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ABSTRACT

The redistribution of dynamic stresses caused by the presence of 

an elliptical discontinuity in an infinite isotropic homogeneous elastic 

solid is examined. The solutions are obtained for the special cases of

the rigid immovable inclusion and the vacuous cavity inclusion, and

numerical results are presented.

The solutions to the wave equations in elliptical coordinates are 

expressed in series of the elliptical geometry eigenfunctions. Applica

tion of the boundary conditions, vanishing displacements for the rigid 

immovable inclusion and vanishing stresses for the cavity inclusion,

yields in each case two infinite sets of linear algebraic equations for

the expansion coefficients of the series solutions.

The incident shear or compressional waves are generated by a line 

source of excitation whose location with respect to the inclusion may 

vary. Parametric studies are carried out to determine the influence of 

ellipse eccentricity, source location and frequency as well as Poisson's 

ratio with regard to the stresses on the discontinuity boundary.

It is found that the source location does not greatly affect the 

stress intensity over the range studied. Increasing the ellipse eccen

tricity causes pronounced increases in the stresses for certain propaga

tion directions of the incident waves. Also the stresses are dependent 

upon the frequency and are in general maximized at frequencies where the 

wave length greatly exceeds the dimensions of the discontinuity. Poisson' 

ratio does not appear to be a critical parameter in the determination of 

stress intensities.



Chapter

TABLE OF CONTENTS

ii.

Page

I INTRODUCTION..........................................  1

A. Elastic Wave Diffraction and Dynamic Stresses.... 1

B. Static Studies....................................  1

C. Elastic and Acoustic Waves in Circular,
Spherical and Parabolic Geometries..............  4

D. Electromagnetic and Acoustic Waves in
Elliptical Geometries............................  11

E. Elastic Waves in the Elliptical Geometry..........  14

F. Object and Scope of Dissertation.................  17

II ELLIPTICAL COORDINATES AND THE MATHIEU FUNCTIONS  20

A. Elliptical Coordinates...........................  20

B. Helmholtz Equation in Elliptical Coordinates  22

C. Properties of the Mathieu Functions..............  24

III PROBLEM DEFINITION.................................... 33

A. Physical Aspects of the Medium...................  33

B. Plane Strain and Plane Stress....................  34

C. The Governing Equations of Elastodynamics.......  36

D. The Governing Equations in Elliptical
Coordinates......................................  37

E . SH-, SV-, and P-Waves............................  40

F. Boundary Conditions............................... 42

IV INCIDENT WAVES........................................  46

A. Cylindrical P- and SV-Waves......................  46

B. Plane P- and SV-Waves............................  47

C. High Frequency Limit.............................  48



iii.
Chapter Page

D. Low Frequency Limit..............................  49

V PLANE STRAIN PROBLEMS.................................  50

A. Arbitrary Elastic Inclusion...................... 50

B. Rigid Immovable Inclusion........................  60

C. Cavity Inclusion.................................  66

D. Fluid-Filled Cavity Inclusion.................... 69

VI CONCLUSIONS AND RECOMMENDATIONS......................  71

APPENDIX.......................................................  74

REFERENCES.....................................................  101

VITA...........................................................  105

FIGURES........................................................  106



LIST OF SYMBOLS 

Symbol Definition

X Abscissa of Cartesian Coordinate System

Ordinate of Cartesian Coordinate System 

Q  Interfocal Separation in Elliptical Coordinate System

Coordinate Label Designating Family of Ellipses

/fp Coordinate Label Designating Family of Hyperbolas

"t Time

^  Circular Frequency

Compressional Wave Displacement Potential 

Y  Shear Wave Displacement Potential

k. Circular Geometry Wave Number

%c Elliptical Coordinate Compressional Wave Number

Elliptical Coordinate Shear Wave Number

)\ Wave Length

C€-m Even Periodic Mathieu Function

Periodic Mathieu Function 

Even Radial Mathieu Function of j*"*1 Kind

Odd Radial Mathieu Function of j1"*1 Kind

Elliptical Coordinate Number Coinciding with Inclusion 
Boundary

'U. x Component of Displacement

T/ y Component of Displacement

^ Poisson's Ratio

Normal Stress Components in Cartesian Coordinates 

J3 Density



Symbol Definition
S}\( Tensor Stress Components 

l i l  Tensor Displacement Components

Tensor Strain Components 

^  Shear Modulus of Elasticity

S i j Kronecker Delta

21  ̂ ^  Displacement Component

lliy  ^  Displacement Component

Qcjfa Alternating Tensor
~L z.

Elliptical Metric Tensor Component = (COsV\ ^ <it

^ R a d i a l  Stress in Elliptic Coordinates 

Shear Stress in Elliptical Coordinates 

Tangential or Hoop Stress in Elliptical Coordinates 

( Zi . Out of Plane Normal Stress Component

E w  -Lo-i Expansion Coefficients

Ho Hankel Function of First Kind of Order Zero

Je> Radial Coordinate of Wave Source Point

0̂ Angular Coordinate of Wave Source Point

’ r>) ' n  Compressional Wave Partial Potentials

Yn y n Shear Wave Partial Potentials

B Length of Minor Axis of Elliptical Inclusion

H Length of Major Axis of Elliptical Inclusion

Distance from Inclusion Center to Wave Source Point

Distance from Inclusion Center to Inclusion Boundary 
Measured in Direction of



vi

Pag

106

107

108

109

110

111

112

113

114

115

116

LIST OF FIGURES

Transverse Section of Elliptical Scatterer 
and Elliptical Coordinate System...............

Distribution of Normalized Stress vs. Ellipse 
Eccentricity for Incident Plane P-Wave on 
Major Axis of Rigid Cylinder...................

Distribution of Normalized Stress vs. Ellipse 
Eccentricity for Incident Plane P-Wave on 
Minor Axis of Rigid Cylinder..................

Distribution of Normalized Stress on Boundary 
of Rigid Elliptical Cylinder vs. Normalized 
Source Location (Rq-R^)/! of Incident P-Wave 
on Major Axis...................................

Distribution of Normalized Stress on Boundary 
of Rigid Elliptical Cylinder vs. Normalized 
Source Location (RQ-R^)/A. of Incident P-Wave 
on Minor Axis...................................

Normalized Stress on Boundary of Rigid 
Immovable Inclusion for Incident Plane P-Wave 
on Major Axis and B/A=0.29.....................

Normalized Radial Stress at Front of Rigid 
Inclusion with Incident Plane P-Wave on Major 
Axis vs. 4qcsinh^^............................

Normalized Radial Stress at r)=0° vs. Normalized 
Distance from Boundary of Rigid Elliptical 
Scatterer (Z/A)................................

Distribution of Normalized Radial Stress on 
Rigid Inclusion vs. Poisson's Ratio for an 
Incident Plane P-Wave on the Major Axis.......

Distribution of Normalized Stress vs. Ellipse 
Eccentricity for Incident Plane SV-Wave on 
Major Axis of Rigid Cylinder...................

Distribution of Normalized Stress vs. Ellipse 
Eccentricity for Incident Plane SV-Wave on 
Minor Axis of Rigid Cylinder...................



Figure No. Page

12 Distribution of Normalized Stress on Rigid 
Elliptical Cylinder vs. Normalized Source 
Location (RQ-Rb)/A of Incident SV-Wave on
Major Axis......................................... 117

13 Distribution of Normalized Stress on Rigid 
Elliptical Cylinder vs. Normalized Source 
Location (RQ-Rb)/A of Incident SV-Wave on
Minor Axis......................................... 118

14 Normalized Radial Stress at n=ir/2 on Rigid
Inclusion with Incident Plane SV-Wave on
Major Axis vs. 4qcsinh2E;b ..........................  119

15 Distribution of Normalized Hoop Stress vs.
Ellipse Eccentricity for Incident Plane P-Wave 
on Major Axis (upper plot) and Minor Axis
(lower plot) of Cavity............................  120

16 Distribution of Normalized Hoop Stress vs.
Normalized Source Location (R0-Rb )/A of 
Incident P-Wave on Major Axis (upper plot)
and Minor Axis (lower plot) of Cavity......... 121

17 Normalized Hoop Stress at n=fr/2 on Cavity with
Incident Plane P-Wave on Major Axis vs.
4qcsinh2?b ......................................... 122

18 Distribution of Normalized Hoop Stress on
Cavity vs. Poisson's Ratio for an Incident
Plane P-Wave on the Major Axis.................... 123

19 Distribution of Normalized Hoop Stress vs.
Ellipse Eccentricity for Incident Plane SV-Wave 
on Major Axis (upper plot) and Minor Axis
(lower plot) of Cavity............................  124

20 Distribution of Normalized Hoop Stress vs.
Normalized Source Location (RQ-Rb)/A of 
Incident SV-Wave on Major Axis (upper plot)
and Minor Axis (lower plot) of Cavity.............  125

21 Normalized Hoop Stress at n=7r/2 on Cavity
with Incident Plane SV-Wave on Major Axis vs.
4qcsinh2 b̂ ......................................... 126



I. INTRODUCTION
A. Elastic Wave Diffraction and Dynamic Stresses

It has been known at least since the nineteenth century that an 

intensification of stress occurs in the vicinity of discontinuities 

such as holes, cracks, and solid impurities in otherwise homogeneous 

materials. The theory of elasticity had been well developed by the 

turn of the nineteenth century beginning with the work of Robert 

Hooke in the last quarter of the seventeenth century. The phenomenon 

of elastic wave propagation was examined in the early part of the last 

century by men such as Navier and Poisson and later by Stokes and 

Kelvin.̂  It is interesting to note that these investigations were 

motivated in part by an interest in the transmission of light which 

was believed to take place in an elastic ether. Also occurring in 

the latter part of the last century was the development of theories 

of stress concentrations for holes in plates based on the elasticity 

theory. However, this work dealt solely with static studies, and it 

has been only since the middle of the twentieth century that dynamic 

stress concentrations have been considered in detail.

B. Static Studies

In 1898, Kirsh obtained the solution for the stress concentra-
3tions about a circular hole in a stretched plate. His method of

Kolsky, Stress Waves in Solids (New York, 1963), p. 14.
2Ibid., pp. v-vi.

3G. Kirsh, V.D.I., Vol. 42 (1898).



solution was essentially a semi-inverse method, part of which con

sisted of determining a potential function from which the stresses 

were derived. The governing differential equation to be satisfied 

by the potential function was the equation of compatibility in 

cylindrical coordinates. His results showed that the maximum tensile 

stress was equal to three times the uniform stress applied at the 

ends of the plate. Kirsh’s solution has been verified many times by 

strain measurements under experimental conditions.^

The solution for the stretched plate containing an elliptical 

hole was presented by Inglis and Kolosoff'* in 1913 and 1914, res

pectively. Kolosoff employed a technique involving complex stress 

potentials, the governing equation being the biharmonic equation.

His results further confirmed those of Kirsh and indicated that as 

the elliptical hole became more and more slender, the maximum stresses 

increased without bound. This problem provided valuable insights 

into the closely related problem of crack development and propagation 

and the resultant failures of materials.

Another major contribution to the theory of static stress con

centrations was made by Southwell and Gough in 1926, when they 

presented the solution for the stresses around a spherical cavity 

in a bar subjected to a uniform tension. Again the problem was

4S. Timoshenko and J. N. Goodier, Theory of Elasticity (New York, 
1951), p. 80.

"*G. Kolosoff, Z. Math. Physik, Vol. 62 (1914).

^R. V. Southwell and H. J. Gough, Phil. Mag. (Jan., 1926), p. 71.



3.
solved in terms of a potential function, and the results indicated 

that the maximum stress on the spherical cavity was about twice as 

great at the uniform tensile stress for most materials.

The first investigator to treat rigid inclusions rather than 

cavities was Goodier.^ He considered gaseous inclusions, perfectly 

rigid inclusions, and systems representing slag globules in steel 

and reinforcing rods in concrete. His method of solution consisted 

of solving the displacement equations of equilibrium by means of a 

potential function in cylindrical or spherical coordinates. Goodier 

treated a perfect infinite solid subjected to a uniform static stress 

at infinity. His numerical results indicated that the maximum stress 

was approximately equal to twice the uniform stress for most materials 

and that rigid inclusions caused no appreciable intensification of 

shear. Also, in agreement with Saint Venant's principle, he deter

mined (as did the aforementioned investigators) that at a distance 

of about four diameters away from the inclusion, the stress distribu

tion varied from the uniform stress value by no more than about one 

percent. Thus it was found that the increase of stress caused by 

geometrical discontinuities was of a very localized nature. Also it 

was known experimentally that crack propagation and ultimately failure 

often originated at the boundaries of material imperfections such as 

those represented by the geometric shapes then being studied analytically.

^J. N. Goodier, "Concentration of Stress Around Spherical and Cylin
drical Inclusions and Flaws," Journal of Applied Mechanics, Vol. 1, 
Trans. ASME, Vol. 55 (1933), pp. 39-44.



oAdditional studies were made by Sternberg and Sadowsky on an 

infinite solid containing a triaxial ellipsoidal cavity. Also for 

stress concentrations around notches, Neuber^ has presented analytical 

and numerical results for many cases.

As stated earlier, the theory of stress wave propagation was 

developed during the last century. However, for nearly the first 

half of the twentieth century, the subject was neglected by physicists 

as reflected by the dearth of literature on the topic from that period.

C. Elastic and Acoustic Waves in Circular, Spherical, and Parabolic 
Geometries________________________________________________________

Under dynamic loading the effects of an externally applied force

are not felt instantaneously at all points of an elastic solid.

Actually, the deformations and the associated strains and stresses

produced by the force are propagated through the material in the

form of waves, the propagation velocity being a function of material

properties. If an obstacle is present in the body, the waves are

scattered by the obstacle with the result that stress magnification

may occur in the region of the scatterer. Surprisingly, the rebirth

of interest in stress wave phenomena was not stimulated primarily by

considerations of dynamic stress concentrations. Most of the studies

which were begun after the inactive period early in the century were

undertaken to determine the attenuating and scattering effects of

g
E. Sternberg and M. Sadowsky, Journal of Applied Mechanics, Trans. 

ASME, Vol. 14 (1949), p. 149.

^H. Neuber, Theory of Notch Stresses (Berlin, 1958).



various inclusions on acoustic waves. Thus most studies were re

stricted to points in the solid far from the scatterer itself.

In 1955, Ying and Truell"^ investigated the scattering of waves 

by a spherical obstacle in an elastic solid using a separation of 

variables technique in spherical coordinates. They undertook their 

study in order to compare the scattering by obstacles in solids with 

the older and well-known solutions for scattering by a fluid sphere 

in a fluid. Contemporary laboratory experiments had dealt with the 

attenuation of ultrasonic wave pulses by precipitates in polycrystals 

and crystalline alloys. The work of Ying and Truell was intended to 

serve as a first step toward the solution of the more complicated 

problem of scattering by a large number of scatterers in a homogeneous 

solid or the scattering by an inhomogeneous solid.^ Their results 

included expressions for the scattered wave and the total scattered 

energy for long wave (Rayleigh) scattering.

White presented results for elastic wave scattering by a cylinder 
12in 1958. He considered the scattering of plane compressional and 

shear elastic waves incident obliquely upon an infinitely long non- 

dissipative cylindrical elastic discontinuity in an isotropic solid.

10C. F. Ying and Rohn Truell, "Scattering of a Plane Longitudinal Wave 
by a Spherical Obstacle in an Isotropically Elastic Solid," Journal of 
Applied Physics, Vol. 27, No. 9 (Sept., 1956), pp. 1086-1097.

11Ibid., p. 1086.
12R. M. White, "Elastic Wave Scattering at a Cylindrical Discontinuity 
in a Solid," Journal of Acoustical Society of America, Vol. 30 (1958), 
pp. 771-785.



6 .

His solution was obtained by separating the wave equation in cylindri

cal coordinates. White analyzed the mode conversion process with

respect to the energy contained in each mode as well as scattering 
13cross sections and the far zone angular distribution of intensity 

both experimentally and analytically for cavities and fluid-filled 

cavities.

Another major contributor was Knopoff who in 1959, published 

results for the scattering of compressional and shear waves by 

spherical obstacles. ̂ U s i n g  the method of separation of vari

ables in spherical coordinates, he examined scattering by a perfectly 

rigid and immovable sphere and evaluated the scattered compressional 

and shear waves in the far field.

In 1960, Einspruch, Witterholt, and Truell presented their analy

sis of the scattering of transverse elastic waves by spherical obsta- 
16cles. They included scattering by a fluid-filled sphere and by a

•^The mode conversion process is a phenomenon in which a shear or
compressional wave incident upon a boundary produces reflected and
refracted waves of both types. The scattering cross section for 
elastic waves is defined as the ratio of the energy scattered per 
unit time by the obstacle to the energy per unit area carried per
unit time by the incident wave.

•*-̂ Leon Knopoff, "Scattering of Compression Waves by Spherical 
Obstacles," Geophysics, Vol. XXIV, No. 1 (Feb., 1959), pp. 30-39.

•'--’Leon Knopoff, "Scattering of Shear Waves by Spherical Obstacles," 
Geophysics, Vol. XXIV, No. 2 (April, 1959), pp. 209-219.

G. Einspruch, E. J. Whitterholt, and Rohn Truell, "Scattering 
of a Plane Transverse Wave by a Spherical Obstacle in an Elastic 
Medium," Journal of Applied Physics, Vol. 31, No. 5 (May, 1960),
pp. 806-818.
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layered sphere. Again the method of separation of variables was used 

and the Rayleigh case examined in detail for scattering cross sections.

Until the 1960's, the theoretical work on sound scattering was 

motivated by the development of laboratory and engineering tools em

ploying ultrasonic techniques. As a result, far field effects were 

of paramount interest, and near field phenomena, i.e., stress con

centrations, were largely ignored. However, in 1962, Pao^ presented 

a paper which was one of the first to deal with dynamical stress con

centrations on the boundary of the scatterer itself. Pao discussed 

stress concentrations around a circular cavity in an infinite elastic 

plate during the passage of plane compressional waves. This was the 

dynamic counterpart of Kirsh's problem. Employing the separation of 

variables technique in cylindrical coordinates, Pao found that the 

dynamic stress concentration factors depended on the incident wave 

frequency and Poisson's ratio for the plate. He discovered that at 

certain wave lengths, the dynamical stress concentrations were larger 

than those encountered under statical loading.

The problem of stress concentration in an elastic plate with a
18rigid circular inclusion was presented in 1962 by Pao and Mow. The 

rigid inclusion was excited by the passage of plane compressional

•^Yih-Hsing Pao, "Dynamical Stress Concentration in an Elastic Plate," 
Journal of Applied Mechanics, Trans. ASME (June, 1962), pp. 299-305.
1 ftY. H. Pao and C. C. Mow, "Dynamic Stress Concentration in an Elastic 
Plate with Rigid Circular Inclusion," Proc. of the 4th U. S. National 
Congress of Applied Mechanics, ASME (1962), pp. 335-344.



waves and the inclusion was either fixed in space or free to translate 

with the plate. Pao and Mow showed that the magnitude of the stress 

concentration factors depended upon the incident wave length, Poisson' 

ratio for the plate, and the density of the inclusion. As in the 

case of the circular cavity, the dynamical stress concentrations were 

found to be larger for certain wave lengths than those in static cases 

Also it was shown that if the rigid inclusion were immovable as well, 

the stresses could become very large.

A variation of Pao and Mow's problem was treated by Mow and 
19McCabe in 1963. They investigated dynamic stresses in an arbitrar

ily thick elastic cylinder in an infinite elastic solid during the 

passage of plane compressional waves. It was demonstrated that the 

dynamical stresses in the cylinder at certain wave lengths are higher 

than those in static cases. Mow and McCabe also showed that an in

crease in the thickness of the cylindrical lining caused a reduction 

of the stresses there. They indicated that the stresses produced in

the cylinder by harmonically varying waves represented an upper bound
20for a class of non-periodic pulses such as step pulses and exponen

tially decaying waves, although they presented no proof.

Additional problems of a similar nature but with slight

«C. C. Mow and W. L. McCabe, "Dynamic Stresses in an Elastic Cylinder 
Journal of the Engineering Mechanics Div., ASCE, Vol. 89, No. EM-3 
(1963), pp. 21-41.
20J. Miklowitz, "Scattering of a Plane Elastic Compressional Pulse by 
a Cylindrical Cavity," Proc. of the 11th International Congress of 
Applied Mechanics.



modifications were treated by Mow and Mente in 1963 and by Mow and
21Workman in 1966. Mow and Mente studied dynamic stresses and dis

placements around cylindrical cavities and rigid inclusions excited 

by plane harmonic shear waves. Of principal interest was the close 

coupling observed between the stresses and the rigid body motion of 

the rigid discontinuity.

22Mow and Workman treated dynamic stresses around a fluid-filled 

cavity. They found that at critical wave numbers, the intensity of 

the stresses on the boundary is considerably higher than that under 

static loading. This phenomenon was caused by resonance in the fluid, 

and Mow and Workman discovered that they could predict the resonance 

conditions once the properties of the fluid and the elastic medium 

were specified.

The problems discussed thus far have dealt with circular or

spherical geometries exclusively. In 1966, Thau presented results

for the diffraction of elastic waves by a parabolic cylinder and the
23resultant stress concentrations. His numerical results included 

the cases of a parabolic rigid cylinder with a semi-infinite line

21C. C. Mow and L. J. Mente, "Dynamic Stresses and Displacements 
Around Cylindrical Discontinuities Due to Plane Harmonic Shear Waves," 
Journal of Applied Mechanics, Vol. 30, Trans. ASME, Vol. 85, Series E 
(1963), pp. 598-604.
22C. C. Mow and J. W. Workman, "Dynamic Stresses Around a Fluid-Filled 
Cavity," Journal of Applied Mechanics, Trans. ASME (1966), pp. 793-799

23S. A. Thau, "Diffraction of Elastic Waves by a Parabolic Cylinder 
and Dynamic Stress Concentrations," Ph.D. Thesis, Cornell Univ. (1966)
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crack and a semi-infinite rigid ribbon as two special cases. Thau 

also established the singular behavior of the stresses near the tip 

of the crack or the rigid ribbon. He showed that the stresses near 

the tip were inversely proportional to the square root of the distance 

from the tip.24

25Cheng and Jahanshahi studied the redistribution of dynamic 

stresses about a circular discontinuity when the source of excitation 

was located a finite distance from the scatterer. In particular, they 

explored the effects of source location on the concentration of energy 

around a rigid insert and a cavity. Their results indicated that the 

source location was not a significant parameter in determining energy 

concentrations about rigid inclusions when the source was more than 

two or three scatterer diameters away. However, for cavity scatterers 

the source location had a pronounced influence on the energy concen

trations. They concluded that the latter effect must be caused by 

the propagation of generalized Rayleigh waves on the free cylindrical 

surface of the cavity. Also the energy concentrations were not in 

general maximized on the illuminated side of the cavity, an effect 

also discovered by rao.

In 1969, Cheng published results for the multiple scattering of

24S. A. Thau and Y. H. Pao, "Diffractions of Horizontal Shear Waves 
by a Parabolic Cylinder and Dynamic Stress Concentrations," Journal 
of Applied Mechanics, Trans. ASME (1966), pp. 785-792.

25S. L. Cheng and A. Jahanshahi, "On Dynamic Stress Concentration 
Around a Discontinuity," Journal of Applied Mechanics, Trans. ASME 
(1967), pp. 385-391.
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elastic waves by parallel cylinders.2** This work represented a second 

step toward the solution of the multiple acoustical scattering problem 

originally suggested by Ying and Truell, although results were confined 

to the near field of the scatterers. Cheng's solution was based on a 

method of multiple scattering originally developed for the electromag

netic case and used an iteration process based on systematically im

proving the results of a single scattering approximation. He showed 

that depending upon the propagation direction of the incident plane 

wave, the presence of more than one scatterer could significantly in

crease the stress magnitudes above the values existing for the single 

scatterer.

D. Electromagnetic and Acoustic Waves in Elliptical Geometries

Apparently, one of the first investigations to treat wave scatter-
27ing by an elliptical discontinuity was that by Morse and Rubenstein. 

Prior to this study the solutions to the elliptical scatterer had been 

discussed, but only a few numerical solutions had been completed.

Morse and Rubinstein completed a table of the Mathieu functions 

(elliptic geometry eigenfunctions) which then allowed them to solve 

the problem of diffraction by a slit or ribbon by separating the wave 

equation in elliptic coordinates. Their numerical results were re

stricted to points in the far field, an elliptical scatterer of zero

26S. L. Cheng, "Multiple Scattering of Elastic Waves by Parallel 
Cylinders," Journal of Applied Mechanics, Trans. ASME (1969), 
pp. 523-527.

22P. M. Morse and P. J. Rubenstein, "The Diffraction of Waves by 
Ribbons and by Slits," Physical Review, Vol. 54 (1938), pp. 895-898.
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thickness (slit or rigid ribbon), and treated only wave lengths on 

the order of the interfocal distance of the scatterer. Consequently,

the range of parameters was generally useful for acoustics and for
28short radio waves, but was not too interesting for optics.

To overcome some of the shortcomings of the solution of Morse and 

Rubenstein, Levy obtained a solution to the acoustic scattering prob

lem by an elliptic cylinder that was valid for ultrasonic and optical 
29frequencies. He formulated the exact solution in terms of a series 

of the Mathieu functions. But the series solution converged well only 

at low frequencies, so Levy determined the asymptotic expansion of the 

diffracted field and showed that this solution agreed with that ob

tained by the methods of geometrical optics. Again the results were 

valid only for points in the far field, but the elliptical scatterer 

was not reduced to a slit or ribbon.

In 1962, Yeh obtained the solution for the scattering of electro-
30magnetic waves by a dielectric ribbon in contrast to the perfectly 

conducting ribbon treated by Morse and Rubenstein. Yeh's solution was 

given in terms of a series of the Mathieu functions, and he discovered 

that each of the expansion coefficients of the scattered wave was 

coupled to all of the coefficients of the series expansion for the

28Ibid., p. 898.
O Q Bertram R. Levy, "Diffraction by an Elliptic Cylinder," Journal of 
Mathematics and Mechanics, Vol. 9 (1960), p. 147.

30cavour Yeh, "The Diffraction of Waves by a Penetrable Ribbon," 
Journal of Mathematical Physics, Vol. 4, No. 1 (Jan., 1963), pp. 65-71.
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incident plane wave. This was entirely different from the circular 

scatterer case. Yeh's results were valid for the far zone and in

cluded not only infinitely thin ribbons but ribbons of finite thick

ness as well, excited by electromagnetic waves of various polarizations.

31Barakat presented results for the diffraction of plane waves 

by an elliptic cylinder nearly concurrently with Yeh’s work. Barakat's 

solution was valid for both electromagnetic and acoustic problems in 

that he considered both the Dirichlet (soft) and the Neumann (hard) 

boundary conditions. However, his numerical results covered only the 

far field and the Rayleigh scattering region, but included discontinu

ity strips of finite thickness. Barakat's work represented the solu

tions to a wide range of scattering problems for cylindrical disconti

nuities from the infinitesimally thin strip, through the ellipse to 

the circular cylinder, for cases where at most one incident wave, one 

transmitted wave, and one reflected wave existed. This includes 

electromagnetic and acoustic waves of all polarizations but excludes 

incident elastic waves except for those polarized along the cylinder 

axis. As will be demonstrated shortly, the scattering of elastic 

waves is in general a considerably more difficult problem to solve 

than the problem of scattering of electromagnetic or acoustic waves.

In addition, the scattering of elastic waves by elliptical disconti

nuities presents difficulties peculiar to the elliptical geometry.

■^Richard Barakat, "Diffraction of Plane Waves by an Elliptic Cylinder," 
Journal of the Acoustical Society of America, Vol. 35, No. 12 (Dec., 
1963), pp. 1990-1996.
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E. Elastic Waves in the Elliptical Geometry

The problems of dynamic elasticity are in general quite compli

cated owing to the fact that in an elastic solid two waves (shear and 

compressional) may exist which have distinct characteristic velocities. 

Additionally, there is the phenomenon known as mode conversion where

by a single wave of either of the two types incident upon a disconti

nuity results in reflected and transmitted waves of both types. This 

must be true in order for the boundary conditions to be satisfied, 

except when the incident wave is polarized in a certain direction de

termined by the geometry of the scatterer. When the scattered waves 

are expanded in a series of the eigenfunctions of the particular 

coordinate system, the wave numbers corresponding to the two separate 

wave types appear in the eigenfunction arguments. In spherical and 

cylindrical coordinates, the angular or periodic eigenfunctions are 

independent of the wave numbers, and the complete wave field can be 

represented by a simple series expansion. In any other coordinate
O Osystem, this cannot be accomplished. Thus it is not possible to 

invoke orthogonality properties of the functions in order to determine 

the coefficients of the scattered wave expansions. The elliptical 

scatterer problem is further complicated by the fact that the periodic 

functions and their derivatives do not have a simple relationship as 

is true for the trigonometric functions encountered in the cylindrical 

and spherical geometries. Therefore, even if the problem of the

"^Kolsky, pp. 24-36.

"^Thau, Ph.D. Thesis, p. 146.



different eigenfunction arguments could be removed according to some 

approximation or other technique, the difficulty with the derivatives 

would remain. Both problems are usually handled by one of two methods. 

First, it is possible to expand the eigenfunctions for either the shear 

or compressional wave in terms of the eigenfunctions of the other wave. 

Second, if the eigenfunctions have a periodicity property, a Fourier 

series representation for these functions may be obtained. Either 

method, where it is applicable, leads to the problem of solving an 

infinite set of equations with the result that for the elliptical 

scatterer no exact formal solution can be obtained by the separation 

of variables method. Nevertheless, very accurate approximate solutions 

may be developed for the elliptical scatterer which, when reduced to 

the special case of the circular cylinder, agree very closely with the 

results obtained for that case by Pao and others.

In 1961, Harumi published results for the scattering of plane
34compressional waves by a rigid and immovable ribbon in a solid.

Using the separation of variables method, Harumi obtained numerical 

results for the far field displacements about an elliptical cylindri

cal discontinuity of zero thickness and wave lengths in the Rayleigh 

region. In his solution he replaced the periodic eigenfunctions 

(Mathieu functions) by their Fourier series forms and then approxi

mated the resulting infinite set of equations by a set of twenty.

-^K. Harumi, "Scattering of Plane Waves by a Rigid Ribbon in a Solid," 
Journal of Applied Physics, Vol. 32, No. 8 (Aug., 1961), pp. 1488- 
1497.



16.

Harumi’s numerical results compared favorably with those obtained by 

Morse and Rubenstein for the acoustical wave. He showed that when 

the incident wave was a compressional wave, the scattered compres- 

sional wave was similar to the scattered sound wave but only when the 

incident wave propagated in the direction normal to the ribbon. Also 

when the wave length became shorter than the width of the ribbon, a 

sharp angular dependency of the scattered waves appeared.

A subsequent paper by Harumi treated the problem of a cavity
OCribbon discontinuity strip. The boundary conditions for the vacuous 

cavity require the vanishing of normal and shear stresses on the cavity 

surface. In the elliptical geometry it becomes a very complex problem 

to make use of the available orthogonality conditions for the evalua

tion of the coefficients of the scattered wave expansions. This dif

ficulty will be discussed in detail in Chapter V. Harumi considered 

an elliptical discontinuity of zero thickness and restricted his study 

to Rayleigh scattering and far zone points. Again his results compared 

favorably with those obtained by Morse and Rubenstein for acoustical 

scattering by a cavity.

Q £Ang and Knopoff treated a scattering problem very similar to 

that of Harumi but solved a singular integral equation (approximately)

-^K. Harumi, "Scattering of Plane Waves by a Cavity Ribbon in a Solid," 
Journal of Applied Physics, Vol. 33, No. 12 (Dec., 1961), pp. 3588- 
3593.

■^D. D. Ang and L. Knopoff, "Diffraction of Scalar Elastic Waves by a 
Clamped Finite Strip," Proc. of the National Academy of Sciences,
Vol. 51, No. 3 (March, 1964), pp. 471-476.
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for the scattered wave field rather than using separation of variables. 

Physically, their problem corresponded to the diffraction of acoustic 

waves by an infinitely massive rigid strip imbedded in a compressible 

fluid. Ang and Knopoff's results were valid for the far field zone 

and for long wave lengths.

The problem of crack development and propagation is of consider

able interest in dynamic elasticity. Mathematically, these phenomena 

present great difficulty because it becomes necessary to find the 

solution near a geometrically induced singularity. While Ang and 

Knopoff treated this difficulty successfully for far field points, 

it is the near field that is of interest in elastodynamics from the 

point of view of stress concentrations. It is evident a priori that 

the stresses must be singular at a crack tip, but the character of the
07singularity must be determined analytically. Sih, solving a set of 

two integral equations for the diffracted wave field in the region of 

the scatterer, found the singularity to be of the order of the inverse 

square root of the distance from the tip, thus substantiating the 

results of Thau for the parabolic crack.

F. Object and Scope of Dissertation

It is evident from the historical development of wave scattering 

in elastodynamics summarized in the first five sections of this intro

duction that the geometrically simple scatterers have been quite

37g . C. Sih, "Singular Solution Near a Rigid Ribbon Excited by Plane 
Waves," Journal of the Franklin Institute, Vol. 286, No. 2 (Aug.,
1968), pp. 152-157.
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thoroughly treated. However, stress distributions on or near the 

scatterer, as well as the effects of source location have been nearly 

neglected for the elliptical discontinuity.

It is the purpose of this investigation to develop new solutions 

regarding the scattering of stress waves by elliptical discontinuities 

with emphasis on near field points. The formal solution is presented 

for an arbitrary elastic scatterer as well as a fluid-filled cavity 

scatterer, and the rigid immovable and the vacuous cavity disconti

nuities are studied in detail. Compressional and shear incident 

waves are studied and the effects of source location taken into ac

count, Consequently, cylindrical as well as plane waves are considered. 

In addition, the eccentricity of the scatterer is allowed to vary.

Also Rayleigh scattering is investigated in detail, and the high 

frequency limits and static limits are discussed.

Chapter II of this paper is devoted to a presentation of the 

elliptical coordinates and an introduction to the Mathieu functions 

which arise naturally in the solution to the scattering problem.

Chapter III covers the basic aspects of the problems to be ex

amined including the governing dynamic equations and the boundary 

conditions.

Chapter IV includes a discussion of the incident wave types along 

with the appropriate high and low frequency approximations.

Chapter V presents the formal solution for the arbitrary elastic
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scatterer. Then the derivation of the special cases of a fluid- 

filled cavity, a vacuous cavity, and a rigid and immovable inclusion 

from the general solution is indicated.

Chapter VI is a summary of the important results with suggestions 

for additional research.

The Appendix includes derivations of the elliptic metric, the 

Christoffel symbols, the Laplacian in elliptical coordinates, separa

tion of the Helmholtz equation, as well as an explanation of the 

physical stress and displacement components, a discussion of shear 

and compressional wave potentials, numerical methods, and lastly, 

a comparison of the various methods of solution available for the 

analysis of the elliptical scatterer problem.
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II. ELLIPTICAL COORDINATES AND THE MATHIEU FUNCTIONS

A. Elliptical Coordinates

The elliptical geometry of the discontinuity to be treated sug

gests the use of elliptic coordinates. All subsequent equations to 

be developed will be referred to elliptic coordinates for obvious 

reasons of convenience. The transformation to plane elliptic coordi

nates from the two-dimensional Cartesian coordinates is accomplished
1by the following transformation.'

x - | C o S h ? c a S 7  j |  ^

where A  is a constant. The coordinate ^  takes on values from 0 to 

% 'Ih and the coordinate ^ varies from 0 to oo . When the coordinate 

f is a constant J0 , the transformation (2A.1) yields a locus of 

points which is an ellipse because
LA

•-7-— ^— —  - -  cos y  ctvoct — ---r-— , ~  Sin y

£
and COS 'Y ^,n 'Y ~  ̂  which yields

^  ,

( +  (WzSfnk JoT (2A. 2)

Then it may be shown that the semimajor axis of the ellipse is given

by Cosh and the semiminor axis by 5)nh ̂ 0 . The distance
2between the foci is given by

■2-

^Kenneth S. Miller, Partial Differential Equations in Engineering 
Problems (Englewood Cliffs, N.J., 1964), pp. 180-182.
2P. Mainardi, C. Konove and E. G. Baker, A First Courst in Mathematics 
(Princeton, 1961), p. 274.



Thus it may be concluded that the family of curves ^ ~  constant 

represents a family of confocal ellipses. For the case ~ ° 
ellipse degenerates to a straight line of length Qj between (~~ ^ 

and ( ~ ) 0) . When J0 00 j the foci coalesce, and the ellipti

cal boundary approaches a circle of infinite radius with center at the 

origin. If one considers the curves defined by ̂  - constant, one 

ob tains

x  , 3

and
'2- 4 ̂  ^  1--— ------ — 1 — —j--; n — —  i >n h '? —  /

(_*■/£ Sin y 0)p ? ?

These curves define a family of hyperbolas whose principal axes
3coincide with the x-axis. Their interfocal distance is found to be

Z L +  H z s . n y . f j * ' -  = c. (2A5)

Therefore, the hyperbolas are confocal, and they share the foci with 

the family of ellipses.^

It may be shown that the family of ellipses is orthogonal to the 

family of hyperbolas with the following additional properties. For

^Mainardi, Konove and Baker, pp. 278-279. 

^Miller, p. 181.
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- O , one finds that C'°̂ rx̂  > o indicating that the

corresponding hyperbola degenerates to a straight line running from

generates to the lower half of the x-axis. See Figure 1 for a graphical 

representation of the elliptical coordinate system.

B. Helmholtz Equation in Elliptical Coordinates

Dynamic elasticity problems can often be reduced to the solution 

of the wave equation for a set of potential functions. The derivation 

of the two-dimensional wave equation from the governing equations of 

elasticity is shown in Chapter III. The result of that derivation is

Equation (2B.1) is satisfied by each of the potential functions. 

Harmonic time dependence is prescribed for the potentials because it 

is believed that the stress concentrations caused by time harmonically 

varying waves represent an upper bound for stresses produced by a 

class of non-periodic incident pulses as reported by Mow and McCabe. 

Thus the time dependence is

. cA*— 2! to £ - ■+ «> along the x-axis. For -y0 — 7T , it is found 
that ~ --g- ^ , and the hyperbola reduces to a line

from p — — to JL- — 0 0 . For the case ^  - '/%. > one finds 
% *= o , -̂=r ~ SinK^1 which is the portion of the y-axis from

to Similarly, for yo — , the hyperbola de-

(2B.1)

where iD is the angular frequency of the incident and diffracted waves.
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Then the wave equation reduces to the scalar Helmholtz equation

L r b j r  +  ^  ■*" k J  ^  -  °  (2Bt3)

for which & = /<£ ~ ^  /(wave length) is the wave number. The trans

formation (2A.1) to elliptic coordinates changes (2B.3) to (see 

Appendix C)

±  [icsSf -  cost?] f  kV  -  o  (2B-4)
A solution to (2B.4) is sought by separating the variables as 

follows

= S < 7 ) Z  (2B-5)

Substituting (2B.5) into (2B.4), the separated equations are obtained

/ S  k\C- , ^  v C _+ f t  -  —  7 ) 5 - o  (2B.6)

2. —  / t/—  costf'f ) -fc - oj y *  C V  ^ ' (2B.7)
Equation (2B.6) is known as Mathieu's equation, and equation (2B.7)

is known as Mathieu's modified equation. With the identities

COS*j - 2.( ! C&S'Ly') and (O sh — ~z,( , equations (2B.6)

and (2B.7) are recast into the more common forms

<j-A +- ( fc> -  2. % COS z y )  5 = 0  
A y 2' L

(2B.8)

^ ... ^  ~  ('k—  CashZf)i - o  (2B.9)
e* ? l
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where b is the separation constant, and is the elliptical wave 

number given by

0 /fc (2B.10)

and A is the wave length.

The solutions to (2B.8) and (2B.9) are called the periodic 

Mathieu functions and the radial Mathieu functions, respectively.

A full description of these solutions is presented in the following 

section beginning with the Helmholtz equation in a general three- 

dimensional form and with emphasis on the mathematical properties of 

the functions.

C. Properties of Mathieu Functions

Canonical Forms. The material^ of this section consists of those 

definitions and properties of the Mathieu functions which are employed 

in analyzing the problems investigated in the following chapters.

While the specific reference will not be listed for each expression, 

it should be noted that each of the references on Mathieu functions 

cited in the bibliography contains essentially the same basic material, 

although different notations are used.

The general three-dimensional form of equation (2B.4) is considered 

for the purpose of describing the Mathieu functions and their properties.

^G. Blanche and D. S. Clemm, Tables Relating to the Radial Mathieu 
Functions, Vol. 1, Functions of the First Kind (Aeronautical Research 
Laboratories, U. S. Air Force).
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The general form can be written as

z + . u-ir _  ^
c 9 ^  Vv'u/ M(tosb2VL-C&Z\/) W *  R  °

(2C.1)

The wave equation is known to be separable in elliptic coordinates so 

that

J -  L e v ,  ( 2 C . 2 )

Substituting (2C.2) into (2C.1) and simplifying, the following is 

obtained
a J _  , lo.'2- M  ^osh'ZU.\ . / J _ d Z4i k d ' M  C0S7-V\
( K  H T  > + { 4 , - J 7 ^  "  Z  /

- ^7T ( 2  K. —  <^5 2.1/ ) Q
h  J)a *  2

(2C.3)

Then the following three equations are implied

4-h-  +  %  -f3 -  o  (2C 4)
a  t*-

-JL , k L M  co^hZU v c^.M _ /
( -f, 7 R F  +   i j ~  Z <2C'5)

COS .2 1/ . c<// /tf 60S ̂  1/ _  J
~  ^l/*" 2 J f 'I (2C.6)

where b and 0(, are the separation constants. Letting

and substituting into (2C.5) and (2C.6), the following results are

obtained

e ^ i i  +  ( b - a g  ct>s&v)-St = o  (2c-7)
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d- —  /  L — o f  b>2 U ) 4? — O ^  * (2C.8)
Equations (2C.7) and (2C.8) are Mathieu's equation and Mathieu's 

modified equation, respectively. It can be shown that the trans

formation \/-iU reduces (2C.7) to (2C.8). For many applications, 

the parameters b and g are not related. However, for solutions to 

the wave equation, the function "f7 must be periodic with period 'IT 
or J(1T . This arises from physical arguments which are presented by 

McLachlan.^ It is found that for 4/ to be periodic, b is restricted 

to a set of values for each value of g . These special values

are known as the characteristic values. It can further be proved 

that if b takes on values such that 4  is periodic of period TT or 

5 ?T , then a second independent solution of (2C.7) cannot be periodic 

unless 0 * For this reason in physical problems involving the 

solutions to the wave equation, the second solution to (2C.7) does 

not appear. The solutions to (2C.8) for the same b and g must be 

determined. There will be two independent solutions of (2C.8) both 

of which are required in a great number of physical problems.

The characteristic values bCfe} for ^ real are tabulated in 

several references.^

The Periodic Solutions. Rewrite equation (2C.7) as follows

£N. W. McLachlan, Theory and Application of Mathieu Functions (London, 
1951).

^Cf., NBS, Tables Relating to the Mathieu Functions (Columbia University 
Press, New York, 1951).



27.

d zL  +  / b —  a ?  cos 2 2 )-f —  o
cl?'2' (2C.9)

The characteristic values k which yield even periodic solutions are 

to be represented by <%• fa ,k - ... The characteristic values

yielding odd periodic solutions are designated b y ^ ^  , k -  ...

The zero order odd solution is zero identically. Equation (2C.9) has 

four distinct types of periodic solutions. They are either odd or 

even functions of period 7T or <2'7T . The even and odd solutions are

given respectively by (2C.10) and (2C.11).
00

— O or J<  , , Cos (Ak+ p ) -2. p
ife+P P '

associated with ^r- (2C.10)

i e , ( i j5)= 2  o B / k+R s/n ^ > 4 + p )  e- /> — o or I

associated with (2C.11)

For p - o the periodic solutions have period TF , and for p - l they 

have period £- 7T . A given characteristic value b is associated with 

one and only one of the four types of periodic solutions given by 

(2C.10) and (2C.11).

Power Series. For sufficiently small / the following power 

series in ^ may be used to calculate the periodic functions

( Ĉ L (2C.12)
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% , cl r cos 5 ir CoS 3 t&s 2- 7
c e , ( * , i ) = « > s i -f«x3n-g* lj^jfz  z r -  - y ^ J

__ c,3 r  ccj5 7^-   60s - 5 ~ _  <̂6>S 3~2: ^  £fj£Jr j .
L  ‘i & i b  ft ST2- S"/2. -J + (2C.13)

, • a  . ^ , o 2. f   ̂ _  s/n-i;
5e/̂ 2)|) " ^  S//l ^ / L  / 7X  <W ~r£¥}

c, 3 l~S'A 7 ̂  .j. S>” -5~g-   3 2~ ___ S m  t n
% L-'-fCUt* //_T2_ 3o?^_ 5-/2. -J * --- (2C.14)

(■£,/» „ 1 _ t a _ v / ^ > W t 1 tr'-t'tpkA*- if c a a i-')
c c xi*4)  - d o s 2 a - i c "7 t  ‘t ) n < . igH ^ (2C.15)

V  2- „ i./P«_^T _  5<v? 2- \

(2C.16)
(!(: f C-OS rCr-t 2 ) t - p ̂ /clI

S«r£i.g) g^ r * - P ^ - ? Z -

tos [_( r+q )■£ —  P V ?  jL O s C ( r - C L ) z  ~  P ^ / cl J  I L f C o s L / r - ^ ) * -  
V (r-t) j *o ^ 3<2(r+iKr-v*.

4- c^s £ > - y ) * - P  m j  . CoiCri-P^l r i / r V D i ;
3 2 .(r_/)Cr-6 ) 3Z- *-cri_ ,)?. J j (2C.17)

with p ~ o for c € r(^j£) and p=/ for , r ?  3.

Normalization. The periodic solutions associated with the 

characteristic values ^-r , can normalized in a number of
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Qways. A normalization defined by Ince is as follows

J o LC<1rC^%y} = X  £Ser(Z,l)] = ^/z (2C. 18)

where Ctr and S^r have been defined in (2C.10) and (2C.11), 

respectively.

QWith another commonly used notation the periodic functions are 

defined as
oc

5c* (%/i) = z.
i/»+p fh^o (2C.19)

oo
*^o„ t)0 Sin CXh\-\ p'JTr^ n  + p » lor- b,,̂ (2C.20)

where Sc, and o are the even and odd periodic functions, respec

tively. The normalization often used in this case is defined such 

that

S e p cg,0) = | « n i  d S Sor(i,±l! = l  (2C.21)
-S)r J-=o

The Ince normalization will be used for the periodic functions. It 

should be noted that in general

J. ser (z,l) #  cer C*,i) (2c 22)

This fact considerably complicates the analysis in the exact analytical

8E. L. Ince, Tables of the Elliptic Cylinder Functions (Edin., 1932).

^Stratton, Morse, Chu and Hutner, Elliptic Cylinder and Spheroidal 
Wave Functions (New York, 1941).



solution to the wave scattering problem and in addition, leads to 

difficulties in the approximate average wave number perturbation solu

tion discussed in the Appendix.

the first solutions of the modified Mathieu equation (2C.23) are ob

tained .

The first solutions to the Mathieu modified equation are known as 

the "radial" solutions of the first kind. From the nature of the 

elliptical geometry and the behavior of the modified Mathieu equation 

(2C.8) as the parameter £ grows large, one would expect the solutions 

of (2C.8) to be related to Bessel functions. It can be shown that 

for arbitrary and ^  , the solutions of the modified Mathieu 

equation can be written in terms of a series of Bessel functions. 

Following the notation of Blanche and Clemm, the following conventions

The Radial Solutions. For convenience, equation (2C.8) is

rewritten as follows

(2C.23)

If £ is replaced by <- £ in the periodic solutions (2C.10) and (2C.11),

associated with (2C.24)

"ST L>

associated with tar (2C.25)
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are adopted for specifying the various Bessel functions 

CO . . _ Ca)
J o M  ^  t . c * )  =  ip

, C() -n- ^ &)
tip <*) =  T p (*) -v-1 Y ^ / * )  -

- Tp (i) —  t ^

With these definitions the following functions can be demonstrated 

to satisfy the modified Mathieu equation (2C.8) if ^  is a characteris

tic value yielding solutions of the Mathieu equation (2C.9) having

period TT or £ IT .
6  ) y> te-+ n r- __ (J )

L J fe-> (' t u 1
W  J h + '>

A ^ S i p
(2C.26)

/ °0 kin r (\

-Jk*t+s(Ul) ^k-s (<î /  & XS+P
(2C.27)

where

(/, -£ 'h, £
^ ■ = 1 *- j M i = S  e  ; P = ° ^

^ 5+p "<2 if j2£-+f> O  and S ^ + p  — / otherwise.

In (2C.26) and (2C.27) above, the choice of 5 is arbitrary so long 

as /̂ 55-f-p or 8^5 fp do not vanish. For numerical computations
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25-tp or is generally taken as the largest coefficient

of the set. Also in (2C.26) and (2C.27) with J — I s the radial 

solutions of the first kind are obtained in terms of Bessel functions 

of the first kind. If j , the radial solutions of the second kind 

are obtained in terms of products J n C * 0  Y k M  The first and 

second solutions are linearly independent, and with J - 3  or j — ,

one obtains the so-called Mathieu-Hankel solutions which are analogous 

to the Hankel functions of circular geometries.

The series solutions (2C.26) and (2C.27) converge rapidly for 

real positive £ . For numerical computations these Bessel function 

product solutions are the most advantageous to use owing to rapid 

convergence and simplicity. In the notation of (2C.23) the parameter 

H  represents the radial coordinate in the elliptical geometry. The 

ellipse eccentricity is specified by I / to sAg- . As 2" ̂  °° ( it real), 

the ellipse tends to a circle, and the eccentricity of the ellipse 

approaches zero. In this case the solutions to (2C.23) are known to 

be the Bessel functions. Thus the normalizations imposed on the 

radial solutions given by (2C.26) and (2C.27) are defined such that 

the radial solutions degenerate to the appropriate Bessel functions 

when i  00 .

G. Blanche and D. S. Clemm, Vol. 1, p. xii.



III. PROBLEM DEFINITION

A. Physical Aspects of the Medium

The medium which contains the elliptical discontinuity is pre

scribed to be isotropic, homogeneous, and infinite in extent in all 

directions. The nature of the material is therefore such that it 

permits the propagation of both shear (transverse) and compressional 

(longitudinal) waves. The discontinuity scatterer is taken to be an 

infinitely long cylinder with elliptical cross section. The cylinder 

may be empty, or it may consist of a material different from that of 

the elastic matrix.

The principal elliptical axes at any section of the cylinder 

coincide with the x- and y-axes of a Cartesian coordinate system, 

while the foci at any section lie on lines parallel to the z-axis of 

the Cartesian system as shown in Figure 1. The boundary of the dis

continuity coincides with the coordinate line p =5 JL, . Then the 

entire scatterer boundary surface is specified by a single number f^ . 
It is possible to allow the elliptical cylinder to degenerate to an 

infinite ribbon of width equal to the interfocal distance <U by let

ting p . Also the circular cylindrical scatterer may be obtained

The source of the incident waves is a line disturbance parallel 

to the cylinder axis and located at an arbitrary distance from the 

scatterer boundary. To generate plane incident waves of finite am

plitude, the line source is caused to recede to infinity while its 

intensity becomes infinitely great. The line source is of uniform
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intensity along its length so that each section of the elliptical 

scatterer will receive the same disturbance. This means that the 

displacements, strains, and stresses will be independent of the z- 

coordinate and uniform in that direction. The equations of the 

linear elasticity theory are assumed to govern the response of the 

medium which implies that the displacement gradients and the particle 

velocities are small.^

The principal purpose of this work is to determine the influence 

of the elliptical scatterer on the stress field with particular regard 

to stress concentrations in the near field.

B. Plane Strain and Plane Stress

The general three-dimensional problem is reduced to one of plane 

strain by prescribing that the propagation vector of the incident waves 

be normal to the cylinder axis and by disallowing any particle motion 

in the axial direction. Then the displacements are of the form

U = u  ( ¥ , «  + )  : V - V ( x , u  - t )  ; W -  o
; 4 (3B.1)

Also

^ > 2  = ^  ) (3B.2)

The state of stress in a thin flat plate containing an elliptical 

inclusion may be obtained from the plane strain problem by replacing 

Poisson's ratio V> by'S/O^ ^ ) in the field equations (3C.5).2

■̂ Y. C. Fung, Foundations of Solid Mechanics (Englewood Cliffs, N. J. , 
1965), pp. 154-155.

2Y. C. Fung, pp. 234-235.
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For plane strain the compressional wave speed is related to the 

shear wave speed by the following expression (see equation 3D.12)

(3B.3)
3For plane stress the relationship is

C f / C *  -

(3B. 4)

From (3D.11)
z.

^ / C =  k * / k (3B.5)

where and ki_ are the wave numbers for the compressional and

shear waves, respectively. However, from (2B.10), it is seen that

c-'VeJ- ^  u / tl (3B 6)

where ^  and are the elliptical wave numbers. Thus for plane

strain

'U/% = i ( x - > ) t O - z »  (3B>7)
and for plane stress

?2Jff =  Z'/Ct-f) (3B.8)

It should be noted that the plane strain solution represents an

exact solution to the long cylindrical scatterer problem, whereas

the plane stress solution gives only an approximate solution to the 

thin plate problem since the stresses and displacements are average

^Y. H. Pao and C. C. Mow, p. 338.
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values over the plate thickness.^

C. The Governing Equations of Elastodynamics

In the absence of body forces the equations of motion of a 

continuum in the Cartesian coordinates can be written 

/-J-N a 'c) bt L-
(3C.1)

where is the mass density, L ij are the stresses and ^i are the 

displacements. An explanation of the Cartesian tensor notation may 

be found in the monograph by Jeffreys."*

The linearized strains are given by

e v j  =  i  4- u - ^ i )
(3C.2)

and the constitutive relations between the stresses and strains are

“  2-/* ) <3c-3) 
where^^ is the shear modulus of elasticity and is Poisson's ratio 

for the material. £ ij is the Kronecker delta and £ is the

dilatation defined by

^ k k  ~ k  (3C.4)

If (3C.2) is substituted into (3C.3), and the resulting equation 

substituted into (3C.1), the displacement equations of motion are

4Cf., Fung, pp. 234-235 or Timoshenko and Goodier, pp. 241-244. 

^Harold Jeffreys, Cartesian Tensors (Cambridge, 1963).
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obtained

I   I I ~f 2> t-̂L-
3j + I-St'? i~ ^  c>'t̂

(3C.5)

Henceforth, it will be assumed that U^.= 0 , thereby reducing the 

problem to one of plane strain and thus eliminating the ^ 2- displace

ment from (3C.5). It is possible to prescribe an alternate simplified 

problem by Liŷ ~ Ucj ~0, and which is known as the anti

plane strain case. However, this problem is mathematically analogous 

to the electromagnetic and the acoustic wave cases and will not be 

considered here.

D. The Governing Equations in Elliptical Coordinates

For plane strain in elliptical coordinates, the displacements

are

- O
(3D.1)

According to the Helmholtz theorem, any analytic vector field can be 

derived from two potential functions. Then the analytic displacement 

field U l may be derived as follows

Ui - ^>i +~ e cjk (3D. 2)

where $  is the scalar potential, and is the vector potential 

which in the plane strain case reduces to a single component in

the z-direction. In elliptical coordinates (3D.2) leads to the 

physical displacement components^

gSee Appendix E for a discussion of the physical components.



Substitution of (3D.3) or (3D.4) into the displacement equations of 

motion (3C.5) shows that and J? both satisfy wave equations

a/ / , a -> 1 1 / , 2>̂  ̂  "I ! ^^(ccih f - C d  y )  (jjl f J - i )  =  ^  —  (3D.5)

± /  t £ \  __L i£j£a v ( « i A )  J  -  C O S ^ )  ( 2, ^  -  c  A  2 t ! _ (3D.6)

For harmonic time dependence
_ 4.

< £ ( ? , 7j V =  ^ K ? )  e  (3D.7)

and
^  _ / M ~

* ( F l ? l i) =  m v *  (3D.8)
equations (3D.5) and (3D.6) reduce to scalar Helmholtz equations

-  to^y) ( \ ^  + ± k, *£ =  °  (3D.9)

2>y?')r K i~I ^  (3D.10)

where kf is the compressional wave number, and is the shear

wave number given by
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(3D. 11)• I _  u)
•I 3 K-t. c.u

where CO is the circular frequency, and C j  and C 2 _  are the com-
k,=

pressional wave speed and the shear wave speed, respectively, given in 

terms of the material parameters as follows^

*, '/■ >h

(3D.12)

From (3D.3), (3D.4), (3G.2), and (3C.3), the stresses may be 

found in terms of the reduced potentials ^  and ^

'n y.'V r / J - ^ Y ^ i  cos K I S'fy? A g
If" } Ll1'1^  CoShrf -Cv<L^ \ J

+ ]

l ? 7 =  y D - ( ^ P y  + d ? ' )  i

coshf^-ki

r

t M (r
P  3

COSoy $i-rt

t

p u . sy   ̂^7 2f) \-zv(-ip 7 > i y )tesh1

(3D.13)

(zj ^ J

(3D.14)

c> \
?f + 2>7/

(3D.15)

^Fung, p. 177.
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(3D.16)

Thus the elastodynamic wave scattering problem is diminished to 

the solution of two scalar Helmholtz equations with the appropriate 

boundary conditions.

As was shown in Chapter II, the Helmholtz equation is separable 

in elliptic coordinates, the separated solutions being the periodic 

and radial Mathieu functions. Then the reflected and transmitted wave 

potentials are

expansion coefficients to be determined by application of the appro

priate boundary conditions.

E. SH-, SV-, and P-Waves

In general two distinct types of waves may propagate through an

(3D.17)
and

(3D.18)

where 3^ , Cm , D m  . ^  > and J, ̂  are
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ideal elastic solid. These are the compressional (P) wave, for which 

the particle motion is parallel to the propagation vector, and the 

shear (S) wave, for which the particle motion is perpendicular to the 

propagation vector.

When a P-wave impinges upon an interface between two media, both 

P- and S-waves are refracted and reflected. This must be the case in 

order that the boundary conditions be satisfied. It can be shown that 

Huygen's principle can be applied to the reflected and refracted waves
Oand that these waves satisfy an "elastic Snell's law."

The shear (S) waves can be classified in two subgroups. The 

first is known as the SH-wave and derives its name from seismology
Qwhere the resultant displacement is parallel to the earth's surface.

In the present problem the displacements for the SH-wave would be 

parallel to the cylinder axis, and it can be proved that for this 

polarization only SH-waves would be reflected and refracted. The 

elastic SH-wave case is analogous to the electromagnetic or the 

acoustic wave case where only a single type of wave is reflected 

and refracted. The second type of shear wave is the SV-wave. For 

the present problem, the displacements for the SV-wave would lie 

in planes normal to the cylinder axis. Also when an SV-wave impinges 

upon a boundary, both P- and SV-waves are reflected and refracted. 

These waves also satisfy the Huygen's principle and the "elastic

8Kolsky, pp. 27-32.

^Thau, Ph.D. Thesis, p. 43.
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Snell’s law." From the relationships (3D.12) it is seen that the 

P-wave velocity is always greater than the S-wave velocity because

wave is called the Primary or P-wave, and the shear wave is called 

the Secondary or S-wave. Both P- and SV-incident waves are treated in 

this investigation.

F. Boundary Conditions

The solution to the elastodynamic stress concentration problem 

will appear as a series of Mathieu function products (2B.5) when 

referred to the elliptical coordinates. Having satisfied the 

governing differential equations, the solution must be made to 

satisfy the boundary conditions for the particular type of elliptical 

inclusion.

The simplest case to treat is that of the rigid and immovable 

inclusion whose density is infinite. The boundary condition may be 

written

Thus no motion whatsoever is permitted at the boundary of the dis

continuity. Summing the stress components which are parallel to the 

incident wave vector over the elliptical cylindrical surface, the 

resultant force, which equals the externally applied restraining 

force, is obtained. This force must be applied to the scatterer to

for real materials O J  <Z-~z . For this reason the compressional

inc. 
^  -V

on

(3F.1)
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hold It stationary in space. The immovability condition becomes a 

severe condition only as the static limit is approached where the 

stresses become infinite. If the cylinder is allowed to move freely 

with the surrounding elastic material, the zero frequency limit reduces 

to the static case which is a rigid body translation of the whole 

matrix. Only the rigid and immovable cylinder is treated in this 

work. Note however that the displacement V  of the movable rigid

inclusion in the propagation direction can be found from
-'21V

cl r e a. x J*'Cr -  J ~ t ^ S / n  6) d s

where f is the inclusion density, d-S is an element of boundary arc, 

and 6 is measured with respect to the propagation direction.

The next problem considered is known as the vacuous cavity

inclusion. The boundary condition is
„ inc ■ _ ref

d b
in<- ref.
' ? / (3F.2)

The limiting case of a thin crack is obtained in the limit O

It should be noted that the boundary conditions for the cavity do not 

guarantee that the top and bottom surfaces of the crack will not 

come into contact. Therefore, only cracks with a finite gap are 

treated numerically.

For both the rigid and immovable cylinder and the cavity cylinder, 

no waves exist within the cylinder, and therefore, only the incident 

and reflected waves need to be considered.
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The third prohlem treated is that of the fluid-filled cavity.

The fluid is compressible, but it cannot support shear. The boundary 

condition for the fluid-filled cavity is

c nc. r~e4- ■
= ? ■

re on
=  o

<nc-’ re 4! ‘/r-or'S,

(3F.3)

The last and most general problem is that of the arbitrary elastic 

discontinuity for which the boundary condition is

+  L

r> 71

re-f.
-  T??

re£

C<rf,
u i

- u.

I t -O-W  S .

; /rtt.
U? t

n . rc-f.

"f rct/>i.S,
on # = / « ,

(3F.4)

The stresses and displacements are continuous at the interface 

between the surrounding elastic matrix and the elastic discontinuity.

The stresses and displacements appearing in the boundary condi

tion equations must be expressed in terms of the potentials as in 

(3D.3), (3D.4), (3D.13), and (3D.14). Then the Mathieu function



product representations for the potentials must be substituted and 

the expansion coefficients determined.



IV. INCIDENT WAVES

A. Cylindrical P- and SV-Waves

It is assumed that the source of the incident waves has been 

present and varying harmonically in time for an infinite length of 

time such that at the instant the stress field is examined, no 

transient effects are present. For cylindrical wave fronts to exist, 

the source is located a finite distance away from the cylinder axis.I, u 1The P-wave potential is given by

(4A.1)

where (^j , ̂ 0  ) are the coordinates of the source point and is

the compressional wave number. Also

, Z/n*

and

(4A.2)

By the Ince normalization, ĴrA=A/t71ĵ "Jp . The above cylindrical

wave expansion is the Mathieu function expansion of

where HQ is the Hankel function of the first kind of order zero.^zero.

"h?. M. Morse and H. Feshbach, Methods of Theoretical Physics (New York,
1953), Vol. II, p. 1421. 

2Ibid.
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This function, together with the harmonic time dependence represents 

the propagation of cylindrical wave fronts. The cylindrical SV-wave

For the cylindrical P-wave, the displacement is normal to the 

wave fronts, while for the SV-wave the displacement is parallel to 

the cylindrical wave fronts.

B. Plane P- and SV-Waves

Plane waves result when the source location is removed to in

finity while the magnitude of the source becomes infinite. This is
3accomplished as follows: set the source point a large distance from

the origin in a direction ~h 7T to the positive x-axis, then

Also take the asymptotic form of the Mathieu-Hankel functions

From (4B.1), (4B.2), and (4A.1), the plane incident wave potential is 

found to be

potential from the expansion by replacing ^ c

with , the shear wave number.

//ô ® W % /l 1 h% ) h p i % u C o +-£I ea rjs.

(4B.3)

where

3Ibid., pp. 1421-1422.
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0 0  , I .

{ «=: - 1 / \ 0 ) 
t - t  c e m( ^ % c) ( 7 i  % 0  ^ n  a ,  %C~)

"  .nw/ „) j

+  £ z, L (e‘> U  >  * * < 7 , g c ) (1, U )  ]

(4B.4)
•

with , and similarly for ^  . (4B.4) represents

a plane incident wave of unit amplitude. It is important to note 

that the forms of the reflected and transmitted waves are the same 

for both cylindrical and plane incident waves. Also in the static 

limit, the stresses of the incident plane wave are caused by tractions 

over one infinite plane boundary of the elastic matrix at infinity, 

the resultant of which is an infinite force.

C. High Frequency Limit

At frequencies where the wave length is much shorter than any 

radius of curvature of the boundary of the scatterer, the incident 

wave fronts "see" each element of boundary arc as a plane element.

For this reason, at high frequencies the stresses and displacements 

become insensitive to changes in frequency, and they attain the values 

which result at a plane interface between two media. Therefore, the 

stresses and displacements at high frequencies are of little interest 

for the elliptical inclusion provided that the series solution (3D.17) 

and (3D.18) yields the limiting values which the stresses and dis

placements reach as the frequency becomes large. Fortunately, this 

is the case for the series solution although this solution converges 

rapidly only at low frequencies.
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D. Low Frequency Limit

The series solution (3D.17) and (3D.18) converges well at low 

frequencies and yields accurate results in that region. For small 

values of the wave numbers %c- and $ 5  , the expressions (2C.12)

through (2C.17) are used for the calculation of the periodic Mathieu 

functions. An exact solution to the plane strain problem cannot be 

determined so that it is not possible to derive a power series ex

pansion in %c. or ffs for the stresses and displacements at low 

frequency. The approximate solution method discussed in Chapter V 

must be used even at low frequencies. It is not the purpose of this 

investigation to derive the static solutions from the dynamic solu

tions since no exact dynamic solution is possible. Nevertheless, it 

is shown in Chapter V that the low frequency results approach the 

corresponding static limits for the cases where such a comparison is 

feasible.

It is of interest to observe that the largest stresses occur at 

frequencies where the series solution converges well. This is also 

true for discontinuities of other geometries as indicated by the 

results reported by other investigators.^ Therefore, the series 

solution yields stress information at the frequencies of most interest 

for elastic waves.

4Cf., Pao, Pao and Mow, Thau, et. al.
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V. PLANE STRAIN PROBLEMS

A. Arbitrary Elastic Inclusion

The primary difference between electromagnetic waves or acoustic 

waves and elastic wave propagation is that for the latter case, two

the motion of an elastic solid. Moreover, these two wave motions 

propagate at different speeds and may exist simultaneously but inde

pendently of each other. When a wave of either type strikes a dis

continuity boundary, both types of waves are, in general, reflected 

and refracted. This coupling of the two wave types has no counter

part in electromagnic problems.

The particular problems to be numerically investigated in this 

chapter are of the plane strain classification. That is, the ellipti

cal discontinuity is infinite in length and is excited such that all 

cross sections receive the same loading. Furthermore, no motion is 

permitted in the direction of the elliptical cylinder axis. The 

corresponding plane stress problems can be easily obtained by replac-

The relevant equations developed in Chapter III are repeated

here.

distinct types of waves, characterized by the potentials ^  (com

pressions! waves) and (*' (shear waves), are needed to fully describe

ing Poisson's ratio y5 by

(5A.1)

(5A.2)



'71 L z
r/ ^ - l5>2'^1 \ cozhi f / J M 3 < ch^;n 

■- ^ ll/'t-S/i’d f 2' ?^y)~6o<>h^-OoSy ( & ?  7)^)

cos^ 5 / ^ ^  /  /£i£- 'H
^ V o s h ^ - ^ s ^ '  )-zv> (̂ ^  2>^/J

^ ? 7  '  ^  7  ^  7 « s h l7 - £ f y  k ?  + » 7

Coshj^irlhj i c> 5-f ̂  ]
'£shy~a,?y ' 2>y * ? 'J

(5A.4)

^  ^  \ Coshfs/nhf, /C)<fa 3^'^  M  /7 ;~  ̂  K  ̂  ~  ̂ Coshfsm^^ f d ^  ] 2>-±\
Lyy- j  Lh-zsl v y  ^ y j + t e s h ^ - t o s y  Of

— CaS>/tf 5/noj *k  ?  ̂  \ ^  , 3> ^  \ "1
^ / > v  -CcsS, ( ^ 7  / ' " M  » ?  *■ 2>J P V J

7 /  / ^ / (5A.5)

The Six Wave Potentials. The potential functions and

which appear in the stress and displacement expressions above were 

given in terms of infinite series of Mathieu function products (3D.17), 

(3D.18), and (4A.1), a form which satisfies the Helmholtz equations 

in elliptical coordinates. If the periodic Mathieu functions are 

replaced by their Fourier series representations, the potentials 

take the following form



-  2 V L ^  % c e ->»( 7 o , ,O f i n  f f c ) Ce&ny ^  ( f j < )  M ^ a j i )

f Z ’tsem(j,l08n(p5m/ly^s'» i &tlc>y
m n (5A.6)

f ‘-= -2ti£ 2  i  «„/■%.£. )fl rJh'> CoSn"i^r-n

f 2. -L.sem(j^)£7ps^ ''" ,7 /̂ 5« <"?)?«) Ŝm C^JsO
(5A.7)

=r Z  2 4 ,  ^  «  (?c ) '&S ■" 7 ^ V  ?, ?^ )  + W "  ^  6  n '̂  ̂S'n "̂  ̂"lih'i) ̂

* * - %  £  K  ft n (h) « * * 7  W  S’™ 1  V
1 ^ n (5A.9)

jJlltF fl^(0CoSn' & r ^ ( . t c } 5'r'i'°i ̂ Vi<P - try r\ 171

(5A.10)

T m  h / (5A.11)

where B fn~>-T>rj are the expansion coefficients to be determined by
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the application of the boundary conditions. Superscripts L , S ,

numbers, respectively, for the material within the elliptical cylinder 

which will in general differ from the surrounding elastic matrix.

Partial Potentials. When the boundary conditions are specified,

orthogonality of the trigonometric functions. To facilitate the im

plementation of the boundary conditions, certain simplifying manipu

lations are performed. In the expressions for the displacement poten

tials , the order of summation is reversed and "partial potentials" are 

defined

T ~ correspond to the incident, reflected and transmitted waves, respec- 
/ /tively. Also and ^  are the compressional and shear wave

?b and the angular coordinate y  is eliminated by employing the

(5A.13)

t <-

(5A.14)

(5A.15)

(5A.16)



£^  = m rr\ ” <ts

Then the potentials have the forms
b fi k ^  oL k.

f  =  X  <bn COSh/r, -f g. <£>, S m n y

(5A.17)

(5A.18)

(5A.19)

(5A.20)

(5A.21)

(5A.22)

(5A.23)

(5A.24)

(5A.25)
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where c , 5 , T  . The derivatives of the potentials are ob

tained by differentiating the expressions (5A.24) and (5A.25) termwise.

Single or double primes over the partial potentials will indicate 
c)2-

and 2> > respectively, of that partial potential.

Stresses and Displacements. The stresses and displacements are 

now given in terms Of the partial potentials and their derivatives

~ ^ n ) cos y +  1  ( ̂  * - n  f n  ) 5/✓> n/j\

(5A.26)

k
7 '3

(5A.27)

1 ) COS n*|

oil k. 0 / ̂  \ _ [“ •/£. °/^">\4Z (  ^  ~~ n ~  SfvJv||^2- (_ -hn r  * jdosny

+.£.^5%,— n  +  t o ^ y  S > n y ^ ( n  4:>n ~ r  n  j l o S ^ s y

_ 2  ( h + ( c o S > ^  -  t e & y )  j ^ f  ^  ^

<3 1 k £! k Q k )
•f JV) ) L o S h / y  ~i~ ^^ ^o ^ ^4? ,) S 1 n o-y J  ^

(5A.28)
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(^ih} - ^ ) [ I  - ^ n )  CeSHj,

- t  (ln%„ + n r f *  ̂ ) s ; „ n y ]  ~ ̂ ^ y l i ( ^ + n f l ) c o Sn y

'*  &-k > -  -  - - k  e,/i,
*  ~'/?<^ n ) S in ^ ~ \  —  6 o ^ 1f S ^ ^ [ ^ ( n (̂ n  ~ ^ h )

, k o >!k s _ >
-  ‘k ( n )SrnHy^ $

(5A.29)
5J1 /  ii 2. -\where j — y ( toSh ̂ — ■Co'S'^J . The stress boundary conditions

are handled first. Expressions (5A.28) and (5A.29) indicate that the
71 7normal stress and the shear stress f°r the incident,

reflected, and transmitted waves may be represented by two general
ff\ & <v ^  ~>terms anĉ  fy which isolate the £ and ^  dependent

factors separately. It is the ^  dependent factors which have

special forms for the incident, reflected, and transmitted waves

while the 7̂ dependent factors are identical for all three wave

fields. Since the boundary conditions must be satisfied at all

boundary points regardless of the angular coordinate, it is the <77

dependent factors which must be manipulated in order to ultimately

eliminate the ^  parameter from the boundary condition expressions.

The stress conditions at the boundary of the elastic inclusion are

rx î c’ ^  r’e '̂ r'v '|Cr£tnS<
^  * ( ?? (5A.30)

^  l h c. ^  *~e4-. rp 'trams.
+ L$y =•

(5A.31)
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The stress expressions (5A.28) and (5A.29) must be substituted into 

(5A.30) and (5A.31) and the results brought into a form where the 

orthogonality of the trigonometric functions may be used to remove the 

parameter from the equations. The details of eliminating the sy 
dependence from the boundary condition equations are included in 

Appendix I; only the final results are given here in abbreviated form. 

It is found that the stress conditions reduce to the following

€  T  ^  S  €  S  e  <-
t~k 'T' n) - n

<2 <- 
>7\

(5A.32)

(5A.33)

and

(5A.34)

e  Tr7'

(5A.35)

Equations (5A.32) and (5A.33) contain the expansion coefficients 

B,h , £/*,, Fm  , Trn while (5A.34) and (5A.35) contain >

and . The displacement boundary conditions provide four additional
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equations for these expansion coefficients.

The displacement boundary conditions are

,,Lnc- /f re$- ,, ^ S .
U 1 + ^ S  =  (5A.36)

i rid. .ref. .t, Am.nS.
(Asy

(5A.37)

These conditions yield relationships analogous to (5A.32) through 

(5A.35). They are
t ,

<2 T  -€ T  € S S < c -e c.
^  - 4 ^ 2  V ?

(5A.38)

O  T  o T~ 0 5  O S  ^ c

and

0 1 ° „ T  O S  o s  £> C *2 ^
A ' j  + t l f ~ +  % " A ?  V  ?  +<h i

(5A.39)

(5A.40)

£ t  € ~r 4 s e 5 ^ J/c
V  7  V S  V S  -  / S

(5A.41)

Each of the equations (5A.32) through (5A.35) and (5A.38) through
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(5A.41) actually represents an infinite number of equations, each with 

an infinite number of terms. The only simplification is the fact that 

» and -̂ rn occur together and 4 ^  3 j)m } } and f4̂  occur

together. The explicit forms for the terms in the above eight equations 

are extremely lengthy and are given in Appendix I. These equations are 

linear algebraic equations which lend themselves to a computer solution, 

the details of which are left to Appendix G.

Therefore, the formal solution to the elastic discontinuity prob

lem has been obtained, although not in closed form. This most general 

case will not be treated further except for a brief discussion of a 

certain special problem.

When electromagnetic energy such as visible light, propagating in 

the form of waves, passes through a thin lens, a focusing effect may 

take place whereby energy is concentrated in a very small area behind 

the lens. It would appear that a similar focusing phenomenon may 

occur when elastic waves are refracted by two surfaces corresponding 

to the boundary surfaces of a discontinuity within an elastic matrix. 

Since the optically refracting thin lens consists of two spherical 

surfaces, it may be possible in the elastic wave case to simulate an 

effective focusing discontinuity by the use of an elastic elliptical 

inclusion of the proper eccentricity. It is recognized of course 

that certain aberrations will occur because the refracting surfaces 

are elliptical rather than circular. Nevertheless, a region of 

energy (stress) concentration may be produced behind the discontinuity.
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B. Rigid Immovable Inclusion

The boundary conditions for the rigid immovable inclusion are 

the vanishing of the displacements on ^  ^  Iq . Thus the stress

expressions do not enter into the solution for the expansion coeffi

cients. In addition, for this case, no waves exist within the dis

continuity so that the ^  , 6 ^  , A^ , _In-) expansion coefficients are 

zero at the outset.

Incident P-Wave. When the incident wave is compressional in 

nature, the incident shear wave potential is identically zero and the 

boundary condition equations are

(5B.1)

o c

and
O S  o s  O U

(5B.2)

(5B.3)

(5B.4)

The terms in the above equations are given explicitly in Appendix I. 

(5B.1) and (5B.2) contain and €-m  only while (5B.3) and (5B.4) 

contain Cn\ and Oft) only (see Appendix I).
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Incident SV-Wave. The incident SV-wave case yields expressions 

similar to (5B.1) through (5B.4) with the subscripted displacement 

terms on the right-hand side replaced by ^  subscripted displacement 

terms. Again, only , and &tr\ are non-zero.

Numerical Results. Some important numerical results for the rigid 

immovable inclusion with an incident compressional wave are presented 

in Figures 2 through 8. The series in (5A.6) through (5A.11) were 

summed with truncation after satisfactory convergence was achieved.

For small eccentricity C 6k  2  ) and for source points rela

tively far from the scatterer boundary ( —  O. b3> ), it

was found that fifteen terms were sufficient. For *L. D-^b Up

to twenty-five terms were needed for proper convergence. Appendix G 

contains further details on numerical methods.

All stresses are normalized by the maximum stress in the incident 

wave field. For the incident compressional wave, the normalizing 

factor is the stress normal to the incident wave fronts. Thus all
71 | <7- \stresses are normalized by Lo ~ I L rna.%, I computed in the direction 

of propagation. The normalized stresses may be considered to be 

dynamic stress concentration factors.

The wave number is normalized by ^ . With this

normalization, when the ellipse approaches a circle, l{%(_ Sinh | 

approaches k r  for the circular case where r  is the circle radius 

and k is the wave number in the circular geometry. Then the abscissa

may be interpreted as the wave number for a fixed
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elliptical boundary ^  b or as $in ̂  f b  for a fixed wave

number. Note that when ? b  is large and the ellipse approaches a
'"t.- ' L ^circle, the radius is given by P- 2. ? b where dL is the

interfocal distance.

Poisson's ratio V was chosen to be 0.25 for all computations 

except for Figures 9 and 18.

Figure 2 shows the angular distribution of normalized stress 

versus ellipse eccentricity for an incident plane P-wave on the major 

axis. It is apparent that the curvature of the boundary begins to 

play a role as the eccentricity increases. For low eccentricities the 

radial stress is maximized at the point of first contact while the 

shear stress is greater at points between 45° and 60° away. At higher 

eccentricities the radial stress is not maximized at the point of first 

contact.

In Figure 3 the plane P-wave is incident along the minor axis.

For all values of eccentricity examined, the radial stress is maximized 

at the point of first contact and has the value of 2.0. Contrary to 

the results of the preceding case, the more eccentric ellipses yield 

the smaller stresses. The point of maximum curvature does not exhibit 

the largest radial stress because the radial stress of the incident 

wave field is zero at this point.

Figure 4 shows the angular distribution of the normalized stress 

at the boundary of the rigid immovable inclusion as a function of
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P-wave source location on the major axis. The radial stress concen

tration is largest at the point of first contact. The value of 2.0 

equals the normal stress concentration value at the plane interface 

between a rigid immovable half space and an elastic half space for 

a plane P-wave at normal incidence. Also this result agrees with the 

work of Pao and Mow, et. al., for the circular case at comparable fre

quencies. The fact that the largest radial stress occurs at the point 

of greatest curvature is of no significance in this case.

The magnitude of the shear stress does not vary significantly 

with changes in source location. However, the point of greatest shear 

stress on the boundary tends to move closer to the point of first 

contact as the source moves closer.

In Figure 5 the source is located on the minor axis. Again a 

stress concentration value of 2.0 is obtained at the point of first 

contact which also happens to be the point of least curvature.

Figure 6 presents the angular distribution .of the normalized 

radial and shear stresses for an incident plane P-wave on the major

role in the magnitudes of both stresses. The wave numbers considered 

are such that the incident waves no longer "see" the discontinuity 

boundary as a plane boundary. It is of considerable interest to note 

that the maximum shear and radial stresses occur at about 75° away 

from the point of first contact. However, the shear stress is zero at 

the point of first contact and 180° away as would be expected. In the

The curvature of the ellipse plays a significant
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case of the rigid circular scatterer, Pao and Mow found that the maxi

mum radial stress occurred at the point of first contact and that the 

maximum shear stress did not occur at a point 90° away from the point 

of first contact as might be expected.

Figure 7 shows the low frequency results for the normalized 

radial stress at the point of first contact for various eccentricities. 

The abscissa is the parameter ^ y and the graphs have

two different interpretations. For a given elliptical boundary the 

frequency may be regarded as approaching zero or the static limit.

In the static limit the incident stress field is produced by a uniform 

normal stress at infinity over one infinite plane boundary of the 

elastic matrix. The resultant of this uniform stress distribution is 

an infinite force. An equal and opposite force must be applied to the 

insert to satisfy the zero-displacement boundary conditions. There

fore, infinite stresses result. An alternate interpretation is that 

for a given frequency, the boundary of the inclusion reduces to a 

crack with a tip of infinite curvature or zero area. Thus infinite 

stresses must exist at the crack tip. Note that at finite frequencies 

the more eccentric ellipses exhibit the larger stresses at the point 

of first contact and that as the frequency increases, the curves 

asymptotically approach the value of 2.0.

Figure 8 presents the distribution of normalized radial stress 

along a line in front of the ellipse with a plane P-wave incident along 

the same line. On the boundary the stress concentration value is 2.0. 

As the distance from the boundary increases, the stress magnitude
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decays in an oscillating manner to the value of 1.0. The oscillation 

of the stress is a reflection of the incident stress wave behavior.

The fact that the stress value decays to 1.0 indicates that at great 

distances from the inclusion, the inclusion does not appreciably alter 

the stress field, as would be expected.

Figure 9 shows the normalized radial stress on the rigid inclusion 

versus Poisson's ratio for an incident plane P-wave on the major axis. 

It is observed that the larger values of Poisson's ratio lead to the 

larger stresses.

Figure 10 shows the distribution of normalized stress versus 

ellipse eccentricity for a plane shear wave incident along the major 

axis of the rigid cylinder. In comparison with the incident compres

sional wave, it is seen that the shear wave generally produces larger 

stress concentrations for the same values of wave number and eccen

tricity.

In Figure 11 the plane shear wave arrives along the minor axis 

and yields stress intensities which are less severe than in the 

previous case.

Figure 12 presents the distribution of normalized stress on the 

rigid cylinder as a function of SV-wave source location on the major 

axis. The location of the source does not significantly alter the 

magnitude of the stresses for a wide range of source positions.

However, the angular distribution varies greatly as the source 

proximity changes.



In Figure 13 the SV-wave is incident along the minor axis. Both 

the angular distribution and the intensity of the stresses change con

siderably with variations in source position.

Figure 14 presents the distribution of normalized radial stress 

90° away from the point of first contact on the rigid inclusion with 

a plane SV-wave incident along the major axis. In comparison with the 

incident P-wave, the stress concentrations are larger for the same wave 

number and eccentricity.

C. Cavity Inclusion

The cavity inclusion is a vacuous elliptical cylindrical space 

contained within the infinite elastic matrix. At the boundary sur

face of the vacuous cavity, the normal and shear stresses must vanish 

and the coefficients for the transmitted waves are zero as in the 

rigid immovable case.

Incident P-Wave. For the incident compressional (P) wave, the

boundary condition equations become
<2 S  ■£. S



The explicit forms of the terms above are given in Appendix I. The 

first two equations contain and only while the second two

contain C-tn and only.

Incident SV-Wave. If the right-hand side terms in equations 

(5C.1) through (5C.4) are replaced by their ^  wave counterparts, the 

boundary condition equations for the incident SV-wave are obtained.

The left-hand side terms are unchanged. Notice that in both cases, 

the displacements need not be considered in the determination of the 

expansion coefficients.

Numerical Results. Figure 15 shows the distribution of normalized 

hoop stress versus ellipse eccentricity for an incident plane P-wave. 

The largest stresses occur when the wave arrives on the major axis as 

was true in the rigid case. The hoop stress is maximized at points 

approximately 75° away from the point of first contact. In the case 

of the vacuous cavity, the possibility exists that Rayleigh-type 

waves may propagate on the concave free surface of the cavity. These 

waves c >uld not propagate at the interface between a rigid inclusion 

and an elastic matrix. Therefore, in the cavity case the surface 

waves can transport energy from the illuminated side to the shadow 

side which may explain the large stress intensities on the shadow side.

Figure 16 presents the distribution of normalized hoop stress on
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the cavity versus normalized source location. As the source point 

moves closer, the point of maximum stress tends to move toward the 

point of first contact.

Figure 17 presents the distribution of normalized hoop stress 90° 

away from the point of first contact on the cavity with a plane P-wave 

incident on the major axis. The plot for the circular case is in ex

cellent agreement with the results of Pao. As the eccentricity in

creases, the hoop stress grows larger for the same frequencies.

Figure 18 shows the normalized hoop stress on the cavity versus 

Poisson's ratio for an incident plane P-wave on the major axis. The 

smaller values of Poisson's ratio yield the larger stresses. Also as 

the value of Poisson's ratio reaches its upper limit, the shape of the 

stress distribution changes.

Figure 19 shows the distribution of normalized hoop stress versus 

ellipse eccentricity for an incident plane SV-wave. The largest 

stresses are obtained when the wave arrives on the major axis. It is 

of interest to note that the hoop stress intensity is not in general 

maximized on the illuminated side owing to the transport of energy by 

waves on the concave cavity surface. Also the stress intensities ob

tained are greater than those which occur in the rigid case.

Figure 20 presents the distribution of normalized hoop stress as 

a function of source location. As the source moves closer to the 

cavity, the point of maximum stress moves from the shadow side to the 

illuminated side, although the magnitude of the maximum stress tends



to decrease.

Figure 21 is a plot of normalized hoop stress 90° away from the 

point of first contact on the cavity with a plane shear wave incident 

on the major axis. The parameter ^  Ic. f b plotted on the

abscissa contains both the wave number and the elliptical boundary

coordinate number ^  b • Therefore, two interpretations are possible 

for the curves of Figure 21. On the one hand, it may be considered 

that the boundary is fixed while the frequency decreases. When the 

static limit is reached, the hoop stress at ^7 - 7T/2- reaches zero 

owing to the static shear forces at infinity on the elastic matrix.

For the second interpretation, the frequency remains finite while the 

elliptical cavity thickness approaches zero. When the limiting case 

of the crack is reached, the hoop stress is again zero since

the material elements are loaded in pure shear.

D. Fluid-Filled Cavity Inclusion

If the vacuous cavity is filled with a compressible but inviscid 

fluid, the result is that the normal stress and displacement must be 

continuous across the fluid-solid interface. The shear stress is still 

required to vanish at the boundary. Thus the boundary condition 

equations for the incident P-wave are
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< £ t  -e s  -e. s  -e i

<PU ¥ " > " /  -  <5D,3)
and

C> ~T o  s 0 5  O  L7s *"? _  7"
*• 1? < ^ ? J  - f 6 f f  '
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(5D.4)

^ ^ 7  1 7  ~  7 ^  ^ 7  (5D.5)

o ~r < 2 S  o s '  o  <.
~ V ' ?  " = / ' ' ?  (5D-6>

The first three equations contain 7̂ , > fi/ri > only while the 

second three equations contain only <~?m , m̂n , and t)tv, . The incident 

SV-wave is treated in a similar way.
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VI. CONCLUSIONS AND RECOMMENDATIONS

It was the purpose of this investigation to study the influence 

of an elliptical discontinuity on the stress distribution in an other

wise uninterrupted unbounded elastic medium. The special cases of the 

rigid immovable inclusion and the cavity inclusion were examined in 

detail. The motivations were both academic and practical at the same 

time. Academically, the problem is of interest because it eliminates 

one more gap in the theory of elastodynamics while verifying the re

sults of previous investigators. From a practical point of view, the 

solution to the elliptical wave scatterer problem for the elastic 

medium provides valuable insights into phenomena such as crack devel

opment and?growth as well as material failure and its prevention.

In the majority of cases examined, including both the rigid im

movable inclusion and the cavity inclusion, the least severe stresses 

occurred when the wave arrived along the minor axis. In structural 

design problems it is conceivable that for certain known dynamic 

loading conditions, a properly oriented fastener of elliptical cross 

section could produce stress levels lower than those for a circular 

fastener.

It was found in most cases that the incident shear wave caused 

higher stresses than did the compressional wave with all other para

meters being equal. An additional finding was that the vacuous cavity 

yielded higher stresses than did the rigid inclusion except in the 

static limit. It would appear that the absence of material in the 

cavity leads to a decreased resistance to stress. Also of interest
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was the fact that for the cavity the stresses were not always largest 

on the illuminated side probably owing to the transport of energy to 

the shadow side by surface waves.

For both the rigid immovable inclusion and the cavity inclusion, 

it was found that the location of the wave source was not a signifi

cant parameter as far as the stress magnitude is concerned. However, 

the angular distribution changed with the result that the point of 

highest stress tended to move toward the point of first contact as the 

wave source point moved closer to the scatterer.

With the incident wave arriving on the major axis, the stresses 

tended to increase markedly as the eccentricity of the inclusion in

creased. This phenomenon is apparently attributable to the increase 

in curvature of the scatterer boundary. With the incident wave on 

the minor axis, the more eccentric discontinuities produced smaller 

stresses. As the limiting case of the zero thickness rigid ribbon 

is reached, it is seen that for an incident P-wave on the minor axis, 

the shear stress becomes zero on the boundary, and for an incident 

SV-wave on the minor axis, the normal stress becomes zero. When the 

vacuous cavity goes to a zero thickness crack, the hoop stress vanishes 

on the boundary for both incident P- and SV-waves on the minor axis. 

Thus in these cases the crack tip does not produce singularities as 

might be expected.

Variations in Poisson's ratio produced relatively minor varia

tions in the stress levels. However, it is interesting to note that
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for the rigid inclusion the largest Poisson's ratio produced the 

largest stresses, while for the cavity the smallest Poisson's ratio 

caused the largest stresses in addition to causing a change in the 

shape of the stress distribution.

The present paper contains the formal solution for the general 

cases of the fluid-filled discontinuity as well as for the arbitrary 

elastic inclusion, although no numerical results are presented for 

these cases. It would be of great interest to investigate numerically 

the effects of resonance within the discontinuity on the stress in

tensity. For the circular case, it was found that the resonance 

conditions caused very large stresses and that these conditions could 

be predicted once all the material parameters were specified. An 

additional problem of interest is that of the so-called "stress lens" 

mentioned in the introduction. Further extensions of this problem 

would include multiple scatterers, scattering in the presence of 

boundaries, layered scatterers, and perhaps scattering by a disconti

nuity in an inelastic matrix.



APPENDIX

A. Elliptic Metric Tensor

The defining expression is

X , j /  > k J  % J A k  3 j ̂  

X -  ‘H Z  %  C o S y  j ^ —  ^-/i. S m h ^  S'r\

Then

Also
A  _  J_ s  A

3  ~ 3
(except — / )

B. Christoffel Symbols

The defining expression is

P j k  =  i  3 J i h j , k .  + l ( k , j  ~ l k , j ]

Then
I SJL1/ Cos,h f  5/n  h ?

r „  =  h  — — x

- c A  =  p 1
1 ' CJ 2-13

r 1 = — P ' ■ p z - - p2.2. H j 1 II ' IZ.

r> ̂  - /”7 ‘ ’ P *  - P  -
F  ti I ll j ' ii- ,t-

all others zero.



C. Laplacian Operator in Elliptic Coordinates

75.

The tensor definition of the Laplacian operator in any coordinate 

system is

d
E (n

kJL

2>JC- (AC.l)

Using the definition of ^ and cj given in (AA.3), and performing

the indicated differentiation, the following is obtained
0-

(AC.2)

This reduces to

v 4 >  = j ( + r& ±  
7> z"

D. Separation of the Helmholtz Equation

The Helmholtz equation in elliptic coordinates is

Look for a solution of the form

i>(Zy,i) =  5 (y)i(^ e -cl?

(AC. 3)

(AD. 1)

(AD. 2)

Then the separated solutions are found to satisfy

- f t , -  ^ osl
Modified Mathieu Eqn. (AD. 3)

£1  +. ( y, - & coso  s =o
Jty* V V /

Mathieu Eqn. (AD.4)



where k: —  k, ' ~ k.v J
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E. Physical Stress and Displacement Components

Vectors or tensors which represent physical quantities consist 

of a magnitude multiplied by one or more unit vectors. In the 

Cartesian coordinate system this magnitude or physical component is 

the same as the tensor component, that is, the tensor component has 

the correct physical units of the quantity represented. In other 

coordinate systems the tensor components may not have the correct 

units. This arises from the fact that the basis vectors of the

coordinate system are not generally unit vectors. Thus, for example, 

an arbitrary first order tensor may be written as

_  k ~  
v  = v~ 3 l

0 (AE.l)
. k- —where the 27' are the vector components and ^ a r e  the basis vectors.

^ k becomes a unit vector when it is divided by its magnitude given

ky 1 <}kl ~ v kk. > underlined repeated indices not summed. Then

\ J =  r  k J ^ k k  1 k- /  f ~ f k k
k -- '   (AE.2)

*where ( f h  j  V < ^ k  -*-s a un^t vector and V y v k k  is called the
physical component. The physical stress and displacement components 

will be denoted by using the coordinate labels as subscripts. Then 

in general

T a  n
physic/

and
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7" —  T ' 11 > ^  —  7" —  T' - ' ̂
L ? f  <) > L f i ~  p ~ 2

r ? * t  - ; r

7"’ -  T' —  a ̂  y ^ 3 , 7 1 —  7" 33”  L 2 ^  J  ^ j

- fk  . -'A
= , ?  ^  \ ^  = ;  « 2

- ^ 3  (AE*4>

F. Shear and Compressional Wave Potentials

It can be demonstrated that the compressional wave potential •ĵ* 

is associated with the dilatation, i.e., volumetric effects, and 

that the shear wave potential A  is associated with the rotation, 

i.e., shape change effects.

(AF.l)

Then

U l ,L -  7 ,  L i  +  Cijlt </fc; j i

The last term of (AF.2) vanishes so that

(AF.2)

itl)L ~  ^ , Ll the dilatation (AF.3)

Also

U k J  - 4>jkj t  (AF>4)



The first term of (AF.4) vanishes, and the result is
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£tjk ~~ ^,Sj the rotation (AF.5)
where the condition ~ O  has been imposed.

The displacement equations of motion are

S  ^  “ i ,  j j  t  (  j  i  (AF.6)

If U , IT , UJ are the X , displacement components, re

spectively, then for the case V~= <a/ = o , (AF.6) is satisfied by 

the motion

t/= i  )
(AF.7)

Ijx.
if = ) • Also the particle motion is in the direction

of propagation. Next, for the case t( ̂  = O f (AF.6) is satisfied

by
XTT

lr'-
(AF.8)

\ /1-if L  j- - \ part i d e motion here is transverse to the

direction of propagation. Substituting 

a  ■ - 1- (l- l
‘ 2>fl r  T f i

into (AF.6), it is found that (AF.6) will be satisfied if
/ ^  4>

v = c I  3 t ->-

and 2_r».
t

T  & L (AF.9)



✓» / A + w 'A- _ ' ,
where ~ -J y ; C-j V. ■$ / . Substitute £  —  ̂  A

and Î'j )j — into (AF.9) to obtain

Z J -  ^
V  e  -  cj- O ’t"1' -> V - £ 7- 2 - f 1" (AF.10)

Therefore, it has been shown that <j> is associated with the dilata

tion (B which propagates as a longitudinal wave, and that ft' is 

associated with the rotation which propagates as a transverse wave.

G. Numerical Methods

The primary purpose of this research is to present numerical 

results regarding stresses and displacements in the vicinity of the 

elliptical discontinuity. To accomplish this task, two basic numeri

cal problems had to be overcome:

(a) calculation of the Mathieu functions, their 

derivatives, characteristic values, and Fourier 

expansions of the periodic functions

(b) approximate solution of an infinite set of 

linear algebraic equations with complex 

coefficients.

The first problem was essentially eliminated by obtaining a 

computer routine from Gertrude Blanche and Donald Clemm of the Wright 

Patterson Air Force Base, which would compute the periodic and radial 

functions and their first derivatives. Also included was the calcula

tion of the characteristic values and the Fourier coefficients. The 

second derivatives of the functions were found from the differential 

equations, i.e.,
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(radial) =  ( h ~ a S

and
J L s

(periodic) JlyH ~  ~ ( Z J  ) 5  (AG.l)

The solution to the infinite set of simultaneous algebraic equa

tions was treated as follows. In matrix notation, the equations can

be written as

*  *  =  5  (*6.2,
where /-} is the matrix of the coefficients, X  is the solution vector 

consisting of the unknown expansion coefficients and 3  consists of 

known terms from the incident wave. Then

/? ft X  ~  ft &  (AG.3)

and

X X  -  &

I
3 (AG.4)

Thus the problem became one of inverting the matrix of the coefficients, 

The inversion routine for a matrix with complex elements consisted of 

a Gauss-Jordan elimination method which inverted the matrix in place 

with complete pivoting. A back substitution check on a (30 x 30) 

inversion produced agreement to six significant figures for all param

eters treated where the solution converged satisfactorily. For cases 

where the elliptical discontinuity had eccentricity of 0.958, i.e.,

C?4 3  s it was necessary to invert a (50 x 50) matrix in 

order to obtain satisfactory convergence of the stress and displacement



series. In most cases convergence was such that the last term of the 

series was less than one percent of the sum. However, for —  O' 
and ^  very small, the last term retained from a (50 x 50) inversion 

was on the order of five percent of the sum. Owing to storage limita

tions within the computer, it was not feasible to invert matrices 

larger than (50 x 50). Also the larger matrices were very poorly 

behaved because their complex elements varied by as much as thirty or 

forty orders of magnitude in some cases. This behavior arose from the 

fact that the radial functions and their derivatives vary greatly with 

the order of the function at certain frequencies. It was decided that 

the application of an error correction technique to the matrix inver

sion routine would prove unnecessarily complicated, and would in fact 

cause the storage capacity of the computer to be exceeded.

H. Some Alternate Methods of Solution

The technique of separating the wave equation in the elliptical 

coordinates was employed primarily because it was the method used in 

similar problems involving dynamic stresses and because it leads to 

a solution that approaches the exact analytical solution in its 

generality. Some of the other solution techniques which were considered 

are now discussed briefly.

Average Wave Number Perturbation Method. The basic difficulty 

encountered in analyzing dynamic elasticity problems is that the 

stresses and displacements are each composed of two wave motions which 

travel at distinct characteristic speeds. When these stress and dis

placement waves are expanded in a series of the eigenfunctions of the
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coordinate system being considered, the two wave numbers are contained 

in the eigenfunction arguments. In order to satisfy the boundary con

ditions of the problem at hand, it is necessary to evaluate the coeffi

cients of the wave expansions which in turn requires the employment of 

the orthogonality properties of the characteristic functions. However, 

the presence of the two distinct wave numbers in the eigenfunction 

arguments prevents the use of orthogonality relations. In the present 

method of solution, this problem is overcome by writing the periodic 

Mathieu functions in terms of their Fourier series forms which intro

duces the orthogonal trigonometric functions. However, the solution 

is then represented by a doubly infinite series, and only an approxi

mate solution may be obtained.

As pointed out by Thau,'*' if the two wave numbers were equal, no 

difficulty would arise, and an exact formal solution could be obtained. 

Unfortunately, the two wave speeds are never equal for real materials. 

Thau developed a perturbation method which used a function of the 

average wave number as the wave number of the unperturbed or zero order 

solution. Then the difference between each of the wave numbers and 

the average wave number can be related to a perturbation parameter.

If is the compressional wave number and ^2. is the shear wave 

number, then

( ^ -  k ( i +£ ) (AH.1)

^S. A. Thau, Ph.D. Thesis, p. 146.



where k. -  ^l')/2- and £ -

the Helmholtz equations for <f> and ,

£ _ V Z +  k  \  l ~ 3 £ .  -t- =  O
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Substituting into

(AH.2)

x.

£ v l +  k (I i-£t /  - 0

Define

*y , \ /h ^  ££ —  (l + <£. ) ; £  -  / + £

Then

Cv*- + t \ / - 2 r ) ] < t  =  o 

[ v 2' -t-fc ( I f  £ £  )] 9 ^ - o
(AH.3)

For real materials it can be shown that "L O' O   ̂ the Upper

and lower limits corresponding to \?— 0 -S and ^ 0 - 0   ̂ respec

tively. Then it is assumed that ^  , f' stresses and displacements

can be expanded in a power series of C. or £ . Consider a plane

wave expansion in £

L k *  )

^  (AH.4)

It may be concluded that near field low frequency results will be 

most accurate. It must be noted at this point that the same conclu

sion applies to the separation of variables, doubly infinite series 

approximate solution employed in the present paper. Therefore, the 

average wave number perturbation method could not be expected to 

yield new or better results. It will be shown that the average wave
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number perturbation method cannot be applied to dynamic stress problems 

in elliptical coordinates. Consider

<£> =  cfc -h £  -j- £  4> -T - - -

(L K  f  f -----
(AH.5)

Then the zero order potentials satisfy

( V1' 4>°~0  ; ( V 1 ^ 2") -  o  (AH.6)

The governing equations for the higher order perturbations will not 

be derived since the perturbation method fails already with the zero 

order solution.

The solutions to (AH.6) are Mathieu function products. For a 

rigid immovable inclusion with an incident shear wave

(AH. 7)
The displacements are
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^ U 7  =  ̂ & S c e " (% P * < £ h p  ^  c M % V > lC k l )

+ £  ^  o>, £ 7 « 4 7 t ,  f )  1 1  c7 , t )  m £ (  % } ) }
(AH.9)

and similarly for and ^(^ . The boundary conditions

are
inc.

a,
O

V  °
tty and

rev 0 
U ry

ref. „
+  u =  O

TT-f*
~t u

o

7
O

7 ' (AH.10)

(AH. 10) represents essentially two equations for , C j D.v> > and 

£r,̂  . At this point it would be desirable to employ the orthogonality 

properties of the periodic Mathieu functions to obtain four equations. 

Even though the arguments are now identical, the method fails because

ce.C7 ,%)

and

Cc(7j f) J. St ( J ^ )



86.

do not hold. In fact there is no simple relationship hetween the 

derivative of one function and the other function except at zero wave 

number which is the static limit of the dynamic case. Therefore, while 

the perturbation method proved to be a fruitful technique in the para

bolic geometry treated by Thau, the method fails in the present proh- 

lem.

Characteristics. In general, problems involving the propagation 

of stress waves in solids are presented as problems of partial dif

ferential equations which describe disturbances in ideal continua 

obeying the mass, energy, and momentum conservation laws. Boundary 

value problems of systems of hyperbolic quasi-linear partial differen

tial equations involving only two independent variables can be solved 

using the method of characteristics. Physically, the independent 

variables are either two space coordinates or one space coordinate 

and time. In the present plane elasticity problem, the introduction 

of harmonic time dependence reduces the number of independent variables 

to two space coordinates, and it would appear at first glance that the 

method of characteristics might apply, although the time reduced 

equations might present some difficulties. In the absence of dis

continuity boundaries, the dynamic stress problem could be treated by 

this method. However, the presence of a discontinuity introduces the 

phenomenon of mode conversion whereby both P- and SV-waves are re

flected and refracted from an incident wave of either type. As late 

as 1968, the method of characteristics as applied to elastic waves 

was generally restricted to propagation in the absence of boundaries,
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and it appears that the mode conversion problem has not been treated. 

Therefore, the method of characteristics does not readily lend itself 

to the solution of the present problem.

Integral Transforms. The primary difficulty encountered in the 

use of transform techniques lies in carrying out the inversion of the 

transformed solution. Generally, the inversion entails the evaluation 

of integrals in the complex plane. For the present problem, the trans

formed solution would contain the Mathieu functions which means that 

the integrands in the inversion would contain them as well. Integrals 

involving the Mathieu functions have not been well treated in the 

literature, and while a numerical integration procedure might prove 

feasible for carrying out the inversions, the numerical problems 

encountered would be formidable. Therefore, the integral transform 

methods were not considered for the present problem.

Direct Numerical Integration. Another alternative approach 

might be to directly integrate the Navier's equation for the displace

ments after transforming to elliptical coordinates. The difficulties 

inherent in this method include

(a) divergent paths of integration caused by the nature 

of the elliptical coordinate system

(b) governing equations in terms of displacements and 

boundary conditions in terms of stresses or vice- 

versa

(c) mode conversion phenomenon

(d) convergence of solution.
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Also the method itself is undesirable since it eliminates all parame

tric generality at the outset. For the reasons above, this method 

was not used.

I. Derivation of the Boundary Condition Expressions

The aim of the following derivation is to reduce the stress and 

displacement relations such that only one trigonometric function appears 

in each term, i.e., all products of trigonometric functions must be 

eliminated through the use of certain identities. When this is accom

plished, the orthogonality properties of the functions may be used.

Define partial potentials as in (5A.12) through (5A.23); also 
b y1 y>

define p — /-2. v* anc* i-ntr°duce

(AI.l)
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where
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n ,e*k o k  . „ ,0 /£. *, .
/ %  -  ( & n  " h n  ) . f t i x _  = ( & »  ~ n  ^n )

/> h e < k „ y e k o / k
( n  -  t n  )  . ^  M

(AI.2)

Then if /£■'<-,$, 7~ for the incident, scattered, and transmitted 

wave fields, respectively, the stresses can be written as

k.
_ ^ p ( c o 5 h i| ~ - c . o s ^ X  —  <r°s^|SinK^3II-I- ( . o ^ s y S m  < y ] I L

-f- Q, ( c o % h ^  -  C o ^ y ) j T

k'-n ^eos)X%, — Co’s'y)-X. Cc-^y S'f)sylZI. 5»vvk^ 3/XL

These may be reduced by means of trigonometric identities to
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X sIn terms of the /7 these become

ĵ [_(Cos f̂'-i)( ^ ̂ ^ ^ 7 ) ~ h j  ̂ 3 J  Cc^ny
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-A Art^’u
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z  /? £ Ccsny Cos ry  S<n n y

i  fly ^ n y  COSrty-i Sn^y S m n y
(AI.5)

Expand using trigonometric identities to obtain
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Introduce the orthogonality properties of the trigonometric functions 

and reduce (AI.6) to the following four expressions

(^l'P i-lCco^-Lyp^ + ($#")

— ccsh^z/ihA J cos vy~-tj(?\'l iPP? -ftftf'-J)CosCrt+2.ĵ ^
M-

($ -i)y £){ PP -l-! QiA g.)

—  imh% flyj&nny ~Pp^ -<3 A J ) s / ^ 4 l )  y  J

cont.
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Now define the following

6 ; = - } ( & / » ? - * / > ! )  j S * * - $ ( * $  t p * l  H K  
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Write out the first six terms of each series for the four separated

stress expressions
C o ^ 2 y  f- & 2_ +■ & \  < - ° n - y  n~o

f B>j co^y -t- 8 2 . ^o sy  •/- 8 ^ cos, ̂>-y n ~l
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Collect like terms to obtain
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Next replace the B  ̂  by the /-? terms; then replace the by the

potential terms; and finally, replace the partial potentials by the 

Mathieu function expressions. Then simplify the resulting expressions 

and define

ry\

r  ~ z u  =  <5

LCcgJ = a

C ^ 3  ~ ^

[ O l J - i f s  Co.hlj] = U ^

(AI.12)

Also separate t h e ^  and ^  terms. Then for the reflected waves the 

explicit forms of the coefficients of the trigonometric functions in 

(AI.10) and (AI.ll) are

+ - (iz$) ft* (£.i )<$„]] X

Ci^ZciiA
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n23 n .8" '{ Wĉ V  - i  ) f l  „(%<.!

(AI.19)

f  ? n  " - 1 ? , & & ( (  <«* v ^ + ^ V h W * . )  6 f a s )

+ sX/r+tU) 83 ^ s)3 (- c « ^ s * ^ |  B f c & t l s ^ b h ) }

<-(̂4 s JWBlfa,)] +fôls|"t’|SiCfs)Ws®V̂ ĵ
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To obtain the incident wave stress expressions, make the following
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substitutions into the expressions for the reflected waves

?, <*■»(%, %t)

f k m G ^ ^ C h ,  ?c)

D *  -2rr
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To obtain the transmitted wave stress expressions, substitute

k  f c W  (%l) Yljc'j

(AI.22)

This completes the derivation of the stress boundary condition

expressions. The displacement boundary condition expressions are

more easily determined as follows. In terms of the partial potentials,

the displacements are written
k  r  -5 /e / k o, *2. v -< / o,1 ^  ^  \ "1

f n ) ^ sh/>7 h •ftn)S",ny J

~ + ̂  ) $"\ fi*/]

(AI.23)



Using the orthogonality of the trigonometric functions and separating 

the and ft terms, the expressions for the reflected wave dis

placements are obtained.

° u ? - >  Z  C m

f ̂  - >  z.~n 1,V?,£)

^  ri C/>, S n d,%<i)

4 ^ y  ~ n  5m ]( I U  )

m  ( 3>li)

(AI.24)

The incident and transmitted wave displacement expressions are obtained 

by making the substitutions (AI.21) and (AI.22), respectively.
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Fig. 3 Distribution of Normalized Stress vs. Ellipse Eccentricity for
Incident Plane P-Wave on Minor Axis of Rigid Cylinder.
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Fig. 15 Distribution of Normalized Hoop Stress vs. Ellipse Eccentricity
for Incident Plane P-Wave on Major Axis (upper plot) and Minor
Axis (lower plot) of Cavity.
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Fig. 16 Distribution of Normalized Hoop Stress vs. Normalized Source Location
(R0-R., )/A of Incident P-Wave on Major Axis (upper plot) and Minor
Axis (lower plot) of Cavity.
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Fig.

q =0.75

B/A=0.76

v=0.
v=0.25

Distribution of Normalized Hoop Stress on Cavity vs. Poisson’s Ratio v
for an Incident Plane P-Wave on the Major Axis.
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Fig.19 Distribution of Normalized Hoop Stress vs. Ellipse Eccentricity
for Incident Plane SV-Wave on Major Axis (upper plot) and Minor
Axis (lower plot) of Cavity.
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Fig. 20 Distribution of Normalized Hoop Stress vs. Normalized Source Location
(R -R, )/A of Incident SV-Wave on Major Axis (upper plot) and Minor
Axis Xlower plot) of Cavity.



20
.0

126

oO  03 »—< *H XX < 
r£3 MloJ> O 

CN -ri45 cflq S

o

<N

GO

VOr̂.
o rH

HOV
CO
O

M

CM

O  CO CM

0) *H
H cr* cd <J-

CM

O O o
• • • • •

VO CM 00 <f O

o ,UU ,1/ i  ssaa^g dooH pszfjBiuj-ou


	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Approval of Dissertation
	Abstract
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter I: Introduction
	Chpater II: Elliptical Coordinates and the Mathieu Functions
	Chapter III: Problem Definition
	Chapter IV: Incident Waves
	Chapter V: Plane Strain Problems
	Chapter VI: Conclusions and Recommendations
	Appendix A: Elliptic Metric Tensor
	Appendix B: Christoffel Symbols
	Appendix C: Laplacian Operator in Elliptic Coordinates
	Appendix D: Sepaaration of the Helmholtz Equation
	Appendix E: Physical Stress and Displacement Components
	Appendix F: Shear and Compressional Wave Potentials
	Appendix G: Numerical Methods
	Appendix H: Some Alternate Methods of Solution
	Appendix I: Derivation of the Boundary Condition Expressions
	References
	Vita

	List of Symbols (1 of 2)
	List of Symbols (2 of 2)

	List of Figures (1 of 2)
	List of Figures (2 of 2)




