Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

A COMPARATIVE ANALYSIS OF MULTICOMPONENT

DISTILLATION MINIMUM REFLUX METHODS

ΒY

JOSEPH H. F. LOOZEN

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

\mathbf{AT}

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey 1970

ABSTRACT

One of the most important factors to know in the design of distillation columns is the minimum reflux ratio. Numerous procedures have been developed for the determination of the value of the minimum reflux ratio for multicomponent mixtures requiring various degrees of computational effort. Shortcut techniques are obviously advantageous with respect to computation time. After reviewing the available methods, those by Underwood, Colburn, Scheibel and Montross, Murdoch and Holland, and Shiras et al. were selected for further evaluation, mainly on the basis of practical potential.

Comparison of these procedures was accomplished by calculating the minimum reflux ratio for a large number of systems with widely varying conditions. Considerable differences were found between the results of these methods; the spread between the lowest and highest value varying from less than 10% for a 4-component system with adjacent keys to over 100% for an 8-component mixture with one split key. It was established that these deviations stem mainly from differences in the relative volatilities.

The reliability and usefulness of the methods investigated would have to be determined by comparison of the results with those from a rigorous calculation. For general application, only the techniques by Underwood and Shiras et al. can be considered since they contain a feature for determining the product composition. Scheibel and Montross' procedure is the only one which can be used to carry out a hand calculation within a reasonable length of time.

APPROVAL OF THESIS

A COMPARATIVE ANALYSIS OF MULTICOMPONENT

DISTILLATION MINIMUM REFLUX METHODS

BY

JOSEPH H. F. LOOZEN

FOR

DEPARTMENT OF CHEMICAL ENGINEERING NEWARK COLLEGE OF ENGINEERING

BY

FACULTY COMMITTEE

APPROVED:

NEWARK, NEW JERSEY

MAY, 1970

ACKNOWLEDGMENTS

The assistance and guidance given by Dr. E. C. Roche, Jr. is appreciated.

The author wishes to thank the Allied Chemical Corporation for the use of its computer facilities.

TABLE OF CONTENTS

Chapter		Page			
1.	INTRODUCTION	1			
II.	A COLUMN AT MINIMUM REFLUX	3			
III.	LITERATURE SURVEY	9			
IV.	DISCUSSION OF SELECTED SHORTCUT METHODS	13			
	Underwood's Method Colburn's Method Shiras, Hanson, and Gibson's Method. Scheibel and Montross' Method Murdoch and Holland's Method	14 17 20 22 25			
V.	COMPUTATIONS	28			
	Selected Systems Procedures Programs and Results	28 29 34			
VI.	CONCLUSIONS	37			
VII.	RECOMMENDATIONS	41			
APPENDIX	• • • • • • • • • • • • • • • • • • • •	44			
REFERENCES 104					

LIST OF FIGURES

Figure	9				Page
1.	A	Column	at	Minimum Reflux	5
2.	Mc(foi	Cabe-Thi r a Mult	ele ico	e Diagram for a Binary and omponent System	7

LIST OF TABLES

Table							Page
].	Specifications	and	Solutions	of	Example	1	45
2.	Specifications	and	Solutions	of	Example	2	45
3.	Specifications	and	Solutions	of	Example	3	46
4.	Specifications	and	Solutions	of	Example	4	46
5.	Specifications	and	Solutions	of	Example	5	47
6.	Specifications	and	Solutions	of	Example	6	47
7.	Specifications	and	Solutions	of	Example	7	48
8.	Specifications	and	Solutions	of	Example	8	48
9.	Specifications	and	Solutions	of	Example	9	49
10.	Specifications	and	Solutions	of	Example	10	49
11.	Specifications	and	Solutions	of	Example	11	50
12.	Specifications	and	Solutions	of	Example	12	50
13.	Specifications	and	Solutions	of	Example	13	51
14.	Specifications	and	Solutions	of	Example	14	51
15.	Specifications	and	Solutions	of	Example	15	52
16.	Specifications	and	Solutions	of	Example	16	52
17.	Specifications	and	Solutions	of	Example	17	53
18.	Specifications	and	Solutions	of	Example	18	53
19.	Specifications	and	Solutions	of	Example	19	54
20.	Specifications	and	Solutions	of	Example	20	54
21.	Specifications	and	Solutions	of	Example	21	55
22.	Specifications	and	Solutions	of	Example	22	55
23.	Specifications	and	Solutions	of	Example	23	56

viii

LIST OF TABLES (CONTINUED)

Ta	ble							Page
	24.	Specifications	and	Solutions	of	Example	24	56
	25.	Specifications	and	Solutions	of	Example	25	57
	26.	Specifications	and	Solutions	of	Example	26	57
	27.	Specifications	and	Solutions	of	Example	27	58
	28.	Specifications	and	Solutions	of	Example	28	58
	29.	Specifications	and	Solutions	of	Example	29	59
	30.	Specifications	and	Solutions	of	Example	30	59
	31.	Specifications	and	Solutions	of	Example	31	60
	32.	Specifications	and	Solutions	of	Example	32	60
	33.	Specifications	and	Solutions	of	Example	33	61
	34.	Specifications	and	Solutions	of	Example	34	61
	35.	Specifications	and	Solutions	of	Example	35	62
	36.	Specifications	and	Solutions	of	Example	36	62
	37.	Specifications	and	Solutions	of	Example	37	63
	38.	Specifications	and	Solutions	of	Example	38	63
	39.	Specifications	and	Solutions	of	Example	39	64
	40.	Specifications	and	Solutions	of	Example	40	64
	41.	Specifications	and	Solutions	of	Example	41	65
	42.	Specifications	and	Solutions	of	Example	42	65
	43.	Specifications	and	Solutions	of	Example	43	66
	44.	Specifications	and	Solutions	of	Example	44	66
	45.	Specifications	and	Solutions	of	Example	45	67

LIST OF TABLES (CONTINUED)

Table		Page
46.	Specifications and Solutions of Example 46	67
47.	Specifications and Solutions of Example 47	68
48.	Specifications and Solutions of Example 48	68
49.	Values of the Minimum Reflux Ratio for Different Feed Conditions by the Method of Underwood	69
50.	Values of the Minimum Reflux Ratio for Different Feed Conditions by the Method of Colburn	69
51.	Values of the Minimum Reflux Ratio for Different Feed Conditions by the Method of Shiras et al	70
52.	Values of the Minimum Reflux Ratio for Different Feed Conditions by the Method of Scheibel and Montross	70
53.	Values of the Minimum Reflux Ratio for Different Feed Conditions by the Method of Murdoch and Holland	71
54.	Values of the Minimum Reflux Ratio by the Method of Scheibel and Montross using Relative Volatility Data from All Methods Analyzed	72
55.	Relative Volatilities by the Method of Underwood	74
56.	Relative Volatilities by the Method of Colburn	75
57.	Relative Volatilities by the Method of Shiras et al.	77
58.	Relative Volatilities by the Method of Scheibel & Montross	78
59.	Relative Volatilities by the Method of Murdoch & Holland	. 80

LIST OF TABLES (C. 'INUED)

Table		Page
60.	Temperatures at the Top and Bostom of the Distillation Column	82
61	. Equilibrium Data	83
62	Program for Calculating the Minimum Reflux Ratio by the Method of Underwood	84
.63	. Program for Calculating the Minimum Reflux Ratio by the Method of Colburn	86
64	. Program for Calculating the Minimum Reflux Ratio by the Method of Shiras et al	90
65	. Program for Calculating the Minimum Reflux Ratio by the Method of Scheibel and Montross.	93
66	. Program for Calculating the Minimum Reflux Ratio by the Method of Murdoch and Holland	95
67	. Program for Calculating the Dew Point of a Multicomponent Mixture	99
68	. Program for Calculating the Bubble Point of a Multicomponent Mixture	100
69	. Program for Calculating Relative Volatilities	101
70	. Program Terminology	102

CHAPTER I

INTRODUCTION

A fractionating column has two limits of operation based upon reflux ratio. The lower limit is fixed by minimum reflux; under this condition, an infinite number of theoretical equilibrium stages are required to achieve the desired separation. The upper limit is that at total reflux. It is evident that for a given product distribution a fractionating column must be operated between these two conditions with respect to reflux ratio.

The minimum reflux ratio is an important factor to know in the design of a distillation column. An operating reflux ratio which lies between 1.2 and 1.5 times the minimum reflux ratio is generally considered the most economic. This value fixes the number of plates and the heating and cooling loads necessary for a specified separation of a given feed.

A large number of investigators have developed methods for determining the minimum reflux value of multicomponent systems. Most of these methods are known as "shortcut" techniques, indicating that one or more simplifying assumptions have been made.

Shortcut methods for the approximate solution of multicomponent separation problems, in themselves a rather extensive computational effort, continue to serve useful

purposes even though computers are available to provide rigorous solutions. The available equilibrium data may not be sufficiently accurate to justify the longer rigorous methods. In design studies a large number of cases can be worked quickly by a shortcut method to get the optimum conditions, and then the exact solution can be obtained via a rigorous calculation. The computer time required for the latter is considerably longer than that for a shortcut method.

The purpose of this work was to examine the known shortcut methods and to select those which seem most valuable for practical application. These methods were then evaluated and compared by calculating the minimum reflux for a large number of hydrocarbon systems under varied conditions.

The many and complex calculations involved were carried out partly on an IBM 1130 computer and the remainder with the G. E. Mark II Time-Sharing System. The programs used have been written in Fortran IV language and are listed in the Appendix (pp. 84-101).

CHAPTER II

A COLUMN AT MINIMUM REFLUX

In a conventional distillation, one feed stream and two product streams constitute the flow of material to and from the column. For a multicomponent feed, the desired separation is usually specified in terms of two key components. One is the light key, which is the most volatile component to appear in the bottom product or bottoms, while the heavy key is the least volatile component in the top product or distillate. The separation ratio between the distillate and bottoms is specified for both keys. Usually the keys are adjacent components with respect to relative volatility. If then the separation ratio between the distillate and the bottoms is high for the light key and low for the heavy key, the distillation is called a sharp separation. All components lighter than the light key will go to the distillate, while those heavier than the heavy key end up in the bottoms. Components which appear only in one product are referred to as separated components. However, components with volatilities intermediate to those of the keys may be present. These will always be distributed between the two products and are referred to as split keys.

A distillation column operating at minimum reflux may be considered to consist of seven zones. From the

top of the column down, these zones will be referred to as distillate zone, rectifying pinch zone, rectifying zone, feedzone, stripping zone, stripping pinch zone, and bottoms zone. A schematic representation of a column operating at minimum reflux is shown in Figure 1 for a multicomponent and for a binary system.

The feed zone is very small and exists between the two plates where the feed enters the column. The feed combines with the streams entering from the adjacent sections to form the liquid and vapor streams which leave the feed zone. The zone immediately above the feed zone is the rectifying zone. All components of the feed which do not appear in the distillate are fractionated to zero in this section. The next zone upwards is the rectifying pinch zone. The temperature and composition remain constant throughout this entire section, which consists of an infinite number of plates. The top section in the distillation column is the distillate zone in which the fractionation from the pinch zone composition to that of the distillate takes place. The lower part of the distillation column consists of similar zones as just described for the upper half of the column. In the stripping zone, the light components which do not appear in the bottom product are fractionated to zero. Then follows the stripping pinch zone in which the temperature and

Binary Distillation

Multicomponent Distillation

FIGURE 1. A COLUMN AT MINIMUM REFLUX

composition do not change. Finally, in the bottom section of the column, fractionation to the composition of the bottom product occurs.

The above presentation is only true when the distillation yields at least one light and one heavy separated component; i. e. at least one component which appears only in the distillate, and at least one component which appears only in the bottoms. If there is no separated component in the bottom product, the stripping zone does not exist. The stripping pinch zone is then adjacent to the feed zone. This is similar for the upper half of the column if all components of the feed appear in the distillate. When all components of the feed distribute between the two products, both pinch zones merge; and the system becomes analogous to that of a binary mixture.

Figure 2 represents the McCabe-Thiele diagram for a binary mixture and for a multicomponent system in which the same two constituents are the key components. For a binary mixture, DF and BF give the minimum reflux ratio for the rectifying section and the minimum boil-up ratio for the stripping section respectively. As we move along these operating lines, the change in composition on adjacent plates becomes less and less until it becomes negligible at the feed plate. At F, the compositions are

mole fraction (of light key) in liquid

FIGURE 2. McCABE-THIELE DIAGRAM FOR A BINARY AND FOR A MULTICOMPONENT SYSTEM

referred to as being "pinched." In a multicomponent system, the presence of components lighter than the light key will shift the operating line DF to some value DN; and the components heavier than the heavy key will shift the lower line BF to BM. The extent of these shifts depends upon the required separation.

CHAPTER III

LITERATURE SURVEY

Most of the earlier work in developing methods for determining minimum reflux was directed towards empirical or shortcut techniques. The latter always included one or more assumptions which cannot really be expected to exist in a multicomponent distillation. Some of the more common assumptions are constant molal overflow and constant or linear relative volatility. Afterwards, more rigorous methods (1,2,4,7,9,13,17) have been developed, some of which still contained limiting assumptions.

In 1932, Fenske (10) and Underwood (21) independently presented procedures for determining minimum reflux assuming constant overflow and constant relative volatility. The equations include the key components only; and, as such, they should only be applied to binary mixtures or to completely distributed systems. Only for those systems is the pinch composition equal to that of the equilibrium feed.

Gilliland (11) was the first to recognize the effect of non-key components on minimum reflux. He developed two methods based on constant overflow, constant relative volatility, and known product composition which yield an upper and lower limit for the minimum reflux. Complex terms are involved in these trial and error calculations.

The two limits are often so far apart that the practical value of this method is dubious.

Maxwell (14) developed a semi-empirical equation which does not require trial and error. He determines the minimum reflux for two arbitrary states of feed vaporization and then interpolates or extrapolates for the actual feed condition. A limit is given as to the extent of interpolation or extrapolation allowed. Several assumptions were made in the derivation of this method. It is definitely the simplest one available and is recommended if a quick answer is needed. R. C. Erbar (7) found from a large number of problems with bubble-point liquid feed that Maxwell's results have an average deviation of -23.1%from those obtained by Underwood's method with a maximum of -59.9% and a minimum of -1.1%.

Brown and Martin (5) assumed that at minimum reflux the ratio of the key components in the liquid in the zones of constant composition is equal to that in the liquid feed. This can only be true in limiting cases. Calculation of the minimum reflux on this basis involves trial and error and gives a value on the safe side.

Colburn (6) confirmed from actual data that the condition which Brown and Martin (5) assumed does not exist for most cases. He developed an empirical method which

is considered one of the most accurate and is described in more detail in Chapter IV.

Hogan (12) derived his method from essentially the same basic considerations as previous investigators did. He was the first to cover distribution of more than two components between the distillate and the bottoms.

An empirical equation for the calculation of the minimum reflux ratio was presented by Scheibel and Montross (19). The equation yields a direct result eliminating tedious trial and error procedures. This method is described in detail in Chapter IV.

The method developed by Mayfield and May (16) is limited to complete separations of mixtures which involve only one component in the distillate or one component in the bottoms.

The shortcut technique which has found the widest acceptance was worked out by Underwood (22). Shortly afterwards, he expanded the usefulness of this method to determine the distillate composition (23). The method is described in detail in Chapter IV.

Bailey and Coates (3) modified the procedure by Scheibel and Montross (19) to apply to systems with varying volatility. This involves a lengthy correction on a

trial and error basis which offsets at least part of the ease of calculation of the original method.

May's method (15) is based upon the resolution of the multicomponent system into an equivalent series of binary mixtures. Constant molal overflow and constant relative volatility are assumed, and the method does not apply to systems containing split keys.

Three methods for calculating minimum reflux rates were presented by Shiras, Hanson, and Gibson (20). The first method is limited to systems with all components of the feed being distributed. The second method simplifies Underwood's method (23), specifically in respect to determination of the distillate composition. This procedure is explained in detail in Chapter IV. The third method is a more rigorous plate to plate calculation.

Murdoch and Holland (18) developed two alternate equations which are analytical expressions of the methods proposed by Underwood (23) and Colburn (6). The Underwood analogue is more useful since it can be used for split key containing systems and will be fully explained in Chapter IV.

Erbar, Joyner, and Maddox (8) pointed out that Underwood's (23) prediction of product composition sometimes yields unrealistic values.

CHAPTER IV

DISCUSSION OF SELECTED SHORTCUT METHODS

As has been shown in the previous chapter, quite a large number of shortcut methods for determining minimum reflux were developed over the past forty years. All of these have been based on one or more simplifying assump-These assumptions may affect the value of minimum tions. reflux differently under different conditions. The value of each method should be judged mainly on the basis of results. However, it was considered more meaningful to evaluate a small number of methods under widely varying conditions rather than to check all available methods on just a few problems. All methods have been assessed for their practical value based on range of application, reported accuracy, assumptions made, and ease of calculation. Based on these criteria, the methods by the following investigators have been selected for comparison:

> Underwood Colburn Shiras, Hanson, and Gibson Scheibel and Montross Murdoch and Holland

Underwood's method (23) is generally considered the most accurate and has found the widest acceptance. It is completely rigorous for systems to which the assumptions

of constant overflow and constant relative volatility apply. Since Colburn's procedure (16) is derived from empirical data obtained by the laborious trial-stepwise procedure, this method was selected because of its practical basis. Shiras et al. (20) simplified Underwood's method by providing a means for determining in advance which components distribute, thereby eliminating the need for solving simultaneous equations. The empirical equation developed by Scheibel and Montross (19) was selected because of its ease of calculation since it does not involve trial and error, and Murdoch and Holland's extension of Underwood's method seemed mainly advantageous for systems containing splitkey components (18).

Underwood's Method

Underwood assumed constant molal overflow and constant relative volatility in the derivation of his rigorous analytical equations. The method is exact for systems in which above assumptions are valid and can be applied to mixtures of any feed condition with or without split-key components.

It is possible to predict for some systems which components will distribute. For instance, when sharp separations are involved, only the keys and the split-key components will appear in both products. In many cases, however, this prediction cannot be made with any certainty.

If there is any doubt whether or not a component will distribute, it should be considered as a distributed component and the calculation should proceed accordingly. Solution of simultaneous equations is required when components other than the keys distribute; whereby the number of unknowns, and also the number of equations, increases by one for each additional distributed component. Unrealistic values found for overhead concentrations, which either exceed the amount of the component in the feed or which are negative, have to be corrected. For systems with components of variable relative volatility, Underwood suggests to use the value at the average column temperature.

When the light key and heavy key are the only distributed components, the following stepwise method is used:

1. Determine by trial and error the value of 0, which liesbetween the α values of the key components from the equation:

 $\frac{\alpha_1 x_{1F}}{\alpha_1 - \Theta} + \frac{\alpha_2 x_{2F}}{\alpha_2 - \Theta} + \frac{\alpha_n x_{nF}}{\alpha_n - \Theta} = 1 - q \quad (U-1)$ where x_{1F} = mole fraction of component 1 in the feed α_1 = volatility of component 1 relative to that of the heavy key; q = heat required to vaporize one mole of feed divided by the molal latent heat

of the feed. For a bubble-point feed

q = 1.0; for a dew-point feed q = 0.

2. Calculate the minimum reflux ratio $\left(\frac{L_0}{D}\right)$ min by substituting Θ in

$$\frac{\alpha_1 x_{1D}}{\alpha_1 - \Theta} + \frac{\alpha_2 x_{2D}}{\alpha_2 - \Theta} + - - - \frac{\alpha_n x_{nD}}{\alpha_n - \Theta} = \left(\frac{L_0}{D}\right)_{\min} + 1 \qquad (U-2)$$

where x_{1D} = mole fraction of component 1 in the

distillate.

Whenever a system contains more distributed components than the two keys, one additional Θ value has to be determined for each additional distributed component. In the situation where there is one split key, two values of Θ have to be determined in a similar way as was described before. One lies between α (light key) and α (split key), and the other between α (split key) and α (heavy key). The distillate will contain the components lighter than the light key, the key components in the amount to give the desired separation, and an unknown amount of the split key. Multiplying the equation which contains the distillate fractions by the total distillate gives:

 $(L_{o})_{min} + D = \frac{\alpha_{1}D_{1}}{\alpha_{1}-\Theta} + \frac{\alpha_{2}D_{2}}{\alpha_{2}-\Theta} + \frac{\alpha_{sk}D_{sk}}{\alpha_{sk}-\Theta} + ----- \frac{\alpha_{n}D_{n}}{\alpha_{n}-\Theta}$ (U-3) where D_{1} = number of moles of component 1 in the distillate; sk = split key. Substitute each of the two Θ values separately in the above equation. Subtraction of the two resulting equations yields one equation from which D_{sk} can be found. Then the total distillate D is known, and $(L_o)_{min}$ can be calculated from the last equation.

Colburn's Method

Colburn's empirical method involves calculation of the compositions in the rectifying and stripping pinch at a number of trial values for the reflux ratio. A certain relation between these compositions is then checked versus an empirically derived factor to determine which reflux ratio is the minimum reflux ratio. The empirical factor was derived from a large number of problems with widely different conditions, the results of which were determined by stepwise calculations. Product compositions have to be known to enable execution of the computations which involve twice the use of trial and error. It should be noted that the assumption of constant overflow was made indirectly in the development of this procedure. The applicability of this method to systems containing split keys is of questionable value.

Following is the stepwise calculational procedure: 1. Use as initial temperature for the upper pinch:

 $T_n = T_{top} + \frac{T_{bottom} - T_{top}}{3}$, (C-1) and for the lower pinch:

$$T_m = T_{bottom} - \frac{T_{bottom} - T_{top}}{3}$$
, (C-2)

where T_{top} and T_{bottom} represent the temperatures at the two ends of the distillation column.

- 2. Assume a reflux ratio L_n/D for the rectifying section of the column.
- 3. Calculate the reflux ratio L_m/B for the stripping section from L_n/D and the given feed condition.
- 4. Determine the composition of the rectifying and stripping pinch using Brown and Martin's equations: $x_n = \frac{x_D}{K+ (K-1) (L_n/D)}$ (Rectifying Section) (C-3)

$$x_{m} = \frac{x_{B}}{K + (1-K) (L_{m}/B)}$$
 (Stripping Section) (C-4)

where x_n = concentration of a component in the upper pinch (includes heavy key and lighter components);

 x_{B} = concentration of a component in the bottoms.

- 5. Check if the sum of the concentrations of the components in the upper pinch, $\sum x_n$, equals unity. If it does not, assume a new pinch temperature and repeat until this criteria is satisfied. Similarly, $\sum x_m$ should equal unity.
- 6. Evaluate Psi (1) = r_m/r_n (C-5) where r_m = ratio of light key to heavy key in the stripping pinch;

 r_n = ratio of light key to heavy key in the rectifying pinch.

7. Evaluate Psi (2) =
$$\frac{1}{(1-\sum_{m} \alpha x_{m})(1-\sum_{n} x_{n})}$$
 (C-6)

where $\sum C_m \alpha x_m =$ Summation of values of $C_m \alpha x$ for all components heavier than the heavy key in the stripping pinch; $\sum C_n x_n =$ Summation of values of $C_n x$ for all components lighter than the light key in the rectifying pinch; $C_m, C_n =$ correction factors, which are plotted in Colburn's article as a

function of relative volatility.

8. If the two Psi-values calculated above are equal, the assumed reflux ratio is the minimum reflux ratio. If they differ by more than a few per cent, assume a new reflux ratio and repeat the calculational procedure until the two Psi-values

are within this range.

Shiras, Hanson and Gibson's Method

This method is an extension and elaboration of Underwood's method and is exact for all separations for which the assumptions of constant molal overflow and constant relative volatility are valid. A time-saving advantage is that they provide a simple means of determining the distribution of all components. Therefore, only one O value has to be determined; this is particularly advantageous for mixtures with more than one distributed component in addition to the key components. When the relative volatility cannot be considered constant throughout the distillation column, Shiras et al. suggest to determine this value for all components at an estimated feed plate tempera-The latter can be arrived at in two ways: one being ture. the arithmetic mean of the top plate and reboiler temperatures weighted by the molal amounts of top and bottom product; the alternative is the temperature at which the Kvalues of the two key components are equally distant from unity.

The concentration in the distillate of components other than the two keys is determined for a part vapor feed from the following equation:

$$\frac{D(X_{i})_{D}}{L_{f}(X_{i})_{f}} = \frac{(\alpha_{i}-1) D(X_{a})_{D}}{(\alpha_{a}-1) L_{f}(X_{a})_{f}} + \frac{(\alpha_{a}-\alpha_{i}) D(X_{b})_{D}}{(\alpha_{a}-1) L_{f}(X_{b})_{f}}$$
(SHG-1)

where D = moles of top product;

(X_i)_D = mole fraction of component i in distillate; L_f = moles of liquid feed; (X_i)₌ mole fraction of component i in liquid porif tion of feed;

- α = volatility relative to that of the heavy key;
- a = light key component;
- b = heavy key component.

The $(X_{i})_{f}$ values can be obtained from the flash, if any, of the feed. If the ratio of the amount of a component in the distillate to that of the total quantity of that component in the feed is greater than one or negative, the component is presumed to be non-distributing and the amount of it in the distillate is respectively equal to that in the feed or zero; if this ratio lies between zero and one, the component does distribute.

If the feed is boiling-point liquid, L_f is equal to the total feed and $(X_i)_f$ is the mole fraction of component i in the feed.

For a dew-point feed, the equation to be used is:

$$\frac{\alpha_{i} D(X_{i})_{D}}{F(X_{i})_{F}} = \frac{\alpha_{a} (\alpha_{i} - 1) D(X_{a})_{D}}{(\alpha_{a} - 1) F(X_{a})_{F}} + \frac{(\alpha_{a} - \alpha_{i}) D(X_{b})_{D}}{(\alpha_{a} - 1) F(X_{b})_{F}}$$
(SHG-2)

where F = moles of total feed;

 $(X_i)_F$ = moles of component i in feed.

Having determined the distillate composition this way and the alpha values as outlined before, Underwood's "O function" method for systems without split keys is used to calculate the minimum reflux for systems with and without split-key components.

Scheibel and Montross' Method

These investigators developed an empirical equation for the calculation of the minimum reflux ratio. It is divided into three parts:

- (a) The reflux required to separate the key components, if components lighter than the light key have infinite volatility and components heavier than the heavy key have zero volatility.
- (b) The reflux necessary to separate the heavier components from the light key, considering their actual volatilities.
- (c) The reflux required for the separation of the lighter components from the heavy key, considering their actual volatilities.

This method was developed from a large number of problems with widely different conditions and yielded a straightforward equation which does not require trial and error. It can be applied to systems with bubble-point liquid, part vapor, or dew-point vapor as feed. If split keys are involved, the amount of these components going overhead has to be known. The relative volatilities are determined at an estimated feed plate temperature for systems in which these quantities are temperature dependent.

Following is a step-by-step account of the minimum reflux calculation:

1. Evaluate m =
$$\frac{M_L - \sum M_D}{M_V - \sum M_A}$$
 (SM-1)

where m = pseudoratio of liquid to vapor in feed; M_L = moles of liquid feed; M_V = moles of vapor feed; $\sum M_D$ = total moles of components heavier than heavy key in feed; $\sum M_A$ = total moles of components lighter than light key in feed.

2. Determine the value of x_i between zero and unity from

$$x_{1} = \frac{(\alpha_{B}-1)(1+m)\frac{X_{B}}{X_{B}+X_{C}} - \alpha_{B}-m\pm\sqrt{Q}}{2m(\alpha_{B}-1)}$$
(SM-2)

where Q = { (α_{B} -1)(1+m) $\frac{X_{B}}{X_{B}+X_{C}} - \alpha_{B}-m$ }²+

$$4m(\alpha_{B}^{-1})(1+m)\frac{X_{B}}{X_{B}^{+}X_{C}};$$
 (SM-3)
x_i = mole fraction of light key at intersection of operating lines at minimum reflux, based on key components only; X_B = mole fraction of light key in feed; X_C = mole fraction of heavy key in feed; α_B = relative volatility of keys at feed tray.

3. Calculate the pseudo minimum reflux ratio

$$R^{1}_{M} = \frac{x_{P}}{(\alpha_{B}-1)x_{i}} - \frac{(1-x_{P})\alpha_{B}}{(1-x_{i})(\alpha_{B}-1)}$$
(SM-4)

where x_P = mole fraction of light key in distillate based on total keys in distillate. The minimum reflux ratio R_M is then given by:

. 4.

$$R_{M} = \frac{1}{X_{B} + \sum X_{A}} \{ X_{B} R_{M}^{1} + (X_{C} + \sum X_{D}) \sum \frac{X_{D}}{\frac{\alpha_{B}}{\alpha_{D}}} + \sum \frac{X_{A}}{\alpha_{A}} (1 + \frac{\alpha_{B}}{\alpha_{A}}) \} \quad (SM-5)$$

where X_A = total mole fraction of components lighter than light key in feed; X_D = total mole fraction of components heavier than heavy key in feed.

The terms inside the brackets represent, in order, the three fractions of the reflux necessary for the required separation as mentioned in the beginning of this discussion.

Murdoch and Holland's Method

These investigators developed an Over-all Balance Equation which is an extension of the Underwood method. It is, therefore, based on the assumptions of constant molal overflow and constant relative volatility. This method does not require solution of simultaneous equations, however, the procedure used for determining relative volatilities is quite involved.

Murdoch and Holland use the following alpha-values for systems with variable relative volatility:

for all components lighter than the light key $\alpha = \alpha_{PR}$, for the keys and splitkey components $\alpha = \frac{\alpha_{PR} + \alpha_{PS}}{2}$, for all components heavier than the heavy key $\alpha = \alpha_{PS}$, where α_{PR} and α_{PS} are the relative volatilities at the rectifying pinch and at the stripping pinch respectively.

The alpha's in the pinches are determined as follows:

a. Assume a value for the minimum reflux ratio.

 b. Using this value, calculate by trial and error the temperatures of the two pinches by pinch composition equations (see Colburn).

c. Evaluate the α 's at these temperatures.

- d. Check the calculated minimum reflux ratio versus the assumed value.
- e. Repeat the calculation using the computed minimum reflux ratio if these two values differ greatly.

For systems without split keys, Underwood's "0 function" technique is applied using relative volatilities computed as outlined above. The steps involved in applying the Over-all Balance Method to systems containing split-key components are as follows:

1. Calculate, by trial and error, the Θ 's having values between the relative volatilities of the key components from the equation

$$\frac{\alpha_1 x_{1F}}{\alpha_1 - \Theta} + \frac{\alpha_2 x_{2F}}{\alpha_2 - \Theta} + - - - \frac{\alpha_n x_{nF}}{\alpha_n - \Theta} = 1 - q \quad (MH-1)$$

- where x_{1F} = mole fraction of component 1 in the feed;
 - α_1 = volatility of component l relative to that of the heavy key;
 - = heat required to vaporize one mole q of feed divided by the molal latent heat of the feed.

Two Θ values are required for systems containing one split key.

2**.** Evaluate

$$\mathbf{v} = \frac{\mathbf{i} = \mathbf{h} + \mathbf{i}}{\frac{\boldsymbol{\ell} - \mathbf{i}}{\Pi} \boldsymbol{\alpha}_{\mathbf{i}}}$$
(MH)
$$\mathbf{i} = \mathbf{h} + \mathbf{i}$$

-2)

h = heavy key component;

- l = light key component;
- i = component number. Components are

arranged in order of increasing volatility.

3. Evaluate:

$$\sum_{j=h,\ell,L} \frac{\omega_j}{\alpha_j} Dx_{Dj}$$
(MH-3)

where j = component number;

L = any component lighter than the light key; D = moles of top product per mole of feed; x_{Dj} = mole fraction of component j in the top product,

and
$$\omega_{j} = \frac{\frac{l-1}{\Pi} \left(1 - \frac{\alpha_{j}}{\alpha_{j}} \right)}{\frac{l}{\Pi} \left(1 - \frac{\Theta_{j}}{\alpha_{j}} \right)}$$
 (MH-4)
 $i=h+1$ j

4. Multiply each term in item 3 by α_{j} giving:

$$\sum_{j=h,l,L} \omega_j Dx_{Dj} \qquad (MH-5)$$

5. Evaluate:

$$\rho = v \frac{j = h, l, L}{\sum_{j=h, l, L} \frac{\omega_j}{\alpha_j} Dx_{Dj}}$$
(MH-6)

$$j = h, l, L$$

6. Calculate the minimum reflux ratio: RMIN= $\frac{\rho}{1-\rho}$

CHAPTER V

COMPUTATIONS

Selected Systems

The minimum reflux ratio was calculated for mixtures of four to eight hydrocarbons, distilled at 400 psia. The components involved are: CH_4 , C_2H_6 , C_3H_8 , $i-C_4H_{10}$, $n-C_4H_{10}$, $i-C_5H_{12}$, $n-C_5H_{12}$, and $n-C_8H_{18}$. The relative volatilities of these compounds vary with temperature.

The following variables and combinations of these variables were considered in setting up the 48 problems which have been solved by each of the five methods:

1. Feed condition----dew-point vapor

50% vapor

bubble-point liquid

2. Feed composition ---- fraction of keys in the feed

key ratio

fraction lighter than the light key

fraction heavier than the heavy key

3. Components-----total number

key components

split-key component

In problems 1-10, the feed composition is varied for a system of four components with adjacent keys and 50%

vapor feed. Problems 11-16 involve eight components, adjacent keys, 50% vapor feed, and different feed compositions. The systems of problems 17-22 consist of eight components, including one split key, with different feed compositions and 50% vapor feed. Problems 23-28 involve six components, different feed compositions, and 50% vapor feed; although the key components are adjacent, their relative volatility is greater than in problems 1-16. Problems 29-38 and 39-48 are identical to problems 1-10 except for the feed condition, which is bubble-point liquid and dew-point vapor respectively.

All systems evaluated represent sharp separations. The separation ratio D/B, which denotes the split of a component between the top product and bottom product, is 30 for the light key and 1/30 for the heavy key in all problems.

Procedures

Since the systems to be evaluated represent sharp separations, it was reasonable to assume that the components lighter than the light key and the components heavier than the heavy key would all be separated components. The results from the method by Shiras et al. proved this to be a valid assumption. The split keys in problems 17-22 were initially assumed to distribute evenly between the

distillate and the bottom product, which deviated little from the actual results obtained by the methods of Underwood and Shiras et al. The composition of the two product streams was thus known, and the temperatures at the top and bottom of the column were then determined by calculating the dew point of the vapor with the same composition as the distillate and the bubble point of the bottom product. In making the bubble point calculation, the mole fraction X_i of all components in the bottom product is known. For a bubble-point liquid, the sum of the mole fractions in the vapor equals unity, $1 = \sum_{i=1}^{c} K_i X_i$ or in func-

tional notation, f (T) = $\sum_{i} K_{i} X_{i}$ -1. The bubble point is then determined as the positive value of T such that f(T) = 0. Since each K-value increases with temperature, only one positive value of T will satisfy that expression. The Kvalues (1) are given as a polynomial of the temperature at the specified pressure in Table 61 of the Appendix. In a similar manner, the dew point of a vapor can be determined from the expression F(T) = $\sum_{i=1}^{n} Y_{i}/K_{i}$ -1. All bubble points and dew points were determined with an accuracy of 1°F allowing f(T) to deviate from zero no more than 0.007.

<u>Underwood</u>. A separate program was used to calculate the relative volatilities at the average column temperature. The technique of interval halving was applied in the trial and error procedure to determine the theta values. The

main program consists of two parts, one for systems without split-key components and the other part for systems with one split key.

<u>Colburn</u>. The two correction terms C_m and C_n , each of which is shown in Colburn's article in a graph as some non-linear function of a relative volatilities term, have been omitted, since according to Colburn, this can be done "without introducing appreciable error."

In determining the composition and the temperature of the pinches, it is not sufficient to find a temperature such that the sum of the mole fractions of the constituents of a particular pinch, for a given reflux and distillate composition, equals unity. It is easily overlooked that negative values can be obtained for individual mole fractions. Therefore, the second criteria is that the mole fraction of each component be positive.

Because of the sharp separations of the systems analyzed, the mole fractions of the heavy key in the distillates and those of the light key in the bottom products are rather small. Consequently, the mole fraction of the heavy key in the rectifying pinch and the mole fraction of the light key in the stripping pinch, as determined by the respective pinch equations, are very temperature sensitive. Considering only the rectifying pinch, change in

temperature of $0.1^{\circ}F$ may easily change the mole fraction of the heavy key in that pinch by as much as 0.2, while leaving the mole fractions of the other components essentially unaffected; the total mole fraction will then also change by 0.2. Pursuing this procedure to find the temperature which yields a total mole fraction of unity, would require temperature differences between subsequent trials of $0.01^{\circ}F$. This seemed unreal and unnecessary, so that the following technique was used. The temperature was determined to within $0.1^{\circ}F$; then the mole fraction of the heavy key was found by subtracting the sum of the mole fractions of the other components in the rectifying pinch from unity. The same procedure was used for the light key in the stripping pinch.

The minimum reflux ratio was determined, also by a trial and error procedure, to the nearest 0.01. The distribution of the split-key components, as obtained by Underwood's method, was used in the solution of problems 17-22.

Shiras et al. All systems with part vapor feed necessitated calculation of the composition of the liquid part of the feed. This was accomplished by using the equations:

 $l_i = f_i/(1+VK_i/L)$ and $v_i = f_i-l_i$

where l_3 = moles of liquid of component i in the feed;

- f; = total moles of component i in feed;
- v_i = moles of vapor of component i in the feed;
- K_i = equilibrium constant of component i;
- V = total moles of vapor feed;
- L = total moles of liquid feed.

If the feed contains vapor and liquid in a certain ratio V/L, a temperature is assumed and the individual l_i 's and v_i 's are determined and summed groupwise. If $\frac{\sum v_1}{\sum l_i} = \frac{v}{L}$, the assumed temperature is the temperature of the feed, and the composition of the vapor and liquid are known. Another trial with a new temperature must be carried out if the above equality has not been met.

The relative volatilities at the feed-plate temperature have been determined with a separate program. The feed-plate temperature was estimated as the arithmetic mean of the top plate and reboiler temperatures, weighted by the molal amounts of distillate and bottom product. Interval halving was the convergence technique used to determine the theta value.

Scheibel and Montross. The distribution of the split key as obtained by Underwood's method for problems 17-22 was used in the final equation of the procedure by Scheibel and Montross. The fraction of the split key going overhead was added to the light key, while the remainder became part of the heavy key.

For systems with variable relative volatilities, the investigators suggest to use the values at the feed-plate temperature; the latter is determined as the bubble point of the keys at the intersection of the feed line and equilibrium line. However, this requires the x-values of the keys at this point, which cannot be obtained without using α values. Therefore, exact execution of the procedure as proposed by Scheibel and Montross, makes it a trial and error method after all.

<u>Murdoch and Holland</u>. The program consists of two parts, of which that for non split-key systems is essentially a combination of Colburn's and Underwood's procedures; the other part is for mixtures containing one split key and also includes some of the techniques used by Colburn and Underwood.

The reflux ratio upon which the relative volatilities are based is within 1% of the calculated value. All theta values have been determined by interval halving.

Programs and Results

Tables 1-48 show the essential data of examples 1-48, including feed condition, feed composition, distillate composition, and the minimum reflux ratio as calculated by each of the five methods. The letters L and H desig-

nate the light and heavy key components.

The effect of the feed condition on the minimum reflux ratio can be seen from tables 1-10 and 29-48. For easy comparison, the results have been grouped for each method as shown in tables 49-53.

Table 54 illustrates the effect of the relative volatilities as suggested by the different investigators when applied to the same minimum reflux method, Scheibel's in this case. Since Colburn in his method uses the two sets of α values from the pinches, Murdoch and Holland's technique was applied for reducing it to one set of data. The α values of the rectifying pinch were used for the components lighter than the light key, those of the stripping pinch for the components heavier than the heavy key; and for the distributed components, the arithmetic average of the values in the two pinches was employed.

The relative volatilities from the different methods which have been used in calculating the results of Table 54, are shown in tables 55-59.

The temperatures calculated for the top and bottom of the distillation column are presented in Table 60.

Table 61 shows the equilibrium data for the hydrocarbon compounds at 400 psia as a function of the temperature.

The computer programs for determining the minimum reflux ratio by the methods of Underwood, Colburn, Shiras et al., Scheibel and Montross, and Murdoch and Holland are given in Tables 62-66. The programs for the calculation of bubble point, dew point, and relative volatilities are shown in Tables 67-69. An explanation of the terminology used in the programs is given in Table 70. All programs were written specifically to solve the examples selected for this work, and they may require minor changes to be suitable for general application.

CHAPTER VI

CONCLUSIONS

The minimum reflux results have been given in terms of the minimum reflux ratio since this magnitude, by itself, reveals an important characteristic of any system. The initial assumption that all components lighter than the light key and heavier than the heavy key would become separated components was proven to be valid by the results of Shiras et al. This was anticipated because of the sharp separations of the systems involved.

Tables 1-10 show that the results of the five methods are within 10% of one another for 4-component systems with adjacent keys. The spread between the minimum and maximum values is larger when the system contains unequal amounts of separated light and heavy components. A similar tendency in the results is observed if the feed condition for these systems is changed. Tables 29-38 and 39-48 show this for bubble-point liquid and dew-point vapor feeds, and the remarkably identical effect of the feed condition on each of the five methods can be seen from Tables 49-53.

As is shown in Tables 11-16, the spread between the two most extreme results increased to about 30% based on the smaller value for systems containing 8 components. Again, the magnitude of this range depends on the feed

composition, whereby systems with unequal amounts of separated components yielded the largest difference in results. It may be noted that the same methods gave the highest and lowest values as in the case of the 4-component systems. When the amount of heavy separated components exceeded that of the light separated components, Scheibel and Montross' method yielded the lowest result; and Shiras et al.'s procedure, the highest. The reverse was observed when the amount of light components exceeded that of the heavy constituents.

The data for 8-component systems containing one split key are shown in Tables 17-22. Shiras et al.'s and Underwood's are the only methods which provide a means for calculating the distribution of split keys. Appreciable difference was found in the results from these two procedures. Shiras' method yielded approximately the same amount of split key in the distillate for all 6 examples, which is surprising in view of the considerable variation in the feed composition. These results and other data derived from them are shown in parentheses. It is the amount of split key in the overhead product as obtained from Underwood's method which is included in the total moles of distillate upon which all minimum reflux ratio's are based. Colburn's method gave low values for the minimum reflux ratio for all six problems, and the trend

seen in previous results is not as prevailing in these examples. The spread between the lowest and highest values of the minimum reflux ratio ranged from 45% to 125%, a sharp increase when compared to that of the 8-component systems with adjacent keys.

When the relative volatility of adjacent keys was increased, the spread in the results ranged from 20% to 130% for the 6-component systems shown in Tables 23-28. Again, as in all previous examples, the largest difference was obtained for systems with small amounts of heavy separated components.

A remarkable parallel exists between the results given in Table 54 and those in Tables 1-49. It shows that the differences in the relative volatility data, as suggested by the respective investigators, is the main cause of the differences obtained for the value of the minimum reflux ratio.

In summary, it can be said that the spread between the results from the five methods increases when:

- a. The amounts of separated light and heavy components become unequal
- b. The amount of separated light components exceeds that of the separated heavy components
- c. The number of components increases
- d. Split keys are present

e. The relative volatility between the key components increases.

The fact that each method uses a different basis for calculating the relative volatilities accounts to a great extent for the differences in results between the methods.

CHAPTER VII

RECOMMENDATIONS

Considerable variation was found in the results of the minimum reflux ratio as obtained from the methods by Underwood, Colburn, Scheibel and Montross, Murdoch and Holland, and Shiras et al. For certain systems, the spread was more than 100% of the lowest value. Most of the deviations were caused by differences in the relative volatilities as used in these particular procedures.

To ascertain which of these methods is preferable for general application or for a particular type of system and to determine their degree of reliability, comparison of the results with those from a rigorous calculation is required. This would also identify which basis for the relative volatilities best represents these properties in systems in which they are temperature dependent.

The only methods which incorporate determination of the product composition are those by Underwood and Shiras et al. Colburn, and Scheibel and Montross do not offer this feature, while Murdoch's procedure is identical to that by Underwood. Therefore, only the first two methods can be considered for general application. Until the superiority of either one with respect to product prediction has been established, the following combination of these two procedures is suggested:

- 1. Determine which components distribute by the procedure of Shiras et al.
- 2. Apply Underwood's 0 function technique to obtain the distillate composition and the minimum reflux. This will require solution of simultaneous equations when components other than the keys distribute. Underwood's suggestion for calculating relative volatilities in systems where they vary does not necessarily have to be followed. Data arrived at a different way should be used if they are known to be more representative of that particular system.

It is difficult to give an accurate assessment of the computer effort required for each method. The computation time involved depends on the starting values selected in trial and error procedures, convergence techniques, etc. Also, the programs used are not claimed to be optimized. A qualitative indication, shown in order of increasing effort required, is as follows: Scheibel and Montross, Underwood, Shiras et al., Murdoch and Holland, Colburn.

Scheibel and Montross' method is the only one feasible for hand calculation within a reasonable length of time and is suggested for use if a computer is not read-

ily available. Relative volatilities should be determined at the average column temperature, thereby eliminating the trial and error technique required to match these values with those at the feed plate temperature.

APPENDIX

COMPONENT	COMP NB	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REF	LUX BATTO
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 5 6	L H	40.00 14.00 6.00 40.00	40.00 13.55 0.19	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	2.64 2.69 2.59 2.62 2.58
TOTAL			100.00	53.74		

TABLE 1. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 1FEEDCONDITION 50% VAPOR

TABLE 2.SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 2FEEDCONDITION 50% VAPOR

•

COMPONENT	COMP NR	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REF METHOD	LUX RATIO	
C3H8 i-C4H10 n-C4H10 i-C5H12	3 4 5 6	L H	40.00 6.00 14.00 40.00	40.00 5.81 0.45	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	3.05 3.42 3.09 3.22 3.20	
TOTAL			100.00	46.26			

45.

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX	
	NR		MOLES	MOLES	METHOD	RATIO
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 56	L H	25.00 33.00 17.00 25.00	25.00 31.94 0.55	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	4.58 4.56 4.49 4.48 4.48 4.46
TOTAL			100.00	57.49		· · ·

TABLE 3.SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 3FEEDCONDITION 50% VAPOR

TABLE 4. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 4 FEEDCONDITION 50% VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX		
	NR		MOLES	MOLES	METHOD	RATIO	
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 56	L H	25.00 17.00 33.00 25.00	25.00 16.45 1.06	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	6.19 6.58 6.30 6.35 6.37	
TOTAL		Annone and Anno Anno Anno Anno Anno Anno Anno An	100.00	42.51			

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX		
	NR		MOLES	MOLES	METHOD	RATIO	
C3H8 i-C4H10 n-C4H10 i-C5H12	3 4 5 6	L H	10.00 53.00 27.00 10.00	10.00 51.29 0.87	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	6.13 6.03 6.02 6.00 6.00	
TOTAL	no wan o Manana a		100,00	62.16			

TABLE 5. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 5 FEEDCONDITION 50% VAPOR

TABLE 6. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 6 FEEDCONDITION 50% VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX		
	NR		MOLES	MOLES	METHOD	RATIO	
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 5 6	L H	10.00 27.00 53.00 10.00	10.00 26.13 1.71	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	10.25 10.56 10.44 10.38 10.44	
TOTAL	1		100.00	37.84			

COMPONENT	COMP NR	KEY	FEED IN MOLES	DISTILLATE I MOLES	N MINIMUM REP METHOD	FLUX RATIO	
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 5 6	L H	5.00 33.00 17.00 45.00	5.00 31.94 0.55	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	7.48 7.39 7.67 7.06 7.23	
TOTAL			100.00	37.49			

TABLE 7.SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 7FEEDCONDITION 50% VAPOR

TABLE 8. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 8 FEEDCONDITION 50% VAPOR

.

COMPONENT CO		KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX		
	NR	and the first function of the second s	MOLES	MOLES	METHOD	RATIO	
C3H8 i-C4H10 n-C4H10 i-C5H12	3 4 56	L H	5.00 17.00 33.00 45.00	5.00 16.45 1.06	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	13.28 13.77 14.08 13.00 13.39	
TOTAL		1	· 100.00	22.51	· · ·		

TABLE 9,	SPECIFICATIONS	AND	SOI	LUTIONS	OF	EXAMPLE	9
	FEEDCONDITI	ON 5	50%	VAPOR			

ONENT COMP KEY FEED IN DISTILLATE IN		MINIMUM REF	MINIMUM REFLUX		
NR		MOLES	MOLES	METHOD	RATIO
3 4 5 6	L H	45.00 33.00 17.00 5.00	45.00 31.94 0.55	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	3.24 3.26 3.02 3.33 3.21
		100.00	77.49	· .	
	COMP NR 3 4 5 6	COMP KEY NR 3 4 5 H 6	COMP KEY FEED IN NR MOLES 3 45.00 4 L 5 H 17.00 6 100.00	COMP KEY FEED IN DISTILLATE IN NR MOLES MOLES 3 45.00 45.00 4 L 33.00 31.94 5 H 17.00 0.55 6 100.00 77.49	COMP NRKEYFEED IN MOLESDISTILLATE IN MOLESMINIMUM REF METHOD3 4 5 545.00 17.0045.00 31.94 0.55Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland6100.0077.49

TABLE 10. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 10 FEEDCONDITION 50% VAPOR

•

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX		
	NŖ		MOLES	MOLES	METHOD	RATIO	
C3H8 1-C4H10 n-C4H10 1-C5H12	34 56	L H	45.00 17.00 33.00 5.00	45.00 16.45 1.06	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	3.79 4.06 3.68 4.16 3.94	
TOTAL			. 100.00	62.51			

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX		
	NR		MOLES	MOLES	METHOD	RATIO	
CH4 C2H6 C3H8 i-C4H10 n-C4H10 i-C5H12 n-C5H12 n-C5H18	1 2 3 4 5 6 7 8	L H	11.00 12.00 20.00 10.00 12.00 12.00 11.00	11.00 12.00 12.00 19.35 0.32	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	2.98 2.95 2.90 2.94 2.90	
TOTAL	in the second seco		100.00	54.67			

TABLE 11.SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 11FEEDCONDITION 50% VAPOR

TABLE 12. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 12

FEEDCONDITION 50% VAPOR

COMPONENT	COMP NR	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REP METHOD	TLUX RATTO
CH4 C2H6 C3H8 i-C4H10 n-C4H10 i-C5H12 n-C5H12 n-C5H12 n-C8H18	1 2 3 4 5 6 7 8	L H	11.00 12.00 12.00 10.00 20.00 12.00 12.00 11.00	11.00 12.00 12.00 9.68 0.65	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	3.51 3.91 3.61 3.68 3.73
TOTAL		n yanada mara a shadi n	100.00	45.33		

COMPONENT COMP		KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX		
	NR		MOLES	MOLES	METHOD	RATIO	
CH4 C2H6 C3H8 i-C4H10 n-C4H10 i-C5H12 n-C5H12 n-C5H18	1 2 3 4 5 6 7 8	L H	$ \begin{array}{r} 1.00\\ 2.00\\ 4.00\\ 20.00\\ 10.00\\ 30.00\\ 20.00\\ 13.00 \end{array} $	1.00 2.00 4.00 19.35 0.32	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	7.41 7.42 8.09 6.90 7.25	
TOTAL	-		100.00	26.67			

TABLE 13.SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 13FEEDCONDITION 50% VAPOR

TABLE 14. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 14 FEEDCONDITION 50% VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLATE I	[N	MINIMUM REF	LUX	
×	NR		MOLES	MOLES		METHOD	RATIO	
CH4 C2H6 C3H8 i-C4H10 n-C4H10 i-C5H12 n-C5H12 n-C8H18	1 2 3 4 5 6 7 8	L H	$ \begin{array}{c} 1.00\\ 2.00\\ 4.00\\ 10.00\\ 20.00\\ 30.00\\ 20.00\\ 13.00\\ 100 00 \end{array} $	1.00 2.00 4.00 9.68 0.65		Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	12.33 13.16 13.92 11.85 12.68	

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX	
•. • •	NR		MOLES	MOLES	METHOD	RATIO
CH4 C2H6 C3H8 i-C4H10 n-C4H10 i-C5H12 n-C5H12 n-C5H18	1 2 3 4 5 6 7 8	L H	$ \begin{array}{r} 13.00\\ 20.00\\ 30.00\\ 20.00\\ 10.00\\ 4.00\\ 2.00\\ 1.00 \end{array} $	13.00 20.00 30.00 19.35 0.32	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	1.80 1.81 1.52 1.93 1.79
TOTAL			100.00	82.67		

TABLE 15.SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 15FEEDCONDITION 50% VAPOR

TABLE 16. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 16 FEEDCONDITION 50% VAPOR

COMPONENT	COMP NR	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM REF METHOD	LUX RATIO
CH4 C2H6 C3H8 i-C4H10 n-C4H10 i-C5H12 n-C5H12 n-C5H18	1 2 3 4 5 6 7 8	L H	$ \begin{array}{r} 13.00 \\ 20.00 \\ 30.00 \\ 10.00 \\ 20.00 \\ 4.00 \\ 2.00 \\ 1.00 \end{array} $	13.00 20.00 30.00 9.68 0.65	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	1.80 2.02 1.59 2.13 1.91
TOTAL			100.00	73.33		

TABLE	17.	SPECIFICATIONS	AND	SOLUTIONS	OF	EXAMPLE	17
		FEEDCONDITI	ION 9	50% VAPOR			

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM RE	FLUX
	NR		MOLES	MOLES	METHOD	RATIO
CH4 C2H6 C3H8 i-C4H10 n-C4H10 i-C5H12 n-C5H12 n-C5H18	1 2 3 4 5 6 7 8	L H	$ \begin{array}{r} 10.00 \\ 10.00 \\ 20.00 \\ 10.00 \\ 10.00 \\ 10.00 \\ 15.00 \\ 15.00 \\ \end{array} $	10.00 10.00 10.00 19.35 6.87(6.98) 0.32	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	1.19 0.82 1.11 (1.11) 1.08 1.19
TOTAL			100.00	56.54(56.65)		

TABLE 18. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 18 FEEDCONDITION 50% VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM RI	EFLUX
•	NR		MOLES	MOLES	METHOD	RATIO
CH4 C2H6 C3H8 1-C4H10 n-C4H10 1-C5H12 n-C5H12 n-C5H12 n-C8H18	1 2 3 4 5 6 7 8	L H	10.00 10.00 10.00 10.00 20.00 15.00 15.00	10.00 10.00 9.68 6.82(6.99) 0.65	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	1.46 1.15 1.47 (1.46) 1.91 1.61

TABLE	19.	SPECIFICATIONS	AND SO	LUTIONS	OF	EXAMPLE	19
		FEEDCONDIT	EON 50%	VAPOR			

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REF	FLUX
The second s	NR		MOLES	MOLES	METHOD	RATIO
CH4 C2H6 C3H8 i-C4H10 n-C4H10 i-C5H12 n-C5H12 n-C5H12 n-C8H18 TOTAL	1 2 3 4 5 6 7 8	L H	1.00 2.00 20.00 10.00 10.00 35.00 20.00	1.00 2.00 2.00 19.35 6.38(6.97) 0.32 31.05(31.64)	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	3.24 2.63 3.84 (3.77) 2.64 3.42

TABLE 20. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 20 FEEDCONDITION 50% VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	. MINIMUM RE	FLUX
	NR	1	MOLES	MOLES	METHOD	RATIO
CH4 C2H6 C3H8 1-C4H10 n-C4H10 1-C5H12 n-C5H12 n-C5H18 TOTAL	1 2 3 4 5 6 7 8	H	$ \begin{array}{r} 1.00\\ 2.00\\ 2.00\\ 10.00\\ 20.00\\ 35.00\\ 20.00\\ 100.00\\ \end{array} $	1.00 2.00 2.00 9.68 6.34(6.97) 0.65 21.67(22.30)	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	4.90 4.13 5.97 (5.80) 5.82 5.40

COMPONENT	COMP NR	KEY	FEED IN MOLES	DISTILLATE IN MOLES	MINIMUM RE METHOD	EFLUX RATIO
CH4 C2H6 C3H8 1-C4H10 n-C4H10 1-C5H12 n-C5H12 n-C5H18	1 2 3 4 5 6 7 8	L H	$ \begin{array}{r} 15.00 \\ 20.00 \\ 20.00 \\ 10.00 \\ 10.00 \\ 3.00 \\ 2.00 \end{array} $	15.00 20.00 20.00 19.35 6.04(6.83) 0.32	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	0.60 0.32 0.31 (0.31) 0.67 0.56
TOTAL			100.00	80.71(81.50)	

TABLE 21. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 21 FEEDCONDITION 50% VAPOR

TABLE 22.SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 22FEEDCONDITION 50% VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM RE	FLUX
	NR		MOLES	MOLES	METHOD	RATIO
CH4 C2H6 C3H8 i-C4H10 n-C4H10 i-C5H12 n-C5H12 n-C8H18	1 2 3 4 5 6 7 8	L	$ \begin{array}{r} 15.00 \\ 20.00 \\ 20.00 \\ 10.00 \\ 20.00 \\ 3.00 \\ 2.00 \\ \end{array} $	15.00 20.00 20.00 9.68 5.84(6.87) 0.65	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	0.65 0.42 0.40 (0.39) 0.96 0.66
TOTAL		-	100.00	71.17(72.20		

ភ ភ

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REF	LUX
	NR		MOLES	MOLES	METHOD	RATIO
CH4 C2H6 C3H8 1-C4H10 n-C4H10 1-C5H12 n-C5H12 n-C8H18	1 2 3 4 5 6 7 8	L	15.00 20.00 20.00 10.00 20.00 15.00	15.00 20.00 19.35 0.32	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	0.51 0.43 0.48 0.37 0.51
TOTAL			100.00	54.67		1

TABLE 23.SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 23FEEDCONDITION 50% VAPOR

TABLE 24, SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 24 FEEDCONDITION 50% VAPOR

COMPONENT	COMP	. KEY	FEED IN	DISTILLATE IN	MINIMUM REF	LUX
	NR		MOLES	MOLES	METHOD	RATIO
CH4 C2H6 C3H8 i-C4H10 n-C4H10 i-C5H12 n-C5H12 n-C5H18	1 2 3 4 5 6 7 8	L H	15.00 20.00 10.00 20.00 20.00 15.00	15.00 20.00 9.68 0.65	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	0.67 0.79 0.70 0.73 0.78
TOTAL		1	100.00	45.33		

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REF	TUX
	NR		MOLES	MOLES	METHOD	RATIO
CH4 C2H6 C3H8 1-C4H10 n-C4H10	1 2 3 4 5	L	2.00 3.00 20.00	2.00 3.00 19.35	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	2.33 2.50 2.77 1.92 2.70
1-C5H12 n-C5H12 n-C8H18	6 7 8	H	10.00 40.00 25.00	0.32		
TOTAL			100.00	24.67		

.

TABLE 25.SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 25FEEDCONDITION 50% VAPOR

TABLE 26. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 26 FEEDCONDITION 50% VAPOR

COMPONENT	COMP KEY	FEED IN	DISTILLATE IN	MINIMUM REF	LUX
	NR	MOLES	MOLES	METHOD	RATIO
CH4 C2H6 C3H8 i-C4H10 n-C4H10 i-C5H12 n-C5H12 n-C5H18	1 2 3 L 4 5 6 H 7 8	2.00 3.00 10.00 20.00 40.00 25.00	2.00 3.00 9.68 0.65	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	4.24 5.05 5.18 4.34 5.06
TOTAL		100.00	15.33		1 · · · · · · · · · · · · · · · · · · ·

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REI	FLUX
	NR	- Aller	MOLES	MOLES	METHOD	RATIO
CH4 C2H6 C3H8 1-C4H10 1-C4H10 1-C5H12 n-C5H12 n-C5H18 TOTAL	1 2 3 4 5 6 7 8	L	25.00 40.00 20.00 10.00 3.00 2.00 100.00	25.00 40.00 19.35 0.32 84.67	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	0.18 0.08 0.09 0.16 0.10

TABLE 27. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 27 FEEDCONDITION 50% VAPOR

TABLE 28. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 28

FEEDCONDITION 50% VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REF:	LUX
	NR	:	MOLES	MOLES	METHOD	RATIO
CH4 C2H6 C3H8 i-C4H10 n-C4H10 i-C5H12 n-C5H12 n-C8H18	1 2 3 4 5 6 7 8	L	25.00 40.00 10.00 20.00 3.00 2.00	25.00 40.00 9.68 0.65	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	0.19 0.09 0.11 0.21 0.11
TOTAL			100.00	75.33		
· .						

COMPONENT	COMP	KEY	FEED IN	DISTILLATE	IN	MINIMUM REI	FLUX
	NR	4444 - 110 - 100 - 100 - 100 - 100	MOLES	MOLES		METHOD	RATIO
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 5 6	L H	40.00 14.00 6.00 40.00	40.00 13.55 0.19		Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	2.38 2.34 2.34 2.39 2.29
TOTAL			100.00	53.74	n e , i quint d'un dansa ge		

TABLE 29. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 29 FEEDCONDITION BUBBLE-POINT LIQUID

TABLE 30.	SPECIFICATION	IS AND SOLUT	IONS OF	EXAMPLE	30
	FEEDCONDITION	BUBBLE-POINT	r LIQUII	D	

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REF	FLUX
	NR		MOLES	MOLES	METHOD	RATIO
C3H8 1-C4H10 n-C4H10 1-C5H12	34 56	L H	40.00 6.00 14.00 40.00	40.00 5.81 0.45	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	2.45 2.71 2.50 2.58 2.56
TOTAL			100.00	46.26		
TABLE 31.	SPECIFICATIONS	AND	SOLUTION	S OF	EXAMPLE	31
-----------	----------------	-------	----------	-------	---------	----
	FEEDCONDITION	BUBBL	E-POINT	LIQUI	ID	

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REF	LUX
and a second	NR		MOLES	MOLES	METHOD	RATIO
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 5 6	L H	25.00 33.00 17.00 25.00	25.00 31.94 0.55	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	4.30 4.24 4.21 4.18 4.18
TOTAL		a sources and sources	100.00	57.49		

TABLE 32.SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 32FEEDCONDITION BUBBLE-POINT LIQUID

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM RE	FLUX
	NR		MOLES	MOLES	METHOD	RATIO
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 5 6	L H	25.00 17.00 33.00 25.00	25.00 16.45 1.06	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	5.48 5.82 5.60 5.65 5.67
TOTAL		anger again - yand-oʻy bu,	100.00	42.51		

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REF	LUX
	NR	anna gu a ta chuir a ta	MOLES	MOLES	METHOD	RATIO
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 5 6	L H	10.00 53.00 27.00 10.00	10.00 51.29 0.87	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	5.87 5.75 5.76 5.74 5.74
TOTAL			100.00	62.16		

TABLE 33. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 33 FEEDCONDITION BUBBLE-POINT LIQUID

TABLE 34. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 34 FEEDCONDITION BUBBLE-POINT LIQUID

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REF	LUX
	NR		MOLES	MOLES	METHOD	RATIO
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 5 6	L H	10.00 27.00 53.00 10.00	10.00 26.13 1.71	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	9.43 9.69 9.62 9.56 9.62
TOTAL			100.00	37.84		

COMPONENT	COMP	KEY-	FEED IN	DISTILLATE IN	MINIMUM REF	LUX
•	NR		MOLES	MOLES	METHOD	RATIO
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 5 6	L H	5.00 33.00 17.00 45.00	5.00 31.94 0.55	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	6.91 6.74 7.11 6.60 6.67
TOTAL		10.4	100,00	37.49		

TABLE 35. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 35 FEEDCONDITION BUBBLE-POINT LIQUID

TABLE 36. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 36 FEEDCONDITION BUBBLE-POINT LIQUID

COMPONENT	ENT COMP KEY FEED		DISTILLATE IN	MINIMUM REFLUX	
	NR	MOLES	MOLES	METHOD	RATIO
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 L 5 H 6	5.00 17.00 33.00 45.00	5.00 16.45 1.06	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	11.72 12.16 12.54 11.52 11.90
TOTAL		100.00	22.51		

COMPONENT	COMP	KEY	FEED IN	DISTILLATE	IN	MINIMUM REF	LUX
	NR		MOLES	MOLES	ga generation of the state of the State	METHOD	RATIO
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 56	L H	45.00 33.00 17.00 5.00	45.00 31.94 0.55	1	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	3.08 3.08 2.87 3.13 3.05
TOTAL	-		100.00	77.49			

TABLE 37.SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 37FEEDCONDITION BUBBLE-POINT LIQUID

TABLE 38.SPECIFICATIONS AND SOLUTIONS OF EXAMPLES 38FEEDCONDITION BUBBLE-POINT LIQUID

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REF	LUX
	NR	4 	MOLES	MOLES	METHOD	RATIO
C3H8 1-C4H10 n-C4H10 1-C5H12	34 56	L H	45.00 17.00 33.00 5.00	45.00 16.45 1.06	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	3.41 3.65 3.29 3.69 3.54
TOTAL			100.00	62.51		

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REF	LUX
	NR		MOLES	MOLES	METHOD	RATIO
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 5 6	L H	40.00 14.00 6.00 40.00	40.00 13.55 0.19	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	3.05 3.21 3.01 3.05 3.03
TOTAL			100.00	53.74		

.

TABLE 39. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 39 FEEDCONDITION DEW-POINT VAPOR

TABLE 40. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 40 FEEDCONDITION DEW-POINT VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REF	LUX
	NR		MOLES	MOLES	METHOD	RATIO
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 5 6	L H	40.00 6.00 14.00 40.00	40.00 5.81 0.45	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	3.83 4.26 3.88 4.04 3.98
TOTAL			100.00	46.26	1	

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX	
	NR	-	MOLES	MOLES	METHOD	RATIO
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 5 6	L H	25.00 33.00 17.00 25.00	25.00 31.94 .55	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	4.92 4.95 4.83 4.84 4.81
TOTAL			100.00	57.49		2 1 1

TABLE 41. SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 41 FEEDCONDITION DEW-POINT VAPOR

TABLE 42.SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 42FEEDCONDITION DEW-POINT VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REFLUX				
	NR	MOLES MOLES METHOD		RATIO					
C3H8 i-C4H10 n-C4H10 i-C5H12	3 4 5 6	L H	25.00 17.00 33.00 25.00	25.00 16.45 1.06	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	6.98 7.40 7.10 7.18 7.16			
TOTAL			100.00	42.51		: : :			

TABLE 43.	SPECIFICATIONS	AND SOLU	TIONS	OF	EXAMPLE	43
	FEEDCONDITION 1	DEW-POINT	VAPOR			

COMPONENT	COMP	COMP KEY FEED IN I		DISTILLATE IN	MINIMUM REFLUX			
	NR		MOLES	MOLES	METHOD	RATIO		
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 5 6	L H	10.00 53.00 27.00 10.00	10.00 51.29 0.87	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	6.43 6.36 6.32 6.30 6.30		
TOTAL	2		100.00	62.16		An Arian Maria		

TABLE 44,SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 44FEEDCONDITION DEW-POINT VAPOR

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REF	EFLUX	
	NR		MOLES	MOLES	METHOD	RATIO	
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 5 6	L H	10.00 27.00 53.00 10.00	10.00 26.13 1.71	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	11.14 11.46 11.33 11.32 11.32	
TOTAL			100.00	37.84			

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REF	FLUX	
	NR		MOLES	MOLES	METHOD	RATIO	
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 5 6	L H	5.00 33.00 17.00 45.00	5.00 31.94 0.55	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	8.16 8.15 8.36 7.67 7.90	
TOTAL	4004		100.00	37.49			

TABLE 45.SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 45FEEDCONDITION DEW-POINT VAPOR

TABLE 46.SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 46FEEDCONDITION DEW-POINT VAPOR

COMPONENT	COMP KEY	FEED IN	DISTILLATE IN	MINIMUM REF	REFLUX		
	NR	MOLES	MOLES	METHOD	RATIO		
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 L 5 H 6	5.00 17.00 33,00 45.00	5.00 16.45 1.06	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	14.96 15.52 15.78 14.63 15.00		
TOTAL		100.00	22.51		; ; ;		

COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REF	LUX
	NR		MOLES	MOLES	METHOD	RATIO
C3H8 i-C4H10 n-C4H10 i-C5H12	3 4 56	L H	45.00 33.00 17.00 5.00	45.00 31.94 0.55	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	3.43 3.48 3.22 3.58 3.42
TOTAL	×		100.00	77.49		
	T	ABLE	48. SPECI FEEDO	FICATIONS AND SO CONDITION DEW-PO	OLUTIONS OF EXAMPLE 48 INT VAPOR	
COMPONENT	COMP	KEY	FEED IN	DISTILLATE IN	MINIMUM REF	LUX
	NR		MOLES	MOLES	METHOD	RATIO
C3H8 1-C4H10 n-C4H10 1-C5H12	3 4 56	L H	45.00 17.00 33.00 5.00	45.00 16.45 1.06	Underwood Colburn Shiras et al. Scheibel & Montross Murdoch & Holland	4.26 4.56 4.14 4.69 4.42
TOTAL			100.00	62.51		

TABLE 47.SPECIFICATIONS AND SOLUTIONS OF EXAMPLE 47FEEDCONDITION DEW-POINT VAPOR

TABLE	49.	VALUES	OF	THE	MINIMUM	REFLUX	RATIO	FOR	DIFFERENT	FEED	CONDITIONS	ΒY	THE
		METHOD	OF	UNDI	ERWOOD								

	А	9.9	19.7	6.1	11.5	4.2	8.0	7.6	11.7	4.9	10.3
Bubble-Point Liq. 50% Vapor Dew-Point Vapor	(29-38) (1-10) (39-48)	2.38 2.64 3.05	2.45 3.05 3.83	4.30 4.58 4.92	5.48 6.19 6.98	5.87 6.13 6.43	9.43 10.25 11.14	6.91 7.48 8.16	11.72 13.28 14.96	3.08 3.24 3.43	3.41 3.80 4.26
	В	14.8	25.6	7.4	12.8	4.9	8.7	9.1	12.6	5.9	12.1

TABLE 50. VALUES OF THE MINIMUM REFLUX RATIO FOR DIFFERENT FEED CONDITIONS BY THE METHOD OF COLBURN

13.0 20.7 7.0 11.6 4.6 8.3 8.8 11.8 5.5 10.1 А Bubble-Point Liq.(29-38) 2.34 2.71 4.24 5.82 9.69 6.74 12.16 5.75 3.08 3.65 50% Vapor (1-10) 2.69 3.42 4.56 6.58 6.03 10.56 7.39 13.77 3.26 4.06 Dew-Point Vapor (39-48) 3.21 4.26 4.95 7.40 6.36 11.46 8.15 15.52 3.48 4.56 В 19.4 24.6 8.5 12.4 5.5 8.5 10.3 12.7 6.7 12.3

A and B designate respectively the percentage deviation of the bubble-point liquid and dew-point vapor results from that of the 50% vapor feed.

TABLE	51.	VALUES	OF	THE	MINIMUM	REFLUX	RATIO	FOR	DIFFERENT	FEED	CONDITIONS	BY	THE
		METHOD	OF	SHII	RAS ET AI								

	A	9.7	19.1	6.2	11.1	4.3	7.8	7.3	10.9	5.0	10.6
Bubble-Point Liq. 50% Vapor Dew-Point Vapor	(29-38) (1-10) (39-48)	2.34 2.59 3.01	2,50 3,09 3,88	4.21 4.49 4.83	5.60 6.30 7.10	5.76 6.02 6.32	9.62 10.44 11.33	7.11 7.67 8.36	12.54 14.08 15.78	2.87 3.02 3.22	3.29 3.68 4.14
	В	16.2	25.6	7.6	12.7	5.0	8.5	9.0	12.1	6.6	12.5

TABLE 52.	VALUES O	F THE	MINIMUM	REFLUX	RATIO	FOR	DIFFERENT	FEED	CONDITIONS	ΒY	THE
	METHOD O	F SCH	EIBEL ANI) MONTR(DSS						

	А	8.8	19.9	6.7	11.0	4.3	7.9	6.5	11.4	6.0	11.3
Bubble-Point Liq. 50% Vapor Dew-Point Vapor	(29-38) (1-10) (39-48)	2.39 2.62 3.05	2.58 3.22 4.04	4.18 4.48 4.84	5.65 6.35 7.18	5.74 6.00 6.30	9.56 10.38 11.32	6.60 7.06 7.67	11.52 13.00 14.63	3.13 3.33 3.58	3.69 4.16 4.69
	В	16.4	25.5	8.0	13.1	5.0	9.1	8.6	12.6	7.5	12.7

A and B designate respectively the percentage deviation of the bubble-point liquid and dew-point vapor results from that of the 50% vapor feed.

TABLE 53. VALUES OF THE MINIMUM REFLUX RATIO FOR DIFFERENT FEED CONDITIONS BY THE METHOD OF MURDOCH AND HOLLAND

11,2 20,0 6,3 11.0 4,3 7.8 7.7 5.0 10.1 11.1 А Bubble-Point Liq. (29-38) 2.29 2.56 4.18 5.67 5.74 9.62 6.67 11.90 3,05 3.54 50% Vapor (1-10) 2.583.20 4.46 6.37 6.00 10.44 7.23 13.39 3.21 3.94 Dew-Point Vapor (39-48) 3.03 3.98 4.81 7.16 6.30 11.32 7.90 15.00 3.42 4.42 17.4 24.4 7.8 12.4 8.4 В 5.00 9.3 12.0 6.6 12.2

A and B designate respectively the percentage deviation of the bubble-point liquid and dew-point vapor results from that of the 50% vapor feed.

TABLE 54. VALUES OF THE MINIMUM REFLUX RATIO BY THE METHOD OF SCHEIBEL AND MONTROSS USING RELATIVE VOLATIL-ITY DATA FROM ALL METHODS ANALYZED.

The relative volatility data used were obtained from the procedures by:

Examp	le	Scheibel & Montross	Underwood	Colburn	Shiras et al.	Murdoch & Holland	
123456780	(a)	2.62 3.22 4.48 6.35 6.00 10.38 7.06 13.00	2.70 3.11 4.60 6.21 6.14 10.24 7.59 13.30	2.65 3.21 4.49 6.38 6.00 10.43 7.33 13.37	2.66 3.15 4.51 6.32 6.03 10.43 7.79 14.12	2.65 3.22 4.49 6.38 6.00 10.43 7.33 13.38	
10 11 12 13 14 15	(b)	3.33 4.16 2.94 3.68 6.90 11.85 1.93	3.25 3.89 3.04 3.51 7.68 12.38 1.82	3.23 4.03 2.95 3.70 7.49 12.65 1.81	3.05 3.77 2.96 3.60 8.42 14.02 1.54	3.23 4.03 2.95 3.70 7.50 12.71 1.81	
16 17 18 19 20 21	(c)	2.13 1.08 1.91 2.64 5.82 0.67	1.86 1.13 1.69 2.89 5.68 0.61	1.97 1.08 1.81 3.05 6.21 0.52	1.64 1.08 1.76 3.19 6.43 0.47	1.96 1.10 1.84 3.02 6.19 0.56	
23 24 25 26 27 28	(d)	0.37 0.73 1.92 4.34 0.16 0.21	0.75 0.42 0.59 1.94 3.97 0.18 0.17	0.00 0.40 0.68 2.24 4.70 0.09 0.09	0.80 0.39 0.63 2.32 4.92 0.08 0.09	0.75 0.40 0.68 2.21 4.71 0.09 0.10	
29 30 32 334 356 378 378	(e)	2.39 2.58 4.18 5.65 5.74 9.56 6.60 11.52 3.13 3.69	2.48 2.50 4.33 5.50 5.88 9.42 7.13 11.89 3.07 3.44	2.39 2.56 4.20 5.62 5.74 9.56 6.83 11.89 3.04 3.04 3.57	2.44 2.55 4.24 5.62 5.76 9.61 7.33 12.71 2.87 3.33	2.43 2.61 4.22 5.68 5.74 9.61 6.88 12.04 3.04 3.04 3.58	

The relative volatility data used were obtained from the procedures by:

Example	Scheibel & Montross	Underwood	Colburn	Shiras et al.	Murdoch & Holland
39 (f) 40 41 42 43 44 45 46 47 48	3.05 4.04 4.84 7.18 6.30 11.32 7.67 14.63 3.58 4.69	3.09 3.90 4.94 7.00 6.44 11.13 8.16 14.88 3.49 4.40	3.10 4.05 4.86 7.21 6.33 11.32 7.94 15.01 3.49 4.58	3.06 3.95 4.86 7.12 6.33 11.31 8.36 15.69 3.28 4.29	3.06 4.00 4.84 7.15 6.30 11.32 7.89 14.93 3.48 4.57
(a) E	xamples 1-10	: 4 compor vapor fe	nents, adj eed	acent ke	ys, 50%
(b) E	xamples ll-l(5: 8 compor vapor fe	nents, adj eed	acent ke	ys, 50%
(c) E	xamples 17-22	2: 8 compor vapor fe	nents, one ed	split k	ey, 50%
(d) E	xamples 23-28	B: 6 compor higher 1 vapor fe	nents, adj relative v eed	acent ke olatilit	ys with y, 50%
(e) E	xamples 29-3	B: 4 compor point li	nents, adj iquid feed	acent ke	eys, bubble-
(f) E	xamples 39-4	B: 4 compon point va	nents, adj apor feed	acent ke	eys, dew-

						ş		
TABLE 55	5. RE	LATIVE	VOLATILITIES	ΒY	THE	METHOD	OF	UNDERWOOD

.

EXAMPLE	CH4	С2Нб	С3Н8	<u>i-C4H10</u>	n-C4H10	<u>1-C5H12</u>	<u>n-C5H12</u>	n-C8H18	TEMP. (°R)
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11.116 12.653 9.523 10.243 13.814 15.243 15.042 16.333 12.757 13.049 20.229 21.059 20.310 22.118 16.097 16.333 27.530 28.795	3.956 4.244 3.639 3.753 4.453 5.705 5.139 5.294 7.301 7.301 7.301 7.301 7.301 7.301 7.301 7.301 7.301 8.413 8.663	1.962 1.999 1.956 1.992 1.959 1.928 2.049 2.074 2.912 2.739 3.315 3.374 3.321 3.448 2.999 3.018 3.799 3.876	1.209 1.215 1.208 1.214 1.209 1.212 1.199 1.203 1.219 1.224 1.207 1.219 1.224 1.207 1.219 1.228 1.199 1.228 1.199 1.228 1.238 1.855 1.897 1.774 1.785 2.036	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.553 1.580 1.501 1.508 1.655 1.669	0.616 0.605 0.618 0.607 0.610 0.633 0.626 0.599 0.591 0.620 0.598 0.646 0.634 0.584 0.568 1.000	0.531 0.505 0.564 0.548 0.470 0.871 0.864 0.885 0.8847 0.8841 0.8841 0.8841 0.8841 0.8412 0.841 0.866 0.825 0.822	0.066 0.057 0.081 0.074 0.051 0.046 0.123 0.115 0.140 0.138 0.098 0.096 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.092 0.117 0.115 0.079 0.077	724.0 713.5 726.0 715.5 725.0 719.0 734.5 700.0 700.0 707.0 742.0 742.0 755.0 742.5 7740.5 772.0 712.5 707.5 712.5 701.5 701.5 701.5 740.5 701.5 700

The volatility data for examples 29-38 and 39-48 are identical to those of examples 1-10, since they are based on the same temperatures.

TABLE 56. RELATIVE VOLATILITIES BY THE METHOD OF COLBURN

EXAMPLE	<u>CH4</u>	С2Н6	С3Н8	<u>1-C4H10</u>	n-C4H10	<u>1-C5H12</u>	<u>n-C5H12</u>	<u>n-C8H18</u>
1 2 3 4 5 6 7 8 9 0 11 13 14 15 17 18 19 21 23 24 25 27 28	13.760 12.982 11.848 11.264 15.675 15.148 22.507 19.156 14.518 13.058 35.279 31.567 32.560 22.923 14.730 12.612 95.158 85.065	4.444 4.305 4.096 3.985 4.776 4.686 7.384 6.657 5.216 9.896 9.200 9.388 7.472 5.630 5.102 19.300 17.869	2.087 2.054 2.027 1.992 1.997 1.965 2.032 2.038 1.958 2.038 1.958 2.038 1.957 2.131 3.237 2.745 4.0391 2.5215 2.5215 4.791	1.213 1.209 1.213 1.208 1.214 1.208 1.207 1.203 1.220 1.215 1.213 1.200 1.198 1.227 1.222 1.880 1.820 1.739 1.710 2.103 2.223	1.000 1.568 1.530 1.478 1.658	0.644 0.649 0.621 0.629 0.612 0.622 0.633 0.638 0.610 0.619 0.638 0.644 0.657 0.658 0.612 0.622 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.554 0.562 0.578 0.522 0.533 0.902 0.907 0.910 0.911 0.872 0.887 0.898 0.906 0.913 0.914 0.822 0.850	0.076 0.080 0.088 0.063 0.068 0.168 0.168 0.189 0.124 0.186 0.189 0.124 0.189 0.124 0.194 0.194 0.194 0.194 0.194 0.191

TABLE 56. (CONTINUED)

EXAMPLE	CH4	С2Н6	С3Н8	<u>i-C4H10</u>	<u>n-C4H10</u>	<u>i-C5H12</u>	<u>n-C5H12</u>	<u>n-C8H18</u>
29			2.107	1.216	1.000	0.636		
30			2.084	1.212	1,000	0.644		
31			2.028	1.214	1,000	0.619		
32			2.000	1.210	1,000	0.628		
33			2.001	1.214	1.000	0.611		
34			1.968	1.209	1.000	0.621		
35			1.990	1,208	1.000	0.630		
36			1.959	1.204	1.000	0.637		
37			2.065	1.220	1,000	0.609		
38			2.043	1.216	1.000	0.618		
39			2.063	1.209	1.000	0.650		
40			2.030	1.206	1.000	0.652		
41			2,015	1.212	1.000	0.624		
42			1.984	1.207	1.000	0.631		
43			1.994	1.213	1.000	0.613		
44			1.961	1.208	1.000	0.623		
45			1.979	1.206	1.000	0.635		
46			1.951	1.202	1.000	0.640		
47			2.051	1.218	1,000	0.611		
48			2.022	1.213	1.000	0,621		

TABLE 57. RELATIVE VOLATILITIES BY THE METHOD OF SHIRAS ET AL.

EXAMPLE	CH4	С2Н6	СЗН8	<u>1-C4H10</u>	<u>n-C4H10</u>	i-C5H12	<u>n-C5H12</u>	n-C8H18	TEMP. (°R)
12345678901123456789012223456789012223456789012223222222222222222222222222222222222	11.775 11.906 7.999 7.956 19.882 20.070 16.144 15.191 10.505 9.951 31.685 29.403 22.904 19.659 10.516 9.504 77.296 61.230	4.081 4.106 3.313 3.303 5.459 5.968 5.741 4.390 9.222 8.788 6.768 4.547 4.263 16.736 14.289	1.981 1.980 1.980 1.981 1.966 1.982 1.956 1.873 1.861 2.0951 1.988 1.7774 2.317 3.00358 2.4982 4.045 3.2730 2.3966 2.4982 3.2730 2.3966 3.2730 3.270	1.212 1.212 1.210 1.213 1.208 1.194 1.191 1.234 1.231 1.212 1.213 1.176 1.176 1.267 1.268 1.891 1.860 1.686 1.686 1.663 2.282 2.235	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.576 1.556 1.444 1.429 1.822 1.793	0.610 0.610 0.614 0.610 0.617 0.644 0.648 0.574 0.578 0.610 0.608 0.676 0.677 0.529 0.528 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.519 0.517 0.603 0.427 0.426 0.865 0.870 0.901 0.905 0.817 0.821 0.838 0.850 0.901 0.909 0.786 0.789	0.062 0.061 0.101 0.102 0.034 0.116 0.122 0.166 0.175 0.072 0.076 0.090 0.100 0.166 0.183 0.043 0.043 0.048	718.6 719.0 718.79 722.92 725.84.95 7564.95 716.76 716.758 716.758 716.758 716.89 716.758 716.89 716.758 818.75 716.80 716.65 716.65 597.0

The volatility data for examples 29-38 and 39-48 are identical to those of examples 1-10, since they are based on the same temperatures.

TABLE 58. RELATIVE VOLATILITIES BY THE METHOD OF SCHEIBEL AND MONTROSS

.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	EXAMPLE	<u>CH4</u>	С2Н6	C3118	<u>1-C4H10</u>	<u>n-C4H10</u>	<u>1-05H12</u>	<u>n-C5H12</u>	<u>n-C8H18</u>
	1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 2 8 9 0 11 2 2 8 9 0 11 2 2 8 9 0 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11.885 11.251 11.812 11.183 12.033 11.319 16.274 12.965 15.148 12.398 17.264 13.666 24.572 15.042 16.514 12.799 33.722 22.582	4.103 3.982 4.089 3.970 4.130 3.995 5.192 5.731 5.047 6.229 5.368 7.815 5.706 6.055 5.150 9.607 7.400	1.994 1.953 1.987 1.956 1.987 1.956 1.987 1.953 1.9951 1.9956 1.987 1.956 1.987 1.956 1.984 1.953 1.994 1.954 1.994 1.994 1.994 1.995 1.994 1.995 1.995 3.014 2.732 2.681 3.033 2.717 4.160 3.480	1.215 1.208 1.214 1.209 1.214 1.209 1.214 1.209 1.214 1.209 1.214 1.209 1.214 1.209 1.213 1.208 1.215 1.209 1.215 1.209 1.896 1.783 1.859 1.762 1.927 1.808	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.580 1.556 1.556 1.493 1.600 1.523	0.607 0.619 0.609 0.618 0.609 0.618 0.609 0.619 0.608 0.618 0.609 0.618 0.610 0.619 0.617 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.518 0.529 0.519 0.530 0.516 0.528 0.865 0.884 0.871 0.888 0.860 0.884 0.872 0.864 0.834 0.872 0.864 0.834 0.872 0.864 0.813 0.840	0.062 0.066 0.062 0.067 0.061 0.139 0.123 0.144 0.111 0.133 0.086 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124

TABLE 58. (CONTINUED)

EXAMPLE	CH4	<u>C2H6</u>	C3H8	<u>1-C4H10</u>	<u>n-C4H10</u>	<u>1-C5H12</u>	n-C5H12	<u>n-C8H18</u>
29			2,001	1.216	1.000	0.605		
30			1.963	1.210	1.000	0.616		
31			1.994	1,215	1,000	0.607		
32			1.960	1.209	1.000	0.617		
33			1.991	1.214	1.000	0.608		
34			1.960	1.209	1.000	0.617		
35			1.991	1.214	1.000	0,608		
36			1.960	1.209	1.000	0.617		
37			1.994	1.215	1.000	0.607		
38			1.963	1.210	1.000	0,616		
39			1.980	1.213	1.000	0.611		
40			1.943	1.206	1.000	0.622		
41			1.984	1.213	1.000	0.610		
42			1.953	1.208	1.000	0,619		
43			1,987	1.214	1.000	0.609		
44			1.953	1.208	1.000	0.619		
45			1.980	1.213	1.000	0.611		
46			1.950	1.207	1.000	0.620		
47			1.984	1.213	1.000	0.610		
48			1.953	1.208	1.000	0.619		

TABLE 59. RELATIVE VOLATILITIES BY THE METHOD OF MURDOCH AND HOLLAND

EXAMPLE	<u>CH4</u>	С2Нб	СЗН8	<u>i-C4H10</u>	<u>n-C4H10</u>	<u>i-C5H12</u>	<u>n-C5H12</u>	<u>n-C8H18</u>
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 20 12 23 4 5 6 7 8 9 20 12 23 4 5 6 7 8 9 20 12 23 4 5 6 7 8 9 20 11 23 14 5 6 7 8 9 20 11 23 14 5 6 7 8 9 20 11 23 14 5 6 7 8 9 20 11 23 14 5 6 7 8 9 20 11 23 14 5 6 7 8 9 20 11 22 23 24 5 6 7 8 9 20 11 22 23 24 5 6 7 8 9 20 12 22 22 22 22 22 22 22 22 22 22 22 22	13.796 13.100 11.870 11.298 15.697 15.425 19.052 16.883 13.666 12.516 27.580 25.193 29.430 23.136 14.448 12.620 85.722 73.763	4.450 4.326 4.100 3.991 4.779 4.733 6.141 5.368 5.077 8.423 7.943 8.788 7.517 5.561 5.104 17.964 16.211	2.092 2.062 1.994 1.997 1.986 2.059 2.059 2.074 2.086 1.954 2.0954 2.0954 2.123 2.0635 2.6356 2.5194 2.5194 2.5194 2.5194	1.213 1.208 1.213 1.208 1.214 1.208 1.207 1.203 1.220 1.215 1.213 1.208 1.200 1.197 1.227 1.223 1.862 1.805 1.743 1.711 2.044 1.974	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.558 1.521 1.481 1.460 1.674 1.629	0.645 0.652 0.622 0.631 0.612 0.622 0.633 0.639 0.610 0.620 0.620 0.638 0.646 0.658 0.646 0.658 0.646 0.658 0.660 0.612 0.623 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.554 0.564 0.579 0.582 0.522 0.535 0.891 0.900 0.903 0.907 0.866 0.880 0.907 0.866 0.888 0.907 0.908 0.914 0.821 0.847	0.077 0.081 0.088 0.090 0.063 0.068 0.149 0.164 0.170 0.179 0.117 0.133 0.145 0.179 0.182 0.195 0.076 0.098

TABLE 59. (CONTINUED)

EXAMPLE	CH4	С2Н6	С ЗН8	<u>i-C4H10</u>	<u>n-C4H10</u>	<u>1-05H12</u>	<u>n-C5H12</u>	n-C8H18
29			2.109	1.213	1.000	0,650		
30			2.093	1.209	1.000	0.660		
31			2.029	1.213	1.000	0.623		
32			2,002	1.208	1.000	0.634		
33			2.001	1.214	1.000	0.613		
34			1.968	1.208	1.000	0.624		
35			1.990	1.207	1.000	0.636		
36			1.960	1.2;2	1.000	0.644		
37			2.065	1.220	1.000	0.611		
38			2.048	1.215	1.000	0.622		
38			2.069	1.212	1.000	0.639		
40			2.037	1.209	1.000	0.642		
41			2.017	1.213	1.000	0.620		
42			1.986	1.209	1.000	0.627		
43			1.995	1.214	1.000	0.612		
44			1.962	1.208	1.000	0.621		
45			1.980	1.207	1,000	0,630		
46			1.952	1.203	1.000	0.635		
47			2.052	1.219	1.000	0.609		
48			2.025	1.214	1.000	0.618		

TABLE 60, TEMPERATURES AT THE TOP AND

BOTTOM OF THE DISTILLATION COLUMN

EXAMPLE	TOP, ^O RANKINE	BOTTOM, ^O RANKINE
1 2 3 4 5 6 7 8 9 10 12 13 14 15 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 20 11 23 4 5 6 7 8 9 20 11 23 4 5 6 7 8 9 20 11 23 4 5 6 7 8 9 20 11 23 4 5 6 7 8 9 20 11 23 4 5 6 7 8 9 20 11 23 4 5 6 7 8 9 20 11 23 14 5 6 7 8 9 20 11 23 14 5 6 7 8 9 20 11 23 14 5 6 7 8 9 20 11 22 22 22 22 22 22 22 22 22 22 22 22	652 640 677 666 697 691 698 694 666 654 626 603 683 669 616 599 646 632 697 696 625 612 555 545 612 555 545 615 534 525	796 787 775 765 753 747 785 775 750 746 830 811 827 815 771 759 858 849 856 850 800 803 869 858 873 866 818 817

The corresponding temperatures for examples 29-38 and 39-48 are equal to those of examples 1-10 because of identical compositions of the products.

TABLE 61, EQUILIBRIUM DATA

p = 400 psia

Comp.	a ₁ x 10	a ₂ x 10 ³	a ₃ x 10 ⁶	a ₄ x 10 ⁹
CH4	-3.2551482	2.3553786	-3.1371170	1.3397973
С2Нб	-2.7947232	1.4124232	-1.4582948	0.50974162
С3Н8	-2.7980091	1.1811943	-1.0935041	0.35180421
i-C4H10	-2.3209137	0.87122379	-0.66100972	0.1667774
n-C4H10	-2.3203344	0.83753226	-0.61774360	0.15243376
i-C5H12	-0.6981454	0.088862037	0.39689556	-0.29076073
n-C5H12	0.37103008	-0.36257004	0.99113800	-0.54441110
n-C8H18	0.905211	-0.4839184	0.819390	-0.332217

 $(K_{i}/T)^{1/3} = a_{1i} + a_{2i}T + a_{3i}T^{2} + a_{4i}T^{3}$ (T in ^oR)

(Taken from Reference 1)

TABLE 62. PROGRAM FOR CALCULATING THE MINIMUM REFLUX RATIO

BY THE METHOD OF UNDERWOOD

A FORTRAN PROGRAM FOR THE IBM 1130 SYSTEM

	DIMENSION THETA(2), FUNC(2), FUNIC(2), FEED(8), DIST(8), ALFA(8)
	INDEX=1
1	READ(2,2) LIMIT,NFC,NC,KL,KH
2	FORMAT(5T2)
	TF(I,TMTT) 3,99,3
3	NLC = NFC + NC - 1
5	READ(2.5) HEAT SDIST
7	READ(2,5) (FEED(I) I=NEC NLC)
i	$\operatorname{READ}(2,5)$ ($\operatorname{READ}(1), \operatorname{REC}(N)$)
,	PEAD(2,5) (ALFA(N), N-NFC, NLC)
E	$\operatorname{READ}(2, \mathcal{I}) (\operatorname{DISI}(\mathcal{M}), \mathcal{M}(\mathcal{I}))$
2	TR(WI WI O) 10 00
	1F(AH-AL-2) 13,12,99 BUTCH ALDA (VI)
13 2	
	TLOW=ALFA(KH)
	DO 40 J=1,20
	TETA=(THIGH+TLOW)*.5
	FUNCT=0.
	DO 15 I=NFC,NLC
15.	FUNCT=FUNCT+(ALFA(I)*FEED(I))/(ALFA(I)-TETA)
	FUNCT=FUNCT/100HEAT
	IF(FUNCT) 20,45,25
20	TLOW=TETA
	GO. TO 30
25	THIGH=TETA
30	IF(FUNCT**2-1.0E-6) 45,45,40
40	CONTINUE
45	RMIN=0.
	DO 65 I=NFC,NLC
65	RMIN=RMIN+(DIST(I)*ALFA(I))/(ALFA(I)-TETA)
-	RMIN=(RMIN/SDIST)-1.0
	WRITE(3,70) INDEX, FUNCT, TETA, RMIN
70	FORMAT(1X,14,8X,F8,5,5X,F8,5,2X,F7,4)
•	GO TO 750
12	KSI=KL+1
	DIST(KSI)=0.
	THTGH=ALFA(KL)
80	$TT_OW = AI_FA(KST)$
•••	DO 400 J=1 20
	THETA(KSI) = (THIGH+TLOW) * 5
	FUNCT=0
	DO 150 T=NFC NLC
150	
	TOMOT - FONOT (WILK (T) - THED (T)) (WILK (T) - THETH (VOT))

TABLE 62. (CONTINUED)

	FUNCT=FUNCT/100HEAT
	IF(FUNCT) 200,450,250
200	TLOW=THETA(KSI)
	GO TO 300
250	THIGH=THETA(KSI)
300	IF(FUNCT**2-1.0E-6) 420,420,400
400	CONTINUE
420	FUN=FUNCT
	TF(KST-KH) 430,450,450
430	KIP=KSI
	THIGH=ALFA(KIP)
	KST=KST+1
	GO TO 80
450	KL1=KL+1
	KL2 = KL + 2
	DO 550 J=KL1.KL2
	FUNC(J)=0.
	DO 550 I=NFC.NLC
	FUNC(J)=FUNC(J)+(ALFA(I)*DIST(I))/(ALFA(I)-THETA(J))
550	CONTINUE
	DO 600 J=KL1,KL2
600	FUNIC(J)=ALFÁ(KL1)/(ALFA(KL1)-THETA(J))
	ABEL=FUNIC(KL1)-FUNIC(KL2)
	BRAM=FUNC(KL2)-FUNC(KL1)
	DIST(KL1)=BRAM/ABEL
	SDIST=0.
	DO 650 M=NFC,NLC
650 .	SDIST=SDIST+DIST(M)
	FUNC(KL1)=FUNC(KL1)+FUNIC(KL1)*DIST(KL1)
	RMIN=FUNC(KL1)/SDIST-1.
	WRITE(3,700) INDEX, DIST(KL1), RMIN, THETA(KL1), THETA(KL2)
700	FORMAT(1X,14,5X,F6.3,5X,F7.4,5X,F8.5,5X,F8.5)
750	INDEX=INDEX+1
	GO TO 1
99	CALL EXIT

END

BY THE METHOD OF COLBURN

A FORTRAN PROGRAM FOR THE G.E. MARK II SYSTEM

	10		DIMENSION XDIST(8), XBOT(8), EQVN(8), EQVM(8), XN(8),
	20%		$XM(8) \Delta(8.4) \Delta LFAN(8) \Delta LFAM(8) SUMHM(8).$
	25%		$\operatorname{SUMLN}(8)$ $\operatorname{SUMM}(8)$
	20		FITENAME EK
	10		
	40 50		TNDUM DV
	50		TNDEV-1
	70	7	דעראדע אדע אדע אדע אדע אדע אדע אדע אדע אדע
	80	l g	NEAD (FR, 07) IIINTI, NFO, NO, NIN, IIN (T)
	00	0	PORMAL(V) NEC-NECINC 1
	100		
		0	T(DTMTT) = 3
	1 20	260	$DO 200 I - I_0$
	120	200	
	1010	ada ada	NEAD (FR, 0) I, IN, IN, IOID, IOUD, IOID, IOUD, IOID, IOUD,
	150		$\frac{1}{1} \frac{1}{1} \frac{1}$
	160	250	(ADU(TK, 0)), (ADU(K), K-K), (AU(TK))
	100	250	
	180		TUQID=FELIQ/IOID
	181		
	180		JIL-)
	182		
	18/1		
	100	h	EFFIM=RFFIN*TOTDB+FIOTB
	200	- T	TND=1
	200		$T T \Delta = 1$
	210	•	$TND\Delta X = 1$
	220		I N D O X = 1
	230		TNI=0
	240		TN = TN - 100
	250	5	X N T O T = 0.
	260	-	DO 6 I=NFC.KH
	265		IF(XDIST(I)) 6.6.27
	270	27	EQVN(I) = TN*(A(I,1) + A(I,2)*TN + A(I,3)*TN**2 +
	275&		A(I,4)*TN**3)**3
	280		XN(I) = XDIST(I) / (EQVN(I) + (EQVN(I) - 1.) * REFLN)
	290		IF(XN(I)) 10,10,600
•	300	600	XNTOT=XNTOT+XN(I)
	303	6	CONTINUE
	305		IF(ITA-5) 270,140,150
	310	270	IF(INDOX-3) 12,60,12
	320	12	IF(TN1+5TN) 15,15,20
	330	15	IF(XNTOT-1.) 20,60,10
	340	10	IF(INDAX-2) 17,50,50

TABLE 63. (CONTINUED)

	350	17	TN=TN+10.
	360		GO TO 5
	370	20	IND=IND+1
	380		IF(IND-2) 30,25,30
	390	25	TN1=TN
	. 400		XNTO=XNTOT
	410		'TN='TN-1.
	420		INDAX=2
	430	~ ~ ~	GO TO 5
	440	30	IF((1XNTOT)-(XNTOT-XNTO)) b0, b0, 25
	450	50	INTIN-INTI.
	400		TUDOY-2
	470	60	
	サイエ	00	TR(YNROP.1) 120 125 120
	173	120	$\frac{1}{2} (ANIOI-1.) + 20, 120, 120, 130$
	コイン	460	
	475		GO = O = O
	476	130	TN=TN+0.1
	477	÷.)0	TTA=6
	478		GO TO 5
	479	140	IF (XNTOT-1.) 120.125.125
	480	150	IF(XNTOT-1.) 125,125,130
	482	125	SXN=0.
	483		DO 126 I=NFC,KL
	485	126	SXN=SXN+XN(I)
	486		XN(KH)=1SXN
	487		IDA=1
	488		ITO=1
	490		'I'M1=0.
	500	6-	TM=TM-100.
	510	05	XMTOT=0.
	520 525		$\frac{10}{10} \frac{10}{10} \frac{1}{10} \frac{1}{10}$
	520	78	$FOM(K) - mW_{(\Lambda(K - 1) + \Lambda(K - 2) + mM + \Lambda(K - 2) + mM_{*}^{*} 2 + M_{*}^{*} 2 + M_{$
	535%	10	$\Lambda(K \mid h) \times \mathbb{M} \times \mathbb{K}^{(K, 1)} \times \mathbb{K}^{(K, 2)} \times \mathbb{K}^{(K, $
	540		XM(K) = XBOT(K) / (EOVM(K) + (1 - EOVM(K)) * BEFLM)
	550		TF(XM(K)) 77.77.700
	560	700	XMTOT = XMTOT + XM(K)
	563	70	CONTINUE
	565	·	IF(ITO-5) 71,160,170
· .	570	71	IF(IDA-2) 72,100,72
·	580	72	IF(TM1+5TM) 73,73,85
	590	73	IF(XMTOT-1.) 75,100,77
	600	75	TM=TM+10.
	610		GO TO 65
	620	11	T.WT=J.W
	030		
	040 650		
	000		

TABLE 63. (CONTINUED)

660 670	85	IF((XMTOT-1.)-(XMTO-XMTOT)) 90,77,77
680	95	TM=TM+1.
690	90° - 90°	IDA=2
701	100	XMT=XMTOT
702		IF(XMTOT-1.) 180,200,190
703	180	TM=TM+0.1
704		
705	100	W = W = 0.1
707	190	TTO=6
708		GO TO 65
709	160	IF(XMTOT-1.) 180,200,200
710	170	IF(XMTOT-1.) 200,200,190
712	200	SXM=0.
713		DO 108 K=KH, NLC
715	108	SXM=SXM+XM(K)
710		M(KL) = 1, -SAM MDM = (YM(KL))/(YM(KL))/(YM(KL))
720		TMTN-(M(KL)/M(KI))/(M(KL)/M(KI))
730		KH1=KH+1
740		DO 105 I=KH1.NLC
750		ALFAM(I)=EQVM(I)/EQVM(KH)
760		SUMHM(I)=ALFAM(I)*XM(I)
770	105	TOTHM=TOTHM+SUMHM(I)
780		TOTLN=0.
790		KLI=KL-I
810		$\begin{array}{c} \text{DU} \text{IIU} \text{J} = \text{NFC}, \text{KLI} \\ \text{SUMT} \text{N}(T) = \text{VN}(T) \end{array}$
820	110	$T_{\rm N}(0) = T_{\rm N}(0)$
830	110	PST=1./((1TOTHM)*(1TOTLN))
840		IF(RMRN-PSI) 280,350,290
845	280	IF(MIKE-10) 301,295,331
850	290	IF(MIKE-10) 301,295,331
855	295	IF(RMRN-PSI) 301,350,331
860	301	IF(RMRN-PS1) 303,350,302
870	302	IF(IK-I2) 999,310,999 IF(IKFIE) 205 250 250
890	305	REFLM=REFLM+0 1
900	202	MTKE=5
910		IK=12
920		GO TO 4
925	310	REFLN=REFLN-0.01
930		IKE=15
935	000	GO TO 4
940	331	IF(IWIRN-PS1) 332,350,333
945	- 332 - 222	IF(JI-IC) 999,320,999 IF(IVE_15) 225 250 250
950	222	REFLN=REFLN=0.1
	ار و ہ	an a manufara a an ing ja fanga an

960		MIKE=15
965		JY=12
970		GO TO 4
980	320	REFLN=REFLN+0.01
990	-	JYE=15
1000		GO TO 4
1010	350	PRINT 115, INDEX, TN, XNTOT, TM, XMTOT, RMRN, PSI, REFLN
1020	115	FORMAT(13,2X,7F9.4)
1030		IF(KH-KL-2) 415,400,415
1040	400	DO 410 M=KL, KH
1050	410	XNXM(M) = XN(M) / XM(M)
1060		PRINT 405, (XNXM(M), M=KL, KH)
1070	405	FORMAT(3F10.4)
1080	415	DO 420 I=NFC, KH
1090	420	ALFAN(I)=EQVN(I)/EQVN(KH)
1100		PRINT 425, (ALFAN(I), I=NFC, KH)
1110	425	FORMAT(7F10.4)
1120		DO 430 N=KL, NLC
1130	430	ALFAM(N) = EQVM(N) / EQVM(KH)
1140		PRINT 435, (ALFAM(N), N=KL, NLC)
1150	435	FORMAT(7F10.4)
1160		INDEX=INDEX+1
1170		GO TO 7
1180	999	STOP
1190		END

BY THE METHOD OF SHIRAS ET AL.

A FORTRAN PROGRAM FOR THE G.E. MARK II SYSTEM

10		DIMENSION FEED(8), FLUID(8), $VAP(8)$, $XLIQ(8)$, $A(8,4)$, FOUR(8) ALEA(8) DIST(8) FOUR(8) VDIST(8) THETA(8)
200		$\mathbb{E}_{V} (0), \mathbb{A}_{D} (0), \mathbb{D}_{O} (0), \mathbb{E}_{V} (0), \mathbb{D}_{O} (0), $
20		TERMA(0), TERMD(0), RAILO(0)
20		
40 50		TNDIM DD
50		INFOT, FF
70	•7	TINDEA-T
80	ģ	
00	0	NIC-NECINC 3
100		
110	0	$\frac{1}{10} \frac{1}{10} \frac$
120	2 2	DU I = I = I = 0 DEAD (ED R) I (A(T I) I = 1 h)
120	11	$\frac{\pi}{2} \frac{\pi}{2} \frac{\pi}$
100	ملد علم	$\frac{1}{2} \frac{1}{2} \frac{1}$
150		MEAD(FF,0)U, (ADFA(T), T-T,0)
150		MEAD (FF, 0/L) JULOI (AL), DIGI (AL), SUMVA
170		
170		DED - U.29 TRADATA EO NOMMA EN NOMMA EN NOMMA
172	7 11 11	
171	7.4.4	SUMPL-0.
175		CO MO 62
176	211	
177	644	SUMPL-100.
178		
180	15	
100	10	
200		DO 20 T-NEC NIC
210		EOU(T) - me * (A(T 1) + A(T 2) * me + A(T 2) * me * * 2 + A(T 1) *
210		$\frac{1}{2} \frac{1}{2} \frac{1}$
220		$\frac{1}{1} \frac{1}{1} \frac{1}$
220		VAD(T) - FEED(T) = FEED(T)
200		
250		SUMU = SUMU + U + D + D + D + D + D + D + D + D +
250	20	
200	20	TE(ABS(SUMPL_SUMUA) EBS) 10 10 25
280	25	$TF(SUMFL-SUMVA) = 30 \pm 0.35$
200	30	$\frac{1}{PR} = \frac{1}{PR} = \frac{1}{PR}$
300	50	EPS=EPS+0.025
310		GO = TO = 15
320	35	TR = TR + 1
330	22	EPS=EPS+0.025
340		GO = TO = 15
350	40	DO 45 KENFC NLC
360		XLTO(K) = FLUTD(K) / SUMPT.
· · ·		

TABLE 64. (CONTINUED)

390 45 CONTINUE 391 GO TO 62 57 DO 58 I=NFC,NLC 400 410 FLUID(I)=FEED(I) 415 58 CONTINUE 62 SDIST=0. 420 430 65 DO 100 I=NFC,NLC 440 IF(FEED(I)) 90,90,69 69 IF(I-KL) 705,95,70 445 450 70 IF(I-KH) 705,95,705 705 IF(SUMVA-100.) 75,750,750 75 TERMA(I)=((ALFA(I)-1.)*DIST(KL))/((ALFA(KL)-1.)* 452 460 465& FLUID(KL)) 470 TERMB(I)=((ALFA(KL)-ALFA(I))*DIST(KH))/((ALFA(KL) 475& -1.)*FLUID(KH)) DIST(I)=FLUID(I)*(TERMA(I)+TERMB(I)) 480 481 GO TO 710 482 750 TERMA(I)=ALFA(KL)*(ALFA(I)-1.)*DIST(KL)/ 483& ((ALFA(KL)-1.)*FEED(KL)) TERMB(I) = (ALFA(KL) - ALFA(I))*DIST(KH)/((ALFA(KL) - 1.))485 486& *FEED(KH)) 487 DIST(I)=FEED(I)*(TERMA(I)+TERMB(I))/ALFA(I) 490 710 RATIO(I)=DIST(I)/FEED(I) 500 IF(RATIO(I)-1.) 85,80,80 510 80 DIST(I)=FEED(I) 520 GO TO 95 530 85 IF(RATIO(I)) 90,90,95 540 90 DIST(I)=0. 550 95 SDIST=SDIST+DIST(I) 560 100 CONTINUE 570 DO 105 K=NFC,NLC XDIST(K)=DIST(K)/SDIST 580 590 105 CONTINUE 593 IF(KH-KL-2) 800,800,900 595 800 KSI=KL+1 597 GO TO 950 600 900 KSI=KH 610 950 THIGH=ALFA(KL) 620 108 TLOW=ALFA(KSI) 630 DO 130 J=1,20 640 THETA(KSI)=(THIGH+TLOW)*.5 650 FUNCT=0. 660 DO 110 I=NFC,NLC 670 FUNCT=FUNCT+(ALFA(I)*FEED(I))/(ALFA(I)-THETA(KSI)) 680 110 CONTINUE 690 FUNCT=FUNCT-SUMVA 700 IF(FUNCT) 115,135,120 710 115 TLOW=THETA(KSI) 720 GO TO 125

TABLE 64, (CONTINUED)

730 740 750 760	120 125 130 135	THIGH=THETA(KSI) IF(FUNCT/100.)**2-1.E-6) 135,135,130 CONVINUE REFLM=0.0 DO 1005 MEC NLC
780		TERM=THETA(KSI)*XDIST(M)/(ALFA(M)-THETA(KSI))
790		REFLM=REFLM+TERM
008	145	CONTINUE
810		PRINT 48, INDEX, SUMFL, SUMVA, TR, THETA(KSI), REFLM
820	48	FORMAT(13,2X,5F10.4)
840		PRINT 44, (DIST(M), M=NFC, NLC)
850	44	FORMAT(8F10.4)
860		INDEX=INDEX+1
870 880 890	999	GO TO 7 STOP END

TABLE 65. PROGRAM FOR CALCULATING THE MINIMUM REFLUX RATIO

BY THE METHOD OF SCHEIBEL AND MONTROSS

A FORTRAN PROGRAM FOR THE G.E. MARK II SYSTEM

10		DIMENSION FEED(8), DIST(8), ALFA(8)
20		FILENAME FS
20		TNDUM PS
40 50		INICI, S TNDFY=1
60	٦	READ(FS 8)L.LIMIT.NFC.NC.KL.KH
70	8	FORMAT(V)
80		NLC=NFC+NC-1
90		IF(LIMIT) 9.99.3
100	3	READ(FS,8)L,XBS,XCS
110	<u>9</u>	READ(FS,8)L,SUMHF,SUMLF,FLMOL,FVMOL,DIST(KL),DIST(KH)
120	-	SMALM=(FLMOL-SUMHF)/(FVMOL-SUMLF)
130	7	READ(FS,8)L,(ALFA(N),N=NFC,NLC)
140		READ(FS,8)L, (FEED(I), I=NFC, NLC)
150		XB=FEED(KL)/100.
160		XC = FEED(KH)/100.
170		SQIRT=((((ALFA(KL)-1.)*(1.+SMALM)*XB/(XB+XC))-ALFA(KL))
180&		-SMALM)**2+(4.*SMALM*(ALFA(KL)-1.)*(1.+SMALM)*XB)/
185&		(XB+XC))**.5
190		XIN=(((ALFA(KL)-1.)*(1.+SMALM)*XB/(XB+XC))-ALFA(KL)
195&		-SMALM-SQIRT)/(2.*SMALM*(ALFA(KL)-1.))
200	~	IF(XIN-1.) 6, 10, 10
210	00	1F(XIN) = 10, 10, 88
220	00	
230	10	$\frac{1}{2} \frac{1}{2} \frac{1}$
240	τu	$AIP = (((ADTA(AD) - L))'(L \cdot TOMADM)''AD/(ADTAC)) - ADTA(AD)'''''''''''''''''''''''''''''''''''$
240%		$\frac{\nabla (A \Box)}{\Delta (A \Box)} = \frac{\nabla (A \Box)}{\Delta (A \Box)}$
250	ាក	TP(XTP) ho 18 18
200	18	YT=YTP
280	23	XP = DTST(KI)/(DTST(KI)+DTST(KH))
200	~ J	SRMIN=(XP/((ALFA(KL)-1,)*XT))-((1,-XP)*ALFA(KL))/
295&		((1 - XI)*(ALFA(KL) - 1.))
300		KH1=KH+1
310		SUMB=0.
320		DO 25 J=KH1,NLC
330	25	SUMB=SUMB+(FEED(J)/100.)/((ALFA(KL)/ALFA(J))-1.)
340		SUMT=0.
350		KLl=KL-l
360		DO 30 K=NFC, KL1
370	30	SUMT=SUMT+(.01*FEED(K)/ALFA(K))*(1.+ALFA(KL)/ALFA(K))
380	-	IF(KH-KL-2) 28,27,28
390	28	RMIN=(XB*SRMIN+(XC+SUMHF/100.)*SUMB+SUMT)/
395&		(XB+SUMLF/100.)

TABLE 65. (CONTINUED)

400 GO TO 29 405 27 RMIN=(XBS*SRMIN+(XCS+SUMHF/100.)*SUMB+SUMT)/ 410& (XBS+SUMLF/100.) 420 29 PRINT 35,INDEX,XI,RMIN 430 35 FORMAT(I3,2X,2F10.4) 440 40 INDEX=INDEX+1 450 GO TO 1 460 99 STOP 470 END

TABLE 66. PROGRAM FOR CALCULATING THE MINIMUM REFLUX RATIO

BY THE METHOD OF MURDOCH AND HOLLAND

A FORTRAN PROGRAM FOR THE G.E. MARK II SYSTEM

- 10		DIMENSION XDIST(8), XBOT(8), EQVN(8), EQVM(8), XN(8),
20&		$XM(\delta), A(\delta, 4), ALFAN(\delta), ALFAM(\delta), ALFA(\delta), FEED(\delta),$
25%		DIST(0), TERM(0), TUM(0), THETA(0)
30		FILENAME FC
40		TNDUM DO
50		INPUT, FC
00	17	TNDEX=1
70	7	READ (FC, 8) LIMIT, NFC, NC, KL, KH
80	8	FORMAT(V)
90		NLC=NFC+NC-L
100	~	IF(LIMIT) 9,999,11
110	. 9	DO 266 I=1,8
120	266	READ(FC, 8)L, (A(I, J), J=1, 4)
130	11	READ (FC, 8)L, TN, TM, TOTD, TOTB, FELIQ, REFLN
140		READ(FC,8)L,(XDIST(I),I=NFC,KH)
150		READ(FC,8)L,(XBOT(K),K=KL,NLC)
160	250	TOTDB=TOTD/TOTB
170		FLQTB=FELIQ/TOTB
180		READ(FC,8)L,(FEED(N),N=NFC,NLC)
181		SDIST=TOTD
182		DO 2 I=NFC,KH
183	2	DIST(I)=SDIST*XDIST(I)
184		KON=1
185		HEAT=FELIQ/100.
190	4	REFLM=REFLN*TOTDB+FLQTB
200		IND=1
205		ITA=1
210		INDAX=1
220		INDOX=1
230		TN1=0.
240		TN=TN-100.
250	5	XNTOT=0.
260	-	DO 6 T=NFC.KH
265		$TF(XDTST(T)) \in 6.27$
270	27	$EOVN(T) = TN*(A(T_1)+A(T_2)*TN+A(T_3)*TN**2+$
275&	- 1	$\Delta(T \ \mu) \times TN \times 2) \times 2$
280		XN(T) = XDTST(T) / (FOVN(T) + (FOVN(T) - 1) * REFIN)
290		TF(XN(T)) 10 10 600
300	600	XNPOP = XNPOP + XN(T)
303	6	CONTINUE
305	0	$TF(TTA_5) 270 140 150$
310	270	$TF(TNDOY_2) 12 60 12$
220	210	$\frac{1}{1000}$
260	26	
Ore Of Carry In Carry In Carry		
---	------	
340 10 IF(INDAX-2) 17,50,50		
350 17 TN=TN+10.		
360 - GO TO 5		
370 20 IND=IND+1		
380 IF(IND-2) 30,25,30		
390 25 TN1=TN		
400 XNTO=XNTOT		
410 TN=TN-1.		
420 INDAX=2		
430 GO TO 5		
440 30 IF((1XNTOT)-(XNTOT-XNTO)) 60,60,25		
450 50 TN=TN+1.		
460 INDOX=3		
470 GO TO 5		
471 60 XNT=XNTOT		
472 IF(XNTOT-1.) 120,125,130		
473 120 TN=TN-0.1		
474 ITA=5		
475 GO TÓ 5		
476 130 TN=TN+0.1		
477 ITA=6		
478 GO TO 5		
479 140 IF(XNTOT-1.) 120,125,125		
480 150 IF(XNTOT-1.) 125,125,130		
482 125 DO 126 I=NFC.KH		
483 126 ALFAN(I)=EQVN(I)/EQVN(KH)		
487 IDA=1		
488 ITO=1		
490 TM1=0.		
500 TM=TM-100.		
510 65 XMTOT=0.		
520 DO 70 K=KL.NLC		
525 IF(XBOT(K)) 70.70.78		
530 78 EQVM(K)=TM*(A(K,1)+A(K,2)*TM+A(K,3)*TM	**2+	
535& A(K,4)*TM**3)**3		
540 $XM(K) = XBOT(K)/(EQVM(K)+(1, -EQVM(K))*RE$	FLM)	
550 IF(XM(K)) 77.77.700		
560 700 XMTOT = XMTOT + XM(K)		
563 70 CONTINUE		
565 IF(ITO-5) 71.160.170		
570 71 IF(IDA-2) 72,100,72		
580 72 IF(TM1+5,-TM) 73,73,85		
590 73 IF(XMTOT-1.) 75,100,77		
600 75 TM=TM+10.		
610 GO TO 65		
620 77 TM1=TM		
630 XMTO=XMTOT		

TABLE 66, (CONTINUED)

	650		GO TO 65
	660	85	IF((XMTOT-1.)-(XMTO-XMTOT)) 90,77,77
	670	9Õ	IF(XMTO-1.) 95,100,100
	680	95	TM=TM+1.
	690		IDA=2
	701	100	XMT=XMTOT
	702		IF(XMTOT-1.) 180,200,190
	703	180	TM=TM+0.1
	704		ITO=5
	705		GO TO 65
	706	190	TM=TM-0.1
	707	-	ITO=6
	708		GO TO 65
	709	160	IF(XMTOT-1.) 180,200,200
	710	170	IF(XMTOT-1.) 200,200,190
	712	200	DO 108 K=KL,NLC
	715	108	ALFAM(K) = EQVM(K) / EQVM(KH)
	720		DO 205 I=NFC,NLC
	725		IF(I-KL) 210,215,215
	730	215	IF(I-KH) 220,220,230
	735	210	ALFA(I)=ALFAN(I)
	737		GO TO 205
	740	220	ALFA(I)=(ALFAN(I)+ALFAM(I))*.5
	742		GO TO 205
	745	230	ALFA(I)=ALFAM(I)
	750	205	CONTINUE
	755		IF(KH-KL-2) 235,275,235
·	760	235	THIGH=ALFA(KL)
	765		TLOW=ALFA(KH)
	770		DO 260 J=1,20
	775		TETA=(THIGH+TLOW)*.5
	780		FUNCT=0.
	785		DO 240 I=NFC, NLC
	790	240	FUNCT=FUNCT+(ALFA(1)*FEED(1))/(ALFA(1)-TETA)
	800		FUNCTFFUNCT/100HEAT
	805		IF(FUNCT) 245,265,750
	810	245	TLOW=TETA
	815	850	GO TO 255
	020	(50	THIGH=TETA
	025	255	IF(FUNCT**2-1.0E-6) 205,205,200
	030	200	CUNTINUE
	035	205	RMIN=0.
	040	700	DU $(20 \text{ L}=\text{NFC}, \text{NLC})$
	040 850	120	NMIN-NMINT(DIGI(I)"ALCA(I)/(ALCA(I)-TETA)
	050 855		$\frac{1}{2} \frac{1}{2} \frac{1}$
	860	275	
	865	612	ΠΟΤ-ΠΗΤΤ
	000		TITOII-VIIL W (VII)

870	280	TLOV-ALFA(KSI)
875		DO 305 J=1.20
880		THETA $(KSI) = (THIGH+TLOW) * .5$
885		FUNCT=0.
890		DO 285 I=NFC.NLC
895	285	<pre>FUNCT=FUNCT+(ALFA(I)*FEED(I))/(ALFA(I)-THETA(KSI))</pre>
905	/	FUNCT=FUNCT/100HEAT
910		TF(FUNCT) 290.300.295
915	290	TLOW=THETA(KSI)
920		GO TO 300
925	295	THIGH=THETA(KSI)
930	300	IF(ABS(FUNCT**2)-1.0E-6) 310,310,305
935	305	CONTINUE
940	310	FUN=FUNCT
945	<i>J</i>	TF(KST-KH) 315,320,320
950	315	KTP=KST
955	2-2	THTGH=ALFA(KTP)
960		KSI=KSI+1
965		GO TO 280
970	320	KL1 = KL + 1
975		KL2=KL+2
980		V=THETA(KL1)*THETA(KL2)/ALFA(KL1)
985		STERM=0.
990		STUM=0.
995		DO 340 I=NFC, KH
1000		IF(I-KL1) 325,340,325
1005	325	TERM(I) = (ALFA(I) - ALFA(KL1)) * DIST(I) / ((ALFA(I) - ALFA(I)) + DIST(I) / ((ALFA(I) - ALFA(I))) + DIST(I) / (ALFA(I))) + DIST(I)) + DIST(I)) + DIST(I)) + DIST(I)) + DIST(I)) + D
1007&	10 p.	THETA(KL1))*(ALFA(I)-THETA(KL2)))
1010		STERM=STERM+TERM(I)
1015		TUM(I)=ALFA(I)*TERM(I)
1020	330	STUM=STUM+TUM(I)
1025	340	CONTINUE
1030		RHO=V*STERM/STUM
1035		RMIN=RHO/(1RHO)
1040	350	IF(ABS(RMIN-REFLN)01*RMIN) 365,365,355
1045	355	KON=KON+1
1050		IF(KON-10) 360,360,365
1055	360	REFLN=(REFLN+RMIN)*.5
1060		GO TO 4
1065	365	PRINT 370, INDEX, TN, TM, REFLN, RMIN, KON
1070	370	FORMAT(13,2X,4F10.4,2X,13)
1075		PRINT 375, (ALFA(I), I=NFC, NLC)
1080	375	FORMAT(8F8.4)
1085		INDEX=INDEX+1
1090		GO TO 7
1095	999	STOP
1100		END

TABLE 67. PROGRAM FOR CALCULATING THE DEW POINT OF A

MULTICOMPONENT MIXTURE

A FORTRAN PROGRAM FOR THE IBM 1130 SYSTEM

```
DIMENSION A(8,4), Y(8), X(8), EQV(8)
    WRITE(3,63)
63
   FORMAT('1 DEW POINT CALCULATION'//' RUN NO.',5X,
            'DP(DEG.R)',5X,'SUM X'/)
    INDEX=1
 1
    READ(2,2) LIMIT, NFC, NC, NLC, TR
    FORMAT(412,2X,F10.3)
 2
    IF(LIMIT) 3,99,7
READ(2,5) ((A(L,M),M=1,4),L=1,8)
 3
 5
    FORMAT(4F20.10)
 7
    READ(2,10) (Y(I), I=NFC, NLC)
   FORMAT(8F10.5)
10
    EPSN=.1
    DELTA=.003
15
    XTOT=0.
16
    DO 20 I=NFC,NLC
18
   EQV(I)=TR*(A(I,1)+A(I,2)*TR+A(I,3)*TR**2+A(I,4)*TR**3)**3
    X(I)=Y(I)/EQV(I)
20
    XTOT = XTOT + X(I)
    Z = XTOT - 1.
    IF(ABS(Z)-EPSN) 40,40,25
25
    IF(Z) 30,60,35
30
    TR=TR-10.
    EPSN=EPSN+.02
    GO TO 15
35
    TR=TR+10.
    EPSN=EPSN+.02
    GO TO 15
40
    IF(ABS(Z)-DELTA) 60,60,45
45
    IF(Z) 50,60,55
50
    TR=TR-1.
    DELTA=DELTA+.0002
  . GO TO 15
55 TR=TR+1.
    DELTA=DELTA+.0002
    GO TO 15
    WRITE(3,65) INDEX, TR, XTOT
60
    FORMAT(1X,14,9X,F7.2,5X,F7.5)
65
    INDEX=INDEX+1
    GO TO 1
99
    CALL EXIT
    END
```

MULTICOMPONENT MIXTURE

A FORTRAN PROGRAM FOR THE IBM 1130 SYSTEM

```
DIMENSION A(8,4), Y(8), X(8), EQV(8)
    WRITE(3, 63)
63
    FORMAT('1 BUBBLE POINT CALCULATION'//' RUN NO.',
           5X, 'BP(DEG.R)', 5X, 'SUM Y'/)
    INDEX=1
    READ(2,2) LIMIT, NFC, NC, NLC, TR
 1
    FORMAT(412,2X,F10.3)
 2
    IF(LIMIT) 3,99,7
 3
    READ(2,5) ((A(L,M),M=1,4),L=1,8)
 5
    FORMAT(4F20.10)
 7
    READ(2,10) (X(I), I=NFC, NLC)
    FORMAT(8F10.5)
10
    EPSN=.1
    DELTA=.003
15
   YTOT=0.
16
    DO 20 I=NFC,NLC
    EQV(I)=TR*(Å(I,1)+A(I,2)*TR+A(I,3)*TR**2+A(I,4)*TR**3)**3
18
    Y(I)=X(I)*EQV(I)
20
   YTOT=YTOT+Y(I)
    Z = YTOT - 1.
    IF(ABS(Z)-EPSN) 40,40,25
   IF(Z) 30,60,35
25
30
    TR=TR+10.
    EPSN=EPSN+.02
    GO TO 15
35 TR=TR-10.
    EPSN=EPSN+.02
    GO TO 15
40 IF(ABS(Z)-DELTA) 60,60,45
45
   IF(Z) 50,60,55
50 TR=TR+1.
    DELTA=DELTA+.0002
    GO TO 15
55 TR=TR-1.
    DELTA=DELTA+.0002
    GO TO 15
    WRITE(3,65) INDEX, TR, YTOT
60
    FORMAT(1X,14,9X,F7.2,5X,F7.5)
65
    INDEX=INDEX+1
    GO TO 1
99
    CALL EXIT
   END
```

TABLE 69. PROGRAM FOR CALCULATING RELATIVE VOLATILITIES

A FORTRAN PROGRAM FOR THE IBM 1130 SYSTEM

DIMENSION A(8, 4), EQV(8), ALFA(8) WRITE(3, 4)FORMAT('1 ALFA CALCULATION'//' RUN NO.',9X,'CH4',8X, 4 'C2H6',7X,'C3H8',6X,'I-C4H10',5X,'N-C4H10',5X, 'I-C5H12',5X, 'N-C5H12',5X, 'N-C8H18',7X, 'TR'/) INDEX=1 READ(2,2) LIMIT, KH, TR 1 2 FORMAT(212,6X,F10.0) IF(LIMIT) 3,99,7 READ(2,5) ((A(L,M),M=1,4),L=1,8) 3 5 FORMAT(4F20.10)7 DO 10 I=1,8 10 EQV(I)=TR*(A(I,1)+A(I,2)*TR+A(I,3)*TR**2+A(I,4)*TR**3)**3 DO 15 I=1,8 ALFA(I) = EQV(I) / EQV(KH)15 WRITE(3,20) INDEX, (ALFA(I), I=1,8), TR FORMAT(1X,14,9X,F8.3,3X,F8.3,3X,F8.3,3X,F8.3,3X,F8.3, 20 3X, F8.3, 3X, F8.3, 3X, F8.3, 3X, F8.2) INDEX=INDEX+1 GO TO 1 99 CALL EXIT END

TABLE 70, PROGRAM TERMINOLOGY

/

A	alute	Represents four equilibrium constants per component
ALFA	9 090	Volatility relative to that of the heavy key
ALFAM	900	Volatility relative to that of the heavy key in the stripping pinch
ALFAN	-	Volatility relative to that of the heavy key in the rectifying pinch
DIST	-	Moles of a component in the distillate
EQV	#14070	Equilibrium value of a component
EQVM	80.000	Equilibrium value of a component in the stripping pinch
EQVN	-	Equilibrium value of a component in the rectifying pinch
FEED	485	Moles of a component in the feed
FELIQ	ennis	Total moles of liquid feed
FLMOL	- 25 000	Total moles of liquid feed
FLUID	040	Moles of a component in the liquid part of the feed
FVMOL	6189	Total moles of vapor feed
HEAT	enaro	Thermal condition of the feed (1-q)
KH	8249	Heavy key component
KL	-	Light key component
NC	6.10	Number of components
NFC	-	Number of the first component
NLC		Number of the last component
REFLM	600	Minimum reflux ratio (Shiras only)
REFLN	****	Reflux ratio
RMIN		Minimum reflux ratio

TABLE 70. (CONTINUED)

- SDIST Total moles of distillate
- SUMFL Total moles of liquid in the feed
- SUMHF Moles of feed heavier than the heavy key
- SUMLF Moles of feed lighter than the light key
- SUMVA Total moles of vapor in the feed
- TM Temperature in the stripping pinch (^OR)
- TN Temperature in the rectifying pinch (^{O}R)
- TOTB Total moles of bottoms
- TOTD Total moles of distillate
- TR Temperature (^{O}R)
- VAP Moles of a component in the vapor part of the feed
- X Mole fraction of a component in the liquid in equilibrium with the vapor
- XBOT Mole fraction of a component in the bottoms
- XBS Fraction of the feed consisting of the light key and the part of the split key going overhead
- XCS Fraction of the feed consisting of the heavy key and the part of the split key going to the bottom product
- XDIST Mole fraction of a component in the distillate
- XLIQ Mole fraction of a component in the liquid part of the feed
- XM Concentration of a component in the stripping pinch
- XN Concentration of a component in the rectifying pinch
- Y Mole fraction of a component in the vapor in equilibrium with the liquid

REFERENCES

- 1. Anthony, R. G., <u>M. S. Thesis</u>, Agricultural and Mechanical College of Texas, May, 1962.
- 2. Bachelor, J. B., <u>Petroleum Refiner</u>, vol. 36, June, 1957, pp. 161-170.
- 3. Bailey, R. V. and J. Coates, Petroleum Refiner, vol. 27, January, 1948, pp. 98-102.
- 4. Brown, G. G. and D. E. Holcomb, Petroleum Engineer, vol. 11, September, 1940, pp. 27-30.
- 5. Brown, G. G. and H. Z. Martin, <u>Transactions of the</u> <u>American Institute of Chemical Engineers</u>, vol. 35, 1939, pp. 679-708.
- 6. Colburn, A. P., <u>Transactions of the American Institute</u> of <u>Chemical Engineers</u>, vol. 37, 1941, pp. 805-825.
- 7. Erbar, R. C., <u>M. S. Thesis</u>, Oklahoma State University, May, 1960.
- 8. Erbar, R. C., R. S. Joyner and R. N. Maddox, <u>Petro/Chem.</u> Engineer, March, 1961, pp. 19-22.
- 9. Erbar, R. C. and R. N. Maddox, <u>Canadian Journal of</u> <u>Chemical Engineering</u>, February, 1962, pp. 25-30.
- 10. Fenske, M. R., <u>Industrial Engineering Chemistry</u>, vol. 24, May, 1932, pp. 482-485.
- 11. Gilliland, E. R., <u>Industrial Engineering Chemistry</u>, vol. 32, August, 1940, pp. 1101-1106.
- 12. Hogan, J. J., <u>Industrial Engineering Chemistry</u>, vol. 33, September, 1941, pp. 1132-1138.
- 13. Jenny, F. J., <u>Transactions of the American Institute</u> of <u>Chemical Engineers</u>, vol. 35, 1939, pp. 635-677.
- 14. Maxwell, J. B., <u>Data Book on Hydrocarbons</u>, 1955, pp. 231-239.
- 15. May, J. A., <u>Industrial Engineering Chemistry</u>, vol. 41, December, 1949, pp. 2775-2782.

- 16. Mayfield, F. D. and J. A. May, Petroleum Refiner, vol. 25, April, 1946, pp. 141-148.
- 17. McDonough, J. A. and C. D. Holland, Petroleum Refiner, vol. 41, March, 1962, pp. 153-160.
- 18. Murdoch, P. G. and C. D. Holland, Chemical Engineering Progress, vol. 48, June, 1952, pp. 287-292.
- 19. Scheibel, E. G. and C. F. Montross, <u>Industrial Engi-</u> <u>neering Chemistry</u>, vol. 38, March, 1946, pp. 268-272.
- 20. Shiras, R. N., D. N. Hanson and C. H. Gibson, <u>Indus-</u> trial Engineering Chemistry, vol. 42, May, 1950, pp. 871-876.
- 21. Underwood, A. J. V., <u>Transactions of the Institute of</u> Chemical Engineers (London), vol. 10, 1932, p. 112.
- 22. Underwood, A. J. V., Journal of the Institute of Petroleum, vol. 32, 1946, pp. 614-626.
- 23. Underwood, A. J. V., Chemical Engineering Progress, vol. 44, August, 1948, pp. 603-614.