Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

CORRELATION AND PREDICTION OF DIFFUSION COEFFICIENTS IN BINARY GAS SYSTEMS

ΒY

RAYMOND GERALD BAILEY

Jo- Ch.E.

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

AT

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey 1970

ABSTRACT

A correlation was developed for estimating binary gas diffusion coefficients by the reference substance method, in this case using the viscosity of air and subsequently its corresponding temperature. The derivation was made by the linear least square analysis of 65 different binary systems comprising 161 separate data points at temperatures ranging from 193°K. to 1200°K. At any given temperature only the critical molal volume and the molecular weights of the two gases of interest are required to calculate the diffusion coefficient. The correlation based on the viscosity of air had an average error of 7.67%. The correlation using temperature had an average error of 6.89%. Also developed were equations to predict the diffusion coefficient at any temperature when the coefficient is known at 298°K.. and to predict the coefficient of any system when the coefficient is known for any other system containing one component of the desired pair.

APPROVAL OF THESIS

CORRELATION AND PREDICTION OF DIFFUSION COEFFICIENTS IN BINARY GAS SYSTEMS

BY

RAYMOND GERALD BAILEY

FOR

DEPARTMENT OF CHEMICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

BY

FACULTY COMMITTEE

APPROVED

7

NEWARK, NEW JERSEY

70

JUNE, 1970

PREFACE

The work reported in this thesis is concerned with the development of a mathematical correlation for estimating binary gas phase diffusion coefficients as a function of temperature, molecular weight, and critical volume.

ACKNOWLEDGMENTS

The writer extends special thanks to Dr. H.T. Chen for his assistance and guidance without which this work would not have been possible.

Thanks are due also to my wife Sue Bailey for her assistance with the manuscript.

TABLE	OF	CON	TENTS
ALSO AND A CONTRACTOR OF A CON	SCHOOL STATISTICS IN CONTRACTOR	RECTANCE (STREET) REPORT	A SOLUTION OF DESCRIPTION AND

			dimensional party
I,	Int	roduction	1
	A.	Object	l
	Β.	Scope	1
II.	The	ory	2
	A.	Fick's Laws of Diffusion	2
	в.	Kinetic Theory of Diffusion	3
	C.	Pressure-Temporature Effects	5
	D.	Existing Correlations	5
		l. Arnold	5
		2. Gilliland	7
		3. Chen and Othmer	. 9
		4. Othmer and Chen	11
		5. Fuller, Schettler, and Giddings	14
III.	Inv	estigational Procedure	17
	٨.	Selection of Experimental Diffusion Data	17
	B.	Method of Calculation	18
	C.	Determination of Temperature Dependence	18
		1. Diffusion Coefficients as a Function	1910 - Ale
		of Temperature	18
		2. Diffusion Coefficients as Correlated	•
		with the Viscosity of Air	19
	D.	Analysis of Othmer and Chen Correlation	25

Page

	TABLE OF CONTENTS (CONT D)	Paca
		an and the second
	1. Varying Exponents of inverse of	~ F
	Molecular Weight Term	25
	2. Varying Exponent of Critical Volume	
	Tern	26
	3. Final Correlation Selection	29
IV.	Derivation of Formal Diffusion Coefficient	
	Equation	31
	A. Mathematical Derivation of Equation Based	
	on Viscosity of Air	31
	B. Comparision of Derived Viscosity-Type	
	Equation with Theoretical Development	32
	C. Development of Reference Plot for Diffusi	-no.
	Temperature Relation	35
	D. Derivation of Final Equation Based on Ten	3 an
	perature Relation	36
	E. Multicomponent Relationship	39
ν.	Results	42
VI.	Comparison of Resulting Correlation with	
- · · · · · · · ·	Experimental Data and Othew Convolution	1.1.
	and an analy and a construction of the second s	ch ch
VII.	Conclusions	47
VIII	Recommendations	1.0

TABLE OF CONTENTS (CONT'D)

Page

IX.	X. Appendix				
	A. Index to Appendix	51			
	B. List of Tables	52			
X.	References	157			
XI.	Vica	160			

LIST	of	TABLE	S
And a second second second second		the set of	

т & е	Diffusion Coefficients as a Function of	
	Tesperature	21
II.	Diffusion Coefficients as Correlated with the	
پ ب	Viscosity of Air	23
III.	Othmer-Chen Correlation: Effect of Various	
	Exponents for Molecular Weight Term	27
IV.	Comparison of Diffusion Coefficients by this	
	Work; Fuller, Schettler, and Giddings; and	
	Othmer-Chen	46

Bage

LIST OF FIGURES

	I.o	DP vs. T for CO2-N2 System	20
	II e	DP vs. \mathcal{M} air for CO_2-N_2 System	24
•		Diffusion Coefficients - Temperature Relation: DP/DP ₂₉₈ vs. T/T ₂₉₈	37
	IV a	Multicomponent Relationship: DP_{AB}/DP_{AC} vs. $\propto \frac{1.096}{AB}/\propto \frac{1.096}{AC}$ (where \propto is MW. V. function)	ha

Page

I. INTRODUCTION

A. Objact

The object of this thesis was to develop a correlation for the estimation of gas phase diffusion coeffimients. A number of correlations have been derived by other workers with various arrangements of physical parameters such as molecular weight, temperature, critical volume, and potential energy. For this work the correlation of D.F. Othmer and H.T. Chen was chosen as the basic equation from which further modifications could be developed.

B. Seepe

Available diffusion data from the literature was used to analyze the basic equation and to examine the effect of variable temperature. An equation of improved reliability was sought. The work reported herein was conducted over the period from September, 1968 to April, 1970.

II. THEORY

A. Pick's Laws of Diffusion

Diffusion in a gas is the transport of mass across a concentration gradient. The diffusion coefficient D is the number of molecules per second crossing unit area under unit concentration gradient.

The principles of diffusion are expressed most generally and ideally by equations known as Fick's first and second laws. The first law, when applied to a binary system at steady state, states that the diffusive fluxes of the two components of the mixture are equal and opposite and that these fluxes are directly proportional to the concentration gradients in the direction of diffusion. Simply, that is the diffusion of component A in a binary system composed of A and B takes place because of a concentration gradient of A. The first law expression is written below:

$$J_{A} = -J_{B} = -cD_{AB} \frac{dz_{A}}{dr}$$
(1)

where J_A and J_B are the molar fluxes of components A and B in moles per unit area per unit time, c is the molar density of the system in moles per unit volume, D_{AB} is the binary diffusion coefficient in area per unit time, and dz_A/dr expresses the change in mole fraction of A along a differential distance perpendicular to the plane of diffusion.

The basic expression used to formulate more general diffusion equations is

$$J_{A} = -cD_{AB} \nabla x_{A}$$
 (2)

and

$$\frac{\partial x_A}{\partial t} = D_{AB} \nabla^2 x_A \qquad (3)$$

For an one dimensional diffusion, Equation (3) may be reduced to

$$\frac{\partial x_A}{\partial t} = D_{AB} \cdot \frac{\partial^2 x_A}{\partial r^2} \qquad (4)$$

This is the so-called Fick's second law.

B. Kinetie Theory of Diffusion

The kinetic theory developments for a pure gas (molecules of the same size, shape, and mass) of the rigid sphere model at low density, with negligible effects of temperature, pressure and velocity, have been expressed as

mean molecular speed =
$$\overline{u} = \sqrt{\frac{8kT}{\pi m}}$$
 (5)

wall collision frequency = $Z = \frac{1}{4} n \bar{u}$ (6)

mean free path $= \frac{1}{\sqrt{2} \pi d^2 n}$ (7) where k is the Boltsmann constant, m is mass, n is molecules per unit volume, and d is molecular diameter. On the average the molecules reaching a plane had their last collision at a distance a from the plane so that

$$a = 2/3 \lambda \tag{8}$$

From those relations one may consider the molar flux N_{Ay} of species A across any plane of constant y in both positive and negative directions under a concentration gradient dx_A/dy . This leads to an expression, for species A and A*, of:

$$H_{AY} = \chi_A (N_{AY} + N_{AHY}) - \frac{1}{3} \circ \overline{u} \lambda \frac{d\chi_A}{dy} \qquad (9)$$

Reference is made to Bird, Stewart, and Lightfoot (2), pages 509-510, for the detailed procedure for arriving at Equation (9). Of interest here is that the above equation can be reduced to a form of Fick's law for the y-component if for D_{AB} we use:

$$D_{AB} = \frac{1}{3} \bar{u} \lambda \qquad (10)$$

Bird, Stewart, and Lightfoot go further and use the

ideal gas law to represent the diffusion coefficient as follows:

$$D_{AA*} = \frac{2}{3} \left(\frac{k^3}{\pi^3 m_A} \right)^2 \frac{\pi^{3/2}}{pd_A^2}$$
 (11)

In the following sections of this discussion of theory it will be noted how Equation (11) was variously expressed by the workers in this field in developing the basic correlations for estimating diffusion coefficients.

C. Pressure - Temperature Effects

Diffusion coefficients of gases at low pressure increase with temperature (approximately as $T^{1.8}$ as will be shown in this work), vary inversely with pressure, and there is little effect from composition. In the discussions that follow on other correlations the temperature factor will appear as a definite point for some difference in results, whereas most work has been conducted at atmospheric pressure when obtaining experimental values. However, the correlations developed are generally expressed as a function of DP where P is pressure in atmospheres so as to obtain results at tarious pressure levels.

D. Existing Correlations

<u>1. Arnold (1).</u> The Arnold correlation for the calculation of diffusion constants in gaseous systems at any temperature is based on the theoretical investigations made

by Stefan (22), Maxwell (15), and Sutherland (23). Arnold accepted the general form of the equation developed by these workers and studied that equation with available experimental diffusion data to arrive at a reliable set of particular constants for evaluating the equation.

The Arnold equation utilizes the molecular weights, the molecular volumes V at the boiling point, the temperature and the Sutherland constant to calculate the diffusion coefficient (cm.²/sec.) as follows:

$$D = \frac{0.00837 \sqrt{\frac{1}{M_1} + \frac{1}{M_2}}}{(v_1^{1/3} + v_2^{1/3})^2} \qquad \left(\frac{\frac{1}{T^{5/2}}}{\frac{1}{T + c}}\right) \quad (12)$$

where V = ec./g.mole at boiling point T = diffusing temperature, °K. C = Sutherland constant

To apply the above equation Arnold uses calculated values

$$c = 1.47 \text{ F} \sqrt{T_{B_1} T_{B_2}}$$
 (13)

where $T_{\rm B}$ is the absolute boiling temperature and F is given as a function of the molal volumes at the boiling point. Note there are these exceptions: experimental values are used for hydrogen (72) and bolium (78).

As discussed above, Arnold worked from the general

$$D = \frac{B\sqrt{\frac{1}{M_1} + \frac{1}{M_2}}}{s^2} \frac{T^{5/2}}{T+0}$$
(14)

The calculation of C was fixed, and M and T values had only to be substituted. A value for the constant B bad to be developed, as well as for the S² term which is the molecular volume parameter.

The expression for S vas

$$s = v_1^{1/3} + v_2^{1/3}$$
 (15)

which had V related to Kopp's law (molal volume is an additive function of the atomic volumes of the constituents of a molecule) and V can be found by the values developed for atomic volumes by LeBas (14). For reference it is noted that these values are given in Perry's Eandbook (19), page 538.

To evaluate the constant B, Arnold investigated the diffusion relationships of Chapman (4) and Jeans (11). The value of 0.00837 was from Jeans and was finally chosen as it gave the better agreement between observed D and calculated D by Arnold's equation.

2. <u>Gilliland (6)</u>. <u>Gilliland recognized the fundamen-</u> tal equations of Maxwell (15) and Stefan (22) just as Arnold did. However, Arnold refined the earlier representations by the use of Sutherland's constant, but Gilliland concluded in his work that this Sutherland modification was not necessary. These findings were based on the evaluation of considerable experimental data accumulated by Gilliland

~

versus calculated results.

To be consistent in presenting the equations by various workers as originally published, it is appropriate to show Namvell's equation below in the form from which Gilliland worked:

$$D = \frac{\Lambda T^{3/2} \sqrt{\frac{1}{11} + \frac{1}{15}}}{s^{2p}}$$
(16)

where M_A , M_B = molecular weights

P = total pressure
S = distance between the centers of the two unlike molecules at collision
D = diffusion coefficient
T = absolute temperature
A = a constant

Equation (16) can be compared to Equation (14) discussed proviously. The difference being in Arnold's incorporation of the Sutherland constant term.

Furthermore, Gilliland continued to follow Arnold's development by using the relationship that molal volume of a liquid at its normal boiling point is proportional to the cube of the radius of the molecule, and thus Gilliland wrote:

$$D = \frac{BT^{3/2} \sqrt{\frac{1}{M_A} + \frac{1}{M_B}}}{P \left(V_A^{3/3} + V_B^{3/3} \right)^2}$$
(27)

with a constant B to be evaluated. Diffusion data from the literature (apparently over five hundred system points) were plotted on log-log coordinates as ordinates versus the right hand member of Equation (17) (without B of course) as absciesas. Also plotted for comparison was the Arnoldtype Equation (12) having the added $\frac{T}{T+C}$ term.

It was found that the plot with Equation (17) gave the better correlation. The expirical constant B was determined to be 0.0043. Gilliland's equation is:

$$D = \frac{0.0043 r^{3/2} \sqrt{\frac{1}{M_A} + \frac{1}{M_B}}}{\left(v_A^{2/2} + v_B^{2/3} \right)^2 P}$$
(20)

2. Chen and Othmer (6). The work of Chen and Othmer followed the pattern of Hirzehfelder, Bird, and Spots (9), which had itself been an investigation of Chepman and Cowling (5). The approach there differs somewhat from Araeld and Gilliland in the use of the collision integral $\Omega_{\rm B}$ for the potential energy of attraction between gases. The collision integral was calculated by Hirzehfelder, Bird and Spots as a function of k T/ϵ (k = Beltzmann's constant; $T = {}^{0}K$; $\epsilon = \text{Lemmard-Jones force constant}$) and values were shown in a table. They also developed the relation between collision diameter ℓ and module at the critical point V_{e} as

$$\sigma = 0.5694 V_0^{0.4006}$$
 (29)

Also developed,

$$\epsilon/k = 1.276 T_{c}^{0.9061}$$
 (20)

The diffusion coefficient equation of Hirschfelder, Bird, and Spots is as follows:

$$D_{12}P = \frac{0.001858 \ T^{3/2} \left(\frac{1}{11_1} + \frac{1}{11_2}\right)^2}{\sigma_{12}^2 \ \Omega}$$
(21)

Chen and Othmor's investigation was directed toward aimplifying Equation (21) by aliminating the use of the collision integral table. Chem (5) reduced the table to an equation where

$$\Lambda = \frac{1.075}{\left(\frac{kT}{\epsilon}\right)_{12}^{0.1615}} + \frac{2}{\left(10 \frac{kT}{\epsilon}\right)_{12}^{0.74 \log\left(10\frac{kT}{\epsilon}\right)_{12}}}$$

Chen and Othner further simplified Equation (22) by using . Equation (20) to derive

$$n = r \left[\frac{T}{(T_{e_1} T_{e_2})^{0.453}} \right]$$
 (23)

and subsequent manipulations with Equation (21) led to

$$D_{12} = \frac{0.001858 \ \pi^{3/2} \left(\frac{1}{M_{1}} + \frac{1}{M_{2}}\right)^{\frac{1}{2}}}{P \ (0.2947) \left[\left(v_{e_{1}}^{0.4} + v_{e_{2}}^{0.4} \right)^{\frac{1}{2}} \right]^{2} \Lambda \left[\frac{1}{\left(r_{e_{1}}^{0} \ r_{e_{2}}^{0.455} \right)^{\frac{1}{2}}} \right]^{\frac{1}{2}}$$

where A and B wore to be determined.

æ

Analysis of experimental data on log-log coordinates resulted in a final correlation as follows:

$$D_{12} = \frac{0.43 \left(\frac{T}{100}\right)^{1.81} \left(\frac{1}{M_2} + \frac{1}{M_2}\right)^{0.5}}{P\left(\frac{Te_1 Te_2}{10,000}\right)^{0.1405} \left[\left(\frac{Ve_1}{100}\right)^{0.4} + \left(\frac{Ve_2}{100}\right)^{0.4}\right]^2}$$
(25)

Using Equation (25), Chen and Othmer calculated $D_{12}P$ for 66 binary systems with an average absolute deviation (AAD) of 5.64%. By comparison, for the same 66 systems the AAD was 16.01% by the arnold method, 16.80% by the Gilliland method, and 6.12% by the Hirschfelder, Bird, and Spota nothed using force constants from viscosity data.

<u>A. Othmer and Chen (17).</u> The Othmer and Chen correlation is based on the physical relationship of diffusion coefficients and viacosities of gases. This relationship and the use of the Othmer (16) reference substance plot was used to correlate diffusion coefficients in binary gas systems with viscosities, with air being the reference substance. This method has the desirable quality of using a perameter, the viscosity of air, which has been determined reliably over a wide temperature range, as one of the prineiple terms.

In addition to requiring the viscosity of air $(\mu, op.)$

Ľ1

at a given diffusing temperature, this correlation also requires data on the critical molal volumes (V_c , ec./g/mole) and the molecular weights (N) of the two games whose diffusion coefficient is to be calculated. The Othmer-Ghen correlation follows:

$$D_{12}P = (2.52 \times 10^7)_{\mu} {}^{2.75} \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{1}{V_{e_1}}^{0.6} + \frac{1}{V_{e_2}}^{0.6}\right)^2} \right] (26)$$

where D₁₂ = diffusion coefficient, component 1 through component 2, cm. / sec.

As stated in the Introduction of this thesis, the object of this work was to develop a new correlation based on the fundamental structure, and corresponding derivation of the Othmer-Chen equation. For this reason, it is necessary to examine in detail the precise manner in which the subject equation was developed.

The initial relationship used showed that the logarithmic plot of $D_{1,2}P$ of any system versus the viscosity of a gas is linear, as follows:

log $D_{12}P = C_1 \log \mu + C_2$ (C=const.). (27) The above statement was predicated on the ideal gas variation of the diffusion coefficient with temperature and pressure (6).

$$D_{12}P = \alpha T^b$$
(26)

and the variation of viscosity of gases with temperature (16),

$$\mu = er^d$$
 (29)

Othmer and Chen plotted (logarithms) the diffusion coefficients of various systems versus a temperature scale derived from the viscosity of air and obtained a constant slope of 2.74 for Equation (27) such that

$$\log D_{12} P = 2.74 \log \mu + C$$
 (30)

To evaluate C in Equation (30) the Maxwell Equation (16) was rewritten as

$$D_{12}P = f\left[\frac{\left(\frac{1}{H_1} + \frac{1}{H_2}\right)^{0.5}}{a^2}\right]$$
 (31)

where d equals the distance between centers of unlike molecules on impact. Expressing the Lennard-Jones force constant as

7

subsequently d is represented as

$$\dot{d} = \frac{G_1 + G_2}{2} = 0.2947 \left(v_{e_1}^{0.4} + v_{e_2}^{0.4} \right) \quad (33)$$

hence

$$D_{12}^{P} = f \left[\frac{\left(\frac{1}{M_{1}} + \frac{1}{M_{2}}\right)^{0.5}}{\left(\frac{v}{c_{1}} + \frac{v}{c_{2}}\right)^{2}} \right]$$
(36)

Equation (33) was plotted as $D_{12}P$ versus function M, V_{c} at constant temperature of 298°K. and for a linear representation the following equation was derived:

$$\log (D_{12}P)_{298} v_{\rm K} = 1.23 \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V_{01}}{V_{01}} + \frac{V_{02}}{V_{02}}\right)^2} \right] + 2.64$$
(35)

A value of 0.0182 cp. was used for the viscosity of air in Equation (30) and the resulting equation was combined with Equation (35) to yield:

$$C = 1.23 \log \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V_{0_1} + V_{0_2}^{0.4}}{V_{0_2}^{0.4}}\right)^2} \right] + 7.4$$
(36)

Combining Equations (30) and (36) Othmer and Chen arrived at their final form of the correlation which was presented above as Equation (36). (They indicated that results from Equation (26) for helium systems should be multiplied by 1.39 to correct inherent deviations).

5. Fuller, Schettler, and Giddings (7). Fuller, Schettler, and Giddings (FSG) began their correlation development with the Stofan-Maxwell hard sphere model and the principle of additive atomic volumes first used by Arnold and Giliiland. Using the Chapman-Enskog (4) form

$$D_{AB} = \frac{3}{32n G_{AB}^2} \left[\frac{8kT}{\pi} (1/M_A + 1/M_B) \right]^{\frac{3}{2}} (37)$$

 D_{AB} = binary diffusion coefficient, cm.²/sec. \tilde{H} = total concentration of both species, molecules/cc. T = temperature, ^OK. k = the Boltzmann constant, ergs/^OK. M_A , M_B = molecular mass, grams σ_{AB} = 1/2 ($\sigma_A + \sigma_B$), collision diameter, cm.

FSG claimed that the above Equation (37) was limited by (1) the 3/2 power temperature dependence since observed values are usually 1.6 to 1.8, and by (2) lack of available data on the values of \mathcal{O} . FSG commented on the use of the 0.4 power of the critical volume by Chen and Othmer saying it was also a limited approach in that experimental data were not widely available for critical volumes.

The following generalised function was fitted to the data by FSG:

$$D_{AB} = \frac{CT^{b} (1/M_{A} + 1/M_{B})^{b}}{P\left[\left(\Sigma_{A}v_{1}\right)^{a_{1}} + \left(\Sigma_{B}v_{1}\right)^{a_{2}}\right]^{a_{3}}}$$
(38)

C - an arbitrary constant P = pressure, atm. N_A , N_B = mol. wt., gram/mole

A least square analysis was used to optimise:

b = temporaturo power dependence

- v diffusion parameters to be summed over atoms, groups, and structural features of the diffusing species
- a = arbitrary exponent

Analysis of 153 different binary systems (340 data points) resulted in the following equation

$$D_{AB} = \frac{1.00 \times 10^{-3} \text{ g}^{1.75} (1/M_{A} + 1/M_{3})^{\frac{1}{3}}}{P\left[(\Sigma_{A} \nabla_{1})^{\frac{1}{3}} + (\Sigma_{B} \nabla_{1})^{\frac{1}{3}}\right]^{2}}$$
(39)

Values for the diffusion volumes were developed and are some 10 to 15% smaller than the LeBas volumes. A comparison was made of the above Equation (39) with results on the same 340 data points by other correlations. FSG reported an average per cont error of 4.3% and other calculated errors were 16.6% for Eirschfelder-Bird-Spotz; 10.7% for Othmer-Chen; 6.4% for Chen-Othmer; 6.8% for Gilliland; and 8.9% for Arnold. It was in the interest of establishing further reliability to the Othmer-Chen equation than the above 10.7% error indicates that this thesis investigation was undertaken.

III. INVESTIGATIONAL PROCEDURE

A. Selection of Experimental Diffusion Data

In order to analyze the Othmer-Chen correlation, it was necessary to first obtain a set of experimental data with which to sompare the calculated results. A literature search revealed that Fuller, Schettler, and Giddings (FSG) (7) compiled quite an extensive and adequate listing of diffusion coefficients for 340 reference points. This compilation was colected as the one from which to choose sufficient points for study. It is particularly noteworthy that FSG calculated the percentage error resulting from the use of various equations, including Othmor-Chen, for the total data presented.

FSG developed their correlation from a nonlinear least squares analysis of 153 different binary systems comprising the 340 data points. However, their approach was with intent to directly include a temperature dependence term and, therefore, the chosen analysis used reference points over a temperature range from 90°K. to 1200°K. The work conducted herein was first directed toward a constant temperature relation, with later modification for temperature effects. For this reason, a total of 65 data points were selected from those presented by FSG, each representing a different binary system, at approximately 298°K. Actually the temperature range was from 288°K. to 311°K.

Additional data were required to fully investigate the relationship between diffusion coefficient and (1) temperature and (2) viscosity of air. These studies will be discussed in dotail in a later section. In this case, data were needed on the same system over a range of temperatures. Of the systems considered, all but one were taken from the system groups available in FSG. The exception, which was found to be most reliable, was CO_2-N_2 data from Pakurar and Ferron (16).

B. Method of Calculation

All calculations were done by hand using five-place legarithms, with the assistance of a deak calculator.

Linear Least square analysis of the resulting expres-

G. Determination of Temperature Dependence

1. Diffusion coefficients as a function of temperature. Since the Othmer-Chen correlation takes as its principle relationship that there is a distinct connection between diffusion coefficient and viscosity, it was appropriate that initial investigation be on the mode of development of thic relations. As discussed previously, Othmer and Chen used the reference substance technique to express the effect of temperature basis a corresponding viscosity of air at a given temperature.

Fuller, Schettler, and Giddings (7) derived a temperature power dependence of 1.75. In other words, a plot of diffusion coefficient (y) versus absolute temperature (x) on a logarithmic graph has a certain linear slope. Chen and Othmer (6) found this slope to be 1.81. The variation of diffusion coefficient with temperature was shown as Equation (23), repeated below:

$$D_{12}P = nT^{D}$$
 (26)

To check this power dependence, six different systems were chosen on the bisis of sufficient available points to make a valid representation of the slope. These systems and the D_{12}^{P} (cm.² atm./sec.) and T(^OK.) data are presented in Table V of the Appendix, pages 54-63. Least equare and ysis of all six systems (log DP vs. log T) indicated quite readily that too few data points were used in the analysis of all but two systems. Table V also presents results. Table V.A., page 54, showing CO_2-N_2 was felt to be most representative of the DP-T effect. A slope of 1.79 was calculated and is plotted in Figure I, page 20. Table I, page 21, summarises all results.

2. Diffusion coefficients as correlated with the view cosity of air. The next stop was to observe these same data similarly in terms of the viscosity of air. Values for the viscosity of air were obtained from the International Gritical Tables (10) for the range 273°K. - 773°K. Values

20

DP vs. T FOR CO2-N2 SYSTEM

F						1				· [1111							
				· · · · · · · · · · · · · · · · · · ·																			1 1				
										-		: 															
			, , , , , , , , , , , , , , , , , , ,				·																				
							- 1			ا بند ا				یر دیگر) از ر													
									 		-		-								****						
											-																НЩ
			pertourdation																								
		2	-																								
														P													
													1														
(1) The second secon																											
		4				ati						1												 			
			- penkonduk								X				1												<u></u> ++++
		0.8	- Contractor of the second							1																	
		0						12		4-																	
		\$ 0.6	-				: 	 	Ł																		
																					824						
	Q							1																			
	6	1 0.0					1									-											
						1	/									-											
					1	/																					
					1																						
			- (Deleteration)									-												ini.	.		
			6																								
					t			` 																			
		a.1					1						-		1 1		1										
1	1.5	2	2.5	3		4 4)	6 60	7	? Ø	9	10			1.5		2 200	25 25	3	02	4	 5	5	7 . 1	8 9	3 10

TOK

<u>TABLE I</u>

DIFFUSION COEFFICIENTS AS A FUNCTION OF TEMPERATURE

Staten	Deca Pointin	Slope: lor DP/log 3
602°N2	24	1.79
Ho-Ar		1.78
H2-N2	and the second sec	2.65
Ho-CO2	20	1.63
nc-ar	6	1.61
Azəlz	*7	1.90

outside this range were calculated from Sutherland's formula

$$\frac{M}{M_{o}} = \frac{273 + C}{T + C} \left(\frac{T}{273}\right)^{1.5}$$
(40)

as given in Perry (19), where

T = temperature,
$$^{\circ}$$
K.
 μ = viscosity of air at T, cp.
 μ = viscosity of air at 273°K. =.0171 cp.
C = constant = 114 for air

The six systems and the $D_{12}P$ and μ_{air} data are presented in Table VI of the Appendix, pages 64-73. As indicated previously when checking temperature dependence, not all systems gave satisfactory results due to limited data. However, the CO_2-N_2 system as expected indicated a smooth correlation for the DP- μ slope which was 2.60. Least square analysis results (log DP vs. log μ) are shown in Appendix, Table VI. Table II, page 23, summarises all results.

Figure II, page 24, is a log plot of the DP- μ data for the CO₂-N₂ system.

Recall that Othmer and Chen obtained a slope of 2.75 for the DP- μ data, as was shown in Equation (30). Basis the results discussed above it was decided to modify Equation (30) to reflect the new slope as follows:

$$\log D_{12}P = 2.6 \log \mu + C$$
 (41)

TABLE II

DIFFUSION COEFFICIENTS AS CORRELATED WITH THE

VISCOSITY OF AIR

Öveten	<u>Data Points</u>	Slope: log DP/leg Mage
602-N2	I.L.	2.60
HewAr	and the second s	2.65
Hzells	12	2.25
He-CO2	10	2.27
No-Ar	6	2.34
Arokr	7	.2.55
No-N2		2.60

FIGURE II

DP vs. MAIR FOR CO2-N2 SYSTEM

1. Varving exponent of inverse of molecular weights term. Recall from the Othmer-Chen correlation, Equation (26), that the term containing the molecular weights and critical volumes was written as follows:

$$D_{12}P = f \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V_{c_1}}{V_{c_1}} + \frac{V_{c_2}}{V_{c_2}}\right)^{2}} \right]$$
(42)

It was decided that a check should be made on the reliability of using the 0.5 power as the exponent of the inverse molecular weight term. Sixty five data points from the list in the Fuller, Schottler, and Giddings paper were solected (as discussed in Section III.A) for making the analysis. To evaluate the function in Equation (42), values for $V_{\rm G}$ were obtained from Bird, Stewart, and Lightsfoot (2), page 744, and it was noted that these in turn had been obtained from Kobe and Lynn (13). These $V_{\rm G}$ ivalues represent calculated numbers from $ZRT_{\rm G}/P_{\rm G}$. Table VII of the Appendix, page 74, presents the various logarithmic values of the function as calculated, along with the $V_{\rm G}$ values, versus the corresponding DP. The inverse coleculated with three different values for the power factor; 0.4, 0.5, and 0.6.

Least square analysis of Equation (42) indicated there was little difference in the adequacy of a curve fit using either 0.5 or 0.6 exponents, as shown in Table IXI, page 27. The percent error was 10.35 and 10.39, respectively, and absolute range of per cent error was a comparable 53.4 points versus 56.3. The 0.4 power was seen to be undesirable with a 12.60 per cent error. Basis the slight analysis edge favoring the 0.5 power and its reliability in earlier correlations it was believed appropriate that the 0.5 exponent be retained in this investigation. These results are tabulated in the Appendix, Table VIXI, page 83.

2. Varying exponent of critical volume term. After establishing the 0.5 power as the exponent of the inverse molecular weight term, an analysis was made to fix the exponent of the critical volume term. The Othmer-Chen correlation used the presentation of $(V_{cl}^{0.4} + V_{cl}^{0.4})^2$. Recall from Equation (12) that Arnold used a $V_c^{1/2}$ as did Gilliland in Equation (17). On this basis the desision was made to compare $V_c^{0.4}$ with $V_c^{0.33}$ using Equation (48).

Once again the 65 data points from Fuller, Schettler, and Giddings were used for the analysis as providually used in examining the exponent of the molecular weight term in the proceeding section. Herever, there was one difference in the evaluation of Equation (42) in this case compared to

26

TIL BLEAT

OTHMER-CHEM CORDELATION

EFFECT OF VARIOUS EXPONENTS FOR MOLECULAR VEIGHT TERM

D ₂₂ P	Averences S Error	$+\frac{2}{1_{1_{2}}}) \approx \frac{1}{1_{1_{2}}}$ $+ \frac{1}{1_{2}} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + $	Percent of Coloulated Values with Loga that 10, France
0.5	10.35	-22.1 to \$1.3	63., 5
0.6	10.39	~26.6 to 31.7	60.0
0.4	12.60	-29.4 to 35.9	44.6

that in Section III. D.1. The values for V_c used previously were all based on the $2RT_c/P_c$ calculation. This is satisfactory for most compounds, but there tends to be error introduced if this approach is used for the light elements H_2 and He and for the moble gases Ne, Ar, Kr, Xe. The more exact procedure for these elements is to use the collision diameter δ to calculate V_c by the following empirical relation from Bird, Stewart, and Lightfoot, page 22:

$$v_{e} = \left(\frac{c}{.841}\right)^{3} \qquad (43)$$

where δ is in Angetrem units for which values are given in Bird, Stewart, and Lightfoot on page 744. The Equation (43) as noted is primarily valid only for the elements mentioned above, but mistakenly the Equation (42) correlation was analyzed for all 65 points with the Equation (43) substitution for all V_c. Table IX of the Appendix; page 92, presents the data used.

Least square analysis revealed that the 0.4 exponent for V_0 was the better choice basis an average per cent error of 11.7 as compared to 11.8% error for the 0.33 exponent. Granted this is a very minor difference in error and could rightfully be neglected and the two cases considered equivalent. Newsver, the 0.4 exponent situation had 32.4% of all points with less than 5% error compared to 27.7% for the 0.33 exponent situation. It was decided that the 0.4

28

expenent would be retained for its slightly better reliability and on the strength of its demonstrated accuracy in the Othmer-Chen correlation. Table X of the Appendix, page 98 gives the error results for this analysis of eritical volume expenent.

<u>). Final correlation selection</u>. Basis the findings discussed in the above Sections III.D.l. and 2. the correlation function was established as originally presented in Equation (42), repeated below for convenience:

$$D_{12}^{P} = f \left[\frac{\left(\frac{1}{M_{1}} + \frac{1}{M_{2}}\right)^{0.5}}{\left(\frac{V_{0}}{N_{1}} + \frac{V_{0}}{N_{2}}\right)^{0.4} + \frac{V_{0}}{N_{2}}} \right]$$
(42)

It was montioned in the explanation of the critical volume exponent selection that the empirical correlation of Equation (43) should be used for V_G for certain elements, in conjunction with the ZRT_G/P_G calculation of V_G for the remaining compounds. To escertain the precision of Equation (42) in the proper manner, the appropriate V_G values were used to make a final check of the correlation. Table XX of the Appendix, page 105, presents the V_G values and the log value of the function in Equation (42), with the calculated DP and per cont error.

A slope of 1.096 was observed from the least square

29

analysis, with an intercept of 2.274 such that the following expression could be written:

$$\log(DP)_{2980K} = 1.096 \log \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V_{c_1}^{0.4} + V_{c_2}^{0.4}\right)^2}{\left(\frac{V_{c_1}^{0.4} + V_{c_2}^{0.4}\right)^2}} + 2.274 \right]$$

Recall the above equation is considered valid only around 298°K. since this was the temperature reference of the selected data (see Section III.A., page 17).

The least square analysis resulted in an 8.27% error for this final correlation on the total 65 points that have been examined throughout this work. Of the calculated values, 67.7% had less than 5% error. Thus the DP correlation was considered sufficiently firm to proceed to develop the complete equation for calculation of binary diffusion coefficients. A. Mathematical Derivation of Equation Based on Viscosity of Air

It was determined in Section III that Equation (44) was representative of the desired relationship at $298^{\circ}F_{*}$:

$$\log (DP)_{298} = 1.096 \log \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V_{c_1} + V_{c_2}^{0.4}}{V_{c_2}^{0.4}}\right)^2} + 2.274 \right]$$
(44)

The intent was then to expand Equation (44) to encompase all temperature situations. Equation (41) developed earlier, was next used in this regard:

log DP = 2.6 log \mathcal{H} + C (41) Using a value of 0.0182 cp. for the viscosity of air at 298°K., Equation (41) becomes:

 $\log (DP)_{298} = 2.6 \log (.0132) + C$ (45) Substitution of Equation (44) into Equation (45) gives:

$$C = 1.096 \log \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V_{c_1}}{V_{c_1}} + \frac{1}{V_{c_2}}\right)^{0.5}} + 2.274 - 2.6 \log(.0182) \right]$$

$$C = 1.096 \log \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V_{c_1}}{V_{c_1}} + \frac{1}{V_{c_2}}\right)^{0.4} + 2.274} + 6.794 \quad (47) \right]$$

Equation (41) and Equation (47) are then combined to yield:

$$\log DP = 2.6 \log \mu + 1.096 \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V + V}{C_1} + \frac{V}{C_2}\right)^2} \right] + 6.794$$

$$DP = (6.22 \times 10^6) \mu^{2.6} \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V}{c_1} - \frac{1}{V} + \frac{1}{V}\right)^{0.4}} \right] (49)$$

where μ is the viscosity of air in centipoises at the diffusing temperature. Equation (49) can be considered a final form if one wishes to work with $\mu_{\rm air}$ values.

The above equation was used to calculate DP for 161 points representing the 65 separate binary systems that were used in the development. Table XIX, Appendix, page 108 presents the values used to make these calculations and the resulting DP obtained, along with the per cent error. Error was 7.67%. In all, 72.0% of the points had less that 10% error.

B. Comparison of Derived Viscosity-Type Equation with Theoretical Development

The above derivation of Equation (49) was based on the reference substance plot, i.e. it was keyed to the DP- μ correlation from whence was developed the 2.6 exponent for the viscosity of air (Section III.C.2.). However, there is a theoretical development that follows from Hirschfelder, Bird, and Spots, Equation (21) in Section II.B.3. The collision integral \mathcal{A}_D can be shown as a function of kT/\mathcal{E} . This function can be plotted and shown to exhibit a characteristic curve which contains two distinct regions marked by an obvious change in slope. (See Othmer and Chen for an illustration of this graph.) The correlation between \mathcal{A}_D (which in turn can be shown as a function of DP) and kT/\mathcal{E} is such that the following relationships can be shown to exist:

For $kT/\xi < 2.5$ log DP = 2.0 log μ + C₁ (50) For $kT/\xi > 2.5$ log DP = 2.5 log μ + C₂ (51) The development of the above can be followed in detail in Othmer and Chen.

The important point of interest here is that Equation (49) developed in this thesis differs from the above kT/\mathcal{E} relationships in that only one exponent 2.6 suffices for all energy levels, a form of the type:

 $\log DP = 2.6 \log \mu + c$ (41)

It was thought that some refinement of Equation (49) could be attained if the exponents 2.0 or 2.5 were substituted for 2.6 for the appropriate conditions where the system of interest had a kT/E value below or above 2.5.

Recall Equation (44) could be used to calculate log (DP)₂₉₈. Substitution of Equation (44) into Equation (50) gives:

$$c_{1} = 1.096 \log \left[\frac{\left(\frac{1}{M_{1}} + \frac{1}{M_{2}}\right)}{\left(\frac{V_{c_{1}} + V_{c_{2}}}{V_{c_{2}} + V_{c_{2}}}\right)^{2}} + 2.274 - 2.0 \log (20182) \right]$$

$$c_{1} = 1.096 \log \left[\frac{\left(\frac{1}{M_{1}} + \frac{1}{M_{2}}\right)^{0.5}}{\left(\frac{V_{c_{1}} + \frac{1}{M_{2}}}{c_{2}}\right)^{0.4} + \frac{V_{c_{2}}^{0.4}}{c_{2}^{0.4}}} \right] + 5.754$$
(53)

Equation (50) and Equation (53) combine as:

$$\log DP = 2.0 \log M + 1.096 \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V_{c_1} + V_{c_2}^{0.4}}{C_2}\right)^2} + 5.754 \right]$$

$$DP = (5.68 \times 10^5) \mu^{2.0} \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V_1 - V_2}{V_1 + V_2}\right)^{0.4} + \frac{V_2}{V_2}} \right]^{1.096}$$
(55)
when $kT/\epsilon < 2.5$.

The above procedure was repeated for the relationship shown in Equation (51).

$$c_{2} = 1.096 \log \left[\frac{\left(\frac{1}{M_{1}} + \frac{1}{M_{2}}\right)^{0.5}}{\left(\frac{1}{M_{1}} + \frac{1}{M_{2}}\right)^{0.4} + \frac{1}{V_{c_{2}}} + \frac{0.4}{2}} + 6.624 \right] + 6.624$$

Then from Equation (51):

$$DP = (4.20 \times 10^6) \mu^{2.5} \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V_1 - 0.4}{V_1 + V_2}\right)^{0.4}} \right] (57)$$

when $kT/\epsilon > .2.5$.

The above Equations (55) and (57) were used to calculate DP for the same 161 points used to check Equation. (49). Table XIII, Appendix, page 116 presents the results. No improvement over Equation (49) could be shown. The error was 7.77% compared with 7.67% by Equation (49). Aß was expected there was little difference in the results from Equations (49) and (57) since the similar 2.6 and 2.5 exponents were involved. However, Equation (49) was better than Equation (55) with 59 points being applicable; for $kT/\xi < 2.5$. Equation (49) for those points had an error of 7.44% whereas the Equation (55) error was 7.75%. It was concluded that the derivations of the theoretical from the actual phenomena are accounted for by the larger exponent in the derived correlation.

C. Development of Reference Plot for Diffusion Coefficient-

To simplify the obtaining of a diffusion coefficient at a given temperature when the coefficient is known at 298°K., a graphical presentation was developed. A total of 136 data points representing 33 different binary systems was selected from the Fuller, Schettler, and Giddings compilation. For each point T/T_{298} and DP/DP_{298} were calculated. These data are presented in Appendix, Table XLV, page 127. Then a least square analysis was made of log DP/DP_{298} versus log T/T_{298} . The resulting slope was 1.70. Figure III, page 37, provides a plot of this slope for ready reference in obtaining any DP from available DP_{298} and T/T_{298} values. Calculations are reported in the Appendix, page 134 on how the plot was drawn. The mathematical expression for this plot is shown below as Equation (58).

<u>B.</u> <u>Derivation of Final Equation Based on Temperature</u> <u>Relation</u>

Proceeding with the developed temperature relation,

$$\log \frac{DP}{DP_{298}} = 1.70 \log \frac{T}{298} - 0.0048$$
 (58)

$$= 1.7 \log \frac{T}{298} + \log C$$
 (59)

where $\log C = -0.048$ and C = 0.989

Thus:

$$DP = (DP)_{298} \left(\frac{T}{298}\right)^{1.7} (0.989)$$
(60)

FIGURE III

37

DIFFUSION COEFFICIENT - TEMPERATURE RELATION

DP/DP298 vs. T/T298

log DP = log (DP₂₉₈) + log $\left(\frac{7}{298}\right)^{1.7}$ + log (.989) (61) And recalling that:

$$\log DP_{298} = 1.096 \log \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V_{c_1}}{V_{c_1}} + \frac{V_{c_2}}{V_{c_2}}\right)^2} + 2.274 \right] + 2.274$$

Equations (61) and (44) can be combined as:

$$\log DP = 1.096 \log \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V_c}{c_1}^{0.4} + \frac{V_c}{c_2}^{0.4}\right)^2} + 2.274 + \log \left(\frac{T}{298}\right)^{1.7} \right]$$

+ log (.989) (62)

$$DP = \begin{bmatrix} \frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V_0^{0.4} + V_0^{0.4}}{2}\right)^2} \end{bmatrix}^{1.096} (187.9) \begin{pmatrix} \frac{T}{298} \end{pmatrix}^{1.7} (.989)$$

Which finally yields the following equation as the formal expression for calculating any DP at any temperature:

$$DP = (186) \left(\frac{T}{298}\right)^{1.7} \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V_e}{1} - \frac{V_e}{2}\right)^{0.4} + \frac{V_e}{2}}\right]^{1.096}$$
(64)

Table XV, appendix, page 135 presents the values used in evaluating Equation (64), showing the calculated DP and the per cent error from the experimental data of 161 points. Error was 6.89% and 70.8% of the points had less than 10% error.

38

E. Multicomponent Rolationship

An expression was developed to relate the diffusion expression was desired of the type

$$\frac{DP_{AB}}{DP_{AC}} = f\left(\frac{\sim}{AB} \times \frac{1.096}{\sim}\right)$$
where $\propto = \left[\frac{1}{M_1} \times \frac{1}{M_2}\right]^{0.5}$

$$\frac{(1 + 1)}{(N_1 + N_2)^{0.4} + \sqrt{0.44}}^2$$
(65)

A total of 43 multicomponent combinations at 298°K, were chosen from the 65 systems used in the general development of the DP Equation (49). These 43 combinations are shown in Table XVI of the Appendix, page 143. Combinations of the type H_2 -N₂: H_2 -Ar, and N_2 -C₂H₄ : N_2 -nC₄H₁₀ were examined, that is AB : AC.

For each combination DP_{AB}/DP_{AC} and $\propto \frac{1.096}{AB}/\propto \frac{1.096}{AC}$ were calculated. Then a least square analysis was cade of log DP_{AB}/DP_{AC} and log $\propto \frac{1.096}{AB}/\propto \frac{1.096}{AC}$. The slope found was 1.02. Figure IV, page 40, is a plot of this relationship. Calculations are reported in the Appendix, page 146 on the graph presentation. Then

$$\log \frac{DP}{DP_{AC}} = 1.02 \log \left(\frac{\alpha 1.096}{\alpha AB} - .0045 \right)$$
(66)

FIGURE IV

 $\frac{\text{MULTICOMPONENT RELATIONSHIP}}{\text{DP}_{AB}/\text{DP}_{AC}} vs \cdot \alpha_{AB}^{1.096} / \alpha_{AC}^{1.096}$

(where \propto is MW, V_c function)

40

=
$$1.02 \log \left(\frac{\sim 1.096}{\sim AB} + \log c \right) + \log c$$
 (67)

where $\log c = -.0045$ and c = 0.99

Thus

$$\frac{DP_{AB}}{DP_{AC}} = \left(\frac{\sim 1.096}{\sim AB}\right) 1.02 \quad (0.99) \quad (68)$$

Overall per cent error for this relationship was 8.4%.

From Equation (68) one may calculate DP_{AB} if DP_{AC} is known at 298°K. Then if DP_{AB} is desired at some other temperature one can use Equation (60) where DP_{AB_T} is a function of $DP_{AE_{298}}$. Of course this procedure can be shortened to the use of Equation (64) where any DP_{AB} can be calculated directly.

h1

V, RESULTS

In summary, the following significant results were obtained from the investigation reported herein: (1) a correlation of diffusion coefficient with the 9 viscosity of air,

$$DP = \mu^{2.6}(6.22 \times 10^6) \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V_0}{V_1} + \frac{1}{V_2}\right)^{0.1}} \right] (49)$$

(2) a reference plot for diffusion coefficient versus temperature, plotted as

s,

$$DP/DP_{298} = T/T_{298}$$

where $DP/DP_{298} = (.989)(T/T_{298})^{1.7}$ (60)

(3) a reference plot for multicomponent relationships at 298°K, whore

$$DP_{AB}/DP_{AC} = \begin{pmatrix} 1.096 \\ \sim AB \\ \sim 1.096 \\ AC \end{pmatrix}$$
 (0.99) (68)

end

(4) an equation for calculating diffusion coefficient. basis a correlation with temperature,

$$DP = 186 \left(\frac{T}{298}\right)^{1.7} \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\left(\frac{V_{-0.4} + V_{-0.4}}{c_2}\right)^2} \right]$$
(64)

A side by side comparison of the result of this work, Equation (64), and the FSG correlation was made on an arbitrarily chosen point, N_2 -CO₂ at 300°K. Detailed calculations are shown in Appendix, page 155. For this example the following results were calculated:

DP _{this}	work	igen ve Sigen en	0.164
DPFSG		Addresses Apple - 1	0.169
DPobs		8	0.173

It is apparent that the difference in the two methods is chiefly in the use of critical volume versus the diffusion parameters of Fuller, Schettler, and Giddings.

VI. COMPARISON OF RESULTING CORRELATION WITH EXPERIMENTAL DATA AND OTHER CORRELATIONS

The final equations developed are presented as Equation (64) and Equation (49). The value of DP was calculated for 161 points from the 65 systems used in the development and compared with experimental data. Nesults by the Othmer-Chen correlation, and by the FSG method were also compared with experimental data. In checking the precision of the Othmer-Chen and FSG methods, the per cent error for all the points of interest was taken directly from the FSG work, then summed and averaged to obtain the average per cent error. The following comparison was made:

Meth	<u>>d</u>			<u>/</u>	Error
PSG	*				3.63
This	work,	Eq.	(64)		6.89
This	work,	Eq.	(49)		7.67
Otha	er-Che	12			9.34

It is noted that the FSG method is apparently the most accurate of the four (basis the data points analyzed here), whereas the equations developed in this thesis appear to be a slight improvement over the Othmer-Chen equation. A complete listing point by point showing per cent error for FSG, Equation (64), and Othmer-Chen is presented in the Appendix, Table XVII, page 147.

Lily

Table IV, page 46 presents a summary of the results by the above methods by comparing absolute average per cent errors for the particular systems examined.

TABLE IV

COMPARISON OF DIFFUSION COEFFICIENTS

BY THIS WORK, FSG, AND OTHMER-CHEN

System Type	No. of Exptl. Pts.	and an and a second	bsolute	iverag	<u>e % Error</u>
		<u>This</u> Ea.1491	<u>Work</u> <u>Eq. (64)</u>	FSG	<u>Othmer-Chen</u>
<u>612</u>	16	6.78	6.36	4.60	4.94
	37	9.23	5.56	4.10	19.91
Ho	48	6.35	6.86	3.69	6.77
N ₂	48	6.31	6.95	3.47	9.07
02	\$	6.63	6.78	2.35	3.48
¢02	31	8.48	7.80	3.17	4.61
Hydrocarbon	53	6.79	6.72	4.15	10.72
All Points	261	7.67	6.89	3.63	9.34

VII. CONCLUSIONS

The correlation developed herein as a function of temperature is considered satisfactorily reliable for use in estimating diffusion coefficients within the accuracy of experimental data and with reasonable agreement with existing correlations. Overall this development is a slight improvement of the Othmer-Chen correlation, but not sufficiently so to disclaim the validity of that relationship.

When compared with the Othmer-Chen relation and the Fuller, Schettler, and Giddings relation, this work was found to have a 6.89% error for the 161 experimental points examined, where Othmer-Chen was 9.34% and FSG was 3.63%. In general this only indicates primarily the relative accuracy of the three methods as applied to the selected group of data. However, it is concluded that directionally the same relative accuracy would be exhibited within any given random selection of data involving more than several separate gas systems.

The FSC correlation would appear most accurate for all the separate systems studied. However, the correlation from this work compares favorably for systems where one component is air or hydrogen. This work has an improved precision over the Othmer-Chen method for hydrogen systems, hydrocerbon systems, and mitrogen systems.

47

Having concluded that this work is a reliable estimating procedure, it also has several favorable advantages over other methods. Namely the use of the temperature term rather than the viscosity of air greatly simplifies this correlation and eliminates the need for the additional viscosity data in order to apply this method.

hB.

VIII. RECOMMENDATIONS

It is recommended that the correlation developed herein, based on the absolute temperature, be utilized for the estimation of binary gas diffusion coefficients in the absence of experimental data. However, some caution should be exercised if this correlation is applied to systems not considered in the development as here reported, although it is believed the overall average error would be close to the 6.89% shown by this work.

Recommended further investigation might include the following items:

- (1) development of a separate correlation for use with systems containing a hydrocarbon component, and
- (2) additional refinement of this correlation by testing with different systems and a greater number of experimental diffusion coefficient values.

IX. APPENDIX

Subject	Page
Calculation for DP/DP298 vs. T/T298 Plot	134
Calculation for DP_{AB}/DP_{AC} vs. $\sim \frac{1.096}{AB} / \sim \frac{1.096}{AC}$ Plot	246
Compare Calculations for DP of N2-CO2 at 300°K.	
Using this Work's Correlation Eq.(64) versus	
FSG Correlation	255

LIST OF TABLES

V.	Temperature Dependence Studies:	
	Temperature Function	54
	A. CO2-N2	54
	B. He-kr	56
	C. H2-N2	58
	D. He-CO ₂	60
	2. Ne-Ar	62
	F. Ar-Ar	63
VI.	Temperature Dependence Studies:	
	Air Viscosity Function	64
	4. CO ₂ -N ₂	64
	B. He-Ar	66
	C. N ₂ -N ₂	68
	D. He-CO2	70
	E. Ne-ar	72
	F. dr-Kr	73
VII.	Data: Effect of Various Exponents for	
	Molecular Weight Term	74
VIII.	Results: Effect of Various Exponents for	
	Molecular Weight Term	83
IX.	Data: Effect of Various Exponents for	
	Critical Volume Term	92

Page

LIST OF TABLES (CONT'D)

Xe	Results: Effect of Various Exponents	1
	for Critical Volume Term	98
XI .	Precision Chesk of the Final DP Function	105
XII.	Evaluation of DP = (6.22) $\equiv 10^6 \ \mu^{2.6} \ \alpha^{1.096}$	108
XIII e	Equation of DP = $(4.20 \times 10^6) \mu^{2.5} \propto 1.096$ and of DP = $(5.68 \times 10^6) \mu^{2.0} \propto 1.096$	116
XIV.	Data: Reference Plot for Diffusion	
	Coefficient Temperature Relation	127
Χν.	Evaluation of DP = $(186)(T/298)^{1.7} \propto 1.095$	135
XVI .	Multicomponent Relationship $DP_{AB}/DP_{AC} = f \propto \frac{1.096}{AB} / \propto \frac{1.096}{AC}$	143
XVII.	Comparison of Diffusion Coefficients by	
	Different Mothods	147

TABLE V.A.

Temperature Dependence Studies

Temperature Function

<u>co3~N5</u>

Data

T.OX.	log T	DP.cm. ² atm./sec.	log DP
273	2.4362	0.144	-0.8416
288	2.4594	0.158	-0.2013
293	2.4669	0.160	-0,7959
295	2.4698	0.159	-0.7986
298	2.4722	0.167	-0.7773
300	2.4772	0.17	-0.7696
400	2.6021	0,30	-0.5229
500	2.6990	0.44	-0.3566
600	2.7782	0.61	-0.2147
700	2.8451	0.79	-0.1054
\$00	2.9031	0.99	-0.0044
900	2.9542	1.21	0.0828
1000	3.0000	2. a 4. 5	0.1614
1700	3.0414	1.70	0.2305

alope: log DP/log T = 1.79

TABLE V.A. (CONT'D)

Results

DP cale.	<u>% Error</u>
0.144	0.0
0.159	0.6
0.164	2.5
0.166	and the second sec
0.167	0.0
0.171	0.6
0.286	4.7
0.426	3.2
0.591	3.1
0.779	1.4
0.999	0.9
1.22	0.8
1.48	2.1
1.75	2.9

avg. % error 1.9

TABLE V.B.

Temperature Dependence Studies

Temperature Function

Ho-Ar

Data

All the second sec	LOE T	Sector and the sector	log DP
298	2.4722	0.754	-0.1226
317	2,5011	0.7968	-0.0986
363	2.5092	0.809	~0.09SJ
346	2.5392	0.9244	-0.0341
353	2,5478	0.978	-0.0097
354	2.5490	0.979	-0.0092
363	2.5832	1.122	0.0500
A.I. 3	2.6160	`1.237	0.092&
\$18	2.6212	1.398	0.11.55
643	2.6464	1.401	0.1464
473	2.6749	1.612	0.2074
498	2.6972	1.728	0.2375
500	2.6990	1.860	0.2695
2000	3.0000	6.250	0.7959
JICO	3.0414	7.380	0.8681

slope: $\log DP/\log T = 1.78$

TABLE V.B. (CONTID)

Regults

DP, calc.	% Error
0.726	3.7
0.800	0 . <i>l</i> ,
0.827	2.2
0.935	2.02
0.969	0.9
0.974	0.5
L • L & L	0.1
1.283	3.7
1.310	6.3
1.453.	3.7
1.633	
1.790	3.6
1.803	3.1
6.205	0.7
7.354	0.4

avg. % error = 2.1

TABLE V. C.

Temperature Dependence Studies

Temperature Function

H2-N2

Data

SIS SUBSCRIPTION	log_T		log DP
273	2.4362	0.708	-0.1500
288	2.4594	0.743	-0.1290
294	2.4684	0.763	-0.1175
297	2.4728	0.779	-0.1085
300	2.4771	0.800	-0.0969
304	2.4829	0.852	-0.0696
322	2.5079	0.903	-0.0443
398	2.5999	1.289	0.1103
400	2.6021	1.270	0.1038
450	2.6532	1.541	0.1878
506	2.7042	1,883	0.2749
573	2.7582	2.417	0.3833

slope: log DP/log T = 1.65

. **-**

Results

DP, calc.	2 Error
0.68\$	2.8
0.751	ತ್ತು ಶ್ರ ಕ್ಷೇ ಶ್ರ ಕ್ಷೇ- ಹೇ ಹತ್ಯಾ

TABLE V.C. (CONTID)

Results (cont'd)

DP, calc.	% Error
0.777	1.8
0.791	
0.804	0.5
0.822	3.5
0.904	0.1
1.263	0.5
1.294	1.9
1.572	2.0
1.908	1.3
2.344	3.0

avg. % error = 1.7

TABLE V.D.

Temperature Dependence Studies

Temperature Function

He-CO2

Data

anastanastanas	log T		log DP_
298	2.4722	0.612	-0.2132
317	2,5011	0.6607	-0.1805
323	2.5092	0.678	-0.1688
346	2.5391	0.764	-0.1169
353	2.5478	0.800	-0.0969
383	2.5832	0.884	-0.0535
613	2.6160	1.040	0.0170
443	2.6464	1.133	0.0542
473	2.6749	1.279	0.1069
&96	2.6972	1.414	0.1505

slope: log DP/log T = 1.63

e

Results

DP cale.	% Error
0.597	2.5
0.665	0.6
0.686	19 - DT.
0.768	0.5
TABLE V.D. (CONT'D)

Results (cont'd)

DP. calc.	% Error
0.793	0.9
0.906	2.5
1.025	L. e Ay
1.149	the o his
1.280	0.1
1.392	1.6
	ave d'arcance - 72
	water in arriver to t

TABLE V.E.

Temperature Dependence Studies

Temperature Function

N@-Ar

Data

T.	logI	DP	log DP_
273	2.4362	0.276	-0.5591
288	2.4594	0.300	-0.5229
ŚOŚ	2.4814	0.327	-0.4855
316	2.5024	0.357	-0.4473
353	2.5478	0.414	-0.3830
673	2.6749	0.671	-0.1733

slope: $\log DP/\log T = 1.61$

Results

DP. cale.	% Error
0.276	0.0
0.301	0.3
0.327	0.0
0.353	400 - 52 - 52 - 52 - 52 - 52 - 52 - 52 - 52
0.418	1.0
0.670	0.1

avg. % error = 0.4

TABLE V.F.

Temperaturo Dependence Studies

Temperature Function

Arexr

Data

	10g T	DP	log DP
273	2.4362	0.119	-0.9245
268	2.4594	0.128	-0.8928
303	2.4814	0.140	-0.8539
318	2.5024	0.153	-0.8153
353	2.5478	0.197	-0.7055
373	2.5717	0.216	-0.6655
4.73	2.6749	0.327	-0.4855

slops: log DP/log T = 1.90

a.m.

Results

DP. cale.	% Error
0.117	1.07
0.130	1.6
0.143	2.1
0.156	2.0
0.191	3.0
0.212	1.9
0.332	1.5

avg. % error = 2.0

TABLE VI.A.

Temperature Dependence Studies

Air Viscosity Function

C03-N5

Data

2. OK.	M BANS CD .	3.08 M	log DP
273	.0171	-1.7670	-0.8416
268	.0176	-1.7545	-0.8013
293	.0181	-1.7423	-0.7959
295	.0182	-1.7399	-0.7986
298	•01.83	-1.7375	-0.7773
300	.01.84	-1.7352	-0.7696
400	.0229	~1.6402	-0.5229
500	.0268	-1.5719	-0.3566
600	.0304	-1.5171	-0.2147
700	.0328	-1.4841	-0.1024
600	.0367	~1.4353	-0.0044
900	.0392	-1.4067	0.0828
1000	.0418	-1.3766	0.1614
1100	.0440	~1.3565	0.2305

slope: log DP/log / = 2.60

TABLE VI.A. (CONT'D)

Rosults

<u>pp. calc.</u>	& Error
0.140	2.8
0,151	le o la
0.163	1.9
0.165	3.8
0.167	0.0
0.170	0.0
0.30	0.0
0.451	2.5
0.627	2.8
0.765	3.2
1.03	4.0
1.22	0.8
2.44	0.7
1.64	3. <i>5</i>

ave. % error = 2.2

TABLE VI.B.

Temperature Dependence Studies

Air Viscosity Function

He-Ar

Data

ST.	angene son and a second a second	LOCK	log DP
298	0.0183	-1.7375	-0.1226
317	0.0193	-1.7144	-0.0986
323	0.0195	-1.7100	-0.0921
346	0.0205	-1.6882	-0.0341
353	0.0208	-1.6819	-0.0097
354	0.0208	-1.6819	-0.0092
383	0.0221	-1.6556	0.0500
413	0.0233	-1.6326	0.0924
418	0.0236	-1.6271	0.1455
443	0.0246	-1.6091	0.1464
473	0.0256	-1.5918	0.2074
498	0.0266	-1.5751	0.2375
500	0.0268	-1.5719	0.2695
1000	0.0418	-1.3788	0.7959
1100	0.0440	-1.3565	0.8681

slope: log DP/log /1 = 2.65

TABLE VI.B. (CONTID)

Results

DP, calc.	1 Brite Car
0.686	9.0
Q.790	0.9
0.811	0.2
0.926	0.2
0.963	1.5
0.963	1.6
1.131	0.8
1.301	5.2
1.345	3.8
1.502	7.2
1.669	3.5
1.848	6.9
1.884	1.3
6.122	2.1
7.015	5.0

avg. % error = 3.2

TABLE VI.C.

Temperature Dependence Studies

Air Viscosity Function

H2-N2

Data

and the second s	-	BOS LA	log DP_
273	0.0171	-1.7670	-0.1500
288	0.0176	-1.7545	-0.1290
294	0.0182	-1.7399	-0.1175
297	0.0183	-1.7375	-0.1085
300	0.0184	-1.7352	-0.0969
304	0.0186	-1.7305	-0,0696
322	0.0195	-1.7100	-0.0443
398	0.0228	-1.6421	0.1103
400	0.0229	-1.6402	0.1038
450	0.0249	-1.6038	0.1878
506	0.0269	-1.5702	0.2749
573	0.0293	-1.5331	0.3833

slope: log DP/log u = 2.25

TABLE VI.C. (CONT D)

Results

DP. calc.	<u>% Error</u>
0.682	3.7
0.727	2.2
0.784	2.7
0.794	1.9
0.804	0.5
0.824	3.3
0.916	and a state
1.303	490 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -
1.316	3.6
1.589	3.1
1. 892 °	0.5
2.293	5.1

avg. % error = 2.4

TABLE VI.D.

Temperature Dependence Studies

Air Viscosity Function

He-CO2

Data

	contracting for an experiment	J.O.C. H	log DP
298	0.0183	-1.7375	-0.2132
317	0.0193	-1.7144	-0.1805
323	0.0195	-1.7100	-0.1688
346	0.0205	-1.6882	-0.1169
353	0.0208	-1.6819	-0. 0969
383	0.0221	-1.6556	-0.0535
413	0.0233	-1.6326	0.0170
443	0.0246	-1.6091	0.0542
473	0.0256	-1.5918	0.1069
498	0.0266	-1.5751	0.1505

slope: log $DP/\log \mu = 2.27$

Results

DP, calc.	% Error
0.593	3.1
0.669	1.2
0.685	1.0
0.767	0.4
0.793	0.9

TABLE VI.D. (CONTID)

Results (cont'd)

DP, cale.	% Error
0.910	2.9
1.026	1.3
1.160	1.2
1.270	0.7
1.386	2.0

avg. % error = 1.5

TABLE VI.E.

Temperature Dependence Studies

Air Viscosity Function

<u>Ne-Ar</u>

<u>Data</u>

Ţ.,	reconstruction	205 M	log DP
273	0.0171	-1.7670	-0.5591
288	0.0176	-1.7545	-0.5229
303	0.0186	-1.7305	-0.4855
318	0.0193	-1.7144	-0.4473
353	0.0208	-1.6819	-0.3630
473	0.0256	-1.5918	-0.1733

slope: log DP/log / = 2.18

Results

pp. calc.	% Error
0.276	0.7
0.293	2.3
0.331	1.2
0.359	0.6
0.422	1.9
0.663	1.2

avg. % error = 1.3

TABLE VI.F.

Temperature Dependence Studies

Air Viscosity Function

Ar-Kr

Data

ET .	succession	10E/1	log pp
273	0.0171	-1.7670	-0.9245
288	0.0176	-1.7545	-0.8928
303	0.0186	-1.7305	-0.8539
318	0.0193	∞1.7144	-1.8153
353	0.0208	-1.6819	-0.7055
373	0.0217	-1.6635	-0.6655
473	0.0256	-1.5918	-0.4855

slòpe: log DP/log / = 2.55

Results

DP, calo.	
0.117	1.7
0.126	1.6
0.145	3.6
0.159	3.9
0.192	2.5
0.214	0.9
0.327	0.0

avg. % error = 2.0

TABLE VII

Data: Effect of Various Exponents

for Molecular Weight Term

Note: $\log \propto \text{term data show in order 0.4,0.5, 0.6}$ exponent use for x.

exponen					
System	DP	log DP	Vel	A ^{c5}	$\log \left[\frac{(x_1 + y_0)^2}{(y_0 + y_0)^2} \right]$
S ^R -S ^R	0.7790	-0.10846	65.0	90.1	-2,22069
-					-5*57875
					-2.27556
Hg-Ar	0.8280	-0.08197	65.0	75.2	-2.19134
					-2.21966
					-2.24798
H2-C02	0.6460	-0,18977	65.0	94.0	-2.22286
					-2.25135
					-2.27987
Ma-NH3	0.8560	-0.06753	65.0	72.4	-2.17682
					-2.20320
					-2 .22957
Me-N2	0.7430	-0,12901	57.8	90.1	-2.30988
					-2.36431
					-2.41876
No-AP	0.7540	-0.12263	57.8	75.2	-2.27290
					-2.32900
					-2.38510

TABLE VII (CONT'D)

Syston	DP	log DP	V ^G 1	v ⁶⁵	105 2
Be-CO2	0.6120	-0.21325	57.8	94.0	-2.32603
fower.					-2.38249
					-2.43895
Re-NH3	0.8420	-0.07469	57.8	72 oly	-2.26157
₩ ₩**					-2.31406
					-2.36655
A1r-002	0.1650	-0.78252	86.6	94.0	-2.66346
n i nevr					-2.78772
					-2,91198
ALP-III.	0.5420	-0.60730	86.68	72.4	-2.55326
diff.					-2.66119
					-2.76913
N2-002	0.1650	-0,78252	90.1	94.0	-2.66667
Toget-					-2.79002
					-2.91339
No-Ar	0.3270	-0.48545	41.7	75.2	-2.45813
	•				-2.57092
				- 1,	-2.68370
602-03IB	0.0863	-1.06399	94.0	200.	-2.83876
400- d f hd					-2.97306
X					-3.10735
A17-CH.	0.2240	-0.64975	86 .6	99.3	-2.58183
4	-	v			-2.68324
					-2.78465
					*

TABLE VII (CONT'D)

System	DP	log DP	Vcl	V ⁶ 2	10g ~
N2-02N5	0.1480	-2.82974	90.1	148.	-2.72078
					-2,83689
					-2.95301
Air-C6E6	0.0962	-1.01682	66.6	260.	-2.89394
					-3.02645
					-3.15897
R2-CR	0.7260	-0.13906	65.0	99.3	-2.23037
*					-2.25568
					-5*58100
H2-C2H6	0.5370	-0.27003	65.0	148.	-2.31754
		-			-2.34517
					-2.37280
N ^{2-nC} ¹ N10	0.3610	-0.44249	65.0	255.	-2.43778
ne -r					-2.43675
					-2.49573
HnC_H_1	0,2900	-0.53760	65.0	368.	-2,52389
efene seta energista.	٠				-2.55334
				a *	-2.53279
H2-cyclo-	0.3190	-0.49621	65.0	308.	-2.48171
- hoxano					-2.51113
				. ,	-2.54055
Hnd_H_	0.2830	-0.54821	65.0	426.	-2.55728
					-2.58686
					-2.61645

TABLE VII (CON)	T I	D
-----------------	-----	---

System	DP	log DP	V 6 1	Ve2	$\log \propto$
H2-nC8H18	0.2770	-0,55752	65.0	485.	-2.58863
9 90 0	\3**				-2,61832
					-2.64801
H2-06H6	0.4036	-0.39405	65.0	260.	-2,44356
					-2.11230
					-2,50225
H2-5.4 DUP	0.2970	-0.52724	65.0	420.	-2,55394
					-2,58352
					-2.61310
No-CO	0.7020	-0.15366	57.8	.93.1	-2.31612
					-2.37055
					-2.42499
Eo-no-ni-16	0.2650	-0.57675	57.8	цгв.	-2.66024
,≰ +42≥₩σ",					-2.71878
					-2.77732
He-n0 ₈ H ₁₈	0.2480	-0.60555	57.8	485.	-2.69243
had not the					-2.75116
					-2.80990
ne-2,4 DMP	0,2630	-0.58004	57.8	420.	-2,65682
					-2.71533
					-2.77385
Re-C, H,	0.3840	-0.41567	57.8	260.	-2.54380
					-2.60187
					-2.65995

TABLE VII (CONT'D)

Svaten	DP	log DP	ve ¹	V ₈₂	10g ×
No-AP	0.1940	-0.71220	90.l	75.2	-2.62172
					-2.74340
					-2.86509
N2-CO	0.2120	-0.67366	90,1	93.1	-2.63006
					-2.71469
					-2.85932
N2-NH3	0.5480	-0.60555	90.1	72.4	-2.55790
-					-2.66521
					-2.77252
N2-0SH	0.1630	-0.78781	90.1	124.	-2,63160
*					-2.79623
					-2,91086
^N 2-n°4 ^H 10	0.0960	-1.01773	90.l	255.	-2. <u>87584</u>
					~3.00349
					~3.13114
^N 2 ⁻¹⁰ 4 ^H 10	0.0905	-1.04335	90.1	. 263.	-2,88290
					-3.01055
					-3.13820
NS-DCCB ^{JT}	0.0757	-1.12090	90,1	368.	-2.97564
``\$r					-3.10815
					-3.24066
N ₂ -oyelohex	0.0760	-1.11919	90.1	307.	-2.93430
					-3.06653
					-3.19877

Systèm				T es a	
¹ 2-700 thr l-	0.0760	~1.11919	901	<u>,</u> 229.	~2.94190
Telepontene					-3.07413
					-3.20539
×2-20-98-16	0,07h0	-1,13077	90 o l	426 n	-3.02297
2 4 957400					-3.14698
					-5-26095
Ng-2,4 MP	0 a 17 7 4 2 1	-1.1265.)	90 . L	429 o	«J. 0094.)
NAL-					-2.14334
					-).27726
Na-20 0E18	0.0786	-2.23906	90.i	4, 05%	•.3.•0472k
1992 - 1					~ 3. 10240
					-).31756
¹¹ 2 ⁻² 6 ² 6	0.2022	~	92 a 2	260s	~2.09500
	\$				~ 3.626. 5
					~3.15784
°₂-™6 ^ℤ zh	0.6753	-1.12,321	7kmh	368 s	-2.45902
					-].10577
					-3.24253
Oz-ayolobez	0.07 % &	-2022843	Madi.	308.	-2.92651
					-3.062%
					~ J
	c.stka	-1.12960	Th.4	\$2, %	*******
					-3.07016
					-).2072)

TABLE VII (CONT'D)

System	DP	log DP	L. C. L.	re2 V	108 X
°2-n ⁶ 8 ^H 18	0.0705	-2.15181	74.4	485.	-3-0113110
					-3.18309
					-3.32278
02-6 ⁶ E	0.1011	-0.99525	74.4	250.	-2.88582
1		· .			-3.02138
					-3.15694
Ar-Kr	0.1400	-0.85387	75.2	92.1	-2.71235
					-2.85564
					-2.99894
Ar-CO	0.1880	-0.72584	75.2	93.1	-2.62765
.:					-2.74932
					-2.87101
Ar-NII3	0.2320	-0.63451	75.2	72.4	-5"21'351
an an the Carlos					-2.66243
					-2.77562
Ar-n06Bah	0.0663	-1.17849	75.2	- 260.	-2.99789
	•	•			-3.14154
-				S.	-3.28519
Ar-cyclohex	0.0719	-1.14327	75.2	308.	-2.95523
	•				-3.09852
					-3.24182
AT-MOP	0.0731	-1.13698	75.2	319.	-2.96303
					-3.10632
					-3,24962

TABLE VII (COMPLEM)						
STA DA SA		105.22	Ve 2	÷	area and a construction of the	
as a start	0.0658	-1.18177	75.2	426 .	-3.03787	
					-3.16346	
					-).32606	
ar-2 ,4 Mar	0.0655	-1.18376	7.5.2	hao ,	-3.03422	
					-1.17958	
					-3,32505	
AF-DO 3B18	0.0587	-1,23136	75 e 2	1;85.	~ 3 .07k29	
					-),221h0	
					-3,36851	
00-00 ₂	0,1920	-0,81616	93.1	94,0	-2,67234	
					-2,79569	
					-2,91905	
60-XX3	0.2400	-0.61979	93.1	72 .l.	-2,56388	
					-2.67129	
			A. 1		-2.77850	
60 ₈ -320	0.1170	-0.93181	92,.0	% <u>.</u> }	-2.72294	
- xxx 5					~2,65623	
					-2,99052	
N20-63X8	0.0860	-1.06550	96.3	200 e	-2,86234	
್ಯು	x				-2.99663	
					-3.13092	
A17-612	0,1240	-0.90658	36.6	124.	-2.74202	
					-2.87396	
					-3.60470	

TABLE VII (CONT'D)

System	na DP	log DP	v ^e T	N ⁶⁵	
Air-Br ₂	0.0910	-1*07038	86.6	Litt.	-2.78076
·					-2.91969
					-3.05862
ALT- chlore C.F	0.0740	-1+13077	86 •6	308.	-2.94516
	6				-3.08141
					-3.21767
Air-othyl-	0.0870	-1.06048	86.6	285.7	-2.91922
and	× %				-3.05303
					-3.18685

82

TABLE VIII

Results: Effect of Various Exponents

for Molecular Weight Term

Note: Three consecutive results calculated for each system refer to use of 0.4,0.5,0.6 exponent (see Data, Table VII)

System	DP	•	% Error	
CD-TALERA AND AND COMPANY AND	calculated	observed	Second accerd Constant of the addition of t	
H2-N2	.788	.779	1.15	
	.802		2.96	
	. 808		3.72	
H ₂ -Ar	• 86 <i>5</i>	. 828	4.47	
	. 868		4.84	
	.865		14.47	
H2-002	.782	.646	21.1	
	.794		22.9	
	. 800		23.8	
H2-NH3	.906	.856	5.84	
	.909		6.19	
	906		5,34	
He-N2	• 593	.743	20.2	
	.580		21.9	
	• 568		23.6	
He-Ar	.640	•754	11.5	
	.667		15.1	
	.617		18.2	

TABLE VIII (CONT'D)

System	DP		2 Error	
айда Малан Сраница стани ти и хайдан танин айстин танан тарабын таластар байла талар байлат. Кадар Малан Сраница стани ти и хайдан танин тарабын айстан байлага байлага байлага талага байлага талага байлаг	calculated	observed		
He-CO2	•563	.612	8.01	
	.551		9.97	
	.540		11.8	
He-NH3	. 692	.842	17.8	
* *	.667		20.8	
	.646		23.2	
41r-C02	.192	.165	16.4	
	.178		7.68	
	.168		1.82	
Air-NH3	.273	.2147	10.5	
	,253		2.43	
	.239		3.24	
N2-CC2	.190	.165	15.2	
	.177		7.27	
	.168		1.82	
No-Ar	.370	.327	13.2	
	• 326		0.00	
	.295		9.78	
CO2-C3H3	.110	.086	27.9	
- * -	,106		23.3	
	.104		21.0	

System		ning 1920 - Na Na sana sa	\$ Error
	calculated	observed	
Air-CH4	.249	•224	11.2
	.238		6.25
	.230		2.68
N2-C2H6	.160	.148	12.3
	.155		4.73
	a 174		2.70
AIr-C6 ^H 6	.0921	.0962	4.26
	.0914		4.99
	.0914		4.99
H2-CH4	•764	.726	5.24
	.785		8.13
	.798		9.93
H2-C2H6	•579	•537	7.83
	611		13.8
	.636		18.4
H ₂ -aC4H ₁₀	.394	. 361	9.15
	· 474		ور به مرد مرد مرد مرد مرد مرد مرد مرد مرد مرد مرد
	.470		- 30.2
H2-nC6H14	.300	.290	3.45
	• 342		17.9
	• 379		30.7

System	DP		% Error
Elementary and a second s	calculated	opserved	
H ₂ -cyclohex	•343	.319	7.53
	.385		20.7
	.420		31.7
H2-nC7H16	.269	• 283	4.95
	.312		10.0
	.349		23.3
H ₂ -nCgH ₁₈	·244	.277	11.9
31994 4404 7647	.285		2.89
	6 3 Cat		16.2
H2-C6H6	.387	.404	4.21
~ 0 0	. 428		5.94
	° .462		24.4
H2,4 DMP	.272	.297	8.421
4%#	•314		5.72
	•351		18.2
He-CO	.581	.702	17.2
	.570		18.8
	•559		20.4
He-nC-H ₁₆	.194	.265	26.8
Ç ಕವಿಸಿ ಸಹ್	.216		18.5
	.234		11.7
He-nC _e H, a	.175	.248	29.4
0 LO	.197		20.6

	TABLE VIII	(CONT'D)	
System	DP calculated	observed	% Error
He-2,4 DMP	.196	.263	25.5
	.218		17.1
	,236		10.3
He-C6H6	. 261	.384	26.8
	.299		22.1
	•313		18.5
H2-Ar	.219	.194	12.9
	.201		3.61
	,189		2.58
N2-CO	.214	.212	0.94
	.201		5.19
	.191		9.91
Nz-NH3	.269	.248	8.47
	" 250		0.81
	.237		h o hh
N2-C2H4	,181	.1 63	11.0
	.174		6.75
	.169		3.68
N2-nC4H10	.0976	.096	1.67
	.0975		1.56
	, 0979		1.98
N2-104H10	" 0954	.0905	5.41
	.0956		5.64
	•0995		6.30

	TABLE VIII	(CONT'D)	
System		anter a state and a state and a state and a state of the	% Error
	calculated	<u>observed</u>	
Nz-nc ^{6H} 14	.0710	.0757	6.21
	.0728		3.83
	.0747		L & J 4.
N ₂ -cyclohex	.0810	.07 60	6.58
:	.0817		7.50
	.0858		8.95
N ₂ -MCP	.0790	.0760	3.95
	.0800		5.27
	.0813		6.97
^N 2 ^{-nC} 7 ^H 16	.0630	.0740	14.9
•	.0653		11.8
	.0676		\$.65
N ₂ -2,4 DMP	.0637	.0744	2404
	.0660		ll.3
	.0682		8.34
N2-nC8H18	•0565	.0726	22.2
	.0592		16.5
	.0618		14.9
N2-C6H6	.0918	.1022	10.0
	.0914		10.4
	.0916		10.2
02-nC6H14	•0735	.0753	2.39
	.0733		2.66
	•0743		1.33

TABLE VIII (CONT'D)

System	DP	and was a start of the second attraction of the second second second second second second second second second	<u> Serror</u>
Constitute Distance and an advantage of the second s	calculated	opserved	
O ₂ -cyclohex	.0830	.0744	11.6
	.0826		11.0
	.0827		11.2
02-MCP	.0810	.0742	9.16
	,0808		8.90
	.0811		9.30
°2-nCe ^H 18	.0572	.0705	18.9
	.05 90		16.3
	.0610		13.5
02-C6H6	.0945	.1011	15.5
	.0927		8,22
	.0919		9.01
Ar~Kr	.164	.1400	17.1
	o 1.457		5.00
	.136		2.86
ár-CO	,215	.1380	1. 44 × 44
	.198		5.32
	.186		- 1.06
Ar-MH ₂	.276	.2320	19.0
al and a second s	·252		8.62
	.235		1.29

	TARE VITT	<u>(CONTID)</u>	
<u>System</u>	0P Ralculated	observed	<u> Serror</u>
Ar-nC Alt.	.0661	.0663	0.30
hat also hig	•0663		0.0
	.0669		0.91
Ar-cyclohex	.0757	.0719	5.29
	.0748		4.04
	.0745		3.62
Ar-NCP	.0739	.0731	1.09
	.0731		0.0
	.0732		0.0
Ar-nC7 ^H 16	.05¢2	.0658	11.6
	.0590		10.3
	.0 605		8.06
ar-2,4 DMP	.0589	.0655	10.1
	•05 96		9.01
	.0607		7.33
Ar-nC ^{8H} 13	.0518	•0587	11.3
	.0531		9.55
	.0545		7.16
cc-co2	.187	.152	23.0
	.174		14.5
	.165		8.65
CO-NH3	. 264	•540	10.0
	.246		2.50
	• 534		2,50

TABLE VIII (CONT'D)

System) Annalatara ayun asara ayun ayun ayun ayun ayun ayun ayun ay	1/2 Exeror	
	calculated	opserved		
CO2-1120	.159	.1170	35.9	
	.147		25.6	
	.138		18.0	
N20-03H8	•0518	.036	18.6	
	.0531		15.5	
	.0545		13.8	
Air-Cl2	.149	.124	20.2	
	.140		12.9	
	.134		8.07	
Air-Brz	.132	.0910	45.1	
	.123		3.52	
	.117		28.6	
Air-chloro C6H6	.0782	.0740	₹5.68	
	.0784		5.95	
	.0791		6,90	
Air-ethylacetate	.0850	•0870	2.30	
	.0849		2.42	
	.0853		1.95	

TABLE IX

Data: Effect of Various Exponents for

Critical Volume Term

Note: $\log \propto \text{term data show in order 0.4 and 0.33 exponent}$ use for y. $\log \left[\frac{\left(\frac{1}{M_1} + \frac{1}{M_2}\right)^{0.5}}{\frac{1}{N_1} + \frac{1}{N_2}} \right]$

S7.6202	log DP	Vel	Vez	$\log \left(\frac{v_3}{v_3} + v_5 \right)^2$
Re-Re	-0.10846	41.6	83.9	-2.16486
				-1.91420
"A"s"A"	-0.08197	41.6	67.1	-2.12590
				-1.883kik
12-C0 ⁵	-0.18977	41.6	107	-2,21930
	<u>_</u>	•		-1.95908
R2-NR3	-0.06753	41.6	89,5	-2.17244
				-1.91930
Ho-N2	-0,12901	28.7	83.9	-5.24691
	· .			-2.00381
HowAr	~0.12263	28.7	67.1	-2.20891
	٨			-1,97501
Ro-002	-0.21325	28.7	107	-2.30899
				~2.05551
Ee-WH3	. -0 , 07 Цб9	28.7	89.5	-2.25073
				-2.00501
air-002	-0.78252	79.6	107	-2,79694
				-2.52134

TABLE IX (CONTID)

System	log DP	r ^e r	1 ⁶ 5	
alr-NR3	-0.60730	79.6	09.5	-2.68307
				-2.41331
M2-002	-0.78252	83.9	107	-2.80111
				-5.25111
No-AP	-0.48545	36.5	67.1	-2,52800
				-2.28878
Re-CO	-0.15366	28.7	77.8	-2.23101
÷				-1.99107
N2-Ar	-0.71220	83.9	67.1	-2.711.56
				-2.44876
Nz-CO	-0.67366	83.9	77.8	-2,70123
		۴.		-2.43413
N2-NH3	-0.60555	83.9	89.5	-2.6889.9
-				-2.41771
ar-Ar	-0.85387	67.1	71.9	-2.79204
				-2.53410
Ar-00	-0.7258L	67.1	77.8	-2.69794
			đ	-2.43750
Ar-NH3	-0.63451	67.1	89.5	-2.68093
				-2.41597
ao-ao2	-0,81816	77.8	107	-2.78873
			,	-2.51371

TABLE IX (CONT'D)

	Systen	log DP	Vel	V.o.2	
	CO-ME3	-0.61979	77.8	89.5	-2.67613
	19 - J				-2.40597
	60 ₂ -11 ₂ 0	-0,93181	107	98.17	-2,88209
	Elian Krist				-2.60055
	sir-012	-0.90658	79.6		-2.84896
	zenD				-2.57026
	air-Bro	-1.04096	79.6	131	-2.90827
	-ficto				-2.62563
	60C.R.	-1.06399	107	218	-3.02937
	~ <i>3</i> U				-2.72087
	alp-CE.	-0.64975	79.6	93.9	-2.65909
	к.ф.				-2.38770
	nO.R	-0.82974	83.9	245	-2,82191
		· · · · ·			-2.53427
	air-C.H.	-1.01682	79.6	246	-3.00327
	00				-2.69589
	RCR.	-0.13906	41.6	93.9	-2.17686
	Sa dip	٠.	4.		-1.92170
	Bo-C.N.	-0.27005	41.6	145	-2.27927
	6 <u>6</u> 0				-2.00603
	Ro-no. H.	~0. julj2li9	41.6	256	-2.41403
· · ·	44 LJ, LL3	, - ·		,	-2.1.1435

TABLE IX (CONT'D)					
System	log DP	Vel	Vez	108 ~	
H-S-DCCH-L	-0.53760	41.6	347	-2.118958	
ter he sets				-2.174.02	
H ₂ -cyclobexane	-0.49621	41.6	380	-2,51113	
¥604*	·			-2.19139	
N2-n07816	-0.54821	41.6	489	-2.57486	
•				-5.24162	
N2-nC8H18	-0.55752	41.6	696	-2.66634	
				-2.31352	
H2-06E6	-0.39405	41.6	246	-2.40654	
				-2,10890	
nz-2,4 mp	-0.52724	41.6	420	-2.53664	
				-2.21166	
IIo-nC-II16	-0.57675	28.7	L89	-2.68660	
				-2.35510	
No-nG8N18	-0.60555	28.7	696	-2.78174	
		·		-5.15888	
no-2,4 dap	-0 . 5800lı	28.7	420	-2.64663	
			· .	-2,32399	
Ho-C6H6	-0.41567	28.7	545	-2.50911	
				-2.21603	
N2-C2H4	-0.78781	83.9	132	-2.79655	
				-2.51227	

TABLE IX (CONT'D)

	log DP_	A.0.7	Ve2	Jog X
N2-001810	-1.02773	83.9	256	-2.93461
•				-2.68453
N2-10LA10	-1.04335	83.9	256	-2.99461
				-2,68453
N2-nG6N1L	-1.12090	83.9	347	-3.08535
- -				-2.76139
N ₂ -cyclohoxano	-1.11919	83.9	380	-3.10375
				-2.77615
N2-MJP	-1.11919	83.9	206	-2.97229
				-2.67121
N2-107E16	-1,13077	83.9	<u>h</u> 89	-3.17026
هنچ ۽ سب				-2.83066
n ₂ -2,4 mp	-1.12843	83.9	420	-3.13474
				-5*80525
N2-DOANA	-1.13906	83.9	696	-3.25998
and the part				-2,90270
Ng-OANA	-0.99055	83.9	246	-3.00501
್ರಾಯ್ ಸಿಬ್ಬರ್ ಕ್ಲೈರಿ ಕ್				-2.69669
02-ng, H.,	-1.12321	68.0	347	-3.08087
was his singly				-2.75989
0 ₋ -oyelohezane	-1.12843	68.0	380	-3.09974
				-2.77494
TABLE IX (CONTID)

Eve tem	log DP	v ^e l	Vez		2 488
Og-NC P	-1.12960	68.0	206	-2.96410	
баду.				-2.66710	
02-nC8H18	-1.15181	68.0	696	-3.26131	
				-2,90575	
02-96IK	-0.99525	68.0	572	-2.99764	
				-2.69302	
Ar-nº 6 ^H lk	-1.17840	67.1	347	-3.11376	
and a second				-2,79296	
Ar-cyclohezane	-1.14327	67.1	380	-3.13238	
				-2.80776	
AP-NOP	-1.13698	67.1	206	-2.99648	
		*		-2.69972	
Ar-187826	-1.18177	67.1	489	-3.20384	
				-2.86612	
AT-2,4 DAP	-1.18376	67 • 1	420	-3.16656	
				-2.83710	
Ar-n ⁶ 8 ^H 18	-1.23136	67.1	696	-3.29712	
				-2.94164	
8 ^H 6 ^{0~0} 3 ^H 8	-1,06550	98.1	518	-3.01655	
				-2.70995	
alp-clloro- hancana	-1.13077	79.6	205	-2.99485	
69 th 64 th C7 63 180				-2.69481	
air-othyl-ato	-1.06048	79.6	201	-2.96697	
. :				-2.66857	

TABLE X

Results: Effect of Various Exponents for

Critical Volume Term

Note: The two results calculated for each system refer to use of 0.4 and 0.33 exponent, respectively (See Data, Table IX)

System	D		% Error
eter (Alexandre Construction Construction and Construction	calculated	observed	
H2-N2	.795	.779	2.06
	.792		1.67
H2-Ar	.944	. 828	14.0
	.860		3.87
H2-002	.693	.646	7.28
	.701		8.51
H2-NH3	.780	.856	8.88
	.781		8.76
He-N2	.647	.743	12.9
	.621		16.4
Ko-Az	.712	.754	5.57
	.671		11.0
He-CO2	•553	.612	9.64
	s 540		- 11.8
He-NH3	,641	. 842	23.9
्र	.619		25.3
air-CO2	.162	.165	1.82
	.153		7 . 27

System	90		& Error
	calculated	observed	
air-NH3	•216	.247	12,6
	.205		17.0
N2-002	.161	.165	2.42
	,152		7.88
No-Ar	.319	•327	2.45
	. 287		1.2.2
Не-СО	.673	,702	4.13
	. 643		8.41
N ₂ -Ar	.201	.194	3.61
	.1.86		4,12
N2-00	.206	.212	2.63
	.193		*.96
N2-NH3	.213	.248	14.1
	.202		18.5
År-Kr	.164	.140	17.1
	· .148		5.72
Ar-CO	.208	.188	10.6
	.192		2.13
Ar-NH3	.217	.232	6.46
	.203		12.5
co-co ₂	.166	.152	9.21
	.156		2.63

Syatem	DF	DP		
	galenlated	observed	anarise consistent and the second	
CO-NH3	.220	-240	8.34	
	.208		23:3	
co2-N20		×117	12.0	
	.123		5.12	
Air-Cl2	.142	*124	14.5	
	.134		8.06	
Air-Brz	.123	.091	35.2	
	.115		26.4	
со ₂ -с ₃ н ₈	.090	.086	4.65	
	.089		3.49	
Air-CH4	.229	• 224	2.23	
	,219	¢	2.23	
N2-C2H6	.152	.148	2.70	
	.147		0.68	
A1r-C6N6	.097	.096	1.04	
	:095		1.04	
N2-CH4	.772	•726	6.33	
	•775		6.75	
H2-C2H6	.596	•537	11.0	
	.617		14.9	
01 ^H 4 ^{3/H} 2 ^{-BR}	• 425	.361	17.7	
	* 460		27 . L	

System	DF	DP			
	calculated	observed	allanın yörön allakti yerken vallaşı ve olan oluştalar.		
H2-nC6H14	• 352	.290	21.0		
	.391		34.8		
H ₂ -cyclohex	* 333	.319	4.39		
	• 373		16.9		
H ₂ -nC ₇ H ₁₆	• 284	,283	0.35		
	• 326		15.2		
H2-108H18	. 225	. 277	18.8		
	.268		3.24		
^H 2 ^{-C} 6 ^H 6	.433	.404	7.18		
	.467		15.6		
H ₂ -2,4 DMP	.312	<i>"</i> 297	5.15		
	• 353		18.9		
He-nC7H16	.214	.265	19.3		
	.240		5.67		
No-nC 8H18	.169	•248	31.8		
	.196		21.0		
No-2,4 DNP	.237	.263	9.89		
	.261		0.76		
Re-C6R6	•335	•384	12.8		
	• 349		9.12		
Ng=C2H	.162	.163	0.61		
844 - ™ ¥37	.157		3.68		

System	unione angle for the second	energyang menjarangkan kanalan nama nama nama na	<u> 8 Error</u>
	calculated	observed	
N2-nC4H20	.099	.096	3.12
	.098		2.08
N2-1C4H10	.099	*091	8.79
	.098		7.70
N2-RC6H14	.079	.076	3.95
	.080		5.27
N ₂ -cyclohex	.075	•076	1.32
	.077		1.32
N2-NCP	.104	.076	36.9
	.105		36.2
N ₂ -nC7 ^H 16	.063	.074	14.9
	.066		16.2
N ₂ -2,4 DICP	.069	.074	* 6.76
	.071		9.46
N2-nC3H18	.051	.073	30.2
	:054		26.0
^N 2-C6 ^H 6	•096	.102	5.80
*	.095		6.87
Oz-BC6HIL	.079	.075	5.33
ĸ	080		6.67
O ^{S-cher} opex	.07 6	.074	2.70
	. 677		4.04

System		P	<u>% Error</u>		
	<u>calculated</u>	observed			
02-MCP	.107	.074	44.6		
• •	.103		39.2		
°₂-n°8 ^H 18	.051	.072	28.2		
	.052		26.8		
02-C6H6	•09\$.101	2.97		
	.096		4.95		
Ar-nC6H14	.073	.066	10.6		
	.073		10.6		
ar-cyclohez	.070	.072	2.78		
	.070		2.78		
Ar-NCP	.098	.073	34.3		
	.094		28.8		
Ar-DC7H16	.058	.066	12.1		
	.060		9.10		
Ar-2,4 DMP	.064	.066	3.03		
	.065		1.52		
Ar-mesH18	.046	.059	22.0		
	.049		-17.0		
N20-C3H8	.093	•0\$6	8.14		
	092		6.97		
Air-Cl Ba	.099	.074	33.8		
	.096		29.7		

Sys.	SC ON	DP calculated	observed		<u> LError</u>
A1r-Et	Acetate	.106	.0\$7		21.8
		.102			17.2
	avera	ge % error:	V C	11.7	
			v 33	11.8	

TABLE XI

Procision Check of the Final DP Function

DP = f	$\frac{\left(\frac{1}{M_{1}}+\frac{1}{M_{2}}\right)^{0.5}}{\left(\frac{V_{0.4}}{V_{1}}+\frac{V_{0.4}}{V_{0.4}}\right)^{2}}$	* <
5 50 (20)	ferren .	

	System	A CO L	Vez.	row X	<u>pp cale</u>	& Error
, e	H2"H2	41.6	90.1	-2.17904	.767	1.54
	Ng-AP	42.6	67.1	-2.12590	.877	5.92
	M2-C02	h2.6	94.0	-2.19290	•741	14.7
	H2-NH3	41.6	72.Ļ	-2.13076	.867	1.29
	Ho-N2	28.7	90.1	-2.26187	.622	26.3
: ;	Ho-Ar	28.7	67.1	-2.20891	~~~	5.72
	Ho-30,	28.7=	94.0		.593	3.10
	Ie-III,	28.7	72.4	-2,20639	.716	15.0
	Alr-002	86 •6	94.0	-2.78772	.165	
	A1r-NH3	86 •6	72.4	-2.66119	•551	8.10
	N2-002	90.1	94.0	-2.79002	.1 64	0.61
	No-Ar	36.5	67.1	-2.52800	• 318	2.75
	Ee-CO	28.7	93.2	-2.26889	.611	13.0
	N ₂ -Ar	90.2	67.1	-2.72456	•1 94	0.0
	N2-00	90.1	93.1	-2.74469	. 1 84	13.2
	NewHills	90°J	72.4	-2.66521	.225	9.28
	Ar-Tr	67.1	71.9	-2.79204	.163	16.4
•	Ar-60	67.1	93.1	-2.73062	.191	1.60
· · ·	Ar-III3	67.1	72.4	-2.64273	.23 8	2.58

	1	TABLE X	<u>(Contid)</u>		194 ⁹ 1969 1969
System	Vol	Vez.	LOCX	DP cale	<u>s error</u>
00-00 ₂	93.1	94.0	-2.79569	.162	6.58
00-MR ₂	93.2	72.y	-2.67119	*557	7.92
002-320	94.0	95.3	-2.85623	.139	18.8
Air-Olz	86.6	124.	-2.87336	.133	7.26
Alr-Br2	6. 63	II.	-2.91969	\$11	29.7
602-03 ^{E8}	9jr*0	200 %	-2.97306	÷103	19.8
Air-Cu _k	86.6	99+3	-2.68324	,215	4.02
52- ⁴ 2 ¹¹ 6	90.1	1ý8*	-2.83689	ન્ 146	1.35
Alr-Och	85.6	\$60*	-3.02645	•090	6.25
H2-OH	42.6	99+3	-2.18816	.750	3.31
N2-62N	42.6	148.	-2.26367	•570	9.87
E2-E61'E10	41.6	255.	-2.41309	426ء	0,8L
M2-m6M214	41.6	368.	-2.501,80	•337	5. 32.
Eg-cyclober	A1.6	308.	-2.46009	.377	18.2
E2-nd, E.	41.6	426.	-2.54016	•308	8.84
N ₂ -nC 8 ^R 20	42.6	485×	-2.57328	*587	4.70
12-768K	41.6	260.	-2.41952	.418	3.46
n2-2,4 mp	41.6	Ц20÷	-2.53664	.312	4.72
Ho-nG, H16	28.7	426 .	-2.65036	.233	12.1
Ea-ad ell18	28.7	485.	-2.68526	*5374	13.7
no-2,4 Drip	28.7	ŕ50°	-2.64663	.236	10.3
X9-CGEG	28.7	260.	-2.52337	• 3 22	16.2
112-C2E4	90,1	124.	-2.79623	.162	0.61

System	Ve1	29 ^V	108 ×	DP cale	<u> </u>
H2-HC4H10	90.1	255.	~3.00349	•096	0.0
N2-1C, H10	90.1	263.	-3.01055	.094	3.30
N2-IC6H14	90.1	368.	-3.10815	.074	2.63
N2-cyclohox	90.1	308.	-3.06653	.082	7.90
B ₂ -NCP	90.1	319.	-3.07413	.080	5.27
N2-26-78126	90.1	426.	-3.14698	.067	9.45
N2-2,4 DMP	90.1	420.	-3.24334	,067	9.45
Nz=No ^H le	90.1	485.	-3.18240	.061	16.5
N2-06N6	90.1	260.	-3.02643	•090	11.8
02-1C6H14	74.4	368,	-3.20577	.074	1.33
O ₂ -cyclohex	74.4	308.	-3.06296	.082	10.8
Oz-MCP	74.L°	319.	-3.07078	.081	9.47
oz-acslikd	74.4	485.	-3.18309	.061	14.1
02-C6116	74.4	260.	-3.02138	•092	8.91
Ar-nC6H14	67.1	368.	-3.12806	.070	6.06
Ar-cyclohex	67.1	308.	-3.08438	.078	8.34
Ar-HCP	67:1	319.	-3.09230	.077	5.48
Ar-sc7826	67.1	426.	-3.17046	.063	4.55
Ar-2,4 DMP	67.1	420.	-3.16656	.063	4.55
Ar-nCellis	67.1	485.	-3.20888	.057	3.39
M20-03H8	96.3	200.	-2.99663	.097	12.8
Air- Cl Bs	86.6	308.	-3.08141	•079	6.76
Air-othylacot.	86.6	286,	-3.05303	.085	2.30

		TABLE XI	antes Servita		
Ernlundi	on of D	P = (6.22 x 10	2.6 ×	1.095	
STEVEN STEVEN	A CONTRACTOR	AL 2.6x 205	DP calculated	observed	<u> s reror</u>
Ez-N2	. 193	120	.305	•368	17.12
VERION	200	1,29	•315	.401	21.45
	253	2.09	.511	.600	14.83
	273	2.51	.613	.708	13.42
	288	2.82	.689	•743	7.27
	294	3.02	•738	•763	8S. C
	297	3.02	*7 38	.779	5.25
	300	3,02	.738	,800	7.75
	304	3.16	.772	.852	9.39
	3 55 .	3.55	.868	.903	3.80
	398	5.49	1.342	1.289	4.011
	400	5.49	1.342	1.270	5.67
	450	5.92	1.691	1.541	9.73
	506	8 • 32	2.033	1.883	7.97
	573	10.5	2.566	2.417	6.16
RA.7	288	2.82	,821	828	0.85
	35lı	4 s 26	1.240	I.III	12,61
	418	5.88	1.722	1.714	0.12
15-00 ⁵	289	2,82	.693	.619	11.95
	298	3*05	•742	.646	14.85

TABLE XII (CONT'D)

System	M	u 2.6 10 5	DP		<u>S Error</u>
en fan Belen Brennen en ferste fan de ferste fan de ferste ferste ferste ferste ferste ferste ferste ferste fer	nada ana ana ana ana ana ana ana ana ana		calculated	observed	
H2-NH3	273	2.51	721	.745	3.22
.	293	2.95	.848	. 834	1.68
	297	3.02	.868	.856	2.40
	333	3.80	1.092	1.021	6.95
	413	5.75	1.652	1.435	15.12
	533	8.71	2.503	5.178	16.47
He-N2	300	3.02	.624	•743	16.02
	323	3.55	•733	.766	4.32
	353	4.26	,880	.893	1.66
	383	4.78	.987	1.077	8.36
	413	5.75	1.167	1,200	1.08
	443	6.61	1.365	1.282	5.90
	473	7.24	1.495	1.569	4.72
	498	8.13	1.679	1.650	1.76
	600	11.2	2.313	2.400	3.63
	900	22.4	4.419	4.760	7.16
	1500	34.7	7.166	7.740	7.42
He-Ar	276	2.63	.620	.646	\$.02
	288	2,82	.665	.697	4.59
	298	3.02	.712	.754	5 • 57
	317	3.39	.799	.797	0.25
	323	3.55	.837	. 809	3.46

		TABLE XII	(CONTID)		
Svatem	ETT A.	112.6× 105	DP calculated	observed	<u> Serror</u>
	346	4.07	.959	. 984	3.79
	353	4.26	1.004	.978	2.66
	383	4.78	1.127	1.122	0.45
	413	5.75	1.356	1.237	9.62
	418	5.88	1.386	1.398	0.86
	443	6.61	1.558	1.401	11.51
	473	7.24	1.707	1.612	5.89
	498	8.13	1.917	1.728	20.94
	500	8.32	1.961	1,860	5.43
	1000	26.3	6.200	6.250	0,80
	1100	28.8	6.789	7.330	8.01
He-CO2	276	2.63	.517	. 531	2,57
	298	3.02	. 594	.612	2.94
	317	3.39	.666	.661	0.76
	323	3.55	•698	.678	2.95
	346	4.07	. 800	.764	4.71
	353	4.26	.837	.800	4.63
	383	4.78	.940	.884	6.33
	413	5.75	1.130	1.040	8.65
	443	6,61	1.299	1.133	14.65

473 7.24 1.423

1.598

8.13

498

He-Ci

11.26

1.279

1.414 13.01

TABLE XII (CONT'D)

Syster		<u> 42.6 x 105</u>	<u>an an a</u>	observed	2 Error
A\$ p-0 0-	276	2.63	a Juli	.142	1.41
ha ha	293	2.95	.161	.165	2.12
	317	3.39	.186	.177	5.08
Al-F-FH3	295	3.02	.227	.247	8.10
N2-CO2	289	2.82	.153	.158	3.16
	293	2.95	.161	.163	1.23
	298	3.05	.164	.165	0.61
	300	3.02	.164	.173	5.20
	600	11.2	.610	.605	0.83
	900	Zlak.	1.165	1.217	4.27
	1200	34.7	1,889	1.976	4.40
No-Ar	195	1.20	.127	«153	16.99
	273	2.51	.265	.271	2.21
	288	2.82	.2 98	.300	0.67
	303	3.16	•334	.327	2.14
	318	3.39	.358	• 357	0.28
	353	4.26	.450	· 614	8.70.
	473	7.24	.766	.671	14.16
He-CO	296	3.02	.612	.702	12.62
N2-CO	290	2.82	.172	,212	18.48
	296	3.02	.184		13.21

System	T	12.6x 105	DP		% Error
- Carlon Carl	an index to be a second of the		calculated	observed	
N2-NH3	295	3.02	,225	.248	9.27
Ar-Kr	500	1.29	.070	.072	2.78
	273	2.51	.136	.156	7.94
	288	2.82	.153	.128	19.53
	303	3.16	.171	.140	22.14
	316	3.39	.184	.153	20.26
	353	4.26	.231	.197	17.26
	373	4.79	.260	.216	20.37
	473	7.24	•392	.327	19.88
Ar-CO	296	3.02	.198	.188	2.13
Ar-NH3	295	3.02	.239	.232	3.02
co-co ₂	296	3.02	.162	.152.	6.58
C0-NH3	295	3.02	.222	.240	7.50
002-N20	195	1.20	.055	.053	3.77
	273	2.51	.1.16	.099	17.17
	287	2.82	.130	.107	21.50
	2 98	3.02	.139	.117	18.00
	313	3.39	.156	.128	21.83
	363	4.57	.217	.168	25.60
11r-Cl2	293	2,95	.130	.124	4.84
Air-Brz	293	2.95	.116	.091	27.47
CO2-C3H8	298	3.02	.103	.086	19.77

System	anti anti anti anti anti anti anti anti	<u>u^{2.6} x 10⁵</u>	DS	esersity of the second s	<u> s Error</u>
	7		<u>calculated</u>	opservea	
Air-Ch4	289	2.82	,202	612.	7.76
	295	3.02	.216	÷224	3.57
N2-C2H6	298	3.02	.146	.148	1.35
Air-C6H6	298	3.02	.091	.096	5.21
**	308	3.09	.093	.102	8.62
H2-CH	298	3.02	.751	.726	3.44
H2-C2H6	298	3.02	。59 0	•537	9.87
Ho-BC, Hoo	283	2.82	• 398	,361	10.25
₩₩, ₩₩, ₩₩, ₩₩,	354	4.26	.601	.507	18.54
	430	6.16	. 870	.763	16.05
Hz-nC6H14	289	2.82	.316	• 290	8.97
R2-cyclober	289	2,82	•353	.319	10.66
Ho-MC-H16	303	3.16	.322	.283	13.78
Ro-RCaRla	303	3,16	. 297	•277	7.22
Ho-Calla	211	3.31	.459	.404	13.37
H-2,4 DMP	303	3.16	.326	.297	9.76
Ho-DC., H., A	3-3	3.16	. 246	.265	7.17
Ho-nC _e H ₁ e	303	3.16	. 224	,248	9.68
Ke-2,4 DMP	303	3.26	1248	.263	5.70
He-Cana	298	3.02	.323	.384	15.89
~ ~	423	6.17	.660	.610	6.20

TABLE XII (CONT'D)

Calculated observed 463 6.92 .740 .715 503 8.32 .890 .815 523 8.71 .932 .861	3,50 9,20 8,25 0,61 0 3,30
463 6.92 .740 .715 503 8.32 .890 .815 523 8.71 .932 .861	3.50 9.20 8.25 0.61 0 3.30
503 8.32 .890 .815 523 8.71 .932 .861	9,20 8,25 0,61 0 3,30
523 8 .71 . 932 .861	8.25 0.61 0 3.30
	0.61 0 3.30
N2-C2H, 298 3.02 .162 .163	0 3.30
N2-nC4H10 298 3.02 .096 .096	3.30
N ₂ -104H10 298 3.02 .094 .091	
N2-nC6N14 289 2.82 .069 .076	9,21
N ₂ -cyclohex 289 2.82 .076 .076	0
N2-NCP 289 2.82 .075 .076	1.32
N2-DC7H16 303 3.16 .070 .074	5.42
N2-2,4 DMP 303 3.16 .071 .074	4.06
N2-mC6H18 303 3.16 .064 .073 1	.2.33
N2-C6H6 311 3.31 .099 .102	2.94
02-m06H14 289 2.82 .069 .075	¢.00
02-cyclobex 289 2.82 .077 .074	4.06
02-107 287 2.82 .076 .074	1.35
02-mC8H18 303 3.16 .064 .071	9.86
02-C6H6 311 3.31 .100 .101	9.90
Ar-nC6H14 : 289 2.82 .065 .066	1.52
Ar-cyclohex 289 2.82 .073 .072	1.39
Ar-MCP 287 2.82 .072 .073	1.37
Ar-m7 ^H 16 303 3.16 .066 .066	0

Sveten	en Å	12.6x 105	* * *		% Error
	Constitution of an approximate	franken andre ander som ander ander ander ander ander ander ander ander and	calculated	observed	(anaageeeleen aan ar an ar
Ar-2,4 DMP	303	3.16	.066	.066	0
Ar-menne	303	3.16	.060	.059	1.70
N20-C3H8	298	3.02	.098	.086	23.95
Air-Chl Bs	299	3.02	.079	.074	6.76
	313	3.39	.089	.079	12.67
	333	3.80	.099	.090	10.00
Air-othyl- acetato	299	3.02	,085	.087	2.30
	313	3.39	.095	.094	1.06
	333	3.80	.107	.106	0.94

Rva.	luation	of $DP = ($	4°50 x 10.)"		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	in a state of the	nd <u>PP = (</u>	5.68 x 10 ⁶)/	2 · 0 × 7 · 0.	 752
System	anter ante	kT/E = 1.30 Tr	M2.5x 105	DP calo	<u> Kror</u>
R ^{2-N} 2	· 193	> 2.5	1.86	.320	13.0
To=54.8	200		1.99	•342	14.57
	253		3.15	.543	9.5
	273		3.72	.638	9,8
	288		h*59	•733	1.3
	594		4.47	.770	0.9
	297		4.047	.770	1.1
	300		4.47	•770	3.7
	30ų		4.68	.805	5.5
	322		5.37	.923	2,2
	398		7.94	1.364 .	5.8
	400		7.94	1.36 4	7 . L
	450		9.88	1.700	10,3
	506		12.0	2.065	9.6
	573		and the second sec	2.595	7.3
UAr	288	> 2.5	4.26	.838	1.2
2,=70.9	354	2	6.31	1.240	11.6
var	¹ 418		8.51	1,675	2.2
M2C02	289	72.5	ц.26	* 707	JJ, * S
7_= 101	298		4.047	.741	14.07

	1 4 40	rable XIII	(CONT'D)		نوفد والد
System	ere Antonio anton	kT/E = <u>1.30 Tr</u>	<u>u x 105</u>	<u>DP cale</u>	Serror
H2-NH3	273	>2.5	3.72	.719	3.49
T ₆ =116	293		4.46	.863	3.48
	.297		4.47	.865	1.05
	333		5.62	1.088	6.56
	413		8.41	1.630	13.60
	533		13.2	2.555	18.90
Re-II2	300	> 2.5	4.047	.623	16.15
Tc=25.7	323		5.37	750	2.14
· · · · ·	353		6.31	.880	1.46
	383		7.08	•985	9.33
	413		8.51	1.187	1.08
	443		9.44	1.315	2.02
	473		10.7	1.490	4.79
	498		22.5	1.604	2.78
	600		15.8	2.205	8.05
	900		30.6	4.270	10.30
	1200		46.5	6.490	16.18
Ro-Ar	276	> 2.5	3.98	.634	2.86
Te-58.2	288		4.26	.678	2.72
	298		4.47	.711	5.70
	317		5.01	.797	0.00
	323		5.37	. 855	5.70

	2	CABLE XIII	(CONT'D)		Le sta 62
System.	atten vite - es vane	kt/2 = 1.30 T.	<u>12.5x 10</u> 5	DP cale	<u> S Error</u>
	346		5.88	.936	2.30
	353		6.31	1.050	7.37
	·383		7.08	1,128	0.54
	41.3		6.51	1.354	9.47
	418		8.51	2.354	3.14
	443		9.44	1.501	7.14
	473		10.7	1,703	5.64
	498		22.5	1.831	5.96
	500		11.7	1.862	0.01
	1000		35.5	5.650	10.62
	1100		39.8	6.340	16.40
He-CO2	276	> 2.5	3.98	• 528	0.55
Te = 40.0	298	• ,	4.47	. 594	2.94
$\sum_{i=1}^{n} f_{i} \leq 1$	317		5.01	.665	0.61
	323		5.37	.714	5.31
	346		5.88	.780	5,10
	353		6.31	.837	4.63
	383		7.08	.940	6.33
	413		8.51	1.130	8.65
	443		9.44	1.253	10.59
	473		10.7	1.420	11.03
	498		11.5	1.527	7.98

	1	ABLE XIII	(CONT'D)		119
System	NT Anno angenationaleme	kT/E = 1.30 Ir	<u> ^{2.5} x 10⁵</u>	DP cale	% Error
Re-NH ₃	297	> 2.5	4.47	.718	14.72
T _e = 46.2			12.0x 10 ⁵		
Air-CO2	276	< 2.5	3.02	.151	6.34
r _e = 201	293		3.31	.165	0.00
ν.	317		3.63	.161	2.25
A1r-NH3	295	< 2.5	3.31	.228	7.69
T ^c = 232					
N2-CO2	289	< 2.5	3.16	.157	0.63
₹₀=196	293		3.31	.165	1.23
	298-		3.31	.165	0.00
	300		3.47	.173	0.00
		> 2.5	<u>~2.5_x105</u>		· · · · · · · · · · · · · · · · · · ·
	600		1.58	.580	4.13
	900		3.02	1.110	8.80
	1200		4.78	1.758	10.93
No-ar	195	> 2.5	1.86	.133	13.07
T _e = 82.0	273	•••••	3.71	.265	2.21
	-288		4.26	. 304	2.33
	303		4.68	•335	2.44
	318		5.01	.358	0.28
	353 473		6.31 10.7	.451 .765	ê.92 14.01

TABLE XIII (CONT'D) kT/E = <u>2.30 Tr</u> 12.5 x 10⁵ DP cale % Error 2 System 296 > 2.5 4.47 .612 Ne-CO T_c = 26.4 293 > 2.5 4.46 .193 0.52 N2-Ar 26 = 136 290 > 2.5 4.26 .175 N2-CO

$T_{c} = 129$	296	·	4047	,184	13.21
			12.0×15		
N2-NH3	295	< 2.5	3.31	,226	8.88
Te = 171					
Ar-Kr	200	< 2.5	1.74	.086	29.50

Ar-Kr	200	< 2.5	1.74	.080	17.30
7, = 178	273		2.88	.142 m	12.70
ک ھٹا	268		3.16	.156	17.95
	303		3.46	.171	22.14
	318		3.63	.179	17.00
	٩		L1 2.5x 10	* >	
	353	> 2.5	6.31	.231	17.26
	373	, .	7.08	.259	19.90
	473		10.7	.391	19.58
A3-20	296	> 2.5	4.47	.192	2.13

T_C = 142

120

15.65

17.02

	9 -11	TABLE XII	(CONTYD)		
System	and an	kT/E = <u>1.30 Tr</u>	12.0x 105	DP cale	% Error
Ar-NHg Te = 248	295	< 2.5	3.31	.238	2.58
CO-CO2 T _C - 201	296	< 2.5	3.31	.162	6.58
co-nh ₃ T _c = 232	295	< 2.5	.3.31	• 222	7.50
602-1120	195	< 2.5	1.66	.070	32.10
T _c = 307	273		2.88	.121	22,23
	287		3.16	.133	19.55
	298		3.31	.139	18,80
	313		3.63	.152	18.78
	363		4.57	.192	14.29
$A1r-Cl_2$ $T_0 = 235$	293	< 2.5	3.31	.133	7.26
$Air-Br_2$ $T_6 = 279$	293	< 2.5	3.31	,118	29.70
$CO_2 - C_3 H_8$ $T_6 = 335$. 298	< 2.5	3.31	.103	19.77

SYSCOM	12	kT/E = <u>1.30 Tr</u>	2.0x 105	<u>DP calc</u>	<u> 8 Error</u>
41x-cyclohox	289	< 2.5	3.16	,206	5.93
2 _e = 259	295		3.31	.216	3.57
$N_{2}-C_{2}H_{6}$ $T_{e} = 296$	298	< 2.5	3.31	.146	1.35
A1r-C6H6	298	< 2,5	3.31	.091	5.21
T ₀ = 296	308		3.46	.095	6.86
$H_2 - CH_4$ $T_c = 79.8$	298	> 2.5	10 ² 4047	•753	3.72
$H_2 - C_2 H_6$ $T_e = 102$	298	>2.5.	4047	.590	9.87
H2~BC,H10	288	> 2.5	4.26	.406	12.45
7. = 119	354		6.31	.602	28.73
	430		8.91	.850	11.89
$N_2 - n^{\circ} 6^{H_{14}}$ $T_6 = 130$	269	> 2.5	4.26	• 322	11.02
H_2 -cyclohex $T_c = 136$	289	> 2.5	4.26	• 370	16.00
$H_2 n C_7 H_{16}$ $T_0 = 1.34$	303	> 2.5	4.68	• 355 •	13.78

					123
	1	ABLE XIII	(CONT'D)		
System	and the second	kT/E = <u>1.30 Tr</u>	12.5x 105	DP calc	<u> 8 Error</u>
H2-DC8H18	303	> 2.5	4.68	. 296	6.86
T _c = 138					
H2-C6H6	311	> 2.5	5.01	.469	16.10
$T_{c} = 1.37$					
H2-2,4 DNP	303	> 2.5	4.68	.327	10.01
T _c = 132					
He-mc7H16	303	> 2.5	4.68	.246	7.17
T _ê = 53.3					
He-nC8 ^H 18	303	> 2.5	4.68	.224	9.68
$T_{c} = 54.7$		*			-
He-2,4 DMP	303	> 2.5	4.68	.248	5.70
Te = 52.3					
He-C6H6	298	> 2.5	4:47	.323	15.89
Te = 54.4	423		8.91	.644	5.57
	463		10.0	.722	0.98
	503		12.0	. 8 65	5.89
	523		12.6	.910	5.38
N2-C2H4	298	< 2.5	40 ^{2.0} x 10 ² 3.31	.162	0.61
T _e = 189					

	System		k3/e = <u>1.30 Tr</u>	12.9× 205	DP calc	<u> & Brror</u>
	Ng-EC, H ₁₀ T _e = 231	294	< 2.5	3032	•096	0.00
	N ₂ -1C ₄ N ₁₀ T _c = 227	298	< 2.5	3.31	.094	3.30
	$R_{2} = 253$	289	< 2.5	3.16	.070	8.57
	N ₂ -Syclohex T _C = 264	269	< 205	3.16	.078	2,56
	U2-HCP Te = 259	289	< 2.5	3.16	.077	1. o J.A.
•	$H_{2} = 261$ $T_{c} = 261$	303	< 2.5	3.46	. 07Ö	5.42
	N ₂ -2,4 DNP T _c = 256	303	< 2.5	3.46	.071	4.06
	$N_2 - 268$ $T_0 = 268$	303	< 2.5	3.46	.064	15.33
	$n_2 - c_6 n_6$ $r_c = 266$	322	< 2.5	3.63	.099	2.94

System.	and the second se	kT/E = 1.30 Tr	412.0x 105	DP cale	% Bridge
$0_{2-2C} 6^{R_{14}}$	289	< 2.5	3.16	.071	5.33
O ^S -chojoyex U ^S = 585	289	< 2.5	3.16	.079	6.76
02-183P Te = 287	287	< 2.5	3.26	•077	4.06
02-268 ^H 18 T ₀ = 296	303	< 2.5	3.46	.064	9.86
$02 - 6^{H} 6$ $T_{c} = 294$	Ţ	< 2.5	3.63	.101	0.00
47-786H34 T _e = 277	289	< 2.5	3.16	.067	1.52
Ar-cyclobox T _c = 269	289	< 2.5	3.16	.075	6.00
Ar-MCP To = 284	257	< 2.5	3.16	.073	0.00
1 x-nC 7H16 To = 283	303	< 2.5	3.46	.066	0.00

	2	ABLE XIII	<u>(Cont 'D)</u>		
System	174 Anna	kt/e = <u>1.30.Tr</u>	m ^{2.0} x 10 ⁵	DP calc	1. Arror
ar-2,4 DMP	303	< 2.5	3.46	.066	0.00
r _e = 280					
Ar-nCo ^R 18	303	< 2.5	3.46	.060	2.70
1 ₆ = 293					
N20-C3H8	298	< 2.5	3.31	.098	13.95
2 338					
Air-Chl Ba	5 ðð	< 2.5	3.31	.079	6,76
7 ₀ = 290	313		3.63	.087	10.12
	333		3.98	.095	5,56
Air-othyl-	206	/ 3 6	1	Ade	A 20
	677 61 6	 642 	بالله الله الله الله الله الله الله الله	\$V02	6020
To 204	C. L. C.		3.03	•093	1.00
	333		3.98	1.02	3.77

TABLE XIV

Data: Reference Plot for Diffusion

Coefficient - Temperature Relation

System,	(2298)	(DP298)	T/T298	DP/DP298
H2-D2	(295)	(1.250)	0.976	0,993
112-112	(297)	(0.779)	0.650	0.473
	,		0.674	0.515
			0.852	0.770
			0.920	0.908
			0.968	0.954
			0.991	0.980
			1.01	1.03
			1.02	1.09
			1.08	1.16
			1.34	1.65
			1.35	1.63
			1.52	1.98
			1.70	2.42
			1.93	3.10
H2-Ar	(288)	(0.828)	1.23	1.34
			1.45	2.07
H2-C02	(298)	(0.646)	0.970	0.958

TABLE XIV (CONT'D)

System,	(2298)	(DP208)	T/T298	DP/DP298
N2-820	(307)	(1.020)	1.07	1.10
			1.15	1.18
H2-NH3	(297)	(0.856)	0.918	0.370
**			0.987	0.975
			1,12	1.19
			1.39	1.68
			1.79	2.51
R2-SP6	(307)	(0.458)	0.932	0.865
			1.21	1.41
			1.36	1.83
N2-nC4	(286)	(0,361)	1.23	1,640
			1,49	2.1.1
He-N2	(300)	(0.743)	1.08	1.03
			1.18	1.20
			1.28	1.45
			1.38	. 1.62
			1.48	1.74
			1.58	2.11
			1.66	2,22
			2.00	3.23
			3.00 4.00	6.41 10.4

· .

System	(7 ₂₉₈)	(DP ₂₉₈)	1/1228	DP/DP298
He-02	(323)	(0.809)	1.09	1.22
			1.19	2.39
			1.28	1.54
			1.37	1.76
			2.46	1.97
			1.54	2.08
Ho-Ar	(298)	(0.754)	0.926	0.856
			0.966	0.924
			1.06	1.06
			1.08	2.07
			1.16	1.22
			1.19	1,30
			1.19	1.30
			1.29	1.49
			1.39	1.64
			1.40	1.85
			1.49	1.86
			1.59	2.14
			1.67	2.29
			1.68	2.47
			3.36	8.29
			3.69	9.79

System, ·	(T298)	(DP298)	<u>T/T298</u>	DP/DP29
Ho-A1:	(317)	(0.765)	0.371	0.816
			1.09	1.18
10-00 ₂	(298)	(0.612)	0.926	0.869
			1.06	1.08
			1.08	
			1.16	1.25
			1.18	1.,31
			1.29	2.44
			1.39	1.70
			1.49	1.85
			1.59	2.09
			1.67	2,31
Re-R2O	(298)	(0.908)	1.03	0,993
			1.10	and the second se
			1.18	1.23
Re-C6R6.	(898)	(0.364)	1.42	1.59
			to a star	1.86
			1.69	2.12
			Ster some all	

System,	(T298)	(DP ₂₉₈)	T/T298	DP/DP298
Ne-ethanol	(298)	(0.494)	1.42	1.66
			1.55	1.87
			1.69	2.12
			1.76	2.37
N2-CO2	(298)	(0.165)	0.970	0.957
			0.984	0.988
			1.01	1.05
			2.01	3.67
			3.02	7.37
			4.03	15.0
Ng-N,0	(308)	(0.256)	1.07	1.18
8794			1.15	1.40
02-H20	(308)	(0.282)	1.07	1.13
			1.14	1.05
Ne-Ar	(303)	. (0.327)	0.644	0.468
• •			0,901	0.829
			0,950	0.917
			1.05	1.09
			1.17	1.27
			1.56	2.05

Synten,	(T298) (DP298)	298 2/T	DP/DP296
No-Kr	(303) (0.266)	0,901	0.838
		0.950	0.902
		1.05	1.07
4.200	(303) (0.140)	0.659	0.514
		0.901	9.901
		0.950	0.914
		1.05	1.09
		1.017	Le bl
		1.23	2.54
		1.56	2.34
CO2-II2O	(298) (0.117)	0.655	0.453
		0.916	0.845
		0.963	0.915
		1.05	1.09
		1.22	1.43
ся ⁷ -н ⁵ 0-	(308) (0.292)	1.07	1.13
		an to the second	
С2 ^Ц 4-Н20	(308) (0.204)	1.07	1.024
		1.14	1,21
TABLE XIV (CONT'D)

System, (T ₂₉₈) (DP ₂₉₈)	T/T298	DP/DP298
Alr-CO ₂ (293) (0.165)	0.943	0.860
Alia .	1.08	1.07
Air-toluene (299) (0.086)	1.04	1.07
		1.22
Air-Chl Bs (299) (0.074)	1.04	1.07
	1.1.1.	1,22
Air-amiline (299) (0.074)	1.04	1.07
	11	1.22
Air-2 pro- panel (299) (0.099)	1.04	1.08
	1.11	7.55
Air-butanol (299) (0.087)	1.04	1.06
	1.11	1.20
41r-2 penta- nol (299)(0.071)	1.04	1.07
•	1.11	1.21
Air-ethyl- acetate (299) (0.087)	1.04	1.08
	1.11	1,22

Calculation for DP/DP_{293} vs. T/T_{298} Plot log y = 1.70 log x - .0048 at y = 1 0 = 1.70 log x - .0048 log x = .00282 x = 1.007 at y = 3 log 3 = 1.70 log x - .0048 log x = .4819/1.70 = .284 x = 1.923

135

TABLE XV

Evaluation of $DP = (136)(\frac{\pi}{298})^{1.7} \neq 1.096$

	. 1 6	1_004			
System	(2/298) [P	2 Error
			66.16	<u>994 s</u>	* -
112-12	-478	•00/±09	•364	•368	2.09
	*507		.386	·401	3.74
	•757		•576	*600	Ļ.00
	.837		.637	*708	10.03
	.945		•719	+743	3.23
	.978		•7i44	.763	2.49
	.995		•757	.779	2,82
	1.009		•768	.800	k.00
	1.034		.787	.852	4.12
	1.14		.868	.903	3.88
	2.63		1.240	1.289	3.60
	1.65		1,256	1.270	1.10
	2,01		1.530	1.541	0.72
	2.47		1.880	1.883	0,16
	3:03		2.306	2.417	4.59
H2-AP	.945	83400.	.822	.828	0.72
	1.34	. A.	1.166	1.111	4.95
	1.775		1.544	1.714	9,92
H2~002	•950	•00395	698	.619	12.76
	2.0		•735	.646	13.78

న విషోటించి మొది చిలి చిని చిని చిన	TABLE	XV	(CONT	10
-------------------------------------	-------	----	-------	----

System	(T/298) ^{1.7}	\propto 1.096	מ	P	% Error
anna an ann an an ann an ann ann an ann an a	4.ปีเวลาให้เหลืออยู่จักรางหลีก็สะสองหลุงกล	E CONTRACTOR	0816	0080	Carrieran Artistanis and an
H2*HH3	.862	.00462	•740	•745	0.67
	•973		.836	.831	0.el
	.995		.855	.856	0.12
	1.209		1.039	1.021	1.76
	1.74		1.495	1.435	4.018
	2.69		2.311	5.176	2.89
Ro-Na	1.009	•00332	.624	.743	26.02
	L. 145		•708	•766	7.57
	1.332		.823	*895	7.84
	1.532		•947	1.077	12.07
	_L.74		1.075	1.200	10.42
	1.95		1.211	1,289	6.05
	2.20		1.360	1.569	13.32
	2,39		1.477	1.650	10.48
	3.28		2.027	s.400	15.54
	6.54		4.042	4.0760	15.08
	10.3		6.365	7.740	17.89
Es-AP	* 877	.00379	.618	<u>646</u>	4.33
	•945		•666	.697	4.45
	1.0		•705	•75i+	6,50
	1,109		,782	.797	2,68
	1.145		<u>,807</u>	.809	0.25
	1.289		•908	*651	1.73

System	(7/298) ^{1.7}	× 1.096		DP	s Brror
n gaalan ay kanala ka	aller of the second	nelantise processi in the conversion of the second s	GALC 6	obs .	Access Accession and the
	1.332		•939	,978	3.99
	1.532		1.080	1.122	3.74
	1.074		1,227	1.237	0,81
	1.775		1.251	1.398	20.52
	2.96		1.382	1.401	1.36
	2.20		1.551	1.612	3.78
	2,39		1.685	1.728	2.19
			1.713	1.860	7.90
	7.83		5.520	6.250	11.68
	9,20		6.486	7,380	12.11
Ne-002	.858	.00316	,505	.532	4.90
	1.0		•588	\$12	3.92
	1.109		•652	.661	1.36
	1.145		•673	.678	0 s7k
	1.287		.757	•7 64	0+92
	1.332		•783	.80 0	2.13
	1.532		*901	. 884	1.92
	1.74		1.023	1.040	2.63
	1.96		1,152	1.133	1.68
	2.20		1.294	1.279	1.17
	2.39		1.405	1.414	0.64
Mo-MM2	.995	\$00382	.707	<u>.842</u>	16.03

TABLE XV (CONT'D)

TABLE XV (CONT'D)

Svaton		(1/298) 1.7	~ 1.096	D	P	A Apror
		มชีวิณตั้งที่การสถานกับสมองที่สุดทรงมหายากจะ 	see data dalaman dalaman dagka dalam takan araw in heran	cale.	obs e	Andrew Construction of the second
	Alr-CO2	.877		•144	• 3775	1.41
		.973		.160	.165	3.03
		1.109		.182	.177	28,5
	A1P-NB3	,983	*00151	.221	·5#1	10.53
	M2-C05	•950	.000875	.155	*158	1.90
		.973	:	.159	.163	2.45
		1.0		.163	.165	1.21
		1.009		,164	*173	5,20
		3.28		•535	<u> </u> 605	11.57
		6.54		1.066	1.217	12.41
		10.3		1.679	1.976	15.03
	No-Ap	.486	.00170	•15l	•153	0.65
		.837		•56扩	. Ż71	2.58
		•945		*533	•300	0.33
		1.031		.326	•327	0,31
		1.1118		•353	•357	1.12
		1.332		.Ц2I	•434	1.69
ļ,	:	2.20		.695	.671	2.09
	He-CO	.990	.00326	•600	\$07.	14.53
	i z Ar	•973	.00103	.187	•194	3.61
· : :	00-5 ¹¹	•956	186000	•174	.211	12.54
		.990		. 180	.212	15.09

139

TABLE XV (CONTID)

ETCC COM	(g/298) ^{2.07}	× 1.096	DI CALC -	Constanting	<u> A Error</u>
Ne ^{NR} 3	.983	00120	.518	•5178	11.69
Ar-Ir	.507	,00871	\$8 0 ,	.072	13.89
	.837		•136	.126	7.94
	.945		*153	.128	19.53
	1.031		•167	.140	29.29
	1,118		, 181	+153	18.30
	1.392		215.	.197	9.64
	1.46 4		.237	.216	9.72
	2.20		.355	•327	8,87
AP-00	•990	*00105	.188	.168	0
AP-DE3	.983	,00127	.232	•535	0
00-00 ₂	• 990	` .000 863	.159	•152	4.61
00-7E3	.983	.00118	,215	• <i>Sh</i> o	20.42
602-1120	•UB6	.00071+1	.067	•053	26. J.2
	.837		,116	•099	27.27
	•940		.130	.107	21,50
	1.0		.138	.117	27.95
	1.087		a2,50	.228	17,19
	1.398		.193	.168	14.88
417-61 ₂	•973	.000709	.128	* 351	3.23
817-B72	.973	,000631	ally	*091	25.27
002-63 ^{II} O	1.0	.000551	\$01,	.086	18.60

TABLE XV (CONTID)

STS COM	<u>(r/298)^{1.7}</u>	× 1.096	p cale.	P 008.	Z Error
Alr-CH	*950	.00115	.203	,219	7.31
	" 983		.210	•55h	6.25
N2-02K	1.0	.00077 8	. 145	. 1 48	2.03
Alr-06H6	1.0	. 000482	•090	.096	6.25
	1.057		.095	.102	6.86
H2-CEL	1.0	•00400	•744	* 726	84.2
R2-C2IK	1.0	.00314	•584	•537	8.75
R2-nCLR10	•945	.00227	•399	.361	10,52
and a segural	1 • 9 ! ·		•565	.507	12.44
	1.863		.786	.763	3.02
R2~n06R11	950	.00180	*318	. 290	9.66
N ₂ -cyclohox	•950	.00501	•355	.319	11.28
Bz=n07B16	1.031	.00164	•314	ڊ ڏ§2	24.38
R2-008R18	1.031	•00151	•290	·277	4.69
R2-C6R6	1.07块	.00223	۵٫۰ الم	. 404	10,38
R ₂ -2,4 MP	1.031	•00166	.319	.297	7.4.1
No-nG7N ₂₆	1.031	.00125	.239	. 265	9.81
He-nCoH18	1.031	.0 0114	.219	841 8 •	12,68
Ro-2,4 DIP	1.031	,00126	,241	.263	8.37
Ho-O6IG	1.0	.00172	•320	.384	16.68
	1.42		<u>.</u> 581	.610	4.476
	2 .554		•677	.715	5.32
	1.688 1.755		•778 •803	.815 .861	4.54 6.74

.

141

TABLE XV (CONT'D)

System	(T/298) ^{1.7}	× 1.096	90 31.83		<u>s error</u>
Ba-Call	1.0	.000862	.160	,163	1.84
N2-nG ¹ H ³⁰	1.0	.000511	.095	.096	1.04
^B 2-104 ^B 10	1.0	,0 00502	*093	*091	2.20
82-10681k	•950	*000392	«069	•076	9.82
N ₂ -cyclober	•950	۰000µ36	+077	•076	1.32
Ez-MP	•950	.000427	.075	•076	2.32
Π2-n ⁰ 7 ^Π 16	1.031	•000356	•068	*07h	8,11
n ₂ -2,4 pm	1.031	. 000359	•069	•07l	6.76
52-7082187	1.031	.000325	•062	•073	15.08
n2-a6E6	1.074	•000社82	,097	.105	4.90
02-n06H14	, 950	.000395	•069	.075	22,50
02-cholopox	*950	` 。 0001,39	•073	•074	5.41
02-100 P	*91 ⁰	.000431	.075	·074	1.35
02-n0 81118	1.031	.000325	•062	.071	12.68
02-06E6	1.074	•000µ88	* 098	.101	2.97
Ar-n ⁰ 6 ^E 24	.950	.000373	.066	۵66 e	0
Ar-cyclobez	*950	.000416	•073	•072	1.39
Ar-100P	* 940	•000µ08	*071	073	2.7h
AP-107816	1.031	.000335	•06it	. 066	3.03
Ar-2,4 DIP	1.031	.0 00338	•065	.066	1.52
Ar-magaze	1,031	.0 00304	.059	.059	0
E20-C3E8	1.0	.000 520	.097	,086	12.79

Jf5

PABLE AV (CONT'D)

System	(1/298)	2 *096	DP SBL0.		<u> 2 Error</u>
A1r-OhBa	1.005	.000420	.078	*07lf	5 ah l
	1.087		•085	•079	7.59
	1.208		•094	*090	ų . Lin
Air-othylacetate	1.005	.000451	*08h	.087	3.45
	1.087		.091	*09jt	3.19
	1.208		.101	.106	1.72

TVX SLEAR

	Multicomponent Relationship						
		DFAB/DPAC = C × A5/		J96			
Nos	System	<u>Çombination</u>	DPAB	/DPAC	% Error		
1	NS-NS						
	K2-Ar	1/2	.941	.863	8.3		
3	H2-602	1/3	1.26	1.02	19.0		
lş.	Ro-TR	2/12	.910	.873	4.02		
5	no-N2						
6	He-Ar	5/6	* 98f	.863	12.3		
7	He-CO2	5/7	1.21	1.04	14°0		
8	Ho-NH3	5/8	.883	.858	2.8		
9	A12-602	•			х х		
10	Alr-NH3	9/10	. 668	.714	6.9		
11	E2-AP						
12.	π2-00	11/12	•916	1.04	1.3 e 1.		
13	M2-HM3	11/13	•782	· 847	8.3		
24,	sr-Er						
15	er-00	14/25	*745	·9/15	13.0		
36	AP-TEI3	14/26	*60ft	.672			
2.7	00-002						
28	CO-NEL	27/18	.633	.717	13.3		
29	Air-Giz			·			
20	Air-Br ₂	19/20	1.36	1.11	18 4		
21	H2-CH						

TABLE IVI (CONT'D)

No.	Systen	Cembination	$\frac{D^{P}_{AB}}{obs.}$	DP _{AC} cale.	<u> Serror</u>
22	^н 2-С2 ^н 6	21/22	1.35	1.26	6.7
23	RS-RC*R ¹⁰	22/23	2.01	1.77	11.9
24	Eg-nC6H24	57/51	2.50	2,24	10.4
25	H ₂ -cyclohox	21/25	2.28	2.00	12.3
26	H2-RC7H16	21/26	2.56	2.45	4.3
57	H2-BC 6H28	27/27	2.62	2.69	2.7
28	112-06H6	57/58	1,80	1.80	0
29	H2-2,4 DHP	22/29	2.45	2:44	0.4
30	He-ac-7H16				
31	Re-ncen18	30/31	1.07	1.09	1.9
38	He-2,4 DMP	30/32	1.01	. 983	3.0
23	Ho-C6H6	30/32`	.690	.715	3.6
34	E2-02114				
35	Ez-ze ^{4H} 10	34/38	1.70	1.70	0
36	N2-1C ⁴ H10	34/35	1.79	1.73	3.4
37	Ng~mc6H14	34/37	2.14	2,22	3.7
38	E2-cyclohex	34/38	2.14	1.98	7.5
39	N2-MP	34/39	2.14	2.03	5.2
40	Nz-107H16	34/40	2.20	2.45	11.4
ș.	N2-2,4 DEP	34/41	2.20	2.43	10.5
42	Ng-22 e ^N 2.8	34/42	2.23	2.69	20.6
43	N2-C6N6	34/43	1.60	1,80	12.5
hils	02-106H14				

TABLE XVI (CONT'D)

No.		<u>Combination</u>	DP _{AB} /	DP <u>AO</u> <u>Calca</u>	S Error
45	Og-eyclohex	44/45	1.01	.888	11.9
46	0 ₂ -MCP	44/46	1.01	.905	9.9
47	02-1C 8H16	44/41	1.05	1220	14.3
84	02-06H6	44/48	.742	.798	7.6
49	Ar-DC6H14				
50	Ar-oyclohox	49/50	.918	. 885	3.6
51	Ar-NCP	49/51	.904	.902	0.2
52	Ar-rc7H26	49/52	1.0	1.10	10.0
53	er-2,4 DMP	49/53	1.0	1.09	9.0
54	Ar-nC SH18	49/54	1.12	1,22	8.9
55	Adr-Ol Bs				
56	Air-ethylacetat	55/56	.850	.919	e. 1
	÷				

Overall S Error 8.4

Calculation for DP_{AB}/DP_{AC} vs. α_{AB}/α_{AC} Plot $\log y = 1.02 \log x - .0045$ aby = 1 $0 = 1.02 \log x - .0045$ log x = .001,41 x = 1.010 at y = 2 log 3 = 1.02 log z -.0045 10g x = .4816/1.02 = .472z = 2.965 Plot y = 1; x = 1.01y= 3 1 x = 2.97

TABLE XVII

Comparison of Diffusion Coefficients by

<u>Different Methods</u>

System	2. °K		Error	and the second state of th
Politika da kana umana kana kana kana kana kana kana kana		This Work, Eq. (64)	Constant Street	<u>Othmer-Chan</u>
E2-N2	193	1.09	3.72	19.05
	200	3.74	5.96	16.49
	253	4.00	5.16	18.12
	273	10.03	8.19	14.030
	288	3.23	4.22	19.13
	294	2.49	. 3,01	20.57
	297	2.82	3.18	20.31
	300	4.00	4.16	19.06
	304	4.11	8.17	14.05
	322	3.88	3.90	19.08
	398	3.80	2.46	19.38
	400	1.10	0.12	22.1.8
	450	0.71	1.15	22.53
	506 .	0.16	1.64	21.69
	573	4.59	1.56	16.19
Iz-Ar	283	0.72	11.19	4.77
	354	4.95	4.87	12.00
	418	9.92	27.61	3.63
N2-CO2	289	12.76	2.34	25.99
	296	13.78	1.38	27.37
				· · · · · · · · · · · · · · · · · · ·

<u> Systea</u>	TANK	all at 1922 and a state state strategy and a state strategy and	Expror		
		<u>Eq. (64)</u>	230	Othner-Chen	
Ra-NII3	273	0,67	4.50	1.00	
	293	0.24	3.37	0.90	
	297	0.12	3.74	0.63	
	333	1.76	1.29	4.13	
	413	4.18	2.37	9.00	
	533	2.89	6.82	13.65	
Ho-N2	300	16.02	4.65	6.24	
	323	7.57	5.36	3.38	
	353	7.84	9.57	3.27	
	383	12.07	0.95	2.79	
	413	10.42	3.38	0.04	
	443	6.05	8.80	4.70	
	473	13,32	0.24	4.10	
	498	10.48	4.31	0.70	
	600	25.54	0.71	7.42	
	900 -	15.08	1.78	10.43	
	1200	27.89	3.55	13.87	
He-Ar	276	4.33	2.56	9.75	
	268	4.45	2.89	9.97	
	298	6.50	4.65	11.55	
	327	1,88	0.65	6.59	
	323	0.25	2.44	4.93	
	346	2.73	1.11	6.22	

TABLE AVII (CONT'D)

Sveten	T.ok		🖇 Erroz	
 สระบาณีสารสินทรีที่การการและนี้ได้กระบาทสระสารสารสารสารสารสารสารสารสารสารสารสารสารส		<u> R.a. (04)</u>	ESO.	<u>Cthmer-Chen</u>
	353	3.99	1.03	8.23
	383	3.74	0.50	7.93
	41)	0.81	2.98	5.00
	428	10.52	7.02	14.27
	443	1.36	2.79	5.S.
	473	3.78	0.18	8.27
	698	2.49	2.27	6.70
	500	7.90	4.39	12.80
	1000	11.68	4.29	19.53
	1100		4.24	20.69
He-CO2	276	4.90	5.82	2.53
1	298	3.92	6.53	2.87
	317	1.36	3.53	····0.47
	323	0.74	2,86	
	346	0.92	2.85	1.36
	353.	2.1.3	3.84	0.37
	383	1.92	6.37	4.78
	413	1.63	2.66	1.52
	443	1.68	1.01	5 s 26
	473		0.35	4.22
	498	0.64	0.67	2.91
No-NH3	297	16.03	7.00	24.05

TABLE XVII (CONTID)

Svetan	T. OK	and a start with the start want of the start start start and the start	<u> </u>	analytican product and the second state of the
	Sector Sector Sector Sector Sector	3 <u>9. (64)</u>		Utniar-Usiga
A12-CO2	276	the state	3.48	0.88
	293	3.03	7.89	3.06
	317	2.82	1.45	4.56
112-21H	295	10.53	3.18	16.79
12-002	259	1.90	2,50	2.38
	293	2.45	2.31	3.04
	298	1.23	0.59	1.25
	300	5.20	4.07	4.54
	600	11.57	7.74	5.91
	900	12.41	6.75	7.32
	1300	15.03	4.98	8.51
No-AP	195	0.65	2.20	8.20
	273	2.58	0.06	4.55
and a second sec	288	0.33	0.87	5.25
	303	0.31	0.60	4.99
	31.6	1.12	0.92	5.33
	353	1.69	2.57	2 = 2,2
	473	2.09	5.61	. 0.92
Re-CO	296	14.53	3.95	1.29
N2-Ar	293	3.61	0.27	6.76
ti ₂ -C0	250	17.54	7.69	4.76.
	- 2%	15.09	4.60	1.49

TAME AVII (CONT'D)

System	<u> z ex</u>	Stations of American Station of American Stations	6 Irrox	a. An an
Ministration of Ministration and a statement of a s		Eg. (64)		<u>Othnor-Chen</u>
Nz-M?	295	11.69	1.01	18.53
12-12	200	13.89	1.59	29.97
	273	7.94	2.64	16.14
	268	19.536	5.24	8.68
	303	19.89	5.16	8.16
	316	18.30	4.72	8.04
	353	9.64	2.37	23.38
	373	9.72	2.94	12.62
	673	8.07	1.84	11.53
Ar-00	296	Ċ.	2.66	0.42
Ar-MH3	295	0	5 • 43	25.16
60- 60 <u>8</u>	296	4.61	4.91	7.90
CO-BR3	295	10.45	2.44	14.31
CD2-1120	295	26.42	2.89	7.55
	273	27.27	0.15	1.454
	267	21.50	0.79	0.53
	298	17.95	2.74	2.602
		17.19	2.23	0.73
	263	14.65	3.61	0.53
A12-612	293	3.23	0.06	1.04
Atr-Bra	293	25,27	0.03	9.84
C02-03H	298	18.60	6.%	0.62

System	D. CK			
anna an ann ann ann ann ann ann ann ann	offen gener woor in derivands.	Ba. (64)	2 S.G	Othmar-Chen
A1r-CII	289	7.31	6.36	0.32
	295	6.25	7.85	1.61
N2-C2H6	298	2.03	0.37	1.36
43r-46R6	298	6.25	6.96	6.59
	308	6,86	7.23	6.32
H2-CH	296	2.48	5.33	27.25
N2-C2N6	296	8.75	3.33	29.24
N2-204N10	288	10.52	0.34	31.04
	354	11.44	1.99	35.20
	4,30	3.02	4.85	26.15
H2-10C6H14	269	9.66	3.08	34.72
R ₂ -cycloher	289	11.28	4.94	30.60
BZ-BC7R16	303	24.38	6.85	39.92
H2-NCSH10	303	4.69	2.27	33.65
H2-CCH6	311	20.38	0.82	29.21
H2-2,4 DDP	303.	7.42	1.87	34.11
Ho-nC ₇ H ₁₆	303	9.81	5.68	6.38
Ho-zCe ^R 16	303	11.66	6.12	6.30
Ho-2,4 DRP	303	8.37	4.96	8,02
Ha-C6R6	298	16.68	18.39	10.43
• .	423	4.76	5.20	5.97
	463	5.32	5.27	5.96
	503	4.54	3.93	7.38
	523	6.74	2.65	6.73

System	T. K	na internet and the state of th	5 Error	and a strange of the second
Solitority of a manufacture for the foreign in side property and a fer of the initial and a manufacture of a manufacture of the solitority of the solitor of the	Wy tryin (, "Antoning" - experiment	Ng. (64)	NSO And Alexandra	Othmor-Chen
N2-C2E4	298	1.84	4.68	0.30
Ng-2C4H10	298	1.04	3.72	2.02
N2-10, N10	294	2.20	10.03	9.15
^N 2- ^{nC} 6 ^H 14	289	9.22	0.50	4.34
Ng-cyclohex	289	1.32	0.79	0.93
ng-mer	269	1.32	0.79	0.48
N2-nC7H16	303	6.11	2.06	1.48
N2-2,4 DMP	303	6.76	1.46	1.04
N2-DCSH18	303	15.08	3.25	6.95
^N 2- ^C 6 ^H 6	311	4.90	1.62	5.42
02-nC6814	289	1.2.50	3.15	3.48
0 ₂ -cyclobex	289	5.41	0.27	3.56
02-13 P	287	1,35	0.91	
02-26 ⁸ 76	303	12.68	3.96	4.26
02-C6H6	311	2.97	3.46	3.74
Ar-nC6H14	289	O	2.40	9.28
Ar-cyclohez	289	1.39	3.82	11.39
ir-NSP -	287	2.74	6.31	1.4.1.1.
Az-nC7H16	303	3.03	2.84	8.36
4r-2,4 DMP	303	1.52	3.32	6,88
Ar-DCCH18	303	0	6.75	5.25
N20-63H8	298	12.79	1.35	5.06

TABLE XVII (CONT'D)

Sveten	T. ok	% Error		
and the analyse of a spirit state of the state of the spirit state of the spirit state of the spirit state of t	Eniorial Macrosofternio	<u> </u>	SCC.	Othmer-Chen
Air-Chl Bs	29 9	5.42	8.13	6.74
	313	7.59	9.42	8.94
	333	10 a 10 44	7.39	8.15
Air-ethylacetate	299	3.45	0.85	1.95
	313	3.19	0.84	1.20
	333	4.72	0.01	1.05

Compare Calculations for DP of

N2-CO2 at 300 °K Using

This Work's Correlation Eq. (64)

versus FSG Correlation

$$BP_{TM} = \begin{bmatrix} \left(\frac{1}{M_1} + \frac{1}{M_2}\right)^2 \\ \hline \left(V_{c_1} + V_{c_2} + \frac{1}{V_{c_2}}\right)^2 \end{bmatrix} (T/298)^{1.7} (186)$$

vorsus

$$DP_{FSG} = \left[\frac{\left(\frac{1}{N_1} + \frac{1}{N_2}\right)^{\frac{1}{N}}}{\left(\frac{1}{N_1} + \frac{1}{N_2}\right)^{\frac{1}{N}}} \right] r^{1.75} (10^{-3})$$

$$(\frac{1}{N}/298)^{1.7} (186) = (300/298)^{1.7} (186) = 187.7$$

$$T^{1.75} (10^{-3}) = (300)^{1.75} (10^{-3}) = 21.6$$

$$V_{e_1} = 90.1$$

$$V_{e_2} = 94.0 \quad (V_{e_1} + V_{e_2} + V_{e_2})^{-2} = (12.21)^2 = 149.08$$

$$v_1 = 17.9$$

$$v_2 = 26.9 \quad (v_1 + \frac{33}{2} + v_2 + \frac{33}{2})^{-2} = (5.55)^2 = 30.8$$

$$\begin{bmatrix} \left(\frac{1}{M_{1}} + \frac{1}{M_{2}}\right)^{\frac{1}{2}} \\ \hline \left(\frac{1}{M_{1}} + \frac{$$

 $DP_{TW} = (8.75 \times 10^{-14}) (1.877 \times 10^2) = 0.164$ $DP_{FSG} = (78.4 \times 10^{-14}) (0.216 \times 10^2) = 0.169$ $DP_{obs} = 0.169$

- (1) Arnold, J.H. Ind. Eng. Chem. <u>22</u>, 1091-95 (1930).
- Bird, R.B., Stewart, W.E., Lightfoot, E.N.
 "Transport Phonomena"
 John Wiley & Sons, New York, 1960.
- ()) Chapman, S. Trans. Roy. Soc. (London) <u>211</u>, 433 (1912).
- (4) Chapman, S., Cowling, T.G.
 "The Mathematical Theory of Non-Uniform Gases"
 Cambridge Univ. Press, New York, 1939.
- (5) Chen, N.H.Ind. Eng. Chem. <u>51</u>, 1494 (1959).
- (6) Ghen, N.H., Othmer, D.F.
 J. Chem. Eng. Data, Z, 37-41 (1962).
- (7) Fuller, E.N., Schettler, P.D., Giddings, J.C.
 Ind. Eng. Chem. <u>58</u>, 19-27 (1966).
- (8) Gilliland, E.R. Ind. Eng. Chem. <u>26</u>, 681-85 (1934).
- (9) Hirschfelder, J.C., Bird, R.B., Spots, E.L.
 Trans. ASME <u>72</u>, 921-37 (1949).

Chem. Revs. <u>44</u>, 205-31 (1949). J. Chem. Phys. <u>16</u>, 968-81 (1948).

- (10) National Research Council International Critical Tables Vol. I, p. 102, Vol V, p.2. MeGraw-Hill, New York, 1926.
- (11) Jeans, J.H.

"Dynamical Theory of Gases"

Third edition, Cambridge Univ. Press, New York, 1921.

- (12) Kirk, R.E., Othmer, D.F.
 "Encyclopedia of Chemical Technology"
 Vol. V, p. 68, Interscience, New York, 1949.
- (13) Kobe, K.S., Lynn, Jr., R.E.
 Ghem. Rev. <u>52</u>, 117-236 (1952).
- (14) LeBas, C. "The Molecular Volumes of Liquid Chemical Compounds" Longman, London, 1915.
- (15) Maxmoll, J.C.

Phil. Mag. 25, 165 (1868).

(16) Othmer, D.F. Ind. Eng. Chem. <u>32</u>, 841 (1940). (17) Othmer, D.F., Chen, H.T.

Ind. Eng. Chem., Proc. Design & Develop. 1, 249 (1962).

- (18) Pakurar, T.A., Ferron, J.R. Ind. Eng. Chem. Fundamentals 5, 553-557 (1966).
- (19) Perry, J.H., Editor
 "Chemical Engineers' Handbook"
 Third edition, MeGraw-Hill, New York, 1950.
- (20) Reid, R.C., Sherwood, T.K. "The Properties of Gases and Liquids" McGraw-Hill, New York, 1956.
- (21) Smith, J.N., Van Ness, H.C. "Introduction to Chemical Engineering Thermodynamics" Second Edition, McGrav-Hill, New York, 1959.
- (22) Stefen, J. Sitzber. Akad. Wiss. Wien. <u>63</u>, 63 (1871).
- (23) Sutherland, W. Phil. Mag. <u>36</u>, 507 (1893).

XI. VITA

Raymond G. Bailoy

Born: April 2, 1941, Houston, Texas

Present Address: 3 Van Dolft Dr., Apt. 3

South Amboy, New Jersey 08879

Education:

Aldine High School, Houston, Texas, 1959

University of Houston, Houston, Texas B.S.Ch.E., 1963

Professional Activity:

American Institute of Chemical Engineers National Society of Professional Engineers Registered P.E. in Texas, No. 28771

Esployment:

Texaco Inc., Petrochemical Dept., New York, New York (with Texaco since June, 1963)