Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

BATCH HEAT TRANSFER TO

SUSPENSIONS IN AN AGITATED VESSEL

BY

JOHN PHILIP HORZEPA

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

AT

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibleographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey

APPROVAL OF THESIS

BATCH HEAT TRANSFER TO

SUSPENSIONS IN AN AGITATED VESSEL

BY

JOHN PHILIP HORZEPA

FOR

DEPARTMENT OF CHEMICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

ВҮ

FACULTY COMMITTEE

APPROVED:

NEWARK, NEW JERSEY

MAY, 1970

i1

ACKNOWLEDGEMENT

The author expresses his sincere appreciation to Dr. Jerome J. Salamone for his assistance and guidance in bringing this thesis to a successful conclusion.

The author is especially grateful to his wife, Barbara, for her assistance and patience.

TABLE OF CONTENTS

Subject	Page
List of Figures	v
List of Tables	vi
Abstract	1
Introduction	2
Theory Viscosity Batch heat transfer	3
Literature Search Viscosity Mixing Suspension properties Heat transfer	10 11 12 13
Experimental Materials Viscosity Heat transfer equipment and data determinations Calculations	18 19 22 48
Discussion of Results Viscosity Experimental error Correlation of data	70 71 71
Conclusions	93
Recommendations	95
Nomenclature	96
Appendix - Sample calculations	99
References	105

iv

•

LIST OF FIGURES

•		
Figur	°es Hereit	Page
1.	Viscosity of 33.2 wt.7 Iron Oxide Slurry	23
2.	Viscosity of 24.0 wt.% Iron Oxide Slurry	23
3.	Viscosity of 13.1 wt.% Iron Cxide Slurry	25
4.	Viscosity of 24.4 wt.% Kaolin Slurry	26
5.	Viscosity of 18.4 wt.% Kaolin Slurry	27
6.	Impellers	30
7.	Heat Transfer Vessel Diagram	37
8.	Batch Heat Transfer For Water	74
9.	Batch Heat Transfer For Suspensions Using Anchor	75
10.	Batch Heat Transfer For Suspensions Using Paddles	76
11.	Batch Heat Transfer For Suspensions Using Propellers	77
12.	Batch Heat Transfer For Suspensions Using Turbines	78
13.	Average Deviation Of Experimental Results From Hagedorn - Salamone Correlation	83
14.	Best Fit Regression Line For Each Impeller	85
15.	Batch Heat Transfer For Suspensions Using Anchor	87
16.	Batch Heat Transfer For Suspensions Using Paddles	88
17.	Batch Heat Transfer For Suspensions Using Propellers	8 9
18.	Batch Heat Transfer For Suspensions Using Turbines	90

 \mathbf{v}

LIST OF TABLES

Table		Page
1.	Solids' Properties	20
2.	Impeller Dimensions	31
3.	Experimental Measurements For Water	3 3-35
4.	Experimental Measurements For 33.2 vt. % Fe203 Suspension	38
5.	Experimental Measurements For 24.0 wt.% Fe203 Suspension	39-41
6.	Experimental Measurements For 13.1 wt. % Fe203 Suspension	42-44
7.	Experimental Measurements For 24.4 wt. % Kaolin Suspension	45
8,	Experimental Measurements For 18.4 wt. % Kaolin Suspension	46-47
9.	Calculated Measurements For Water	50-53
10.	Calculated Measurements For 33.2 wt. % Fe203 Suspension	54-55
11.	Calculated Measurements For 24.0 wt. % Fe203 Suspension	56-60
12.	. Calculated Measurements For 13.1 wt. % Fe203 Suspension	61-65
13.	Calculated Measurements for 24.4 wt. % Kaolin Suspension	66
14.	Calculated Measurements For 18.4 wt. % Kaolin Suspension	67-69
15.	Hagedorn and Salamone Semi-empirical Correlation	73
16.	Comparing Experimental and Predicted Nusselt Numbers Using Hagedorn - Salamone Correlation	80
17.	Percent Deviation For Suspensions From Hagedorn - Salamone Correlation	81
18,	Suspension Correlation	86

vi

ABSTRACT

Batch heat transfer data was experimentally determined for two phase (solid-liquid) systems in a baffled agitated vessel. Three iron oxide and water and two kaolin and water suspensions were evaluated and were found to be pseudoplastic. A total of 231 heating and cooling data points were examined. Each suspension was evaluated using anchor, paddle, propeller and turbine impellers. Various sizes of the latter three impellers were used.

The experimental heat transfer results for suspensions were compared with the Hagedorn and Salamone correlation for pseudoplastic liquids. Only partial agreement with the more dilute suspensions was obtained. Overall, the data for suspensions was shown to deviate as a function of weight percent solids. A dimensionless factor, weight percent liquid divided by weight percent solids, was evaluated which may be used to modify the above mentioned correlation and thus extend its usefullness to two phase systems.

INTRODUCTION

A considerable amount of batch heat transfer information is available in the literature for non-Newtonian liquids. However, there is a paucity of information concerning non-Newtonian suspensions of solids in liquid. These suspensions, however, are receiving ever increasing attention because of the growing necessity for such heat transfer data in the chemical industry.

The most common type suspensions are those based on an aqueous medium. The purpose of this thesis was to determine batch heat transfer coefficients for water based suspensions. Two different solid-water systems were investigated. The system of iron oxide and water was evaluated at 13.1, 24.0 and 33.2 weight percent solids. The system of kaolin and water was evaluated at 18.4 and 24.4 weight percent solids.

These systems were studied in an agitated jacketed vessel. Batch side surface heat transfer coefficients were investigated under various sizes of four basic types of impellers. Anchor, paddles, propellers and disc and vane turbines were studied.

Another purpose of this work was to compare the experimental data with a previously determined correlation for pseudoplastic liquids. Generally speaking, the overall value of the present experimental work could be put to better use through a modification of a previously determined correlation. Therefore, the ultimate correlation would be applicable for a broader range of pseudoplastic systems.

THEORY

Viscosity

This thesis concerns itself with the investigation of jacketed batch heat transfer to suspensions in an agitated vessel. The amount of mixing accomplished depends on the impeller geometry and speed and also on the flow properties of the material under investigation. It is commonly accepted that flow properties may be classified under two broad headings:

1. Newtonian

2. Non-Newtonian

The Newtonian fluids obey the law that shear stress (γ) divided by shear rate (λ) equals a constant. Shear stress is the unit area force necessary to move two parallel planes separated by a small distance of fluid at a given velocity. The shear rate is the relative velocity gradient between the two planes.

Non-Newtonian fluids can be further subdivided into the following categories:

- 1. Time independent
- 2. Time dependent
- 3. Viscoelastic

Of the three, the time independent fluids are probably the most important industrially and are commonly known as pseudoplastic and dilatent fluids. The time independent fluids do not obey the above Newtonian law. Instead shear stress will increase more than a direct proportion with strain for dilatents and less for pseudoplastics. The shear stress at a given shear rate does not change with time for dilatents and pseudoplastics.

Many times a given fluid may behave differently at different shear rates. A fluid may be pseudoplastic at low shear rates, Newtonian at higher shear rates, and eventually may become dilatent at still higher shear rates.

This thesis concerns itself with pseudoplastic materials which can be characterized by the power law equation, first proposed by Ostwald⁽²³⁾:

$$\mathcal{Y} = k \mathcal{Y}^n \tag{1}$$

Where n equals the flow behavior index and k is the fluid consistency index. For pseudoplastic fluids the value of n lies between 0 and 1. The more pseudoplastic the material the lower its n value. For Newtonian fluids n = 1 and

$$\gamma / \gamma = k \tag{2}$$

Therefore, k for Newtonians is equal to viscosity (μ) . The values n and k can be experimentally determined.

The Einstein formula has been used to determine the viscosity of suspensions.

$$\mu_{\rm r} = \mu_{\rm s}/\mu_{\rm f} = 1 + 2.5 \, {\rm X_v} \tag{3}$$

Where μ_r is relative viscosity and X_v is the volume fraction of the suspended solid. The suspension's viscosity and the viscosity of the fluid phase are represented by μ_s and μ_f respectively.

Among others the formula assumes the following:

- 1. Particles are rigid spheres
- 2. Dilute suspensions
- 3. Negligible interaction between particles

Therefore, according to the Einstein formula, suspensions of particles dispersed in a Newtonian medium should exhibit Newtonian behavior.

However, the formula applies best to solids in suspension which have specific gravities similar to the suspending medium. High specific gravity solids will tend to settle from the liquid medium if no agitation is supplied. High concentrations of solids, especially non spherical particles will interact with one another. Such systems will often show non-Newtonian behavior and the Einstein formula will not apply. Thus the rheological properties of a suspension are determined to a large extent by the solids concentration and properties.

Therefore, suspension of a solid at low concentrations in a Newtonian medium will tend to be Newtonian and obey the Einstein formula. As the concentration is increased so will particle interactions. This will lead in many cases to the suspensions becoming non-Newtonian and the viscosity will increase at a greater rate than predicted by the formula. The suspension will probably begin exhibiting pseudoplastic or thixotropic behavior. As the solids concentration is raised to high levels dilatency may even occur.

One might also expect that the rheological properties of a given suspension might be a function of the shear rate. For low shear rates there would be little interaction between particles and Newtonian behavior would follow. At increasingly higher shear rates particle interaction would become more important and non-Newtonian flow would result. Goodeve⁽⁸⁾ assumed that the non-Newtonian behavior was due to the

destruction at increasing shear rates of the internal structure due to internal linkage.

Skelland⁽²³⁾ reports that pseudoplastic behavior for suspensions is consistant with the existence of highly solvated particles. Higher shear rates progressively strip away solvated layers resulting in a smaller effective particle size and thus less interaction and lower apparent viscosities. At low shear rates this effect might be minimized and allow for Newtonian behavior.

Suspensions have also been shown to exhibit a time dependent relationship, either thixotropic or rheopectic. This phenomenon could occur for non spherical particles. At the beginning of a given shear rate the suspension would exhibit a certain shear stress. The suspended particles would then begin to reorient themselves to the flow. Plate like particles might reorient themselves from a random arrangement to a parallel orientation. Thus the shear stress would tend to change with time. Cessation of the shearing rate would allow the particles to resume their randomness. This type of suspension would exhibit a viscosity hysterisis loop.

The rheological behavior of the suspensions studied in this work were found for the most part to be pseudoplastic. This is in agreement with the findings of Williamson⁽⁶⁾ who reported that the majority of suspensions exhibit shear thinning behavior.

Batch Heat Transfer

Batch heat transfer is a common industrial process. It concerns itself with the transfer of heat to or from a liquid contained in a vessel

such as a kettle or tank. The transfer of heat takes place between two discrete streams which normally never come into direct physical contact. The heat transfer takes place through a solid boundary which may be pipe coil wall or the vessel wall itself. The latter type of transfer is commonly called jacketed heat transfer.

The principal heat transfer mechanisms between the vessel wall and the fluid batch is by conduction and convection. (12,4) Conduction takes place when heat flows by momentum transference without mixing. Convection is heat flow by mixing and turbulence. Heat must pass into the fluid by conduction before heat transfer can occur by convection. Natural convection occurs because of a density change in the fluid which causes it to either rise or fall causing currents within the fluid.

Natural convection can be greatly facilitated through mechanical agitation. This is known as forced convection and can be accomplished through a moving impeller or by pumping and recycle. Indeed, batch heat transfer can be shown to be a function of the amount of mixing.

It has long been known (17) that even with turbulent forced convection there still exists a thin quiescent "film" of liquid near the heat transfer surface. The major temperature drop between the vessel wall and batch occurs through this thin film. The thickness of this laminar layer of film can be controlled by the degree of agitation of the main fluid batch. The degree of turbulence in the batch can be characterized by a dimensionless group known as the Reynolds number.

$$N_{\rm Re} = D_a^2 N \rho / \mu$$
 (4)

Where D_a = impeller diameter; N = impeller revolutions; ρ = batch fluid's density; and μ = the fluid's viscosity. The higher the Reynolds number the thinner will be the laminar film and the higher will be the heat transfer coefficient.

The laminar film thickness cannot be readily determined. However, the rate of heat flow between the vessel wall and the batch can be by the following relationship:

$$dQ/dA = H (T_W - T_b)$$
 (5)

where H is defined as the film heat transfer coefficient; and dQ/dA is a local heat flux density over the heat transfer area; and $T_W - T_b$ represents the temperature difference between the wall and batch, respectively.

Frantisak and Valchar⁽⁷⁾ have derived fundamental equations for two phase systems. The equations of continuity, momentum, and energy were developed with certain controlling assumptions. They assumed among others that solid-solid interactions are negligible, mass forces are negligible, two dimensional flow, and that the slip between the solid particles and liquid are negligible. However, the resulting equations were still unsolvable because of the many remaining unknown variables.

As previously stated, theoretical developments in the field of batch mixing and heat transfer have been limited. This mainly results from the complexities of defining the fluid motions involved. Most studies have been empirical correlations developed through dimensional

analysis. These have generally resulted in the following general type relationships:

$$\frac{H D_{t}}{K} = \left(\frac{D_{a}^{2} N}{\mu}\right)^{x} \left(\frac{C \mu}{K}\right)^{y} \left(\frac{\mu}{\mu_{W}}\right)^{z}$$
(6)

LITEFATURE SEARCH

A search was made into the available literature to determine previous investigators who have studied non-Newtonian suspensions. A substantial amount of work was found which could be used to characterize rheological properties. However, there is quite a lack of quantitative data pertaining to batch heat transfer properties of non-Newtonian suspensions.

Viscosity

Perry⁽¹⁷⁾ states that the majority of non-Newtonian materials are pseudoplastic. These materials include polymeric solutions, melts, and suspensions of paper pulp or pigments. Perry⁽¹⁷⁾ states further that for suspensions of finely divided particles, less than 50 microns, the flow properties will behave very similar to a single phase fluid and the flow properties can be treated as such. Skellend⁽²³⁾ gives an excellent review of non-Newtonian rheology.

There are many types of viscometers available. However, most are best suited for quality control work and are not readily adaptable to scientifically investigate rheological properties. Skelland⁽²³⁾ aptly describes four types of viscometers suitable for engineering studies:

- 1. Capillary tube
- 2. Rotary concentric tube
- 3. Rotating cylinder in an infinite media
- 4. Cone and plate

The rotating cylinder in an "infinite" medium is the simplest of the viscometers to use. This type of viscometer is readily available

and has been used by other investigators (5,23,9) to correlate with batch mixing. The rotational viscometer has been found suitable for systems obeying the power law equations.

The shear rate at the bob surface can be calculated from:

$$X = 4 \, \mathcal{H} \, \mathrm{N/n^n} \tag{7}$$

and the shear stress from:

$$\gamma = T/2 \, \pi \, R^2 h \tag{8}$$

where T = torque; R = bob radius; N = bob revolutions; and h = bob height.

Since we know that apparent viscosity is equal to shear stress \mathcal{V} , divided by shear rate X, we can solve the equation:

$$\mathcal{T} = \mathbf{k}(\delta)^{\mathbf{n}} \tag{1}$$

for apparent viscosity and get:

$$\mu_{n} = k(\lambda)^{n-1}$$
 (9)

Mixing

Perry⁽¹⁷⁾ states that a mixer will do two things within a vessel: fluid circulation and fluid shear. An operating impeller will impart a certain shear rate to the fluid leaving the tips of the mixer. This results in a certain shear stress. The impeller pumping capacity maintains the solids in suspension. The shear rate will be greatest at the impeller and least at the vessel wall. This is especially true at low D_a/D_t ratios. The opposite occurs in pipes where the shear rate is greatest at the wall.

Various correlations have been developed to predict shear rates in an agitated vessel. Metzner and Taylor⁽¹³⁾ showed that local shear rates in an agitated vessel were directly proportional to impeller speed for both Newtonian and non-Newtonian systems. This was shown by observing the motions of small particles in an agitated vessel. These studies supported earlier work by Metzner in which the following relationship was postulated:

$$\delta = kN \tag{10}$$

which states that shear rate is a direct function of impeller speed N. Subsequent experimental work using various impellers resulted in k values between 10 and 13 with the average value being 11.5. Thus the apparent viscosity for pseudoplastic systems can be defined as

$$\mu_{n} = k (11.5N)^{n-1}$$
(11)

where k = the fluid consistency index; and n is the flow behavior index. This shear rate value agrees very closely with the value 4% N used in rheological work to describe fluid motion using cylindrical bobs.

Suspension Properties

In order to study heat transfer to non-Newtonian suspensions an overall value for the density, specific heat, thermal conductivity and rheological properties of the system must be obtained.

The density and specific heat of each component can be determined or found in the literature. Both density and specific heat can be considered as additive properties by weight averaging. (23) Orr and Dalla Valle (10) found this to be the case in their heat transfer studies to suspensions.

Thermal conductivity cannot be handled as a weighted average. One of the earliest works on the thermal conductivity of suspensions was done by Tareef⁽²⁵⁾ who postulated that thermal conductivity is analogous to that of electrical conductivity. Therefore, his method of finding the thermal conductivities of suspensions was based on a thermal analog for Maxwell's equation for electrical conductivities:

$$K_{b} = K_{f} \frac{2K_{f} - K_{s'} - 2X_{v} (K_{f} - K_{s'})}{2K_{f} + K_{s'} + X_{v} (K_{f} - K_{s'})}$$
(12)

where K_b represents the entire batch suspension and K_f and K_g , are the thermal conductivities of the fluid and solid, respectively, and X_v is the solids volume fractions. This equation has been checked by other investigators⁽¹⁶⁾ and found to give good agreement compared to experimental determinations.

Heat Transfer

Batch heat transfer to fluids in agitated vessels is a common industrial practice. Most of the earlier correlations were developed to correlate heat transfer data for various basic impeller types. Most workers have developed correlations similar to the following:

$$N_{Nu} = C N_{Re}^{b} N_{Pr}^{c} N_{V}^{d}$$
(13)

For Newtonian fluids the generally accepted constants for the Reynolds and Prandtl numbers have been:

$$N_{Re} = 2/3$$

 $N_{Pr} = 1/3$

The viscosity term N_V was originally used by Sieder and Tate⁽²²⁾ correlate heat transfer data in pipes. N_V is the ratio of the batch fluid viscosity at the wall temperature to that of the bulk batch fluid viscosity at the batch temperature.⁽⁴⁾ The coefficient of the viscosity

term has not been as clearly defined as the first two. The value of C has generally been found to be a function of the impeller type and also, probably the system's geometry.

This type of dimensional analysis has been resorted to because of the unwielding complexities involved in defining the parameters associated with batch mixing. Hagedorn⁽⁹⁾ gives an excellent summary of past heat transfer investigations. This type of work has also been reviewed by Chapman and Holland.⁽⁴⁾

A number of studies have been made characterizing the heat transfer to equeous slurries in pipes ^(24, 16, 19). These studies were usually dimensional analysis type correlations in which the slurries were characterized according to solids content and physical properties of the solids.

Bonilla⁽³⁾ studied heat transfer to suspensions in pipes. Bonilla reported that a plot of $N_{Nu}/N_{Pr}^{1/3}$ versus N_{Re} for chalk water slurries decreased as a function of increasing solids content. Bonilla made some simplifying assumptions, such as using the thermal conductivity of the fluid medium only and also be calculated his viscosities from a theoretical relationship.

Orr and Dalla Valle⁽¹⁶⁾ also studied heat transfer in pipes to solids suspended in water and ethylene glycol. Calculated values were used for viscosity, these values were checked with a Saybolt type viscometer and were reported to be Newtonian. They also successfully experimentally checked Tareef's electrical analog method of determining thermal conductivities of suspensions.

J.J. Salamone (19) theoretically studied heat transfer to non-Newtonian suspensions in pipes. Through dimensional analysis he determined that heat transfer was dependent on the average particle diameter divided by the pipe diameter, or $(D_{s'}/D_p)^C$. The constant C was then experimentally determined to be 0.05. Thus the low value of the constant indicates that the heat transfer properties were not very dependent on particle size over moderate ranges. This was substantiated by Bauman. (1)

Salamone and Newman⁽¹⁹⁾ experimentally studied heat transfer to water suspensions of finely divided copper, carbon, chalk and silica in pipes. Their method of measuring viscosities using a pipe line viscometer was more realistic than that used by previous investigators. Their aqueous slurries were found to be non-Newtonian and pseudoplastic in behavior. They used dimensional analysis to develop the following equation to describe heat transfer in pipes:

$$\frac{\text{HD}}{\text{K}_{f}} = 0.131 \left(\frac{\text{Dv}_{s} \rho_{s}}{\text{J}_{s}} \right)^{0.62} \left(\frac{\mu_{s} c_{f}}{\text{K}_{f}} \right)^{0.72} \left(\frac{\text{K}_{s'}}{\text{K}_{f}} \right)^{0.05} \left(\frac{\text{D}_{p}}{\text{D}_{s'}} \right)^{0.05} \left(\frac{\text{C}_{s'}}{\text{C}_{f}} \right)^{0.35} (14)$$

The last three dimensionless groups characterize the solids used. Of the three terms the last one, the specific heat of the solid divided by the specific heat of the fluid was the most important.

Binder and Pollara also studied heat transfer to suspensions in pipes. They found that the ratio of the thermal conductivity of the solid to that of the fluid, $K_{s'}/K_{f}$, does not significantly affect heat transfer unless the ratio is very large in magnitude.

Only a sparse amount of empirical data is available characterizing heat transfer to two phase batch liquid-solid systems. Frantisak(7)

studied heat transfer to Newtonian solid-liquid suspensions in an agitated vessel. The slurry viscosities used by Frantisak were taken to be a function only of the solid's volume concentration, X_v and were determined as follows:

$$J_{\rm slurry} = J_{\rm liquid} (1 + 2.5 X_{\rm v} + 7.54 X_{\rm v}^2)$$
(15)
Although many previous investigators ^(21,2) have shown suspensions,
especially concentrated ones, such as Frantisak used to be non-Newtonian
in behavior. Frantisak used the dimensionless group $\frac{X_{\rm v}}{1-X_{\rm v}}$ and found that
the Nusselt number was inversely proportional to the group raised to the
0.04 power. Frantisak used a computer linear regression analysis to
determine and develop the following correlation:

$$N_{Nu} = 0.575 \ (N_{Re})^{0.60} \ (N_{Pr})^{0.26} \left(\frac{D_{t}}{D_{a}}\right)^{0.33} \left(\frac{C_{s'}}{C_{f}}\right)^{0.13} \left(\frac{\mathcal{O}_{s'}}{\mathcal{O}_{f}}\right)^{-0.16} \left(\frac{X_{v}}{1-X_{v}}\right)^{-0.04}$$
(16)

Hagedorn and Salamone⁽⁹⁾ have made an extensive study of batch heat transfer to pseudoplastic systems. They started by analyzing the momentum, mass, and energy equations for the cylindrical jacketed wall in an agitated vessel. The equations were then solved dimensionally. Substituting the appropriate dimensionless groups resulted in the following.

$$N_{Nu} = C N_{Re} \begin{pmatrix} \frac{1-2a}{1+n} + a \end{pmatrix} N_{Pr}^{a} (D_t/D_a)^{c_n d}$$
(17)

A dimensionless quantity was further added to account for a viscosity difference between the fluid at the wall and the overall batch. Also, the equation was expanded to account for impeller geometry, thus resulting in the following:

$$N_{Nu} = C N_{Re}^{\left(\frac{1-2a}{1+n} + a\right)} N_{Pr}^{a} (\mu/\mu_{w})^{b} (D_{t}/D_{a})^{c} (W_{a}/D_{a})^{d} n^{e}$$
(18)
This relationship used an apparent viscosity which was developed by Hagedorn
to be, $\mu_{a} = K N^{n-1}$ (19)

Hagedorn tested his theoretically derived equation for predicting heat transfer data. He used water, glycerine, and pseudoplastic solutions of Carbopol having flow behavior indexes between 0.69 and 0.36. Various types of impellers were used.

The original theoretical correlation was developed assuming flow patterns generated by a propeller agitator. Further refinements were made in the correlation to obtain a better fit with the actual experimental results. A semi-empirical correlation was finally arrived at which gave the best fit for the more pseudoplastic systems tested. This relationship was as follows:

 $N_{Nu} = C (N_{Re})^{(1.30/n+1)} N_{Pr}^{0.28} (W/H_w)^{0.30/n^{0.75}} (D_t/D_a)^{(-0.50)} (W_a/D_a)^{0.50_{na}} (20)$ where C and a were evaluated separately for each impeller tested. This correlation was based on the apparent viscosity defined earlier by Metzner as:

$$\mu_{a} = k (11.5N)^{n-1}$$
 (11)

The Hagedorn correlation gave an overall error of less than 11%.

EXPERIMENTAL

The experimental portion of this thesis involved the following:

- 1. Selection of materials
- 2. Brookfield viscosity determinations
- 3. Determining batch heat transfer data
- 4. Heat transfer and mixing calculations

Materials

A total of five different water-solid suspensions were studied. These were as follows:

Solid Phase	Weight	Percent	Solids
Iron oxide		33.2	
Π		24.0	
11		13.1	
Kaolin		24.4	
11		18.4	

Both solids were used as is, and no attempt was made at using a dispersant to obtain higher solids contents. Most known dispersants will degrade at the higher temperatures used in this study. The highest solids contents used for both the iron oxide and kaolin suspensions were found to be the upper limit for feasible equipment operation.

A high purity, red iron oxide (Fe₂O₃) pigment was used in this study. The pigment was commercially available from Charles F. Pfizer Company (code number R 8098). The pigment particles are reported by the manufacturer to be essentially spheroidal in shape. The average particle diameter has been previously studied (15) and was reported to be 0.20 μ m \pm 0.10 μ m. The second solid studied was a kaolin clay manufactured by Engelhard Minerals and Chemicals Corporation. The kaolin is commercially known as ASP200. ASP200 is reported to have an average equivalent spherical diameter of 0.55 µm. It is composed of flat white crystals from which virtually all moisture, sand, mica, and water soluble salts have been removed. The kaolin is non-hygroscopic and is essentially inert and water insoluble. The manufacturer reports the following chemical analysis:⁽²⁵⁾

Component	Weight %
Silicon (SiO ₂)	45.4
Aluminum (Al ₂ 0 ₃)	38.8
Iron (Fe ₂ 0 ₃)	0•3
Titanium (TiO ₂)	1.5
Calcium (CaO)	0.1
Sodium (Na ₂ 0)	0.1
Potassium (K ₂ 0)	Trace
Water of hydration	13.8

Table No. 1 lists pertinent data necessary for heat transfer data for both the kaolin and iron oxide pigments.

Viscosity

Suspension viscosities were measured using a Brookfield LVT-5X-600 Synchro-Lectric Viscometer. This instrument consists of a syncronous motor which drives a cylindrical spindle. The rpm can be adjusted through a gear train which is controlled by a speed selector knob. Shaft speeds of 3, 6, 15, 30, 60, 120, 300 and 600 revolutions per minute can be readily attained. Thus a two hundred fold range of shear rates

TABLE NO. 1

SOLIDS' PROPERTIES

	Kaolin	Iron Oxide
Avg. Particle size, µm	0.55 (28)	0.20 (15)
Specific gravity	2.58 (28)	5.15 (15)
Thermal Conductivity Btu / hr. ft. ² (°F/ft.)	0.110 (24)	0.277 (10)
Specific heat capacity Btu / 1b. °F	0.224 (24)	0.148+0.00034T (10) (T = °C)

can be attained. The torque supplied to the spindle at a given rpm is transmitted through a calibrated spiral spring which is attached to a read out dial. The dial gives a measure of the percentage of full scale torque which for this instrument was 3368.5 dyne centimeters.

The shear rate can be determined as follows:

$$\delta \omega = 4 \, \mathcal{N} \, \mathrm{N/n^{tt}} \tag{7}$$

where N is the rotational speed of the spindle, n" is a measure of non-Newtonian behavior and can be found by taking the slope of a logarithmic plot of torque versus spindle revolutions. This relationship is applicable when the diameter of the spindle is small compared to that of the container.

The torque reading is a measure of the shear stress occurring at the cylindrical walls of the spindle and also at the ends of the spindle. What is wanted is a measure of the shear stress at the walls of the cylinder only. To correct for this end effect, Hagedorn and Salamone determined an effective cylinder height which was somewhat larger than the actual cylinder's height. Thus the shear stress was determined as follows:

$$\mathcal{P}_{\omega} = T'/2 \mathcal{H} R^2 h_{\alpha}$$
(21)

Where T' is the torque, P is the cylinder radius, and h_{Θ} is the effective cylinder height.

This method of determining an effective cylinder height was also used by Metzner (14) and was used by the author for the present work. The Brookfield viscometer was checked and calibrated before use according to accepted practices outlined by the manufacturer. Viscosity measurements were taken in triplicate for all five suspensions used in this study. Viscosity data was taken for each suspension at three or more different temperatures.

Each suspension was immersed in a water bath and the temperature during the viscosity measurements was maintained to within $\frac{+}{-}1^{\circ}F$. The suspension was kept fully agitated between measurements to prevent settling of the suspended solids. The apparent viscosity was determined by:

$$\mu_{a} = \mathcal{H} \mathcal{Y} \tag{22}$$

The shear stress, γ , divided by the shear rate, λ , equaled the apparent viscosity. These viscosities are plotted as a function of shear rate for each suspension in Figure Numbers 1 to 5.

Heat Transfer Equipment and Data Determinations

The basic equipment used in this study was previously built by Donald Hagedorn as part of his Doctoral Thesis requirements. The equipment was an insulated fifteen gallon 316 stainless steel vessel, which was fully jacketed on its sides and dished bottom. Agitation was supplied through a three quarter horse power DC shunt motor mounted on a frictionless bearing above the vessel. A half inch agitator shaft was located centrally and impellers could be fastened at an infinite number of positions along its length.

Shaft speeds could be varied between 75 - 2500 RPM through a Reliance VS Jr., Style "EF" electronic motor controller. During the present study the impeller speeds were always below 700 RPM. The mixing power consumed was readily determined with a 0 - 25 pound scale which was attached to a

10 9		4		10	00			· · · · ·											F	I (-U-	Ŕ.E		Ĩ.	Ō,		J		<u> </u>						· · ·	[-		
7								· · · ·					· · · ·	·. 	V	ISCO	SJ	TY	OF		21.01		ta			202	v -	OXTI		SLI	JRR	Y	-	· · · ·				-	
5																																							
4						· · · · ·		··· > ···		· · · · · · · · · · · · · · · · · · ·				段								-								-									
3																\sum									 														••••• ••• •••
2																		\backslash	0																				
																				X																			-
10					-OC												-				\sum	0																	-
9 8 7								······															K								- 1								
6 5			-			· · · · · ·	6																		$\left \right\rangle$														
. 4							CD																																
3							0 87																						١Q										
2							6																														-		
							1900											- <u>68</u>	$\mathbf{Q}_{\mathbf{L}}$	1299 299	G												\mathbf{X}	4					interin his
10					- 7 (Δ	41 659														V7 \					
9 E 7			-																																		X	図図	
5							THEAT	-																															
1								·····				-																											
3		+													T T												· · · · · ·												man and an income
2													-																										and a second
		+																														•							
																									+														
	1			2	- T		3		4		5	ŝ	7	3	1(3	~~*** ** *	SH	2 EAR	F	3 RATE	4	5	6. Э.С.	7	3 3	10	δ	galann gala	2		3 1		4	5 5	S	7	1(Э(
																					•																		

KEUFFLL & ESSER CO.

KEUFFEL & ESSER CO.

						:	-						1.1	7 - 2				77-	궀上	<u> </u>				<u> </u>						
								+ -					1 <u>.</u>	1.6	- U J	<u>fH</u>		<u>I</u> V -	04	14					· · · ·					•
																1														
	<u></u>						-			¥.	LSC OS J	ΤΥ.	LOF.		1.1	-WF	- <u>67</u> 	<u> </u>	<u> </u>	LL	<u>SIU</u>	RRY.								-
		·····	<u></u>										1													1				
			· · · · · · · · · · · ·																	+										-
																								1) . 				
												14 <u>1</u>			<u> </u>			_		-										
								-																						
			· · · · ·					-		÷																				
-+			· · · · · ·											1																-
							-																							
						-										1-														
								-																					-	
	- 7	hon														曲				† [:		ļ					4			
					+			1					R-	1		· · · · · · · · · · · · · · · · · · ·	1													
								1						8		j		<u> </u>				<u> </u>	f an	İ.			<u>iti</u>			
						-				-							+++++++++++++++++++++++++++++++++++++++						1	17						
														-	$ \rangle$								1							
														ΤĒ		¥.									1		1.11		Ĩ	
							-		1		······································						X					ļ	4	1						
			τ	2													ļų.	X									i,T			<u>í</u>
			1	2										1		1=		1	\geq	3		1								
										-										٥N										
				1		-	-	-										1			<u> </u>									12
			.	K_		·				-				1	1.		1							120		-		-		
				1	- - <u> </u> , 																	MA_					-			
			ž				-		++	-									<u> </u>											
			1 F						-	I	EGEND							1.T								122				
		100	Ē	3		1		-			O 3	200					1		1-1				· · ·					+++		
			1	3				-	•	1-	5	loc		•}-: 												6-	- 	-		
			Þ	*						1	Δ.7	3°C-													-	汉				-
			E								- 7 9	1°C															\mathbf{X}			
	<u></u>		1-4																									K		
			1 Z	2	.									1				-				1 E							X	-
			μ.		· · · ·				-	ŦŦ													-	1						X
					-	-	-			1				-				-				-							-	Ć
	1	1	1		-			-		1.						-								1						
	2.4									1			1																	17
				1		1-			-	1.												1	-	-			-			
		1																		, i		+						Ŧ		-
	+		1			••••••••••••••••••••••••••••••••••••••				1.			-	1	-		1					-	-	-	-	-			1	
			1			-								ł			ļ.,							-				• • • • • • • • • •		
		110	Anarona	there are serviced as			Tail Tail		Same and		THE REPORT OF		NURAHADAR X5/92			nonteicrease		anster zu							21/2008/02/24/	Radio Cale		solution and a		darups
*		-		3	4	b	5	7	8	91	FO		2		3	÷	ŝ	h	7 9	3 7	ÓÔ		2		3	÷	5	5	7	3]

KEUFFCL & ESSER CO.

	άτι του	
N 1		
در	APPARENT VISCOSITY, p	
*		
0. 		
7		
م ۲		
ି		
ISI	STTY AO 81 240	
· EAF		
		1
3 PATE,		
თ. თ		
C		
L.		
ď		
N.		
ن ا		
internation Markani Markani		
ین مربعہ Maria Statistics		
· σ.		
α a		

KEUFFEL & ESSER CO.

moment arm in the form of a 6-1/2 inch pulley at the base of the motor. The torque used in mixing caused the motor to turn slightly on its mount and transmit the force to the scale.

During the course of this study it was shown that the mixer motor was only capable of delivering about 1/4 horsepower usable power within the low range of speeds tested. This power reduction with speed is inherent with this type of shunt motor. This power limitation reduced the amount of experimental data obtainable especially with the more concentrated suspensions.

Vortexing was minimized by four 1 by 20 inch baffles attached to the inside vessel walls. Other pertinent vessel dimensions were the following:

Diameter	14 inch
Height of cylindrical side	20 inch
Depth of dish	2 inch
Heat transfer area used	6.2 ft. ²
Volume used	1.512 ft. ³

Three thermocouples were used to measure batch temperatures and three thermocouples were used to measure wall temperatures. Thermocouples were also used to measure jacket inlet and outlet temperatures. All eight thermocouples were connected to a Westronic MIIB/J/DV.5M twelve point strip chart recorder which prints a temperature point every five seconds. The chart speed was adjusted for one half inch per minute.
The three batch thermocouples measured temperatures at three different levels. Wall temperature measurements were made possible by three thermocouples embedded in the vessel's wall at various levels. Grooves were milled into the cylindrical wall at various positions around the perimeter. The sheathed iron constantan thermocouple wires were cemented into each groove (one thermocouple per groove). The tip of each sheath was bent slightly to make it flush with the vessel's wall. The cement used, Thermon T-85, was choosen because its thermal conductivity was similar to 316 stainless steel.

During a run the fluid level was kept at 3-1/2 inches from the vessel's top. Therefore, the wall thermocouples were submerged at 2-1/2, 9 and 14-1/2 inches below the liquid surface. The batch thermocouples were then at 3-1/2, 11-1/2 and 20 inches below liquid level. The multiple batch and wall temperature measurements tended to minimize temperature variations within the vessel. The thermocouples were calibrated prior to use.

Four basic impeller designs were studied. The impellers are shown pictorially in Figure No. 6 and the basic impeller dimensions used are given in Table No. 2 . Each impeller was mounted on a half inch shaft. Hagedorn and Salamone report that the impeller height significantly effects the heat transfer results, all other factors being equal. Therefore, the relative impeller positions recommended in the afore mentioned work were adhered to in this study. These were as follows:

FIGURE NO. 6

IMPELLERS

Disc and Vane Turbine.

Paddle

· · ·

1.01 1.1

IMPELLER DIMENSIONS

Impeller Types	Diameter Inches	Width Inches
Anchor	9•0	6.0
Paddles	4.0	1.0
	4.0	2.0
	6.0	1.0
	6.0	2.0
	8.0	1.0
	8.0	2.0
Propellers	4.1	ettero giech
	5.2	and agen
	6.0	Name Gale
Turbines (disc & vane)	4.0	0.75
	5.0	1.00
	6.0	1.25

.

Impeller	Position
Anchor .	5 inch clearance
Paddle	7 inch center height
Propeller	10 inch clearance
Turbine	7 inch center height

The clearance is measured from the vessel's dished bottom to the impeller's bottom. The center height is measured from the vessel's dished bottom to the middle of the impeller's width. These impeller positions were experimentally shown to minimize discrepancies in wall temperature measurements among the three thermocouple locations.

Time was initially spent to become familiar with the equipment. During this period heat transfer data was obtained using water as the batch fluid. The experimental results for the water runs are given in Table No. 3. Water is a well known Newtonian fluid whose properties have been well documented in the literature. (23) The pertinent data for water and its method of calculation are given in Appendix No. 1.

The normal operating procedure for suspensions was to fill the vessel three quarters full of water. Then solids were added to the water using agitation until the desired solids content was obtained. Then premeasured quantities of water and solids were added until the desired volume of the vessel was filled. A ruler was attached to the vessel wall to facilitate the filling operation. The suspension uniformity was periodically checked by sampling the batch and drying the sample in a 250°F oven.

Run Number	Batch I No. 1	lemp.,°C No. 2	Wall To No. 1	emp. °C No. 2	Avg. Temp.,°(RPM C	Scale lbs.
						on ensur exten d'an onno mora filta e-no és	an Duu kuu men ann dan dan tinu din kuu din dan din din din din din din din din din di
9 FF 9 TT	en r	OI F	ANU.	nun y"	R O 0	- / /	r ar
100-1H	13.5	84.5	78.5	88°2	79.0	166	5.85
155-40	43.0	38•5 0000	41.04	30.5	41.1	T60	5.85
156-2H	83.5	92.0	91.0	97.5	87.8	48	0.50
156-40	44.0	39.5	39•5	35.1	41.8	48	0.50
1 57-1H	73.5	85.0	80.4	89.8	79.3	113	2.80
157-4C	46.4	41.0	43.1	38.0	43.6	113	2.80
			TURBINE	6 x 1.25"			
127-1H	69.8	84.3	76.0	90.2	77.1	285	3.90
127-30	59.8	50.8	56.5	46.8	55.3	285	3,90
149-1H	67.0	80.5	73.5	85.4	73.8	330	5.52
149-30	53.0	45.8	49.4	43.0	49.4	330	5.52
150-2H	80.5	90.0	85.7	93.5	85.3	216	3 10
150-30	50.5	14.5	17.5	17.5	17 5	216	3 10
151_2H	78.0	88.0	\$6.5	0/ 1	83 0	106	J •10
151_30	/0 . 0	13.5	13.6	38.5	16.3	100	0.50
1)1>0	4/*0	4/01	4).0		40°)	TOO	0.00
. `			TURBIN	E 5 x 1"			
128-2H	73.5	87.0	79.0	90.5	80.3	500	4.98
128-4C	60.5	52.5	57.0	49.1	56.5	500	4.98
1 29–1H	. 79.8	87.8	87.5	93.8	83.8	110	0.12
129-40	61.0	54.3	53.8	47.0	57.7	110	0.17
1 30-1H	79.6	86.9	83.8	90.8	83.3	270	1.29
130-30	47.4	42.5	43.5	39.2	45.0	270	1.30
131-1H	50.4	67.4	58.0	75.0	58.9	200	3.08
131- 30	67.3	58.3	63.0	54.4	62.8	400	3.10
100 11	10 0	150	FF (F (0	100	
122-10	40.0	65.0	55.0 (((71.5	56.9	400	3.14
132-30	72.0	62.2	66.6	57.5	67.1	400	3.12
133-20	85.4	94.6	89.0	97.8	90.0	500	5.00
10-00	7 5 e0	6305	69.0	59•4	69.3	500	5.00
			TURBINE	$4 \ge 0.75^{n}$			
158-1H	70.4	82.7	77.0	87.4	76.6	645	3.10
158-4C	45.0	39.5	42.0	37.0	42.3	645	3.10
1 59–2H	78.5	87.0	85.2	92.5	82.8	300	0.60
159-40	45.0	40.0	40.9	36.1	42.5	300	0.60

EXPERIMENTAL MEASUREMENTS FOR WATER

EXFERIMENTAL MEASUREMENTS FOR WATER

Run Number	Batch I No. 1	'emp.,°C No. 2	Wall To No. 1	emp., °C No. 2	Avg. Temp.,°C	RPM	Scale lbs.
annen afrikt Brite Bank Brite	uurun uurun maan antii 1960 Abid Audi Audi		TITRETNE	$\lambda = 0.751$			
160-1H	71.0	83.0	. 78.5	88.5	77.0	505	7.88
160-30	55.0	47.9	51.1	44.5	51.5	505	1.88
			PADDL	E 6 x 2"			
141-1H	65.5	79.5	73.0	84.2	72.5	401	6.33
141-4C	43.6	38.0	40.9	36.0	40.8	401	6.33
142-2H	82.0	91.0	87.0	94.2	86.5	301	3.50
142-40	46.5	40.5	43.3	37.9	43.5	301	3.50
143-2H	81.6	89.4	87.5	93.9	85.5	200	1.57
143-30	48.0	42.1	44.5	39.0	45.1	200	1.57
144-1H	75.9	83.9	84.4	91.5	79.9	93	0.40
144-30	49.0	43.2	42.2	38.1	46.1	93	0.40
			PADDL	E 6 x l"			
137-1H	62.0	74.0	68.4	79.5	68.0	528	4.32
137-40	42.5	37.5	39.9	35.1	40.0	528	4.32
138-1H	62.0	75.5	69.5	81.5	68.8	448	3.10
138-30	53.5	46.5	49.0	42.6	50.0	448	3.10
1 39-2H	85.5	92.6	90.5	96.0	89.1	347	1.80
139-40	40.1	35.8	36.5	33.0	38.0	347	1.80
140-1H	74.0	85.0	85.4	93.5	79.5	164	0.44
140-30	47.5	42.5	42.4	37.9	45.0	164	0.44
			PADDI	E4x2"			
145-1H	72.0	86.0	80 . 0	91.0	79.0	595	2.90
145-30	46.0	40.4	42.8	37.6	43.2	595	2.90
146-1H	63.0	72.6	74.1	82.0	67.8	194	0.60
146-40	41.5	37.5	36.6	33•4	39.5	194	0.60
147-1H	71.4	83.8	81.0	90.0	77.6	331	0.80
147-30	46.6	41.5	42.0	37.1	44.1	331	0.80
148-2H	77.1	87.0	83.6	92.0	82.0	494	1.95
			PADDI	E4x1"			
152-1H	74.0	85.5	83.5	91.0	79.8	651	1.38
152-30	46.9	41.5	42.5	37.9	44.2	651	1.38
153-2H	84.0	91.5	91.1	97.8	87.8	364	0.47
153-30	47.6	42.2	41.6	37.0	37.0	44.9	0.47

Run Number	Batch 1 No. 1	emp.,°C No. 2	Wall T No. 1	emp.,°C No. 2	Avg. Temp.,°C	RPM	Scale lbs.	
This was goin this day but but got	1998) Word Stiffs aske guid Huns Stier Stat ake	a gyran (di'nil down gallo zana 1922) (billi dhan Moha a	ann guae la ^{dha} dhat ann dans bear ann i	anas dasa dasa mata anat dasa dasa data digit digit	un	arth mana bhill hills baine glans ginns anns go	na anta muto dava kaja apas tana tana anan gana t	,
			דרות אס	₽ / 1 1				
75/ 04	772 E	OFF	PRDDL	$^{\circ}$ 4 X L ^{\circ}	70 5	101	0 00	
104-20	1200	02.0	02.0	91.9	19.0	494	0.80	
154-30	47.0	41.0	41.5	37.0	4403	494	0.80	
			PROPEL	LER 5:2"				
123-2H	79.0	87.1	85.8	93.0	83.7	319	0.35	
123-10	17.5	47.6	1.8	35.8	44.6	318	0.35	
12/-2日	68.7	76.8	78.6	85.0	72.7	332	0.2/	
12/ 20	58 5	70.0 50 8	52 /		FI G	222	0.26	
184-20		JU.0	1204	444 6 44	24.0	JJZ	Vero	
125-1H	70.0	87.8	75.8	86.8	75.9	515	0.9/	
125-40	62.0	52.0	56-0	46.0	57.0	515	0.94	
126-30	46.1	20-0	12.5	36.0	13 1	765	2 00	
120-70	40 · 1	40.0	42.00	0000	4/•1	10)	2.00	
			PROPEL	LER 4.1"				
134-1H	64.0	78.5	.75.0	86.9	71.3	650	0.50	
134-30	56.4	49.5	50.0	43.9	53.0	650	0.50	
135-2H	73.5	82.0	83.5	90.6	77.8	395	0.20	
135-30	56.0	19.0	18-0	12.5	52.5	305	0.20	
	<i>J</i> 0 •0	47.0		4~• >	12.01	272	0.20	
136-1H	66.0	79.5	78.0	87.5	72.8	523	0.30	
136-30	53.0	46.5	46.5	27.0	49.8	523	0.30	
		7 - • 2		and the second s	~~/• ~	1~1	~~	

EXPERIMENTAL MEASUREMENTS FOR WATER

Figure No. 7. shows how steam and water entered and discharged from the jacket. Steam was admitted to the sealed jacket during the heating cycle until the batch temperature reached approximately 90°C. The steam was then discontinued and the top drain valve was opened. Cooling water, controlled through a rotometer, was then admitted through the top and bottom inlets for the cooling cycle. Temperature measurements were continually monitored throughout the heating and cooling cycle. After the cooling cycle the jacket was drained in preparation for the next heating cycle.

Where possible, three to four runs were made with the same impeller but at different revolutions. Mixing power limited some runs at the upper RPM and inadequate mixing, resulting in solids settling, limited some lower mixing speeds. A Smiths Hand Tachometer was used to measure rotational speed. Water was added when needed to compensate for evaporation.

During the heating cycle the wall temperature was higher than the batch temperature and during the cooling cycle the opposite was true. The temperature recorder curves for each run were examined. A two minute time interval, selected where the wall and batch temperatures formed the smoothest line, was used from both the heating and cooling cycle. A straight line was drawn through these points and these were used to determine the change in batch temperature at a given temperature drop between the batch and wall. This information was then used to calculate the heat transfer coefficient. The experimental data for all suspensions studied is given in Table Nos. 4. to 8.

FIGURE NO. 7

HEAT TRANSFER VESSEL DIAGRAM

Run	Batch	Temp.	Wall 1	emp.	Avg.	App	RPM	Scale
Number	No. 1	No. 2	No. 1	No.2	Temp.°C	Visc.cp.		lbs.
		,		ANCHO	R OII			
44-1 Н	75.0	82.4	88.5	94.6	78.7	370	165	7.80
44-30	47.3	42.3	36.9	33.5	44.8	340	165	7.80
			T	IRBINE 6	x 1.25"			
45–1H	77.5	85.6	92.1	96.5	81.6	202	342	7.95
45–3C	48.4	43.0	36.6	33.0	45.7	185	342	7.95
46–1H	66.0	74.0	90.4	94.0	70.0	235	277	5.12
46–3C	42.4	39.0	28.9	27.1	40.7	220	277	5.12
			r	FURBINE	5 x 1"			
32–1H	71.0	83.0	88.6	94.9	77.0	140	527	7.67
32–30	43.0	38.3	34.8	31.2	40.7	128	527	7.67
33–1H	70.5	79.1	89.4	95.0	74.8	155	460	5.98
33–30	43.0	39.0	33.0	29.5	41.0	142	460	5.98
				PADDLE	8 x 1"		,	
40-1H	69.7	79.2	90•5	94•5	74.5	200	351	7.73
40-30	51.0	45.5	36•6	33•0	48.3	185	351	7.73
41-1H	63.1	73.0	89•5	93•5	68.0	217	299	5.51
41-30	47.4	43.0	32•5	29•9	45.2	207	299	5.51
			*	PADDLE	$6 \ge 2^{11}$			
37-1H	67.6	77.5	86.6	92.5	72.0	180	380	7.80
37-30	45.6	41.0	35.5	32.0	43.2	168	380	7.80
38-1H	57.5	68.5	87.0	90.5	63.0	205	325	5.73
38-30	46.5	42.0	31.4	29.0	44.3	195	325	5.73
				PADDLE	6 x 1"			
35–1H	70.1	80.0	88.5	94.6	75.0	130	575	7.61
35–30	45.0	40.5	35.0	31.5	42.8	120	575	7.61
36–1H	69.9	78.5	91.4	95.5	74.2	147	492	5.61
36–30	47.5	43.0	34.9	32.5	45.2	137	492	5.61
				PADDLE	$L = 2^{11}$			
39 -1 H	65.6	75•5	90.0	94•5	70.5	114	654	4•74
39-30	51.0	46•0	36.5	33•5	48.5	109	654	4•74
				PROPELI	ER 6"			
42–1H	67.4	76.0	86.5	91.8	71.7	115	648	3.65
42–3C	49.0	44.1	37.6	34.5	46.6	107	648	3.65
43–1H	78.1	86.0	95.0	98.5	82.1	135	560	2.75
43–3C	47.1	43.0	34.6	32.1	45.1	122	560	2.75

EXPERIMENTAL MEASUREMENTS FOR 33.2wt.% Fe202 SUSPENSIONS

EXPERIMENTAL MEASUREMENTS FOR 24.0 wt.% Fe203 SUSPENSIONS

Run Number	Batch No. 1	Temp. No. 2	Wall T No. 1	emp. No. 2	Avg. Temp.°C	App. Visc.cp.	RPM	Scale lbs.
				ANCHO	{			
83_1H	71.0	86.0	87.4	95.6	80.0	120	164	6.86
83-30	50.2	44.0	14.0	38.5	47.1	120	11	6.86
8/-1H	61.0	70.0	84.0	91.2	65.5	195	90	1.85
84-30	46.6	42.3	35.0	32.4	44.5	195	Ħ	1.85
			ጥር	RBTNE 6	x 1.25"			
17-1H	81.0	87.0	87.0	93.5	84.0	63	351	7.50
17-30	47.4	41.5	40.5	35.6	44.5	63	11	7.50
48-1H	62.5	72.5	83.4	89.5	67.5	98	210	2.65
48-30	46.0	42.0	36.1	33.0	44.0	98	n	2.65
10 _1 H	75.5	83.0	86.4	91.1	79.3	71	305	5.73
19-30	17.0	41.5	39.0	34.7	44.3	71	n	5.73
50-1H	73.5	81.5	87.0	93.0	77.5	81	259	4.13
50-30	46.1	41.0	37.6	33.5	43.5	81	n	4.13
				TURBINE	5 x 1"			
79-1 H	77.2	86.5	87.0	92.7	81.9	45	524	6.68
79-30	49.0	43.0	42.4	37.1	46.0	45	11	6.68
80-1H	73.7	82.4	89.7	94.8	78.1	72	299	2.30
80-30	47.7	43.1	36.5	32.9	45.4	72	tt	2.30
81–1 H	76.2	83.7	88.5	93.0	80.0	60	375	3.40
81-30	43.0	38.2	34.5	31.3	40.6	60	n	3.40
82-1H	71.8	80.0	83.8	90.0	75.9	50	455	5.00
82-30	46.0	40.5	39.0	34.0	43.3	50	Ħ	5.00
				TURBINE	4×0.75			
51-1H	73.5	82.4	87.6	92.6	78.0	38	646	3.79
51-30	51.0	45.0	42.0	36.6	48.0	38	n	3.79
52-1H	66.5	75.9	85.3	92.5	71.2	53	435	1.67
52-30	48.5	44.0	38.5	35.0	46.3	53	Ħ	1.67
53–1 H	70.5	80.7	88.0	89.8	75.6	46	500	2.22
53-30	49.9	44.2	39.0	34.9	47.1	46	n	2.22
54-30	57.5	51.6	48.1	42.0	54.6	41	585	3.00
55 -1 H	70.1	79.4	86.0	92.2	74.8	42	569	2.88
55-30	45.5	40.3	36.9	33.0	42.9	42	17	2.88

EXPERIMENTAL MEASUREMENTS FOR 24.0 wt.% Fe203 SUSPENSIONS

Run Number	Batch No. 1	Temp. No. 2	Wall I No. 1	'emp. No. 2	Avg. Temp.°C	App. Visc.cp.	RPM	Scale lbs.
				PADDLE :	¢ -> 0∥			
72-1H	72.5	85.4	87.0	94.9	79.0	94	221	6.97
72-30	49.0	43.5	41.5	37.0	46.3	94	11	6.97
73-1H	65.0	76.0	88.1	93.5	70.5	140	135	2.43
73-30	48.0	43.9	36.8	33.0	46.0	140	Ħ	2.43
				PADDLE	8 x 1"			
69-1н	73.0	85.5	87.0	95.3	79.3	63	349	6.85
69-30	48.6	43.0	41.0	36.5	45.8	63	11	6.85
70-1H	63.5	69.5	85.4	92.5	66.5	92	225	2.90
70-30	46.9	42.2	35.0	32.0	44.6	92	TI	2.90
71 – 1 H	70.8	82.5	88.5	95.5	76.7	75	284	4.53
71-30	45.0	40.0	35.9	32.5	42.3	75	n	4.53
				PADDLE	$6 \ge 2^{n}$			
66-1 Н	73.4	85.0	86.0	94.2	79.2	60	381	6.97
66-30	54.4	47.6	46.1	40.0	51.0	60	11	6.97
67-1H	68.0	76.5	90.0	95.5	72.3	92	223	2.35
67•30	45.7	41.6	34.5	31.5	43.7	92	11	2.35
68 - 7 H	74.5	82.0	87.5	92.5	78.3	72	300	4.25
68-30	44.5	40.1	36.5	33.1	42.3	72	'n	4.25
				PADDLE	6 x 1"			
62-1H	73.0	85.5	86.0	94.5	79.3	40	602	7.13
62-30	57.0	47.6	47.0	41.0	52.2	40	11	7.13
63-1H	72.0	82.5	92.0	97.2	77.3	65	337	2.23
63-30	47.0	42.4	34.0	31.0	44.07	65	11	2.23
64-1Н	62.5	74.4	84.4	91.4	68.5	54	416	3.44
64-30	49.0	43.8	38.6	34.7	46.4	54	11	3.44
65-1H	78.3	85.0	90.1	94.6	81.7	46	510	5.10
65-30	46.0	41.0	38.1	34.0	43.5	46	tr	5.10
				PADDIE	4 X 2"			
58-1H	73.5	82.0	86.6	92.5	77.8	73.5	652	4.25
58-30	52.9	47.0	44.6	40.1	50.0	73.5	n	4.25
59 - 1H	65.3	73.5	85.6	90.5	69.4	49.0	465	2.13
59-30	47.6	43.5	37.5	34.2	45.6	49.0	Ħ	2.13

		1°2°3 0001	LIMOLONO					
Run Number	Batch No. 1	Temp. No. 2	Wall I No. 1	lemp. No. 2	Avg. Temp.°C	App. Visc.cp.	RPM	Scale lbs.
				DADDTU	/ 01	an inne ma hannan in ann ann ann ann ann ann ann ann	andronalian ann Suis-Fran Suis-Ann	
60-1H 60-30 61-1H 61-30	69.6 58.1 68.9 52.1	78.0 52.4 80.0 46.6	88.0 46.4 84.0 41.7	93.5 41.0 92.0 37.1	73.8 55.3 74.5 49.4	45 45 4ユ 4ユ	519 n 584 n	2.66 2.66 3.32 3.32
56-1H 56-30 57-1H 57-30	67•4 52•5 63•0 42•0	78.5 48.0 73.5 39.0	89.9 40.5 89.5 31.5	PADDLE , 95.5 37.5 94.6 29.9	4 x 1" 73.0 50.3 68.3 40.5	38 38 43 43	645 " 550	1.88 1.88 1.37 1.37
75–1H 75–30 76–1H 76–30	62•0 48•2 64•6 49•0	75.0 42.5 74.5 44.4	78.6 40.5 89.3 34.5	PROFELL 87.2 36.5 93.6 31.0	ER 6" 68.5 45.4 69.6 46.7	38 38 60 60	646 " 375 "	3.04 3.04 1.10 1.10
77-1H 77-3C 78-1H 78-3C	69.5 61.7 63.0 45.8	78.0 54.4 73.1 40.7	86.5 46.5 82.6 37.1	92.0 41.7 89.3 33.3	73.8 58.1 68.1 43.3	48 48 44 44	478 11 556 11	1.58 1.58 2.22 2.22

EXPERIMENTAL MEASUREMENTS FOR 24.0 wt. 5 Fe.O. SUSPENSIONS

TABLE NO. 6

Run Number	Batch No. 1	Temp. No. 2	Wall I No. 1	'emp. No. 2	Avg. Temp.°C	App. Visc.cp.	RPM	Scale lbs.
W itte inder Office witter direr Witte Soft Soft of		n danip (judo 19-46 danih 2044-1973) An	mili ann anns falar diùn mun ann ann	ANCUM				
or nu	67 0	Øn n	76 0	. ANONUS	772 5	17 0	762	5 06
07-1n 85 30	53 0	16 0	17.5	11 2	19.5	18.2	102	5.96
86_1H	72.0	82.3	89.0	91.5	77.2	28.8	65	1.02
86-30	52.0	46.5	43.0	38.5	49.3	31.5	u u	1.02
-	_	•						
87-1H	63.7	78.5	77.5	87.5	71.1	21.0	116	3.22
87-30	47.2	41.5	41.0	36.0	Lite ti	22.8	15	3.22
			TI	JRBINE 6	x 1.25"			
109-1H	70.5	83.0	78.0	88.0	76.8	11.0	334	6.20
109-30	49.3	43.0	45.1	39.6	46.2	12.1	87	6.20
110-1 H	76.7	85.3	88.0	94.5	81.0	18.6	136	1.12
110-30	53.0	47.3	45.3	40.3	50.2	20.2	8 £	1.12
יור ברב	77 3	86 7	Ø1 5	02.0	82 0	125	220	2 22
1 11-30	19.7	/3.7	4.4.0	38.3	16.7	14.7	11	3.22
4.1.1 / V	~~/*~				40 42			
			T	URBINE 4	x 0.75"			
112-1 H	74.3	86.5	82.3	91.8	80.4	7.3	653	3.48
112-30	43.6	38.3	39.8	35.3	41.0	8.4	n	3.48
113-1H	78.5	86.5	90.2	96.2	82.5	11.2	308	0.80
113-30	57.0	50.4	46.0	40.3	53•7	12.2	11	0.80
114–1 H	78.5	87.0	87.7	9/10/	82.8	9.5	<i>ג</i> ר <i>ג</i>	7.40
114-30	46.2	41.0	40.1	36.3	43.6	11.0	11	1.40
115-1H	70.3	80.0	79.7	87.0	74.6	8.4	535	2.37
1 15-30	50.0	44.0	44.0	39.0	47.0	9.2	π	2.37
				PADDLE	8 m 21			
1 06-1H	65.8	74.5	72.0	80.5	70.2	71.8	207	5.10
106-30	51.4	14.0	16.7	10.5	18.2	15.8	11	5.40
107-1H	79.0	86.5	91.0	96.0	82.8	23.5	88	1.00
107-30	51.5	46.0	42.0	38.0	48.8	26.0	11	1.00
108-1H	77.2	87.3	86.5	94.0	82.0	17.5	149	2.90
108-30	51.3	45.3	44.0	39.5	48.3	19.0	IT	2.90
				PADDLE	8 x]"			
102-1H	67.8	76.5	73.1	81.0	72.2	10.8	361	6.60
102-30	44.5	39.0	40.0	35.5	41.8	11.8	n	6.60
103-1H	75.6	83.5	90.4	94.5	79.6	19.0	130	0.90
103-30	51.5	46.5	40.0	36.0	49.0	21.8	n	0.90

EXPERIMENTAL MEASUREMENTS FOR 13.1 wt.% Fe203 SUSPENSIONS

	بالدعا باداسان بالريار كرافيتهم		. 11/10/01:101	101120201	C L VOUND	10203 000121	OLOND	
Run Number	Batch No. 1	Temp. No. 2	Wall I No. 1	lemp. No. 2	Avg. Temp.°C	App. Visc.cp.	RPM	Scale lbs.
NU ST-SOOL ANTO HEART BALL AND HEART BALL	e- Betta decle gleve duco minis provi gen	n 1946-yaya soos Graf Kina Akara	ine and star and	PADDLE 8	3 x] ¹¹	gran gangi gann gicli safan mai'n gann girm gan diwy yn yw safar gan gang	n 1992) n 2003 an 1994 (1992) (1992) an 1995 (1993) (1995)	aran a yan danyi dirin, kinin as'ni astin galar
104-1H 104-3C 105-1H 105-3C	66.7 52.0 71.0 54.3	74.0 45.8 82.0 47.5	75.7 44.1 80.0 49.0	81.0 39.0 89.0 43.2	70.4 48.9 76.5 50.9	14.8 15.7 12.2 13.2	209 11 282 11	2.25 2.25 4.00 4.00
99-1H 99-30 100-1H 100-30	75.2 65.5 77.0 48.0	83.8 55.6 85.0 43.3	81.0 58.5 92.5 37.5	PADDLE (89.0 50.1 98.5 34.3	6 x 2" 79.5 60.5 81.0 45.7	10.1 10.8 18.0 20.0	378 " 144 "	6.16 6.16 0.90 0.90
101-1H 101-30	67.5 48.5	77.0 43.0	78.0 42.0	86.0 37.0	72•3 45•8	12.8 13.8	265 "	3.00 3.00
95-1H 95-30 96-1H 96-30	67.8 52.5 72.4 45.8	78.0 45.3 81.5 41.0	74.8 47.5 85.6 37.5	PADDLE 84.5 41.5 92.3 33.5	6 x 1" 72.9 48.9 77.0 43.4	7.8 8.4 12.7 14.2	605 " 262 "	6.67 6.67 1.22 1.22
97-1H 97-30 98-1H 98-30	70.8 49.1 63.0 45.7	82.5 43.1 76.0 40.0	83.3 43.5 73.0 41.0	90.2 38.0 84.5 36.0	76•7 46•1 69•5 42•9	10.3 11.4 9.1 10.0	375 11 474 11	2•52 2•52 4•08 4•08
91-1H 91-30 92-1H 92-30	78•2 49•5 67•0 46•0	87.9 43.3 78.0 41.5	- 85•5 44•2 82•5 38•5	PADDLE 93.5 39.0 89.5 34.5	4 x 2" 83.1 46.4 72.5 43.8	7.4 8.3 10.7 11.9	650 " 354 "	3.86 3.86 1.20 1.20
93–1H 93–30 94–1H 94–30	67.3 46.9 79.0 45.8	78.8 41.7 87.4 40.5	80.4 41.0 86.5 40.5	88.5 36.6 93.5 35.6	73•1 44•3 83•2 43•2	9.3 10.2 8.0 9.2	450 n 550 n	1.85 1.85 2.80 2.80
88-1H 88-30 89-1H 89-30	68.4 56.0 61.3 48.6	80•4 49•0 72•5 43•5	82.6 47.0 80.8 38.7	PADDLE 92.0 41.0 88.8 35.0	4 x 1" 74.4 52.5 66.9 46.1	7.8 8.2 9.7 10.3	644 n 450 n	1.68 1.68 0.80 0.80

EXPERIMENTAL MEASUREMENTS FOR 13.1 wt.% Fe.O. SUSPENSIONS

	EXPERIMENTAL MEASUREMENTS FOR 13.1 WT. 7 Fe203 SUSPENSIONS										
Run	Batch	Temp.	Wall ?	l'emp.	Avg.	App.	RPM	Scale			
Number	No. 1	No. 2	No.l	No. 2	Temp.°C	Visc.cp.		lbs.			
	ann	, ganay galan g		PADDLE	/ 10			and and any in a star of the star star star			
90-1H	79.5	89.0	92.0	97.7	84.3	8.1	546	1.14			
90-30	48.6	43.3	40.0	36.0	46.0	9.0	11	1.14			
				PROPELLI	ER 6"						
116-1H	79.0	90•5	87.2	95•3	84.8	7.4	629	2.93			
116-30	47.6	41•6	43.5	38•0	44.6	8.4	n	2.93			
117=1H	77.2	85•0	89.6	94•0	81.1	11.8	292	0.68			
117-30	45.3	40•8	37.8	34•2	43.1	13.0	n	0.68			
118-1H	66.7	81.0	81.0	90.5	73.9	10.0	407	1.12			
118-3C	51.8	45.4	45.6	40.0	48.6	10.8	11	1.12			
119-1H	70.3	80.8	79.7	87.3	75.5	8.5	508	1.82			
119-3C	45.8	40.6	41.1	36.0	43.2	9.5	11	1.82			
				PROPELL	ER 4.1"						
120-1H	60.2	71.2	79.0	85.0	65•7	7•7	643	0.50			
120-30	49.3	43.8	40.1	35.7	46•6	8•4	#	0.50			

EXPERIMENTAL MEASUREMENTS FOR 13.1 wt.% Fe-O, SUSPENSIONS

Batch No. 1	Temp. No. 2	Wall / No. 1	Temp. No. 2	Avg. Temp.°C	App. Visc.cp.	RPM	Scale lbs.
ali metu anto data data divo éven did	a danar inggin anggin ang cina ang ang ang ang ang ang ang ang ang a	aan dense gomo socie biske skriv socie b		india diaria dalam behir ansa difas argan dalar gaba daha daha daha daha d	anna 2014, guile gran gran ann ann ann ann ann ann ann ann ann	et declar animet actors nonce alcohe muce dear	4044 Mile 7386 6415 350 4444 846 846
			ANCHO	R 911			
51.5	62.0	87.5	91.3	56.8	580	180	7.51
44.8	41.5	32.5	32.3	43.2	580	180	7.51
		- 1	TURBINE	5×1^{n}	. •		
49.3	58.8	73.6	80.5	54.1	2] 5	573	7.86
51.2	47.1	39.0	35.9	49.2	215	573	7.86
59.8	70.6	88.6	93.4	65.2	215	567	7.85
53.5	48.6	37.6	34.8	51.1	215	567	7.85
			PADDLE	6 - 211			
72.7	77.8	95-6	100.0	75.3	300	207	7 57
16.9	11.2	31.8	29.6	15.6	300	2077	(•)/ 7 57
400 /	rtrt e ~		27.0	47.0	500	271	1001
			PROPELL	ER 6"			
68.8	74.6	93.8	96.4	71.7	180	700	3.80
48.7	45.0	33.7	31.5	46.9	180	700	3,80
	Batch No. 1 51.5 44.8 49.3 51.2 59.8 53.5 72.7 46.9 68.8 48.7	Batch Temp. No. 1 No. 2 51.5 62.0 44.8 41.5 49.3 58.8 51.2 47.1 59.8 70.6 53.5 48.6 72.7 77.8 46.9 44.2 68.8 74.6 48.7 45.0	Batch Temp. Wall 1 No. 1 No. 2 No. 1 51.5 62.0 87.5 44.8 41.5 32.5 49.3 58.8 73.6 51.2 47.1 39.0 59.8 70.6 88.6 53.5 48.6 37.6 72.7 77.8 95.6 46.9 44.2 31.8 68.8 74.6 93.8 48.7 45.0 33.7	Batch Temp. Wall Temp. No. 1 No. 2 No. 1 No. 2 ANCHO 51.5 62.0 87.5 91.3 44.8 41.5 32.5 32.3 TURBINE 49.3 58.8 73.6 80.5 51.2 47.1 39.0 35.9 59.8 70.6 88.6 93.4 53.5 48.6 37.6 34.8 PADDIE PADDIE PADDIE 72.7 77.8 95.6 100.0 46.9 44.2 31.8 29.6 PROFELL 68.8 74.6 93.8 96.4 48.7 45.0 33.7 31.5	Batch Temp. No. 1Wall Temp. No. 1Avg. Temp. °CNo. 1No. 2No. 1No. 2Temp. °C $ANCHOR$ 44.8 9" 41.5 32.5 91.3 56.8 44.8 41.5 32.5 32.3 43.2 TURBINE 5 x 1" 49.3 58.8 73.6 80.5 54.1 51.2 47.1 39.0 35.9 49.2 59.8 70.6 88.6 93.4 65.2 53.5 48.6 37.6 34.8 51.1 PADDIE 6 x 2" 72.7 77.8 95.6 100.0 46.9 44.2 31.8 29.6 45.6 FROPELIER 6" 68.8 74.6 93.8 96.4 71.7 48.7 45.0 33.7 31.5 46.9	Batch Temp. No. 1Wall Temp. No. 1Avg. Temp.°CApp. Visc.cp.ANCHOR 9" 3.1 No. 2Temp.°CVisc.cp.51.562.0 87.5 91.3 56.8 580 44.8 41.5 32.5 32.3 43.2 580 TURBINE 5 x 1"49.3 58.8 73.6 80.5 54.1 215 51.2 47.1 39.0 35.9 49.2 215 59.8 70.6 88.6 93.4 65.2 215 53.5 48.6 37.6 34.8 51.1 215 72.7 77.8 95.6 100.0 75.3 300 46.9 44.2 31.8 29.6 45.6 300 FROFELLER 6" 68.8 74.6 93.8 96.4 71.7 180 48.7 45.0 33.7 31.5 46.9 180	Batch Temp. No. 1Wall Temp. No. 1Avg. Temp.°CApp. Visc.cp.RPMANCHOR 9" 51.5 62.0 87.5 91.3 56.8 580 180 44.8 41.5 32.5 32.3 43.2 580 180 TURBINE $5 \times 1"$ 49.3 58.8 73.6 80.5 54.1 215 573 51.2 47.1 39.0 35.9 49.2 215 573 59.8 70.6 88.6 93.4 65.2 215 567 53.5 48.6 37.6 34.8 51.1 215 567 72.7 77.8 95.6 100.0 75.3 300 397 46.9 44.2 31.8 29.6 45.6 300 397 FROFELLER 6" 68.8 74.6 93.8 96.4 71.7 180 700 48.7 45.0 33.7 31.5 46.9 180 700

EXPERIMENTAL MEASUREMENTS FOR 24.4 wt.% KAOLIN SUSPENSIONS

Run Number	Batch No. 1	Temp. No. 2	Wall I No. 1	'emp. No. 2	Avg. Temp.°C	App. Visc.co.	RPM	Sca Ths
G illin ayuni, Merin dorin ayuni dalali yolda iy	chi tanà aon-quis dia dalamani a	nne marte en ne gene ginte ginte ettak giser e	Dink gant fra nov ding this star sa	g dellar fourne florig de cas antier welfe dinker de	له المحمد ال	සාකණාව උන්වාරාකා මුඩාල සංචාද සංචා දෙනාග ලාංග ලාංග ලාංග ලාංග ලාංග ලාංග	an anna bhail àinn fhair Bhail Anna Bhai	COME OF OLD WITH FORM FROM
				ANCHO	2 QII			
08-1H	40.7	51.0	61.2	75.4	45.8	167	135	4.3
08-70	54.4	49.0	42.6	38.4	51.7	166	135	4.3
			TU	RBINE 6	x 1.25"			
12-2 H	76.5	85.2	91.0	96.8	80.9	67	371	. 7.8
12-4C	51.9	46.0	42.6	37.9	49.0	71	371	7.8
13-2 H	74.8	83.8	93.0	97.5	79.3	78	308	5.3
13-50	49.8	45.0	38.7	34.9	47.4	84	308	5.3
14-2 H	66.6	75.0	93.7	96.5	70.8	98	2/7	3.2
14-50	52.3	48.0	34.2	32.2	50.2	104	241	3.2
			TT	JRBINE /	$x 0.75^{11}$			
15-1 H	67.8	76.0	88.2	92.4	71.9	<i></i>	620	3.7
15-60	47.8	43.8	37.1	33.6	45.8	47	620	3.1
			ŋ	TIBBINE	5 - 7 11			
09– 7 H	77.3	85.6	90.6	95.1	9 A I 81 5	16	5 75	
09-30	54.5	18.0	15.8	10.7	51.3	40) () 575	1.01
10-2H	69.8	79.7	87.1	02 2	71 g	47 52	575	/ • /
10-70	46.0	1.7.1	37 0	32 B	127)) 56	500	207
10-10	40.0	4-L e 44	77.0	<i>))</i> •0	42•1	20	500	5.5
11- 3H	69.0	77.7	90.2	94.4	73.4	62	416	4.0
11-50	71.0	63.2	52.6	47.5	67.1	63	416	4.0
12-2 H	76.5	85.2	91.0	96.8	80.9	67	371	7.8
12-40	51.9	46.0	42.6	37.9	49.0	71	371	7.8
				PADDLE	8 x 1"			
25– 2H	71.0	83.3	92.3	97.0	77.2	66	385	7.6
25-50	49.2	42.8	37.3	33.8	45.8	70	385	7.6
26-3н	72.8	81.2	94.8	98.2	77.0	80	305	1.8
26-40	56.6	51.3	39.6	37.0	54.0	83	305	4.8
				PADDLE	6 x 2"			
16-2H	73.5	80.5	89.3	92.8	77.0	62	170	71
16-6C	48.9	43.6	39.0	34.7	46.3	66	110	1•4 7 1
17-2H	75.4	83.8	92.5	97.8	79.6	72	3/7	(•4 5 2
17-4C	51.4	46.3	40.0	36.7	48.9	77	341	5•3
18- 2H	61.5	72.0	92.0	95-0	66.8	88	276	3 0
18.60	18 6	11.7	32 8	21 0	16 7	00	210	202

EXPERIMENTAL MEASUREMENTS FOR 18.4 wt.% KAOLIN SUSPENSIONS

Run Number	Batch No. 1	Temp. No. 2	Wall] No. 1	Cemp. No. 2	Avg. Temp.°C	App. Visc.cp.	RPM	Scale 1bs.
Allectrana anis data ann ann dan a	nara nganan katara matana da turigat sa Anton (shi	n, konsterne dont energion (oper-	anang kan kan kanang kanan manangkan sa		1 7 41			
	(0.0	dn r	077 0	PADDLE I	o x L"	, ,	600	7 10
19-2H	121	20 0	26102	92.0 22.0	14.09	44	620	7.40
19-70 20-1H	42.4	780	87.2	2K+7 02.5	41 ° C	47	518	5.80
20-60	51.0	45.7	40.0	35.8	48.4	52	548	5.80
		06.0	01.1	00 5	61 O	<i>F</i> 1	100	1 20
21-2n	10 6	00.0	94•4 26 0	77.0	01.9	24 EM	402	4.39
21-00.	47.0	4400 70 5	00.0 02.6	24.0 05 8	41 · 1 67 2	57	402	4.07
22-60	46.9	41.1	29.8	27.7	44.0	67	402 402	3.08
								J
				PADDLE	$4 \ge 2^n$			
23-1H	80.6	87.5	95.6	99.0	84.1	42	642	3.86
23-40	43.4	38.5	31.6	29.6	40.9	46	642	3.86
24– 2H	70.4	77.8	93•5	95.8	74.1	50	531	2.58
24-4C	47.1	42.4	31.5	30.2	44.8	53	531	2.58
				PROPELL	ER 6"			
27-2H	76.0	84.8	94.5	98.9	80.4	12	657	2.73
27-4C	51.3	46.2	39.5	36.0	46.8	44	657	2.73
28-2H	72.0	81.4	94.0	98.2	76.7	48	549	1.91
28-50	49.5	45.2	37.5	34.8	47.4	52	549	1.91
29- 2H	64.6	74.2	87.9	93.3	69.4	16	60/	2.3/
29-60	42.9	39.0	33.6	30.5	41.0	48	604	2.34
				PROPELLE	R 5.2"			
31-2H	77.5	83.8	97.8	99.8	80.7	12	657	1.65
31-50	39.0	36.2	30.3	28.6	37.6	45	654	1.65

Calculations

A correction in the heat balance was made to compensate for the heat due to mixing. This quantity can be readily calculated knowing the torque from the dynamometer and the mixer speed. This quantity must be subtracted during heating and added during cooling.

The heat input to the batch is equal to:

$$Q = WC_b dT_b / dt \stackrel{\pm}{=} Q_p, \qquad (23)$$

where W is the batch weight, C_b the batch specific heat, and dT_b is the change in batch temperature over some time interval dt. $Q_{p'}$ is the heat due to mixing.

Knowing Q, the heat transfer coefficient, H, can be calculated as follows:

$$H = Q/A \wedge T_{\omega - b}$$
 (24)

Where A is the heat transfer area, and A T is the temperature driving force measured at the vessel surface and average batch temperature.

The wall temperature measured in these studies was recessed (.04 inches) within the wall. This extra resistance between the wall surface and the thermocouple can be approximated by knowing the wall thickness to the thermocouple and the thermal conductivity of the wall.

This approximation shown by Hagedorn and Salamone (9) results in the following:

$$H = H' [1 + H(L/K_{\omega})]$$
or
$$H = H' (1 + 0.0001774H')$$
where
$$H' = Q/A \wedge T_{\omega'-b}$$
(25)

 ${}_{\omega}T_{\omega}$ being the average difference in the temperature measured in the wall and the batch temperature.

The desired dimensionless groups were then calculated. The Nusselt, Reynolds, Prandtl, and Power numbers were calculated as follows:

$$N_{N_{11}} = HD_t/k_s$$
 (26)

$$N_{\rm Re} = \frac{D_a^2 N}{\mu_a}$$
(27)

$$N_{Pr} = C_b \mu_a / \kappa_s$$
 (28)

$$N_{Po} = 32.2 P/\rho N^3 D_a^5$$
 (29)

where H is the film heat transfer coefficient

 D_t is the tank diameter

 K_{S} is the suspension's thermal conductivity

 ρ is the suspension's density

 C_b is the suspension's specific heat

N is the mixer revolutions

Da is the impeller diameter

P is the mixing power

 $J_{\rm a}$ is the apparent viscosity determined at a shear rate equal to 11.5N. Sample calculations can be found in Appendix No. I. All calculations were performed using a Wang 380 desk computer with tape programing. The calculated results for all five suspensions and water are given in Tables No. 9 to 14.

~		k	P	Н					.*
Run Numbers	lb./ft. ³	<u>Btu</u> hr.ft.°F	ft.lb./sec.	°F hr.ft.2	N _{Nu}	N _{Re}	$^{ m N}{ m Pr}$	NPo	NV
	gen and 500 tant and and 100 tant and 100 tan			ANCHOR OU	an gangan akalan dunian badan dunian dunian dalam dalam dalam	Bandar Sanda (Sanon danis, manis dasin disan danis dasin daga daga daga	anta suna finin dana muna muna finin finin fini		
155 _1 H	60.7	0.305	27.6	1330	3011	3807/6	2.2	20	1 05
155-10	67.8	0.367	27.0	בעע מררר	2565	216003	2 0	20	1.05
156_2H	60.7	0./03	07	650	1015	10/161	2.0	2.0	0.07 1 07
156-10	67 8	0.367	07	560	1917	71566	2.0	2.0	T•01
T)0-40	01.0	0.007		209	TOTI	11,000	J.O	6.07	0.07
157 -1 H	60.7	0.395	9.0	1038	3073	266096	2.2	3.0	7.07
157-10	67.9	0.364	9.0	892	2869	158817	1.7	3.0	0.93
		00,04		0,2	2007	1)0047	~{· ● _h	2.0	
			TUR	BINE 6 x 1.25	11				
127-1H	60.8	0.393	31.6	1302	3873	290523	2.3	5.0	7.08
127-30	67.6	0.374	37.6	1376	1305	21 5726	3.3	1.9	0.94
149-1H	60.9	0,390	51.8	1282	38/2	322985	2.1	5.3	1.08
1/9-30	61.7	0.369	57.8	1222	3877	227606	3.7	5.2	0.93
		0.00)	1000	5011	~~ 1000)•1	1.4	0.
150-2H	60.5	0.401	21.7	1169	3475	275816	2.0	5.4	7.05
150-30	61.8	0.367	21.7	1064	3390	16/393	3.8	5.3	0.93
151-2H	60.6	0.399	1.5	694	2036	115875	2.1	1.7	1.08
151-30	61.8	0.366	1.5	523	1671	69353	3.9	4.6	0.89
	0	0.900		141	1014		247	4.0	0.07
			TUI	RBINE 5 x l"					
128-2H	60.7	0.396	70.8	1691	4993	367696	2.2	5.2	1.06
128-40	61.5	0.375	70.8	1268	3954	267879	3.2	5.1	0.94
129-1H	60.5	0.399	0.2	579	1696	84233	2.7	2.6	1.07
129-40	61.5	0.376	0.5	451	14.04	59957	3.7	3.6	0.88

CALCULATED MEASUREMENTS FOR WATER

CALCULATED MEASUREMENTS FOR WATER

		k		Н					
Run	Density	Btu	Power	Btu					**
Numbers	16./ft.)	hr.ft.°F	ft.lb./sec.	°F hr.ft.~	Nu	^N Re	NPr	^N Po	$\nabla^{\prime 1}$
ې زورې د مېرو کې ور	الله مربقه ويبين ويبير بيني بينين (يابن ويبير) ويبير وي	nange angelen ander ander ander auser auser ander ander ander ander ander a	nilli galah dinini dinini mang sama kumi puru ang akan dinini dinini dinini dinini dinini dinini dinini dinini	ng dalaka daran darah dalah filinda dinak dinak daran darah darah darah darah darah darah darah darah darah dar '	ak depadan ganaan mantif dadank daqatin dibitin dapata dadad	n Frank Malan Sanan Acama nakar Sanga nang nakar danan dalam dalam dalam dalam dalam dalam dalam dalam dalam da	anan dalar jako kenit deni 1940 dala dala dala dala dala dala dalar dalar dalar dalar dalar dalar dalar dalar d	an theo incor their period stay and and incor the same fight may us	12
			TUF	BINE 5 x l"					
130-1H	60.6	0.399	9.9	940	2759	205555	2.1	4.6	1.05
130-30	60.8	0.393	10.0	940	2799	190558	2.3	4.6	0.92
131 - 1H	61.5	0.377	35.1	1202	3729	222151	3.1	4.9	1.12
131-30	61.3	0.381	35.3	1201	3690	234846	2.9	5.0	0.93
132_14	67.5	0.376	35.7	1326	1732	21 55/1	3.2	5.0	1.12
132-30	61.2'	0.385	35.5	1028	3127	24.9372	2.7	5.0	1.06
133-2H	60.3	0.405	71.1	1492	4311	409760	1.9	5.2	1.04
133-30	61.1	0.386	71.1	1238	3748	320625	2.6	5.2	0.93
			वताम	THE / - 0 75					
158_1H	60 8	0 303	56.0	1160 X Uo70	2/67	200272	23	5 0	1 09
158-10	61.9	0.363	56.9	1071	31.58	17/528	1.2	5.8	0.9%
159-2H	60.6	0.398	5.1	706	2075	1/5050	2.1	5.3	1.07
159-40	61.9	0.63	5.1	628	2027	81544	4.2	5.2	0.91
16 11	60 0	0.202	07 0	0/ 5	0000	000700	0.2	5 0	
160-16	67.7	0.293	27.0	902 1021	2012	220190	ス・ ク つ 5	2•9 ਛ ੦	L.07
100-30	01.1	0.571	21.0	TODT	5254	109720	2+2	9.0	0.99
	· .		PA	DDLE 6 x 2"					
141-1H	61.0	0.389	72.2	478	1438	386328	2.4	4.1	1.10
141-40	61.9	0.361	72.2	1314	4257	238311	4.3	4.0	1.05
142-2H	60.4	0.402	30.0	1175	3422	342181	2.0	4.0	1.05
142-40	61.9	0.364	30.0	1107	3563	187758	4.1	4.0	0.94

Dam	Donoitre	k P+	Desser	H					
Numbers	lb./ft.3	hr.ft.°F	ft.lb./sec.	•F hr.ft.2	N _{Nu}	N _{Re}	N _{Pr}	^ℕ Po	NV
		r 	σ	ADDIE 6 - OI					
1/3-2H	60.5	0 201	¢ q	766 766	2226	22/8/2	20	17	1 07
1/3_30	61.8	0.365	\$.9	035	2230	728768	2.0	4.1	1.07
14/-1H	60.7	0.396	1 1	180	71.17	TSOTOO	4.0	4.0	0.72
1//-30	67.8	0.366		109	1521	60600	20	17	1.12
	01.00	0.000	• •	417	1)/4	00070	J•7	4201	0.00
			P	ADDLE 6 x 1"					
137 - 1H	61.2	0.385	64.9	1064	3231	479730	2.6	1.6	1.06
137-40	62.0	0.361	64.9	1074	34.86	309221	Loly	1.6	0.94
138 - 1H	61.1	0.386	39.5	1056	3203	411122	2.6	1.6	1.11
138-30	61.7	0.369	39•5	867	2748	312047	3.6	1.6	0.92
139-2H	60.3	0.404	17.8	874	2532	405508	1.9	1.6	1.05
139-40	62.0	0.359	17.8	682	2226	195585	4.6	1.5	0.94
140-1H	60.7	0.396	2.1	549	1624	172128	2.2	1.7	1.12
140-30	61.8	0.365	2.1	509	1634	105005	4.0	1.7	0.89
			P	ADDLE / x 2"					
145-1H	60.7	0.395	49.1	1749	34.03	275395	2.2	6.5	1.08
145-30	61.9	0.363	49.1	989	31.84	163754	4.7	6.4	0.93
146 - 1H	61.2	0.385	3,3	500	1520	77971	2.6	12.6	1,15
146-40	62.0	0.360	3.3	435	1413	49931	4.5	12.4	0.88
1/7_1H	60.8	0 30/	75	906	2205	150650	0.0	r d	
1/7_30	61.9	0.361	10) 77 E	600	2272 0760	T2002A	K•)	$2 \cdot 0$	T•TT
1/8_2H	60.6	0.308	(+) つつ !	802	2621	72411 776015	4•1 0 1	2 * 1 6 J	0.90
when a far a state of the state		$\cup \bullet \cup \cup \cup$	~ 1 8 Kf	いづん	LULL	KJU0UJ	Z•1	0•4	T•00

CALCULATED MEASUREMENTS FOR WATER

Run	Density	k Btu	Pouer	H					
Numbers	1b./ft.3	hr.ft.°F	ft.lb./sec.	°F hr.ft.2	N _{Nu}	N _{Re}	N _{Pr}	NPo	NV
			q						
152 - 1H	60.7	0.396	25.6	781	2379	303008	2.2	2.6	1.00
152-30	61.9	0.364	25.6	686	2201	1823/7	4.0	2.5	0.91
153-2H	60.4	0.403	4.9	556	1616	186074	2.0	2.8	1.07
153-30	61.8	0.365	4.9	474	1522	103214	4.0	2.8	0.90
154 - 2H	60.7	0.396	11.2	829	2454	230004	2.2	2.6	7.10
154-30	61.8	0.364	11.2	531	1705	138608	4.0	2.6	0.90
			PRO	OPELLER 5.2"					
123 - 2H	60.6	0.399	3.2	644	1891	261838	2.1	0.7	1.08
123-40	61.9	0.365	3.2	507	1627	152097	4.0	0.7	0.89
124 - 2H	61.0	0.390	2.3	663	1991	240548	2.4	0.5	1.14
124-30	61.6	0.374	2.3	625	1959	186905	3.3	0.5	0.89
125-1H	60.9	0.392	14.6	1170	3490	411301	2.3	0.7	1.07
125-40	61.5	0.376	14.6	864	2691	318156	3.2	0.7	0.91
126-30	61.9	0.363	43.5	833	2685	355527	4.1	0.7	0.91
			PRO	PELLER 4.1"					
134-1H	61.0	0.388	9.2	763	2302	287767	2.5	0.8	1.14
134-30	61.6	0.372	9.2	574	1805	221655	3.4	0.8	0.89
135-2H	60.8	0.394	2.2	447	1329	189606	2.3	0.9	1.12
135-30	61.7	0.372	2.2	475	1495	133739	3.4	0.9	0.87
136-1Н	61.0	0.390	4.5	682	2050	236031	2.4	0.8	1.14
136-30	61.7	0.369	4.5	537	1704	169411	3.6	0.8	0.92

CALCULATED MEASUREMENTS FOR WATER

CALCULATED RESULTS FOR 33.2 wt.% Fe203 SUSPENSIONS

Run Number	Density lb./ft.3	k <u>Btu</u> hr. ft.°F	Power ft.lb./sec.	H •F hr.ft.2	N _{N11}	NRe	Npr	NPo	NV
faint cuin ann gear can tan dan de	an diniki manu kama manu diniki anan dana dana kara diniki tisiki di	na hana anan anan anan anan anan anan a	and and and and are are and are sold to be and the sold are	anna anns anns anna dean anns anns anns anns anns anns anns a	an yang tigan dina sana sana sana sana sana sana	n aana ganti dinin orga (anar piteti dilah anita Garb j	and war and the state of a state of the state a	ini koga gawa zardi carda dicin danih garti kuda dib	
			,	ANCHOR OU					
44-7H	83.1	0.384	36.6	271	828	517	1698	2.87	0.97
44-30	84.5	0.356	36.6	260	857	572	1670	2.83	1.05
•			מזויי	BINE 6 - 7 26	< # `				
15 74	· \$2 0	0.286	1010 7777 /	200 X T • 2)	000	\$71	022	5.10	0.01
45-3C	81.5	0.357	7/04	235	770	071	907	5.09	7.03
4) -)U	83.6	0.377	40.4	167	518	610	1097	5.06	0.92
46-30	84.6	0.353	40.4	12/	112	660	1090	4.99	1.06
****	CAPE C		·			000			
			TU	RBINE 5 x 1"					
32 -1 H	83.2	0.382	115.0	389	1190	1349	645	5.23	0.93
32-30	84.6	0.353	115.0	297	984	1500	634	5.14	1.04
33-1H	83.3	0.381	78.3	230	709	1065	717	5.34	0.92
33-30	84.6	0.354	78.3	194	643	1180	703	5.26	1.03
			P	ADDLE 8 x 7"					
10-7 H	83.3	0.380	77.2	2/6	758	1612	925	1.13	0.94
40-30	84.04	0.360	77.2	193	628	1765	902	1.12	1.06
41-1H	83.7	0,375	46.9	351	1094	1270	1017	1.11	0.91
41-30	84.5	0.357	46.9	146	480	1345	1016	1.10	1.04
			מ	ADDIE 6 - OU					
זז ר ליכ	00 E	0 270	01 2 F.	ADDLE O X Z"	016	7.000	027	1 30	0.05
27 20	0)•フ ダノ K	0 255	0402	212	040 755	1092 1185	021 808	4.10	1 0/
ノノークし 2月 1日	04•9 82 0	0.201	52 0	227 108	626	\$21 TTOJ	020	4.05	1.04
20-TU	0) • 7 0/ E	0.256	52 O	170	020 701	024	970	4.10	1 05
JU-JU	0409	00000	$\mathcal{O}_{\bullet} \mathcal{O}$	147	471	012	ラノフ	4.00	Terr

CALCULATED RESULTS FOR 33.2 wt.% Fe203 SUSPENSIONS

Run Number	Density 1b./ft.	k <u>Btu</u> hr. ft.°F	Power ft.lb./sec.	H of <u>Btu</u> of hr.ft.2	N _{Nu}	N _{Re}	N _{Pr}	NPo	NV
			P	ADDLE 6 x l"					
35 - 1H	83.3	0.381	124.5	281	864	2285	601	1.75	0.94
35-30	84.6	0.355	124.5	227	749	2512	592	1.72	1.03
36-1H	83.4	0.380	78.5	207	639	1729	681	1.76	0.93
36-30	84.5	0.357	78.5	184	603	1881	672	1.74	1.04
•			P	ADDLE 4 x 2"					
39-1H	83.5	0.377	88.2	212	658	1320	532	6.38	0.92
39-30	84.4	0.360	88.2	174	568	1395	531	6.31	1.04
			P	ROPELLER 6"					
42-1H	83.5	0.378	67.3	230	712	2916	535	0.66	0.94
42-30	84.5	0.358	67.3	221	722	3171	524	0.65	1.02
43-1H	83.0	0.386	43.8	252	765	2133	616	0.67	0.93
43-30	84.5	0.357	43.8	164	537	2404	599	0.66	1.02

CALCULATED RESULTS FOR 24.0 wt.% Fe203 SUSPENSIONS

		k		Н					
Run Number	Density 16./ft.3	<u>Btu</u> hr. ft.°F	Power ft.lb./sec.	•F hr.ft.2	N _{Nu}	NRe	Npr	NPo	NV
WHICH SEEMS SHALL SHA				ANCHOR ON					
83_7H	75.1	0.389	32.0	507	7 507	71.36	600	2.82	7.00
83-30	76.7	0.362	32.0	520	1682	1/67	6/3	2.78	1.00
8/_1H	76.0	0.377	1.7	167	510	1.89	1005	2.51	1.00
84-30	76.7	0.360	4.7	185	603	494	1052	2.48	1.00
	1		TUR	BINE 6 x 1.25	511				
47-1H	75.2	0.392	74.9	459	1372	2596	373	5.13	1.00
17-3C	76.7	0.360	74.9	449	1463	2650	340	5.02	1.00
48-1H	75.9	0.379	15.8	246	763	1008	503	5.01	1.00
48 - 30	76.7	0.359	15.8	197	642	1019	529	4.96	1.00
49 -1 H	75.4	0.388	49.7	375	1131	2008	356	5.17	1.00
49-3C	76.7	0.359	49.7	356	1160	2043	383	5.08	1.00
50-1H	75.5	0.387	30.4	301	912	1496	407	5.16	1.00
50-30	76.8	0.359	30.4	302	985	1521	438	5.08	1.00
			TU	RBINE 5 x 1"					,
79 - 1H	75.3	0.390	99.6	566	1696	3774	224	5.09	7.00
79-30	76.7	0.361	99.6	471	1528	3844	242	5.00	1.00
80-1H	75.5	0.387	19.6	288	872	1349	362	5.37	1.00
80-30	76.7	0.360	19.6	200	650	1371	388	5.29	1.00

CALCULATED RESULTS FOR 24.0 wt.% Fe203 SUSPENSIONS

Run Number	Density 1b./ft. ³	k <u>Btu</u> hr.ft.°F	Power ft.lb./sec.	H •F <u>Btu</u> hr.ft.2	N _{N12}	NRe	NPr	N _{Po}	NV .
ANNO ALLOS ANNO 2000 ANNO 2000 ANNO 2000	aning Linux (nam) diffin alata salami (kan), dana pani) Alifa Gali (pan	a na shi na s	int gauge action direct scheft galler allers allers direct direct galle darect allers and all	nale angele destrie de altre an oor de ante de	n and are not deadly and are t	an a state state as an owner synta state bank bland jaar of	اللی میں میں اس ایر ایر اور ایر اور اور اور اور اور اور اور اور اور او	این دولو های خان شمه خدن جسو دیدو هدن مان ا	n qayah anang atlah sayah saka lahin dalam galam g
			TURBINE	5 x 1"					
81-1H	75.4	0.389	36.3	328	988	2028	300	5.05	1.00
81 - 30	76.8	0.356	36.3	295	970	2067	326	4.96	1.00
82-1H	75.6	0.386	64.7	352	1070	2960	252	5.04	1.00
82-30	76.8	0.359	64.7	393	1285	3007	270	4.96	1.00
	ε		TURBINE A	x 0.75''					
51-1H	75.5	0.387	69.7	346	1046	3535	191	5.79	1.00
51-30	76.6	0.362	69.7	330	1066	3589	203	5.70	i.00
52-1H	75.8	0.382	20.7	248	762	1713	267	5.60	1.00
52-30	76.7	0.361	20.7	221	718	1733	285	5.54	1.00
53-1H	75.6	0.385	31.6	365	11.09	2263	232	5.65	1.00
53-3C	76.7	0.362	31.6	266	860	2295	247	5.57	1.00
54-30	76.4	0.368	49.9	295	938	3004	216	5.52	1.00
55 - 1H	75.6	0.385	46.6	305	928	2822	212	5.66	1.00
55 - 30	76.8	0.358	46.6	311	1017	2865	227	5.57	1.00
			PADDLE	8 x 2"					
72-1H	75.4	0.388	43.8	523	1579	1956	471	2,83	1.00
72-30	76.7	0.361	43.8	377	1223	1988	505	2.79	1.00
73-1H	75.8	0.381	9.3	254	780	806	714	2.63	1.00
73-30	76.6	0.361	9•3	171	557	815	753	2.61	1.00

CALCULATED RESULTS FOR 24.0 wt.% Fe203 SUSPENSIONS

		k		Н					
Run Number	Density 1b./ft. ³	Btu hr.ft.°F	Power ft.lb./sec.	oF hr.ft.2	N _{Nu}	NRe	NPr	Npo	Ny
بالمراقبة والمراجع والمراجع والمراجع والمراجع والمراجع	and this over any approximation from any and the cont of	n film finn ann ann ann ann ann ann ann ann ann	and a first for the party of the set of the first state of the set	nter anne anne anne fren mer anne anne en					
			- PADDLE	8 x l"					
69 - 1H	75.4	0.388	68.0	509	1536	4609	316	1.12	1.00
69 - 30	76.7	0.361	68.0	383	1244	4687	339	1.10	1.00
70-1H	76.0	0.378	18.6	122	379	2050	473	1.13	1.00
70-30	76.7	0.360	18.6	198	644	2070	496	1.12	1.00
71-1H	75.5	0,386	36.6	362	1099	3155	378	1.11	1.00
71-30	76.8	0.358	36.6	285	932	3208	406	1.10	1.00
			PADDLE	6 x 2"					
66-7 H	75.4	0.388	75.6	516	1556	2969	301	4.03	1.00
66-3C	76.5	0.365	75.6	474	1329	3013	-319	3.97	1.00
67-1H	75.7	0.383	14.9	164	517	1138	468	3.95	1.00
67-30	76.7	0.359	14.9	177	578	1153	497	3.90	1.00
68 - 1H	75.5	0.387	36.3	300	907	1949	362	3.96	1.00
68-30	76.8	0.358	36.3	277	908	1983	390	3.89	1.00
			PADDLE	6 x 1"					
62 - 1H	75.4	0.388	122.1	552	1665	7034	201	1.65	1.00
62-30	76.5	0.366	122.1	576	1845	7135	212	1.63	1.00
63-1H	75.5	0.387	21.4	285	862	2427	327	1.65	1.00
63-30	76.7	0.360	21.4	175	569	2466	350	1.62	1.00
64-1н	75.9	0.379	40.7	287	887	3625	276	1.66	1.00
64-30	76.7	0.361	40.7	251	814	3662	290	1.64	1.00

CALCULATED RESULTS FOR 24.0 wt.% Fe203 SUSPENSIONS

	_	k	_	Н					
Run Number	Density 16./ft. ³	<u>Btu</u> hr. ft.°F	Power ft.lb./sec.	•F hr.ft.2	N _{Nu}	N _{Re}	NPr	N _{Po}	NV
ناه رابایا های ایرین در بر زیان در این ا	n and are for the and and find first first from first the	nne dana diseb-sekit dinak sina sisin kuma pena Cisa dana sana diseb	nin alma kana akun kana anan alma kama anan serin dari dari dari kana bira kana k	nang dan ing ang ang ang ang ang ang ang ang ang a	ann ann ann ann ann ann	nan sheka daga kana gana gana gana kana kana kana k			
			PADDLE	6 x 1"				_	
65 - 1H	75.3	0.390	74.0	293	878	5175	229	1.65	1.00
65 - 30	76.8	0.359	74.0	321	1049	5276	249	1.62	1.00
			PADDLE	$L \ge 2^{\text{tr}}$,		
58-1H	75.5	0.387	78.8	339	1027	3616	188	6.37	1.00
58-30	76.6	0.364	78.8	374	1204	3667	200	6.28	1.00
59 - 1 H	75.9	0.380	28.2	204	628	1983	250	6.25	1.00
59-30	76.7	0.360	28.2	197	640	2005	264	6.18	1.00
60_1 H	75.7	0.384	39,3	230	703	2404	228	6.28	1.00
60-30	76.1	0.368	39.3	231	736	2427	237	6.22	1.00
61-1H	75.6	0.384	55.2	390	1190	2968	208	6.19	1.00
61-30	76.6	0.364	55.2	261	841	3005	219	6.12	1.00
			PADDIF:	/ 7 !!					
56_1H	75.7	0.383	34.5	263	804	3540	793	2.87	1.00
56-30	76-6	0.364	34.5	186	599	3580	202	2.84	1.00
57_1H	75.9	0.379	21.4	205	632	2674	270	2.87	1.00
57 - 30	76.8	0.356	21.4	141	465	2707	234	2.84	1.00
				T TOTO / 12					
07 9 TT	ar o	0.000	FRUPEL	LEAR D''	1006	7000	105	0.61	1 00
75-1H 75-20	75.9	0.379	220 Y	433	1205 1205	1777	175 205	0.60	1.00
10-30 776 - 11	10.1	0.300	フフ• ゲ ココ・ブ	402	100	2020	207	0.65	1 00
/0-1H	12.9	0.300		210	04/	2727 2070	207	0.65	1 00
76-30	. 76.7	U.361	11.1	152	472	2970	うんん	0,00	LeUU

CALCULATED RESULTS FOR 24.0 wt.% Fe203 SUSPENSIONS

Run Number	Density lb./ft. ³	k <u>Btu</u> hr. ft.°F	Power ft.lb./sec.	H •F hr.ft.2	N _{Nu}	N _{Re}	N _{Pr}	N _{Po}	NV
			PROPEL	LER 6"					
77-1н	75.7	0.384	21.5	256	783	4672	243	0.58	1.00
77-30	76.3	0.371	21.5	245	775	4711	251	0.57	1.00
78-1H	75.9	0.379	35.1	264	815	5947	226	0.60	1.00
78-30	76.8	0.359	35.1	300	980	6014	238	0.59	1.00

H k Power ft.lb./sec. Btu Density 1b./ft.³ Btu hr. ft.ºF Run N_V °F hr.ft.2 N_{Nu} N_{Re} Npr NPo Number ANCHOR 9" 2586 9066 95.1 2.78 1.03 27.5 855 85-1H 68.2 0.387 0.98 8572 107.4 2.74 2205 27.5 690 85-30 69.0 0.366 2.96 1.09 2141 159.8 86-1H 68.0 0.390 1.9 1021 340 0.98 992 1986 186.0 2.92 310 86-30 69.0 0.366 1.9 68.3 1989 6068 122.6 2.92 1.05 654 87-1H 0.385 10.6 0.97 136.2 2.89 10.6 479 1551 4909 87-30 0.362 69.2 TURBINE 6 x 1.25" 1.02 61.1 5.17 58.9 3169 12814 109-1H 68.1 0.390 1055 72.0 5.09 0.98 11832 58.9 864 2785 109-30 69.1 0.363 3077 102.4 5.65 1.06 1216 67.9 0.393 4.3 408 110-1H 0.96 2881 119.0 5.55 375 110-30 69.0 0.367 4.3 1199 5.27 768 2281 7438 74.1 1.04 67.8 0.394 21.9 111-1H 1960 6963 87.4 5.17 0.98 608 69.1 0.363 21.9 111-30 TURBINE 4 x 0.75" 2850 16656 40.2 5.83 1.04 67.9 0.393 64.4 956 112-1H 50.6 5.72 0.99 2639 14765 64.4 809 112-30 69.3 0.359 5.98 1.04 5136 61.4 361 1072 113-1H 67.8 0.394 7.0

299

948

4792

68.9

113-30

0.370

7.0

CALCULATED RESULTS FOR 13.1 wt.% Fe203 SUSPENSIONS

71.3

5.89

0.94

CALCULATED RESULTS FOR 13.1 wt.% Fe203 SUSPENSIONS

		k		Н					
Run Number	Density 1b./ft.3	Btu hr. ft.°F	Power ft.lb./sec.	•F hr.ft.2	N _{Nu}	N _{Re}	N _{Pr}	^N Po	v^N
anna anna anna anna anna anna anna ann	الاريني بينيان منظم برسين خريري جانين (شور) بينيان مريزين مريزين مريزين بينيان مريزين بينيان المريزين	na allang ang ang ang ang ang ang ang ang ang			nen allenen denen annen annen denen annen				
			TURBINE .	$4 \ge 0.75^{11}$		d=		r do	
114 -1 H	67.8	0.395	16.5	505	1497	8139	52.1	5.80	1.06
114-30	69.2	0.361	16.5	474	1537	7175	65.8	5.68	0.98
115 - 1H	68.2	0.388	36.1	570	1894	11959	46.9	5.85	1.02
115-30	69.1	0.364	36.1	544	1749	11072	54.6	5.76	0.98
			PADDLE	8 x 2"					
106 - 1H	68.3	0.384	31.3	723	2204	10392	83.4	2.85	1.02
106-30	69.1	0.365	31.3	661	2119	9840	93.5	2.82	0.99
107-1H	67.8	0.395	2.5	336	997	2801	128.9	2.85	1.07
107-30	69.1	0.366	2.5	301	963	2579	153.7	2.80	0.96
ז∩\$_זµ	67.8	0.39/	12.3	631	1 883	6377	96.7	2.89	1,03
108-30	69.1	0.365	12.3	449	1439	5975	112.4	2.84	0.96
			تو זרות א מ	с					
יי בסי	60 2	0 286	67 ¢	022 0 X T.	2801	25172	60.6	0.51	7.03
102-20	60.2	0.360	67 8	5600	2001	22272	70 9	0.50	0.98
	67 0	0.300	22	202	RR10 072	در در ۲۱ ۵۵	10.9	8 61	
102 2C	60 1	0.266	202	272 ·	600	1511	10410 7 700 0	9.17	1.07
105-30	09.1	0.300	2•2	210	690	4744	120.0	0.41	0.77
104-1H	68.3	0.384	13.4	446	1360	10645	83.4	0.45	1.02
104-30	69.1	0.366	13.4	411	1315	10141	92.8	0.45	0.98
105 - 1H	68.1	0.389	32.0	696	2092	17361	67.8	0.62	1.02
105-30	69.0	0.367	32.0	721	2298	16263	77.6	0.61	0.99

CALCULATED RESULTS FOR 13.1 wt.% Fe203 SUSPENSIONS

		k		Н					
Run Number	Density lb./ft. ³	Btu hr. ft.°F	Power ft.lb./sec.	•F hr.ft.2	N _{Nu}	NRe	$\mathbb{N}_{\mathbf{Pr}}$	NPo	NV
and and also are also and also and	ng daga dang ang ang ang ang ang ang ang ang ang	دين بيرين الكتاب بليزي بيرين بينية جده معمر بدين كان الكتاب المريم بيرين الكتاب الم	2 22 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		an a	200 Januar 200 Anna Linka Anna Anna Anna Anna Anna Anna Anna A			
~ ~ ~ ~ ~	177. 7		PADDLE	6 x 2"	0007		<i>rr</i> 0	1 07	TO T
99-1H	67.9	0.392	66.2	797	2381	15765	55.8 (0.0	4.01	
99-30	68.7	0.376	66.2	820	2555	14906	62.2	3.97	0.98
100-1H	67.9	0.393	3.7	391	1163	3366	. 99 . L	4.05	1.07
100-30	69.1	0.363	3.7	228	736	3086	119.1	3.97	0.95
101-1H	68.2	0.386	22.6	478	1451	8761	71.8	3.96	1.03
101-30	69.1	0.363	22.6	431	1390	8232	82.1	3.91	0.98
			PADDLE	6 x 1"					
95 _ 7 H	68.2	0.386	114.8	765	2317	32798	43.7	1.69	1.03
95-30	69.7	0.366	114.8	858	2715	30827	49.6	1.67	0.99
96_1H	68.1	0.390	9,1	366	1101	8705	70.5	1.65	1.06
96 - 30	69.2	0.361	9.1	290	943	7917	85.0	1.63	0.98
	60 7	0.200	24.0	ETTL	1000	15261	57 0	7 67	1 05
97-1H	00.1 (0.1	0.309	20.9	570	1002	1/000	67 8	1 6/	1 00
97-30	69.L	0.303	20.9 rr 0	229	TOD	14099 22077	57.0	7 68	1 03
98-1H	68.4	0.383	55.0		21/0	22077	$51 \circ 3$	7 66	1.09
98 - 30	69.2	0.360	55.0	666	2163	20341	27.9	7.00	0.99
			PADDLE	4 x 2"				_	
91 - 1H	67.8	0.395	71.4	764	2264	16402	40.6	6.49	1.06
91-30	69.1	0.364	71.4	657	2116	14913	49.3	6.36	0.98
92 - 1H	68.2	0.386	12.1	395	1200	6220	60.0	6.75	1.05
92-30	69.2	0.361	12.1	297	964	5670	71.2	6.66	0.97

CALCULATED RESULTS FOR 13.1 wt.% Fe203 SUSPENSIONS

Run Number	Density 1b./ft.3	k <u>Btu</u> hr. ft.°F	Power ft.lb./sec.	H •F hr.ft.2	N _{Nu}	NRe	NPr	NPo	NT
alaht dam anto gali indi dili 1996 401	수 선수님 사람과 공수용 Good State Allen Allen Allen Allen Allen Allen	al aithe anna anna anna anna anna anna anna an	סא החד ד	/					
02 TU	68 2	0.386	72 7	4 x 2" 106	150%	909/	52.7	6.14	7.03
93-1n 02 20	60 a	0.262	22 7	490	1506	8108	60.9	6.35	0.97
92-20 0/ 1 U	67 0	0.305	12 Q	617	1 827	12837	13.8	6.57	1.03
94-1n 9/-30	69.2	0.361	43.8	517	1678	11399	55.1	6.43	0.98
	0,*~								
	i		PADDLE	4 x 1"					
88-1H	68.2	0.388	30.8	455	1374	15907	42.4	2.86	1.08
88-30	68.9	0.369	30.8	402	1275	14914	48.1	2.83	0.98
89-1H	68.5	0.381	10.2	299	919	8750	55.0	2.78	1.08
89-30	69.1	0.363	10.2	264	851	8321	61.3	2.75	0.98
00 JH	677	0 306	17.7	1.38	129/	12576	11.3	2.72	7.08
90-30	69.1	0.363	17.7	321	1034	11555	53.5	2.66	0.96
			PROPEL	LER 6"					1
116-1Н	67.7	0.396	52.4	919	2712	35677	40.4	0.69	1.03
116-3C	69.1	0.362	52.4	806	2607	32113	50.1	0.68	0.99
117 -1 H	67.9	0.393	5.6	352	1047	10413	64.9	0.74	1.05
117-30	69.2	0.361	5.6	306	993	9639	77.9	0.73	0.93
118 _ 1H	68.2	0.387	13.0	601	1817	17205	55.9	0.63	1.05
118-30	69.1	0.365	13.0	548	1757	16136	63.9	0.62	0.98
119 - 1H	68.1	0.388	26.3	657	1980	25241	47.3	0.66	1.01
119-30	69.2	0.361	26.3	558	1810	22946	56.9	0.65	0.98
TABLE NO. 12 (contd.)

Run Number	Density 1b./ft. ³	k <u>Btu</u> hr. ft.°F	Power ft.lb./sec.	H •F hr.ft.2	Nu	N _{Re}	N _{Pr}	N _{Po}	Nγ
120-1H 120-3C	68.5 69.1	0•380 0•364	PROPELLER 9.1 9.1	4.1" 335 305	1034 981	15761 14577	43.8 49.9	0•85 0•84	1.03 0.99

CALCULATED RESULTS FOR 13.1 wt.% Fe203 SUSPENSIONS

TABLE NO. 13

Bun	Density	k Btar	Power	H Btu					
Number	lb./ft.3	hr. ft. °F	ft.lb./sec.	°F hr.ft.2	N _{Nu}	N _{Re}	NPr	N _{Po}	NV
init and to line and the second s	na adas antas mena kanta gana sana mena tana datar datah data gana dat	na daha dala dala dara dara dala dara mara sira dala dala con da			1 (1960) (1960) (1960) (1960) (1960) (1960)	na galar nago nago kata konn onny garo majo main ana (nave)			
			ANCH	OR 9"				0 10	7 00
06-1H	72.4	0.338	38.5	145	502	313	3371	2.67	T.00
06-4C	72.8	0.328	38.5	124	444	315	3476	2.65	1.00
			TURBINE	5 x 1"					
01-1 Н	72.5	0.336	128.1	186	648	832	1257	5.20	1.00
07-50	72.7	0,333	128.1	212	717	834	1271	5.19	1.00
02-2H	72.2	0.345	126.6	189	642	819	1227	5.33	1.00
02-60	72.6	0.334	126.6	153	537	824	1266	5.30	1.00
			PADDLE	6 x 2"					
05-2H	71.8	0.352	85.5	101	335	588	1675	4.24	1.00
05-60	72.8	0.330	85.5	83	297	597	1788	4.18	1.00
			PROPEL	LER 6"					
04-4H	71.9	0.350	75.7	125	420	1734	1013	0.68	1.00
04-70	72.7	0.331	75.7	119	422	1754	1069.	0.67	1.00

CALCULATED RESULTS FOR 24.4 wt.% KAOLIN SUSPENSIONS

TABLE NO. 14

CALCULATED RESULTS FOR 18.4 wt.% KAOLIN SUSPENSIONS

Run Numbers	Density lb./ft.3	Btu hr. ft.°F	Power ft.lb./sec.	H •F hr.ft.2	2 N _{Nu}	N _{Re}	N _{Pr}	N _{Po}	NV
			ANCH						
08-1H	69 .7	0•340	16.7	209	722	783	1026	2.85	1.04
08-7C	69 . 6	0•345	16.7	222	754	790	1001	2.86	0.98
			TURBINE (5 x 1.25"					
12–2H	68 .5	0.368	82.3	307	979	2350	380	5.24	1.03
12–4C	69 .6	0.342	82.3	320	1094	2245	434	5.15	0.98
13–2H	68 .6	0.366	46.4	259	828	1666	447	5.16	1.03
13–5C	69 .7	0.341	46.4	209	718	1590	510	5.08	0.98
14-2H	68.9	0.360	22.1	156	509	1048	568	5.11	1.05
14-50	69.6	0.343	22.1	115	392	1000	620		0.97
			TURBINE	5 x 1"					
09-1H	68.5	0.368	127.0	330	1051	3670	262	5.37	1.02
09-3C	69.6	0.344	127.0	389	1325	3514	297	5.29	0.98
10-2H	68.8	0.363	84.4	296	955	2802	303	5.43	1.03
10-7C	69.7	0.342	84.4	256	878	2698	338	5.36	0.98
11-3H	68.8	0.362	47•7	209	677	1994	356	5.32	1.04
11-50	69.1	0.357	47•7	210	691	1976	365	5.31	0.97
			TURBINE	$4 \times 0.75''$					
15-1H	68 .9	0.360	55•5	202	658	2599	256	6.02	1.04
15-60	69 . 7	0.340	55•5	176	608	2501	286	5.95	0.98

TABLE NO. 14 (contd.)

CALCULATED RESULTS FOR 18.4 wt.% KAOLIN SUSPENSIONS

		k	Ð	Н					
Run Number	lb./ft. ³	hr. ft.°F	ft.lb./sec.	•F hr.ft.2	N _{Nu}	$^{N}\mathrm{Re}$	Npr	N _{Po} ·	NV
naya, dalah jalah Yunu Yunu yang dalah darip dalah din	n (1996) (diff) annia astri-shipa fallan avant diffe ayan diffe ayan arang di	nan Angelin kanan darip kerun darip norm meni yenni dipan darip ter	n gaun saula salah muni distri distri distri distri distri distri dana bere serah distri distri	anna dhan dhan anna anna anna dhan anna dhan anna dhan anna dhan 200	na ann ann 1942 stàr han ann an	in andre andre were were there are and the transformer and	n anna gala dhan doon innis moin gana dhan daar		- Same Sader Brief Sade Sade Same Same Sade
			P	ADDLE 8 x 1"					
25 - 2H	68.7	0.365	83.8	320	1030	4363	374	1.19	1.04
25-50	69.7	.0.340	83.8	294	1012	4257	426	1.11	0.98
26-3н	68.7	0.365	41.8	196	629	2902	455	1.13	1.04
26-4C	69.5	0.346	41.8	155	523	2807	500	1.12	0.97
			T	ADDIE 6 - OI					
16 24	69 7	0.365	\$6.0	226 226	776	0010	255	/ 00	7 02
16 60	60.7	0.3/0	86 0	220	010	2010	103	4.07	0 0g
17	68 6	0.367	57 /	204	700	2007	409	1 <u>2</u> 1	1 03
17-20	69.6	0.3/2	51.4	225	770	1922	466	4.21	0.98
~ 1 40	0,.0	0.042	Juin 8 mg		110	1 1000	400	***	0470
18-2H	69.1	0.356	26.4	178	586	1337	516	4.04	1.06
18-6C	69.7	0.341	26.4	120	412	1298	561	4.01	0.97
			מ	ADDIE 6 7"					
10 24	60 0	0 262	120 5		1001	5005	052	רייני ר	1 02
10 70	60.0 60.0	0.336	120 5	274	11204	5705	200	1 75	1.09
19-70 20-1日	69.0	0.362	190.7	288 215	702	1760	271	1 70	1 02
20-60	69.7	0.3/2	90+4 00 /	227	172 811	1506	212	1 76	1.0J
20-00	0)*1	0. 241~	<u>)</u> 0∗4	~) I	Calcula	4990	1.67	1.4 /0	0.90
21-2H	68.5	0.368	60.2	251	800	3810	303	1.75	1.03
21-50	69.7	0.341	60.2	197	678	3623	350	1.72	0.98
22 - 1H	69.1	0.357	35.2	185	605	2673	376	1.74	1.06
22 - 60	69.8	0.338	35.2	174	602	2583	414	1.73	0.97

TABLE NO. 14 (contd.)

CALCULATED RESULTS FOR 18.4 wt.% KAOLIN SUSPENSIONS

-	D	k	b	H					
Run Number	Density 1b./ft. ³	hr. ft. °F	Power ft.lb./sec.	•F hr.ft.2	N _{Nu}	NRe	NPr	N _{Po}	NV
3					a and a more many first star it.	alah dalah danan muru basa Sasa bilan jaran Sasa dalah dana			
			P	ADDLE $4 \times 2"$					
23 - 1H	68.4	0.370	70.5	237	750	2876	236	6.59	1.03
23-40	69.8	0.336	70.5	224	784	2697	283	6.48	0.98
24 - 2H	68.8	0.362	39.0	163	526	2001	289	6.40	1.04
24-40	69.8	0.339	39.0	160	556	1917	327	6.31	0.97
	,		P	ROPELLER 6"					
27 - 2H	68.5	0.367	51.0	247	788	6721	235	0.58	1.04
27-4C	69.7	0.342	51.0	214	733	6420	269	0.57	0.98
28 - 2H	68.7	0.364	29.8	221	712	4805	278	0.58	1.04
28-50	69.7	0.341	29.8	176	604	4605	314	0.58	0.98
29-2H	69.0	0.359	40.2	206	674	5670	264	0.59	1.04
29-60	69.8	0.336	40.2	202	705	5435	298	0.58	0.98
			PRO	PELLER 5.2"					
31-2H	68.5	0.367	30.7	157	500	5006	236	0.73	1.04
31-50	69.9	0.333	30.7	157	553	4700	283	0.71	0.99

Viscosity

The viscosity data for each of the five suspensions is shown in Figure Nos. 1 to 5. Most Newtonian and non-Newtonian materials will show a decrease in viscosity with increasing temperature. This was found to be true of the more dilute kaolin and iron-oxide suspensions. Although, the amount of viscosity dependency with temperature was found to be relatively small. As the solids content for both suspension types was increased to approximately 24 wt.% the viscosity was found to be virtually independent of temperature. The most concentrated of the iron oxide suspensions, 33.2 wt.%, actually showed a slight increase in viscosity as the temperature was increased. The degree of pseudoplastic behavior appeared to be independent of temperature.

The degree of pseudoplastic behavior, as measured by the flow behavior index was shown to be at least partially dependent on the suspensions's solids content.⁽¹⁴⁾ The most dramatic increase in pseudoplasticity was realized in going from 13.1 wt.% to 24.0 wt.% solids in the iron oxide system, where the flow behavior index decreased from 0.42 to 0.15, respectively. No decrease in the flow behavior index was found in going from 24.0 wt.% to 33.2 wt.% iron oxide solids. The flow behavior index decreased slightly in the kaolin system when the solids content was increased from 18.4 wt.% to 24.4 wt.%, where the index decreased from 0.16 to 0.15, respectively. Thus the degree of pseudoplasticity for four of the five suspensions was quite similar, being in the range of 0.15 to 0.16.

Experimental Error

Hagedorn⁽⁹⁾ has presented a discussion of the magnitude of error. Since operating practices were nearly the same his estimates remain applicable. The amount of error inherent in determining the vessel's area, batch weight, batch temperature, and rheological determinations was small compared to that associated with measuring the wall temperature. At a given instant, the wall temperatures were somewhat different due to uneven heat transfer over the vessel wall. This resulted in an estimated experimental error of about $\ddagger 20\%$.

Correlation of Data

determine viscosity.

The heat transfer data for suspensions was correlated using an existing semi-empirical equation. The equation used had previously been developed by Hagedorn and Salamone: $N_{Nu} = C(N_{Re})^{1.30/(n+1)}(N_{Pr})^{0.28}(N_V)^{0.30/n^{0.75}}(D_t/D_a)^{-0.50}(M_a/D_a)^{0.50}n^a$ (20) The constants C and a suggested by Hagedorn are given in Table No. 15 for anchor, paddle, propeller and turbine type impellers. The Reynold and Prandtl numbers are calculated using a shear rate equal to 11.5N to

Hagedorn suggested the use of a more theoretical dimensional equation also developed by him. However, the more empirical of the two correlations gave better agreement with the more pseudoplastic system studied by Hagedorn, 15% error versus 19% error for the more theoretical correlation. Thus the more empirical of the two correlations was used in this study. An evaluation of the preliminary water runs was made. The experimentally determined Nusselt numbers for water are compared graphically with those predicted by the Hagedorn and Salamone correlation in Figure No. ⁸ Points lying on the 45° line would indicate perfect agreement. The amount of error was calculated as follows:

$$\% \text{ Error} = \left| \frac{N_{\text{Nu}} \exp - N_{\text{NuH}}}{N_{\text{Nu}}} \right| \ge 100$$
(30)

with the average error being defined as:

ave. Error =
$$\frac{\sum \frac{6}{5} \text{ Error}}{\text{No.}}$$
 (31)

where ${\rm N}_{\rm Nn}$ exp. is the experimentally determined Nusselt number

 $N_{\rm NuH}$ is the Nusselt number predicted by the Hagedorn correlation Nais the number of data points.

The precent errors for the water runs are shown in Table No.15 for each type of impeller. Figure No. 8 shows a fairly uniform scatter about the 45° line. The tabulated results show an overall error of 9.5%. This result agrees well with the 10% error obtained by Hagedorn for his water runs.

The Hagedorn and Salamone correlation was then used to predict Nusselt numbers using the necessary data experimentally determined for suspensions. These calculated Nusselt numbers were graphically compared with the experimentally determined numbers. Figure Nos. 9 to 12show the amount of agreement or disagreement between the calculated and experimentally determined Nusselt numbers. These are plotted according to the four major types of impellers, anchor, paddles, propellers and turbines at each solids content studied. Points lying on the 45° line would

TABLE NO.15

Hagadorn and Salamone Semi Empirical Correlation

 $N_{Nu} = C (N_{Re}) 1.30/n+1 (N_{Pr})^{0.28} (N_{V}) (0.30/n^{0.75}) (D_{t}/D_{a})^{-0.50} (W_{a}/D_{a})^{0.50} n^{a}$

Impeller Type	Correlation C C	onstants a	Average Errors for Water
Anchor	0.74	1.43	4.6%
Paddle	2.00	1.96	11.2%
Propeller	0.86	2.51	9.1%
Turbine	3.09	2.06	8.8%

0							<u>.</u>															rr						
9_					-Till																					-1.1		
R						HE				F		C	Ŧ	R	<u>в</u> то.	- G												
	-1-1-1-,-1-1-1		1		<u>-</u>					-				-	n in a subsection of the second s The second s The second secon		4		1111	- ;	1		- 1			<u></u>		
7	···•• •· •· •· • • • • • • • • • • • •	·																										
5		6000					Ba	1		E	55	1	1.1	AB	SEIERC LIER)R SUN	SPICINE	LOW	6							-1	-	
		-0000			1417																			1				
5								-				Uş	113	IG	ANCHOR								1					
-			· · · · · · · · · · · · · · · · · · ·														37			T:		1			-			1
										: :::					nangan menangan kerangan di	12-2142					1				1"		_	
4		-4006												1.1.1							1							
					<u></u> ;					13	11			·						1			:1.1					
		<u>1911</u>			<u></u>						=:								/				i					i r.
3			-8-																K				· · · · ·				-	
-			- Q .										-					/	0								1.1.1	
5			E											<u> </u>			/	1						<u></u>				
				111.111		127.		Ē									/		0								-	
2_		2000	E	1					<u></u>					1:			6				1::						<u>:::</u> :::	<u>.</u>
												Til:				/				1211	===			44	ا تنشير. المسلم			
			5										ii):		0	/						1						
5			L-E-									i.			0	/	Θ											
			ant i		H.																	H:						ii:
			A L							-+++ 						┥ ╡╴╧╍╧╡╪╪ ╡						 						ļ.,
			E		1-++			-					1.1															-
0		1000	- 21				-				<u> </u>			K	\bigvee						1-14							- +-
q		-1000	L L											Y	[1								
~			- ह्य				6		\odot				1							1.8-1					1			
8.		800	К								-7			1										-				<u> </u>
7.						122	<u>-</u>				<u> </u>	1		1						-			:.::.					·
-											/					arond	ىرىنى مىلىكىنى . مىلىم مىلىكىنى								1			
ΰ.		- 600		1		<u> </u>	1		ini.	/						$1 \wedge 2$	2 0	4- 01	T.,		1	1.3						
=					M	6			/								202	Willes ??		1.50	-UX	100						
Э,					201			1									hau											1 1
															· · · · · · · · · · · · · · · · · · ·		pol_	1.										
4		-400				1	2								na an a	Δ	404-	WC.	Ka	011	in.	-					· · · · · ·	
					12.25			· · · · ·		-			1			$ -\nabla $	8.4					1 =						
			-	1	1	1		<u>.</u>											-				1					
3					/	1		: ::-]]		_	<u>11</u>			
				/		933		22		-													-					
2.5			1	/																								E
			1																	-								
2			1		1							1		1: :					1								1	
		2	200			140	0			60	0	80	jo.	1	hnn	20	ha			1.0	hh			sol	\mathbf{n}			
		+								Ĩ																		
1.5				1								PRE	DI	ĊΤ	ED MUSS	PLT 1	TUTABE	Ŕ	-									Ē
					1.7 2			 	1			1	1	- m	ODNI AOT	1017 1 111	CONT	T				. .		1				
	<u>Eliteration</u>			-				 cm-					4U	$\mu \nu$	UNIT	APA (A.L.)	L DIV					-		1				
	Filter		• · · · · · · · · · · · · · · · · · ·			: : :											· [-	-			17.		 				ļ
1	FITTE										n nan da Nan nan N		-											1				
	1	1.5	2	2.5	3	· • h	4		5	6		7	8	9	10	1.5	2	2.5	3		4		5	<u></u> 6	 5	7	8	9

.

indicate perfect agreement between the experimental and calculated Nusselt numbers.

Most cases show a substantial error between the two methods for determining Nusselt numbers. Table No.16 shows the percent error between the two results which was calculated as previously described.

The best agreement was obtained with the more dilute suspensions. However the overall errors obtained are in considerable disagreement with the 10.8% obtained by Hagedorn and Salamone. Examination of Figure Nos. 9 to 12 shows that a given suspension will in general, result in nearly all of the experimental Nusselt numbers being either greater or less than those obtained via the correlation for a given impeller. That is a given suspension will have Nusselt numbers all above or all below the 45° line with little scatter on either side of the line.

Therefore, the method used to determine the amount of the deviation and whether the deviation was positive or negative was as follows:

% Deviation = $\left[\left(N_{Nu} \exp - N_{NuH} \right) / N_{Nu} \exp \right] \times 100$ (32) The average deviation is thus:

Avg. Deviation =
$$\frac{\sum \% \text{ Deviations}}{\text{No}}$$
 (33)

Where Nais the number of data points. These results are given in Table No. 17.

The method of determining the percent deviation is very similar to finding the percent error except in the former the absolute value is not taken and the sign is carried. The percent deviation shows a definite

TABLE NO.16

Comparing Experimental and Predicted Nusselt Numbers

Using Hagedorn-Salamone Correlation

Avg. % Error =
$$\sum_{N_{Nu} H} \frac{N_{Nu} exp.}{N_{Nu} exp.} \times 100$$

No.

Percent Error

Impeller Type	Iron 02 33.2	cide, wt. 24.0	% 13 . 1	Kaolin, 24.4	wt. % 18.4	Overall
Anchor	42.0	31.2.	18.2	36.6	14.5	26.3
Paddle	46.8	31.5	24.8	35.6	11.6	27.2
Propeller	70.0	58.5	6.5	62.7	36.7	38.7
Turbine	61.7	51.8	11.5	59.5	28.2	40.4

TABLE NO. 17

Percent Deviation For Suspensions From Hagedorn-Salamone Correlation

% Deviation =
$$\sum (N_{Nu} \exp - N_{Nu} H) / N_{Nu} \exp x 100$$

No.

Solid	Iron	Oxide		Kaolin			
Wt. % Flow Behavior Index	33.2 0.15	24.0 0.15	13.1 0.42	24.4 0.15	18.4 0.16		
		Percent	Deviation				
Anchor	42.0	31.3	-17.1	36.5	9.4		
Paddle	46.8	30.7	-21.9	35.6	4.0		
Propeller	70.0	58.5	3.3	62.7	36.7		
Turbine	61.7	51.8	10.3	59.5	28.2		
en de la companya de La companya de la comp							
$\frac{1-\phi}{\phi}$	2.01	3.17	6.63	3.1	4.44		

trend with percent solids. This is shown in Figure No.13. The degree of the deviation increases with higher solids contents. All four impellers show the same trend but, in general, the curves are somewhat displaced.

Both the paddles and anchor show a negative deviation at the lowest solids content studied, 13.1%. Increasing the solids content results in increasing positive deviations with a leveling in the deviation at the higher solids, 24.0 - 33.2 wt.%. The propellers and turbines deviations are displaced upwards with 13.1 wt.% showing a slight positive deviation. However, as the solids content is increased for the propellers and turbines the deviations increase at approximately the same rate as for the anchor and paddles.

The deviation between the experimental and Hagedorn and Salamone correlation thus has been shown to be a function of solids content. Thus, it would be of significant value if the already existing correlation could be modified to apply it to suspensions. The Hagedorn-Salamone correlation considered here resulted from a semi-empirical dimensional analysis.

Several dimensionless relationships dependent on solids content were analyzed in an attempt to linearize the deviation. Linearization of the deviation as a function of solids content would greatly simplify any modifications made to the Hagedorn-Salamone correlation.

The most successful attempt at linearizing the deviation was obtained by plotting the deviation as a function of:

REDITICE & RESERCO.

 $(1-\phi)/\phi$

where \emptyset is the weight fraction solids for a given suspension. Thus the function is weight fraction liquid divided by weight fraction solids.

A linear regression analysis was made using all of the data points for suspensions. The calculations were facilitated through a General Electric, Mark II time sharing computer. Figure No. 14 graphically shows the best fit regression line for each impeller. The Hagedorn-Salamone correlation can now be modified to give the Nusselt number for suspensions. Therefore, the final modified correlation for suspensions within the range of 13-33 weight percent solids is as follows:

$$N_{NuS} = N_{NuH} / \left[a' + b \frac{1 - \phi}{\phi} \right]$$
(34)

where N_{MuS} = predicted Nusselt number for suspensions

 N_{NuH} = predicted Nusselt for pseudoplastic liquids using Hagedorn correlation

 \emptyset = weight percent solids

The constants, a' and b for each type of impeller are given in Table No. 18 The percent errors were calculated as previously defined using the new modified correlation for suspensions. The data is presented in Table No.18 Figure Nos.15 to18 graphically portray the agreement between the experimentally determined Nusselt numbers and those calculated from the modified correlation for suspensions. The overall average error for all the suspensions was slightly less than 13%.

The 13.1 wt. 5 iron oxide was the only suspension which had a flow behavior index within the range studied by Hagedorn. This suspension of the

			-	
		+		
			LAC .	
				<u>\$0</u>
ESS				
				9
	•dxə-dN = N	OTTATVED - LANOTTDASE		
	D			
			<u>8</u>	
		┥╼╸┝╍╍┝╍╍┝╍╍┝╍╸┝╍╸┝╍╸┝╍╸┝╍┥┲╍┝╍╍┝╍╸┝╍┥╺╸┝ ┙╺╍┝╍╘╺╶┙┫╍╍┝╼╍┝╼╸┝╍╸┝╼╸┝╍╸┝╍┥╺╍┝╺╺┝╺╸┝╍╸┝╍┍┝ ┫╼╍┝╍╍╽╍╍┨┲╍╉┲╍┲┨╼╸╽╼╻┨╼╍╽╼╌┨╼╍╽╍╸┨╍╍╿╍╍┝╍╍╎╌╍╴┝╍╍╎╍╍		

TABLE NO.18

SUSPENSION CORRELATION

 $N_{Nu} = (N_{Nu} H) * / \left[a' + b \left(\frac{1-\emptyset}{\emptyset}\right)\right]$

	Correlatio	n Constants			Average E	rrors,%		
Impeller Type	a ¹	Ъ	Iron 33.2%	Oxide, we 24.0%	ight 13.1%	Ka olin , 24.4%	, weight 18.4%	Overall
Anchor	0.265	0.136	14.2	4.6	14.8	7.6	6.1	10.1
Paddles	0.234	0.150	22.9	20.8	11.3	8.0	15.3	16.3
Propellers	-0.058	0.154	30.7	7.7	6.8	11.2	8.4	11.1
Turbines	0.122	0.120	21.6	12.8	7.9	17.9	13.2	13.5

*Calculated from Hagedorn and Salamone Correlation

five studied had the best agreement with Hagedorn's correlation. The agreement was especially good for the propellers and turbines. Whereas, the anchor and paddle both gave experimental results about 20% below those predicted by Hagedorn's correlation.

Perry (17) states that suspensions of finely divided particles in a liquid may tend to reduce turbulence. The fluid will exert a drag force upon the particle whether or not the particle is moving faster or slower than the liquid. Stokes law shows that a particle falling under the influence of gravity through a liquid will attain a certain terminal velocity dependent upon the drag of the fluid. Thus the presents of solids may retard mixing patterns somewhat and a logical extension would be a reduction in the heat transfer coefficient.

Four of the five suspensions studied were more pseudoplastic than those studied by Hagedorn. Thus the Hagedorn correlation might not hold for pure liquids for the more pseudoplastic systems and this might have accounted for the substantially higher experimental Nusselt numbers.

However, the differences in the flow behavior indexes can not be held totally to blame for the discrepancies between the experimental and predicted results. Four of the five suspensions had almost identical flow behavior indexes (0.16 - 0.15). Yet, Figure No. 13 shows that the degree of deviation was substantially different for each suspension, and the amount of deviation can be seen to be a function of solids content.

Both the kaolin and iron oxide suspensions behaved similarly. The amount of deviation from the Hagedorn -Salamone correlation was about the same for both types of suspensions at the same solids content. Both types of solids were evaluated at about 24 wt.5. The kaolin was actually 24.4 wt.5. Table No.17 shows that the deviation for kaolin at 24.4 wt.5 solids is consistently slightly higher for all impellers than that for 24.0 wt.5 Fe₂O₃. Although, one would expect that the slightly higher solids, 24.4 versus 24.0, would result in a slightly higher deviation. There did not appear to be any significant difference between the two types of solids due to differences in physical properties.

Some investigators have tried to correlate the effect of particle size on heat transfer. However, some solids such as kaolin have highly active surfaces. This allows the particle to immobilize water molecules in its vicinity thus presenting an effective volume larger than the solid itself. Therefore, the effective volume must be known before any correlations with heat transfer can be attained.

The heat transfer data for suspensions was found to correlate with the dimensionless group $(1 - \emptyset) / \emptyset$ where $\emptyset = \text{wt.}\%$ solids. The range of solids contents studied was 13 - 33 wt.%. Care should be taken in extrapolating the group to solids levels above or below those studied. It is quite apparent that at low solids levels the group value tends towards infinity.

CONCLUSIONS

- Kaolin water and iron oxide water suspensions were found to be pseudoplastic and obeyed the power law equation.
- The Hagedorn Salamone semi empirical correlation was verified to predict Nusselt numbers for water with an average error of 9.5%.
- A suspension with a flow behavior index (0.42) within the range studied by Hagedorn gave good agreement with the Hagedorn Salamone correlation for propellers and turbines.
- 4. The same suspension as above with a flow behavior index of 0.42 gave experimental Nusselt numbers about 20% lower than those predicted by the Hagedorn - Salamone correlation for anchors and paddles.
- 5. Overall, suspensions were found to deviate from the Hagedorn -Salamone correlation as a function of weight percent solids.
- 6. It was shown that the Hagedorn Salamone correlation could be modified to predict Nusselt numbers for suspensions within the range 13-33 wt.% solids and flow behavior indexes of 0.42 to 0.15. The modification was the introduction of a dimensionless group composed of weight fraction liquid divided by weight fraction solids. The Final modified correlation was as follows:

 $N_{Nu} = C N_{Re} \frac{1.30/(n+1)}{N_{Pr}} N_{Pr}^{0.28} (N_V)^{0.30/n^{0.75}} (D_t/D_a)^{-0.50} (N_a/D_a)^{0.50} n^a$ $a' + b \left(\frac{1-\phi}{\phi}\right)$

where viscosities for N_{Re} and N_{Pr} are calculated at a shear rate equal to 11.5N. The constants vary with impeller type and the values are:

	C	a	al	Ъ
Anchor	0.74	1.43	0.265	0.136
Paddle	2.00	1.96	0.234	0.150
Propeller	0.86	2.51	∞0 _° 058	0.154
Turbine	3.09	2.06	0.122	0.120

The above correlation was used to predict batch side heat transfer coefficients with an overall error of 13%. However, before any rigorous conclusions can be drawn on the effect of weight percent solids, more data will have to be collected for more pseudoplastic pure liquids matching closer the range of suspensions studied.

RECOMMENDATIONS

- Further work is needed to test the Hagedorn correlation using liquids (non-suspensions) with flow behavior indexes below 0.36.
- 2. The modified correlation developed for suspensions should be tested using materials with flow behavior indexes above 0.42.
- 3. The modified correlation developed for suspensions should be tested for other materials having physical properties outside of those investigated in this study, such as particle size, thermal conductivity, etc.

NOMENCLATURE

English Alphabet

- A Area for heat transfer
- C Specific heat
- D Diameter
- h Viscometer bob height
- H Batch film heat transfer coefficient
- H' Pseudo batch film heat transfer coefficient
- k Fluid consistency index
- K Thermal conductivity
- L Thickness
- n Flow behavior index
- n" Measure of non-Newtonian behavior
- N Revolutions per unit time
- No .- Number of data points
- P Mixing power
- Q Heat flux
- R Viscometer bob radius
- S Dynamometer reading
- T Temperature
- T' Torque
- v Linear velocity
- W Impeller width
- W' Batch weight
- X Fractional portion of solids

Greek

- Δ For difference
- M- Viscosity
- 9 Reciprocal of viscosity
- N- 3.1416
- ρ Density
- \mathcal{X} Shear rate
- 7- Shear stress
- ϕ Weight fraction solids

Subscripts

- a Agitator
- b Batch
- e Effective height
- f Fluid phase
- h Uncorrected for mixing power
- p Pipe
- p' Mixing power
- r Relative
- s Suspension
- s' Solid phase
- t Tank
- w Wall

Dimensionless Groups

N _{NU}	**	Nusselt	Number
-----------------	----	---------	--------

NPo - Power Number

N_{Pr} - Prandtl Number

NRe - Reynolds Number

Ny - Viscosity Number

.

APPENDIX

Sample Calculations

- I. Properties of water:
 - 1. Viscosity $\theta = 0.021482 \left[(T - 8.435) + \sqrt{8078.4 + (T - 8.435)^2} \right] - 1.20$ where T = °C
 - $\mu = 6.72 \times 10^{-4}/\theta$ lb./ft. sec.
 - 2. Thermal conductivity
 - K = 0.325 + .000888T Btu/hr. ft.² (°F/ft.)

where T = °C

3. Heat capacity

C_p = 1.003 Btu/lb.°F (0-100°C)

4. Density

$$\rho = 62.42 - 0.001645T - 0.000248T^2 lb./ft.^3$$

where T = °C

II. Non-Newtonian viscosity, typical Brookfield determination. Temperature = 40°C = 104°F

Spindle turning at 120 RPM = 2 RPS

Brookfield reading = 17.6% of scale

Spindle No. 2

 χ = shear rate = 4 \mathcal{H} N/nth

n" determined by plotting log of torque versus log of spindle speed and taking slope of line.

= 593 dyne cm.

 $n^{"} = 0.16$ = $4 \mathcal{N}(2) / 0.161 = 156 / sec.$ Viscometer torque, T' = 0.176 (3368.5 dyne cm.) Shear stress, $\gamma = T / 2 \mathcal{H} R^2 he$

 $R^{2} = 0.513 \text{ cm. (radius of spindle)}$ $h_{e} = 6.11 \text{ cm. (effective height)}$ $\mathcal{T} = 593/2 \quad (.513)^{2}(6.11)$ $\mathcal{T} = 59$ The effective viscosity equals: $J_{a} = \mathcal{T}/\mathcal{Y}$ $J_{a} = 59/156 = .378 \text{ poise or } 37.8 \text{ cp.}$

III. Calculations for Run No. 14-50

- a. Average batch temperature = 50°C
- **b.** Mixing shear rate = 11.5N

$$\chi = 11.5 (4.0) = 48/sec.$$

c. Interpolate the apparent viscosity from the ordinate using Figure No. . and the data above.

$$\mu_a = 104 \text{ cps}$$
.

.

2. Density:

/ water = 62.42 - 0.001645T -0.000248T² T = 50.0°C = 62.4 lb./ft.³ kaolin = 161 lb./ft.³ Assume 100 lbs. of slurry:

at 18.4 wt.% solids (18.4 lb. clay + 81.6 lb. water)
18.4 lb./(161 lb./ft.³) = 0.114 ft.³ kaolin
81.6 lb./(62.4 lb./ft.³) = 1.307 ft.³ water
1.421 ft.³ total

$$\swarrow$$
 slurry = 100 lb./1.421 ft.³ = 69.6 lb./ft.³
3. Heat Capacity:

C (water) = 1.003 Btu/lb.°F C (kaolin) = 0.224 Btu/lb.°F C slurry = 1.003 (1- X_W) + 0.224 X_W X_W = weight fraction kaolin C slurry = 0.860 Btu/lb.°F

4. Thermal Conductivity:

K slurry =
$$\frac{K_{f} 2K_{f} + K_{s}' - 2X_{v} (K_{f} - K_{s}')}{2K_{f} + K_{s}' + X_{v} (K_{f} - K_{s}')}$$

K_f = 0.325 + 0.000888T (for water) T = °C

X_v = 0.080 (volume fraction solids)

K_s' = 0.110

where K = Btu/hr. ft.² (°F/ft.)

at 50°C

K_s = 0.343 Btu/hr. ft.² (°F/ft.)

- 5. Mixing Power to the Batch:
 - $P = 2 \mathcal{T} (Torque) N$

where torque equals dynamometer reading x dynamometer pulley radius

Pulley radius = 3.26 inches
N = 4 rps S = 3.23 lb.
P = 22.1 ft. lb./sec.
or the heat input to the batch equals 1.71 btu/min.

6. Batch Heating:

 $Q_h = WC_p dT/dt$

where dT/dt equals the change in batch temperature with time:

(52.3 - 48.0°C) x 1.8°F/°C /2 mins. = 3.87°F/min. W equals batch weight

W = / slurry (volume) = 69.6 lb./ft.³ x 1.52 ft.³ = 106 lbs. C_p slurry = 0.860 Btu/lb.°F

 $Q_{h} = 106 \text{ lb. x } 0.860 \frac{\text{Btu x } 3.87^{\circ}\text{F}}{\text{lb. }^{\circ}\text{F}} \frac{3.87^{\circ}\text{F}}{\text{min.}}$

= 352.8 Btu/min.

7. Film Coefficient:

 $H' = Q/A \Delta T_{w-b}$

where $A = 6.2 \text{ ft.}^2$ (heat transfer area)

AT is the average temperature drop between the wall

thermocouple and the batch temperature.

	<u>No. 1</u>	<u>No. 2</u>
Batch Temp. °C	52.3	48.0
Wall Temp.	34.2	32.2
4 Tu-b	18.1	15.8

Tavg. = $(18.1 + 15.8) \circ C/2 \times 1.8 \circ F/\circ C$ $\Delta T_{w-b} = 30.5 \circ F$

Q = heat transferred through wall + heat of mixing

= 352.8 + 1.7

= 354.5 Btu/min.

7. Film Coefficient: continued

Adjusting H' to compensate for the wall thickness between

the thermocouple and the batch wall:

$$H = H' (1 + 0.0001774 H')$$

8. Nusselt Number:

$$N_{Nu} = D_{t} H/K$$

$$D_{t} = 1.17 \text{ ft. (vessel diameter)}$$

$$N_{Nu} = \frac{1.17 \text{ ft. } 114 \text{ Btu/hr. ft.}^{2} \text{ Ft.}}{0.343 \text{ Btu/hr. ft.}^{2} (\text{Ff.t.})}$$

$$= 392$$

9. Reynolds Number:

$$N_{Re} = D_{a}^{2} N \rho / U_{a}$$

$$D_{a} = 0.50 \text{ (impeller diameter) ft.}$$

$$N_{Re} = \frac{(0.50 \text{ ft.})^{2} (4.0/\text{sec.}) (69.6 \text{ lb./ft.}^{3})}{0.0698 \text{ lb./ft. sec.}}$$

 $N_{Re} = 1000$

10. Prandtl Number:

$$N_{P_{r}} = C_{p} U_{a}/K$$

= $(0.86 \text{ Btu/lb.°F})(0.0698 \text{ lb./ft. sec.}) \times \frac{3600 \text{ sec.}}{\text{hr.}}$

= 620

11. Power Number:

$$N_{Po} = 32.2 P/(2) N^3 D_a^5$$

= 32.2 (22.1) / 69.6 (4)³ (0.50)⁵
= 5.1

BIBLIOGRAPHY

- Baumen, I., and R. Quinn, "<u>Heat Transfer Characteristics of Non-Newtonian Suspensions</u>", Masters Thesis, Newark College of Engineering, (1954).
- Binder, H., and P. Pollara, "Heat Transfer Characteristics of Non-<u>Newtonian Suspensions</u>", Masters Thesis, Newark College of Engineering, (1954).
- 3. Bonilla, C.F., Cervi, A. Jr., Colven, T.J. Jr. Wang. S.J., presented as part of the Symposium on Heat Transfer, 44th Annual Meeting, Am. Inst. Chem. Engrs. (1951).
- 4. Chapman, F.S., Holland, F.A., "<u>Heat Transfer Correlations for Agitated Liquids in Process Vessels</u>", Chemical Engineering, p. 153, Jan. 18, (1965).
- 5. Drew and Hoopes, "<u>Advances in Chemical Engineering</u>", Academic Press, New York, Vol. No. 1, (1956).
- 6. Fitch, E.B., "Interpreting Rotating Spindle Viscometer Data", Ind. Eng. Chem., 51, 7, p. 889-890, (1959).
- 7. Frantisek, F., Smith, J.W., and Dohnal, J., "<u>Heat Transfer to Solid Liquid Suspensions in an Agitated Vessel</u>", I & EC Proc. Des. & Dev., 7, 2, p. 188-192, (1968).
- 8. Goodeve, C.F. and Whitfield, G.W., Transactions of the Faraday Society, 34, p. 511 (1938).
- 9. Hagedorn, D.W., "Doctor of Engineering Science in Chemical Engineering Thesis", Newark College of Engineering, Newark, New Jersey, (1965).
- 10. <u>International Critical Tables</u>, 5 p. 220, McGraw Hill Book Company, New York, (1928).
- 11. Kambe, H., "Rheology of Concentrated Suspensions" Int. Chem. Eng., 9, 1, p. 164-170, (1969).
- 12. McCabe, W.L. and Smith, J.C., "<u>Unit Operations of Chemical Engineering</u>", McGraw Hill Book Co., Inc., New York, (1956).
- Metzner, A.B., and Taylor, J.S., "Flow Patterns in Agitated Vessels", A.I.Ch.E. Journal, 6, 1, p. 109, (1960).
- 14. Metzner, A.B., Vaughn, R.D., and Haughton, G.L., "<u>Heat Transfer to</u> Non-Newtonian Fluids" A.I.Ch.E. Journal, 3, p. 92-100, (1957).

- 15. Morgan, R.J., "<u>A Study of the Phenomenon of Rheological Dilatency in</u> <u>an Aqueous Pigment Suspension</u>", Doctoral Thesis, The Institute of Paper Chemistry, Ann Arbor, Michigan, (1967).
- 16. Orr, C., and Dalla Valle, J.M., Chemical Engineering Progress Symposium Series No. 9, 50, p. 29-45, (1954).
- 17. Perry, R.H. (Editor), "<u>Chemical Engineers Handbook</u>", McGraw-Hill Book Co., Inc., New York, Fourth Edition, (1963).
- 18. Salamone, J.J., Cristaldi, A.F., Dorn, A.E., "Film Coefficients of Heat Transfer For Batch Heating and Cooling of Non-Newtonian Liouids", NSF - G - 15572, Newark College of Engineering, (1962).
- 19. Salamone, J.J., Newman, M., "<u>Hater Suspensions of Solids</u>", Ind. Eng. Chem. 47, p. 283, (1955).
- 20. Sandell, O.C., Patel, K.G., "<u>Heat Transfer to Non-Newtonian Pseudo-plastic Fluids in Agitated Vessels</u>", Ind. Eng. Chem. Process Des. Dev., 9, 1, p. 139-143, (1970).
- 21. Schwartzberg, and Treyball, "<u>Fluid Particle Motion in Turbulent</u> <u>Stirred Tanks</u>", Ind. Eng. Chem. Fund., 7, 1, p. 1, (1968).
- 22. Sieder, E.N., and Tate, G.E., Industrial Engineering Chemistry Vol. 28, p. 1429 (1936).
- 23. Skelland, A.H.P., "<u>Non-Newtonian Flow and Heat Transfer</u>", John Wiley and Sons, Inc., New York, (1967).
- 24. Swanson, D.B., and Roth, R.F., "<u>Master of Chemical Engineering Thesis</u>", Newark College of Engineering, Newark, New Jersey, (1961).
- 25. Tareef, B.M., and Baer, V.A., <u>Colloid Journal</u>, (USSR) 3, p. 771-775, (1937).
- 26. Tuthill, J.D., "<u>Power Requirements For a Fan Turbine Agitating</u> <u>Newtonian and Non-Newtonian Fluids</u>", Masters Thesis, University of Delaware, Newark, (1957).
- 27. Van Wazer, Jr., Lyons, R.J.W., and Kim, K.Y., "<u>Viscosity and Flow</u> <u>Measurement</u>", Wiley and Sons, New York, (1963).

Technical Bulletin

28. <u>Basic Properties of Aluminum Silicate Pipments</u>, Engelhard Minerals and Chemical Corp. Technical Information No. 1004, June (1968).