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ABSTRACT

A method 1s developed within the framework of
Synge's function-space interpretation of problems in
linear.elasticity whilch allows the consideration of
solutions to problems for anisotroplc medla in terms
of the solutions of a corresponding lsotropic problem
and corresponding simpler anisotropic problems. The
isotropic solution and simpler anisotroplec solutions
establish points 1n each of the statically and kilne-
matically admissible spaces for the anisotropilc
problem. The established points are used to deflne
sets of vectors 1n the statically and kinematically
admissible spaces. The linear independence of these
vectors can then be determined by a pair of criteria
developed 1in this work. The independent vectors so
established, when employed in Synge's hypercircle
method, provide approximations to the solution of
the anisotropic problem. Synge's expressions for the
bounds on the approximations obtained are extended
to allow more immediate usage. In additlon the notion
of the residual problem, which leads in some cases to
an exact solution of the anisotropilc problem, is

developed.
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CHAPTER I

INTRODUCTION

A review of the literature reveals that a con-
siderable amount of investigation has been done in
the last thilrty or forty years 1in the fleld of linear
anisotropic elasticity. The approach taken by most
investigators has been to extend the theories already
developed for isotropic elasticity. Although many
valuable results have been obtalned by thils method
of analysis, it is somewhat surprising that very few
of the contributlons in this field have taken advantage
of known soclutions of corresponding problems wlith lesser
degrees of anisotropy. As a result the manner in which
the solution spaces of 1sotropic and anisotropic

elasticity are interrelated 1is not completely understood.

Deslred ObjJectives

The purpose of this research was to develop a
method of systematically utllizing the solution space
of isotropic elastlcity to establish polnts in the
solution space of anisotroplic elasticlty which then
seryve as points in solution space for problems with

materials of more complex anisotropy. Such an analysis



would provide the englneer with a better understanding
of the relationships between isotropic and anisotropilc
solutlon space. The general plan of attack was to
conslder successlve levels of material complexity,
using the solution space of the previous level to
establish points in the solution space of the next
one, e.g., use isotropy to form initlal estimates for
transverse-isotropy and then use transverse-lsotropy

similarly with respect to orthotropy, etec.

Previous Investigations

As was indicated in the opening paragraph a con-
siderable amount of material has been published con-
cerning the field of anisotropic elasticity. Let us
briefly consider the use of isotropic solution space in
these works. The reader interested in the direct approach
to the field by extension of isotropic solution theories
is referred to the work by S. G. Lekhnitskii,l the most

complete treatment discovered by the author.

One technique of utilizing the solutions of isotropic

problems to obtain approximations of anlsotroplc problems

1 S. G. Lekhnitskii, Theory of Elasticity of
an Anisotropic Elastic Body, trans. P. Fein (San
Francisco: Holden-Day, Inc., 1963).




is a variation of the perturbation procedure often used
in the approximate solution of nonlinear differential
equations. Several methods of such a procedure, dif-
fering only 1n the definition of the perturbation

2 In

parameter, were advanced by I. S. Sokolnikof?f.
this paper he consldered, for example, the equation
for Airy's stress function, U(x,y), in two-dimensional

orthotropic elasticity written as
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where Cqs 03, and 05 are material constants. The
perturbation parameters are introduced as
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which results in the following form for (1.1):

e I. S. Sokolnikoff, "Approximate Methods
of Solution of Two-dimensional Problems in Anisotropic
Elasticity,"”" Proceedings of the Third Symposium in
Applied Mathematics (New York: McGraw-H1ll, 1950).
pp. 1-11.
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Upon assuming that e, and €, are small, a solution of

the form

00

U(x,y) = Z Uij(x,y)e)icsg (1.4)
i,J=0

is proposed, and Uij(x,y) are determined so that

U(x,y) satisfies equation (1.1).

Sokolnikoff also obtains expansions bhased on two
other definitions of the perturbation parameters in
the same paper, and in a more recent publicatlon
Yih-0O Tﬁ3uses still another definlitlon for the perturba-
tion parameter, but the procedures are analogous so

they need not be discussed further.

3 Yih-0 Tu, "Perturbation Solution of Plane
Stress Problems in Anisotropic Elasticity," SIAM
Journal of Applied Mathematics, Vol. 16, No. 2,
March 1988, pp. 374=386.




A somewhat different approach was taken by
L. Gof'fi.LI He showed that the equatlion for the stress
functilon for a thin orthotropic plate could bhe reduced
to the corresponding equation for an 1lsotroplc plate
by assuming an approxlmate form of the shear modulus,
G, 1n terms of the Young's modull and the Polsson's
coefficieﬁts, and a simple homographic deformation

of one of the coordinates.

All of these proposed approximatlions possess
common deficiencies. They do not admit to the pos-
sibility of an exact solution and require the degree of
anisotropy of the materlal to be small. These restrictions
were avolded in thils investigation. Toward this end the

basic approach taken by J. L. Martin was more appropriate.5

4 L. Goffi, "Proposed Approximate Solution for
Problems of Plane Elasticity in Orthotropic Anisotropy,"
Giornale del Genio Ciyile, 10:601-611, 1962.

2 J. L. Martin, "Preliminary Report on the
Bounding of Anisotroplic Elastlc Problems from the
Solutions of Corresponding Isotropic Elastic Problems
Using the Method of the Hypercircle," (Mechanlcal
Engineering Dept., Newark College of Engineering,
Sept. 1967, Mimeographed). "Report No. 2," February,
1968. "Report No. 3," February 1969.



His work inyvestigated the use of the corresponding
isotropic solution In conjunction with the hypercircle
method, a functlon-space approach devéloped by J. L.
Synge and W, Prager which will be explained later, to
obtain approximations to an anisotropic problém. The
results of his work established the feasibllity of such
an approach and thereby paved the way for thils

investigation.



CHAPTER II

THE HYPERCIRCLE METHOD AND ITS APPLICATION

The method of the hypercilrcle is a techniqué for
investigating boundary value problems 1in terms of
function space. The method was developed by J. L.
Synge and W. Prager in 1946 and first appeared in
publication in October, 19117.l Another paper by
Synge expanded the theory to include elasticilty
problems wlth body forces,2 whille sti1ll another paper
presented the theory in regard to its applicabillity

to boundary value problems of other fields.3

1 W. Prager and J. L. Synge, "Approximations
in Elasticity Based on the Concept of Function Space,"
Quarterly of Applied Mathematics, 5, pp. 241-271
(1957). B

2 J. L. Synge, "The Method of the Hypercilrcle
in Elasticlty when Body Porces are Present," Quarterly
of Applied Mathematics, 6, pp. 15-19 (1948).

3 J. L. Synge, "The Method of the Hypercilrcle
in Function-space for Boundary-value Problems,"
Proceedings of the Royal Soclety of London A, 191,

pp. UL7-67, 1047.




In the abstract to the latter article Synge gayve the
following statement which succilnetly déscribes the

method of the hypercircle:

For certaln boundary-value problems, the
conditions to be satisfied are split into two parts,
so that the solutlion of a glven problem 1s the com-
mon solution of two relaxed problems. Solutions of
the two relaxed problems are easy to obtain, and
such solutions glve information regarding the
solution of the orlginal problem. Thils informatlion
is interpreted by a functlion-space representation.
If the scalar product in function-space 1s suitably
defined, solutions of the relaxed problems locate
the solutlon of the original problem on, or Inside,
a hypercircle in functlon-space. The approximation
may be improved by introducing further solutlons
of the relaxed problems, If the center of the
hypercircle is regarded as an approxlmate solution
to the original problem, 1ts error 1n a mean-

square sense is immediately known.

Synge has published a number of subsequent
articles on various aspects of the method. These
will not be reviewed since the material covered 1is all
included 1in Synge's book.5 It was from thls work that
the theory described and subsequently used in this

research was derived.

4 Ibid., p. 447,

2 J. L. Synge, The Hypércircle in Matnématical
Physics (Cambridge: Cambridge Uniyersity Press, 1957).




Hypercircle Theory

The discussion of thé hyperclrcle theory présénted
here considers only the case where the functlon space
possesses a poslitive~definilte métric slnce 1t willl be
shown that the definition of a metrlc approprlate to
the function space for elasticity theory 1s indeed
positive-definite. As stated previously the theory as
outlined below follows the general approach given by
Synge in his book excépt where speclallzation to
elasticity theory lends simpliflcation without detracting
from the general treatment. A set of definitions of
terms which are essential to the development will be
given first, after which the theory will be outlined
as briefly as possible while still maintalining a degree

of continuity.

P~space. P-space is that domain of Euclidean
3-space with coordinates X5 X5 and X3, upon whilch a

problem of linear elasticity is defined.

F-~space. The F-space defined on a given P-space
consists of all real functions deflined on the co-
ordinates of the P-space such that these functions are

plecewise continuous and square integrable.
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FP-vector. An F-vector, denoted by S, corresponds
to a set of functlons, 815855404, SM, defined on
Pespace. These vectors possess the usual propertles
assocliated with elementary vector algebra with the
exceptlon that only an inner product, S-S', 1s defined

in the case of the F-yector,

Linear subspaee-(&l. L 1s a linear subspace of

F-space 1f for the points X and Y in L, the polnts
aX + bY are also in L for all a and b satisfying

a +b = 1.

Linear n~space (Ln). A linear n-space 1is a

particular type of linear subspace deflned as & space

whose points X satisfy

where A i1s a fixed vector, Tp are n linearly independent

fixed vectors, and ap are n variable parameters.
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Hyperplane of class n (Hn). A hyperplane of

class n, also a particular type of linear subspace,
is an infilnite dlmensional space whose points X

satisfy

X8, = bp, (p = 1,2,...,n),

where Sp are n linearly independent fixed vectors

and bp are n fixed numbers.

Orthogonality of linear subspaces (L',L"). Two

linear subspaces, L' and L", are orthogonal if and
only if every vector T!' lying in L' is orthogonal

to every vector T" lying in L".

As indicated by the previous quote of Synge the
hypercircle method 1s based upon splitting the boundary
value problem into two parts. It 1s further required
that the two solution spaces resulting must be
orthogonal. Thus a boundary value problem can be
stated equivalently as "it is required to find the
intersection of two orthogonal linear subspaces of a

function-space."6 With this approach in mind Synge

Ibidl’ p' 97-
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developed several properties of linéar orthogonal

subspaces which wlll now be summarized.

Let L' and L" be two orthogonal, nonlntersecting,
linear subspaces with S' and S" denoting any points in

each respective space,

Vertices. The vertices, V' and V", of L' and L"
are the values of S' and S" for which (S'—S")2 is

a minimum. The vertices have the properties:

1) the F«vector determined by (V'-V") is

orthogonal to both L' and L"; and

2) the vertices are unique.

If L' and L" are finite dimensional then théy are

properly linear n-spaces. Let them be denoted by

' n 1 "
Lr and Ls and let So and SO be the vectors corresponding

1
to A in the definition of a linear n-space for Lr and

" .
LS, respectively. Their closest approach 1is then

2 1 1" 2 ! t 2 non 2
(V'=V")© = <SO—SO> - (apr) - (acTc> R (2.1)

A\ "n .
where the ap and a, are determined by
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r
| | 13 ' " ]
a T T, + So=S0 )T, = 0, (p = 1,2,...,r),
u=1
(2.2)
S
”n n 1" ] " "
a, T, Ty = <SO—SO>-TCr = 0, (0 = 1,2,...,8).
v=1

Now let L' and L" be orthogonal and intersecting
linear subspaces with S' and S" points in L' and L",
respectlively. Synge then proves the followlng
propertiles:

1) L' and L" intersect at only one polnt, say S;

2) the vertices coincide, and V' = V" = S; and

3) the vectors (S-S') and (S-8") are orthogonal,

hence
(8-8'):(S=3") =0, (2.3)

or equivalently,

[S - %(s'+8%)]1% = [%(S'-8")1°, (2.4)
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which locates S on a hypersphere of radius %|S'-3"|

and center at %(S'+s%),

Now the essence of thé hypércirclé method 1s to
obtain information about S, thé intérséction of L'
and L", in terms of thé vértices’of the linear n-spaces,
L; and L;, which aré subsets of L' and L" respectlyely.
The value lies in the fact that while a méthod for
determining S which would in éffect requiré a complete

description of L' and L" may not be avallable, 1t may
1

t
be relatively simple to obtaln a few polnts, Sr and Ss’

! 7"
in each of L' and L" upon which to define Lr and Ls.7

To outline the construction suppose that r+l

1 ] '
points, So’Sl""’Sr’ are obtained in L' and s+l points,

n " "

SO,S Ss’ are obtailned in L". These points then

1,-..,
t "

determine r vectors, Tp, in L' and s vectors, To’ in

L" as

=]
in
W
|
[95]
—
o]
1}
—
-
o
-
-
Y
~
“

(2.5)

=
I
n
1
[95]
Q
1
—
"
n
-
v
wn
~

7 Tpid., pp. 98<107.
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Then with these vectors linear n-spaces are defined as

and (2.6)

which lie in L' and L" respectively.

The followling orthogonalities result with respect

1

"
to L', L", Lr’ and Ls:

(8=V')-(S-V") = 0;
n
(s-v"-.T_ =0, o= (1,2,...,8); and (2.7)
\
(S-V")‘Tp = O, p = (1,2,...,1”),

1 "
where V' and V" are the vertices of Lr and LS and

S is the intersection of L' and L".
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The first of equations (2.7) 1s recognized by
recalling the form of (2.3) as requiring S to lie on
a hypersphere. The second and third relations of
(2.7) combined are seen to place S on a hyperplane of
class r + s. Thus S must lie on the intersection
of a hypersphere and a hyperplané of class r + s,

which is a hypercircle of class r + s. Iigure glves

1
a geometric interpretation of the cons’cruction.8
Once the hypercircle has been constructed it 1s

important to know how closely the solution can be
approximated. A simple but important bound on S is

the fact that if the radius of the hypersphere 1is

small, then S can be approximated closely by the center
of the hypersphere. A somewhat more complicated expres-

sion for bounds on S results from the fact that S lies

on a hypercircle. These bounds are

> (2.8)

where

8 Ibid., pp. 98-109.
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FIGURE 1

GEOMETRIC DIAGRAM FOR THE HYPERCIRCLE
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C = B(Vr+vy"),
R = %|v' - V"],
c? + R% = y(vrewyn?),
and
T 2 s 2
C|2 _ 02 1 1"
o - - C Ip - C Io .
prl o=1
! "
Ip and IU resulting from the orthonormalization of
1 "
Tp and Tg.

The aboye provide only mean-square bounds on S,
i.e., they bound the strain energy associated with
the correct solution. Bounds can also be obtained
for the value of S-G, where G is any F-vector. These
bounds are important for they will provide point-bounds
if G is chosen to be the Green's tensor for the medium.

The bounds on S*G are giliven by

<
50 - c-a] = RIa,l, (2.9)
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where

-3

Hypercircle Applied to Linear Elasticlty

The previous discussion has set down the major
features of the hypercircle method as developed by
Synge which will be used in this research. Synge also
shows that the general problem of linear elasticity

can be treated by the hypercircle me’chod.lO The

Ibid., pp. 110-113.

10
Ibid., pp. 330-339.
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following discussion relates how Synge divides the
elastic problem and defines the F-~vectors énd

scalar products required.

To begin a discussion of the elastic equilibrium
problem one must flrst set down the defining rules,
the field equations of llnear elastlcity and the
boundary conditions appropriate to a mixed bro-

blem.

Equilibriuym equations. The equations of

equilibrium are

T +PF, =0 in VvV, (1, = 1,2,3), (2.10)

where Tij are the components of a symmetric stress
tensor, Fi are the components of the body force per

unit volume, and V is the volume of the body.

Generalized Hooke's law. The stress components

are related to the strain components by

13 T %135ux2®ke

and (2.11)

ey = CijneTxe>
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where eij are the components of a symmetrlc strain
tensor and aijkz and Cijkz are the componenfs of the
elastic modull and compliance tensors, respectively.
The symmetry of Tij and eij pPlace symmetry requlrements
and C

on o 2 glven by

1jke ijk

%33k8 T “xketd T %yike
and (2.12)

= C =

Ciske = Cxp1y = Cyike-

Strain-displacement relatlons. The components

of e,, are related to the displacement components,

iJ

u., by

13

eij = %(ui,3+uj;i)' (2.13)

Displacement boundary conditions. The displace-

ments are speciflied by

uy = u; on Bl’ (2.14)

where B, is part of the boundary, B.

1



22

Stress boundary condltions. The stresses must

satisfy

T4y = X, on B, (2.15)

where B2 1s the remalnder of the boundary énd n.j
are the components of the unit normal vector on B2.

Compatibllity equations. The relatlions necessary

to insure single-«valued displacements when equations

(2.13) are integrated are given by

_ 11
€13,k8 + k2,13 T ©ik,j2 T ©j8,ik Q. (2.16)

These equations are not part of the field equations
since they are only necessary 1f the formula-

tion of the praoblem is made in terms of the

stresses.

Synge defines the functlon space so that any point

or vector in it corresponds to any state of stress in V,

11 1, S. Sokolnikoff, Mathematical Theory
of Elasticity (New York: McGraw-Hill, 1956), p. 25.
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S «+ T,,.

1)

One may alternately employ strain vectors (2.17)

S > eij’

to establish F-vectors. The only requirements

on TiJ is that it is symmetric.

The scalar product is defined by

]
S-8' = f rijeijdv, (2.18)
v _

which is shown to be commutative by the symmetry
properties (2.12). This definition gives the metric

as

2 . . -
S f TiJeinV = I aijklekzeijdv' (2.19)
v v
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In linear elastlcity thermodynamic restrictions require
aijkzekzeij to be a positive-~-definlte quadratlic form.

Therefore the metric defined by (2.19) is positive-definite.

The linear subspaces L' and L" are defined by

] 1
130 T +F, =0 4in Vv, (1

15,37 1 p, = X

Lt: S' +=»> T iJnJ B2 12

(2.20)

L": 8" <~ T, cft,,) =0 uy = u*
) ij? iJ ? 134 12

1t
where C:G&J> is shorthand for the compatibillity
relations (2.16) written in terms of stress components.
Note that vectors T' and T" lying in L' and L" then

satisfy

(2.21)

These linear subspaces are easily shown to be

orthogonal by consldering
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1 ?
ST
T'.T" = J TiJeinV
A

3

J Tijui,JdV
\

1

i}

1" 1 1" 1]
J uiTijanB - J uiTiJ,JdV
B1+B2 Vv

(2,22)

n
o

and the definition of orthogonal llinear subspaces.
Hence the solution of the problem of elastic equi~
librium consists then of finding the intersection

of the two orthogonal linear subspaces, L' and L",

defined by (2.20).%2

12 J. L. Synge, The Hypercircle in Mathematical




CHAPTER III

THE CORRESPONDING ISOTROPIC SOLUTION

The previous chapter has described the hypercircle
method and in addition has established that the lilnear
theory of elasticity satisfies the requirements for 1ts
use. However, as yet, nothing has been saild concerning a
method of obtaining the required set of points in each of
L' and L". Of course one method which Synge seems to
have used for most of his examples, 1ls to seek by trial
and error a few functions which satlsfy the required
conditions thus obtaining a few points with whlch to
build the hypercircle.l It is obvious that a systematic
approach would be preferable, but just what would that
approach be? Perhaps something similar to Southwell's

relaxation method would be appropriate.

] 1"
The Initial Points, SO and So

The first step in developling a systematic method
of generating points in L' and L" is of course obtalning

the initial poilnt in each space. 1In addlition these two

1 See for example Synge, Hypercircle in Math.
Phy., pp. 339-343.
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points must become the basls for the construction of

more points in L' and L". It wlll be shown In thils chapter
how these two initlal points can be obtained from the
solution of a corresponding 1sotroplc problem. The
following chapter will develop the complete

estimation procedure originating from these initial

points.

Kinematic and static admisslbillty of the initial

isotropic solution. Consider a problem in linear

anisotropic elasticity defined by the set of equa-
tions given in Chapter II. Of these the equations of
equilibrium (2.18) and the stress boundary conditions
(2.23) are referred to as the static requirements of
the problem., Similarly the displacement boundary
conditions (2.22) and the equations of compatibility
(2.24) are called the kinematic requirements of the

problem. These equations are

Static requirements,

Tij’J + Fi =0, (3.1)

(Tijnj)B (3.2)
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Kinematlec requirements,

uy = u; on B, (3.3)
C(e) =0, (3.4)

where C(e) is a shorthand notation for the left-hand
side of the compatibility relations (2.24), and B1
and B2 are portions of the boundary B such that

B1 + B2 = B.

Recall the definitlions of the two subspaces L'

and L",
' v ' +F, = )

L': S' «=» Tij, Tij’j i 7 0, GﬁJrﬁ'B2 = Xi’
" 1" " 1" " *

L": S" <= Tij, c(e™) = 0, uy Bl = uy-

Note that under these definitions of L' and L", the

stress vectors Tij and T;J satisfy the static and
kinematic requlrements, respectively. Thus Tij and
T:J'Will be deslgnated as statically and kinematically
admissible solutlons, respectively, for the anisotropic

problem.
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It should also be obseryved that in nelther the
static nor the kinematilic requirements 1s any specilfica-
tion made concerning the constilitution of thé medium.

Thus the wvectors T;J and T;J for an anlsotroplic medium
can be derived from the known solution of a corresponding
problem for any type of material. Now, of course, an
isotropic materlal is the logical type of medium to

exploit in this respect since solutions in isotropilec

elasticity are frequently avallable.

The following theorem 1s an immediate consequence

of the previous discussion.

Theorem 1. Glyen any linear anisotropic elasticity
problem, the stress yector and the strain yvector obtained
from the solution of an isotropic problem of the same
geometry, body forces, and boundary conditions are,
respectively, statically and kinematically admissible

soclutions for the given anisotroplc problem.

The preferred isotropic solution. The vreceding

theorem establishes potential initial points in L' and
L" for the hypercircle method applied to anlsotropic

problems. In fact more than one point is established
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in L' and L" by the 1lsotroplc solutlon, since 1in general
the isotropilc matérial constants appéar in the expres-
sions for the component of the stréSs and straln
vectors.2 Nothing has as yet beén requiréd of thése
constants so they will be allowed to take on any real
values, thus establishing infinite subsets of L' and L",

] n
denoted hy LI and LI'

Recall from the hypercircle discusslon that with
only one point in each of L' and L", call them S; and
Sg, an approximation to the solution is the center of
the hypersphere determined by S; and S:, which is
%(S;+S;>. This point will be called an isotropic

approximation. Theorem 2, stated below, then follows

from the preceding discussion.

Theorem 2. Glven any problem of linear anisotropilc

elasticity there exist an infinite number of isotropic

approximations.

Of course the next question now naturally arises.
Which one of the infinite number of isotropic approxi-

mations is the best or most desirable? In order to

2 Either the stress or the strain may not be a
function of the isotropic material constants. But since
one of them must contain these constants the generality
of the discussion that follows is not affected.
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answer this question the manner 1n which the approxima-

tion is to be ﬁsed must flirst be'establishéd.

A method preferred by Synge 1s thé minimization

of the square of the radius of the hyperspheré,
2_1 18"2 6
R™ = %(5-5,) . (3.6)

In the present situation the natural minimization is
with respect to the isotroplc material constants, v
and E. While this would yield the best mean-square
approximation to S, it is frequently, as wlll be seen
shortly, not the most facile technique. Such an ap-
proach was taken by Martin3 in his initial investigative
reports, and following him this investigator examined
the 1dea further. The major drawback was found to be
in the solution of the two equatlions which result from
differentiating (3.6) with respect to v and E and
equating the resulting expressions wlth zero. While

their solution was obtainable, it involved conslderable

3 Martin, op. cit.
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Therefore, because of these difficultiles

and because the inltial l1sotroplc approximatlion was

only the first step of a procedﬁré'for developlng

better and better approximations, a different approach

was developed.

Before explaining the method chosen for sélecting

v and E consider the constitutive laws for both

anisotroplc and isotropic materlals writtén in matrix

form,
Anisotropic

.. )
€11 C11
€50 Cio
e C

{33 $ _ 4 13
€12 Ciy
€13 Ci5
(%23 ) L C16

4

13
23
33
34
35
C36

Cl6w

Cog
C

6

3 9
Cug
056

[

C66J

with a specific problem see Appendix A.

(3.7)

For an example of the difficulties associated
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Isotropic
(e ) (1 -y e 0 0 o | (c..)
11 E "E TE [11
€20 -F F -% 0 0 0 Too
es3 ~% -3 & 0 0 0 JT;33
$ ey
°1s | o o 0 2(1;;") 0 0 ( T, .
el a o o0 0 2('1;\’) 0 Tiq
\e23j \ 0 0‘ Q Q 0 gil%ﬁﬁ \T23J
(3.8)

Upon examining the above it 1s apparent that no
matter how v and E are chosen the quality of the ap-
proximation will be limited. However, the necessity
is a starting point. Recall the definition of the
points S; and S;. If the stress components for the
isotropic solution are used in (3.7) and (3.8),
the statlically admlssible strains are then obtalned by
(3.7) and of course the kinematically admlssible strains

by (3.8). It is then proposed that what willl be called
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the preferred isotroplc solution have values of v and
E so that, individually, maximum functlonal matchlng
of the kinematilcally admissible and statically admls-
sible strain components 1is achievéd. Proceeding in
this manner each problem must be consldered separately,
since the form of the isotroplc stress vector will
influence how v and E will be chosen. Recalllng that
the original plan was to estimate only the next level
of anisotropy by the preceding level, the constitutive
relation (3.7) will generally be transversally-isotropic
if its approximation is sought in terms of 1sotropic
solutions. This, of course, makes the prospects of a

better quality of approximation much brighter.

The motivation for selecting v and E in this man-
ner is two-fold. First it 1s a direct procedure. Also
some of the anisotropic constants are introduced into
the isotropic strains in the same manner in which they
are introduced into the statically admissible strains,
thus giving rise to a bit of optimism relative to
obtaining an exact solution by the procedure to be

described in the subsequent material.
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Once the values of v and E have been determined
the initlal portlon of the approximation procedure 1l1s
complete. An initilal hypersphere of known radius has
been estahllshed for the problem. Thus the followlng

theorem is obvious.

Theorem 3. The preferred lsotrapic solution
establishes an 1initlal hypersphere of known radius

Tor the anisotropic problem.

Note! Before proceeding to obtain édditional
points in L' and L" the stralns derived from the
preferred isotropic stresses by the anisotropic
constitutive relations should be checked in the
compatibility equations. If compatibility is
satisfied then check the displacements for boundary
condition satisfaction. Under certaln conditions
the preferred isotropic stresses can also be the
anisotropic stresses. An example of this situation
occurs in the problem solved in Appendix C, part I.
Examination of the final solution reveals that the
stresses are exactly those of the prerferred isotropile

solution.



CHAPTER IV

RESIDUAL PROBLEM PROCEDURE

Theorem 3 has established the existence of a hyper-
sphere for the anisotropic problem, the initial step
required in the hypercircle method. Two sets of lin-
early independent vectors must now be generated. One
set lying within L' 1is a set of homogeneous statically
admissible vectors, while the other set lles within L"
and contains homogeneous kinematically admissible vec-
tors. The term homogeneous 1s attached to indicate that
the vectors satisfy the homogeneous static and kinematic
conditions (Fi = fi = u: = 0 in (2.10), (2.14), and
(2.15)), respectively. These sets of vectors are gen-
erated by the fundamental process of this work as solu-
tions of a series of residual problems.

The required sets of homogeneous vectors in L' and
L" could alternately be generated by trilal and error or

by a second and more systematlc method which is that of

pyramid F-vectors and is described by Synge.l However,

1 Synge, Hypercircle in Math. Phy., op. cit.,
pp. 168-213.
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nelther of these approaches exploits elther known or
generated solutions of corresponding problems wilth
simpler material characteristics as a basls for the

two required sets of vectors.

The residual problem procedure which wlll now be
developed has in fact dual applicability. The process
hopefully will reduce the complexlty of a given aniso-
tropic problem so that an exact solution can be obtailned.
Additionally the requlred sets of vectors can be gen-
erated by combining the results of the residual problem

process with a linear independence criterion.

Residual Problem

The basic feature of the procedure to be developed

is the residual problem.

Definition. Given any anisotroplc problem a

residual problem is defined by the set of equations
"

obtained for TKO by letting t = To + TKO or for TSO
'
by letting Tt = To + Tg in the defining equations for
o
the anisotropic problem.

Let T denote the stress vector whlch solves the
anisotropic problem. Now consider the followlng

definitions:
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(4.1)

(4.2)

T =T - T
o’

] 1"
where To and T, are respectively the statilically and

kinematically admissible stresses derived from the
preferred initial approximation as previously described.
It should be noted that the definitions have the effect
of transferring the origin of function space to L' in

the case of Tg and to L" in the case of Ty
o o

The stress vector T denotes the solution of the

S
o

residual problem which results from subtracting the
\]
statically admissible solution T from the anisotropic
'
problem. Since Ts satisfies equilibrium and the stress

boundary conditions, T must satisfy the homogeneous

S

o]

equilibrium equations and zero resultants on the stress
]

boundary. However, Ts does not satisfy the kinematic

conditions in general, so T must satisfy modified

S
0

compatibility relations and displacement boundary condi-
tions.
Similarly the stress vector Tk denotes the solution

o]
of the residual problem resulting from the subtraction of
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" "
To from the origlnal problem. Since TO satlsfiles

compatibility and the displacement boundary conditlons,

Ty must be the solution of a problem with zero dis-

o]
placement boundary conditions and the usual compatibillity
relations. In addition the residual problem 1s charac-
terized by modified equillibrium equations and stress

boundary condltions.

The residual problem chosen depends on the nature
of the original problem. For instance 1f the anlsotropic
problem has only displacement boundaries it might be
advantageous to use (4.2), while stress boundaries would
point toward the use of (4.1). The complete set of equa-
tions for Tg and Tg are given in Appendix B. In
subsequent dgscussiogs concerning the residual problem it
is assumed that definition (4.2) applies. Thus the
theory will be based on transferring the origin to L",

however, this is only done as a matter of convenience and

does not restrict the generality of the theory.

For a particular problem the investigation begins
by using isotropic solutions to generate initilal ap-
proximations and a residual problem for a transversally-
isotropic medium. If the resulting residual problem or
further residual problems generated by linearly inde-

pendent solutions of any residual problem can be solved
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exactly, the transversally-isotropic solution will be
available and can be used on problems of greater material
complexity for forming preferred initilal approximations.
Such a solution would also prove valuable in the process
of obtaining the desired linearly 1lndependent sets of
vectors as will become apparent in the dlscusslons to

follow.

Homogeneous Vectors

Now that the residual problem has been defined its
role in the development of the sets of homogeneous vec-
tors will be established. The following theorem provides

another necessary step in obtaining these sets.

Theorem 4. An isotropic solution of the residual
problem for a corresponding transversally-isotropic

problem can be obtained.

In order to prove the theorem it is only necessary
to state that the equations which define the residual
problem are complete and the existence of a rolution is

assured. The fact that Tk exists then establishes
0 '
that the corresponding isotropic solution Tx must
0

also exist, since the isotropic solution corresponds

merely to a special case of the anisotropic solution.
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The plan 1s now evident. A new residual problem
can be generated by subtractlng the kinematlcally

1"
admissible stresses T * The 1sotrople solutlion is

o]
obtained and the procedure repeated. The followlng
theorem establishes that the isotroplc solution of
each new residual problem provides one polnt in each

of L' and L".

Theorem 5. The initial isotropic approximation to
each new residual problem for a corresponding transversally-
isotropic problem establishes new statically and kine-
matically admissible solutions of the original anisotropic
problem.

Proof. The preferred isotropic solution of the

]
(n+l)st residual problem is T » and the equations
n

which it satisfies are given below.

Equilibrium Equations

[} 1} "

+ = .

Tk 13,5 F Torgg Y2, Tk gy T =0 (83
0
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Stress Boundary Conditilons

n-1
] 1" "
TX 1] + To13 + TX 13 ny = X; on Brp (4.4)
n =0 m

el

Displacement Boundary Conditlons

Uy 15 © 0 on B, (4.5)
n

The compatibility, stress-strain, and strain dis-

placement relations are as given previously.

From the above equatlions it is obvious that the

stress vector

1 _ 1 1" "
T(n+1) = 'K + T, + E TKm (4.6)

satisfies the equilibrium equatlions and stress boundary
conditions for the original anisotropic problem, thus

it determines a point in L'. Likewise the strain,
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" 1 7" 1" I(n+l) [
e(n+l) € + eK + eo =C T(n+1)’ (u-7)

i

n 1" " 1
Uene1) = uy + E Uy + U (4.8)
n

derived from the corresponding strain, satisfies the
original displacement boundary conditions. Thus the

stress

n ” " 1" "
T(n+1) ~ TKn + E : Ty t 1,7 %€ (n+1)? (4.9)

defines a point in L".

A closer look at the equations reveals that the
vectors (4.6), (4.7), (4.8), and (4.9) are the same
vectors as those obtained in the initial isotropic
approximation except for a different set of material
constants. It is then obvious that unless T; is not a

function of the isotropic material constants in which

case the problem would be statically determinant, the
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vector given by (4.6) is a different point in L' if
the isotropilc constants are different. Similarly the

1"
point in L" is different from To

Linear independence. The two sets of homogeneous

vectors will now be defined.

Definition. The set of homogeneous statically

admissible vectors {T'} contains vectors,

] 1] 1
T =t

nETh T T(nep)r B> O (4.10)

Definition. The set of homogeneous kinematically

admissible vectors {T"} has members,

1" " "

T =T

n n - T(n_l): n > 0. (’4.11)

Recalling the previous discusslon the members of
{T'} and {T"} as defined above are simply the differences
of two isotropic solutions of the initial problem. Thus
their linear independence or dependence 1s a basic
property of the form of the isotropic solution. While
an infinite number of distinct polnts can always be
obtained in this manner in each of L' and L", unless

of course the problem 1s statically determinant, the
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linear dependence of the vectors defined by these polnts
is open to question. In general the property of linear
independence will be a function of the values chosen for

the successive sets of isotropic constants.

In some problems it may be completely apparent
how to choose the isotropic material constants to lnsure
linear independence, but in general this will not be the
case. It 1is therefore necessary to establish criteria
for choosing the isotropic constants which will be
sufficient to guarantee linear independence of at least

[] "
some finite set of Tn and Tn.

"
Criterion for {T"}. Assume that Tn is the first

linearly dependent vector in {T"}. Thus

" _n iy
Tn = E me’ (4.12)

for some set of constants, Bh, not all zero. This

can also be written

1" 1"
E = E P : (4.13)
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L 1" 1 "
where En = e, - e(n-l) = CTn’ since C 1s an invertible

linear transformation and therefore preserves linear

independence.2

Consider the vector

I(n—l) "
Tn =T, - T(n_1> =0 e - o € (n-1)" (4.14)

Using (4.3) and (4.4) along with (4.6), the following

relations on (4.14%) are obtained:

W
n (n-1) _" -
[}ijkz ®nke T %ijke e(n-l)kn] =0
sd
and > (L4.15)
T .y T ]
n (n-1)
[%ijk ®ne T %ijke S(n-1kel 0 on By.
J
J

By adding and subtracting o ne(n—l) and using the
assumed linear dependence (4.13), the above relations

become

2 Paul R. Halmos, Finite-Dimensional Vector

Spaces (Princeton, N. J., D. Van Nostrand Co., Inc.,
(1958)), p. 64.
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n-1 ]
I I
w2 E" + (o, —aI(n—l) e" =0
ijke Primke 13ke” "ijke (n-1)ke >
m=1 J
3
and &
In n-l " In I(n—l) "
*iJks Prlfocs ¥ {%gke ke ) S(n-1)xe] =0 °° By
m=1 4Jn
J J
(4.16)
Letting the bracketed term in (4.16) be denoted
" .
by aij’ consider

1" " 1" 1" " 1"
= 8]
[ aijnjUridB I aij,jUridV + J aij ri,J av, (4.17)
B Vv v
" ) "t 1" . .
where Ur = U, - u(r—l) is the displacement vector cor-
"

responding to Er and is therefore zero on Bu‘ Hence

(4.17) becomes
" 1]
] a, .k av = 0, _ (4.20)

for all r = 1,2,...,(n=1).
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Now (4.20) represents a set of (n-1l) equations for

the (n-1) constants, P> which can be written as
myr = 1,2,...,(n=1), (4.21)

where

In " 1"
Bnr = | %ikaPmiaFriy Vs

and

-0

1IKE ik ) € (n-1)kaPr1y

I
b = OLI (n-1) n " "
r av.

Vv

So (4.21) has a nontrivial solution (which implies the
1"
linear dependence of En) unless br = 0 for all r and
lgmrl # 0. Now b and g . are functions of the isotropic
material constants, so if the constants can be chosen
such that br = 0 and lgmrl # 0, pp = 0 for all m are
the solutions of (4.21), and so (4.13) implies that
" M
En = 0. If in fact En # 0, the assumed linear dependence
1"
leads to a contradiction. Thus En is also linearly

independent.
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1
Criterion for {T'}. Assume that T, is the first

linearly dependent vector in {T'}. Thus

n-1
t ?
Tn = E qum, (4.22)
m=1
for some set of constants, Q2 not all zero. Consider

r=1,2,...,n=-1, (4.23)

" n "
where Un = Uy - U gy S 0 on Bu' Thus (4.23) becomes

J' " dv=[' "oav = o. (4.24)

Now

B = ep - &m-1) n " T(n-1)°
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which can be written

" I , I I
_ n n (n=-1)\_"
E =C 7T + G: ~C )r(n_l). (4.25)

Thus using the linear dependence assumption

(4.22) and (4.25) in (b4.24) yields
h_q =4d m,r = 1,2,...,(n-1), (4.26)

where

T
_ n ] 1
Py = J Ciyns TmkaTrry Vo

Vv

and

I (I’l—l ) In ! 17"
dp = | (Cigke” "Ciyke)T(n-1)kaTr1y V-

)

Hence (4.26) is exactly analogous to the criterion

(4.21). In order to insure linear independence of Tn, r

must be zero for all r and Ihmrl # 0.
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If at anytime either of the above criterilon
cannot be satisfied, the set of vectors cannot be
expanded by simply adding more isotropic solution
points. It then becomes necessary to conslder the use
of transversally-isotropic solution points, if they
are available, in the same way as the i1sotropic solu-
tions were used.to obtaln additional linearly 1lnde-

pendent vectors.



CHAPTER V

COMPLETING THE PROCESS

The residual problem technique and the assoclated
theorems and criteria have provided some important
results concerning the characterization of anisotropic
solution space beginning with points in isotropic solu-~
tion space. While the residual problem procedure was
born from the geometric interpretation provided by
the hypercircle method, the process can be employed
independently as a type of relaxation technique to
obtain some exact solutions of anilsotroplic problems.
Moreover, if the exact solution cannot be obtained, the
procedure provides sets of linearly independent vectors
for use in the hypercircle method, the extent of these

sets being determined by the independence criteria.

Point Bounds

The approximations obtained by the hypercircle
method used with the bounds given in Chapter II provide
only mean-square estimates of the quallty of the
solution. However, Synge advanced a method, developed

by Prager, for obtaining bounds at a point for the
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solution.l Thls method utilizes the Green's tensor
appropriate to the type of materilal being consldered

and also requires that the solution has been located

on a hypercircle.

The expression for the bounds on the displace-
ment components at a polnt results from conslderation

of the following equation developed by Synge:

up(x') = I u§p)FidV - J uiTég)nde + J uﬁp)TiJanB

Vv Bl B2

+ j uép)TiJnde - J uirig)nde, (5.1)

By B,

where Uy and Tij denote the solution of the anisotropic

problem, u§p) and T(p) are the fundamental Green's

1J

1 Synge, Hypercircle in Math. Phy., op. cit.,
pp. 350-53.
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solution, Fi are the body forces, and uy and 'rj_Jn.j
are speciflied on Bl and B2, respectively. The

coordinates of the point are x' and the coordinates

of the body, x, havye thelr origlin at x'. Thus uip)

(p)
1]

are simply functions of x. The subscripts i and J

and t are functions of x and x' while ui and Tid

denote components of x and p denotes components of x'.

Now as Synge points out the first three integrals
can be evaluated since they contain only known func-
tions. However, the last two integrals cannot be
evaluated since TiJnJ is not known on B1 and uy is

not known on 82.

Synge proposes a scheme of handling these last

]
two Integrals by considering auxillary functlons ui(p)

"
and T (p) with the following properties:

iJ
ui(p) = uip) on Bl and
(5.2)

J u'(p)T n, dB = 0;

i 1373 ?
B>
Tgépg =0 in V,
T!}p)nd = Tig)nj on B,, and (5.3)

f uirigp)anB = 0,

By
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With these definlitlons he shows that up(x') can be

written as

up(x')— f uip)FidV + [ uitég)anB - J uip)TiJanB
v B B
i 2
- I ui('p)FidV = s.(s'PIg"(P)y, (5.4)
-
where
S > TiJ,S'(p) - Ti}p), and S"(p) > T;}p).

The scalar product on the right 1s bounded by the
relations given in Chapter II by equations (2.9),

S0 up(x') is bounded.

Now an extension of Synge's expression yields
a most important result which 1s adyvanced by the

following theorem.

Theorem 7. The residual problem solution space
generates a constant whlch when added to the function

space spanned by the integrals,
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J uirig)anB

and

J uép)TidanB,
B

2

completely spans the solution space of the given

anisotropic problem.

Proof. Returning to equations (5.2) and (5.3)

]
a variation is proposed to the definitions of ui(p)
1"
and Ti§p). Consider

u;(p) - u(p) + aL(p)v and

i i
(5.5)
"(p) - _(p) (p)
Tij = Tij + b Rij’

where a(p) and b(p) are functions of the coordinates x'.

1 "
Then the requirements on ui(p) and Tiép) result 1in the

following conditions to be satisfied by vy and Rij:
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vy = 0 on Bl and
(5.6)
(p) _ (p) .
a J ViTiJanB = - J Uy TiJanB,
B2 B2
RiJ,J =0 in V,
Rijnj = 0 on B2, and (5.7)
(p) - (p)
b J uiRijanB = - [ uiTiJ anB.
By B,

The functilons a(p) and b(p) can be determined by the

above after vi and Rij are chosen.

By examining (5.6) and (5.7) 1t can be seen that
the displacements vy can be obtained from the

1"
homogeneous kinematically admisslble vectors, Tn‘
Likewise the homogeneous statlcally admissible vectors,

1
Tn’ provide appropriate candidates for Rij‘

Now consider the integrals from (5.1) which were

to be altered. The first integral can be written as



(p)
f Rt M ¥ R

5 By

dB = { u;(p)

J ui(p)T
B

T,.n,dB + J ui(p)r

137 1J
B

n,dB

137

= J <u§p)+a(p)vi>TiJnde,

B

by using (5.2) and (5.5).

integral becomes

(p) . "(p
j uiTij njdb = uiTij
B2 Bl

i*i)
B

Similarly the second

)anB + f uirlgp)n
By

J

J u Tngp)nde

- f ui<1(p)+b(p)Rij>nde,

1J
B

by (5.3) and (5.5).
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dB
1y

(5.8)

dB

(5.9)
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The integrals can now be converted into volume
integrals by Green's theorem. Thus (5.8) and (5.9)

become

and

(5.11)

Performing the indicated differentiation yields

JV[(uépha(p)vi)Tij],jdv = Jv<u§1:j)+a(p)vi’J>Tij -

and
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Jv[ui(T§§)+b(p>RiJ>],J av = Jvui,J(Tj(.?)+b(p)RiJ) dv

(p) (p)
+ fvui Tij’J+b RiJ,J>dv'

(5.13)
By using the strain displacement relations and the

indicated correspondences for vy and Rij the first

integral of each of (5.12) and (5.13) becomes

f (u(p)**a(p)vi,J)‘fij av = J (e(p)+a(p)e" )Tij av,

i,J iJ nij
\Y A
(5.14)
and
(p),, (p) ) - ( (Pl (P) ' )
j ui,J(TiJ +b Rj_J av eij TiJ +b Tnij,dv’
\
(5.15)
where both are in the form of the scalar product.
1 1"
Making the associations S +-» Tij, St e Tnij, S" «» Tnij,

and S(p) +> Tig), the expressions (5.12) and (5.13) can

be written as
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and

13,
(5.17)
' , - _ (p) _
Now using the fact that Tiy,3 Fi’ Ti303 T 0,
and Rij 3 = 0 in (5.16) and (5.17) and uslng the
3

relationships (5.8) through (5.11) in equation

(5.1), up(x') becomes
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+ sP)g 4 aPIgn.g . J uip)Fi av
v

- a(p)f v,F,av - s-s(P) _ p(Plg.gr, (5.18)
v

Adding like terms gives

n, dB

u (x') = - J u T(P)n 137

(p)
1753 0y dB + J ui T

B B

1 2

- a(P)I v, F, av + S-(a(p)s"—b(p)S'), (5.19)
v

which 1s similar to Synge's result (5.4) except that

Vi a(p)S", and b(p)S' are explicitly known from the

residual problem procedure.
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The importance of (5.19) 1s that the functilons
represented by the terms on the right-hand side of
the equation form a function space which spans the
solutlion space for the displacement of the anisotrople

problem.

Now Synge also obtains an expression for epq(x')

the strain components at a point, which i1s analogous

to (5.1).2
'y = (pq) (paq)
epq(x ) = - f uy F& av + J uitij n'j dB
v B1
(pa) (pq)
- J Pi Tijnj dB + f uiTij anB
By By
(pa)
- I uy Tijnj dB, (5.20)
By
where
(p) (q) (p) (q)
ugpq) o Jé aui' N aui' 1/2 Bui Bui _ u(qp)
i 3% axp axq Bxp i ?
2

Ibid., pp. 352-53.
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and
) aegP) ae§?) Begp) Segg)
(pq) _ (ap) o (i3 . 1] e ol —iy L "1
1j €ij 2\ Tox 3x A x| !
X
d P *q p

Similar to the procedure for the displacement

"

1
equation, let ui(pq> and Tij(pQ) be such that

"(pa) _ . (pa)
u:.L = ui on Bl’

i 1373
B,
"(pa) _ .
1343 0 in V,

"(pa), _ .(pq) :
Tij nj = Tij n'j on B:, and

"(pa) -
J uiTij nj dB = 0.
B

1

And again let

(5.21)

(5.22)

(5.22)
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ul (Pa) _ u§pq) + o (PQ),

i 1
and (5.23)
"(pq) _ _(paq) (pa)
Tij = Tij + m Rij'
It follows that £P2) ang n(P?) ape determined
from
(pq) - _ (pq)
2 ViTijnj dB = ui Tijnj dB
B, B,
and (5.24)
(pq) - (pq)
m uiRijnj dB uiTiJ nJ dB.
B, B,

Exactly the same procedure as that for up(x') yilelds
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'y = (pq) (pq)
epq(x ) = f uiTijq n'j dB - j uy Tijnj dB
By B,
N jl(pczl.)f v F, v - 5 (2PDgnp(Pgr),

v
(5.25)

where the correspondences

1

S" > T ..,
nij
]
S' o> Tnij, and
S = Tij,

have been used, and vy are kinematically admissible

1"
displacement components derived from Tnij. An ex-
pression for qu(x') follows directly from (5.25) by

using Hooke's law.

Again (5.25) 1s important since it indicates that
the functions on the right completely span the solution
space for the strains (and eresseé) of the anlsotropic
problem. Furthermore these functions can be derived from

the residual problem functlion space and the function

space spanned by Green's fundamental solution.



67

Based on the previous discussion the following

theorem can be stated.

Theorem 8. The displacements up(x'), strains
x! and stresses x! t t
epq( ) qu( ), at a point can be
explicitly bounded 1n terms of functlons which
completely span the function space of up(x'), epq(x'),

and qu(x‘), respectively.

The proof of theorem 8 is immediate from the

discussion following equations (5.19) and (5.25).

Accomplishments and Prospective Research

The research reported upon herein has provided
a method of obtaining approximations to the solutions
of anisotropic problems. The technique involves the
use of Synge's hypercircle method in conjunction with
the residual problem technique which has been developed
in the present investigation. The residual problem
technique is initiated by the solution of an isotropic
problem which corresponds to the anisotropic nroblem.
In addition the residual problem technique has been
shown to yileld exact solutlons of the anisotropic
problem in some cases. Finally Synge's expression
for point bounds has been extended to facilitate its

usage.
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A few areas for prospectlive research are
apparent. The expressions for point bounds developed
by Synge and extended by this 1nvestigation involve,
the Green's fundamental solution. Since thils has only
been determined in terms of simple functlons for
isotropy and transverse-lsotropy, an lnvestigation of
approximating the integrals which involve the Green's
fundamental solution is suggested. Of course an alter-
native approach is to completely reconsider the question
of point bounds by some other technique. A suggestion

for the latter might be the paper by Stallybrass.u

A final proposal for study would be to consider
approximation of the Green's fundamental solution for
anisotropic bodies in terms of that for isotropic
bodies or even transversally-isotroplc bodies since

the latter has been determined explicitly by Kaner.5

4 M. P. Stallybrass, "On a Pointwlse Varia-
tional Principle of Elasticity and Mathematical
Physics," Stanford Research Institute, Menlo Park,
Calif., AFCRL-63-784, November, 1963.

> E. Kroner, "Das Fundamentalintegral der
anisotropen elastischen leferentlalﬁlelchun
Zeitschrift fur Physik, Bd. 136 02 UlO 1953)




APPENDIX A

MINIMIZATION OF INITIAL HYPERSPHERE. RADIUS

An example 1s glven here of a stralghtforward
minimization of the radlus of the initial‘hypersphere
wlth respect to the 1sotroplc material constants, v
and E. The example glven 1s the 1nltial hypersphere
for the bending of a transversally isotroplc cilrcular
beam by a transverse force, the solutlon of which is
given in Appendix C. It is presented here to
demonstrate the difficulties assoclated with such a

procedure.

The radius of the 1nitial hypersphere 1s

= %[ Goij—Toi§<eoij-eoiJ>dV’ (A.1)

Recall that
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" Vo ' (1+vo) '
e = o == §,,T + — T ’
ol}] E 1J "oKK Eo olij

€013 = CijkeToks?
and (A.2)

" "

To13 = %13xe8oxe:

So

=1 — - [
RO=%1 17013~ %1% E_ SpaTork ¥ B Tokt

' Vo ' (1+VO) '
CijrsTors AT E; aijToKK+ E, To1y av

(A.3)
In the problem under consideratiaon
1 1 '
To11 = To22 = To12 = 0. Usling this and the form of
C for transverse isotropy, R2 can be written as

ik’
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2 ,[ 2+1<2[ va. - Jvlol +>] S
R™ = Bi|C = —+ =5 o o v =40, .,V _+o T
337 Eg 52 11 7127 % 1370 733 033
© A
1 2 -2 +
+ 2[055+E2 (1+vo) O E_ (1 vo)][
° v
12 '2
T513 + T023 av (A. L)
The isotroplc solutions are
! - Lw
T533 = ” (2=2)x,
X ) 3 + 2vo W - %2 ) 1l - 2v0 XE (h.5)
0l3 1+ v, 2wa2 2 3 + 2vo a2 > :
! _ L +2v, xy
023 1+ Yo naq

The required integrals are



Let n, = 1

for R2 becomes

2 _1__'w2

njb
=

where

av = 4 W83
3 ..F
Ta
28v2 + 52y + 27 .2
- o 0 W™ R
dv 4 2 2,
24(1+vo) Ta
(1+2v )2 2
- 0 W%
dav 5 5
2M(1+vo) Ta
-1
+ Vo and KO = Eo The expression

72

(A.6)

(A.7)
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T —
a a)) t oo

t =
o @1 F oo toogg

el
n

2(all+a12+2al3) + a33.

2
Now takling %%— and eguating the result to zero glves
o)

822K2( 1) Caqqtag,) = 3
;? oo™t/ V117 %0 %1315 -

2.2
* (no—l)<055-2K0n0+K0n0a55)

2 2.2 =
+ <8n0—2n0+1>(Konoass—Kono> = 0. (A.8)

3R>
Similarly for Y = 0,
o

e 2

2 2
16 N [2Ko<2[all+a12][no-l] - 4&13[no-1] + a3§—2Jn0

¥

+ 8<én§-2no+l><Kongu55—no> = 0. (A.9)
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Let Kono = u,, (A.8) and (A.9) become, respectively,

2
2) 2 2
u-{n_ 8 ;§ (all+a12)-+8a55
22
- ng 8 ;5 ( 11 12+0L13) + Cgr
2 —
- u[éno - 1] + C55(no—l) = 0, (A.10)
and
u£n2[ + a,,1[n -11°= b, [n -1] +
u 2 o @11 T OGpodlngTid = RO glng- %33
+ 8n°-2n +1 uﬁnz- 8n°-2n +1) = 0
No%55\ o™ g B a2 No\ P05, -

These two equations must be solved for ug and n,, once

the a's and % ratio are specified.



APPENDIX B

RESIDUAL PROBLEM EQUATIONS

The complete set of equations for both types of
residual problem approaches are given below. The
first set of equations pertain to the residual problem

with solution 1 s which results from the subtraction

K iJ
of the kinematicglly admissible stress vector for the
preceding problem. The second set of equatlons are for
the residual problem with solution Tg 1J resulting from
the removal of the statically admissigle stress vector

for the preceding problem.

Residual Problem Based in L"

Equilibrium Equations

.+
K 13,4

Stress Boundary Conditions

) " -—
TKniJ + E TKmij + To1g| My = X; on B, (B.2)
m=



Displacement Boundary Conditions

Uy 3 = 0 on B
n

Compatibility Equations

C(%K =0
n

Strain Displacement Relations

= 1
%

e u +u
K 1] K.1,37"K 3,1

Cpnstitutive Relations

e = C T
Knij 1jk2 Knkz

Residual Problem Based in L'

Equilibrium Equatlons

T
Sy1d 53
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(B.3)

(B.4)

(B.5)

(B.6)

(B.7)



Stress Boundary Conditlons

0 on B

T n =
SHE R 2

Displacement Boundary Condltilons

Compatibility Equations

n-1
! ]
Cle + E Cle + C(e >
(\Sn Sm o}

m=0

Strain Displacement Relations

e — %(; +u
Snlj Sni,J Snj,i>

Constltutive Relations

es 15 = Cijszsnij

77

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)



APPENDIX C

FLEXURE OF A CANTILEVER BY A TERMINAL LOAD

The solution for the flexure of a cilrcular
cylindrical cantilever beam by a transverse load on
the free end 1s obtalned for transverse-lsotropy and
orthotropy as an example of how the resldual problem
technique can produce exact solutlons. The problem

i1s shown in the figure below.

Transverse Isotropy

For the transversally isotropic beam the plane
of isotropy 1is assumed to be perpendicular to the z-
axis. The equations for this particular problem are

given by equations (C.1l) through (C.6).



Equilibrium equatlons

BTll +_8112 . 8T13 )
90X oy oz

3112 8T22 . 3T33
0X oy 9%

3T13 . 3T23 . 8133 )

9X

Stress boundary conditions

oy

9z

Lateral surface (n

T11

Tlg cos f + Too sin 8

T13

cos O + T

12

cos 6 + 123

0)

il

79

(a)

(b) (c.1)

(e)

(a) *

(b)

(c)
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f Ty3 dA = W (a)
A
J 123 dA = 0 (e)
A
(c.2)
j 133 dA =0 ()
A

f (Tl3y—T23X)dA =0 (g)

f 133X dA = WQ (h)

Displacement boundary conditions

At the origin (x,y,z) = (0,0,0)



u=v=we=20 (a)
ali_av_av Bu_o (b)

_— et MR e gm e———

Strain-displacement relations

e = B_L}. (a) e = 7/2(?2 + .§X_>

= ..al (b) e = 7/2(22 + M)

°33 =3z (¢) €3 ® ’/‘*(‘a? * 57)

Constitutive relations

(1) [C11 G2 €13 0 0
€22 €12 C11 Ci3 0 0
J €33 =<013 €13 ©33 0 0
e, [T 0 0 0 2(c -0 0
e13 0 0 0 0 055
leag) 0 0 O 0 0

(e)

(£)

(g)

81

(c.3)

(c.h4)




Compatibllity conditions
2 2
37 €44 . 9 €5y i} 97e,5
ay2 3x2 0xX3y
2 _ 2
822 ayz dydz
2 2
d €33 . 0 R } 0 €3
ax2 az2 0X9%
328 oe oe de
2 11 _ 8 | _ 23 + i3 12
9y oz 9X 0x oy 0z
3% se Je je
5 22 _ 9 23 _ 13 + 12
9X0% oy 9x ay Y4
82e ge oe oe
2 33 . 9 23 + 13 _ 12
9Xay 02 X oy 92

)

(a)

(b)

(e)

(d)

(e)

(£)

(C.6)



The l1sotropilic solution for this problem is

glven by Sokolnikoffl as

To11 T To22 T To12 = 0

! 4w
T = - (2=-2)x,

033 nan
a3t w (xR L2y 2
ol3 1+ vo 2na2 a2 3% 2\)o a
' 1+ 2YQ
T = - Xy.

023 1 + Vo “aﬂ

From Toij the isotropic strain components are

" \)O 1

e = - == T

oll B 033°
(@]

e" _ -\_)9 . 1
022 EO 033
" l 1

033 T E_ To33’

1 sokolnikoff, op. cit., p. 213.

(C.7)

(C.8)
Cont'd
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"

ol?2 =0,

1" 2(1+V0) t

013 © TTE_  To13’ (c.8)
n 2(1+Vo) '

023 E, To23"

Now by using the constitutive relations (C.5),

the components of §5ij are

<

=<

022

<

033

=<1

o0l2

oll

i

\)O '
13 ¥ E_ ) o33

0, (C.9)
Cont'd
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_ 2(1+v )\
Y = |C - —=—]7
013 55 EO 0l3?
(c.9)
_ 2(1+v )\
Y = |C - ——T .
023 55 Eo 023
Choosing
v 2(1+v_)
0 o)
= = - C and — = C
EO 13 EO 55
ylelds
2C
13 — 2
v = = and E = . (C.10)
0 C55 + 2C13 0 055 + 2013

Thus the preferred isotropic solution becomes

To11 = To22 T To12 T 05
v bW,
To33 = " (2=-2)x,
v _ 3Cg5* 2013 y _x2 Cgs * 60542
To13 C 2\t - 3 - 30530 “3) (e.11)
© 55 2Ta a 55 13 a Cont'd
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- 55 13 W
T = - Xy . (C.11)
023 C55 wau

Using the transversally-isotroplc tensor of

the moduli, the inverse of (C.5), the kinematlcally

7n
admissible stress component, Toij, are

Cos +2C137 :
To11 = |%31C33 ¥995C13 03 7 |"033 ® Bo137033"

" !

To22 = Ro1370332

C.-+ 2C
= B2 131 . '
T033 [2“13013 tezz T2 ]%33 R0337033°

(C.12)

"

0l?2

" 1

013 - T013’

T023 T023.



The residual problem is now generated by sub-

"

87

tracting Toij, and the resulting equatilons for Tk 13

are given below.

Equilibrium equations

3T oT °T "
Koll . K012 . Kol3 _ 3T011
9X oy 92z 3X
9k 12 9Tk oo Tk 23
o) + o) + 0 = 0
X oy 02
BTK 13 BTK 23 BTK 33
o _ + © ~ + O — = [1 - R_,.]
X oy 2z 033
In obtaining these recall that
" n 1"
°To13 _ 27023 _ 2To22 _
32 4 oy ?

and that

81033
9Z

(o]

(a)

(b)

(e)

(C.13)
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" n ! 1

" 1]
3T013.+3T023.+8T033= 81013 +31023*_R 81033
ax Yy 9z ax 3y 033 29z
' ? ] 1
i} 81013 +31023-+31033 ‘IR 1] 31033
9X oy 9z 033 9z
91T
= - 033
[RO33 1] —3 .
Stress boundary conditlons
Lateral surface (n3 = 0)
1"
TKoll cos 6 + TK012 sin 6 = - Ty COS <] (a)
" .

TK012 cos & + TK022 sin 8 = - Toop Sin 8 (b)
Ty 13 €08 9 + Tk 23 sin 8 = 0 (c)

o) o

Face (z = %)

T dA = 0 (a) (c.14)
J Ko13 Cont'd



J Tg o3 GA =0 (e)
(o}
j T 33 A =0 (£)

T y-T x)dA =0 (g)
IA< K13 K,23 )

Face (z = 0)

JATKOBS’X dA = [1 = R 351We (h)

The displacement boundary conditlons, strain-
displacement relations, constitutive relations, and
compatibility conditlons are the same as glven in

(c.3), (c.4), (Cc.5), and (C.6).

Now a statically admlssible solution of the

residual problem is

89

(C.1h4)
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| ' 1

T = T = - R T s
Koll K022 013 033

1
TKO33 = (1—Ro33)T033, (C.15)

As indicated in the residual problem procedure the
solution should be checked to see 1f it satisfiles
the kinematic relations for the anisotroplc problem.

!
The straln components, ey 13° computed by (C.5) are
o]

!

k11 7~ [CllRol3 * CioRoi3 * 013(R033'1)]To33’

1 !

= e s
K 11
(C.16)

°k 33~ ‘[2013%13 ' 033(3033‘1)]1033’
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Now from successive use of (C.5) and 1ts inverse

the following identities are obtalned:

(011+012)“13 + Cl3u33 = 0; and
(C.17)
203013 *+ 033033 = 1.
Thus, referring to (C.12) R013 and Ro33 can be
written as
C + 2C
; 55 7 %13
013 0‘1.3(“—_—‘2 ' C33)
and (C.18)
C + 2C
- 55 13
R033 = 1 + a33< 5 - 033>.
Using (C.18) in (C.16) gives
' G55 * 2013 '
S E a [(011"012)“13 ¥ C13033][ 7~ 933033

:::0’

and | (C.19)



1

o

Cs5
€x 33 = ~| 2C13993 * C33033 5

(o _ Cs5t2Ca3)
33 2 033°

14
Hence the components of ex 1] are
o)

4 ! ! 1

e
Koll

and

Ct2C
e' = |C - 25 13 T' .
K,33 33 2 033

?

Rk 33033

e. = e = e =
K022 Kol2 Kol3

1
e =
KO23

92

(C.20)

Checking e; 1J in the compatibility conditlions

o
(C.6) gives



93

3%e
e
K_33

3y2

0

8x2

= 0, (C.21)

3%
eK033

2 ——— =
90Xy

which are all satisfied.

)
Koi
(€C.20) in (C.4) and integrating which gives

The displacements u are obtained by using

N

L W ( z> 2]
u, = R L - 2jz°],
X, K, 33 [gh‘ 3

v, =0, (C.22)
s
U Lbw ( z> ]

w = - R L - F)xz|,
X, K33 [;74' 2

and these displacements satisfy (C.3).
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t
Therefore T 1] 1s the solution of the residual
o}

transversally-isotropic problem, and the complete

solutlon of the problem, Tij’ is

Tig T Torg *t K. 19°
SO
T1; = Top = Ty = 0,
by
T = - (=2 )x
33 ;;E >
(c.23)
) _ 3055 + 2013 W - ﬁ _ 055+6C13 L2
13 Cs5 2ma’ a®  3Cg5%2Cy3 42
T = - 055 _ 2C13 L XY .
23 Cos —F
Orthotropy

In the orthotropic beam the three axes of symmetry

are aligned with the coordinate axes. The set of equa-
tions which apply are identical to those for transverse

isotropy except for the constitutive relatlons.



Constitutive relatlons

e1q e, cq, i3 O O 0 )

€0 Ciz Co2 Cp3 0 O 0

less =,<013 Co3 €33 0 0 0 >JT33 \
ey, 0 0 0 Cy 0 0

el 0 0 0 0 Cy O

823) 0 0 0 0 0 C66J

95

(c.2b)

As Indicated earlier the initilal solution used

here wlll be that Just determined for a transversally-

1sotroplc beam, which wlll be denoted by =

1

T3

Using (C.23) and (C.5) the kinematically

"
admissible strailn components, eTiJ’ are

1"

]
er11 = C1377330

" ]

€rop = C137733

"

€733

]
= C33Tp33:

m2 = 0>

(c.25)
Cont'd
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" 1}
®r13 T 557130
(C.25)

t
eT23 = CS5TT23'

Now using (C.25) 1in the inverse of (C.24) gives the
"

kinematically admissible stress, TTiJ.

1" t !

Tpyp = (@17€3%095C 310y 3C33) T3 = RpqqTgy
n _ 4 _ ]
Tpop = (03,0 3+ay5C0, 340530530 Tngs = RyppyTygs
n _ + + ? - 1
Tp3g = (0930340530, 3%ag3053)To35 = Rpg3Tygs
(C.26)

"
Tpyo = 0

" _ 1]
Tp13 T T3

n_Css

Tro3 Ceg Tpoge

From successive use of (C.24) and its inverse the

followling identities are obtalned:
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allC13 + a12033 + a13033 = 03
(c.27)
@15C13 + ay5053 +ay3C55 = 05
and
= 1.

%3013 * 03053 * 433035 =

The use of these identitles gilves equivalent expres-

sions for the RT’S,

Rppp = a22(013-023), (c.28)

=1+ a,,(C

s
|

733 23(C33-Cp31-

Thus upon forming the residual problem by subtracting
"
TTiJ, the equations resulting are given below. Agaln
only equilibrium and stress boundary condlitlons are

given as the others remain the same.



Equilibrium equations

98

"
9Ty 11 3Tg 12 3Tk 13 9T
0 _ 4 0O _ + o . . __Til (a)
ax 3y 9z ax
aTKOlQ arxozz aTK023
ax * ay * 92 =0 (b)
9T T 9T at" at" ot"
K13 K23 TK33 0 Tmis Cmes mss )
0X oy oz X oy 92 c
(Cc.29)
Stress boundar_y condlitions
Lateral surface (,n3 = Q)
1"
TKOll cos © +TK012 sin 6= - Tpqq COS 6 (a)
n .
TK012 cos O +TK022 sin 8 = - Tpos Sin ¢} (b)

TK013 cos © +TKO23 sin © =—[’l‘

" "

m13 cos 6 +TT23 sin 6

] (e)



Face (z = 1)

j TK 13 dA = 0
A ©

It
(@)

T da
f K 23
A ©

T dA =0
[z

T y-T x|dA = 0
[ < K,13°7 'K 23 )

A
Pace (z = 0)

J TK033X dA = (l-RT33)W£.
A

Now the equilibrium equations (a) and (c) are

(a)

(e)

(f)

()

(h)

99

(€.30)

rewrltten after performing the differentlation of the

terms on the right hand sldes as
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9T oT T
K 11 XK 12 K 13
o o o™~ . 4w
x t oy T Tz 4y 5(C€y3-Cp3) T (2-z)  (a)
9T 9T 9T
K 13 K 23 K 33
St 22— = 1 Mo, (e)
X oy oz ;;E
where
C55C66
A potential solution, Tx 152 of the following
o
form is assumed:
_ ]
TKoll = 015(Cy3-Cy3)Tpa33
]
k22 055 (Cp3-C13) 333
t
k33 = ®23(C237C137 71335
T = 03 (C.31)
Ko12 Cont'd
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w2 2
: W X y

T = M l - = -UNM H and
K013 1 waz a2 2 a2

W
T =M il XY
K023 3 ma

where Ml’ M2, and M3 will be determined by the stress
boundary conditions and equilibrium equation (¢),
displacement boundary conditions, and compatibility

relations.
The boundary condition (C.30d4) ylelds that M2 = 3,
and equilibrium equation (c) gives

+ M, + 4(1-R

- My 4 Mg T33

) = L,

or

_ C55(3Cg6™Co5) + 201 5(Cea-C5) ~ 4C55Ccg

(C.32)
1 Cs55Ces

M, - 2M

3

All the other static condiftions are satlsfied so another
condition can be imposed since one of Ml or M3 remains

arbitrary.
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Computing the orthotropic strains by (C.24) gives

K 22
o

®k 33 ©

°k 12
@]

e
K013

Ko23

Identities analogous to (C.

= (Cy3095%Cy055%

(C C

12%121Co005,%C

=O,

- W
= C66 M3 —j Xy.
Ta

1 ]
013“23)(023‘013)TT33’

23 23)(0 )T

1
(C13a12+023a22+033a23)(023—013)TT33,

&i - 3 Xi

2 21
a a

27) are

Ci199p * Cip0py * Cigay5 = 0,
Cl3a12 + 023a22 + C33a23 = 0, and
c +C 1.

12%2 T Cososns

23%3 %

T33?

(C.33)

(C.34)
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Hence

= e = e
koll Ko33 Kol2

and (Cc.35)

°k 22 ~ (C53-Cy3) T35

The only unsatisfied compatibility condition

is (e).
8(Cy3=Cq3) = CggMy + 6C55 My (c.36)

Solving (C.32) and (C.36) simultaneously for

Ml and M3 gives

v - 8c55c:23 - 2013(3055+c66) - 055(055-066)
1 2055(3055+c66)

and

W = 3055(055—066) - 2013(3055+C66) + 8066023
3 066(3055+c66)

Integrating the strain-displacement relations gives
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W 2 2
o W X
U, = = —2 z42C_. M 1- =-3 z+U_(x,y)
K ax 55 "1 2 22 if o T
3w W
g T gyt 205 My — e + Vo (x,y), (c.38)

WK = Wo(){,y),

which obyviously will satisfy the displacement boundary
conditions if Uo’ Vo’ and wO are chosen properly.

Thus Tk 1y @s given by (C.31) 1is the solution to
o

" '

the residual problem. Hence Tyg = TTiJ + TKOiJ’ and

Tyy = Top 5 Typ = 0,
_ Ly
T33 == ;;E (£~Z)X,
(C.39)
. 205+ 066’*2023 A EE”_ Ceg * 6023 Xi
13 3Cs5 * Cgg 1ol 2 2Cc s +066-+2c23 52
(Cre=-2C,,)
T = 55 23 Liw Xy.

23 ~ T 3055 * Cgg nat

H
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