liquid feed
FLMOL - Total moles of liquid feed
FLUID - Moles of a component in the liquid part of the feed
FVMOL - Total moles of vapor feed
HEAT - Thermal condition of the feed (1-q)
KH - Heavy key component
KL - Light key component
NC - Number of components
NFC - Number of the first component
NLC - Number of the last component
REFLM - Minimum refiux ratio (Shiras only)
REFLN - Reflux ratio
RMIN - Minimum reflux ratio

```

TABLE 70. (CONTINUED)
\begin{tabular}{|c|c|}
\hline SUMFL & - Total moles of liquid in the feed \\
\hline SUMHF & - Moles of feed heavier than the heavy key \\
\hline SUMLF & - Moles of feed lighter than the light key \\
\hline SUMVA & - Total moles of vapor in the feed \\
\hline TM & - Temperature in the stripping pinch ( \(\left.{ }^{( } \mathrm{R}\right)\) \\
\hline TN & - Temperature in the rectifying pinch ( \({ }^{( } \mathrm{R}\) ) \\
\hline TOTB & - Total moles of bottoms \\
\hline TOTD & - Total moles of distillate \\
\hline TR & - Temperature ( \({ }^{( } \mathrm{R}\) ) \\
\hline VAP & - Moles of a component in the vapor part of the feed \\
\hline \(X\) & - Mole fraction of a component in the liquid in equilibrium with the vapor \\
\hline XBOT & - Mole fraction of a component in the bottoms \\
\hline XBS & - Fraction of the feed consisting of the light key and the part of the split key going overhead \\
\hline XCS & - Fraction of the feed consisting of the heavy key and the part of the split key going to the bottom product \\
\hline XDIST & - Mole fraction of a component in the distillate \\
\hline XLIQ & - Mole fraction of a component in the liquid part of the feed \\
\hline XM & - Concentration of a component in the stripping pinch \\
\hline XN & - Concentration of a component in the rectifying pinch \\
\hline \(Y\) & - Mole fraction of a component in the vapor in equilibrium with the liquid \\
\hline
\end{tabular}

\section*{REFERENCES}
1. Anthony, R. G., M. S. Thesis, Agricultural and Mechanical College of Texas, May, 1962.
2. Bachelor, J. B., Petroleum Refiner, vol. 36, June, 1957, pp. 161-170.
3. Bailey, R. V. and J. Coates, Petroleum Refiner, vol. 27, January, 1948, pp. 98-102.
4. Brown, G. G. and D. E. Holcomb, Petroleum Engineer, vol. 11, September, 1940, pp. 27-30.
5. Brown, G. G. and H. Z. Martin, Transactions of the American Institute of Chemical Eng neers, vol. 35, 1939, pp. 679-708.
6. Colburn, A. P., Transactions of the Anerican Institute of Chemical Engineers, vol. 37, 1941, pp. 805-825.
7. Erbar, R. C., M. S. Thesis, Oklahoma State University, May, 1960 .
8. Erbar, R. C., R. S.Joyner and R. N. Maddox, Petro/Chem. Engineer, March, 1961, pp. 19-22.
9. Erbar, R. C. and R. N. Maddox, Canadian Journal of Chemical Engineering, Febrüary, 1962, pp. 25-30.
10. Fenske, M. R., Industrial Engineering Chemistry, vol. 24, May, 1932, pp. 482-485.
11. Gilliland, E. R., Industrial Engineering Chemistry, vol. 32 , August, 1940, pp. 1101-1106.
12. Hogan, J. J., Industrial Engineering Chemistry, vol. 33, September, 1941, pp. 1132-1138.
13. Jenny, F.J., Transactions of the American Institute of Chemical Engineers, vol. 35,1939 , pp. 635677 .
14. Maxwell, J. B., Data Book on Hydrocarbons, 1955, pp. 231-239.
15. May, J. A., Industrial Engineering Chemistry, voI. 4I, December, 1949, pp. 2775-2782.
16. Mayfield, F, D. and J. A. May, Petroleum Refiner, vol. 25, April. 1946, pp. 141-148.
17. McDonough, J. A. and C. D. Holland, Petroleum Refiner, vol. 41, March, 1962, pp. 153-160.
18. Murdoch, P. G. and C. D. Holland, Chemical Engineering Progress, vol. 48, June, 1952, pp. 287-292.
19. Scheibel, E. G. and C. F. Montross, Industrial Engineering Chemistry, vol. 38, March, 1946, pp. 268272.
20. Shiras, R. N., D. N. Hanson and C. H. Gibson, Industrial Engineering Chemistry, vol. 42, May, 1950, pp. 871-876.
21. Underwood, A. J. V., Transactions of the Institute of Chemical Engineers (London), vol. \(10,1932, \mathrm{p} .112\).
22. Underwood, A. J. V., Journal of the Institute of Petroleum, vol. \(32,1946, \mathrm{pp} .614-626\).
23. Underwood, A. J. V., Chemical Engineering Progress, vol. 44, August, 1948, pp. 603-614.```

