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ABSTRACT

The Sedov—Berdichévskii variational princlple is
extended, and this extended principle 1s employed 1in the

construction of a shell theory.

The extension of the principle is accomplished by
the use of Lagrangian multipliers, and a redefinition'of
terms in order to maintain the original generality of
the principle. The Euler equations of the extended
variational principle provide, iﬁ addition to those
obtained in the original principle, elastlc and plastic
kinematic relations, and, elastlc and plastic consti-
tutive relations. Also, the Euler equations of the
original principle are obtained in a physically more
meaningful form. Examples are given which show how this
principle can be applied to various classical models

whose formulation is well known.

A shell theory 1s derived from the extended vari-
ational principle by integrating the three-dimensional
equations across the thickness of the shell. Tensor
notation and the theory of surfaces in curvalinear co-
ordinates are used. The derived theory is "exact"
within the assumption that the shifted displacements and
velocities vary linearly across the thickness of the .

shell.



A complete set of shell equatlons is derived,
including momentum equations, equations involving inter-
nal degrees of freedom, entropy balance, constitutive
relations, and some typical boundary conditions. An
application is also given which shows how the derived
equations reduce to the classical equations for a special

case of an elastic shell.
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CHAPTER 1

INTRODUCTION

The purpose of this investigation is to extend the
Sedov-Berdichevskii [1]1 variational principle, and to
employ this extended principle in the construction of a
shell theory. The Sedov-Berdlchevskili variational
principle provides a unifying basis for many of the pre-
viously developed continuum theories, such as elasticity,
plasticity and dislocation theory. This principle
thus interrelates the microscopic and macroscopie
phenomena in elastic-plastic behavior, and, like all
variational principles, it has the advantage of permit-

ting a dilirect approach to the exact, or approximate,

solution of problems.

The Sedov-Berdichevskil theory is formulated by the
introduction of nine additional degrees of freedom for
the material model; i.e., nine more degrees of freedom
than in the classical theory of eiasticity and three
more degrees of freedom than in the ordinary theory of

plasticity.

1 Numbers In brackets deslgnate references.



The new degrees of freedom are introduced by a
second-order tensor, A, which together with its first-
order covariant and time derivatives become additional
arguments in the Lagrangian and serve as parameters 1n

defining the state of the medium.

In a more recent paper, Sedov [15] discusses the
possibility of introducing additional orders of deriva-
tives of these variable parameters, and of the displace-
ment gradients, in order to include new and even more
complicated models. PFor this investigation, however,
the first order of derivatives will be sufficlent to
provide the link between the theory of dislocatlons and

plasticity.

Chapter 2 discusses the equations of the general-
ized model of continuous media. The definitions and
equations uéed by Sedov and Berdichevskili in their
development are presented and elaborated upon in order
to present a complete basis for the subsequent

discussion.

In Chapter 3, the Sedov-Berdichevskll varlational
prineiple is extended using the methods of Washizu [17].
The Euler equations of this extended variational’

principle, include, in addition'to the Luler equations



obtained from the Sedov-Berdichevskil principle in
Chapter 2, elastlic and plastic stress-straln relations

as well as elastic and plastic kinematic relations.

The generalization of Chapter 3 is neither unique
nor the most general possible. For instance, the vari-
ational principle could have been extended to include
kinematic relations for total strain and constitutive
relations for the dislocation tensors. However, the
generalization was confined to the form given in
Chapter 3 in order to permit insight into the physical
meaning of many of the quantities introduced in the

Sedov-Berdichevskil theory.

Chapter 3 also shows how the extended variational
principle can be applied to some of the classical
models such as an elastic body, an elastic-plastic body

and an elastic body with couple stresses.

Chapter 4 reviews the definitions and equations of
the geometry of a surface as a preliminary step to the
derivation of a shell theory. The equations required in
order to integrate terms involving second rank tensors
are derived. In addition, similar equations involving
third rank tensors are alsc derived. The equations in

Chapter 4 provide the necessary geometric relationships



which are used in the shell equation derivations of

Chapter 5.

Chapter 5 applles the uxtended version of the
Sedov-Berdichevskil variational principle in the deriva-
tion of a shell theory. The Euler equations of the
variational principle are integrated to provide the
equations of momentum, relations pertaining to the
internal degrees of freedom, entropy balance, constitu-
tive relations, and boundary conditions 1n terms of

shell-type quantities such as, stress resultants, etc.

The only assumption made in this derivation is 1n
the form of the shifted displacements and velocitles.
A linear varlation in the normal direction 1s assumed
and the extension of the normal fibers is included. The
theory developed is "exact" within this apprbximation.‘
The equations derived agree with c¢lassical shell theory

when special cases are considered.

One of the consequences of this formulation is that
the so-called "sixth equation" [12]l of classical shell
theory 1s obtailned directly. This derivation is similar

to Naghdl's in Ref. 12 except that Naghdi's interest in

1 Naghdli did not consider the extension of the
normal fibers in this work. v



this paper 1s in the classical elastic effects only and
therefore he sets the couple stress terms equal to zero
before completing a shell theory including couple

stresses.



CHAPTER 2

THE SEDOV-BERDICHEVSKII THEORY

In this chapter, the equations of the generalized A

model of continuous media are presented. The defining
parameters of the model and the derilvation of the gen-
eralized field equations by means of a variational
principle are shown. The definitions and final equa-
tions are from the Sedov-Berdichevskii paper [1], The
derivation and intermediate steps were added by the

author in order to clarify the results and present a

complete theory under one cover. Also the applications

of the equations 1n subsequent chapters do not always

start from the final form.

Defining Parameters

The motion of a medium is defined with respect to
an observer's frame 1n spacial coordinates xd; time
coordinate t, and basis g4y The motion of the medium
is also defined in a comoving frame with Lagrangian

coordinates 5“, time t, and basis gu.

The law of motion of the medium 1is determined by

the equation

x% w x® ey, (».



In this chapter it 1is important to note that the lower
Greek letters, a,B,Y, etc. represent spacial coordinates,
while the middle letters, g£,u,v, etc. represent
Lagranglan coordinates. All indlces range from 1 to 3.
Also a repeated index will be used to indicate summation

over this range.

The base vectors in the two coordinate systems are

related by the followlng equatlons

\
év - xavga éu = guBgB
) (2.2)
e ax® u BEU
X = = 3 = ===
VooV B axP

The contravariant and covariant basé vectors are related
by the components of the metric tensor,

AU - B

8 By = Bup® . (2.3)
where évu and gaB are the covarilant components of the
metric tensor in the Lagrangian and spacial coordinate
systems respectively. The metric components are related

by
o B (2.“)

m>
I
]
=]
=
=
<
<

vH



An invariant A can be expressed in terms of its

components as
= o3 " = AV A I\u -
A=A" g8 c’ g.g" . (2.5)

The component representation, Aau, behaves as a vector
under transformation of either the spacial frame or the
Lagrangian frame. The components, @vu, behave as a

second rank tensor under transformation of the
o

u:
merely different ways of expressing the same tensor A.

Lagrangian frame. The quantities, A and, ﬁvu, are

The metric tensor G can be expressed 1n this way as

~ LN AlLAY)
G = g,8%" = x® g 8" = 8,88 (2.6)

The components, Aau, in this case become the displace-

o

ment gradients, x ue

The covariant derivatives of A can be expressed in

terms of the components, Aau, as
B
oA
B — u Bry A ApB v
A = + A - T .
ula . ray i pv A™\E g (2.7)

or



8 .
d9A : ~
B - wop Bay e A8 2.8
A ulv 3eY Fay A 0% v pv A (2.8)
.Y 2 A
where IaB and Fuv are defined by
g aé
o Y —B—A An
—= =T lg and =T '8 (2.9)
9x af °y agv v A

With these definitions and the invarliant relationships

it can be shown that

8

MO R AUV 4
A u|oBp8 B A | vBes 8 (2.11)

or equlivalently,

|
=
w

AR gV . (2.12)

ulo —
The time derivative, DA, is defined by assuming

that the Lagrangian coordinates and the Lagranglan basis

éu are constant with time. Thus the time derivative of

A 1s
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= G fpa . 2UY o pp% o M 2.1
DA dt(A 188 > DA 18a8 (2.13)
where
o}
dA
o _ u o8 Y 2.14)
DA " 55t FBY A v (

and v' = de/dt aré the components of veloclity of a

point of the medium.

N

The defining parameters of the medium can now be

summarized as the following set of invariants.

V= Vg, 1
o O . AN _ A AUAV
6 = goae’e” = x% ggt = E 8",
> (2.15)

- o A _ A\) lal Au
A =A% gt =0 g,
3A  ~u
agp g s DA: Ss L(P) J

where v 1is velocity; G, the metric tensorj; S, eﬁtropy;
and L(P)’ a set of tensors which characterize the phys-
ical and geometric properties of the medium. Included
in the set, L(P)’ are the constants of the constitutive

equations and an initial metrilc tensor, &.
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Physical Parameters

With the exception of A and its derivatives, the
above set of parameters is the same as 1in classical
elasticity. The physical meaning of the tensor, A, is
defined as follows. If a particle with Lagrangian coor-
dinates, Eu, is removed from the body and released from
external forces, the base vectors, év’ convert to a new
state defined by é;. This deformation is defined by the

tensor, A.
g, =C e, =2%¢8 C(2.16)
Thus, the components, évu, of A describe the elastic

deformation and the following physical parameters may be

defined. The elastic straln tensor may be wrlitten as
. A(e) _ l(" o # )
€ = 58 vy (2.17)

*
where guv is the metric in the stress free state and is

related to guB by

¥ _ o ,B ' )
Buv gaBA uA V" (2.18)
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The plastic strain tensor is

A(p)_l* o
fuv T §<guv“guv>' (2.19)

The plastic strain rate tensor is

(p) ﬂeﬁ ) 1 R B lﬂB
~ \) —— .
v dat 2 gaB( A DA >‘ (2.20)

The elastic strain gradient tensor is

o B B
gaB<A IJA v AHA IA) (2.21)

A(e _ l_-
Eawwla T 2

The dislocation density tensor can be defined in
terms of the tensor, A, by the following reasoning. Let

a closed circuit, L, in the body be represented by
{ dr = 0. o (2.22)

If, after the deformation defined by A, the vector, dr,
becomes d%, the closed circuit, L, in this case is not

necessarily zero, but is equal to the Burger's vector, B.

b = § as = % éudg” (2.23)
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With the application of equation (2.16), thls becomes

O S N )
b —'{.A ugud£ . - (2.24)

By the use of Stoke's Theorem, the line integral can be

converted to the surface integral and equation (2.24)

becomes

> AWUY O ~
b = JJ € A v|unwgdd° (2.25)
a

where n, are the components of the normal vector, and

WHY 45 the fully antisymmetric tensor, and is

where g
equal to l/g/2 for even permutations of the indices.

The dislocation density tensor i1s defined in terms of
the 1limit of the Burger's vector over an area do as do

approaches zero.

>
db . HgwAy; % 2.26
3o = 257'n &, ( )

The dislocation density tensor can then be written as

qua _ 1 gwuvBAaAa

S 5 (2.27)

v]u
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where the derivatives of equation (2.25) and equation
(2.16) were used, and Bla are the components of the

reciprocal of A. A third rank tensor can also be

defined as

3 A _ QA 0
S = B" A [v]ul® | (2.28)

This will be used as an alternate form of the disloca-

tion tensor.

N

Next the tensorn m = wuvéuég is defined as

~ ¥ ' '
2 =7 " =0Da%g (2.29)

as
7. =B DAY | (2.30)

The angular veloclty of plastic deformaticn is then the

antisymmetric part of %uv or

qu = ﬂ[uv] (2.31)
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while thé'symmetric part of %uv 1s the plastic strain

rate tensor in equation (2.20)

A(p) _ =
euv = “(uv)' (2.32)

The parentheses are used to denote symmetry with respect

to u,v.

A Variational Principle

The variational principle,

2
£ =
§, J Adtdt + &, W + 8,W 0, (2.33)

is used to develop this theory. In this equation, A is
the Lagrangian, dt is a volume element, and can be

written as
at = Vg agtag®ag’ = 5 axtaxPaxd, (2.34)

‘Wwhere é is the detgrminqpt of éuv and-.g. is the determi-
nant of &qa" In- equation (2.33), V is an arbitrary
- volume, 6,;W is an integral which represents”théivaria—

tions of the parameters on the boundary of the four
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dimensional domain Vt. le* is a prescribed functional
which descrlibes external actions and internal irrevers-

ible efrfects.

The variation, 61( ), 1s defined as
51( ) = 6( ) + D( )ét (2.35)

where 6( ) 1s a variation taken at constant t, and 8t is

an infinitesimal shift of time.

The following equations define the variations of
the system parameters and are used to carry out the
indicated variation in the first term of equation (2.33).
The Lagrangian l1s assumed to be a function of six Quan-
tities which are varied and of the physical and geometric.

relationship, L(P)’ which are held constant.
A=A v,G,A,DA,S,a,L(P)) (2.36)

In this equation, o represents the invarliant form of the
dislocation tensor. It is assumed that the only depen-
dency of the Lagranglian on the covariant derivative of A

is through the dislocation tensor.
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The variation of each of these parameters can be

expressed in terms of the three independent variations,

6xa, GAau, §S as follows:

L0
v = Déx By
u

~n _ B o ~
8G = x u(Gx )Isgag

= ) ~H
A = GA ugag

L (2.37)
= o Su
§(DA) = D(SA” Je.&
§S = 48
R o > T S I PN TR
So, [? u(SA (v/|ul Suv B aSA m]gkg g
/

The last equation of (2.37) comes from the definition,
(2.28), which yields

A A0

This can be written as
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A _ QA o A 0
ss,,} = B a(GA Ev)lul + 88) A%y (2.39)

A

In equation (2.39), 6B y can be written as

o _
oA = 0, (2.40)

or

- w 8
§B", = -B" B BGA 0 (2.41)
Substituting equation (2.41) into (2.39) and making use
of equation (2.28) yields

A _ RA a _a WA g0
55, = B a(GA [v),u] 5, B 8% (2.42)

which is the last equation of the set, (2.37).

In addition to the variations of the defining
parameters, 1t is also necessary to vary the volume
element, dt. This can be put in terms of the independent
variation,dxa,by

§.dt = (6 xa)la dar (2.43)

1
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The first term of equation (2.33) can be written

as

t ot t

2 2 2
= aa
61 [ [ Adtdt = I ‘ (5/\ T Gt)drdt + [ [ AGl(dT)dt
Vit Vit V't

1 1 1
(2.44)

The time~independent variation, 8A, can be written as

SA = 32 GAau + 3Aa aDA“u + ok . asuv*
2% apa® 35,
IR S S 7 S L Y (2.45)
o u o °
9X oV

These variations can be put in terms of the independent
variations using equations (2.37). They can also be
manipulated to provide total variations, (51), on the
boundary. The first and last terms on the right side
of equation (2.45) remain unchanged, while the other

terms become
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aAa DA% = D _y\_a_ s,;4% | - o _31_\6_ A%
DA H 3DA s 9DA "
H u U
- D Ma DA% J&t, (2.46)
3DA H
' U
9A Ao ( B ~ uigv o ) (A UYL A ) o
- ) Gsu\) = X )\OV B OLGIA U IB + 0')t B o IV SA u
uv
AVHA B ) A WV HoA o .0
+ (0 “vux A lB 8t + 0y va B aGA e
(2.47)
where
A UA oA
v TR
HA
Also,
82 Gxau = <—§%— xBu lx%) - < 33 XB#> sx”
Bx R |8 8x™ |8
R 0>t S I - (2.48)
X " H |8

3A o _ oA o oA . o A o
—_— v = D[ Glx ] - D m §x" ~ D[ 5 v ] dt.
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A detalled derivation of (2.47) is given in Appendix A.
The technique is similar for (2.46), (2.48), and (2.49).

The last term in equation (2.44) can be manipulated

in a similar manner. It becomes

ta t
[ I A6, (dT)dt = [ J [(Aslx“)l —Alasxa—Alavaﬁt]det.
o
A% 'tl A tl
(2.50)
The functional, alw*, is defined as
ta
W = O P _ AWV o
le [ f ;pGGS + Fadlx Ty (6x )IB Q BuadA v
\ tl
_ “uvx( a )
Q BlabA y)ia ¥ Nﬁtzdrdt, (2.51)
where 6 is the absolute temperature, and Fa,TaB,qu,

quA,N are generalized forces and stresses. By the

usual manipulation;equation (2.51) can be rearranged as

2
le* = r ! gpeas + <Fa + Ta8|3>6xa (Cont'd)
V7t
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_Auv AIVA o]
+ ( Q + Q l}\) Buo‘&l\. v +
") 8. a AUVA a ) '
+ [Fav + N + (Ta v+ Q ﬂ“vx A)IBJGtidet

¢,
B8 o ~UVA_B o
- ! [ ;Tu Glx + Q X ABuualA vfnedcdt.
2ty | (2.52)

The variations on the boundary can be expressed in le

by
ts
= B o A~ pvA_B o
le = { J (Ea Slx + q X KBuaslA v)anUdt
% tl
t2 |
o BUe A0 dt (2.53
+ [ p[{aalx + ‘ZocBA GlA IJ]
i tl

where p is the density of the medium and is a function

of the Lagrangian coordinates only.

The following list of definitions have been used to
facilitate the writing of the complete variational

principle.



B _ _ B _3A B

Op = Yl - Asa
u

B _ 8 8
Po = 9y + Ta
AUVA Suvx + auvx

%5 (5)
J = — (=
& av® \P

] 2 _ (1)
JaB ABu apa® (D
u

The complete variational equation is

23

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

oA (A HV LA ) AWy U A 9A/p
+ |—— + |o B + O S B - pD|—"—F—
<3Aa A o |v .A vw T oo <;DAau

_ Avu AVHA a
Q"B,, T Q |ABva>6A "

(Cont'd)
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VH

d (A _ _ar _ ,Bu a (ﬂvu}\A B8
+<p dt( vl - A JaBDAp)+o Xy

+

The

+ N + Fava>6t$d'rdt

_ AvpA ~ uvA) B o
( ol +q b'¢ ABvaalA un6 dodt

t

2 2
a
f ip<—Ja+{a)t §px7 + <"Ja8+{a8)t
A"

Bu o
A GlA u%dr
1

(2.59)

four sets of Euler equations corresponding to

the independent variations over the four-dimensional

volume are

6x%;

~pDJ | + B+ F =0 (2.60)



25

o A A UVLA A WVE  HgA
A%, — + ( Rae: a) + 0,8 "B
3A | v
n
- aA/g (avp_ﬁvul A)Bva -0
9aDA
y
oA _
8S 55 + pb =0 (2.62)
d (A a- _ B o
st: p A (p vy, - aPHg DA u)
AVILAA B B. o
+ < TouX 3 + Py v )IB
[0 4 .
+N+F v =0 (2.63)

The boundary conditions for nonvanlishing variations

on the boundary are

6lxu: paB = QQB (2.64)
6,4% 5 QM - g (2.65)

on the surface, I, and
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§.x%: J =7 (2.66)

§.A% ¢ g =g (2.67)

on the time boundary, or at tl and t2.

Equations (2.60) are the momentum equations, equa-
tions (2.61) are the equations which specify the internal
degrees of freedom due to the inclusion of components,
Aau, in terms of the determining parameters of the
system. Equation (2.62) may be considered as a defining
:equation for temperature, while equation (2.63) is the

energy equation.

If the Lagrangian of the system can be written as

- L o _ 2.68
A =35 pv,v pU ( )
or the difference between the kinetic and internal
energies, the Euler equation for momentum can be written
in the more familiar form,

B + F = pbhv
o o

Po |8 > (2.69)

and the stress tensor can be written
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o i o o,
9x y 29X 9’ X y
-as B+« F, (2.71)
o o
Using the identity,
op _ _ _pg“ (2.72)
o ol
ox u

equation (2,.71) can be reduced to

B B oU
a

o X, + 1,8, (2.73)

29X "

Equations (2.61) can be reduced to more physically

meaningful equations by multiplying both sides by ABu

oA A UVLA A WVE HgA
ABH-——E— + ABM<GA B a> + ABUGA va B o
BA” | v
oA/p AVH_AVHA ) _
- pABuD —a-]—DF - ABUBVU-<Q Q l)\ O.

u
(2.74)
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With the aid of equations (2.58) and (2.28), this can be

written as

AVUA_Y _ AVHA
¥ <ABuAan x A>|Y < (ABuAav)lk

AAUV Y
+ <ABNAGAG X v)ly’
where the ldentity

A HVLA _ A~ owvy U
g B" A = A B va

A o Byl v Bu- a2

was used in the simplification.

With the definitions

B q av‘Bu A
and
oA oA
ph = + DA
aB  5p% TBu o 5(pp® ) T BM
M H
_ ALV _ Au\))\
Q AauAB\) Q (AGUAB\)) | A2

(2.75)

(2.76)

(2.77)

(2.78)
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equations (2.75) can be written as

pDJ , = (2.79)

-
o.B KaB + pha

&% g

In this form the antisymmetric part of7(2.79) can he
considered as an internal angular momentum balance
where J[aB] are the components of the moment of
momentum tensor, K[aB]Y are the components of the
torque stress tensor, and h[aB] are components of a

stress-type tensor and appllied body couples.

The energy equation (2.63) can be converted to an
entropy balance equation by the followlng manipulations.
Expanding dA/dt in terms of the arguments of A, equa-

tion (2.63) can be written

9A dS oA e} oA o HA v
S dt * o DA M + o DDA M + ov DSuA
oA 9DA
H H
+ G2 Dx*  + oA pv?® - 2pv Dva
ax® L A @
u

+ p 8 Vu + paBVaIB

- D(ABuJaBDAa“> + (QVukﬁvu>lA @ g

N + Fava = 0. (2.80)

-+



Using Euler equations (2.60) and (2.62), this can be

simplified to

00 %% =N + ag DA% + oD ——49- AB BV gDA%,
3A H oDA%
" n
- op 22 pp® SV“A%vkl v 24,8 v
apA® o oax , H

- B ) SVHAA B,
pD ( DA% JaB ( ”)IA + P, Vv IB

30

(2.81)

With the use of equations (2.54), (2.55), (2.56), (2.57),

(2.58), (2.61) and the continuity equation

v*, =0, (2.82)

equation (2.81) can be reduced to

ds = N + @uv% qukA

Pe & uv Tuv)a * ulv

+ THVG (2.83)

This is now in the form of an entropy balance. If only

the internal entropy production 1ls considered, 1t can be

written as
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o =0, +0,+a, (2.84)
0 = = %; elu )
o, = @V, ¢ BV (2.85)
oq = ?uveulv )

where o, represents the irreversible effects due to heat

1
conduction, 9, is due to plastic deformations and the
motion of dislocations, and 03 is due to viscous dissi-

pation.

In accordance with the general theory of irrevers-
ible processes, it is assumed that generalized forces

are related to the fluxes through the equations

:1e]
_a—l2u _ 1l
6 "q 111 aelu W
o0
QMY = Mo A2 >
aw].l\) (2.86)
' 90
quA _ “2 — 2
.'ﬂ’u\)lA

(Cont'ad)
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_ dag
= u3 BA 3
vlll\)

~
THY

where 015 Ty, and 03 are functions of thelr respectlve
fluxes and also of Xgs constant or yariable parameters,
and where Hys Ho» and u3 are constants of proportion-

ality.

In the theory of plasticity, 1t i1s the assumed
form of o, and Xg which determine the yleld surface and

strain hardening characteristics of the medium.

Summary of Variational Equations

In summarizing the equations derived in this
chapter, it is assumed that the Lagranglan can be

written in the form

A = % ove - pU. [2.68 7"

The Euler equations are presented in the simplified, or

physically meaningful, form.

The complete variational equation 1s

Brackets indicate a repeated equation number.
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= 0. (2.87)
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The Euler equations corresponding to the inde-
pendent variations in the above equation are the co-
efficients in the square brackets. Obviously, the
entropy balance was obtained by making use of the Buler

o

equations corresponding to 6x%, 8A b and 6S in the

volume, Vt.
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CHAPTER 3

EXTENDED VARIATILONAL PRINCIPLE

In this chapter, the Sedov-Berdichevski variational
principle, discussed in Chapter 2, is extended in the
manner of Washizu [17]. To do this it 1s necessary to
make certailn assumptions concerning the form of the
Lagrangian. First, it is assumed that the Lagranglan

can be written

ove = pU [2.68]

4
1
=

as in the latter part of Chapter 2. Also it is assumed

that the arguments of U include

_ f2(e) ~(p) _a JHVA .0 a
U = U<euv ’Euv s X u’s ,DA u’S’A u) (3.1)
where the dependency on components, Aau and xaIJ is

exclusive of thelr appearance in the elastic and plastic
strains. This allows for the introduction of Lagrangian
multipliers in connection with the kinematic relation-
ship while still maintaining the generality of the

original model.



36

Derivation of Extended Principle

The elastic strain tensor, equation (2.17) can be

written, with the ald of equations (2.4) and (2.18), as

g(e) _ o

1 o
o) - 2(xaux v = Aoy u). (3.2)

Similarly, the plastlc strain tensor becomes

A(p)__]__( o —O
Cav T 2 AauA v guv)' (3.3)

With these assumptlons the variation of the
Lagrangian (considering only-dxau and éAau temporarily)
is

o oA

oA
+"TGA +ooo

9X

dA = 6x

_ (1.2 p o 39U o
= (2 \' —U) o §x e p 5 §x

U ¢



where

as in
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oU o aU o
+ p SETET AapﬁA -p ——T_T A SA + g;a— SA y
Hv H
.. _0oU sx® 4
o U *
ax y
_ 9U _ ~(e) U 2(p)
ASx | 0 Sx(e Ssuv - p (D Geuv
uv Hv
+ 32 sa% 4 32 sx% + ... (3.4)
9A Hooax H
M U

the meaning of Aau and xau in the final form is

the stated assumptions.

With these variations substituted for those in equation

(2.45), the variational equation can be written as

al[
N

tsy

#*
[ Adtdt + 8 W + 8W
%

1

ty
Apvi~(e) 1 o 1 o )
+ 61 [ I o ( 5 Xaux " + 5 AuuA " dtdt
Vv tl
t

auvia(p) _ 1 a a _
+ 6y [ J ¥ <e“v ~ 5 Ay Ayt guv>drdt =0 (3.5)
v



' where 6¢MY and ﬁ“v are Lagrangian multipliers and are

subject to varliation.

The additional integrals of equation (3.4) can be

expanded as

t
cpv(fa(e) _ 1 w 1 o
61 I { g (euv 5 xaux u + 5 A A v)drdt
\Y tl
ts
= | uv f~(e) _ 1 o 1 o
= I [ So <Fuv 5 xaux v + 5 AauA u)
v tl

d pvfa(e) 1 o 1 o
+ 3t [ (euv 5 Xau v + > AauA vi]dt dtdt.
(3.6)
AUV o
The term, -0 xaudx y> can be further expanded by
_AHV 0 _ _AHV 8 o
g xau6x v o] xa“x véx lB

- (04%,2% 4 (3.7)

38
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where the identity

B _ ~uv B
Oy =0 XX (3.8)

has been used. Similarly the last integral of equation

(3.5) 1is expanded to

E2
spv (a(p) _ 1 o o )
61 [ } ] <Fuv 5 AapA v + g v dtdt
Vit
t, )
- cuv(a(p) _ 1 o uv>
—l J )w (87 - 3 a2
VARR"

1

“uvea(p) _ quv o
+ ¢ 6€uv ] AapaA v

4 lsuv(a(p) _ 1 @ o9 )] |
+ dt[} '(euv 5 Ayt 8Ly §tdtdt (3.9)

The complete variational equation can then be

written by collecting terms with the same independent

o

variation, i.e., §x%, 6a% , ot, 68, sele) aéﬁp) s6HV

v ? v
6$uv, on the volume, Vt, and Glxa, GlAgu on the boundary.
With the substitution of equations (2.46), (2.47),

(2.48), (2.49), (2.50), (2.52), (2.53), (3.6) and (3.9)
into equation (3.5), and the use of the defining equa-

tions (2.55), (2.56), (2.57), (2.58), it becomes



oM/ AVH_ZVHA o
op 2o _ (gvrg ,A)Aav] sA%

aDA“u
¥ _%% + pe]ss
o (e g, - Gy
- % auxa\) + % AauAav) + ‘l’ﬁw(gﬁg)
- % AauAav * %uv» ¥ (a\)u}\ﬁwa)\ ¥ paBV“
v p 20 xBuv“) + N+ Fav%]at
X " |8
¥ Lgﬁs) % Xanu av * % AauAaV]sauv
' t&ﬁg) - % AauAav ¥ % Euv]sauv
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b lop 22U __ 4 GHV sole)
pe Hy

L. Hv

_ 9y suv| <~ (p)
+ p—m\p + Y e v dtdt

€
L Hv
t')
- B - ) B ~UVA o

+ I f P, P — X'y tp nedlx

z tl M

_AHVA epvk] B o
+[ q + g x°\ A, 6147 gt dodt
t2 N

+ p[—-va + ga] 61x

v 1

t

+ pl-J +Jd : APHs 2% lar = 0 (3.10)

P al  ~aB & 1y ' :

1

By the technique of separating the dependency of
the Lagrangian into the elastic and plastic strain ten-
sor components from the more general functions xau and
Aa“, the variational principle has been extended to con-
tain the elastic and plastic constitutive relations and
the elastic and plastic kinematic relations, in addition

to the equations previously derived in Chapter 2. This
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has been done with no lessening of the generalities of
the Sedov-Berdichevskii physical model except for the

assumption implied by equation (2.68).

Discussion of Extended Principle

The Euler equations of the extended principle,

equation (3.10) are:

Momentum.

sx%: paB + p au xB +Fa = pDva (3.11)

u |8

Internal Degrees of Freedom.

~

o, AVH VRV AYUA
S84~ : <o Y Q'H + Q ‘A>Aav

- pD /e 0 (3.12)

Temperature-Entropy.

§S: _gA + 00 = 0 (3.13)
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Energy.
- U S _ aBH o
§t: »p IE ( 5 VY U A JaBDA u)
AYUA B 8. a B 2U o
+1q WVUX A + pa v' + pXx " axa
M | 8
o
+ N+ Fv =0 (3.14)
BElastic Strain-Displacement
~uv . a(e) _ 1 o _ o )
Sa " : € v —2(xa“x\) AauAv (3.15)
Plastic Strain-Displacement
~uv . ~(p) =_]__( o _9° )
Sy v > AauA v v (3.16)

Elastic Stress-Strain. (symmetric)

~(e), uv dU ;
Se) ol =P —1ey (3.17)
88”5

Q>

Plastic Stress-Strain.

~(p). JUV _ QU
SEMV . w = p —:(—7 (3.18)
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Boundary Conditjions-Space

5, x%: BaB = pCLB + 0 —ég—- Xsu (3.19)
29X u
GlAup: §”vx = apvk (3.20)

§.x% J =v - (3.21)

The energy equation (3.14) has been simplified by
the use of equations (3.15) and (3.16), and the
Lagrangian multipliers are defined physically by equa-

tions (3.17) and (3.18).

It is interesting to note the differences in the
form between the above equations and the correspond-
ing equations awerived in Chapter 2. The momentum equa-
tions, (3.11), for instance, show explicitly that other
quantities besides the usual symmetric stress tensor may
appear. One such quantity is, of course, the anti-
symmetric stress tensor which arises when couple

stresses are present. This case will be discussed below.
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The internal degrees of freedom equations, (3.12),
now show clearly how the stresses, defined by ¢"¥ and
@“% are coupled with the plastic and dislocation ten-
sors. A further explanation of thilis will also be glven
in the next sectlion. Equation (3.12) can be put in a
form simllar to that derived 1in Chapter 2, by multi-
plying Loth sides by ABu' Doling this and manipulating
the results as was done above, glves the relationship

oA EIN

pDJ = DA + A
9B apa® BN ap% B

U

(i ),

AVHALY _ AVHA
b (A a8, ) - 4 (outan ),

|y
. ~AUV_Y
4 (ABuAaAG X v) (3.22)

[y

This equation can be reduced to

oDJ . =K .Y + ph

o = Xog (3.23)

of

where

Y . 2UVA Y
K AaVABux \ (3.24)
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and
ol ol AV AVU AV
ph = A + ——=—— DA + <0 - " -Q )A. A
o aAau Bu B(DA“u) Bu av Bu

~HUVA
-3 (AauABV)lk. (3.25)

The energy equation can also be rearranged in the

same manner as in Chapter 2 to yield the entropy balance

equation
6 I3 = ¢ ﬁﬂ) A L AL L + TV
PY 3t 5/|, & "lu iy pv| A plve
(3.26)

This, of course, is exactly the same as in Chapter 2.

Application of the Variagtional Principle to Classical

Models

The best way to show the physical significance of
the extended Euler equatlons is by giving examples of
some well-known classical models. The procedure for
applying the principle to specific models is as follows:

1. Assume the proper form for the Lagrangian.

2. Eliminate the generalized forces or stresses

which do not apply to the particular model.

3. Assume a form for o if the system is a dissi-~

pative one.
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Elastic Body. PFor an elastic body, the

Lagranglan takes the form

ST )
A= E v - pU(au\),S,Lp> (3.27)

noj=

The only remaining terms in 61W* are those involving 9,

Fa, and N, or

2
SW# = [ ’ l}eds + Faﬁlxa -~ div E]det-‘ (3.28)
V't

1

Also, the tensor components,Aau,become equal to xa“ and

the elastic strain becomes

~(e) _ 1 o ° )
v 2<quA v 8y (3.29)

The fleld equations and boundary conditilons are:

: B P =
Momentum: o 8 + F, = pDv, (3.30)
Y
Temperature: 3 + pO = 0 (3.31)
Entropy: p0 a5 = _atv a (3.32)

dt
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4 ] /\(e) _ ;-(A o )
Strain-Displacement: ey = 38y By (3.33)
Constitutive Equation: oYY = p (Y (3.3%)

ae(e)
Hv
Boundary Conditions: oaB = paB on I (3.35)
J, = v, at tl,t2 (3.36)

Also the relation between the stress tensor in

Eulerian coordinates and in Lagrangian coordinates is
o B - GHV% xB (3.37)

The equation for the internal degrees of freedom is
not applicable for this model since the Lagrangian is

not a function of Aau, i.e., there is no variation 6Aau.

Elastic—-Plastic Body. The Lagrangian for this

model takes the form

A = % ovZ - pU(EﬁS),gﬁg),S,Lp> (3.38)

where the dependency of the internal energy function on
the plastic strain tensor implies a material "with a

memory". The functional le* becomes
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t2
S, WH = [ [ [peas + F 8.x° - @“\’BWGAO‘V - div 'oi]drdt.
vt

1
(3.39)

Under these assumptions the field equations become

as follows:

. B =
Momentum: 9, 8 + Fa pDVa (3.40)
Internal Degrees of Freedom: @uv = o™V - @uv
(3.41)
. o4 -
Temperature: z= + p8 = 0 (3.42)
, . ._:;‘)'- - _ . = A]J\)I\
Entropy: p6 3% div q + Q"'m (3.43)
Kinematic Equations:
ele) _ l(x x* - A“) (3.44)
HV 2\ an” v Tapt v
SR
Eav T2 AOL]JA v 8uv (3.45)
Constitutive Relations:
AUV U
(0] =P W (3-’46)

Hv
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AUV aU

IP = p (3-“7)
28 (P)

pv

The boundary conditions are the same as for the elastic

body.

In the above field equations there is a dissipative
term in the entropy balance equation (3.43) which in-
volves Q“V. This term can be written as in Chapter 2,

equation (2.86),

90

M, —=— . (3.48)
de

Hv

g -

The form of 0, can be chosen to give relationships
for the yield surface as given in various theories of

plasticity. PFor instance, il

| g, =k 'v@ﬁg) e“\)(p‘7 , (3.49)

the yield surface is

a §*"v = K°. (3.50)

In this equation k can either be a constant or a func-

tlon such as



k = k(x) (3.51)

where

~(P) 1w (p) (3.52)

X = ) ]

Thuss the yield surface in terms of the stress

tensor becomes
(64-3") (8,78, ) = K2 (3.53)

where equation (3.41) has been used. This example,
shows the meaning of the internal degrees of freedom
equation and how the stress tensors are coupled with the

dissipative terms of plasticity.

Elastic Body with Couple Stresses. To derive the

equations for this model, it is necessary to extend the
original meaning of the Sedov-Berdichevskll model to
include independent rotations among the varied quanti-
ties in the Lagrangian. This is done by defining the

components of the rotation tensor as

-~ _l o
Wy =3 Aa[UA v (3.54)

The independent variation of @

" can now be assured by



using the equations in which the variation of Aau

appears. Since this model is elastic, the last step in

this derivation is to let

The physical meaning of the terms will then be obvious.

The Lagrangian in this case takes the form

_ 1 2 A A A~
L= 3 ove - pU(euv,pr,wvaA,S,Lp> (3.55)
and the functional le* becomes

t

2
s W¥ = :deS + Faalx“ - @va<BuV6Aav>
v/t R

1

+ NGt}det. (3.56)

Since this model is a little more complicated than
the previous one, the steps beginning with the general
equations are shown. The momentum equations are
oU B

+ p -a-;a—- X " + FOL = pDVOL. [3.11_]

u |8



But
B _ B8
Po = %y
fw
and oU = o EU AV
ax% an. . ax%
M AV H
= p U X
~ ov
amuv
o, o
where the identity x " = A U was used.

symmetric stress tensor is defined as

a[uv] . U

Bwuv

the momentum equations can be written

— B _
g + Fa = pDva

where o = g B + GEHVJX x8

53

(3.57)

(3.58)

If the anti-

(3.59)

(3.60)

(3.61)

The most convenient form of the internal degrees of

freedom equation for this case is equation (3.22). It

can be written as
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BA . .

pD
BDAau Bu - gp%

AVUA Y
ABu + <ABpAan X A)IY
H

_ AVHA ~AlV
(ABpAav>lA + (ABpAaAG Xv)lY.
(3.62)

The first term is zero since the Lagrangian is not
a function of DAa“, the third term on the right is zero

since x is zero, and the remaining terms become

Bu|A

oA ~ oU
ot teu T TP g e 3.63
w
|3 pv

(3.64)

(3.65)

o=
™
=
b ]
e
>
Q>
P
=
<
b
<2
<
~——
fl
Q
Q
™
<

The internal degrees of freedom equations which now

become the angular momentum equations are

TN Gaﬁle + Q8 - o, (3.66)

where 5“6 = QGBYIY and represent body couples and UQBY

is the couple stress tensor.



Since this model is elastic, there should be no
dissipation involving the quantity Q"V. A check of the

entropy balance equation (3.26) shows a term

- AHVAZ :
o, = Q LIVIPY (3.67)

A

1r nuv is put in terms of the tensor component Aau,

equation (3.67) becomes

_ AUVA o
g, = Q (AauDA \)){A (3.68)

xav and the covariant derivative of xav is

I}

o
Since A v
zero, the entropy production due to the couple stresses

is zero as expected.

The remaining field equations and the boundary con-
ditions for this model merely involve substitution in
the general equation and will not be presented here.
This model is derived from basic principles in the

classical way by Eringen [ 2 ].
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CHAPTER 4

GEOMETRY OF A SURFACE

In order to apply the Sedov-Berdichevskii
variational principle to the theory of shells, 1t is
necessary to review, briefly, the equations of the
geometry of a surface. This chapter will be devoted fo
this task.

The references for this material are Green and
zerna [4], McConnell [7 ], and Naghdi [10]. The nota-
tion follows closely that used by Naghdl [10] with the
exception that the roles of the Latin and Greek indices
are reversed. In this chapter, and in Chapter 5, a
Greek index has a range from 1 to 3, while a Latin
index ranges from 1 to 2. This will make the surface
geometry equations compatible (in notation) with the

equations of Chapters 2 and 3.

Coordinate System

A coordinate system in three dimensional space is

chosen in the form

r(x®) = F(x*) + x3ay(x?) (4.1)



Ul
\7

with the restriction

ca, = 1 . (4.2)

This defines a system of coordinates in space where r
is the position vector to a point on a surface, and a3
is a unit vector normal to the surface. It is obvious

from equation (4.1) that

r(xa,o) - ;(xa) . (4.3)

a_ =1 _ = ga(xb,o) | (4.4)

which leads to

a *a, =0 (4.5)

and by differentiating the last equation in (4.2) to

ca, =0 . (4.6)



Some of the relationships which result from these

definitions are:

3 N
g, = a, *x a3,a
£3 7 23
- (4. 7)
Bq'83 T By3 T 0
83783 T 43783 T 833 7 1

where gaB is the metric in the three dimensional space.

First Fundamental Form

The first fundamental form is defined as the

square of a line element on the surface, x, = 0, and

3

is given by

- = . a. b
dre<dr = aabdx dx~ . (4.8)

The quantities,aab,are the components of the surface
metric tensor.

A two dimenslional e-system can be defined by

(4.9)

and e = e

ab “ab3 ab ab3



A surface e-system can then be defined as

€ab = (h.10)

which is analogous to the space equivalent

N

(4.11)

ab ab

where a and g are the determinants of a1 and gaB
respectively.

From equations (#.10) and (4.11) and the defini-
tions thus far, the following relationships can be

written:

)1/2 € } (4.12)

m

1l
N
® o

“ab

In the above equations, e 1s the relative alternating

abh

tensor defined by
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_ _o11 . 22
e11 = 822 = = e = 0
(4.13)
- 12 = _a21
e12 = e = —c21 e =1

Surface Tensors

Also, in the above equations Eab and 2P are

absolute surface tensor components. 'The meaning of
surface tensor components can be made clear by an
example. Consider a tensor T and write it in terms of
its components with respect to both the By basis and

the aa’a3 basis.

T = ngags = Tgaaas (h.14)

The components,Tg,are the usual spacial components of a
tensor defined throughout the metric space. The compo-

nents To are the shifted components of the tensor T and

B

are invariants with respect to a surface transformation.

o . .
is called a surface tensor it may also be a

B
3

function of the coordinate x~. From now on, unless

Although T

defined otherwise, a bar over the tensor components
implies shifted components in the sense of equation

(4.14).
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The surface Kronecher delta is defined by

—ab— _ gab .
e e, = Glm (h.15)

from which the followlng set of equations may be

derived:

o
o
=

(4.16)

The following relations between surface base vectors can
be derived 1n a manner similar to their three dimensional

counterparts.

— b
= 3
a xa3 €pad
a xa, = & a3 & (h.,17)
a b ab t
aa“/.a’ - -E—aba
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Second Fundamental Form

The second fundamental form of the surface is

defined by
~dF+da. = b_, dx2dxP (4.18)
3 ab

from which

b = -a_‘a = aj-a . (4.19)

Two invariants of the tensor bab can be formed. The

mean curvature is defined as

a (4.20)

o
]
|-
)
o'
]
N[
o

Note that a2P

in this equation 1s used to raise the
index of a surface tensor. It plays the same role with
respect to surface tensors that gaB does with respect
to space tensors.

The second invariant is called the Gaussian curva-

ture, and is

K = ‘ba' - % Gabb:bm (4.21)
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Covariant Differentiation

A double vertical line will be used to distinguish
the surface covariant derivative from the space deriva-

tive. It is defined as

ma - ma w  am _w ima .
T blle = T + T T r T (4.22)

where Fbca is the surface Christoffel symbol defined by

T 2= 3% X (4.23)

The surface Christoffel symbols are also equal to their
space equlvalents evaluated at x3 = 0.
Some of the equations derived from these defini-

tions are:

- ab - —ab _ N
8ablle =2 e T Cablle T % |le T Q
a F 3a =1 a
allpb ab 3 ab®3
r (4.24)
a3 _ a
a “C = a ,C = -bcaa
_ _.a
a3”c a?”C = bcaa J
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Third Fundamental Form

The last set of equations, (4.24), is known as
Weingarten's formula. This can be used to define a

third fundamental form

cda. = b’b,. dxZax® (4.25)

b2 - pPp? = o 3
a’r ar
b _ b . b.a
K&~ = 2Hbr babr
>~ (4.26)
PacPba ~ PabPea T Raabe
0 J

Pablle ~ Paclp T

where ﬁaabc is the covariant surface curvature tensor.

Since the space is two dimensional ﬁaabc has only one
independent component,

1212 = akK. (4.27)

o)



The Space-Surface Shifter

The derivative of equation (4.1) with respect to

x% gives

= _ 3nc
8, T 2@, X baac
(4.28)
&3 = 23
If the definition
u = 8% - x3p?¢ (4.29)
a a a T
is employed, (4.28) can be written
By = M2, - (4.30)

Note that u? plays the role of a shifter between the

a

surface base vector and the space base vector. If uc

has a unique inverse, then the contrgvariant base vec-

tors may be related by

g? = 12a° . (4.31)
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Naghdl [10] has shown that the inverse of ui exists, and
is unique if

Ix5l < IR (4.32)

minl
In words, this says that the half thickness of the
shell must be less than the minimum radius of curvature.
This 1s obviously a weak restriction in view of the
usual engineering application of shell theory.

Thus with the existence of the above shifter
assured, the relation between the tensor components in

equation (4.14) becomes

a _ —a f=n )
To = MpHpTy
3 _ Am3
To = Ty
r (4.33)
a _ —amn
T3 - unTB
3 _m3
T3 = T )
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Some additional equations involving us are:

bl -@

po= 1 - 2x5H + (x3)2 K

€p = ME & (L4.34)
o

R J

Space-Surface Relationships

With the above defilnitions and equations, the
space tensor components and their derivatives can be put
in terms of surface tensors. This 1s done by writing
out the space covariant derivative and using equation
(4.33), and the following values for the space

Christoffel symbols:



I‘abc = Fébc
Iy = -igby
Fap” = T
Loy = T33°

The most important results

expressed in the following

H
]

a _ =af=n
e ~ “n(T I

Ta|3 B ugTh,S
™3 = T
T3|a = T3,a + b
T3|a - T3,a + b
T3‘3 = Tgy3 =T

n—
- ua(Tng -

—C¢. n 3

of this manipulation are

set of equations:

ban3) (4.

- bgT3) (b.
(4.

(k.

T, (.
2T (4.
5,3 = T35 " _T'3,3 (4.

T (h.
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35)

36)

37)

38)

39)

4o)

41)

42)



_1’12.;— _ w - m
Table © ua“b[rnzllc ®ectn3 bncT32]

i = = bm o R
la3|c ua__'ln3|c * b, The bncl33]

i - n\my 2'—1' - Gl
l3a|c - “aLP3an *bTn bncq33]

= am am
T33|C - T33,c * b T35 * T3

_ . mn
Tab|3 HatbTin, 3

_ nm
Taz|3 = ¥aTms,3
_ N
T3a|3 = MaT3,,3
T3313 = T33,3

(h

(.

(4.

(4.

(4.

(4.

(4
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43)

LAk

46)

47)

48)

49)

.50)

In addition to these equations for the covariant deri-

vatives of flrst and second rank tensors, some speclal

relationships will be used in the shell theory of

Chapter 5. These are

_ .—c.a
Hle T HHak¥yplle

(4.51)



covariant derivative of T

1y = (%) - W0

uT3|3 = (uT3>|3 + uipt

uugTablb = (uungb)”b - uugﬁibﬁTa3 - ubgT3b
uT3a|a = (uT3a)”a + uugbchab - uﬁ?bZT33

u;Ta3,3 - (u;Ta3)’3

=C_ a ~C,. a
= = —uu’b
o3 = Mgl o

ca3 - c a3> ce—d, b,a3
uuaT |3 (uuaT )3 + uuaubde

33 _ (.33 4, b33
T 4 (“T ),3 toungbgT

simple steps.
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(h.53)

(4.54)

(4.55)

(4. 56)

(4.57

(4.58)

(4. 59)

Most of these equations have been given in Naghdi [10].

The few that are not given can be derived 1in a few

Besides this group of equations it is necessary to

abce

lc which will be used in Chapter 5.

with respect to x°.

derive simllar relatlionships for a third rank tensor

Tch Consider the
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abe _ mabe c,abd b.,ade
T le T e Tage T *lge T

a,,dbe r cTab3

+ T, %7 + Tgy

de

+ F3C 3

With the help of (4.35) and (4.22), this can be written

as

abe abd -b n ade
+ unudllcT

T IC

_ mabe —c. n
=T e * MnMg|)e?t
—a_ n dbe —c, enab3
* unudHcT - Hb T
_ —b,ena3e _ —a, er3be
oD T Hob T (4.61)

Next, both sides are multiplied by uugu% and become

uugugTabclc = (uugu%Tabc)Hc + uuguéﬁﬁugHCTabd
+ uuiuiiﬁugncTadc + uuguéﬁﬁugnchbc
- uuﬁuéﬁgbiTab? - w2 Sra3e
- uuiuéﬁ?biT3b° - “Hc“i“éTabc

_ L i..abe 1 abe 6
uuchubP -~ uuaub”cT (h.62)
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This can be simplified with the aid of (4.51) to

2 ipabe 2 1nabce _ 2 1=—c epabe
MU T le ~ (uua“bT )Ih MU HLHeb T
% ia3e _ 1 &n3be 6
+ uu b T b T (4.63)

By a similar procedure, the following equations can be

derived:
2 i, ab3 _ 2 1_.ab3 2 i-—c,eab3
nugu T |3 = (uuaubT )’3 UM DT (4.64)
Lma3c _ Lnha3c £ m anc
Hu, T le (“uaT )Hc *ouupb T
f—c. m,a33 2+33c
- uuaumbcT - ubcT (4.65)
2.a33 . 2ma33 2=—c, mnha33
uuaT 13 = (uuaT )’3 + uuaumbcT (4.66)
cmiba - cm3ba c.m bna
HupT la ~ (“ubT )Ha oMU u DT
- unSipMp3P3 L Op33e (4.67)
cm3b3 - cm3b3 c—n, mn3b3
wugr3°3 ) o - (uubT ),3 + ST (4.68)



urI\3351

L7333

|3

33a m n3a
(“T )Ha ¥ UHRPR,T

* ““gbmaT3na - “EibiT333

ym333 —-a, £,333
(AT )’3 + ““zbaT
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(4.69)

(h.70)
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CHAPTER 5

APPLICATION TO SHELL THEORY

In this chapter the extended Sedov-Berdichevskii
variational principle 1s used to derivé a set of shell
equations. The total generallty of the Sedov-
Berdichevskii theory is maintained where possible, and
special cases are shown to illustrate agreement with the

usual shell theory derivations.

Momentum Equations

The momentum equations in three dimensions are

obtained from the integral

ty

= B o
I, = [-pDva + ta IB + Fa]éx dt dt (5.1)

v tl

in equation (3.10), where the definition

£ B p 2 _ 4B 4,8 (5.2)

has been used.
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The variations, 6xa, can be written 1n terms of

shifted components by applying equations (4.30), (4.28).

= . Ce T
6xa = uaéxc
(5.3)
6x3 = 6x3

If ;a and §3 are assumed to have a linear variation

in the x3 direction, they can be written
- _ = 3
Xg = Vg t X8y
(5.4)
§3 = w + x383
where Gé, B> Bys W are functions only of Xj,x,. The

physical meaning of these quantities can be deduced from
equations (5.4), i.e. the motion of a point on the
middle surface of the shell (x3 = 0) is described by

Vé, w. A rotation of the normal before deformation is
defined by Ba and the elongation of the originally
normal fibers 1is denoted by 83. Thus, the only physical
assumption implied by the above assumption is that
straight normal fibers before deformation remain

straight, but not necessarily normal or unextended.
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Putting (5.4) into (5.3) yields

= %8 c. 3
Gxa = uadvc + HoX 680
(5.5)
6x3 = 6w + x3683
From equation (2.34) and the relation
) 1
u(a)® = (g)*%, (5.6)

which is one of equations (4.34), the volume element,

dt, can be written

dt = u(a)? dxtax2dxd (5.7)

With (5.5) and (5.7) substituted in (5.1) and the
remaining components expressed as subtensors, (5.1)

becomes
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t
2
Il = t[ pun-"Dv— + uu (tab b + ta3'3) + up’F ]6VC
\'4 t1
-
+ | -upDv- + u(t3b + t33 3> + uF3]
[ 3 c_3/, ab a3
+ ] puu x Dv + uuax (t lb + t |3)
+ uu x3F ] Bc
+ [;ux3pDv3 + ux3(t3b|b + t33'3)
N ux3F3]GB3‘(a)1/"’ axtax®ax3at (5.8)
From equation (4.54), the second term becomes
c,.ab - c.nb b 2.a3 c,3b
up_t b = (uunt )”b - Rbbt - ub,t (5.9)
Applying (4.58) to the next term yields
c,aj3 - c,aj3 c—b. &,a3
MUt (3 = (uuat )’3 t UM H,bt (5.10)

Similarly, with the use of (4.55) and (4.59), the next

two terms wlth covariant derivatives become
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ut3b|b = (ut3a)“a + uu;bcbtab - uﬂib§t33 (5.11)
ut33l3 = (ut33)’3 + uﬁibgt33 : (5.12)

The remaining terms of this type are obtained by multi-

plying the above equations by x3.

c_3.ab _ ¢c. 3. nb c—=b, 2 3. a3
MU X7t b = (uunx t )”b - uuauzbbx t
- ung3t3b (5.13)
uu§x3ta3|3 = (uu;x3ta3),3 - uugta3
+ uu;ﬁib§x3ta3 (5.14)
3,.3b - 3.3a c 3,.ab
HX-t Ib = (ux t )Ha uuabcbx t
- uiPpSx3t33 (5.15)
ux3t33|3 = (ux3t33)’3 - ut33 + uﬂib;t33 (5.16)

Upon substitution of equations (5.9) through (5.16)

into (5.8), the integral becomes
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2
- _ Ch.,a c,.nb c,.a3
I, )[ oun’ov? + (uunt )“b + (uuat ),3

1
c,3b cpal.—
- ubbt + upaF ]6vc

SRR G (DI

c ab 3
+ uuabcbt + uF ]Gw
1 Gy 3@ c 3.nb c 3.a3
+ [ puuax Dv~— + (uunx t )Hb + (uuax t >’3

_ ubcx3t3b _ uu:ta3 + uu;x3Fa]66

b ¢

+ [—pux3Dv3 5 (ux3t3a)”a + (ux3t33),3

+ uugbcbx3tab - ut33

+ ux3F3]683‘(a)% ax3ax?axlat (5.17)

Next, each term in (5.17) is integrated with
respect to x3, and the resulting .stress resultants and

couples are defined by the following:



ab

1]

3
uuct dx

h/2
J b,ca
-h/2

h/2
J utBadx3

-h/2

h/2
’ ut33dx3

-h/2

h/2
I uta3dx3

~-h/2

h/2

c.a3
[uuat ]

~-h/2

h/?2

]

~h/2

h/2
Cna., 3
[ uuaF dx

~h/2

ab

lll

|

1}

Jh/?
-h/2

[h/Q
-h/2

Jh/Z
=h/2

c
[uuax

[ux3t

fh/E
~-h/2

uu2x3tcadx3

ux3t3adx3

ux3t33dx3

h/2
3ta3

~h/2

h/2
33

~h/2

uu;x3Fadx3

80

f(5.18)
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h/2 h/2
F3 = [ uF3dx3 M3 = j ux3F3dx3
' ~h/2 -h/2

[}

h/2 h/2
BC = ( puugDVadX3 c® [ puu§x3Dvadx3
-h/2 ~h/2

h/2 h/2

B3 = J puDvadx3 C3 = J pux3Dv3dx3
~-h/2 -h/2

p¢ = 2¢ + F® - B® c® =m® + M® - ¢

c3

w
"

23 + F3 _ 83 e3 = m3 + M3

m

a3

Note that the asymmetry property of t has made

it necessary to define the quantities, @ and T¢. In
the classical theory of elastlic shells, these quanti-
tles, of course, equal Qa and T2 respectively. 1In
fact, if the assumption is made that the fibers
originally normal to the surface do not elongate, then
T does not enter the momentum equations. It is also

ab ab

worthy of note at this point that N and M are

asymmetric due to the asymmetry of tab in addition to
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that caused by ug. In other words, in the general case,

ab ab

where tab is not necessarily symmetric, N and M are

non-symmetric even for the cases of thin shells where
u; is replaced by the Kronecker delta.
With the definitions (5.18), equation (5.17)

becomes

be Cmb =) =C c
+ _M b bbT + bbT -Q° + c ]660
B
b bec 3 3 % 2..1
. + -T Hb + beM - Q% + ¢ ]663 (a)™® dx“dx~dt
(5.19)

Since the variations of the displacements in
(5.19) are independent and arbitrary even when Il is
considered part of (3.10), the momentum equations can

be written as

§v : NPC, - ngb +p¢ =0 (5.20)



Sw: Q lla + beN + p° =0 (5.21)
. be cmb cmb =C c _
§g,: M o ~ byT" + b, T - Q" + ¢~ = 0 (5.22)
. L be 3 3 _ .
(583. T “b + bch - Q + c = 0 (5-23)

If the stress tensor,tas,is symmetric, these equa-

tions reduce to

Wy - bSQ® + p® = 0 (5.24)
%, + b N°¢ + p3 = 0 (5.25)
MbC”b - Q% + ¢ =0 (5.26)
Tb“b + o MP° ~ @l + o3 =0 (5.27)

These are in agreement wtth the usual results of
elastic shell theory in which elongation of the normal

fibers is permitted [ 51].
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Internal Degrees of Freedom

The internal degrees of freedom are expressed
through the Euler equatlion associlated with SAau in the
general variational equation (3.10). Another form of
this equation is shown as equation (3.23). This is a
more convenient starting point to illustrate the deri-
vation of the shell equations.

Consider the equation

2

I, = [E“B + KOBY ]6@
¥4 e

vt

Bdrdt (5.28)

1

where EOLB = phOLB - pDJaB and where JQB, KmBY and hOLB are
the contravariant forms of equations (2.58), (3.24) and
(3.25), and

§0 = B”adA (5.29)

aB Bu
At this point it 1s necessary to know how GaB
varies across the thickness of the shell so that the
integration may be carried out. It 1s assumed for
simpliclty that 6&8’ the shifted components of an, are
3

independent of x3. This is sufficient for this demon-

stration and furthermore, agrees with Naghdi [12] for
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the case where eaB represents the rotation tensor as in
a body with couple stresses.

The shifted components of 6Oa8 are:

_ .c d.=
$04p = HaHpS%cq
~ 4, CF
66a3 = ua6@c3
L (5.30)
_ . Cam
603a = ua603c
6033 = 6@33 . J

The equations (5.30), (5.7) can be substituted in

(5.28) to give
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[uu Ead - uu x3b E + uucudKaebIb

+ unlu Kae3|3]a6cd

c.,a3b

+ [uE°3 - ux3b Ea3 + uu Ck |b

c,a33 =
+oupg °x ,3]6003

3¢ _ 3,.c3a 3ba
+ [uE HX baE + uubK la

c.,3b3 o}
+ LlubK |3]663C

uK33a

+
=
=
w
w
+

la

2

333 5 % 1
+ uk |3]6933 (a)® dx“dx~dat (5.31)

where (4.29) has been used to make the form of the
terms involving the secord rank tensor EO‘B agree with
the deflnitions of the stress and couple resultanps de-
fined previously. The following definitions can now be

used:



s
]

uuCE dx

h/2
ab [ b.ca. 3
-h/2

h/2
p°3 = I 1€ 3ax3
~h/2

h/2
p3¢ - J nE3C4ax3
-h/2

h/2
p33 . [ 153343
~-h/2

L}

h/?2 N\

uu2x3Ecadx3

-h/2

h/2
ux3Ec3dx3
-h/2

h/2
ux3E3cdx3

-h/2
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}- (5.32)

With the substitution of (5.32) and the use of

(4.63) through (4.70), equation (5.31) becomes
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ts
_ de _ ,dpbe aeb ab3
T )
v tl
a3b 3bal .=
- uuabbK - b K ]60
+ [P°3 bCRE3 4+ (uu Ka3b>|b + (uugxa33) 3
3
c. d abe c,33a|l:m
+ pu ubbdeK - ubaK ]60c3
3c 3a 3ab a33
*[P R34 (), ¢ (mgrtP)
c. d abe cm33al o
+ ubbdeK - ubaT ]6630

. [P33 . (“K33a)na . (uK333),3 b undp, K03

2..1

(a)? axdxtdt  (5.33)

+ uugbacx3b°]6633

The following definitions can now be applied to the

terms involving KGBY:



Labc

L3bc

La3c

Lab3

L33c

La33

1333

i

1]

)

89

(5.34)
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With the substitution of (5.34) into (5.33), the final
generalized form of the integral lnvolving the internal

degrees of freedom in shell theory notation becomes

2
_ ,de d.bc bde 3de _ ,d;b3c
12 = [P - bbR + L “b + I bbL
z tl
- b°Lad3]56
a cd
c3 cpa3 b3e 33¢ edc
+ [P baR + L ”b + L + bueL
C d33 =
baL ]6 3
3c co3a be3 33¢c ede
+ [P baR + L + L + bdeL
c.a33 | x
baL ]6030

2.1

(a)'/2 dx“dx~dt (5.35)

+
o
o]
Q
byl
Q
o]
w
| I—
Cs
ol

33

Since each of these variations 1is considered inde-
pendent even when 12 is part of (3.10), the equations
pertaining to the internal degrees of freedom can be

written:
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= . de d,be bdc 3dc d,b3ec
Gecd' P - bbR + L ”b + L - bbL
- b:Lad3 =0 (5.36)

= c3 cpal3 b3c 33¢c edc
6603' P - baR + L ”b + L + bdeL

- %1233 =0 (5.37)
5 . 3c ¢ 3a be3 33c edc
663C. P - baR + L ”b + L + bdeL

- sza33 =0  (5.38)
5 . 33 a33 333 c3a ca3 _
6933. P + L ”a + L + baCL + bacL = 0

(5.39)

Obviously, equations (5.37) and (5.38) will not be
independent if the variation is either symmetrle or
antisymmetric. The example of the elastic body with
couple stresses will show the effect of antisymmetry on

these equations in a subsequent section.

Entropy Balance

Instead of trying to integrate the entire energy
equation as it appears 1in the varlational principle, it
was noted that the energy equation could be transformed
into the entropy balance which 1s a much simpler form.

The pertinent integral is given by
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to
- _pg 48 _ & B oBy .
13 [ po at q la + Q "aB + Q ﬂaBIY]Stdrdt
v tl
(5.40)

where the viscous dissipation term has been dropped.

Entropy term. The first term in brackets can be

written as

h/2 h/2
i = gi 3 = L g;s_. 3
Lis) upb F¢ dx Po® M b dt dx (5.41)
~h/2 ~h/2 |
x3= o,

where Py is the density at the center surface,
is assumed that the
With the definition,

and 1t cemperature is uniform
the thickness.

HCI'OB S

Hps dx-,

h/2
g = J 3 (5.42)

~-h/2

the entropy flow term can be written as

2, (5.43)
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Heat Flow. Consider next the integral

h/2

- ufad 3 3 .

I(q) = I ,l(q |a + a |3)dx . (5.”4)
-h/2

This can be rewritten, using (4.52) and (4.53), as
h/2
I = (uqa) + (uq3> ]dx3 (5.45)
(Q) “a :3

-h/2

With the definitions

h/2 )
% = l uqadx3 >
-h/2
and ; (5.46)
h/2
Q; - uq3 ,
-h/2
I can be written as
(q)
. 3
L Qa“a + Q (5.47)



a
where Q represents an average value over the shell

|la
thickness, and Q3 is the heat flow through the top and
bottom surfaces.

Plastic Dissipation. Before integrating this term

with respect to x3, it is necessary to determine how

the plastic flow tensor, WaB’ varies with respect to
x3. It has already been sssumed that the shifted dis-

placements are linear in x3, and that the shifted com-

ponents, 5@8 are constant. It can easily be shown that

the linear distribution in shifted displacements

implies a quadratic strain distribution of the form

2 N
_ (0) 3.(1) 3 (2)
€ap = €ap t X0 t <x > €1
€43 = eég) + x3eé%) } (5.48)
_ _(0)
£33 7 €33 )

These relationships have beer. shown in Naghdi [10], and
Habip and Ebcioglu [6 ]J. Since TR is the sum of a
plastic strain rate and vorticity, the assumption of a
quadratic distribution in x3 would be compatible with

previous assumptions.
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Therefore, it is assumed that

. - ( —(0) , 3= <1>)
a3 Te3 Te3

> (5.49)
= (7(0) , 37(1)
1 = (D 4 23D)
33 T T33 - )

The integral form of the dissipation term then becomes

h/2
) am— (0) am— (1)
1(?) [uu Q Tom F 3 uu Q Tom
~h/?2
3 3%
+ 33l wed3w 33]dx3 (5.50)

The following definitions can be used to simplify
(5.50). The notation is chosen to show that when QGB
is equated to the stress tensor paB, the assoclated

stress and couple resultants also agree.
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Tp) is, then,

. =~ ommi—(
tpy = 0

Dislocation Term.

"2
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m4 L 3Qamdx3

MU X

Jh/Q h
~h/2

h/2 :
Ta = J ux3Q3adx3
-h/2

> (5.51)

=1k
|

h/2
a { ux3Qa3dx3
~h/2

~me—(1) ~a~(0) ~a—(1)
M Tom + Q Ha3 + T ﬂa3

ga—(0) . ga=(1) _ 33—
QMg Ty + Q7ma, (5.52)

33

The assumption for the quad-

ratic formm of Tob 1s again used to help integrate this

term, but in this case the form of the shifted compo-

nents is different.
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=
[}

L (5.53)

T, = uﬁF
3a a 32
"33 T "33 )

This assumption is necessary so that the defining equa-
tions of resultant quantities agree in form with those
of the internal degrees of freedom section.

Equations (4.43) through (4.50) are used to shift
tne components, ﬂaBIY’ and the definitions (5.34) are
cstended to QaBY by denoting them by iabc’ etc. With

these substlitutions, the dissipation term Lecones

. . rebaf— . - B =
Lepy = & <"ab||c Ya¢™3 bab”3c>

~

re3af—
+ L (na3IIC + bC

MTye ~ bac"33>

~ca3f— 2— — .
+ L (ﬂBch LT P bac“33> (5.54)
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Entropy Balance in Shell Notation. If all of the

above terms are collected, and 8t in equation (5.40) is

considered arbitrary, the entropy balance becomes

7]

d

o 95 . g3 + TPy 4 [o3e
dt || a

Po abl| e a3llc

+ 183y + (mec32 + b Lcm3>w
3 dl | m

Cdb-— i oy
- bb L a3 - bbcL "3&

. N e (0)
' <~bach3a - b, Lca3)n + ™

ac 33 &m
. Mmﬂ;ﬁi) 4 é&;ég) + e ;%) + g “gg)
e Tl 333, (5.55)
In (5.55), FR and nég), Féi) are not independent

quantities, but merely different ways of expressing
Tob? the space compoﬁents. This procedure interrelates
explicitly plastic deformation and dislocations.
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Constitutive Equations

In (3.10), the integral pertaining to the

stress-strain equations is

h/2
I, = UaB -p 9y Gs(e)
Y ae(e5 af
af
~h/2

s (o8~ ) 33%57 Geég) dtdt  (5.56)
afB

where all of the tensor components have been converted

to Bulerian form.

In keeping with the assumptions of the previlous

section, 1t is now assumed that

) = () X3K<e>)’

ab ~ Ma\"zb 2b

(e) .. _(e) 3 (e)
€43 % Ya3 t X7K,3 e (5.57)
(e) _ _(e)
®33 T Y33 J

and
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(p) _ 2{.(p) 3 (p)))

Eag = “a(ng T XTKey )

eég) = Y;g) + X3K;§) & (5.58)
(p) _ _(p)

€33 T Y33 J

With substitutions simlilar to those previously made,

equation (5.56) becomes

t.,
oU (e)
L, MU0 = pUMy E;Tgy $Yop
ab
v tl
3 a 3 (10 (e)
+ [ xTuu_o ~ XTPpHH, - S K

< a a 35;55 b

U (e)

33
+ <}0 - pH EZ§§7 5Y33 '

P ) - ..3,.2..1
+ ...similar plastic terms...|(a)”dx dx“dx~dt

(5.59)



Noting that

oU - L aU
3 (e) “a aefes 2
Yzb ab

and defining

h/2
J pude3 s

U =
-h/2
yields
t2
- b2 U (e) bl
ill N - aj-é—y 6’Y2’b + (M
Yeb
X tl
) a U (e) a
a3

/3 oU L (2)
AT )
\ 933

+ similar plastic terms...

101

(5.60)
(5.61)
30\, (e)
aKieS b
2b
CLU PO Y
a1 (&) 5
a3y
(a)% ax%axtat

(5.62)
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The Euler equations of (5.62) give the constitu-
tive relations between stress and couple resultants and
the strain measures. Under the assumption of small dis-
placements they agree with those in Naghdl [ 9 ]. 1In
general, however, they are not exactly the same as
Habip's [ 5 ]. The difference is in the method of defin-
ing the measure of straln. Habip [5 ] uses three inde-

pendent terms for Eab’

€

2
= Y;g) + x3,(1) (x3) v(2) (5.63)

ab Yab ab

whereas in this work only two are independent as in

equations (5.57).

Boundary Conditions

Integration of the boundary terms of (3.10) is
straightforward and presents no new methods or tech-
niques. As an example of the results for the stress and

couple resultants at the boundary, integration yields



abzx abﬁ
S
ab=— _ abr-l-
M Ny = M b
} (5.
a= _ as=
PN, =8,
as- a—=
= n
T = T0

where Ha are the shifted components of n,, the unit

normal to the boundary surface.

Summary of Shell Equations

The field equations of shell theory derived in

chapter can be summarized in the focllowing:

Momentum
Nbc”b - b2Q% + p% = 0 (5.
Q%)|, * DN % *+ 3 = 0 (5.
Mbc”b ~ o1 4 2T - G° 4 c® = 0 (5.
Tb”b + o M - @3+ e3 =0 [5.

Symbols are defined 1n equation (5.18).

103

64)

this

201]

21]

22]

23]
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Internal Degrees of Freedom

Pdc-bgRbc-PLbdc“b-+L3dc-bng3c bcLad3 0 [5.36]
c3 ,cpa3 . b3c 33¢c edc c.a33 _ =
P baH + L ”b-FL -+bdeL -baL 0 [5.37]

3c c3a be3 33c¢ edc c,a33 _
P=" ~b R°7 +1L |b-+L +by L - b L =0 [5.38]

33 a33 333 c3a ca3 _
P27+ L ”a-+L +b_ L +baCL =0 [5.39]

Symbols are defined in (5.32) and (5.34).

Entropy Balance

Ml

d ~cba— ic3a—

as _ 3
000 T = "Ll - O F LT g0 a3|le
~ca3— ~c38 ~cm3
+ DO e (b i + b L )an
~cab— ~abc—
e R P L P

- (baci°3a + b ica3>ﬁ s §eF(0) 4 by (1)

ac 33 im Lm

~a—(0) %a;(l)

sa— —(0) Fa=(1) . 333-
a3 a3 temm

+ T

e +Q T3a 3a

33

£5.55]



105

Symbols are defined by (5.49), (5.51) and (5.34),

~abe

where L denotes that Qo‘BY is used in the integrand

instead of KaBY.

Constitutive Equations

NP - 3T pb? _ 3T
ay (&) ay ()
Teb Y2b
% - 30 gP% - 3T
BKégj BKég:
a _ a0 c3 _ 38U
R ) N (5.65)
Ya3 Ye3
@ - 80 re3 - 30
aKEej amipj
a3 c3
93 - U p33 - 30
2v8) MY
33 33 J

The symbols in this case are defined by (5.18) with

taB = oaB, the symmetric stress tensor, and by (5.32)

with EaB = waB’ a symmetric plastic stress tensor.

An Application

Assume as in Chapter 3, that the rotation tensor

can be written as
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o
Aa[uA v] - [3.54]

£>
it
o=

uv

Also assume that the Lagrangian is a function of guv’

W
nv
61w* other than those for the simple elastic case as in

s, and Lp only, and that there are no terms in

(3.28). It is further assumed that the body is elastic

and therefore Aau

o
- X

u
These assumptions, together with (3.59), reduce

equation (5.35) to

I, = 3<Pd° - bgRbc>5G + <P°3 - b°Ra3)63

cd

+ <P3c - b2R3a)6630$a% ax2axtdat (5.66)

The Euler equations of (5.66) are

= dc dpbel) _
scd(P - bR ) 0 (5.67)
p¢3 _ pOor3®3 - p3¢ _ pCg32 (5.68)
a a
nde be
By the above assumptilons, & and R are exactly equal
to N%C ana MPC and thus equatlon (5.67) lis the
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so-called sixth equation of momentum of the classical
theory. Naghdi [10] has derived this equation in a

similar manner. Equation (5.68) serves to reduce

MbC”b - v 4 pST° - 3% 4 c® = 0 [5.22)

to the classical equivalent

P - % +¢c% =0 . [5.26]

Though these equations are immedlately derivable
from the symmetry property of the stress tensor, their
derivation in this manner serves to 1illustrate the role
of the internal degrees of freedom equations even in

the simplest model.

summary
This paper extends the Sedov-Berdichevskii vari-
ational principle [1] and employs this extended principle

in the construction of a shell theory.

The extension of the principle is accomplished by
the use of Lagrangian multipliers, and a redefinition of

terms 1n order to maintain the original generality of
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the principle. The Euler equations of the extended
variational principle provide, in addition to those ob-
tained in the original principle, elastic and plastic
kinematic relations, and, elastic and plastic comtitu-
~tive relations. Also, the original Euler equations are
expressed in a more physically meaningful form.

Examples are given which show how this principle can be
applied to various classical models whose formulation is

well known.

The extended principle is also used to derive a
shell theory. Thils 1s done by integrating the three-
dimensional equations across the thickness of the shell.
The derived theory is "exact" within the assumptions
concerning the variation of displacements and velocigies

across the thickness of the shell. A linear form is

assumed for the shifted displacements and velocities.

A complete set of equations is derived including
momentum equations, equations involving internal degrees
of freedom, an entropy balance, constitutive relations,
and some typical boundary condltions. An application 1is
also given which shows how the derived equations reduce
to the classical equations for a specified case of an

elastic shell.
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APPENDIX A

DERIVATION OF TYPICAL VARIATIONAL TERM

Consider the term

It is required to express this term in terms of the
independent varilations, GAau, and 6t for the volume and

GlAau for the boundary.

By using (2.42) and defining

~“uv  _  9A (A-1)

the above term can be wrltten as

A uv, /A A) = 2 MV o ) N UV WA o
o a(sw s,"VB aG(A Colu] 5,"Vs, B 8a%

(A-2)
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Since Gx v is antisymmetric in the indices p, v, the
brackets can be dropped from the first term on the right.

The application of (2.35) to (A-2) yields

A~ uv. (s A> IR TAVED) o o~ HVGA ( o >
5, c(s“v 5,"VB aél(A v|u> VB D (A%, )8

o
u

~A wva u>\
+ o va B a@A (A-3)

A

where the sign has been changed on the last term by

wv

using the antisymmetry property of ax The dummy

indices have also been rearranged.

Since the order of variation and differentiation

can be interchanged, (A-3) can be written

AN /A uv A o _ {2 uvpA .
v ) - <OA B a8yA v)lu (Ox B a)luslA v

ca>

o

o
§
" t

_ {2 VA o A~ UVLA
(GA B aDA V)ludt + (OA B a)luDA

aaA“u (A=)
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This can be simplified, by again applying (2.35), to

A~ pvefa A\ o L ( B ~ HA_V a ) A UV, A ) o
O')\ G<SUV ) X )\O'\) B aélA I lB + (OA B o IVGA u

+ (SVUA% <P ) Y
VU A

HnA o
‘Bét + Oy va B aéA y

(A-5)

where signs were changed by using the antisymmetry

HA

property of o°"*, and %Vu'was introduced by the defini-

tion (2.30). Equation (A-5) is the desired form.
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