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ABSTRACT

The natural frequencies of the transverse vibration

of a thin, isotropic, circular plate with free, clamped,

and simply supported edge conditions were studied exten

sively. The frequency equation for each edge condition

was derived from the classical partial differential equa

tion of plate vibration. These equations, which are in

terms of Bessel functions, were then solved numerically to

find the natural frequencies. Since the accuracy of the

Bessel function values is very important in evaluating

these frequencies, a comprehensive digital computer pro

gram was devised to calculate these values to eleven digit

accuracy. In this Bessel function program four different

methods were required to insure a rapid convergence. They

are: (a) Infinite Series; (b) Asymptotic Series; (c) Re

cursion Formula; (d) Approximate Numerical Method.

The nodal patterns are known from the form of the sol

ution to the fourth order partial differential equation of

the vibrating plate. The order of the Bessel functions in

the frequency equation corresponds to the number of equal

ly spaced nodal diametral lines. The eigenvalues of this

equation determine the number of concentric nodal circles
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which are present in the various nodal patterns. For each

edge condition, twenty-six frequencies were computed for

each of the first twenty-six orders of the frequency equa

tion. The accuracy of these computations has been carried

out to ten significant figures. Methods to be used in

computing the radii of the nodal circles corresponding to

these frequencies were also discussed. However, these values

were not obtained.



iii

ACKNOWLEDGMENTS

The author wishes to express his appreciation to his

adviser Doctor Benedict Sun for his consultation through

out the extent of this thesis. He also wishes to thank

the members of his committee, Doctor Arnold Allentuch and

Professor Aaron Deutschman, for their recommendations.

The author also wishes to acknowledge the assistance given

by the staff of the Computer Services Department of Newark

College of Engineering in their operation of the RCA-

Spectra 70/45 computer.



iv

TABLE OF CONTENTS

INTRODUCTION 	 1

FREQUENCY AND NODAL PATTERN EQUATIONS 	 7

General Displacement Relationships 	 7

Frequency Equations 	 10

Equations of Nodal Diametral Lines 	 18

Equations of Nodal Circles 	 20

Ratio Method for Nodal Circles 	 23

BESSEL FUNCTIONS 	 27

Infinite Series 	 27

Asymptotic Series 	 28

Recursion Formula 	 30

Approximate Numerical Method 	 31

COMPUTER PROGRAM ANALYSIS 	 37

Bessel Function Subprogram 	 37

Main Program 	 38

Function Evaluation Subprogram 	 41

Accuracy of Results 	 44

CONCLUSIONS AND RESULTS 	 47

APPENDIX 	 68

REFERENCES 	 77



V

LIST OF FIGURES

Fig. (1) Bessel Function Subprogram Transfer Points 	 36

Fig. (2) Besse' Function Subprogram Flow Chart 	 39

Fig. (3) Main Program Flow Chart 	 42



1.

INTRODUCTION

The analytical solution of the vibration of a solid

elastic plate was not developed until the early part of

the nineteenth century. Experimental work had been car-

ried on during previous years by the German acoustician

E.F.F. Chladni. He produced figures of the nodal pattern

shapes by sprinkling sand on vibrating plates. The Em

peror Napoleon of France provided a prize of 3000 francs

to be awarded by the Institute of France for satisfactory

completion of the mathematical theory of the vibrations of

plates. This prize was awarded in 1815 to Mile. Sophie

Germain. She presented the correct fourth order differen

tial equation, but her choice of boundary conditions proved

to be incorrect.
1 
Most of the difficulty in obtaining the

correct boundary conditions arose when the free edge was

considered. Poisson gave three equations which were to be

satisfied at all points of a free edge. Kirchhoff later

proved that in general it would be impossible to satisfy all

three of Poisson's equations. However, he also noted that

1
J.W.S. Rayleigh, The Theory of Sound (New York, 1945),

Vol. I, p. XVI.
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one of Poisson's equations is true identically for the

symmetrical vibrations of a circular plate. Thus, Poisson's

theory was correct even though he used three boundary con

ditions instead of two. In 1850, Kirchhoff resumed his

work and completed the theory of the vibration of circular

plates. 2

Kirchhoff calculated the first few solutions of the

equation for the natural frequencies of a free plate. This

equation was found by substituting the solution of the

fourth order differential equation of motion into the two

boundary conditions and equating the results. After the

first few values, the roots of the frequency equation were

extremely difficult to find. The smaller roots were obtained

by a trial and error method using interpolated values of

Bessel functions taken from available tables. This type

of solution is very time consuming, and the hand calcu

lations were of limited accuracy. For the larger roots,

asymptotic or semiconvergent descending series were used

for the Bessel functions, and the frequency equation was

written in the form of a series. This method, first used

2
Ibid., pp. 369-370.
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by Kirchhoff himself, was later used by Lord Rayleigh and

Airey. Rayleigh gives an extensive study of vibrating

plates with free and clamped edges. He also presents some

of Kirchhoff's original work and gives his own results to

Kirchhoff's equations. 3 Airey used a different semiconver

gent series and presented the first ten roots for each of

the first four orders of the frequency equation for clamped

and free plates.
4

With advances in mathematics, new semiconvergent series

were developed to produce larger values with greater accu

racy. H. Carrington, in 1925, utilized more extensive Bessel

function tables to find all the roots less than sixteen with

five digit accuracy. He then proceeded to develop the fre

quency equation in terms of an asymptotic or semiconvergent

series, but he did not give any further results. 5

Some of the more recent works have dealt with elastic

end restraints. Since the two extreme values of this type

3Ibid., pp. 352-372.

4
John R. Airey, The Vibration of Circular Plates and

Their Relation to Besse' Functions," Proceedings of the
Physical Society of London, Vol. 23 (1911), pp. 225-232.

5H. Carrington, "The Frequencies of Vibration of Flat,
Circular Plates, Fixed at the Circumference," Philosophical 
Magazine, Series 6, vol. 50 (1925), pp. 1261-1264.
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of analysis are the clamped and simply supported edges,

some results could be used for the natural frequencies of

the simply supported case. C. Lakshmi Kantham gives the

first root for each of the first four orders.
6 

N. Gajendar

solved the problem of a vibrating plate with initial dis

placement and velocity. He gives very little numerical

results.
7 

R.Y. Bodine has calculated the natural frequen

cies of a plate which is simply supported along a circle

of arbitrary radius. He gives results for supports varying

from the center of the plate to the edge of the plate. His

results include the first four orders with arguments up to

eighteen.
8

Thus far the range of orders and arguments for which

the frequency equation could be solved has been limited

by the difficulty in evaluating the Bessel functions.

6
C.L. Kantham, "Bending and Vibration of Elastically

Restrained Circular Plates," Journal of the Franklin Insti
tute, Vol: 265 (1958), pp. 483-491.

7
N. Gajendar, "Free Vibrations of a Circular Plate,"

Journal of the Royal Aeronautical Society, Vol. 69
(May, 1965), pp. 345-347.

8
R.Y. Bodine, "Vibrations of a Circular Plate Supported

by a Concentric Ring of Arbitrary Radius," The Journal of
the Acoustical Society of America, Vol. 41 (June, 1967),
p. 1551.
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For the first few orders, the infinite series could be

used for small arguments, and the asymptotic or semicon

vergent series could be used for the larger arguments. The

values which could be obtained by these methods have been

tabulated in various Bessel functions handbooks. To find

Bessel functions of higher orders, the recursion formulas

may be used if the argument is greater than the order. If

the argument is less than the order, the number of signifi

cant digits decreases rapidly with each recursion. For this

reason most Bessel function tables do not contain values

for small arguments of large orders. The development of

the high speed digital computer allowed a entirely new ap

proach to the problem. A numerical technique was given by

F.W.J. Olver, who utilized a reverse recursion process to

find the Bessel functions of arguments which are less than

the order. 9

Chapter II contains a complete development of the

equations for the natural frequencies of a vibrating cir

cular plate with its edge either clamped, simply supported

9Milton Abramowitz and Irene Stegun, Handbook of
Mathematical Functions, (Washington, 1968), pp. 355-433.



or free. It also contains the derivation of the equations

to find the radii of the nodal circles, and a method of

obtaining these radii from ratios of the natural frequen

cies. Chapter III contains a study of the various methods

of computing Bessel functions of the first kind, and Modi

fied Bessel functions of the first kind. An analysis was

made of the range of orders and arguments for which each

method is accurate. This information was then used in

devising a computer program to evaluate these Bessel func

tions for orders from zero to thirty-three, and for any

argument whose Bessel function does not exceed the capacity

of the computer being employed. An analysis of the entire

computer program used to find the natural frequencies is

given in Chapter IV. The accuracy of this program is car

ried out to ten significant figures.
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FREQUENCY AND NODAL PATTERN EQUATIONS

General Displacement Relationships

The differential equation of motion of a thin, flat,

circular plate with no external load, which is homogeneous

and isotropic, and which experiences small displacements

in the vertical direction is
1

where

and

I 	 =	 moment of inertia of a unit width of

cross section

H 	 = 	 plate thickness

E 	 = 	 Young's Modulus of Elasticity

v 	 = 	 Poison's ratio, 0.3 is used

δ	 = 	 specific weight of the material

g 	 = 	 acceleration due to gravity

t 	 =	 time

1
E. Volterra and E.C. Zachmanoglou, Dynamics of

Vibrations (Columbus, 1965), p. 379.
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W

	

=

	

displacement of the middle surface of

the plate in the vertical direction

r and e

	

=

	

polar coordinates whose origin is at

the center of the plate

Any consistent set of units may be used.

Equation (1) can be reduced to three total differen

tial equations by using the method of separation of varia

bles. The displacement can be written as,

If the proper substitutions are made into the evolving

equations, the final result is the following set of total

differential equations.

Where



9 .

Which is called the flexural rigidity of the plate.

The general solutions of Eq. (3) and Eq. (4) are

respectively,

T(t) = A cos(ω^t) 	 B sin(ω^t) 	 (9)

θ(e) C cos(ke) D sin(ke) (10)

where A, B, C, and D are constants depending on the ini

tial values and the boundary conditions of the particular

plate. In order for the displacements to be continuous,

θ(e) must be periodic with a period of 2π. Therefore, k

must be a integer.

k = n = 1,2,3,... 	 (11)

If a change of variables is made in Eq. (5) with

ρ = λr in conjunction with the positive sign, and ρ = iλr

in conjunction with the negative sign, the resulting equa

tion is

Equation (12) is of the form of Bessel's Differential

Equation, and its solution is of the standard form associ

ated with equations of this type. The general solution is,

after replacing ρ by r.
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where

Jn(x)

	

=

	

Bessel function of the first kind

Yn(x) 	 = 	 Bessel function of the second kind

n 	 =

	

the order of the Bessel function

A,B,E,F 	 = 	 constants

Bessel functions of the second kind become infinite for

zero arguments. Thus, if a plate does not have a hole at

its center, the constants En and Fn must be equal to zero

since the displacement at the center of the plate must be

a finite value.

The time independent solution of Eq. (1), that is,

displacement as a function of position alone is

The constants An ,Bn,Cn , and Dn must be evaluated from

the boundary conditions of the plate.

Frequency Equations 

Clamped Edge. The boundary conditions for a circular

plate of radius a, which is fixed at the circumference are:

(a) The deflection at the edge is zero.
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(b) The slope at the edge is zero. 2

The substitution of Eq. (14) into Eq. (15) yields,

The second term cannot be equal to zero for all values

of e unless C n and D n are identically equal to zero.

This would result in a trivial solution with no motion.

Thus, the second term can be eliminated, and the resulting

equation is

The substitution of Eq. (14) into Eq. (16) yields by sim

iliar reasoning,

where the primes denote differentiation with respect to r.

The Bessel functions with complex arguments can be

replaced by Modified Bessel functions according to the

following relationships.3

2S. Timoshenko and S. Woinowsky-Krieger, Theory of
Plates and Shells (New York, 1959), pp. 283-284.

3George Arfken, Mathematical Methods for Physicists 
(New York, 1966), p. 397.



The above relationships are substituted into Eq. (18)

and Eq. (19) to give,

Both of these equations can be solved for the ratio

(Bn/A n), and set equal to each other,

or after cross multiplication,

The derivatives can be eliminated by the following re

lationships 4

The resulting equation is the frequency equation for a

clamped plate

12.

4Ibid., pp. 374, 397.
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This equation will have an infinite number of solutions,

each of the form λ nm' if the radius is chosen to be unity.

The subscript n is the order of the equation, which cor

responds to the number of evenly spaced diametral node lines

on the plate. The subscript m is the numerical rank of the

root, which corresponds to the number of concentric nodal

circles. For example, the second root of the second order

equation will yield a nodal pattern of two nodal diametral

lines and two nodal circles. In this case one of the nodal

circles occurs at the fixed edge. The natural frequencies

of a specific plate with known physical properties can be

found by substituting the solution of Eq. (28) into Eq. (6),

Eq. (7) and Eq. (8), that is, Eq. (6) may be written as

Simply Supported Edge. The boundary conditions for a

circular plate of radius a with a simply supported edge are: 5

(a) The deflection at the edge is zero.

5Timoshenko, p. 284.
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(b) The bending moment at the edge is zero.

where

The first boundary condition has already been evaluated

in the previous section. The result was

The substitution of Eq. (14) into the second boundary

condition for a simply supported plate yields after consid

erable factoring,

By using the following recursive relationships 6

6
Arfken, pp. 373-374.
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and the Bessel function derivative formula Eq. (26), the

following relationship can be derived for the second order

derivative.

This equation holds for both real and complex arguments.

The substitution of Eq. (36) into Eq. (33) gives after

collecting like terms,

The Bessel functions with complex arguments may be replaced

by Modified Bessel functions using Eq. (20) and Eq. (21).

After the first order derivatives are eliminated by Eq. (26)

and Eq. (27), the resulting form is then set equal to

Eq. (32). The frequency equation is then obtained by

clearing fractions and factoring like terms. The final

result is

As before the solution consists of an infinite number of

eigenvalues λnm, from which the natural frequencies are
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able to be found.

Free Edge. The boundary conditions for a circular

plate of radius a with a free edge are:
7

(a) The bending moment at the edge is zero.

(b) The effective shear at the edge is zero.

where

and

The first boundary condition has already been evaluated

in the previous section. The resulting ratio was given by

Eq. (38). The substitution of Eq. (14) into the second

boundary condition for a free edge yields,

7Timoshenko, p. 284.
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Using the previously stated relationships for the second

order and first order derivatives, and the recursion for

mula for Bessel functions, an equation for the third order

derivative may be derived. It is

After the elimination of the second and third order deriv

atives, Eq. (44) can be written as,

The Bessel functions with complex arguments can be replaced

by Modified Bessel functions using Eq. (20) and Eq. (21).

The resulting form is then set equal to Eq. (38), and the

first order derivatives are eliminated by Eq.(26) and

Eq. (27). The final form is the frequency equation for a

circular plate with a free edge.

The solution of Eq. (47), as in the previous cases, con

sists of an infinite number of eigenvalues, λ nm
, from which

the natural frequencies may be found. For the particular
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cases of the zero and first order vibrations of a free

plate, the first root of Eq. (47) is equal to zero. This

peculiarity occurs because the only terms remaining in

Eq. (47) when n is equal to zero or one are those which

have X as a factor. Thus λ
00
 and λ10 equal to zero are

roots.

Thus the three natural frequency equations are:

(a) Clamped Edge 	 Eq.(28)

(b) Simply Supported Edge 	 Eq.(39)

(c) Free Edge 	 Eq.(47)

The solutions of these equations were found by a numerical

iteration technique used on a digital computer. This pro

gram is discussed in the last chapter of this text.

Equations of Nodal Diametral Lines

The equation for the displacement in the vertical

direction of a point on the middle surface of the plate

as a function of position alone was given in the first sec

tion of this chapter. A similiar form is given here as

where λ nm and Wnm replace λ and W of Eq. (14). It can be

shown that the number of nodal diameters corresponds to
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the value of n, which is the order of the frequency equa-

tion. For a specific value of λ nin and r, Eq. (48) can be

written as

where Rn is a constant equal to the value of the first

bracketed quantity of Eq. (48). Equation (49) can also

be written in the following form.

where

and

The displacement W will be equal to zero when the angle in

Eq. (50) is equal to an odd integer multiple of π/2, that is

or

where 0≤θ≤π2 and k and n are integers. Then as an illus

tration n is chosen to be unity, and furthermore, the angle

α is chosen to be zero. A radial node line would then occur

at



20.

Similarly, if n were equal to two, nodal lines will occur

at

Thus, it is seen that the number of nodal diametral lines

corresponds to the value of n, the order of the equation.

It is noted that Eq. (54) does not apply when n is equal to

zero, since Eq. (48) is then no longer a function of e,

and there are no nodal diameter lines present.

Equations of Nodal Circles

If the value of e is held constant in Eq. (48) it can

be written as

To find the radii of the nodal circles, this equation is

set equal to zero. The constant K 1 can then be divided out

since e may be chosen such that it does not give a nodal

diameter line. The resulting equation is

or

The Bessel function of a complex argument can be expressed

as a Modified Bessel function using Eq. (20). Then Eq. (59)

can be written as
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This particular form is desirable because the ratios Bn/An

have been found in the derivation of the frequency equa

tions for each edge condition. Both boundary conditions

for each of the three plate edge conditions were solved

for this ratio. Equation (60) can be equated to one of

these ratios for each one of the edges.

Clamped Edge. The equating of Eq. (60) to Eq. (24) yields

or

After substituting the values of λ
nm

, which have been found

for a clamped plate, into Eq. (62), the values of r for

which the equation equals zero may be found. These values

are the radii of concentric nodal circles. For each λ nm

there will be m values of r which satisfy the equation.

Simply  Supported Edge. The equation for the nodal radii

of a plate with simply supported edge is the same as that

for a clamped edge. This is the case because both share

the same boundary condition, that is, the displacement at
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the edge is equal to zero. The values of λnm used in this

equation are those which satisfy the frequency equation

of a simply supported plate. Equation (62) may be written

again here noting that the λnm are not the same as those

for a clamped plate.

Free Edge. To find the radii of the nodal circles of a

plate with a free edge Eq. (6o) is equated to Eq. (38),

which was derived from the condition that the moment at

the edge was zero.

The first order derivatives can be eliminated by Eq. (26)

and Eq. (27).

For simplicity of calculation the subscripts nm are omitted

from the two preceding equations. After clearing the frac

tions and simplifying the final equation for the nodal

radii of a free plate is, with the subscripts replaced,
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The values of λnm which satisfy the frequency equation

for a free plate are substituted into Eq. (66), and the

radii of the nodal circaes can then be found.

Ratio Method for Nodal Circles

A method utilizing the ratios of the natural frequency

eigenvalues may be employed to find the radii of the nodal

circles of vibrating plates. It can be shown that for

each λ nm there are m values of r which satisfy the nodal

circle equations. For the clamped and the simply supported

edges the minimun value which m can have is unity, because

the edge must be a node. However, beginning with the sec

ond order, the free plate is capable of assuming a mode

shape without any nodal circles. Thus, m is equal to zero.

The maximum value which r can have is a, the radius

of the plate. For the cases of the clamped and simply

supported plates, the edge will always be a node, or r

equal to a is a solution to the nodal circle equations.

The value of the first root of the nth order equation is

λn1a. When m is equal to two, λn2a is a solution. How

ever, a root will also occur when r is such that the pro

duct λn2r is equal to λn1a. Since λn2 is greater than

λn1, and r is less than a, this equality is known to be
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attainable. Thus, for λn2 there is one nodal circle pres

ent in addition to the edge. It follows that for each

λnm a root will occur at λnma, for the edge, and whenever

the productX
nmr. is equal to one of the previous products

λnm-1a,λnm-2a,...λn1a. Therefore, there are m values of

r which satisfy the nodal circle equations for each λnm

. This relationship between the roots may be used to produce

a scheme to find the radii of the nodal circles. For a

given value of n, the following equalities are determined

for the m values of λnmr.

Since the values of λnm have been determined from

the frequency equations, the radii of the nodal circles

may be found from the ratios given in the group of equa

tions called Eq. (67). For the first case,

and in the general case,
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where rm1 = a,a for all m, for the clamped and simply sup

ported edge. Thus, once the natural frequency eigenvalues

are known, the radii of the nodal circles may be found from

them directly.

The case of the free edge is more difficult to handle

than the two preceding edge conditions. Since the edge is

not constrained, its displacement is not equal to zero.

Therefore r equal to a is not a solution to the equation

for the nodal radii of a free plate, that is, Eq. (66).

In order to use the above scheme for a free plate, r

m1must be evaluated for each value of λ nm. Once these values

are known, the same procedure may be followed to find the

nodal radii. The values of λm1 are obtained from Eq. (66).

Due to the unconstrained boundary, the first mode does

not exist for the zero order vibration or for the first order

vibration. It was noted in the previous section that

λ00 and λ10 are equal to zero. This phenomena can also be ex

plained by observing the physical characteristics of a vibrat

ing free plate, and the behavior of Eq. (66). The first mode

of the zero order vibration would have the center point



26.

as a node since the edge is free. However, this is clearly

impossible for the zero order case,since both J 0(0) and

I0 (0) are equal to unity. Equation ( 66) cannot equal zero

unless λ00 equals zero. Thus, when there are no nodal

diameters, at least one nodal circle must be present during

vibration. The first mode of the first order vibration

would consist of one nodal diameter and no nodal circles.

This situation is physically impossible, because the ends

of the plate are unconstrained. It is analogous to the

vibration of a free rod in an unsymmetrical mode with a

node at the middle, and no other nodes present. The phys

ical reasoning can be confirmed in both cases by the actual

calculation of the first root of Eq. (66) with n equal to

zero and one. The first root for both orders is different

from zero and a, thus indicating the presence of a nodal

circle. The radius of the first nodal circle is given as

0.6802a, for the zero order vibration, and 0.781a, for the

first order vibration.
8

8John Prescott, Applied Elasticity (New York, 1961),

pp. 588,596.
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BESSEL FUNCTIONS

The evaluation of Bessel functions of the first kind

and Modified Bessel functions of the first kind was accom

plished by using four separate methods. Each method was

found to have a specific range of arguments for which ac

curacy could be maintained at eleven significant figures.

Overlapping values were found to insure that this degree

of accuracy was retained when transferring from one method

to the next. The four methods used were:

(a) Infinite Series

(b) Asymptotic Series

(c) Recursion Formula

(d) Approximate Numerical Method

Infinite Series

The infinite series defining the Bessel function of the

first kind is
1

and the series for the Modified Bessel function of the

first kind is
2

1Arfken, p. 372.

2
Ibid., p. 397.
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Both of these series are useful if the value of the argu

ment x is nearly equal to the order n. If the argument is

much greater than or less than the order, then the rates

of convergence of both series are very slow, and a enormous

number of terms are required to give acceptable accuracy.

Asymptotic Series

In order to circumvent the difficulty posed when the

argument is large relative to the order, the following

Asymptotic expansions were used. 3
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and

where

If the number of terms is taken to be greater than a cer

tain value specified for each order by the relationship,

then the error becomes smaller than the first term which is

omitted.4 The minimum error will be obtained at the smallest

term. Thus, each term must be compared to the previous one.

Once the terms begin to increase in value accuracy will be

lost.

The overlap area between the infinite series and the

asymptotic expansion becomes smaller as the order increases.

In fact, after the twentieth order vacant areas occur, that

is, arguments for which Bessel functions cannot be accur

ately found by either method.

4 Eugene Jahnke and Fritz Emde, Tables of Functions with
Formulae and Curves 4th ed. (New York, 194517p. 137-138.
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Recursion Formula 

Since the two previous methods give excellent results

for the lower orders, a technique was devised to find the

higher order values from the zero and first order values.

The infinite series is used for arguments less than thir

teen, and the asymptotic series for arguments which are

greater than or equal to thirteen. The Bessel functions

of higher orders can then be found by using the appropriate

recursion formulas.
5 

These formulas are obtained from the

standard Bessel function recursion formulas by replacing

n by n-1 .

J
n
(x) = 2(n-1)/x J

n-1(x)
 - J

n-2
(x) 	 (9)

and

In(x) = In-2(x) - 2(n-l)/x In-1(x) 	(10)

By starting with the zero and first orders any higher order

value can be found by using these recursion formulas to

advance one order for each cycle. To find the Bessel function

of the tenth order, for example, nine cycles would have to

be made, that is one cycle to find the value for each of the

orders from the second to the tenth inclusively.

5
Arfken, pp. 373, 397.
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Approximate Numerical Method

The recursion formulas work well if the order is less

than the argument, however, when the argument is less than

the order a rapid accumulation of round off errors destroys

the accuracy. This problem has plagued the users of Bes

sel function tables for many years. Most tables offer a

large amount of values for arguments which are greater

than the order. As the order increases a greater number

of arguments were omitted. Until very recently this prob

lem was insurmountable, and these values were never used.

An analysis of the situation shows the reason for

this round off error is the fact that J n(x) and I n(x) are

decreasing functions of n if n is greater than x. The

Bessel function of each succeeding order is smaller than

its predecessor, and eventually its contribution is lost.

However, a recursion process may be carried out in the

direction of decreasing n and still maintain accuracy. A

scheme for a numerical approach to evaluating Bessel func

tions by this reverse recursion technique is given by

F.W.J. Olver. 6 The procedure is as follows. To evaluate

6Abramowitz, pp. 385-386.
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the Bessel function of the first kind of order p, for some

argument x,such that p is greater than x, the value of a

test order q must first be chosen. Then J q(x) is set equal

to zero, and Jq-1(x) is set equal to unity. These two

values are then used to initiate the reverse recursion pro

cess. The formula used is obtained by replacing n by n+2

in Eq. (9) to give,

Jn(x) = 2(n+1)/x Jn+1(x) - Jn+2(x) 	(11)

Each value of Jn(x) obtained from Eq. (11) is stored or

retained until Jp(x) is reached. The number of digits in

this trial value for Jp(x) is the number of accurate digits

in the final result, that is the actual value of J p(x).

Thus, the test order q must be chosen large enough to

yield the desired number of accurate digits. If the number

of digits in the trial value Jp(x) is equal to the number

of accurate digits needed in the actual value of J p(x),

then the value of q is sufficiently large. If this is not

the case, then a larger value of q is used,and the process

is repeated until the required number of digits is achieved.

The recursion process is continued until J O(x) is found.

To find the actual value of Jp(x) the trial value for

Jp(x) found above is multiplied by a normalization factor K.
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This factor K is found by substituting the trial values

into the following relationship.

1/K = J0(x) + 2J2(x) + 2J4(x) + 2J6(X) + ... 	 (12)

The test order q, by actual evaluation, was found to

be a function of both the order and the argument. The value

of q necessary to maintain eleven digits in the trial value

of Jp(x) was found to be large if x approached p, and not

much greater than p itself when p was greater than x. The

minimum value of q was approximately p+15 for all orders.

The Modified Bessel function of the first kind is

treated in a similar manner. The procedure is the same

except the relationship for the normalization factor K is

e
x
/K =  I0 (x)+2I1(x)+2I2(x)+2I3(x) ... 	 (13)

where e is the base of the natural logarithms.

Computer programs were devised to evaluate the Bessel

functions by the recursion formula technique, and by the

approximate numerical method. The range of arguments for

which these methods give accurate results had to be evalu

ated for each order, and an overlap area had to be found

between the two methods for each order. The approximate
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numerical technique using the reverse recursion method was

found to be applicable to all arguments. However, if the

argument was greater than the order, the test order q was

very large, and the calculation by this method is time con-

suming. In this area the direct recursion formulas are

more efficient than the reverse technique. A combination of

the two methods gives the best accuracy in the least amount

of time.

The minimum arguments which have to be reached before

the direct recursion formulas can be used were found for

each order, and a plot was made of the straight line en-

velope of these points. This was performed for both types

of Bessel functions, and the results are given in Fig. (1)

on page 36. The calculation of the Bessel functions for each

order begins with the approximate method. When the value

of the argument is greater than the transfer point for that

Particular order, the calculations are shifted to the di-

rect recursion method. The empirical equations of the

straight line envelopes of these transfer points were found

to be:

Transfer Point = 4/7 (Order +35) 	 (14)
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for the Bessel function of the first kind, and

Transfer Point = 3.88 (Order+ 1.94) 	 (15)

for the Modified Bessel function of the first kind. Both

of these empirical relationships are applicable for orders

which are less than or equal to thirty-three, since that

was the maximum order for which the transfer points were

evaluated. Bessel functions of arguments which are to the

left of the transfer point line in Fig. (1) are evaluated

by the approximate numerical method. If the argument is

to the right of the line, the recursion formulas are used.

The line designated Jn(x) is the transfer point line for

the Bessel function of the first kind, and the line desig

nated In(x) is that for the Modified Bessel function of the

first kind.
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ARGUMENT

Fig. (1) Bessel function subprogram transfer points.
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COMPUTER PROGRAM ANALYSIS

Bessel Function Subprogram

The Bessel function subprogram is composed of four

main divisions, that is, one for each of the four methods

discussed in the previous chapter. Each one of these is

composed of two subdivisions to find Jn(x) and In(x).

Thus, there are eight separate programs used to compute the

Bessel function values. The selection of the proper tech

nique is based on both the order and the argument. A flow

chart of the Bessel function subprogram is given in Fig. (2)

on page 39, and a copy of the actual program is given in

the Appendix. This program may be used to calculate the

value of the Bessel function, and the Modified Bessel func-

tion of the first kind of any argument to eleven digits ac

curacy for the first thirty-three orders. These four methods

may be used for higher orders, but the values of the Modi

fied Bessel function may become exceedingly large, and care

must be taken to avoid exceeding the capacity of the com

puter.

The error of each method of finding the Bessel functions

was restricted to be less than 0.00000000001. A detailed
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comparison of values yielded overlap regions among the

four different methods. All the values in these overlap

regions were checked to agree to eleven digits, and they

were also checked with Bessel function tables wherever pos-

sible. This agreement of values obtained by totally differ-

ent methods insures the uninteruption of accuracy when

transferring from one method to the other. It also provides

an opportunity to check the reliability of the expressions

used to evaluate the error of each of the four methods.

Main Program

The main program consists of an iteration procedure

which evaluates the roots of an equation by searching for

a sign change of the function, and narrowing the interval

of arguments between sign changes until the root is reached.

In this scheme an interval of some specified length is

chosen, and the value of the function is noted at the start

ing point and the end point. For this case, the function

is the value of the right side of the frequency equation.

Only those arguments which give the function a zero value

are solutions to the frequency equation. The sign of the

function at each of the two points is compared. If the

function exhibits a sign change, a root is present in that



Fig. (2) Bessel function subprogram flow chart. 	 39.

B Argument
JS=Jn(x) Transfer point
IS=In (x) Transfer point
BJ= Jn(B)
BJ1= Jn+1(B)
BI= In (B)
BI1 = In+1 (B)



40.

interval. The function is then evaluated at the midpoint

of the interval, and its sign is compared to each of the

end points. The half interval which contains the sign change

is taken as the new interval, and the process is repeated.

However, if the sign at the starting point is identical to

that of the end point then a new interval of the same length

is chosen with the end point of the previous interval taken

as the starting point of the new interval. The above pro

cess of comparing signs is repeated, and the entire pro

cedure is continued until a root is established. Since the

halving process only approximates the roots, some criteria

must be introduced to decide which values are considered to

be roots. In this program an argument is considered as a

solution if either the value of the function corresponding

to it is in absolute value less than 0.0000000001, or the

length of the interval has decreased to less than this

amount. This situation indicates the occurrence of a sign

change within the interval between two arguments which dif

fer by less than 0.0000000001. The end point of this inter

val is chosen as the root, and it is also used as the start

ing point of the next interval, so that this sign change is

not considered twice.
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An educated guess must be made of the frequency of

occurrence of the roots, so that the interval length is

chosen to avoid the inclusion of more than one root. In

this program the interval length was chosen to be one unit

to eliminate the possibility of double roots within a

single interval. This value was used because Bessel func

tions of the first kind are approximately periodic with a

period nearly equal to 2W. The frequency equations exhibit

a similar behavior, since the Modified Bessel function of

the first kind is divergent. Thus, the periodicity is en

tirely dependent upon the Bessel function of the first kind.

A flow chart of the main program is given in Fig. (3)

on page 42. The suffixes L and R refer to the left and

right of the interval, and FUNCT(X) refers to the function

evaluation subprogram, which is analyzed in the next section.

Function Evaluation Subprogram

In order to evaluate the function used in the main

program, the values of the Bessel functions must first be

obtained from the Bessel function subprogram. These values

are then substituted into the frequency equation, which

yields the value of the required function. The subprogram



Fig. (3) Main program flow chart. 	 42.



Fig. (3) continued.
43.
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which contains the frequency equation is called SUBROUTINE

EPSLON. The solution of the frequency equation for each

boundary condition was accomplished by using the same main

program and Bessel function subprogram for each, but in the

SUBROUTINE EPSLON only the specific frequency equation for

each edge condition was used.

A single function subprogram called FUNCT(X) was used

to call the other two subprograms- BESSEL and EPSLON. It

allows for the proper selection of the dummy variables

which are used in the subroutines, and it facilitates an

easy method of transferring control to a series of subpro

grams. A single "Function" statement will result in the

evaluation of all the necessary Bessel functions, and the

calculation of the value of FUNCT(X) to be returned to the

main program. It eliminates the necessity of having a series

of "Call" statements through out the main program with a

different set of variables in each one.

Accuracy of Results

The accuracy of the entire program was maintained at

ten significant digits. This was done by imposing the pre

viously stated criteria for defining the value of an argu

ment as a root. Since the only errors which could occur in
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the computation are round off errors, it can be shown

that this control value represents the actual error of

the results. All calculations done prior to the evaluation

of the function are accurate to eleven significant figures,

since the only calculations performed were the evaluation

of the Bessel functions, and these are specified to have

this accuracy.

Round off error may be produced in the evaluation of

the function in the subprogram titled EPSLON. However, this

computation involves only one equation, and the number of

operations is not so great as to introduce a round off error

large enough to have any effect on the tenth digit of a six

teen digit number. It must also be noted that this calcu

lation is performed only once for each argument, and the

error is not accumulated during the iterations, since the

Bessel functions are independently calculated for each argu

ment. Some round off error is produced in the main program.

However, the only calculation performed is the division of

the interval in half, and this computation will also have

no effect on the tenth digit of a sixteen digit number.

Thus, the only factor which has any detectable effect upon

the accuracy of the results is the setting of the control
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value to determine when an argument is a root. Since

this value was chosen to be 0.0000000001, the results are

accurate to ten significant figures.
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CONCLUSIONS AND RESULTS

The eigenvalues of the natural frequency equation are

tabulated for three edge conditions: clamped; simply sup-

ported; free. The first twenty-six roots of the first

twenty-six orders were found with Poisson's ratio equal to

0.300. The roots of the lower order vibrations are in good

agreement with existing results to the degree of accuracy

used at the time. Tables of these frequency values given

by other authors are also listed here.

In the evaluation of the natural frequencies ten digit

accuracy was maintained through out the program. The Bessel

function subprogram may be used to find the solutions of

other problems which require the evaluation of Bessel func

tions up to the thirty-third order. The values of higher

order Bessel functions may be found if the transfer points

for these orders are obtained.
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FREE EDGE

0 1 2 3

2.320 3.530

1 3.000 4.530 5.900 7.300

2 6.30 7.600 9.200 10.40

3 9.500 10.95 12.37 13.801

Kirchhoff's values converted from the form in Volterra p. 399.

CLAMPED EDGE

n
m

0 1 2 3

1 3.1955 4.611 5.906 7.144

2 6.3064 7.799 9.197 10.536

3 9.4395 10.958 12.402 13.795

4 12.5771 14.109 15.579 17.005

5 15.7164 17.256 18.745 20.192

6 18.8565 20.401 21.901 23.366

7 21.9971 23.545 25.055 26.532

8 25.1379 26.689 28.205 29.693

9 28.2790 29.832 31.354 32.849

10 31.4200 32.975 34.502 36.003

Airey's values



CLAMPED EDGE

0 1 2 3

1 3.1961 4.6110 5.9056 7.1433

2 6.3064 7.7993 9.1967 10.537

3 9.4395 10.958 12.402 13.795

4 12.577 14.108 15.579

5 15.716

From Carrington's paper in 1925.

SIMPLY SUPPORTED

0 1 2 3

1 2.2 3.7 5.1 6.4

2 5.4 6.8 8.4 9.8

3 8.8 10.1 11.6 13.0

4 11.9 13.3 14.8 16.2

Values taken from chart in Bodine's paper in 1967.

n 0 1 2 3

Clamped 3.20 4.61 5.90 6.30

Simply Supported 2.22 3.73 5.06 5.45

Fundamental modes only, from Kantham's paper in 1958.

49.



CLAMPED EDGE

m\n 0 1 2 3 4

1 3.196220617 4.610899880 5.905678236 7.143531024 8.346605939

2 6.306437048 7.799273801 9.196882600 10.53666987 11.83671846

3 9.439499138 10.95806719 12.40222097 13.79506360 15.14987010
4 12.57713064 14.10862781 15.57949149 17.00529018 18.39595702

5 15.71643853 17.25572701 18.74395810 20.19231303 21.60844831

6 18.85654552 20.40104490 21.90148516 23.36627975 24.80149223

7 21.99709516 23.54532554 25.05482216 26.53214306 27.98220170

8 25.13791541 26.68894922 28.20543287 29.69262100 31.15457239

9 28.27891311 29.83213054 31.35416937 32.84933383 34.32103153

10 31.42003345 32.97499985 34.50156168 36.00330909 37.48314260

11 34.56124206 36.11764083 37.64795700 39.15523056 40.64195984

12 37.70251633 39.26010971 40.79359228 42.30557131 43.79822079

13 40.84384075 42.40244566 43.93863487 45.45466916 46.95245728

14 43.98520433 45.54467679 47.08320631 48.60277191 50.10506273

15 47.12659909 48.68682381 50.22739700 51.75006548 53.25633453
16 50.26801907 51.82890232 53.37127560 54.89669212 56.40650173
17 53.40945973 54.97092428 56.51489519 58.04276256 59.55574365
18 56.55091758 58.11289902 59.6582 9744 61.18836426 62.70420271
19 59.69238985 61.25483392 62.80151556 64.33356723 65.85199347
20 62.83387435 64.39673490 65.94457629 67.47842821 68.99920914
21 65.97536930 67.53860678 69.08750144 70.62299362 72.14592634
22 69.11687326 70.68045348 72.23030897 73.76730187 75.29220863
23 72.25838504 73.82227826 75.37301381 76.91138496 78.43810921
24 75.39990364 76.96408384 78.51562845 80.05526980 81.58367290
25 78.54142824 80.10587251 81.65816343 83.19897918 84.728937$o
26 81.68295815 83.24764621 84.80062773 86.34253250 87.87393643



CLAMPED EDGE

m\n 5 6 7 8 9

1 9.525701356 10.68702586 11.83453021 12.97090865 14.09809354
2 13.10736372 14.35515634 15.58455188 16.79874060 18.00009791

3 16.47507757 17.77643378 19.05805844 20.32302126 21.57368079
4 19.75827660 21.09712081 22.41612475 23.71808431 25.00520347
5 22.99787246 24.36470172 25.71210576 27.04258559 28.35815492
6 26.21165995 27.60028082 28.97011748 30.32339603 31.66194085
7 29.40878990 30.81490500 32.20296412 33.57494944 34.93250995
8 32.59449808 34.01498922 35.41817203 36.80581630 38.17941341

9 35.77201399 37.20454027 38.62049165 40.02145421 41.40877956
10 38. 94344482 40.38620082 41.81308485 43.22552423 44.62474724

11 40.64195984 42.11022715 44.99814499 46.42058364 47.83022501
12 45.27337561 46.73260106 48.17724501 49.60847780 51.02732320
13 48.43362799 49.89958418 51.35154430 52.79057443 54.21761365
i4 51.59153406 53.06345010 54.52191726 55.96791031 57.40229320
15 54.74751212 56.22474315 57.68903650 59.14128653 60.58229044
16 57.90188624 59.38388723 60.85342821 62.31133247 63.75833764
17 61.05491147 62.54121752 64.01551021 65.47854975 66.93102045
18 64.20679131 65.69700263 67.17561864 68.64334335 70.10081319
19 67.35769020 68.85146040 70.33402709 71.80604395 73.26810431
20 70.50774242 72.00476943 73.49096055 74.96692433 76.43321509
21 73.65705879 75.15707753 76.64660584 78.12621155 79.59641370
22 76.80573153 78.30850813 79.80111935 81.28409624 82.75792575
23 79.95383804 81.45916508 82.95463305 84.44073963 85.91794252
24 83.10144377 84.60913645 86.10725908 87.59627902 89.07662724
25 86.24860443 87.75849738 89.25909338 90.75083211 92.23412009
26 89.39536776 90.90731239 92.41021847 93.90450038 95.39054216



CLAMPED  EDGE

m\n 10 11 12 13 14

1 15.21752515 16.33031005 17.43731958
18.53925394

18.53925394 19.63668548

2 19.19044779 20.37122616 21.54358686 22.70847325 23.86666801

3 22.81189466 24.03915635 25.25668738 26.46550169 27.66645157

4 26.27925538 27.54169121 28.79371613 30.03634370 31.27043579
5 29.66046293 30.95088001 32.23055928 33.50048170 34.76148989

6 32.98726880 34.30065690 35.60319205 36.89580819 38.17931472

7 36.27703464 37.60970619 38.93154128 40.24342134 41.54611633
8 39.54023383 40.88937011 42.22776976 43.55626075 44.87557148

9 42.78363050 44.14701578 45.49981714 46.84281051 48.17668289

10 46.01181982 47.38767394 48.75312995 50.10891435 51.45567409
11 49.22804829 50.61491559 51.99159058 53.35875346 54.71701314
12 52.43468281 53.83135544 55.21805273 56.59541184 57.96400591
13 55.63349411 57.03895733 58.43466733 59.82122150 61.19915953
14 58.82583590 60.23922806 61.64309019 63.03798297 64.42441500
15 62.01276237 63.43334495 64.84461897 66.24711129 67.64130164
16 65.19510762 66.62224244 68.04028653 69.44973564 70.85104269
17 68.37354089 69.80667239 71.23092612 72.64676917 74.05462962
18 71.54860577 72.98724714 74.41721802 75.83895907 77.25287536
19 74,72074860 76.16447074 77.59972349 79.02692314 80.44645341
20 77.89033953 79.33876215 80.77891005 82.21117698 83.63592688
21 81.05768818 82.51047260 83.95517041 85.39215456 86.82177055
22 84.22305567 85.67989889 87.12883707 88.57022388 90.00438773
23 87.38666378 88.84729359 90.30019349 91.74569926 93.18412337
24 90.54870218 92.01287310 93.46948291 94.91885080 96.36127440
25 93.70933404 95.17682388 96.63691529 98.08991202 99.53609784
26 96.86870053 98.33930755 99.80267287 101.2590859 102.7088174



CLAMPED EDGE

n

m
15 16 17 18 19

1 20.73008895 21.81986310 22.90634657 23.98982973 25.07056371
2 25.01882878 26.1655143o 27.30720392 28.44431239 29.57720140
3 28.86026146 30.04755307 31.22886460 32.40466553 33.57536824
4 32.49673238 33.71587428 34.92842070 36.13486298 37.33563555

5 36.01431379 37.25959062 38.49788048 39.72967870 40,95542586
6 39.45441847 40.72174089 41.98183176 43.23518018 44.48222354

7 42.84030343 44.12658189 45.40544850 46.67748962 47.94302447

8 46.18634671 47.48916032 48.78452574 50.07290444 51.35471295
9 49,50204590 50.81944688 52.12937784 53.43228299 54.72856495

10 52.79398822 54.12437738 55.44731170 56.76321738 58.07248219
11 56.06691722 57.40896026 58.74359069 60.07121656 61.39221043

12 59.32435263 60.67692148 62.02213971 63.36039751 64.69205226

13 62.56897090 63.93110118 65.28595726 66.63391194 67.97530775

14 65.80284928 67.17370870 68.53738077 69.89422153 71.24455908

15 69.02762822 70.40649260 71.77826382 73.14328196 74.50186120

16 72.24462277 73.63085738 75.01009813 76.38266985 77.74887341

17 75.45490098 76.84794595 78.23409965 79.61367249 80.98695262

18 78.65934029 80.05869891 81.45127084 82.83735280 84.21722085

19 81.85866894 83.26389827 84.66244642 86.05459717 87.44061509

20 85.05349689 86.46420008 87.86832772 89.26615138 90.65792473

21 88.24433924 89.66015918 91.06950874 92.47264794 93.86982011

22 91.43163422 92.85224833 94.26649627 95.67462717 97.07687456

23 94.61575722 96.04087303 97.45972558 98.87255370 100.2795817

24 97.79703179 99.22638324 100.6495728 102.0668295 103.4783689

25 100.9757384 102.4090827 103.8363646 105.2578041 106.6736084

26 104.1521214 105.5892364 107.0203866 108.4457834 109.8656261



CLAMPED EDGE

m\n 20 21 22 23 24

1 26.14876738 27.2246328o 28.29832958 29.37000831 30.43980343
2 30.70618850 31.83155425 32.95354794 34.07239220 35.18828683

3 34.74133721 35.90289640 37.06033527 38.21391363 39.36386574
4 38.53112467 39.72167556 40.90759819 42.08917210 43.26665040
5 42.17551579 43.39030224 44.60010431 45.80521098 47.00588495
6 45.72335474 46.95892831 48.18926539 49.41465796 50.63537238
7 49.20247625 50.45619546 51.70450075 52.94768291 54.18600811
8 52.63032874 53.90009513 55.16432543 56.42330650 57.67730169

9 56.01858998 57.30269239 58.58117828 59.85432875 61.12240266
10 59.37546012 60.67247534 61.96382561 63.24978513 64.53060710
11 62.70691353 64.01563931 65.31867650 66.61629170 67.90873170
12 66.01743230 67.33684012 68.65055506 69.95883573 71.26192209
13 69.31046024 70.63966090 71.96317960 73.28126677 74.59415530
14 72.58869649 73.92691437 75.25947319 76.58661515 77.90856598
15 75.85429248 77.20084584 78.54177244 79.87730636 81.20766618
16 79.10898807 80.46327360 81.81197212 83.15530970 84.49349785
17 82.35420809 83.71568876 85.07162800 86.42224400 87.76774144
18 85.59113232 86.95932755 88.32203139 89.67945459 91.03179497
19 88.82074728 90.19522496 91.56426483 92,92807032 94.28683269
20 92.04388513 93.42425507 94.79924341 96.16904654 97.53384940
21 95.26125336 96.64716181 98.02774685 99.40319809 100.7736943
22 98.47345774 99.86458289 101.2504442 102.6312248 104.0070976
23 101.6810204 103.0770685 104.4679132 105.8537316 107.2346907
24 104.8843939 106.2850959 107.6806558 109.0712443 110.4570233
25 108.0839728 109.4890819 110.8891100 112.2842225 113.6745759
26 111.2801027 112.6893914 114.0936606 115.4930701 116.8877712



CLAMPED EDGE

m\n 25

1 31.50783550
2 36.30141186

3 40.51040364
4 44.44026311

5 48.20236580
6 51.85165243
7 55.41972068

8 58.92655351
9 62.38563899
10 65.80652586
11 69.19622548

12 72.56003728
13 75.90206219

14 79.22553641

15 82.53305633

16 85.82673476

17 89.10831230

18 92.37923849

19 95.64073203
20 98.89382634

21 102.1394044

22 105.3782260

23 108.6109490

24 111.8381461

25 115.0603188

26 118.2779081



SIMPLY SUPPORTED EDGE

m\n

0 1 2 3 4

1 2.221519535 3.728024286 5.060958083 6.321179804 7.539336856
2 5.451605702 6.962811055 8.373591729 9.723629861 11.03188014
3 8.611391038 10.13771896 11.58869380 12.98749078 14.34751183
4 11.76087250 13.29666282 14.77168204 16.20138094 17.59566277
5 14.90687908 16.44889214 17.93992189 19.39103177 20.80982233
6 18.05129414 19.59767616 21.10013002 22.56697493 24.00422096
7 21.19484757 22.74445660 24.25547164 25.74378251 27.18604446
8 24.33788191 25.88996883 27.40763849 28.89608970 30.35934396
9 27.48057930 29.03462741 30.55761825 32.05381264 33.52658769
10 30.62304556 32.17868394 33.70602685 35.20863015 36.68936944
11 33.76534638 35.32229993 36.85326849 38.36126464 39.84876610
12 36.90752470 38.46558388 39.99961955 41.51221674 43.00553235

13 40.04960979 41.60861132 43.14527542 44.66184458 46.16021322
14 43.19162227 44.75143652 46.29037820 47.81041115 49.31321242

15 46.33357711 47.89409943 49.43503371 50.95811405 52.46483543
16 49.47548541 51.03663011 52.57932236 54.10510459 55.61531780
17 52.61735560 54.17905166 55.72330638 57.25150065 58.76484410

18 55.75919420 57.32138208 58.86703466 60.39739543 61.91356102

19 58.90100631 60.46363560 62.01054617 63.5428636o 65.06158664
20 62.04279598 63.60582367 65.15387232 66.68796568 68.20901711
21 65.18456650 66.74795553 68.29703875 69.83275124 71.35593150
22 68.32632052 69.89003881 71.44006657 72.97726129 74.50239546

23 71.46806025 73.03207977 74.58297332 76.12153005 77.64846392

24 74.60978750 76.17408367 77.72577370 79.26558629 80.79418323

25 77.75150379 79.31605492 80.86848014 82.40945436 83.93959277
26 80.89321041 82.45799726 84.01110318 85.55315505 87.08472618



SIMPLY SUPPORTED EDGE

m\n 5 6 7 8 9

1 8.729438345 9.899220082 11.05346553 12.19536662 13.32717366

2 12.30927231 13.56273564 14.79697976 16.01537263 17.22041810

3 15.67731529 16.98275134 18.26802317 19.53626785 20.78989834

4 18.96131755 20.30323612 21.62507678 22.92965878 24.21920802

5 22.20177754 23.57100544 24.92067602 26.25329502 27.57088296

6 25.41637525 26.80691920 28.17860714 29.53366185 30.87390737

7 28.61423340 30.02192442 31.41152349 32.78500611 34.14401765

8 31.80058705 33.22239304 34.62687657 36.01579964 37.39064855

9 34.97867334 36.41231325 37.82937766 39.23144480 40.61986069

10 38.15060897 39.59432023 41.02216741 42.43555703 43.83575160
11 41.31783963 42.77022303 44.20742746 45.63071384 47.04120378

12 44.48138802 45.94133874 47.38672429 48.81870864 50.23831060

13 47.64199881 49.10859524 50.56121377 52.00091475 53.42863264

14 50.80022755 52.2727129 1 53.73176855 55.17836404 56.61335911

15 53.95649741 55.43423801 56.89906046 58.35185446 59.79341335

16 57.11113652 58.59359627 60.06361552 61.52201338 62.96952396

17 60.26440335 61.75112459 63.22585171 64.68934115 66.14227404

18 63.41650431 64.90709315 66.38610552 67.85424200 69.31213609

19 66.56760625 68.06172124 69.54465100 71.01704612 72.47949729
20 69.71788456 71.21518870 72.70171362 74.17802608 75.64467801
21 72.86733485 74.36764447 75.85748072 77.33740888 78.80794578
22 76.01616783 77.51921298 79.01210917 80.49538514 81.96952579

23 79.16442327 80.66999900 82.16573144 83.65211616 85.12960899
24 82.31216773 83.82009138 85.31846012 86.80773938 88.28835843
25 85.45945794 86.96956596 88.47039155 89.96237265 91.44591417
26 88.60634251 90.11848790 91.62160867 93.11611758 94.60239722



SIMPLY SUPPORTED EDGE

m\n 10 11 12 13 14

1 14.45054067 15.56672374 16.67670230 17.78125678 18.88102052

2 18.41403560 19.59773363 20.77272231 21.93998942 23.10035317

3 22.03081654 23.26055211 24.48035648 25.69126842 26.89416109

4 25.49551745 26.76005592 28.01404418 29.25850951 30.49432584

5 28.87509666 30.16731436 31.44869679 32.72023213 33.98276971
6 32.20086204 33.51580538 34.81982738 36.11386536 37.39873216

7 35.48994537 36.82397160 38.14711354 39.46025365 40.76416332

8 38.75269053 40.10301619 41.44257210 42.77218590 44.09258615
9 41.99578420 43.36022137 44.71405218 46.05805142 47.39290548
10 45.22377310 46.60056373 47.96694163 49.32363173 50.67127990

11 48.43987233 49.82757849 51.20508350 52.57306576 53.93213283
12 51.64642780 53.04385596 54.43130425 55.80940795 57.17873867
13 54.84519589 56.25134301 57.64773563 59.03496919 60.41358184
14 58.03752028 59.45153436 60.85601954 62.25153461 63.63858660
15 61.22444806 62.64559858 64.05744348 65.46050780 66.85526971
16 64.40680820 65.83446367 67.25303271 68.66300931 70.06484492
17 67.58526622 69.01887672 70.44361475 71.85994573 73.26829634
18 70.76036293 72.19944643 73.62986548 75.05205917 76.46643122
19 73.93254265 75.37667413 76.81234280 78.23996345 79.65991853
20 77.10217397 78.55097665 79.99151155 81.42417105 82.84931784
21 80.26956539 81.72270360 83.16776241 84.60511343 86.03510106
22 83.43497714 84.89215052 86.34142621 87.78315665 89.21766917
23 86.59863035 88.05956897 89.51278510 90.95861338 92.39736527
24 89.76071419 91.22517456 92.68208128 94.13175244 95.57448473
25 92.92139145 94.38915316 95.84952386 97.30280628 98.74928331
26 96.08080303 97.55166587 99.01529437 100.4719770 101.9219827



SIMPLY SUPPORTED EDGE

m\n 15 16

;1

17 18 19

1 19.97651548 21.06817761 22.15637527 23.24142291 24.32359140

2 24.25450006 25.40301250 26.54638945 27.68506211 28.81940604

3 28.08977651 29.27875138 30.46163672 31.63891305 32.81102308

4 31.72224376 32.94291344 34.15690235 35.36470916 36.56677481

5 35.23704572 36.48370307 37.72330707 38.95635784 40.18330028

6 38.67513802 39.94370772 41.20499422 42.45948963 43.70763415

7 42.05952136 43.34692878 44.62692063 45.89997566 47.16652424

8 45.40441810 46.70825635 48.00461519 49.29395704 50.57669946

9 48.71922575 50.03755958 51.34849923 53.65218927 53.94933282

10 52.01046446 53.34170566 54.66547343 55.98219395 57.29225509

11 55.28283132 56.62565509 57.96105210 59.28943009 60.61116149
12 58.53981299 59.89309947 61.23902473 62.57797845 63.91031772
13 61.78406183 63.14685372 64.50236366 65.85096383 67.19299630

14 65.01763723 66.38910838 67.75338669 69.11082756 70.46175852

15 68.24216616 69.62159767 79.9939324o 72.35950971 73.71864318
16 71.45895336 72.84571511 74.22548086 75.59857474 76.96529697
17 74.66905887 76.06259498 77.44923893 78.82930037 80.20306681
18 77.87335386 79.27 317113 80.66620181 82.05274188 83.43306674
19 81.07256159 82.47822017 83.87719846 85.26977952 86.65622729
20 84.26728804 85.67839377 87.08292551 88.48115411 89.87333261
21 87.45804512 88.87424329 90.28397315 91.68749405 93.08504872
22 90.64526844 92.06623858 93.48084505 94.88933633 96.29194537
23 93.82933127 95.25478278 96.67397389 98.08714278 99.49451318
24 97.01055538 98.44022390 99.86373360 101.2813130 102.6931771
25 100.1892198 101.6228864 103.0504492 104.4721948 105.8883073
26 103.3655677 104.8029668 106.2344046 107.6600920 109.0802277



SIMPLY SUPPORTED EDGE

m\n 20 21 22 23 24

1 25.40311591 26.48020217 27.55503124 28.62776350 29.69854172
2 29.94975057 31.07638638 32.19957147 33.31953603 34.43648644
3 33.97827731 35.14106931 36.29967416 37.45435735 38.60535815
4 37.76349134 38.95520916 40.14224286 41.32487618 42.50336596
5 41.40453222 42.62041102 43.83125908 45.03736843 46.23900451
6 44.94982338 46.18641431 47.41773041 48.64406582 49.86568893
7 48.42695488 49.68161968 50.93083891 52.17490487 53.41408515

8 51.85322095 53.12386589 54.38894865 55.64875707 56.90355555

9 55.24019670 56.52511158 57.80439692 59.07832176 60.34714987
10 58.59601107 59.89378634 61.18587898 62.4725636o 63.75409380

11 61.92658748 63.23602157 64.53975258 65.83804731 67.13115277
12 65,2 3637064 66.55644958 67.87080383 69.17972203 70.48343421

13 68.52877630 69.85859507 71.18272230 72.50140833 73.81488602

14 71.80648223 73.14527898 74.47840896 75.80611421 77.12862032

15 75.07162328 76.41871966 77.76018317 79.09624764 80.42713145

16 78.32592630 79.68072208 81.02992605 82.37376402 83.71244725
17 81.57088058 82.93276667 84.28918244 85.64027106 86.98623684

18 84.80743319 86.17608109 87.53923491 88.89710503 90.24988900

19 88.03678833 89.41169337 90.78115869 92.14538739 93.50457041
20 91;25969785 92.64047183 94.01586300 95.38606739 96.75126962
21 94.47686471 95.86315570 97.24412265 98.61995481 99.99083067

22 97.68889093 99.08037874 100.4666026 101.8477452 103.2239792
23 100.8962955 102.2926878 103.6838771 105.0700400 106.4513432
24 104.0995283 105.5005576 106.8964452 108.2873619 109.6734691
25 107.2989817 108.7044021 110.1047426 111.5001681 112.8908347
26 110.4949996 111.9045848 113.3091518 114.7088600 116.1038605



SIMPLY SUPPORTED EDGE

m\n 25

1 30.76749360

2 35.55060851

3 39.75289307

4 43.67794563

5 47.43640948

6 51.08284538
7 54.64862547

8 58.15358753

9 61.61112089

10 65.03070434

11 68.41929818

12 71.78216360

13 75.12337236

14 78.44613795

15 81.75303890

16 85.04617375

17 88.32727158

18 91.59777253
19 94.85888760
20 98.11164379
21 101.3569188
22 104.5954678
23 107.8279450

24 111.0549197
25 114.2768908
26 116.1038605



FREE EDGE

m\n 0 1 2 3 4

0 2.009524802 3.115921966 4.176852520

1 3.000522846 4.524881227 5.892050377 7.189832951 8.444916203

2 6.200257918 7.733795398 9.166760558 10.53907278 11.86939309

3 9.367509371 10.90675641 12.37183066 13.78540518 15.16047485

4 12.52271181 14.06669269 15.55136854 16.99158158 18.39685326

5 15.67270058 17.22033862 18.71836650 20.17733558 21.60452366

6 18.81998447 20.37045988 21.87820913 23.35114935 24.79502783

7 21.96568789 23.51840649 25.03356472 26.51733578 27.97437572

8 25.11038835 26.66491663 28.18591490 29.67833791 31.14603573

9 28.25441311 29.81042818 31.33615103 32.83564939 34.31216077

10 31.39796063 32.95521739 34.48484253 35.99023722 37.47416235

11 34.54115885 36.09946718 37.63237060 39.14275618 40.63300651
12 37.68409369 39.24330351 40.77900024 42.29366585 43.78937762

13 40.82682504 42.38681594 43.92492149 45.44329864 46.94377461

14 43.96939590 45.53006990 47.07027423 48.59190100 50.96570061
15 47.11183798 48.67311431 50.21511637 51.73965963 53.24804796

16 50.25417511 51.81598647 53.35967074 54.88671858 56.39842866

17 53.39642563 54.95871531 56.50385825 58.03319081 59.54788583

18 56.53866038 58.10132366 59.64777613 61.17916616 62.69655820
19 59.68072097 61.24382970 62.79146437 64.32471697 65,84455797
20 62.82278617 64.38624817 65.93495542 67.46990218 68.99197687
21 65.96480676 67.52859107 69.07827587 70.61477028 72.13889065
22 69.10678878 70.67086834 72.22144776 73.75936155 75.28536241
23 72.24873721 73.81308821 75.36448947 76.90370969 78.43144512
24 75.39065623 76.95525763 78.50741647 80.04784316 81.57718361
25 78.53254934 80.09738243 81.65024186 83.19178613 84.72261608



FREE EDGE

m\n 5 6 7 8 9

0 5.217448488 6.246056300 7.266624576 8.281376190 9.291701338
1 9.670223343 10.87326564 12.05887907 13.23039421 14.39021869
2 13.16835519 14.44273982 15.69719788 16.93508779 18.15892963
3 16.50533613 17.82567945 19.12561414 20.40822422 21.67589504
4 19.77373135 21.12695084 22.46006879 23.77583842 25.07644273

5 23.00520392 24.38334295 25.74201401 27.08365568 28.41024151

6 .26.21417384 27.61194510 28.99100809 30.35352225 31.70126532

7 29.40829928 30.82197941 32.21774420 33.59751137 34.96288277

8 32.59207057 34.01892545 35.42864679 36.82294470 38.20326554

9 35,76831183 37.20626841 38.62784121 40.03456223 41.42774127

10 38.93889542 40.38634125 41.81811202 43.23558654 44.63995484

11 42.10511502 43.56076944 45.00141358 46.42829395 47.84249544

12 45.26789479 46.73072275 48.17916149 49.61434271 51.03725881

13 48.42791338 49.89706580 51.35240812 52.79497201 54.22566817

14 51.58568086 53.06045219 54.52195320 55.97112789 57.40881464

15 54.74158826 56.22138563 57.68841594 59.14354601 60.58754992

16 57.89594059 59.38026087 60.85228365 62.31280755 63.76254927

17 61.04897931 62.53739173 64.01394533 65.47937808 66.93435537

18 64.20089815 65.69303104 67.17371540 68.64363520 70.10340966

19 67.35185442 68.84738475 70.33185091 71.80588846 73.27007508

20 70.50197716 72.00062242 73.48856407 74.96639421 76.43465292

21 73.65137327 75.15288491 76.64403171 78.12536656 79.59739546

22 76.80013206 78.30429025 79.79840237 81,28298583 82.75851564

23 70.54832876 81.45493811 82.951$0176 84.43940497 85.91819445

24 83.09602716 84.60491322 86.10433704 87.59475460 89.07658678

25 86.24328173 87.75428808 89.25610008 99.74914697 92.23382596



FREE EDGE

m\n 10 11 12 13 14

0 10.29853357 11.30253297 12.30418503 13.30385801 14.30183838
1 15.54015828 16.68160727 17.81566794 18.94322889 20.06501844
2 19.37067187 20.57185760 21.76373332 22.94732276 24.12347863
3 22.93051676 24.17361719 25.40645207 26.63006820 27.84534891
4 26.36364728 27.63899040 28.90342389 30.15822940 31.40419304
5 29.72339532 31.02447218 32.31461670 33.59480607 34.86588231
6 33.03572156 34.35814526 35.66960764 36.97103212 38.26322130
7 36.31521263 37.65565797 38.98521652 40.30475571 41.61503530

8 39.57084646 40.92675078 42.27190884 43.60713209 44.93313697

9 42.80850848 44.17784705 45.53661852 46.88558283 48.22541431

10 46.03225245 47.41338701 48.78415930 50.14528003 51.49738334

11 49.24496920 50,63655457 52.01799660 53.38996025 54.75304183
12 52.44878570 53.84970103 55.24069894 56.62240208 57.99537143

13 55.64530534 57.05460547 58.45421627 59.84472139 61.22664896
14 58.83576203 60.25264173 61.66005905 63.05856181 64.44864763
15 62.02112232 63,44488931 64.85941759 66.26522200 67.66277190
16 65.20215493 66.63220936 68.05324395 69.46574323 70.87015042

17 68.37947953 69.81529789 71.24230957 72.66097120 74.07170176

18 71.55360154 72.99472406 74.42724675 75.85160054 77.26818198
19 74.72493761 76.17095812 77.60857906 79.03820761 80.46021956
20 77.89383440 79.34439226 80.78674402 82.22127499 83.64834163
21 81.06058286 82.51535629 83.96211031 85.40121001 86.83299392

22 84.22542906 85.68412967 87.13499089 88.57835905 90.01455602

23 87.38858257 88.85095089 90.30565327 91.75301867 93.19335342
24 90.55022307 92.01602473 93.47432755 94.92544430 96.36966691
25 93.71050550 95.17952809 96.64121276 98.09585728 99.54374005



FREE EDGE

m\n 15 16 17 18 19 

0 15.29835370 16.29358788 17.28769184 18.28079099 19.27299081

1 21.18164196 22.29360884 23.40135232 24.50524435 25.60560694

2 25.29291995 26.45625940 27.61402404 28.76667100 29.91459973

3 29.05304761 30.25381290 31.44820778 32.63672463 33.81979690

4 32.64206634 33.87250202 35.09607114 36.31327674 37.52456452

5 36.12857703 37.38353060 38.63130726 39.87240715 41.10727604

6 39.54687790 40.82262131 42.09100073 43.35250578 44.60757510

7 42.91672509 44.21041916 45.49664725 46.77588412 48.04855711

8 46.25055907 47.55996530 48.86186378 50.15671205 51.44492378

9 49.55671454 50.88002283 52.19582488 53.50455992 54.80662666

10 52.84103788 54.17675583 55.50500044 56.82619230 58.14071465

11 56.10777857 57.45465645 58.79411675 60.12656161 61.45235869

12 59.36011456 60.71709241 62.06672508 63.40939671 64.74545962

13 62.60047868 63.96664780 65.32555615 66.67757052 68.02302830

14 65.83077018 67.20534433 68.57275070 69.93333944 71.28743353

15 69.05249665 70.43479013 71.81001474 73.17850481 74.54056952

16 72.26687218 73.65628272 75.03872728 76.41452513 77.78397229

17 75.47488683 76.87088217 78.26001683 79.64259586 81.01890273

18 78.67735700 80.07946407 81.47481704 82.86370752 84.24640703

19 81.87496250 83.28275877 84.68390788 86.07868874 87.46736158

20 85.06827450 86.48138078 87.88794655 89.28823872 90.68250680

21 88.25777667 89.67585129 91.08749121 92.49295202 93.89247308

22 91.44388158 92.86661547 94.28301923 95.69333778 97.09780088

23 94.62694345 96.05405604 97.47494154 98.88983481 100.2989565

24 97.80726828 99.23850404 100.6636140 102.0828235 103.4963446

25 100.9851219 102.4202473 103.8493464 105.2726354 106.6903182



FREE EDGE

m\n
20 21 22 23 24

0 26.70272098 27.79683314 28.88816137 29.97689931 31.06321989

1 31.05816160 32.19766759 33.33339441 34.46558953 35.59447530

2 34.99780849 36.17110126 37.33998118 38.50472332 39.66557602

3 38.73033159 39.93093349 41,12669005 42.31789012 43.50479564

4 42.33631318 43.55987781 44.77829451 45.99185771 47.20083538

5 45.85660350 47.09994778 48.33793167 49.57084991 50.79897175

6 49.31505257 50.57572106 51.83088185 53.08082665 54.32582282

7 52.72688744 54.00290601 55.27333104 56.53843600 57.79848428

8 56.10238835 57.39217698 58.67629693 59.95502807 61.22862841

9 59.44891781 60.75112300 62.04762500 63.33869797 64.62459185

10 62.77184515 64.08533107 65.39310239 66.69542344 67.99253914

11 66.07523785 67.39903026 68.71711314 70.02974255 71.33715630

12 69.36224065 70.69549531 72.02305894 73.34517923 74.66208673

13 72.63533165 73.97731062 75.31362760 76.64452197 77.97021698

14 75.89649545 77.24654887 78.59097762 79.93001289 81.26387073

15 79.14734375 80.50489553 81.85686647 83.20347976 84.54494435

16 82.38920134 83.75373788 85.11274246 86.46643050 87.81500404

17 85.62316890 86.99422991 88.35981174 89.72012232 91.07535696

18 88.85016964 90.22734068 91.59908832 92.96561323 94.32710422

19 92.07098445 93.45389081 94.83143177 96.20380104 97.57118113
20 95.28627894 96,67458053 98.05755763 99.43545337 100.8083881

21 98.49662440 99.89001146 101.2781535 102.6612308 104.0394147

22 101.7025142 103.1007037 104.4937096 105.8817062 107.2648587
23 104.9043771 106.3071096 107.7047202 109.0973775 110.4852413
24 108.1025872 109.5096243 110.9116014 112.3086815 113.7010191
25 111.2974732 112.7085952 114.1147190 115.5160021 116.9125941



FREE EDGE

m\n 25

32.14727825

1 36.72025232
2 40.82276438

3 44.68764496
4 48.40547229

5 52.02254392
6 55.56611611

7 59.05371865
8 62.49733638
9 65.90554049

10 69.28467696

11 72.63957570

12 75.97399643

13 79.29092125

14 82.59275338

15 85.88145619

16 89.15865285

17 92.42569939

18 95.68373917

19 98.93374425

20 102.1765472

21 105.4128660

22 108.6433233
23 111.8684628

24 115.0887608

25 118.3046372
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PROGRAM PLATE

		

O FIND THE ROOTS OF THE FREQUENCY EQUATION

		

MPLICIT REAL*8 (A-H, 0-Z) INTEGER*4 (I-N)

		

OMMON XORD
500

		

ORMAT ('ROOTS OF THE FREQUENCY EQUATION'/)

		

RINT 500

		

ORD=0.0

		

NDORD=25.0
502

		

ORMAT (6HORD=,3X,F5.1,3X,5HTO ,F5.1/)

		

RINT 502, XORD,ENDORD
100

		

ORMAT (3X,5HORD=,F5.1,3X,6HROOT =,F15.11,3X, 5HEP1= D19.12)
200

		

FORMAT (3X,5HORD =,F5.1,3X,6HROOT ,F15.11,3X, 5HEP1 = D19.12,

	

1

		

3X, 6HDIFF =,D19.12 )

		

ERROR=0.10D-09
504

		

FORMAT (8H ERROR = 3X,D23.16//)

		

PRINT 504

		

A = 1.0

		

GO TO 3

	

2

	

CONTINUE

		

A=1.0

	

3

	

CONTINUE

		

B = 150.0

		

H=1.0

		

XL=A

	

4

	

YL=FUNCT(XL)

		

IF (ABS(YL)-ERROR) 10,10,20
10 

		

PRINT 100,XORD,XL,YL

		

XL=XL+H

		

IF (XL-B) 4,4,70
	 20 	 XR=XL+H

		

IF (XR-B) 22,22,70

	

22

	

YR=FUNCT(XR)

		

IF (ABS(YR)-ERROR) 30.30.24

	

24

	

CONTINUE

		

YLSIGN = ABS(YL)/YL

		

YRSIGN = ABS(YR)/YR

		

IF (YRSIGN*YLSIGN) 40,30,60
30 

		

PRINT 100, XORD,XR,YR

		

XL= XR+H

		

IF (XL-B) 4,4,70

	

40

	

xi= (xR+XL)/2.0

		

DIFF=(XR-XL)/2.0

		

YI=FUNCT(XI)
300

		

FORMAT (7D18.11)

		

PRINT 300,XL,XI,XR,DIFF,YL,YI,YR



45

	

IF (DIFF—ERROR) 46,46,48
46

	

CONTINUE
47

	

PRINT 200, XORD,XI,YI,DIFF

	

XL= XI + H

	

GO TO 4
48

	

CONTINUE

	

IF (ABS(YI)-ERROR) 47,47,50
50

	

CONTINUE

	

YLSIGN= ABS(YL)/YL

	

YISIGN= ABS(YI)/YI

	

IF (YLSIGN*YISIGN) 52, 47, 54
52

	

XR=XI

	

YR=YI

	

GO TO 40
54

	

XL=XI

	

YL=YI

	

GO TO 40
60

	

XL = XR

	

YL = YR

	

GO TO 2
70

	

CONTINUE

	

XORD = XORD + 1.0

	

IF (XORD—ENDORD) 2,2,80
80

	

CONTINUE

	

STOP

	

END

	

DOUBLE PRECISION FUNCTION FUNCT(B)

	

IMPLICIT REAL*8 (A-H, 0-Z), INTEGER*4 (I-N)

	

COMMON XORD

	

V=0.300

	

CALL BESSEL (B,XORD,BJ,BI,BJ1,BI1)

	

CALL EPSLON (B,XORD,BJ,BI,BJ1,BI1,V,EP1)

	

FUNCT = EP1

	

RETURN

	

END

	 SUBROUTINE BESSEL (B,XORD,BJ,BI,BJ1,BI1)
	 IMPLICIT REAL*8 (A-H, 0-Z), INTEGER*4 (I—N)

	

DIMENSION BJR(250),BIR(250),TERM(150)

	

NTERM=150

	

SHIFTJ=4.0/7.0*(XORD+35.0)

	

SHIFTI=3.88*(XORD+1.94)

	

IF (B-SHIFTJ) 145, 145, 1
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	1

	

CONTINUE

		

IF (B-13.0) 2,40,40
C

		

DIRECT SERIES FOR J(x) AND I(X)
C

	

	 FOR X LESS THAN 13.0

	

2

	

ORD= 0.0

	

3

	

CONTINUE

		

TEST1=0.1D-12

		

Z=B/2.0

		

Z2=Z*Z

		

SIGN=(-1.0)

		

TEMPI=1.0

		

IF (ORD-1.0) 8,4,4
	 4 	 NORD=ORD

		

DO 5 I = 1,NORD

		

XI=I

	

5

	

TEMPI=TEMPI*Z/XI

	

8

	

CONTINUE

		

TEMPJ=TEMPI

		

SUMI=TEMPI

		

SUMJ=TEMPJ

	

10

	

DO 28 NS1, NTERM

		

S1=NS

		

S2=ORD+S1

		

Z2S12=Z2/(Sl*S2)

		

TEMPI=TEMPI*Z2S12

		

TEMPJ=TEMPI

		

SUMIT=SUMI+TEMPI

		

SUMJT=SUMJ+SIGN*TEMPJ

		

IF (TEST1-ABS(TEMPI) ) 26,26,30

	

26

	

SUMI=SUMIT

		

SUMJ=SUMJT

		

SIGN=(-SIGN)

	

28

	

CONTINUE

	

30

	

BIT=SUMIT

		

BJT=SUMJT

	

35

	

CONTINUE

		

IF (ORD) 36,36,37

	

36

	

BJR(1)=BJT

		

BIR(1)=BIT

		

ORD=1.0

		

GO TO 3

	

37

	

BJR(2)=BJT

		

BIR(2)=BIT

		

GO TO 60
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40

	

CONTINUE
C

		

YMPTOTIC SERIES FOR JX) AND I(X)
C

		

FOR X GREATER THAN OR EQUAL TO 13.0

		

PI = 3.141592653589793

		

TEST2=0.1D-12

		

CN=4.0

		

ORD=0.0

	

41 

	

CONTINUE

		

TERML=1.0

		

TERMP=0.10D 50

		

IF (ORD) 420,420,42

	

420

	

DO 430 N 1, NTERM

		

XN=N

		

TERM(N)=TERML*(-1.0)*((2.0*XN-1.0)**2)/(8. 0*B*XN)

		

TERML=TERM(N)

		

IF (ABS(TERMP)-ABS(TERML)) 421, 421,425

	

421

	

TERM(N)=0.0

		

GO TO 325

	

425

	

TERMP=TERML

		

IF (ABS(TERML)-TEST2) 325,325,430

	

430

	

CONTINUE

		

GO TO 325

	

42

	

DO 320 N = 1,NTERM

		

XN =N

		

TERM(N)=TERML*(4.0*ORD**2-(2.0*XN-1.0)**2)/(8.0*B*XN)

		

TERML=TERM(N)

		

IF (ABS(TERMP)-ABS(TERML)) 305, 305,310

	

305

	

ZN=N

		

IF (CN—ZN) 309, 309, 310

	

309

	

TERM(N)=0.0

		

GO TO 325

	

310

	

TERMP=TERML

		

IF (ABS(TERML)-TEST2) 325, 325, 320

	

320

	

CONTINUE

	

325

	

CONTINUE

		

N=XN

		

IF ((-1.0)**M) 43,43,44

	

43

	

LIMP=XN-1.0

		

LIMQ=XN

		

GO TO 45

	

44

	

LIMP=XN

		

LIMQ=XN-1.0

	

45 	 P=1.0

		

DO 46 N2=2,LIMP, 2



		

N = N2/2
	 	 P=P+((-1.0)**N)*TERM(N2)

	

46

	

CONTINUE

		

Q=0.0

		

DO 47 N21=1,LIMA,2
	 	 N=(N21+1)/2

		

Q=Q+((-1.0)**N)*TERM(N21)

	

47

	

CONTINUE

		

C=1.0
	 	 K=XN

		

DO 48 N=1,K

		

C=C+((-1.0)**N)*TERM(N)

	

48

	

CONTINUE

		

DEL=B-(ORD+0.5)*0.5*PI

		

BJT=(2.0/(PI*B))**0.5*(P*COS(DEL)+ Q*SIN(DEL))

		

BIT=C*EXP(B)/((2.0*PI*B)**0.5)

		

IF (ORD) 50,50,55

	

50

	

BJR(1)=BJT

		

BIR(1)=BIT

		

ORD=1.0

		

GO TO 41

	

55

	

BJR(2)=BJT

		

BIR(2)=BIT

	

60

	

IF (XORD-1.0) 75,80,61

	

61

	

XORD1=XORD+1.0

		

XORD2=XORD1+1.0

		

NXORD2=XORD2

		

IF (B-SHIFTJ) 100,100,62

	

62

	

CONTINUE
C

		

RECURSION FORMULA

		

DO 70 N=3,NXORD2

		

XN= N

		

BJR(N)=(2.0*XN-4.0)/B*BJR(N-)-BJR(N-2)

		

IF (XN-XORD1) 70,63,65

	

63 	 BJ = BJR(N)

		

GO TO 70

	

65

	

BJ1= BJR(N)

	

70

	

CONTINUE

		

GO TO 100

	

75

	

IF (B-SHIFTJ) 77,77,76

	

76

	

BJ BJR(1)

		

BJ1=BTR(2)

	

77

	

IF (B-SHIFTI) 170,170,78

	

78 	 BI=BIR(1)
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BI1=BIR(2)

		

GO TO 230

	

80

	

IF (B-SHIFTJ) 812,812,811

	

811

	

BJ=BJR(2)

		

BJ1=2.0*BJR(2)/B-BJR(1)

	

812

	

IF (B-SHIFTI) 170,170,82

	

82

	

CONTINUE

		

BI=BIR(2)

		

BI1=BIR(1)-2.0*BIR(2)/B

		

GO TO 230
100 

		

CONTINUE

		

IF (B-SHIFTI) 170,170,820

	

820

	

CONTINUE

	

821

	

DO 95 N=3,NXORD2

		

XN=N

		

BIR(N)=BIR(N-2)-(2.0*XN-4.0)/B*BIR(N-1)

		

IF (XN-XORD1) 95,83,85

	

83

	

BI=BIR(N)

		

GO TO 95

	

85

	

BI1=BIR(N)

	

95

	

CONTINUE

		

GO TO 230
C

		

APPROXIMATE NUMERICAL METHOD

	

145

	

CONTINUE

		

ORD=XORD

		

TORDJ=ORD+15.0

	

146

	

CONTINUE

		

JORD1=ORD+1.0

		

JTORD=TORDJ

		

TORD1J=TORDJ+1.0

		

JTORD1=TORD1J

		

BJR(JTORD1)=0.0

		

BJR(JTORD)=1.0

		

TORD2J=TORDJ+2.0

		

JTORD2=TORD2J
	 	 KJ=JTORD-1

		

DO 155 N=1,KJ

		

XN=N

		

NN1=JTORD-N

		

NN2=JTORD1-N

		

NN3=JTORD2-N

		

BJR(NN1)=2.0*(TORDJ-XN)*BJR(NN2)/B-BJR(NN3)

		

IF (NN1-JORD1) 155,147,155

	

147

	

IF (ABS(BJR(JORD1+1))-0.10D 12) 148,148,155
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148

	

TORDJ=TORDJ+5.0

	

IF (TORDJ-250.0) 146,146,150
150

	

CONTINUE
152 

	

FORMAT (3X,5HORD =IF5.1,3X,3HB =,F8.3,3X,7HTORDJ =,F8.2)

	

PRINT 152,ORD,B,TORDJ

	

GO TO 230
155

	

CONTINUE

	

BJNORM=BJR(1)

	

DO 160 N=1, JTORDI

	

N21=2*N+1

	

IF (JTORD1-N21) 161,157,157
157

	

BJNORM = BJNORM + 2.0*BJR( N21)
160 

	

CONTINUE
161 

	

CONTINUE

	

BJFAC=1.0/BJNORM

	

BJ=BJFAC*BJR(JORD1)

	

BJ1=BJFAC*BJR(JORD1+1)

	

IF (B-SHIFTI) 170,170,1
170 

	

CONTINUE

	

ORD=XORD

	

TORDI=ORD+15.0
171 

	

CONTINUE

	

IORD1=ORD+1.0

	

ITORD=TORDI

	

TORD1I=TORDI+1.0

	

ITORD1=TORD1I

	

BIR(ITORD1)=0.0

	

BIR(ITORD)=1.0

	

TORD2I=TORDI+2.0

	

ITORD2=TORD2I

	

KI=ITORD-1

	

DO 180 N=1, KI

	

XN=N

	

NN1=ITORD-N

	

NN2=ITORD1-N

	

NN3=ITORD2-N

	

BIR(NN1)=2.0*(TORDI-XN)*BIR(NN2)/B+BIR(NN3)

	

IF (NN1-IORD1) 180,172,180
172 

	

IF (ABS(BIR(IORD1+1))-0.10D 12) 173,173,180
173 

	

TORDI=TORDI+5.0

	

IF (TORDI-250.0) 171,171,175
175 

	

CONTINUE
176 

	

FORMAT (3X,5HORD=F5.1,3X,3HB =,F8.3,3X,7HTORDI =,F8.2)

	

PRINT 176,ORD,B,TORDI
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GO TO 230

	

180

	

CONTINUE

		

BINORM=BIR(1)

		

DO 185 N=ITORD1

		

BINORM=BINORM+2.0*BIR(N)

	

185

	

CONTINUE

		

BIFAC=EXP(B)/BINORM

		

BI=BIFAC*BIR(IORD1)

		

BI1=BIFAC*BIR(IORD1+1)

	

230

	

CONTINUE

		

RETURN

		

END

C 	

	

BOUNDARY CONDITION ********** CLAMPED EDGE ****************

		

SUBROUTINE EPSLON (B,ORD,BJ,BI,BJ1,BI1,V,EP1)

		

IMPLICIT REAL*8 (A-H, 0-Z), INTEGER*4 (I-N)

		

EP1=BJ+BJ1*(BI/BI1)

		

RETURN

		

END

C 	

	

BOUNDARY CONDITION ********** SIMPLY SUPPORTED EDGE *******

		

SUBROUTINE EPSLON (B,ORD,BJ,BI,BJ1,BI1,V,EP1)

		

IMPLICIT REAL*8 (A-H, 0-Z), INTEGER*4 (I-N)

		

EP1=2.0*B*B*BJ-B*(1.0-V)*(BJI+BJ*(BII/BI))

		

RETURN

		

END

C 	

	

BOUNDARY CONDITION ********** FREE EDGE *******************

		

SUBROUTINE EPSLON (B,ORD,BJ,BI,BJ1,BI1,V,EP1)

		

IMPLICIT REAL*8 (A-H, 0-Z) INTEGER*4 (I-N)

		

AAF=BJ*(B**2-ORD*(ORD-1.0)*(1.0-V))-BJI*B*(1.0-V)

		

BB1=ORD*BI*(B**2-ORD*(ORD-1.0)*(1.0-V))

		

BB2=BIl*B*(B**2-(1.0-V)*(ORD**2))

		

BBF=BBB1+BB2

		

CC1=ORD*BJ*(B**2+ORD*(ORD-1.0)*(1.0-V)

		

CC2=BJ1*B*(B**2(1.0-V)*(ORD**2))

		

CCF=CC1-CC2

		

DDF=BI*(B**2+ORD*(1.0-ORD)*(1.0-V))-BIl*B*(1.0-V)

		

EP1=AAF-CCF*(DDF/BBF)

		

RETURN

		

END
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